FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Worsley, MA Satcher, JH Baumann, TF AF Worsley, Marcus A. Satcher, Joe H., Jr. Baumann, Theodore F. TI Influence of sodium dodecylbenzene sulfonate on the structure and properties of carbon aerogels SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article DE Conductivity; Carbon; Scanning electron microscopy; Micelles; Porosity; Aerogels ID NANOTUBES; NANOCOMPOSITES; COMPOSITES AB This letter describes the effects that the surfactant, sodium dodecylbenzene sulfonate (SDBS), has on the structure and electrical properties of monolithic carbon aerogels (CA). Using organic sol-gel chemistry, a series of novel CA materials prepared with different concentrations of SDBS were characterized to evaluate the influence the surfactant had on the network structure of the resultant material. Addition of the SDBS surfactant to the sol-gel reaction mixture was shown to generate CA structures that had different pore sizes, higher densities and improved electrical conductivity than those prepared without the surfactant. These results are discussed in comparison With relevant sol-gel literature and theory. (C) 2009 Elsevier B.V. All rights reserved. C1 [Worsley, Marcus A.; Satcher, Joe H., Jr.; Baumann, Theodore F.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. RP Worsley, MA (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, 7000 East Ave, Livermore, CA 94550 USA. EM worsley1@llnl.gov RI Worsley, Marcus/G-2382-2014 OI Worsley, Marcus/0000-0002-8012-7727 FU US Department of Energy [DE-AC52-07NA27344] FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the DOE Office of Energy Efficiency and Renewable Energy. NR 12 TC 6 Z9 7 U1 2 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD FEB 1 PY 2010 VL 356 IS 3 BP 172 EP 174 DI 10.1016/j.jnoncrysol.2009.12.008 PG 3 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA 559YD UT WOS:000274867300010 ER PT J AU Besmann, TM AF Besmann, Theodore M. TI Thermochemical assessment of oxygen gettering by SiC or ZrC in PuO2-x TRISO fuel SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID FISSION-PRODUCT BEHAVIOR; THERMODYNAMIC TREATMENT; KERNEL MIGRATION; NUCLEAR-FUEL; DEEP-BURN; PARTICLES; PERFORMANCE; SYSTEM AB Particulate nuclear fuel in a modular helium-cooled reactor is being considered for the consumption of excess Plutonium and related transuranics. In this work a thermochemical analysis was performed to predict oxygen potential behavior in plutonia TRISO fuel to bumups of 88% FIMA of the Pu-239 content with and without the presence of oxygen gettering SiC and ZrC. The gettering phases are designed to prevent kernel migration, a serious issue in TRISO fuel, and this has been demonstrated with both SiC and ZrC. The phases reduce CO pressure, thus also reducing the peak pressure within the particles by at least 50%, decreasing the likelihood of pressure-induced particle failure. A model for kernel migration based on vapor transport by CO was used to semi-quantitatively assess the effect of controlling oxygen potential with SiC or ZrC and demonstrate the potential dramatic effect of the addition of these phases on carbon transport. (C) 2009 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Besmann, TM (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, 1 Bethel Valley Rd,POB 2008, Oak Ridge, TN 37831 USA. EM besmanntm@ornl.gov FU US Department of Energy [DE-AC05-00OR22725] FX The author gratefully acknowledges the helpful comments of T.B. Lindemer, R.E. Stoller, and G.L. Bell, C. Gueneall of CEA kindly provided a data file for the Pu-O system and K.T. Clarno of ORNL performed the ORIGEN calculations. This work was funded under the US Department of Energy - NE Deep Burn program with Oak Ridge National Laboratory under contract DE-AC05-00OR22725 with UT-Battelle, LLC. NR 25 TC 9 Z9 9 U1 3 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2010 VL 397 IS 1-3 BP 69 EP 73 DI 10.1016/j.jnucmat.2009.12.009 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 563KX UT WOS:000275132000011 ER PT J AU Fang, A Koschny, T Soukoulis, CM AF Fang, Anan Koschny, Thomas Soukoulis, Costas M. TI Lasing in metamaterial nanostructures SO JOURNAL OF OPTICS LA English DT Article DE metamaterial; gain material; lasing; loss compensation ID NEGATIVE-INDEX METAMATERIALS; WAVELENGTHS; MEDIA AB A self-consistent computational scheme is presented for one-dimensional (1D) and two-dimensional (2D) metamaterial systems with gain incorporated into the nanostructures. The gain is described by a generic four-level system. The loss compensation and the lasing behavior of the metamaterial system with gain are studied. A critical pumping rate exists for compensating the losses of the metamaterial. There exists a wide range of input signals where the composite system behaves linearly. Nonlinearities arise for stronger signals due to gain depletion. The retrieved effective parameters are presented for one layer of gain embedded in two layers of Lorentz dielectric rods and split ring resonators (SRR) with two different gain inclusions: (1) gain is embedded in the gaps only and (2) gain is surrounding the SRR. When the pumping rate increases, there is a critical pumping rate at which the metamaterial system starts lasing. C1 [Fang, Anan; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Fang, Anan; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Koschny, Thomas; Soukoulis, Costas M.] FORTH, Inst Elect Struct & Laser, Iraklion 71110, Crete, Greece. [Koschny, Thomas; Soukoulis, Costas M.] Univ Crete, Dept Mat Sci & Technol, Iraklion 71110, Crete, Greece. RP Fang, A (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM soukoulis@ameslab.gov RI Soukoulis, Costas/A-5295-2008 FU Department of Energy (Basic Energy Sciences) [DE-AC02-07CH11358]; Office of Naval Research [N00014-07-1-0359]; AFRL/RXB FX Work at Ames Laboratory was supported by the Department of Energy (Basic Energy Sciences) under Contract No. DE-AC02-07CH11358. This work was partially supported by the Office of Naval Research (Award No. N00014-07-1-0359), by the Laboratory Directed Research and Development program at Sandia National Laboratories and BioTechnology group from AFRL/RXB. NR 23 TC 52 Z9 52 U1 0 U2 24 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2040-8978 J9 J OPT-UK JI J. Opt. PD FEB PY 2010 VL 12 IS 2 AR 024013 DI 10.1088/2040-8978/12/2/024013 PG 13 WC Optics SC Optics GA 626CH UT WOS:000279943000014 ER PT J AU Morris, CJ Mary, B Zakar, E Barron, S Fritz, G Knio, O Weihs, TP Hodgin, R Wilkins, P May, C AF Morris, Christopher J. Mary, Brian Zakar, Eugene Barron, Sara Fritz, Greg Knio, Omar Weihs, Timothy P. Hodgin, Ralph Wilkins, Paul May, Chadd TI Rapid initiation of reactions in Al/Ni multilayers with nanoscale layering SO JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS LA English DT Article DE Multilayers; Intermetallic compounds; Thin films; Plasma deposition ID NANOENERGETIC MATERIALS; THIN-FILMS; COMBUSTION SYNTHESIS; FOILS; EXPLOSION; KINETICS; WIRES AB Research into nanoenergetic materials is enabling new capabilities for controlling exothermic reaction rates and energy output, as well as new methods for integrating these materials with conventional electronics fabrication techniques. Many reactions produce primarily heat, and in some cases it is desirable to increase the rate of heat release beyond what is typically observed. Here we investigate the Al-Ni intermetallic reaction, which normally propagates across films or foils at rates lower than 10 m/s. However, models and experiments indicate that local heating rates can be very high (10(7) K/s), and uniform heating of such a multilayer film can lead to a rapid, thermally explosive type of reaction. With the hopes of using a device to transduce electrical energy to kinetic energy of a flyer plate in the timescale of 100's of nanoseconds, we have incorporated a Ni/Al nanolayer film that locally heats upon application of a large electrical current. We observed flyer plate velocities in the 2-6 km/s range, corresponding to 4-36 kJ/g in terms of specific kinetic energy. Several samples containing Ni/Al films with different bilayer thicknesses were tested, and many produced additional kinetic energy in the 1.1-2.3 kJ/g range, as would be expected from the Ni-Al intermetallic reaction. These results provide evidence that nanoscale Ni/Al layers reacted in the timescale necessary to contribute to device output. (C) Published by Elsevier Ltd. C1 [Morris, Christopher J.; Mary, Brian; Zakar, Eugene] USA, Res Lab, Sensors & Electron Devices Directorate, AMSRD ARL SE RL, Adelphi, MD 20783 USA. [Barron, Sara; Fritz, Greg; Weihs, Timothy P.] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA. [Knio, Omar] Johns Hopkins Univ, Dept Mech Engn, Baltimore, MD 21218 USA. [Hodgin, Ralph; Wilkins, Paul; May, Chadd] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Morris, CJ (reprint author), USA, Res Lab, Sensors & Electron Devices Directorate, AMSRD ARL SE RL, 2800 Powder Mill Rd, Adelphi, MD 20783 USA. EM christopher.morris17@arl.army.mil RI Knio, Omar/A-3318-2010; Weihs, Timothy/A-3313-2010 FU Lawrence Livermore National Laboratory [B562528]; Office of Naval Research [N00014-07-1-0740] FX Researchers at Johns Hopkins University gratefully acknowledge financial support from Lawrence Livermore National Laboratory through Grant number B562528 and from the Office of Naval Research through Grant number N00014-07-1-0740. NR 34 TC 31 Z9 36 U1 0 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-3697 J9 J PHYS CHEM SOLIDS JI J. Phys. Chem. Solids PD FEB PY 2010 VL 71 IS 2 SI SI BP 84 EP 89 DI 10.1016/j.jpcs.2009.07.026 PG 6 WC Chemistry, Multidisciplinary; Physics, Condensed Matter SC Chemistry; Physics GA 559QM UT WOS:000274841200007 ER PT J AU Myhrer, F Thomas, AW AF Myhrer, F. Thomas, A. W. TI Understanding the proton's spin structure SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Review ID DEPENDENT PARTON DISTRIBUTIONS; JAFFE SUM-RULE; BAG MODEL; POLARIZED LEPTOPRODUCTION; EXCLUSIVE REACTIONS; BARYON MASSES; NUCLEON SPIN; CHIRAL BAG; SCATTERING; LIMIT AB We discuss the tremendous progress that has been made toward an understanding of how the spin of the proton is distributed on its quark and gluon constituents. This is a problem that began in earnest 20 years ago with the discovery of the proton 'spin crisis' by the European Muon Collaboration. The discoveries prompted by that original work have given us unprecedented insight into the amount of spin carried by polarized gluons and the orbital angular momentum of the quarks. C1 [Myhrer, F.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Thomas, A. W.] Jefferson Lab, Newport News, VA 23606 USA. [Thomas, A. W.] Univ Adelaide, Ctr Subat Struct Matter, Adelaide, SA 5005, Australia. [Thomas, A. W.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia. RP Myhrer, F (reprint author), Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. RI Thomas, Anthony/G-4194-2012 OI Thomas, Anthony/0000-0003-0026-499X FU US Department Energy [DE-AC05-06OR23177]; US NSF [PHY-0758114] FX This work was supported by the US Department Energy, Office of Nuclear Physics, through contract no DE-AC05-06OR23177, under which Jefferson Science Associates operates Jefferson Lab, and by the US NSF grant PHY-0758114. NR 101 TC 17 Z9 17 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD FEB PY 2010 VL 37 IS 2 AR 023101 DI 10.1088/0954-3899/37/2/023101 PG 12 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 544KZ UT WOS:000273656900002 ER PT J AU Jablonski, PD Cowen, CJ Sears, JS AF Jablonski, Paul D. Cowen, Christopher J. Sears, John S. TI Exploration of alloy 441 chemistry for solid oxide fuel cell interconnect application SO JOURNAL OF POWER SOURCES LA English DT Article DE SOFC; Interconnect; Oxidation; Ferritic steel; Laves; Silicon ID FERRITIC STAINLESS-STEELS; FE-CR ALLOY; METALLIC INTERCONNECTS; ELECTRICAL-PROPERTIES; CHROMIUM DEPOSITION; DOPED LAGAO3; LAVES-PHASE; TEMPERATURE; SOFC; PERFORMANCE AB Alloy 441 stainless steel (UNS S 44100) is being considered for application as an SOFC interconnect material. There are several advantages to the selection of this alloy over other iron-based or nickel-based alloys: first and foremost alloy 441ss is a production alloy which is both low in cost and readily available. Second, the coefficient of thermal expansion (CTE) more closely matches the CTE of the adjoining ceramic components of the fuel cell. Third, this alloy forms the Laves phase at typical SOFC operating temperatures of 600-800 degrees C. It is thought that the Laves phase preferentially consumes the Si present in the alloy microstructure. As a result it has been Postulated that the long-term area specific resistance (ASR) performance degradation often seen with other ferritic stainless steels, which is associated with the formation of electrically resistive Si-rich oxide subscales, may be avoidable with alloy 441 ss. In this paper we explore the physical metallurgy of alloy 441, combining computational thermodynamics with experimental verification, and discuss the results with regards to Laves phase formation under SOFC operating conditions. We show that the incorporation of the Laves phase into the microstructure cannot in itself remove sufficient Si from the ferritic matrix in order to completely avoid the formation of Si-rich oxide subscales. However, the thickness, morphology, and continuity of the Si-rich subscale that forms in this alloy is modified in comparison to non-Laves forming ferritic stainless steel alloys and therefore may not be as detrimental to long-term SOFC performance. Published by Elsevier B.V. C1 [Jablonski, Paul D.; Cowen, Christopher J.; Sears, John S.] US DOE, Natl Energy Technol Lab, Albany, OR 97321 USA. [Sears, John S.] Parsons RDS, South Pk, PA 15129 USA. RP Jablonski, PD (reprint author), US DOE, Natl Energy Technol Lab, 1450 Queen Ave SW, Albany, OR 97321 USA. EM Paul.Jablonski@netl.doe.gov NR 46 TC 25 Z9 25 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD FEB 1 PY 2010 VL 195 IS 3 BP 813 EP 820 DI 10.1016/j.jpowsour.2009.08.023 PG 8 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 511NJ UT WOS:000271171900017 ER PT J AU Nagpure, SC Dinwiddie, R Babu, SS Rizzoni, G Bhushan, B Frech, T AF Nagpure, Shrikant C. Dinwiddie, Ralph Babu, S. S. Rizzoni, Giorgio Bhushan, Bharat Frech, Tim TI Thermal diffusivity study of aged Li-ion batteries using flash method SO JOURNAL OF POWER SOURCES LA English DT Article DE Li-ion; Battery aging; Infrared thermography; Flash method; Electric vehicles (EV); Thermal diffusivity AB Advanced Li-ion batteries with high energy and power density are fast approaching compatibility with automotive demands. While the mechanism of operation of these batteries is well understood, the aging mechanisms are still under investigation. Investigation of aging mechanisms in Li-ion batteries becomes very challenging, as aging does not occur due to a single process, but because of multiple physical processes occurring at the same time in a cascading manner. As the current characterization techniques such as Raman spectroscopy, X-ray diffraction. and atomic force microscopy are used independent of each other they do not provide a comprehensive understanding of material degradation at different length (nm(2) to m(2)) scales. Thus to relate the damage mechanisms of the cathode at mm length scale to micro/nanoscale, data at an intermediate length scale is needed. As such, we demonstrate here the use of thermal diffusivity analysis by flash method to bridge the gap between different length scales. In this paper we present the thermal diffusivity analysis of an unaged and aged cell. Thermal diffusivity analysis maps the damage to the cathode samples at millimeter scale lengths. Based on these maps we also propose a mechanism leading to the increase of the thermal diffusivity as the cells are aged. (C) 2009 Elsevier B.V. All rights reserved. C1 [Nagpure, Shrikant C.] Ohio State Univ, CAR, NLBB, Columbus, OH 43210 USA. [Nagpure, Shrikant C.; Rizzoni, Giorgio] Ohio State Univ, CAR, Columbus, OH 43212 USA. [Dinwiddie, Ralph] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Frech, Tim] EWI, Columbus, OH 43221 USA. RP Nagpure, SC (reprint author), Ohio State Univ, CAR, NLBB, 930 Kinnear Rd, Columbus, OH 43210 USA. EM nagpure.l@osu.edu RI Babu, Sudarsanam/D-1694-2010; Bhushan, Bharat/A-9684-2013; Rizzoni, Giorgio/D-2961-2016 OI Babu, Sudarsanam/0000-0002-3531-2579; Bhushan, Bharat/0000-0001-7161-6601; Rizzoni, Giorgio/0000-0002-8397-7241 FU Institute of Materials Research (IMR) at The Ohio State University; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program FX The authors would like to thank Institute of Materials Research (IMR) at The Ohio State University, for the financial support of this work. This research at the Oak Ridge National Laboratory's High Temperature Materials Laboratory was sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. The authors would like to express their sincere gratitude towards Dr. Sandip Mazumder for his valuable inputs. The authors would also like to thank Dr. Yann Guezennec and John Neal of CAR, The Ohio State University for their help in acquiring the cells and managing their aging under controlled conditions. NR 19 TC 29 Z9 30 U1 1 U2 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD FEB 1 PY 2010 VL 195 IS 3 BP 872 EP 876 DI 10.1016/j.jpowsour.2009.08.025 PG 5 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 511NJ UT WOS:000271171900027 ER PT J AU Bloom, I Walker, LK Basco, JK Abraham, DP Christophersen, JP Ho, CD AF Bloom, Ira Walker, Lee K. Basco, John K. Abraham, Daniel P. Christophersen, Jon P. Ho, Chinh D. TI Differential voltage analyses of high-power lithium-ion cells. 4. Cells containing NMC SO JOURNAL OF POWER SOURCES LA English DT Article DE Lithium-ion battery; Capacity fade; Battery testing ID IMPEDANCE RISE; CATHODE COMPOSITION; CAPACITY FADE; BATTERIES; ELECTRODES; ELECTROCHEMISTRY; SURFACE AB Cells with and without a LiC(2)O(4)BF(2) electrolyte additive and that contained Li(1.05)(Mn(1/3)Co(1/3)Ni(1/3))(0.95)O(2) (NMC) positive electrodes were tested for calendar and cycle life at 60% state of charge. The temperatures used in these tests were 25 and 45 degrees C (cycle life) and 45 and 55 degrees C (calendar life). An analysis of the C/25 capacity data shows that the C/25 capacity decreases with the square root of time. The additive slowed down the rate of capacity decline. The C/25 data were subjected to differential voltage analysis to determine the possible cause of the capacity decrease and at which electrode the capacity decrease was occurring. Data from full cells and half-cells were compared to elucidate individual electrode contributions. This analysis indicated that lithium-capacity-consuming side reactions were Occurring primarily at the negative electrode. (C) 2009 Elsevier B.V. All rights reserved. C1 [Bloom, Ira; Walker, Lee K.; Basco, John K.; Abraham, Daniel P.] Argonne Natl Lab, Argonne, IL 60439 USA. [Christophersen, Jon P.; Ho, Chinh D.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Bloom, I (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ira.bloom@anl.gov FU U.S. Department of Energy, Office of Vehicle Technologies, Hybrid and Electric Systems [DE-AC02-06CH1135, DE-AC07-991D13727] FX This work was performed under the auspices of the U.S. Department of Energy, Office of Vehicle Technologies, Hybrid and Electric Systems, under Contract No. DE-AC02-06CH11357 (ANL) and under Contract No. DE-AC07-991D13727 (INL). NR 19 TC 33 Z9 35 U1 6 U2 74 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD FEB 1 PY 2010 VL 195 IS 3 BP 877 EP 882 DI 10.1016/j.jpowsour.2009.08.019 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 511NJ UT WOS:000271171900028 ER PT J AU Paradowska, AM Price, JWH Finlayson, TR Lienert, U Ibrahim, R AF Paradowska, Anna M. Price, John W. H. Finlayson, Trevor R. Lienert, Ulrich Ibrahim, Raafat TI Comparison of Neutron and Synchrotron Diffraction Measurements of Residual Stress in Bead-on-Plate Weldments SO JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME LA English DT Article DE heat treatment; internal stresses; neutron diffraction; plates (structures); stress measurement; stress-strain relations; welding; welds ID FRICTION STIR WELDS; STRAIN-MEASUREMENTS AB This paper explores the use of neutron and synchrotron diffractions for the evaluation of residual stresses in welded components. It has been shown that it is possible to achieve very good agreement between the two independent diffraction techniques. This study shows the significance of the weld start and end sites on the residual strain/stress distribution. Quantitative evaluation of the residual stress development process for multibead weldments has been presented. Some measurements were also taken before and after postweld stress relieving to establish the reduction and redistribution of the residual stress. The detailed measurements of residual stress around the weld achieved in this work significantly improve the knowledge and understanding of residual stress in welded components. C1 [Paradowska, Anna M.] Sci & Technol Facil Council, Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. [Price, John W. H.; Ibrahim, Raafat] Monash Univ, Dept Mech Engn, Clayton, Vic 3800, Australia. [Finlayson, Trevor R.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Lienert, Ulrich] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Paradowska, AM (reprint author), Sci & Technol Facil Council, Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. EM anna.paradowska@stfc.ac.uk RI Price, John/D-1548-2013 OI Price, John/0000-0002-1768-7772 FU Welding Technology Institute of Australia (WTIA); Monash University Research Fund; Australian Nuclear Science and Technology Organization (ANSTO); The Australian Institute of Nuclear Science and Engineering (AINSE) [AIN-STU1604]; Australian Synchrotron Research Program (ASRP) [SRI-127]; Advance Photon Source (APS) [1-ID]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was conducted with the assistance of an Australian Research Council grant supported by the Welding Technology Institute of Australia (WTIA). Other assistance has been received from the Monash University Research Fund and the Australian Nuclear Science and Technology Organization (ANSTO). The Australian Institute of Nuclear Science and Engineering (AINSE) is acknowledged for financial assistance (Award No. AIN-STU1604) that enabled the measurements on TASS to be conducted. The authors also thank the Australian Synchrotron Research Program (ASRP) (Award No. SRI-127) for enabling the measurements on the 1-ID beamline at the Advance Photon Source (APS) to be carried out. Use of the APS was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 23 TC 4 Z9 4 U1 2 U2 6 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0094-9930 J9 J PRESS VESS-T ASME JI J. Press. Vessel Technol.-Trans. ASME PD FEB PY 2010 VL 132 IS 1 AR 011502 DI 10.1115/1.4000344 PG 8 WC Engineering, Mechanical SC Engineering GA 540UL UT WOS:000273365300014 ER PT J AU Ham, BM Jayachandran, H Yang, F Jaitly, N Polpitiya, AD Monroe, ME Wang, L Zhao, R Purvine, SO Livesay, EA Camp, DG Rossie, S Smith, RD AF Ham, Bryan M. Jayachandran, Hemalatha Yang, Feng Jaitly, Navdeep Polpitiya, Ashoka D. Monroe, Matthew E. Wang, Ling Zhao, Rui Purvine, Samuel O. Livesay, Eric A. Camp, David G., II Rossie, Sandra Smith, Richard D. TI Novel Ser/Thr Protein Phosphatase 5 (PP5) Regulated Targets during DNA Damage Identified by Proteomics Analysis SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE label-free quantitation; DNA damage; comparative phosphoproteomics; immobilized metal ion affinity chromatography (IMAC); mass spectrometry (MS); nano reverse phase HPLC; protein phosphatase 5; PP5; Ser/Thr protein phosphatase; bleomycin ID PHOSPHOPROTEOME ANALYSIS; CHROMATIN CONDENSATION; MASS-SPECTROMETRY; S6 KINASE; SACCHAROMYCES-CEREVISIAE; PHOSPHORYLATION ANALYSIS; AFFINITY-CHROMATOGRAPHY; SIGNALING NETWORKS; ACCURATE MASS; CANCER-CELLS AB The DNA damage response likely includes a global phosphorylation signaling cascade process for sensing the damaged DNA condition and coordinating responses to cope with and repair the perturbed cellular state. We utilized a label-free liquid chromatography-mass spectrometry approach to evaluate changes in protein phosphorylation associated with PP5 activity during the DNA damage response. Biological replicate analyses of bleomycin-treated HeLa cells expressing either WT-PP5 or mutant inactive PP5 lead to the identification of six potential target proteins of PP5 action. Four of these putative targets have been previously reported to be involved in DNA damage responses. Using phospho-site specific antibodies, we confirmed that phosphorylation of one target, ribosomal protein S6, was selectively decreased in cells overexpressing catalytically inactive PP5. Our findings also suggest that PP5 may play a role in controlling translation and in regulating substrates for proline-directed kinases, such as MAP kinases and cyclin-dependent protein kinases that are involved in response to DNA damage. C1 [Ham, Bryan M.; Yang, Feng; Jaitly, Navdeep; Polpitiya, Ashoka D.; Monroe, Matthew E.; Zhao, Rui; Purvine, Samuel O.; Livesay, Eric A.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Jayachandran, Hemalatha; Wang, Ling; Rossie, Sandra] Purdue Univ, Dept Biochem, W Lafayette, IN 47907 USA. [Jayachandran, Hemalatha; Wang, Ling; Rossie, Sandra] Purdue Univ, Purdue Canc Ctr, W Lafayette, IN 47907 USA. RP Smith, RD (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999,MS K8-98, Richland, WA 99352 USA. EM rossie@purdue.edu; rds@pnl.gov RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 FU NIH [NS031221, RR018522]; DOE [DE-AC05-76RL01830] FX We thank Drs. Jon Jacobs and Weijun Qian for helpful discussions and input. This research was supported by NIH grants NS031221 (S.R.) and RR018522 (R.D.S.). Work was performed in the NCRR Biomedical Technology Research Center, located in the Environmental Molecular Sciences Laboratory (EMSL), a U.S. Department of Energy (DOE) Office of Biological and Environmental Science national scientific user facility on the Pacific Northwest National Laboratory (PNNL) campus in Richland, Washington. PNNL is a multiprogram national laboratory operated by Battelle for the DOE under Contract DE-AC05-76RL01830. NR 66 TC 11 Z9 11 U1 2 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 J9 J PROTEOME RES JI J. Proteome Res. PD FEB PY 2010 VL 9 IS 2 BP 945 EP 953 DI 10.1021/pr9008207 PG 9 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 552EA UT WOS:000274269400030 PM 20039704 ER PT J AU Baker, ES Livesay, EA Orton, DJ Moore, RJ Danielson, WF Prior, DC Ibrahim, YM LaMarche, BL Mayampurath, AM Schepmoes, AA Hopkins, DF Tang, KQ Smith, RD Belov, ME AF Baker, Erin Shammel Livesay, Eric A. Orton, Daniel J. Moore, Ronald J. Danielson, William F., III Prior, David C. Ibrahim, Yehia M. LaMarche, Brian L. Mayampurath, Anoop M. Schepmoes, Athena A. Hopkins, Derek F. Tang, Keqi Smith, Richard D. Belov, Mikhail E. TI An LC-IMS-MS Platform Providing Increased Dynamic Range for High-Throughput Proteomic Studies SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE Ion mobility spectrometry; IMS-MS; LC-IMS-MS; high-throughput RPLC ID ION-CYCLOTRON RESONANCE; CAPILLARY LIQUID-CHROMATOGRAPHY; FLIGHT MASS-SPECTROMETRY; HUMAN PLASMA PROTEOME; MOBILITY SPECTROMETRY; BIOMARKER DISCOVERY; RPLC SEPARATIONS; FUNNEL TRAP; CANCER; PERSPECTIVE AB A high-throughput approach and platform using 15 min reversed-phase capillary liquid chromatography (RPLC) separations in conjunction with ion mobility spectrometry-mass spectrometry (IMS-MS) measurements was evaluated for the rapid analysis of complex proteomics samples. To test the separation quality of the short LC gradient, a sample was prepared by spiking 20 reference peptides at varying concentrations from 1 ng/mL to 10 mu g/mL into a tryptic digest of mouse blood plasma and analyzed with both a L-C-Linear Ion Trap Fourier Transform (FT) MS and LC-IMS-TOF MS. The LC-FT MS detected 13 out of the 20 spiked peptides that had concentrations >= 100 ng/mL. In contrast, the drift time selected mass spectra from the LC-IMS-TOF MS analyses yielded identifications for 19 of the 20 peptides with all spiking levels present. The greater dynamic range of the LC-IMS-TOF MS system could be attributed to two factors. First, the LC-IMS-TOF MS system enabled drift time separation of the low concentration spiked peptides from the high concentration mouse peptide matrix components, reducing signal interference and background, and allowing species to be resolved that would otherwise be obscured by other components. Second, the automatic gain control (AGC) in the linear ion trap of the hybrid FT MS instrument limits the number of ions that are accumulated to reduce space charge effects and achieve high measurement accuracy, but in turn limits the achievable dynamic range compared to the IMS-TOF instrument. C1 [Belov, Mikhail E.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Belov, ME (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. EM mikhail.belov@pnl.gov RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 FU NIH National Center for Research Resources [RR 18522]; NIH National Cancer Institute [R21 CA12619-01]; Washington State Life Sciences Discovery Fund; Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL); Department of Energy's Office of Biological and Environmental Research FX The authors would like to thank Dr. Brian H. Clowers for assistance in making Figures 3 and 4. Portions of this work were supported by the NIH National Center for Research Resources (RR 18522), the NIH National Cancer Institute (R21 CA12619-01), the Washington State Life Sciences Discovery Fund, and the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL). The research was performed at EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 39 TC 49 Z9 50 U1 2 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 J9 J PROTEOME RES JI J. Proteome Res. PD FEB PY 2010 VL 9 IS 2 BP 997 EP 1006 DI 10.1021/pr900888b PG 10 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 552EA UT WOS:000274269400036 PM 20000344 ER PT J AU Goldstein, RZ Woicik, PA Moeller, SJ Telang, F Jayne, M Wong, C Wang, GJ Fowler, JS Volkow, ND AF Goldstein, R. Z. Woicik, P. A. Moeller, S. J. Telang, F. Jayne, M. Wong, C. Wang, G. J. Fowler, J. S. Volkow, N. D. TI Liking and wanting of drug and non-drug rewards in active cocaine users: the STRAP-R questionnaire SO JOURNAL OF PSYCHOPHARMACOLOGY LA English DT Article DE cue reactivity; methylphenidate; motivation; primary rewards; reinforcement; relative valence; salience ID INCENTIVE-SENSITIZATION THEORY; INDUCED BEHAVIORAL SENSITIZATION; INDUCED MOOD CHANGES; CUE-REACTIVITY; DORSAL STRIATUM; SEXUAL-BEHAVIOR; HUMAN BRAIN; MALE RATS; ADDICTION; DOPAMINE AB Few studies have examined the subjective value attributed to drug rewards specifically as it compares with the value attributed to primary non-drug rewards in addicted individuals. The objective of this study is to assess 'liking' and 'wanting' of expected 'drug' rewards as compared to 'food' and 'sex' while respondents report about three different situations ('current', and hypothetical 'in general', and 'under drug influence'). In all, 20 cocaine-addicted individuals (mean abstinence = 2 days) and 20 healthy control subjects were administered the STRAP-R (Sensitivity To Reinforcement of Addictive and other Primary Rewards) questionnaire after receiving an oral dose of the dopamine agonist methylphenidate (20 mg) or placebo. The reinforcers' relative value changed within the addicted sample when reporting about the 'under drug influence' situation (drug > food; otherwise, drug < food). This change was highest in the addicted individuals with the youngest age of cocaine use onset. Moreover, 'drug' 'wanting' exceeded 'drug' 'liking' in the addicted subjects when reporting about this situation during methylphenidate. Thus, cocaine-addicted individuals assign the highest subjective valence to 'drug' rewards but only when recalling cue-related situations. When recalling this situation, they also report higher 'drug' 'wanting' than hedonic 'liking', a motivational shift that was only significant during methylphenidate. Together, these valence shifts may underlie compulsive stimulant abuse upon pharmacological or behavioural cue exposure in addicted individuals. Additional studies are required to assess the reliability of the STRAP-R in larger samples and to examine its validity in measuring the subjective value attributed to experienced reinforcers or in predicting behaviour. C1 [Goldstein, R. Z.; Woicik, P. A.; Telang, F.; Jayne, M.; Wong, C.; Wang, G. J.; Fowler, J. S.] Brookhaven Natl Lab, Ctr Translat Neuroimaging, Dept Med Res, Upton, NY 11973 USA. [Moeller, S. J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Telang, F.; Volkow, N. D.] NIAAA, Rockville, MD 20852 USA. [Wang, G. J.; Fowler, J. S.] Mt Sinai Sch Med, New York, NY USA. [Volkow, N. D.] Natl Inst Drug Abuse, Bethesda, MD USA. RP Goldstein, RZ (reprint author), Brookhaven Natl Lab, Ctr Translat Neuroimaging, Dept Med Res, POB 5000, Upton, NY 11973 USA. EM rgoldstein@bnl.gov RI Moeller, Scott/L-5549-2016 OI Moeller, Scott/0000-0002-4449-0844 FU National Institute on Drug Abuse [1R01DA023579, R21DA02062]; Laboratory Directed Research and Development from U. S. Department of Energy (OBER); National Institute on Alcohol Abuse and Alcoholism [2RO1AA09481]; General Clinical Research Center [5-MO1-RR-10710]; U. S. Department of Energy [DE-AC02-98CHI-886] FX This study was supported by grants from the National Institute on Drug Abuse (to RZG: 1R01DA023579 and R21DA02062); Laboratory Directed Research and Development from U. S. Department of Energy (OBER); National Institute on Alcohol Abuse and Alcoholism (2RO1AA09481); and General Clinical Research Center (5-MO1-RR-10710). Notice: This manuscript has been authored by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CHI-886 with the U. S. Department of Energy. The United States Government retains, and the publisher, by accepting the article for publication, acknowledges, a world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for the United States Government purposes. NR 47 TC 26 Z9 26 U1 3 U2 9 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0269-8811 J9 J PSYCHOPHARMACOL JI J. Psychopharmacol. PD FEB PY 2010 VL 24 IS 2 BP 257 EP 266 DI 10.1177/0269881108096982 PG 10 WC Clinical Neurology; Neurosciences; Pharmacology & Pharmacy; Psychiatry SC Neurosciences & Neurology; Pharmacology & Pharmacy; Psychiatry GA 554BL UT WOS:000274410400013 PM 18801822 ER PT J AU Silver, GL AF Silver, G. L. TI The Pu(VI), oxidation-number diagram SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Plutonium; Disproportionation; Oxidation-state diagrams ID PLUTONIUM AB Boundary equations for a diagram of the ambiguous, forbidden, and unique combinations of hexavalent plutonium versus the Pu oxidation number are presented. The equations and the diagram apply after disproportionation reactions have reached equilibrium. A curve illustrates the equilibrium fraction of Pu(V) versus the Pu oxidation number in a solution at pH 2. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Silver, GL (reprint author), Los Alamos Natl Lab, POB 1663,MS E502, Los Alamos, NM 87545 USA. EM gsilver@lanl.gov NR 3 TC 5 Z9 5 U1 0 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD FEB PY 2010 VL 283 IS 2 BP 533 EP 535 DI 10.1007/s10967-009-0362-6 PG 3 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 554LM UT WOS:000274436500040 ER PT J AU Saraf, LV Nachimuthu, P Engelhard, MH Baer, DR AF Saraf, L. V. Nachimuthu, P. Engelhard, M. H. Baer, D. R. TI Stabilization of ZnMnO3 phase from sol-gel synthesized nitrate precursors SO JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY LA English DT Article DE Sol-gel synthesis; ZnMnO3; XPS; XRD ID MN-DOPED ZNO; THIN-FILMS; TRANSITION; ZNMN2O4; CO; FERROMAGNETISM; TEMPERATURE; EVOLUTION; SYSTEM AB The stabilization and analysis of pure ZnMnO3 phase may help to understand the solubility limits of Mn in ZnO in wurtzite and cubic structures. In this report, synthesis and characterization of stable ZnMnO3 phase is discussed which is extracted from sol-gel synthesis of zinc and manganese nitrate precursors. The reflections at higher diffraction angles for this known cubic system with space group Fd3 m were calculated with the help of JADE 8.0 program. The reliability factor for ZnMnO3 calculated from Rietveld refinement was 2%. A narrow phase pure ZnMnO3 stabilization region was identified with the help of energy dispersive spectroscopy mapping. High resolution X-ray photoelectron spectroscopy measurements of Mn-3p position of ZnMnO3 compared with ZnMn2O4 showed a higher binding energy shift similar to 0.85 eV indicating Mn4+ valence state in ZnMnO3. C1 [Saraf, L. V.; Nachimuthu, P.; Engelhard, M. H.; Baer, D. R.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Saraf, LV (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. EM Lax.Saraf@pnl.gov RI Engelhard, Mark/F-1317-2010; Baer, Donald/J-6191-2013; OI Baer, Donald/0000-0003-0875-5961; Engelhard, Mark/0000-0002-5543-0812 FU Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL) FX The authors would like to thank PNNL/UW/WSU nano-course participants as a source of motivation. The research was performed at EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the US Department of Energy. NR 19 TC 12 Z9 13 U1 0 U2 35 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0928-0707 J9 J SOL-GEL SCI TECHN JI J. Sol-Gel Sci. Technol. PD FEB PY 2010 VL 53 IS 2 BP 141 EP 147 DI 10.1007/s10971-009-2067-2 PG 7 WC Materials Science, Ceramics SC Materials Science GA 552UF UT WOS:000274318400001 ER PT J AU Kotter, DK Novack, SD Slafer, WD Pinhero, PJ AF Kotter, D. K. Novack, S. D. Slafer, W. D. Pinhero, P. J. TI Theory and Manufacturing Processes of Solar Nanoantenna Electromagnetic Collectors SO JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME LA English DT Article DE antenna theory; terahertz waves AB The research described in this paper explores a new and efficient approach for producing electricity from the abundant energy of the sun, using nanoantenna (nantenna) electromagnetic collectors (NECs). NEC devices target midinfrared wavelengths, where conventional photovoltaic (PV) solar cells are inefficient and where there is an abundance of solar energy. The initial concept of designing NECs was based on scaling of radio frequency antenna theory to the infrared and visible regions. This approach initially proved unsuccessful because the optical behavior of materials in the terahertz (THz) region was overlooked and, in addition, economical nanofabrication methods were not previously available to produce the optical antenna elements. This paper demonstrates progress in addressing significant technological barriers including: (1) development of frequency-dependent modeling of double-feedpoint square spiral nantenna elements, (2) selection of materials with proper THz properties, and (3) development of novel manufacturing methods that could potentially enable economical large-scale manufacturing. We have shown that nantennas can collect infrared energy and induce THz currents and we have also developed cost-effective proof-of-concept fabrication techniques for the large-scale manufacture of simple square-loop nantenna arrays. Future work is planned to embed rectifiers into the double-feedpoint antenna structures. This work represents an important first step toward the ultimate realization of a low-cost device that will collect as well as convert this radiation into electricity. This could lead to a broadband, high conversion efficiency low-cost solution to complement conventional PV devices. C1 [Pinhero, P. J.] Univ Missouri, Dept Chem Engn, Columbia, MO 65211 USA. [Kotter, D. K.; Novack, S. D.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Slafer, W. D.] MicroContinuum Inc, Cambridge, MA 02138 USA. RP Pinhero, PJ (reprint author), Univ Missouri, Dept Chem Engn, Columbia, MO 65211 USA. EM pinherop@missouri.edu FU U.S. Department of Energy, Office of Nuclear Energy [DE-AC07-05ID14517] FX The authors would like to thank Glenn Boreman and staff at the CREOL, University of Central Florida, for their work in prototyping of FSS structures and radiometric measurements, and MEMS and Nanotechnology Exchange (Reston, VA) for large-area template patterning of silicon wafers and related SEM images. We also recognize the support of Ben Munk and Ron Marhefka of Ohio State University for their support in electromagnetic modeling. The authors would like to thank Judy Partin for her contributions in thermal characterization and analysis. The authors extend a special thank you to Jay Rsykamp at NAVSEA for his support and much needed direction. This work was supported by the U.S. Department of Energy, Office of Nuclear Energy, under DOE Idaho Operations Office Contract DE-AC07-05ID14517. NR 18 TC 35 Z9 35 U1 1 U2 42 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0199-6231 J9 J SOL ENERG-T ASME JI J. Sol. Energy Eng. Trans.-ASME PD FEB PY 2010 VL 132 IS 1 AR 011014 DI 10.1115/1.4000577 PG 9 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA 543RO UT WOS:000273596200014 ER PT J AU Lichty, P Perkins, C Woodruff, B Bingham, C Weimer, A AF Lichty, Paul Perkins, Christopher Woodruff, Bryan Bingham, Carl Weimer, Alan TI Rapid High Temperature Solar Thermal Biomass Gasification in a Prototype Cavity Reactor SO JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME LA English DT Article DE bioenergy conversion; chemical reactors; coal gasification; solar power ID HYDROGEN-PRODUCTION; STEAM-GASIFICATION; FLOW REACTOR; DESIGN; DISSOCIATION; FEASIBILITY; REDUCTION; ENERGY; POWER; COKE AB High temperature biomass gasification has been performed in a prototype concentrated solar reactor. Gasification of biomass at high temperatures has many advantages compared with historical methods of producing fuels. Enhancements in overall conversion, product composition ratios, and tar reduction are achievable at temperatures greater than 1000 degrees C. Furthermore, the utilization of concentrated solar energy to drive these reactions eliminates the need to consume a portion of the product stream for heating and some of the solar energy is stored as chemical energy in the product stream. Experiments to determine the effects of temperature, gas flow rate, and feed type were conducted at the high flux solar furnace at the National Renewable Energy Laboratory, Golden, CO. These experiments were conducted in a reflective cavity multitube prototype reactor. Biomass type was found to be the only significant factor within a 95% confidence interval. Biomass conversion as high as 68% was achieved on sun. Construction and design considerations of the prototype reactor are discussed as well as initial performance results. C1 [Lichty, Paul; Perkins, Christopher; Woodruff, Bryan; Weimer, Alan] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA. [Bingham, Carl] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Lichty, P (reprint author), Univ Colorado, Dept Chem & Biol Engn, 1111 Engn Dr,UCB 424, Boulder, CO 80309 USA. FU U.S. Department of Energy [DE-FG06-05GO15044, DE-PS36-03GO93007] FX The authors would like to thank Mr. Dragan Mejic for fabrication of the prototype reactor and Mr. Allan Lewandowski for his assistance in with the ray trace modeling of the HFSF facility. Funding for this research was provided by U.S. Department of Energy through Grant Nos. DE-FG06-05GO15044 and DE-PS36-03GO93007. NR 32 TC 40 Z9 40 U1 1 U2 19 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0199-6231 J9 J SOL ENERG-T ASME JI J. Sol. Energy Eng. Trans.-ASME PD FEB PY 2010 VL 132 IS 1 AR 011012 DI 10.1115/1.4000356 PG 7 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA 543RO UT WOS:000273596200012 ER PT J AU Shi, YG Guo, YF Yu, S Arai, M Belik, AA Sato, A Yamaura, K Takayama-Muromachi, E Varga, T Mitchell, JF AF Shi, Y. G. Guo, Y. F. Yu, S. Arai, M. Belik, A. A. Sato, A. Yamaura, K. Takayama-Muromachi, E. Varga, T. Mitchell, J. F. TI High-pressure crystal growth and magnetic and electrical properties of the quasi-one dimensional osmium oxide Na2OsO4 SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Ca2IrO4; High pressure synthesis; Osmium oxides ID GAS AB Na2OsO4 Crystals Were grown by a NaCl flux method under high pressure. It crystallizes in the Ca2IrO4-type structure without having additional elements or metal vacancies, which are usually accommodated. It appears that Na2OsO4 is a metal-stoichiometric Ca2IrO4-type compound never been synthesized to date. Na2OsO4 has the octahedral environment of Os6+O6 so that the electronic configuration is 5d(2), suggesting the magnetic S=1 ground state. However, magnetization, electrical resistivity, and specific heat measurements indicated that the non-magnetic S=0 state is much likely for Na2OsO4 than the S=1 state. Band structure calculations and the structure analysis found that the disagreement is probably due to the statically uniaxial compression of the OsO6 octahedra, resulting in splitting of the t(2g) band. (C) 2009 Elsevier Inc. All rights reserved. C1 [Yu, S.; Yamaura, K.; Takayama-Muromachi, E.] Natl Inst Mat Sci, Supercond Mat Ctr, Tsukuba, Ibaraki 3050044, Japan. [Shi, Y. G.; Guo, Y. F.; Belik, A. A.; Takayama-Muromachi, E.] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton MANA, Tsukuba, Ibaraki 3050044, Japan. [Shi, Y. G.; Guo, Y. F.; Yu, S.; Belik, A. A.; Yamaura, K.; Takayama-Muromachi, E.] JST, Transformat Res Project Iron Pnictides, Chiyoda Ku, Tokyo 1020075, Japan. [Arai, M.] Natl Inst Mat Sci, Computat Mat Sci Ctr, Tsukuba, Ibaraki 3050044, Japan. [Sato, A.] Natl Inst Mat Sci, Mat Anal Stn, Tsukuba, Ibaraki 3050044, Japan. [Yamaura, K.; Takayama-Muromachi, E.] Hokkaido Univ, Grad Sch Sci, Dept Chem, Sapporo, Hokkaido 0600810, Japan. [Varga, T.; Mitchell, J. F.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Yamaura, K (reprint author), Natl Inst Mat Sci, Supercond Mat Ctr, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan. EM yamaura.kazunari@nims.go.jp RI Yanfeng, Guo/C-5704-2012; Arai, Masao/F-9098-2011; Belik, Alexei/H-2938-2011 OI Arai, Masao/0000-0003-0088-5649; Belik, Alexei/0000-0001-9031-2355 FU MEXT, Japan; JSPS [20360012]; US Department of Energy Office of Science Laboratory [DE-AC02-06CH11357] FX We thank K. Kosuda for the EPMA. This research was supported in part by the WPI Initiative on Materials Nanoarchitectonics from MEXT, Japan, and the Grants-in-Aid for Scientific Research (20360012) from JSPS. Work at Argonne National Laboratory supported under Contract no. DE-AC02-06CH11357 by UChicago Argonne, LLC, Operator of Argonne National Laboratory, a US Department of Energy Office of Science Laboratory. NR 26 TC 12 Z9 12 U1 2 U2 26 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 J9 J SOLID STATE CHEM JI J. Solid State Chem. PD FEB PY 2010 VL 183 IS 2 BP 402 EP 407 DI 10.1016/j.jssc.2009.12.007 PG 6 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 555GT UT WOS:000274497600019 ER PT J AU Peiffert, C Nguyen-Trung, C Palmer, DA Laval, JP Giffaut, E AF Peiffert, C. Nguyen-Trung, C. Palmer, D. A. Laval, J. P. Giffaut, E. TI Solubility of B-Nb2O5 and the Hydrolysis of Niobium(V) in Aqueous Solution as a Function of Temperature and Ionic Strength SO JOURNAL OF SOLUTION CHEMISTRY LA English DT Article DE Solubility; Niobium(V); Aqueous solution; Thermodynamics; Speciation; SIT ID UND WASSERLOSLICHE ALKALINIOBATE; POTASSIUM NIOBATES; COMPLEXES; UNTERSUCHUNGEN; TANTALUM(V); EQUILIBRIA AB B-Nb2O5 was recrystallized from commercially available oxide, and XRD analyses indicated that it is stable in contact with solutions over the pH range 0 to 9, whereas solid polyniobates such as Na8Nb6O19 center dot 13H(2)O(s) appear to predominate at pH > 9. Solubilities of the crystalline B-Nb2O5 were determined in five NaClO4 solutions (0.1 <= I-m/mol.kg(-1) <= 1.0) over a wide pH range at (25.0 +/- 0.1) degrees C and at 0.1 MPa. A limited number of measurements were also made at I-m = 6.0 mol.kg(-1), whereas at I-m = 1.0 mol.kg(-1) the full range of pH was also covered at (10, 50 and 70)degrees C. The pH of these solutions was fixed using either HClO4 (pH <= 4) or NaOH (pH >= 10) and determined by mass balance, whereas the pH on the molality scale was measured in buffer mixtures of acetic acid + acetate (4 <= pH <= 6), Bis- Tris (pH approximate to 7), Tris (pH approximate to 8) and boric acid + borate (pH approximate to 9). Treatment of the solubility results indicated the presence of four species, Nb(OH)(n)(5-n) (where n = 4 - 7), so that the molal solubility quotients were determined according to: 0.5Nb(2)O(5)(cr) + 0.5(2n - 5)H2O(1)reversible arrow Nb(OH)(n)(5-n) + (n - 5)H+ (n = 4-7) and were fitted empirically as a function of ionic strength and temperature, including the appropriate Debye-Huckel term. A Specific Interaction Theory (SIT) approach was also attempted. The former approach yielded the following values of log(10) K-sn (infinite dilution) at 25 degrees C: -(7.4 +/- 0.2) for n = 4; -(9.1 +/- 0.1) for n = 5; -(14.1 +/- 0.3) for n = 6; and -(23.9 +/- 0.6) for n = 7. Given the experimental uncertainties (2 sigma), it is interesting to note that the effect of ionic strength only exceeded the combined uncertainties significantly in the case of log(10) K-s6 to I-m = 1.0 mol.kg(-1), such that these values may be of use by defining their magnitudes in other media. Values of Delta(f)G(o), Delta H-f(o), S-o and C-p(o) (298.15 K, 0.1 MPa) for each hydrolysis product were calculated and tabulated. C1 [Palmer, D. A.] ORNL, CASD, Oak Ridge, TN 37831 USA. [Peiffert, C.; Nguyen-Trung, C.] Nancy Univ, CNRS, CREGU, UMR 7566,G2R, F-54506 Vandoeuvre Les Nancy, France. [Laval, J. P.] CNRS, Fac Sci, SPCTS, UMR 6638, F-87060 Limoges, France. [Giffaut, E.] ANDRA, F-92298 Chatenay Malabry, France. EM solution_Chemistry@comcast.net NR 26 TC 8 Z9 8 U1 3 U2 23 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0095-9782 J9 J SOLUTION CHEM JI J. Solut. Chem. PD FEB PY 2010 VL 39 IS 2 BP 197 EP 218 DI 10.1007/s10953-010-9495-z PG 22 WC Chemistry, Physical SC Chemistry GA 567OT UT WOS:000275457200004 ER PT J AU Araujo, NAM Cadilhe, A AF Araujo, N. A. M. Cadilhe, A. TI Jammed state characterization of the random sequential adsorption of segments of two lengths on a line SO JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT LA English DT Article DE irreversible aggregation phenomena (theory); stochastic processes (theory); colloids; bio-colloids and nano-colloids; jamming and packing ID NONEQUILIBRIUM DEPOSITION; PARTICLES; KINETICS AB We characterize the jammed state structure of the random sequential adsorption of segments of two different sizes on a line. To this end, we de. ne the size ratio as a dimensionless quantity measuring the length of the large segments in terms of the smaller ones. We introduce a truncated exponential as an ansatz for the probability distribution function of the interparticle distance at the jammed state and use it to calculate the first four cumulants of the probability distribution function. The sole free parameter present in the various analytical expressions is tied to the mean interparticle distance from Monte Carlo simulations, while the remaining three cumulants are computed without any free parameter and compared to Monte Carlo results. We find that the proposed ansatz provides results in good qualitative agreement with Monte Carlo ones. C1 [Araujo, N. A. M.] ETH, IfB, CH-8093 Zurich, Switzerland. [Cadilhe, A.] Univ Minho, GCEP, Ctr Fis, P-4710057 Braga, Portugal. [Cadilhe, A.] Los Alamos Natl Lab, Div Theoret, Grp T1, Los Alamos, NM 87545 USA. RP Araujo, NAM (reprint author), ETH, IfB, Schafmattstr 6, CH-8093 Zurich, Switzerland. EM nuno@ethz.ch; cadilhe@lanl.gov RI Araujo, Nuno/B-6313-2008; Cadilhe, Antonio/G-1479-2016 OI Araujo, Nuno/0000-0002-1677-6060; Cadilhe, Antonio/0000-0002-0252-6992 FU Fundacao para a Ciencia e a Tecnologia [CONC-REEQ/443/2001, SFRH/BD/17467/2004, SFRH/BPD/34375/2007]; Fundacao Calouste Gulbenkian FX This research has been funded by a Fundacao para a Ciencia e a Tecnologia research grant and Search (Services and Advanced Research Computing with HTC/HPC clusters) (under contract CONC-REEQ/443/2001). One of us, NA, thanks Fundacao para a Ciencia e a Tecnologia for a PhD fellowship (SFRH/BD/17467/2004). AC wants also to thank both Fundacao para a Ciencia e a Tecnologia (SFRH/BPD/34375/2007) and Fundacao Calouste Gulbenkian for fellowships to visit Los Alamos National Laboratory. AC also acknowledges the warm hospitality of the T-1 Group at Los Alamos National Laboratory. Finally, we want to thank suggestions and comments on earlier versions of the manuscript by N Henson, V Privman, and C Reichhardt. NR 31 TC 1 Z9 1 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-5468 J9 J STAT MECH-THEORY E JI J. Stat. Mech.-Theory Exp. PD FEB PY 2010 AR P02019 DI 10.1088/1742-5468/2010/02/P02019 PG 10 WC Mechanics; Physics, Mathematical SC Mechanics; Physics GA 560WV UT WOS:000274936300021 ER PT J AU Zdeborova, L Boettcher, S AF Zdeborova, Lenka Boettcher, Stefan TI A conjecture on the maximum cut and bisection width in random regular graphs SO JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT LA English DT Article DE cavity and replica method; spin glasses (theory); random graphs; networks ID MEAN-FIELD THEORY; SPIN-GLASSES; EXTREMAL OPTIMIZATION; BETHE LATTICE; POTTS GLASS; BOUNDS; MODEL AB The asymptotic properties of random regular graphs are objects of extensive study in mathematics and physics. In this paper we argue, using the theory of spin glasses in physics, that in random regular graphs the maximum cut size asymptotically equals the number of edges in the graph minus the minimum bisection size. Maximum cut and minimal bisection are two famous NP-complete problems with no known general relation between them; hence our conjecture is a surprising property for random regular graphs. We further support the conjecture with numerical simulations. A rigorous proof of this relation is an obvious challenge. C1 [Zdeborova, Lenka] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Zdeborova, Lenka] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Boettcher, Stefan] Emory Univ, Dept Phys, Atlanta, GA 30322 USA. RP Zdeborova, L (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM lenka.zdeborova@gmail.com; sboettc@emory.edu RI Boettcher, Stefan/G-2640-2010; Zdeborova, Lenka/B-9999-2014 OI Boettcher, Stefan/0000-0003-1273-6771; FU Fulbright Commission; US National Science Foundation [DMR-0812204.] FX The authors thank Florent Krzakala, Cris Moore and Petr. Sulc for very useful discussions. SB acknowledges support from the Fulbright Commission and from the US National Science Foundation through grant number DMR-0812204. NR 38 TC 12 Z9 12 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1742-5468 J9 J STAT MECH-THEORY E JI J. Stat. Mech.-Theory Exp. PD FEB PY 2010 AR P02020 DI 10.1088/1742-5468/2010/02/P02020 PG 13 WC Mechanics; Physics, Mathematical SC Mechanics; Physics GA 560WV UT WOS:000274936300022 ER PT J AU Baker, GA AF Baker, George A., Jr. TI A Personal Perspective on the Last Half-Century of Critical Phenomena SO JOURNAL OF STATISTICAL PHYSICS LA English DT Article DE Critical phenomena; Pade approximants; Renormalization group; Monte Carlo; Equation of state ID SPIN ISING-MODEL; CALLAN-SYMANZIK EQUATION; SMALL-DISTANCE-BEHAVIOUR; CRITICAL EXPONENTS; FIELD-THEORY; CRITICAL-POINT; CONFORMAL-INVARIANCE; CRITICAL INDEXES; CRITICAL REGION; SIMPLE FLUIDS AB One of the crowning achievements of mathematical, statistical physics over the past half century has been the discovery of the many aspects of structure of the critical point. It has been an exciting time and was only possible through the combined efforts of many excellent people. This article contains brief reviews of some of the parts in which I have been most interested and to which I have made some contributions. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. RP Baker, GA (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. EM gbj@lanl.gov FU U.S. Department of Energy [DE-AC52-06NA25396] FX This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. NR 69 TC 0 Z9 0 U1 0 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-4715 EI 1572-9613 J9 J STAT PHYS JI J. Stat. Phys. PD FEB PY 2010 VL 138 IS 1-3 BP 8 EP 19 DI 10.1007/s10955-009-9880-4 PG 12 WC Physics, Mathematical SC Physics GA 561BI UT WOS:000274949600003 ER PT J AU Kresin, V AF Kresin, Vladimir TI Polaronic Effect and Its Impact on T (c) for Novel Layered Superconducting Systems SO JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM LA English DT Article DE Polarons; Cuprates; Double-well structure; Diabatic representation AB The crystal lattice of a complex compound may contain a subsystem of ions with each one possessing two close equilibrium positions (double-well structure). For example, the oxygen ions in the cuprates form such a subsystem. In such a situation it is impossible to separate electronic and local vibrational motions. This leads to a large increase in the effective strength of the electron-lattice interaction, which is beneficial for pairing. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Kresin, V (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 70A-3307,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM vzkresin@lbl.gov FU DARPA FX The author is grateful to L. Gor'kov for interesting discussion. The research was supported by DARPA. NR 16 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1557-1939 J9 J SUPERCOND NOV MAGN JI J. Supercond. Nov. Magn PD FEB PY 2010 VL 23 IS 2 BP 179 EP 182 DI 10.1007/s10948-009-0591-5 PG 4 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 539GU UT WOS:000273242800001 ER PT J AU Berryman, JG Nakagawa, S AF Berryman, James G. Nakagawa, Seiji TI Inverse problem in anisotropic poroelasticity: Drained constants from undrained ultrasound measurements SO JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA LA English DT Article DE elastic moduli; elasticity; glass; inverse problems; measurement errors; porosity; ultrasonic waves ID SOUND SPEED; BIOT THEORY; ELASTIC PROPERTIES; FREQUENCY RANGE; POROUS-MEDIA; FLUID; PROPAGATION; MODULI; ATTENUATION; RESERVOIRS AB Poroelastic analysis has traditionally focused on the relationship between dry and drained constants, which are assumed known, and the saturated or undrained constants, which are assumed unknown. However, there are many applications in this field of study for which the main measurements can only be made on the saturated/undrained system, and then it is uncertain what the effects of the fluids were on the system, since the drained constants remain a mystery. The work presented here shows how to deduce drained constants from undrained constants for anisotropic systems having symmetries ranging from isotropic to orthotropic. Laboratory ultrasound data are then inverted for the drained constants in three granular packings: one of glass beads, and two others for distinct types of more or less angular sand grain packings. Experiments were performed under uniaxial stress, which resulted in hexagonal (transversely isotropic) symmetry of the poroelastic response. One important conclusion from the general analysis is that the drained constants are uniquely related to the undrained constants, assuming that porosity, grain bulk modulus, and pore fluid bulk modulus are already known. Since the resulting system of equations for all the drained constants is linear, measurement error in undrained constants also propagates linearly into the computed drained constants. C1 [Berryman, James G.; Nakagawa, Seiji] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Berryman, JG (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd MS90-R1116, Berkeley, CA 94720 USA. RI Nakagawa, Seiji/F-9080-2015 OI Nakagawa, Seiji/0000-0002-9347-0903 NR 42 TC 7 Z9 7 U1 0 U2 4 PU ACOUSTICAL SOC AMER AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0001-4966 EI 1520-8524 J9 J ACOUST SOC AM JI J. Acoust. Soc. Am. PD FEB PY 2010 VL 127 IS 2 BP 720 EP 729 DI 10.1121/1.3277162 PG 10 WC Acoustics; Audiology & Speech-Language Pathology SC Acoustics; Audiology & Speech-Language Pathology GA 552VR UT WOS:000274322200023 PM 20136194 ER PT J AU Stroe, I Betts, JB Trugman, A Mielke, CH Mitchell, JN Ramos, M Freibert, FJ Ledbetter, H Migliori, A AF Stroe, I. Betts, J. B. Trugman, A. Mielke, C. H. Mitchell, J. N. Ramos, M. Freibert, F. J. Ledbetter, H. Migliori, A. TI Polycrystalline gamma-plutonium's elastic moduli versus temperature SO JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA LA English DT Article DE Debye temperature; Gruneisen coefficient; materials testing; plutonium; Poisson ratio; shear modulus; ultrasonic measurement AB Resonant ultrasound spectroscopy was used to measure the elastic properties of pure polycrystalline (239)Pu in the gamma-phase. Shear and longitudinal elastic moduli were measured simultaneously and the bulk modulus was computed from them. A smooth, linear, and large decrease in all elastic moduli with increasing temperature was observed. The Poisson ratio was calculated and an increase from 0.242 at 519 K to 0.252 at 571 K was found. These measurements on extremely well-characterized pure Pu are in agreement with other reported results where overlap occurs. We calculated an approximate Debye temperature Theta(D)=144 K. Determined from the temperature variation in the bulk modulus, gamma-Pu shows the same Gruumlneisen parameter as copper. C1 [Stroe, I.] Worcester Polytech Inst, Dept Phys, Worcester, MA 01609 USA. [Migliori, A.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Ledbetter, H.] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. RP Stroe, I (reprint author), Worcester Polytech Inst, Dept Phys, Worcester, MA 01609 USA. RI Stroe, Izabela/B-3790-2010; Mitchell, Jeremy/E-2875-2010; Mielke, Charles/S-6827-2016; OI Mitchell, Jeremy/0000-0001-7109-3505; Mielke, Charles/0000-0002-2096-5411; Freibert, Franz/0000-0003-4434-3446 FU U.S. National Nuclear Security Administration [20070013DR]; National Science Foundation [DMR-0654118]; State of Florida FX This work was done under the auspices of the U. S. Department of Energy at Los Alamos National Laboratory in the National High Magnetic Field Laboratory, and was supported by the U.S. National Nuclear Security Administration under Grant No. 20070013DR, the National Science Foundation under Grant No. DMR-0654118, and the State of Florida. NR 17 TC 4 Z9 4 U1 0 U2 6 PU ACOUSTICAL SOC AMER AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0001-4966 J9 J ACOUST SOC AM JI J. Acoust. Soc. Am. PD FEB PY 2010 VL 127 IS 2 BP 741 EP 745 DI 10.1121/1.3271036 PG 5 WC Acoustics; Audiology & Speech-Language Pathology SC Acoustics; Audiology & Speech-Language Pathology GA 552VR UT WOS:000274322200025 PM 20136196 ER PT J AU Becher, PF Shibata, N Painter, GS Averill, F van Benthem, K Lin, HT Waters, SB AF Becher, Paul F. Shibata, Naoya Painter, Gayle S. Averill, Frank van Benthem, Klaus Lin, Hua-Tay Waters, Shirley B. TI Observations on the Influence of Secondary Me Oxide Additives (Me = Si, Al, Mg) on the Microstructural Evolution and Mechanical Behavior of Silicon Nitride Ceramics Containing RE2O3 (RE = La, Gd, Lu) SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID BETA-SI3N4 CRYSTAL MORPHOLOGY; IMPROVED FRACTURE-TOUGHNESS; PHASE-TRANSFORMATION; GRAIN-GROWTH; OXYNITRIDE GLASSES; SI3N4; DENSIFICATION; INTERFACE; DESIGN; LIQUID AB The evolution of beta-Si3N4 microstructures is influenced by the adsorption of rare earth (RE) elements at grain surfaces and by the viscosity of the intergranular phases. Theoretical and scanning transmission electron microscopy studies show that the RE atoms exhibit different tendencies to segregate from the liquid phase to grain surfaces and different binding strengths at these surfaces. When combined with MgO (or Al2O3) secondary additions, the rare earth additives are combined in low-viscosity intergranular phases during densification and the alpha- to beta-phase transformation and microstructural evolution are dominated by the RE adsorption behavior. On the other hand, a much higher viscosity intergranular phase forms when the RE2O3 are combined with SiO2. While the RE adsorption behavior remains the same, phase transformation and microstructure are now dominated by Si3N4 solubility and transport in the high liquid phase. By understanding these additive effects, one can develop reinforced microstructures leading silicon nitride ceramics with greatly improved mechanical behavior. C1 [Becher, Paul F.; Painter, Gayle S.; van Benthem, Klaus; Lin, Hua-Tay; Waters, Shirley B.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Shibata, Naoya] Univ Tokyo, Inst Engn Innovat, Tokyo 1138656, Japan. [Averill, Frank] Univ Tennessee, Dept Mat Sci, Knoxville, TN 37996 USA. [van Benthem, Klaus] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. RP Becher, PF (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM becherpf@comcast.net RI Shibata, Naoya/E-5327-2013 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC05-00OR22725] FX This research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. NR 45 TC 23 Z9 23 U1 1 U2 21 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD FEB PY 2010 VL 93 IS 2 BP 570 EP 580 DI 10.1111/j.1551-2916.2009.03435.x PG 11 WC Materials Science, Ceramics SC Materials Science GA 551AH UT WOS:000274176500047 ER PT J AU Koizumi, H Wang, XL Whitten, WB Reilly, PTA AF Koizumi, Hideya Wang, Xiaoliang Whitten, William B. Reilly, Peter T. A. TI Controlling the Expansion into Vacuum-the Enabling Technology for Trapping Atmosphere-Sampled Particulate Ions SO JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY LA English DT Article ID GENERATING PARTICLE BEAMS; MASS-SPECTROMETRY; CONTROLLED DIMENSIONS; AERODYNAMIC LENSES; NOZZLE EXPANSIONS; DIVERGENCE; MOTION AB A new inlet has been designed to control the kinetic energy distributions of ions into a large-radius, frequency-adjusted, linear quadrupole ion trap. The work presented here demonstrates trapping singly-charged, intact proteins in the 10 to 200 kDa range injected from the atmosphere. The trapped ions were held while collisions with a buffer gas removed the remaining amounts of expansion-induced kinetic energy. The ions were then ejected from the trap on-demand into an awaiting detector. There is no low mass limit for ion injection and trapping. The upper limit presented in this study was defined by the limit of the conversion dynode-based detector at similar to 1.5 MDa. Trapping larger masses should be achievable. The transmission and capture efficiency across the entire mass range should be very high because the entire flow from the inlet empties directly into the trap. The kinetic energy distribution of massive ions is the primary reason for the working range limitation of mass spectrometers. Trapping ions with collisional cooling before mass analysis permits the motion of the ions to be completely defined by the applied fields. For this reason, this new inlet and trapping system represents a large step toward sensitive, high-resolution mass spectrometry into the megadalton range and beyond. (J Am Soc Mass Spec trom 2010, 21, 242-248) (C) 2010 American Society for Mass Spectrometry C1 [Reilly, Peter T. A.] Oak Ridge Natl Lab, Laser Spect & Micro Grp, Oak Ridge, TN 37831 USA. [Wang, Xiaoliang] Univ Minnesota, Dept Mech Engn, Minneapolis, MN 55455 USA. RP Reilly, PTA (reprint author), Oak Ridge Natl Lab, Laser Spect & Micro Grp, POB 2008,MS 6142, Oak Ridge, TN 37831 USA. EM ReillyPT@ornl.gov RI Wang, Xiaoliang/D-7516-2016 OI Wang, Xiaoliang/0000-0002-2345-7308 NR 21 TC 7 Z9 7 U1 0 U2 6 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1044-0305 J9 J AM SOC MASS SPECTR JI J. Am. Soc. Mass Spectrom. PD FEB PY 2010 VL 21 IS 2 BP 242 EP 248 DI 10.1016/j.jasms.2009.10.009 PG 7 WC Chemistry, Analytical; Chemistry, Physical; Spectroscopy SC Chemistry; Spectroscopy GA 566BG UT WOS:000275344100007 PM 19926300 ER PT J AU Novak, P Yuan, R Somerday, BP Sofronis, P Ritchie, RO AF Novak, P. Yuan, R. Somerday, B. P. Sofronis, P. Ritchie, R. O. TI A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel SO JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS LA English DT Article DE Hydrogen embrittlement; Intergranular fracture; Weakest-link statistics ID SOLUTE SEGREGATION; BRITTLE-FRACTURE; ALLOY-STEEL; IRON; EMBRITTLEMENT; INTERFACES; TRANSPORT; STRESS; METALS; STATES AB Intergranular cracking associated with hydrogen embrittlement represents a particularly severe degradation mechanism in metallic structures which can lead to sudden and unexpected catastrophic fractures. As a basis for a strategy for the prognosis of such failures. here we present a comprehensive physical-based statistical micro- mechanical model of such embrittlement which we use to quantitatively predict the degradation in fracture strength of a high-strength steel with increasing hydrogen concentration, with the predictions verified by experiment. The mechanistic role of dissolved hydrogen is identified by the transition to a locally stress-controlled fracture, which is modeled as being initiated by a dislocation pile-up against a grain-boundary carbide which in turn leads to interface decohesion and intergranular fracture. Akin to cleavage fracture in steel, the "strength" of these carbides is modeled using weakest-link statistics. We associate the dominant role of hydrogen with trapping at dislocations; this trapped hydrogen reduces the stress that impedes dislocation motion and also lowers the reversible work of decohesion at the tip of dislocation pile-up at the carbide/matrix interface. Mechanistically, the model advocates the synergistic action of both the hydrogen-enhanced local plasticity and decohesion mechanisms in dictating failure. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Yuan, R.; Ritchie, R. O.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Novak, P.; Sofronis, P.] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA. [Somerday, B. P.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Ritchie, RO (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, 216 Hearst Mem Min Bldg, Berkeley, CA 94720 USA. EM roritchie@lbl.gov RI Ritchie, Robert/A-8066-2008 OI Ritchie, Robert/0000-0002-0501-6998 FU NSF [DMR-0302470]; US Department of Energy [DE-AC04-94AL85000] FX This work was supported by NSF Grant DMR-0302470 to the University of Illinois at Urbana-Champaign with a subcontract to the University of California, Berkeley, and by the US Department of Energy under Contract no. DE-AC04-94AL85000 at Sandia National Laboratories. The authors Would like to thank Professor Y. Murakami and his colleagues at HYDROGENIUS at Kyushu University, Fukuoka, Japan, for their help with the desorption analysis, Drs. J.J. Kruzic and D.H. Alsem at the Lawrence Berkeley National Laboratory for their assistance with the mechanical testing and transmission electron microscopy, and Mr. J. Campbell at Sandia National Laboratories for assistance with the hydrogen charging of mechanical test specimens. In addition, we are grateful to Professor Vaclav Vitek for his illuminating explanations oil the relationship between the reversible and plastic work of fracture, and to Professor John F. Knott for suggesting at the 1994 Physical Metallurgy Gordon Research Conference that this Study was worthy of undertaking. NR 38 TC 91 Z9 92 U1 10 U2 64 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-5096 J9 J MECH PHYS SOLIDS JI J. Mech. Phys. Solids PD FEB PY 2010 VL 58 IS 2 BP 206 EP 226 DI 10.1016/j.jmps.2009.10.005 PG 21 WC Materials Science, Multidisciplinary; Mechanics; Physics, Condensed Matter SC Materials Science; Mechanics; Physics GA 555XW UT WOS:000274551200009 ER PT J AU Taylor, SG Zimmerman, DC AF Taylor, Stuart G. Zimmerman, David C. TI Improved Experimental Ritz Vector Extraction With Application to Damage Detection SO JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME LA English DT Article DE dynamic testing; Ritz vectors; damage detection; noise; accuracy indicator ID DYNAMIC ANALYSIS; LOAD AB Load-dependent Ritz vectors, or Lanczos vectors, are alternatives to mode shapes as a set of orthogonal vectors used to describe the dynamic behavior of a structure. Experimental Ritz vectors are extracted recursively from a state-space system realization, and they are orthogonalized using the Gram-Schmidt process. In addition to the Ritz vectors themselves, the associated nonorthogonalized vectors are required for application to damage detection. First, this paper presents an improved experimental Ritz vector extraction algorithm to correctly extract the nonorthogonalized Ritz vectors. Second, this paper introduces a Ritz vector accuracy indicator for use with noisy data. This accuracy indicator is applied as a tool to guide the deflation of a state-space system realization identified from simulated noisy data. The improved experimental Ritz vector extraction algorithm produces experimental nonorthogonalized Ritz vectors that match the analytically computed vectors. The use of the accuracy indicator with simulated noisy data enables the identification of a state-space realization for Ritz vector extraction from which damage location and extent are correctly estimated. The improved Ritz vector extraction algorithm improves the application of Ritz vectors to damage detection, more accurately estimating damage location and extent. The accuracy indicator extends the application of Ritz vectors to damage detection in noisy, systems as well. [DOI: 10.1115/1.4000762] C1 [Taylor, Stuart G.] Los Alamos Natl Lab, Engn Inst, Los Alamos, NM 87545 USA. [Zimmerman, David C.] Univ Houston, Dept Mech Engn, Houston, TX 77004 USA. RP Taylor, SG (reprint author), Los Alamos Natl Lab, Engn Inst, MS T001, Los Alamos, NM 87545 USA. EM staylor6@uh.edu RI Taylor, Stuart/B-1347-2013 NR 13 TC 0 Z9 0 U1 0 U2 2 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 1048-9002 J9 J VIB ACOUST JI J. Vib. Acoust.-Trans. ASME PD FEB PY 2010 VL 132 IS 1 AR 011012 DI 10.1115/1.4000762 PG 10 WC Acoustics; Engineering, Mechanical; Mechanics SC Acoustics; Engineering; Mechanics GA 565GJ UT WOS:000275277400012 ER PT J AU Seaman, MS Janes, H Hawkins, N Grandpre, LE Devoy, C Giri, A Coffey, RT Harris, L Wood, B Daniels, MG Bhattacharya, T Lapedes, A Polonis, VR McCutchan, FE Gilbert, PB Self, SG Korber, BT Montefiori, DC Mascola, JR AF Seaman, Michael S. Janes, Holly Hawkins, Natalie Grandpre, Lauren E. Devoy, Colleen Giri, Ayush Coffey, Rory T. Harris, Linda Wood, Blake Daniels, Marcus G. Bhattacharya, Tanmoy Lapedes, Alan Polonis, Victoria R. McCutchan, Francine E. Gilbert, Peter B. Self, Steve G. Korber, Bette T. Montefiori, David C. Mascola, John R. TI Tiered Categorization of a Diverse Panel of HIV-1 Env Pseudoviruses for Assessment of Neutralizing Antibodies SO JOURNAL OF VIROLOGY LA English DT Article ID HUMAN-IMMUNODEFICIENCY-VIRUS; GP120 ENVELOPE GLYCOPROTEIN; MONOCLONAL-ANTIBODIES; SUBTYPE-B; TYPE-1; VACCINE; INFECTION; CLADE; IMMUNIZATION; MACAQUES AB The restricted neutralization breadth of vaccine-elicited antibodies is a major limitation of current human immunodeficiency virus-1 (HIV-1) candidate vaccines. In order to permit the efficient identification of vaccines with enhanced capacity for eliciting cross-reactive neutralizing antibodies (NAbs) and to assess the overall breadth and potency of vaccine-elicited NAb reactivity, we assembled a panel of 109 molecularly cloned HIV-1 Env pseudoviruses representing a broad range of genetic and geographic diversity. Viral isolates from all major circulating genetic subtypes were included, as were viruses derived shortly after transmission and during the early and chronic stages of infection. We assembled a panel of genetically diverse HIV-1-positive (HIV-1(+)) plasma pools to assess the neutralization sensitivities of the entire virus panel. When the viruses were rank ordered according to the average sensitivity to neutralization by the HIV-1(+) plasmas, a continuum of average sensitivity was observed. Clustering analysis of the patterns of sensitivity defined four subgroups of viruses: those having very high (tier 1A), above-average (tier 1B), moderate (tier 2), or low (tier 3) sensitivity to antibody-mediated neutralization. We also investigated potential associations between characteristics of the viral isolates (clade, stage of infection, and source of virus) and sensitivity to NAb. In particular, higher levels of NAb activity were observed when the virus and plasma pool were matched in clade. These data provide the first systematic assessment of the overall neutralization sensitivities of a genetically and geographically diverse panel of circulating HIV-1 strains. These reference viruses can facilitate the systematic characterization of NAb responses elicited by candidate vaccine immunogens. C1 [Seaman, Michael S.; Grandpre, Lauren E.; Devoy, Colleen; Giri, Ayush; Coffey, Rory T.] Harvard Univ, Div Viral Pathogenesis, Sch Med, Beth Israel Deaconess Med Ctr, Boston, MA 02215 USA. [Janes, Holly; Hawkins, Natalie; Harris, Linda; Wood, Blake; Gilbert, Peter B.; Self, Steve G.] Fred Hutchinson Canc Res Ctr, Stat Ctr HIV AIDS Res & Prevent, Seattle, WA 98104 USA. [Daniels, Marcus G.; Bhattacharya, Tanmoy; Lapedes, Alan; Korber, Bette T.] Los Alamos Natl Lab, Los Alamos, NM USA. [Polonis, Victoria R.; McCutchan, Francine E.] Walter Reed Army Inst Res, Rockville, MD USA. [Montefiori, David C.] Duke Univ, Med Ctr, Dept Surg, Durham, NC 27710 USA. [Mascola, John R.] NIAID, Vaccine Res Ctr, NIH, Bethesda, MD 20892 USA. RP Seaman, MS (reprint author), Harvard Univ, Div Viral Pathogenesis, Sch Med, Beth Israel Deaconess Med Ctr, 330 Brookline Ave,CLS-1001, Boston, MA 02215 USA. EM mseaman@bidmc.harvard.edu RI Bhattacharya, Tanmoy/J-8956-2013; OI Bhattacharya, Tanmoy/0000-0002-1060-652X; Korber, Bette/0000-0002-2026-5757 FU Bill & Melinda Gates Foundation's Collaboration for AIDS Vaccine Discovery/Comprehensive Antibody Vaccine Immune Monitoring Consortium [38619]; Vaccine Immunology Statistical Center [38744] FX This study was supported by the Bill & Melinda Gates Foundation's Collaboration for AIDS Vaccine Discovery/Comprehensive Antibody Vaccine Immune Monitoring Consortium, grant number 38619, and Vaccine Immunology Statistical Center, grant number 38744. NR 47 TC 281 Z9 282 U1 2 U2 6 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X J9 J VIROL JI J. Virol. PD FEB PY 2010 VL 84 IS 3 BP 1439 EP 1452 DI 10.1128/JVI.02108-09 PG 14 WC Virology SC Virology GA 542XC UT WOS:000273531600023 PM 19939925 ER PT J AU Doria-Rose, NA Klein, RM Daniels, MG O'Dell, S Nason, M Lapedes, A Bhattacharya, T Migueles, SA Wyatt, RT Korber, BT Mascola, JR Connors, M AF Doria-Rose, Nicole A. Klein, Rachel M. Daniels, Marcus G. O'Dell, Sijy Nason, Martha Lapedes, Alan Bhattacharya, Tanmoy Migueles, Stephen A. Wyatt, Richard T. Korber, Bette T. Mascola, John R. Connors, Mark TI Breadth of Human Immunodeficiency Virus-Specific Neutralizing Activity in Sera: Clustering Analysis and Association with Clinical Variables SO JOURNAL OF VIROLOGY LA English DT Article ID HIV-INFECTED INDIVIDUALS; ENV CLONES; ANTIBODY-SPECIFICITIES; ELITE SUPPRESSORS; B-CELLS; TYPE-1; SUBTYPE; VACCINE; BROAD; SEROTYPES AB Induction of antibodies that neutralize a broad range of human immunodeficiency virus type 1 (HIV-1) isolates is a major goal of vaccine development. To study natural examples of broad neutralization, we analyzed sera from 103 HIV-1-infected subjects. Among progressor patients, 20% of sera neutralized more than 75% of a panel of 20 diverse viral isolates. Little activity was observed in sera from long-term nonprogressors (elite controllers). Breadth of neutralization was correlated with viral load, but not with CD4 count, history of past antiretroviral use, age, gender, race/ethnicity, or route of exposure. Clustering analysis of sera by a novel method identified a statistically robust subgrouping of sera that demonstrated broad and potent neutralization activity. C1 [Doria-Rose, Nicole A.; Klein, Rachel M.; Migueles, Stephen A.; Connors, Mark] NIAID, Immunoregulat Lab, NIH, Bethesda, MD 20892 USA. [O'Dell, Sijy; Wyatt, Richard T.; Mascola, John R.] NIAID, Vaccine Res Ctr, NIH, Bethesda, MD 20892 USA. [Nason, Martha] NIAID, Biostat Res Branch, NIH, Bethesda, MD 20892 USA. [Daniels, Marcus G.; Lapedes, Alan; Bhattacharya, Tanmoy; Korber, Bette T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Bhattacharya, Tanmoy; Korber, Bette T.] Santa Fe Inst, Santa Fe, NM 87501 USA. RP Connors, M (reprint author), NIAID, Immunoregulat Lab, NIH, Bldg 10,Room 11B07,10 Ctr Dr, Bethesda, MD 20892 USA. EM mconnors@niaid.nih.gov RI Bhattacharya, Tanmoy/J-8956-2013; OI Bhattacharya, Tanmoy/0000-0002-1060-652X; Korber, Bette/0000-0002-2026-5757 FU National Institute of Allergy and Infectious Diseases, National Institutes of Health; NIH Intramural AIDS Targeted Antiviral Program; Bill and Melinda Gates Foundation [38619] FX This research was supported by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases, National Institutes of Health, a grant from the NIH Intramural AIDS Targeted Antiviral Program (M. C.), and by grant no. 38619 from the Bill and Melinda Gates Foundation (B. T. K.). NR 34 TC 165 Z9 166 U1 0 U2 6 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X J9 J VIROL JI J. Virol. PD FEB PY 2010 VL 84 IS 3 BP 1631 EP 1636 DI 10.1128/JVI.01482-09 PG 6 WC Virology SC Virology GA 542XC UT WOS:000273531600040 PM 19923174 ER PT J AU Uppalapati, S Chada, S Engelhard, MH Yan, MD AF Uppalapati, Suji Chada, Sailaja Engelhard, Mark H. Yan, Mingdi TI Photochemical Reactions of Poly(4-vinylphenol) Thin Films SO MACROMOLECULAR CHEMISTRY AND PHYSICS LA English DT Article DE crosslinking; photochemistry; photolithography; poly(4-vinylphenol); thin films ID CROSS-LINKING; PHENOL); POLY(PARA-HYDROXYSTYRENE); POLY(4-HYDROXYSTYRENE) AB The mechanism involved in the photochemical immobilization of poly (4-vinylphenol) (PVP) thin. films was investigated. The films were fabricated by a simple procedure of UV irradiation and solvent extraction. A combination of ellipsometry, IR, and high-resolution X-ray photoelectron spectroscopy (XPS) was used to provide detailed and quantitative analysis of the composition of the photochemical reaction products. Upon irradiation at 260 nm, benzyl and phenoxy radicals are generated in the polymer. In the absence of oxygen, PVP films crosslinked via the combination of the benzyl radicals or phenoxy radicals. At lower irradiation doses, the photochemical process was dominated by cross-linking of the polymer backbone via the combination of benzyl radicals. At higher exposure doses, cross-linked quinoid structures were generated, and the concentration increased with the irradiation time. No oxidation or degradation products were observed. In the presence of oxygen, additional reactions of oxidation and degradation occurred. At lower doses, oxidation at the benzyl position produced the ketone structure evidenced by the drastic increase in the 0 content in the irradiated films. As the irradiation doses increased, further oxidation at the methylene position occurred, and in addition, volatile and degradation products were also generated. This photochemical process was successfully employed to fabricate patterned PVP structures. C1 [Uppalapati, Suji; Chada, Sailaja; Yan, Mingdi] Portland State Univ, Dept Chem, Portland, OR 97207 USA. [Engelhard, Mark H.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Yan, MD (reprint author), Portland State Univ, Dept Chem, POB 751, Portland, OR 97207 USA. EM yanm@pdx.edu RI Engelhard, Mark/F-1317-2010; OI Engelhard, Mark/0000-0002-5543-0812 FU NIH [2R15GM066279, R01GM080295]; Oregon Nanoscience and Microtechnologies Institute (ONAMI); ONR [N00014-08-1-1237]; Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory (PNNL) FX This work was supported by NIH (2R15GM066279, R01GM080295), and Oregon Nanoscience and Microtechnologies Institute (ONAMI) and ONR under the contract N00014-08-1-1237. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory (PNNL). NR 24 TC 6 Z9 6 U1 1 U2 11 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1022-1352 J9 MACROMOL CHEM PHYS JI Macromol. Chem. Phys. PD FEB PY 2010 VL 211 IS 4 BP 461 EP 470 DI 10.1002/macp.200900484 PG 10 WC Polymer Science SC Polymer Science GA 569IV UT WOS:000275590700010 ER PT J AU Nixon, EP Pantoya, ML Prentice, DJ Steffler, ED Daniels, MA D'Arche, SP AF Nixon, E. P. Pantoya, M. L. Prentice, D. J. Steffler, E. D. Daniels, M. A. D'Arche, S. P. TI A diagnostic for quantifying heat flux from a thermite spray SO MEASUREMENT SCIENCE AND TECHNOLOGY LA English DT Article DE thermite; nozzle geometry; thermite spray; heat flux ID COMBUSTION WAVE SPEEDS; VELOCITY OXYGEN-FUEL; ALUMINUM; PROPAGATION; AL/MOO3; NOZZLE; FLAME AB Characterizing the combustion behaviors of energetic materials requires diagnostic tools that are often not readily or commercially available. For example, a jet of thermite spray provides a high temperature and pressure reaction that can also be highly corrosive and promote undesirable conditions for the survivability of any sensor. Developing a diagnostic to quantify heat flux from a thermite spray is the objective of this study. Quick response sensors such as thin film heat flux sensors cannot survive the harsh conditions of the spray, but more rugged sensors lack the response time for the resolution desired. A sensor that will allow for adequate response time while surviving the entire test duration was constructed. The sensor outputs interior temperatures of the probes at known locations and utilizes an inverse heat conduction code to calculate heat flux values. The details of this device are discussed and illustrated. Temperature and heat flux measurements of various thermite sprays are reported. Results indicate that this newly designed heat flux sensor provides quantitative data with good repeatability suitable for characterizing energetic material combustion. C1 [Nixon, E. P.; Pantoya, M. L.] Texas Tech Univ, Lubbock, TX 79409 USA. [Prentice, D. J.; Steffler, E. D.; Daniels, M. A.; D'Arche, S. P.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Pantoya, ML (reprint author), Texas Tech Univ, Box 41021, Lubbock, TX 79409 USA. EM michelle.pantoya@ttu.edu FU Idaho National Laboratory (INL); Army Research Office [W911NF-04-1-0217] FX The authors acknowledge technical and financial assistance for this work provided by Idaho National Laboratory (INL). INL is a multiprogram laboratory operated by Battelle Energy Alliance for the United States Department of Energy. M Pantoya gratefully acknowledges partial support of this work by the Army Research Office under contract number W911NF-04-1-0217 and Dr Ralph Anthenien. NR 26 TC 4 Z9 4 U1 2 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-0233 EI 1361-6501 J9 MEAS SCI TECHNOL JI Meas. Sci. Technol. PD FEB PY 2010 VL 21 IS 2 AR 025202 DI 10.1088/0957-0233/21/2/025202 PG 8 WC Engineering, Multidisciplinary; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 545JW UT WOS:000273729300010 ER PT J AU Jordon, JB Horstemeyer, MF Yang, N Major, JF Gall, KA Fan, J McDowell, DL AF Jordon, J. B. Horstemeyer, M. F. Yang, N. Major, J. F. Gall, K. A. Fan, J. McDowell, D. L. TI Microstructural Inclusion Influence on Fatigue of a Cast A356 Aluminum Alloy SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID SILICON ALLOYS; SI PARTICLES; POROSITY; MODEL; LIFE; POPULATION; MECHANISMS; STRENGTH; BEHAVIOR AB We examine the dependence of fatigue properties on the different size scale microstructural inclusions of a cast A356 aluminum alloy in order to quantify the structure-property relations. Scanning electron microscopy (SEM) analysis was performed on fatigue specimens that included three different dendrite cell sizes (DCSs). Where past studies have focused upon DCSs or pore size effects on fatigue life, this study includes other metrics such as nearest neighbor distance (NND) of inclusions, inclusion distance to the free surface, and inclusion type (porosity or oxides). The present study is necessary to separate the effects of numerous microstructural inclusions that have a confounding effect on the fatigue life. The results clearly showed that the maximum pore size (MPS), NND of gas pores, and DCS all can influence the fatigue life. These conclusions are presumed to be typical of other cast alloys with similar second-phase constituents and inclusions. As such, the inclusion-property relations of this work were employed in a microstructure-based fatigue model operating on the crack incubation and MSC with good results. C1 [Jordon, J. B.; Horstemeyer, M. F.] Mississippi State Univ, Ctr Adv Vehicular Syst, Mississippi State, MS 39762 USA. [Horstemeyer, M. F.] Mississippi State Univ, Dept Mech Engn, Mississippi State, MS 39762 USA. [Yang, N.] Sandia Natl Labs, Livermore, CA 94551 USA. [Major, J. F.] Arvida R&D Ctr, Jonquiere, PQ G7S 4K8, Canada. [Gall, K. A.] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. [McDowell, D. L.] Georgia Inst Technol, George Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. [Fan, J.] Alfred Univ, Dept Mech Engn, Alfred, NY 14802 USA. RP Jordon, JB (reprint author), Mississippi State Univ, Ctr Adv Vehicular Syst, Mississippi State, MS 39762 USA. EM bjordon@cavs.msstate.edu OI Horstemeyer, Mark/0000-0003-4230-0063 FU United States Department of Energy, Sandia National Laboratories [DE-AC04-94AL85000]; Center for Advanced Vehicular Systems (CAVS) at Mississippi State University FX The authors recognize Richard Osborne and Don Penrod for their encouragement of this study, Gerry Shulke for producing the plates, and Westmoreland Mechanical Testing and Research for testing the specimens. This work has been sponsored by the United States Department of Energy, Sandia National Laboratories, under Contract No. DE-AC04-94AL85000, and the Center for Advanced Vehicular Systems (CAVS) at Mississippi State University. NR 23 TC 30 Z9 31 U1 1 U2 18 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD FEB PY 2010 VL 41A IS 2 BP 356 EP 363 DI 10.1007/s11661-009-0088-7 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 539GT UT WOS:000273242700009 ER PT J AU Unocic, KA Hayes, RW Mills, MJ Daehn, GS AF Unocic, Kinga A. Hayes, Robert W. Mills, Michael J. Daehn, Glenn S. TI Microstructural Features Leading to Enhanced Resistance to Grain Boundary Creep Cracking in ALLVAC 718Plus SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID HIGH-CYCLE FATIGUE; BASE SUPERALLOY; ALLOYS; NICKEL; EMBRITTLEMENT; MOISTURE; PRECIPITATION; TEMPERATURES; SPALLATION; BEHAVIOR AB This study focuses on the microstructural features that enhance the resistance of ALLVAC 718Plus to grain boundary creep cracking during testing of samples at 704 A degrees C in both dry and moist air. Fully recrystallized structures were found to be susceptible to brittle grain boundary cracking in both environments. Detailed transmission electron microscopy (TEM) microstructural characterization reveals features that are believed to lead to resistance to grain boundary cracking in the resistant microstructures. It is suggested that dislocation substructures found within the grains of resistant structures compete with the high-angle grain boundaries for oxygen, thereby reducing the concentration of oxygen on the grain boundaries and subsequent embrittlement. In addition, electron backscatter diffraction (EBSD) misorientation maps reveal that special boundaries (i.e., I 3 pound boundaries) resist cracking. This is in agreement with previous findings on the superalloy INCONEL 718. Furthermore, it is observed that cracks propagate along high-angle boundaries. This study also shows that in this case, the presence of delta phase at the grain boundaries does not by itself produce materials that are resistant to grain boundary cracking. C1 [Unocic, Kinga A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Mills, Michael J.; Daehn, Glenn S.] Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43210 USA. [Hayes, Robert W.] Met Technol Inc, Northridge, CA 91324 USA. RP Unocic, KA (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM daehn.1@osu.edu RI Mills, Michael/I-6413-2013; OI Daehn, Glenn/0000-0002-5493-7902 NR 28 TC 13 Z9 13 U1 0 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD FEB PY 2010 VL 41A IS 2 BP 409 EP 420 DI 10.1007/s11661-009-0099-4 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 539GT UT WOS:000273242700014 ER PT J AU Valdes, J Shang, SL Liu, ZK King, P Liu, XB AF Valdes, Jairo Shang, Shun-Li Liu, Zi-Kui King, Paul Liu, Xingbo TI Quenching Differential Thermal Analysis and Thermodynamic Calculation to Determine Partition Coefficients of Solute Elements in Simplified Ni-Base Superalloys SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID SINGLE-CRYSTAL SUPERALLOYS; FRECKLE FORMATION; SOLIDIFICATION; ALLOYS; MICROSEGREGATION; LIQUID; INSTABILITIES AB In this article, a profile-fitting methodology was developed to measure the partition coefficients of solute elements during the solidification of Ni-base alloys. Better agreement with the theoretically calculated values is expected if the accuracy of the composition and the homogeneity of the model alloys are enhanced. Regular differential thermal analysis (DTA) measurements were consistently higher than the theoretical transition temperatures, and the differences were smaller when compared to the predictions performed with the thermodynamical database developed by Du et al. The better agreement between the experimental results and the theoretical predictions made with the newly developed database suggests that improvements in the accuracy of the theoretical predictions can still be obtained and are necessary for accurate freckling prediction. Quenching modified DTA (MDTA) experiments were proven to be appropriate for directly measuring the average partition coefficients of the solute elements. Regarding the cooling rate of the first stage of the quenching experiments, it was assumed successfully that the cooling rate prior to the quenching step of 0.083 Ks(-1) was sufficiently slow to permit easy quenching, while being fast enough for the primary solidification reaction to depart from the equilibrium model and being closer to the Scheil model of segregation. The minimization of the error function defined from the Scheil equation was found to be an appropriate method for describing the segregation profiles of the quenched samples and permitted good estimations of the partition coefficients of the solute elements. The reliability of the methodology was found to be satisfactory given that the magnitudes calculated for the partition coefficients of the solutes in the multicomponent alloy 718 were found to be very close to the values reported in the literature. C1 [Valdes, Jairo; Liu, Xingbo] W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA. [Valdes, Jairo] Univ Valle, Escuela Ingn Mecan, Cali, Colombia. [Shang, Shun-Li; Liu, Zi-Kui] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [King, Paul] Natl Energy Technol Lab, Albany, OR 97321 USA. RP Valdes, J (reprint author), W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA. EM xingbo.liu@mail.wvu.edu RI Shang, Shun-Li/A-6564-2009; Liu, Zi-Kui/A-8196-2009 OI Shang, Shun-Li/0000-0002-6524-8897; Liu, Zi-Kui/0000-0003-3346-3696 FU Fulbright/Colciencias y el Departamento Nacional de Planeacion (DNP); Universidad del Valle FX One of the authors (JV) acknowledges the financial support received by the Fulbright/Colciencias y el Departamento Nacional de Planeacion (DNP) scholarship as well as the support from the Universidad del Valle. NR 32 TC 5 Z9 5 U1 3 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD FEB PY 2010 VL 41A IS 2 BP 487 EP 498 DI 10.1007/s11661-009-0132-7 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 539GT UT WOS:000273242700021 ER PT J AU Ju, T Carson, J Liu, L Warren, J Bello, M Kakadiaris, I AF Ju, Tao Carson, James Liu, Lu Warren, Joe Bello, Musodiq Kakadiaris, Ioannis TI Subdivision meshes for organizing spatial biomedical data SO METHODS LA English DT Article DE Atlas; Geometric; Subdivision; Registration; Spatial queries; Volumetric; Gene expression ID GENE-EXPRESSION PATTERNS; MOUSE EMBRYO; BRAIN; ATLAS; SEGMENTATION; SURFACES AB As biomedical images and volumes are being collected at an increasing speed, there is a growing demand for efficient means to organize spatial information for comparative analysis. In many scenarios, such as determining gene expression patterns by in situ hybridization, the images are collected from multiple subjects over a common anatomical region, such as the brain. A fundamental challenge in comparing spatial data from different images is how to account for the shape variations among subjects, which make direct image-to-image comparisons meaningless. In this paper, we describe subdivision meshes as a geometric means to efficiently organize 2D images and 3D volumes collected from different subjects for comparison. The key advantages of a subdivision mesh for this purpose are its light-weight geometric p structure and its explicit modeling of anatomical boundaries, which enable efficient and accurate registration. The multi-resolution structure of a subdivision mesh also allows development of fast comparison algorithms among registered images and volumes. (C) 2009 Elsevier Inc. All rights reserved. C1 [Ju, Tao; Liu, Lu] Washington Univ, Dept Comp Sci & Engn, St Louis, MO 63130 USA. [Carson, James] Pacific NW Natl Lab, Biol Monitoring & Modeling Grp, Richland, WA 99352 USA. [Warren, Joe] Rice Univ, Dept Comp Sci, Houston, TX USA. [Bello, Musodiq] GE Global Res, Visualizat & Comp Vis Lab, Niskayuna, NY USA. [Kakadiaris, Ioannis] Univ Houston, Computat Biomed Lab, Houston, TX USA. RP Ju, T (reprint author), Washington Univ, Dept Comp Sci & Engn, St Louis, MO 63130 USA. EM taoju@cse.wustl.edu OI Kakadiaris, Ioannis/0000-0002-0591-1079 FU W.M. Keck Foundation through the Keck Center for Computational and Structural Biology; NIH [NLMT15LM07093, R21NS058 553]; NSF [ITR-0205671, CCF-0702662, DBI-0743691, DE-AC05-76RL01830] FX This work was supported in part by a training fellowship from the W.M. Keck Foundation to the Gulf Coast Consortia through the Keck Center for Computational and Structural Biology. It was also supported by NIH Grants NLMT15LM07093 and R21NS058 553, NSF Grants ITR-0205671, CCF-0702662 and DBI-0743691, and DE-AC05-76RL01830. NR 26 TC 7 Z9 7 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1046-2023 J9 METHODS JI Methods PD FEB PY 2010 VL 50 IS 2 BP 70 EP 76 DI 10.1016/j.ymeth.2009.07.012 PG 7 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 549VQ UT WOS:000274082800004 PM 19664714 ER PT J AU Petyuk, VA Qian, WJ Smith, RD Smith, DJ AF Petyuk, Vladislav A. Qian, Wei-Jun Smith, Richard D. Smith, Desmond J. TI Mapping protein abundance patterns in the brain using voxelation combined with liquid chromatography and mass spectrometry SO METHODS LA English DT Article DE Brain atlas; Brain mapping; Mass spectrometry; Proteomics; Transcriptomics; Voxelation ID TIME TAG APPROACH; GENE-EXPRESSION; ACCURATE MASS; STATISTICAL-MODEL; NERVOUS-SYSTEM; IDENTIFICATIONS; PROTEOMICS; PEPTIDE; DATABASE; SEARCH AB Voxelation creates expression atlases by high-throughput analysis of spatially registered cubes or voxels harvested from the brain. The modality independence of voxelation allows a variety of bioanalytical techniques to be used to map abundance. Protein expression patterns in the brain can be obtained using liquid chromatography (LC) combined with mass spectrometry (MS). Here we describe the methodology of voxelation as it pertains particularly to LC-MS proteomic analysis: sample preparation instrumental. set up and analysis, peptide identification and protein relative abundance quantitation. We also briefly describe some of the advantages, limitations and insights into the brain that can be obtained using combined proteomic and transcriptomic maps. (C) 2009 Elsevier Inc. All rights reserved. C1 [Smith, Desmond J.] Univ Calif Los Angeles, David Geffen Sch Med, Dept Mol & Med Pharmacol, Los Angeles, CA 90095 USA. [Petyuk, Vladislav A.; Qian, Wei-Jun; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Petyuk, Vladislav A.; Qian, Wei-Jun; Smith, Richard D.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Smith, DJ (reprint author), Univ Calif Los Angeles, David Geffen Sch Med, Dept Mol & Med Pharmacol, Los Angeles, CA 90095 USA. EM DSmith@mednet.ucla.edu RI Smith, Richard/J-3664-2012; OI Smith, Richard/0000-0002-2381-2349; Petyuk, Vladislav/0000-0003-4076-151X FU NIH National Center for Research Resources [RR18522]; NIH [R01 NS050148]; US Department of Energy (DOE) national scientific user facility located at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington; DOE [DE-AC05-76RL01830] FX We thank The Allen Institute for Brain Science for permission to use their data in this publication. Portions of the research were supported by the NIH National Center for Research Resources (RR18522 to R.D.S.) and NIH Grant R01 NS050148 to D.J.S. Proteomic analyses were performed in the Environmental Molecular Sciences Laboratory, a US Department of Energy (DOE) national scientific user facility located at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington. PNNL is a multi-program national laboratory operated by Battelle Memorial Institute for the DOE under Contract DE-AC05-76RL01830. NR 28 TC 11 Z9 11 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1046-2023 J9 METHODS JI Methods PD FEB PY 2010 VL 50 IS 2 BP 77 EP 84 DI 10.1016/j.ymeth.2009.07.009 PG 8 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 549VQ UT WOS:000274082800005 PM 19654045 ER PT J AU Carson, J Ju, T Bello, M Thaller, C Warren, J Kakadiaris, IA Chiu, W Eichele, G AF Carson, James Ju, Tao Bello, Musodiq Thaller, Christina Warren, Joe Kakadiaris, Ioannis A. Chiu, Wah Eichele, Gregor TI Automated pipeline for atlas-based annotation of gene expression patterns: Application to postnatal day 7 mouse brain SO METHODS LA English DT Article DE ISH; In situ hybridization; Comparison; Subdivision; Landmarks; Database; Brain atlas; Mice; Rodents ID IN-SITU HYBRIDIZATION; NERVOUS-SYSTEM; SIGNAL AMPLIFICATION; DATABASE; SEGMENTATION; DEPOSITION; EMBRYO AB Massive amounts of image data have been collected and continue to be generated for representing cellular gene expression throughout the mouse brain. Critical to exploiting this key effort of the post-genomic era is the ability to place these data into a common spatial reference that enables rapid interactive queries, analysis, data sharing, and visualization. In this paper, we present a set of automated protocols for generating and annotating gene expression patterns suitable for the establishment of a database. The steps include imaging tissue slices, detecting cellular gene expression levels, spatial registration with an atlas, and textual annotation. Using high-throughput in situ hybridization to generate serial sets of tissues displaying gene expression, this process was applied toward the establishment of a database representing over 200 genes in the postnatal day 7 mouse brain. These data using this protocol are now well-suited for interactive comparisons, analysis, queries, and visualization. (C) 2009 Elsevier Inc. All rights reserved. C1 [Kakadiaris, Ioannis A.] Univ Houston, Dept Comp Sci, Computat Biomed Lab, Houston, TX 77204 USA. [Carson, James] Pacific NW Natl Lab, Biol Monitoring & Modeling Grp, Richland, WA 99352 USA. [Ju, Tao] Washington Univ, Dept Comp Sci & Engn, St Louis, MO USA. [Bello, Musodiq] Gen Elect Global Res, Visualizat & Comp Vis Grp, Niskayuna, NY USA. [Thaller, Christina; Chiu, Wah] Baylor Coll Med, Verna & Marrs McLean Dept Biochem & Mol Biol, Houston, TX 77030 USA. [Warren, Joe] Rice Univ, Dept Comp Sci, Houston, TX USA. [Eichele, Gregor] Max Planck Inst Biophys Chem, Dept Genes & Behav, D-37077 Gottingen, Germany. RP Kakadiaris, IA (reprint author), Univ Houston, Dept Comp Sci, Computat Biomed Lab, MS CSC 3010,4800 Calhoun, Houston, TX 77204 USA. EM ioannisk@uh.edu OI Kakadiaris, Ioannis/0000-0002-0591-1079 FU NSF [DB10743691]; NIH [1R21NS058553-01]; W.M. Keck Foundation through the Keck Center for Computational and Structural Biology; [DE-AC05-76RL01830] FX The following funding mechanisms provided support in part for the creation of this manuscript: DE-AC05-76RL01830, NSF DB10743691, NIH 1R21NS058553-01, and a training fellowship from the W.M. Keck Foundation to the Gulf Coast Consortia through the Keck Center for Computational and Structural Biology. NR 42 TC 11 Z9 11 U1 1 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1046-2023 J9 METHODS JI Methods PD FEB PY 2010 VL 50 IS 2 BP 85 EP 95 DI 10.1016/j.ymeth.2009.08.005 PG 11 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 549VQ UT WOS:000274082800006 PM 19698790 ER PT J AU de Jonge, N Sougrat, R Northan, BM Pennycook, SJ AF de Jonge, Niels Sougrat, Rachid Northan, Brian M. Pennycook, Stephen J. TI Three-Dimensional Scanning Transmission Electron Microscopy of Biological Specimens SO MICROSCOPY AND MICROANALYSIS LA English DT Article DE three-dimensional electron microscopy; aberration-corrected STEM; biological electron microscopy; thin sections; cytoskeleton; clathrin-coated pit; deconvolution; nanoparticles ID CELLS; STEM; TOMOGRAPHY; VISUALIZATION AB A three-dimensional (3D) reconstruction of the cytoskeleton and a clathrin-coated pit in mammalian cells has been achieved from a focal-series of images recorded in an aberration-corrected scanning transmission electron microscope (STEM). The specimen was a metallic replica of the biological structure comprising Pt nanoparticles 2-3 nm in diameter, with a high stability under electron beam radiation. The 3D dataset was processed by an automated deconvolution procedure. The lateral resolution was 1.1 nm, set by pixel size. Particles differing by only 10 nm in vertical position were identified as separate objects with greater than 20% dip in contrast between them. We refer to this value as the axial resolution of the deconvolution or reconstruction, the ability to recognize two objects, which were unresolved in the original dataset. The resolution of the reconstruction is comparable to that achieved by tilt-series transmission electron microscopy. However, the focal-series method does not require mechanical tilting and is therefore much faster. 3D STEM images were also recorded of the Golgi ribbon in conventional thin sections containing 3T3 cells with a comparable axial resolution in the deconvolved dataset. C1 [de Jonge, Niels] Vanderbilt Univ, Dept Mol Physiol & Biophys, Med Ctr, Nashville, TN 37232 USA. [de Jonge, Niels; Pennycook, Stephen J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Sougrat, Rachid] NICHD, Cell Biol & Metab Branch, NIH, Bethesda, MD 20892 USA. [Northan, Brian M.] Media Cybernet Inc, Bethesda, MD 20814 USA. RP de Jonge, N (reprint author), Vanderbilt Univ, Dept Mol Physiol & Biophys, Med Ctr, Light Hall 702, Nashville, TN 37232 USA. EM niels.de.jonge@vanderbilt.edu RI de Jonge, Niels/B-5677-2008; OI Sougrat, Rachid/0000-0001-6476-1886 FU Oak Ridge National Laboratory; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program; Vanderbilt University Medical Center, National Institutes of Health [R01GM081801]; NICHD; U.S. Department of Energy Office of Science, Division of Materials Science and Engineering FX We thank L.F. Allard, D. Blom, J.F. Deatherage, A.R. Lupini, and J.R. Price for discussions and help with the experiments, and J. Swan and B. Twomey for help with Figure 1. This work was supported by the Laboratory Directed R&D Program of Oak Ridge National Laboratory (N.J.), by the High Temperature Materials Laboratory, sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program, by Vanderbilt University Medical Center, National Institutes of Health grant R01GM081801 (N.J.), by the Intramural Program of NICHD (R.S.), and by the U.S. Department of Energy Office of Science, Division of Materials Science and Engineering (S.J.P.). NR 31 TC 21 Z9 21 U1 1 U2 15 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1431-9276 EI 1435-8115 J9 MICROSC MICROANAL JI Microsc. microanal. PD FEB PY 2010 VL 16 IS 1 BP 54 EP 63 DI 10.1017/S1431927609991280 PG 10 WC Materials Science, Multidisciplinary; Microscopy SC Materials Science; Microscopy GA 551NW UT WOS:000274217300006 PM 20082729 ER PT J AU Cate, JHD AF Cate, Jamie H. D. TI Some reassembly required SO MOLECULAR MICROBIOLOGY LA English DT Editorial Material ID ESCHERICHIA-COLI; RIBOSOME; RNA; PROTEINS AB P>Cells invest a significant amount of their energy synthesizing proteins, and a large portion of the energy expenditure goes into making ribosomes, the RNA-protein machines at the centre of translation. When ribosomes are damaged in a cell, i.e. during stressful conditions, cells must first recognize the damage and then mount a response. Remme et al. show that instead of having to rebuild ribosomes from scratch, bacteria can repair ribosomes by replacing damaged proteins in situ, thereby saving significant time and energy. Given the central role of translation, such repair mechanisms might be widespread in nature. C1 [Cate, Jamie H. D.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Cate, Jamie H. D.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Cate, Jamie H. D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Cate, JHD (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. EM jcate@lbl.gov FU NIGMS NIH HHS [R01 GM065050, R01-GM65050] NR 15 TC 1 Z9 1 U1 0 U2 0 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0950-382X J9 MOL MICROBIOL JI Mol. Microbiol. PD FEB PY 2010 VL 75 IS 4 BP 793 EP 794 DI 10.1111/j.1365-2958.2009.07017.x PG 2 WC Biochemistry & Molecular Biology; Microbiology SC Biochemistry & Molecular Biology; Microbiology GA 554CD UT WOS:000274412200001 PM 20025660 ER PT J AU Vovk, MV Pinchuk, OM Tolmachov, AO Gakh, AA AF Vovk, Mykhaylo V. Pinchuk, Oleksandr M. Tolmachov, Andrij O. Gakh, Andrei A. TI Synthesis of 1-(4-Trifluoromethoxyphenyl)-2,5-dimethyl-3-(2-R-thiazol-4-yl)-1H-pyrrol es via Chain Heterocyclization SO MOLECULES LA English DT Article DE pyrrole; fluorinated heterocycles; Paal-Knorr reaction; trifluoromethoxy group; chain heterocyclization ID INHIBITORS; PYRROLE; DISCOVERY; ALKALOIDS; BIOLOGY AB The title compounds, (4-trifluoromethoxyphenyl)-2,5-dimethyl-3-(2-R-thiazol-4-yl)-1H-pyrroles, were prepared in four steps starting from commercially available 4-trifluoromethoxyaniline. The pyrrole (second ring) was added in one step using the Paal-Knorr method. The thiazole (third ring) was added in three steps using chloroacylation with chloroacetonitrile followed by heterocyclization with thioamides/thioureas. C1 [Vovk, Mykhaylo V.; Pinchuk, Oleksandr M.] NAS Ukraine, Inst Organ Chem, UA-02094 Kiev, Ukraine. [Tolmachov, Andrij O.] Natl Taras Shevchenko Univ, UA-01033 Kiev, Ukraine. [Gakh, Andrei A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Vovk, MV (reprint author), NAS Ukraine, Inst Organ Chem, Murmanska 5, UA-02094 Kiev, Ukraine. EM mvovk@ioch.kiev.ua; gakhaa@ornl.gov OI Vovk, Mykhailo/0000-0001-7739-670X FU Global IPP program through the Science and Technology Center in Ukraine (STCU); U.S. Department of Energy [DE-AC05-00OR22725] FX This research was supported by the Global IPP program through the Science and Technology Center in Ukraine (STCU). Oak Ridge National Laboratory is managed and operated by UT-Battelle, LLC, under U.S. Department of Energy contract DE-AC05-00OR22725. This paper is a contribution from the Discovery Chemistry Project. NR 24 TC 5 Z9 5 U1 0 U2 1 PU MOLECULAR DIVERSITY PRESERVATION INTERNATIONAL-MDPI PI BASEL PA KANDERERSTRASSE 25, CH-4057 BASEL, SWITZERLAND SN 1420-3049 J9 MOLECULES JI Molecules PD FEB PY 2010 VL 15 IS 2 BP 997 EP 1006 DI 10.3390/molecules15020997 PG 10 WC Chemistry, Organic SC Chemistry GA 560UQ UT WOS:000274929200029 PM 20335958 ER PT J AU Percival, WJ Reid, BA Eisenstein, DJ Bahcall, NA Budavari, T Frieman, JA Fukugita, M Gunn, JE Ivezic, Z Knapp, GR Kron, RG Loveday, J Lupton, RH McKay, TA Meiksin, A Nichol, RC Pope, AC Schlegel, DJ Schneider, DP Spergel, DN Stoughton, C Strauss, MA Szalay, AS Tegmark, M Vogeley, MS Weinberg, DH York, DG Zehavi, I AF Percival, Will J. Reid, Beth A. Eisenstein, Daniel J. Bahcall, Neta A. Budavari, Tamas Frieman, Joshua A. Fukugita, Masataka Gunn, James E. Ivezic, Zeljko Knapp, Gillian R. Kron, Richard G. Loveday, Jon Lupton, Robert H. McKay, Timothy A. Meiksin, Avery Nichol, Robert C. Pope, Adrian C. Schlegel, David J. Schneider, Donald P. Spergel, David N. Stoughton, Chris Strauss, Michael A. Szalay, Alexander S. Tegmark, Max Vogeley, Michael S. Weinberg, David H. York, Donald G. Zehavi, Idit TI Baryon acoustic oscillations in the Sloan Digital Sky Survey Data Release 7 galaxy sample SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE cosmology: observations; distance scale; large-scale structure of Universe ID LUMINOUS RED GALAXIES; LARGE-SCALE STRUCTURE; MICROWAVE BACKGROUND ANISOTROPIES; SPECTROSCOPIC TARGET SELECTION; POWER-SPECTRUM ANALYSIS; PROBING DARK ENERGY; SURVEY IMAGING DATA; REDSHIFT SURVEYS; COLOR DEPENDENCE; MATTER AB The spectroscopic Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) galaxy sample represents the final set of galaxies observed using the original SDSS target selection criteria. We analyse the clustering of galaxies within this sample, including both the luminous red galaxy and main samples, and also include the 2-degree Field Galaxy Redshift Survey data. In total, this sample comprises 893 319 galaxies over 9100 deg(2). Baryon acoustic oscillations (BAO) are observed in power spectra measured for different slices in redshift; this allows us to constrain the distance-redshift relation at multiple epochs. We achieve a distance measure at redshift z = 0.275, of r(s)(z(d))/D-V(0.275) = 0.1390 +/- 0.0037 (2.7 per cent accuracy), where r(s)(z(d)) is the comoving sound horizon at the baryon-drag epoch, D-V(z) equivalent to [(1 + z)(2)D(A)(2)cz/H(z)](1/3), D-A(z) is the angular diameter distance and H(z) is the Hubble parameter. We find an almost independent constraint on the ratio of distances D-V(0.35)/D-V(0.2) = 1.736 +/- 0.065, which is consistent at the 1.1 sigma level with the best-fitting Lambda cold dark matter model obtained when combining our z = 0.275 distance constraint with the Wilkinson Microwave Anisotropy Probe 5-year (WMAP5) data. The offset is similar to that found in previous analyses of the SDSS DR5 sample, but the discrepancy is now of lower significance, a change caused by a revised error analysis and a change in the methodology adopted, as well as the addition of more data. Using WMAP5 constraints on Omega(b)h(2) and Omega(c) h(2), and combining our BAO distance measurements with those from the Union supernova sample, places a tight constraint on Omega(m) = 0.286 +/- 0.018 and H-0 = 68.2 +/- 2.2 km s(-1) Mpc(-1) that is robust to allowing Omega(k) not equal 0 and omega not equal -1. This result is independent of the behaviour of dark energy at redshifts greater than those probed by the BAO and supernova measurements. Combining these data sets with the full WMAP5 likelihood constraints provides tight constraints on both Omega(k) = -0.006 +/- 0.008 and omega = -0.97 +/- 0.10 for a constant dark energy equation of state. C1 [Percival, Will J.; Nichol, Robert C.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth P01 3FX, Hants, England. [Reid, Beth A.] UAB, CSIC IEEC, Inst Space Sci, Barcelona 08193, Spain. [Reid, Beth A.] Univ Barcelona, Inst Sci Cosmos ICC, E-08028 Barcelona, Spain. [Reid, Beth A.; Bahcall, Neta A.; Gunn, James E.; Knapp, Gillian R.; Lupton, Robert H.; Spergel, David N.; Strauss, Michael A.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Eisenstein, Daniel J.] Univ Arizona, Steward Observ, Tucson, AZ 85121 USA. [Budavari, Tamas; Szalay, Alexander S.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Frieman, Joshua A.] Ctr Particle Astrophys, Fermilab, Batavia, IL 60510 USA. [Frieman, Joshua A.] Univ Chicago, Kavli Inst Cosmol Phys, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Fukugita, Masataka] Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba 2778582, Japan. [Ivezic, Zeljko] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Kron, Richard G.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Loveday, Jon] Univ Sussex, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [McKay, Timothy A.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [McKay, Timothy A.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Meiksin, Avery] Univ Edinburgh, Royal Observ, Inst Astron, SUPA, Edinburgh EH9 3HJ, Midlothian, Scotland. [Pope, Adrian C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Schlegel, David J.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Spergel, David N.] Princeton Univ, Princeton Ctr Theoret Sci, Princeton, NJ 08542 USA. [Stoughton, Chris] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Tegmark, Max] MIT, Dept Phys, Cambridge, MA 02139 USA. [Vogeley, Michael S.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Weinberg, David H.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [York, Donald G.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Zehavi, Idit] Case Western Reserve Univ, Dept Astron, Cleveland, OH 44106 USA. RP Percival, WJ (reprint author), Univ Portsmouth, Inst Cosmol & Gravitat, Dennis Sciama Bldg, Portsmouth P01 3FX, Hants, England. EM will.percival@port.ac.uk RI McKay, Timothy/C-1501-2009; Spergel, David/A-4410-2011; OI McKay, Timothy/0000-0001-9036-6150; Meiksin, Avery/0000-0002-5451-9057 FU UK Science and Technology Facilities Council (STFC); Leverhulme trust; European Research Council; National Science Foundation [AST-0707225]; NASA [NNX07AC51G]; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; American Museum of Natural History; Astrophysical Institute Potsdam; University of Basel; Cambridge University; Case Western Reserve University; University of Chicago; Drexel University; Fermilab; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle Astrophysics and Cosmology; Korean Scientist Group; Chinese Academy of Sciences (LAMOST); Los Alamos National Laboratory; Max-Planck-Institute for Astronomy (MPIA); Max-Planck-Institute for Astrophysics (MPA); New Mexico State University; Ohio State University; University of Pittsburgh; University of Portsmouth; Princeton University; United States Naval Observatory; University of Washington FX WJP is grateful for support from the UK Science and Technology Facilities Council (STFC), the Leverhulme trust and the European Research Council. DJE was supported by National Science Foundation grant AST-0707225 and NASA grant NNX07AC51G. Simulated catalogues were calculated and analysed using the COSMOS Altix 3700 supercomputer, a UK-CCC facility supported by HEFCE and STFC in cooperation with CGI/Intel. WJP would like to thank Tamara M. Davis, Ravi K. Sheth, Roman Scoccimarro, Eyal Kazin, Taka Matsubara and the referee, Fergus Simpson, for useful interactions.; The 2dFGRS was undertaken using the Two-Degree Field facility on the 3.9 m Anglo-Australian Telescope. The success of the survey was made possible by the dedicated efforts of the staff of the Anglo-Australian Observatory, both in creating the 2dF instrument and in supporting the survey observations.; Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society and the Higher Education Funding Council for England. The SDSS web site is . http://www.sdss.org/.; The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, Cambridge University, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory and the University of Washington. NR 96 TC 950 Z9 959 U1 6 U2 52 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB 1 PY 2010 VL 401 IS 4 BP 2148 EP 2168 DI 10.1111/j.1365-2966.2009.15812.x PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 544VQ UT WOS:000273687800002 ER PT J AU Lampeitl, H Nichol, RC Seo, HJ Giannantonio, T Shapiro, C Bassett, B Percival, WJ Davis, TM Dilday, B Frieman, J Garnavich, P Sako, M Smith, M Sollerman, J Becker, AC Cinabro, D Filippenko, AV Foley, RJ Hogan, CJ Holtzman, JA Jha, SW Konishi, K Marriner, J Richmond, MW Riess, AG Schneider, DP Stritzinger, M van der Heyden, KJ VanderPlas, JT Wheeler, JC Zheng, C AF Lampeitl, H. Nichol, R. C. Seo, H. -J. Giannantonio, T. Shapiro, C. Bassett, B. Percival, W. J. Davis, T. M. Dilday, B. Frieman, J. Garnavich, P. Sako, M. Smith, M. Sollerman, J. Becker, A. C. Cinabro, D. Filippenko, A. V. Foley, R. J. Hogan, C. J. Holtzman, J. A. Jha, S. W. Konishi, K. Marriner, J. Richmond, M. W. Riess, A. G. Schneider, D. P. Stritzinger, M. van der Heyden, K. J. VanderPlas, J. T. Wheeler, J. C. Zheng, C. TI First-year Sloan Digital Sky Survey-II supernova results: consistency and constraints with other intermediate-redshift data sets SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Review DE supernovae: general; cosmology: observations; distance scale; cosmological parameters; large-scale structure of Universe ID LUMINOUS RED GALAXIES; ANISOTROPY-PROBE OBSERVATIONS; HUBBLE-SPACE-TELESCOPE; INTEGRATED SACHS-WOLFE; IA LIGHT CURVES; SPECTROSCOPIC TARGET SELECTION; LARGE-SCALE STRUCTURE; SURVEY IMAGING DATA; DARK ENERGY; POWER-SPECTRUM AB We present an analysis of the luminosity distances of Type Ia Supernovae (SNe) from the Sloan Digital Sky Survey-II (SDSS-II) SN Survey in conjunction with other intermediate-redshift (z < 0.4) cosmological measurements including redshift-space distortions from the Two-Degree Field Galaxy Redshift Survey (2dFGRS), the integrated Sachs-Wolfe (ISW) effect seen by the SDSS and the latest baryon acoustic oscillation (BAO) distance scale from both the SDSS and 2dFGRS. We have analysed the SDSS-II SN data alone using a variety of 'model-independent' methods and find evidence for an accelerating Universe at a > 97 per cent level from this single data set. We find good agreement between the SN and BAO distance measurements, both consistent with a Lambda-dominated cold dark matter cosmology, as demonstrated through an analysis of the distance duality relationship between the luminosity (d(L)) and angular diameter (d(A)) distance measures. We then use these data to estimate omega within this restricted redshift range (z < 0.4). Our most stringent result comes from the combination of all our intermediate-redshift data (SDSS-II SNe, BAO, ISW and redshift-space distortions), giving omega = -0.81(-0.18)(+0.16) (stat) +/- 0.15 (sys) and Omega(M) = 0.22(-0.08)(+0.09) assuming a flat universe. This value of w and associated errors only change slightly if curvature is allowed to vary, consistent with constraints from the cosmic microwave background. We also consider more limited combinations of the geometrical (SN, BAO) and dynamical (ISW, redshift-space distortions) probes. C1 [Lampeitl, H.; Nichol, R. C.; Giannantonio, T.; Shapiro, C.; Percival, W. J.; Smith, M.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Seo, H. -J.; Frieman, J.; Hogan, C. J.; Marriner, J.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Giannantonio, T.] Univ Bonn, Argelander Inst Astron, D-53121 Bonn, Germany. [Bassett, B.; Smith, M.] Univ Cape Town, Dept Math & Appl Math, ZA-7701 Rondebosch, South Africa. [Bassett, B.] S African Astron Observ, ZA-7935 Cape Town, South Africa. [Davis, T. M.] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia. [Davis, T. M.; Sollerman, J.; Stritzinger, M.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen, Denmark. [Dilday, B.; Jha, S. W.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Frieman, J.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Garnavich, P.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Sako, M.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19096 USA. [Sollerman, J.] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden. [Becker, A. C.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Cinabro, D.] Wayne State Univ, Dept Phys & Astron, Detroit, MI 48202 USA. [Filippenko, A. V.; Foley, R. J.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Foley, R. J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Holtzman, J. A.] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Konishi, K.] Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba 2778582, Japan. [Konishi, K.] Univ Tokyo, Grad Sch Sci, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Richmond, M. W.] Rochester Inst Technol, Dept Phys, Rochester, NY 14623 USA. [Riess, A. G.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Riess, A. G.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Schneider, D. P.] Penn State Univ, Davey Lab 525, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Stritzinger, M.] Carnegie Observ, Las Campanas Observ, La Serena, Chile. [van der Heyden, K. J.] Univ Cape Town, Dept Astron, ZA-7701 Rondebosch, South Africa. [Wheeler, J. C.] Univ Texas Austin, McDonald Observ, Dept Astron, Austin, TX 78712 USA. [Zheng, C.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. RP Lampeitl, H (reprint author), Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. EM Hubert.Lampeitl@port.ac.uk RI Davis, Tamara/A-4280-2008; OI Davis, Tamara/0000-0002-4213-8783; Sollerman, Jesper/0000-0003-1546-6615 FU Science and Technology Facilities Council (STFC) [ST/F002335/1, ST/H002774/1]; D.O.E at Fermilab; US NSF [AST-0607485]; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; American Museum of Natural History; Astrophysical Institute Potsdam, University of Basel, Cambridge University; Case Western Reserve University; University of Chicago, Drexel University, Fermilab; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle Astrophysics and Cosmology; Korean Scientist Group; Chinese Academy of Sciences (LAMOST); Los Alamos National Laboratory; Max-Planck-Institute for Astronomy (MPA); Max-Planck-Institute for Astrophysics (MPiA); New Mexico State University; Ohio State University; University of Pittsburgh; University of Portsmouth; Princeton University; United States Naval Observatory; University of Washington; California Institute of Technology; University of California; W. M. Keck Foundation FX We thank an anonymous referee for helpful comments on this paper which greatly improved the content of the paper. RCN on behalf of the authors would like to thank Mike Turner for helpful discussions on the q0 fit and Eric Aubourg for useful discussions on the distance duality relation. We also thank Rick Kessler and Mark Sullivan for extensive discussions about their work and papers. TG thanks Jussi Valiviita for helpful suggestions. HL, CS and RCN are grateful to the Science and Technology Facilities Council (STFC) for funding this research with rolling grants ST/F002335/1 and ST/H002774/1. H-JS is supported by the D.O.E at Fermilab. AVF is grateful for the support of US NSF grant AST-0607485.; Funding for the creation and distribution of the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society and the Higher Education Funding Council for England. The SDSS web site is http://www.sdss.org/.; The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, Cambridge University, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPA), the Max-Planck-Institute for Astrophysics (MPiA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory and the University of Washington.; This work is based in part on observations made at the following telescopes. The Hobby-Eberly Telescope (HET) is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximillians-Universitat Munchen and Georg-August-Universitat Gottingen. The HET is named in honour of its principal benefactors, William P. Hobby and Robert E. Eberly. The Marcario Low-Resolution Spectrograph is named for Mike Marcario of High Lonesome Optics, who fabricated several optical elements for the instrument but died before its completion; it is a joint project of the HET partnership and the Instituto de Astronomia de la Universidad Nacional Autonoma de Mexico. The Apache Point Observatory 3.5 m telescope is owned and operated by the Astrophysical Research Consortium. We thank the observatory director, Suzanne Hawley, and site manager, Bruce Gillespie, for their support of this project. The Subaru Telescope is operated by the National Astronomical Observatory of Japan. The William Herschel Telescope is operated by the Isaac Newton Group on the island of La Palma in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. The W. M. Keck Observatory is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration; the observatory was made possible by the generous financial support of the W. M. Keck Foundation. NR 106 TC 61 Z9 61 U1 1 U2 6 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB 1 PY 2010 VL 401 IS 4 BP 2331 EP 2342 DI 10.1111/j.1365-2966.2009.15851.x PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 544VQ UT WOS:000273687800014 ER PT J AU Robertson, BE Kravtsov, AV Gnedin, NY Abel, T Rudd, DH AF Robertson, Brant E. Kravtsov, Andrey V. Gnedin, Nickolay Y. Abel, Tom Rudd, Douglas H. TI Computational Eulerian hydrodynamics and Galilean invariance SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE hydrodynamics; instabilities; methods: numerical ID ADAPTIVE MESH REFINEMENT; RADIATION MAGNETOHYDRODYNAMICS CODE; VARIATION DIMINISHING SCHEME; PIECEWISE PARABOLIC METHOD; 2 SPACE DIMENSIONS; COSMOLOGICAL HYDRODYNAMICS; ASTROPHYSICAL FLOWS; DIFFERENCE-SCHEMES; ENO SCHEMES; SIMULATIONS AB Eulerian hydrodynamical simulations are a powerful and popular tool for modelling fluids in astrophysical systems. In this work, we critically examine recent claims that these methods violate Galilean invariance of the Euler equations. We demonstrate that Eulerian hydrodynamics methods do converge to a Galilean-invariant solution, provided a well-defined convergent solution exists. Specifically, we show that numerical diffusion, resulting from diffusion-like terms in the discretized hydrodynamical equations solved by Eulerian methods, accounts for the effects previously identified as evidence for the Galilean non-invariance of these methods. These velocity-dependent diffusive terms lead to different results for different bulk velocities when the spatial resolution of the simulation is kept fixed, but their effect becomes negligible as the resolution of the simulation is increased to obtain a converged solution. In particular, we find that Kelvin-Helmholtz instabilities develop properly in realistic Eulerian calculations regardless of the bulk velocity provided the problem is simulated with sufficient resolution (a factor of 2-4 increase compared to the case without bulk flows for realistic velocities). Our results reiterate that high-resolution Eulerian methods can perform well and obtain a convergent solution, even in the presence of highly supersonic bulk flows. C1 [Robertson, Brant E.; Kravtsov, Andrey V.; Gnedin, Nickolay Y.] Univ Chicago, Kavli Inst Cosmol Phys, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Robertson, Brant E.; Kravtsov, Andrey V.] Enrico Fermi Inst, Chicago, IL 60637 USA. [Gnedin, Nickolay Y.] Ctr Particle Astrophys, Fermilab, Batavia, IL 60510 USA. [Abel, Tom] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Rudd, Douglas H.] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA. RP Robertson, BE (reprint author), CALTECH, Dept Astron, MC 249-17,1200 E Calif Blvd, Pasadena, CA 91125 USA. EM brant@astro.caltech.edu FU Spitzer Fellowship through a NASA [NAG5-13274]; NSF [AST-0239759, AST-0507666, AST-0807444]; Kavli Institute for Cosmological Physics at the University of Chicago; Institute for Advanced Study; Fermilab, Kavli Institute for Cosmological Physics; University of Chicago FX BER would like to thank the staff of the Neonatal Intensive Care Unit at the Comer Childrens' Hospital and the Mitchell Transitional Care Unit at the University of Chicago Medical Center for their hospitality while this work was completed. We also thank Anatoly Klypin, Brian O'Shea, Eve Ostriker, Volker Springel and Romain Teyssier for helpful discussions. BER gratefully acknowledges support from a Spitzer Fellowship through a NASA grant administrated by the Spitzer Science Center during the majority of this work. AVK is supported by the NSF under grants AST-0239759 and AST-0507666 and by NASA through grant NAG5-13274. BER and AVK were also partially supported by the Kavli Institute for Cosmological Physics at the University of Chicago. DHR gratefully acknowledges the support of the Institute for Advanced Study and the NSF through grant AST-0807444. Some of the simulations used in this work have been performed on the Joint Fermilab-KICP Supercomputing Cluster, supported by grants from Fermilab, Kavli Institute for Cosmological Physics and the University of Chicago. NR 62 TC 37 Z9 37 U1 0 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD FEB 1 PY 2010 VL 401 IS 4 BP 2463 EP 2476 DI 10.1111/j.1365-2966.2009.15823.x PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 544VQ UT WOS:000273687800025 ER PT J AU Brennan, S AF Brennan, Sean TI Astromaterials Research of Comet Wild 2: Terameters to Nanometers SO MRS BULLETIN LA English DT Article ID SOLAR NEBULA; STARDUST; 81P/WILD-2; SAMPLES; TRANSPORT; DUST AB Stardust, a NASA sample return mission, safely landed in the Utah desert in January 2006 after a seven-year mission, bringing with it the first cometary material from a known parent source, Comet 81P/Wild 2. One of the mission goals is to determine the starting material of the solar system. By sampling a comet, which has spent most of the past 4.6 Gyr beyond the orbit of Neptune, we expect to measure material presumed to be unaffected by the ignition of the sun. The Stardust spacecraft swept through the tail of the comet, collecting hundreds of micron-sized particles from that stream into aerogel, a low-density silica foam. An international team of materials scientists have studied the mineralogy, petrology, and elemental and isotopic abundance of these materials. Our group has studied elemental abundance using an x-ray microprobe; the morphology of the particles was examined using an x-ray microscope, which enables nanotomography of the particles while encased in aerogel. The unexpected conclusions are that much of the material from this comet was formed near the sun, after its ignition, and soon thereafter transported to the outer reaches of the solar system. These results have changed the way astrophysicists think about solar system formation. C1 [Brennan, Sean] Fairview Associates, Woodside, CA 94062 USA. [Brennan, Sean] Stanford Linear Accelerator Ctr, Natl Accelerator Lab, Stanford, CA USA. RP Brennan, S (reprint author), Fairview Associates, POB 620757, Woodside, CA 94062 USA. EM bren@fairviewassociates.com FU NASA [NNH06AD67I, NNH04AB49I] FX This has been a collaborative effort of which I have been a small part. I thank J. Hayter, K. Ignatiev, Y Liu, K. Luening, E Meirer, and P. Flianetta from SSRL; J. Bradley and H. Ishii from LLNL; and M. Feser, J. Gelb, J. Ruclati, A. Tkachuk, and W. Yun from Xradia for their support and friendship. Thanks go to D. Brownlee and H. Ishii for their help in the preparation of this manuscript. I gratefully acknowledge NASA and the Stardust Preliminary Examination Teams for the opportunity to study such exciting and unique samples. I also thank the Bulk Chemistry Subteam for useful interactions and discussions, and I acknowledge the enormous efforts of all involved in Curation to carry out rapid sample preparation and distribution. Portions of this work were carried out at the Stanford Synchrotron Radiation Lightsource, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. This work was supported by NASA Grants NNH06AD67I (Stardust Participating Scientist) and NNH04AB49I (SRLIDAP). NR 17 TC 2 Z9 2 U1 0 U2 2 PU MATERIALS RESEARCH SOC PI WARRENDALE PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA SN 0883-7694 J9 MRS BULL JI MRS Bull. PD FEB PY 2010 VL 35 IS 2 BP 150 EP 154 DI 10.1557/mrs2010.636 PG 5 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 557NS UT WOS:000274676800017 ER PT J AU Chueh, YL Boswell, CN Yuan, CW Shin, SJ Takei, K Ho, JC Ko, H Fan, ZY Haller, EE Chrzan, DC Javey, A AF Chueh, Yu-Lun Boswell, Cosima N. Yuan, Chun-Wei Shin, Swanee J. Takei, Kuniharu Ho, Johnny C. Ko, Hyunhyub Fan, Zhiyong Haller, E. E. Chrzan, D. C. Javey, Ali TI Nanoscale Structural Engineering via Phase Segregation: Au-Ge System SO NANO LETTERS LA English DT Article DE Phase segregation; nanowires; nanoscale diffusion; supercooling ID SEMICONDUCTOR NANOWIRES; GROWTH AB A tunable structural engineering of nanowires based on template-assisted alloying and phase segregation processes is demonstrated. The Au-Ge system, which has a low eutectic temperature and negligible solid solubility (< 10(-3) atom %)of Au in Ge at low temperatures, is utilized. Depending on the Au concentration of the initial nanowires, final structures ranging from nearly periodic nanodisk patterns to core/shell and fully alloyed nanowires are produced. The formation mechanisms are discussed in detail and characterized by in situ transmission electron microscopy and energy-dispersive spectrometry analyses. Electrical measurements illustrate the metallic and semiconducting characteristics of the fully alloyed and alternating Au/Ge nanodisk structures, respectively. C1 [Chueh, Yu-Lun; Takei, Kuniharu; Ho, Johnny C.; Ko, Hyunhyub; Fan, Zhiyong; Javey, Ali] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Boswell, Cosima N.; Yuan, Chun-Wei; Shin, Swanee J.; Haller, E. E.; Chrzan, D. C.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Chueh, Yu-Lun; Boswell, Cosima N.; Yuan, Chun-Wei; Shin, Swanee J.; Takei, Kuniharu; Ho, Johnny C.; Ko, Hyunhyub; Fan, Zhiyong; Haller, E. E.; Chrzan, D. C.; Javey, Ali] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Chueh, Yu-Lun; Takei, Kuniharu; Ho, Johnny C.; Ko, Hyunhyub; Fan, Zhiyong; Javey, Ali] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA. RP Javey, A (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. EM ajavey@eecs.berkeley.edu RI Fan, Zhiyong/C-4970-2012; Ho, Johnny/K-5275-2012; Javey, Ali/B-4818-2013; Ko, Hyunhyub/C-4848-2009; Chueh, Yu-Lun/E-2053-2013; OI Ho, Johnny/0000-0003-3000-8794; Chueh, Yu-Lun/0000-0002-0155-9987; Fan, Zhiyong/0000-0002-5397-0129 FU MARCO/MSD; Intel Corporation; NSF COINS; Berkeley Sensor and Actuator Center; U.S. Department of Energy [DE-AC02-05CH11231]; Intel Graduate Fellowship; LBNL FX This work was partially supported by MARCO/MSD, Intel Corporation, NSF COINS, and Berkeley Sensor and Actuator Center. C.N.B., C.-W.Y., S.J.S., E.E.H., and D.C.C. acknowledge support from the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. J.C.H. acknowledges an Intel Graduate Fellowship. The NW synthesis was supported by a LDRD from LBNL. In situ TEM characterizations were performed at NCEM. All fabrication was performed at UC Berkeley Microlab facility. NR 20 TC 16 Z9 17 U1 2 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD FEB PY 2010 VL 10 IS 2 BP 393 EP 397 DI 10.1021/nl902597m PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 553BE UT WOS:000274338800006 PM 20050674 ER PT J AU Park, CH Louie, SG AF Park, Cheol-Hwan Louie, Steven G. TI Tunable Excitons in Biased Bilayer Graphene SO NANO LETTERS LA English DT Article DE Graphene; bilayer; exciton; selection rule ID CARBON NANOTUBES; ELECTRONIC-PROPERTIES; DEPENDENCE; FIELD AB Recent measurements have shown that a continuously tunable bandgap of up to 250 meV can be generated in biased bilayer graphene [Zhang, Y.; et al. Nature 2009, 459, 820], opening up pathway for possible graphene-based nanoelectronic and nanophotonic devices operating at room temperature. Here, we show that the optical response of this system is dominated by bound excitons. The main feature of the optical absorbance spectrum is determined by a single symmetric peak arising from excitons, a profile that is markedly different from that of an interband transition picture. Under laboratory conditions, the binding energy of the excitons may be tuned with the external bias going from zero to several tens of millielectronvolts. These novel strong excitonic behaviors result from a peculiar, effective "one-dimensional" joint density of states and a continuously tunable bandgap in biased bilayer graphene. Moreover, we show that the electronic structure (level degeneracy, optical selection rules, etc.) of the bound excitons in a biased bilayer graphene is markedly different from that of a two-dimensional hydrogen atom because of the pseudospin physics. C1 [Louie, Steven G.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Louie, SG (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM sglouie@berkeley.edu RI Park, Cheol-Hwan/A-1543-2009 OI Park, Cheol-Hwan/0000-0003-1584-6896 FU Director, Office of Science, Office of Basic Energy [DE-AC02-05CH11231]; NSF [DMR07-05941] FX We thank Feng Wang, Jay Deep Sau, Li Yang, Man ish Jain, Georgy Samsonidze, and Jack Deslippe For fruitful discussions. C.-H.P. and simulations studies were supported by the Director, Office of Science, Office of Basic Energy under Contract No. DE-AC02-05CH11231, and C.-H.P. and theory part of the study were supported by NSF Grant No. DMR07-05941. Computational resources have been provided by NERSC and TeraGrid. NR 52 TC 39 Z9 39 U1 1 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD FEB PY 2010 VL 10 IS 2 BP 426 EP 431 DI 10.1021/nl902932k PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 553BE UT WOS:000274338800011 PM 20078108 ER PT J AU Ford, AC Chuang, S Ho, JC Chueh, YL Fan, ZY Javey, A AF Ford, Alexandra C. Chuang, Steven Ho, Johnny C. Chueh, Yu-Lun Fan, Zhiyong Javey, Ali TI Patterned p-Doping of InAs Nanowires by Gas-Phase Surface Diffusion of Zn SO NANO LETTERS LA English DT Article DE Nanoscale doping; p-type MOSFETs; diodes; III-V nanowires; zinc dopants ID TRANSISTOR AB Gas phase p-doping of InAs nanowires with Zn atoms is demonstrated as an effective route for enabling postgrowth dopant profiling of nanostructures. The versatility of the approach is demonstrated by the fabrication of high-performance gated diodes and p-MOSFETs. High Zn concentrations with electrically active content of similar to 1 x 10(19) cm(-3) are achieved which is essential for compensating the electron-rich surface layers of InAs to enable heavily p-doped structures. This work could have important practical implications for the fabrication of planar and nonplanar devices based on InAs and other III-V nanostructures which are not compatible with conventional ion implantation processes that often cause severe lattice damage with local stoichiometry imbalance. C1 [Javey, Ali] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA. RP Javey, A (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. EM ajavey@eecs.berkeley.edu RI Fan, Zhiyong/C-4970-2012; Ho, Johnny/K-5275-2012; Javey, Ali/B-4818-2013; Chueh, Yu-Lun/E-2053-2013; OI Ho, Johnny/0000-0003-3000-8794; Chueh, Yu-Lun/0000-0002-0155-9987; Fan, Zhiyong/0000-0002-5397-0129 FU Intel Corporation; NSF [0826145]; MARCO/MSD; NSF COINS; BSAC; Lawrence Berkeley National Laboratory; Berkeley Microlab FX We are grateful to P. Stone and Professor O. Dubon for help with ion implantation control experiments and insightful discussions. This work was hnancially supported by Intel Corporation, NSF Grant 0826145, MARCO/MSD, NSF COINS, and BSAC. The nanowire synthesis was supported by a Laboratory Directed Research and Development Project from Lawrence Berkeley National Laboratory. J.C.H. acknowledges an Intel Graduate Fellowship. Device fabrication was performed at the Berkeley Microlab facility. NR 21 TC 33 Z9 33 U1 2 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD FEB PY 2010 VL 10 IS 2 BP 509 EP 513 DI 10.1021/nl903322s PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 553BE UT WOS:000274338800026 PM 20044838 ER PT J AU Chueh, YL Fan, ZY Takei, K Ko, H Kapadia, R Rathore, AA Miller, N Yu, K Wu, M Haller, EE Javey, A AF Chueh, Yu-Lun Fan, Zhiyong Takei, Kuniharu Ko, Hyunhyub Kapadia, Rehan Rathore, Asghar A. Miller, Nate Yu, Kyoungsik Wu, Ming Haller, E. E. Javey, Ali TI Black Ge Based on Crystalline/Amorphous Core/Shell Nanoneedle Arrays SO NANO LETTERS LA English DT Article DE Black germanium; nanowires; nanoneedles; antireflective coating; thin absorbers ID SURFACE MIGRATION; NANOWIRES; SILICON; GROWTH; GOLD; MECHANISM AB Direct growth of black Ge on low-temperature substrates, including plastics and rubber is reported. The material is based on highly dense, crystalline/amorphous core/shell Ge nanoneedle arrays with ultrasharp tips (similar to 4 nm) enabled by the Ni catalyzed vapor-solid-solid growth process. Ge nanoneedle arrays exhibit remarkable optical properties, Specifically, minimal optical reflectance (<1%) is observed, even for high angles of incidence (similar to 75 degrees) and for relatively short nanoneedle lengths (-1 mu m). Furthermore, the. material exhibits high optical absorption efficiency with an effective band gap of similar to 1 eV. The reported black Ge could potentially have important practical implications For efficient photovoltaic and photodetector applications on nonconventional substrates. C1 [Chueh, Yu-Lun; Fan, Zhiyong; Takei, Kuniharu; Ko, Hyunhyub; Kapadia, Rehan; Rathore, Asghar A.; Yu, Kyoungsik; Wu, Ming; Javey, Ali] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Miller, Nate; Haller, E. E.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Chueh, Yu-Lun; Fan, Zhiyong; Takei, Kuniharu; Ko, Hyunhyub; Kapadia, Rehan; Rathore, Asghar A.; Yu, Kyoungsik; Wu, Ming; Javey, Ali] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA. [Chueh, Yu-Lun; Fan, Zhiyong; Takei, Kuniharu; Ko, Hyunhyub; Kapadia, Rehan; Rathore, Asghar A.; Miller, Nate; Haller, E. E.; Javey, Ali] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Javey, A (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. EM ajavey@eecs.berkeley.edu RI Yu, Kyoungsik/C-7207-2009; Yu, Kyoungsik/C-2078-2011; Fan, Zhiyong/C-4970-2012; Wu, Ming/J-9906-2012; Kapadia, Rehan/B-4100-2013; Javey, Ali/B-4818-2013; Ko, Hyunhyub/C-4848-2009; Chueh, Yu-Lun/E-2053-2013; OI Kapadia, Rehan/0000-0002-7611-0551; Chueh, Yu-Lun/0000-0002-0155-9987; Fan, Zhiyong/0000-0002-5397-0129 FU MARCO/MSD; Intel Corporation; NSF COINS; Berkeley Sensor and Actuator Center; Lawrence Berkeley National Laboratory; NDSEG FX This work was supported by MARCO/MSD, Intel Corporation, NSF COINS, and Berkeley Sensor and Actuator Center, The nanowire synthesis part of this project was supported by a Laboratory Directed Research and Development grant from Lawrence Berkeley National Laboratory. N.M. and R.K. acknowledge NDSEG and NSF graduate fellowships, respectively. NR 30 TC 50 Z9 50 U1 3 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD FEB PY 2010 VL 10 IS 2 BP 520 EP 523 DI 10.1021/nl903366z PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 553BE UT WOS:000274338800028 PM 20041711 ER PT J AU Schreuder, MA Xiao, K Ivanov, IN Weiss, SM Rosenthal, SJ AF Schreuder, Michael A. Xiao, Kai Ivanov, Ilia N. Weiss, Sharon M. Rosenthal, Sandra J. TI White Light-Emitting Diodes Based on Ultrasmall CdSe Nanocrystal Electroluminescence SO NANO LETTERS LA English DT Article DE Ultrasmall nanocrystal; electroluminescence; white-light; LED ID CADMIUM SELENIDE NANOCRYSTALS; FLUORESCENCE UP-CONVERSION; SEMICONDUCTING POLYMER; EMISSION; DYNAMICS; MONOLAYERS; DEVICES; LAYER AB We report white light-emitting diodes fabricated with ultrasmall CdSe nanocrystals, which demonstrate electroluminescence from a size of nanocrystals (<2 nm) previously thought to be unattainable. These LEDs have excellent color characteristics, defined by their pure white CIE color coordinates (0.333, 0.333), correlated color temperatures of 5461-6007 K, and color rendering indexes as high as 96.6. The effect of high voltage on the trap states responsible for the white emission is also described. C1 [Schreuder, Michael A.; Rosenthal, Sandra J.] Vanderbilt Univ, Dept Chem, Nashville, TN 37235 USA. [Weiss, Sharon M.] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA. [Rosenthal, Sandra J.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Rosenthal, Sandra J.] Vanderbilt Univ, Dept Pharmacol, Nashville, TN 37235 USA. [Rosenthal, Sandra J.] Vanderbilt Univ, Dept Chem & Biomol Engn, Nashville, TN 37235 USA. [Xiao, Kai; Ivanov, Ilia N.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA. RP Rosenthal, SJ (reprint author), Vanderbilt Univ, Dept Chem, Stn B 351824, Nashville, TN 37235 USA. EM sandra.j.rosenthal@vanderbilt.edu RI Xiao, Kai/A-7133-2012; Weiss, Sharon/B-4806-2012; ivanov, ilia/D-3402-2015 OI Xiao, Kai/0000-0002-0402-8276; ivanov, ilia/0000-0002-6726-2502 FU Vanderbilt University Discovery; Oak Ridge National Laboratory's Center for Nanophase Materials Sciences; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX The authors acknowledge helpful discussions with Jonathan D. Gosnell, Dr. Christopher D. Williams, and Dr. Anvar Zakhidov. Funding for this research was provided by a Vanderbilt University Discovery Grant. A portion of this research was conducted at Oak Ridge National Laboratory's Center for Nanophase Materials Sciences and sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 34 TC 87 Z9 89 U1 3 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD FEB PY 2010 VL 10 IS 2 BP 573 EP 576 DI 10.1021/nl903515g PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 553BE UT WOS:000274338800037 PM 20063863 ER PT J AU Park, JU Lee, S Unarunotai, S Sun, YG Dunham, S Song, T Ferreira, PM Alleyne, AG Paik, U Rogers, JA AF Park, Jang-Ung Lee, Sangkyu Unarunotai, Sakulsuk Sun, Yugang Dunham, Simon Song, Taeseup Ferreira, Placid M. Alleyne, Andrew G. Paik, Ungyu Rogers, John A. TI Nanoscale, Electrified Liquid Jets for High-Resolution Printing of Charge SO NANO LETTERS LA English DT Article DE Electrohydrodynamics; jet printing; charge printing; electrostatic doping; semiconductor nanomaterials ID NANOPARTICLES; ELECTRETS; PATTERNS; ELECTROSPRAY; TRANSISTORS; MECHANISM; CONTACT AB Nearly all research in micro- and nanofabrication focuses on the formation of solid structures of materials that perform some mechanical, electrical, optical, or related function. Fabricating patterns of charges, by contrast, is a much less well explored area that is of separate and growing interesting because the associated electric fields can be exploited to control the behavior of nanoscale electronic and mechanical devices, guide the assembly of nanomaterials, or modulate the properties of biological systems. This paper describes a versatile technique that uses fine, electrified liquid jets formed by electrohydrodynamics at micro- and nanoscale nozzles to print complex patterns of both positive and negative charges, with resolution that can extend into the submicrometer and nanometer regime. The reported results establish the basic aspects of this process and demonstrate the capabilities through printed patterns with diverse geometries and charge configurations in a variety of liquid inks, including suspensions of nanoparticles and nanowires. The use of printed charge to control the properties of silicon nanomembrane transistors provides an application example. C1 [Lee, Sangkyu; Song, Taeseup; Paik, Ungyu] Hanyang Univ, Dept Energy Engn, Div Mat Sci Engn, Seoul 133791, South Korea. [Sun, Yugang] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Park, Jang-Ung; Lee, Sangkyu; Unarunotai, Sakulsuk; Dunham, Simon; Ferreira, Placid M.; Alleyne, Andrew G.; Rogers, John A.] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. [Park, Jang-Ung; Lee, Sangkyu; Unarunotai, Sakulsuk; Dunham, Simon; Ferreira, Placid M.; Alleyne, Andrew G.; Rogers, John A.] Univ Illinois, Beckman Inst, Dept Mech Sci & Engn, Dept Mat Sci & Engn,Dept Chem, Urbana, IL 61801 USA. RP Paik, U (reprint author), Hanyang Univ, Dept Energy Engn, Div Mat Sci Engn, Seoul 133791, South Korea. EM upaik@hanyang.ac.kr; jrogers@illinois.edu RI Rogers, John /L-2798-2016; Park, Jang-Ung/E-9224-2010; Sun, Yugang /A-3683-2010; ferreira, placid/D-5308-2012; Alleyne, Andrew/C-3127-2015 OI Park, Jang-Ung/0000-0003-1522-4958; Sun, Yugang /0000-0001-6351-6977; ferreira, placid/0000-0002-5517-6586; Alleyne, Andrew/0000-0002-1347-9669 FU National Science Foundation [DMI-0328162]; National Research Foundation of Korea (NRF) [K2070400000307AO50000310]; Korean Ministry of Education, Science & Technology (MEST); U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors thank H. K. Choi and Professor O. O. Park at KAIST for high-speed imaging of e-jet dynamics and Dr. J. H. Lee and Professor Y. Lu for supplying the DNA suspensions. The authors also acknowledge the Center for Nanoscale Chemical Electrical Mechanical Manufacturing Systems at the University of Illinois, which is funded by National Science Foundation under Grant DMI-0328162. This work was also fiancially supported by National Research Foundation of Korea (NRF) through a grant (K2070400000307AO50000310, Global Research Laboratory (GRQ Program) provided by the Korean Ministry of Education, Science & Technology (MEST) in 2009. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. J.-U.P., S. L., and J.A. R. designed the experiments and wrote the paper. J.-U.P., P.M.F., A.G.A., and J.A.R. contributed to the printer setup, and J.-U.P., and S.L. carried out the ink synthesis, printing, and characterization. S.L., J.-U.P., and S.U. designed device fabrication. Y.G. synthesized suspensions of Ag nanowires and nancubes. J.A.R., U.P., A.G.A., and P.M.F. contributed to project planning. NR 35 TC 67 Z9 67 U1 5 U2 68 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD FEB PY 2010 VL 10 IS 2 BP 584 EP 591 DI 10.1021/nl903495f PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 553BE UT WOS:000274338800039 PM 20067277 ER PT J AU Neacsu, CC Berweger, S Olmon, RL Saraf, LV Ropers, C Raschke, MB AF Neacsu, Catalin C. Berweger, Samuel Olmon, Robert L. Saraf, Laxmikant V. Ropers, Claus Raschke, Markus B. TI Near-Field Localization in Plasmonic Superfocusing: A Nanoemitter on a Tip SO NANO LETTERS LA English DT Article DE Surface plasmon polariton; near-held microscopy; nano-focusing; local-field enhacement ID LIGHT-SCATTERING; POLARITONS; MICROSCOPY; NANOSCALE AB Focusing light to subwavelength dimensions has been a long-standing desire in optics but has remained challenging, even with new strategies based on near-field effects, polaritons, and metamaterials. The adiabatic propagation of surface plasmon polaritons (SPP) on a conical taper as proposed theoretically has recently emerged as particularly promising to obtain a nanoconfined light source at the tip. Employing grating-coupling of SPPs onto gold tips, we demonstrate plasmonic nanofocusing into a localized excitation of similar to 20 nm in size and investigate its near- and far-field behavior. For cone angles of similar to 10-20 degrees, the breakdown of the adiabatic propagation conditions is found to be localized at or near the apex region with similar to 10 nm radius. Despite an asymmetric side-on SPP excitation, the apex far-field emission with axial polarization characteristics representing a radially symmetric SPP mode in the nanofocus confirms that the conical tip acts as an effective mode filter with only the fundamental radially symmetric TM mode (m = 0) propagating to the apex. We demonstrate the use of these tips as a source for nearly background-free scattering-type scanning near-held optical microscopy (s-SNOM). C1 [Neacsu, Catalin C.; Berweger, Samuel; Olmon, Robert L.; Raschke, Markus B.] Univ Washington, Dept Chem, Seattle, WA 98195 USA. [Olmon, Robert L.] Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA. [Raschke, Markus B.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Saraf, Laxmikant V.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Ropers, Claus] Univ Gottingen, Courant Res Ctr Nanospect & Xray Imaging, D-3400 Gottingen, Germany. RP Raschke, MB (reprint author), Univ Washington, Dept Chem, Seattle, WA 98195 USA. EM raschke@chem.washington.edu RI Ropers, Claus/D-4843-2015; Raschke, Markus/F-8023-2013 OI Ropers, Claus/0000-0002-9539-3817; FU National Science Foundation [CHE0748226]; Department of Energy's Office of Biological and Environmental Research; German Excellence Initiative [FL3] FX Funding from the National Science Foundation (NSF CAREER Grant CHE0748226 and NSF-IGERT program) is greatly acknowledged. A part of the research was performed using EMSL, a national scientific user Facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. C.R. gratefully acknowledges funding from the German Excellence Initiative (FL3). NR 41 TC 90 Z9 90 U1 9 U2 90 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD FEB PY 2010 VL 10 IS 2 BP 592 EP 596 DI 10.1021/nl903574a PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 553BE UT WOS:000274338800040 PM 20067296 ER PT J AU Lancon, F Ye, J Caliste, D Radetic, T Minor, AM Dahmen, U AF Lancon, Frederic Ye, Jia Caliste, Damien Radetic, Tamara Minor, Andrew M. Dahmen, Ulrich TI Superglide at an Internal Incommensurate Boundary SO NANO LETTERS LA English DT Article DE Friction; grain boundary; gold; electron microscopy; molecular dynamics; nanopillar ID ADSORBED LAYERS; STATIC FRICTION; MICROSCOPY; TRANSITION; ANISOTROPY; INTERFACE; CRYSTALS; MODEL; GOLD AB The intriguing possibility of frictionless gliding of one solid. surface on another has been predicted for certain incommensurate interfaces in crystals, based on Aubry's solution to the Frenkel-Kontorova model of a harmonic chain in a periodic potential held. Here we test this prediction for grain boundaries by comparing atomistic simulations with direct experimental observations on the structure and load-deformation behavior of gold nanopillars containing a root-two incommensurate grain boundary. The simulations show supergliding at this boundary limited by finite-size effects which cause edges to act as defects of the incommensurate structure. Structural relaxation at the edges generates stacking faults, dislocations, and asymmetric surface steps. These features as well as the related load-displacement behavior are replicated by experimental observations on the compression of nanopillars using a quantitative nanoindentation device inside a transmission electron microscope. The good agreement between the observed and predicted behavior suggests that incommensurate interfaces could play an important role in the deformation of polycrystalline materials. C1 [Lancon, Frederic; Caliste, Damien] CEA, INAC, SP2M, Lab Simulat Atomist, F-38054 Grenoble, France. [Ye, Jia; Radetic, Tamara; Minor, Andrew M.; Dahmen, Ulrich] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Minor, Andrew M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Lancon, F (reprint author), CEA, INAC, SP2M, Lab Simulat Atomist, F-38054 Grenoble, France. EM Frederic.Lancon@cea.fr RI Lancon, Frederic/B-2577-2009; Caliste, Damien/H-9752-2014 OI Lancon, Frederic/0000-0002-6367-4462; Caliste, Damien/0000-0002-4967-9275 FU Direction des Sciences de la Matiere of the French Commissariat a l'Energie Atomique (CEA); Scientific User Facilities Division of the Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Direction des Sciences de la Matiere of the French Commissariat a l'Energie Atomique (CEA) and by the Scientific User Facilities Division of the Office of Basic Energy Sciences, U.S. Department of Energy under Contract # DE-AC02-05CH11231. NR 30 TC 14 Z9 14 U1 0 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD FEB PY 2010 VL 10 IS 2 BP 695 EP 700 DI 10.1021/nl903885p PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 553BE UT WOS:000274338800057 PM 20143874 ER PT J AU Stadler, A Chi, C van der Lelie, D Gang, O AF Stadler, Andrea Chi, Cheng van der Lelie, Daniel Gang, Oleg TI DNA-incorporating nanomaterials in biotechnological applications SO NANOMEDICINE LA English DT Review DE assembly; detection; DNA; gene delivery; nanoparticle functionalization; nanoparticles; optical sensing ID FIELD-EFFECT TRANSISTORS; MODIFIED GOLD NANOPARTICLES; IRON-OXIDE NANOPARTICLES; QUANTUM DOTS; ELECTROCHEMICAL BIOSENSORS; AU NANOPARTICLES; HYBRIDIZATION; SILVER; NANOSTRUCTURES; NANOCRYSTALS AB The recently developed ability to controllably connect biological and inorganic objects on a molecular scale opens a new page in biomimetic methods with potential applications in biodetection, tissue engineering, targeted therapeutics and drug/gene delivery. Particularly in the biodetection arena, a rapid development of new platforms has largely been stimulated by a spectrum of novel nanomaterials with physical properties that offer efficient, sensitive and inexpensive molecular sensing. Recently, DNA-functionalized nano-objects have emerged as a new class of nanomaterials that can be controllably assembled in predesigned structures. Such DNA-based nanoscale structures might provide a new detection paradigm due to their regulated optical, electrical and magnetic responses, chemical heterogeneity and high local biomolecular concentration. The specific biorecognition DNA and its physical-chemical characteristics allows for an exploitation of DNA-functionalized nanomaterials for sensing of nucleic acids, while a broad tunability of DNA interactions permits extending their use for detection of proteins, small molecules and ions. We discuss the progress that was achieved in the last decade in the exploration of new detection methods based on DNA-incorporating nanomaterials as well as their applications to gene delivery. The comparison between various detection platforms, their sensitivity and selectivity, and specific applications are reviewed. C1 [Chi, Cheng; Gang, Oleg] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Stadler, Andrea; van der Lelie, Daniel] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Gang, O (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM ogang@bnl.gov FU Battelle Memorial Institute; U. S. DOE Office of Science; Office of Basic Energy Sciences [DE-AC-02-98CH10886] FX Andrea Stadler and Daniel van der Lelie were supported by funding from the Battelle Memorial Institute. Cheng Chi and Oleg Gang were supported by the U. S. DOE Office of Science and Office of Basic Energy Sciences under contract No. DE-AC-02-98CH10886. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. NR 98 TC 17 Z9 17 U1 1 U2 42 PU FUTURE MEDICINE LTD PI LONDON PA UNITEC HOUSE, 3RD FLOOR, 2 ALBERT PLACE, FINCHLEY CENTRAL, LONDON, N3 1QB, ENGLAND SN 1743-5889 J9 NANOMEDICINE-UK JI Nanomedicine PD FEB PY 2010 VL 5 IS 2 BP 319 EP 334 DI 10.2217/nnm.10.2 PG 16 WC Biotechnology & Applied Microbiology; Nanoscience & Nanotechnology SC Biotechnology & Applied Microbiology; Science & Technology - Other Topics GA 561UY UT WOS:000275006300018 PM 20148641 ER PT J AU Yantasee, W Fryxell, GE Porter, GA Pattamakomsan, K Sukwarotwat, V Chouyyok, W Koonsiripaiboon, V Xu, J Raymond, KN AF Yantasee, Wassana Fryxell, Glen E. Porter, George A. Pattamakomsan, Kanda Sukwarotwat, Vichaya Chouyyok, Wilaiwan Koonsiripaiboon, View Xu, Jide Raymond, Kenneth N. TI Novel sorbents for removal of gadolinium-based contrast agents in sorbent dialysis and hemoperfusion: preventive approaches to nephrogenic systemic fibrosis SO NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE LA English DT Article DE Contrast agent; Gadolinium; Hemoperfusion; Hydroxyl pyridinone; NSF; SAMMS; Sorbent dialysis ID SELF-ASSEMBLED MONOLAYERS; MESOPOROUS SUPPORTS; ACTINIDE SEQUESTRATION; HEMODIALYSIS; DERMOPATHY; SAFETY; TISSUE; SILICA AB Many forms of organocomplexed gadolinium (Gd) contrast agents have recently been linked to a debilitating and a potentially fatal skin disease called nephrogenic systemic fibrosis (NSF) in patients with renal failure. Free Gd released from these complexes via transmetallation is believed to be the most important trigger for NSF. In this work, nanostructure silica materials that have been functionalized with 1-hydroxy-2-pyridinone (1,2-HOPO-SAMMS) have been evaluated for selective and effective removal of both free and chelated Gd (gadopentetate dimeglumine and gadodiamide) from dialysate and blood. 1,2-HOPO SAMMS has high affinity, rapid removal rate, and large sorption capacity for both free and chelated Gd, properties that are far superior to those of activated carbon and zirconium phosphate currently used in the state-of-the-art sorbent dialysis and hemoperfusion systems. The SAMMS-based sorbent dialysis and hemoperfusion will potentially provide an effective and predicable strategy for removing the Gd from patients with impaired renal function after Gd exposure, thus allowing for the continued use of Gd-based contrast magnetic resonance imaging while removing the risk of NSF. From the Clinical Editor: Chelated gadolinium (Gd) contrast agents have been linked to a debilitating disease called nephrogenic systemic fibrosis (NSF) in patients with renal failure. Free Gd+(3) released from the contrast agents is believed to be the trigger for NSF. In this work, functionalized nanostructured silica materials were evaluated for removal of both free and chelated gadolinium both from dialysate and blood. The new method demonstrated a rapid removal rate and large sorption capacity, and overall was far superior to currently used state-of-the-art sorbent dialysis and hemoperfusion systems. (C) 2010 Elsevier Inc. All rights reserved. C1 [Yantasee, Wassana; Porter, George A.] Oregon Hlth & Sci Univ, Portland, OR 97201 USA. [Fryxell, Glen E.; Pattamakomsan, Kanda; Sukwarotwat, Vichaya; Chouyyok, Wilaiwan; Koonsiripaiboon, View] PNNL, Richland, WA 99352 USA. [Xu, Jide; Raymond, Kenneth N.] Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Yantasee, W (reprint author), Oregon Hlth & Sci Univ, Portland, OR 97201 USA. EM Yantasee@ohsu.edu FU Laboratory Directed Research and Development (LDRD) program at PNNL; National Institute of Environmental Health Sciences (NIEHS) [R21 ES015620]; National Institute of Allergy and Infectious Disease (NIAID) [R01 AI074064] FX This work was partially supported by the Laboratory Directed Research and Development (LDRD) program at PNNL, National Institute of Environmental Health Sciences (NIEHS) grant no. R21 ES015620, and National Institute of Allergy and Infectious Disease (NIAID) grant no. R01 AI074064. A portion of research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at PNNL. NR 28 TC 18 Z9 19 U1 2 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1549-9634 J9 NANOMED-NANOTECHNOL JI Nanomed.-Nanotechnol. Biol. Med. PD FEB PY 2010 VL 6 IS 1 BP 1 EP 8 DI 10.1016/j.nano.2009.05.002 PG 8 WC Nanoscience & Nanotechnology; Medicine, Research & Experimental SC Science & Technology - Other Topics; Research & Experimental Medicine GA 552NN UT WOS:000274299000001 PM 19447204 ER PT J AU Li, SY Nguyen, L Xiong, HR Wang, MY Hu, TCC She, JX Serkiz, SM Wicks, GG Dynan, WS AF Li, Shuyi Nguyen, Lynsa Xiong, Hairong Wang, Meiyao Hu, Tom C. -C. She, Jin-Xiong Serkiz, Steven M. Wicks, George G. Dynan, William S. TI Porous-wall hollow glass microspheres as novel potential nanocarriers for biomedical applications SO NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE LA English DT Article DE Drug delivery; Microsphere; Silica; Mesoporous; Controlled release; Single-chain antibody; Single-chain antibody variable fragment; Small interfering RNA ID HEPATOCELLULAR-CARCINOMA; Y-90 MICROSPHERES; DELIVERY-SYSTEM; BIOACTIVE GLASS; DRUG-DELIVERY; RADIOEMBOLIZATION; COMPOSITES; MECHANISMS; RELEASE AB Porous-wall hollow glass microspheres (PW-HGMs) are a novel form of glass material consisting of a 10- to 100-mu m-diameter hollow central cavity surrounded by a 1-mu m-thick silica shell. A tortuous network of nanometer-scale channels completely penetrates the shell. We show here that these channels promote size-dependent uptake and controlled release of biological molecules in the 3- to 8-nm range, including antibodies and a modified single-chain antibody variable fragment. In addition, a 6-nm (70-kDa) dextran can be used to gate the porous walls, facilitating controlled release of an internalized short interfering RNA. PW-HGMs remained in place after mouse intratumoral injection, suggesting a possible application for the delivery of anticancer drugs. The combination of a hollow central cavity that can carry soluble therapeutic agents with mesoporous walls for controlled release is a unique characteristic that distinguishes PW-HGMs from other glass materials for biomedical applications. From the Clinical Editor: Porous-wall hollow glass microspheres (PW-HGMs) are a novel form of glass microparticles with a tortuous network of nanometer-scale channels. These channels allow size-dependent uptake and controlled release of biological molecules including antibodies and single-chain antibody fragments. PW-HGMs remained in place after mouse intratumoral injection, suggesting a possible application for the delivery of anti-cancer drugs. (C) 2010 Elsevier Inc. All rights reserved. C1 [Li, Shuyi; Xiong, Hairong; Dynan, William S.] Med Coll Georgia, Inst Mol Med & Genet, Augusta, GA 30912 USA. [Nguyen, Lynsa; Hu, Tom C. -C.] Med Coll Georgia, Dept Radiol, Augusta, GA 30912 USA. [Xiong, Hairong] Wuhan Univ, Inst Med Virol, Wuhan, Hubei, Peoples R China. [Wang, Meiyao; She, Jin-Xiong] Med Coll Georgia, Ctr Biotechnol & Genom Med, Augusta, GA 30912 USA. [Serkiz, Steven M.; Wicks, George G.] Savannah River Natl Lab, Aiken, SC USA. RP Li, SY (reprint author), Med Coll Georgia, Inst Mol Med & Genet, Augusta, GA 30912 USA. EM sli@mcg.edu RI Wang, Meiyao/F-6133-2012 FU Medical College of Georgia; NIH Nanomedicine Roadmap Initiative [EY018244] FX This work was supported by the Medical College of Georgia and by the NIH Nanomedicine Roadmap Initiative (EY018244). NR 35 TC 27 Z9 29 U1 0 U2 33 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1549-9634 J9 NANOMED-NANOTECHNOL JI Nanomed.-Nanotechnol. Biol. Med. PD FEB PY 2010 VL 6 IS 1 BP 127 EP 136 DI 10.1016/j.nano.2009.06.004 PG 10 WC Nanoscience & Nanotechnology; Medicine, Research & Experimental SC Science & Technology - Other Topics; Research & Experimental Medicine GA 552NN UT WOS:000274299000016 PM 19616128 ER PT J AU Alterovitz, G Xiang, M Hill, DP Lomax, J Liu, J Cherkassky, M Dreyfuss, J Mungall, C Harris, MA Dolan, ME Blake, JA Ramoni, MF AF Alterovitz, Gil Xiang, Michael Hill, David P. Lomax, Jane Liu, Jonathan Cherkassky, Michael Dreyfuss, Jonathan Mungall, Chris Harris, Midori A. Dolan, Mary E. Blake, Judith A. Ramoni, Marco F. TI Ontology engineering SO NATURE BIOTECHNOLOGY LA English DT Letter ID GENE-ONTOLOGY; DATABASE; INFORMATION; KNOWLEDGE; RESOURCE; UNIPROT; TOOL C1 [Alterovitz, Gil; Xiang, Michael; Hill, David P.; Dreyfuss, Jonathan; Ramoni, Marco F.] Harvard Univ, Childrens Hosp, Informat Program, Harvard Mit Div Hlth Sci & Technol,Sch Med, Boston, MA 02115 USA. [Alterovitz, Gil; Xiang, Michael; Cherkassky, Michael; Dreyfuss, Jonathan; Ramoni, Marco F.] Partners Healthcare Ctr Personalized Genet Med, Boston, MA USA. [Alterovitz, Gil] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA. [Hill, David P.; Dolan, Mary E.; Blake, Judith A.] Jackson Lab, Bar Harbor, ME 04609 USA. [Lomax, Jane; Harris, Midori A.] EMBL EBI, Hinxton, England. [Liu, Jonathan] MIT, Dept Biol, Cambridge, MA USA. [Mungall, Chris] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Alterovitz, G (reprint author), Harvard Univ, Childrens Hosp, Informat Program, Harvard Mit Div Hlth Sci & Technol,Sch Med, Boston, MA 02115 USA. EM gil_alterovitz@hms.harvard.edu; marco_ramoni@harvard.edu OI Lomax, Jane/0000-0001-8865-4321; Harris, Midori/0000-0003-4148-4606; Blake, Judith/0000-0001-8522-334X; Dreyfuss, Jonathan/0000-0001-7242-3991 FU NHGRI NIH HHS [1R01HG003354, 1R01HG004836, 2P41HG02273, P41 HG002273, R01 HG003354, R01 HG004836]; NLM NIH HHS [1K99LM009826, 5T15LM007092, K99 LM009826, K99 LM009826-01A1, T15 LM007092] NR 18 TC 39 Z9 41 U1 0 U2 10 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1087-0156 J9 NAT BIOTECHNOL JI Nat. Biotechnol. PD FEB PY 2010 VL 28 IS 2 BP 128 EP 130 DI 10.1038/nbt0210-128 PG 4 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 552TT UT WOS:000274317200015 PM 20139945 ER PT J AU Newton, MC Leake, SJ Harder, R Robinson, IK AF Newton, Marcus C. Leake, Steven J. Harder, Ross Robinson, Ian K. TI Three-dimensional imaging of strain in a single ZnO nanorod SO NATURE MATERIALS LA English DT Article ID X-RAY-DIFFRACTION; PHASE-RETRIEVAL ALGORITHMS; TETRAPOD NANOCRYSTALS; CRYSTALS; FILMS AB Nanoscale structures can be highly strained because of confinement effects and the strong influence of their external boundaries. This results in dramatically different electronic, magnetic and optical material properties of considerable utility. Third-generation synchrotron-based coherent X-ray diffraction has emerged as a non-destructive tool for three-dimensional (3D) imaging of strain and defects in crystals that are smaller than the coherence volume, typically a few cubic micrometres, of the available beams that have sufficient flux to reveal the material's structure(1). Until now, measurements have been possible only at a single Bragg point of a given crystal because of the limited ability to maintain alignment(2); it has therefore been possible to determine only one component of displacement and not the full strain tensor. Here we report key advances in our fabrication and experimental techniques, which have enabled diffraction patterns to be obtained from six Bragg reflections of the same ZnO nanocrystal for the first time. All three Cartesian components of the ion displacement field, and in turn the full nine-component strain tensor, have thereby been imaged in three dimensions. C1 [Harder, Ross] Argonne Natl Lab, Argonne, IL 60439 USA. [Robinson, Ian K.] Diamond Light Source, Oxford OX11 0DE, England. [Newton, Marcus C.; Leake, Steven J.; Robinson, Ian K.] UCL, London Ctr Nanotechnol, London WC1H 0AH, England. RP Newton, MC (reprint author), Univ Surrey, Guildford GU2 7XH, Surrey, England. EM Marcus.Newton@ucl.ac.uk RI Newton, Marcus/C-3135-2014 FU EPSRC [EP/D052939/1]; ERC [FP7]; US National Science Foundation [DMR-9724294]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by EPSRC Grant EP/D052939/1 and an ERC FP7 'advanced grant'. The experimental work was carried out at Advanced Photon Source Beamline 34-ID-C, built with funds from the US National Science Foundation under Grant DMR-9724294 and operated by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. NR 26 TC 114 Z9 114 U1 5 U2 96 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD FEB PY 2010 VL 9 IS 2 BP 120 EP 124 DI 10.1038/NMAT2607 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 546KV UT WOS:000273810600014 PM 20023632 ER PT J AU Kim, DH Rozhkova, EA Ulasov, IV Bader, SD Rajh, T Lesniak, MS Novosad, V AF Kim, Dong-Hyun Rozhkova, Elena A. Ulasov, Ilya V. Bader, Samuel D. Rajh, Tijana Lesniak, Maciej S. Novosad, Valentyn TI Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction SO NATURE MATERIALS LA English DT Article ID PARTICLE HYPERTHERMIA; LIVING CELLS; NANOPARTICLES; CALCIUM; THERAPY; RECEPTOR; MECHANOTRANSDUCTION; APOPTOSIS; MEMBRANE; SURFACE AB Nanomagnetic materials offer exciting avenues for probing cell mechanics and activating mechanosensitive ion channels, as well as for advancing cancer therapies. Most experimental works so far have used superparamagnetic materials. This report describes a first approach based on interfacing cells with lithographically defined microdiscs that possess a spin-vortex ground state. When an alternating magnetic field is applied the microdisc vortices shift, creating an oscillation, which transmits a mechanical force to the cell. Because reduced sensitivity of cancer cells toward apoptosis leads to inappropriate cell survival and malignant progression, selective induction of apoptosis is of great importance for the anticancer therapeutic strategies. We show that the spin-vortex-mediated stimulus creates two dramatic effects: compromised integrity of the cellular membrane, and initiation of programmed cell death. A low-frequency field of a few tens of hertz applied for only ten minutes was sufficient to achieve similar to 90% cancer-cell destruction in vitro. C1 [Rozhkova, Elena A.; Bader, Samuel D.; Rajh, Tijana] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Kim, Dong-Hyun; Bader, Samuel D.; Novosad, Valentyn] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Ulasov, Ilya V.; Lesniak, Maciej S.] Univ Chicago, Pritzker Sch Med, Brain Tumor Ctr, Chicago, IL 60637 USA. RP Rozhkova, EA (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM rozhkova@anl.gov; novosad@anl.gov RI Bader, Samuel/A-2995-2013; Novosad, Valentyn/C-2018-2014; Novosad, V /J-4843-2015; OI Kim, Dong-Hyun/0000-0001-6815-3319 FU US Department of Energy Office of Science, Basic Energy Sciences [DE-AC02-06CH11357]; National Cancer Institute [R01-CA122930]; National Institute of Neurological Disorders and Stroke [K08-NS046430]; Alliance for Cancer Gene Therapy Young Investigator Award; American Cancer Society [RSG-07-276-01-MGO] FX We thank D. Clapham, R. Hergt, J. Dobson and A. Datesman for valuable suggestions and critical reading of the manuscript. We also thank J. Pearson for help with developing the magnetic field induction set up, R. Divan for discussing the microfabrication strategies, and V. Bindokas for technical assistance in Ca imaging at the UC Biological Sciences Division Light Microscopy Core Facility. Work at Argonne and its Center for Nanoscale Materials and Electron Microscopy Center is supported by the US Department of Energy Office of Science, Basic Energy Sciences, under contract No DE-AC02-06CH11357. Work at the University of Chicago is supported by the National Cancer Institute (R01-CA122930), the National Institute of Neurological Disorders and Stroke (K08-NS046430), the Alliance for Cancer Gene Therapy Young Investigator Award and the American Cancer Society (RSG-07-276-01-MGO). NR 39 TC 191 Z9 193 U1 8 U2 124 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD FEB PY 2010 VL 9 IS 2 BP 165 EP 171 DI 10.1038/NMAT2591 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 546KV UT WOS:000273810600022 PM 19946279 ER PT J AU Tetard, L Passian, A Thundat, T AF Tetard, L. Passian, A. Thundat, T. TI New modes for subsurface atomic force microscopy through nanomechanical coupling SO NATURE NANOTECHNOLOGY LA English DT Article ID HOLOGRAPHY AB Non-destructive, nanoscale characterization techniques are needed to understand both synthetic and biological materials. The atomic force microscope uses a force-sensing cantilever with a sharp tip to measure the topography and other properties of surfaces(1,2). As the tip is scanned over the surface it experiences attractive and repulsive forces that depend on the chemical and mechanical properties of the sample. Here we show that an atomic force microscope can obtain a range of surface and subsurface information by making use of the nonlinear nanomechanical coupling between the probe and the sample. This technique, which is called mode-synthesizing atomic force microscopy, relies on multi-harmonic forcing of the sample and the probe. A rich spectrum of first-and higher-order couplings is discovered, providing a multitude of new operational modes for force microscopy, and the capabilities of the technique are demonstrated by examining nanofabricated samples and plant cells(3,4). C1 [Tetard, L.; Passian, A.; Thundat, T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Tetard, L.; Passian, A.; Thundat, T.] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. RP Passian, A (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM passianan@ornl.gov FU Oak Ridge National Laboratory (ORNL) BioEnergy Science Center (BESC); Office of Biological and Environmental Research in the DOE Office of Science; US DOE [DE-AC05-00OR22725] FX This research was sponsored by the Oak Ridge National Laboratory (ORNL) BioEnergy Science Center (BESC). The BioEnergy Science Center is a US Department of Energy (DOE) Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. We are indebted to J. Seokwon and A. Ragauskas at the Georgia Institute of Technology for providing the poplar wood samples. We also thank B. Davison and M. Keller at ORNL for their support and useful discussions. ORNL is managed by UT-Battelle, LLC, for the US DOE under contract DE-AC05-00OR22725. NR 18 TC 53 Z9 55 U1 5 U2 55 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD FEB PY 2010 VL 5 IS 2 BP 105 EP 109 DI 10.1038/NNANO.2009.454 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 562NL UT WOS:000275058500009 PM 20023642 ER PT J AU Maye, MM Kumara, MT Nykypanchuk, D Sherman, WB Gang, O AF Maye, Mathew M. Kumara, Mudalige Thilak Nykypanchuk, Dmytro Sherman, William B. Gang, Oleg TI Switching binary states of nanoparticle superlattices and dimer clusters by DNA strands SO NATURE NANOTECHNOLOGY LA English DT Article ID GOLD; CRYSTALLIZATION; HYBRIDIZATION; ASSEMBLIES; COLLOIDS; ARRAYS; DEVICE AB Nanoscale components can be self-assembled into static three-dimensional structures(1-6), arrays(7-9) and clusters(10-13) using biomolecular motifs. The structural plasticity of biomolecules and the reversibility of their interactions can also be used to make nanostructures that are dynamic, reconfigurable and responsive. DNA has emerged as an ideal biomolecular motif for making such nanostructures, partly because its versatile morphology permits in situ conformational changes using molecular stimuli(12,14-22). This has allowed DNA nanostructures to exhibit reconfigurable topologies and mechanical movement(17,18). Recently, researchers have begun to translate this approach to nanoparticle interfaces(18,23,24,) where, for example, the distances between nanoparticles can be modulated, resulting in a distance-dependent plasmonic response(18,23,25). Here, we report the assembly of nanoparticles into three-dimensional superlattices and dimer clusters, using a reconfigurable DNA device that acts as an interparticle linkage. The interparticle distances in the superlattices and clusters can be modified, while preserving structural integrity, by adding molecular stimuli (simple DNA strands) after the self-assembly processes has been completed. Both systems were found to switch between two distinct rigid states, but a transition to a flexible device configuration within a superlattice showed a significant hysteresis. C1 [Maye, Mathew M.; Kumara, Mudalige Thilak; Nykypanchuk, Dmytro; Sherman, William B.; Gang, Oleg] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Gang, O (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM ogang@bnl.gov RI Sherman, William/B-4700-2008 FU US Department of Energy Office of Science and Office of Basic Energy Sciences [DE-AC-02-98CH10886]; BNL [07-025] FX This research was supported by the US Department of Energy Office of Science and Office of Basic Energy Sciences under contract no. DE-AC-02-98CH10886. The authors thank the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL) for use of their facilities. M. T. K. and W. B. S. acknowledge support by a Laboratory Directed Research and Development grant (07-025) from BNL. M. M. M. acknowledges a Goldhaber Distinguished Fellowship at BNL sponsored by Brookhaven Science Associates. NR 30 TC 168 Z9 169 U1 6 U2 151 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD FEB PY 2010 VL 5 IS 2 BP 116 EP 120 DI 10.1038/NNANO.2009.378 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 562NL UT WOS:000275058500011 PM 20023646 ER PT J AU Yang, SY Seidel, J Byrnes, SJ Shafer, P Yang, CH Rossell, MD Yu, P Chu, YH Scott, JF Ager, JW Martin, LW Ramesh, R AF Yang, S. Y. Seidel, J. Byrnes, S. J. Shafer, P. Yang, C. -H. Rossell, M. D. Yu, P. Chu, Y. -H. Scott, J. F. Ager, J. W., III Martin, L. W. Ramesh, R. TI Above-bandgap voltages from ferroelectric photovoltaic devices SO NATURE NANOTECHNOLOGY LA English DT Article ID LITHIUM-NIOBATE CRYSTALS; SOLAR-CELLS; FILMS; BIFEO3; EFFICIENCY; DAMAGE AB In conventional solid-state photovoltaics, electron-hole pairs are created by light absorption in a semiconductor and separated by the electric field spaning a micrometre-thick depletion region. The maximum voltage these devices can produce is equal to the semiconductor electronic bandgap. Here, we report the discovery of a fundamentally different mechanism for photovoltaic charge separation, which operates over a distance of 1-2 nm and produces voltages that are significantly higher than the bandgap. The separation happens at previously unobserved nanoscale steps of the electrostatic potential that naturally occur at ferroelectric domain walls in the complex oxide BiFeO(3). Electric-field control over domain structure allows the photovoltaic effect to be reversed in polarity or turned off. This new degree of control, and the high voltages produced, may find application in optoelectronic devices. C1 [Yang, S. Y.; Shafer, P.; Ramesh, R.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Seidel, J.; Byrnes, S. J.; Ager, J. W., III; Martin, L. W.; Ramesh, R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Seidel, J.; Byrnes, S. J.; Yang, C. -H.; Yu, P.; Ramesh, R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Rossell, M. D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Chu, Y. -H.] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan. [Scott, J. F.] Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England. RP Yang, SY (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM syyang@berkeley.edu RI Ying-Hao, Chu/A-4204-2008; YANG, CHAN-HO/C-2079-2011; Martin, Lane/H-2409-2011; Yu, Pu/F-1594-2014; Rossell, Marta/E-9785-2017; OI Ying-Hao, Chu/0000-0002-3435-9084; Martin, Lane/0000-0003-1889-2513; Byrnes, Steven/0000-0002-4023-8086; Ager, Joel/0000-0001-9334-9751 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy [DE-AC02-05CH11231]; Alexander von Humboldt Foundation; National Science Council, R.O.C. [NSC 98-2119-M-009-016] FX The work at Berkeley was performed within the Helios Solar Energy Research Center, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy under contract no. DE-AC02-05CH11231. J.S. acknowledges support from the Alexander von Humboldt Foundation. Y.H.C. would like to acknowledge the support of the National Science Council, R.O.C., under contract no. NSC 98-2119-M-009-016. NR 32 TC 539 Z9 553 U1 52 U2 496 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD FEB PY 2010 VL 5 IS 2 BP 143 EP 147 DI 10.1038/NNANO.2009.451 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 562NL UT WOS:000275058500016 PM 20062051 ER PT J AU Chatterjee, U Shi, M Ai, D Zhao, J Kanigel, A Rosenkranz, S Raffy, H Li, ZZ Kadowaki, K Hinks, DG Xu, ZJ Wen, JS Gu, G Lin, CT Claus, H Norman, MR Randeria, M Campuzano, JC AF Chatterjee, U. Shi, M. Ai, D. Zhao, J. Kanigel, A. Rosenkranz, S. Raffy, H. Li, Z. Z. Kadowaki, K. Hinks, D. G. Xu, Z. J. Wen, J. S. Gu, G. Lin, C. T. Claus, H. Norman, M. R. Randeria, M. Campuzano, J. C. TI Observation of a d-wave nodal liquid in highly underdoped Bi2Sr2CaCu2O8+delta SO NATURE PHYSICS LA English DT Article ID T-C SUPERCONDUCTORS; ENERGY GAPS; PSEUDOGAP; TRANSPORT; STATE; PHASE; FILMS AB A key question in condensed-matter physics is to understand how high-temperature superconductivity emerges on adding mobile charged carriers to an antiferromagnetic Mott insulator. We address this question using angle-resolved photoemission spectroscopy to probe the electronic excitations of the non-superconducting state that exists between the Mott insulator and the d-wave superconductor in Bi2Sr2CaCU2O8+delta. Despite a temperature-dependent resistivity characteristic of an insulator, the excitations in this intermediate state have a highly anisotropic energy gap that vanishes at four points in momentum space. This nodal-liquid state has the same gap structure as that of the d-wave superconductor but no sharp quasiparticle peaks. We observe a smooth evolution of the excitation spectrum, along with the appearance of coherent quasiparticles, as one goes through the insulator-to-superconductor transition as a function of doping. Our results suggest that high-temperature superconductivity emerges when quantum phase coherence is established in a non-superconducting nodal liquid. C1 [Chatterjee, U.; Ai, D.; Zhao, J.; Campuzano, J. C.] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [Chatterjee, U.; Ai, D.; Zhao, J.; Rosenkranz, S.; Hinks, D. G.; Claus, H.; Norman, M. R.; Campuzano, J. C.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Shi, M.] PSI, Swiss Light Source, CH-5232 Villigen, Switzerland. [Kanigel, A.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Raffy, H.; Li, Z. Z.] Univ Paris 11, Phys Solides Lab, CNRS, UMR 8502, F-91405 Orsay, France. [Kadowaki, K.] Univ Tsukuba, Inst Mat Sci, Tsukuba 3053573, Japan. [Xu, Z. J.; Wen, J. S.; Gu, G.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Lin, C. T.] Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany. [Randeria, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. RP Campuzano, JC (reprint author), Univ Illinois, Dept Phys, Chicago, IL 60607 USA. EM jcc@uic.edu RI Wen, Jinsheng/F-4209-2010; Rosenkranz, Stephan/E-4672-2011; xu, zhijun/A-3264-2013; Norman, Michael/C-3644-2013 OI Wen, Jinsheng/0000-0001-5864-1466; Rosenkranz, Stephan/0000-0002-5659-0383; xu, zhijun/0000-0001-7486-2015; NR 30 TC 41 Z9 41 U1 0 U2 23 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 J9 NAT PHYS JI Nat. Phys. PD FEB PY 2010 VL 6 IS 2 BP 99 EP 103 DI 10.1038/NPHYS1456 PG 5 WC Physics, Multidisciplinary SC Physics GA 562BM UT WOS:000275023900011 ER PT J AU Jahnke, T Sann, H Havermeier, T Kreidi, K Stuck, C Meckel, M Schoffler, M Neumann, N Wallauer, R Voss, S Czasch, A Jagutzki, O Malakzadeh, A Afaneh, F Weber, T Schmidt-Bocking, H Dorner, R AF Jahnke, T. Sann, H. Havermeier, T. Kreidi, K. Stuck, C. Meckel, M. Schoeffler, M. Neumann, N. Wallauer, R. Voss, S. Czasch, A. Jagutzki, O. Malakzadeh, A. Afaneh, F. Weber, Th. Schmidt-Boecking, H. Doerner, R. TI Ultrafast energy transfer between water molecules SO NATURE PHYSICS LA English DT Article ID CLUSTERS; PHOTOIONIZATION; ELECTRONS; DECAY AB At the transition from the gas to the liquid phase of water, a wealth of new phenomena emerge, which are absent for isolated H(2)O molecules. Many of those are important for the existence of life, for astrophysics and atmospheric science. In particular, the response to electronic excitation changes completely as more degrees of freedom become available. Here we report the direct observation of an ultrafast transfer of energy across the hydrogen bridge in (H(2)O)(2) (a so-called water dimer). This intermolecular coulombic decay leads to an ejection of a low-energy electron from the molecular neighbour of the initially excited molecule. We observe that this decay is faster than the proton transfer that is usually a prominent pathway in the case of electronic excitation of small water clusters and leads to dissociation of the water dimer into two H(2)O(+) ions. As electrons of low energy (similar to 0.7-20 eV) have recently been found to efficiently break-up DNA constituents(1,2), the observed decay channel might contribute as a source of electrons that can cause radiation damage in biological matter. C1 [Jahnke, T.; Sann, H.; Havermeier, T.; Kreidi, K.; Stuck, C.; Meckel, M.; Neumann, N.; Wallauer, R.; Czasch, A.; Jagutzki, O.; Malakzadeh, A.; Schmidt-Boecking, H.; Doerner, R.] Goethe Univ Frankfurt, Inst Kernphys, D-60438 Frankfurt, Germany. [Schoeffler, M.; Weber, Th.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Afaneh, F.] Hashemite Univ, Dept Phys, Zarqa 13115, Jordan. RP Jahnke, T (reprint author), Goethe Univ Frankfurt, Inst Kernphys, Max von Laue Str 1, D-60438 Frankfurt, Germany. EM jahnke@atom.uni-frankfurt.de RI Doerner, Reinhard/A-5340-2008; Weber, Thorsten/K-2586-2013; Schoeffler, Markus/B-6261-2008 OI Doerner, Reinhard/0000-0002-3728-4268; Weber, Thorsten/0000-0003-3756-2704; Schoeffler, Markus/0000-0001-9214-6848 FU DFG; BESSY GmbH FX We would like to thank the staff at BESSY, especially H. Pfau and G. Reichardt, for extraordinary support during the beamtime. Many discussions on ICE, with L. Cederbaum and his group are gratefully acknowledged. This work was supported by the DFG and BESSY GmbH. NR 28 TC 143 Z9 143 U1 3 U2 54 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 J9 NAT PHYS JI Nat. Phys. PD FEB PY 2010 VL 6 IS 2 BP 139 EP 142 DI 10.1038/NPHYS1498 PG 4 WC Physics, Multidisciplinary SC Physics GA 562BM UT WOS:000275023900020 ER PT J AU Leung, DW Prins, KC Borek, DM Farahbakhsh, M Tufariello, JM Ramanan, P Nix, JC Helgeson, LA Otwinowski, Z Honzatko, RB Basler, CF Amarasinghe, GK AF Leung, Daisy W. Prins, Kathleen C. Borek, Dominika M. Farahbakhsh, Mina Tufariello, Joann M. Ramanan, Parameshwaran Nix, Jay C. Helgeson, Luke A. Otwinowski, Zbyszek Honzatko, Richard B. Basler, Christopher F. Amarasinghe, Gaya K. TI Structural basis for dsRNA recognition and interferon antagonism by Ebola VP35 SO NATURE STRUCTURAL & MOLECULAR BIOLOGY LA English DT Article ID DOUBLE-STRANDED-RNA; I-LIKE-RECEPTORS; RIG-I; INHIBITORY DOMAIN; X-RAY; MOLECULAR REPLACEMENT; MAXIMUM-LIKELIHOOD; IRF-3 ACTIVATION; DENDRITIC CELLS; VIRUS AB Ebola viral protein 35 (VP35), encoded by the highly pathogenic Ebola virus, facilitates host immune evasion by antagonizing antiviral signaling pathways, including those initiated by RIG-I-like receptors. Here we report the crystal structure of the Ebola VP35 interferon inhibitory domain (IID) bound to short double-stranded RNA (dsRNA), which together with in vivo results reveals how VP35-dsRNA interactions contribute to immune evasion. Conserved basic residues in VP35 IID recognize the dsRNA backbone, whereas the dsRNA blunt ends are 'end-capped' by a pocket of hydrophobic residues that mimic RIG-I-like receptor recognition of blunt-end dsRNA. Residues critical for RNA binding are also important for interferon inhibition in vivo but not for viral polymerase cofactor function of VP35. These results suggest that simultaneous recognition of dsRNA backbone and blunt ends provides a mechanism by which Ebola VP35 antagonizes host dsRNA sensors and immune responses. C1 [Leung, Daisy W.; Farahbakhsh, Mina; Ramanan, Parameshwaran; Helgeson, Luke A.; Honzatko, Richard B.; Amarasinghe, Gaya K.] Iowa State Univ, Dept Biochem Biophys & Mol Biol, Ames, IA 50011 USA. [Prins, Kathleen C.; Tufariello, Joann M.; Basler, Christopher F.] Mt Sinai Sch Med, Dept Microbiol, New York, NY USA. [Borek, Dominika M.; Otwinowski, Zbyszek] Univ Texas SW Med Ctr Dallas, Dept Biochem, Dallas, TX 75390 USA. [Farahbakhsh, Mina; Helgeson, Luke A.] Iowa State Univ, Biochem Undergrad Program, Ames, IA USA. [Ramanan, Parameshwaran] Iowa State Univ, Biochem Grad Program, Ames, IA USA. [Nix, Jay C.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA USA. RP Amarasinghe, GK (reprint author), Iowa State Univ, Dept Biochem Biophys & Mol Biol, Ames, IA 50011 USA. EM amarasin@iastate.edu RI Otwinowski, Zbyszek/F-3665-2011; Borek, Dominika/D-2943-2011; OI Borek, Dominika/0000-0002-4321-6253; Amarasinghe, Gaya/0000-0002-0418-9707 FU US Department of Energy [DE-AC02-06CH11357]; US National Institutes of Health [1F32AI084324, R01GM053163, R01NS010546, R01AI059536, AI057158, R01AI081914]; Midwest Regional Center of Excellence Developmental [U54AI057160-Virgin]; Roy J. Carver Charitable Trust [09-3271] FX We thank the Iowa State University Biotechnology Facilities and J. Hoy, N. Pohl and D. B. Fulton for providing access to instrumentation and support. We also thank M. Nilsen-Hamilton and M. Shogren-Knaak for discussions, J. Binning, C. Brown and T. Wang for reading the manuscript, L. Tantral and D. Peterson for lab assistance and S. Ginnell, N. Duke, F. Rotella, M. Cuff and J. Lazarz at Advanced Photon Source Sector 19. Use of the Argonne National Laboratory Structural Biology Center beamlines at the Advanced Photon Source was supported by the US Department of Energy under contract DE-AC02-06CH11357. This work is supported by US National Institutes of Health grants (1F32AI084324 to D. W. L., R01GM053163 to Z. O., R01NS010546 to R. B. H., R01AI059536 and AI057158 (Northeast Biodefense Center-Lipkin) to C. F. B. and R01AI081914 to G. K. A.), a Midwest Regional Center of Excellence Developmental grant (U54AI057160-Virgin(PI) to G. K. A.) and the Roy J. Carver Charitable Trust (09-3271 to G. K. A.). NR 61 TC 83 Z9 85 U1 0 U2 12 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1545-9985 J9 NAT STRUCT MOL BIOL JI Nat. Struct. Mol. Biol. PD FEB PY 2010 VL 17 IS 2 BP 165 EP U5 DI 10.1038/nsmb.1765 PG 9 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 551RZ UT WOS:000274228400007 PM 20081868 ER PT J AU Jinek, M Fabian, MR Coyle, SM Sonenberg, N Doudna, JA AF Jinek, Martin Fabian, Marc R. Coyle, Scott M. Sonenberg, Nahum Doudna, Jennifer A. TI Structural insights into the human GW182-PABC interaction in microRNA-mediated deadenylation SO NATURE STRUCTURAL & MOLECULAR BIOLOGY LA English DT Article ID POLY(A) BINDING-PROTEIN; TRANSLATIONAL REPRESSION; ARGONAUTE; DOMAIN; COMPLEXES; TNRC6C; CELLS; PAIP2 AB GW182-family proteins are essential for microRNA-mediated translational repression and deadenylation in animal cells. Here we show that a conserved motif in the human GW182 paralog TNRC6C interacts with the C-terminal domain of polyadenylate binding protein 1 (PABC) and present the crystal structure of the complex. Mutations at the complex interface impair mRNA deadenylation in mammalian cell extracts, suggesting that the GW182-PABC interaction contributes to microRNA-mediated gene silencing. C1 [Jinek, Martin; Coyle, Scott M.; Doudna, Jennifer A.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Fabian, Marc R.; Sonenberg, Nahum] McGill Univ, Dept Biochem, Montreal, PQ, Canada. [Fabian, Marc R.; Sonenberg, Nahum] McGill Univ, Goodman Canc Ctr, Montreal, PQ, Canada. [Coyle, Scott M.; Doudna, Jennifer A.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA USA. RP Doudna, JA (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM doudna@berkeley.edu OI Jinek, Martin/0000-0002-7601-210X FU Human Frontiers Science Program fellowship; Terry Fox Foundation fellowship from the Canadian Cancer Society; Canadian Institutes of Health Research FX We thank D. King (Howard Hughes Medical Institute Mass Spectrometry Laboratory, Univ. California Berkeley) for peptide synthesis and mass spectrometry, and C. Ralston and J. Holton (Beamlines 8.2.1 and 8.3.1, Advanced Light Source, Lawrence Berkeley National Laboratory) for assistance with X-ray data collection. We are indebted to W. Filipowicz for discussions and to members of the Doudna laboratory for critical reading of the manuscript. M. J. is supported by a Human Frontiers Science Program fellowship. M. R. F. is supported by a Terry Fox Foundation fellowship from the Canadian Cancer Society. This work was funded in part by a Canadian Institutes of Health Research grant to N. S. N. S. is an International Scholar of the Howard Hughes Medical Institute. J. A. D. is a Howard Hughes Medical Institute Investigator. NR 20 TC 65 Z9 66 U1 0 U2 4 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1545-9985 J9 NAT STRUCT MOL BIOL JI Nat. Struct. Mol. Biol. PD FEB PY 2010 VL 17 IS 2 BP 238 EP 240 DI 10.1038/nsmb.1768 PG 3 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 551RZ UT WOS:000274228400017 PM 20098421 ER PT J AU Schulz, D Mirrione, MM Henn, FA AF Schulz, Daniela Mirrione, Martine M. Henn, Fritz A. TI Cognitive aspects of congenital learned helplessness and its reversal by the monoamine oxidase (MAO)-B inhibitor deprenyl SO NEUROBIOLOGY OF LEARNING AND MEMORY LA English DT Article DE Depression; Open field; Exploratory behavior; Learning and memory; Dopamine; Antidepressant ID FORCED SWIM TEST; ANIMAL-MODEL; WATER MAZE; NOVELTY-SEEKING; WORKING-MEMORY; ADULT RATS; AGED RATS; EXPLORATORY-BEHAVIOR; DOPAMINE AGONISTS; DEPRESSION AB Cognitive processes are assumed to change with learned helplessness, an animal model of depression, but little is known about such deficits. Here we investigated the role of cognitive and related functions in selectively bred helpless (cLH, n = 10), non-helpless (cNLH, n = 12) and wild type (WT, n = 8) Sprague Dawley rats. The animals were exposed to an open field for 10 min on each of two test days. On the third day, an object exploration paradigm was carried out. The animals were later tested for helplessness. Both cLH and cNLH rats were more active than WTs on the first day in the open field. Over trials, cNLH and WT rats lowered their activity less than cLH rats. This resistance-to-habituation co-varied with a resistance to develop helplessness. In cLH rats, higher 'anxiety' or less time spent in the center of the open field co-varied with severe helplessness. In WTs, a greater reactivity to novel objects and to a spatially relocated object predicted lower levels of helplessness. In cLH rats (n = 4-5 per group), chronic treatment with a high dose of the monoamine oxidase (MAO)-B inhibitor deprenyl (10 mg/kg; i.p.), an anti-Parkinson, noo-tropic and antidepressant drug, attenuated helplessness. Remarkably, helplessness reversal required the experience of repeated test trials, reminiscent of a learning process. Chronic deprenyl (10 mg/kg; i.p.) did not alter locomotion/exploration or 'anxiety' in the open field. In conclusion, helplessness may be related to altered mechanisms of reinforcement learning and working memory, and to abnormalities in MAO-A and/or MAO-B functioning. (C) 2009 Elsevier Inc. All rights reserved. C1 [Schulz, Daniela; Mirrione, Martine M.; Henn, Fritz A.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Henn, Fritz A.] Mt Sinai Sch Med, Dept Psychiat, New York, NY USA. RP Schulz, D (reprint author), Brookhaven Natl Lab, Dept Med, Bldg 490,30 Bell Ave, Upton, NY 11973 USA. EM dschulz@bnl.gov RI Schulz, Daniela/H-5625-2011 FU Brookhaven National Laboratory; US Department of Energy [LDRD-07-096] FX Grant sponsor: Brookhaven National Laboratory Directed Research and Development Program, funded by the US Department of Energy (LDRD-07-096 to FAH). NR 72 TC 22 Z9 23 U1 2 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1074-7427 J9 NEUROBIOL LEARN MEM JI Neurobiol. Learn. Mem. PD FEB PY 2010 VL 93 IS 2 BP 291 EP 301 DI 10.1016/j.nlm.2009.11.003 PG 11 WC Behavioral Sciences; Neurosciences; Psychology; Psychology, Multidisciplinary SC Behavioral Sciences; Neurosciences & Neurology; Psychology GA 565RO UT WOS:000275312200019 PM 19931627 ER PT J AU Volkow, ND Fowler, JS Wang, GJ Telang, F Logan, J Jayne, M Ma, YM Pradhan, K Wong, C Swanson, JM AF Volkow, Nora D. Fowler, Joanna S. Wang, Gene-Jack Telang, Frank Logan, Jean Jayne, Millard Ma, Yeming Pradhan, Kith Wong, Christopher Swanson, James M. TI Cognitive control of drug craving inhibits brain reward regions in cocaine abusers SO NEUROIMAGE LA English DT Article DE Brain imaging; Nucleus accumbens; orbitofrontal cortex; Insula; Cingulate gyrus; Conditioned responses; Cognitive inhibition ID NUCLEUS-ACCUMBENS CORE; VENTRAL TEGMENTAL AREA; ORBITOFRONTAL CORTEX; DOPAMINE RELEASE; FRONTAL-CORTEX; ADDICTION; GLUTAMATE; BEHAVIOR; AMYGDALA; PREDICTION AB Loss of control over drug taking is considered a hallmark of addiction and is critical in relapse. Dysfunction of frontal brain regions involved with inhibitory control may underlie this behavior We evaluated whether addicted subjects when instructed to purposefully control their craving responses to drug-conditioned stimuli can inhibit limbic brain regions implicated in drug craving. We used PET and 2-deoxy-2[18F]fluoro-D-glucose to measure brain glucose metabolism (marker of brain function) in 24 cocaine abusers who watched a cocaine-cue video and compared brain activation with and without instructions to cognitively inhibit craving. A third scan was obtained at baseline (without video) Statistical parametric mapping was used for analysis and corroborated with regions of interest. The cocaine-cue video increased craving during the no-inhibition condition (pre 3 +/- 3, post 6 +/- 3, p<0 001) but not when subjects were instructed to inhibit craving (pre 3 +/- 2, post 3 +/- 3) Comparisons with baseline showed Visual activation for both cocaine-cue conditions and limbic inhibition (accumbens, orbitofrontal, insula, cingulate) when subjects purposefully inhibited craving (p<0001) Comparison between cocaine-cue conditions showed lower metabolism with cognitive inhibition in right orbitofrontal cortex and right accumbens (p<0 005), which was associated with right inferior frontal activation (r = -0.62, p<0.005). Decreases in metabolism in brain regions that process the predictive (nucleus accumbens) and motivational value (orbitofrontal cortex) of drug-conditioned stimuli were elicited by instruction to Inhibit cue-induced craving This suggests that cocaine abusers may retain some ability to inhibit craving and that strengthening fronto-accumbal regulation may be therapeutically beneficial in addiction. Published by Elsevier Inc. C1 [Volkow, Nora D.] NIDA, Bethesda, MD 20892 USA. [Volkow, Nora D.; Telang, Frank; Jayne, Millard; Ma, Yeming] NIAAA, Bethesda, MD 20892 USA. [Fowler, Joanna S.; Wang, Gene-Jack; Logan, Jean; Pradhan, Kith; Wong, Christopher] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Swanson, James M.] Univ Calif Irvine, Child Dev Ctr, Irvine, CA 92612 USA. RP Volkow, ND (reprint author), NIDA, 6001 Execut Blvd,Room 5274,MSC 9581, Bethesda, MD 20892 USA. OI Logan, Jean/0000-0002-6993-9994 FU NIH; DOE [DE-AC01-76CH00016] FX We thank David Schlyer, David Alexoff, Don Warner, Paul Vaska, Colleen Shea, Youwen Xu, Lisa Muench, Barbara Hubbard, Pauline Carter, Karen Apelskog, Alex Reben and Linda Thomas for their contributions. Research supported by NIH's Intramural Research Program (NIAAA), by DOE (DE-AC01-76CH00016). NR 51 TC 123 Z9 126 U1 1 U2 16 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1053-8119 J9 NEUROIMAGE JI Neuroimage PD FEB 1 PY 2010 VL 49 IS 3 BP 2536 EP 2543 DI 10.1016/j.neuroimage.2009.10.088 PG 8 WC Neurosciences; Neuroimaging; Radiology, Nuclear Medicine & Medical Imaging SC Neurosciences & Neurology; Radiology, Nuclear Medicine & Medical Imaging GA 544BN UT WOS:000273626400056 PM 19913102 ER PT J AU Zink, M Vollmayr, B Gebicke-Haerter, PJ Henn, FA AF Zink, M. Vollmayr, B. Gebicke-Haerter, P. J. Henn, F. A. TI Reduced expression of glutamate transporters vGluT1, EAAT2 and EAAT4 in learned helpless rats, an animal model of depression SO NEUROPHARMACOLOGY LA English DT Article DE Depression; EAAT; Glia; Glutamate; Learned helplessness; Transporter ID MAGNETIC-RESONANCE SPECTROSCOPY; RESISTANT MAJOR DEPRESSION; GAMMA-AMINOBUTYRIC-ACID; EXCITATORY AMINO-ACIDS; DORSAL RAPHE NUCLEUS; OPEN-LABEL TRIAL; MOOD DISORDERS; PREFRONTAL CORTEX; ESCAPE PERFORMANCE; DRUG DISCOVERY AB Background: It has been widely accepted that glial pathology and disturbed synaptic transmission contribute to the neurobiology of depression. Apart from monoaminergic alterations, an influence of glutamatergic signal transduction has been reported. Therefore, gene expression of glutamate transporters that strictly control synaptic glutamate concentrations have to be assessed in animal models of stress and depression. Methods: We performed in situ-hybridizations in learned helplessness rats, a well established animal model of depression, to assess vGluT1 and EAAT1-4. Sprague-Dawley rats of two inbred lines were tested for helpless behavior and grouped into three cohorts according to the number of failures to stop foot shock currents by lever pressing. Results: Helpless animals showed a significantly suppressed expression of the glial glutamate transporter EAAT2 (rodent nomenclature GLT1) in hippocampus and cerebral cortex compared to littermates with low failure rate and not helpless animals. This finding was validated on protein level using immunohistochemistry. Additionally, expression levels of EAAT4 and the vesicular transporter vGluT1 were reduced in helpless animals. In contrast, the transcript levels of EAAT1 (GLAST) and EAAT3 (EAAC1) were not significantly altered. Conclusions: These results strongly suggest reduced astroglial glutamate uptake and implicate increased glutamate levels in learned helplessness. The findings are in concert with antidepressant effects of NMDA-receptor antagonists and the hypotheses that impaired astroglial functions contribute to the pathogenesis of affective disorders. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Zink, M.; Vollmayr, B.; Henn, F. A.] Cent Inst Mental Hlth, Dept Psychiat & Psychotherapy, D-68072 Mannheim, Germany. [Gebicke-Haerter, P. J.] Cent Inst Mental Hlth, Dept Psychopharmacol, D-68072 Mannheim, Germany. [Henn, F. A.] Brookhaven Natl Lab, Long Isl City, NY USA. RP Zink, M (reprint author), Cent Inst Mental Hlth, Dept Psychiat & Psychotherapy, POB 12 21 20, D-68072 Mannheim, Germany. EM mathias.zink@zi-mannheim.de FU Deutsche Forschungsgemeinschaft [636 B2]; Bunclesministerium fur Bildung und Forschung (BMBF) FX This study was funded by the Deutsche Forschungsgemeinschaft (SFB 636 B2). MZ received speaker and scientific grants of ERAB (European Research Advisory Board), Bristol Myers Squibb, Pfizer GmbH, Janssen CILAG, and Astra Zeneca. BV received a scientific grant from the Bunclesministerium fur Bildung und Forschung (BMBF). FA H holds speaker grants from Pfizer GmbH, Bristol Myers Squibb, and Astra Zeneca, further a scientific grant from Lundbeck. NR 79 TC 65 Z9 73 U1 1 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0028-3908 J9 NEUROPHARMACOLOGY JI Neuropharmacology PD FEB PY 2010 VL 58 IS 2 BP 465 EP 473 DI 10.1016/j.neuropharm.2009.09.005 PG 9 WC Neurosciences; Pharmacology & Pharmacy SC Neurosciences & Neurology; Pharmacology & Pharmacy GA 557MX UT WOS:000274674500019 PM 19747495 ER PT J AU Fowler, JS Logan, J Azzaro, AJ Fielding, RM Zhu, W Poshusta, AK Burch, D Brand, B Free, J Asgharnejad, M Wang, GJ Telang, F Hubbard, B Jayne, M King, P Carter, P Carter, S Xu, YW Shea, C Muench, L Alexoff, D Shumay, E Schueller, M Warner, D Apelskog-Torres, K AF Fowler, Joanna S. Logan, Jean Azzaro, Albert J. Fielding, Robert M. Zhu, Wei Poshusta, Amy K. Burch, Daniel Brand, Barry Free, James Asgharnejad, Mahnaz Wang, Gene-Jack Telang, Frank Hubbard, Barbara Jayne, Millard King, Payton Carter, Pauline Carter, Scott Xu, Youwen Shea, Colleen Muench, Lisa Alexoff, David Shumay, Elena Schueller, Michael Warner, Donald Apelskog-Torres, Karen TI Reversible Inhibitors of Monoamine Oxidase-A (RIMAs): Robust, Reversible Inhibition of Human Brain MAO-A by CX157 SO NEUROPSYCHOPHARMACOLOGY LA English DT Article DE MAO-A inhibitor; RIMA; CX157; PET; major depressive disorder ID POSITRON-EMISSION-TOMOGRAPHY; MAJOR DEPRESSION; L-DEPRENYL; CLINICAL-PHARMACOLOGY; HEALTHY-SUBJECTS; IN-VIVO; MOCLOBEMIDE; PET; CLORGYLINE; DOPAMINE AB Reversible inhibitors of monoamine oxidase-A (RIMA) inhibit the breakdown of three major neurotransmitters, serotonin, norepinephrine and dopamine, offering a multi-neurotransmitter strategy for the treatment of depression. CX157 (3-fluoro-7-(2,2,2-trifluoroethoxy)phenoxathiin-10,10-dioxide) is a RIMA, which is currently in development for the treatment of major depressive disorder. We examined the degree and reversibility of the inhibition of brain monoamine oxidase-A (MAO-A) and plasma CX157 levels at different times after oral dosing to establish a dosing paradigm for future clinical efficacy studies, and to determine whether plasma CX157 levels reflect the degree of brain MAO-A inhibition. Brain MAO-A levels were measured with positron emission tomography (PET) imaging and [(11)C]clorgyline in 15 normal men after oral dosing of CX157 (20-80 mg). PET imaging was conducted after single and repeated doses of CX157 over a 24-h time course. We found that 60 and 80 mg doses of CX157 produced a robust dose-related inhibition (47-72%) of [(11)C] clorgyline binding to brain MAO-A at 2 h after administration and that brain MAO-A recovered completely by 24 h post drug. Plasma CX157 concentration was highly correlated with the inhibition of brain MAO-A (EC(50): 19.3 ng/ml). Thus, CX157 is the first agent in the RIMA class with documented reversible inhibition of human brain MAO-A, supporting its classification as a RIMA, and the first RIMA with observed plasma levels that can serve as a biomarker for the degree of brain MAO-A inhibition. These data were used to establish the dosing regimen for a current clinical efficacy trial with CX157. Neuropsychopharmacology (2010) 35, 623-631; doi:10.1038/npp.2009.167; published online 4 November 2009 C1 [Fowler, Joanna S.; Logan, Jean; Wang, Gene-Jack; Hubbard, Barbara; King, Payton; Carter, Pauline; Carter, Scott; Xu, Youwen; Shea, Colleen; Alexoff, David; Shumay, Elena; Schueller, Michael; Warner, Donald; Apelskog-Torres, Karen] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Fowler, Joanna S.; Wang, Gene-Jack] Mt Sinai Sch Med, Dept Psychiat, New York, NY USA. [Azzaro, Albert J.] AJA PharmaServ, Tarpon Springs, FL USA. [Fielding, Robert M.; Poshusta, Amy K.] Biol Serv, Boulder, CO USA. [Zhu, Wei] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA. [Telang, Frank; Jayne, Millard; Muench, Lisa] NIAAA, Bethesda, MD USA. RP Fowler, JS (reprint author), Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. EM fowler@bnl.gov FU CeNeRx BioPharma; Department of Energy; Office of Biological and Environmental Research; NIH FX This study was funded by CeNeRx BioPharma. JSF, JL, G- JW, FT, BH, MJ, PC, SC, YX, CS, LM, DA, MS, DW and KA-T are supported by the Department of Energy, Office of Biological and Environmental Research and by NIH funding. JSF serves on the scientific advisory board of Avid Radiopharmaceuticals. AJA, RMF and AKP are scientific consultants to CeNeRx BioPharma. DB, BB, JF and MA are employees of CeNeRx BioPharma. NR 41 TC 26 Z9 27 U1 1 U2 8 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0893-133X J9 NEUROPSYCHOPHARMACOL JI Neuropsychopharmacology PD FEB PY 2010 VL 35 IS 3 BP 623 EP 631 DI 10.1038/npp.2009.167 PG 9 WC Neurosciences; Pharmacology & Pharmacy; Psychiatry SC Neurosciences & Neurology; Pharmacology & Pharmacy; Psychiatry GA 544EK UT WOS:000273635100004 PM 19890267 ER PT J AU Baglin, CM AF Baglin, Coral M. TI Nuclear Data Sheets for A=184 SO NUCLEAR DATA SHEETS LA English DT Review ID NEUTRON-DEFICIENT ISOTOPES; SPECTROSCOPIC QUADRUPOLE-MOMENTS; INELASTIC PROTON-SCATTERING; ALPHA-DECAY SPECTROSCOPY; GROUND-STATE PROPERTIES; PULSED-BEAM MEASUREMENT; GAMMA-RAY SPECTROSCOPY; FIRST EXCITED STATES; RARE-EARTH REGION; DOUBLY-ODD AU-184 AB Nuclear structure and decay data for all nuclei with mass number A=184 Mu, lit, Ta, W, fie, Os, Ir, Pt, Au, Hg, T1, Ph, Bi) have been evaluated, and the corresponding level schemes from radioactive decay and reaction studies are presented. This evaluation supersedes the previous publication (R.B. Firestone, Nuclear Data Sheets 58, 243 (1989) (literature cutoff date I June 1989)) and subsequent revisions of high spin data for several nuclides by Huo Junde (31 July, 1995) and evaluations by C.M. Baglin for (184)Au., (184)Pb ad the new nuclide (184)Bi (literature Cutoff dates 4 April 2003, 28 July 2003 and 21 January 2004, respectively). The present evaluation includes literature available by 1 October 2009. Subsequent to those evaluations, (111, xn gamma) studies have contributed significantly to our knowledge of the structure of (184)Re (2005Wh04), (184)Os (2002Sh21, 2002Wh01, 1998Sh36), (184)Hg (1995De30, 1995Sf01) and (184)Au (2004Zli38). Additional information oil the level structure of (184)W has become available from new thermal neutron capture measurements (2003Bo52, 20041,(,22, 2007ChZX), from detailed (p,t) reaction studies (2006Me25), new Coulomb excitation (1991Wu05) and (gamma,gamma') (1993He15) studies, and from the 198Pt(136Xe,X gamma) reaction (2004Wh02) knowledge of (184)pt has benefited from a new (184)Au E decay study (2006KrZT, 1992Xu02, 1992Xu06, 1992XuZY), but this decay cannot yet be normalized due to the mixed parentage of the sources used. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Baglin, CM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. NR 353 TC 28 Z9 28 U1 1 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD FEB PY 2010 VL 111 IS 2 BP 275 EP + DI 10.1016/j.nds.2010.01.001 PG 248 WC Physics, Nuclear SC Physics GA 558DT UT WOS:000274721700001 ER PT J AU Reyes, JN Groome, JT Woods, BG Jackson, B Marshall, TD AF Reyes, J. N., Jr. Groome, J. T. Woods, B. G. Jackson, B. Marshall, T. D. TI Scaling analysis for the high temperature Gas Reactor Test Section (GRTS) SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 12th International Meeting on Nuclear Reactor Thermal Hydraulics CY SEP 30-OCT 04, 2007 CL Pittsburgh, PA SP Amer Nucl Soc, Pittsburgh Sect & Thermal Hydraul Div ID AIR INGRESS AB This paper presents an overview of a scaling analysis for a reduced scale Gas Reactor Test Section capable of modeling a variety of important phenomena in a Very High Temperature Gas Reactor. This research effort is being conducted at Oregon State University in support of an Idaho National Laboratory Lab Directed Research and Development project titled, Developing Core Flow Analysis Methods for the VHTR and GFR Designs. The INL point design for a prismatic core VHTR was selected for this scaling analysis, although the project maintains its secondary objective of co-generating Gas-Cooled Fast Reactor GFR-relevant thermal hydraulics data. The specific goal of the scaling analysis was to support the design of a test facility that can be used to produce benchmark data for depressurized conduction cool-down conditions. The scaling analysis determined that the GRTS will be capable of simulating core conduction and radiation heat transfer, vessel radiation heat transfer, core temperature profiles, air-ingress by lock-exchange, air-ingress by molecular diffusion, and single-phase air natural circulation. This paper shall focus on two aspects of the GRTS scaling analysis; air-ingress scaling analysis and scaling of the core heat transfer behavior for a DCC event. (C) 2009 Elsevier B.V. All rights reserved. C1 [Reyes, J. N., Jr.; Groome, J. T.; Woods, B. G.; Jackson, B.] Oregon State Univ, Dept Nucl Engn & Radiat Hlth Phys, Radiat Ctr C116, Corvallis, OR 97331 USA. [Marshall, T. D.] Idaho Engn Lab, Idaho Falls, ID 83415 USA. RP Reyes, JN (reprint author), Oregon State Univ, Dept Nucl Engn & Radiat Hlth Phys, Radiat Ctr C116, Corvallis, OR 97331 USA. EM reyes@ne.orst.edu; Theron.Marshall@inl.gov NR 7 TC 4 Z9 4 U1 0 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD FEB PY 2010 VL 240 IS 2 SI SI BP 397 EP 404 DI 10.1016/j.nucengdes.2009.03.020 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 556QV UT WOS:000274607100022 ER PT J AU McIlroy, HM McEligot, DM Pink, RJ AF McIlroy, Hugh M., Jr. McEligot, Donald M. Pink, Robert J. TI Measurement of turbulent flow phenomena for the lower plenum of a prismatic gas-cooled reactor SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 12th International Meeting on Nuclear Reactor Thermal Hydraulics CY SEP 30-OCT 04, 2007 CL Pittsburgh, PA SP Amer Nucl Soc, Pittsburgh Sect & Thermal Hydraul Div AB Mean velocity field and turbulence data are presented that measure turbulent flow phenomena in an approximately 1:7 scale model of a region of the lower plenum of a typical prismatic gas-cooled reactor (GCR) similar to a General Atomics design (Gas-Turbine-Modular Helium Reactor). The data were obtained in the Matched-Index-of-Refraction (MIR) facility at Idaho National Laboratory (INL) and are offered as a benchmark for assessing computational fluid dynamics (CFD) software. This experiment has been selected as the first Standard Problem endorsed by the Generation IV International Forum. The primary objective of this paper is to document the experiment and present a sample of the data set that has been established for this standard problem. Present results concentrate on the region of the lower plenum near its far reflector wall (away from the outlet duct). The flow in the lower plenum consists of multiple jets injected into a confined crossflow-with obstructions. The model consists of a row of full circular posts along its centerline with half-posts on the two parallel walls to approximate flow scaled to that expected from the staggered parallel rows of posts in the reactor design. Posts, side walls and end walls are fabricated from clear, fused quartz to match the refractive index of the mineral oil working fluid so that optical techniques may be employed for the measurements. The benefit of the MIR technique is that it permits optical measurements to determine flow characteristics in complex passages and around objects to be obtained without locating intrusive transducers that will disturb the flow field and without distortion of the optical paths. An advantage of the INL system is its large size, leading to improved spatial and temporal resolution compared to similar facilities at smaller scales. A three-dimensional (3D) particle image velocimetry (PIV) system was used to collect the data. Inlet-jet Reynolds numbers (based on the hydraulic diameter of the jet and the time-mean average flow rate) are approximately 4300 and 12,400. Uncertainty analysis and a discussion of the standard problem are included. The measurements reveal complicated flow patterns that include several large recirculation zones, reverse flow near the simulated reflector wall, recirculation zones in the upper portion of the plenum and complex flow patterns around the support posts. Data include three-dimensional PIV images of flow planes, data displays along the coordinate planes (slices) and presentations that describe the component flows at specific regions in the model. (C) 2008 Published by Elsevier B.V. C1 [McIlroy, Hugh M., Jr.; McEligot, Donald M.; Pink, Robert J.] Idaho Engn Lab, Idaho Falls, ID 83415 USA. RP McIlroy, HM (reprint author), Idaho Engn Lab, POB 1625, Idaho Falls, ID 83415 USA. EM Hugh.McIlroy@inl.gov; Robert.Pink@inl.gov NR 10 TC 4 Z9 4 U1 0 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD FEB PY 2010 VL 240 IS 2 SI SI BP 416 EP 428 DI 10.1016/j.nucengdes.2008.07.020 PG 13 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 556QV UT WOS:000274607100024 ER PT J AU Arnold, BW Swift, PN Brady, PV Orrell, SA Freeze, GA AF Arnold, Bill W. Swift, Peter N. Brady, Patrick V. Orrell, S. Andrew Freeze, Geoff A. TI Into the deep SO NUCLEAR ENGINEERING INTERNATIONAL LA English DT Article C1 [Arnold, Bill W.; Swift, Peter N.; Brady, Patrick V.; Orrell, S. Andrew; Freeze, Geoff A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Arnold, BW (reprint author), Sandia Natl Labs, POB 5800,MS 1369, Albuquerque, NM 87185 USA. NR 0 TC 1 Z9 1 U1 0 U2 4 PU WILMINGTON PUBL PI SIDCUP PA WILMINGTON HOUSE, MAIDSTONE RD, FOOTS CRAY, SIDCUP DA14 SHZ, KENT, ENGLAND SN 0029-5507 J9 NUCL ENG INT JI Nucl. Eng. Int. PD FEB PY 2010 VL 55 IS 667 BP 18 EP 20 PG 3 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 574WN UT WOS:000276025000005 ER PT J AU Commaux, N Pegourie, B Baylor, LR Kochl, F Parks, PB Jernigan, TC Geraud, A Nehme, H AF Commaux, N. Pegourie, B. Baylor, L. R. Koechl, F. Parks, P. B. Jernigan, T. C. Geraud, A. Nehme, H. TI Influence of the low order rational q surfaces on the pellet deposition profile SO NUCLEAR FUSION LA English DT Article; Proceedings Paper CT 22nd IAEA Fusion Energy Conference CY OCT 13-18, 2008 CL Palais des Nations, Geneva, SWITZERLAND SP Int Atom Energy Agcy HO Palais des Nations ID DIII-D TOKAMAK; INJECTION EXPERIMENTS; MASS DEPOSITION; ABLATION AB Pellet injection is planned to be the main fuelling method on ITER. The high temperature of the plasma during a fusion burn will limit the penetration of the pellet to the outer third of the minor radius. This limited penetration is expected to be compensated by a polarization drift, which will deposit the particles deeper in the plasma for the pellets injected from the high field side. In order to evaluate the expected depth of the fuelling on ITER, a good understanding of this drift effect is important. Experimental data acquired on the DIII-D (USA) and Tore Supra (France) tokamaks show that the polarization drift is influenced by the low order rational q surfaces. These surfaces appear to attenuate the polarization mechanism as the drifting particles cross them. In this paper, a correlation between the maximum of the pellet mass deposition profile and the positions of the q = 2 and q = 3 surfaces on DIII-D and Tore Supra is shown for high field side and low field side injection. A model is proposed to explain this effect and compared with the experimental results. To conclude, the possible consequences of this phenomenon on the fuelling in ITER are described. C1 [Commaux, N.; Baylor, L. R.; Jernigan, T. C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Pegourie, B.; Geraud, A.; Nehme, H.] CEA, IRFM, F-13108 St Paul Les Durance, France. [Koechl, F.] AW ATI, Vienna, Austria. [Parks, P. B.] Gen Atom Co, San Diego, CA USA. RP Commaux, N (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. FU US Department of Energy [DE-AC05-00OR22725, DE-FC02-04ER54598, DE-FG02-95ER54309] FX This work was partially supported by the Oak Ridge National Laboratory managed by UT-Battelle, LLC for the US Department of Energy under contract DE-AC05-00OR22725 and also supported under DE-FC02-04ER54598 and DE-FG02-95ER54309. NR 16 TC 6 Z9 6 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD FEB PY 2010 VL 50 IS 2 AR 025011 DI 10.1088/0029-5515/50/2/025011 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 565VF UT WOS:000275322200016 ER PT J AU Katsuro-Hopkins, O Sabbagh, SA Bialek, JM Park, HK Bak, JG Chung, J Hahn, SH Kim, JY Kwon, M Lee, SG Yoon, SW You, KI Glasser, AH Lao, LL AF Katsuro-Hopkins, O. Sabbagh, S. A. Bialek, J. M. Park, H. K. Bak, J. G. Chung, J. Hahn, S. H. Kim, J. Y. Kwon, M. Lee, S. G. Yoon, S. W. You, K. -I. Glasser, A. H. Lao, L. L. TI Equilibrium and global MHD stability study of KSTAR high beta plasmas under passive and active mode control SO NUCLEAR FUSION LA English DT Article; Proceedings Paper CT 22nd IAEA Fusion Energy Conference CY OCT 13-18, 2008 CL Palais des Nations, Geneva, SWITZERLAND SP Int Atom Energy Agcy HO Palais des Nations ID RESISTIVE WALL MODE; DIII-D; FEEDBACK; TOKAMAK; STABILIZATION; DESIGN; NSTX; ITER AB The Korea Superconducting Tokamak Advanced Research, KSTAR, is designed to operate a steady-state, high beta plasma while retaining global magnetohydrodynamic (MHD) stability to establish the scientific and technological basis of an economically attractive fusion reactor. An equilibrium model is established for stability analysis of KSTAR. Reconstructions were performed for the experimental start-up scenario and experimental first plasma operation using the EFIT code. The VALEN code was used to determine the vacuum vessel current distribution. Theoretical high beta equilibria spanning the expected operational range are computed for various profiles including generic L-mode and DIII-D experimental H-mode pressure profiles. Ideal MHD stability calculations of toroidal mode number of unity using the DCON code shows a factor of 2 improvement in the wall-stabilized plasma beta limit at moderate to low plasma internal inductance. The planned stabilization system in KSTAR comprises passive stabilizing plates and actively cooled in-vessel control coils (IVCCs) designed for non-axisymmetric field error correction and stabilization of slow timescale MHD modes including resistive wall modes (RWMs). VALEN analysis using standard proportional gain shows that active stabilization near the ideal wall limit can be reached with feedback using the midplane segment of the IVCC. The RMS power required for control using both white noise and noise taken from NSTX active stabilization experiments is computed for beta near the ideal wall limit. Advanced state-space control algorithms yield a factor of 2 power reduction assuming white noise while remaining robust with respect to variations in plasma beta. C1 [Katsuro-Hopkins, O.; Sabbagh, S. A.; Bialek, J. M.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Park, H. K.] Pohang Univ Sci & Technol, Dept Phys, Pohang, South Korea. [Bak, J. G.; Chung, J.; Hahn, S. H.; Kim, J. Y.; Kwon, M.; Lee, S. G.; Yoon, S. W.; You, K. -I.] Natl Inst Fus Sci, Taejon, South Korea. [Glasser, A. H.] Los Alamos Natl Lab, Los Alamos, NM USA. [Lao, L. L.] Gen Atom Co, San Diego, CA USA. RP Katsuro-Hopkins, O (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. EM onk3@columbia.edu RI Sabbagh, Steven/C-7142-2011 FU US Department of Energy [DEFG02-99ER54524] FX This research was supported by the US Department of Energy under contract DEFG02-99ER54524. NR 22 TC 13 Z9 13 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD FEB PY 2010 VL 50 IS 2 AR 025019 DI 10.1088/0029-5515/50/2/025019 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 565VF UT WOS:000275322200024 ER PT J AU Petty, CC Evans, TE DeBoo, JC Hudson, B La Haye, RJ Luce, TC Politzer, PA Allen, SL Doyle, EJ Fenstermacher, ME Ferron, JR Hyatt, AW Jayakumar, RJ Moyer, RA Osborne, TH AF Petty, C. C. Evans, T. E. DeBoo, J. C. Hudson, B. La Haye, R. J. Luce, T. C. Politzer, P. A. Allen, S. L. Doyle, E. J. Fenstermacher, M. E. Ferron, J. R. Hyatt, A. W. Jayakumar, R. J. Moyer, R. A. Osborne, T. H. TI Observation of ELM suppression in hybrid discharges using n=3 magnetic perturbations on DIII-D SO NUCLEAR FUSION LA English DT Letter ID NEOCLASSICAL TEARING MODES; D TOKAMAK; EDGE COLLISIONALITY; ASDEX UPGRADE; PERFORMANCE; ITER; TRANSPORT; PHYSICS; CONFINEMENT; SCENARIO AB Large type-I edge localized modes (ELMs) are completely suppressed in hybrid discharges for the first time by applying an edge resonant perturbation (RMP) using an internal coil set with toroidal mode number n = 3. This is an important advance in developing hybrid discharges as a baseline operating scenario for ITER. In these experiments on the DIII-D tokamak, the ELM suppression lasts for similar to 1 s in plasmas with normalized beta up to beta(N) = 2.5 (volume average beta up to beta = 3.4%) and a fusion performance factor as high as beta(N)H(98y2)/q(95)(2) = 0.20, which equals the value for the Q = 10 scenario in ITER. A strong interaction between the 3/2 neoclassical tearing mode and the RMP, which slows the pedestal toroidal rotation, limits the achievable beta(N) and the duration of ELM suppression. C1 [Petty, C. C.; Evans, T. E.; DeBoo, J. C.; La Haye, R. J.; Luce, T. C.; Politzer, P. A.; Ferron, J. R.; Hyatt, A. W.] Gen Atom Co, San Diego, CA 92186 USA. [Hudson, B.] Oak Ridge Inst Sci Educ, Oak Ridge, TN USA. [Allen, S. L.; Fenstermacher, M. E.; Jayakumar, R. J.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Doyle, E. J.] Univ Calif Los Angeles, Los Angeles, CA USA. [Moyer, R. A.] Univ Calif San Diego, San Diego, CA 92103 USA. RP Petty, CC (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. NR 37 TC 9 Z9 9 U1 1 U2 5 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD FEB PY 2010 VL 50 IS 2 AR 022002 DI 10.1088/0029-5515/50/2/022002 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 565VF UT WOS:000275322200003 ER PT J AU Sabbagh, SA Berkery, JW Bell, RE Bialek, JM Gerhardt, SP Menard, JE Betti, R Gates, DA Hu, B Katsuro-Hopkins, ON LeBlanc, BP Levinton, FM Manickam, J Tritz, K Yuh, H AF Sabbagh, S. A. Berkery, J. W. Bell, R. E. Bialek, J. M. Gerhardt, S. P. Menard, J. E. Betti, R. Gates, D. A. Hu, B. Katsuro-Hopkins, O. N. LeBlanc, B. P. Levinton, F. M. Manickam, J. Tritz, K. Yuh, H. TI Advances in global MHD mode stabilization research on NSTX SO NUCLEAR FUSION LA English DT Article; Proceedings Paper CT 22nd IAEA Fusion Energy Conference CY OCT 13-18, 2008 CL Palais des Nations, Geneva, SWITZERLAND SP Int Atom Energy Agcy HO Palais des Nations ID RESISTIVE WALL MODE; PLASMA ROTATION; HIGH-BETA; STABILITY; TOKAMAKS; INSTABILITIES; PHYSICS AB Stabilizing modes that limit plasma beta and reduce their deleterious effect on plasma rotation are key goals for the efficient operation of a fusion reactor. Passive stabilization and active control of global kink/ballooning modes and resistive wall modes (RWMs) have been demonstrated on NSTX and research is now advancing towards understanding the stabilization physics and reliably maintaining the high beta plasma for confident extrapolation to ITER and a fusion component test facility based on the spherical torus. Active n = 1 control experiments with an expanded sensor set, combined with low levels of n = 3 field phased to reduce error fields, reduced resonant field amplification and maintained plasma rotation, exceeded normalized beta = 6 and produced record discharge durations limited by magnet system constraints. Details of the observed RWM dynamics during active control show the mode being converted to a rotating kink that stabilizes or saturates and may lead to tearing modes. Discharges with rotation reduced by n = 3 magnetic braking suffer beta collapse at normalized beta = 4.2 approaching the no-wall limit, while normalized beta greater than 5.5 has been reached in these plasmas with n = 1 active control, in agreement with the single-mode RWM theory. Advanced state-space control algorithms proposed for RWM control in ITER theoretically yield significant stabilization improvements. Values of relative phase between the measured n = 1 mode and the applied correction field that experimentally produce stability/instability agree with RWM control modelling. Experimental mode destabilization occurs over a large range of plasma rotation, challenging the notion of a simple scalar critical rotation speed defining marginal stability. Stability calculations including kinetic modifications to the ideal MHD theory are applied to marginally stable experimental equilibria. Plasma rotation and collisionality variations are examined in the calculations. Intermediate rotation levels are less stable, consistent with experimental observations. Trapped ion resonances play a key role in this result. Recent experiments have demonstrated magnetic braking by non-resonant n = 2 fields. The observed rotation damping profile is broader than found for n = 3 fields. Increased ion temperature in the region of maximum braking torque increases the observed rate of rotation damping, consistent with the theory of neoclassical toroidal viscosity at low collisionality. C1 [Sabbagh, S. A.; Berkery, J. W.; Bialek, J. M.; Katsuro-Hopkins, O. N.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Bell, R. E.; Gerhardt, S. P.; Menard, J. E.; Gates, D. A.; LeBlanc, B. P.; Manickam, J.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Betti, R.; Hu, B.] Univ Rochester, Laser Energet Lab, Rochester, NY USA. [Levinton, F. M.; Yuh, H.] Nova Photon, Princeton, NJ USA. [Tritz, K.] Johns Hopkins Univ, Baltimore, MD USA. RP Sabbagh, SA (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. EM sabbagh@pppl.gov RI Berkery, John/B-7930-2011; Sabbagh, Steven/C-7142-2011; OI Menard, Jonathan/0000-0003-1292-3286 FU US Department of Energy [DE-FG02-99ER54524, DE-AC02-76CH03073] FX This research was supported by the US Department of Energy under contracts DE-FG02-99ER54524 and DE-AC02-76CH03073. NR 28 TC 69 Z9 69 U1 2 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD FEB PY 2010 VL 50 IS 2 AR 025020 DI 10.1088/0029-5515/50/2/025020 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 565VF UT WOS:000275322200025 ER PT J AU Bonanno, PL Gautier, S Sirenko, AA Kazimirov, A Cai, ZH Goh, WH Martin, J Martinez, A Moudakir, T Maloufi, N Assouar, MB Ramdane, A Le Gratiet, L Ougazzaden, A AF Bonanno, P. L. Gautier, S. Sirenko, A. A. Kazimirov, A. Cai, Z. -H. Goh, W. H. Martin, J. Martinez, A. Moudakir, T. Maloufi, N. Assouar, M. B. Ramdane, A. Le Gratiet, L. Ougazzaden, A. TI Submicron beam X-ray diffraction of nanoheteroepitaxily grown GaN: Experimental challenges and calibration procedures SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT Spring Meeting of the European-Materials-Research-Society CY JUN 08-12, 2009 CL Strasbourg, FRANCE DE GaN; X-ray diffraction; Synchrotron; Mismatched; Nano; RSM ID MOVPE AB Highly relaxed GaN nanodots and submicron ridges have been selectively grown in the NSAG regime using MOVPE on lattice mismatched 6H-SiC and AlN substrates. 2D real space and 3D reciprocal space mapping was performed with a CCD detector using 10.4 keV synchrotron X-ray radiation at the 2-ID-D micro-diffraction beamline at Advanced Photon Source (APS). Calibration procedures have been developed to overcome the unique challenges of analyzing NSAG structures grown on highly mismatched substrates. We Studied crystallographic planar bending on the submicron scale and found its correlation with strain relaxation in the NSAG ridges. (C) 2009 Elsevier B.V. All rights reserved. C1 [Bonanno, P. L.; Goh, W. H.; Ougazzaden, A.] Georgia Inst Technol, UMI Georgia Tech 2958, CNRS, F-57070 Metz, France. [Gautier, S.; Martin, J.; Moudakir, T.] Univ Metz, CNRS, UMR 7132, Lab Mat Opt Photon & Micronano Syst, F-57070 Metz, France. [Gautier, S.; Martin, J.; Moudakir, T.] SUPELEC, F-57070 Metz, France. [Sirenko, A. A.] New Jersey Inst Technol, Dept Phys, Newark, NJ 07102 USA. [Kazimirov, A.] Cornell Univ, CHESS, Ithaca, NY 14853 USA. [Cai, Z. -H.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Martinez, A.; Ramdane, A.; Le Gratiet, L.] CNRS, UPR 20, Lab Photon & Nanostruct, F-91460 Marcoussis, France. [Maloufi, N.] CNRS, UMR 7078, Lab Etud Textures & Applicat Mat, F-57045 Metz 1, France. [Assouar, M. B.] Nancy Univ, CNRS, Lab Phys Milieux Ionises & Applicat, F-54506 Vandoeuvre Les Nancy, France. RP Bonanno, PL (reprint author), Georgia Inst Technol, UMI Georgia Tech 2958, CNRS, F-57070 Metz, France. EM PeterBonanno@gatech.edu RI Assouar, Badreddine/A-7849-2011 OI Assouar, Badreddine/0000-0002-5823-3320 NR 12 TC 3 Z9 3 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD FEB PY 2010 VL 268 IS 3-4 BP 320 EP 324 DI 10.1016/j.nimb.2009.09.016 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 566HG UT WOS:000275360100020 ER PT J AU Franchini, F Kulkarni, M AF Franchini, Fabio Kulkarni, Manas TI Emptiness and depletion formation probability in spin models with inverse square interaction SO NUCLEAR PHYSICS B LA English DT Article DE EFP; DFP; Integrable models; Calogero-Sutherland; Haldane-Shastry; Hydrodynamics; Collective field theory ID ISOTROPIC HEISENBERG CHAIN; ASYMPTOTIC-BEHAVIOR; INTEGRABLE SYSTEMS; EXCHANGE; DETERMINANTS; TEMPERATURE AB We calculate the Emptiness Formation Probability (EFP) in the spin-Calogero Model (sCM) and Haldane-Shastry Model (HSM) using their hydrodynamic description. The EFP is the probability that a region of space is completely void of particles in the ground state of a quantum many body system. We calculate this probability in an instanton approach, by considering the more general problem of an arbitrary depletion of particles (DFP). In the limit of large size of depletion region the probability is dominated by a classical configuration in imaginary time that satisfies a set of boundary conditions and the action calculated on such solution gives the EFP/DFP with exponential accuracy. We show that the calculation for sCM can be elegantly performed by representing the gradientless hydrodynamics of spin particles as a sum of two spin-less Calogero collective field theories in auxiliary variables. Interestingly, the result we find for the EFP can be casted in a form reminiscing of spin-charge separation, which should be violated for a non-linear effect such as this. We also highlight the connections between sCM, HSM and lambda = 2 spin-less Calogero model from a EFP/DFP perspective. (C) 2009 Elsevier B.V. All rights reserved. C1 [Kulkarni, Manas] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Franchini, Fabio] Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy. [Kulkarni, Manas] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RP Kulkarni, M (reprint author), SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. EM fabio@ictp.it; kulkarni@grad.physics.sunysb.edu RI Franchini, Fabio/C-2193-2015 OI Franchini, Fabio/0000-0002-3429-8189 NR 32 TC 2 Z9 2 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0550-3213 J9 NUCL PHYS B JI Nucl. Phys. B PD FEB 1 PY 2010 VL 825 IS 3 BP 320 EP 338 DI 10.1016/j.nuclphysb.2009.09.005 PG 19 WC Physics, Particles & Fields SC Physics GA 523QR UT WOS:000272089900002 ER PT J AU Vary, JP Honkanen, H Li, J Maris, P Brodsky, SJ Harindranath, A de Teramond, GF Sternberg, P Ng, EG Yang, C AF Vary, J. P. Honkanen, H. Li, Jun Maris, P. Brodsky, S. J. Harindranath, A. de Teramond, G. F. Sternberg, P. Ng, E. G. Yang, C. TI Hamiltonian light-front field theory within an AdS/QCD basis SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS LA English DT Proceedings Paper CT International Workshop on Light Cone - Relativistic Hadronic and Particle Physics CY JUL 08-13, 2009 CL Sao Jose dos Campus, Inst Technol Aeronaut, BRAZIL HO Sao Jose dos Campus, Inst Technol Aeronaut ID SHELL-MODEL AB Non-perturbative Hamiltonian light-front quantum field theory presents opportunities and challenges that bridge particle physics and nuclear physics. Fundamental theories, such as Quantum Chromodynmamics (QCD) and Quantum Electrodynamics (QED) offer the promise of great predictive power spanning phenomena on all scales from the microscopic to cosmic scales, but new tools that do not rely exclusively on perturbation theory are required to make connection from one scale to the next. We outline recent theoretical and computational progress to build these bridges and provide illustrative results for nuclear structure and quantum field theory. As our framework we choose light-front gauge and a basis function representation with two-dimensional harmonic oscillator basis for transverse modes that corresponds with eigensolutions of the soft-wall AdS/QCD model obtained from light-front holography. C1 [Vary, J. P.; Honkanen, H.; Li, Jun; Maris, P.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Brodsky, S. J.] Stanford Univ, SLAC Natl Accelerator Lab, Menlo Pk, CA USA. [Harindranath, A.] Saha Inst Nucl Phys, Theory Grp, Kolkata 700064, India. [de Teramond, G. F.] Univ Costa Rica, San Jose, Costa Rica. [Sternberg, P.; Ng, E. G.; Yang, C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Vary, JP (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. NR 23 TC 3 Z9 3 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5632 EI 1873-3832 J9 NUCL PHYS B-PROC SUP JI Nucl. Phys. B-Proc. Suppl. PD FEB PY 2010 VL 199 BP 64 EP 73 DI 10.1016/j.nuclphysbps.2010.02.008 PG 10 WC Physics, Particles & Fields SC Physics GA 668LO UT WOS:000283271500008 ER PT J AU El-Bennich, B Ivanov, MA Roberts, CD AF El-Bennich, B. Ivanov, M. A. Roberts, C. D. TI Flavourful hadronic physics SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS LA English DT Proceedings Paper CT International Workshop on Light Cone - Relativistic Hadronic and Particle Physics CY JUL 08-13, 2009 CL Sao Jose dos Campus, Inst Technol Aeronaut, BRAZIL HO Sao Jose dos Campus, Inst Technol Aeronaut ID DYSON-SCHWINGER EQUATIONS; NONLEPTONIC-B-DECAYS; FORM-FACTORS; DISTRIBUTION AMPLITUDE; SPECTATOR SCATTERING; QCD FACTORIZATION; SYMMETRY-BREAKING; FINAL-STATES; HEAVY-QUARK; LIGHT AB We review theoretical approaches to form factors that arise in heavy-meson decays and are hadronic expressions of non-perturbative QCD. After motivating their origin in QCD factorisation, we retrace their evolution from quark-model calculations to non-perturbative QCD techniques with an emphasis on formulations of truncated heavy-light amplitudes based upon Dyson-Schwinger equations. We compare model predictions exemplarily for the F-B ->pi (q(2)) transition form factor and discuss new results for the (gD center dot D pi) coupling in the hadronic D* decay. C1 [El-Bennich, B.; Roberts, C. D.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Ivanov, M. A.] Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys, Dubna 141980, Russia. [Roberts, C. D.] Peking Univ, Dept Phys, Beijing 100871, Peoples R China. RP El-Bennich, B (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. OI Roberts, Craig/0000-0002-2937-1361 NR 59 TC 15 Z9 15 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5632 J9 NUCL PHYS B-PROC SUP JI Nucl. Phys. B-Proc. Suppl. PD FEB PY 2010 VL 199 BP 184 EP 190 DI 10.1016/j.nuclphysbps.2010.02.026 PG 7 WC Physics, Particles & Fields SC Physics GA 668LO UT WOS:000283271500026 ER PT J AU Roderick, O Anitescu, M Fischer, P AF Roderick, Oleg Anitescu, Mihai Fischer, Paul TI Polynomial Regression Approaches Using Derivative Information for Uncertainty Quantification SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article AB In this work we describe a polynomial regression approach that uses derivative information for analyzing the performance of a complex system that is described by a mathematical model depending on several stochastic parameters. We construct a surrogate model as a goal-oriented projection onto an incomplete space of polynomials; find coordinates of the projection by regression; and use derivative information to significantly reduce the number of the sample points required to obtain a good model. The simplified model can be used as a control variate to significantly reduce the sample variance of the estimate of the goal. For our test model, we take a steady-state description of heat distribution in the core of the nuclear reactor core, and as our goal we take the maximum centerline temperature in a fuel pin. For this case, the resulting surrogate model is substantially more computationally efficient than random sampling or approaches that do not use derivative information, and it has greater precision than linear models. C1 [Roderick, Oleg; Anitescu, Mihai; Fischer, Paul] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Roderick, O (reprint author), Portland State Univ, Dept Math & Stat, POB 751, Portland, OR 97207 USA. EM anitescu@mcs.anl.gov FU U.S. Department of Energy [DE-AC02-06CH11357] FX We are very grateful to the two anonymous referees for the careful reading of the manuscript and for their remarks that have substantially improved the paper. We are grateful to W.-S. Yang, A. Siegel, T. Fanning, and our other SHARP team colleagues for valuable comments. M. Anitescu is grateful to V. Mousseau and P. Turinsky for comments on the presentation of parts of this work at the Verification and Validation for Nuclear Systems Analysis Workshop, 2008. The authors were supported by contract DE-AC02-06CH11357 of the U.S. Department of Energy. NR 39 TC 19 Z9 19 U1 0 U2 4 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 EI 1943-748X J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD FEB PY 2010 VL 164 IS 2 BP 122 EP 139 PG 18 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 551QL UT WOS:000274224000003 ER PT J AU Pope, MA Tommasi, J AF Pope, Michael A. Tommasi, Jean TI Reactivity Effects of Differences Between JEFF-3.1 and ENDF/B-VI.8 in Analysis of Six MASURCA Cores of the R-Z Program SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article AB Reactivity contributions of differences between JEFF-3.1 and ENDF/B-VI.8 were analyzed for six early MASURCA cores of the R-Z program using ERANOS 2.1. These cores were designed such that their neutron spectra would emulate that of an oxide-fueled sodium-cooled fast reactor, some containing enriched uranium and others containing depleted uranium and plutonium. Effects of modeling assumptions and solution methods both in ECCO lattice calculations and in BISTRO S(n) flux solutions were first evaluated using JEFF-3.1 cross-section libraries. Comparisons were made between calculated and measured values for reactivity and several spectral indices. Reactivity effects of differences between JEFF-3.1 and ENDF/B-VI.8 were also quantified using perturbation theory analysis. The most important nuclide with respect to reactivity differences between cross-section libraries was 23 No, primarily a result of differences in the angular dependence of elastic scattering, which is more forward peaked in ENDF/B-VI.8 than in JEFF-3.1. Differences in (23)Na inelastic scattering cross sections between libraries also generated significant differences in reactivity, more due to the differences in magnitude of the cross sections than to the angular dependence. The nuclide (238)U was also found to be important with regard to reactivity differences between the two libraries mostly due to a large effect of inelastic scattering differences and two smaller effects of elastic scattering and fission cross sections. In the cores that contained plutonium, (239)Pu fission cross-section differences contributed significantly to the reactivity differences between libraries. C1 [Pope, Michael A.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Tommasi, Jean] CEA, DEN, F-13108 St Paul Les Durance, France. RP Pope, MA (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM michael.pope@inl.gov FU Idaho National Laboratory (INL); DOE [DE-AC07-05ID14517]; INL's Faculty Staff Exchange FX This work was supported by the Idaho National Laboratory (INL) through its Laboratory Directed Research and Development program. INL is operated for the U.S. Department of Energy (DOE) by Battelle Energy Alliance under DOE contract DE-AC07-05ID14517. The authors would like to thank J.-M. Ruggieri (CEA), P. Finck (INL), and D. Nigg (INL) for their help in making arrangements for this collaborative work. Additional funding was provided by the INL's Faculty Staff Exchange program. D. Combs (INL) helped to prepare some of the figures in this paper. NR 5 TC 0 Z9 0 U1 0 U2 0 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD FEB PY 2010 VL 164 IS 2 BP 162 EP 184 PG 23 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 551QL UT WOS:000274224000006 ER PT J AU Oji, LN Wilmarth, WR Hobbs, DT AF Oji, Lawrence N. Wilmarth, William R. Hobbs, David T. TI LOADING CAPACITIES FOR URANIUM, PLUTONIUM, AND NEPTUNIUM IN HIGH CAUSTIC NUCLEAR WASTE STORAGE TANKS CONTAINING SELECTED SORBENTS SO NUCLEAR TECHNOLOGY LA English DT Article DE fissile materials; sorbents; nuclear waste AB To evaluate the nuclear criticality safety in a typical nuclear waste storage tank, a study was initiated to measure the affinity of granular solids for plutonium, neptunium, and uranium from synthetic salt solutions and actual nuclear waste supernatant liquor. Granular solids such as activated carbon, hematite, and sodium phosphates, if present as sludge components in nuclear waste storage tanks, have been found to be capable of precipitating/sorbing actinides like plutonium, neptunium, and uranium from nuclear waste storage tank supernatant liquor. Our results show that the removal of plutonium and neptunium from simulants by tank solid sludge components may be due to the presence of the activated carbon and metal oxides. Thus, the potential may exist for the accumulation of fissile materials in nuclear waste storage tanks containing trace levels of these radionuclides during lengthy nuclear waste storage and processing. C1 [Oji, Lawrence N.; Wilmarth, William R.; Hobbs, David T.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Oji, LN (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM lawrence.oji@srs.gov NR 5 TC 5 Z9 5 U1 1 U2 5 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD FEB PY 2010 VL 169 IS 2 BP 143 EP 149 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 547HQ UT WOS:000273878000006 ER PT J AU Stewart, DE Anitescu, M AF Stewart, David E. Anitescu, Mihai TI Optimal control of systems with discontinuous differential equations SO NUMERISCHE MATHEMATIK LA English DT Article ID END-POINTS CONSTRAINTS; MAXIMUM PRINCIPLE; COULOMB-FRICTION; INCLUSION AB In this paper we discuss the problem of verifying and computing optimal controls of systems whose dynamics is governed by differential systems with a discontinuous right-hand side. In our work, we are motivated by optimal control of mechanical systems with Coulomb friction, which exhibit such a right-hand side. Notwithstanding the impressive development of nonsmooth and set-valued analysis, these systems have not been closely studied either computationally or analytically. We show that even when the solution crosses and does not stay on the discontinuity, differentiating the results of a simulation gives gradients that have errors of a size independent of the stepsize. This means that the strategy of "optimize the discretization" will usually fail for problems of this kind. We approximate the discontinuous right-hand side for the differential equations or inclusions by a smooth right-hand side. For these smoothed approximations, we show that the resulting gradients approach the true gradients provided that the start and end points of the trajectory do not lie on the discontinuity and that Euler's method is used where the step size is "sufficiently small" in comparison with the smoothing parameter. Numerical results are presented for a crude model of car racing that involves Coulomb friction and slip showing that this approach is practical and can handle problems of moderate complexity. C1 [Stewart, David E.] Univ Iowa, Dept Math, Iowa City, IA 52242 USA. [Anitescu, Mihai] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. RP Stewart, DE (reprint author), Univ Iowa, Dept Math, Iowa City, IA 52242 USA. EM dstewart@math.uiowa.edu FU Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy [W-31-109-ENG-38]; NSF [DMS-0139708]; Argonne National Laboratory FX This work was supported by the Mathematical, Information, and Computational Sciences Division subprogram of the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under Contract W-31-109-ENG-38. David Stewart was supported in part by NSF collaborative grant DMS-0139708. He would also like to thank the Argonne National Laboratory for their support and hospitality; part of this work was carried out while he was visiting Argonne National Laboratory. NR 39 TC 10 Z9 12 U1 0 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0029-599X J9 NUMER MATH JI Numer. Math. PD FEB PY 2010 VL 114 IS 4 BP 653 EP 695 DI 10.1007/s00211-009-0262-2 PG 43 WC Mathematics, Applied SC Mathematics GA 549JV UT WOS:000274045300005 ER PT J AU Huang, YJ Kim, E Cox, MJ Brodie, EL Brown, R Wiener-Kronish, JP Lynch, SV AF Huang, Yvonne J. Kim, Eugenia Cox, Michael J. Brodie, Eoin L. Brown, Ron Wiener-Kronish, Jeanine P. Lynch, Susan V. TI A Persistent and Diverse Airway Microbiota Present during Chronic Obstructive Pulmonary Disease Exacerbations SO OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY LA English DT Article ID PSEUDOMONAS-AERUGINOSA; CYSTIC-FIBROSIS; NOSOCOMIAL PNEUMONIA; GASTRIC COLONIZATION; BACTERIAL DIVERSITY; INFECTIONS; DNA; IDENTIFICATION; BACTEREMIA; CHILDREN AB Acute exacerbations of chronic obstructive pulmonary disease (COPD) are a major source of morbidity and contribute significantly to healthcare costs. Although bacterial infections are implicated in nearly 50% of exacerbations, only a handful of pathogens have been consistently identified in COPD airways, primarily by culture-based methods, and the bacterial microbiota in acute exacerbations remains largely uncharacterized. The aim of this study was to comprehensively profile airway bacterial communities using a culture-independent microarray, the 16S rRNA PhyloChip, of a cohort of COPD patients requiring ventilatory support and antibiotic therapy for exacerbation-related respiratory failure. PhyloChip analysis revealed the presence of over 1,200 bacterial taxa representing 140 distinct families, many previously undetected in airway diseases; bacterial community composition was strongly influenced by the duration of intubation. A core community of 75 taxa was detected in all patients, many of which are known pathogens. Bacterial community diversity in COPD airways is substantially greater than previously recognized and includes a number of potential pathogens detected in the setting of antibiotic exposure. Comprehensive assessment of the COPD airway microbiota using high-throughput, culture-independent methods may prove key to understanding the relationships between airway bacterial colonization, acute exacerbation, and clinical outcomes in this and other chronic inflammatory airway diseases. C1 [Huang, Yvonne J.] Univ Calif San Francisco, Dept Med, Div Pulm & Crit Care Med, San Francisco, CA 94143 USA. [Kim, Eugenia; Cox, Michael J.; Brown, Ron; Lynch, Susan V.] Univ Calif San Francisco, Dept Anesthesia & Perioperat Care, San Francisco, CA 94143 USA. [Brodie, Eoin L.] Lawrence Berkeley Natl Lab, Dept Ecol, Div Earth Sci, Berkeley, CA USA. [Wiener-Kronish, Jeanine P.] Massachusetts Gen Hosp, Dept Anesthesia & Crit Care, Boston, MA 02114 USA. RP Lynch, SV (reprint author), Univ Calif San Francisco, Dept Med, Div Gastroenterol, 513 Parnassus Ave,S-357, San Francisco, CA 94143 USA. EM susan.lynch@ucsf.edu RI Cox, Michael/A-6959-2010; Lynch, Susan/B-6272-2009; Brodie, Eoin/A-7853-2008; OI Brodie, Eoin/0000-0002-8453-8435; Cox, Michael/0000-0002-4002-1506 FU University of California [DOE DE-AC02-05CH11231]; American Lung Association; NIH [AI075410] FX The authors thank Yvette Piceno, Todd DeSantis, and Gary Andersen at Lawrence Berkeley National Laboratory for their advice and technical support in this study, and to Homer Boushey, M.D., for his critique of the manuscript. Part of this work was performed at Lawrence Berkeley National Laboratory under the auspices of the University of California under contract number DOE DE-AC02-05CH11231. Research was supported by a Tobacco-Related Disease Research Program (Univ. of California) fellowship to Y.J.H. and an American Lung Association grant to S.V.L. S.V.L. and E.L.B. are funded also by NIH Award (AI075410). NR 43 TC 93 Z9 97 U1 1 U2 13 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1536-2310 J9 OMICS JI OMICS PD FEB PY 2010 VL 14 IS 1 BP 9 EP 59 DI 10.1089/omi.2009.0100 PG 51 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 554GO UT WOS:000274423700002 PM 20141328 ER PT J AU Hehlen, MP Bennett, BL Castro, A Williams, DJ Tornga, SC Muenchausen, RE AF Hehlen, Markus P. Bennett, Bryan L. Castro, Alonso Williams, Darrick J. Tornga, Stephanie C. Muenchausen, Ross E. TI Synthesis and optical properties of Ga2S3-Na2S-CSCl glasses SO OPTICAL MATERIALS LA English DT Article DE Gallium sodium sulfide glass synthesis; Chalcogenide glass; Band gap engineering; Refractive-index dispersion; Frequency-domain interferometry; Energy-dispersive X-ray spectroscopy; Chemical durability ID GALLIUM-LANTHANUM-SULFIDE; 1.3 MU-M; CHANNEL WAVE-GUIDES; CHALCOHALIDE GLASSES; CHALCOGENIDE GLASSES; PASSIVE APPLICATIONS; FIBEROPTIC PREFORMS; THERMAL-PROPERTIES; SILICATE-GLASSES; ER3+ IONS AB Ga2S3-Na2S-CSCl (GNC) glasses were synthesized in open crucibles under inert atmosphere. The evaporative loss of CsCl during glass melting was measured by energy-dispersive X-ray spectroscopy and corrected for by biasing the CsCl concentration in the mixture of starting materials to obtain glasses with accurately controlled stoichiometry. Glass-transition temperatures, refractive-index dispersions, visible and near-infrared transmittance, and band edge energies were measured for four GNC glasses with varying CsCl content, and the respective values were found to significantly improve over earlier studies that did not mitigate CsCl evaporative losses. Glass durability was assessed by a water immersion test at 74 degrees C. A respective weight loss rate of 39.2 +/- 0.3 mu g/(cm(2) h) was found for a GNC glass containing 14 mol% CsCl, indicating good glass durability despite the high CsCl content. The refractive-index dispersion measurements indicate that the Cs+ and Cl- radii are 16% larger in GNC glass than in bulk crystalline CsCl. The band edge energy increases from 2.97 eV in Ga2S3-Na2S glass to 3.32 eV in Ga2S3-Na2S-CSCl glass containing 20 mol% CsCl as a result of introducing Cl- ions having a large optical electronegativity. The large bandgap of 3.32 eV, the low (450 cm(-1)) phonon energy, and the good chemical durability make GNC glass an attractive host material for rare-earth ions with radiative transitions in the near ultra-violet, visible, and near-infrared spectral regions. (C) 2009 Elsevier B.V. All rights reserved. C1 [Hehlen, Markus P.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Hehlen, MP (reprint author), Los Alamos Natl Lab, Div Chem, Mailstop J964, Los Alamos, NM 87545 USA. EM hehlen@lanl.gov FU US Department of Energy [DE-AC52-06NA25396]; Energetic Materials Research and Testing Center (EMRTC) at New Mexico Tech (Socorro, NM) FX We gratefully acknowledge the support of the US Department of Energy through the LANL/LDRD Program for this work. This work was performed, in part, at the Center for integrated Nanotechnologies (CINT), a US Department of Energy, Office of Basic Energy Sciences user facility. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under contract DE-AC52-06NA25396. We gratefully acknowledge the Energetic Materials Research and Testing Center (EMRTC) at New Mexico Tech (Socorro, NM) for providing access to the differential scanning calorimeter. NR 59 TC 5 Z9 5 U1 2 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0925-3467 J9 OPT MATER JI Opt. Mater. PD FEB PY 2010 VL 32 IS 4 BP 491 EP 499 DI 10.1016/j.optmat.2009.11.001 PG 9 WC Materials Science, Multidisciplinary; Optics SC Materials Science; Optics GA 555KH UT WOS:000274509100001 ER PT J AU Clark, JN Putkunz, CT Pfeifer, MA Peele, AG Williams, GJ Chen, B Nugent, KA Hall, C Fullagar, W Kim, S McNulty, I AF Clark, J. N. Putkunz, C. T. Pfeifer, M. A. Peele, A. G. Williams, G. J. Chen, B. Nugent, K. A. Hall, C. Fullagar, W. Kim, S. McNulty, I. TI Use of a complex constraint in coherent diffractive imaging SO OPTICS EXPRESS LA English DT Article ID PHASE RETRIEVAL; MICROSCOPY; OPTIMIZATION; REFLECTION; ALGORITHMS AB We demonstrate use of a complex constraint based on the interaction of x-rays with matter for reconstructing images from coherent X-ray diffraction. We show the complementary information provided by the phase and magnitude of the reconstructed wavefield greatly improves the quality of the resulting estimate of the transmission function of an object without the need for a priori information about the object composition. (C) 2010 Optical Society of America C1 [Clark, J. N.; Putkunz, C. T.; Pfeifer, M. A.; Peele, A. G.] La Trobe Univ, Dept Phys, Bundoora, Vic 3086, Australia. [Williams, G. J.; Chen, B.; Nugent, K. A.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Kim, S.; McNulty, I.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Hall, C.; Fullagar, W.] Monash Univ, Sch Phys, Clayton, Vic 3800, Australia. RP Clark, JN (reprint author), La Trobe Univ, Dept Phys, Bundoora, Vic 3086, Australia. EM A.Peele@latrobe.edu.au RI Pfeifer, Mark/C-4132-2011; Williams, Garth/H-1606-2012; Nugent, Keith/J-2699-2012; Nugent, Keith/I-4154-2016 OI Nugent, Keith/0000-0003-1522-8991; Nugent, Keith/0000-0002-4281-3478 FU Australian Research Council Centre of Excellence; U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We acknowledge the support of the Australian Research Council Centre of Excellence for Coherent X-ray Science and the Australian Synchrotron Research Program. Use of the Advanced Photon Source is supported by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 37 TC 22 Z9 22 U1 1 U2 8 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD FEB 1 PY 2010 VL 18 IS 3 BP 1981 EP 1993 DI 10.1364/OE.18.001981 PG 13 WC Optics SC Optics GA 559AD UT WOS:000274791200021 PM 20174028 ER PT J AU Chatterjee, R Yu, MB Stein, A Kwong, DL Kimerling, LC Wong, CW AF Chatterjee, Rohit Yu, Mingbin Stein, Aaron Kwong, Dim-Lee Kimerling, Lionel C. Wong, Chee Wei TI Demonstration of a hitless bypass switch using nanomechanical perturbation for high-bitrate transparent networks SO OPTICS EXPRESS LA English DT Article ID OPTICAL NETWORKS; WAVE-GUIDES; SILICON; CHIP; DEVICES AB We demonstrate an optical hitless bypass switch based on nanomechanical proximity perturbation for high-bitrate transparent networks. Embedded in a single-level pi-imbalanced Mach-Zehnder interferometer, the two nanomechanical-based Delta beta-directional couplers permit broadband signal rerouting on-chip, while the selected wavelength remains unaffected at all times for optical filter reconfiguration. The optical hitless switch is implemented in the silicon nanophotonics platform, with experimental measurements matching well with numerical and theoretical modeling. (C) 2010 Optical Society of America C1 [Chatterjee, Rohit; Wong, Chee Wei] Columbia Univ, Ctr Integrated Sci & Engn Solid State Sci & Engn, New York, NY 10027 USA. [Yu, Mingbin; Kwong, Dim-Lee] Inst Microelect, Singapore 117685, Singapore. [Stein, Aaron] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Kimerling, Lionel C.] MIT, Dept Mat Sci & Engn, Microphoton Ctr, Cambridge, MA 02139 USA. [Kimerling, Lionel C.] MIT, Dept Mat Sci & Engn, Ctr Mat Proc, Cambridge, MA 02139 USA. RP Chatterjee, R (reprint author), Columbia Univ, Ctr Integrated Sci & Engn Solid State Sci & Engn, New York, NY 10027 USA. EM cww2104@columbia.edu RI Wong, Chee Wei/E-9169-2017; OI Stein, Aaron/0000-0003-4424-5416 FU DARPA MTO Electronics and Photonics Integrated Circuits program FX This work is dedicated to Professor Herman Haus, who originated the configuration of this hitless switch. We acknowledge stimulating discussions with M. Popovic, M. Watts, X. Yang, S. Kocaman, M. Aras, A. Biberman, K. Bergman, and M. Beals; generous use of the vapor HF system with J. Hone and M. Klima; use of probes from K. Shepard; and partial funding from the DARPA MTO Electronics and Photonics Integrated Circuits program. NR 43 TC 4 Z9 4 U1 0 U2 2 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD FEB 1 PY 2010 VL 18 IS 3 BP 3045 EP 3058 DI 10.1364/OE.18.003045 PG 14 WC Optics SC Optics GA 559AD UT WOS:000274791200128 PM 20174135 ER PT J AU Albert, F Anderson, SG Anderson, GA Betts, SM Gibson, DJ Hagmann, CA Hall, J Johnson, MS Messerly, MJ Semenov, VA Shverdin, MY Tremaine, AM Hartemann, FV Siders, CW McNabb, DP Barty, CPJ AF Albert, F. Anderson, S. G. Anderson, G. A. Betts, S. M. Gibson, D. J. Hagmann, C. A. Hall, J. Johnson, M. S. Messerly, M. J. Semenov, V. A. Shverdin, M. Y. Tremaine, A. M. Hartemann, F. V. Siders, C. W. McNabb, D. P. Barty, C. P. J. TI Isotope-specific detection of low-density materials with laser-based monoenergetic gamma-rays SO OPTICS LETTERS LA English DT Article ID RESONANCE FLUORESCENCE; SCATTERING; FACILITY AB What we believe to be the first demonstration of isotope-specific detection of a low-Z and low density object shielded by a high-Z and high-density material using monoenergetic gamma rays is reported. The isotopespecific detection of LiH shielded by Pb and Al is accomplished using the nuclear resonance fluorescence line of (7)Li at 478 keV. Resonant photons are produced via laser-based Compton scattering. The detection techniques are general, and the confidence level obtained is shown to be superior to that yielded by conventional x-ray and gamma-ray techniques in these situations. (C) 2010 Optical Society of America C1 [Albert, F.; Anderson, S. G.; Anderson, G. A.; Betts, S. M.; Gibson, D. J.; Hagmann, C. A.; Hall, J.; Johnson, M. S.; Messerly, M. J.; Semenov, V. A.; Shverdin, M. Y.; Tremaine, A. M.; Hartemann, F. V.; Siders, C. W.; McNabb, D. P.; Barty, C. P. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Albert, F (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM albert6@llnl.gov RI Albert, Felicie/G-2645-2013 FU Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Domestic Nuclear Detection Organization (DNDO) of the Department of Homeland Security FX This work was performed under the auspices of the U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. The support from the Domestic Nuclear Detection Organization (DNDO) of the Department of Homeland Security is also acknowledged. NR 12 TC 33 Z9 34 U1 2 U2 14 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD FEB 1 PY 2010 VL 35 IS 3 BP 354 EP 356 PG 3 WC Optics SC Optics GA 551GX UT WOS:000274196100029 PM 20125719 ER PT J AU Arteaga, O Canillas, A Crusats, J El-Hachemi, Z Jellison, GE Llorca, J Ribo, JM AF Arteaga, Oriol Canillas, Adolf Crusats, Joaquim El-Hachemi, Zoubir Jellison, Gerald E., Jr. Llorca, Jordi Ribo, Josep M. TI Chiral Biases in Solids by Effect of Shear Gradients: A Speculation on the Deterministic Origin of Biological Homochirality SO ORIGINS OF LIFE AND EVOLUTION OF BIOSPHERES LA English DT Article DE Carbonaceous; Chondrite; Chirality; Circular birefringence; Meteorite; Polarization State ID 2-MODULATOR GENERALIZED ELLIPSOMETRY; MIRROR SYMMETRY-BREAKING; MUELLER MATRIX; CARBONACEOUS CHONDRITES; STIRRED SOLUTIONS; ORGANIC-MATTER; AMINO-ACIDS; METEORITES; PHYLLOSILICATES; NANOTUBES AB We present an experimental approach to the study of the chirality of three CM2 meteorite solid samples by direct measurement of the optical activity (circular birefringence; CB). The measurements are based on transmission two modulator generalized ellipsometry in conjuction with microscope optics to map the CB of the samples. In spite of the complexity of such optical analysis, these first results indicate the presence of optically active areas in the meteorite solid matrix. In the case of the Murchison sample the statistics of the CB mapping shows a bimodal distribution with a bias to negative CB values. The composition of the active areas probably corresponds to serpentines and other poorly identified phyllosilicate phases. The results are compatible with the hypothesis that in a mineral-based scenario for the origin of life a CB sign bias in the chiral fractures originated by mechanical and flow shear gradients on clays Could be later transferred to the reactions of the absorbed organic compounds. C1 [Crusats, Joaquim; Ribo, Josep M.] Univ Barcelona, Inst Ciencias Cosmos, Dept Quim Organ, E-08028 Barcelona, Catalonia, Spain. [Arteaga, Oriol; Canillas, Adolf] Univ Barcelona, IN2UB, Dept Fis Aplicada & Opt, E-08028 Barcelona, Catalonia, Spain. [El-Hachemi, Zoubir] CSIC, INTA, Ctr Astrobiol, Madrid 28850, Spain. [Jellison, Gerald E., Jr.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. [Llorca, Jordi] Univ Politecn Cataluna, Inst Tecn Energet, E-08028 Barcelona, Spain. RP Ribo, JM (reprint author), Univ Barcelona, Inst Ciencias Cosmos, Dept Quim Organ, Marti & Franques 1, E-08028 Barcelona, Catalonia, Spain. EM jmribo@ub.edu RI Arteaga, Oriol/F-7465-2011; Llorca, Jordi/M-8134-2014; Arteaga, Oriol/B-9568-2015 OI Llorca, Jordi/0000-0002-7447-9582; Arteaga, Oriol/0000-0001-9015-0237 FU MEC of Spain [FPU AP2006-00193]; Spanish Ministry of Science (MEC) [AYA2006-15648-C02-01, CM07030]; Division of Materials Science and Engineering, Office of Basic Sciences, U.S. Department of Energy [DE-AC0-00OR22725] FX We thank the Center for Meteorite Studies of the Arizona State University (Tempe) for the loan of the meteorite thin sections. We thank Prof. Sandra Pizzarello and Dr. L. Garvie for discussion and useful hints in the election of the meteorit samples. We thank Prof. M. L. Fernandez Diaz, Prof. S. Gali and Dr. J. Proenza for useful discussions on the structure of serpentines. O. A. acknowledges financial support from the MEC of Spain through the grant FPU AP2006-00193. This work has been supported by the Spanish Ministry of Science (MEC) AYA2006-15648-C02-01 and is under the aegis of the COST Action CM07030: Systems Chemistry. GEJ acknowledges the financial support of the Division of Materials Science and Engineering, Office of Basic Sciences, U.S. Department of Energy, under contract DE-AC0-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. NR 60 TC 7 Z9 7 U1 0 U2 5 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0169-6149 J9 ORIGINS LIFE EVOL B JI Orig. Life Evol. Biosph. PD FEB PY 2010 VL 40 IS 1 BP 27 EP 40 DI 10.1007/s11084-009-9184-3 PG 14 WC Biology SC Life Sciences & Biomedicine - Other Topics GA 550QE UT WOS:000274142200004 PM 19924561 ER PT J AU Susan, DF Van Den Avyle, JA Monroe, SL Sorensen, NR McKenzie, BB Christensen, JE Michael, JR Walker, CA AF Susan, D. F. Van Den Avyle, J. A. Monroe, S. L. Sorensen, N. R. McKenzie, B. B. Christensen, J. E. Michael, J. R. Walker, C. A. TI The Effects of Pre-Oxidation and Alloy Chemistry of Austenitic Stainless Steels on Glass/Metal Sealing SO OXIDATION OF METALS LA English DT Article DE Oxidation; Stainless steel; Glass; Sealing; Characterization; Silicon; Manganese; Chromium; Sulfur ID HIGH-TEMPERATURE OXIDATION; REACTIVE-ELEMENTS; SMALL ADDITIONS; SILICON; RESISTANCE; BEHAVIOR; SCALES; CHROMIA; ALUMINA; OXIDES AB An oxidation treatment is often performed on austenitic stainless steel prior to joining to alkali barium silicate glass to produce hermetic seals. The thin oxide formed during this pre-oxidation step acts as a transitional layer and a source of Cr and other elements that diffuse into the glass during the subsequent bonding process. Pre-oxidation is performed in a low pO(2) atmosphere to avoid iron oxide formation; the final oxide is composed of Cr(2)O(3), MnCr(2)O(4) spinel, and SiO(2). Significant heat-to-heat variations in the oxidation behavior of austenitic stainless steel were observed in this work, resulting in inconsistent glass/metal seal behavior. Twenty-five (25) stainless steel heats were examined including 304L, 316L, and experimental high sulfur alloys similar to 303SS. The objectives were to characterize the oxidation kinetics, the oxide morphologies, and compositions that affect glass/metal adhesion. It was found that poor glass sealing is associated with a more continuous layer of SiO(2) at the metal/oxide interface. The effects of alloy chemistry, in particular Mn and Si concentrations, on glass/metal sealing behavior were empirically determined. A criterion based on the Mn/Si ratio was developed for use in selecting heats with good glass/metal bonding characteristics. To test this criterion, four other austenitic stainless steels were evaluated: 21-6-9 (also known by original Armco Steel Co. trade name Nitronic(A (R)) 40), 22-13-5 (Nitronic(A (R)) 50), Nitronic(A (R)) 60, and Gall-Tough(A (R)) (Carpenter Technology Corp.). These alloys have compositions significantly different from 300-series alloys, but they were still found to comply with the compositional guidelines developed for predicting glass/metal adhesion. C1 [Susan, D. F.; Van Den Avyle, J. A.; Monroe, S. L.; Sorensen, N. R.; McKenzie, B. B.; Christensen, J. E.; Michael, J. R.; Walker, C. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Susan, DF (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM dfsusan@sandia.gov NR 39 TC 8 Z9 9 U1 3 U2 24 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0030-770X J9 OXID MET JI Oxid. Met. PD FEB PY 2010 VL 73 IS 1-2 BP 311 EP 335 DI 10.1007/s11085-009-9181-y PG 25 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 542GR UT WOS:000273481500018 ER PT J AU Freelon, B Augustsson, A Guo, JH Medaglia, PG Tebano, A Balestrino, G Dong, CL Chang, CL Glans, PA Learmonth, T Smith, KE Nordgren, J Hussain, Z AF Freelon, B. Augustsson, A. Guo, J. -H. Medaglia, P. G. Tebano, A. Balestrino, G. Dong, C. L. Chang, C. L. Glans, P. A. Learmonth, T. Smith, K. E. Nordgren, J. Hussain, Z. TI Low energy electronic spectroscopy of an infinite-layer cuprate: A resonant inelastic X-ray scattering study of CaCuO2 SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article DE Electronic structure; X-ray absorption spectra; X-ray emission spectra; Electronic density of states; High-temperature superconductors; Calcium compounds; Infinite-layer cuprates ID HIGH-TC SUPERCONDUCTORS; TRANSITION-METAL OXIDES; FLUORESCENCE SPECTROSCOPY; EMISSION-SPECTROSCOPY; TUNABLE-EXCITATION; ABSORPTION; LA2-XSRXCUO4; BAND; OXYGEN; STATES AB We report the results of Oxygen K-edge soft X-ray absorption and emission spectroscopy that was performed on an infinite-layer insulating cuprate thin film CaCuO2 Experimentally obtained spectra arc consistent with local density approximation calculations X-ray absorption spectra show a close resemblance to spectra obtained from homologous single crystal cuprates In addition to d-d excitations. X-ray emission spectra reveal the presence of Zhang-Rice singlet states in the infinite-layer CuO2 planes The question of whether the Zhang-Rice singlet features are masked by the O 2p main-band is addressed. it is possible to quantify the position of the Zhang-Rice singlet using emission intensity profiles X-ray emission is demonstrated as a tool for understanding CuO2 planar electronic correlation in the prototypical infinite-layer The energy difference, 2 0 eV, between the oxygen main-band and the Zhang-Rice singlet band is found to match values obtained theoretically using established planar electronic correlation parameters Published by Elsevier B.V. C1 [Freelon, B.; Augustsson, A.; Glans, P. A.; Hussain, Z.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Freelon, B.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Guo, J. -H.; Medaglia, P. G.; Tebano, A.; Balestrino, G.] Univ Roma Tor Vergata, Dipartimento Ingn Meccan, I-00133 Rome, Italy. [Guo, J. -H.; Medaglia, P. G.; Tebano, A.; Balestrino, G.] Univ Roma Tor Vergata, CNR INFM COHERENTIA, I-00133 Rome, Italy. [Dong, C. L.; Chang, C. L.] Tamkang Univ, Dept Phys, Tamsui, Taiwan. [Learmonth, T.; Smith, K. E.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Nordgren, J.] Uppsala Univ, Dept Phys, S-75121 Uppsala, Sweden. RP Freelon, B (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, 1 Cyclotron Rd,MS 7-100, Berkeley, CA 94720 USA. RI Glans, Per-Anders/G-8674-2016; OI Augustsson, Andreas/0000-0002-9463-3700; Chang, Ching-Lin/0000-0001-8547-371X; TEBANO, ANTONELLO/0000-0002-0229-671X FU US Department of Energy [DEAC02-05CH11231, DE-AC03-76SF008 MASEL, DE-FG02-98ERE45680]; Italian PRIN [2006025382]; Swedish Research Council; ALS Fellowship Program FX This work was supported by the US Department of Energy, under Contract No. DEAC02-05CH11231 and Office of Basic Energy Sciences U S. DOE under Contract No. DE-AC03-76SF008 MASEL s.r.l., by Italian PRIN Project 2006025382, and the Swedish Research Council. A A. acknowledges the support from ALS Fellowship Program The Boston University program is supported, in part, by the Department of Energy under Contract No. DE-FG02-98ERE45680. NR 41 TC 0 Z9 0 U1 3 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD FEB 1 PY 2010 VL 470 IS 3 BP 187 EP 192 DI 10.1016/j.physc.2009.12.028 PG 6 WC Physics, Applied SC Physics GA 569QN UT WOS:000275613600001 ER PT J AU Hoener, M Rolles, D Aguilar, A Bilodeau, RC Esteves, D Velasco, PO Pesic, ZD Red, E Berrah, N AF Hoener, M. Rolles, D. Aguilar, A. Bilodeau, R. C. Esteves, D. Olalde Velasco, P. Pesic, Z. D. Red, E. Berrah, N. TI Site-selective ionization and relaxation dynamics in heterogeneous nanosystems SO PHYSICAL REVIEW A LA English DT Article ID CLUSTERS; XE AB We investigated energy and charge transfer mechanisms as well as fragmentation dynamics in site-selectively ionized heterogeneous core-shell clusters using a high-resolution photoelectron-ion coincidence technique. We show that after inner-shell photoionization, energy or charge is transferred to neighboring atoms and that the subsequent charge localization depends on the site of ionization. Cluster bulk ionization leads to more distinct fragmentation channels than surface ionization. We attribute this to different electronic decay, charge localization, and fragmentation times and conclude that charge transfer and fragmentation dynamics are strongly influenced by the environment of the initially ionized atom. C1 [Hoener, M.; Rolles, D.; Bilodeau, R. C.; Berrah, N.] Western Michigan Univ, Kalamazoo, MI 49008 USA. [Hoener, M.; Aguilar, A.; Bilodeau, R. C.; Esteves, D.; Olalde Velasco, P.; Red, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Rolles, D.] CFEL, Max Planck Adv Study Grp, D-22761 Hamburg, Germany. [Esteves, D.] Univ Nevada, Reno, NV 89557 USA. [Olalde Velasco, P.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [Pesic, Z. D.] Inst Phys, Lab Atom Collis Proc, Belgrade 11001, Serbia. RP Hoener, M (reprint author), Western Michigan Univ, Kalamazoo, MI 49008 USA. EM MHoener@lbl.gov OI Bilodeau, Rene/0000-0001-8607-2328 FU Office of Basic Energy Sciences, US Department of Energy, Chemical Sciences, Geosciences and Biosciences Division; Alexander von Humboldt Foundation FX This work was supported by the Office of Basic Energy Sciences, US Department of Energy, Chemical Sciences, Geosciences and Biosciences Division. M. H. and D. R. are grateful to the Alexander von Humboldt Foundation for support through the Feodor Lynen Program. NR 23 TC 8 Z9 8 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD FEB PY 2010 VL 81 IS 2 AR 021201 DI 10.1103/PhysRevA.81.021201 PG 4 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 562RW UT WOS:000275072500007 ER PT J AU Horner, DA Rescigno, TN McCurdy, CW AF Horner, D. A. Rescigno, T. N. McCurdy, C. W. TI Nuclear recoil cross sections from time-dependent studies of two-photon double ionization of helium SO PHYSICAL REVIEW A LA English DT Article ID RADIATION; HE AB We describe how the nuclear recoil cross sections produced by two-photon double ionization of helium can reveal aspects of the underlying triple-differential cross sections (TDCSs) used in their computation-even though the recoil of the He(2+) nucleus reflects an integration over all electron ejection directions and energy sharings. Accurate TDCSs, extracted from nonperturbative solutions of the time-dependent Schrodinger equation, are used here in computations of the nuclear recoil cross section at energies a few electron volts below the threshold for sequential double ionization. In this range of photon energies, the nuclear recoil patterns prefigure some important aspects of the sequential mechanism that dominates at higher energies. C1 [Horner, D. A.; Rescigno, T. N.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [McCurdy, C. W.] Lawrence Berkeley Natl Lab, Chem Sci & Ultrafast Xray Sci Lab, Berkeley, CA 94720 USA. [McCurdy, C. W.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [McCurdy, C. W.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. RP Horner, DA (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. FU US Department of Energy [DE-AC02-05CH11231]; US Department of Energy Office of Basic Energy Sciences; National Science Foundation [PHY-0604628] FX This work was performed under the auspices of the US Department of Energy by the Los Alamos National Laboratory and the University of California Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231 and was supported by the US Department of Energy Office of Basic Energy Sciences, Division of Chemical Sciences. C. W. M. acknowledges support from the National Science Foundation (Grant No. PHY-0604628). NR 25 TC 17 Z9 17 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD FEB PY 2010 VL 81 IS 2 AR 023410 DI 10.1103/PhysRevA.81.023410 PG 6 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 562RW UT WOS:000275072500125 ER PT J AU Jiang, YH Rudenko, A Plesiat, E Foucar, L Kurka, M Kuhnel, KU Ergler, T Perez-Torres, JF Martin, F Herrwerth, O Lezius, M Kling, MF Titze, J Jahnke, T Dorner, R Sanz-Vicario, JL Schoffler, M van Tilborg, J Belkacem, A Ueda, K Zouros, TJM Dusterer, S Treusch, R Schroter, CD Moshammer, R Ullrich, J AF Jiang, Y. H. Rudenko, A. Plesiat, E. Foucar, L. Kurka, M. Kuehnel, K. U. Ergler, Th. Perez-Torres, J. F. Martin, F. Herrwerth, O. Lezius, M. Kling, M. F. Titze, J. Jahnke, T. Doerner, R. Sanz-Vicario, J. L. Schoeffler, M. van Tilborg, J. Belkacem, A. Ueda, K. Zouros, T. J. M. Duesterer, S. Treusch, R. Schroeter, C. D. Moshammer, R. Ullrich, J. TI Tracing direct and sequential two-photon double ionization of D-2 in femtosecond extreme-ultraviolet laser pulses SO PHYSICAL REVIEW A LA English DT Article ID H-2 AB Two-photon double ionization (TPDI) of D-2 is studied for 38-eV photons at the Free Electron Laser in Hamburg (FLASH). Based on model calculations, instantaneous and sequential absorption pathways are identified as separated peaks in the measured D+ + D+ fragment kinetic energy release (KER) spectra. The instantaneous process appears at high KER, corresponding to ionization at the molecule's equilibrium distance, in contrast to sequential ionization mainly leading to low-KER contributions. Measured fragment angular distributions are in good agreement with theory. C1 [Jiang, Y. H.; Kurka, M.; Kuehnel, K. U.; Ergler, Th.; Schroeter, C. D.; Moshammer, R.; Ullrich, J.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Rudenko, A.; Foucar, L.; Ullrich, J.] CFEL, Max Planck Adv Study Grp, D-22607 Hamburg, Germany. [Plesiat, E.; Perez-Torres, J. F.; Martin, F.] Univ Autonoma Madrid, Dept Quim C 9, E-28049 Madrid, Spain. [Herrwerth, O.; Lezius, M.; Kling, M. F.] Max Planck Inst Quantum Opt, D-85748 Garching, Germany. [Titze, J.; Jahnke, T.; Doerner, R.] Goethe Univ Frankfurt, Inst Kernphys, D-60486 Frankfurt, Germany. [Sanz-Vicario, J. L.] Univ Antioquia, Inst Fis, Medellin, Colombia. [Schoeffler, M.; van Tilborg, J.; Belkacem, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Ueda, K.] Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Sendai, Miyagi 9808577, Japan. [Zouros, T. J. M.] Univ Crete, Dept Phys, GR-71003 Iraklion, Crete, Greece. [Duesterer, S.; Treusch, R.] DESY, D-22607 Hamburg, Germany. RP Jiang, YH (reprint author), Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. RI Zouros, Theo/C-7212-2011; Doerner, Reinhard/A-5340-2008; Rudenko, Artem/C-7412-2009; Kling, Matthias/D-3742-2014; Schoeffler, Markus/B-6261-2008; Perez-Torres, Jhon Fredy/G-4448-2014; Martin, Fernando/C-3972-2014; Plesiat, Etienne/M-6248-2014; Treusch, Rolf/C-3935-2015 OI Zouros, Theo/0000-0002-5124-2128; Doerner, Reinhard/0000-0002-3728-4268; Rudenko, Artem/0000-0002-9154-8463; Schoeffler, Markus/0000-0001-9214-6848; Perez-Torres, Jhon Fredy/0000-0002-8991-2502; Martin, Fernando/0000-0002-7529-925X; FU Max-Planck Advanced Study Group at CFEL; DFG [JI 110/2-1]; MICINN [FIS2007-60064]; COLCIENCIAS; Cluster of Excellence: Munich Center for Advanced Photonics; European COST Action "CUSPFEL" [CM0702] FX The authors are greatly indebted to the scientific and technical team at FLASH, in particular, the machine operators and run coordinators, in striving for optimal beam-time conditions. Computations were carried out at Mare Nostrum BSC and CCC-UAM. We would like to thank E. Louis and F. Bijkerk from the FOM Institute of Plasma Physics in Rijnhuizen along with J. Verhoeven, P. Johnsson, and M. Vrakking from AMOLF for providing the multilayer mirror. Support from the Max-Planck Advanced Study Group at CFEL is gratefully acknowledged. Y.H.J. is grateful for support from DFG Project No. JI 110/2-1, E. P., J.F.P.-T., and F. M. from MICINN Project No. FIS2007-60064, J. L. S.-V. from COLCIENCIAS, J. T., T. J., and R. D. from Koselleck program of the DFG, and O.H., M. L., and M. F. K. from the DFG via the Emmy-Noether program and the Cluster of Excellence: Munich Center for Advanced Photonics. The European COST Action "CUSPFEL" (CM0702) is also acknowledged. NR 19 TC 27 Z9 27 U1 0 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD FEB PY 2010 VL 81 IS 2 AR 021401 DI 10.1103/PhysRevA.81.021401 PG 4 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 562RW UT WOS:000275072500009 ER PT J AU Kheifets, AS Fursa, DV Hines, CW Bray, I Colgan, J Pindzola, MS AF Kheifets, A. S. Fursa, D. V. Hines, C. W. Bray, I. Colgan, J. Pindzola, M. S. TI Spin effects in double photoionization of lithium SO PHYSICAL REVIEW A LA English DT Article ID HELIUM; SINGLE; ATOMS AB We apply the nonperturbative convergent close-coupling (CCC) and time-dependent close coupling (TDCC) formalisms to calculate fully differential energy and angular resolved cross sections of double photoionization (DPI) of lithium. The equal energy sharing case is considered in which dynamics of the DPI process can be adequately described by two symmetrized singlet and triplet amplitudes. The angular width of these amplitudes serves as a measure of the strength of the angular correlation between the two ejected electrons. This width is interpreted in terms of the spin of the photoelectron pair. C1 [Kheifets, A. S.] Australian Natl Univ, Res Sch Phys & Engn, Canberra, ACT 0200, Australia. [Fursa, D. V.; Hines, C. W.; Bray, I.] Curtin Univ Technol, Inst Theoret Phys, Perth, WA 6845, Australia. [Colgan, J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Pindzola, M. S.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. RP Kheifets, AS (reprint author), Australian Natl Univ, Res Sch Phys & Engn, Canberra, ACT 0200, Australia. EM A.Kheifets@anu.edu.au RI Fursa, Dmitry/C-2301-2009; Bray, Igor/B-8586-2009; Kheifets, Anatoli/C-9131-2009; OI Fursa, Dmitry/0000-0002-3951-9016; Bray, Igor/0000-0001-7554-8044; Kheifets, Anatoli/0000-0001-8318-9408; Colgan, James/0000-0003-1045-3858 FU DOE; NSF FX The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under Contract No. DE-AC5206NA25396. A portion of this work was performed through DOE and NSF grants to Auburn University. The computational work was carried out at the National Institute for Computational Sciences in Oak Ridge, TN. Resources of the Australian National Computational Infrastructure (NCI) Facility and itsWesteran Australian node iVEC are gratefully acknowledged. NR 25 TC 12 Z9 12 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD FEB PY 2010 VL 81 IS 2 AR 023418 DI 10.1103/PhysRevA.81.023418 PG 6 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 562RW UT WOS:000275072500133 ER PT J AU Kim, WJ Sushkov, AO Dalvit, DAR Lamoreaux, SK AF Kim, W. J. Sushkov, A. O. Dalvit, D. A. R. Lamoreaux, S. K. TI Surface contact potential patches and Casimir force measurements SO PHYSICAL REVIEW A LA English DT Article ID MU-M RANGE; MICROSCOPY; DIFFERENCE AB We present calculations of contact potential surface patch effects that simplify previous treatments. It is shown that, because of the linearity of Laplace's equation, the presence of patch potentials does not affect an electrostatic calibration of a two-plate Casimir measurement apparatus. Using models that include long-range variations in the contact potential across the plate surfaces, a number of experimental observations can be reproduced and explained. For these models, numerical calculations show that if a voltage is applied between the plates which minimizes the force, a residual electrostatic force persists, and that the minimizing potential varies with distance. The residual force can be described by a fit to a simple two-parameter function involving the minimizing potential and its variation with distance. We show the origin of this residual force by use of a simple parallel capacitor model. Finally, the implications of a residual force that varies in a manner different from 1/d on the accuracy of previous Casimir measurements is discussed. C1 [Kim, W. J.; Sushkov, A. O.; Lamoreaux, S. K.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Dalvit, D. A. R.] Los Alamos Natl Lab, Theoret Div MS B213, Los Alamos, NM 87545 USA. RP Kim, WJ (reprint author), Seattle Univ, Dept Phys, 901 12th Ave, Seattle, WA 98122 USA. FU Yale University; DARPA/MTO's Casimir Effect Enhancement [N66001-09-1-2071, DE-AC52-06NA25396] FX The work of S. K. L. and A.O.S. was funded by Yale University, and DARPA/MTO's Casimir Effect Enhancement project under SPAWAR contract no. N66001-09-1-2071. D.A.R.D.'s work was funded by DARPA/MTO's Casimir Effect Enhancement project under DOE/NNSA Contract No. DE-AC52-06NA25396. He is grateful to R. Onofrio for insightful discussions. NR 21 TC 47 Z9 47 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD FEB PY 2010 VL 81 IS 2 AR 022505 DI 10.1103/PhysRevA.81.022505 PG 7 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 562RW UT WOS:000275072500083 ER PT J AU Baek, SH Curro, NJ Sakai, H Bauer, ED Cooley, JC Smith, JL AF Baek, S-H. Curro, N. J. Sakai, H. Bauer, E. D. Cooley, J. C. Smith, J. L. TI U-235 nuclear relaxation rates in an itinerant antiferromagnet USb2 SO PHYSICAL REVIEW B LA English DT Article ID UBI2; NMR AB U-235 nuclear spin-lattice (T-1(-1)) and spin-spin (T-2(-1)) relaxation rates in the itinerant antiferromagnet USb2 are reported as a function of temperature in zero field. The heating effect from the intense rf pulses that are necessary for the U-235 NMR results in unusual complex thermal recovery of the nuclear magnetization which does not allow measuring T-1(-1) directly. By implementing an indirect method, however, we successfully extracted T-1(-1) of the U-235. We find that the temperature dependence of T-1(-1) for both U-235 and Sb-121 follows the power law (proportional to T-n) with the small exponent n = 0.3 suggesting that the same relaxation mechanism dominates the on-site and the ligand nuclei, but an anomaly at 5 K was observed, possibly due to the change in the transferred hyperfine coupling on the Sb site. C1 [Baek, S-H.; Sakai, H.; Bauer, E. D.; Cooley, J. C.; Smith, J. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Curro, N. J.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Sakai, H.] Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan. RP Baek, SH (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Bauer, Eric/D-7212-2011; Cooley, Jason/E-4163-2013; Baek, Seung-Ho/F-4733-2011; Curro, Nicholas/D-3413-2009 OI Baek, Seung-Ho/0000-0002-0059-8255; Curro, Nicholas/0000-0001-7829-0237 FU Laboratory Directed Research and Development FX We thank the useful and delightful discussions with S. Kambe and H. Kato. This work was performed at Los Alamos National Laboratory under the auspices of the U.S. Department of Energy, Office of Science, and supported in part by the Laboratory Directed Research and Development program. NR 13 TC 3 Z9 3 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2010 VL 81 IS 5 AR 054435 DI 10.1103/PhysRevB.81.054435 PG 5 WC Physics, Condensed Matter SC Physics GA 561SA UT WOS:000274998000085 ER PT J AU Benmore, CJ Soignard, E Amin, SA Guthrie, M Shastri, SD Lee, PL Yarger, JL AF Benmore, C. J. Soignard, E. Amin, S. A. Guthrie, M. Shastri, S. D. Lee, P. L. Yarger, J. L. TI Structural and topological changes in silica glass at pressure SO PHYSICAL REVIEW B LA English DT Article ID SIO2 GLASS; BINARY-ALLOYS; DIFFRACTION; RESISTIVITY; QUARTZ AB The effects of high pressures on the structure of silica glass have been elucidated using high-energy x-ray diffraction up to 43.5 GPa. A decrease in the first two peak positions in the real-space pair-distribution functions up to 15 GPa indicates an initial shrinkage of the tetrahedral units. Above this threshold pressure the Si-O bond peak shape becomes asymmetric and the average Si-O bond length and coordination number both increase linearly with pressure. Also, strained geometries in the O-O correlations lead a pronounced topological rearrangement of the second and third nearest neighbors. C1 [Benmore, C. J.; Guthrie, M.; Shastri, S. D.; Lee, P. L.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Benmore, C. J.; Yarger, J. L.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. [Soignard, E.; Amin, S. A.; Yarger, J. L.] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. [Guthrie, M.] Carnegie Inst Sci, Geophys Lab, EFree Ctr, Washington, DC 20015 USA. RP Benmore, CJ (reprint author), Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. EM benmore@aps.anl.gov; jyarger@gmail.com RI Guthrie, Malcolm/K-3099-2012; Yarger, Jeff/L-8748-2014; OI Yarger, Jeff/0000-0002-7385-5400; Benmore, Chris/0000-0001-7007-7749 FU NNSA CDAC [DE-FC52-08NA28554]; U. S. DOE ANL [DE-AC02-06CH11357]; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001057] FX This work was supported by the NNSA CDAC under Grant No. DE-FC52-08NA28554 and the U. S. DOE ANL under Contract No. DE-AC02-06CH11357. Malcolm Guthrie is supported as part of EFree, an Energy Frontier Research Center funded by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001057. NR 31 TC 58 Z9 59 U1 4 U2 44 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2010 VL 81 IS 5 AR 054105 DI 10.1103/PhysRevB.81.054105 PG 5 WC Physics, Condensed Matter SC Physics GA 561SA UT WOS:000274998000022 ER PT J AU Bishop, AR Bussmann-Holder, A Kamba, S Maglione, M AF Bishop, A. R. Bussmann-Holder, A. Kamba, S. Maglione, M. TI Common characteristics of displacive and relaxor ferroelectrics SO PHYSICAL REVIEW B LA English DT Article ID GLASSY POLARIZATION BEHAVIOR; POLARIZABILITY MODEL; OPTICAL PHONONS; SCATTERING; PBMG1/3NB2/3O3; PEROVSKITES; LIXK1-XTAO3; TRANSITION; CERAMICS; SYSTEMS AB The long-standing classification scheme of ferroelectrics into either relaxor or displacive ones (the phase transition is driven by a soft phonon mode) is too restrictive since a smooth crossover between them exists which even admits for a coexistence of both phenomena. This crossover and coexistence is a consequence of the varying density of polar nanoregions due to different doping levels of the respective system. The formation of polar nanoregions is attributed here to intrinsic local modes in terms of discrete breathers. C1 [Bishop, A. R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Bussmann-Holder, A.] Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany. [Kamba, S.] Acad Sci Czech Republic, Inst Phys, Prague 18221 8, Czech Republic. [Maglione, M.] CNRS, Inst Chim Mat Condensee Bordeaux, F-33608 Pessac, France. RP Bishop, AR (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Kamba, Stanislav/G-5332-2014 OI Kamba, Stanislav/0000-0003-4699-869X FU Czech Science Foundation [202/09/0682]; [AVOZ10100520] FX It is a pleasure to acknowledge stimulating discussions with J. Toulouse. Financial supports by the Czech Science Foundation (Project 202/09/0682) and AVOZ10100520 are gratefully acknowledged. NR 57 TC 33 Z9 35 U1 1 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2010 VL 81 IS 6 AR 064106 DI 10.1103/PhysRevB.81.064106 PG 9 WC Physics, Condensed Matter SC Physics GA 561SB UT WOS:000274998100035 ER PT J AU Bocklage, L Kruger, B Fischer, P Meier, G AF Bocklage, Lars Krueger, Benjamin Fischer, Peter Meier, Guido TI Analytical modeling and x-ray imaging of oscillations of a single magnetic domain wall SO PHYSICAL REVIEW B LA English DT Article ID MOTION AB Domain wall oscillation in a pinning potential is described analytically in a one-dimensional model for the field-driven case. A proper description of the pinning potential has to go beyond harmonic contributions. Oscillations of a domain wall are observed by time-resolved magnetic soft x-ray microscopy. It is shown that nonharmonic terms are present in real samples with a strong restoring potential. In the framework of our model we gain deep insight into the domain wall motion by looking at different phase spaces. The corrections of the harmonic potential can change the motion of the domain wall significantly. The damping parameter of permalloy is determined via the direct imaging technique. C1 [Bocklage, Lars; Meier, Guido] Univ Hamburg, Inst Angew Phys, D-20355 Hamburg, Germany. [Bocklage, Lars; Meier, Guido] Univ Hamburg, Zentrum Mikrostrukturforsch, D-20355 Hamburg, Germany. [Krueger, Benjamin] Univ Hamburg, Inst Theoret Phys 1, D-20355 Hamburg, Germany. [Fischer, Peter] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. RP Bocklage, L (reprint author), Univ Hamburg, Inst Angew Phys, Jungiusstr 11, D-20355 Hamburg, Germany. EM lbocklag@physnet.uni-hamburg.de; bkrueger@physnet.uni-hamburg.de RI Fischer, Peter/A-3020-2010; Krueger, Benjamin/B-7466-2009; MSD, Nanomag/F-6438-2012; OI Fischer, Peter/0000-0002-9824-9343; Krueger, Benjamin/0000-0001-8502-368X; Bocklage, Lars/0000-0001-9769-4173 FU Deutsche Forschungsgemeinschaft; city of Hamburg via the cluster of excellence"Nanospintronics"; CXRO; ALS; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy FX We thank Rene Eiselt and Mi-Young Im for collaboration with the x-ray microscope, Toru Matsuyama, Markus Bolte, Daniela Pfannkuche, and Ulrich Merkt for fruitful discussions as well as Sandra Motl for assistance with the analysis of the x-ray images and ferromagnetic resonance measurements. Financial support by the Deutsche Forschungsgemeinschaft via the SFB 668 "Magnetism from the Single Atom to the Nanostructure" and via the Graduiertenkolleg 1286 "Functional Metal-Semiconductor Hybrid Systems" as well as by the city of Hamburg via the cluster of excellence "Nanospintronics" is gratefully acknowledged. The continued support of the staff of CXRO and ALS is highly appreciated. The operation of the soft x-ray microscope is funded by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy. NR 26 TC 10 Z9 11 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2010 VL 81 IS 5 AR 054404 DI 10.1103/PhysRevB.81.054404 PG 7 WC Physics, Condensed Matter SC Physics GA 561SA UT WOS:000274998000054 ER PT J AU Bowers, CR Gusev, GM Jaroszynski, J Reno, JL Simmons, JA AF Bowers, C. R. Gusev, G. M. Jaroszynski, J. Reno, J. L. Simmons, J. A. TI Resistively detected NMR of the nu=1 quantum Hall state: A tilted magnetic field study SO PHYSICAL REVIEW B LA English DT Article ID 2-DIMENSIONAL ELECTRON-GAS; OPTICALLY PUMPED NMR; LEVEL FILLING NU=1; SPIN; EXCITATIONS; WELLS; GAAS; ORIENTATION; DEPENDENCE; SKYRMIONS AB Previous resistively detected NMR (RDNMR) studies on the nu approximate to 1 quantum Hall state have reported a "dispersionlike" line shape and extremely short nuclear-spin-lattice relaxation times, observations which have been attributed to the formation of a skyrme lattice. Here we examine the evolution of the RDNMR line shape and nuclear-spin relaxation for Zeeman: Coulomb energy ratios ranging from 0.012 to 0.036. According to theory, suppression of the skyrme crystal, along with the associated Goldstone mode nuclear-spin-relaxation mechanism, is expected at the upper end of this range. However, we find that the anomalous line shape persists at high Zeeman energy, and only a modest decrease in the RDNMR-detected nuclear-spin-relaxation rate is observed. C1 [Bowers, C. R.] Univ Florida, Dept Chem, Gainesville, FL 32611 USA. [Gusev, G. M.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. [Jaroszynski, J.] Natl High Magnet Field Lab, Tallahassee, FL 32306 USA. [Reno, J. L.; Simmons, J. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Bowers, CR (reprint author), Univ Florida, Dept Chem, Gainesville, FL 32611 USA. RI Schaff, William/B-5839-2009; Gusev, Gennady/P-6380-2015 NR 25 TC 9 Z9 9 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2010 VL 81 IS 7 AR 073301 DI 10.1103/PhysRevB.81.073301 PG 4 WC Physics, Condensed Matter SC Physics GA 561SC UT WOS:000274998200012 ER PT J AU Chang, CL Sankaranarayanan, SKRS Ruzmetov, D Engelhard, MH Kaxiras, E Ramanathan, S AF Chang, Chia-Lin Sankaranarayanan, Subramanian K. R. S. Ruzmetov, Dmitry Engelhard, Mark H. Kaxiras, Efthimios Ramanathan, Shriram TI Compositional tuning of ultrathin surface oxides on metal and alloy substrates using photons: Dynamic simulations and experiments SO PHYSICAL REVIEW B LA English DT Article ID LOSS FINE-STRUCTURE; NICKEL-OXIDE; PASSIVITY BREAKDOWN; THIN-FILMS; AB-INITIO; OXIDATION; OXYGEN; SPECTROSCOPY; PHOTOELECTRON; ZIRCONIUM AB We report on the ability to modify the structure and composition of ultrathin oxides grown on Ni and Ni-Al alloy surfaces at room temperature utilizing photon illumination. We find that the nickel-oxide formation is enhanced in the case of oxidation under photo-excitation. The enhanced oxidation kinetics of nickel in 5% Ni-Al alloy is corroborated by experimental and simulation studies of natural and photon-assisted oxide growth on pure Ni(100) surfaces. In case of pure Ni substrates, combined x-ray photoelectron spectroscopy analysis, and atomic force microscope current mapping support the deterministic role of the structure of nickel passive-oxide films on their nanoscale corrosion resistance. Atomistic simulations involving dynamic charge transfer predict that the applied electric field overcomes the activation-energy barrier for ionic migration, leading to enhanced oxygen incorporation into the oxide, enabling us to tune the mixed-oxide composition at atomic length scales. Atomic scale control of ultrathin oxide structure and morphology in the case of pure substrates as well as compositional tuning of complex oxide in the case of alloys leads to excellent passivity as verified from potentiodynamic polarization experiments. C1 [Chang, Chia-Lin; Sankaranarayanan, Subramanian K. R. S.; Ruzmetov, Dmitry; Kaxiras, Efthimios; Ramanathan, Shriram] Harvard Univ, Harvard Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Engelhard, Mark H.] Pacific NW Natl Lab, WR Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. [Kaxiras, Efthimios] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. RP Ramanathan, S (reprint author), Harvard Univ, Harvard Sch Engn & Appl Sci, Cambridge, MA 02138 USA. EM shriram@deas.harvard.edu RI Engelhard, Mark/F-1317-2010; OI Engelhard, Mark/0000-0002-5543-0812 FU Office of Naval Research; National Science Foundation; U.S. Department of Energy FX We thank the Office of Naval Research and the National Science Foundation for providing financial support for this work. XPS portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at PNNL. The NEAFS experiments were performed at U12a, NSLS, sponsored by the U.S. Department of Energy. NR 53 TC 6 Z9 6 U1 0 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2010 VL 81 IS 8 AR 085406 DI 10.1103/PhysRevB.81.085406 PG 13 WC Physics, Condensed Matter SC Physics GA 562LW UT WOS:000275053300104 ER PT J AU Chen, D Gao, F Hu, WY Hu, SY Terentyev, D Sun, X Heinisch, HL Henager, CH Khaleel, MA AF Chen, D. Gao, F. Hu, W. Y. Hu, S. Y. Terentyev, D. Sun, X. Heinisch, H. L. Henager, C. H. Khaleel, M. A. TI Migration of Cr-vacancy clusters and interstitial Cr in alpha-Fe using the dimer method SO PHYSICAL REVIEW B LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; DISPLACEMENT CASCADES; COMPUTER-SIMULATION; AB-INITIO; FERRITIC ALLOYS; POINT-DEFECTS; SADDLE-POINTS; HCP METALS; IRON; IRRADIATION AB The migration mechanisms and the corresponding activation energies of Cr-vacancy (Cr-V) clusters and Cr interstitials in alpha-Fe have been investigated using the dimer and the nudged elastic-band methods. Dimer searches are employed to find the possible transition states of these defects and the lowest-energy paths are used to determine the energy barriers for migration. A substitutional Cr atom can migrate to a nearest-neighbor vacancy through an energy barrier of 0.56 eV but this simple mechanism alone is unlikely to lead to the long-distance migration of Cr unless there is a supersaturated concentration of vacancies in the system. The Cr-vacancy clusters can lead to long-distance migration of a Cr atom that is accomplished by Fe and Cr atoms successively jumping to nearest-neighbor vacancy positions, defined as a self-vacancy-assisted migration mechanism, with the migration energies ranging from 0.64 to 0.89 eV. In addition, a mixed Cr-Fe dumbbell interstitial can easily migrate through Fe lattices, with the migration energy barrier of 0.17, which is lower than that of the Fe-Fe interstitial. The on-site rotation of the Cr-Fe interstitial and Cr atom hopping from one site to another are believed to comprise the dominant migration mechanism. The calculated binding energies of Cr-V clusters are strongly dependent on the size of clusters and the concentration of Cr atoms in clusters. C1 [Chen, D.; Gao, F.; Hu, S. Y.; Sun, X.; Heinisch, H. L.; Henager, C. H.; Khaleel, M. A.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Chen, D.; Hu, W. Y.] Hunan Univ, Dept Appl Phys, Changsha 410082, Hunan, Peoples R China. [Terentyev, D.] CEN SCK, Inst Nucl Sci, B-2400 Mol, Belgium. RP Gao, F (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM fei.gao@pnl.gov RI Hu, Wangyu/B-5762-2009; Gao, Fei/H-3045-2012; OI Hu, Wangyu/0000-0001-7416-3994; khaleel, mohammad/0000-0001-7048-0749 FU U.S. Department of Energy [DE-AC05-76RL01830]; Chinese Academy of Sciences; National Natural Science Foundation [50671035] FX This research was supported by a Laboratory Directed Research and Development Program at the Pacific Northwest National Laboratory, a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy under Contract No. DE-AC05-76RL01830. D.C. and NEAMS under FMM. W.Y.H. were supported by Chinese Academy of Sciences and the National Natural Science Foundation under Contract No. 50671035. The calculations were performed on the supercomputers in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy, Office of Biological and Environmental Research located at Pacific Northwest National Laboratory. NR 44 TC 3 Z9 3 U1 1 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2010 VL 81 IS 6 AR 064101 DI 10.1103/PhysRevB.81.064101 PG 9 WC Physics, Condensed Matter SC Physics GA 561SB UT WOS:000274998100030 ER PT J AU Choi, WI Jhi, SH Kim, K Kim, YH AF Choi, Woon Ih Jhi, Seung-Hoon Kim, Kwiseon Kim, Yong-Hyun TI Divacancy-nitrogen-assisted transition metal dispersion and hydrogen adsorption in defective graphene: A first-principles study SO PHYSICAL REVIEW B LA English DT Article ID ORGANIC FRAMEWORKS; AMMONIA-SYNTHESIS; DIHYDROGEN; CATALYSTS; ENERGY; IRON AB We propose a route to dispersing hydrogen-adsorbing transition metals (TMs) on a large scale onto vacancy-engineered defective graphenes by employing natural carbon-nitrogen-TM complexes, i.e., TM-containing porphyrins. Based on first-principles density-functional calculations, the TM-porphyrin core-made of one central TM and four surrounding nitrogen atoms-can be effectively generated by three defect-engineering processes of graphenes: (1) creation of carbon divacancies, (2) nitrogen substitution of unsaturated carbons, and (3) TM incorporation. The atomistically dispersed Sc, Ti, and V are able to adsorb hydrogen molecules as strongly as 0.2-0.4 eV with the Kubas coordination. The Fe-porphyrin-like unit in graphenes can also have the Kubas adsorption of hydrogen, if the exchange splitting is reduced by a compressive in-plane strain. C1 [Choi, Woon Ih; Kim, Kwiseon; Kim, Yong-Hyun] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Jhi, Seung-Hoon] Pohang Univ Sci & Technol, Dept Phys, Pohang 790784, South Korea. [Jhi, Seung-Hoon] Pohang Univ Sci & Technol, Div Adv Mat, Pohang 790784, South Korea. [Kim, Yong-Hyun] Korea Adv Inst Sci & Technol, Grad Sch Nanosci & Technol WCU, Taejon 305701, South Korea. RP Choi, WI (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM yong.hyun.kim@kaist.ac.kr RI Choi, Woon Ih/H-4499-2011; Kim, Yong-Hyun/C-2045-2011; OI Kim, Yong-Hyun/0000-0003-4255-2068; Choi, Woon Ih/0000-0002-7183-3400 FU DOE/OS/BES and DOE/EERE [DE-AC36-08GO28308]; WCU program [R31-2008-000-10059-0]; Hydrogen Energy RD Center; MEST; National Research Foundation of Korea; Ministry of Education, Science and Technology [R31-2008-000-10071-0] FX We thank J. Kang for helpful discussion. The work was supported by DOE/OS/BES and DOE/EERE under Contract No. DE-AC36-08GO28308. S.H.J. was supported by the WCU program (No. R31-2008-000-10059-0) and the Hydrogen Energy R&D Center, one of the 21st Century Frontier R&D Programs, funded by the MEST. Y.-H.K. was also supported by the WCU (World Class University) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (Grant No. R31-2008-000-10071-0). NR 32 TC 47 Z9 47 U1 3 U2 38 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2010 VL 81 IS 8 AR 085441 DI 10.1103/PhysRevB.81.085441 PG 5 WC Physics, Condensed Matter SC Physics GA 562LW UT WOS:000275053300139 ER PT J AU Cizmar, E Zvyagin, SA Beyer, R Uhlarz, M Ozerov, M Skourski, Y Manson, JL Schlueter, JA Wosnitza, J AF Cizmar, E. Zvyagin, S. A. Beyer, R. Uhlarz, M. Ozerov, M. Skourski, Y. Manson, J. L. Schlueter, J. A. Wosnitza, J. TI Magnetic properties of the quasi-two-dimensional S=1/2 Heisenberg antiferromagnet [Cu(pyz)(2)(HF2)]PF6 SO PHYSICAL REVIEW B LA English DT Article ID METASTABILITY; TRANSITION; FIELD AB We report on high-field magnetization, specific heat, and electron-spin-resonance (ESR) studies of the quasi-two-dimensional spin-1/2 Heisenberg antiferromagnet [Cu(pyz)(2)(HF2)]PF6. The frequency-field diagram of ESR modes below T-N=4.38 K is described in the frame of the mean-field theory, confirming a collinear magnetic structure with an easy-plane anisotropy. The obtained results allowed us to determine the anisotropy/exchange interaction ratio, A/J=0.003, and the upper limit for the interplane/intraplane exchange interaction ratio, J'/J=1/16. It is argued that despite the onset of three-dimensional long-range magnetic ordering the magnetic properties of this material (including high-magnetic-field magnetization and nonmonotonic field dependence of the Neel temperature) are strongly affected by two-dimensional spin correlations. C1 [Cizmar, E.; Zvyagin, S. A.; Beyer, R.; Uhlarz, M.; Ozerov, M.; Skourski, Y.; Wosnitza, J.] FZ Dresden Rossendorf, Hochfeld Magnetlabor Dresden HLD, D-01314 Dresden, Germany. [Cizmar, E.] Safarik Univ, Ctr Low Temp Phys, SK-04154 Kosice, Slovakia. [Manson, J. L.] Eastern Washington Univ, Dept Chem & Biochem, Cheney, WA 99004 USA. [Schlueter, J. A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Cizmar, E (reprint author), FZ Dresden Rossendorf, Hochfeld Magnetlabor Dresden HLD, D-01314 Dresden, Germany. RI Zvyagin, Sergei/H-8389-2014; Cizmar, Erik/R-9171-2016 OI Cizmar, Erik/0000-0001-6289-110X FU Deutsche Forschungsgemeinschaft; EuroMagNET [228043]; UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"); Argonne, a U. S. Department of Energy, Office of Science Laboratory [DE-AC02-06CH11357]; APVV [APVV-VVCE-0058-07]; VEGA [1/0078/09] FX This work has been supported by Deutsche Forschungsgemeinschaft, EuroMagNET (EU under Contract No. 228043), and UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U. S. Department of Energy, Office of Science Laboratory, is operated under Contract No. DE-AC02-06CH11357. E. C. is supported also by APVV under Grant No. APVV-VVCE-0058-07 and VEGA under Grant No. 1/0078/09. We would like to thank L. Zviagina for preparations of pulse-field magnetization measurements. NR 25 TC 14 Z9 14 U1 1 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2010 VL 81 IS 6 AR 064422 DI 10.1103/PhysRevB.81.064422 PG 5 WC Physics, Condensed Matter SC Physics GA 561SB UT WOS:000274998100073 ER PT J AU Das, S McFadden, K Singh, Y Nath, R Ellern, A Johnston, DC AF Das, S. McFadden, K. Singh, Yogesh Nath, R. Ellern, A. Johnston, D. C. TI Structural, magnetic, thermal, and electronic transport properties of single-crystal EuPd2Sb2 SO PHYSICAL REVIEW B LA English DT Article ID EARTH; SUPERCONDUCTIVITY; TRANSITION AB Single crystals of EuPd2Sb2 have been grown from PdSb self-flux. The properties of the single crystals have been investigated by x-ray diffraction, magnetic susceptibility chi, magnetization M, electrical resistivity rho, Hall coefficient R-H, and heat capacity C-p measurements versus temperature T and magnetic field H. Single-crystal x-ray diffraction studies confirmed that EuPd2Sb2 crystallizes in the tetragonal CaBe2Ge2-type structure. The chi(T) measurements suggest antiferromagnetic ordering at 6.0 K with the easy axis or plane in the crystallographic ab plane. An additional transition occurs at 4.5 K that may be a spin reorientation transition. The C-p(T) data also show the two transitions at 6.1 and 4.4 K, respectively, indicating the bulk nature of the transitions. The 4.4 K transition is suppressed below 1.8 K while the 6.1 K transition moves down to 3.3 K in H = 8 T. The rho(T) data show metallic behavior down to 1.8 K along with an anomaly at 5.5 K in zero field. The anomaly is suppressed to 2.7 K in an 8 T field. The RH measurements indicated that the dominant charge carriers are electrons. The M(H) isotherms show three field-induced transitions at 2.75, 3.90, and 4.2 T magnetic fields parallel to the ab plane at 1.8 K. No transitions are observed in M(H) for fields parallel to the c axis. C1 [Das, S.; McFadden, K.; Singh, Yogesh; Nath, R.; Johnston, D. C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Das, S.; McFadden, K.; Singh, Yogesh; Nath, R.; Johnston, D. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Ellern, A.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Das, S (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RI Nath, Ramesh/C-9345-2011; singh, yogesh/F-7160-2016 FU Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358] FX Work at the Ames Laboratory was supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358. NR 36 TC 8 Z9 8 U1 2 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2010 VL 81 IS 5 AR 054425 DI 10.1103/PhysRevB.81.054425 PG 7 WC Physics, Condensed Matter SC Physics GA 561SA UT WOS:000274998000075 ER PT J AU Du, GX Wang, SG Ma, QL Wang, Y Ward, RCC Zhang, XG Wang, C Kohn, A Han, XF AF Du, G. X. Wang, S. G. Ma, Q. L. Wang, Yan Ward, R. C. C. Zhang, X. -G. Wang, C. Kohn, A. Han, X. F. TI Spin-dependent tunneling spectroscopy for interface characterization of epitaxial Fe/MgO/Fe magnetic tunnel junctions SO PHYSICAL REVIEW B LA English DT Article ID ROOM-TEMPERATURE; MAGNETORESISTANCE; TRANSMISSION; STATES AB Low-voltage spin-dependent tunneling spectroscopy of an epitaxial Fe/MgO/Fe magnetic tunnel junction is measured and compared to first-principles calculation of the tunneling conductance. The measured dynamic conductance (dI/dV) in the parallel configuration shows distinct asymmetric features as a function of the bias voltage. The peaks are independent of barrier thickness, magnetic field, and temperature. With the help of the first-principles calculations, positive and negative bias spectra can be related to different types of Fe/MgO interfaces. C1 [Du, G. X.; Wang, S. G.; Ma, Q. L.; Wang, Yan; Han, X. F.] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, State Key Lab Magnetism, Beijing 100190, Peoples R China. [Wang, S. G.; Ward, R. C. C.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Zhang, X. -G.] Oak Ridge Natl Lab, Div Math, Oak Ridge, TN 37831 USA. [Zhang, X. -G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci & Comp Sci, Oak Ridge, TN 37831 USA. [Wang, C.; Kohn, A.] Univ Oxford, Dept Mat, Oxford OX1 3PH, England. RP Wang, SG (reprint author), Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, State Key Lab Magnetism, Beijing 100190, Peoples R China. EM sgwang@aphy.iphy.ac.cn; zhangx@ornl.gov RI Wang, Yan/G-8061-2011; Du, Guan Xiang/B-4752-2009; Kohn, Amit/F-1559-2012; Wang, Shouguo/C-3078-2014; Wang, Shouguo/D-5710-2016; wang, chao/E-2983-2016; Ma, Qinli/H-2508-2011 OI Wang, Yan/0000-0002-8648-2172; Wang, Shouguo/0000-0001-6130-7071; Wang, Shouguo/0000-0002-4488-2645; FU National Basic Research Program of China (MOST) [2009CB929203, 2006CB932200]; Chinese National Natural Science Foundation (NSFC) [50972163, 50721001]; Engineering and Physical Sciences Research Council (EPSRC) of U.K FX This work was supported by the National Basic Research Program of China (MOST under Grants No. 2009CB929203 and No. 2006CB932200) and Chinese National Natural Science Foundation (NSFC under Grants No. 50972163 and No. 50721001). S. G. Wang is grateful to the Engineering and Physical Sciences Research Council (EPSRC) of U.K. for financial support. Portion of the research was conducted at the CNMS of ORNL, operated by UT-Battelle for Office of User Facilities, Basic Energy Sciences, U.S. Department of Energy. NR 33 TC 27 Z9 27 U1 1 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2010 VL 81 IS 6 AR 064438 DI 10.1103/PhysRevB.81.064438 PG 4 WC Physics, Condensed Matter SC Physics GA 561SB UT WOS:000274998100089 ER PT J AU Du, Y Huang, M Chang, S Schlagel, DL Lograsso, TA McQueeney, RJ AF Du, Y. Huang, M. Chang, S. Schlagel, D. L. Lograsso, T. A. McQueeney, R. J. TI Relation between Ga ordering and magnetostriction of Fe-Ga alloys studied by x-ray diffuse scattering SO PHYSICAL REVIEW B LA English DT Article ID STRUCTURALLY HETEROGENEOUS MODEL; SIMILAR MAGNETIC-ALLOYS; EXTRINSIC MAGNETOSTRICTION; MAGNETOELASTICITY; DIFFRACTION AB Transmission synchrotron diffraction was employed to characterize the Ga ordering in magnetostrictive Fe(100-x)Ga(x) alloys with Ga concentrations from 0 to 20.3 at. %. The experiments focused on the development of atomic short-range ordering (SRO) by analysis of the diffuse scattering appearing at superlattice positions of the D0(3) ordered alloy structure. No SRO was found for Ga concentrations less than 4 at. %. Between 13 and 20.3 at. %, D0(3)-type SRO clusters are observed whose size increases with Ga concentration for both slow-cooled and quenched samples. Thermal quenching of the samples suppresses the cluster sizes when compared to slow-cooled samples of the same concentration. For quenched samples with large Ga concentration, Ga pairing is evidenced by growing B2-type correlations. At low concentrations, the presence of SRO appears to have little (if any) effect on the enhanced magnetostriction. However, the dramatic suppression of magnetostriction near similar to 20 at. % Ga can be linked rapid growth of SRO just before the onset of long-range chemical order. C1 [Du, Y.; McQueeney, R. J.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Du, Y.; Huang, M.; Chang, S.; Schlagel, D. L.; Lograsso, T. A.; McQueeney, R. J.] Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. RP Du, Y (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RI McQueeney, Robert/A-2864-2016 OI McQueeney, Robert/0000-0003-0718-5602 FU U.S. Department of Energy Office of Science [DE-AC02 07CH11358, DE-AC02-06CH11357]; Office of Naval Research [MURI N00014-06-1-0530] FX The authors thank Q. Xing and G. E. Ice for thoughtful discussion. The authors would also like to thank D. S. Robinson, J. W. Kim, A. Kreyssig, and D. Wermeille for excellent support of the x-ray study. Work at the MUCAT sector is supported by the U.S. Department of Energy Office of Science under Contract No. DE-AC02 07CH11358 and the Advanced Photon Source was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. This research was sponsored by the Office of Naval Research under Grant No. MURI N00014-06-1-0530. NR 20 TC 22 Z9 22 U1 1 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2010 VL 81 IS 5 AR 054432 DI 10.1103/PhysRevB.81.054432 PG 9 WC Physics, Condensed Matter SC Physics GA 561SA UT WOS:000274998000082 ER PT J AU Ellis, DS Kim, J Hill, JP Wakimoto, S Birgeneau, RJ Shvyd'ko, Y Casa, D Gog, T Ishii, K Ikeuchi, K Paramekanti, A Kim, YJ AF Ellis, D. S. Kim, Jungho Hill, J. P. Wakimoto, S. Birgeneau, R. J. Shvyd'ko, Y. Casa, D. Gog, T. Ishii, K. Ikeuchi, K. Paramekanti, A. Kim, Young-June TI Magnetic nature of the 500 meV peak in La2-xSrxCuO4 observed with resonant inelastic x-ray scattering at the Cu K-edge SO PHYSICAL REVIEW B LA English DT Article ID 2-MAGNON RAMAN-SCATTERING; HIGH-ENERGY SPIN; LAMELLAR COPPER OXIDES; HEISENBERG-ANTIFERROMAGNET; TEMPERATURE SUPERCONDUCTOR; CUPRATE SUPERCONDUCTORS; TRANSITION-TEMPERATURE; OPTICAL-ABSORPTION; WAVE INTERACTIONS; PARENT COMPOUNDS AB We present a comprehensive study of the temperature and doping dependence of the 500 meV peak observed at q = (pi, 0) in resonant inelastic x-ray scattering (RIXS) experiments on La2CuO4. The intensity of this peak persists above the Neel temperature (T-N=320 K), but decreases gradually with increasing temperature, reaching zero at around T=500 K. The peak energy decreases with temperature in close quantitative accord with the behavior of the two-magnon B-1g Raman peak in La2CuO4 and, with suitable rescaling, agrees with the Raman peak shifts in EuBa2Cu3O6 and K2NiF4. The overall dispersion of this excitation in the Brillouin zone is found to be in agreement with theoretical calculations for a two-magnon excitation. Upon doping, the peak intensity decreases analogous to the Raman mode intensity and appears to track the doping dependence of the spin-correlation length. Taken together, these observations strongly suggest that the 500 meV mode is magnetic in character and is likely a two-magnon excitation. C1 [Ellis, D. S.; Kim, Jungho; Paramekanti, A.; Kim, Young-June] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Hill, J. P.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [Wakimoto, S.] Japan Atom Energy Agcy, Quantum Beam Sci Directorate, Tokai, Ibaraki 3191195, Japan. [Birgeneau, R. J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Shvyd'ko, Y.; Casa, D.; Gog, T.] Argonne Natl Lab, Adv Photon Source, XOR, Argonne, IL 60439 USA. [Ishii, K.; Ikeuchi, K.] Japan Atom Energy Agcy, Synchrotron Radiat Res Ctr, Mikazuki, Hyogo 6795148, Japan. RP Ellis, DS (reprint author), Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada. EM yjkim@physics.utoronto.ca RI Hill, John/F-6549-2011; Kim, Young-June /G-7196-2011; Casa, Diego/F-9060-2016 OI Kim, Young-June /0000-0002-1172-8895; NR 94 TC 29 Z9 29 U1 0 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2010 VL 81 IS 8 AR 085124 DI 10.1103/PhysRevB.81.085124 PG 12 WC Physics, Condensed Matter SC Physics GA 562LW UT WOS:000275053300051 ER PT J AU Feygenson, M Schweika, W Ioffe, A Vakhrushev, SB Bruckel, T AF Feygenson, Mikhail Schweika, Werner Ioffe, Alexander Vakhrushev, Sergey B. Brueckel, Thomas TI Magnetic phase transition in confined MnO nanoparticles studied by polarized neutron scattering SO PHYSICAL REVIEW B LA English DT Article ID 1ST-ORDER BULK TRANSITIONS; GLASS; ENERGY AB We have investigated the magnetic ordering and the phase transition in MnO nanoparticles confined in a porous glass using polarized neutron scattering. These MnO nanoparticles are best described as extended wormlike structures with a mean diameter of 70 angstrom. We observe an apparent continuous magnetic phase transition in MnO nanoparticles, in contrast to the well-known discontinuous phase transition in bulk MnO. By polarization analysis, separating the magnetic scattering, it is found that within the individual MnO nanoparticles about 60% of atoms remain disordered in the low-temperature limit, presumably due to interactions between nanoparticles and glass walls. The continuous character of the phase transition and the unusual temperature dependence suggests a surface-induced disorder phenomenon. C1 [Feygenson, Mikhail] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Schweika, Werner; Ioffe, Alexander; Brueckel, Thomas] Forschungszentrum Julich GmbH, Inst Festkorperforsch, D-52425 Julich, Germany. [Vakhrushev, Sergey B.] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia. RP Feygenson, M (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RI Vakhrushev, Sergey/A-9855-2011; Bruckel, Thomas/J-2968-2013; Feygenson, Mikhail /H-9972-2014 OI Vakhrushev, Sergey/0000-0003-4867-1404; Bruckel, Thomas/0000-0003-1378-0416; Feygenson, Mikhail /0000-0002-0316-3265 NR 26 TC 5 Z9 5 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2010 VL 81 IS 6 AR 064423 DI 10.1103/PhysRevB.81.064423 PG 5 WC Physics, Condensed Matter SC Physics GA 561SB UT WOS:000274998100074 ER PT J AU Ghaemi, P Ryu, S Lee, DH AF Ghaemi, Pouyan Ryu, Shinsei Lee, Dung-Hai TI Quantum valley Hall effect in proximity-induced superconducting graphene: An experimental window for deconfined quantum criticality SO PHYSICAL REVIEW B LA English DT Article AB We show that when superconductivity is induced in graphene through proximity effect, a superconducting vortex is dressed with an interesting pattern of textured order parameters. Furthermore, passing a supercurrent in a superconducting graphene sample induces accumulation of valley pseudospin quantum number at edges: the "quantum valley Hall effect" will be observable in superconducting graphene. These effects reveal a quantum duality between different order parameters that is at heart of the Wess-Zumino-Witten term. C1 [Ghaemi, Pouyan; Ryu, Shinsei; Lee, Dung-Hai] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Lee, Dung-Hai] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Ghaemi, P (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. FU DOE [DE-AC02-05CH11231]; LBNL DOE [504108]; Center for Condensed Matter Theory at University of California, Berkeley FX D. H. L. was supported by DOE Grant No. DE-AC02-05CH11231. P. G. acknowledges support from LBNL DOE Grant No. 504108. S. R. thanks the Center for Condensed Matter Theory at University of California, Berkeley for its support. NR 17 TC 19 Z9 19 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2010 VL 81 IS 8 AR 081403 DI 10.1103/PhysRevB.81.081403 PG 4 WC Physics, Condensed Matter SC Physics GA 562LW UT WOS:000275053300019 ER PT J AU Gruner, ME Adeagbo, WA Zayak, AT Hucht, A Entel, P AF Gruner, M. E. Adeagbo, W. A. Zayak, A. T. Hucht, A. Entel, P. TI Lattice dynamics and structural stability of ordered Fe3Ni, Fe3Pd and Fe3Pt alloys using density functional theory SO PHYSICAL REVIEW B LA English DT Article ID SHAPE-MEMORY ALLOYS; GENERALIZED GRADIENT APPROXIMATION; AUGMENTED-WAVE METHOD; MN-GA ALLOYS; FE-PT ALLOYS; MAGNETIC-FIELD; 1ST-PRINCIPLES CALCULATIONS; AB-INITIO; MARTENSITIC TRANSFORMATIONS; PHASE-TRANSFORMATION AB We investigate the binding surface along the Bain path and phonon dispersion relations for the cubic phase of the ferromagnetic binary alloys Fe3X(X = Ni,Pd,Pt) for L1(2) and D0(22) ordered phases from first principles by means of density functional theory. The phonon dispersion relations exhibit a softening of the transverse acoustic mode at the M point in the L1(2) phase in accordance with experiments for ordered Fe3Pt. This instability can be associated with a rotational movement of the Fe atoms around the Ni-group element in the neighboring layers and is accompanied by an extensive reconstruction of the Fermi surface. In addition, we find an incomplete softening in [111] direction which is strongest for Fe3Ni. We conclude that besides the valence electron density also the specific Fe-content and the masses of the alloying partners should be considered as parameters for the design of Fe-based functional magnetic materials. C1 [Gruner, M. E.; Hucht, A.; Entel, P.] Univ Duisburg Essen, Fac Phys, CeNIDE, D-47048 Duisburg, Germany. [Gruner, M. E.; Hucht, A.; Entel, P.] Univ Duisburg Essen, Ctr Nanointegrat, CeNIDE, D-47048 Duisburg, Germany. [Adeagbo, W. A.] Univ Halle Wittenberg, Inst Phys, D-06120 Halle, Germany. [Zayak, A. T.] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Zayak, A. T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Gruner, ME (reprint author), Univ Duisburg Essen, Fac Phys, CeNIDE, D-47048 Duisburg, Germany. EM markus.gruner@uni-due.de RI Gruner, Markus/D-9726-2011; Hucht, Alfred/H-3181-2011 OI Gruner, Markus/0000-0002-2306-1258; Hucht, Alfred/0000-0002-9276-0159 FU Julich Supercomputing Center; Deutsche Forschungsgemeinschaft [SPP 1239] FX The authors gratefully acknowledge helpful remarks and discussions with S. Fahler (Dresden), W. Keune (Duisburg-Essen), J. Neuhaus(Munchen), B. Sanyal (Uppsala) and E. F. Wassermann (Duisburg-Essen). Part of the calculations was carried out on the JUGENE supercomputer of the John von Neumann Institute for Computing, Forschungszentrum Julich. We thank the staff of Julich Supercomputing Center for their continuous support. Financial support was granted by the Deutsche Forschungsgemeinschaft in the frame of the priority program SPP 1239, Change of microstructure and shape of solid materials by external magnetic fields. NR 100 TC 28 Z9 28 U1 5 U2 26 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2010 VL 81 IS 6 AR 064109 DI 10.1103/PhysRevB.81.064109 PG 13 WC Physics, Condensed Matter SC Physics GA 561SB UT WOS:000274998100038 ER PT J AU Gunther, CM Hellwig, O Menzel, A Pfau, B Radu, F Makarov, D Albrecht, M Goncharov, A Schrefl, T Schlotter, WF Rick, R Luning, J Eisebitt, S AF Guenther, C. M. Hellwig, O. Menzel, A. Pfau, B. Radu, F. Makarov, D. Albrecht, M. Goncharov, A. Schrefl, T. Schlotter, W. F. Rick, R. Luening, J. Eisebitt, S. TI Microscopic reversal behavior of magnetically capped nanospheres SO PHYSICAL REVIEW B LA English DT Article ID ENERGY BARRIERS; DATA-STORAGE; NANOSTRUCTURES; HOLOGRAPHY AB The magnetic switching behavior of Co/Pd multilayer-capped nanospheres is investigated by x-ray spectro-holography. Images of the magnetic state of individual nanocaps are recorded as a function of externally applied magnetic field and the angle under which the field is applied, pertaining to magnetic data storage applications with patterned, tilted, and perpendicular storage media. Dispersed nanospheres with different coverage in the submonolayer regime are investigated simultaneously in a multiplexed experiment. In clustered nanosphere arrangements, we find that individual switching events are influenced by dipolar magnetostatic interactions. Micromagnetic simulations of the switching behavior complement the experimental observations, corroborating the influence of thermal activation processes and magnetostatic interactions in this system. Such magnetostatic interactions could lead to undesired cross-talk between bits in ultrahigh-density magnetic recording applications. C1 [Guenther, C. M.; Menzel, A.; Pfau, B.; Radu, F.; Eisebitt, S.] Helmholtz Zentrum Berlin Mat & Energie GmbH, D-14109 Berlin, Germany. [Guenther, C. M.; Pfau, B.; Eisebitt, S.] Tech Univ Berlin, Inst Opt & Atomare Phys, D-10623 Berlin, Germany. [Hellwig, O.] San Jose Res Ctr, Hitachi Global Storage Technol, San Jose, CA 95135 USA. [Makarov, D.; Albrecht, M.] Tech Univ Chemnitz, Inst Phys, D-09126 Chemnitz, Germany. [Goncharov, A.; Schrefl, T.] Univ Sheffield, Dept Mat Engn, Sheffield S1 3JD, S Yorkshire, England. [Schrefl, T.] St Polten Univ Appl Sci, A-3100 St Polten, Austria. [Schlotter, W. F.; Rick, R.] SLAC, Menlo Pk, CA 94025 USA. [Luening, J.] Univ Paris 06, LCPMR, UMR 7614, F-75005 Paris, France. [Luening, J.] Synchrotron SOLEIL, F-91192 Gif Sur Yvette, France. RP Eisebitt, S (reprint author), Helmholtz Zentrum Berlin Mat & Energie GmbH, Hahn Meitner Pl 1, D-14109 Berlin, Germany. EM eisebitt@physik.tu-berlin.de RI Radu, Florin/B-6725-2011; Makarov, Denys/G-1025-2011; Menzel, Andreas/C-4388-2012; Pfau, Bastian/B-4953-2014 OI Radu, Florin/0000-0003-0284-7937; Menzel, Andreas/0000-0002-0489-609X; Gunther, Christian Michael/0000-0002-3750-7556; Pfau, Bastian/0000-0001-9057-0346 FU EU [MTKD-CT-2004-003178] FX We thank H. Zabel for providing the ALICE scattering chamber. In addition to the general support from the BESSY-II staff, we benefited in particular from the beam block adjustment designed by T. Noll. A. M. acknowledges EU support under Contract No. MTKD-CT-2004-003178. NR 24 TC 25 Z9 25 U1 0 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2010 VL 81 IS 6 AR 064411 DI 10.1103/PhysRevB.81.064411 PG 7 WC Physics, Condensed Matter SC Physics GA 561SB UT WOS:000274998100062 ER PT J AU Hardy, F Wolf, T Fisher, RA Eder, R Schweiss, P Adelmann, P von Lohneysen, H Meingast, C AF Hardy, F. Wolf, T. Fisher, R. A. Eder, R. Schweiss, P. Adelmann, P. v. Loehneysen, H. Meingast, C. TI Calorimetric evidence of multiband superconductivity in Ba(Fe0.925Co0.075)(2)As-2 single crystals SO PHYSICAL REVIEW B LA English DT Article ID HEAT AB We report on the determination of the electronic heat capacity of a slightly overdoped (x=0.075) Ba(Fe1-xCox)(2)As-2 single crystal with a T-c of 21.4 K. Our analysis of the temperature dependence of the superconducting-state specific heat provides strong evidence for a two-band s-wave order parameter with gap amplitudes 2 Delta(1)(0)/k(B)T(c)=1.9 and 2 Delta(2)(0)/k(B)T(c)=4.4. C1 [Hardy, F.; Wolf, T.; Eder, R.; Schweiss, P.; Adelmann, P.; v. Loehneysen, H.; Meingast, C.] Inst Festkorperphys, Karlsruher Inst Technol, D-76021 Karlsruhe, Germany. [Fisher, R. A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [v. Loehneysen, H.] Inst Phys, Karlsruher Inst Technol, D-76128 Karlsruhe, Germany. RP Hardy, F (reprint author), Inst Festkorperphys, Karlsruher Inst Technol, D-76021 Karlsruhe, Germany. EM frederic.hardy@kit.edu NR 40 TC 78 Z9 78 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2010 VL 81 IS 6 AR 060501 DI 10.1103/PhysRevB.81.060501 PG 4 WC Physics, Condensed Matter SC Physics GA 561SB UT WOS:000274998100019 ER PT J AU Hong, T Zheludev, A Manaka, H Regnault, LP AF Hong, Tao Zheludev, A. Manaka, H. Regnault, L. -P. TI Evidence of a magnetic Bose glass in (CH3)(2)CHNH3Cu(Cl{0.95}Br{0.05})(3) from neutron diffraction SO PHYSICAL REVIEW B LA English DT Article ID LONG-RANGE ORDER; EINSTEIN CONDENSATION; LOCALIZATION; TEMPERATURE; LIQUID; FIELD AB We report the single-crystal study of the bulk magnetization and neutron-scattering measurements on a quantum S=1/2 spin ladders system IPA-Cu(Cl0.95Br0.05)(3) with quenched disorder. In zero field, the disordered spin liquid phase is preserved as in pure IPA-CuCl3. Due to the bond randomness, a different Bose glass phase was directly observed in H-c < H < H', which separates the spin liquid phase from the unconventional Bose-Einstein condensation phase. The observed finite value of boson compressibility (dM / dH) and lack of field-induced three-dimensional long-range order are consistent with the theoretical prediction. C1 [Hong, Tao] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Zheludev, A.] ETH, Festkorperphys Lab, CH-8093 Zurich, Switzerland. [Zheludev, A.] ETH, Neutron Scattering Lab, CH-5232 Villigen, Switzerland. [Zheludev, A.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Manaka, H.] Kagoshima Univ, Grad Sch Sci & Engn, Kagoshima 8900065, Japan. [Regnault, L. -P.] CEA, INAC SPSMS MDN, F-38054 Grenoble 9, France. RP Hong, T (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. EM andrey.zheludev@psi.ch RI Hong, Tao/F-8166-2010 OI Hong, Tao/0000-0002-0161-8588 FU DOE BES Division of Scientific User Facilities; Ministry of Education, Culture, Sports, Science and Technology (MEXT) FX One of the authors (T.H.) would like to thank G. W. Chern for the helpful discussion. Research at ORNL was supported by the DOE BES Division of Scientific User Facilities. Another author (H.M.) was supported by a Grant-in-Aid for Young Scientists (B) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT). NR 30 TC 51 Z9 51 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2010 VL 81 IS 6 AR 060410 DI 10.1103/PhysRevB.81.060410 PG 4 WC Physics, Condensed Matter SC Physics GA 561SB UT WOS:000274998100013 ER PT J AU Janssen, JL Cote, M Louie, SG Cohen, ML AF Janssen, Jonathan Laflamme Cote, Michel Louie, Steven G. Cohen, Marvin L. TI Electron-phonon coupling in C-60 using hybrid functionals SO PHYSICAL REVIEW B LA English DT Article ID EXACT EXCHANGE; SUPERCONDUCTIVITY; FULLERENE; POLYACETYLENE; FULLERIDES; SPECTRA; POWDER; RAMAN; C60 AB The calculations of the electron-phonon coupling in C-60 molecules are analyzed in the context of hybrid functionals within the density-functional theory (DFT) approach. We find that increasing the contribution of the exchange energy calculated with a Fock operator in a functional from 0 to 30% has little impact on structural properties and phonon frequencies, but it generates a strong increase of the total electron-phonon coupling (similar to 40%). The resulting electron-phonon couplings for each vibrational mode are in better agreement with experimental data. In particular, the H-g vibrational modes contribution to the total coupling increased from 67 to 94 meV, which compares favorably with the most recent experimental value of 97 meV. With this new result, the deduced electron-phonon coupling parameter lambda was increased from a range of 0.3-0.6 to 0.4-0.9, which now overlaps with the distribution of experimental values (0.7-1.2). Thus, the disagreements found in the literature about superconductivity-related properties in fullerides may be in part explained by the great sensitivity of those DFT results to the choice of functional. C1 [Janssen, Jonathan Laflamme; Cote, Michel] Univ Montreal, Dept Phys & Regroupment Quebecois Mat Pointe, Montreal, PQ H3C 3J7, Canada. [Louie, Steven G.; Cohen, Marvin L.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Louie, Steven G.; Cohen, Marvin L.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Janssen, JL (reprint author), Univ Montreal, Dept Phys & Regroupment Quebecois Mat Pointe, CP 6128,Succursale Ctr Ville, Montreal, PQ H3C 3J7, Canada. EM michel.cote@umontreal.ca RI Cote, Michel/H-3942-2012; OI Cote, Michel/0000-0001-9046-9491; Laflamme Janssen, Jonathan/0000-0001-7431-6268 FU NSERC; FQRNT; NSF [DMR07-05941]; U.S. DOE [DE-AC02-05CH11231] FX This work was supported by grants from NSERC and FQRNT and by the NSF under Grant No. DMR07-05941 and the U.S. DOE under Contract No. DE-AC02-05CH11231. The computational resources were provided by the Reseau quebecois de calcul haute perfomance (RQCHP). NR 37 TC 26 Z9 26 U1 0 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2010 VL 81 IS 7 AR 073106 DI 10.1103/PhysRevB.81.073106 PG 4 WC Physics, Condensed Matter SC Physics GA 561SC UT WOS:000274998200006 ER PT J AU Janssen, Y Kim, MS Park, KS Wu, LS Marques, C Bennett, MC Chen, Y Li, J Huang, Q Lynn, JW Aronson, MC AF Janssen, Y. Kim, M. S. Park, K. S. Wu, L. S. Marques, C. Bennett, M. C. Chen, Y. Li, J. Huang, Q. Lynn, J. W. Aronson, M. C. TI Determination of the magnetic structure of Yb3Pt4:k=0 local-moment antiferromagnet SO PHYSICAL REVIEW B LA English DT Article ID CRYSTAL-STRUCTURE; NEUTRON-DIFFRACTION; QUANTUM CRITICALITY; LATTICE-CONSTANTS; SINGLE-CRYSTALS; SPACE-GROUPS; TRANSITIONS; HORH4B4; GROWTH; METALS AB We have used neutron-diffraction measurements to study the zero-field magnetic structure of the intermetallic compound Yb3Pt4, which was earlier found to order antiferromagnetically at the Neel temperature T-N = 2.4 K, and displays a field-driven quantum-critical point at 1.6 T. In Yb3Pt4, the Yb moments sit on a single low-symmetry site in the rhombohedral lattice with space group R (3) over bar. The Yb ions form octahedra with edges that are twisted with respect to the hexagonal unit cell, a twisting that results in every Yb ion having exactly one Yb nearest neighbor. Below T-N, we found new diffracted intensity due to a k=0 magnetic structure. This magnetic structure was compared to all symmetry-allowed magnetic structures and was subsequently refined. The best-fitting magnetic-structure model is antiferromagnetic and involves pairs of Yb nearest neighbors on which the moments point almost exactly toward each other. This structure has moment components within the ab plane as well as parallel to the c axis although the easy magnetization direction lies in the ab plane. Our magnetization results suggest that besides the crystal-electric-field anisotropy, anisotropic exchange favoring alignment along the c axis is responsible for the overall direction of the ordered moments. The magnitude of the ordered Yb moments in Yb3Pt4 is 0.81 mu(B)/Yb at 1.4 K. The analysis of the bulk properties, the size of the ordered moment, and the observation of well-defined crystal-field levels argue that the Yb moments are spatially localized in zero field. C1 [Janssen, Y.; Kim, M. S.; Park, K. S.; Aronson, M. C.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Park, K. S.; Wu, L. S.; Marques, C.; Bennett, M. C.; Aronson, M. C.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Chen, Y.; Li, J.; Huang, Q.; Lynn, J. W.] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Chen, Y.; Li, J.] Univ Maryland, Dept Mat Sci, College Pk, MD 20742 USA. RP Janssen, Y (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM yjanssen@bnl.gov RI Park, Keeseong/B-2435-2012; Wu, Liusuo/A-5611-2016 OI Wu, Liusuo/0000-0003-0103-5267 FU U. S. Department of Energy, Office of Basic Energy Sciences; National Science Foundation [NSF-DMR0405961]; National Institute of Standards and Technology; U. S. Department of Commerce FX We are indebted to A. S. Wills, A. Kreyssig, P. Stephens, A. Moodenbaugh, W. Ratcliff, and P. Khalifah for valuable discussions and for help with experiments. Work at the Brookhaven National Laboratory was supported by the U. S. Department of Energy, Office of Basic Energy Sciences. Work at Stony Brook University was supported by the National Science Foundation under Grant No. NSF-DMR0405961. We acknowledge the support of the National Institute of Standards and Technology, U. S. Department of Commerce, in providing the neutron research facilities used in this work. NR 35 TC 4 Z9 4 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2010 VL 81 IS 6 AR 064401 DI 10.1103/PhysRevB.81.064401 PG 10 WC Physics, Condensed Matter SC Physics GA 561SB UT WOS:000274998100052 ER PT J AU Kalinin, SV Rodriguez, BJ Budai, JD Jesse, S Morozovska, AN Bokov, AA Ye, ZG AF Kalinin, S. V. Rodriguez, B. J. Budai, J. D. Jesse, S. Morozovska, A. N. Bokov, A. A. Ye, Z. -G. TI Direct evidence of mesoscopic dynamic heterogeneities at the surfaces of ergodic ferroelectric relaxors SO PHYSICAL REVIEW B LA English DT Article ID FORCE MICROSCOPY; SINGLE-CRYSTALS; TRANSITION; RESOLUTION; MANGANITE; SPECTRUM; MODEL AB Spatial variability of polarization relaxation kinetics in the relaxor ferroelectric 0.9Pb(Mg1/3Nb2/3)O-3-0.1PbTiO(3) is studied using time-resolved piezoresponse force microscopy at room temperature. Both the statistical principal component and correlation function analysis and the stretched exponent fits of relaxation curves illustrate the presence of mesoscopic "fast" and "slow" 100-200 nm regions. The spatial distribution of activation energies is reconstructed using a neural-network-based inversion of the relaxation data. The results directly prove the presence of mesoscopic heterogeneities associated with static and dynamic components of the order parameter on the surfaces of ferroelectric relaxors in the ergodic phase. C1 [Kalinin, S. V.; Budai, J. D.; Jesse, S.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Rodriguez, B. J.] Univ Coll Dublin, Dublin 4, Ireland. [Morozovska, A. N.] Natl Acad Sci Ukraine, V Lashkaryov Inst Semicond Phys, UA-03028 Kiev, Ukraine. [Bokov, A. A.; Ye, Z. -G.] Simon Fraser Univ, Dept Chem, Burnaby, BC V5A 1S6, Canada. [Bokov, A. A.; Ye, Z. -G.] Simon Fraser Univ, LABS 4D, Burnaby, BC V5A 1S6, Canada. RP Kalinin, SV (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM sergei2@ornl.gov RI Bokov, Alexei/C-6924-2008; Kalinin, Sergei/I-9096-2012; Rodriguez, Brian/A-6253-2009; Jesse, Stephen/D-3975-2016; Budai, John/R-9276-2016 OI Bokov, Alexei/0000-0003-1126-3378; Kalinin, Sergei/0000-0001-5354-6152; Rodriguez, Brian/0000-0001-9419-2717; Jesse, Stephen/0000-0002-1168-8483; Budai, John/0000-0002-7444-1306 FU ORNL LDRD; CNMS [CNMS2007-085]; DMSE U. S. DOE Basic Energy Sciences; ONR [N00014-06-1-0166]; UCD; Ministry of Science and Education of Ukraine [UU30/004]; National Science Foundation [DMR-0908718] FX This research is supported by ORNL LDRD program (S.V.K., B.J.R., and S.J.) and was a part of the CNMS User Program (Grant No. CNMS2007-085). X-ray work at XOR/UNI-APS sponsored by DMSE U. S. DOE Basic Energy Sciences under contract with UT-Battelle (J.D.B.). The work is also supported by ONR (Grant No. N00014-06-1-0166) (A.A.B. and Z.G.Y.). The authors thank W.Chen and X. Long for help in crystal preparation and J. Tischler and W. Liu for help with x-ray measurements. S. V. K. is deeply grateful to D. Rugar (IBM) for invaluable advice on methods for solution of inverse problems. B.J.R. also acknowledges the support of UCD Research. A.N.M. acknowledges the Ministry of Science and Education of Ukraine (Grant No. UU30/004 ) and the National Science Foundation (Grant No. DMR-0908718). NR 39 TC 51 Z9 51 U1 4 U2 35 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2010 VL 81 IS 6 AR 064107 DI 10.1103/PhysRevB.81.064107 PG 8 WC Physics, Condensed Matter SC Physics GA 561SB UT WOS:000274998100036 ER PT J AU Kim, JH Ellis, DS Gog, T Casa, D Kim, YJ AF Kim, Jungho Ellis, D. S. Gog, T. Casa, D. Kim, Young-June TI Orbital excitation in Sr2CuO2Cl2: Resonant inelastic x-ray scattering at the Cu K pre-edge SO PHYSICAL REVIEW B LA English DT Article ID SPECTRA; DEPENDENCE AB We report resonant inelastic x-ray scattering (RIXS) study of d-d orbital excitations in Sr2CuO2Cl2 utilizing the intermediate state associated with a quadrupole transition. Fourfold azimuthal angle dependence of the pre-edge peak near the Cu K absorption edge confirms that the in-plane pre-edge peak arises from the 1s -> 3d(x2-y2) electric quadrupole transition. When the incident photon energy is tuned to this transition, we observed a RIXS excitation at 2 eV energy loss. This excitation is associated with the d-d excitation of d(x2-y2) -> d(yz,zx) based on the angular dependence of the quadrupole transition-matrix element of the scattered photon. C1 [Kim, Jungho; Gog, T.; Casa, D.] Argonne Natl Lab, Adv Photon Source, XOR, Argonne, IL 60439 USA. [Kim, Jungho; Ellis, D. S.; Kim, Young-June] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. RP Kim, J (reprint author), Argonne Natl Lab, Adv Photon Source, XOR, Argonne, IL 60439 USA. EM yjkim@physics.utoronto.ca RI Kim, Young-June /G-7196-2011; Casa, Diego/F-9060-2016 OI Kim, Young-June /0000-0002-1172-8895; FU Natural Sciences and Engineering Research Council of Canada; Ontario Ministry of Research and Innovation; U.S. DOE, Office of Science, Office of Basic Energy Sciences [W-31-109-ENG-38] FX The work at University of Toronto was supported by Natural Sciences and Engineering Research Council of Canada and by Ontario Ministry of Research and Innovation through Early Researcher Award. Use of the Advanced Photon Source was supported by the U.S. DOE, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-ENG-38. NR 21 TC 4 Z9 4 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2010 VL 81 IS 7 AR 073109 DI 10.1103/PhysRevB.81.073109 PG 4 WC Physics, Condensed Matter SC Physics GA 561SC UT WOS:000274998200009 ER PT J AU Kobayashi, T Du, J Feng, W Yoshino, K Tretiak, S Saxena, A Bishop, AR AF Kobayashi, Takayoshi Du, Juan Feng, Wei Yoshino, Katsumi Tretiak, Sergei Saxena, Avadh Bishop, Alan R. TI Observation of breather excitons and soliton in a substituted polythiophene with a degenerate ground state SO PHYSICAL REVIEW B LA English DT Article ID CONJUGATED POLYMERS; POLYACETYLENE; DYNAMICS AB We investigated the ultrafast dynamics of a unique polythiophene derivative that has a degenerate ground state due to an alternating benzenoid-quinoid resonance. We probed 128 different wavelengths at the same time by using a sub-5-fs pulse laser and a detection system composed of a polychromator and a multichannel lock-in amplifier. The method allowed us to study the electronic relaxation and vibrational dynamics in completely same conditions at the same time. Because the polythiophene derivative has degenerate ground state, solitons are expected to be generated after photoexcitation. The dynamics of a breather composed of a dynamic bound state of solitons generated immediately after photoexcitation was time-resolved to reveal coupling between the vibrational modes and the solitons. The C-C and C=C stretching modes were found to be modulated by the breather, whose lifetime was determined to be 30-50 fs. The results of quantum-chemical excited-state molecular dynamics simulation are consistent with experimental results. Our modeling results allow to identify related vibrational normal modes strongly coupled to the electronic degrees of freedom. Moreover, analysis of calculated trajectories of excited state shows appearance of short-lived breather excitation decaying due to intramolecular vibrational energy equilibration on a time scale of hundreds of femtoseconds, which also agrees well with the experimental results. C1 [Kobayashi, Takayoshi; Du, Juan] Univ Electrocommun, Dept Appl Phys & Chem, Tokyo 1828585, Japan. [Kobayashi, Takayoshi; Du, Juan] Univ Electrocommun, Inst Laser Sci, Tokyo 1828585, Japan. [Kobayashi, Takayoshi; Du, Juan] JST, ICORP, Ultrashort Pulse Laser Project, Kawaguchi, Saitama 3320012, Japan. [Kobayashi, Takayoshi] Natl Chiao Tung Univ, Dept Electrophys, Hsinchu 30050, Taiwan. [Kobayashi, Takayoshi] Osaka Univ, Inst Laser Engn, Osaka 5650871, Japan. [Feng, Wei] Tianjin Univ, Sch Mat Sci & Engn, Tianjin 300072, Peoples R China. [Yoshino, Katsumi] Shimane Inst Ind Technol, Matsue, Shimane 6900816, Japan. [Tretiak, Sergei; Saxena, Avadh; Bishop, Alan R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Tretiak, Sergei; Saxena, Avadh; Bishop, Alan R.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Kobayashi, T (reprint author), Univ Electrocommun, Dept Appl Phys & Chem, 1-5-1 Chofugaoka, Tokyo 1828585, Japan. RI Tretiak, Sergei/B-5556-2009 OI Tretiak, Sergei/0000-0001-5547-3647 FU Ministry of Education (MOE) in Taiwan; Institute of Laser Engineering, Osaka University [B1-27] FX This work was partly supported by a grant from the Ministry of Education (MOE) in Taiwan under the ATU Program at National Chiao Tung University. A part of this work was performed under the joint research project of the Institute of Laser Engineering, Osaka University under Contract No. B1-27. NR 30 TC 4 Z9 4 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2010 VL 81 IS 7 AR 075205 DI 10.1103/PhysRevB.81.075205 PG 7 WC Physics, Condensed Matter SC Physics GA 561SC UT WOS:000274998200060 ER PT J AU Kohli, V Bedzyk, MJ Fenter, P AF Kohli, Vaibhav Bedzyk, Michael J. Fenter, Paul TI Direct method for imaging elemental distribution profiles with long-period x-ray standing waves SO PHYSICAL REVIEW B LA English DT Article ID SURFACE-STRUCTURE DETERMINATION; RUTILE-WATER INTERFACE; DYNAMICAL DIFFRACTION; LATTICE LOCATION; FLUORESCENCE; FIELDS; MONOLAYERS; SCATTERING; MINERALS; FILMS AB A model-independent Fourier-inversion method for imaging elemental profiles from multilayer and totalexternal reflection x-ray standing wave (XSW) data is developed for the purpose of understanding the assembly of atoms, ions, and molecules at well-defined interfaces in complex environments. The direct-method formalism is derived for the case of a long-period XSW generated by low-angle specular reflection in an attenuating overlayer medium. It is validated through comparison with simulated and experimental data to directly obtain an elemental distribution contained within the overlayer. We demonstrate this formalism by extracting the one-dimensional profile of Ti normal to the surface for a TiO(2)/Si/Mo trilayer deposited on a Si substrate using the Ti K alpha fluorescence yield measured in air and under an aqueous electrolyte. The model-independent results demonstrate reduced coherent fractions for the in situ results associated with an incoherency of the x-ray beam (which are attributed to fluorescence excitation by diffusely or incoherently scattered x-rays). The uniqueness and limitations of the approach are discussed. C1 [Kohli, Vaibhav; Bedzyk, Michael J.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Kohli, Vaibhav; Fenter, Paul] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Bedzyk, Michael J.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Kohli, V (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. RI Bedzyk, Michael/B-7503-2009; Bedzyk, Michael/K-6903-2013; OI Fenter, Paul/0000-0002-6672-9748 FU U. S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [ERKCC41] FX This work was supported by the U. S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, through the project "Nanoscale Complexity at the Oxide-Water Interface" (Grant No. ERKCC41) at Oak Ridge National Laboratory. The data reported in this paper were collected at beamline 33BM-C at the Advanced Photon Source (APS), Argonne National laboratory. Initial measurements toward this effort were conducted at beamlines 6ID-B and 11ID-D. Use of the APS was also supported by the U. S. DOE, Office of Science, Office of Basic Energy Sciences. We are grateful to Chian Liu for growing the sputter deposited layers, Joe Libera and Jeffrey Elam for the ALD coating, Mike Wieczorek for dicing the Si wafer, and APS Sector 33 staff Jenia Karapetrova and Zhan Zhang for technical support. NR 40 TC 5 Z9 6 U1 0 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2010 VL 81 IS 5 AR 054112 DI 10.1103/PhysRevB.81.054112 PG 14 WC Physics, Condensed Matter SC Physics GA 561SA UT WOS:000274998000029 ER PT J AU Kondo, T Fernandes, RM Khasanov, R Liu, C Palczewski, AD Ni, N Shi, M Bostwick, A Rotenberg, E Schmalian, J Bud'ko, SL Canfield, PC Kaminski, A AF Kondo, Takeshi Fernandes, R. M. Khasanov, R. Liu, Chang Palczewski, A. D. Ni, Ni Shi, M. Bostwick, A. Rotenberg, E. Schmalian, J. Bud'ko, S. L. Canfield, P. C. Kaminski, A. TI Unexpected Fermi-surface nesting in the pnictide parent compounds BaFe2As2 and CaFe2As2 revealed by angle-resolved photoemission spectroscopy SO PHYSICAL REVIEW B LA English DT Article ID PHASE-DIAGRAM; SUPERCONDUCTOR AB We use angle-resolved photoemission spectroscopy to study the band structure of BaFe2As2 and CaFe2As2, two of the parent compounds of the iron arsenic high-temperature superconductors. Our high quality data reveals that although the Fermi surface is strongly three-dimensional, it does indeed have long parallel segments along the k(z) direction that can lead to the emergence of magnetic order. More interestingly, we find very unusual incommensurate nesting of the Fermi surface in the a-b plane that is present only at low temperatures. We speculate that this is a signature of a failed charge density wave state that was predicted by renormalization-group studies. C1 [Kondo, Takeshi; Fernandes, R. M.; Liu, Chang; Palczewski, A. D.; Ni, Ni; Schmalian, J.; Bud'ko, S. L.; Canfield, P. C.; Kaminski, A.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Khasanov, R.] Paul Scherrer Inst, Lab Muon Spin Spect, CH-5232 Villigen, Switzerland. [Shi, M.] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland. [Bostwick, A.; Rotenberg, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Kondo, T (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RI Rotenberg, Eli/B-3700-2009; Schmalian, Joerg/H-2313-2011; Fernandes, Rafael/E-9273-2010; Bostwick, Aaron/E-8549-2010; Canfield, Paul/H-2698-2014; Kondo, Takeshi/H-2680-2016; OI Rotenberg, Eli/0000-0002-3979-8844; Khasanov, Rustem/0000-0002-4768-5524 FU U.S. DOE [DE-AC03-76SF0009, DE-AC02-07CH11358] FX We thank A. Kreyssig, A. I. Goldman, and B. N. Harmon for insightful discussions. ALS is operated by the U.S. DOE under Contract No. DE-AC03-76SF00098. Ames Laboratory was supported by the U.S. DOE, Basic Energy Sciences under Contract No. DE-AC02-07CH11358. NR 21 TC 62 Z9 62 U1 1 U2 26 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2010 VL 81 IS 6 AR 060507 DI 10.1103/PhysRevB.81.060507 PG 4 WC Physics, Condensed Matter SC Physics GA 561SB UT WOS:000274998100025 ER PT J AU Kos, S Balatsky, AV Littlewood, PB Smith, DL AF Kos, Simon Balatsky, Alexander V. Littlewood, Peter B. Smith, Darryl L. TI Spin noise of itinerant fermions SO PHYSICAL REVIEW B LA English DT Article ID MAGNETIC-RESONANCE; ATOMIC SPIN; SPECTROSCOPY AB We develop a theory of spin-noise spectroscopy of itinerant, noninteracting, and spin-carrying fermions in different regimes of temperature and disorder. We use kinetic equations for the density matrix in spin variables. We find a general result with a clear physical interpretation, and discuss its dependence on temperature, the size of the system, and applied magnetic field. We consider two classes of experimental probes: (1) electron-spin-resonance-type measurements, in which the probe response to a uniform magnetization increases linearly with the volume sampled and (2) optical Kerr/Faraday rotation-type measurements, in which the probe response to a uniform magnetization increases linearly with the length of the light propagation in the sample but is independent of the cross section of the light beam. Our theory provides a framework for interpreting recent experiments on atomic gases and conduction electrons in semiconductors and provides a baseline for identifying the effects of interactions on spin-noise spectroscopy. C1 [Kos, Simon] Univ W Bohemia, Dept Phys, Plzen 30614, Czech Republic. [Kos, Simon; Littlewood, Peter B.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Kos, Simon; Balatsky, Alexander V.; Smith, Darryl L.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Balatsky, Alexander V.] Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Kos, S (reprint author), Univ W Bohemia, Dept Phys, Univ 22, Plzen 30614, Czech Republic. EM simonkos@kfy.zcu.cz RI Littlewood, Peter/B-7746-2008; Kos, Simon/G-3289-2016 OI Kos, Simon/0000-0003-1657-9793 FU U. S. Department of Energy, BES; Los Alamos National Laboratory LDRD program; EPSRC; Ministry of Education of the Czech Republic [MSM 4977751302] FX This work was supported in part by the U. S. Department of Energy, BES, and by the Los Alamos National Laboratory LDRD program. Work in Cambridge was supported by EPSRC. This work was also partially supported by the Ministry of Education of the Czech Republic through Project No. MSM 4977751302. We are grateful to S. A. Crooker and D. E. Khmelnitskii for discussion and carefully reading the manuscript. NR 16 TC 9 Z9 9 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2010 VL 81 IS 6 AR 064407 DI 10.1103/PhysRevB.81.064407 PG 9 WC Physics, Condensed Matter SC Physics GA 561SB UT WOS:000274998100058 ER PT J AU LaForge, AD Schafgans, AA Dordevic, SV Padilla, WJ Burch, KS Li, ZQ Segawa, K Komiya, S Ando, Y Tranquada, JM Basov, DN AF LaForge, A. D. Schafgans, A. A. Dordevic, S. V. Padilla, W. J. Burch, K. S. Li, Z. Q. Segawa, Kouji Komiya, Seiki Ando, Yoichi Tranquada, J. M. Basov, D. N. TI Possibility of magnetic-field-induced reconstruction of the Fermi surface in underdoped cuprates: Constraints from infrared magneto-optics SO PHYSICAL REVIEW B LA English DT Article ID T-C SUPERCONDUCTORS; HIGH-TEMPERATURE SUPERCONDUCTORS; OPTICAL CONDUCTIVITY; HIGH-T(C) SUPERCONDUCTORS; QUANTUM OSCILLATIONS; PSEUDOGAP STATE; CUO2 PLANES; AXIS; GAP; POCKETS AB We present an analysis of infrared optical and magneto-optical conductivity data for a range of underdoped cuprate superconductors including YBa(2)Cu(3)O(y) and La(2-x)Sr(x)CuO(4). In light of recent magneto-oscillation experiments which have been interpreted in terms of Fermi surface reconstruction in magnetic field, we search for far-infrared signatures of field-induced pockets of coherent quasiparticles. Analysis of the conductivity spectra in magnetic field reveals no sign of field-induced Drude-like response, as well as no evidence for modification of the pseudogap. By considering changes of the low-frequency spectral weight, we are able to place limits on the oscillator strength of coherent modes deriving from proposed field-induced pockets in the Fermi surface. In underdoped La(2-x)Sr(x)CuO(4) we observe a complete suppression of the superfluid density but no evidence for a coherent contribution to the conductivity. Other limits are established for YBa(2)Cu(3)O(y). We further discuss these results in the context of cuprate systems in which stripe order can account for the observed nodal effects but does not lead to the development of antinodal pockets with long-lived quasiparticles. C1 [LaForge, A. D.; Schafgans, A. A.; Padilla, W. J.; Burch, K. S.; Li, Z. Q.; Basov, D. N.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Dordevic, S. V.] Univ Akron, Dept Phys, Akron, OH 44325 USA. [Segawa, Kouji; Ando, Yoichi] Osaka Univ, Inst Sci & Ind Res, Osaka 5670047, Japan. [Komiya, Seiki] Cent Res Inst Elect Power Ind, Tokyo 2018511, Japan. [Tranquada, J. M.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP LaForge, AD (reprint author), Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95005 USA. EM alaforge@ucsc.edu RI Tranquada, John/A-9832-2009; Ando, Yoichi/B-8163-2013; SEGAWA, Kouji/D-4204-2014 OI Burch, Kenneth/0000-0002-7541-0245; Tranquada, John/0000-0003-4984-8857; Ando, Yoichi/0000-0002-3553-3355; SEGAWA, Kouji/0000-0002-3633-4809 FU NSF [DMR 0705171]; AFOSR-MURI.; KAKENHI [19674002, 20030004, 20740196]; Brookhaven by the Office of Science, U.S. Department of Energy [DE-AC02-98CH10886.] FX This research was supported by NSF Grant No. DMR 0705171 and AFOSR-MURI. Y.A. was supported by KAKENHI Grants No. 19674002 and No. 20030004, as was K. S. by KAKENHI Grant No. 20740196. J.M.T. was supported at Brookhaven by the Office of Science, U.S. Department of Energy, under Contract No. DE-AC02-98CH10886. NR 60 TC 7 Z9 7 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2010 VL 81 IS 6 AR 064510 DI 10.1103/PhysRevB.81.064510 PG 7 WC Physics, Condensed Matter SC Physics GA 561SB UT WOS:000274998100100 ER PT J AU Lee, Y Vaknin, D Li, HF Tian, W Zarestky, JL Ni, N Bud'ko, SL Canfield, PC McQueeney, RJ Harmon, BN AF Lee, Y. Vaknin, David Li, Haifeng Tian, Wei Zarestky, Jerel L. Ni, N. Bud'ko, S. L. Canfield, P. C. McQueeney, R. J. Harmon, B. N. TI Magnetic form factor of iron in SrFe2As2 SO PHYSICAL REVIEW B LA English DT Article AB The iron magnetic form factor in SrFe2As2 has been determined by neutron diffraction and by density-functional theory (DFT). As noted previously, the magnitude of the calculated moment using DFT is sensitive to the Fe-As distance. However, the shape of the calculated form factor is practically insensitive to the Fe-As distance, and further we show that the form factor closely resembles that of bcc iron, and agrees well with experiment. The spin density exhibits some anisotropy due to geometry and As hybridization. C1 [Lee, Y.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Lee, Y (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RI Li, Haifeng/F-9743-2013; Tian, Wei/C-8604-2013; Canfield, Paul/H-2698-2014; McQueeney, Robert/A-2864-2016; Vaknin, David/B-3302-2009 OI Tian, Wei/0000-0001-7735-3187; McQueeney, Robert/0000-0003-0718-5602; Vaknin, David/0000-0002-0899-9248 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC02-07CH11358]; Scientific User Facilities Division, Office of Basic Energy Sciences FX Research supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Contract No. DE-AC02-07CH11358. Research at Oak Ridge National Laboratory's High Flux Isotope Reactor was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences. NR 19 TC 20 Z9 20 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2010 VL 81 IS 6 AR 060406 DI 10.1103/PhysRevB.81.060406 PG 4 WC Physics, Condensed Matter SC Physics GA 561SB UT WOS:000274998100009 ER PT J AU Leininger, P Rahlenbeck, M Raichle, M Bohnenbuck, B Maljuk, A Lin, CT Keimer, B Weschke, E Schierle, E Seki, S Tokura, Y Freeland, JW AF Leininger, Ph. Rahlenbeck, M. Raichle, M. Bohnenbuck, B. Maljuk, A. Lin, C. T. Keimer, B. Weschke, E. Schierle, E. Seki, S. Tokura, Y. Freeland, J. W. TI Electronic structure, magnetic, and dielectric properties of the edge-sharing copper oxide chain compound NaCu2O2 SO PHYSICAL REVIEW B LA English DT Article ID SCATTERING; LICUVO4; STATE AB We report an experimental study of NaCu2O2, a Mott insulator containing chains of edge-sharing CuO4 plaquettes, by polarized x-ray absorption spectroscopy (XAS), resonant magnetic x-ray scattering (RMXS), magnetic susceptibility, and pyroelectric current measurements. The XAS data show that the valence holes reside exclusively on the Cu2+ sites within the copper-oxide spin chains and populate a d orbital polarized within the CuO4 plaquettes. The RMXS measurements confirm the presence of incommensurate magnetic order below a NEel temperature of T-N = 11.5 K, which was previously inferred from neutron powder-diffraction and nuclear-magnetic-resonance data. In conjunction with the magnetic-susceptibility and XAS data, they also demonstrate an "orbital" selection rule for RMXS that is of general relevance for magnetic-structure determinations by this technique. Dielectric property measurements reveal the absence of significant ferroelectric polarization below TN, which is in striking contrast to corresponding observations on the isostructural compound LiCu2O2. The results are discussed in the context of current theories of multiferroicity. C1 [Leininger, Ph.; Rahlenbeck, M.; Raichle, M.; Bohnenbuck, B.; Maljuk, A.; Lin, C. T.; Keimer, B.] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany. [Weschke, E.; Schierle, E.] Helmholtz Zentrum Mat & Energie, D-12489 Berlin, Germany. [Seki, S.; Tokura, Y.] Univ Tokyo, Dept Appl Phys, Bunkyo Ku, Tokyo 1138656, Japan. [Freeland, J. W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Leininger, P (reprint author), Max Planck Inst Festkorperforsch, Heisenbergstr 1, D-70569 Stuttgart, Germany. RI Seki, Shinichiro/A-1339-2010; Schierle, Enrico/J-4356-2013; Weschke, Eugen/J-4404-2013; Tokura, Yoshinori/C-7352-2009 OI Seki, Shinichiro/0000-0001-6094-8643; Schierle, Enrico/0000-0002-6981-2301; Weschke, Eugen/0000-0002-2141-0944; FU U.S. Department of Energy, Office of Science [DEAC02-06CH11357] FX We thank E. Dudzik and R. Feyerherm for assistance during the experiment at the 7T-MPW-MagS beamline of BESSY. We thank P. Horsch, R.K. Kremer, D. Efremov, and M. W. Haverkort for useful discussions. Work at the Advanced Photon Source, Argonne is supported by the U.S. Department of Energy, Office of Science under Contract No. DEAC02-06CH11357. We thank C. Schussler-Langeheine and the SFB 608 for instrumental support. NR 39 TC 14 Z9 14 U1 4 U2 29 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2010 VL 81 IS 8 AR 085111 DI 10.1103/PhysRevB.81.085111 PG 6 WC Physics, Condensed Matter SC Physics GA 562LW UT WOS:000275053300038 ER PT J AU Li, L Wang, YY Komiya, S Ono, S Ando, Y Gu, GD Ong, NP AF Li, Lu Wang, Yayu Komiya, Seiki Ono, Shimpei Ando, Yoichi Gu, G. D. Ong, N. P. TI Diamagnetism and Cooper pairing above T-c in cuprates SO PHYSICAL REVIEW B LA English DT Article ID UNDERDOPED BI2SR2CACU2O8+DELTA; MAGNETIZATION; TEMPERATURE; SUPERCONDUCTORS; ONSET; FIELD AB In the cuprate superconductors, Nernst and torque magnetization experiments have provided evidence that the disappearance of the Meissner effect at T-c is caused by the loss of long-range phase coherence, rather than the vanishing of the pair condensate. Here we report a series of torque magnetization measurements on single crystals of La2-xSrxCuO4 (LSCO), Bi2Sr2-yLayCuO6 (Bi 2201), Bi2Sr2CaCu2O8+delta, and optimal YBa2Cu3O7. Some of the measurements were taken to fields as high as 45 T. Focusing on the magnetization above T-c, we show that the diamagnetic term M-d appears at an onset temperature T-onset(M) high above T-c. We construct the phase diagram of both LSCO and Bi 2201 and show that T-onset(M) agrees with the onset temperature of the vortex Nernst signal T-onset(nu). Our results provide thermodynamic evidence against a recent proposal that the high-temperature Nernst signal in LSCO arises from a quasiparticle contribution in a charge-ordered state. C1 [Li, Lu; Wang, Yayu; Ong, N. P.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Wang, Yayu] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Komiya, Seiki; Ono, Shimpei; Ando, Yoichi] Cent Res Inst Elect Power Ind, Tokyo 2018511, Japan. [Ando, Yoichi] Osaka Univ, Inst Sci & Ind Res, Osaka 5670047, Japan. [Gu, G. D.] Brookhaven Natl Lab, New York, NY 11973 USA. RP Li, L (reprint author), Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. RI Ando, Yoichi/B-8163-2013; Gu, Genda/D-5410-2013 OI Ando, Yoichi/0000-0002-3553-3355; Gu, Genda/0000-0002-9886-3255 FU U. S. National Science Foundation [DMR-0213706, DMR-0819860]; NSFC; MOST of China; Department of Energy (DOE) [DE-AC02-98CH10886]; NSF [DMR-084173]; State of Florida FX We acknowledge numerous helpful discussions with P. W. Anderson, J. C. Davis, S. A. Kivelson, P. A. Lee, T. Senthil, Z. Tesanovic, and A. Yazdani. The research at Princeton is supported by funds from U. S. National Science Foundation under the MRSEC Grants No. DMR-0213706 and No. DMR-0819860. Y. W. is supported by NSFC and MOST of China. G. D. G. is supported by the Department of Energy (DOE) under Contract No. DE-AC02-98CH10886. The high-field experiments were performed at the National High Magnetic Field Laboratory, which is supported by NSF Cooperative Agreement No. DMR-084173, by the State of Florida, and by the DOE. NR 38 TC 142 Z9 142 U1 7 U2 47 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2010 VL 81 IS 5 AR 054510 DI 10.1103/PhysRevB.81.054510 PG 9 WC Physics, Condensed Matter SC Physics GA 561SA UT WOS:000274998000107 ER PT J AU Martin, C Kim, H Gordon, RT Ni, N Kogan, VG Bud'ko, SL Canfield, PC Tanatar, MA Prozorov, R AF Martin, C. Kim, H. Gordon, R. T. Ni, N. Kogan, V. G. Bud'ko, S. L. Canfield, P. C. Tanatar, M. A. Prozorov, R. TI Evidence from anisotropic penetration depth for a three-dimensional nodal superconducting gap in single-crystalline Ba(Fe1-xNix)(2)As-2 SO PHYSICAL REVIEW B LA English DT Article AB The London penetration depth, lambda, is directly related to the density, n(s), of the Cooper pairs (lambda(2)proportional to 1/n(s)) and its variation with temperature provides valuable insight into the pairing mechanism. Here we study the evolution with doping of the temperature dependence of the in-plane (lambda(ab)) and out-of-plane (lambda(c)) penetration depths in single crystals of electron-doped Ba(Fe1-xNix)(2)As-2. As is the case for other pnictides, lambda(T)similar to T-n over the whole doping range and this behavior extends down to at least T=T-c/100, setting a very small upper limit on the gap minimum. Furthermore, in the overdoped regime: (1) the exponent n becomes substantially smaller than 2, which is incompatible with the models that explain power-law behavior to be due to scattering; (2) the exponent n becomes anisotropic, with lambda(c)(T) showing a clear T-linear behavior over a large temperature interval. These findings suggest that in the overdoped regime the superconducting gap in iron-based pnictide superconductors develops nodal structure, which unlike in the cuprates, cannot be understood within a two-dimensional picture. C1 [Prozorov, R.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Prozorov, R (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM prozorov@ameslab.gov RI Prozorov, Ruslan/A-2487-2008; Canfield, Paul/H-2698-2014 OI Prozorov, Ruslan/0000-0002-8088-6096; FU Department of Energy, Office of Basic Energy Sciences [DE-AC02-07CH11358]; Alfred P. Sloan Foundation FX We thank J. Schmalian, P. Hirschfeld, A. Chubukov, I. Mazin, and M. S. Laad for stimulating discussions. Work at the Ames Laboratory was supported by the Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-07CH11358. R. P. acknowledges support from the Alfred P. Sloan Foundation. NR 35 TC 46 Z9 46 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2010 VL 81 IS 6 AR 060505 DI 10.1103/PhysRevB.81.060505 PG 4 WC Physics, Condensed Matter SC Physics GA 561SB UT WOS:000274998100023 ER PT J AU Mattsson, TR Lane, JMD Cochrane, KR Desjarlais, MP Thompson, AP Pierce, F Grest, GS AF Mattsson, Thomas R. Lane, J. Matthew D. Cochrane, Kyle R. Desjarlais, Michael P. Thompson, Aidan P. Pierce, Flint Grest, Gary S. TI First-principles and classical molecular dynamics simulation of shocked polymers SO PHYSICAL REVIEW B LA English DT Article ID AUGMENTED-WAVE METHOD; EQUATION-OF-STATE; FORCE-FIELD; AB-INITIO; BASIS-SET; HYDROCARBONS; LIQUID; POLYETHYLENE; CHEMISTRY; ALKANES AB Density functional theory (DFT) molecular dynamics (MD) and classical MD simulations of the principal shock Hugoniot are presented for two hydrocarbon polymers, polyethylene (PE) and poly (4-methyl-1-pentene) (PMP). DFT results are in excellent agreement with experimental data, which is currently available up to 80 GPa. Further, we predict the PE and PMP Hugoniots up to 350 and 200 GPa, respectively. For comparison, we studied two reactive and two nonreactive interaction potentials. For the latter, the exp-6 interaction of Borodin et al. showed much better agreement with experiment than OPLS. For the reactive force fields, ReaxFF displayed decidedly better agreement than AIREBO. For shocks above 50 GPa, only the DFT results are of high fidelity, establishing DFT as a reliable method for shocked macromolecular systems. C1 [Mattsson, Thomas R.; Lane, J. Matthew D.; Desjarlais, Michael P.; Thompson, Aidan P.; Pierce, Flint; Grest, Gary S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Cochrane, Kyle R.] Ktech Corp Inc, Albuquerque, NM 87123 USA. [Pierce, Flint] Clemson Univ, Dept Chem, Clemson, SC 29634 USA. RP Mattsson, TR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RI Mattsson, Thomas/B-6057-2009 FU NNSA Science Campaigns; Laboratory Directed Research and Development program at Sandia National Laboratories; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We thank P. in't Veld for generating the large PE sample, G. Kresse for the early opportunity to employ VASP 5.1, P. Kent for sharing Cray XT4 code modifications, 52 and S. Stuart and S. Zybin for discussions on AIREBO. The work was supported by the NNSA Science Campaigns. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 53 TC 75 Z9 76 U1 5 U2 82 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2010 VL 81 IS 5 AR 054103 DI 10.1103/PhysRevB.81.054103 PG 9 WC Physics, Condensed Matter SC Physics GA 561SA UT WOS:000274998000020 ER PT J AU Nerikar, P Stanek, CR Phillpot, SR Sinnott, SB Uberuaga, BP AF Nerikar, P. Stanek, C. R. Phillpot, S. R. Sinnott, S. B. Uberuaga, B. P. TI Intrinsic electrostatic effects in nanostructured ceramics SO PHYSICAL REVIEW B LA English DT Article ID TILT GRAIN-BOUNDARIES; IONIC-CRYSTALS; SPACE-CHARGE; SIMULATION; STABILITY; UO2 AB Using atomic-level calculations with empirical potentials, we have found that electrostatic dipoles can be created at grain boundaries formed from nonpolar surfaces of fluorite-structured materials. In particular, the Sigma 5(310)/[001] symmetric tilt grain boundary reconstructs to break the symmetry in the atomic structure at the boundary, forming the dipole. This dipole results in an abrupt change in electrostatic potential across the boundary. In multilayered ceramics composed of stacks of grain boundaries, the change in electrostatic potential at the boundary results in profound electrostatic effects within the crystalline layers, the nature of which depends on the electrical boundary conditions. For open-circuit boundary conditions, layers with either high or low electrostatic potential are formed. By contrast, for short-circuit boundary conditions, electric fields can be created within each layer, the strength of which then depend on the thickness of the layers. These electrostatic effects have important consequences for the behavior of defects and dopants within these materials. C1 [Nerikar, P.; Stanek, C. R.; Uberuaga, B. P.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Phillpot, S. R.; Sinnott, S. B.] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA. RP Uberuaga, BP (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM blas@lanl.gov RI Phillpot, Simon/J-9117-2012; Sinnott, Susan/P-8523-2014; OI Sinnott, Susan/0000-0002-3598-0403; Phillpot, Simon/0000-0002-7774-6535 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering; Seaborg Institute at LANL; National Science Foundation [DMR-0426870]; Nuclear Energy Advanced Modeling and Simulation (NEAMS) FX Work at LANL was sponsored by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering. P.V.N. also acknowledges support from the Seaborg Institute at LANL. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U. S. Department of Energy under Contract No. DE-AC52-06NA25396. S.B.S. and S.R.P. gratefully acknowledge support from the National Science Foundation through Grant No. DMR-0426870. C.R.S. and P.N. gratefully acknowledge support from the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. The authors also wish to thank Cetin Unal for informative discusions. NR 22 TC 19 Z9 19 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2010 VL 81 IS 6 AR 064111 DI 10.1103/PhysRevB.81.064111 PG 7 WC Physics, Condensed Matter SC Physics GA 561SB UT WOS:000274998100040 ER PT J AU Ney, A Kammermeier, T Ollefs, K Ye, S Ney, V Kaspar, TC Chambers, SA Wilhelm, F Rogalev, A AF Ney, A. Kammermeier, T. Ollefs, K. Ye, S. Ney, V. Kaspar, T. C. Chambers, S. A. Wilhelm, F. Rogalev, A. TI Anisotropic paramagnetism of Co-doped ZnO epitaxial films SO PHYSICAL REVIEW B LA English DT Article ID MAGNETIC-PROPERTIES; CLUSTERS; EXCHANGE; SINGLE AB We have measured the full temperature dependence of M(H) curves for 5%, 10%, and 15% Co-doped ZnO epitaxial films with high crystalline perfection. Bulk magnetometry reveals pure paramagnetism with anisotropic M(H) curves at low temperatures, whereas the x-ray magnetic circular dichroism measured at the Co K edge is isotropic. Electron paramagnetic resonance shows that the g factors are not significantly altered compared to Co(2+) impurities in ZnO. The M(H) measurements are compared to simulations using either an effective spin model with zero-field splitting D or Brillouin functions with an effective temperature ansatz. Whereas both models reproduce well the H perpendicular to c data, for H parallel to c the effective spin model indicates that D is reduced by 75% compared to Co(2+) impurities in ZnO. The dependence of the M(H) curves and D on the Co concentration is discussed in terms of magnetic interactions between the Co dopant atoms. C1 [Ney, A.; Kammermeier, T.; Ollefs, K.; Ye, S.; Ney, V.] Univ Duisburg Essen, Fac Phys & CeNIDE, D-47057 Duisburg, Germany. [Kaspar, T. C.; Chambers, S. A.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Wilhelm, F.; Rogalev, A.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. RP Ney, A (reprint author), Univ Duisburg Essen, Fac Phys & CeNIDE, Lotharstr 1, D-47057 Duisburg, Germany. EM ney@maglomat.de RI Ollefs, Katharina/F-5677-2016; Ney, Verena/N-9480-2016; OI Ollefs, Katharina/0000-0002-2301-4670; Ney, Verena/0000-0001-9413-8649; Ney, Andreas/0000-0002-2388-6006 FU EU [MEXT-CT-2004-014195]; Department of Energy, Office of Biological and Environmental Research located at Pacific Northwest National Laboratory; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Science and Engineering Physics FX This work was supported by the EU under Grant No. MEXT-CT-2004-014195. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy, Office of Biological and Environmental Research located at Pacific Northwest National Laboratory. The PNNL work was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Science and Engineering Physics. Many helpful discussions with K. Usadel are gratefully acknowledged, especially regarding the diagonalization of the effective spin model and for critically reading the manuscript. NR 27 TC 36 Z9 36 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2010 VL 81 IS 5 AR 054420 DI 10.1103/PhysRevB.81.054420 PG 10 WC Physics, Condensed Matter SC Physics GA 561SA UT WOS:000274998000070 ER PT J AU Noffsinger, J Cohen, ML AF Noffsinger, Jesse Cohen, Marvin L. TI Electronic and structural properties of ununquadium from first principles SO PHYSICAL REVIEW B LA English DT Article ID PHASE-TRANSITION; TOTAL-ENERGY; LEAD; PSEUDOPOTENTIALS; STABILITY; SOLIDS AB Using first-principles techniques, the electronic and structural properties of ununquadium are investigated. These properties are compared to the known experimental and theoretical properties of Pb which lies in the same column above Uuq in the periodic table. Within the limits of density-functional theory, we find that solid Uuq is expected to be metallic and crystallize in an fcc structure. C1 [Noffsinger, Jesse] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Noffsinger, J (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. FU National Science Foundation [DMR07-05941]; Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering Division, U.S. Department of Energy [DE-AC02-05CH11231] FX We would like to acknowledge Filipe Ribeiro for useful discussions. This work was supported by National Science Foundation under Grant No. DMR07-05941 and by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering Division, U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Computational resources have been provided by SDSC and NPACI. Calculations were performed using the QUANTUM-ESPRESSO (Ref. 26) package while Fermi surfaces were rendered with XCRYSDEN (Ref. 27). NR 27 TC 4 Z9 4 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2010 VL 81 IS 7 AR 073110 DI 10.1103/PhysRevB.81.073110 PG 3 WC Physics, Condensed Matter SC Physics GA 561SC UT WOS:000274998200010 ER PT J AU Tranquada, JM Basov, DN LaForge, AD Schafgans, AA AF Tranquada, J. M. Basov, D. N. LaForge, A. D. Schafgans, A. A. TI Interpreting quantum oscillation experiments on underdoped YBa2Cu3O6+x SO PHYSICAL REVIEW B LA English DT Article ID HIGH-T-C; HIGH-TEMPERATURE SUPERCONDUCTORS; FERMI-SURFACE; PSEUDOGAP; POCKETS; STATE AB On the basis of negative transport coefficients, it has been argued that the quantum oscillations observed in underdoped YBa2Cu3O6+x in high magnetic fields must be due to antinodal electron pockets. We point out a counterexample in which electronlike transport in a hole-doped cuprate is associated with Fermi-arc states. We also present evidence that the antinodal gap in YBa2Cu3O6.67 is robust to modest applied magnetic fields. We suggest that these observations should be taken into account when interpreting the results of the quantum oscillation experiments. C1 [Tranquada, J. M.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Basov, D. N.; LaForge, A. D.; Schafgans, A. A.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. RP Tranquada, JM (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RI Tranquada, John/A-9832-2009 OI Tranquada, John/0000-0003-4984-8857 FU Office of Science, U.S. Department of Energy [DE-AC02-98CH10886]; NSF [DMR 0705171] FX We are grateful to S. A. Kivelson, C. Panagopoulos, and O. Vafek for helpful discussions. Work at Brookhaven was supported by the Office of Science, U.S. Department of Energy under Contract No. DE-AC02-98CH10886. Work at UCSD is supported by NSF Contract No. DMR 0705171. NR 32 TC 16 Z9 16 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2010 VL 81 IS 6 AR 060506 DI 10.1103/PhysRevB.81.060506 PG 3 WC Physics, Condensed Matter SC Physics GA 561SB UT WOS:000274998100024 ER PT J AU Unal, B Belianinov, A Thiel, PA Tringides, MC AF Unal, Baris Belianinov, Alex Thiel, P. A. Tringides, M. C. TI Lattice expansion in islands stabilized by electron confinement: Ag on Si(111)-7x7 SO PHYSICAL REVIEW B LA English DT Article ID QUANTUM-WELL STATES; LOW-TEMPERATURE; X-RAY; GROWTH; FILMS; SURFACES; PHOTOEMISSION; DIFFRACTION; AG/SI(111); THICKNESS AB Ag on Si(111)-7x7 was one of the first systems where height selection of metal islands was attributed to electron confinement, i.e., stabilization of selected heights through a quantum size effect (QSE). However, it has been puzzling how the requisite electron standing waves can form, because the Fermi level E(F) (along the growth [111] direction) is within the gap for bulk Ag. With detailed experiments over a wide coverage and temperature range, we show that a large increase of 12% is present in the interlayer spacing within the bilayer islands. This can shift E(F) below the gap, allowing electron confinement to control height selection. This conclusion is also supported by the observation of a corrugation pattern of period 3 nm on top of the Ag islands, which is bias dependent and can only be the result of QSE-generated standing waves normal to the film. C1 [Tringides, M. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Unal, Baris; Thiel, P. A.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Unal, Baris; Belianinov, Alex; Thiel, P. A.; Tringides, M. C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Belianinov, Alex; Thiel, P. A.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Tringides, MC (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. EM tringides@ameslab.gov FU Office of Science, Basic Energy Sciences, Materials Science Division of the U. S. Department of Energy-USDOE; [DE-AC02-07CH11358] FX We acknowledge useful discussions with Li Huang, C. Z. Wang, and K. M. Ho. We are also thankful to Miron Hupalo for his technical advice for preparation of the Si(111)-7x 7 surface. This work was supported by the Office of Science, Basic Energy Sciences, Materials Science Division of the U. S. Department of Energy-USDOE under Contract No. DE-AC02-07CH11358 through the Ames Laboratory. NR 28 TC 11 Z9 11 U1 2 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2010 VL 81 IS 8 AR 085411 DI 10.1103/PhysRevB.81.085411 PG 4 WC Physics, Condensed Matter SC Physics GA 562LW UT WOS:000275053300109 ER PT J AU Wang, X Burns, CA Said, AH Kodituwakku, CN Shvydko, YV Casa, D Gog, T Platzman, PM AF Wang, X. Burns, C. A. Said, A. H. Kodituwakku, C. N. Shvydko, Y. V. Casa, D. Gog, T. Platzman, P. M. TI Evolution of a strongly correlated liquid with electronic density SO PHYSICAL REVIEW B LA English DT Article ID X-RAY-SCATTERING; LITHIUM-AMMONIA SOLUTIONS; PLASMON DISPERSION; LI(NH3)(4); GAS AB Systems created by dissolving elemental metals in liquid ammonia are strongly correlated liquid metals where the electronic correlation strength can be easily changed by altering the electronic density. We study the plasmon in the lithium ammonia system as a function of electronic density using nonresonant inelastic x-ray scattering and use this to determine the long wavelength plasmon energy E(0) and the plasmon dispersion alpha as a function of electronic density. These parameters show the increasing influence of electronic correlations as we go to lower concentrations. The plasmon width is found to increase as we go to lower concentration. The implications of these results are discussed. C1 [Wang, X.; Burns, C. A.; Said, A. H.; Kodituwakku, C. N.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Wang, X.] Hebei Univ Engn, Dept Phys, Handan 056038, Hebei Province, Peoples R China. [Said, A. H.; Kodituwakku, C. N.; Shvydko, Y. V.; Casa, D.; Gog, T.] Argonne Natl Lab, Adv Photon Source, XOR, Argonne, IL 60439 USA. [Platzman, P. M.] Alcatel Lucent, Bell Labs, Murray Hill, NJ 07974 USA. RP Wang, X (reprint author), Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. RI Casa, Diego/F-9060-2016 FU Office of Basic Energy Sciences, U.S. Department of Energy [DE-FG02-99ER45772, DE-AC02-06CH11357] FX This work was supported by the Division of Materials Science, DOE under Grant No. DE-FG02-99ER45772. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the Office of Basic Energy Sciences, U.S. Department of Energy under Contract No. DE-AC02-06CH11357. C. A. B. would like to thank K. B. Lee and POSTECH for their hospitality during his sabbatical year when the writing of this paper took place. NR 28 TC 3 Z9 3 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2010 VL 81 IS 7 AR 075104 DI 10.1103/PhysRevB.81.075104 PG 7 WC Physics, Condensed Matter SC Physics GA 561SC UT WOS:000274998200033 ER PT J AU Wehling, TO Dahal, HP Lichtenstein, AI Katsnelson, MI Manoharan, HC Balatsky, AV AF Wehling, T. O. Dahal, H. P. Lichtenstein, A. I. Katsnelson, M. I. Manoharan, H. C. Balatsky, A. V. TI Theory of Fano resonances in graphene: The influence of orbital and structural symmetries on STM spectra SO PHYSICAL REVIEW B LA English DT Article ID AUGMENTED-WAVE METHOD; ULTRASOFT PSEUDOPOTENTIALS; MAGNETIC ATOM; MOLECULES; IMPURITY; GAS AB We theoretically investigate Fano factors arising in local spectroscopy of impurity resonances in graphene. It is demonstrated that Fano line shapes can strongly differ from the antiresonances usually found on metal surfaces. Graphene's highly symmetric Fermi points make this effect particularly sensitive to the detailed atomistic structure and orbital symmetries of the impurity. After a model discussion based on an Anderson impurity coupled to an electron bath with linearly vanishing density of states, we present first-principles calculations of Co adatoms on graphene. For Co above the center of a graphene hexagon, we find that the two-dimensional E(1) representation made of d(xz), d(yz) orbitals is likely responsible for the hybridization and ultimately Kondo screening for cobalt on graphene. Anomalously large Fano q factors depending strongly on the orbitals involved are obtained. For a resonant s-wave impurity, a similarly strong adsorption site dependence of the q factor is demonstrated. These anomalies are striking examples of quantum-mechanical interference related to the Berry phase inherent to the graphene band structure. C1 [Wehling, T. O.; Lichtenstein, A. I.] Univ Hamburg, Inst Theoret Phys, D-20355 Hamburg, Germany. [Dahal, H. P.; Balatsky, A. V.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Katsnelson, M. I.] Radboud Univ Nijmegen, Inst Mol & Mat, NL-6525 AJ Nijmegen, Netherlands. [Manoharan, H. C.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Manoharan, H. C.] Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [Balatsky, A. V.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Wehling, TO (reprint author), Univ Hamburg, Inst Theoret Phys, D-20355 Hamburg, Germany. RI Katsnelson, Mikhail/D-4359-2012; Wehling, Tim/O-4642-2014; Lichtenstein, Alexander/K-8730-2012 OI Wehling, Tim/0000-0002-5579-2231; Lichtenstein, Alexander/0000-0003-0152-7122 FU Stichting voor Fundamenteel Onderzoek der Materie (FOM); Netherlands [SFB-668(A3)]; NNSA; Office of Basic Energy Sciences; U.S. Department of Energy [DE-AC52-06NA25396, DE-AC02-76SF00515] FX We are grateful to D. Arovas, A. Rosch, and J. von Delft for useful discussions. This work was supported by Stichting voor Fundamenteel Onderzoek der Materie (FOM), The Netherlands and by SFB-668(A3), Germany. Work at Los Alamos and Stanford University was supported through BES and LDRD funds under the auspices of NNSA and Office of Basic Energy Sciences of the U.S. Department of Energy under Contracts No. DE-AC52-06NA25396 and No. DE-AC02-76SF00515. Computation time at HLRN is acknowledged. NR 35 TC 42 Z9 42 U1 5 U2 45 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2010 VL 81 IS 8 AR 085413 DI 10.1103/PhysRevB.81.085413 PG 5 WC Physics, Condensed Matter SC Physics GA 562LW UT WOS:000275053300111 ER PT J AU White, JL Lee, C Gunaydin-Sen, O Tung, LC Christen, HM Wang, YJ Turnbull, MM Landee, CP McDonald, RD Crooker, SA Singleton, J Whangbo, MH Musfeldt, JL AF White, J. L. Lee, C. Gunaydin-Sen, O. Tung, L. C. Christen, H. M. Wang, Y. J. Turnbull, M. M. Landee, C. P. McDonald, R. D. Crooker, S. A. Singleton, J. Whangbo, M. -H. Musfeldt, J. L. TI Magneto-optical properties and charge-spin coupling in the molecular (2,3-dmpyH)(2)CuBr4 spin-ladder material SO PHYSICAL REVIEW B LA English DT Article ID MAGNETIC MODEL SYSTEMS; AUGMENTED-WAVE METHOD; QUANTUM CRITICALITY; FIELD; ANTIFERROMAGNET; TEMPERATURE; SPECTRA; GAP AB We investigated the magnetic and optical properties of (2,3-dmpyH)(2)CuBr4, an unusual antiferromagnetic quantum spin ladder with strong rail interactions that can be saturated in a 30 T field. This transition drives a field-induced color change, a dramatic example of charge-spin coupling in a molecular material. Spin-density calculations reveal that electronic structure is sensitive to the magnetic state because magnetic orbital character depends on the spin arrangement between adjacent CuBr42- chromophores. This finding suggests that molecular architecture and the magnetic arrangement between molecular units might be used to control magnetochromism. C1 [White, J. L.] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. [Lee, C.; Whangbo, M. -H.] N Carolina State Univ, Dept Chem, Raleigh, NC 27695 USA. [Gunaydin-Sen, O.; Musfeldt, J. L.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Tung, L. C.; Wang, Y. J.] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Christen, H. M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Turnbull, M. M.] Clark Univ, Dept Chem, Worcester, MA 01610 USA. [Landee, C. P.] Clark Univ, Dept Phys, Worcester, MA 01610 USA. [McDonald, R. D.; Crooker, S. A.; Singleton, J.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. RP White, JL (reprint author), Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. RI McDonald, Ross/H-3783-2013; Christen, Hans/H-6551-2013; OI McDonald, Ross/0000-0002-0188-1087; Christen, Hans/0000-0001-8187-7469; Turnbull, Mark/0000-0002-0232-8224; Mcdonald, Ross/0000-0002-5819-4739 FU DMR NSF (UT, Clark, NHMFL); MSD DOE and Science in 100 T program (NCSU, ORNL, and NHMFL); State of Florida (NHMFL) FX This work is supported by the DMR NSF (UT, Clark, NHMFL), MSD DOE and Science in 100 T program (NCSU, ORNL, and NHMFL), and the State of Florida (NHMFL). NR 38 TC 13 Z9 13 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD FEB PY 2010 VL 81 IS 5 AR 052407 DI 10.1103/PhysRevB.81.052407 PG 4 WC Physics, Condensed Matter SC Physics GA 561SA UT WOS:000274998000011 ER PT J AU Xavier, JC Alvarez, G Moreo, A Dagotto, E AF Xavier, J. C. Alvarez, G. Moreo, A. Dagotto, E. TI Coexistence of pairing tendencies and ferromagnetism in a doped two-orbital Hubbard model on two-leg ladders SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; PHASE-SEPARATION; TRANSITION; METALS AB Using the Density Matrix Renormalization Group and two-leg ladders, we investigate an electronic two-orbital Hubbard model including plaquette-diagonal hopping amplitudes. Our goal is to search for regimes where charges added to the undoped state form pairs, presumably a precursor of a superconducting state. For the electronic density rho=2, i.e., the undoped limit, our investigations show a robust (pi, 0) antiferromagnetic ground state, as in previous investigations. Doping away from rho=2 and for large values of the Hund coupling J, a ferromagnetic region is found to be stable. Moreover, when the interorbital on-site Hubbard repulsion is smaller than the Hund coupling, i.e., for U' , particle ratios, elliptic flow, and Hanbury-Brown-Twiss (HBT) radii are consistent with the corresponding results at similar root s(NN) from fixed-target experiments. Directed flow measurements are presented for both midrapidity and forward-rapidity regions. Furthermore the collision centrality dependence of identified particle dN/dy, < p(T)>, and particle ratios are discussed. These results also demonstrate that the capabilities of the STAR detector, although optimized for root s(NN) = 200 GeV, are suitable for the proposed QCD critical-point search and exploration of the QCD phase diagram at RHIC. C1 [Bridgeman, A.; Krueger, K.; Spinka, H. M.; Underwood, D. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Barnby, L. S.; Burton, T. P.; Elhalhuli, E.; Jones, P. G.; Nelson, J. M.] Univ Birmingham, Birmingham, W Midlands, England. [Arkhipkin, D.; Beavis, D. R.; Bland, L. C.; Christie, W.; Debbe, R. R.; DePhillips, M.; Didenko, L.; Dunlop, J. C.; Fachini, P.; Fine, V.; Fisyak, Y.; Gordon, A.; Guryn, W.; Hallman, T. J.; Lamont, M. A. C.; Landgraf, J. M.; Lauret, J.; Lebedev, A.; Lee, J. H.; LeVine, M. J.; Ljubicic, T.; Longacre, R. S.; Love, W. A.; Ludlam, T.; Ogawa, A.; Okada, H.; Perevoztchikov, V.; Pile, P.; Ruan, L.; Sorensen, P.; Tang, A. H.; Ullrich, T.; Van Buren, G.; Videbaek, F.; Xu, Z.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Crawford, H. J.; Engelage, J.; Judd, E. G.; Ng, M. J.; Perkins, C.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Sanchez, M. Calderon de la Barca; Cebra, D.; Das, D.; Draper, J. E.; Haag, B.; Liu, H.; Mall, O. I.; Reed, R.; Romero, J. L.] Univ Calif Davis, Davis, CA 95616 USA. [Biritz, B.; Cendejas, R.; Gangadharan, D. R.; Ghazikhanian, V.; Guertin, S. M.; Huang, H. Z.; Igo, G.; Kurnadi, P.; Sakai, S.; Staszak, D.; Trentalange, S.; Tsai, O. D.; Wang, G.; Whitten, C., Jr.; Xu, W.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [de Souza, R. Derradi; Takahashi, J.; Vasconcelos, G. M. S.] Univ Estadual Campinas, Sao Paulo, Brazil. [Abelev, B. I.; Barannikova, O.; Betts, R. R.; Garcia-Solis, E. J.; Hofman, D. J.; Hollis, R. S.; Iordanova, A.; Kauder, K.; Suarez, M. C.] Univ Illinois, Chicago, IL 60607 USA. [Cherney, M.; Gorbunov, Y. N.; McShane, T. S.; Seger, J.] Creighton Univ, Omaha, NE 68178 USA. [Bielcik, J.; Krus, M.; Pachr, M.] Czech Tech Univ, FNSPE, CZ-11519 Prague, Czech Republic. [Bielcikova, J.; Chaloupka, P.; Chung, P.; Jakl, P.; Kapitan, J.; Kouchpil, V.; Sumbera, M.; Tlusty, D.] Nucl Res Inst AS CR, CZ-25068 Rez, Czech Republic. [Kollegger, T.; Mitrovski, M. K.; Rehberg, J. M.; Schuster, T. R.; Stock, R.] Goethe Univ Frankfurt, Frankfurt, Germany. [Dash, S.; Jena, C.; Mahapatra, D. P.; Phatak, S. C.] Inst Phys, Bhubaneswar 751005, Orissa, India. [Nandi, B. K.; Pujahari, P. R.; Varma, R.] Indian Inst Technol, Bombay 400076, Maharashtra, India. [Jacobs, W. W.; Page, B. S.; Selyuzhenkov, I.; Sowinski, J.; Wissink, S. W.] Indiana Univ, Bloomington, IN 47408 USA. [Bhasin, A.; Dogra, S. M.; Gupta, A.; Gupta, N.; Mangotra, L. K.; Potukuchi, B. V. K. S.] Univ Jammu, Jammu 180001, India. [Alakhverdyants, A. V.; Averichev, G. S.; Bnzarov, I.; Dedovich, T. G.; Efimov, L. G.; Fedorisin, J.; Filip, P.; Kechechyan, A.; Lednicky, R.; Panebratsev, Y.; Rogachevskiy, O. V.; Shahaliev, E.; Tokarev, M.; Vokal, S.; Zoulkarneev, R.; Zoulkarneeva, Y.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Anderson, B. D.; Bouchet, J.; Joseph, J.; Keane, D.; Kopytine, M.; Margetis, S.; Pandit, Y.; Subba, N. L.; Vanfossen, J. A., Jr.; Zhang, W. M.] Kent State Univ, Kent, OH 44242 USA. [Fatemi, R.; Fersch, R. G.; Korsch, W.; Webb, G.] Univ Kentucky, Lexington, KY 40506 USA. [Sun, Z.; Wang, J. S.; Yang, Y.; Zhan, W.] Inst Modern Phys, Lanzhou, Peoples R China. [Dong, X.; Grebenyuk, O.; Hjort, E.; Jacobs, P.; Kikola, D. P.; Kiryluk, J.; Klein, S. R.; Masui, H.; Matis, H. S.; Odyniec, G.; Olson, D.; Ploskon, M. A.; Poskanzer, A. M.; Ritter, H. G.; Rose, A.; Sakrejda, I.; Salur, S.; Sichtermann, E. P.; Sun, X. M.; Symons, T. J. M.; Thomas, J. H.; Tram, V. N.; Wieman, H.; Xu, N.; Zhang, X. P.; Zhang, Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Balewski, J.; Betancourt, M. J.; Corliss, R.; Hays-Wehle, J. P.; Hoffman, A. M.; Jones, C. L.; Kocoloski, A.; Leight, W.; Milner, R.; Redwine, R.; Sakuma, T.; Seele, J.; Stephans, G. S. F.; Surrow, B.; van Nieuwenhuizen, G.; Walker, M.] MIT, Cambridge, MA 02139 USA. [Schmitz, N.; Seyboth, P.; Simon, F.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Tarnowsky, T.; Wang, H.; Westfall, G. D.] Michigan State Univ, E Lansing, MI 48824 USA. [Brandin, A. V.; Kotchenda, L.; Kravtsov, P.; Okorokov, V.; Ridiger, A.; Strikhanov, M.; Timoshenko, S.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Lindenbaum, S. J.] CUNY City Coll, New York, NY 10031 USA. [Benedosso, F.; Braidot, E.; Mischke, A.; Peitzmann, T.; Russcher, M. J.] NIKHEF, Amsterdam, Netherlands. [Benedosso, F.; Braidot, E.; Mischke, A.; Peitzmann, T.; Russcher, M. J.] Univ Utrecht, Amsterdam, Netherlands. [Chajecki, Z.; Humanic, T. J.; Lisa, M. A.] Ohio State Univ, Columbus, OH 43210 USA. [Bueltmann, S.; Koralt, I.; Plyku, D.] Old Dominion Univ, Norfolk, VA 23529 USA. [Aggarwal, M. M.; Bhati, A. K.; Kumar, L.; Pruthi, N. K.] Panjab Univ, Chandigarh 160014, India. [Eun, L.; Heppelmann, S.] Penn State Univ, University Pk, PA 16802 USA. [Derevschikov, A. A.; Khodyrev, V. Yu.; Kravtsov, V. I.; Matulenko, Yu. A.; Meschanin, A.; Minaev, N. G.; Morozov, D. A.; Nogach, L. V.; Nurushev, S. B.; Vasiliev, A. N.] Inst High Energy Phys, Protvino, Russia. [Hirsch, A.; Konzer, J.; Lin, X.; Netrakanti, P. K.; Scharenberg, R. P.; Skoby, M. J.; Srivastava, B.; Stringfellow, B.; Ulery, J.; Wang, F.; Wang, Q.; Xie, W.] Purdue Univ, W Lafayette, IN 47907 USA. [Choi, K. E.; Grube, B.; Lee, C-H; Yoo, I. -K.] Pusan Natl Univ, Pusan 609735, South Korea. [Raniwala, R.; Raniwala, S.] Univ Rajasthan, Jaipur 302004, Rajasthan, India. [Bonner, B. E.; Eppley, G.; Geurts, F.; Liu, J.; Llope, W. J.; McDonald, D.; Roberts, J. B.; Yepes, P.; Zhou, J.] Rice Univ, Houston, TX 77251 USA. [Munhoz, M. G.; Suaide, A. A. P.; de Toledo, A. Szanto] Univ Sao Paulo, Sao Paulo, Brazil. [Chen, H. F.; Li, C.; Lu, Y.; Shao, M.; Sun, Y.; Tang, Z.; Wang, X. L.; Xu, Y.; Zhang, Z. P.; Zhao, Y.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Xu, Q. H.; Zhou, W.] Shandong Univ, Jinan 250100, Shandong, Peoples R China. [Cai, X. Z.; Chen, J. H.; Han, L. -X.; Jin, F.; Ma, G. L.; Ma, Y. G.; Tian, J.; Xue, L.; Zhang, S.; Zhong, C.; Zhu, Y. -H.] Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Erazmus, B.; Estienne, M.; Geromitsos, A.; Kabana, S.; Roy, C.; Sahoo, R.] SUBATECH, Nantes, France. [Cervantes, M. C.; Clarke, R. F.; Codrington, M. J. M.; Djawotho, P.; Drachenberg, J. L.; Gagliardi, C. A.; Hamed, A.; Huo, L.; Mioduszewski, S.; Tribble, R. E.] Texas A&M Univ, College Stn, TX 77843 USA. [Hoffmann, G. W.; Kajimoto, K.; Markert, C.; Ray, R. L.; Schambach, J.; Thein, D.; Wada, M.] Univ Texas Austin, Austin, TX 78712 USA. [Cheng, J.; Kang, K.; Li, Y.; Wang, X.; Wang, Y.; Yue, Q.; Zhu, X.] Tsinghua Univ, Beijing 100084, Peoples R China. [Witt, R.] USN Acad, Annapolis, MD 21402 USA. [Grosnick, D.; Koetke, D. D.; Manweiler, R.; Stanislaus, T. D. S.; Webb, J. C.] Valparaiso Univ, Valparaiso, IN 46383 USA. [Ahammed, Z.; Chattopadhyay, S.; Mazumdar, M. R. Dutta; Ganti, M. S.; Ghosh, P.; Mohanty, B.; Nayak, T. K.; Pal, S. K.; Singaraju, R. N.; Viyogi, Y. P.] Bhabha Atom Res Ctr, Ctr Variable Energy Cyclotron, Kolkata 700064, W Bengal, India. [Kisiel, A.; Pawlak, T.; Peryt, W.; Pluta, J.; Zawisza, M.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Bichsel, H.; Cramer, J. G.; Kettler, D.; Prindle, D.; Trainor, T. A.] Univ Washington, Seattle, WA 98195 USA. [Bellwied, R.; De Silva, L. C.; Elnimr, M.; LaPointe, S.; Pruneau, C.; Sharma, M.; Tarini, L. H.; Timmins, A. R.; Voloshin, S. A.] Wayne State Univ, Detroit, MI 48201 USA. [Chen, J. Y.; Li, N.; Li, Z.; Liu, F.; Shi, S. S.; Wu, Y.] CCNU HZNU, Inst Particle Phys, Wuhan 430079, Peoples R China. [Baumgart, S.; Bruna, E.; Caines, H.; Catu, O.; Chikanian, A.; Finch, E.; Harris, J. W.; Heinz, M.; Knospe, A. G.; Lin, G.; Majka, R.; Nattrass, C.; Putschke, J.; Sandweiss, J.; Smirnov, N.] Yale Univ, New Haven, CT 06520 USA. [Planinic, M.; Poljak, N.] Univ Zagreb, HR-10002 Zagreb, Croatia. RP Abelev, BI (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Sumbera, Michal/O-7497-2014; Strikhanov, Mikhail/P-7393-2014; Xu, Wenqin/H-7553-2014; Dogra, Sunil /B-5330-2013; Chaloupka, Petr/E-5965-2012; Nattrass, Christine/J-6752-2016; Derradi de Souza, Rafael/M-4791-2013; Suaide, Alexandre/L-6239-2016; Inst. of Physics, Gleb Wataghin/A-9780-2017; Lednicky, Richard/K-4164-2013; Yang, Yanyun/B-9485-2014; Bielcikova, Jana/G-9342-2014; Barnby, Lee/G-2135-2010; Mischke, Andre/D-3614-2011; Takahashi, Jun/B-2946-2012; Planinic, Mirko/E-8085-2012; Yoo, In-Kwon/J-6222-2012; Peitzmann, Thomas/K-2206-2012; Witt, Richard/H-3560-2012; Yip, Kin/D-6860-2013; Xue, Liang/F-8077-2013; Voloshin, Sergei/I-4122-2013; Pandit, Yadav/I-2170-2013 OI Sumbera, Michal/0000-0002-0639-7323; Strikhanov, Mikhail/0000-0003-2586-0405; Xu, Wenqin/0000-0002-5976-4991; Nattrass, Christine/0000-0002-8768-6468; Derradi de Souza, Rafael/0000-0002-2084-7001; Suaide, Alexandre/0000-0003-2847-6556; Yang, Yanyun/0000-0002-5982-1706; Barnby, Lee/0000-0001-7357-9904; Takahashi, Jun/0000-0002-4091-1779; Peitzmann, Thomas/0000-0002-7116-899X; Yip, Kin/0000-0002-8576-4311; Xue, Liang/0000-0002-2321-9019; Pandit, Yadav/0000-0003-2809-7943 FU Offices of NP; US DOE Office of Science; US NSF; Sloan Foundation; DFG cluster of excellence 'Origin and Structure of the Universe'; RA; RPL; EMN of France; STFC; EPSRC of the United Kingdom; FAPESP of Brazil; Russian Ministry of Sci. and Tech.; NNSFC; CAS; MoST; MoE of China; IRP; GA of the Czech Republic; FOM of the Netherlands; DAE; DST; CSIR of the Government of India; Polish State Committee for Scientific Research; Korea Sci. & Eng. Foundation; Korea Research Foundation; [CNRS/IN2P3] FX We thank the RHIC Operations Group and RCF at BNL, and the NERSC Center at LBNL and the resources provided by the Open Science Grid consortium for their support. This work was supported in part by the Offices of NP and HEP within the US DOE Office of Science, the US NSF, the Sloan Foundation, the DFG cluster of excellence 'Origin and Structure of the Universe', CNRS/IN2P3, RA, RPL, and EMN of France, STFC and EPSRC of the United Kingdom, FAPESP of Brazil, the Russian Ministry of Sci. and Tech., the NNSFC, CAS, MoST, and MoE of China, IRP and GA of the Czech Republic, FOM of the Netherlands, DAE, DST, and CSIR of the Government of India, the Polish State Committee for Scientific Research, and the Korea Sci. & Eng. Foundation and Korea Research Foundation. NR 115 TC 91 Z9 92 U1 0 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD FEB PY 2010 VL 81 IS 2 AR 024911 DI 10.1103/PhysRevC.81.024911 PG 19 WC Physics, Nuclear SC Physics GA 605IN UT WOS:000278341300032 ER PT J AU Alver, B Back, B Baker, MD Ballintijn, M Barton, DS Betts, RR Bindel, R Busza, W Chai, Z Chetluru, V Garcia, E Gburek, T Gulbrandsen, K Hamblen, J Harnarine, I Henderson, C Hofman, DJ Hollis, RS Holynski, R Holzman, B Iordanova, A Kane, JL Kulinich, P Kuo, CM Li, W Lin, WT Loizides, C Manly, S Mignerey, AC Nouicer, R Olszewski, A Pak, R Reed, C Richardson, E Roland, C Roland, G Sagerer, J Sedykh, I Smith, CE Stankiewicz, MA Steinberg, P Stephans, GSF Sukhanov, A Szostak, A Tonjes, MB Trzupek, A van Nieuwenhuizen, GJ Vaurynovich, SS Verdier, R Veres, GI Walters, P Wenger, E Willhelm, D Wolfs, FLH Wosiek, B Wozniak, K Wyngaardt, S Wyslouch, B AF Alver, B. Back, B. Baker, M. D. Ballintijn, M. Barton, D. S. Betts, R. R. Bindel, R. Busza, W. Chai, Z. Chetluru, V. Garcia, E. Gburek, T. Gulbrandsen, K. Hamblen, J. Harnarine, I. Henderson, C. Hofman, D. J. Hollis, R. S. Holynski, R. Holzman, B. Iordanova, A. Kane, J. L. Kulinich, P. Kuo, C. M. Li, W. Lin, W. T. Loizides, C. Manly, S. Mignerey, A. C. Nouicer, R. Olszewski, A. Pak, R. Reed, C. Richardson, E. Roland, C. Roland, G. Sagerer, J. Sedykh, I. Smith, C. E. Stankiewicz, M. A. Steinberg, P. Stephans, G. S. F. Sukhanov, A. Szostak, A. Tonjes, M. B. Trzupek, A. van Nieuwenhuizen, G. J. Vaurynovich, S. S. Verdier, R. Veres, G. I. Walters, P. Wenger, E. Willhelm, D. Wolfs, F. L. H. Wosiek, B. Wozniak, K. Wyngaardt, S. Wyslouch, B. TI System size dependence of cluster properties from two-particle angular correlations in Cu plus Cu and Au plus Au collisions at root s(NN)=200 GeV SO PHYSICAL REVIEW C LA English DT Article ID PARTICLES; ENERGIES; MODELS AB We present results on two-particle angular correlations in Cu + Cu and Au + Au collisions at a center-of-mass energy per nucleon pair of 200 GeV over a broad range of pseudorapidity (eta) and azimuthal angle (phi) values as a function of collision centrality. The PHOBOS detector at the Relativistic Heavy Ion Collider has a uniquely large angular coverage for inclusive charged particles, which allows for the study of correlations on both long- and short-range scales. A complex two-dimensional correlation structure in Delta eta and Delta phi emerges, which is interpreted in the context of a cluster model. The effective cluster size and decay width are extracted from the two-particle pseudorapidity correlation functions. The effective cluster size found in semicentral Cu + Cu and Au + Au collisions is comparable to that found in proton-proton collisions but a nontrivial decrease in size with increasing centrality is observed. Moreover, a comparison of results from Cu + Cu versus Au + Au collisions shows an interesting scaling of the effective cluster size with the measured fraction of total cross section (which is related to the ratio of the impact parameter to the nuclear radius, b/2R), suggesting a geometric origin. Further analysis for pairs from restricted azimuthal regions shows that the effective cluster size at Delta phi similar to 180 degrees drops more rapidly toward central collisions than the size at Delta phi similar to 0 degrees. The effect of limited eta acceptance on the cluster parameters is also addressed, and a correction is applied to present cluster parameters for full eta coverage, leading to much larger effective cluster sizes and widths than previously noted in the literature. These results should provide insight into the hot and dense medium created in heavy ion collisions. C1 [Alver, B.; Ballintijn, M.; Busza, W.; Gulbrandsen, K.; Henderson, C.; Kane, J. L.; Kulinich, P.; Li, W.; Loizides, C.; Reed, C.; Roland, C.; Roland, G.; Stephans, G. S. F.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wyslouch, B.] MIT, Cambridge, MA 02139 USA. [Back, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Baker, M. D.; Barton, D. S.; Chai, Z.; Holzman, B.; Nouicer, R.; Pak, R.; Sedykh, I.; Stankiewicz, M. A.; Steinberg, P.; Sukhanov, A.; Szostak, A.; Wyngaardt, S.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Gburek, T.; Holynski, R.; Olszewski, A.; Trzupek, A.; Wosiek, B.; Wozniak, K.] Inst Nucl Phys PAN, Krakow, Poland. [Kuo, C. M.; Lin, W. T.] Natl Cent Univ, Chungli 32054, Taiwan. [Betts, R. R.; Chetluru, V.; Garcia, E.; Harnarine, I.; Hofman, D. J.; Hollis, R. S.; Iordanova, A.; Sagerer, J.; Smith, C. E.] Univ Illinois, Chicago, IL 60607 USA. [Bindel, R.; Mignerey, A. C.; Richardson, E.; Tonjes, M. B.; Willhelm, D.] Univ Maryland, College Pk, MD 20742 USA. [Hamblen, J.; Manly, S.; Walters, P.; Wolfs, F. L. H.] Univ Rochester, Rochester, NY 14627 USA. RP Alver, B (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM davidlw@mit.edu RI Mignerey, Alice/D-6623-2011 FU US Department of Energy [DE-AC02-98CH10886, DE-FG02-93ER40802, DE-FG02-94ER40818, DE-FG02-94ER40865, DE-FG02-99ER41099, DE-AC02-06CH11357]; US National Science Foundation [9603486, 0072204, 0245011]; Polish MNiSW [N202 282234]; NSC of Taiwan [NSC 89-2112-M-008-024]; Hungarian OTKA [F 049823] FX This work was partially supported by US Department of Energy Grant Nos. DE-AC02-98CH10886, DE-FG02-93ER40802, DE-FG02-94ER40818, DE-FG02-94ER40865, DE-FG02-99ER41099, and DE-AC02-06CH11357, by US National Science Foundation Grant Nos. 9603486, 0072204, and 0245011, by Polish MNiSW Grant No. N202 282234 (2008-2010), by NSC of Taiwan Contract No. NSC 89-2112-M-008-024, and by Hungarian OTKA Grant No. F 049823. NR 27 TC 56 Z9 56 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD FEB PY 2010 VL 81 IS 2 AR 024904 DI 10.1103/PhysRevC.81.024904 PG 9 WC Physics, Nuclear SC Physics GA 605IN UT WOS:000278341300025 ER PT J AU Deng, WT Wang, XN AF Deng, Wei-Tian Wang, Xin-Nian TI Multiple parton scattering in nuclei: Modified Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution for fragmentation functions SO PHYSICAL REVIEW C LA English DT Article ID HEAVY-ION COLLISIONS; ENERGY-LOSS; HADRON SPECTRA; ENVIRONMENT; PHOTON; QUARKS; QCD AB Within the framework of generalized factorization of higher-twist contributions to semi-inclusive cross sections of deeply inelastic scattering (DIS) off a large nucleus, multiple parton scattering leads to an effective medium-modified fragmentation function and the corresponding medium-modified DGLAP evolution equations. We extend the study to include gluon multiple scattering and induced quark-antiquark production via gluon fusion. We numerically solve these medium-modified DGLAP (mDGLAP) evolution equations and study the scale (Q(2)), energy (E), length (L), and jet transport parameter ((q) over cap) dependence of the modified fragmentation functions for a jet propagating in a uniform medium with finite length (a "brick" problem). We also discuss the concept of parton energy loss within such mDGLAP evolution equations and its connection to the modified fragmentation functions. With a realistic Wood-Saxon nuclear geometry, we calculate the modified fragmentation functions and compare them to experimental data on DIS off large nuclei. The extracted jet transport parameter at the center of a large nucleus is found to be (q) over cap (0) = 0.024 +/- 0.008 GeV2/fm. C1 [Deng, Wei-Tian] Shandong Univ, Sch Phys, Jinan 250100, Shandong, Peoples R China. [Deng, Wei-Tian; Wang, Xin-Nian] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Deng, WT (reprint author), Shandong Univ, Sch Phys, Jinan 250100, Shandong, Peoples R China. EM xnwang@lbl.gov OI Wang, Xin-Nian/0000-0002-9734-9967 FU Office of Energy Research, Office of High Energy and Nuclear Physics, Division of Nuclear Physics, of the US Department of Energy [DE-AC02-05CH11231]; National Natural Science Foundation of China [10525523] FX We would like to acknowledge helpful discussions with A. Majumder. X.N.W. appreciates the hospitality of the Physics Department at Shandong University during the completion of this work. The work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Division of Nuclear Physics, of the US Department of Energy under Contract No. DE-AC02-05CH11231 and the National Natural Science Foundation of China under Project No. 10525523. NR 54 TC 41 Z9 41 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD FEB PY 2010 VL 81 IS 2 AR 024902 DI 10.1103/PhysRevC.81.024902 PG 15 WC Physics, Nuclear SC Physics GA 605IN UT WOS:000278341300023 ER PT J AU Escher, JE Dietrich, FS AF Escher, Jutta E. Dietrich, Frank S. TI Cross sections for neutron capture from surrogate measurements: An examination of Weisskopf-Ewing and ratio approximations SO PHYSICAL REVIEW C LA English DT Article ID TRANSFER-REACTION TH-232(HE-3; NUCLEI; P)PA-234; PA-233(N; STATES; U-235 AB Motivated by the renewed interest in the surrogate nuclear reactions approach, an indirect method for determining compound-nuclear reaction cross sections, the prospects for determining (n, gamma) cross sections for deformed rare-earth and actinide nuclei are investigated. A nuclear reaction model is employed to simulate physical quantities that are typically measured in surrogate experiments and used to assess the validity of the Weisskopf-Ewing and ratio approximations, which are typically employed in the analysis of surrogate reactions. The expected accuracy of (n, gamma) cross sections extracted from typical surrogate measurements is discussed and limitations of the approximate methods are illustrated. Suggestions for moving beyond presently employed approximations are made. C1 [Escher, Jutta E.; Dietrich, Frank S.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Escher, JE (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM escher1@llnl.gov RI Escher, Jutta/E-1965-2013 FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors appreciate constructive input from R. D. Hoffman and N. D. Scielzo. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 52 TC 35 Z9 36 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD FEB PY 2010 VL 81 IS 2 AR 024612 DI 10.1103/PhysRevC.81.024612 PG 16 WC Physics, Nuclear SC Physics GA 605IN UT WOS:000278341300017 ER PT J AU Gezerlis, A Carlson, J AF Gezerlis, Alexandros Carlson, J. TI Low-density neutron matter SO PHYSICAL REVIEW C LA English DT Article ID QUASI-PARTICLE INTERACTIONS; NUCLEAR-FORCES; FERMI GAS; EQUATION; STATE; SUPERFLUIDITY; SYSTEMS; STARS; GAPS AB The properties of low-density neutron matter are important for the understanding of neutron star crusts and the exterior of large neutron-rich nuclei. We examine various properties of dilute neutron matter using quantum Monte Carlo methods, with s- and p-wave terms in the interaction. Our results provide a smooth evolution of the equation of state and pairing gap from extremely small densities, where analytic expressions are available, up to the strongly interacting regime probed experimentally and described theoretically in cold atomic systems, where k(F) approximate to 0.5 fm(-1) and the pairing gap becomes of the order of magnitude of the Fermi energy. We also present results for the momentum distribution and pair distributions, displaying the same evolution from weak to strong coupling. Combined with previous quantum Monte Carlo and other calculations at moderate densities, these results provide strong constraints on the neutron matter equation of state up to saturation densities. C1 [Gezerlis, Alexandros; Carlson, J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Gezerlis, Alexandros] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Gezerlis, Alexandros] Univ Washington, Dept Phys, Seattle, WA 98195 USA. RP Gezerlis, A (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI Gezerlis, Alexandros/O-9426-2014 OI Gezerlis, Alexandros/0000-0003-2232-2484 FU DOE [DE-FC02-07ER41457, DE-FG02-97ER41014]; Nuclear Physics Office of the US Department of Energy [DE-AC52-06NA25396]; LDRD program at Los Alamos National Laboratory; NERSC; NSF [PHY03-55014, PHY07-01611] FX The authors thank S. Gandolfi, A. Schwenk, and S. Reddy for useful discussions. The work of A.G. and J.C. was supported by the UNEDF SciDAC Collaboration under DOE Grant No. DE-FC02-07ER41457, by the Nuclear Physics Office of the US Department of Energy under Contract No. DE-AC52-06NA25396, and by the LDRD program at Los Alamos National Laboratory. Computing resources were provided at LANL through the Institutional Computing Program and at NERSC. The work of A. G. was supported in part by DOE Grant No. DE-FG02-97ER41014 and by NSF Grant Nos. PHY03-55014 and PHY07-01611. NR 49 TC 94 Z9 94 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD FEB PY 2010 VL 81 IS 2 AR 025803 DI 10.1103/PhysRevC.81.025803 PG 9 WC Physics, Nuclear SC Physics GA 605IN UT WOS:000278341300040 ER PT J AU Hall, CC Lunderberg, EM DeYoung, PA Baumann, T Bazin, D Blanchon, G Bonaccorso, A Brown, BA Brown, J Christian, G Denby, DH Finck, J Frank, N Gade, A Hinnefeld, J Hoffman, CR Luther, B Mosby, S Peters, WA Spyrou, A Thoennessen, M AF Hall, C. C. Lunderberg, E. M. DeYoung, P. A. Baumann, T. Bazin, D. Blanchon, G. Bonaccorso, A. Brown, B. A. Brown, J. Christian, G. Denby, D. H. Finck, J. Frank, N. Gade, A. Hinnefeld, J. Hoffman, C. R. Luther, B. Mosby, S. Peters, W. A. Spyrou, A. Thoennessen, M. TI First observation of excited states in Li-12 SO PHYSICAL REVIEW C LA English DT Article ID PROJECTILE FRAGMENTATION; EXOTIC NUCLEI; SPECTROSCOPY; ISOTOPES; DECAY; B-14 AB The neutron-unbound ground state and two excited states of Li-12 were formed by the two-proton removal reaction from a 53.4-MeV/u B-14 beam. The decay energy spectrum of Li-12 was measured with the Modular Neutron Array (MoNA) and the Sweeper dipole superconducting magnet at the National Superconducting Cyclotron Laboratory. Two excited states at resonance energies of 250 +/- 20 keV and 555 +/- 20 keV were observed for the first time and the data are consistent with the previously reported s-wave ground state with a scattering length of a(s) = -13.7 fm. C1 [Hall, C. C.; Lunderberg, E. M.; DeYoung, P. A.; Denby, D. H.] Hope Coll, Dept Phys, Holland, MI 49423 USA. [Baumann, T.; Bazin, D.; Brown, B. A.; Christian, G.; Frank, N.; Gade, A.; Mosby, S.; Peters, W. A.; Spyrou, A.; Thoennessen, M.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Blanchon, G.] CEA, DAM, DIF, F-91297 Arpajon, France. [Bonaccorso, A.] Inst Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Brown, B. A.; Christian, G.; Frank, N.; Gade, A.; Mosby, S.; Peters, W. A.; Spyrou, A.; Thoennessen, M.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Brown, J.] Wabash Coll, Dept Phys, Crawfordsville, IN 47933 USA. [Finck, J.] Cent Michigan Univ, Dept Phys, Mt Pleasant, MI 48859 USA. [Hinnefeld, J.] Indiana Univ, Dept Phys & Astron, South Bend, IN 46634 USA. [Hoffman, C. R.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Hoffman, C. R.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Luther, B.] Concordia Coll, Dept Phys, Moorhead, MN 56562 USA. RP Hall, CC (reprint author), Hope Coll, Dept Phys, Holland, MI 49423 USA. EM deyoung@hope.edu RI Gade, Alexandra/A-6850-2008; Brown, James/A-7373-2012; Peters, William/B-3214-2012 OI Gade, Alexandra/0000-0001-8825-0976; Brown, James/0000-0003-0548-8634; Peters, William/0000-0002-3022-4924 FU National Science Foundation [PHY-0855456, PHY-0606007, PHY-0651627, PHY-0555488, PHY-0758099, PHY-0555445]; US Department of Energy [DE-AC02-06CH11357]; Hope College Dean for the Natural and Applied Sciences [RUI-0651627] FX This work is supported by the National Science Foundation Grants PHY-0855456, PHY-0606007, PHY-0651627, PHY-0555488, PHY-0758099, and PHY-0555445; US Department of Energy, Office of Nuclear Physics, under Contract DE-AC02-06CH11357; and by the Hope College Dean for the Natural and Applied Sciences under Grant RUI-0651627. NR 27 TC 21 Z9 21 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD FEB PY 2010 VL 81 IS 2 AR 021302 DI 10.1103/PhysRevC.81.021302 PG 4 WC Physics, Nuclear SC Physics GA 562NY UT WOS:000275060200003 ER PT J AU Jiang, CL Rehm, KE Esbensen, H Back, BB Janssens, RVF Collon, P Deibel, CM DiGiovine, B Figueira, JM Greene, JP Henderson, DJ Lee, HY Notani, M Marley, ST Pardo, RC Patel, N Seweryniak, D Tang, XD Ugalde, C Zhu, S AF Jiang, C. L. Rehm, K. E. Esbensen, H. Back, B. B. Janssens, R. V. F. Collon, P. Deibel, C. M. DiGiovine, B. Figueira, J. M. Greene, J. P. Henderson, D. J. Lee, H. Y. Notani, M. Marley, S. T. Pardo, R. C. Patel, N. Seweryniak, D. Tang, X. D. Ugalde, C. Zhu, S. TI Fusion hindrance for Al-27+Sc-45 and other systems with a positive Q value SO PHYSICAL REVIEW C LA English DT Article ID CROSS-SECTION MEASUREMENTS; FRAGMENT MASS ANALYZER; HEAVY-ION REACTIONS; LOW ENERGIES AB Fusion evaporation cross sections for the Al-27 + Sc-45 (Q = 9.63 MeV) system are measured down to about 300 nb. Deviations from standard coupled-channels calculations were observed in this system at the lowest energies. The steep fall-off of the fusion cross sections can be reproduced by calculations using a shallow potential model, which was originally developed to explain the hindrance behavior of heavy-ion fusion in medium-mass systems with negative Q values. Comparisons of the hindrance behavior between the present experiment and other systems, for example, Si-28 + Si-30 (Q = 14.3 MeV) and S-36 + Ca-48 (Q = 7.55 MeV) are presented. C1 [Jiang, C. L.; Rehm, K. E.; Esbensen, H.; Back, B. B.; Janssens, R. V. F.; Deibel, C. M.; DiGiovine, B.; Figueira, J. M.; Greene, J. P.; Henderson, D. J.; Lee, H. Y.; Marley, S. T.; Pardo, R. C.; Patel, N.; Seweryniak, D.; Ugalde, C.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Collon, P.; Notani, M.; Tang, X. D.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Deibel, C. M.] Michigan State Univ, Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA. [Figueira, J. M.] TANDAR, Buenos Aires, DF, Argentina. [Marley, S. T.] Western Michigan Univ, Kalamazoo, MI 49008 USA. [Patel, N.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. RP Jiang, CL (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RI Tang, Xiaodong /F-4891-2016 FU US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357] FX The authors thank A. M. Stefanini and G. Montagnoli for valuable discussions. This work was supported by the US Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. NR 36 TC 13 Z9 13 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD FEB PY 2010 VL 81 IS 2 AR 024611 DI 10.1103/PhysRevC.81.024611 PG 7 WC Physics, Nuclear SC Physics GA 605IN UT WOS:000278341300016 ER PT J AU McCracken, ME Bellis, M Meyer, CA Williams, M Adhikari, KP Anghinolfi, M Ball, J Battaglieri, M Berman, BL Biselli, AS Branford, D Briscoe, WJ Brooks, WK Burkert, VD Careccia, SL Carman, DS Cole, PL Collins, P Crede, V D'Angelo, A Daniel, A Dashyan, N De Vita, R De Sanctis, E Deur, A Dey, B Dhamija, S Dickson, R Djalali, C Doughty, D Dugger, M Dupre, R El Alaoui, A Eugenio, P Fegan, S Fradi, A Gabrielyan, MY Giovanetti, KL Girod, FX Goetz, JT Gohn, W Gothe, RW Griffioen, KA Guidal, M Hafidi, K Hakobyanm, H Hanretty, C Hassall, N Hicks, K Holtrop, M Ilieva, Y Ireland, DG Jo, HS Keller, D Khandaker, M Khetarpal, P Kim, W Klein, A Klein, FJ Kubarovsky, V Kuleshov, SV Kuznetsov, V Livingston, K Mayer, M McAndrew, J McKinnon, B Mestayer, MD Mineeva, T Mirazita, M Mokeev, V Moreno, B Moriya, K Morrison, B Moutarde, H Munevar, E Nadel-Turonski, P Niccolai, S Niculescu, G Niculescu, I Osipenko, M Ostrovidov, AI Park, K Park, S Pasyuk, E Pereira, SA Perrin, Y Pisano, S Pogorelko, O Pozdniakov, S Price, JW Procureur, S Prok, Y Protopopescu, D Quinn, B Raue, BA Ricco, G Ripani, M Ritchie, BG Rosner, G Rossi, P Sabatie, F Saini, MS Salamanca, J Schott, D Schumacher, RA Seder, E Seraydaryan, H Sharabian, YG Sober, DI Sokhan, D Stepanyan, SS Stoler, P Strauch, S Taiuti, M Tedeschi, DJ Tkachenko, S Ungaro, M Vernarsky, B Vineyard, MF Watts, D Voutier, E Weinstein, LB Weygand, DP Wood, MH Zana, L AF McCracken, M. E. Bellis, M. Meyer, C. A. Williams, M. Adhikari, K. P. Anghinolfi, M. Ball, J. Battaglieri, M. Berman, B. L. Biselli, A. S. Branford, D. Briscoe, W. J. Brooks, W. K. Burkert, V. D. Careccia, S. L. Carman, D. S. Cole, P. L. Collins, P. Crede, V. D'Angelo, A. Daniel, A. Dashyan, N. De Vita, R. De Sanctis, E. Deur, A. Dey, B. Dhamija, S. Dickson, R. Djalali, C. Doughty, D. Dugger, M. Dupre, R. El Alaoui, A. Eugenio, P. Fegan, S. Fradi, A. Gabrielyan, M. Y. Giovanetti, K. L. Girod, F. X. Goetz, J. T. Gohn, W. Gothe, R. W. Griffioen, K. A. Guidal, M. Hafidi, K. Hakobyanm, H. Hanretty, C. Hassall, N. Hicks, K. Holtrop, M. Ilieva, Y. Ireland, D. G. Jo, H. S. Keller, D. Khandaker, M. Khetarpal, P. Kim, W. Klein, A. Klein, F. J. Kubarovsky, V. Kuleshov, S. V. Kuznetsov, V. Livingston, K. Mayer, M. McAndrew, J. McKinnon, B. Mestayer, M. D. Mineeva, T. Mirazita, M. Mokeev, V. Moreno, B. Moriya, K. Morrison, B. Moutarde, H. Munevar, E. Nadel-Turonski, P. Niccolai, S. Niculescu, G. Niculescu, I. Osipenko, M. Ostrovidov, A. I. Park, K. Park, S. Pasyuk, E. Pereira, S. Anefalos Perrin, Y. Pisano, S. Pogorelko, O. Pozdniakov, S. Price, J. W. Procureur, S. Prok, Y. Protopopescu, D. Quinn, B. Raue, B. A. Ricco, G. Ripani, M. Ritchie, B. G. Rosner, G. Rossi, P. Sabatie, F. Saini, M. S. Salamanca, J. Schott, D. Schumacher, R. A. Seder, E. Seraydaryan, H. Sharabian, Y. G. Sober, D. I. Sokhan, D. Stepanyan, S. S. Stoler, P. Strauch, S. Taiuti, M. Tedeschi, D. J. Tkachenko, S. Ungaro, M. Vernarsky, B. Vineyard, M. F. Watts, D. Voutier, E. Weinstein, L. B. Weygand, D. P. Wood, M. H. Zana, L. CA CLAS Collaboration TI Differential cross section and recoil polarization measurements for the gamma p -> K+ Lambda reaction using CLAS at Jefferson Lab SO PHYSICAL REVIEW C LA English DT Article ID PHOTON ENERGIES; SIGMA(0); PHOTOPRODUCTION AB We present measurements of the differential cross section and Lambda recoil polarization for the gamma p -> K+ Lambda reaction made using the CLAS detector at Jefferson Lab. These measurements cover the center-of-mass energy range from 1.62 to 2.84 GeV and a wide range of center-of-mass K+ production angles. Independent analyses were performed using the K+ p pi(-) and K+ p (missing pi(-)) final-state topologies; results from these analyses were found to exhibit good agreement. These differential-cross-section measurements show excellent agreement with previous CLAS and LEPS results and offer increased precision and a 300-MeV increase in energy coverage. The recoil polarization data agree well with previous results and offer a large increase in precision and a 500-MeV extension in energy range. The increased center-of-mass energy range that these data represent will allow for independent study of nonresonant K+ Lambda photoproduction mechanisms at all production angles. C1 [McCracken, M. E.; Bellis, M.; Meyer, C. A.; Williams, M.; Dey, B.; Dickson, R.; Moriya, K.; Quinn, B.; Vernarsky, B.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [McCracken, M. E.] Washington & Jefferson Coll, Washington, PA 15301 USA. [Dupre, R.; El Alaoui, A.; Hafidi, K.] Argonne Natl Lab, Argonne, IL 60441 USA. [Collins, P.; Dugger, M.; Morrison, B.; Pasyuk, E.; Ritchie, B. G.] Arizona State Univ, Tempe, AZ 85287 USA. [Goetz, J. T.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Price, J. W.] Calif State Univ Dominguez Hills, Carson, CA 90747 USA. [Wood, M. H.] Canisius Coll, Buffalo, NY 14208 USA. [Klein, F. J.; Nadel-Turonski, P.; Sober, D. I.] Catholic Univ Amer, Washington, DC 20064 USA. [Ball, J.; Girod, F. X.; Moreno, B.; Moutarde, H.; Procureur, S.; Sabatie, F.] Ctr Etud Saclay, CEA, Irfu Serv Phys Nucl, F-91191 Gif Sur Yvette, France. [Doughty, D.] Christopher Newport Univ, Newport News, VA 23606 USA. [Gohn, W.; Mineeva, T.; Seder, E.; Ungaro, M.] Univ Connecticut, Storrs, CT 06269 USA. [Branford, D.; McAndrew, J.; Sokhan, D.; Watts, D.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Biselli, A. S.] Fairfield Univ, Fairfield, CT 06824 USA. [Dhamija, S.; Gabrielyan, M. Y.; Raue, B. A.; Schott, D.] Florida Int Univ, Miami, FL 33199 USA. [Crede, V.; Eugenio, P.; Hanretty, C.; Ostrovidov, A. I.; Park, S.; Saini, M. S.] Florida State Univ, Tallahassee, FL 32306 USA. George Washington Univ, Washington, DC 20052 USA. [Cole, P. L.; Salamanca, J.] Idaho State Univ, Pocatello, ID 83209 USA. [De Sanctis, E.; Mirazita, M.; Pereira, S. Anefalos] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [De Vita, R.; Osipenko, M.; Ricco, G.; Ripani, M.; Taiuti, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [D'Angelo, A.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Guidal, M.; Jo, H. S.; Niccolai, S.; Pisano, S.] Inst Phys Nucl ORSAY, Orsay, France. [Kuleshov, S. V.; Pogorelko, O.; Pozdniakov, S.] Inst Theoret & Expt Phys, RU-117259 Moscow, Russia. [Giovanetti, K. L.; Niculescu, G.; Niculescu, I.] James Madison Univ, Harrisonburg, VA 22807 USA. [Kim, W.; Kuznetsov, V.; Stepanyan, S. S.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Perrin, Y.; Voutier, E.] Univ Grenoble 1, CNRS, IN2P3, INPG,LPSC, Grenoble, France. [Holtrop, M.; Zana, L.] Univ New Hampshire, Durham, NH 03824 USA. [Khandaker, M.] Norfolk State Univ, Norfolk, VA 23504 USA. [Daniel, A.; Hicks, K.; Keller, D.] Ohio Univ, Athens, OH 45701 USA. [Adhikari, K. P.; Careccia, S. L.; Klein, A.; Mayer, M.; Seraydaryan, H.; Tkachenko, S.; Weinstein, L. B.] Old Dominion Univ, Norfolk, VA 23529 USA. [Khetarpal, P.; Kubarovsky, V.; Stoler, P.] Rensselaer Polytech Inst, Troy, NY 12180 USA. [D'Angelo, A.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Mokeev, V.] Skobeltsyn Nucl Phys Inst, RU-119899 Moscow, Russia. [Djalali, C.; Gothe, R. W.; Ilieva, Y.; Park, K.; Strauch, S.; Tedeschi, D. J.; Wood, M. H.] Univ S Carolina, Columbia, SC 29208 USA. [Brooks, W. K.; Burkert, V. D.; Deur, A.; Doughty, D.; Kubarovsky, V.; Mestayer, M. D.; Mokeev, V.; Raue, B. A.; Sharabian, Y. G.; Weygand, D. P.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Vineyard, M. F.] Union Coll, Schenectady, NY 12308 USA. [Brooks, W. K.; Hakobyanm, H.; Kuleshov, S. V.] Univ Tecn Federico Santa Maria, Valparaiso, Chile. [Fegan, S.; Hassall, N.; Ireland, D. G.; Livingston, K.; McKinnon, B.; Protopopescu, D.; Rosner, G.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Prok, Y.] Univ Virginia, Charlottesville, VA 22901 USA. [Griffioen, K. A.] Coll William & Mary, Williamsburg, VA 23187 USA. [Dashyan, N.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Berman, B. L.; Briscoe, W. J.; Ilieva, Y.; Munevar, E.] George Washington Univ, Washington, DC 20052 USA. RP McCracken, ME (reprint author), Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. RI Ireland, David/E-8618-2010; Protopopescu, Dan/D-5645-2012; Zana, Lorenzo/H-3032-2012; Brooks, William/C-8636-2013; Kuleshov, Sergey/D-9940-2013; Schumacher, Reinhard/K-6455-2013; D'Angelo, Annalisa/A-2439-2012; Meyer, Curtis/L-3488-2014; El Alaoui, Ahmed/B-4638-2015; Sabatie, Franck/K-9066-2015; Osipenko, Mikhail/N-8292-2015; Quinn, Brian/N-7343-2014 OI Ireland, David/0000-0001-7713-7011; Brooks, William/0000-0001-6161-3570; Kuleshov, Sergey/0000-0002-3065-326X; Schumacher, Reinhard/0000-0002-3860-1827; D'Angelo, Annalisa/0000-0003-3050-4907; Meyer, Curtis/0000-0001-7599-3973; Sabatie, Franck/0000-0001-7031-3975; Osipenko, Mikhail/0000-0001-9618-3013; Quinn, Brian/0000-0003-2800-986X FU US Department of Energy [DE-FG02-87ER40315, DE-AC05-84ER40150]; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; French Centre National de la Recherche Scientifique; French Commissariat a l'Energie Atomique; Deutsche Forschungsgemeinschaft; U.K. Research Council, S.T.F.C.; National Research Foundation of Korea FX The authors thank the staff and administration of the Thomas Jefferson National Accelerator Facility who made this experiment possible. Thanks also go to Pieter Vancraeyveld of the University of Ghent and Ulrike Thoma and Andrey Sarantsev of the Bonn-Gatchina group for their help in obtaining the model predictions shown in this article. This work was supported in part by the US Department of Energy (under Grant No. DE-FG02-87ER40315); the National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the French Centre National de la Recherche Scientifique; the French Commissariat a l'Energie Atomique; an Emmy Noether Grant from the Deutsche Forschungsgemeinschaft; the U.K. Research Council, S.T.F.C.; and the National Research Foundation of Korea. The Southeastern Universities Research Association (SURA) operated Jefferson Lab under United States DOE contract no. DE-AC05-84ER40150 during this work. NR 23 TC 101 Z9 101 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD FEB PY 2010 VL 81 IS 2 AR 025201 DI 10.1103/PhysRevC.81.025201 PG 20 WC Physics, Nuclear SC Physics GA 605IN UT WOS:000278341300033 ER PT J AU McDaniel, S Gade, A Janssens, RVF Bazin, D Brown, BA Campbell, CM Carpenter, MP Cook, JM Deacon, AN Dinca, DC Freeman, SJ Glasmacher, T Hansen, PG Kay, BP Mantica, PF Mueller, WF Terry, JR Tostevin, JA Zhu, S AF McDaniel, S. Gade, A. Janssens, R. V. F. Bazin, D. Brown, B. A. Campbell, C. M. Carpenter, M. P. Cook, J. M. Deacon, A. N. Dinca, D-C. Freeman, S. J. Glasmacher, T. Hansen, P. G. Kay, B. P. Mantica, P. F. Mueller, W. F. Terry, J. R. Tostevin, J. A. Zhu, S. TI Population of positive-parity states in Sc-53 through one-proton knockout SO PHYSICAL REVIEW C LA English DT Article ID NEUTRON-RICH NUCLEI; BETA-DECAY; ISOTOPES; BEAMS AB The one-proton knockout reaction Be-9(Ti-54, Sc-53 + gamma) X at 72 MeV/nucleon has been measured. The location of the first 3/2(-) state at 2110(3) keV was confirmed, and new gamma-ray transitions were observed at 1111(2), 1273(2), 1539(4), and 2495(5) keV. Large spectroscopic strength to excited states in 53Sc was found and attributed to the knockout of sd-shell protons. C1 [McDaniel, S.; Gade, A.; Bazin, D.; Brown, B. A.; Campbell, C. M.; Cook, J. M.; Dinca, D-C.; Glasmacher, T.; Hansen, P. G.; Mantica, P. F.; Mueller, W. F.; Terry, J. R.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [McDaniel, S.; Gade, A.; Brown, B. A.; Campbell, C. M.; Cook, J. M.; Dinca, D-C.; Glasmacher, T.; Hansen, P. G.; Terry, J. R.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Janssens, R. V. F.; Carpenter, M. P.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Deacon, A. N.; Freeman, S. J.; Kay, B. P.] Univ Manchester, Sch Phys & Astron, Schuster Lab, Manchester M13 9PL, Lancs, England. [Mantica, P. F.] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA. [Tostevin, J. A.] Univ Surrey, Fac Engn & Phys Sci, Dept Phys, Guildford GU2 7XH, Surrey, England. RP McDaniel, S (reprint author), Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. RI Campbell, Christopher/B-9429-2008; Gade, Alexandra/A-6850-2008; Freeman, Sean/B-1280-2010; Kay, Benjamin/F-3291-2011; Glasmacher, Thomas/H-9673-2014; Carpenter, Michael/E-4287-2015 OI Gade, Alexandra/0000-0001-8825-0976; Freeman, Sean/0000-0001-9773-4921; Kay, Benjamin/0000-0002-7438-0208; Glasmacher, Thomas/0000-0001-9436-2448; Carpenter, Michael/0000-0002-3237-5734 FU National Science Foundation [PHY-0606007, PHY-0758099]; Office of Nuclear Physics, US Department of Energy [DE-AC02-06CH11357]; UK Science and Technology Facilities Council [ST/F012012, EP/D003626] FX This work was supported by the National Science Foundation under Grant Nos. PHY-0606007 and PHY-0758099; by the Office of Nuclear Physics, US Department of Energy, under Contract No. DE-AC02-06CH11357; and by the UK Science and Technology Facilities Council (Grant Nos. ST/F012012 and EP/D003626). We acknowledge fruitful discussions with G. F. Grinyer. NR 27 TC 5 Z9 5 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD FEB PY 2010 VL 81 IS 2 AR 024301 DI 10.1103/PhysRevC.81.024301 PG 5 WC Physics, Nuclear SC Physics GA 562NY UT WOS:000275060200009 ER PT J AU Nagle, JL Steinberg, P Zajc, WA AF Nagle, J. L. Steinberg, P. Zajc, W. A. TI Quantitative and conceptual considerations for extracting the Knudsen number in heavy ion collisions SO PHYSICAL REVIEW C LA English DT Article ID QUARK-GLUON PLASMA; NUCLEUS-NUCLEUS COLLISIONS; ELLIPTIC FLOW; COLLABORATION; PERSPECTIVE; DEPENDENCE AB In this article, we examine the methodology for extracting the Knudsen number (K) and the ratio of shear viscosity to entropy density (eta/s) developed by Drescher et al. [1]. The final result for eta/s turns out to be quite sensitive to Glauber parameters, particularly the parameter x, which controls the balance between N-part and N-coll. We also explore how alternative formulations of the functional relation between the elliptic flow and Knudsen number (K = lambda/(R) over bar) impacts the physics conclusions, based on Pade approximants. Finally, we extend the calculation to include a limiting minimum value on the mean free path proportional to the DeBroglie wavelength. These results emphasize the importance of clarifying the initial state used in different calculations as well as the ambiguities inherent in using a transport approach in a strongly coupled regime. C1 [Nagle, J. L.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Steinberg, P.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Zajc, W. A.] Columbia Univ, Dept Phys, New York, NY 10027 USA. RP Nagle, JL (reprint author), Univ Colorado, Dept Phys, Boulder, CO 80309 USA. EM jamie.nagle@colorado.edu FU US Department of Energy Division of Nuclear Physics [DE-FG02-00ER41152]; US Department of Energy [DE-AC02-98CH10886, DE-FG02-86ER40281] FX We gratefully acknowledge useful discussions with Adrian Dumitru, Ulrich Heinz, Constantin Loizides, Jean-Yves Ollitrault, Paul Romatschke, Paul Stankus, and Steve Vigdor. J.L.N. acknowledges support from the US Department of Energy Division of Nuclear Physics (Grant No. DE-FG02-00ER41152). P. S. is supported by US Department of Energy Grant No. DE-AC02-98CH10886. W.A.Z. is supported by US Department of Energy Grant No. DE-FG02-86ER40281. NR 40 TC 12 Z9 12 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD FEB PY 2010 VL 81 IS 2 AR 024901 DI 10.1103/PhysRevC.81.024901 PG 10 WC Physics, Nuclear SC Physics GA 605IN UT WOS:000278341300022 ER PT J AU Schunck, N Dobaczewski, J McDonnell, J More, J Nazarewicz, W Sarich, J Stoitsov, MV AF Schunck, N. Dobaczewski, J. McDonnell, J. More, J. Nazarewicz, W. Sarich, J. Stoitsov, M. V. TI One-quasiparticle states in the nuclear energy density functional theory SO PHYSICAL REVIEW C LA English DT Article ID HARMONIC-OSCILLATOR BASIS; FOCK-BOGOLYUBOV EQUATIONS; SELF-CONSISTENT CALCULATIONS; TIME-ODD COMPONENTS; RARE-EARTH NUCLEI; MEAN-FIELD; ROTATING NUCLEI; EQUILIBRIUM DEFORMATIONS; EXCITATION-ENERGIES; MATRIX EXPANSION AB We study one-quasiproton excitations in the rare-earth region in the framework of the nuclear density functional theory in the Skyrme-Hartree-Fock-Bogoliubov variant. The blocking prescription is implemented exactly, with the time-odd mean field fully taken into account. The equal filling approximation is compared with the exact blocking procedure. We show that both procedures are strictly equivalent when the time-odd channel is neglected and discuss how nuclear alignment properties affect the time-odd fields. The impact of time-odd fields on calculated one-quasiproton band-head energies is found to be rather small, of the order of 100-200 keV; hence, the equal filling approximation is sufficiently precise for most practical applications. The triaxial polarization of the core induced by the odd particle is studied. We also briefly discuss the occurrence of finite-size spin instabilities that are present in calculations for odd-mass nuclei when certain Skyrme functionals are employed. C1 [Schunck, N.; McDonnell, J.; Nazarewicz, W.; Stoitsov, M. V.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Schunck, N.; McDonnell, J.; Nazarewicz, W.; Stoitsov, M. V.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Dobaczewski, J.; Nazarewicz, W.] Warsaw Univ, Inst Theoret Phys, PL-00681 Warsaw, Poland. [Dobaczewski, J.] Univ Jyvaskyla, Dept Phys, FIN-40014 Jyvaskyla, Finland. [Dobaczewski, J.] Oak Ridge Natl Lab, Joint Inst Heavy Ion Res, Oak Ridge, TN 37831 USA. [More, J.; Sarich, J.] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Stoitsov, M. V.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. RP Schunck, N (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM schuncknf@ornl.gov OI Schunck, Nicolas/0000-0002-9203-6849 FU US Department of Energy [DE-FC02-07ER41457, DE-FG02-96ER40963, DE-AC05-00OR22725]; Polish Ministry of Science and Higher Education [N N 202 328234]; Academy of Finland and University of Jyvaskyla within the FIDIPRO program; National Center for Computational Sciences at Oak Ridge National Laboratory FX We are thankful to T. Duguet and T. Lesinski for pointing out finite-size instabilities as a possible explanation for the systematic lack of convergence in odd nuclei with certain functionals. Discussions with S. Fracasso are also acknowledged. This work was supported by the US Department of Energy under Contract Nos. DE-FC02-07ER41457 (UNEDF SciDAC Collaboration), DE-FG02-96ER40963 (University of Tennessee), DE-AC05-00OR22725 with UT-Battelle, LLC (Oak Ridge National Laboratory), and DE-FG0587ER40361 (Joint Institute for Heavy Ion Research); by the Polish Ministry of Science and Higher Education under Contract No. N N 202 328234; and by the Academy of Finland and University of Jyvaskyla within the FIDIPRO program. Computational resources were provided by the National Center for Computational Sciences at Oak Ridge National Laboratory. NR 100 TC 75 Z9 75 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD FEB PY 2010 VL 81 IS 2 AR 024316 DI 10.1103/PhysRevC.81.024316 PG 15 WC Physics, Nuclear SC Physics GA 562NY UT WOS:000275060200024 ER PT J AU Simpson, GS Urban, W Pinston, JA Angelique, JC Deloncle, I Faust, HR Genevey, J Koster, U Materna, T Orlandi, R Scherillo, A Smith, AG Smith, JF Rzaca-Urban, T Ahmad, I Greene, JP AF Simpson, G. S. Urban, W. Pinston, J. A. Angelique, J. C. Deloncle, I. Faust, H. R. Genevey, J. Koester, U. Materna, T. Orlandi, R. Scherillo, A. Smith, A. G. Smith, J. F. Rzaca-Urban, T. Ahmad, I. Greene, J. P. TI Near-yrast structure of N=93 neutron-rich lanthanide nuclei SO PHYSICAL REVIEW C LA English DT Article ID INTRINSIC REFLECTION ASYMMETRY; OCTUPOLE CORRELATIONS; GE DETECTORS; IDENTIFICATION; ISOTOPES; ISOMERS; ND-153; REGION; SHAPES; STATE AB Two neutron-rich N = 93 isotones, (155)Sm and (153)Nd, have been studied by delayed gamma-ray and conversion-electron spectroscopy at the Lohengrin mass spectrometer. A half-life of 2.9(5) mu s has been measured for the nu 5/2(+)[642] state at 16.5 keV in (155)Sm. The decay of a 1.17(7)-mu s isomer in (153)Nd, at 191.7 keV, has been remeasured and its spin has been reassigned as (5/2)(+). This state contains a strong component of the nu 5/2(+)[642] Nilsson orbital. In addition, a new 1.00(8)-mu s isomeric state at 538.6 keV, with a probable nu 11/2(-)[505] Nilsson configuration, has been observed in (155)Sm. Triple gamma-ray coincidence data from the spontaneous fission of a (252)Cf source placed inside the Gammasphere array were used to extend the collective band on top of the (5/2(+)) isomeric state of (153)Nd, and a new band with the same bandhead spin has been observed in (151)Ce. The observation of this new band and an additional new transition in the ground-state band has led us to change the ground-state spin of (151)Ce to (3/2(-)). Calculations using the quasiparticle- rotor model successfully reproduce the majority of the features of the gamma decays of these nuclei, including branching ratios and isomeric half-lives. Because this model uses a reflection-symmetric core, we conclude that the polarizing effect of the odd particle is responsible for the dipole moment present in the nu 5/2(+)[642] states of the three nuclei studied and the nu 11/2(-)[505] level of (155)Sm. C1 [Simpson, G. S.; Pinston, J. A.; Angelique, J. C.; Genevey, J.] Univ Grenoble 1, CNRS, Inst Natl Polytech Grenoble, LPSC,IN2P3, F-38026 Grenoble, France. [Urban, W.; Rzaca-Urban, T.] Univ Warsaw, Fac Phys, PL-00681 Warsaw, Poland. [Urban, W.; Faust, H. R.; Koester, U.; Materna, T.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France. [Deloncle, I.] Univ Paris 11, CNRS, CSNSM, IN2P3, F-91405 Orsay, France. [Orlandi, R.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Scherillo, A.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Smith, A. G.; Smith, J. F.] Univ Manchester, Dept Phys & Astron, Manchester M13 9PL, Lancs, England. [Ahmad, I.; Greene, J. P.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Simpson, GS (reprint author), Univ Grenoble 1, CNRS, Inst Natl Polytech Grenoble, LPSC,IN2P3, F-38026 Grenoble, France. EM simpson@lpsc.in2p3.fr FU Department of Energy [DE-AC02-06CH11357] FX This work was partly supported by the Department of Energy, Office of Nuclear Physics, under contract No. DE-AC02-06CH11357. The authors are indebted for the use of the 248Cm source to the Office of Basic Energy Sciences, Department of Energy, through the transplutonium element-production Facilities at the Oak Ridge National Laboratory. NR 29 TC 9 Z9 9 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD FEB PY 2010 VL 81 IS 2 AR 024313 DI 10.1103/PhysRevC.81.024313 PG 13 WC Physics, Nuclear SC Physics GA 562NY UT WOS:000275060200021 ER PT J AU Weisel, GJ Tornow, W Crowe, BJ Crowell, AS Esterline, JH Howell, CR Kelley, JH Macri, RA Pedroni, RS Walter, RL Witala, H AF Weisel, G. J. Tornow, W. Crowe, B. J., III Crowell, A. S. Esterline, J. H. Howell, C. R. Kelley, J. H. Macri, R. A. Pedroni, R. S. Walter, R. L. Witala, H. TI Neutron-deuteron analyzing power data at 19.0 MeV SO PHYSICAL REVIEW C LA English DT Article ID EFFECTIVE-FIELD THEORY; ELASTIC-SCATTERING; POTENTIAL MODELS; PHASE-SHIFTS; 3-NUCLEON; POLARIZATION; ENERGIES; SYSTEMS; PUZZLE AB Measurements of neutron-deuteron (n-d) analyzing power A(y)(theta) at E(n) = 19.0 MeV are reported at 16 angles from theta(c.m.) = 46.7 to 152.0 degrees. The objective of the experiment is to better characterize the discrepancies between n-d data and the predictions of three-nucleon calculations for neutron energies above 16.0 MeV. The experiment used a shielded neutron source, which produced polarized neutrons via the (2)H((d) over right arrow,(n) over right arrow)(3)He reaction, a deuterated liquid scintillator center detector ( CD) and liquid-scintillator neutron side detectors. A coincidence between the CD and the side detectors isolated the elastic-scattering events. The CD pulse height spectrum associated with each side detector was sorted by using pulse-shape discrimination, time-of-flight techniques, and by removing accidental coincidences. A Monte Carlo computer simulation of the experiment accounted for effects due to finite geometry, multiple scattering, and CD edge effects. The resulting high-precision data ( with absolute uncertainties ranging from 0.0022 to 0.0132) have a somewhat lower discrepancy with the predictions of three-body calculations, as compared to those found at lower energies. C1 [Weisel, G. J.; Tornow, W.; Crowe, B. J., III; Crowell, A. S.; Esterline, J. H.; Howell, C. R.; Kelley, J. H.; Macri, R. A.; Pedroni, R. S.; Walter, R. L.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Weisel, G. J.; Tornow, W.; Crowe, B. J., III; Crowell, A. S.; Esterline, J. H.; Howell, C. R.; Kelley, J. H.; Macri, R. A.; Pedroni, R. S.; Walter, R. L.] Triangle Univ Nucl Lab, Durham, NC 27708 USA. [Witala, H.] Jagiellonian Univ, Inst Phys, Krakow, Poland. [Weisel, G. J.] Penn State Altoona, Dept Phys, Altoona, PA 16601 USA. [Crowe, B. J., III] N Carolina Cent Univ, Durham, NC 27707 USA. [Macri, R. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Pedroni, R. S.] N Carolina A&T Univ, Greensboro, NC 27411 USA. RP Weisel, GJ (reprint author), Duke Univ, Dept Phys, Durham, NC 27708 USA. FU US Department of Energy [DE-FG02-97ER41033] FX This work was supported in part by the US Department of Energy, under Grant No. DE-FG02-97ER41033. We acknowledge the help of Penn State Altoona student Bradley D. Buck and NSF-Duke REU student Patrick D. Ulrich. We also thank Steve Churchwell for helping with the experiment and Shigeyuki Tajima for the 2D gate software, which improved our data analysis. NR 28 TC 5 Z9 5 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD FEB PY 2010 VL 81 IS 2 AR 024003 DI 10.1103/PhysRevC.81.024003 PG 9 WC Physics, Nuclear SC Physics GA 562NY UT WOS:000275060200008 ER PT J AU Aaltonen, T Adelman, J Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Asaadi, J Ashmanskas, W Attal, A Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartos, P Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Camarda, S Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Corbo, M Cordelli, M Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M d'Errico, M Di Canto, A di Giovanni, GP Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Dorigo, T Dube, S Ebina, K Elagin, A Erbacher, R Errede, D Errede, S Ershaidat, N Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Garosi, P Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harr, RF Hartz, M Hatakeyama, K Hays, C Heck, M Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Hurwitz, M Husemann, U Hussein, M Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, JS Lee, SW Leone, S Lewis, JD Lin, CJ Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Lovas, L Lucchesi, D Lueck, J Lujan, P Lukens, P Lungu, G Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Mastrandrea, P Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Mesropian, C Miao, T Mietlicki, D Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moed, S Moggi, N Mondragon, MN Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Murat, P Mussini, M Nachtman, J Nagai, Y Naganoma, J Nakamura, K Nakano, I Napier, A Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramanov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Potamianos, K Poukhov, O Prokoshin, F Pronko, A Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Rutherford, B Saarikko, H Safonov, A Sakumoto, WK Santi, L Sartori, L Sato, K Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Simonenko, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spreitzer, T Squillacioti, P Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Suh, JS Sukhanov, A Suslov, I Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tang, J Tecchio, M Teng, PK Thom, J Thome, J Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Uozumi, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vila, I Vilar, R Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wolfe, H Wright, T Wu, X Wurthwein, F Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanetti, A Zeng, Y Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Asaadi, J. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartos, P. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Camarda, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Corbo, M. Cordelli, M. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. d'Errico, M. Di Canto, A. di Giovanni, G. P. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Dorigo, T. Dube, S. Ebina, K. Elagin, A. Erbacher, R. Errede, D. Errede, S. Ershaidat, N. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Garosi, P. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harr, R. F. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Hurwitz, M. Husemann, U. Hussein, M. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, J. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. -J. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Lovas, L. Lucchesi, D. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Mastrandrea, P. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Mesropian, C. Miao, T. Mietlicki, D. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moed, S. Moggi, N. Mondragon, M. N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramanov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Potamianos, K. Poukhov, O. Prokoshin, F. Pronko, A. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Rutherford, B. Saarikko, H. Safonov, A. Sakumoto, W. K. Santi, L. Sartori, L. Sato, K. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Simonenko, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spreitzer, T. Squillacioti, P. Stanitzki, M. St. Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Suh, J. S. Sukhanov, A. Suslov, I. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tang, J. Tecchio, M. Teng, P. K. Thom, J. Thome, J. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vila, I. Vilar, R. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wolfe, H. Wright, T. Wu, X. Wuerthwein, F. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanetti, A. Zeng, Y. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Measurement of the top quark mass in the dilepton channel using m(T2) at CDF SO PHYSICAL REVIEW D LA English DT Article ID PARTON DISTRIBUTIONS; HADRON COLLIDERS; ENERGY; PHYSICS AB We present measurements of the top quark mass using m(T2), a variable related to the transverse mass in events with two missing particles. We use the template method applied to t (t) over bar dilepton events produced in p (p) over bar collisions at Fermilab's Tevatron Collider and collected by the CDF detector. From a data sample corresponding to an integrated luminosity of 3.4 fb(-1), we select 236 t (t) over bar candidate events. Using the m(T2) distribution, we measure the top quark mass to be M-top = 168.0(-4.0)(4.8)(stat) +/- 2.9(syst) GeV/c(2). By combining m(T2) with the reconstructed top quark mass distributions based on a neutrino weighting method, we measure M-top = 169.3 +/- 2.7(stat) +/- 3.2(syst) GeV/c(2). This is the first application of the m(T2) variable in a mass measurement at a hadron collider. C1 [Aaltonen, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Div High Energy Phys, Dept Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Paramanov, A. A.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Camarda, S.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Grinstein, S.; Martinez, M.; Sorin, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Frank, M. J.; Hatakeyama, K.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl Bologna, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Pellett, D. E.; Schwarz, T.; Smith, J. R.] Univ Calif Davis, Davis, CA 95616 USA. [Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, Inst Fis Cantabria, CSIC, E-39005 Santander, Spain. [Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.; Thome, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Canelli, F.; Fedorko, W. T.; Grosso-Pilcher, C.; Hurwitz, M.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Tang, J.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bartos, P.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Antos, J.; Bartos, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Jayatilaka, B.; Kotwal, A. V.; Kruse, M.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.; Yu, G. B.; Zeng, Y.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Carron, S.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Chung, K.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Dong, P.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Mondragon, M. N.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Rutherford, B.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Soha, A.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yi, K.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Lister, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Datta, M.; Martin, V.; Robson, A.; St. Denis, R.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; da Costa, J. Guimaraes; Mills, C.; Moed, S.] Harvard Univ, Cambridge, MA 02138 USA. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Barbaro-Galtieri, A.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -J.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Goncharov, M.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Mietlicki, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Miller, R.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Malde, S.; Oakes, L.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bisello, D.; Busetto, G.; Compostella, G.; d'Errico, M.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; d'Errico, M.; Gresele, A.; Lazzizzera, I.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; Corbo, M.; di Giovanni, G. P.; Ershaidat, N.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, LPNHE, IN2P3, CNRS,UMR7585, F-75252 Paris, France. [Canepa, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Di Ruzza, B.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Punzi, G.; Sforza, F.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Garosi, P.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Ferrazza, C.; Trovato, M.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Potamianos, K.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; Davies, T.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Lungu, G.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Giagu, S.; Iori, M.; Mastrandrea, P.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Giagu, S.; Iori, M.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Dube, S.; Halkiadakis, E.; Hare, D.; Hidas, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Asaadi, J.; Aurisano, A.; Elagin, A.; Eusebi, R.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Giordani, M.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl, I-33100 Udine, Italy. [Cauz, D.; Giordani, M.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl, I-34100 Trieste, Italy. [Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, I-33100 Udine, Italy. [Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Naganoma, J.; Nakamura, K.; Sato, K.; Shimojima, M.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Ebina, K.; Kimura, N.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Almenar, C. Cuenca; Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Div High Energy Phys, Dept Phys, FIN-00014 Helsinki, Finland. RI Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Zeng, Yu/C-1438-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Xie, Si/O-6830-2016; Canelli, Florencia/O-9693-2016; Lazzizzera, Ignazio/E-9678-2015; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; vilar, rocio/P-8480-2014; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Chiarelli, Giorgio/E-8953-2012; Muelmenstaedt, Johannes/K-2432-2015 OI Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Hays, Chris/0000-0003-2371-9723; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Gallinaro, Michele/0000-0003-1261-2277; Torre, Stefano/0000-0002-7565-0118; Turini, Nicola/0000-0002-9395-5230; Lami, Stefano/0000-0001-9492-0147; Giordani, Mario/0000-0002-0792-6039; Margaroli, Fabrizio/0000-0002-3869-0153; Latino, Giuseppe/0000-0002-4098-3502; Group, Robert/0000-0002-4097-5254; Vidal Marono, Miguel/0000-0002-2590-5987; Lancaster, Mark/0000-0002-8872-7292; Nielsen, Jason/0000-0002-9175-4419; Jun, Soon Yung/0000-0003-3370-6109; Toback, David/0000-0003-3457-4144; Osterberg, Kenneth/0000-0003-4807-0414; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Xie, Si/0000-0003-2509-5731; Canelli, Florencia/0000-0001-6361-2117; iori, maurizio/0000-0002-6349-0380; Casarsa, Massimo/0000-0002-1353-8964; Simonenko, Alexander/0000-0001-6580-3638; Lazzizzera, Ignazio/0000-0001-5092-7531; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; ciocci, maria agnese /0000-0003-0002-5462; Chiarelli, Giorgio/0000-0001-9851-4816; Muelmenstaedt, Johannes/0000-0003-1105-6678 FU U.S. Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A.P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean Science and Engineering Foundation; Korean Research Foundation; Science and Technology Facilities Council; Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion; Programa Consolider-Ingenio, Spain; Slovak RD Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and the National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and the Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland. NR 34 TC 24 Z9 24 U1 1 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD FEB 1 PY 2010 VL 81 IS 3 AR 031102 DI 10.1103/PhysRevD.81.031102 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 562QT UT WOS:000275069000002 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burke, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cordelli, M Cortiana, G Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF Di Canto, A di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Garosi, P Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hays, C Heck, M Heijboer, A Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Hussein, M Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Koay, SA Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lucchesi, D Luci, C Lueck, J Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Rutherford, B Saarikko, H Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, Z Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spreitzer, T Squillacioti, P Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wurthwein, F Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burke, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cordelli, M. Cortiana, G. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. Di Canto, A. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Garosi, P. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heijboer, A. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Hussein, M. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Koay, S. A. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. -S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lucchesi, D. Luci, C. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Rutherford, B. Saarikko, H. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spreitzer, T. Squillacioti, P. Stanitzki, M. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wuerthwein, F. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Measurements of the top-quark mass using charged particle tracking SO PHYSICAL REVIEW D LA English DT Article ID PHYSICS AB We present three measurements of the top-quark mass in the lepton plus jets channel with approximately 1.9 fb(-1) of integrated luminosity collected with the CDF II detector using quantities with minimal dependence on the jet energy scale. One measurement exploits the transverse decay length of b-tagged jets to determine a top-quark mass of 166.9(-8.5)(+9.5)(stat) +/- 2.9(syst) GeV/c(2), and another the transverse momentum of electrons and muons from W-boson decays to determine a top-quark mass of 173.5(-8.9)(+8.8)(stat) +/- 3.8(syst) GeV/c(2). These quantities are combined in a third, simultaneous mass measurement to determine a top-quark mass of 170.7 +/- 6.3(stat) +/- 2.6(syst) GeV/c(2) . C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Div High Energy Phys, Dept Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Martinez, M.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Frank, M. J.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Jha, M. K.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Koay, S. A.; Krutelyov, V.; Rossin, R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, Inst Fis Cantabria, CSIC, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Canelli, F.; Fedorko, W. T.; Grosso-Pilcher, C.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burke, S.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Rutherford, B.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yi, K.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St Denis, R.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.] Harvard Univ, Cambridge, MA 02138 USA. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] CIEMAT, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Goncharov, M.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, LPNHE, IN2P3, CNRS,UMR7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Punzi, G.; Sforza, F.; Trovato, M.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Ferrazza, C.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Barria, P.; Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Garosi, P.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Dionisi, C.; Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Dionisi, C.; Giagu, S.; Iori, M.; Luci, C.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl, I-34100 Trieste, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl, I-33100 Udine, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, I-33100 Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Div High Energy Phys, Dept Phys, FIN-00014 Helsinki, Finland. RI De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Xie, Si/O-6830-2016; Canelli, Florencia/O-9693-2016; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; vilar, rocio/P-8480-2014; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Chiarelli, Giorgio/E-8953-2012; Muelmenstaedt, Johannes/K-2432-2015 OI Hays, Chris/0000-0003-2371-9723; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Gallinaro, Michele/0000-0003-1261-2277; Torre, Stefano/0000-0002-7565-0118; Turini, Nicola/0000-0002-9395-5230; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Moon, Chang-Seong/0000-0001-8229-7829; Ruiz, Alberto/0000-0002-3639-0368; Casarsa, Massimo/0000-0002-1353-8964; Margaroli, Fabrizio/0000-0002-3869-0153; Latino, Giuseppe/0000-0002-4098-3502; Group, Robert/0000-0002-4097-5254; iori, maurizio/0000-0002-6349-0380; Vidal Marono, Miguel/0000-0002-2590-5987; Lancaster, Mark/0000-0002-8872-7292; Nielsen, Jason/0000-0002-9175-4419; Jun, Soon Yung/0000-0003-3370-6109; Toback, David/0000-0003-3457-4144; Osterberg, Kenneth/0000-0003-4807-0414; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Xie, Si/0000-0003-2509-5731; Canelli, Florencia/0000-0001-6361-2117; Giordani, Mario/0000-0002-0792-6039; Lami, Stefano/0000-0001-9492-0147; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Chiarelli, Giorgio/0000-0001-9851-4816; Muelmenstaedt, Johannes/0000-0003-1105-6678 FU U.S. Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A.P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean Science and Engineering Foundation; Korean Research Foundation; Science and Technology Facilities Council; Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; Slovak R and D Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R and D Agency; and the Academy of Finland. NR 29 TC 17 Z9 17 U1 1 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD FEB 1 PY 2010 VL 81 IS 3 AR 032002 DI 10.1103/PhysRevD.81.032002 PG 21 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 562QT UT WOS:000275069000010 ER PT J AU Aaltonen, T Adelman, J Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Asaadi, J Ashmanskas, W Attal, A Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartos, P Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Camarda, S Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Corbo, M Cordelli, M Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T De Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M d'Errico, M Di Canto, A di Giovanni, GP Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Dorigo, T Dube, S Ebina, K Elagin, A Erbacher, R Errede, D Errede, S Ershaidat, N Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Garosi, P Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harr, RF Hartz, M Hatakeyama, K Hays, C Heck, M Heinrich, J Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Hughes, RE Hurwitz, M Husemann, U Hussein, M Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, JS Lee, SW Leone, S Lewis, JD Lin, CJ Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Lovas, L Lucchesi, D Lueck, J Lujan, P Lukens, P Lungu, G Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Mastrandrea, P Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Mesropian, C Miao, T Mietlicki, D Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moed, S Moggi, N Mondragon, MN Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Murat, P Mussini, M Nachtman, J Nagai, Y Naganoma, J Nakamura, K Nakano, I Napier, A Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramanov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Potamianos, K Poukhov, O Prokoshin, F Pronko, A Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Rutherford, B Saarikko, H Safonov, A Sakumoto, WK Santi, L Sartori, L Sato, K Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Simonenko, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Squillacioti, P Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Suh, JS Sukhanov, A Suslov, I Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tang, J Tecchio, M Teng, PK Thom, J Thome, J Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Uozumi, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vila, I Vilar, R Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wolfe, H Wright, T Wu, X Wurthwein, F Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanetti, A Zeng, Y Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Asaadi, J. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartos, P. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Camarda, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Corbo, M. Cordelli, M. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. De Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. d'Errico, M. Di Canto, A. di Giovanni, G. P. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Dorigo, T. Dube, S. Ebina, K. Elagin, A. Erbacher, R. Errede, D. Errede, S. Ershaidat, N. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Garosi, P. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harr, R. F. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heinrich, J. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Hughes, R. E. Hurwitz, M. Husemann, U. Hussein, M. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, J. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. -J. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Lovas, L. Lucchesi, D. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Mastrandrea, P. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Mesropian, C. Miao, T. Mietlicki, D. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moed, S. Moggi, N. Mondragon, M. N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramanov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Potamianos, K. Poukhov, O. Prokoshin, F. Pronko, A. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Rutherford, B. Saarikko, H. Safonov, A. Sakumoto, W. K. Santi, L. Sartori, L. Sato, K. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Simonenko, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Squillacioti, P. Stanitzki, M. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Suh, J. S. Sukhanov, A. Suslov, I. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tang, J. Tecchio, M. Teng, P. K. Thom, J. Thome, J. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vila, I. Vilar, R. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wolfe, H. Wright, T. Wu, X. Wuerthwein, F. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanetti, A. Zeng, Y. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Measurements of branching fraction ratios and CP asymmetries in B-+/- -> DCPK +/- decays in hadron collisions SO PHYSICAL REVIEW D LA English DT Article ID VIOLATION; GAMMA; MODES AB We reconstruct B-+/- -> DK +/- decays in a data sample collected by the CDF II detector at the Tevatron collider corresponding to 1 fb(-1) of integrated luminosity. We select decay modes where the D meson decays to either K-pi(+) (flavor eigenstate) or K-K+, pi(-)pi(+) (CP-even eigenstates), and measure the direct CP asymmetry A(CP+) = 0.39 +/- 0.17(stat) +/- 0.04(syst), and the double ratio of CP-even to flavor eigenstate branching fractions RCP+ = 1.30 +/- 0.24(stat) +/- 0.12(syst). These measurements will improve the determination of the Cabibbo-Kobayashi-Maskawa angle gamma. They are performed here for the first time using data from hadron collisions. C1 [Aaltonen, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Div High Energy Phys, Dept Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Paramanov, A. A.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Camarda, S.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Grinstein, S.; Martinez, M.; Sorin, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Frank, M. J.; Hatakeyama, K.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Pellett, D. E.; Schwarz, T.; Smith, J. R.] Univ Calif Davis, Davis, CA 95616 USA. [Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.; Thome, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Canelli, F.; Fedorko, W. T.; Grosso-Pilcher, C.; Hurwitz, M.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Tang, J.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bartos, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bartos, P.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Jayatilaka, B.; Kotwal, A. V.; Kruse, M.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.; Yu, G. B.; Zeng, Y.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Carron, S.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Chung, K.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Dong, P.; Freeman, J. C.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Mondragon, M. N.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Rutherford, B.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Soha, A.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yi, K.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Lister, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St Denis, R.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; da Costa, J. Guimaraes; Mills, C.; Moed, S.] Harvard Univ, Cambridge, MA 02138 USA. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Barbaro-Galtieri, A.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -J.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Beecher, D.; Bizjak, I.; Campanelli, M.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] CIEMAT, E-28040 Madrid, Spain. [Bauer, G.; Gomez-Ceballos, G.; Goncharov, M.; Makhoul, K.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Mietlicki, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Miller, R.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Hays, C.; Linacre, J.; Malde, S.; Oakes, L.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bisello, D.; Busetto, G.; Compostella, G.; d'Errico, M.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; d'Errico, M.; Gresele, A.; Lazzizzera, I.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; Corbo, M.; di Giovanni, G. P.; Ershaidat, N.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, LPNHE, IN2P3, CNRS,UMR7585, F-75252 Paris, France. [Canepa, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Di Ruzza, B.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Punzi, G.; Sforza, F.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Garosi, P.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Ferrazza, C.; Trovato, M.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Potamianos, K.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; De Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Lungu, G.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Giagu, S.; Iori, M.; Mastrandrea, P.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Giagu, S.; Iori, M.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Dube, S.; Halkiadakis, E.; Hare, D.; Hidas, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Asaadi, J.; Aurisano, A.; Elagin, A.; Eusebi, R.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Giordani, M.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl, I-34100 Trieste, Italy. [Cauz, D.; Giordani, M.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl, I-33100 Udine, Italy. [Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, I-33100 Udine, Italy. [Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Naganoma, J.; Nakamura, K.; Sato, K.; Shimojima, M.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Ebina, K.; Kimura, N.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Almenar, C. Cuenca; Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Div High Energy Phys, Dept Phys, FIN-00014 Helsinki, Finland. RI Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Chiarelli, Giorgio/E-8953-2012; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Canelli, Florencia/O-9693-2016; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Zeng, Yu/C-1438-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014 OI Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Chiarelli, Giorgio/0000-0001-9851-4816; Toback, David/0000-0003-3457-4144; Osterberg, Kenneth/0000-0003-4807-0414; Hays, Chris/0000-0003-2371-9723; Gallinaro, Michele/0000-0003-1261-2277; Torre, Stefano/0000-0002-7565-0118; Turini, Nicola/0000-0002-9395-5230; Di Canto, Angelo/0000-0003-1233-3876; Casarsa, Massimo/0000-0002-1353-8964; Margaroli, Fabrizio/0000-0002-3869-0153; Latino, Giuseppe/0000-0002-4098-3502; Group, Robert/0000-0002-4097-5254; iori, maurizio/0000-0002-6349-0380; Vidal Marono, Miguel/0000-0002-2590-5987; Lancaster, Mark/0000-0002-8872-7292; Nielsen, Jason/0000-0002-9175-4419; Jun, Soon Yung/0000-0003-3370-6109; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Canelli, Florencia/0000-0001-6361-2117; Simonenko, Alexander/0000-0001-6580-3638; Lami, Stefano/0000-0001-9492-0147; Giordani, Mario/0000-0002-0792-6039; Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; FU U.S. Department of Energy and National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A.P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean Science and Engineering Foundation; Korean Research Foundation; Science and Technology Facilities Council; Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; Slovak RD Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland. NR 30 TC 26 Z9 27 U1 1 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD FEB 1 PY 2010 VL 81 IS 3 AR 031105 DI 10.1103/PhysRevD.81.031105 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 562QT UT WOS:000275069000005 ER PT J AU Accardi, A Christy, ME Keppel, CE Melnitchouk, W Monaghan, P Morfin, JG Owens, JF AF Accardi, A. Christy, M. E. Keppel, C. E. Melnitchouk, W. Monaghan, P. Morfin, J. G. Owens, J. F. TI New parton distributions from large-x and low-Q(2) data SO PHYSICAL REVIEW D LA English DT Article ID DEEP-INELASTIC-SCATTERING; DEUTERON STRUCTURE FUNCTIONS; NUCLEAR-STRUCTURE FUNCTIONS; HIGHER TWIST; P(P)OVER-BAR COLLISIONS; ELECTRON-SCATTERING; CROSS-SECTIONS; CHARGED CURRENT; QCD ANALYSIS; PROTON AB We report results of a new global next-to-leading order fit of parton distribution functions in which cuts on W and Q are relaxed, thereby including more data at high values of x. Effects of target mass corrections, higher twist contributions, and nuclear corrections for deuterium data are significant in the large-x region. The leading twist parton distributions are found to be stable to target mass correction model variations as long as higher twist contributions are also included. The behavior of the d quark as x -> 1 is particularly sensitive to the deuterium corrections, and using realistic nuclear smearing models the d-quark distribution at large x is found to be softer than in previous fits performed with more restrictive cuts. C1 [Accardi, A.; Christy, M. E.; Keppel, C. E.; Monaghan, P.] Hampton Univ, Hampton, VA 23668 USA. [Accardi, A.; Keppel, C. E.; Melnitchouk, W.] Jefferson Lab, Newport News, VA 23606 USA. [Morfin, J. G.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Owens, J. F.] Florida State Univ, Tallahassee, FL 32306 USA. RP Accardi, A (reprint author), Hampton Univ, Hampton, VA 23668 USA. FU DOE, Jefferson Science Associates [DE-AC05-06OR23177, DE-FG02-97ER41022]; NSF [0653508] FX We thank J. Arrington and S. P. Malace for helpful communications. This work has been supported by the DOE Contract No. DE-AC05-06OR23177, under which Jefferson Science Associates, LLC operates Jefferson Lab, DOE Grant No. DE-FG02-97ER41022, and NSF Grant No. 0653508. NR 102 TC 50 Z9 50 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD FEB 1 PY 2010 VL 81 IS 3 AR 034016 DI 10.1103/PhysRevD.81.034016 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 562QT UT WOS:000275069000037 ER PT J AU Afanasev, A Brodsky, SJ Carlson, CE Mukherjee, A AF Afanasev, Andrei Brodsky, Stanley J. Carlson, Carl E. Mukherjee, Asmita TI Timelike virtual compton scattering from electron-positron radiative annihilation SO PHYSICAL REVIEW D LA English DT Article ID GENERALIZED PARTON DISTRIBUTIONS; WAVE-FUNCTION; MODEL; REPRESENTATION; HADRONS; CHARGE; QUARK; TESTS AB We propose measurements of the deeply virtual Compton amplitude (DVCS) gamma* -> h (h) over bar gamma in the timelike t = (p(h) + p((h) over bar))(2) > 0 kinematic domain which is accessible at electron-positron colliders via the radiative annihilation process e(+)e(-) -> h (h) over bar gamma. These processes allow the measurement of timelike deeply virtual Compton scattering for a variety of h (h) over bar hadron pairs such as pi(+),pi(-), K+K-, and D (D) over bar as well as p (p) over bar. As in the conventional spacelike DVCS, there are interfering coherent amplitudes contributing to the timelike processes involving C = - form factors. The interference between the amplitudes measures the phase of the C = + timelike DVCS amplitude relative to the phase of the timelike form factors and can be isolated by considering the forward-backward e(+) <-> e(-) asymmetry. The J = 0 fixed pole contribution which arises from the local coupling of the two photons to the quark current plays a special role. As an example we present a simple model. C1 [Afanasev, Andrei] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [Afanasev, Andrei] Thomas Jefferson Natl Accelerator Facil, Ctr Theory, Newport News, VA 23606 USA. [Brodsky, Stanley J.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Carlson, Carl E.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Mukherjee, Asmita] Indian Inst Technol, Dept Phys, Bombay 400076, Maharashtra, India. RP Afanasev, A (reprint author), Hampton Univ, Dept Phys, Hampton, VA 23668 USA. OI Afanasev, Andrei/0000-0003-0679-3307 FU U.S. Department of Energy [DE-AC05-06OR23177, DE-AC02-76SF00515]; NSF [PHY-0555600] FX We thank Markus Diehl, Dae-Sung Hwang, Felipe J. Llanes-Estrada, Bernard Pire, Adam P. Szczepaniak, and Werner Vogelsang for helpful discussions. A. A. thanks the U.S. Department of Energy for support under U.S. DOE Contract No. DE-AC05-06OR23177. S. J. B. thanks the U.S. Department of Energy for support under Grant No. DE-AC02-76SF00515. C. E. C. thanks the NSF for support under Grant No. PHY-0555600. A. M. thanks JLab, where part of the work was done, and also William and Mary, for hospitality and support. NR 47 TC 2 Z9 2 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD FEB 1 PY 2010 VL 81 IS 3 AR 034014 DI 10.1103/PhysRevD.81.034014 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 562QT UT WOS:000275069000035 ER PT J AU Aguilar-Arevalo, AA Anderson, CE Bazarko, AO Brice, SJ Brown, BC Bugel, L Cao, J Coney, L Conrad, JM Cox, DC Curioni, A Djurcic, Z Finley, DA Fisher, M Fleming, BT Ford, R Garcia, FG Garvey, GT Grange, J Green, C Green, JA Hart, TL Hawker, E Imlay, R Johnson, RA Karagiorgi, G Kasper, P Katori, T Kobilarcik, T Kourbanis, I Koutsoliotas, S Laird, EM Linden, SK Link, JM Liu, Y Liu, Y Louis, WC Mahn, KBM Marsh, W Mauger, C McGary, VT McGregor, G Metcalf, W Meyers, PD Mills, F Mills, GB Monroe, J Moore, CD Mousseau, J Nelson, RH Nienaber, P Nowak, JA Osmanov, B Ouedraogo, S Patterson, RB Pavlovic, Z Perevalov, D Polly, CC Prebys, E Raaf, JL Ray, H Roe, BP Russell, AD Sandberg, V Schirato, R Schmitz, D Shaevitz, MH Shoemaker, FC Smith, D Soderberg, M Sorel, M Spentzouris, P Spitz, J Stancu, I Stefanski, RJ Sung, M Tanaka, HA Tayloe, R Tzanov, M Van de Water, RG Wascko, MO White, DH Wilking, MJ Yang, HJ Zeller, GP Zimmerman, ED AF Aguilar-Arevalo, A. A. Anderson, C. E. Bazarko, A. O. Brice, S. J. Brown, B. C. Bugel, L. Cao, J. Coney, L. Conrad, J. M. Cox, D. C. Curioni, A. Djurcic, Z. Finley, D. A. Fisher, M. Fleming, B. T. Ford, R. Garcia, F. G. Garvey, G. T. Grange, J. Green, C. Green, J. A. Hart, T. L. Hawker, E. Imlay, R. Johnson, R. A. Karagiorgi, G. Kasper, P. Katori, T. Kobilarcik, T. Kourbanis, I. Koutsoliotas, S. Laird, E. M. Linden, S. K. Link, J. M. Liu, Y. Liu, Y. Louis, W. C. Mahn, K. B. M. Marsh, W. Mauger, C. McGary, V. T. McGregor, G. Metcalf, W. Meyers, P. D. Mills, F. Mills, G. B. Monroe, J. Moore, C. D. Mousseau, J. Nelson, R. H. Nienaber, P. Nowak, J. A. Osmanov, B. Ouedraogo, S. Patterson, R. B. Pavlovic, Z. Perevalov, D. Polly, C. C. Prebys, E. Raaf, J. L. Ray, H. Roe, B. P. Russell, A. D. Sandberg, V. Schirato, R. Schmitz, D. Shaevitz, M. H. Shoemaker, F. C. Smith, D. Soderberg, M. Sorel, M. Spentzouris, P. Spitz, J. Stancu, I. Stefanski, R. J. Sung, M. Tanaka, H. A. Tayloe, R. Tzanov, M. Van de Water, R. G. Wascko, M. O. White, D. H. Wilking, M. J. Yang, H. J. Zeller, G. P. Zimmerman, E. D. CA MiniBooNE Collaboration TI Search for core-collapse supernovae using the MiniBooNE neutrino detector SO PHYSICAL REVIEW D LA English DT Article ID BURST; KAMIOKANDE; 1987A AB We present a search for core-collapse supernovae in the Milky Way galaxy, using the MiniBooNE neutrino detector. No evidence is found for core-collapse supernovae occurring in our Galaxy in the period from December 14, 2004 to July 31, 2008, corresponding to 98% live time for collection. We set a limit on the core-collapse supernova rate out to a distance of 13.4 kpc to be less than 0.69 supernovae per year at 90% C. L. C1 [Aguilar-Arevalo, A. A.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [Liu, Y.; Perevalov, D.; Stancu, I.] Univ Alabama, Tuscaloosa, AL 35487 USA. [Koutsoliotas, S.] Bucknell Univ, Lewisburg, PA 17837 USA. [Hawker, E.; Johnson, R. A.; Raaf, J. L.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Hart, T. L.; Nelson, R. H.; Tzanov, M.; Wilking, M. J.; Zimmerman, E. D.] Univ Colorado, Boulder, CO 80309 USA. [Bugel, L.; Coney, L.; Djurcic, Z.; Mahn, K. B. M.; Monroe, J.; Schmitz, D.; Shaevitz, M. H.; Sorel, M.; Zeller, G. P.] Columbia Univ, New York, NY 10027 USA. [Smith, D.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Brice, S. J.; Brown, B. C.; Finley, D. A.; Ford, R.; Garcia, F. G.; Green, C.; Kasper, P.; Kobilarcik, T.; Kourbanis, I.; Marsh, W.; Mills, F.; Moore, C. D.; Polly, C. C.; Prebys, E.; Russell, A. D.; Spentzouris, P.; Stefanski, R. J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Fisher, M.; Grange, J.; Mousseau, J.; Osmanov, B.; Ray, H.] Univ Florida, Gainesville, FL 32611 USA. [Cox, D. C.; Green, J. A.; Katori, T.; Polly, C. C.; Tayloe, R.] Indiana Univ, Bloomington, IN 47405 USA. [Garvey, G. T.; Green, C.; Green, J. A.; Hawker, E.; Louis, W. C.; Mauger, C.; McGregor, G.; Mills, G. B.; Pavlovic, Z.; Ray, H.; Sandberg, V.; Schirato, R.; Van de Water, R. G.; White, D. H.; Zeller, G. P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Imlay, R.; Metcalf, W.; Nowak, J. A.; Ouedraogo, S.; Sung, M.; Wascko, M. O.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Karagiorgi, G.; Katori, T.; McGary, V. T.] MIT, Cambridge, MA 02139 USA. [Cao, J.; Liu, Y.; Roe, B. P.; Yang, H. J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bazarko, A. O.; Laird, E. M.; Meyers, P. D.; Patterson, R. B.; Shoemaker, F. C.; Tanaka, H. A.] Princeton Univ, Princeton, NJ 08544 USA. [Nienaber, P.] St Marys Univ Minnesota, Winona, MN 55987 USA. [Link, J. M.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. [Anderson, C. E.; Curioni, A.; Fleming, B. T.; Linden, S. K.; Soderberg, M.; Spitz, J.] Yale Univ, New Haven, CT 06520 USA. RP Aguilar-Arevalo, AA (reprint author), Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. RI Cao, Jun/G-8701-2012; Link, Jonathan/L-2560-2013; Nowak, Jaroslaw/P-2502-2016; Yang, Haijun/O-1055-2015; OI Cao, Jun/0000-0002-3586-2319; Link, Jonathan/0000-0002-1514-0650; Nowak, Jaroslaw/0000-0001-8637-5433; Aguilar-Arevalo, Alexis A./0000-0001-9279-3375; Spitz, Joshua/0000-0002-6288-7028; Wascko, Morgan/0000-0002-8348-4447; Van de Water, Richard/0000-0002-1573-327X; Katori, Teppei/0000-0002-9429-9482; Schirato, Richard/0000-0002-4216-0235 FU Fermilab; Department of Energy; National Science Foundation FX We acknowledge the support of Fermilab, the Department of Energy, and the National Science Foundation. We are grateful to John Beacom for his valuable insight and advice. We thank Alessandro Mirizzi, Georg G. Raffelt, and Pasquale D. Serpico for providing the probability distribution for the Milky Way. NR 22 TC 8 Z9 8 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD FEB 1 PY 2010 VL 81 IS 3 AR 032001 DI 10.1103/PhysRevD.81.032001 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 562QT UT WOS:000275069000009 ER PT J AU Aoki, S Fukaya, H AF Aoki, Sinya Fukaya, Hidenori TI Chiral perturbation theory in a theta vacuum SO PHYSICAL REVIEW D LA English DT Article ID ELECTRIC-DIPOLE MOMENT; EXACTLY MASSLESS QUARKS; TOPOLOGICAL SUSCEPTIBILITY; QUANTUM CHROMODYNAMICS; LATTICE QCD; 2 LOOPS; SYMMETRY; NEUTRON; DYNAMICS; BREAKING AB We consider chiral perturbation theory with a nonzero theta term. Because of the CP violating term, the vacuum of chiral fields is shifted to a nontrivial element on the SU(N-f) group manifold. The CP violation also provides mixing of different CP eigenstates, between scalar and pseudoscalar, or vector and axialvector, operators. We investigate up to O(theta(2)) effects on the mesonic two-point correlators of chiral perturbation theory to the one-loop order. We also address the effects of fixing topology, by using saddle-point integration in the Fourier transform with respect to theta. C1 [Aoki, Sinya] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. [Fukaya, Hidenori] Nagoya Univ, Dept Phys, Nagoya, Aichi 4648602, Japan. [Aoki, Sinya] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. RP Aoki, S (reprint author), Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. FU Ministry of Education, Culture, Sports, Science and Technology of Japan [20340047, 20105001, 20105003]; Nagoya University FX The authors thank the member of JLQCD and TWQCD Collaborations for discussions and their encouragement to this study. In particular, S. A. thanks S. Hashimoto and T. Onogi for discussions. H. F. thanks P. H. Damgaard for discussions and many useful comments. The work of S. A. is supported in part by Grants-in-Aid of the Ministry of Education, Culture, Sports, Science and Technology of Japan (Grants No. 20340047, No. 20105001, and No. 20105003). The work of H. F. is supported by the Grant-in-Aid for Nagoya University Global COE Program, "Quest for Fundamental Principles in the Universe: from Particles to the Solar System and the Cosmos,'' from the Ministry of Education, Culture, Sports, Science and Technology of Japan. NR 70 TC 12 Z9 12 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD FEB 1 PY 2010 VL 81 IS 3 AR 034022 DI 10.1103/PhysRevD.81.034022 PG 18 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 562QT UT WOS:000275069000043 ER PT J AU Aubert, B Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Martinelli, M Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Battaglia, M Brown, DN Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Asgeirsson, DJ Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Randle-Conde, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Wang, L Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Soffer, A Toki, WH Wilson, RJ Feltresi, E Hauke, A Jasper, H Karbach, TM Merkel, J Petzold, A Spaan, B Wacker, K Brandt, T Kobel, MJ Nogowski, R Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Fioravanti, E Franchini, P Luppi, E Munerato, M Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Tosi, S Chaisanguanthum, KS Morii, M Adametz, A Marks, J Schenk, S Uwer, U Bernlochner, FU Klose, V Lacker, HM Bard, DJ Dauncey, PD Tibbetts, M Behera, PK Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Arnaud, N Bequilleux, J D'Orazio, A Davier, M Derkach, D da Costa, JF Grosdidier, G Le Diberder, F Lepeltier, V Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK Di Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Hafner, A Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Henderson, SW Sciolla, G Spitznagel, M Yamamoto, RK Zhao, M Patel, PM Robertson, SH Schram, M Lazzaro, A Lombardo, V Palombo, F Stracka, S Bauer, JM Cremaldi, L Godang, R Kroeger, R Sonnek, P Summers, DJ Zhao, HW Simard, M Taras, P Nicholson, H De Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Briand, H Chauveau, J Hamon, O Leruste, P Marchiori, G Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Manoni, E Angelini, C Batignani, G Bettarini, S Calderini, G Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Li Gioi, L Mazzoni, MA Morganti, S Piredda, G Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S Esteve, L de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Allen, MT Bartoldus, R Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Burchat, PR Edwards, AJ Miyashita, TS Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Wray, BC Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K King, GJ Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Puccio, EMT Band, HR Chen, X Dasu, S Flood, KT Pan, Y Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Garra Tico, J. Grauges, E. Martinelli, M. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Battaglia, M. Brown, D. N. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Asgeirsson, D. J. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Randle-Conde, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Wang, L. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Soffer, A. Toki, W. H. Wilson, R. J. Feltresi, E. Hauke, A. Jasper, H. Karbach, T. M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Brandt, T. Kobel, M. J. Nogowski, R. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Fioravanti, E. Franchini, P. Luppi, E. Munerato, M. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Tosi, S. Chaisanguanthum, K. S. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Bernlochner, F. U. Klose, V. Lacker, H. M. Bard, D. J. Dauncey, P. D. Tibbetts, M. Behera, P. K. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. Derkach, D. da Costa, J. Firmino Grosdidier, G. Le Diberder, F. Lepeltier, V. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Hafner, A. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Henderson, S. W. Sciolla, G. Spitznagel, M. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Schram, M. Lazzaro, A. Lombardo, V. Palombo, F. Stracka, S. Bauer, J. M. Cremaldi, L. Godang, R. Kroeger, R. Sonnek, P. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Briand, H. Chauveau, J. Hamon, O. Leruste, Ph. Marchiori, G. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Calderini, G. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Li Gioi, L. Mazzoni, M. A. Morganti, S. Piredda, G. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Esteve, L. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Allen, M. T. Bartoldus, R. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Burchat, P. R. Edwards, A. J. Miyashita, T. S. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Wray, B. C. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. King, G. J. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Puccio, E. M. T. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. TI Measurement and interpretation of moments in inclusive semileptonic decays (B)over-bar -> Xcl(nu)over-bar SO PHYSICAL REVIEW D LA English DT Article ID MESON DECAYS; PERTURBATIVE CORRECTIONS; FORM-FACTORS; DISTRIBUTIONS; QCD; SYMMETRY; SPECTRA AB We present results for the moments of observed spectra in inclusive semileptonic B-meson decays to charm hadrons (B) over bar -> X(c)l(-)(nu) over bar. Moments of the hadronic-mass and the combined mass-and-energy spectra for different minimum electron or muon momenta between 0.8 and 1: 9 GeV/c are obtained from a sample of 232 X 10(6) Gamma(4S) -> B (B) over bar events, collected with the BABAR detector at the PEP-II asymmetric-energy B-meson factory at SLAC. We also present a reevaluation of the moments of electron-energy spectra and partial decay fractions B((B) over bar -> X(c)e(-)(nu) over bar) for minimum electron momenta between 0.6 and 1: 5 GeV/c based on a sample of 51 X 10(6) Gamma(4S) -> B (B) over bar events. The measurements are used for the extraction of the total decay fraction, the Cabibbo-Kobayashi-Maskawa (CKM) matrix element vertical bar V-cb vertical bar, the quark masses m(b) and m(c), and four heavy-quark QCD parameters in the framework of a Heavy-Quark Expansion (HQE). We find B((B) over bar -> X(c)l(-)(nu) over bar = (10.64 +/- 0.17 +/- 0.06)% and vertical bar V-cb vertical bar = (42.05 +/- 0.45 +/- 0.70) X 10(-3). C1 [Aubert, B.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, CNRS, IN2P3, LAPP, F-74941 Annecy Le Vieux, France. [Garra Tico, J.; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Martinelli, M.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Martinelli, M.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Battaglia, M.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Randle-Conde, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Brandt, T.; Kobel, M. J.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bernlochner, F. U.; Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Bard, D. J.; Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Wormser, G.] CNRS, IN2P3, Accelerateur Lineaire Lab, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Clarke, C. K.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.; Tuggle, J. M.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Salvati, E.; Saremi, S.; Yamamoto, R. K.; Strube, J.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Sciolla, G.; Spitznagel, M.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.; Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] NIKHEF, Natl Inst Nucl Phys & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Briand, H.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.; Calderini, G.] Univ Paris 07, Univ Paris 06, CNRS, Lab Phys Nucl & Hautes Energies,IN2P3, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Manoni, E.] INFN, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Li Gioi, L.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Esteve, L.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Allen, M. T.; Bartoldus, R.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] INFN, Sez Trieste, I-34127 Trieste, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Torino, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Aubert, B (reprint author), Univ Savoie, CNRS, IN2P3, LAPP, F-74941 Annecy Le Vieux, France. RI Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Stracka, Simone/M-3931-2015; Della Ricca, Giuseppe/B-6826-2013; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Patrignani, Claudia/C-5223-2009; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015 OI Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Stracka, Simone/0000-0003-0013-4714; Della Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Patrignani, Claudia/0000-0002-5882-1747; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400 FU US Department of Energy; National Science Foundation; Natural Sciences and Engineering Research Council (Canada); Commissariat a l'Energie Atomique; Institut National de Physique Nucleaire et de Physique des Particules (France); Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany); Istituto Nazionale di Fisica Nucleare (Italy); Foundation for Fundamental Research on Matter (The Netherlands); Research Council of Norway; Ministry of Education and Science of the Russian Federation, Ministerio de Educacion y Ciencia (Spain); Science and Technology Facilities Council (United Kingdom); Marie-Curie IEF program (European Union); A.P. Sloan Foundation FX We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France), the Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Educacion y Ciencia (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P. Sloan Foundation. NR 55 TC 24 Z9 24 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD FEB 1 PY 2010 VL 81 IS 3 AR 032003 DI 10.1103/PhysRevD.81.032003 PG 25 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 562QT UT WOS:000275069000011 ER PT J AU Barger, V McCaskey, M Shaughnessy, G AF Barger, Vernon McCaskey, Mathew Shaughnessy, Gabe TI Single top and Higgs associated production at the LHC SO PHYSICAL REVIEW D LA English DT Article ID INTERMEDIATE-MASS HIGGS; ELECTROWEAK SYMMETRY-BREAKING; STANDARD MODEL; QUARK PRODUCTION; RADIATIVE-CORRECTIONS; BOSON; PHYSICS; LEP; COLLISIONS; COUPLINGS AB We study the production of a standard model (SM) Higgs boson in association with a single top quark and either a light jet or W boson at the LHC with a center of mass energy of 14 TeV. Because of the destructive interference of the contributing SM diagrams, the value of the top Yukawa coupling and the sign of the WWh coupling may be probed for Higgs masses above 150 GeV, where WW and ZZ are the dominant Higgs decays. We consider Higgs masses of m(h) = 120, 150, 180, and 200 GeV and devise experimental cuts to extract the signal from SM backgrounds and measure the top Yukawa coupling. C1 [Barger, Vernon; McCaskey, Mathew] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Shaughnessy, Gabe] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Shaughnessy, Gabe] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. RP Barger, V (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. FU U.S. Department of Energy [DE-FG02- 95ER40896, DE-FG02-05ER41361, DE-FG02-08ER41531, DE-AC02-06CH11357]; Wisconsin Alumni Research Foundation; National Science Foundation [PHY-0503584] FX We thank Q.-H. Cao, I. Low, C. Wagner, and E. Berger for helpful discussions. This work was supported in part by the U.S. Department of Energy under Grant Nos. DE-FG02- 95ER40896, DE-FG02-05ER41361, DE-FG02-08ER41531, and Contract No. DE-AC02-06CH11357, by the Wisconsin Alumni Research Foundation, and by the National Science Foundation Grant No. PHY-0503584. NR 73 TC 23 Z9 23 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB 1 PY 2010 VL 81 IS 3 AR 034020 DI 10.1103/PhysRevD.81.034020 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 562QT UT WOS:000275069000041 ER PT J AU Barnes, T Li, XG Roberts, W AF Barnes, T. Li, Xiaoguang Roberts, W. TI Meson emission model of Psi -> N(N)over-barm charmonium strong decays SO PHYSICAL REVIEW D LA English DT Article ID EXCHANGE-POTENTIAL APPROACH; BARYON-BARYON SCATTERING; QUARK-MODEL; NUCLEAR-PHYSICS; FORM-FACTORS; CHROMODYNAMICS; QCD AB In this paper we consider a sequential "meson emission'' mechanism for charmonium decays of the type Psi -> N (N) over barm, where Psi is a generic charmonium state, N is a nucleon, and m is a light meson. This decay mechanism, which may not be dominant in general, assumes that an N (N) over bar pair is created during charmonium annihilation, and the light meson m is emitted from the outgoing nucleon or antinucleon line. A straightforward generalization of this model can incorporate intermediate N* resonances. We derive Dalitz plot event densities for the cases Psi = eta(c), J/psi, chi(c0), psi(c1), and psi'; and m = pi(0), f(0), and omega (and implicitly, any 0(-+), 0(++), or 1(--) final light meson). It may be possible to separate the contribution of this decay mechanism to the full decay amplitude through characteristic event densities. For the decay subset Psi -> p (p) over bar pi(0) the two model parameters are known, so we are able to predict absolute numerical partial widths for Gamma(Psi -> p (p) over bar pi(0)). In the specific case J/psi -> p (p) over bar pi(0) the predicted partial width and M(p pi) event distribution are intriguingly close to experiment. We also consider the possibility of scalar meson and glueball searches in Psi -> p (p) over barf(0). If the meson emission contributions to Psi -> N (N) over barm decays can be isolated and quantified, they can be used to estimate meson-nucleon strong couplings {g(NNm)}, which are typically poorly known, and are a crucial input in meson exchange models of the NN interaction. The determination of g(NN pi) from J/psi -> p (p) over bar pi(0) and the (poorly known) g(NN omega) and the anomalous "strong magnetic'' coupling kappa(NN omega) from J/psi -> p (p) over bar omega are considered as examples. C1 [Barnes, T.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Barnes, T.; Li, Xiaoguang] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Roberts, W.] Florida State Univ, Dept Phys & Astron, Tallahassee, FL 32306 USA. RP Barnes, T (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. EM tbarnes@utk.edu; xli22@utk.edu; wroberts@fsu.edu RI Li, Xiaoguang/F-5135-2010 FU Department of Physics and Astronomy of the University of Tennessee; Physics Division of Oak Ridge National Laboratory; Department of Physics; College of Arts and Sciences; Office of Research at Florida State University; Office of Nuclear Physics, U.S. Department of Energy FX We are happy to acknowledge useful communications with R. Mitchell, K. Seth, M. Shepherd, E. S. Swanson, and B. S. Zou regarding this research, and Shu-Min Li and Xiao-Yan Shen in particular for contributing the BES data used in preparing Fig. 3. We also gratefully acknowledge the support of the Department of Physics and Astronomy of the University of Tennessee, the Physics Division of Oak Ridge National Laboratory, and the Department of Physics, the College of Arts and Sciences, and the Office of Research at Florida State University. This research was sponsored in part by the Office of Nuclear Physics, U.S. Department of Energy. NR 37 TC 7 Z9 7 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD FEB 1 PY 2010 VL 81 IS 3 AR 034025 DI 10.1103/PhysRevD.81.034025 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 562QT UT WOS:000275069000046 ER PT J AU Berger, EL Cao, QH AF Berger, Edmond L. Cao, Qing-Hong TI Next-to-leading order cross sections for new heavy fermion production at hadron colliders SO PHYSICAL REVIEW D LA English DT Article ID QUARK PRODUCTION; PARTON DISTRIBUTIONS; QCD CORRECTIONS; COLLISIONS; LHC; PHYSICS; MODEL AB We evaluate the cross sections for new heavy fermion production at three Large Hadron Collider energies accurate to next-to-leading order in perturbative quantum chromodynamics. We treat the cases of pair production of heavy quarks via strong interactions, single heavy quark production via electroweak interactions, and the production of heavy leptons. Theoretical uncertainties associated with the choice of the renormalization scale and the parton distribution functions are specified. We derive a simple and useful parametrization of our results which should facilitate phenomenological studies of new physics models that predict new heavy quarks and/or leptons. C1 [Berger, Edmond L.; Cao, Qing-Hong] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cao, Qing-Hong] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. RP Berger, EL (reprint author), Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. EM berger@anl.gov; caoq@hep.anl.gov NR 42 TC 19 Z9 19 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD FEB 1 PY 2010 VL 81 IS 3 AR 035006 DI 10.1103/PhysRevD.81.035006 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 562QT UT WOS:000275069000067 ER PT J AU Buchmueller, O Cavanaugh, R De Roeck, A Ellis, JR Flacher, H Heinemeyer, S Isidori, G Olive, KA Ronga, FJ Weiglein, G AF Buchmueller, O. Cavanaugh, R. De Roeck, A. Ellis, J. R. Flaecher, H. Heinemeyer, S. Isidori, G. Olive, Keith A. Ronga, F. J. Weiglein, G. TI Predictions for mt and MW in minimal supersymmetric models SO PHYSICAL REVIEW D LA English DT Article ID EVEN HIGGS BOSONS; STANDARD MODEL; RELIC DENSITY; DARK-MATTER; MSSM; PROGRAM; PHYSICS; SEARCH; MICROMEGAS; MASSES AB Using a frequentist analysis of experimental constraints within two versions of the minimal super-symmetric extension of the standard model, we derive the predictions for the top quark mass, m(t), and the W boson mass, M(W). We find that the supersymmetric predictions for both m(t) and M(W), obtained by incorporating all the relevant experimental information and state-of-the-art theoretical predictions, are highly compatible with the experimental values with small remaining uncertainties, yielding an improvement compared to the case of the standard model. C1 [Buchmueller, O.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, High Energy Phys Grp, London SW7 2AZ, England. [Cavanaugh, R.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Cavanaugh, R.] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [De Roeck, A.; Ellis, J. R.] CERN, CH-1211 Geneva 23, Switzerland. [De Roeck, A.] Univ Antwerp, B-2610 Antwerp, Belgium. [Flaecher, H.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Heinemeyer, S.] UC, Inst Fis Cantabria, CSIC, E-39005 Santander, Spain. [Isidori, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Isidori, G.] Tech Univ Munich, Inst Adv Study, D-80333 Munich, Germany. [Olive, Keith A.] Univ Minnesota, William I Fine Theoret Phys Inst, Minneapolis, MN 55455 USA. [Ronga, F. J.] ETH, Inst Particle Phys, CH-8093 Zurich, Switzerland. [Weiglein, G.] DESY, D-22603 Hamburg, Germany. RP Buchmueller, O (reprint author), Univ London Imperial Coll Sci Technol & Med, Blackett Lab, High Energy Phys Grp, Prince Consort Rd, London SW7 2AZ, England. OI Olive, Keith/0000-0001-7201-5998 FU European Community [MRTN-CT-2006-035505, MRTN-CT-2006-035482]; Spanish MEC; FEDER [FPA2005-01678]; CICYT [FPA 2007-66387]; DOE [DE-FG02-94ER-40823] FX This work was supported in part by the European Community's Marie-Curie Research Training Network under Contracts No. MRTN-CT-2006-035505 "Tools and Precision Calculations for Physics Discoveries at Colliders'' and No. MRTN-CT-2006-035482 "FLAVIAnet'', and by the Spanish MEC and FEDER under Grant No. FPA2005-01678. The work of S. H. was supported in part by CICYT ( Grant No. FPA 2007-66387), and the work of K.A.O. was supported in part by DOE Grant No. DE-FG02-94ER-40823 at the University of Minnesota. NR 40 TC 17 Z9 17 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD FEB 1 PY 2010 VL 81 IS 3 AR 035009 DI 10.1103/PhysRevD.81.035009 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 562QT UT WOS:000275069000070 ER PT J AU Burch, T DeTar, C Di Pierro, M El-Khadra, AX Freeland, ED Gottlieb, S Kronfeld, AS Levkova, L Mackenzie, PB Simone, JN AF Burch, T. DeTar, C. Di Pierro, M. El-Khadra, A. X. Freeland, E. D. Gottlieb, Steven Kronfeld, A. S. Levkova, L. Mackenzie, P. B. Simone, J. N. CA Fermilab Lattice MILC Collaboratio TI Quarkonium mass splittings in three-flavor lattice QCD SO PHYSICAL REVIEW D LA English DT Article ID YANG-MILLS THEORY; QUANTUM CHROMODYNAMICS; GAUGE-THEORIES; FIELD-THEORIES; BOUND-STATES; CHARMONIUM; FERMIONS; SYSTEMS; PHYSICS; FORCES AB We report on calculations of the charmonium and bottomonium spectrum in lattice QCD. We use ensembles of gauge fields with three flavors of sea quarks, simulated with the asqtad improved action for staggered fermions. For the heavy quarks we employ the Fermilab interpretation of the clover action for Wilson fermions. These calculations provide a test of lattice QCD, including the theory of discretization errors for heavy quarks. We provide, therefore, a careful discussion of the results in light of the heavy-quark effective Lagrangian. By and large, we find that the computed results are in agreement with experiment, once parametric and discretization errors are taken into account. C1 [Burch, T.; DeTar, C.; Levkova, L.] Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA. [Di Pierro, M.] Depaul Univ, Sch Comp, Chicago, IL 60604 USA. [El-Khadra, A. X.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Freeland, E. D.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Gottlieb, Steven] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Gottlieb, Steven] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA. [Kronfeld, A. S.; Mackenzie, P. B.; Simone, J. N.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Burch, T (reprint author), Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA. OI Simone, James/0000-0001-8515-3337 FU Office of Science of the U.S. Department of Energy [DE-FC02-06ER41446, DE-FG02-91ER40661, DE-FG02-91ER40677, DE-FG02-91ER40628, DE-AC02-07CH11359]; National Science Foundation [PHY-0555243, PHY-0757333, PHY-0703296, PHY-0555235]; American Physical Society FX Computations for this work were carried out on facilities of the USQCD Collaboration, which are funded by the Office of Science of the U.S. Department of Energy. This work was supported in part by the U.S. Department of Energy under Grants No. DE-FC02-06ER41446 ( T. B., C. D., L. L.), No. DE-FG02-91ER40661 ( S. G.), No. DE-FG02-91ER40677 ( A. X. K.), No. DE- FG02-91ER40628 ( E. D. F.); by the National Science Foundation under Grants No. PHY-0555243, No. PHY-0757333, No. PHY-0703296 ( T. B., C. D., L. L.), and No. PHY-0555235 ( E. D. F.); and with support from American Physical Society ( E. D. F.). Fermilab is operated by Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the U. S. Department of Energy. NR 83 TC 50 Z9 50 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB 1 PY 2010 VL 81 IS 3 AR 034508 DI 10.1103/PhysRevD.81.034508 PG 21 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 562QT UT WOS:000275069000060 ER PT J AU Freytsis, M Ligeti, Z Thaler, J AF Freytsis, Marat Ligeti, Zoltan Thaler, Jesse TI Constraining the axion portal with B -> Kl(+)l(-) SO PHYSICAL REVIEW D LA English DT Article ID HIGGS-BOSON COUPLINGS; CP INVARIANCE AB We investigate the bounds on axionlike states from flavor-changing neutral current b -> s decays, assuming the axion couples to the standard model through mixing with the Higgs sector. Such GeV-scale axions have received renewed attention in connection with observed cosmic ray excesses. We find that existing B -> Kl(+)l(-) data impose stringent bounds on the axion decay constant in the multi-TeV range, relevant for constraining the "axion portal'' model of dark matter. Such bounds also constrain light Higgs scenarios in the next-to-minimal supersymmetric standard model. These bounds can be improved by dedicated searches in B-factory data and at LHCb. C1 [Freytsis, Marat; Thaler, Jesse] Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Dept Phys, Berkeley, CA 94720 USA. [Freytsis, Marat; Ligeti, Zoltan; Thaler, Jesse] Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. RP Freytsis, M (reprint author), Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Dept Phys, Berkeley, CA 94720 USA. OI Freytsis, Marat/0000-0002-6427-2895; Thaler, Jesse/0000-0002-2406-8160 FU Office of Science, Office of High Energy Physics of the U.S. Department of Energy [DE-AC02-05CH11231] FX This paper was inspired by a talk by Maxim Pospelov at the SLAC Dark Forces workshop in September 2009. We thank Lawrence Hall and Mark Wise for helpful conversations, and we apologize for making them (temporarily) worried about the correctness of their result. We benefitted from the advice of Mariangela Lisanti, Yasunori Nomura, and Jay Wacker. This work was supported in part by the Director, Office of Science, Office of High Energy Physics of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 46 TC 28 Z9 29 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD FEB 1 PY 2010 VL 81 IS 3 AR 034001 DI 10.1103/PhysRevD.81.034001 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 562QT UT WOS:000275069000022 ER PT J AU Gao, JH Xiao, BW AF Gao, Jian-Hua Xiao, Bo-Wen TI Nonforward Compton scattering in AdS/CFT correspondence SO PHYSICAL REVIEW D LA English DT Article ID GENERALIZED PARTON DISTRIBUTIONS; 4-POINT FUNCTIONS; HERA; LIMIT; QCD AB We study the nonforward Compton scattering, in particular, the deeply virtual Compton scattering from AdS/CFT. We first calculate the contributions from the s-channel and u-channel supergravity diagrams as well as the four-point interaction diagram which correspond to the Compton scatterings on a dilaton target in CFT. Furthermore, we study the Compton scattering on a dilatino target. Assuming that protons can be identified as supergravity modes of the dilatino, we compare the calculated deeply virtual Compton scattering cross section to the low-energy experimental data from the H1 and ZEUS collaborations and find good agreement. We also discuss the t-channel graviton exchange contribution and show that it should be dominant in the high-energy limit. C1 [Gao, Jian-Hua] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. [Xiao, Bo-Wen] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Gao, JH (reprint author), Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. EM gaojh79@ustc.edu.cn; bxiao@lbl.gov RI Gao, Jianhua/O-9550-2014 FU China Postdoctoral Science Foundation [20090460736]; Office of Energy Research, Office of High Energy and Nuclear Physics, Divisions of Nuclear Physics, of the U.S. Department of Energy under [DE-AC02-05CH11231] FX We acknowledge inspiring discussions with E. Iancu, Y. Hatta, C. Marquet, A. H. Mueller, and F. Yuan. J.G. acknowledges financial support by the China Postdoctoral Science Foundation funded project under Contract No. 20090460736. B. X. is supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Divisions of Nuclear Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 50 TC 11 Z9 11 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD FEB 1 PY 2010 VL 81 IS 3 AR 035008 DI 10.1103/PhysRevD.81.035008 PG 18 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 562QT UT WOS:000275069000069 ER PT J AU Heim, S Cao, QH Schwienhorst, R Yuan, CP AF Heim, Sarah Cao, Qing-Hong Schwienhorst, Reinhard Yuan, C. -P. TI Next-to-leading order QCD corrections to s-channel single top quark production and decay at the LHC SO PHYSICAL REVIEW D LA English DT Article ID JET CROSS-SECTIONS; FERMILAB TEVATRON; HADRON COLLIDERS; PAIR PRODUCTION; CERN LHC; COUPLINGS; SEARCH; PROSPECTS AB We present a study of electroweak production of top and antitop quarks in the s-channel mode at the LHC, including next-to-leading order QCD corrections to the production and decay of the single (anti) top quark. The spin is preserved in production and decay by using the narrow width approximation for the (anti)top quark. We show the effect of different O(alpha(s)) contributions on the inclusive cross section and various kinematic distributions at parton level after imposing relevant kinematic cuts to select s-channel single top quark events. We also discuss several possibilities for measuring the top quark polarization. C1 [Heim, Sarah; Schwienhorst, Reinhard; Yuan, C. -P.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Cao, Qing-Hong] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cao, Qing-Hong] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. RP Heim, S (reprint author), Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. EM heimsara@msu.edu; caoq@hep.anl.gov; schwier@pa.msu.edu; yuan@pa.msu.edu FU U.S. National Science Foundation [PHY-0757741, PHY-0555545, PHY-0855561]; University of Chicago Joint Theory Institute (JTI) [03921-07-137]; U.S. Department of Energy [DE-AC0206CH11357, DE-FG02-90ER40560] FX S. H. and R. S. are supported in part by the U.S. National Science Foundation under Grant No. PHY-0757741. Q. H. C. is supported in part by the Argonne National Laboratory and University of Chicago Joint Theory Institute (JTI) Grant No. 03921-07-137, and by the U.S. Department of Energy under Grants No. DE-AC0206CH11357 and No. DE-FG02-90ER40560. C. P. Y. acknowledges the support of the U.S. National Science Foundation under Grants No. PHY-0555545 and No. PHY-0855561. C. P. Y. would also like to acknowledge the hospitality of the National Center for Theoretical Sciences in Taiwan and Center for High Energy Physics, Peking University, in China, where part of this work was done. NR 68 TC 25 Z9 25 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB 1 PY 2010 VL 81 IS 3 AR 034005 DI 10.1103/PhysRevD.81.034005 PG 21 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 562QT UT WOS:000275069000026 ER PT J AU Kurimoto, Y Alcaraz-Aunion, JL Brice, SJ Bugel, L Catala-Perez, J Cheng, G Conrad, JM Djurcic, Z Dore, U Finley, DA Franke, AJ Giganti, C Gomez-Cadenas, JJ Guzowski, P Hanson, A Hayato, Y Hiraide, K Jover-Manas, G Karagiorgi, G Katori, T Kobayashi, YK Kobilarcik, T Kubo, H Louis, WC Loverre, PF Ludovici, L Mahn, KBM Mariani, C Masuike, S Matsuoka, K McGary, VT Metcalf, W Mills, GB Mitsuka, G Miyachi, Y Mizugashira, S Moore, CD Nakajima, Y Nakaya, T Napora, R Nienaber, P Orme, D Otani, M Russell, AD Sanchez, F Shaevitz, MH Shibata, TA Sorel, M Stefanski, RJ Takei, H Tanaka, HK Tanaka, M Tayloe, R Taylor, IJ Tesarek, RJ Uchida, Y Van de Water, R Walding, JJ Wascko, MO White, HB Wilking, MJ Yokoyama, M Zeller, GP Zimmerman, ED AF Kurimoto, Y. Alcaraz-Aunion, J. L. Brice, S. J. Bugel, L. Catala-Perez, J. Cheng, G. Conrad, J. M. Djurcic, Z. Dore, U. Finley, D. A. Franke, A. J. Giganti, C. Gomez-Cadenas, J. J. Guzowski, P. Hanson, A. Hayato, Y. Hiraide, K. Jover-Manas, G. Karagiorgi, G. Katori, T. Kobayashi, Y. K. Kobilarcik, T. Kubo, H. Louis, W. C. Loverre, P. F. Ludovici, L. Mahn, K. B. M. Mariani, C. Masuike, S. Matsuoka, K. McGary, V. T. Metcalf, W. Mills, G. B. Mitsuka, G. Miyachi, Y. Mizugashira, S. Moore, C. D. Nakajima, Y. Nakaya, T. Napora, R. Nienaber, P. Orme, D. Otani, M. Russell, A. D. Sanchez, F. Shaevitz, M. H. Shibata, T. -A. Sorel, M. Stefanski, R. J. Takei, H. Tanaka, H. -K. Tanaka, M. Tayloe, R. Taylor, I. J. Tesarek, R. J. Uchida, Y. Van de Water, R. Walding, J. J. Wascko, M. O. White, H. B. Wilking, M. J. Yokoyama, M. Zeller, G. P. Zimmerman, E. D. CA SciBooNE Collaboration TI Measurement of inclusive neutral current pi(0) production on carbon in a few-GeV neutrino beam SO PHYSICAL REVIEW D LA English DT Article ID SINGLE-PION-PRODUCTION; K2K SCIBAR DETECTOR; SIMULATION; SCIBOONE; SEARCH AB The SciBooNE Collaboration reports inclusive neutral current neutral pion production by a muon neutrino beam on a polystyrene target (C8H8). We obtain (7.7 +/- 0.5(stat) +/- 0.5(sys)) X 10(-2) as the ratio of the neutral current neutral pion production to total charged current cross section; the mean energy of neutrinos producing detected neutral pions is 1.1 GeV. The result agrees with the Rein-Sehgal model implemented in our neutrino interaction simulation program with nuclear effects. The spectrum shape of the pi(0) momentum and angle agree with the model. We also measure the ratio of the neutral current coherent pion production to total charged current cross section to be (0.7 +/- 0.4) X 10(-2). C1 [Kurimoto, Y.; Hiraide, K.; Kubo, H.; Matsuoka, K.; Nakajima, Y.; Nakaya, T.; Orme, D.; Otani, M.; Yokoyama, M.] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan. [Alcaraz-Aunion, J. L.; Jover-Manas, G.; Sanchez, F.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Wilking, M. J.; Zimmerman, E. D.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Cheng, G.; Djurcic, Z.; Franke, A. J.; Mahn, K. B. M.; Mariani, C.; Shaevitz, M. H.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Brice, S. J.; Finley, D. A.; Kobilarcik, T.; Moore, C. D.; Russell, A. D.; Stefanski, R. J.; Tesarek, R. J.; White, H. B.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Tanaka, M.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. [Guzowski, P.; Taylor, I. J.; Uchida, Y.; Walding, J. J.; Wascko, M. O.] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England. [Hanson, A.; Katori, T.; Tayloe, R.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Hayato, Y.] Univ Tokyo, Inst Cosm Ray Res, Kamioka Observ, Gifu 5061205, Japan. [Mitsuka, G.] Univ Tokyo, Inst Cosm Ray Res, Res Ctr Cosm Neutrinos, Chiba 2778582, Japan. [Louis, W. C.; Mills, G. B.; Van de Water, R.; Zeller, G. P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Metcalf, W.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Bugel, L.; Conrad, J. M.; Karagiorgi, G.; McGary, V. T.; Tanaka, H. -K.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Napora, R.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Dore, U.; Giganti, C.; Loverre, P. F.; Ludovici, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Dore, U.; Giganti, C.; Loverre, P. F.; Ludovici, L.] Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Nienaber, P.] St Marys Univ Minnesota, Dept Phys, Winona, MN 55987 USA. [Kobayashi, Y. K.; Masuike, S.; Miyachi, Y.; Mizugashira, S.; Shibata, T. -A.; Takei, H.] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. [Catala-Perez, J.; Gomez-Cadenas, J. J.; Sorel, M.] Univ Valencia, Inst Fis Corpuscular, E-46071 Valencia, Spain. [Catala-Perez, J.; Gomez-Cadenas, J. J.; Sorel, M.] CSIC, E-46071 Valencia, Spain. RP Kurimoto, Y (reprint author), Kyoto Univ, Dept Phys, Kyoto 6068502, Japan. RI Mariani, Camillo/J-6070-2015; Hiraide, Katsuki/A-4479-2011; Sanchez, Federico/F-5809-2012; Yokoyama, Masashi/A-4458-2011; Ludovici, Lucio/F-5917-2011; Gomez Cadenas, Juan Jose/L-2003-2014; OI Mariani, Camillo/0000-0003-3284-4681; Sanchez, Federico/0000-0003-0320-3623; Wascko, Morgan/0000-0002-8348-4447; Yokoyama, Masashi/0000-0003-2742-0251; Ludovici, Lucio/0000-0003-1970-9960; Gomez Cadenas, Juan Jose/0000-0002-8224-7714; Van de Water, Richard/0000-0002-1573-327X FU MEXT (Japan) [A 19204026, S 20674004, B 18740145]; JSPS (Japan) [A 19204026, S 20674004, B 18740145]; INFN (Italy); Ministry of Science and Innovation (Spain); CSIC (Spain); STFC (UK); DOE (USA); NSF (USA); Japan/U.S. Cooperation Program in the field of High Energy Physics; NSF FX We acknowledge the Physics Department at Chonnam National University, Dongshin University, and Seoul National University for the loan of parts used in SciBar and the help in the assembly of SciBar. We wish to thank the Physics Departments at the University of Rochester and Kansas State University for the loan of Hamamatsu PMTs used in the MRD. We gratefully acknowledge support from Fermilab as well as various grants and contracts from the MEXT and JSPS (Japan), the INFN (Italy), the Ministry of Science and Innovation and CSIC (Spain), the STFC (UK), and the DOE and NSF (USA). This work was supported by MEXT and JSPS with the Grant-in-Aid for Scientific Research under Grant No. A 19204026, Young Scientists Grant No. S 20674004, Young Scientists Grant No. B 18740145, Scientific Research on Priority Areas "New Developments of Flavor Physics'', and the global COE program "The Next Generation of Physics, Spun from Universality and Emergence.'' The project was supported by the Japan/U.S. Cooperation Program in the field of High Energy Physics and by JSPS and NSF under Contract No. under the Japan-U.S. Cooperative Science Program. NR 43 TC 25 Z9 25 U1 2 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD FEB 1 PY 2010 VL 81 IS 3 AR 033004 DI 10.1103/PhysRevD.81.033004 PG 18 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 562QT UT WOS:000275069000015 ER PT J AU Laiho, J Lunghi, E Van de Water, RS AF Laiho, Jack Lunghi, E. Van de Water, Ruth S. TI Lattice QCD inputs to the CKM unitarity triangle analysis SO PHYSICAL REVIEW D LA English DT Article ID TO-LEADING ORDER; CP-VIOLATION; CHIRAL FERMIONS; FORM-FACTORS; DECAYS; PHYSICS; LOGARITHMS; HEAVY; RENORMALIZATION; DIFFERENCE AB We perform a global fit to the Cabibbo-Kobayashi-Maskawa unitarity triangle using the latest experimental and theoretical constraints. Our emphasis is on the hadronic weak matrix elements that enter the analysis, which must be computed using lattice QCD or other nonperturbative methods. Realistic lattice QCD calculations which include the effects of the dynamical up, down, and strange quarks are now available for all of the standard inputs to the global fit. We therefore present lattice averages for all of the necessary hadronic weak matrix elements. We attempt to account for correlations between lattice QCD results in a reasonable but conservative manner: whenever there are reasons to believe that an error is correlated between two lattice calculations, we take the degree of correlation to be 100%. These averages are suitable for use as inputs both in the global Cabibbo-Kobayashi-Maskawa unitarity triangle fit and other phenomenological analyses. In order to illustrate the impact of the lattice averages, we make standard model predictions for the parameters (B) over cap (K), |V(cb)|, and |V(ub)|/|V(cb)|. We find a (2-3) sigma tension in the unitarity triangle, depending upon whether we use the inclusive or exclusive determination of |V(cb)|. If we interpret the tension as a sign of new physics in either neutral kaon or B mixing, we find that the scenario with new physics in kaon mixing is preferred by present data. C1 [Laiho, Jack] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Laiho, Jack] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. [Lunghi, E.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Van de Water, Ruth S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Laiho, J (reprint author), Washington Univ, Dept Phys, St Louis, MO 63130 USA. EM jlaiho@fnal.gov; elunghi@indiana.edu; ruthv@bnl.gov NR 78 TC 167 Z9 167 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD FEB 1 PY 2010 VL 81 IS 3 AR 034503 DI 10.1103/PhysRevD.81.034503 PG 16 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 562QT UT WOS:000275069000055 ER PT J AU Martin, SP AF Martin, Stephen P. TI Extra vectorlike matter and the lightest Higgs scalar boson mass in low-energy supersymmetry SO PHYSICAL REVIEW D LA English DT Article ID PRECISION ELECTROWEAK EXPERIMENTS; RENORMALIZATION-GROUP EQUATIONS; SOFTLY BROKEN SUPERSYMMETRY; BETA-FUNCTION; RADIATIVE-CORRECTIONS; TECHNICOLOR THEORIES; 4TH GENERATION; HEAVY PHYSICS; PARTICLES; BREAKING AB The lightest Higgs scalar boson mass in supersymmetry can be raised significantly by extra vectorlike quark and lepton supermultiplets with large Yukawa couplings but dominantly electroweak-singlet masses. I consider models of this type that maintain perturbative gauge coupling unification. The impact of the new particles on precision electroweak observables is found to be moderate, with the fit to Z-pole data as good or better than that of the standard model even if the new Yukawa couplings are as large as their fixed-point values and the extra vectorlike quark masses are as light as 400 GeV. I study the size of corrections to the lightest Higgs boson mass, taking into account the fixed-point behavior of the scalar trilinear couplings. I also discuss the decay branching ratios of the lightest new quarks and leptons and general features of the resulting collider signatures. C1 [Martin, Stephen P.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Martin, Stephen P.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Martin, SP (reprint author), No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. NR 101 TC 140 Z9 140 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD FEB 1 PY 2010 VL 81 IS 3 AR 035004 DI 10.1103/PhysRevD.81.035004 PG 26 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 562QT UT WOS:000275069000065 ER PT J AU Gotoda, H Miyano, T Shepherd, IG AF Gotoda, Hiroshi Miyano, Takaya Shepherd, Ian G. TI Dynamic properties of unstable motion of swirling premixed flames generated by a change in gravitational orientation SO PHYSICAL REVIEW E LA English DT Article ID TIME-SERIES ANALYSIS; DETERMINISTIC CHAOS; STRANGE ATTRACTORS; SURROGATE DATA; BEHAVIOR; LAMINAR; FLOW; STABILIZATION; NONLINEARITY; TRANSITION AB The dynamic behavior of swirling premixed flames generated by the effect of the gravitational orientation has been experimentally and numerically investigated. When the gravitational direction relative to the flame front is changed, i.e., in inverted gravity (-1G), an unstable flame is formed in a limited domain of equivalence ratio and swirl number. The time history of flame front fluctuation shows that high-energy chaotic motion is superimposed on a periodic oscillation generated by unstable vortex motion in the combustion products. This results in the dynamic motion of the unstable flame becoming deterministically chaotic. This is clearly demonstrated by sophisticated nonlinear time series analysis, which has not been widely applied to the investigation of combustion phenomena. C1 [Gotoda, Hiroshi] Ritsumeikan Univ, Dept Mech Engn, Shiga 5258577, Japan. [Miyano, Takaya] Ritsumeikan Univ, Dept Micro Syst Technol, Shiga 5258577, Japan. [Shepherd, Ian G.] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Adv Technol Dept, Combust Grp, Berkeley, CA 94720 USA. RP Gotoda, H (reprint author), Ritsumeikan Univ, Dept Mech Engn, 1-1-1 Noji Higashi, Shiga 5258577, Japan. EM gotoda@se.ritsumei.ac.jp; tmiyano@se.ritsumei.ac.jp FU Mazda Foundation; Kurata Hitachi Science Technology Foundation; CASIO Science Foundation; Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT); NASA Microgravity Program through the U.S. Department of Energy [DE-AC02-05CH11231] FX Two of the authors (H.G. and T.M.) were supported by a Research Grant from the Mazda Foundation, Research Grant from Kurata Hitachi Science Technology Foundation, CASIO Science Foundation, and a Grant-in-Aid for Young Scientists (B) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT). The work was also supported (I.G.S.) by the NASA Microgravity Program through the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and monitored by Paul Greenberg. The authors are very grateful to Hiroyuki Yada and Yu Hashiba (Ritsumeikan University) for their assistance in conducting the experiments, and to Youske Nagai (Photron Co) for helping us to use the high-speed video camera (Photron 1024 PCI) employed in this study. NR 33 TC 18 Z9 18 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD FEB PY 2010 VL 81 IS 2 AR 026211 DI 10.1103/PhysRevE.81.026211 PN 2 PG 10 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 562LZ UT WOS:000275053800026 PM 20365642 ER PT J AU Krishnan, V Strzalka, J Liu, J Liu, CA Kuzmenko, I Gog, T Blasie, JK AF Krishnan, Venkata Strzalka, Joseph Liu, Jing Liu, Chian Kuzmenko, Ivan Gog, Thomas Blasie, J. Kent TI Interferometric enhancement of x-ray reflectivity from unperturbed Langmuir monolayers of amphiphiles at the liquid-gas interface SO PHYSICAL REVIEW E LA English DT Article ID PROFILE STRUCTURES; BIOMOLECULAR MATERIALS; BLODGETT MONOLAYERS; DOCOSANOIC ACID; CYTOCHROME-C; CHROMOPHORES; HOLOGRAPHY; PROTEIN; FILMS AB Langmuir monolayers provide an important system for the investigation of the intramolecular structure and intermolecular ordering of organic and bio-organic macromolecular amphiphiles at an interface between polar and nonpolar media, e.g., the liquid-gas interface. Specular x-ray and neutron reflectivity have contributed substantially to these investigations. However, these reflectivity techniques are generally limited by the absence of crucial phase information, the relatively small contribution of the amphiphile to the scattering-length density contrast across the interface, and the relatively limited range of momentum transfer available perpendicular to the interface. Although several procedures have been developed to provide model-independent solutions to the phase problem, there remains a limited ability to distinguish features of slightly differing contrast (i.e., the "sensitivity") as well as their minimum allowable separation (i.e., the "spatial resolution") along the length of the scattering-length density profile derived from the reflectivity data via solution to the phase problem. Here, we demonstrate how the well-known interferometric approach can be extended to the structural investigation of otherwise unperturbed Langmuir monolayers of these amphiphiles to provide a direct solution to the phase problem and importantly, substantially enhance both the sensitivity and the spatial resolution in the derived profiles. C1 [Krishnan, Venkata; Strzalka, Joseph; Liu, Jing; Blasie, J. Kent] Univ Penn, Dept Chem, Philadelphia, PA 19104 USA. [Strzalka, Joseph; Liu, Chian; Kuzmenko, Ivan; Gog, Thomas] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Krishnan, V (reprint author), Univ Penn, Dept Chem, Philadelphia, PA 19104 USA. RI Krishnan, Venkata/H-4584-2011 OI Krishnan, Venkata/0000-0002-4453-0914 FU Department of Energy Biomolecular Materials Program [DE-FG02-04ER46156]; National Science Foundation [DMR-0425780]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC0206CH11357] FX This work was supported primarily by a grant from Department of Energy Biomolecular Materials Program No. DE-FG02-04ER46156 (V.K. and J.K.B.). Partial support was provided by National Science Foundation NSEC Program No. DMR-0425780 (J.S.). We thank W. Pennie for fabricating the stationary barrier and wafer holders used for the experiments. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC0206CH11357. NR 28 TC 9 Z9 9 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD FEB PY 2010 VL 81 IS 2 AR 021604 DI 10.1103/PhysRevE.81.021604 PN 1 PG 10 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 562LY UT WOS:000275053700060 PM 20365571 ER PT J AU Pollmann, F Mukerjee, S Green, AG Moore, JE AF Pollmann, Frank Mukerjee, Subroto Green, Andrew G. Moore, Joel E. TI Dynamics after a sweep through a quantum critical point SO PHYSICAL REVIEW E LA English DT Article AB The coherent quantum evolution of a one-dimensional many-particle system after slowly sweeping the Hamiltonian through a critical point is studied using a generalized quantum Ising model containing both integrable and nonintegrable regimes. It is known from previous work that universal power laws of the sweep rate appear in such quantities as the mean number of excitations created by the sweep. Several other phenomena are found that are not reflected by such averages: there are two different scaling behaviors of the entanglement entropy and a relaxation that is power law in time rather than exponential. The final state of evolution after the quench is not characterized by any effective temperature, and the Loschmidt echo converges algebraically for long times, with cusplike singularities in the integrable case that are dynamically broadened by nonintegrable perturbations. C1 [Pollmann, Frank; Mukerjee, Subroto; Moore, Joel E.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Mukerjee, Subroto; Moore, Joel E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Mukerjee, Subroto] Indian Inst Sci, Dept Phys, Bangalore 560012, Karnataka, India. [Green, Andrew G.] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. RP Pollmann, F (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Pollmann, Frank/L-5378-2013; Moore, Joel/O-4959-2016 OI Moore, Joel/0000-0002-4294-5761 FU DARPA OLE; DOE; Royal Society; NSF [DMR-0804413] FX The authors acknowledge conversations with A. Polkovnikov and H. Saleur and support from DARPA OLE (F.P.), DOE (S.M.), the Miller Institute, and the Royal Society (A.G.G.), and NSF Grant No. DMR-0804413 (J.E.M.). NR 27 TC 45 Z9 45 U1 2 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD FEB PY 2010 VL 81 IS 2 AR 020101 DI 10.1103/PhysRevE.81.020101 PN 1 PG 4 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 562LY UT WOS:000275053700001 PM 20365512 ER PT J AU Ciovati, G Myneni, G Stevie, F Maheshwari, P Griffis, D AF Ciovati, G. Myneni, G. Stevie, F. Maheshwari, P. Griffis, D. TI High field Q slope and the baking effect: Review of recent experimental results and new data on Nb heat treatments SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID HYDROGEN CHEMISORPTION; NIOBIUM; CAVITIES; SUPERCONDUCTIVITY; ABSORPTION; OXIDATION; SURFACES; KINETICS; METALS AB The performance of superconducting radio-frequency (SRF) cavities made of bulk Nb at high fields (peak surface magnetic field greater than about 90 mT) is characterized by exponentially increasing rf losses (high-field Q slope), in the absence of field emission, which are often mitigated by low-temperature (100-140 degrees C, 12-48 h) baking. In this contribution, recent experimental results and phenomenological models to explain this effect will be briefly reviewed. New experimental results on the high-field Q slope will be presented for cavities that had been heat treated in a vacuum furnace at high temperature without subsequent chemical etching. These studies are aimed at understanding the role of hydrogen on the high-field Q slope and at the passivation of the Nb surface during heat treatment. Improvement of the cavity performances, particularly of the cavities' quality factor, have been obtained following the high-temperature heat treatments, while secondary ion mass spectroscopy surface analysis measurements on Nb samples treated with the cavities revealed significantly lower hydrogen concentration than for samples that followed standard cavity treatments. C1 [Ciovati, G.; Myneni, G.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Stevie, F.; Maheshwari, P.; Griffis, D.] N Carolina State Univ, Raleigh, NC 27695 USA. RP Ciovati, G (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. EM gciovati@jlab.org FU U.S. DOE [DE-AC05-06OR23177] FX The authors would like to acknowledge A. Gurevich, FSU, and W. Weingarten, CERN, for many interesting discussions. From JLab, we would like to acknowledge P. Kneisel for providing the cavities for the heat-treatment study, C. Crawford for the vertical EP, D. Forehand and R. Overton for helping with the cavity heat treatments, and T. Harris and J. Davenport for helping with the cavity high-pressure rinses. This manuscript has been authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. NR 60 TC 36 Z9 36 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD FEB PY 2010 VL 13 IS 2 AR 022002 DI 10.1103/PhysRevSTAB.13.022002 PG 22 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 562NR UT WOS:000275059100008 ER PT J AU Kneisel, P Sekutowicz, J AF Kneisel, P. Sekutowicz, J. TI Update on coaxial coupling scheme for International Linear Collider-type cavities SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB This paper reports on our efforts to develop a flangeable coaxial coupler for both higher order mode and fundamental coupling for nine-cell ILC-type cavities, which were designed in the early 1990's for pulsed operation with a duty factor less than 1%. The design of the coupler has been done in such a way that the rf magnetic flux B at the flange connection was minimized and only a field of < 5 mT would be present for an operation at an accelerating field E(acc) similar to 36 MV/m (B similar to 150 mT) in the cavity. Even though we achieved reasonably high Q values at low field, the cavity/coupler combination was limited in the cw mode to only similar to 7 MV/m, where a thermally initiated degradation occurred. We believed that this limitation was caused by poor cooling of the shorting plate and inner tube in the coaxial coupler; therefore, we have improved the cooling conditions by initially drilling radial cooling channels every 30 degrees, then every 15 degrees into the shorting plate and eventually removing the "bridges" between the channels. This paper reports on our experiences with the modified coaxial coupler under cw and pulsed conditions. C1 [Kneisel, P.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Sekutowicz, J.] DESY, D-22603 Hamburg, Germany. RP Kneisel, P (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. EM kneisel@jlab.org RI Sekutowicz, Jacek/A-6561-2013 FU U.S. DOE [DE-AC05-06OR23177] FX We would like to thank our colleagues G. Slack, L. Turlington, and P. Kushnik from TJNAF for their support of this work. This manuscript has been authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. NR 3 TC 0 Z9 0 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD FEB PY 2010 VL 13 IS 2 AR 022001 DI 10.1103/PhysRevSTAB.13.022001 PG 4 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 562NR UT WOS:000275059100007 ER PT J AU Stern, EG Amundson, JF Spentzouris, PG Valishev, AA AF Stern, E. G. Amundson, J. F. Spentzouris, P. G. Valishev, A. A. TI Fully 3D multiple beam dynamics processes simulation for the Fermilab Tevatron SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB We present validation and results from a simulation of the Fermilab Tevatron including multiple beam dynamics effects. The essential features of the simulation include a fully 3D strong-strong beam-beam particle-in-cell Poisson solver, interactions among multiple bunches and both head-on and long-range beam-beam collisions, coupled linear optics, and helical trajectory consistent with beam-orbit measurements, chromaticity, and resistive wall impedance. We validate individual physical processes against measured data where possible, and analytic calculations elsewhere. Finally, we present simulations of the effects of increasing beam intensity with single and multiple bunches, and study the combined effect of long-range beam-beam interactions and transverse impedance. The results of the simulations were successfully used in Tevatron operations to support a change of chromaticity during the transition to collider mode optics, leading to a factor of 2 decrease in proton losses, and thus improved reliability of collider operations. C1 [Stern, E. G.; Amundson, J. F.; Spentzouris, P. G.; Valishev, A. A.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Stern, EG (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM egstern@fnal.gov FU United States Department of Energy [DE-AC02-07CH11359]; DOE Office of High Energy Physics; U.S. Department of Energy [DE-AC02-05CH11231, DE-AC02-06CH11357] FX We thank J. Qiang and R. Ryne of LBNL for the use of and assistance with the BEAMBEAM3D program. We are indebted to V. Lebedev and Yu. Alexahin for useful discussions. This work was supported by the United States Department of Energy under Contract No. DE-AC02-07CH11359 and the ComPASS project funded through the Scientific Discovery through Advanced Computing program in the DOE Office of High Energy Physics. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-06CH11357. NR 21 TC 5 Z9 5 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD FEB PY 2010 VL 13 IS 2 AR 024401 DI 10.1103/PhysRevSTAB.13.024401 PG 12 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 562NR UT WOS:000275059100017 ER PT J AU Xu, HW Zhao, YS Vogel, SC Hickmott, DD Daemen, LL Hartl, MA AF Xu, Hongwu Zhao, Yusheng Vogel, Sven C. Hickmott, Donald D. Daemen, Luke L. Hartl, Monika A. TI Thermal expansion and decomposition of jarosite: a high-temperature neutron diffraction study SO PHYSICS AND CHEMISTRY OF MINERALS LA English DT Article DE Jarosite; Neutron diffraction; Thermal expansion; Decomposition; Hydrogen bonds; Crystal chemistry ID MAGNETIC-STRUCTURE; CRYSTAL-CHEMISTRY; THERMOCHEMISTRY; ALUNITE; YAVAPAIITE; MINERALOGY; POTASSIUM; LATTICE; LEAD; MARS AB The structure of deuterated jarosite, KFe(3)(SO(4))(2)(OD)(6), was investigated using time-of-flight neutron diffraction up to its dehydroxylation temperature. Rietveld analysis reveals that with increasing temperature, its c dimension expands at a rate similar to 10 times greater than that for a. This anisotropy of thermal expansion is due to rapid increase in the thickness of the (001) sheet of [Fe(O,OH)(6)] octahedra and [SO(4)] tetrahedra with increasing temperature. Fitting of the measured cell volumes yields a coefficient of thermal expansion, alpha = alpha(0) + alpha(1) T, where alpha(0) = 1.01 x 10(-4) K(-1) and alpha(1) = -1.15 x 10(-7) K(-2). On heating, the hydrogen bonds, O1 center dot center dot center dot D-O3, through which the (001) octahedral-tetrahedral sheets are held together, become weakened, as reflected by an increase in the D center dot center dot center dot O1 distance and a concomitant decrease in the O3-D distance with increasing temperature. On further heating to 575 K, jarosite starts to decompose into nanocrystalline yavapaiite and hematite (as well as water vapor), a direct result of the breaking of the hydrogen bonds that hold the jarosite structure together. C1 [Xu, Hongwu; Hickmott, Donald D.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Zhao, Yusheng; Vogel, Sven C.; Daemen, Luke L.; Hartl, Monika A.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. RP Xu, HW (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, POB 1663, Los Alamos, NM 87545 USA. EM hxu@lanl.gov RI Hickmott, Donald/C-2886-2011; Lujan Center, LANL/G-4896-2012; Hartl, Monika/F-3094-2014; Hartl, Monika/N-4586-2016; OI Hartl, Monika/0000-0002-6601-7273; Hartl, Monika/0000-0002-6601-7273; Xu, Hongwu/0000-0002-0793-6923; Vogel, Sven C./0000-0003-2049-0361 FU Department of Energy's Office of Basic Energy Sciences; Los Alamos National Security, LLC, under DOE [DE-AC52-06NA25396] FX We thank P.J. Heaney and an anonymous reviewer for helpful comments, and M. S. Rearick for carrying out compositional analysis of the jarosite sample. This work has benefited from the use of the Lujan Neutron Scattering Center at LANSCE, which is funded by the Department of Energy's Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, under DOE Contract DE-AC52-06NA25396. NR 33 TC 10 Z9 10 U1 3 U2 15 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0342-1791 J9 PHYS CHEM MINER JI Phys. Chem. Miner. PD FEB PY 2010 VL 37 IS 2 BP 73 EP 82 DI 10.1007/s00269-009-0311-5 PG 10 WC Materials Science, Multidisciplinary; Mineralogy SC Materials Science; Mineralogy GA 548QD UT WOS:000273980400002 ER PT J AU Kolhinen, VS Elomaa, VV Eronen, T Hakala, J Jokinen, A Kortelainen, M Suhonen, J Aysto, J AF Kolhinen, V. S. Elomaa, V. -V. Eronen, T. Hakala, J. Jokinen, A. Kortelainen, M. Suhonen, J. Aysto, J. TI Accurate Q value for the Se-74 double-electron-capture decay SO PHYSICS LETTERS B LA English DT Article DE Double-electron-capture decay; Q value; Penning trap ID DOUBLE-BETA-DECAY; PRECISION MASS-SPECTROMETRY; NEUTRINO MASS; PENNING TRAPS; RAMSEY METHOD; OSCILLATIONS; IGISOL; STATES AB The Q Value of the neutrinoless double-electron-capture (OvECEC) decay of 74 Se was measured by using the JYFLTRAP Penning trap. The determined value is 1209.169(49) keV, which practically excludes (lie possibility of a complete energy degeneracy with the second 2(+) state (1204.205(7) keV) of Ge-74 in a resonant OvECEC decay. We have also computed the associated nuclear matrix element by using a microscopic nuclear model with realistic two-nucleon interactions. The computed matrix element is found to be quite small. The failure of the resonant condition, combined with the small nuclear matrix element and needed p-wave capture, suppresses the decay rate strongly and thus excludes 74 Se as a possible candidate to search for resonant OvECEC processes. (C) 2010 Elsevier 13M. All rights reserved. C1 [Kolhinen, V. S.; Elomaa, V. -V.; Eronen, T.; Hakala, J.; Jokinen, A.; Suhonen, J.; Aysto, J.] Univ Jyvaskyla, Dept Phys, FIN-40014 Jyvaskyla, Finland. [Kortelainen, M.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Kortelainen, M.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Kolhinen, VS (reprint author), Univ Jyvaskyla, Dept Phys, POB 35 YFL, FIN-40014 Jyvaskyla, Finland. EM veli.kolhinen@jyu.fi RI Jokinen, Ari/C-2477-2017 OI Jokinen, Ari/0000-0002-0451-125X NR 44 TC 55 Z9 55 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD FEB 1 PY 2010 VL 684 IS 1 BP 17 EP 21 DI 10.1016/j.physletb.2009.12.052 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 556XQ UT WOS:000274627300004 ER PT J AU Arsene, IG Bearden, IG Beavis, D Bekele, S Besliu, C Budick, B Boggild, H Chasman, C Christensen, CH Christiansen, P Dalsgaard, HH Debbe, R Gaardhoje, JJ Hagel, K Ito, H Jipa, A Johnson, EB Jorgensen, CE Karabowicz, R Katrynska, N Kim, EJ Larsen, TM Lee, JH Lovhoiden, G Majka, Z Marcinek, A Murray, MJ Natowitz, J Nielsen, BS Nygaard, C Pal, D Oviller, A Planeta, R Rami, F Ristea, C Ristea, O Rohrich, D Sanders, SJ Staszel, P Tveter, TS Videbaek, F Wada, R Yang, H Yin, Z Zgura, IS AF Arsene, I. G. Bearden, I. G. Beavis, D. Bekele, S. Besliu, C. Budick, B. Boggild, H. Chasman, C. Christensen, C. H. Christiansen, P. Dalsgaard, H. H. Debbe, R. Gaardhoje, J. J. Hagel, K. Ito, H. Jipa, A. Johnson, E. B. Jorgensen, C. E. Karabowicz, R. Katrynska, N. Kim, E. J. Larsen, T. M. Lee, J. H. Lovhoiden, G. Majka, Z. Marcinek, A. Murray, M. J. Natowitz, J. Nielsen, B. S. Nygaard, C. Pal, D. Oviller, A. Planeta, R. Rami, F. Ristea, C. Ristea, O. Rohrich, D. Sanders, S. J. Staszel, P. Tveter, T. S. Videbaek, F. Wada, R. Yang, H. Yin, Z. Zgura, I. S. TI Rapidity dependence of the proton-to-pion ratio in Au plus Au and p plus p collisions at root S-NN=62.4 and 200 GeV SO PHYSICS LETTERS B LA English DT Article DE Heavy ion collision; Particle ratios; Forward rapidity; Hadronization ID PARTON; EQUILIBRATION; TRANSITION AB The proton-to-pion ratios measured in the BRAHMS experiment for Au + Au and p + p collisions at root(NN)-N-S = 62.4 and 200 GeV are presented as a function of transverse momentum and collision centrality at selected pseudorapidities in the range of 0-3.8. A strong pseudorapidity dependence of these ratios is observed. We also compare the magnitude and PT-dependence of the p/pi(+) ratios measured in Au + Au collisions at root(NN)-N-S - 200 GeV and eta approximate to 2.2 with the same ratio measured at root(NN)-N-S 62.4 GeV and eta = 0. The great similarity found between these ratios throughout the whole PT range (up to 2.2 GeV/c) is consistent with particle ratios in A + A collisions being described with grand-canonical distributions characterized by the baryo-chemical potential mu(B). At the collision energy of 62.4 GeV, we have observed a unique point in pseudorapidity, eta = 3.2, where the p/pi(+) ratio is independent of the collision system size in a wide p(T)-range of 0.3 <= p(T) <= 1.8 GeV/c. (C) 2010 Elsevier B.V. All rights reserved. C1 [Karabowicz, R.; Katrynska, N.; Majka, Z.; Marcinek, A.; Planeta, R.; Staszel, P.] Jagiellonian Univ, Smoluchowski Inst Phys, Krakow, Poland. [Beavis, D.; Chasman, C.; Debbe, R.; Ito, H.; Kim, E. J.; Lee, J. H.; Videbaek, F.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Rami, F.] CNRS, Inst Pluridisciplinaire Hubert Curien, IN2P3, Strasbourg, France. [Rami, F.] Univ Strasbourg, Strasbourg, France. [Budick, B.] NYU, New York, NY 10003 USA. [Bearden, I. G.; Boggild, H.; Christensen, C. H.; Christiansen, P.; Dalsgaard, H. H.; Gaardhoje, J. J.; Jorgensen, C. E.; Nielsen, B. S.; Nygaard, C.; Ristea, C.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Hagel, K.; Murray, M. J.; Natowitz, J.; Wada, R.] Texas A&M Univ, College Stn, TX 77843 USA. [Rohrich, D.; Yang, H.; Yin, Z.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Besliu, C.; Jipa, A.; Ristea, O.; Zgura, I. S.] Univ Bucharest, Bucharest, Romania. [Johnson, E. B.; Kim, E. J.; Murray, M. J.; Pal, D.; Sanders, S. J.] Univ Kansas, Lawrence, KS 66045 USA. [Arsene, I. G.; Larsen, T. M.; Lovhoiden, G.; Oviller, A.; Tveter, T. S.] Univ Oslo, Dept Phys, N-0316 Oslo, Norway. RP Staszel, P (reprint author), Jagiellonian Univ, Smoluchowski Inst Phys, Krakow, Poland. EM ufstasze@if.uj.edu.pl; videbaek@bnl.gov RI Christensen, Christian Holm/A-4901-2010; Christensen, Christian/D-6461-2012; Yang, Hongyan/J-9826-2014; Bearden, Ian/M-4504-2014 OI Christensen, Christian Holm/0000-0002-1850-0121; Christensen, Christian/0000-0002-1850-0121; Bearden, Ian/0000-0003-2784-3094 FU Division of Nuclear Physics of the Office of Science of the U.S. Department of Energy [DE-AC02-98-CH10886, DE-FG03-93-ER40773, DEFG03-96-ER40981, DE-FG02-99-ER41121]; Danish Natural Science Research Council; Research Council of Norway; Polish Ministry of Science and Higher Education [1248/B/HO3/2009/36]; Romanian Ministry of Education and Research [5003/1999, 6077/2000]; Renaissance Technologies Corp FX This work was supported by the Division of Nuclear Physics of the Office of Science of the U.S. Department of Energy under contracts DE-AC02-98-CH10886, DE-FG03-93-ER40773, DEFG03-96-ER40981, and DE-FG02-99-ER41121, the Danish Natural Science Research Council, the Research Council of Norway, the Polish Ministry of Science and Higher Education (Contract no. 1248/B/HO3/2009/36), and the Romanian Ministry of Education and Research (5003/1999, 6077/2000), and a sponsored research grant from Renaissance Technologies Corp. We thank the staff of the Coll ider-Accelerator Division and the RHIC cornputing facility at BNL for their support to the experiment. NR 29 TC 5 Z9 5 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD FEB 1 PY 2010 VL 684 IS 1 BP 22 EP 27 DI 10.1016/j.physletb.2009.12.055 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 556XQ UT WOS:000274627300005 ER PT J AU Dorf, MA Kaganovich, ID Startsev, EA Davidson, RC AF Dorf, Mikhail A. Kaganovich, Igor D. Startsev, Edward A. Davidson, Ronald C. TI Whistler wave excitation and effects of self-focusing on ion beam propagation through a background plasma along a solenoidal magnetic field SO PHYSICS OF PLASMAS LA English DT Article DE ion beams; perturbation theory; plasma diagnostics; plasma magnetohydrodynamics; plasma simulation; plasma waves; plasma-beam interactions; self-focusing ID MODULATED ELECTRON-BEAM; CURRENT NEUTRALIZATION; EMISSION; TRANSPORT; FUSION; CHARGE; PULSE AB This paper extends studies of ion beam transport through a background plasma along a solenoidal magnetic field by Kaganovich [Phys. Plasmas 15, 103108 (2008)] to the important regime of moderate magnetic field strength satisfying omega(ce)>2 beta(b)omega(pe). Here, omega(ce) and omega(pe) are the electron cyclotron frequency and electron plasma frequency, respectively, and beta(b)=v(b)/c is the directed ion beam velocity normalized to the speed of light. The electromagnetic field perturbations excited by the ion beam pulse in this regime are calculated analytically and verified by comparison with the numerical simulations. The degrees of beam charge neutralization and current neutralization are estimated, and the transverse component of the Lorentz force associated with the excited electromagnetic field is calculated. It is found that the plasma response to the ion beam pulse is significantly different depending on whether the value of the solenoidal magnetic field is below or above the threshold value specified by omega(cr)(ce)=2 beta(b)omega(pe), and corresponding to the resonant excitation of large-amplitude whistler waves. The use of intense whistler wave excitations for diagnostic purposes is also discussed. C1 [Dorf, Mikhail A.; Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.] Plasma Phys Lab, Princeton, NJ 08543 USA. RP Dorf, MA (reprint author), Plasma Phys Lab, Princeton, NJ 08543 USA. FU U.S. Department of Energy [DE-AC02-76CH-O3073] FX This research was supported by the U.S. Department of Energy under Contract No. DE-AC02-76CH-O3073 with the Princeton Plasma Physics Laboratory. NR 31 TC 6 Z9 6 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2010 VL 17 IS 2 AR 023103 DI 10.1063/1.3280013 PG 15 WC Physics, Fluids & Plasmas SC Physics GA 562DE UT WOS:000275028700031 ER PT J AU Friis, ZW Stacey, WM Leonard, AW Rensink, ME AF Friis, Z. W. Stacey, W. M. Leonard, A. W. Rensink, M. E. TI Analysis of neutral particle recycling and pedestal fueling in a H-mode DIII-D discharge SO PHYSICS OF PLASMAS LA English DT Article DE charge exchange; ionisation; plasma boundary layers; plasma density; plasma instability; plasma simulation; plasma toroidal confinement; plasma transport processes; plasma-wall interactions; Tokamak devices ID ESCAPE PROBABILITY METHOD; ALCATOR C-MOD; ATOM TRANSPORT; D TOKAMAK; PLASMAS; EDGE; DENSITY; TRANSMISSION; FORMULATION; PROFILES AB A detailed analysis of neutral atom recycling and pedestal fueling in a DIII-D [J. Luxon, Nucl. Fusion 42, 614 (2002)] high-confinement mode discharge is presented. Experimental data and two-dimensional (2D) edge plasma fluid code calculations are employed to provide ion wall recycling and recombination neutral sources and background edge plasma parameters for a 2D edge neutral code calculation of detailed neutral density, ionization, and charge-exchange distributions throughout the edge pedestal, scrape-off layer and surrounding halo region, divertor, and private flux regions. The effectiveness of the different neutral sources for fueling the confined plasma is evaluated. C1 [Friis, Z. W.; Stacey, W. M.] Georgia Inst Technol, Atlanta, GA 30332 USA. [Leonard, A. W.] Gen Atom Co, San Diego, CA 92186 USA. [Rensink, M. E.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Friis, ZW (reprint author), Georgia Inst Technol, Atlanta, GA 30332 USA. EM weston.stacey@nre.gatech.edu FU U.S. Dept. of Energy [DE-FG02-ER54538]; Georgia Tech Research Corporation [DE-AC03-99ER54463]; General Atomics Co [DE-AC52-07NA27344] FX The support provided by R. J. Groebner of General Atomics in the original suggestion of this line of research and his detailed review of this paper and by T. D. Rognlien of Lawrence Livermore National Laboratory in the adaptation of the UEDGE geometric grid generator for constructing GTNEUT geometry input are gratefully acknowledged. Extensive suggestions for clarification by the reviewer are gratefully acknowledged. This work was supported by the U.S. Dept. of Energy under Grant No. DE-FG02-ER54538 with the Georgia Tech Research Corporation, Contract No. DE-AC03-99ER54463 with General Atomics Co., and Contract No. DE-AC52-07NA27344 with the University of California. NR 31 TC 6 Z9 6 U1 1 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2010 VL 17 IS 2 AR 022507 DI 10.1063/1.3305809 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 562DE UT WOS:000275028700021 ER PT J AU Harres, K Alber, I Tauschwitz, A Bagnoud, V Daido, H Gunther, M Nurnberg, F Otten, A Schollmeier, M Schutrumpf, J Tampo, M Roth, M AF Harres, K. Alber, I. Tauschwitz, A. Bagnoud, V. Daido, H. Guenther, M. Nuernberg, F. Otten, A. Schollmeier, M. Schuetrumpf, J. Tampo, M. Roth, M. TI Beam collimation and transport of quasineutral laser-accelerated protons by a solenoid field SO PHYSICS OF PLASMAS LA English DT Article DE beam handling techniques; optical collimators; plasma heating by laser; plasma-beam interactions; proton beams; solenoids ID ION-BEAMS; ELECTRON; TARGETS AB This article reports about controlling laser-accelerated proton beams with respect to beam divergence and energy. The particles are captured by a pulsed high field solenoid with a magnetic field strength of 8.6 T directly behind a flat target foil that is irradiated by a high intensity laser pulse. Proton beams with energies around 2.3 MeV and particle numbers of 10(12) could be collimated and transported over a distance of more than 300 mm. In contrast to the protons the comoving electrons are strongly deflected by the solenoid field. They propagate at a submillimeter gyroradius around the solenoid's axis which could be experimentally verified. The originated high flux electron beam produces a high space charge resulting in a stronger focusing of the proton beam than expected by tracking results. Leadoff particle-in-cell simulations show qualitatively that this effect is caused by space charge attraction due to the comoving electrons. The collimation and transport of laser-accelerated protons is the first step to provide these unique beams for further applications such as postacceleration by conventional accelerator structures. C1 [Harres, K.; Alber, I.; Guenther, M.; Nuernberg, F.; Otten, A.; Schuetrumpf, J.; Roth, M.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. [Tauschwitz, A.; Bagnoud, V.] Schwerionenforsch GmbH, GSI Helmholtzzentrum, Plasmaphys & PHELIX, D-64291 Darmstadt, Germany. [Daido, H.; Tampo, M.] JAEA, Photo Med Res Ctr, Kizugawa City, Kyoto 6190215, Japan. [Schollmeier, M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Harres, K (reprint author), Tech Univ Darmstadt, Inst Kernphys, Schlossgartenstr 9, D-64289 Darmstadt, Germany. RI Schollmeier, Marius/H-1056-2012; Tampo, Motonobu/I-2897-2012; Schubert, Ina/N-2144-2014; Bagnoud, Vincent/K-4266-2015 OI Schollmeier, Marius/0000-0002-0683-022X; Schubert, Ina/0000-0002-4004-9963; Bagnoud, Vincent/0000-0003-1512-4578 FU Bundesministerium fur Bildung und Forschung (BMBF) [06 DA 122 I]; Sandia Corporation, a Lockheed Martin Co.,; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to thank the divisions of PHELIX and plasma physics at GSI for their excellent support. This work was supported by Bundesministerium fur Bildung und Forschung (BMBF), support code 06 DA 122 I. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 26 TC 33 Z9 33 U1 1 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2010 VL 17 IS 2 AR 023107 DI 10.1063/1.3299391 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 562DE UT WOS:000275028700035 ER PT J AU Kolesnikov, RA Wang, WX Hinton, FL Rewoldt, G Tang, WM AF Kolesnikov, R. A. Wang, W. X. Hinton, F. L. Rewoldt, G. Tang, W. M. TI Drift-kinetic simulation of neoclassical transport with impurities in tokamaks SO PHYSICS OF PLASMAS LA English DT Article DE carbon; deuterium; plasma collision processes; plasma impurities; plasma kinetic theory; plasma simulation; plasma toroidal confinement; plasma transport processes; Tokamak devices ID BOOTSTRAP CURRENT; ION; ROTATION; PLASMAS AB Plasmas in modern tokamak experiments contain a significant fraction of impurity ions in addition to the main deuterium background ions. A new multiple ion-species delta f particle simulation capability has been developed to self-consistently study the nonlocal effects of impurities on neoclassical transport in toroidal plasmas. A new algorithm for an unlike-particle collision operator, including test-particle and conserving field-particle parts, is described. Effects of the carbon impurity on the main deuterium species heat flux as well as an ambipolar radial electric field in a National Spherical Torus Experiment (NSTX) [M. Ono, S. M. Kaye, Y.-K. M. Peng , Nucl. Fusion 40, 557 (2000)] configuration were studied. A difference between carbon poloidal rotation found from simulation and from conventional theoretical estimates has been investigated and was identified to be a nonlocal finite orbit effect. In the case of large-aspect ratio tokamak configurations with steep toroidal flow profiles, we propose a theoretical model to describe this nonlocal effect. The dominant mechanisms captured by the model are associated with ion parallel velocity modification due to steep toroidal flow and radial electric field profiles. We present simulation results for carbon poloidal velocity in NSTX. Comparisons with neoclassical theory are discussed. C1 [Kolesnikov, R. A.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Wang, W. X.; Rewoldt, G.; Tang, W. M.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. [Hinton, F. L.] Univ Calif San Diego, La Jolla, CA 92093 USA. RP Kolesnikov, RA (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA. FU U.S . DOE [DE-AC02-09CH11466] FX This work was supported by U.S . DOE Contract No. DE-AC02-09CH11466. One of the authors (W. X. W.) was partially supported by the SciDAC GPS-TTBP project. NR 20 TC 14 Z9 14 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2010 VL 17 IS 2 AR 022506 DI 10.1063/1.3310839 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 562DE UT WOS:000275028700020 ER PT J AU Quest, KB Karimabadi, H Daughton, W AF Quest, K. B. Karimabadi, H. Daughton, W. TI Linear theory of anisotropy driven modes in a Harris neutral sheet SO PHYSICS OF PLASMAS LA English DT Article DE magnetic reconnection; magnetosphere; plasma instability; plasma theory; plasma transport processes; Vlasov equation ID HYBRID DRIFT INSTABILITY; TEARING INSTABILITY; MAGNETIC RECONNECTION; PLASMA AB There are several sources of electron and ion anisotropies that can have a profound effect on the stability of the current sheets in the magnetosphere. A new semianalytical approach is introduced and utilized to develop the linear theory of anisotropy driven modes in a neutral sheet. This technique is intermediary between analytical models and those that solve the exact linear Vlasov equation. Its advantage is in its accuracy and speed. Both the parallel and perpendicular limits are considered, and improved stability criteria and growth rates for Weibel, anisotropic tearing, and Fried-Weibel modes are obtained. For the same anisotropy levels, electron anisotropy is much more effective in modifying the stability of the modes, but the presence of large ion anisotropy in the magnetosheath can still have a significant effect on the growth of the tearing mode. Effects of ion anisotropy are more pronounced for thicker sheets, whereas the electron anisotropy is weakly dependent on the current sheet thickness. Although the current expectation is that magnetic reconnection in the magnetosphere is associated with the formation of thin current sheets, our results suggest an interesting possibility of fast growth rates for thick sheets in the presence of sufficient electron and/or ion anisotropies. C1 [Quest, K. B.; Karimabadi, H.] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92037 USA. [Daughton, W.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Quest, KB (reprint author), Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92037 USA. RI Daughton, William/L-9661-2013 FU NASA; NSF-GEM [ATM-0802380] FX This work was supported by the NASA Heliophysics Theory Program and NSF-GEM under Grant No. ATM-0802380. NR 29 TC 9 Z9 9 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2010 VL 17 IS 2 AR 022107 DI 10.1063/1.3309731 PG 19 WC Physics, Fluids & Plasmas SC Physics GA 562DE UT WOS:000275028700010 ER PT J AU Regan, SP Meezan, NB Suter, LJ Strozzi, DJ Kruer, WL Meeker, D Glenzer, SH Seka, W Stoeckl, C Glebov, VY Sangster, TC Meyerhofer, DD McCrory, RL Williams, EA Jones, OS Callahan, DA Rosen, MD Landen, OL Sorce, C MacGowan, BJ AF Regan, S. P. Meezan, N. B. Suter, L. J. Strozzi, D. J. Kruer, W. L. Meeker, D. Glenzer, S. H. Seka, W. Stoeckl, C. Glebov, V. Yu. Sangster, T. C. Meyerhofer, D. D. McCrory, R. L. Williams, E. A. Jones, O. S. Callahan, D. A. Rosen, M. D. Landen, O. L. Sorce, C. MacGowan, B. J. TI Suprathermal electrons generated by the two-plasmon-decay instability in gas-filled Hohlraums SO PHYSICS OF PLASMAS LA English DT Article DE explosions; fusion reactor ignition; plasma inertial confinement; plasma instability; plasma production by laser; plasma temperature; plasmons ID NATIONAL-IGNITION-FACILITY; TARGETS; PLASMAS; SYSTEM; OMEGA AB For the first time a burst of suprathermal electrons is observed from the exploding laser-entrance-hole window of gas-filled Hohlraums driven with 13.5 kJ of 351 nm laser light. The two-plasmon-decay instability appears to produce up to 20 J of hot electrons with T(hot)similar to 75 keV at early times and has a sharp laser-intensity threshold between 0.3 and 0.5x10(15) W/cm(2). The observed threshold can be exploited to mitigate preheat by window hot electrons in ignition Hohlraums for the National Ignition Facility and achieve high-density, high-pressure conditions in indirect drive implosions. C1 [Regan, S. P.; Seka, W.; Stoeckl, C.; Glebov, V. Yu.; Sangster, T. C.; Meyerhofer, D. D.; McCrory, R. L.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Meezan, N. B.; Suter, L. J.; Strozzi, D. J.; Meeker, D.; Glenzer, S. H.; Williams, E. A.; Jones, O. S.; Callahan, D. A.; Rosen, M. D.; Landen, O. L.; Sorce, C.; MacGowan, B. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Kruer, W. L.] Univ Calif Davis, Davis, CA 95616 USA. RP Regan, SP (reprint author), Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA. OI Strozzi, David/0000-0001-8814-3791 FU U. S. Department of Energy Office of Inertial Confinement Fusion [DE-FC52-08NA28302] FX The authors acknowledge the superb operation of the OMEGA Laser System, the target expertise of M. Bonino and A. Nikroo, and the diagnostic support of R. Bahr and S. Roberts. This work was supported by the U. S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302, the University of Rochester, and the New York State Energy Research and Development Authority. The support of DOE does not constitute and endorsement by DOE of the views expressed in this article. NR 20 TC 33 Z9 33 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2010 VL 17 IS 2 AR 020703 DI 10.1063/1.3309481 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 562DE UT WOS:000275028700003 ER PT J AU Spong, DA D'Azevedo, E Todo, Y AF Spong, D. A. D'Azevedo, E. Todo, Y. TI Clustered frequency analysis of shear Alfveacuten modes in stellarators SO PHYSICS OF PLASMAS LA English DT Article DE eigenvalues and eigenfunctions; plasma Alfven waves; plasma instability; plasma magnetohydrodynamics; plasma theory; plasma toroidal confinement; statistical analysis; stellarators ID EIGENVALUE PROBLEMS; ALFVEN EIGENMODES; MAGNETOHYDRODYNAMIC INSTABILITIES; ION-TRANSPORT; PLASMAS; CONTINUUM AB The shear Alfveacuten spectrum in three-dimensional configurations, such as stellarators and rippled tokamaks, is more densely populated due to the larger number of mode couplings caused by the variation in the magnetic field in the toroidal dimension. This implies more significant computational requirements that can rapidly become prohibitive as more resolution is requested. Alfveacuten eigenfrequencies and mode structures are a primary point of contact between theory and experiment. A new algorithm based on the Jacobi-Davidson method is developed here and applied for a reduced magnetohydrodynamics model to several stellarator configurations. This technique focuses on finding a subset of eigenmodes clustered about a specified input frequency. This approach can be especially useful in modeling experimental observations, where the mode frequency can generally be measured with good accuracy and several different simultaneous frequency lines may be of interest. For cases considered in this paper, it can be a factor of 10(2)-10(3) times faster than more conventional methods. C1 [Spong, D. A.; D'Azevedo, E.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Todo, Y.] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan. RP Spong, DA (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RI Spong, Donald/C-6887-2012; Todo, Yasushi/E-7525-2013 OI Spong, Donald/0000-0003-2370-1873; Todo, Yasushi/0000-0001-9323-8285 NR 25 TC 20 Z9 20 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2010 VL 17 IS 2 AR 022106 DI 10.1063/1.3313818 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 562DE UT WOS:000275028700009 ER PT J AU Wang, TL Clark, DS Strozzi, DJ Wilks, SC Martins, SF Kirkwood, RK AF Wang, T. -L. Clark, D. S. Strozzi, D. J. Wilks, S. C. Martins, S. F. Kirkwood, R. K. TI Particle-in-cell simulations of kinetic effects in plasma-based backward Raman amplification in underdense plasmas SO PHYSICS OF PLASMAS LA English DT Article DE frequency modulation; plasma density; plasma kinetic theory; plasma light propagation; plasma simulation; plasma temperature; plasma waves ID LASER AMPLIFICATION; SCATTERING; PULSES AB A one dimensional particle-in-cell study of the kinetic effects involved in plasma-based backward Raman amplification is presented for nonrelativistic laser pulses interacting in underdense thermal plasmas. Simulations are performed to study how effects such as particle heating and trapping, frequency modulations, and wave breaking of the plasma wave can change with different plasma conditions. The result of this parametric scan of plasma density and temperature is the identification of optimal plasma conditions for amplification of an ultrashort seed laser pulse by a pump laser of nonrelativistic intensity. The relevance of this study to possible experimental scenarios is discussed. C1 [Wang, T. -L.; Martins, S. F.] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90024 USA. [Clark, D. S.; Strozzi, D. J.; Wilks, S. C.; Kirkwood, R. K.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Wang, TL (reprint author), Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90024 USA. OI Strozzi, David/0000-0001-8814-3791 NR 23 TC 12 Z9 12 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2010 VL 17 IS 2 AR 023109 DI 10.1063/1.3298738 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 562DE UT WOS:000275028700037 ER PT J AU Xiao, Y Holod, I Zhang, WL Klasky, S Lin, ZH AF Xiao, Yong Holod, Ihor Zhang, Wenlu Klasky, Scott Lin, Zhihong TI Fluctuation characteristics and transport properties of collisionless trapped electron mode turbulence SO PHYSICS OF PLASMAS LA English DT Article DE plasma flow; plasma fluctuations; plasma simulation; plasma temperature; plasma transport processes; plasma turbulence; shear flow ID GYROKINETIC PARTICLE SIMULATION; TEMPERATURE GRADIENT; ZONAL FLOWS; DRIFT WAVES; INSTABILITY; PLASMA; TOKAMAKS; CODES; SHEAR AB The collisionless trapped electron mode turbulence is investigated by global gyrokinetic particle simulation. The zonal flow dominated by low frequency and short wavelength acts as a very important saturation mechanism. The turbulent eddies are mostly microscopic, but with a significant portion in the mesoscale. The ion heat transport is found to be diffusive and follows the local radial profile of the turbulence intensity. However, the electron heat transport demonstrates some nondiffusive features and only follows the global profile of the turbulence intensity. The nondiffusive features of the electron heat transport is further confirmed by nonlognormal statistics of the flux-surface-averaged electron heat flux. The radial and time correlation functions are calculated to obtain the radial correlation length and autocorrelation time. Characteristic time scale analysis shows that the zonal flow shearing time and eddy turnover time are very close to the effective decorrelation time, which suggests that the trapped electrons move with the fluid eddies. The fluidlike behaviors of the trapped electrons and the persistence of the mesoscale eddies contribute to the transition of the electron turbulent transport from gyro-Bohm scaling to Bohm scaling when the device size decreases. C1 [Xiao, Yong; Holod, Ihor; Zhang, Wenlu; Lin, Zhihong] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Klasky, Scott] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Xiao, Y (reprint author), Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. RI Holod, Ihor/G-2801-2015 FU U.S. DOE SciDAC GPS-TTBP; GSEP centers FX This work was supported by U.S. DOE SciDAC GPS-TTBP and GSEP centers. Simulations used ORNL and NERSC supercomputers. NR 64 TC 12 Z9 12 U1 0 U2 22 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2010 VL 17 IS 2 AR 022302 DI 10.1063/1.3302504 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 562DE UT WOS:000275028700012 ER PT J AU Feibelman, PJ AF Feibelman, Peter J. TI The first wetting layer on a solid SO PHYSICS TODAY LA English DT Article ID WATER; SURFACES; ADSORPTION; VISCOSITY; RU(0001) C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Feibelman, PJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. FU US Department of Energy's Office of Basic Energy Sciences, division of materials sciences and engineering; Sandia National Laboratories FX My many discussions With Norman C. Bartelt arc gratefully acknowledged. This work was supported by the US Department of Energy's Office of Basic Energy Sciences, division of materials sciences and engineering, and Sandia National Laboratories. NR 19 TC 69 Z9 70 U1 4 U2 45 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 J9 PHYS TODAY JI Phys. Today PD FEB PY 2010 VL 63 IS 2 BP 34 EP 39 PG 6 WC Physics, Multidisciplinary SC Physics GA 556DB UT WOS:000274567300019 ER PT J AU Crease, RP AF Crease, Robert P. TI Critical Point Your favourite units SO PHYSICS WORLD LA English DT Editorial Material C1 [Crease, Robert P.] SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11790 USA. [Crease, Robert P.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Crease, RP (reprint author), SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11790 USA. EM rcrease@notes.cc.sunysb.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD FEB PY 2010 VL 23 IS 2 BP 17 EP 19 PG 3 WC Physics, Multidisciplinary SC Physics GA 556GI UT WOS:000274577700019 ER PT J AU Reyes, F Leon, G Donoso, M Brandizzi, F Weber, APM Orellana, A AF Reyes, Francisca Leon, Gabriel Donoso, Maribel Brandizzi, Federica Weber, Andreas P. M. Orellana, Ariel TI The nucleotide sugar transporters AtUTr1 and AtUTr3 are required for the incorporation of UDP-glucose into the endoplasmic reticulum, are essential for pollen development and are needed for embryo sac progress in Arabidopsis thaliana SO PLANT JOURNAL LA English DT Article DE uridine 5 '-diphosphate-glucose; nucleotide sugar transporters; endoplasmic reticulum; unfolded protein response; gamete development ID UNFOLDED PROTEIN RESPONSE; ER QUALITY-CONTROL; GALACTOSE TRANSPORTER; GOLGI-APPARATUS; POLYSACCHARIDE BIOSYNTHESIS; SACCHAROMYCES-CEREVISIAE; GAMETOPHYTE DEVELOPMENT; MEMBRANE; PLANTS; LOCALIZATION AB Uridine 5'-diphosphate (UDP)-glucose is transported into the lumen of the endoplasmic reticulum (ER), and the Arabidopsis nucleotide sugar transporter AtUTr1 has been proposed to play a role in this process; however, different lines of evidence suggest that another transporter(s) may also be involved. Here we show that AtUTr3 is involved in the transport of UDP-glucose and is located at the ER but also at the Golgi. Insertional mutants in AtUTr3 showed no obvious phenotype. Biochemical analysis in both AtUTr1 and AtUTr3 mutants indicates that uptake of UDP-glucose into the ER is mostly driven by these two transporters. Interestingly, the expression of AtUTr3 is induced by stimuli that trigger the unfolded protein response (UPR), a phenomenon also observed for AtUTr1, suggesting that both AtUTr1 and AtUTr3 are involved in supplying UDP-glucose into the ER lumen when misfolded proteins are accumulated. Disruption of both AtUTr1 and AtUTr3 causes lethality. Genetic analysis showed that the atutr1 atutr3 combination was not transmitted by pollen and was poorly transmitted by the ovules. Cell biology analysis indicates that knocking out both genes leads to abnormalities in both male and female germ line development. These results show that the nucleotide sugar transporters AtUTr1 and AtUTr3 are required for the incorporation of UDP-glucose into the ER, are essential for pollen development and are needed for embryo sac progress in Arabidopsis thaliana. C1 [Reyes, Francisca; Leon, Gabriel; Donoso, Maribel; Orellana, Ariel] Andres Bello Univ, Ctr Plant Biotechnol, Santiago, Chile. [Brandizzi, Federica] Michigan State Univ, DOE Plant Res Lab, E Lansing, MI 48824 USA. [Weber, Andreas P. M.] Univ Dusseldorf, Inst Plant Biochem, D-40225 Dusseldorf, Germany. RP Orellana, A (reprint author), Andres Bello Univ, Ctr Plant Biotechnol, Republ 217, Santiago, Chile. EM aorellana@unab.cl RI Weber, Andreas/A-6250-2011; Leon, Gabriel/F-2699-2013; Orellana, Ariel/E-2166-2014 OI Weber, Andreas/0000-0003-0970-4672; Orellana, Ariel/0000-0002-9243-808X FU Fondecyt [1070379, PCB-MN P06-065-F, PFB-16]; CONICYT FX We would like to thanks the members of the Orellana lab for helpful discussion. This work was supported by Fondecyt 1070379, PCB-MN P06-065-F and PFB-16. MD is a recipient of a CONICYT doctoral fellowship. NR 42 TC 26 Z9 29 U1 2 U2 16 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0960-7412 J9 PLANT J JI Plant J. PD FEB PY 2010 VL 61 IS 3 BP 423 EP 435 DI 10.1111/j.1365-313X.2009.04066.x PG 13 WC Plant Sciences SC Plant Sciences GA 547TJ UT WOS:000273911800005 PM 19906043 ER PT J AU Liu, D Heidbrink, WW Podesta, M Bell, RE Fredrickson, ED Medley, SS Harvey, RW Ruskov, E AF Liu, D. Heidbrink, W. W. Podesta, M. Bell, R. E. Fredrickson, E. D. Medley, S. S. Harvey, R. W. Ruskov, E. TI Profiles of fast ions that are accelerated by high harmonic fast waves in the National Spherical Torus Experiment SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID CYCLOTRON HARMONICS; DIII-D; CURRENT DRIVE; JET PLASMAS; BEAM IONS; TOKAMAK; PARTICLE; RANGE; ABSORPTION; SIMULATION AB Combined neutral beam injection and high-harmonic fast-wave (HHFW) heating accelerate deuterium fast ions in the National Spherical Torus Experiment (NSTX). With 1.1 MW of HHFW power, the neutron emission rate is about three times larger than in the comparison discharge without HHFW heating. Acceleration of fast ions above the beam injection energy is evident on an E parallel to B type neutral particle analyzer (NPA), a 4-chord solid state neutral particle analyzer (SSNPA) array and a 16-channel fast-ion D-alpha (FIDA) diagnostic. The accelerated fast ions observed by the NPA and SSNPA diagnostics mainly come from passive charge exchange reactions at the edge due to the NPA/SSNPA localization in phase space. The spatial profile of accelerated fast ions that is measured by the FIDA diagnostic is much broader than in conventional tokamaks because of the multiple resonance layers and large orbits in NSTX. The fast-ion distribution function calculated by the CQL3D Fokker-Planck code differs from the measured spatial profile, presumably because the current version of CQL3D uses a zero-banana-width model. In addition, compressional Alfven eigenmode activity is stronger during the HHFW heating and it may affect the fast-ion spatial profile. C1 [Liu, D.; Heidbrink, W. W.; Podesta, M.; Ruskov, E.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92617 USA. [Bell, R. E.; Fredrickson, E. D.; Medley, S. S.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Harvey, R. W.] CompX, Del Mar, CA 92014 USA. RP Liu, D (reprint author), Univ Wisconsin Madison, Dept Phys, Madison, WI 53706 USA. RI Liu, Deyong/Q-2797-2015 OI Liu, Deyong/0000-0001-9174-7078 FU DOE [DE-AC0276-CH03073] FX The authors are grateful to the NSTX research team, especially the HHFW team, for supporting this experiment. This work was supported at PPPL by the DOE Contract DE-AC0276-CH03073. NR 36 TC 13 Z9 13 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD FEB PY 2010 VL 52 IS 2 AR 025006 DI 10.1088/0741-3335/52/2/025006 PG 17 WC Physics, Fluids & Plasmas SC Physics GA 544YS UT WOS:000273698200007 ER PT J AU Hebner, GA Paterson, AM AF Hebner, G. A. Paterson, A. M. TI Ion temperature and velocity in a 300 mm diameter capacitively coupled plasma reactor driven at 13, 60 and 162 MHz SO PLASMA SOURCES SCIENCE & TECHNOLOGY LA English DT Article ID FREQUENCY; DISCHARGES; ARGON; EXCITATION AB Spatially resolved temperature, radial drift velocity and relative density of an argon ion metastable state were measured in a capacitively coupled, parallel-plate reactor. The argon plasma was generated using single-frequency excitation of 13, 60, 162 MHz and dual frequency excitation of 13 and 60 MHz. For the conditions investigated, the ion temperatures were between 400 and 750 K. At the lower excitation frequencies of 13 and 60 MHz, the radial ion velocity increased monotonically from the center of the plasma to the edge of the electrode while ion temperature did not depend strongly on radial position or frequency. At 162 MHz excitation, the radial ion drift velocity peaked off center and the ion temperature showed large variations with radial position. For all cases, the radial drift velocity was less than the average thermal velocity. At all drive frequencies, the ion temperature was only a weak function of pressure and rf power. Comparison of the ion temperature and the drift velocity suggests that for 162 MHz excitation, the ion heating mechanism may depend on the radial position. C1 [Hebner, G. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Paterson, A. M.] Appl Mat Inc, Sunnyvale, CA USA. RP Hebner, GA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM gahebne@sandia.gov FU United States Department of Energy [DE-AC04-94AL85000] FX The authors thank Paul Miller, Ed Barnat, Steve Shannon and Shahid Rauf for their helpful comments and insights. This work was performed at Sandia National Laboratories and supported by DoE Basic Energy Sciences, Applied Materials and Sandia National Laboratories. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 20 TC 5 Z9 5 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0963-0252 J9 PLASMA SOURCES SCI T JI Plasma Sources Sci. Technol. PD FEB PY 2010 VL 19 IS 1 AR 015020 DI 10.1088/0963-0252/19/1/015020 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 547NC UT WOS:000273895300020 ER PT J AU Ganusov, VV Borghans, JAM De Boer, RJ AF Ganusov, Vitaly V. Borghans, Jose A. M. De Boer, Rob J. TI Explicit Kinetic Heterogeneity: Mathematical Models for Interpretation of Deuterium Labeling of Heterogeneous Cell Populations SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID CD8(+) T-CELLS; HIV-1 INFECTION; PROLIFERATION; LYMPHOCYTES; TURNOVER; MEMORY; DNA; 5-BROMO-2'-DEOXYURIDINE; QUANTIFICATION; ACTIVATION AB Estimation of division and death rates of lymphocytes in different conditions is vital for quantitative understanding of the immune system. Deuterium, in the form of deuterated glucose or heavy water, can be used to measure rates of proliferation and death of lymphocytes in vivo. Inferring these rates from labeling and delabeling curves has been subject to considerable debate with different groups suggesting different mathematical models for that purpose. We show that the three most common models, which are based on quite different biological assumptions, actually predict mathematically identical labeling curves with one parameter for the exponential up and down slope, and one parameter defining the maximum labeling level. By extending these previous models, we here propose a novel approach for the analysis of data from deuterium labeling experiments. We construct a model of "kinetic heterogeneity'' in which the total cell population consists of many sub-populations with different rates of cell turnover. In this model, for a given distribution of the rates of turnover, the predicted fraction of labeled DNA accumulated and lost can be calculated. Our model reproduces several previously made experimental observations, such as a negative correlation between the length of the labeling period and the rate at which labeled DNA is lost after label cessation. We demonstrate the reliability of the new explicit kinetic heterogeneity model by applying it to artificially generated datasets, and illustrate its usefulness by fitting experimental data. In contrast to previous models, the explicit kinetic heterogeneity model 1) provides a novel way of interpreting labeling data; 2) allows for a non-exponential loss of labeled cells during delabeling, and 3) can be used to describe data with variable labeling length. C1 [Ganusov, Vitaly V.; De Boer, Rob J.] Univ Utrecht, Utrecht, Netherlands. [Ganusov, Vitaly V.] Russian Acad Sci, Inst Biophys, Krasnoyarsk, Russia. [Borghans, Jose A. M.] Univ Med Ctr Utrecht, Utrecht, Netherlands. RP Ganusov, VV (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM vitaly.ganusov@gmail.com RI De Boer, Rob/B-6050-2011; OI De Boer, Rob/0000-0002-2130-691X; Ganusov, Vitaly/0000-0001-6572-1691 FU NWO [016.048.603, 836.07.002]; U.S. Department of Energy FX This work was supported by the VICI grant 016.048.603 from NWO, Marie Curie Incoming International Fellowship (FP6), the Research Council for Earth and Life Sciences (ALW) with financial aid from the Netherlands Organization for Scientific Research ( NWO), grant 836.07.002, and the U.S. Department of Energy through the LANL/LDRD Program. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 24 TC 10 Z9 10 U1 0 U2 2 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-734X J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD FEB PY 2010 VL 6 IS 2 AR e1000666 DI 10.1371/journal.pcbi.1000666 PG 11 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 565AI UT WOS:000275260000030 PM 20140186 ER PT J AU Han, J Chang, H Giricz, O Lee, GY Baehner, FL Gray, JW Bissell, MJ Kenny, PA Parvin, B AF Han, Ju Chang, Hang Giricz, Orsi Lee, Genee Y. Baehner, Frederick L. Gray, Joe W. Bissell, Mina J. Kenny, Paraic A. Parvin, Bahram TI Molecular Predictors of 3D Morphogenesis by Breast Cancer Cell Lines in 3D Culture SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID ACTIVATED-RECEPTOR-GAMMA; GENE-EXPRESSION DATA; EPITHELIAL-CELLS; BASEMENT-MEMBRANE; 3-DIMENSIONAL CULTURE; TUMOR-GROWTH; IN-VIVO; DIFFERENTIATION; INDUCTION; TRANSFORMATION AB Correlative analysis of molecular markers with phenotypic signatures is the simplest model for hypothesis generation. In this paper, a panel of 24 breast cell lines was grown in 3D culture, their morphology was imaged through phase contrast microscopy, and computational methods were developed to segment and represent each colony at multiple dimensions. Subsequently, subpopulations from these morphological responses were identified through consensus clustering to reveal three clusters of round, grape-like, and stellate phenotypes. In some cases, cell lines with particular pathobiological phenotypes clustered together (e.g., ERBB2 amplified cell lines sharing the same morphometric properties as the grape-like phenotype). Next, associations with molecular features were realized through (i) differential analysis within each morphological cluster, and (ii) regression analysis across the entire panel of cell lines. In both cases, the dominant genes that are predictive of the morphological signatures were identified. Specifically, PPAR gamma has been associated with the invasive stellate morphological phenotype, which corresponds to triple-negative pathobiology. PPAR gamma has been validated through two supporting biological assays. C1 [Han, Ju; Chang, Hang; Lee, Genee Y.; Gray, Joe W.; Bissell, Mina J.; Parvin, Bahram] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Giricz, Orsi; Kenny, Paraic A.] Albert Einstein Coll Med, Dept Dev & Mol Biol, Bronx, NY 10467 USA. [Baehner, Frederick L.] Univ Calif San Francisco, Dept Pathol, San Francisco, CA USA. RP Han, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. EM B_Parvin@lbl.gov FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; National Institutes of Health [U54 CA112970, CA58207, CA090788]; Susan G. Komen for the Cure [KG091136]; Avon Foundation FX This work was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research (contract DE-AC02-05CH11231); the National Institutes of Health under grants U54 CA112970, CA58207, and CA090788; Susan G. Komen for the Cure (KG091136); and the Avon Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 51 TC 39 Z9 40 U1 1 U2 10 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-734X J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD FEB PY 2010 VL 6 IS 2 AR e1000684 DI 10.1371/journal.pcbi.1000684 PG 12 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 565AI UT WOS:000275260000005 PM 20195492 ER PT J AU Taft, CW Hussey, AJ Kuruganti, T Sorge, JN Nasipuri, A AF Taft, Cyrus W. Hussey, Aaron J. Kuruganti, Teja Sorge, John N. Nasipuri, Asis TI Low-Cost Wireless Sensors Can Improve Monitoring in Fossil-Fueled Power Plants SO POWER LA English DT Article AB As equipment ages in fossil-fueled power plants, component wear leading to machinery failure increases as a result. Extending equipment life requires increased attention to maintenance, and one way to improve maintenance planning is to detect faults prior to failure so maintenance can be scheduled at the most cost-effective, opportune time. This type of strategy benefits from the use of additional sensors, and wireless ones can often be installed with the least time and cost. C1 [Taft, Cyrus W.] Taft Engn Inc, Harriman, TN USA. [Hussey, Aaron J.] Elect Power Res Inst, Charlotte, NC USA. [Kuruganti, Teja] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Sorge, John N.] So Co Serv Inc, Birmingham, AL USA. [Nasipuri, Asis] Univ N Carolina, Charlotte, NC 28223 USA. RP Taft, CW (reprint author), Taft Engn Inc, Harriman, TN USA. EM cwtaft@taftengineering.com; ahussey@epri.com; kurugatipv@ornl.gov; jnsorge@southerco.com; anasipur@uncc.edu NR 0 TC 0 Z9 0 U1 0 U2 4 PU TRADEFAIR GROUP PI HOUSTON PA 11000 RICHMOND, STE 500, HOUSTON, TX 77042 USA SN 0032-5929 J9 POWER JI Power PD FEB PY 2010 VL 154 IS 2 BP 42 EP 45 PG 4 WC Energy & Fuels SC Energy & Fuels GA 555HZ UT WOS:000274501100018 ER PT J AU Mang, JT Hjelm, RP Francois, EG AF Mang, Joseph T. Hjelm, Rex P. Francois, Elizabeth G. TI Measurement of Porosity in a Composite High Explosive as a Function of Pressing Conditions by Ultra-Small-Angle Neutron Scattering with Contrast Variation SO PROPELLANTS EXPLOSIVES PYROTECHNICS LA English DT Article DE PBX 9501; Porosity; USANS ID SOLID EXPLOSIVES; X-RAY; PARAMETERS AB We have used ultra-small-angle neutron scattering (USANS) with contrast variation to measure the porosity over length scales 0.1 - 20 mu m in a composite high explosive, PBX 9501, formulated with a deuterated binder. Here, we explore the effect of varying the pressing intensity on the PBX 9501 microstructure. Samples of PBX 9501 were die-pressed with applied pressures ranging between 69 and 200 MPa at 90 degrees C. Five samples were prepared at each pressure that differed in the fraction of binder that was deuterated, resulting in a change in the neutron scattering length density contrast (Delta rho) of the binder relative to that of the high explosive crystallites and voids. By using this approach to discriminate scattering from voids from that clue to the binder, we determined microstructure and composition that otherwise would not have been apparent. The sample composition was determined by calculating the Porod Invariant as a function of Delta rho and comparing it with compositional estimates obtained from the bulk sample density. Structural modeling of the USANS data, assuming both spherical and cylindrical morphologies, allowed the mean size and size distribution of voids and binder-filled regions to be determined. C1 [Mang, Joseph T.; Hjelm, Rex P.; Francois, Elizabeth G.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Mang, JT (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM jtmang@lanl.gov RI Lujan Center, LANL/G-4896-2012 FU National Institute of Standards and Technology; U.S. Department of Commerce FX The authors would like to thank E. Bruce Orler for supplying the deuterated binder materials, Stephanie Hagelberg and Ernie Hartline for pressing the PBX 9501 samples, and John Barker for his help with the USANS measurements. We acknowledge the support of the National Institute of Standards and Technology, U.S. Department of Commerce, in providing the neutron research facilities used in this work. NR 25 TC 8 Z9 10 U1 1 U2 11 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0721-3115 J9 PROPELL EXPLOS PYROT JI Propellants Explos. Pyrotech. PD FEB PY 2010 VL 35 IS 1 BP 7 EP 14 DI 10.1002/prep.200900026 PG 8 WC Chemistry, Applied; Engineering, Chemical SC Chemistry; Engineering GA 565AK UT WOS:000275260200002 ER PT J AU Hoffman, DM Fontes, AT AF Hoffman, D. Mark Fontes, Aaron T. TI Density Distributions in TATB Prepared by Various Methods SO PROPELLANTS EXPLOSIVES PYROTECHNICS LA English DT Article DE Crystal Quality; Density Distribution; TATB ID REDUCED-SENSITIVITY RDX; HOT-SPOTS; EXPLOSIVES; 1,3,5-TRIAMINO-2,4,6-TRINITROBENZENE; RECRYSTALLIZATION; FORMULATIONS; SOLUBILITY; CRYSTALS; DEFECTS; IMPACT AB The density distribution of two legacy types of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) particles were compared with TATB synthesized by new routes and recrystallized in several different solvents using a density gradient technique. Legacy wet (WA) and dry aminated (DA) TATB crystalline aggregates gave average densities of 1.9157 and 1.9.163 g cm(-3), respectively. Since the theoretical maximum density (TMD) for a perfect crystal is 1.937 g cm(-3), legacy TATB crystals averaged 99% of TMD or about 1% voids. TATB synthesized from phloroglucinol (P) had comparable particle size to legacy TATBs, but significantly lower density, 1.8340 g cm(-3). TATB synthesized from 3,5 dibromoanisole (BA) was very difficult to measure because it contained extremely fine particles, but had an average density of 1.8043 g cm(-3) over a very broad range. Density distributions of TATB recrystallized from dimethylsulfoxide (DMSO), sulfolane, and an 80/20 mixture of DMSO with the ionic liquid 1-ethyl-3-methyl-imidazolium acetate (EMImOAc), with some exceptions, gave average densities comparable or better than the legacy TATBs. C1 [Hoffman, D. Mark; Fontes, Aaron T.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Hoffman, DM (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM hoggman2@llnl.gov FU Laboratory Directed Research and Development Program at LLNL [06-SI-005]; Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We would like to thank Tim Mahoney at China Lake for supplying the new TATB samples. George Overturf, John C. Estill, and Bill Mclean provided funding for this work in conj. unction with the engineering efforts of Peter Raboin and Angela Cook. Pat Lewis carried out the light scattering measurements for particle size distributions. Phil Pagoria. Alex Gash, and Yong Han prepared and provided samples of the IL/DMSO recrystallized TATBs. Alex Mitchell provided samples of sulfolane and DMSO recrystallized TATBs. Larry Fried and Rand), Simpson provided partial funding from project 06-SI-005 as part of the Laboratory Directed Research and Development Program at LLNL. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 38 TC 5 Z9 8 U1 0 U2 12 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0721-3115 J9 PROPELL EXPLOS PYROT JI Propellants Explos. Pyrotech. PD FEB PY 2010 VL 35 IS 1 BP 15 EP 23 DI 10.1002/prep.200800069 PG 9 WC Chemistry, Applied; Engineering, Chemical SC Chemistry; Engineering GA 565AK UT WOS:000275260200003 ER PT J AU Ragumani, S Sauder, JM Burley, SK Swaminathan, S AF Ragumani, Sugadev Sauder, J. Michael Burley, Stephen K. Swaminathan, Subramanyam TI Structural studies on cytosolic domain of magnesium transporter MgtE from Enterococcus faecalis SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article DE magnesium transporter; cytosolic domain; X-ray structure ID ELECTRON-DENSITY MAPS; CRYSTAL-STRUCTURE; MG2+ TRANSPORTER; RECTIFICATION; CHANNEL C1 [Ragumani, Sugadev; Swaminathan, Subramanyam] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Sauder, J. Michael; Burley, Stephen K.] Eli Lilly & Co, Lilly Biotechnol Ctr, San Diego, CA 92121 USA. RP Swaminathan, S (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. EM swami@bnl.gov FU National Institute of General Medical Sciences [GM074945]; US Department of Energy [DEAC02-98CH10886]; National Institute of Health FX Grant sponsor: National Institute of General Medical Sciences (U54 award); Grant number: GM074945; Grant sponsor: Biological and Environmental Research and of Basic Energy Science of the US Department of Energy; Contract Number: DEAC02-98CH10886; Grant sponsor: National Centre for Research Resources of the National Institute of Health NR 13 TC 3 Z9 3 U1 1 U2 4 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0887-3585 J9 PROTEINS JI Proteins PD FEB 1 PY 2010 VL 78 IS 2 BP 487 EP 491 DI 10.1002/prot.22585 PG 5 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 543CD UT WOS:000273546600022 PM 19787770 ER PT J AU Kim, J Kim, BC Lopez-Ferrer, D Petritis, K Smith, RD AF Kim, Jungbae Kim, Byoung Chan Lopez-Ferrer, Daniel Petritis, Konstantinos Smith, Richard D. TI Nanobiocatalysis for protein digestion in proteomic analysis SO PROTEOMICS LA English DT Review DE Enzyme coating; Nanobiocatalysis; Nanoproteomics; Protein digestion; Trypsin stabilization ID INTENSITY FOCUSED ULTRASOUND; HIGHLY EFFICIENT PROTEOLYSIS; DESORPTION/IONIZATION MASS-SPECTROMETRY; IMMOBILIZED MAGNETIC NANOPARTICLES; MONOLITHIC ENZYMATIC MICROREACTOR; LESS COMMON APPLICATIONS; TOF-MS ANALYSIS; ON-A-CHIP; LIQUID-CHROMATOGRAPHY; POLYACRYLAMIDE-GELS AB The process of protein digestion is a critical step for successful protein identification in bottom-up proteomic analyses. To substitute the present practice of in-solution protein digestion, which is long, tedious, and difficult to automate, many efforts have been dedicated for the development of a rapid, recyclable and automated digestion system. Recent advances of nanobiocatalytic approaches have improved the performance of protein digestion by using various nanomaterials such as nanoporous materials, magnetic nanoparticles, and polymer nanofibers. Especially, the unprecedented success of trypsin stabilization in the form of trypsin-coated nanofibers, showing no activity decrease under repeated uses for 1 year and retaining good resistance to proteolysis, has demonstrated its great potential to be employed in the development of automated, high-throughput, and on-line digestion systems. This review discusses recent developments of nanobiocatalytic approaches for the improved performance of protein digestion in speed, detection sensitivity, recyclability, and trypsin stability. In addition, we also introduce approaches for protein digestion under unconventional energy input for protein denaturation and the development of microfluidic enzyme reactors that can benefit from recent successes of these nanobiocatalytic approaches. C1 [Kim, Jungbae] Korea Univ, Dept Chem & Biol Engn, Seoul 136701, South Korea. [Kim, Byoung Chan] Inst Pasteur Korea, Songnam, Gyeonggi Do, South Korea. [Lopez-Ferrer, Daniel; Smith, Richard D.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Petritis, Konstantinos] Translat Genom Res Inst, Phoenix, AZ USA. RP Kim, J (reprint author), Korea Univ, Dept Chem & Biol Engn, Seoul 136701, South Korea. EM jbkim3@korea.ac.kr RI Petritis, Konstantinos/F-2156-2010; Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 FU NCRR NIH HHS [P41 RR018522, P41 RR018522-07] NR 71 TC 39 Z9 39 U1 3 U2 58 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1615-9853 J9 PROTEOMICS JI Proteomics PD FEB PY 2010 VL 10 IS 4 SI SI BP 687 EP 699 DI 10.1002/pmic.200900519 PG 13 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 565AO UT WOS:000275260700008 PM 19953546 ER PT J AU Gilliland, RL Brown, TM Christensen-Dalsgaard, J Kjeldsen, H Aerts, C Appourchaux, T Basu, S Bedding, TR Chaplin, WJ Cunha, MS De Cat, P De Ridder, J Guzik, JA Handler, G Kawaler, S Kiss, L Kolenberg, K Kurtz, DW Metcalfe, TS Monteiro, MJPFG Szabo, R Arentoft, T Balona, L Debosscher, J Elsworth, YP Quirion, PO Stello, D Suarez, JC Borucki, WJ Jenkins, JM Koch, D Kondo, Y Latham, DW Rowe, JF Steffen, JH AF Gilliland, Ronald L. Brown, Timothy M. Christensen-Dalsgaard, Jorgen Kjeldsen, Hans Aerts, Conny Appourchaux, Thierry Basu, Sarbani Bedding, Timothy R. Chaplin, William J. Cunha, Margarida S. De Cat, Peter De Ridder, Joris Guzik, Joyce A. Handler, Gerald Kawaler, Steven Kiss, Laszlo Kolenberg, Katrien Kurtz, Donald W. Metcalfe, Travis S. Monteiro, Mario J. P. F. G. Szabo, Robert Arentoft, Torben Balona, Luis Debosscher, Jonas Elsworth, Yvonne P. Quirion, Pierre-Olivier Stello, Dennis Carlos Suarez, Juan Borucki, William J. Jenkins, Jon M. Koch, David Kondo, Yoji Latham, David W. Rowe, Jason F. Steffen, Jason H. TI Kepler Asteroseismology Program: Introduction and First Results SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Review ID SOLAR-LIKE OSCILLATIONS; MAIN-SEQUENCE STARS; WHITE-DWARF STARS; SUBDWARF-B STARS; ORDER G-MODES; NONRADIAL OSCILLATIONS; RED GIANTS; HYBRID PULSATORS; THETA-OPHIUCHI; VARIABLE-STARS AB Asteroseismology involves probing the interiors of stars and quantifying their global properties, such as radius and age, through observations of normal modes of oscillation. The technical requirements for conducting asteroseismology include ultrahigh precision measured in photometry in parts per million, as well as nearly continuous time series over weeks to years, and cadences rapid enough to sample oscillations with periods as short as a few minutes. We report on results from the first 43 days of observations, in which the unique capabilities of Kepler in providing a revolutionary advance in asteroseismology are already well in evidence. The Kepler asteroseismology program holds intrinsic importance in supporting the core planetary search program through greatly enhanced knowledge of host star properties, and extends well beyond this to rich applications in stellar astrophysics. C1 [Gilliland, Ronald L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Brown, Timothy M.] Las Cumbres Observ Global Telescope, Goleta, CA 93117 USA. [Christensen-Dalsgaard, Jorgen; Kjeldsen, Hans; Arentoft, Torben; Quirion, Pierre-Olivier] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus, Denmark. [Aerts, Conny; De Ridder, Joris; Debosscher, Jonas] Katholieke Univ Leuven, Inst Sterrenkunde, B-3001 Louvain, Belgium. [Appourchaux, Thierry] Univ Paris 11, Inst Astrophys Spatiale, F-91405 Orsay, France. [Basu, Sarbani] Yale Univ, Dept Astron, New Haven, CT 06520 USA. [Bedding, Timothy R.; Kiss, Laszlo; Stello, Dennis] Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW 2006, Australia. [Chaplin, William J.; Elsworth, Yvonne P.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Cunha, Margarida S.; Monteiro, Mario J. P. F. G.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. [De Cat, Peter] Observ Royal Belgique, B-1180 Brussels, Belgium. [Guzik, Joyce A.] LANL, Div Appl Phys, Los Alamos, NM 87545 USA. [Handler, Gerald; Kolenberg, Katrien] Univ Vienna, Inst Astron, A-1180 Vienna, Austria. [Kawaler, Steven] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Kiss, Laszlo; Szabo, Robert] Konkoly Observ Budapest, H-1525 Budapest, Hungary. [Kurtz, Donald W.] Univ Cent Lancashire, Jeremiah Horrocks Inst Astrophys, Preston PR1 2HE, Lancs, England. [Metcalfe, Travis S.] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA. [Metcalfe, Travis S.] Natl Ctr Atmospher Res, SCD, Boulder, CO 80307 USA. [Balona, Luis] S African Astron Observ, ZA-7935 Cape Town, South Africa. [Quirion, Pierre-Olivier] CSA, St Hubert, PQ J3Y 8Y9, Canada. [Carlos Suarez, Juan] CSIC, Inst Astrofis Andalucia, E-18080 Granada, Spain. [Jenkins, Jon M.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. [Kondo, Yoji] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Latham, David W.] Harvard Smithsonian Astrophys Observ, Cambridge, MA 02138 USA. [Steffen, Jason H.] Fermilab Ctr Particle Astrophys, Batavia, IL 60510 USA. RP Gilliland, RL (reprint author), Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. EM gillil@stsci.edu RI Steffen, Jason/A-4320-2013; Monteiro, Mario J.P.F.G./B-4715-2008; Basu, Sarbani/B-8015-2014; Suarez, Juan Carlos/C-1015-2009; OI Monteiro, Mario J.P.F.G./0000-0003-0513-8116; Basu, Sarbani/0000-0002-6163-3472; Suarez, Juan Carlos/0000-0003-3649-8384; Bedding, Timothy/0000-0001-5943-1460; Cunha, Margarida/0000-0001-8237-7343; Bedding, Tim/0000-0001-5222-4661; Kawaler, Steven/0000-0002-6536-6367 FU NASA; European Research Council [227224]; Research Council of K. U. Leuven [GOA/2008/04]; Belgian Federal Science Policy Office-BELSPO FX Kepler is the tenth Discovery mission. Funding for this mission is provided by NASA's Science Mission Directorate. C. A., J. D. R., and J. D. received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 227224 (PROSPERITY), as well as from the Research Council of K. U. Leuven (GOA/2008/04), and from the Belgian Federal Science Policy Office-BELSPO. We are grateful to the legions of highly skilled individuals at many private businesses, universities, and research centers through whose efforts the marvelous data being returned by Kepler have been made possible. NR 85 TC 245 Z9 245 U1 3 U2 14 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD FEB PY 2010 VL 122 IS 888 BP 131 EP 143 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 553US UT WOS:000274392900001 ER PT J AU Bolton, AS Schlegel, DJ AF Bolton, Adam S. Schlegel, David J. TI Spectro-Perfectionism: An Algorithmic Framework for Photon Noise-Limited Extraction of Optical Fiber Spectroscopy SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID DIGITAL SKY SURVEY; LENS ACS SURVEY; REDSHIFT SURVEY; CCD SPECTROSCOPY; DEEP SURVEY; FIELD UNIT; REDUCTION; DISCOVERY; GALAXIES; TELESCOPES AB We describe a new algorithm for the "perfect" extraction of one-dimensional (1D) spectra from two-dimensional (2D) digital images of optical fiber spectrographs, based on accurate 2D forward modeling of the raw pixel data. The algorithm is correct for arbitrarily complicated 2D point-spread functions (PSFs), as compared to the traditional optimal extraction algorithm, which is only correct for a limited class of separable PSFs. The algorithm results in statistically independent extracted samples in the 1D spectrum, and preserves the full native resolution of the 2D spectrograph without degradation. Both the statistical errors and the 1D resolution of the extracted spectrum are accurately determined, allowing a correct chi(2) comparison of any model spectrum with the data. Using a model PSF similar to that found in the red channel of the Sloan Digital Sky Survey spectrograph, we compare the performance of our algorithm to that of cross-section based optimal extraction, and also demonstrate that our method allows coaddition and foreground estimation to be carried out as an integral part of the extraction step. This work demonstrates the feasibility of current and next-generation multifiber spectrographs for faint-galaxy surveys even in the presence of strong night-sky foregrounds. We describe the handling of subtleties arising from fiber-to-fiber cross talk, discuss some of the likely challenges in deploying our method to the analysis of a full-scale survey, and note that our algorithm could be generalized into an optimal method for the rectification and combination of astronomical imaging data. C1 [Bolton, Adam S.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Schlegel, David J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. RP Bolton, AS (reprint author), Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. EM bolton@physics.utah.edu; djschlegel@lbl.gov FU Office of Science, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors wish to thank Scott Burles, Julian Borrill, Robert Lupton, David Hogg, Sam Roweis, and Michael Blanton for valuable comments and discussions of this subject. D. J. S. acknowledges the support of the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 36 TC 26 Z9 27 U1 1 U2 3 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD FEB PY 2010 VL 122 IS 888 BP 248 EP 257 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 553US UT WOS:000274392900012 ER PT J AU Dinske, C Shapiro, SA Rutledge, JT AF Dinske, C. Shapiro, S. A. Rutledge, J. T. TI Interpretation of Microseismicity Resulting from Gel and Water Fracturing of Tight Gas Reservoirs SO PURE AND APPLIED GEOPHYSICS LA English DT Article DE Hydraulic fracturing; Microseismicity; Pressure diffusion; Permeability ID HYDRAULIC STIMULATION; GEOTHERMAL RESERVOIR; FLUID-INJECTION; MICROEARTHQUAKES; PERMEABILITY; TEXAS; FIELD AB We provide a comparative analysis of the spatio-temporal dynamics of hydraulic fracturing-induced microseismicity resulting from gel and water treatments. We show that the growth of a hydraulic fracture and its corresponding microseismic event cloud can be described by a model which combines geometry- and diffusion-controlled processes. It allows estimation of important parameters of fracture and reservoir from microseismic data, and contributes to a better understanding of related physical processes. We further develop an approach based on this model and apply it to data from hydraulic fracturing experiments in the Cotton Valley tight gas reservoir. The treatments were performed with different parameters such as the type of treatment fluid, the injection flow rate, the total volume of fluid and of proppant. In case of a gel-based fracturing, the spatio-temporal evolution of induced microseismicity shows signatures of fracture volume growth, fracturing fluid loss, as well as diffusion of the injection pressure. In contrast, in a water-based fracturing the volume creation growth and the diffusion controlled growth are not clearly separated from each other in the space-time diagram of the induced event cloud. Still, using the approach presented here, the interpretation of induced seismicity for the gel and the water treatments resulted in similar estimates of geometrical characteristics of the fractures and hydraulic properties of the reservoir. The observed difference in the permeability of the particular hydraulic fractures is probably caused by the different volume of pumped proppant. C1 [Dinske, C.; Shapiro, S. A.] Free Univ Berlin, D-12249 Berlin, Germany. [Rutledge, J. T.] Los Alamos Natl Lab, Geophys Grp, Los Alamos, NM 87545 USA. RP Dinske, C (reprint author), Free Univ Berlin, Malteserstr 74-100, D-12249 Berlin, Germany. EM carsten@geophysik.fu-berlin.de; shapiro@geophysik.fu-berlin.de; jrutledge@lanl.gov OI Shapiro, Serge/0000-0002-5062-2698 FU PHASE University research FX The research presented in this paper is supported by the sponsors of the PHASE University research project. We express our thanks to Scott Phillips and to one anonymous reviewer for their valuable comments and suggestions. NR 27 TC 11 Z9 11 U1 2 U2 16 PU BIRKHAUSER VERLAG AG PI BASEL PA VIADUKSTRASSE 40-44, PO BOX 133, CH-4010 BASEL, SWITZERLAND SN 0033-4553 J9 PURE APPL GEOPHYS JI Pure Appl. Geophys. PD FEB PY 2010 VL 167 IS 1-2 BP 169 EP 182 DI 10.1007/s00024-009-0003-6 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 557RL UT WOS:000274687700012 ER PT J AU Hamada, CA Hamada, MS AF Hamada, Christina A. Hamada, Michael S. TI All-Subsets Regression Under Effect Heredity Restrictions for Experimental Designs with Complex Aliasing SO QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL LA English DT Article DE mixed-orthogonal array; non-regular design; three-level fractional factorial design; all-subsets regression; complex aliasing AB We consider an all-subsets regression method for models under effect heredity restrictions for experimental designs with complex aliasing, whose number of potential main effects and two-factor interactions exceed the number of runs. In this paper, we present an algorithm that systematically attempts to fit all such models. We illustrate the algorithm with two published experiments. Copyright (C) 2009 John Wiley & Sons, Ltd. C1 [Hamada, Michael S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Hamada, Christina A.] Wellesley Coll, Unit 6306, Wellesley, MA 02481 USA. RP Hamada, MS (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM hamada@lanl.gov NR 8 TC 3 Z9 3 U1 0 U2 0 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0748-8017 J9 QUAL RELIAB ENG INT JI Qual. Reliab. Eng. Int. PD FEB PY 2010 VL 26 IS 1 BP 75 EP 81 DI 10.1002/qre.1037 PG 7 WC Engineering, Multidisciplinary; Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA 558QE UT WOS:000274758800007 ER PT J AU Aitken, JB Carter, EA Eastgate, H Hackett, MJ Harris, HH Levina, A Lee, YC Chen, CI Lai, B Vogt, S Lay, PA AF Aitken, Jade B. Carter, Elizabeth A. Eastgate, Harold Hackett, Mark J. Harris, Hugh H. Levina, Aviva Lee, Yao-Chang Chen, Ching-Iue Lai, Barry Vogt, Stefan Lay, Peter A. TI Biomedical applications of X-ray absorption and vibrational spectroscopic microscopies in obtaining structural information from complex systems SO RADIATION PHYSICS AND CHEMISTRY LA English DT Article; Proceedings Paper CT International Forum on Future Directions in Atomic and Condensed Matter Research and Applications CY SEP 22-23, 2008 CL Parkville, AUSTRALIA DE X-ray absorption spectroscopy; X-ray microprobe; FTIR microprobe; Raman microprobes; Cells; Tissues ID CHROMIUM(III) NUTRITIONAL SUPPLEMENTS; MULTIPLE-SCATTERING ANALYSIS; LIGAND BOND LENGTHS; HAMSTER LUNG-CELLS; RAMAN-SPECTROSCOPY; HUMAN-TEETH; 3-DIMENSIONAL STRUCTURE; ANTIINFLAMMATORY DRUGS; FLUORESCENCE DATA; BIOLOGICAL MEDIA AB Protein crystallography and NMR spectroscopy took decades to emerge as routine techniques in structural biology. X-ray absorption spectroscopy now has reached a similar stage of maturity for obtaining complementary local structural information around metals in metalloproteins. However, the relatively recent emergence of X-ray and vibrational spectroscopic microprobes that build on these techniques has enabled the structural information obtained from the "mature" techniques on isolated biomolecules to be translated into in situ structural information from inhomogeneous complex systems, such as whole cells and tissues. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Aitken, Jade B.; Carter, Elizabeth A.; Hackett, Mark J.; Harris, Hugh H.; Levina, Aviva; Lay, Peter A.] Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia. [Eastgate, Harold] Eastmac Pty Ltd, Knoxfield, Vic 3180, Australia. [Lee, Yao-Chang; Chen, Ching-Iue] Natl Synchrotron Radiat Res Ctr, Hsinchu 30076, Taiwan. [Lai, Barry; Vogt, Stefan] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Lay, PA (reprint author), Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia. RI Harris, Hugh/A-4983-2008; Lay, Peter/B-4698-2014; Vogt, Stefan/B-9547-2009; Vogt, Stefan/J-7937-2013; OI Vogt, Stefan/0000-0002-8034-5513; Vogt, Stefan/0000-0002-8034-5513; Lay, Peter/0000-0002-3232-2720; Harris, Hugh/0000-0002-3472-8628 NR 92 TC 23 Z9 24 U1 3 U2 20 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-806X J9 RADIAT PHYS CHEM JI Radiat. Phys. Chem. PD FEB PY 2010 VL 79 IS 2 BP 176 EP 184 DI 10.1016/j.radphyschem.2009.03.068 PG 9 WC Chemistry, Physical; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical SC Chemistry; Nuclear Science & Technology; Physics GA 532PY UT WOS:000272763100009 ER PT J AU Choi, J Cha, S Lee, K Shin, D Kang, J Kim, Y Kim, K Cho, P AF Choi, JongHak Cha, SangHoon Lee, KiYeol Shin, DongChul Kang, JungHo Kim, YouHyun Kim, KiHyun Cho, PyongKon TI THE DEVELOPMENT OF A GUIDANCE LEVEL FOR PATIENT DOSE FOR CT EXAMINATIONS IN KOREA SO RADIATION PROTECTION DOSIMETRY LA English DT Article AB The primary goal of this study was to analyse the state of patient doses in the field of computed tomography (CT) examinations in the Republic of Korea. All survey data including the CT applications and patient dose details were obtained from general hospitals registered in the Korean Hospital Association. The systematic analysis of the patient dose survey gives target values of the weighted computed tomography dose index (CTDIw) and dose-length product (DLP). The targeted CTDIw values were 69, 69, 31, 19, 44, 25, 24, 20, 2, 19 and 19 mGy for the brain non-contrast enhancement (BNCE), brain l contrast enhancement (BCE), neck, chest, spine, liver, pancreas, stomach, kidneys, abdomen routine and abdomen trauma protocols, respectively. The targeted DLP values were 1056, 2112, 762, 1234, 1338. 2794, 2742, 2378, 2836, 1844 and 1939 mGy cm for the BNCE, BCE, neck, chest, spine, liver, pancreas, stomach, kidneys, abdomen routine and abdomen trauma protocols, respectively. Comparing with the EUR recommendation, especially in the DLP, the adjustment of the total scan phase frequency and the shortening of the scan phase in each scan phase are needed to reduce the patients radiation exposure to international standards. C1 [Cha, SangHoon; Lee, KiYeol; Shin, DongChul; Cho, PyongKon] Korea Univ, Med Ctr, Ansan Hosp, Dept Diagnost Radiol, Ansan 425707, South Korea. [Choi, JongHak; Kang, JungHo; Kim, YouHyun] Korea Univ, Coll Hlth Sci, Dept Radiol Sci, Seoul, South Korea. [Kim, KiHyun] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Cho, P (reprint author), Korea Univ, Med Ctr, Ansan Hosp, Dept Diagnost Radiol, Ansan 425707, South Korea. EM jjjpkcho@korea.ac.kr FU Korea University FX This work was supported by the Korea University Grant. NR 18 TC 5 Z9 5 U1 0 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0144-8420 EI 1742-3406 J9 RADIAT PROT DOSIM JI Radiat. Prot. Dosim. PD FEB PY 2010 VL 138 IS 2 BP 137 EP 143 DI 10.1093/rpd/ncp236 PG 7 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 570BQ UT WOS:000275647000007 PM 19864327 ER PT J AU Henderson, MA Valluri, S Garrett, J Lopez, JT Caperell-Grant, A Mendonca, MS Rusek, A Bigsby, RM Dynlacht, JR AF Henderson, Mark A. Valluri, Shailaja Garrett, Joy Lopez, Jennifer T. Caperell-Grant, Andrea Mendonca, Marc S. Rusek, Adam Bigsby, Robert M. Dynlacht, Joseph R. TI Effects of Estrogen and Gender on Cataractogenesis Induced by High-LET Radiation SO RADIATION RESEARCH LA English DT Article ID ACCELERATED HEAVY-PARTICLES; HORMONE REPLACEMENT THERAPY; CLUSTERED DNA-DAMAGE; HUMAN LENS CELLS; IRON IONS; TGF-BETA; IRRADIATION; CATARACTS; OPACITIES; EXPRESSION AB Planning for long-duration manned lunar and interplanetary missions requires an understanding of radiation-induced cataractogenesis. Previously, it was demonstrated that low-linear energy transfer (LET) irradiation with 10 Gy of (60)Co gamma rays resulted in an increased incidence of cataracts in male rats compared to female rats. This gender difference was not due to differences in estrogen, since male rats treated with the major secreted estrogen 17-beta-estradiol (E2) showed an identical increase compared to untreated males. We now compare the incidence and rate of progression of cataracts induced by high-LET radiation in male and female Sprague-Dawley rats. Rats received a single dose of 1 Gy of 600 MeV (56)Fe ions. Lens opacification was measured at 2-4-week intervals with a slit lamp. The incidence and rate of progression of radiation-induced cataracts was significantly increased in the animals in which estrogen was available from endogenous or exogenous sources. Male rats with E2 capsules implanted had significantly higher rates of progression compared to male rats with empty capsules implanted (P = 0.025) but not compared to the intact female rats. These results contrast with data obtained after low-LET irradiation and suggest the possibility that the different types of damage caused by high- and low-LET radiation may be influenced differentially by steroid sex hormones. (C) 2010 by Radiation Research Society C1 [Henderson, Mark A.; Garrett, Joy; Lopez, Jennifer T.; Mendonca, Marc S.; Dynlacht, Joseph R.] Indiana Univ, Sch Med, Dept Radiat Oncol, Indianapolis, IN 46202 USA. [Valluri, Shailaja] Indiana Univ, Sch Med, Dept Ophthalmol, Indianapolis, IN 46202 USA. [Caperell-Grant, Andrea; Bigsby, Robert M.] Indiana Univ, Sch Med, Dept Obstet & Gynecol, Indianapolis, IN 46202 USA. [Dynlacht, Joseph R.] Indiana Univ, Sch Med, Dept Biochem & Mol Biol, Indianapolis, IN 46202 USA. [Rusek, Adam] Brookhaven Natl Lab, NSRL, Upton, NY 11973 USA. RP Dynlacht, JR (reprint author), Indiana Univ, Sch Med, Dept Radiat Oncol, Indiana Canc Pavil,RT041,535 Barnhill Dr, Indianapolis, IN 46202 USA. EM jdynlach@iupui.edu FU National Aeronautics & Space Administration [NNJ05HE64G] FX This work was supported by a grant from the National Aeronautics & Space Administration (NNJ05HE64G). The authors thank Charlie Pearson for his assistance in building the animal holder and Peter Guida, Angela Kim, Adele Billups, Laura Thompson, Kerry Bonti and MaryArm Petry for their assistance in coordinating experiments at BNL. MI-I Would like to thank his wife for her patience with his research schedule and his wife and parents for their constant support, without which this work would not be possible. NR 43 TC 5 Z9 7 U1 0 U2 1 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 J9 RADIAT RES JI Radiat. Res. PD FEB PY 2010 VL 173 IS 2 BP 191 EP 196 DI 10.1667/RR1917.1 PG 6 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA 552EH UT WOS:000274270200008 PM 20095851 ER PT J AU Bissell, M Schimmerling, W Kronenberg, A Blakely, EA AF Bissell, Mina Schimmerling, Walter Kronenberg, Amy Blakely, Eleanor A. TI Aloke Chatterjee (1940-2009) IN MEMORIAM SO RADIATION RESEARCH LA English DT Biographical-Item C1 [Bissell, Mina; Kronenberg, Amy; Blakely, Eleanor A.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Schimmerling, Walter] NASA, Washington, DC 20546 USA. RP Bissell, M (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 J9 RADIAT RES JI Radiat. Res. PD FEB PY 2010 VL 173 IS 2 BP 259 EP 260 DI 10.1667/RRXX14.1 PG 2 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA 552EH UT WOS:000274270200019 ER PT J AU Powers, HH Hunt, JE Hanson, DT McDowell, NG AF Powers, Heath H. Hunt, John E. Hanson, David T. McDowell, Nate G. TI A dynamic soil chamber system coupled with a tunable diode laser for online measurements of delta C-13, delta O-18, and efflux rate of soil-respired CO2 SO RAPID COMMUNICATIONS IN MASS SPECTROMETRY LA English DT Article ID CARBON-ISOTOPE DISCRIMINATION; ATMOSPHERIC CO2; DIOXIDE EFFLUX; NEW-MEXICO; RESPIRATION; FLUX; EXCHANGE; WATER; VEGETATION; CLIMATE AB High frequency observations of the stable isotopic composition of CO2 effluxes from soil have been sparse due in part to measurement challenges. We have developed an open-system method that utilizes a flow-through chamber coupled to a tunable diode laser (TDL) to quantify the rate of soil CO2 efflux and its delta C-13 and delta O-18 values (delta C-13(R) and delta O-18(R), respectively). We tested the method first in the laboratory using an artificial soil test column and then in a semi-arid woodland. We found that the CO2 efflux rates of 1.2 to 7.3 mu mol m(-2) s(-1) measured by the chamber-TDL system were similar to measurements made using the chamber and an infrared gas analyzer (IRGA) (R-2=0.99) and compared well with efflux rates generated from the soil test column (R-2 = 0.94). Measured delta C-13 and delta O-18 values of CO2 efflux using the chamber-TDL system at 2 min intervals were not significantly different from source air values across all efflux rates after accounting for diffusive enrichment. Field measurements during drought demonstrated a strong dependency of CO2 efflux and isotopic composition on soil water content. Addition of water to the soil beneath the chamber resulted in average changes of +6.9 mu mol m(-2) s(-1), -5.0 parts per thousand, and -55.0 parts per thousand for soil CO2 efflux, delta C-13(R) and delta O-18(R), respectively. All three variables initiated responses within 2 min of water addition, with peak responses observed within 10 min for isotopes and 20 min for efflux. The observed delta O-18(R) was more enriched than predicted from temperature-dependent H2O-CO2 equilibration theory, similar to other recent observations of delta O-18(R) from dry soils (Wingate L, Seibt U, Maseyk K, Ogee J, Almeida P, Yakir D, Pereira JS, Mencuccini M. Global Change Biol. 2008;14: 2178). The soil chamber coupled with the TDL was found to be an effective method for capturing soil CO2 efflux and its stable isotope composition at high temporal frequency. Published in 2010 by John Wiley & Sons, Ltd. C1 [Powers, Heath H.; McDowell, Nate G.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87544 USA. [Hunt, John E.] Landcare Res, Lincoln 7640, New Zealand. [Hanson, David T.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. RP Powers, HH (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, MS J495, Los Alamos, NM 87544 USA. EM hpowers@lanl.gov RI Hanson, David/J-8034-2012 FU Laboratory Directed Research and Development; Institute for Geophysical and Planetary Physics; National Science Foundation [IOS-0719118] FX We thank Will Pockman for help in determining the course of this research and for helpful comments on the draft manuscript. Thanks to Clif Meyer, Dave Bowling, Dan Breecker and Bill Riley for helpful input and technical assistance. Thanks to Steve Sargent for help with laser spectroscopy. Thank to Dan Breecker and two other anonymous reviewers for heplful comments. This work was funded by a Laboratory Directed Research and Development grant to NM, and to NM and DH grants from the Institute for Geophysical and Planetary Physics and the National Science Foundation (IOS-0719118). NR 58 TC 19 Z9 19 U1 0 U2 22 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0951-4198 EI 1097-0231 J9 RAPID COMMUN MASS SP JI Rapid Commun. Mass Spectrom. PD FEB PY 2010 VL 24 IS 3 BP 243 EP 253 DI 10.1002/rcm.4380 PG 11 WC Biochemical Research Methods; Chemistry, Analytical; Spectroscopy SC Biochemistry & Molecular Biology; Chemistry; Spectroscopy GA 553ML UT WOS:000274371000001 PM 20049893 ER PT J AU Perdian, DC Schieffer, GM Houk, RS AF Perdian, D. C. Schieffer, G. M. Houk, R. S. TI Atmospheric pressure laser desorption/ionization of plant metabolites and plant tissue using colloidal graphite SO RAPID COMMUNICATIONS IN MASS SPECTROMETRY LA English DT Article ID IMAGING MASS-SPECTROMETRY; SMALL MOLECULES; MALDI-MS; MATRIX; PEPTIDES; PROTEINS; CHROMATOGRAPHY; NANOPARTICLES; WAVELENGTH; EFFICIENCY AB Colloidal graphite is a promising matrix for atmospheric pressure laser desorption/ionization mass spectrometry. Intact [M+H](+) and [M-H](-) ions are readily produced from a wide range of small molecule plant metabolites, particularly anthocyanins, fatty acids, lipids, glycerides, and ceramides. Compared with a more traditional organic acid matrix, colloidal graphite provides more efficient ionization for small hydrophobic molecules and has a much cleaner background spectrum, especially in negative ion mode. Some important metabolites, e.g., fatty acids and glycosylated flavonoids, can be observed from Arabidopsis thaliana leaf and flower petal tissues in situ. Copyright (C) 2010 John Wiley & Sons, Ltd. C1 [Perdian, D. C.; Schieffer, G. M.; Houk, R. S.] Iowa State Univ, US DOE, Dept Chem, Ames Lab, Ames, IA 50011 USA. RP Houk, RS (reprint author), Iowa State Univ, US DOE, Dept Chem, Ames Lab, Ames, IA 50011 USA. EM rshouk@iastate.edu FU Ames Laboratory U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-07CH11358] FX We would like to thank Basil Nikolau and Zhihong Song from the Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University of Science and Technology for providing the Arabidopsis thaliana plant samples. We would also like to thank Sangwon Cha for advice on the use of colloidal graphite as a matrix. This work is supported by the Ames Laboratory U.S. Department of Energy, Office of Basic Energy Sciences. The Ames Laboratory is operated by Iowa State University of Science and Technology under DOE Contract #DE-AC02-07CH11358. NR 43 TC 12 Z9 12 U1 1 U2 13 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0951-4198 J9 RAPID COMMUN MASS SP JI Rapid Commun. Mass Spectrom. PD FEB PY 2010 VL 24 IS 4 BP 397 EP 402 DI 10.1002/rcm.4405 PG 6 WC Chemistry, Analytical; Spectroscopy SC Chemistry; Spectroscopy GA 556IT UT WOS:000274585000001 PM 20069689 ER PT J AU Al-Karaghouli, A Renne, D Kazmerski, LL AF Al-Karaghouli, Ali Renne, David Kazmerski, Lawrence L. TI Technical and economic assessment of photovoltaic-driven desalination systems SO RENEWABLE ENERGY LA English DT Review DE Photovoltaic; Desalination; Reverse-osmosis; Electrodialysis; Brackish-water; Sea water ID SEAWATER RO DESALINATION; PLANT AB Solar desalination systems are approaching technical and cost viability for producing fresh-water, a commodity of equal importance to energy in many and and coastal regions worldwide. Solar photovoltaics (PV) represent an ideal, clean alternative to fossil fuels, especially for remote communities such as grid-limited villages or isolated islands. These applications for water production in remote areas are the first to be nearing cost-competitiveness due to decreasing PV prices and increasing fossil fuel prices over the last five years. The electricity produced from PV systems for desalination applications can be used for electro-mechanical devices such as pumps or in direct-current (DC) devices. Reverse osmosis (RO) and electrodialysis (ED) desalination units are the most favorable alternatives to be coupled with PV systems. RO usually operates on alternating current (AC) for the pumps, thus requiring a DC/AC inverter. In contrast, electrodialysis uses DC for the electrodes at the cell stack, and hence, it can use the energy supplied from the PV panels with some minor power conditioning. Energy storage is critical and batteries are required for sustained operation. In this paper, we discuss the operational features and system designs of typical PV-RO and PV-ED systems in terms of their suitability and optimization for PV operation. For PV-RO and PV-ED systems, we evaluate their electricity need, capital and operational costs, and fresh-water production costs. We cover ongoing and projected research and development activities, with estimates of their potential economics. We discuss the feasibility of future solar desalination based on expected (or predicted) improvements in technology of the desalination and PV systems. Examples are provided for Middle East and other parts of the World. (C) 2009 Published by Elsevier Ltd. C1 [Al-Karaghouli, Ali; Renne, David; Kazmerski, Lawrence L.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Al-Karaghouli, A (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM ali_al-qaraghuli@nrel.gov NR 18 TC 32 Z9 32 U1 6 U2 41 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0960-1481 J9 RENEW ENERG JI Renew. Energy PD FEB PY 2010 VL 35 IS 2 BP 323 EP 328 PG 6 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA 518JV UT WOS:000271688300001 ER PT J AU Davis, AB Marshak, A AF Davis, Anthony B. Marshak, Alexander TI Solar radiation transport in the cloudy atmosphere: a 3D perspective on observations and climate impacts SO REPORTS ON PROGRESS IN PHYSICS LA English DT Review ID OPTICAL DEPTH RETRIEVALS; BOUNDARY-LAYER CLOUDS; OXYGEN A-BAND; INDEPENDENT PIXEL APPROXIMATION; DENSITY-FUNCTION DERIVATION; SPHERICAL HARMONICS MODEL; MULTIPLE-SCATTERING LIDAR; GROUND-BASED MEASUREMENTS; NEURAL-NETWORK RETRIEVAL; DISCRETE-ORDINATE-METHOD AB The interplay of sunlight with clouds is a ubiquitous and often pleasant visual experience, but it conjures up major challenges for weather, climate, environmental science and beyond. Those engaged in the characterization of clouds (and the clear air nearby) by remote sensing methods are even more confronted. The problem comes, on the one hand, from the spatial complexity of real clouds and, on the other hand, from the dominance of multiple scattering in the radiation transport. The former ingredient contrasts sharply with the still popular representation of clouds as homogeneous plane-parallel slabs for the purposes of radiative transfer computations. In typical cloud scenes the opposite asymptotic transport regimes of diffusion and ballistic propagation coexist. We survey the three-dimensional (3D) atmospheric radiative transfer literature over the past 50 years and identify three concurrent and intertwining thrusts: first, how to assess the damage (bias) caused by 3D effects in the operational 1D radiative transfer models? Second, how to mitigate this damage? Finally, can we exploit 3D radiative transfer phenomena to innovate observation methods and technologies? We quickly realize that the smallest scale resolved computationally or observationally may be artificial but is nonetheless a key quantity that separates the 3D radiative transfer solutions into two broad and complementary classes: stochastic and deterministic. Both approaches draw on classic and contemporary statistical, mathematical and computational physics. C1 [Davis, Anthony B.] Los Alamos Natl Lab, Space & Remote Sensing Grp, Los Alamos, NM 87545 USA. [Marshak, Alexander] NASA, Goddard Space Flight Ctr, Climate & Radiat Branch, Greenbelt, MD 20771 USA. RP Davis, AB (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Anthony.B.Davis@jpl.nasa.gov; Alexander.Marshak@nasa.gov RI Marshak, Alexander/D-5671-2012 FU US Department of Energy; NASA's; Laboratory Directed Research & Development (LDRD) Programs; JPL/CalTech FX The author's research described in this paper was supported largely by the Office of Biological and Environmental Research of the US Department of Energy as part of the Atmospheric Radiation Measurement (ARM) Program. The authors also acknowledge sustained financial support from NASA's Radiation Sciences Program and from the Laboratory Directed Research & Development (LDRD) Programs at the DOE's Los Alamos National Laboratory. Most of the writing and publication of this paper was supported by JPL/CalTech, under contract with NASA. The authors thank Howard Barker, Luc Bissonnette, Hartmut Bosch, Bob Cahalan, Brian Cairns, Christine Chiu, Jim Coakley, Dave Crisp, Roger Davies, Ed Eloranta, Frank Evans, Nicolas Ferlay, Pierre Flamant, Philip Gabriel, Mike Garay, Barry Ganapol, Larry di Girolamo, Mike Hall, Lee Harrison, Robin Hogan, Yongxiang Hu, Yuri Knyazikhin, Alexander Kokhanovsky, Alexander Kostinski, Ed Larsen, Paul Lawson, Norman Loeb, Steve Love, Bernhart Mayer, Charles Miller, Qilong Min, Michael Mishchenko, Jim Morel, Dennis O'Brien, Lazaros Oreopoulos, Klaus Pfeilsticker, Igor Polonsky, Christian von Savigny, Jim Spinhirne, Graeme Stephens, Tamas Varnai, Mark Vaughan, Jim Weinman, Guoyong Wen, Dave Winker, Warren Wiscombe, Ping Yang, Yuekui Yang, Eleonora Zege and Tobias Zinner for many fruitful discussions. NR 290 TC 35 Z9 38 U1 4 U2 20 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0034-4885 EI 1361-6633 J9 REP PROG PHYS JI Rep. Prog. Phys. PD FEB PY 2010 VL 73 IS 2 AR 026801 DI 10.1088/0034-4885/73/2/026801 PG 70 WC Physics, Multidisciplinary SC Physics GA 546JN UT WOS:000273807200003 ER PT J AU Ahn, JW Maingi, R Mastrovito, D Roquemore, AL AF Ahn, J. -W. Maingi, R. Mastrovito, D. Roquemore, A. L. TI High speed infrared camera diagnostic for heat flux measurement in NSTX SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE plasma diagnostics; Tokamak devices ID SPHERICAL-TORUS-EXPERIMENT AB A new high speed infrared camera has been successfully implemented and produced first set of heat flux measurements on the lower divertor tiles in the NSTX tokamak. High spatial and temporal resolutions, 6.4 mm and 1.6-6.3 kHz, respectively, enable us to investigate detailed structure of heat flux deposition pattern caused by transient events such as edge localized modes. A comparison of the data with a slow infrared camera viewing the same region of interest shows good agreement between the two independent measurements. Data analysis for various plasma conditions is in progress. C1 [Ahn, J. -W.; Maingi, R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Mastrovito, D.; Roquemore, A. L.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Ahn, JW (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. FU U.S. Department of Energy [DE-AC05-00OR22725, DE-AC02-09CH11466] FX This work was supported by the U.S. Department of Energy, Contract Nos. DE-AC05-00OR22725 and DE-AC02-09CH11466. NR 9 TC 22 Z9 22 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2010 VL 81 IS 2 AR 023501 DI 10.1063/1.3297899 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 562DB UT WOS:000275028400176 PM 20192490 ER PT J AU Alessi, JG Barton, D Beebe, E Bellavia, S Gould, O Kponou, A Lambiase, R Lockey, R McNerney, A Mapes, M Marneris, Y Okamura, M Phillips, D Pikin, AI Raparia, D Ritter, J Snydstrup, L Theisen, C Wilinski, M AF Alessi, J. G. Barton, D. Beebe, E. Bellavia, S. Gould, O. Kponou, A. Lambiase, R. Lockey, R. McNerney, A. Mapes, M. Marneris, Y. Okamura, M. Phillips, D. Pikin, A. I. Raparia, D. Ritter, J. Snydstrup, L. Theisen, C. Wilinski, M. TI The Brookhaven National Laboratory electron beam ion source for RHIC SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 13th International Conference on Ion Sources (ICIS'09) CY SEP 20-25, 2009 CL Gatlinburg, TN DE electron beams; electron guns; electron sources; ion sources; linear accelerators; particle beam extraction; particle beam injection; power supplies to apparatus; superconducting magnets ID CATHODES; EBIS AB As part of a new heavy ion preinjector that will supply beams for the Relativistic Heavy Ion Collider and the National Aeronautics and Space Administration Space Radiation Laboratory, construction of a new electron beam ion source (EBIS) is now being completed. This source, based on the successful prototype Brookhaven National Laboratory Test EBIS, is designed to produce milliampere level currents of all ion species, with q/m=(1/6)-(1/2). Among the major components of this source are a 5 T, 2-m-long, 204 mm diameter warm bore superconducting solenoid, an electron gun designed to operate at a nominal current of 10 A, and an electron collector designed to dissipate similar to 300 kW of peak power. Careful attention has been paid to the design of the vacuum system, since a pressure of 10(-10) Torr is required in the trap region. The source includes several differential pumping stages, the trap can be baked to 400 C, and there are non-evaporable getter strips in the trap region. Power supplies include a 15 A, 15 kV electron collector power supply, and fast switchable power supplies for most of the 16 electrodes used for varying the trap potential distribution for ion injection, confinement, and extraction. The EBIS source and all EBIS power supplies sit on an isolated platform, which is pulsed up to a maximum of 100 kV during ion extraction. The EBIS is now fully assembled, and operation will be beginning following final vacuum and power supply tests. Details of the EBIS components are presented. C1 [Alessi, J. G.; Barton, D.; Beebe, E.; Bellavia, S.; Gould, O.; Kponou, A.; Lambiase, R.; Lockey, R.; McNerney, A.; Mapes, M.; Marneris, Y.; Okamura, M.; Phillips, D.; Pikin, A. I.; Raparia, D.; Ritter, J.; Snydstrup, L.; Theisen, C.; Wilinski, M.] Brookhaven Natl Lab, Collider Accelerator Dept, Brookhaven Natl Lab, Upton, NY 11973 USA. RP Alessi, JG (reprint author), Brookhaven Natl Lab, Collider Accelerator Dept, Brookhaven Natl Lab, Upton, NY 11973 USA. RI Lambiase, Robert/E-1934-2013 NR 6 TC 18 Z9 18 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2010 VL 81 IS 2 AR 02A509 DI 10.1063/1.3292937 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 562DB UT WOS:000275028400100 PM 20192364 ER PT J AU Den Hartog, DJ Holly, DJ O'Connell, R Beach, RJ Payne, SA Carlstrom, TN AF Den Hartog, D. J. Holly, D. J. O'Connell, R. Beach, R. J. Payne, S. A. Carlstrom, T. N. TI Erratum: "Prospects for measurement of rapid equilibrium changes and electron fluctuations using a high repetition rate Thomson scattering diagnostic" [Rev. Sci. Instrum. 74, 1653 (2003)] SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Correction DE neodymium; solid lasers; specific heat; thermal conductivity; thermal diffusion; yttrium compounds C1 [Den Hartog, D. J.; Holly, D. J.; O'Connell, R.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Beach, R. J.; Payne, S. A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Carlstrom, T. N.] Gen Atom Co, San Diego, CA 92186 USA. RP Den Hartog, DJ (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. EM djdenhar@wisc.edu NR 4 TC 0 Z9 0 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2010 VL 81 IS 2 AR 029902 DI 10.1063/1.3301499 PG 1 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 562DB UT WOS:000275028400215 ER PT J AU Dudnikov, V Johnson, RP Dudnikova, G Stockli, M Welton, R AF Dudnikov, Vadim Johnson, Rolland P. Dudnikova, Galina Stockli, Martin Welton, Robert TI Spallation neutron source saddle antenna H- ion source project SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 13th International Conference on Ion Sources (ICIS'09) CY SEP 20-25, 2009 CL Gatlinburg, TN DE antennas in plasma; hydrogen ions; ion sources; negative ions; plasma confinement; plasma density; plasma sources AB In this project we are developing an H- source which will synthesize the most important developments in the field of negative ion sources to provide high current, high brightness, good lifetime, high reliability, and high power efficiency. We describe two planned modifications to the present spallation neutron source external antenna source in order to increase the plasma density near the output aperture: (1) replacing the present 2 MHz plasma-forming solenoid antenna with a 13 MHz saddle-type antenna and (2) replacing the permanent multicusp magnetic system with a weaker electromagnet. C1 [Dudnikov, Vadim; Johnson, Rolland P.] Muons Inc, Batavia, IL 60510 USA. [Dudnikova, Galina] Univ Maryland, College Pk, MD 20742 USA. [Stockli, Martin; Welton, Robert] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Dudnikov, V (reprint author), Muons Inc, Batavia, IL 60510 USA. EM dvg43@yahoo.com NR 8 TC 1 Z9 1 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2010 VL 81 IS 2 AR 02A709 DI 10.1063/1.3277183 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 562DB UT WOS:000275028400115 PM 20192379 ER PT J AU Ferracin, P Caspi, S Felice, H Leitner, D Lyneis, CM Prestemon, S Sabbi, GL Todd, DS AF Ferracin, P. Caspi, S. Felice, H. Leitner, D. Lyneis, C. M. Prestemon, S. Sabbi, G. L. Todd, D. S. TI Nb3Sn superconducting magnets for electron cyclotron resonance ion sources SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 13th International Conference on Ion Sources (ICIS'09) CY SEP 20-25, 2009 CL Gatlinburg, TN DE cyclotron resonance; ion sources; niobium alloys; plasma sources; superconducting coils; superconducting magnets; tin alloys AB Electron cyclotron resonance (ECR) ion sources are an essential component of heavy-ion accelerators. Over the past few decades advances in magnet technology and an improved understanding of the ECR ion source plasma physics have led to remarkable performance improvements of ECR ion sources. Currently third generation high field superconducting ECR ion sources operating at frequencies around 28 GHz are the state of the art ion injectors and several devices are either under commissioning or under design around the world. At the same time, the demand for increased intensities of highly charged heavy ions continues to grow, which makes the development of even higher performance ECR ion sources a necessity. To extend ECR ion sources to frequencies well above 28 GHz, new magnet technology will be needed in order to operate at higher field and force levels. The superconducting magnet program at LBNL has been developing high field superconducting magnets for particle accelerators based on Nb3Sn superconducting technology for several years. At the moment, Nb3Sn is the only practical conductor capable of operating at the 15 T field level in the relevant configurations. Recent design studies have been focused on the possibility of using Nb3Sn in the next generation of ECR ion sources. In the past, LBNL has worked on the VENUS ECR, a 28 GHz source with solenoids and a sextupole made with NbTi operating at fields of 6-7 T. VENUS has now been operating since 2004. We present in this paper the design of a Nb3Sn ECR ion source optimized to operate at an rf frequency of 56 GHz with conductor peak fields of 13-15 T. Because of the brittleness and strain sensitivity of Nb3Sn, particular care is required in the design of the magnet support structure, which must be capable of providing support to the coils without overstressing the conductor. In this paper, we present the main features of the support structure, featuring an external aluminum shell pretensioned with water-pressurized bladders, and we analyze the expected coil stresses with a two-dimensional finite element mechanical model. C1 [Ferracin, P.; Caspi, S.; Felice, H.; Leitner, D.; Lyneis, C. M.; Prestemon, S.; Sabbi, G. L.; Todd, D. S.] Lawrence Berkeley Lab, Berkeley, CA 94705 USA. RP Ferracin, P (reprint author), Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94705 USA. EM pferracinl@lbl.gov NR 16 TC 4 Z9 4 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2010 VL 81 IS 2 AR 02A309 DI 10.1063/1.3259234 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 562DB UT WOS:000275028400066 PM 20192330 ER PT J AU Gottwald, T Havener, C Lassen, J Liu, Y Mattolat, C Raeder, S Rothe, S Wendt, K AF Gottwald, T. Havener, C. Lassen, J. Liu, Y. Mattolat, C. Raeder, S. Rothe, S. Wendt, K. TI Ion production from solid state laser ion sources SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 13th International Conference on Ion Sources (ICIS'09) CY SEP 20-25, 2009 CL Gatlinburg, TN DE ion sources; ionisation; plasma production by laser ID SPECTROSCOPY; NI; GE AB Laser ion sources based on resonant excitation and ionization of atoms are well-established tools for selective and efficient production of radioactive ion beams. Recent developments are focused on the use of the state-of-the-art all solid-state laser systems. To date, 35 elements of the periodic table are available from laser ion sources based on tunable Ti:sapphire lasers. Recent progress in this field regarding the establishment of suitable optical excitation schemes for Ti:sapphire lasers are reported. C1 [Gottwald, T.; Mattolat, C.; Raeder, S.; Wendt, K.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55128 Mainz, Germany. [Havener, C.; Liu, Y.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Lassen, J.] TRIUMF ISAC Div, Vancouver, BC V6T 2A3, Canada. [Rothe, S.] CERN, CH-1211 Geneva 23, Switzerland. RP Gottwald, T (reprint author), Johannes Gutenberg Univ Mainz, Inst Phys, Staudinger Weg 7, D-55128 Mainz, Germany. EM tina.gottwald@uni-mainz.de RI Wendt, Klaus/D-7306-2011; Raeder, Sebastian/F-5910-2013; Rothe, Sebastian/N-5512-2014 OI Wendt, Klaus/0000-0002-9033-9336; Rothe, Sebastian/0000-0001-5727-7754 NR 13 TC 6 Z9 6 U1 2 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2010 VL 81 IS 2 AR 02A514 DI 10.1063/1.3273067 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 562DB UT WOS:000275028400105 PM 20192369 ER PT J AU Gushenets, VI Hershcovitch, A Kulevoy, TV Oks, EM Savkin, KP Vizir, AV Yushkov, GY AF Gushenets, V. I. Hershcovitch, A. Kulevoy, T. V. Oks, E. M. Savkin, K. P. Vizir, A. V. Yushkov, G. Yu. TI Boron ion source based on planar magnetron discharge in self-sputtering mode SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE boron; discharges (electric); electrical conductivity; ion sources; sputtering ID IMPLANTATION AB An ion source based on a planar magnetron sputtering device with thermally isolated target has been designed and demonstrated. For a boron sputtering target, high target temperature is required because boron has low electrical conductivity at room temperature, increasing with temperature. The target is well-insulated thermally and can be heated by an initial low-current, high-voltage discharge mode. A discharge power of 16 W was adequate to attain the required surface temperature (400 degrees C), followed by transition of the discharge to a high-current, low-voltage mode for which the magnetron enters a self-sputtering operational mode. Beam analysis was performed with a time-of-flight system; the maximum boron ion fraction in the beam is greater than 99%, and the mean boron ion fraction, time-integrated over the whole pulse length, is about 95%. We have plans to make the ion source steady state and test with a bending magnet. This kind of boron ion source could be competitive to conventional boron ion sources that utilize compounds such as BF(3), and could be useful for semiconductor industry application. C1 [Gushenets, V. I.; Oks, E. M.; Savkin, K. P.; Vizir, A. V.; Yushkov, G. Yu.] Russian Acad Sci, Inst High Current Elect, Tomsk 634055, Russia. [Hershcovitch, A.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Kulevoy, T. V.] ITEP, Moscow 117218, Russia. RP Gushenets, VI (reprint author), Russian Acad Sci, Inst High Current Elect, Tomsk 634055, Russia. EM vizir@opee.hcei.tsc.ru RI Oks, Efim/A-9409-2014; Yushkov, Georgy/O-8024-2015; Vizir, Alexey/R-2139-2016 OI Oks, Efim/0000-0002-9323-0686; Yushkov, Georgy/0000-0002-7615-6058; Vizir, Alexey/0000-0002-9563-8650 FU Russian Foundation for Basic Research [07-08-00337, 09-08-00404-a] FX This work was supported by the Russian Foundation for Basic Research under Grant Nos. RFBR # 07-08-00337 and RFBR # 09-08-00404-a. Special thanks to Dr. Ian Brown (Berkeley Laboratory) for helpful discussions and correction of English. NR 10 TC 7 Z9 7 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2010 VL 81 IS 2 AR 02B303 DI 10.1063/1.3258029 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 562DB UT WOS:000275028400053 PM 20192426 ER PT J AU Han, BX Stockli, MP Welton, RF Pennisi, TR Murray, SN Santana, M Long, CD AF Han, B. X. Stockli, M. P. Welton, R. F. Pennisi, T. R. Murray, S. N. Santana, M. Long, C. D. TI Emittance studies of the Spallation Neutron Source external-antenna H(-) ion source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE antennas in plasma; hydrogen ions; ion beams; ion sources; particle beam diagnostics; particle beam extraction; plasma sources AB A new Allison-type emittance scanner has been built to characterize the ion sources and low energy beam transport systems at Spallation Neutron Source. In this work, the emittance characteristics of the H(-) beam produced with the external-antenna rf-driven ion source and transported through the two-lens electrostatic low energy beam transport are studied. The beam emittance dependence on beam intensity, extraction parameters, and the evolution of the emittance and twiss parameters over beam pulse duration are presented. C1 [Han, B. X.; Stockli, M. P.; Welton, R. F.; Pennisi, T. R.; Murray, S. N.; Santana, M.; Long, C. D.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP Han, BX (reprint author), Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. EM hanb@ornl.gov NR 5 TC 2 Z9 2 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2010 VL 81 IS 2 AR 02B721 DI 10.1063/1.3292935 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 562DB UT WOS:000275028400018 PM 20192461 ER PT J AU Harris, PR Meyer, FW AF Harris, P. R. Meyer, F. W. TI Plasma potential and energy spread determination using ion beams extracted from an electron cyclotron resonance source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 13th International Conference on Ion Sources (ICIS'09) CY SEP 20-25, 2009 CL Gatlinburg, TN DE cyclotron resonance; plasma simulation; plasma sources; plasma-beam interactions ID DECELERATED BEAMS; ORNL AB We have obtained estimates of plasma potentials and energy spreads characterizing an electron cyclotron resonance ion source plasma under different source conditions. Our estimates are obtained from analysis of ion beams extracted from the ion source at 10 kV that are subsequently decelerated into a floating surface scattering chamber where their current intensity incident on a solid sample is measured as function of retardation voltage. The deceleration occurs outside the measurement chamber, permitting beam current measurements in a field-free region. Absence of grids in the deceleration section avoids potential issues of field penetration. The behavior of our deceleration optics was modeled with SIMION. The simulation indicated a linear beam attenuation dependence close to full retardation where the beam current goes to zero. Deviations from this linear dependence observed close to zero beam energy give information on the initial energy spread of the ions extracted from the source. Our decelerated beams measurements are compared with recent in situ probe results and external beams results based on magnetic analysis. C1 [Harris, P. R.; Meyer, F. W.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Harris, PR (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. EM harrispr@ornl.gov NR 13 TC 5 Z9 5 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2010 VL 81 IS 2 AR 02A310 DI 10.1063/1.3272847 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 562DB UT WOS:000275028400067 PM 20192331 ER PT J AU Ji, Q Sy, A Kwan, JW AF Ji, Q. Sy, A. Kwan, J. W. TI Radio frequency-driven proton source with a back-streaming electron dump SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE accelerator RF systems; hydrogen ions; ion sources; planar antennas; proton sources; quartz ID ION-SOURCE AB This article describes an rf ion source with a back-streaming electron dump. A quartz tube, brazed to a metal plug at one end, is fused in the center of a flat quartz plate. rf power (at 13.6 MHz) is coupled to generate hydrogen plasma using a planar external antenna bonded to the window. Bonding the water-cooled rf antenna to the quartz window significantly lowers its temperature. The water-cooled metal plug serves as the back-streaming electron dump. At 1800 W, the current density of extracted hydrogen ions reaches approximately 125 mA/cm(2). C1 [Ji, Q.; Sy, A.; Kwan, J. W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Sy, A.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. RP Ji, Q (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd,MS 5R0121, Berkeley, CA 94720 USA. EM qji@lbl.gov FU IBA Group [LB09-005439]; Department of Energy [DE-AC02-05CH11231] FX The authors would like to thank Jin-Young Jung for his help in ANSYS simulation, and S. B. Wilde, T. McVeigh, and M. Regis for their technical support. This work was supported by IBA Group under Work for Other Agreement Non-Federal Contract No. LB09-005439 and Department of Energy Contract No. DE-AC02-05CH11231. NR 4 TC 0 Z9 0 U1 1 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2010 VL 81 IS 2 AR 02B312 DI 10.1063/1.3267832 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 562DB UT WOS:000275028400044 PM 20192435 ER PT J AU Kanesue, T Okamura, M Kondo, K Tamura, J Kashiwagi, H Zhang, Z AF Kanesue, T. Okamura, M. Kondo, K. Tamura, J. Kashiwagi, H. Zhang, Z. TI Drift distance survey in direct plasma injection scheme for high current beam production SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE linear accelerators; plasma beam injection heating; plasma density; plasma transport processes AB In a laser ion source, plasma drift distance is one of the most important design parameters. Ion current density and beam pulse width are defined by plasma drift distance between a laser target and beam extraction position. In direct plasma injection scheme, which uses a laser ion source and a radio frequency quadrupole linac, we can apply relatively higher electric field at beam extraction due to the unique shape of a positively biased electrode. However, when we aim at very high current acceleration such as several tens of milliamperes, we observed mismatched beam extraction conditions. We tested three different ion current at ion extraction region by changing plasma drift distance to study better extraction condition. In this experiment, C(6+) beam was accelerated. We confirmed that matching condition can be improved by controlling plasma drift distance. C1 [Kanesue, T.] Kyushu Univ, Dept Appl Quantum Phys & Nucl Engn, Fukuoka 8190395, Japan. [Kanesue, T.; Kondo, K.; Tamura, J.] RIKEN, Radiat Lab, Wako, Saitama 3510198, Japan. [Okamura, M.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. [Kondo, K.; Tamura, J.] Tokyo Inst Technol, Dept Energy Sci, Yokohama, Kanagawa 2268503, Japan. [Kashiwagi, H.] Japan Atom Energy Agcy, Takasaki Adv Radiat Res Inst, Takasaki, Gumma 3701292, Japan. [Zhang, Z.] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China. RP Kanesue, T (reprint author), Kyushu Univ, Dept Appl Quantum Phys & Nucl Engn, Fukuoka 8190395, Japan. EM kanesue@kune2a.nucl.kyushu-u.ac.jp RI U-ID, Kyushu/C-5291-2016 NR 6 TC 4 Z9 4 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2010 VL 81 IS 2 AR 02B723 DI 10.1063/1.3298845 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 562DB UT WOS:000275028400016 PM 20192463 ER PT J AU Kang, YW Fuja, R Goulding, RH Hardek, T Lee, SW McCarthy, MP Piller, MC Shin, K Stockli, MP Welton, RF AF Kang, Y. W. Fuja, R. Goulding, R. H. Hardek, T. Lee, S. -W. McCarthy, M. P. Piller, M. C. Shin, K. Stockli, M. P. Welton, R. F. TI rf improvements for Spallation Neutron Source H- ion source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 13th International Conference on Ion Sources (ICIS'09) CY SEP 20-25, 2009 CL Gatlinburg, TN DE aluminium compounds; hydrogen ions; ion sources; negative ions; plasma production by laser; plasma sources AB The Spallation Neutron Source at Oak Ridge National Laboratory is ramping up the accelerated proton beam power to 1.4 MW and just reached 1 MW. The rf-driven multicusp ion source that originates from the Lawrence Berkeley National Laboratory has been delivering similar to 38 mA H- beam in the linac at 60 Hz, 0.9 ms. To improve availability, a rf-driven external antenna multicusp ion source with a water-cooled ceramic aluminum nitride (AlN) plasma chamber is developed. Computer modeling and simulations have been made to analyze and optimize the rf performance of the new ion source. Operational statistics and test runs with up to 56 mA medium energy beam transport beam current identify the 2 MHz rf system as a limiting factor in the system availability and beam production. Plasma ignition system is under development by using a separate 13 MHz system. To improve the availability of the rf power system with easier maintenance, we tested a 70 kV isolation transformer for the 80 kW, 6% duty cycle 2 MHz amplifier to power the ion source from a grounded solid-state amplifier. C1 [Kang, Y. W.; Fuja, R.; Hardek, T.; Lee, S. -W.; McCarthy, M. P.; Piller, M. C.; Shin, K.; Stockli, M. P.; Welton, R. F.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. [Goulding, R. H.] Oak Ridge Natl Lab, Div Fus Energy, Oak Ridge, TN 37831 USA. RP Kang, YW (reprint author), Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. EM kangyw@ornl.gov NR 5 TC 5 Z9 5 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2010 VL 81 IS 2 AR 02A725 DI 10.1063/1.3277187 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 562DB UT WOS:000275028400131 PM 20192394 ER PT J AU Kashiwagi, H Okamura, M Jameson, RA Hattori, T Hayashizaki, N AF Kashiwagi, Hirotsugu Okamura, Masahiro Jameson, R. A. Hattori, Toshiyuki Hayashizaki, Noriyosu TI Time structure of an accelerated beam using a radio-frequency quadrupole linac with direct plasma injection scheme SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE accelerator RF systems; ion sources; linear accelerators; particle beam extraction; particle beam injection; plasma beam injection heating ID LASER ION-SOURCE; RFQ LINAC; SIMULATION AB In direct plasma injection scheme, the relation between the ion current from a laser ion source and the accelerated beam current by a radio-frequency quadrupole (RFQ) linac was studied by a series of the following analyses. First, ion current at beam extraction was calculated from measured plasma parameters using a scaling law. Second, the beam emittance at the entrance of acceleration electrode region was evaluated by the simulation of the ion extraction out of the ion source plasma using the result of the first calculation. Last, the accelerated beam current could be reproduced by the simulation of beam acceleration using the results of the second. The second calculation revealed the time variation in the injected beam parameter to the RFQ linac. Then it was proved that the time structure of the accelerated beam was different from that of the injection beam because the degree of the matching between the injected beam emittance and the RFQ acceptance varied with time. C1 [Kashiwagi, Hirotsugu] Japan Atom Energy Agcy, Takasaki Radiat Chem Res Inst, Takasaki, Gumma 3701292, Japan. [Okamura, Masahiro] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. [Jameson, R. A.] Goethe Univ Frankfurt, Inst Angew Phys, D-60438 Frankfurt, Germany. [Hattori, Toshiyuki; Hayashizaki, Noriyosu] Tokyo Inst Technol, Nucl Reactors Res Lab, Meguro Ku, Tokyo 1528550, Japan. RP Kashiwagi, H (reprint author), Japan Atom Energy Agcy, Takasaki Radiat Chem Res Inst, 1233 Watanuki Machi, Takasaki, Gumma 3701292, Japan. RI Hayashizaki, Noriyosu/C-3448-2015 OI Hayashizaki, Noriyosu/0000-0002-8245-7869 NR 12 TC 2 Z9 2 U1 2 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2010 VL 81 IS 2 AR 02B724 DI 10.1063/1.3301597 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 562DB UT WOS:000275028400015 PM 20192464 ER PT J AU Kashiwagi, M Taniguchi, M Dairaku, M Grisham, LR Hanada, M Mizuno, T Tobari, H Umeda, N Watanabe, K Sakamoto, K Inoue, T AF Kashiwagi, M. Taniguchi, M. Dairaku, M. Grisham, L. R. Hanada, M. Mizuno, T. Tobari, H. Umeda, N. Watanabe, K. Sakamoto, K. Inoue, T. TI Analyses of high power negative ion accelerators for ITER neutral beam injector (invited) SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 13th International Conference on Ion Sources (ICIS'09) CY SEP 20-25, 2009 CL Gatlinburg, TN DE ion accelerators; ion beams; particle beam injection; plasma accelerators; plasma beam injection heating; research and development; Tokamak devices AB In JAEA, research and developments to realize high power accelerator (1 MeV, 40 AD(-) ion beams for 3600 s) for ITER have been carried out experimentally and numerically utilizing a five stage MAMuG (Multiaperture, Multigrid) accelerator. In this paper, the extension of the gap length, which is required to improve the voltage holding capability, is examined in two dimensional beam optics analyses and also from view point of stripping loss of ions. In order to suppress excess power loadings due to the direct interception of negative ions, which is issued in long pulse tests, the beamlet deflection is analyzed in three dimensional multibeamlet analyses. The necessary modifications shown above are applied to the MAMuG accelerator for coming long pulse tests in JAEA and ITER. C1 [Kashiwagi, M.; Taniguchi, M.; Dairaku, M.; Hanada, M.; Mizuno, T.; Tobari, H.; Umeda, N.; Watanabe, K.; Sakamoto, K.; Inoue, T.] Japan Atom Energy Agcy, Naka, Ibaraki 3110193, Japan. [Grisham, L. R.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Kashiwagi, M (reprint author), Japan Atom Energy Agcy, 801-1 Mukoyama, Naka, Ibaraki 3110193, Japan. EM kashiwagi.mieko@jaea.go.jp NR 17 TC 5 Z9 5 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2010 VL 81 IS 2 AR 02B113 DI 10.1063/1.3271137 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 562DB UT WOS:000275028400158 PM 20192419 ER PT J AU Keller, R AF Keller, R. TI High-intensity ion sources for accelerators with emphasis on H(-) beam formation and transport (invited) SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE hydrogen ions; ion accelerators; ion beams; negative ions; particle beam diagnostics; particle beam extraction; Penning discharges; Penning ion sources; plasma accelerators; plasma sources ID EXTRACTION; INJECTOR; HYDROGEN; SYSTEMS; LEBT; IONIZATION; DESIGN; OPTICS; SNS AB This paper lays out the fundamental working principles of a variety of high-current ion sources for accelerators in a tutorial manner, and gives examples of specific source types such as dc discharge-driven and rf-driven multicusp sources, Penning-type, and electron cyclotron resonance-based sources while discussing those principles, pointing out general performance limits as well as the performance parameters of specific sources. Laser-based, two-chamber, and surface-ionization sources are briefly mentioned. Main aspects of this review are particle feed, ionization mechanism, beam formation, and beam transport. Issues seen with beam formation and low-energy transport of negative hydrogen-ion beams are treated in detail. C1 Los Alamos Natl Lab, AOT ABS, Los Alamos, NM 87545 USA. RP Keller, R (reprint author), Los Alamos Natl Lab, AOT ABS, POB 1663 MSH817, Los Alamos, NM 87545 USA. EM rokion19@gmail.com NR 46 TC 2 Z9 2 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2010 VL 81 IS 2 AR 02B311 DI 10.1063/1.3272825 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 562DB UT WOS:000275028400045 PM 20192434 ER PT J AU Kim, JS Zhao, L Cluggish, BP Galkin, SA Grubert, JE Pardo, RC Vondrasek, RC AF Kim, J. S. Zhao, L. Cluggish, B. P. Galkin, S. A. Grubert, J. E. Pardo, R. C. Vondrasek, R. C. TI Integrated modeling of electron cyclotron resonance ion sources and charge breeders with GEM, MCBC, and IonEx SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 13th International Conference on Ion Sources (ICIS'09) CY SEP 20-25, 2009 CL Gatlinburg, TN DE electron accelerators; ion accelerators; ion sources; particle beam extraction; particle beam injection AB A numerical toolset to help in understanding physical processes in the electron cyclotron resonance charge breeder (ECRCB) and further to help optimization and design of current and future machines is presented. The toolset consists of three modules (Monte Carlo charge breeding code, generalized electron cyclotron resonance ion source modeling, and ion extraction), each modeling different processes occurring in the ECRCB from beam injection to extraction. The toolset provides qualitative study, such as parameter studies, and scaling of the operation, and physical understanding in the ECRCB. The methodology and a sample integrated modeling are presented. C1 [Kim, J. S.; Zhao, L.; Cluggish, B. P.; Galkin, S. A.; Grubert, J. E.] FAR TECH Inc, San Diego, CA 92121 USA. [Pardo, R. C.; Vondrasek, R. C.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Kim, JS (reprint author), FAR TECH Inc, 3550 Gen Atom Court,MS 15-155, San Diego, CA 92121 USA. EM kim@far-tech.com NR 8 TC 1 Z9 1 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2010 VL 81 IS 2 AR 02A905 DI 10.1063/1.3266147 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 562DB UT WOS:000275028400140 PM 20192403 ER PT J AU Kojima, A Hanada, M Tanaka, Y Inoue, T Watanabe, K Taniguchi, M Kashiwagi, M Umeda, N Tobari, H Grisham, LR AF Kojima, A. Hanada, M. Tanaka, Y. Inoue, T. Watanabe, K. Taniguchi, M. Kashiwagi, M. Umeda, N. Tobari, H. Grisham, L. R. CA JT-60 NBI Grp TI Achievement and improvement of the JT-60U negative ion source for JT-60 Super Advanced (invited) SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 13th International Conference on Ion Sources (ICIS'09) CY SEP 20-25, 2009 CL Gatlinburg, TN DE beam steering; deuterium; ion sources; particle beam injection; plasma beam injection heating; Tokamak devices ID RESEARCH-AND-DEVELOPMENT; BEAM INJECTION SYSTEM; NBI SYSTEM; OPERATION AB Developments of the large negative ion source have been progressed in the high-energy, high-power, and long-pulse neutral beam injector for JT-60 Super Advanced. Countermeasures have been studied and tested for critical issues of grid heat load and voltage holding capability. As for the heat load of the acceleration grids, direct interception of D(-) ions was reduced by adjusting the beamlet steering. As a result, the heat load was reduced below an allowable level for long-pulse injections. As for the voltage holding capability, local electric field was mitigated by tuning gap lengths between large-area acceleration grids in the accelerator. As a result, the voltage holding capability was improved up to the rated value of 500 kV. To investigate the voltage holding capability during beam acceleration, the beam acceleration test is ongoing with new extended gap. C1 [Kojima, A.; Hanada, M.; Tanaka, Y.; Inoue, T.; Watanabe, K.; Taniguchi, M.; Kashiwagi, M.; Umeda, N.; Tobari, H.; JT-60 NBI Grp] Japan Atom Energy Agcy, Naka, Ibaraki 3110193, Japan. [Grisham, L. R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Kojima, A (reprint author), Japan Atom Energy Agcy, Naka, Ibaraki 3110193, Japan. EM kojima.atsushi@jaea.go.jp NR 12 TC 23 Z9 24 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2010 VL 81 IS 2 AR 02B112 DI 10.1063/1.3279398 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 562DB UT WOS:000275028400157 PM 20225407 ER PT J AU Kondo, K Kanesue, T Tamura, J Okamura, M AF Kondo, K. Kanesue, T. Tamura, J. Okamura, M. TI Design study of primary ion provider for relativistic heavy ion collider electron beam ion source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 13th International Conference on Ion Sources (ICIS'09) CY SEP 20-25, 2009 CL Gatlinburg, TN DE electron accelerators; electron beams; electron sources; ion accelerators; ion beams; ion sources; particle beam injection AB Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented. C1 [Kondo, K.; Tamura, J.] Tokyo Inst Technol, Dept Energy Sci, Yokohama, Kanagawa 2268502, Japan. [Kondo, K.] RIKEN, Radiat Lab, Wako, Saitama 3510198, Japan. [Kondo, K.; Okamura, M.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. [Kanesue, T.] Kyushu Univ, Dept Appl Quantum Phys & Nucl Engn, Fukuoka 8190395, Japan. RP Kondo, K (reprint author), Tokyo Inst Technol, Dept Energy Sci, Yokohama, Kanagawa 2268502, Japan. EM kkondo@bnl.gov NR 6 TC 6 Z9 6 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2010 VL 81 IS 2 AR 02A511 DI 10.1063/1.3292941 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 562DB UT WOS:000275028400102 PM 20192366 ER PT J AU Kondo, K Kanesue, T Tamura, J Dabrowski, R Okamura, M AF Kondo, K. Kanesue, T. Tamura, J. Dabrowski, R. Okamura, M. TI Laser plasma in a magnetic field SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE ion sources; plasma confinement; plasma sources AB Laser ion source (LIS) is a candidate among various heavy ion sources. A high density plasma produced by Nd:yttrium aluminum garnet laser with drift velocity realizes high current and high charge state ion beams. In order to obtain higher beam current, we made experiments using the LIS with a magnetic field by which a confinement effect can make higher beam current. We measured total current by Faraday cup and analyzed charge distribution by electrostatic ion analyzer. It is shown that the ion beam charge state is higher by a permanent magnet. C1 [Kondo, K.; Tamura, J.] Tokyo Inst Technol, Dept Energy Sci, Yokohama, Kanagawa 2268502, Japan. [Kondo, K.] RIKEN, Radiat Lab, Wako, Saitama 3510198, Japan. [Kondo, K.; Dabrowski, R.; Okamura, M.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. [Kanesue, T.] Kyushu Univ, Dept Appl Quantum Phys & Nucl Engn, Fukuoka 8190395, Japan. RP Kondo, K (reprint author), Tokyo Inst Technol, Dept Energy Sci, Yokohama, Kanagawa 2268502, Japan. EM kkondo@bnl.gov NR 7 TC 4 Z9 4 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2010 VL 81 IS 2 AR 02B716 DI 10.1063/1.3290860 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 562DB UT WOS:000275028400023 PM 20192456 ER PT J AU Lee, SW Goulding, RH Kang, YW Shin, K Welton, RF AF Lee, S. W. Goulding, R. H. Kang, Y. W. Shin, K. Welton, R. F. TI Computer simulations for rf design of a Spallation Neutron Source external antenna H- ion source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 13th International Conference on Ion Sources (ICIS'09) CY SEP 20-25, 2009 CL Gatlinburg, TN DE antennas in plasma; hydrogen ions; ion beams; ion sources; negative ions; neutron sources; plasma radiofrequency heating; plasma simulation; plasma sources AB Electromagnetic modeling of the multicusp external antenna H- ion source for the Spallation Neutron Source (SNS) has been performed in order to optimize high-power performance. During development of the SNS external antenna ion source, antenna failures due to high voltage and multicusp magnet holder rf heating concerns under stressful operating conditions led to rf characteristics analysis. In rf simulations, the plasma was modeled as an equivalent lossy metal by defining conductivity as sigma. Insulation designs along with material selections such as ferrite and Teflon could be included in the computer simulations to compare antenna gap potentials, surface power dissipations, and input impedance at the operating frequencies, 2 and 13.56 MHz. Further modeling and design improvements are outlined in the conclusion. C1 [Lee, S. W.; Kang, Y. W.; Shin, K.; Welton, R. F.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. [Goulding, R. H.] Oak Ridge Natl Lab, Div Fus Energy, Oak Ridge, TN 37831 USA. RP Lee, SW (reprint author), Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. EM lees1@ornl.gov NR 3 TC 4 Z9 4 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2010 VL 81 IS 2 AR 02A726 DI 10.1063/1.3279304 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 562DB UT WOS:000275028400132 PM 20192395 ER PT J AU Liu, Y Beene, JR Havener, CC Vane, CR Geppert, C Gottwald, T Kessler, T Wies, K Wendt, K AF Liu, Y. Beene, J. R. Havener, C. C. Vane, C. R. Geppert, Ch. Gottwald, T. Kessler, T. Wies, K. Wendt, K. TI Time profile of ion pulses produced in a hot-cavity laser ion source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 13th International Conference on Ion Sources (ICIS'09) CY SEP 20-25, 2009 CL Gatlinburg, TN DE ion sources; ionisation; manganese; plasma confinement; plasma production by laser ID TESTS; HRIBF AB The time spreads of Mn ions produced by three-photon resonant ionization in a hot-cavity laser ion source are measured. A one-dimensional ion-transport model is developed to simulate the observed ion time structures. Assuming ions are generated with a Maxwellian velocity distribution and are guided by an axial electric field, the predictions of the model agree reasonably well with the experimental data and suggest that the ions are radially confined in the ion source and a substantial fraction of the ions in the transport tube are extracted. C1 [Liu, Y.; Beene, J. R.; Havener, C. C.; Vane, C. R.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Geppert, Ch.; Gottwald, T.; Kessler, T.; Wies, K.; Wendt, K.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. RP Liu, Y (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. EM liuy@ornl.gov RI Wendt, Klaus/D-7306-2011 OI Wendt, Klaus/0000-0002-9033-9336 NR 10 TC 2 Z9 2 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2010 VL 81 IS 2 AR 02A505 DI 10.1063/1.3273071 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 562DB UT WOS:000275028400096 PM 20192360 ER PT J AU Long, CD Stockli, MP Gorlov, TV Han, B Murray, SN Pennisi, TR AF Long, C. D. Stockli, M. P. Gorlov, T. V. Han, B. Murray, S. N. Pennisi, T. R. TI Control system for the Spallation Neutron Source H(-) source test facility Allison scanner SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE data acquisition; hydrogen; neutron sources; nuclear electronics; nuclear spallation AB Spallation Neutron Source is currently in progress of a multiyear plan to ramp ion beam power to the initial design power of 1.4 MW. Key to reaching this goal is understanding and improving the operation of the H(-) ion source. An Allison scanner was installed on the ion source in the test facility to support this improvement. This paper will discuss the hardware and the software control system of the installed Allison scanner. The hardware for the system consists of several parts. The heart of the system is the scanner head, complete with associated bias plates, slits, and signal detector. There are two analog controlled high voltage power supplies to bias the plates in the head, and a motor with associated controller to position the head in the beam. A multifunction data acquisition card reads the signals from the signal detector, as well as supplies the analog voltage control for the power supplies. To synchronize data acquisition with the source, the same timing signal that is used to trigger the source itself is used to trigger data acquisition. Finally, there is an industrial personal computer to control the rest of the hardware. Control software was developed using National Instruments LABVIEW, and consists of two parts: a data acquisition program to control the hardware and a stand alone application for offline user data analysis. C1 [Long, C. D.; Stockli, M. P.; Gorlov, T. V.; Han, B.; Murray, S. N.; Pennisi, T. R.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37830 USA. RP Long, CD (reprint author), Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37830 USA. EM l8g@ornl.gov NR 6 TC 3 Z9 3 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2010 VL 81 IS 2 AR 02B722 DI 10.1063/1.3292936 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 562DB UT WOS:000275028400017 PM 20192462 ER PT J AU Lyneis, C Leitner, D Leitner, M Taylor, C Abbott, S AF Lyneis, C. Leitner, D. Leitner, M. Taylor, C. Abbott, S. TI The third generation superconducting 28 GHz electron cyclotron resonance ion source VENUS (invited) SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 13th International Conference on Ion Sources (ICIS'09) CY SEP 20-25, 2009 CL Gatlinburg, TN DE beam handling techniques; cyclotrons; ion sources; superconducting magnets AB VENUS is a third generation electron cyclotron resonance (ECR) ion source, which incorporates a high field superconducting NbTi magnet structure, a 28 GHz gryotron microwave source and a state of the art closed cycle cryosystem. During the decade from initial concept to regular operation, it has demonstrated both the feasibility and the performance levels of this new generation of ECR ion sources and required innovation on magnet construction, plasma chamber design, and beam transport. In this paper, the development, performance, and major innovations are described as well as a look to the potential to construct a fourth generation ECR ion source. C1 [Lyneis, C.; Leitner, D.; Leitner, M.; Taylor, C.; Abbott, S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Lyneis, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM cmlyneis@lbl.gov NR 19 TC 12 Z9 12 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2010 VL 81 IS 2 AR 02A201 DI 10.1063/1.3271135 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 562DB UT WOS:000275028400056 PM 20192320 ER PT J AU Mendez, AJ Liu, Y AF Mendez, A. J., II Liu, Y. TI Extraction simulations and emittance measurements of a Holifield Radioactive Ion Beam Facility electron beam plasma source for radioactive ion beams SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE electron beams; ion accelerators; ion sources; particle beam extraction; particle beam injection; physics computing; plasma sources; radioactive ion beams; tandem accelerators ID SPACE CHARGE; HRIBF AB The Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory has a variety of ion sources used to produce radioactive ion beams (RIBs). Of these, the workhorse is an electron beam plasma (EBP) ion source. The recent addition of a second RIB injector, the Injector for Radioactive Ion Species 2 (IRIS2), for the HRIBF tandem accelerator prompted new studies of the optics of the beam extraction from the EBP source. The source was modeled using SIMION V8.0, and results will be presented, including comparison of the emittances as predicted by simulation and as measured at the HRIBF offline ion source test facilities. Also presented will be the impact on phase space shape resulting from extraction optics modifications implemented at IRIS2. C1 [Mendez, A. J., II; Liu, Y.] Oak Ridge Natl Lab, Holifield Radioact Ion Beam Facil, Oak Ridge, TN 37831 USA. RP Mendez, AJ (reprint author), Oak Ridge Natl Lab, Holifield Radioact Ion Beam Facil, Oak Ridge, TN 37831 USA. EM mendezajii@ornl.gov FU U.S. Department of Energy [DE-AC05-00OR22725] FX Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 9 TC 0 Z9 0 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2010 VL 81 IS 2 AR 02B712 DI 10.1063/1.3290859 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 562DB UT WOS:000275028400027 PM 20192452 ER PT J AU Noland, J Benitez, JY Leitner, D Lyneis, C Verboncoeur, J AF Noland, J. Benitez, J. Y. Leitner, D. Lyneis, C. Verboncoeur, J. TI Measurement of radial and axial high energy x-ray spectra in electron cyclotron resonance ion source plasmas SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 13th International Conference on Ion Sources (ICIS'09) CY SEP 20-25, 2009 CL Gatlinburg, TN DE ion sources; plasma diagnostics; plasma radiofrequency heating AB Radial and axial x-ray measurements of electron cyclotron resonance ion sources operating at microwave frequencies of 6.4 and 14 GHz are presented. Results indicate a greater detected photon energy in the radial direction than the axial direction for both the 6.4 GHz source and the 14 GHz source. It is also seen that the 14 GHz source produces x-rays with higher energies, when compared to the 6.4 GHz source, in both radial and axial directions. C1 [Noland, J.; Benitez, J. Y.; Leitner, D.; Lyneis, C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Noland, J.] Univ Calif Berkeley, Appl Sci & Technol Grad Grp, Berkeley, CA 94720 USA. [Verboncoeur, J.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. RP Noland, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM jdnoland@lbl.gov NR 8 TC 5 Z9 5 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2010 VL 81 IS 2 AR 02A308 DI 10.1063/1.3258614 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 562DB UT WOS:000275028400065 PM 20192329 ER PT J AU Okamura, M Adeyemi, A Kanesue, T Tamura, J Kondo, K Dabrowski, R AF Okamura, M. Adeyemi, A. Kanesue, T. Tamura, J. Kondo, K. Dabrowski, R. TI Magnetic plasma confinement for laser ion source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 13th International Conference on Ion Sources (ICIS'09) CY SEP 20-25, 2009 CL Gatlinburg, TN DE ion sources; plasma confinement; plasma production by laser; plasma sources; solenoids AB A laser ion source (LIS) can easily provide a high current beam. However, it has been difficult to obtain a longer beam pulse while keeping a high current. On occasion, longer beam pulses are required by certain applications. For example, more than 10 mu s of beam pulse is required for injecting highly charged beams to a large sized synchrotron. To extend beam pulse width, a solenoid field was applied at the drift space of the LIS at Brookhaven National Laboratory. The solenoid field suppressed the diverging angle of the expanding plasma and the beam pulse was widened. Also, it was observed that the plasma state was conserved after passing through a few hundred gauss of the 480 mm length solenoid field. C1 [Okamura, M.; Dabrowski, R.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Okamura, M.; Kanesue, T.; Tamura, J.; Kondo, K.] RIKEN, Wako, Saitama 3510198, Japan. [Adeyemi, A.] Holyoke Community Coll, Holyoke, MA 01040 USA. [Kanesue, T.] Kyushu Univ, Fukuoka 8190395, Japan. [Tamura, J.; Kondo, K.] Tokyo Inst Technol, Yokohama, Kanagawa 2268502, Japan. RP Okamura, M (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM okamura@bnl.gov NR 4 TC 11 Z9 11 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2010 VL 81 IS 2 AR 02A510 DI 10.1063/1.3267312 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 562DB UT WOS:000275028400101 PM 20192365 ER PT J AU Oks, E Anders, A AF Oks, Efim Anders, Andre TI A self-sputtering ion source: A new approach to quiescent metal ion beams SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE bismuth; copper; discharges (electric); ion beams; ion sources; plasma sources; silver; sputtering; zinc AB A new metal ion source is presented based on sustained self-sputtering plasma in a magnetron discharge. Metals exhibiting high self-sputtering yield such as Cu, Ag, Zn, and Bi can be used in a high-power impulse magnetron sputtering discharge such that the plasma almost exclusively contains singly charged metal ions of the target material. The plasma and extracted ion beam are quiescent. The ion beams consist mostly of singly charged ions with a space-charge limited current density which reached about 10 mA/cm(2) at an extraction voltage of 45 kV and a first gap spacing of 12 mm. C1 [Oks, Efim] Russian Acad Sci, Inst High Current Elect, Tomsk 634055, Russia. [Anders, Andre] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Oks, E (reprint author), Russian Acad Sci, Inst High Current Elect, 2-3 Acad Sky Ave, Tomsk 634055, Russia. EM aanders@lbl.gov RI Oks, Efim/A-9409-2014; Anders, Andre/B-8580-2009 OI Oks, Efim/0000-0002-9323-0686; Anders, Andre/0000-0002-5313-6505 FU U.S. Department of Energy [DE-AC02-05CH11231]; Russian Foundation for Basic Research [09-08-99023-r-ofi] FX This work was supported by the U.S. Department of Energy, Initiatives for Proliferation Prevention, under Contract No. DE-AC02-05CH11231, and by the Russian Foundation for Basic Research (Grant No. 09-08-99023-r-ofi). NR 11 TC 6 Z9 6 U1 0 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2010 VL 81 IS 2 AR 02B306 DI 10.1063/1.3272797 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 562DB UT WOS:000275028400050 PM 20192429 ER PT J AU Persaud, A Kwan, JW Leitner, M Leung, KN Ludewigt, B Tanaka, N Waldron, W Wilde, S Antolak, AJ Morse, DH Raber, T AF Persaud, A. Kwan, J. W. Leitner, M. Leung, K. -N Ludewigt, B. Tanaka, N. Waldron, W. Wilde, S. Antolak, A. J. Morse, D. H. Raber, T. TI A tandem-based compact dual-energy gamma generator SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE gamma-ray production; nuclei with mass number 6 to 19; proton radiative capture; radioactive sources; tandem accelerators AB A dual-energy tandem-type gamma generator has been developed at E. O. Lawrence Berkeley National Laboratory and Sandia National Laboratories. The tandem accelerator geometry allows higher energy nuclear reactions to be reached, thereby allowing more flexible generation of MeV-energy gammas for active interrogation applications. Both positively charged ions and atoms of hydrogen are created from negative ions via a gas stripper. In this paper, we show first results of the working tandem-based gamma generator and that a gas stripper can be utilized in a compact source design. Preliminary results of monoenergetic gamma production are shown. C1 [Persaud, A.; Kwan, J. W.; Leitner, M.; Leung, K. -N; Ludewigt, B.; Tanaka, N.; Waldron, W.; Wilde, S.] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Antolak, A. J.; Morse, D. H.; Raber, T.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Persaud, A (reprint author), EO Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM apersaud@lbl.gov FU U.S. Department of Energy; NNSA Office of Nonproliferation Research and Engineering [NA-22]; E.O. Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Sandia National Laboratories [DE-AC04-94AL85000] FX The authors would like to thank Daniel Buller and Paula Provencio at Sandia National Laboratories for coating the copper targets. This work was performed under the auspices of the U.S. Department of Energy, NNSA Office of Nonproliferation Research and Engineering (NA-22) by E.O. Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231 and by Sandia National Laboratories under Contract No. DE-AC04-94AL85000. NR 6 TC 2 Z9 2 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2010 VL 81 IS 2 AR 02B904 DI 10.1063/1.3258028 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 562DB UT WOS:000275028400009 PM 20192470 ER PT J AU Ropponen, T Tarvainen, O Toivanen, V Peura, P Jones, P Kalvas, T Koivisto, H Noland, J Leitner, D AF Ropponen, T. Tarvainen, O. Toivanen, V. Peura, P. Jones, P. Kalvas, T. Koivisto, H. Noland, J. Leitner, D. TI The effect of rf pulse pattern on bremsstrahlung and ion current time evolution of an ECRIS SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 13th International Conference on Ion Sources (ICIS'09) CY SEP 20-25, 2009 CL Gatlinburg, TN DE bremsstrahlung; ion beams; ion sources; plasma diagnostics; plasma radiofrequency heating AB Time-resolved helium ion production and bremsstrahlung emission from JYFL 14 GHz ECRIS is presented with different radio frequency pulse lengths. rf on times are varied from 5 to 50 ms and rf off times from 10 to 1000 ms between different measurement sets. It is observed that the plasma breakdown occurs a few milliseconds after launching the rf power into the plasma chamber, and in the beginning of the rf pulses a preglow transient is seen. During this transient the ion beam currents are increased by several factors compared to a steady state situation. By adjusting the rf pulse separation the maximum ion beam currents can be maintained during the so-called preglow regime while the amount of bremsstrahlung radiation is significantly decreased. C1 [Ropponen, T.; Tarvainen, O.; Toivanen, V.; Peura, P.; Jones, P.; Kalvas, T.; Koivisto, H.] Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland. [Noland, J.; Leitner, D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Ropponen, T (reprint author), Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland. EM tommi.ropponen@jyu.fi NR 9 TC 2 Z9 2 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2010 VL 81 IS 2 AR 02A302 DI 10.1063/1.3258611 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 562DB UT WOS:000275028400059 PM 20192323 ER PT J AU Seleznev, D Kropachev, G Kozlov, A Kuibeda, R Koshelev, V Kulevoy, T Hershcovitch, A Jonson, B Poole, J Alexeyenko, O Gurkova, E Oks, E Gushenets, V Polozov, S Masunov, E AF Seleznev, D. Kropachev, G. Kozlov, A. Kuibeda, R. Koshelev, V. Kulevoy, T. Hershcovitch, A. Jonson, B. Poole, J. Alexeyenko, O. Gurkova, E. Oks, E. Gushenets, V. Polozov, S. Masunov, E. TI Carborane beam from ITEP Bernas ion source for semiconductor implanters SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE ion implantation; semiconductor technology AB A joint research and development of steady state intense boron ion sources for hundreds of electron-volt ion implanters has been in progress for the past 5 years. The difficulties of extraction and transportation of low energy boron beams can be solved by implanting clusters of boron atoms. In Institute for Theoretical and Experimental Physics (ITEP) the Bernas ion source successfully generated the beam of decaborane ions. The carborane (C(2)B(10)H(12)) ion beam is more attractive material due to its better thermal stability. The results of carborane ion beam generation are presented. The result of the beam implantation into the silicon wafer is presented as well. C1 [Seleznev, D.; Kropachev, G.; Kozlov, A.; Kuibeda, R.; Koshelev, V.; Kulevoy, T.] Inst Theoret & Expt Phys, Moscow 117218, Russia. [Hershcovitch, A.; Jonson, B.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Poole, J.] PVI, Oxnard, CA 93031 USA. [Alexeyenko, O.; Gurkova, E.] State Res Inst Chem & Technol Organoelement Cpds, Moscow 111123, Russia. [Oks, E.; Gushenets, V.] Russian Acad Sci, Inst High Current Elect, Tomsk 634055, Russia. [Polozov, S.; Masunov, E.] State Univ, Moscow Engn Phys Inst, Moscow 115409, Russia. RP Seleznev, D (reprint author), Inst Theoret & Expt Phys, Moscow 117218, Russia. EM kulevoy@itep.ru RI Oks, Efim/A-9409-2014 OI Oks, Efim/0000-0002-9323-0686 NR 3 TC 3 Z9 3 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2010 VL 81 IS 2 AR 02B901 DI 10.1063/1.3258422 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 562DB UT WOS:000275028400012 PM 20192467 ER PT J AU Stockli, MP Han, B Murray, SN Pennisi, TR Santana, M Welton, RF AF Stockli, M. P. Han, B. Murray, S. N. Pennisi, T. R. Santana, M. Welton, R. F. TI Ramping up the Spallation Neutron Source beam power with the H- source using 0 mg Cs/day SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 13th International Conference on Ion Sources (ICIS'09) CY SEP 20-25, 2009 CL Gatlinburg, TN DE hydrogen ions; ion beams; ion sources; negative ions; neutron sources; particle beam dynamics ID ION-SOURCE; SNS AB This paper describes the ramp up of the beam power for the Spallation Neutron Source by ramping up the pulse length, the repetition rate, and the beam current emerging from the H- source. Starting out with low repetition rates (< 10 Hz) and short pulse lengths (< 0.2 ms), the H- source and low-energy beam transport delivered from Lawrence Berkeley National Laboratory exceeded the requirements with almost perfect availability. This paper discusses the modifications that were required to exceed 0.2 ms pulse length and 0.2% duty factor with acceptable availability and performance. Currently, the source is supporting neutron production at 1 MW with 38 mA linac beam current at 60 Hz and 0.9 ms pulse length. The pulse length will be increased to similar to 1.1 ms to meet the requirements for neutron production with a power between 1 and 1.4 MW. A medium-energy beam transport (MEBT) beam current of 46 mA with a 5.4% duty factor has been demonstrated for 32 h. A 56 mA MEBT beam current with a 4.1% duty factor has been demonstrated for 20 min at the conclusion of a 12-day production run. This is close to the 59 mA needed for 3 MW neutron productions. Also notable is the Cs2CrO4 cesium system, which dispenses similar to 10 mg of Cs during the startup of the ion source, sufficient for producing the required 38 mA for 4 weeks without significant degradation. C1 [Stockli, M. P.; Han, B.; Murray, S. N.; Pennisi, T. R.; Santana, M.; Welton, R. F.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37830 USA. RP Stockli, MP (reprint author), Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37830 USA. EM stockli@ornl.gov NR 10 TC 30 Z9 30 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2010 VL 81 IS 2 AR 02A729 DI 10.1063/1.3325085 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 562DB UT WOS:000275028400135 PM 20192398 ER PT J AU Stockli, MP AF Stockli, Martin P. TI Preface: Proceedings of the 13th International Conference on Ion Sources, Gatlinburg, Tennessee, USA, 2009 SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Editorial Material DE ion sources; particle beam diagnostics; particle beam extraction C1 Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP Stockli, MP (reprint author), Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2010 VL 81 IS 2 AR 02A101 DI 10.1063/1.3343001 PG 2 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 562DB UT WOS:000275028400055 ER PT J AU Strohmeier, M Benitez, JY Leitner, D Lyneis, CM Todd, DS Bantel, M AF Strohmeier, M. Benitez, J. Y. Leitner, D. Lyneis, C. M. Todd, D. S. Bantel, M. TI Development of a pepper-pot device to determine the emittance of an ion beam generated by electron cyclotron resonance ion sources SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE beam handling equipment; ion beams; ion sources; particle beam diagnostics; plasma radiofrequency heating; plasma sources AB This paper describes the recent development and commissioning of a pepper-pot emittance meter at the Lawrence Berkeley National Laboratory (LBNL). It is based on a potassium bromide (KBr) scintillator screen in combination with a charged coupled device camera. Pepper-pot scanners record the full four-dimensional transverse phase space emittances which are particularly interesting for electron cyclotron resonance ion sources. The strengths and limitations of evaluating emittances using optical pepper-pot scanners are described and systematic errors induced by the optical data acquisition system will be presented. Light yield tests of KBr exposed to different ion species and first emittance measurement data using ion beams extracted from the 6.4 GHz LBNL electron cyclotron resonance ion source are presented and discussed. C1 [Strohmeier, M.; Benitez, J. Y.; Leitner, D.; Lyneis, C. M.; Todd, D. S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Strohmeier, M.; Bantel, M.] Univ Appl Sci Karlsruhe, D-76133 Karlsruhe, Germany. RP Strohmeier, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM mmstrohmeier@lbl.gov FU Office of Energy Research, Office of High Energy and Nuclear Physics, Nuclear Physics Division of the U.S. Department of Energy [DE AC03-76SF00098] FX This research was conducted at LBNL and was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Nuclear Physics Division of the U.S. Department of Energy under Contract No. DE AC03-76SF00098. The emittance data presented in this paper was taken together with students attending the Eighth Summer School on Exotic Beam Physics 2009 in Berkeley, CA. NR 7 TC 3 Z9 3 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2010 VL 81 IS 2 AR 02B710 DI 10.1063/1.3258024 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 562DB UT WOS:000275028400029 PM 20192450 ER PT J AU Tamura, J Hattori, T Hayashizaki, N Ishibashi, T Kanesue, T Kashiwagi, H Kondo, K Okamura, M AF Tamura, J. Hattori, T. Hayashizaki, N. Ishibashi, T. Kanesue, T. Kashiwagi, H. Kondo, K. Okamura, M. TI Particle simulation for direct plasma injection in a radio frequency quadrupole matching section SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE accelerator RF systems; ion beams; particle beam diagnostics; particle beam dynamics; plasma accelerators; plasma density AB We have been investigating direct plasma injection scheme (DPIS) for high-intensity heavy-ion beam acceleration. In the DPIS, laser-produced plasma is directly injected into a radio frequency quadrupole (RFQ) linac. To study the beam dynamics of the ion injection in the DPIS, we tracked particle motions in the RFQ matching section using three-dimensional particle-in-cell method. As a result of the numerical simulation, we found that the electrostatic field generated by the extraction electrode reduces the transmission efficiency. To avoid the radially defocusing force, the input beam into the RFQ has to be initially convergent. In the DPIS, further optimization of the plasma density is required for better matching. C1 [Tamura, J.; Kondo, K.] Tokyo Inst Technol, Dept Energy Sci, Yokohama, Kanagawa 2268502, Japan. [Tamura, J.] RIKEN, Radiat Lab, Wako, Saitama 3510198, Japan. [Hattori, T.; Hayashizaki, N.] Tokyo Inst Technol, Nucl Reactors Res Lab, Tokyo 1528550, Japan. [Ishibashi, T.] Tokyo Inst Technol, Dept Nucl Engn, Tokyo 1528550, Japan. [Kanesue, T.] Kyushu Univ, Dept Appl Quantum Phys & Nucl Engn, Fukuoka 8190395, Japan. [Kashiwagi, H.] Japan Atom Energy Agcy, Takasaki Adv Radiat Res Inst, Gunma 3701207, Japan. [Okamura, M.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. RP Tamura, J (reprint author), Tokyo Inst Technol, Dept Energy Sci, Yokohama, Kanagawa 2268502, Japan. EM jtamura@riken.jp RI Hayashizaki, Noriyosu/C-3448-2015 OI Hayashizaki, Noriyosu/0000-0002-8245-7869 NR 6 TC 1 Z9 1 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2010 VL 81 IS 2 AR 02B726 DI 10.1063/1.3318208 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 562DB UT WOS:000275028400013 PM 20192466 ER PT J AU Tanaka, Y Hanada, M Kojima, A Akino, N Shimizu, T Ohshima, K Inoue, T Watanabe, K Taniguchi, M Kashiwagi, M Umeda, N Tobari, H Grisham, LR AF Tanaka, Y. Hanada, M. Kojima, A. Akino, N. Shimizu, T. Ohshima, K. Inoue, T. Watanabe, K. Taniguchi, M. Kashiwagi, M. Umeda, N. Tobari, H. Grisham, L. R. CA JT-60 NBI Grp TI Improvement of voltage holding capability in the 500 keV negative ion source for JT-60SA SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 13th International Conference on Ion Sources (ICIS'09) CY SEP 20-25, 2009 CL Gatlinburg, TN DE ion accelerators; ion sources; particle beam injection; plasma accelerators; plasma sources; Tokamak devices AB Voltage holding capability of JT-60 negative ion source that has a large electrostatic negative ion accelerator with 45 cmx1.1 m acceleration grids was experimentally examined and improved to realize 500 keV, 22 A, and 100 s D(-) ion beams for JT-60 Super Advanced. The gap lengths in the acceleration stages were extended to reduce electric fields in a gap between the large grids and at the corner of the support flanges from the original 4-5 to 3-4 kV/mm. As a result, the voltage holding capability without beam acceleration has been successfully improved from 400 to 500 kV. The pulse duration to hold 500 kV reached 40 s of the power supply limitation. C1 [Tanaka, Y.; Hanada, M.; Kojima, A.; Akino, N.; Shimizu, T.; Ohshima, K.; Inoue, T.; Watanabe, K.; Taniguchi, M.; Kashiwagi, M.; Umeda, N.; Tobari, H.; JT-60 NBI Grp] Japan Atom Energy Agcy, Naka, Ibaraki 3110193, Japan. [Grisham, L. R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Tanaka, Y (reprint author), Japan Atom Energy Agcy, Naka, Ibaraki 3110193, Japan. EM tanaka.yutaka@jaea.go.jp NR 5 TC 2 Z9 2 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2010 VL 81 IS 2 AR 02A719 DI 10.1063/1.3279399 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 562DB UT WOS:000275028400125 PM 20225405 ER PT J AU Tarvainen, O Ropponen, T Thuillier, T Noland, J Toivanen, V Kalvas, T Koivisto, H AF Tarvainen, O. Ropponen, T. Thuillier, T. Noland, J. Toivanen, V. Kalvas, T. Koivisto, H. TI The role of seed electrons on the plasma breakdown and preglow of electron cyclotron resonance ion source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 13th International Conference on Ion Sources (ICIS'09) CY SEP 20-25, 2009 CL Gatlinburg, TN DE cyclotron resonance; glow discharges; helium; ionisation; neon; plasma density AB The 14 GHz Electron Cyclotron Resonance Ion Source at University of Jyvaumlskylauml, Department of Physics (JYFL) has been operated in pulsed mode in order to study the plasma breakdown and preglow effect. It was observed that the plasma breakdown time and preglow characteristics are affected by seed electrons provided by a continuous low power microwave signal at secondary frequency. Sustaining low density plasma during the off-period of high power microwave pulses at the primary frequency shifts the charge state distribution of the preglow transient toward higher charge states. This could be exploited for applications requiring fast and efficient ionization of radioactive elements as proposed for the Beta Beam project within the EURISOL design study, for example. In this article we present results measured with helium and neon. C1 [Tarvainen, O.; Ropponen, T.; Toivanen, V.; Kalvas, T.; Koivisto, H.] Univ Jyvaskyla, Dept Phys, Jyvaskyla 40500, Finland. [Thuillier, T.] Univ Grenoble 1, LPSC, CNRS, IN2P3, F-38026 Grenoble, France. [Thuillier, T.] Inst Natl Polytech Grenoble, F-38026 St Martin Dheres, France. [Noland, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Tarvainen, O (reprint author), Univ Jyvaskyla, Dept Phys, Jyvaskyla 40500, Finland. EM olli.tarvainen@jyu.fi NR 5 TC 3 Z9 3 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2010 VL 81 IS 2 AR 02A303 DI 10.1063/1.3257974 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 562DB UT WOS:000275028400060 PM 20192324 ER PT J AU Vondrasek, R Kondrashev, S Pardo, R Scott, R Zinkann, GP AF Vondrasek, R. Kondrashev, S. Pardo, R. Scott, R. Zinkann, G. P. TI Results with the electron cyclotron resonance charge breeder for the Cf-252 fission source project (Californium Rare Ion Breeder Upgrade) at Argonne Tandem Linac Accelerator System SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 13th International Conference on Ion Sources (ICIS'09) CY SEP 20-25, 2009 CL Gatlinburg, TN DE fission; ion accelerators; ion beams; ion sources; linear accelerators; nuclei with mass number 220 or higher; particle beam injection ID ATLAS AB The construction of the Californium Rare Ion Breeder Upgrade, a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS), is nearing completion. The facility will use fission fragments from a 1 Ci Cf-252 source; thermalized and collected into a low-energy particle beam by a helium gas catcher. In order to reaccelerate these beams, an existing ATLAS electron cyclotron resonance (ECR) ion source was redesigned to function as an ECR charge breeder. Thus far, the charge breeder has been tested with stable beams of rubidium and cesium achieving charge breeding efficiencies of 9.7% into Rb-85(17+) and 2.9% into Cs-133(20+). C1 [Vondrasek, R.; Kondrashev, S.; Pardo, R.; Scott, R.; Zinkann, G. P.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Vondrasek, R (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. EM vondrasek@anl.gov NR 5 TC 9 Z9 9 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2010 VL 81 IS 2 AR 02A907 DI 10.1063/1.3272803 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 562DB UT WOS:000275028400142 PM 20192405 ER PT J AU Welton, RF Carmichael, J Desai, NJ Fuga, R Goulding, RH Han, B Kang, Y Lee, SW Murray, SN Pennisi, T Potter, KG Santana, M Stockli, MP AF Welton, R. F. Carmichael, J. Desai, N. J. Fuga, R. Goulding, R. H. Han, B. Kang, Y. Lee, S. W. Murray, S. N. Pennisi, T. Potter, K. G. Santana, M. Stockli, M. P. TI The continued development of the Spallation Neutron Source external antenna H- ion source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 13th International Conference on Ion Sources (ICIS'09) CY SEP 20-25, 2009 CL Gatlinburg, TN DE accelerator RF systems; ion sources; linear accelerators; proton accelerators AB The U.S. Spallation Neutron Source (SNS) is an accelerator-based, pulsed neutron-scattering facility, currently in the process of ramping up neutron production. In order to ensure that the SNS will meet its operational commitments as well as provide for future facility upgrades with high reliability, we are developing a rf-driven, H- ion source based on a water-cooled, ceramic aluminum nitride (AlN) plasma chamber. To date, early versions of this source have delivered up to 42 mA to the SNS front end and unanalyzed beam currents up to similar to 100 mA (60 Hz, 1 ms) to the ion source test stand. This source was operated on the SNS accelerator from February to April 2009 and produced similar to 35 mA (beam current required by the ramp up plan) with availability of similar to 97%. During this run several ion source failures identified reliability issues, which must be addressed before the source re-enters production: plasma ignition, antenna lifetime, magnet cooling, and cooling jacket integrity. This report discusses these issues, details proposed engineering solutions, and notes progress to date. C1 [Welton, R. F.; Carmichael, J.; Fuga, R.; Goulding, R. H.; Han, B.; Kang, Y.; Lee, S. W.; Murray, S. N.; Pennisi, T.; Potter, K. G.; Santana, M.; Stockli, M. P.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. [Desai, N. J.] Worcester Polytech Inst, Worcester, MA 01609 USA. RP Welton, RF (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37830 USA. NR 9 TC 14 Z9 14 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2010 VL 81 IS 2 AR 02A727 DI 10.1063/1.3301601 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 562DB UT WOS:000275028400133 PM 20192396 ER PT J AU Wu, Y Hurley, JP Ji, Q Kwan, JW Leung, KN AF Wu, Y. Hurley, J. P. Ji, Q. Kwan, J. W. Leung, K. N. TI Sealed operation of a rf driven ion source for a compact neutron generator to be used for associated particle imaging SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE antennas in plasma; deuterium; ion sources; neutron sources; particle beam diagnostics; plasma sources ID SYSTEM AB We present the recent development of a prototype compact neutron generator to be used in conjunction with the method of associated particle imaging for the purpose of active neutron interrogation. In this paper, the performance and device specifications of these compact generators that employ rf driven ion sources will be discussed. Initial measurements of the generator performance include a beam spot size of 1 mm in diameter and a neutron yield of 2x10(5) n/s with air cooling. C1 [Wu, Y.; Leung, K. N.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94709 USA. [Wu, Y.; Ji, Q.; Kwan, J. W.; Leung, K. N.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Hurley, J. P.] Special Technol Lab, Santa Barbara, CA 93111 USA. RP Wu, Y (reprint author), Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94709 USA. EM ywu@lbl.gov NR 12 TC 6 Z9 7 U1 2 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2010 VL 81 IS 2 AR 02B908 DI 10.1063/1.3266114 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 562DB UT WOS:000275028400005 PM 20192474 ER PT J AU Zelenski, A AF Zelenski, A. TI Review of polarized ion sources (invited) SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE beam handling techniques; ion accelerators; ion beams; ion sources; polarised targets; proton beams; storage rings ID BEAMS AB Recent progress in polarized ion sources development is reviewed. New techniques for production of polarized H(-) ion (proton), D(-) (D(+)), and (3)He(++) ion beams are discussed. Feasibility studies of these techniques are in progress at BNL and other laboratories. Polarized deuteron beams will be required for the polarization program at the Dubna Nuclotron and at the deuteron electric dipole moment experiment at BNL. Experiments with polarized (3)He(++) ion beams are a part of the experimental program at the future electron ion collider. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. RP Zelenski, A (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM zelenski@bnl.gov NR 18 TC 3 Z9 3 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2010 VL 81 IS 2 AR 02B308 DI 10.1063/1.3266140 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 562DB UT WOS:000275028400048 PM 20192431 ER PT J AU Zhao, L Cluggish, B Kim, JS Pardo, R Vondrasek, R AF Zhao, L. Cluggish, B. Kim, J. S. Pardo, R. Vondrasek, R. TI Simulation of charge breeding of rubidium using Monte Carlo charge breeding code and generalized ECRIS model SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 13th International Conference on Ion Sources (ICIS'09) CY SEP 20-25, 2009 CL Gatlinburg, TN DE cyclotron resonance; Monte Carlo methods; plasma simulation; plasma sources; positive ions; rubidium AB A Monte Carlo charge breeding code (MCBC) is being developed by FAR-TECH, Inc. to model the capture and charge breeding of 1+ ion beam in an electron cyclotron resonance ion source (ECRIS) device. The ECRIS plasma is simulated using the generalized ECRIS model which has two choices of boundary settings, free boundary condition and Bohm condition. The charge state distribution of the extracted beam ions is calculated by solving the steady state ion continuity equations where the profiles of the captured ions are used as source terms. MCBC simulations of the charge breeding of Rb+ showed good agreement with recent charge breeding experiments at Argonne National Laboratory (ANL). MCBC correctly predicted the peak of highly charged ion state outputs under free boundary condition and similar charge state distribution width but a lower peak charge state under the Bohm condition. The comparisons between the simulation results and ANL experimental measurements are presented and discussed. C1 [Zhao, L.; Cluggish, B.; Kim, J. S.] FAR TECH Inc, San Diego, CA 92121 USA. [Pardo, R.; Vondrasek, R.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Zhao, L (reprint author), FAR TECH Inc, San Diego, CA 92121 USA. EM zhao@far-tech.com NR 8 TC 4 Z9 4 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD FEB PY 2010 VL 81 IS 2 AR 02A304 DI 10.1063/1.3277192 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 562DB UT WOS:000275028400061 PM 20192325 ER PT J AU Rossi, P Doyle, BL McDaniel, FD AF Rossi, P. Doyle, B. L. McDaniel, F. D. TI Radiation transport calculations for the new ion beam laboratory at Sandia National Laboratory SO REVISTA MEXICANA DE FISICA LA English DT Article; Proceedings Paper CT 5th International Symposium on Radiation Physics CY MAR 08-11, 2009 CL Univ Nacl Autonoma Mexico, Inst Fis, Mexico City, MEXICO SP Soc Mexicana Fis, Div Fis Radiac, Ctr LatinoAmer Fis, Consejo Nacl Ciencia Tecnol HO Univ Nacl Autonoma Mexico, Inst Fis DE Ion-photon emission microscopy; ion beam analysis; ion-luminescence; phosphors; micro-fabrication; proton beam lithography; radiation transport; radiation shielding AB A new Ion Beam Laboratory (IBL) is currently under construction at Sandia National Laboratory in Albuquerque, NM, USA. Three existing accelerators will be moved to the IBL, and two more will be purchased to replace existing systems. The IBL will have extensive radiation shielding that will enable a number of new experiments that Will be discussed in this paper. This paper also provides the details of extensive radiation transport calculations that were used to determine the thickness and height of the shield walls. C1 [Rossi, P.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Rossi, P.] Ist Nazl Fis Nucl, I-35131 Padua, Italy. [Rossi, P.; Doyle, B. L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [McDaniel, F. D.] Univ N Texas, Dept Phys, Denton, TX 76203 USA. RP Rossi, P (reprint author), Univ Padua, Dipartimento Fis, Via Marzolo 8, I-35131 Padua, Italy. EM rossi@pd.infn.it NR 16 TC 0 Z9 0 U1 0 U2 0 PU SOC MEXICANA FISICA PI COYOACAN PA APARTADO POSTAL 70-348, COYOACAN 04511, MEXICO SN 0035-001X J9 REV MEX FIS JI Rev. Mex. Fis. PD FEB PY 2010 VL 56 IS 1 SU S BP 47 EP 52 PG 6 WC Physics, Multidisciplinary SC Physics GA 562ED UT WOS:000275031400012 ER PT J AU Shapira, D AF Shapira, D. TI Tracking of ions produced at near barrier energies in nuclear reactions SO REVISTA MEXICANA DE FISICA LA English DT Article; Proceedings Paper CT 5th International Symposium on Radiation Physics CY MAR 08-11, 2009 CL Univ Nacl Autonoma Mexico, Inst Fis, Mexico City, MEXICO SP Soc Mexicana Fis, Div Fis Radiac, Ctr LatinoAmer Fis, Consejo Nacl Ciencia & Technol HO Univ Nacl Autonoma Mexico, Inst Fis DE Tracking of ion produced; nuclear reaction ID ACTIVE-TARGET DETECTOR; BEAMS; MAYA AB Examples of detectors, presently in use, for tracking products from nuclear reactions induced by radioactive ion beams are described. A new tracking detector is being designed to study the binary products from reactions induced by heavy neutron-rich radioactive ion beams on heavy neutron-rich target nuclei. The motivation for such studies and the features designed to accomplish this goal will be presented. C1 Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Shapira, D (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. NR 14 TC 0 Z9 0 U1 0 U2 0 PU SOC MEXICANA FISICA PI COYOACAN PA APARTADO POSTAL 70-348, COYOACAN 04511, MEXICO SN 0035-001X J9 REV MEX FIS JI Rev. Mex. Fis. PD FEB PY 2010 VL 56 IS 1 SU S BP 53 EP 57 PG 5 WC Physics, Multidisciplinary SC Physics GA 562ED UT WOS:000275031400013 ER PT J AU Wiley, S AF Wiley, Steven TI Why I Love Vendors SO SCIENTIST LA English DT Editorial Material C1 Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Wiley, S (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU SCIENTIST INC PI PHILADELPHIA PA 400 MARKET ST, STE 1250, PHILADELPHIA, PA 19106 USA SN 0890-3670 J9 SCIENTIST JI Scientist PD FEB PY 2010 VL 24 IS 2 BP 23 EP 23 PG 1 WC Information Science & Library Science; Multidisciplinary Sciences SC Information Science & Library Science; Science & Technology - Other Topics GA 545VZ UT WOS:000273766400018 ER PT J AU Santala, MK Radmilovic, V Giulian, R Ridgway, MC Glaeser, AM Gronsky, R AF Santala, Melissa K. Radmilovic, Velimir Giulian, Raquel Ridgway, Mark C. Glaeser, Andreas M. Gronsky, Ronald TI Precipitate orientation relationships in Pt-implanted sapphire SO SCRIPTA MATERIALIA LA English DT Article DE Implantation; High-resolution electron microscopy (HREM); Refractory metals; Ceramics; Interface structure ID BASAL-PLANE SAPPHIRE; ION-BEAM SYNTHESIS; EPITAXIAL-GROWTH; FILMS; AL2O3; PLATINUM; SYSTEMS AB Sapphire was implanted with Pt ions at room temperature and at liquid-nitrogen temperature, inducing correspondingly different amounts of accumulated damage in the target crystals. Subsequent thermal annealing at 1000 and at 1600 degrees C resulted in Pt precipitation with differing orientation relationships, associated with the degree of crystallinity of the sapphire matrix. The orientation relationships depended on whether Pt precipitated from sapphire or from a transition alumina phase that formed in partially amorphized substrates. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Santala, Melissa K.; Glaeser, Andreas M.; Gronsky, Ronald] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Radmilovic, Velimir] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Giulian, Raquel; Ridgway, Mark C.] Australian Natl Univ, Dept Elect Mat Engn, Canberra, ACT, Australia. RP Gronsky, R (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM rgronsky@berkeley.edu RI Giulian, Raquel/A-6019-2008; Santala, Melissa/K-6871-2013; Giulian, Raquel/G-8075-2014; OI Santala, Melissa/0000-0002-5189-5153 FU National Science Foundation [0805062]; Australian Research Council; NSF FX This research was supported by the Metals & Metallic Nanostructures Program of the National Science Foundation through Grant No. 0805062. R.G. and M.C.R. were supported by the Australian Research Council. M.K.S. was supported by an NSF Graduate Research Fellowship. The assistance of the staff of the National Center for Electron Microscopy is gratefully acknowledged. Thanks to L. Martin and P. Yu for assistance with XRD measurements. NR 18 TC 4 Z9 4 U1 0 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD FEB PY 2010 VL 62 IS 4 BP 187 EP 190 DI 10.1016/j.scriptamat.2009.10.023 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 536TU UT WOS:000273067500005 ER PT J AU Dayeh, SA AF Dayeh, Shadi A. TI Electron transport in indium arsenide nanowires SO SEMICONDUCTOR SCIENCE AND TECHNOLOGY LA English DT Review ID FIELD-EFFECT TRANSISTORS; SCANNING CAPACITANCE SPECTROSCOPY; V-SEMICONDUCTOR NANOWIRES; DOPED SILICON NANOWIRES; INAS NANOWIRES; HIGH-PERFORMANCE; CARBON NANOTUBES; ACCUMULATION LAYERS; CARRIER TRANSPORT; GROWTH AB The vapor-liquid-solid growth of semiconductor nanowires led to the implementation of engineered electronic and optoelectronic one-dimensional nanostructures with outstanding promise for device applications. To realize this promise, detailed understanding and control over their growth, crystal structure, and transport properties and their combined impact on device performance is vital. Here, we review our work on electron transport in InAs nanowires in a variety of device schemes. First, we provide a brief introduction and historical perspective on growth and transport studies in InAs NWs. Second, we discuss and present experimental measurements of ballistic transport in InAs nanowires over similar to 200 nm length scale, which indicates a large electron mean free path and correlates with the high electron mobility measured on similar nanowires. Third, we devise a device model that enables accurate estimation of transport coefficients from field-effect transistor measurements by taking into account patristic device components. We utilize this model to reveal the impact of surface states, diameter, lateral and vertical fields, as well as crystal structure, on electron transport and transport coefficient calculation. We show in these studies that electron transport in InAs nanowires is dominated by surface state effects that introduce measurement artifacts in parameter extraction, reduce electron mobility for smaller diameters, and degrade the subthreshold characteristics of transistors made of Zinc Blende InAs nanowires. This device model is also used for isolating vertical and lateral field effects on electron transport in nanowire transistor channels and explaining observed negative differential conductance and mobility degradation at high injection fields, which is supported by electro-thermal simulations and microstructure failure analysis. We adopt the concept of lack of inversion symmetry in polar III-V materials and the resultant spontaneous polarization charges perpendicular to the electron transport trajectory in twinned Wurtzite nanowires to explain compensation of surface charges for this type of nanowires and their enhanced subthreshold characteristics over transistors made of Zinc Blende ones. Fourth, we discuss the combined effects of surface states and field variations in InAs nanowire transistor channels to shed light on the local electrostatic behavior in 1D channels studied by scanning probe measurements. Fifth, we survey and benchmark results on nanowire transistor performance and demonstrate the superiority of InAs nanowires for high-on currents and high-speed applications. Finally, we implement a novel integration scheme for InAs nanowires on Si substrates that enables vertical alignment and electrical isolation between nanowires which is necessary for achieving multifunctional devices per single chip. C1 Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Dayeh, SA (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. EM shadi@lanl.gov RI Dayeh, Shadi/H-5621-2012 FU National Science Foundation [ECS-0506902]; Office of NavalResearch [N000140-5-0149]; Sharp Labs of America; UC Senate; W S C Chang's fellowship at UC San Diego; Los Alamos National Laboratory FX I would like to acknowledge support and substantial contributions of Professor Deli Wang and Professor Edward T Yu who guided this work during my PhD study at UC San Diego. I am grateful for the contributions of Professor Paul K L Yu and for providing access to his OMVPE reactor to grow the InAs NWs. I would also acknowledge contributions of several colleagues to different parts of this research including Dr Xiaotian Zhou, Dr Jeremy Law, Dr Sourobh Raychaudhuri, Dr Ceasre Soci, DrDarija Susac, ProfessorKaren LKavanagh, Dr Peng Chen, Yi Jing, Professor S S Lau and Professor Peter MAsbeck. I am also grateful for Dr S T Picraux for providing feedback on the manuscript. This research was funded by National Science Foundation (grant no ECS-0506902), Office of NavalResearch (N000140-5-0149), Sharp Labs of America, a UC Senate grant, a W S C Chang's fellowship at UC San Diego and by a Director Postdoctoral Fellowship at Los Alamos National Laboratory. NR 119 TC 44 Z9 45 U1 6 U2 81 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0268-1242 EI 1361-6641 J9 SEMICOND SCI TECH JI Semicond. Sci. Technol. PD FEB PY 2010 VL 25 IS 2 SI SI AR 024004 DI 10.1088/0268-1242/25/2/024004 PG 20 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Condensed Matter SC Engineering; Materials Science; Physics GA 546YU UT WOS:000273852300005 ER PT J AU Talin, AA Leonard, F Katzenmeyer, AM Swartzentruber, BS Picraux, ST Toimil-Molares, ME Cederberg, JG Wang, X Hersee, SD Rishinaramangalum, A AF Talin, A. A. Leonard, F. Katzenmeyer, A. M. Swartzentruber, B. S. Picraux, S. T. Toimil-Molares, M. E. Cederberg, J. G. Wang, X. Hersee, S. D. Rishinaramangalum, A. TI Transport characterization in nanowires using an electrical nanoprobe SO SEMICONDUCTOR SCIENCE AND TECHNOLOGY LA English DT Article ID SEMICONDUCTOR NANOWIRES; GAN-NANOWIRES; INAS NANOWIRES; GROWTH; HETEROSTRUCTURES; TRANSISTORS; MECHANISM; BATTERY; EPITAXY; DEVICES AB Electrical transport in semiconductor nanowires is commonly measured in a field effect transistor configuration, with lithographically defined source, drain and in some cases, top gate electrodes. This approach is labor intensive, requires high-end fabrication equipment, exposes the nanowires to extensive processing chemistry and places practical limitations on minimum nanowire length. Here we describe an alternative, simple method for characterizing electrical transport in nanowires directly on the growth substrate, without any need for post growth processing. Our technique is based on contacting nanowires using a nano-manipulator probe retrofitted inside of a scanning electron microscope. Using this approach, we characterize electrical transport in GaN nanowires grown by catalyst-free selective epitaxy, as well as InAs and Ge nanowires grown by a Au-catalyzed vapor solid liquid technique. We find that in situations where contacts are not limiting carrier injection (GaN and InAs nanowires), electrical transport transitions from Ohmic conduction at low bias to space-charge-limited conduction at higher bias. Using this transition and a theory of space-charge-limited transport which accounts for the high aspect ratio nanowires, we extract the mobility and the free carrier concentration. For Ge nanowires, we find that the Au catalyst forms a Schottky contact resulting in rectifying current-voltage characteristics, which are strongly dependent on the nanowire diameter. This dependence arises due to an increase in depletion width at decreased nanowire diameter and carrier recombination at the nanowire surface. C1 [Talin, A. A.; Toimil-Molares, M. E.] NIST, Ctr Nanosci & Technol, Gaithersburg, MD 20899 USA. [Leonard, F.; Katzenmeyer, A. M.] Sandia Natl Labs, Livermore, CA 94551 USA. [Swartzentruber, B. S.; Cederberg, J. G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Picraux, S. T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Wang, X.; Hersee, S. D.; Rishinaramangalum, A.] Univ New Mexico, Ctr High Technol Mat, Dept Elect & Comp Engn, Albuquerque, NM 87106 USA. RP Talin, AA (reprint author), NIST, Ctr Nanosci & Technol, Gaithersburg, MD 20899 USA. EM atalin@nist.gov; fleonar@sandia.gov RI Toimil-Molares, Maria Eugenia/B-3199-2010; Toimil-Molares, Maria Eugenia/C-5946-2015; Katzenmeyer, Aaron/F-7961-2014 OI Katzenmeyer, Aaron/0000-0002-5755-8537 FU United States Department of Energy [DEAC01-94-AL85000, DE-AC52-06NA25396]; Laboratory Directed Research and Development program at Sandia; National Science Foundation (NSF) [EEC-0812056] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract no DEAC01-94-AL85000. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the U.S. Department of Energy under contract no DE-AC52-06NA25396. This work was performed in part at the U.S. Department of Energy, Center for Integrated Nanotechnologies, at Los Alamos National Laboratory and Sandia National Laboratories, and supported in part by the Laboratory Directed Research and Development program at Sandia. Part of this work was supported by the National Science Foundation (NSF) SMART LIGHTING Center (# EEC-0812056). NR 41 TC 29 Z9 29 U1 3 U2 52 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0268-1242 EI 1361-6641 J9 SEMICOND SCI TECH JI Semicond. Sci. Technol. PD FEB PY 2010 VL 25 IS 2 SI SI AR 024015 DI 10.1088/0268-1242/25/2/024015 PG 9 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Condensed Matter SC Engineering; Materials Science; Physics GA 546YU UT WOS:000273852300016 ER PT J AU Upadhya, PC Li, QM Wang, GT Fischer, AJ Taylor, AJ Prasankumar, RP AF Upadhya, Prashanth C. Li, Qiming Wang, George T. Fischer, Arthur J. Taylor, Antoinette J. Prasankumar, Rohit P. TI The influence of defect states on non-equilibrium carrier dynamics in GaN nanowires SO SEMICONDUCTOR SCIENCE AND TECHNOLOGY LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; SINGLE ZNO NANOWIRE; SEMICONDUCTOR NANOWIRES; PHOTOLUMINESCENCE; CONDUCTIVITY; LUMINESCENCE; TEMPLATE; LASERS AB Semiconductor nanowires have recently attracted much attention for their unique properties and potential applications in a number of areas, most notably in nanophotonics. However, the presence of defect states in these quasi-one-dimensional nanostructures can significantly detract from nanophotonic device performance. Here, we use ultrafast optical pump-probe spectroscopy to study the influence of defect states on carrier dynamics in GaN nanowires by probing carrier relaxation through the states responsible for yellow luminescence, an undesirable effect that plagues many GaN-based photonic devices. Faster relaxation is seen in nanowires grown at lower temperatures, which also exhibits higher lasing thresholds. We attribute this to rapid trapping of photoexcited carriers into additional impurity sites that are present at lower growth temperatures. In addition, excitation density-dependent measurements reveal a decrease in carrier lifetimes with increasing pump fluence. These results demonstrate the influence of both radiative and non-radiative defect states on carrier dynamics in GaN nanowires and indicate that relaxation rates can be controlled by varying the growth temperature, which should enable researchers to optimize nanowire properties for a given application. C1 [Upadhya, Prashanth C.; Taylor, Antoinette J.; Prasankumar, Rohit P.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Li, Qiming; Wang, George T.; Fischer, Arthur J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Upadhya, PC (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. EM pupadhya@lanl.gov RI Wang, George/C-9401-2009 OI Wang, George/0000-0001-9007-0173 FU US Department of Energy, Office of Basic Energy Sciences (BES); NNSA's Laboratory Directed Research; U.S. Department of Energy [DE-AC52-06NA25396, DE-AC04-94Al85000] FX This work was performed at the Center for Integrated Nanotechnologies, a US Department of Energy, Office of Basic Energy Sciences (BES) user facility and also partially supported by the NNSA's Laboratory Directed Research and Development Program and the Department of Energy, Office of Basic Energy Sciences. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security administration of the U.S. Department of Energy under contract no. DE-AC52-06NA25396. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract no. DE-AC04-94Al85000. NR 29 TC 22 Z9 22 U1 1 U2 20 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0268-1242 J9 SEMICOND SCI TECH JI Semicond. Sci. Technol. PD FEB PY 2010 VL 25 IS 2 SI SI AR 024017 DI 10.1088/0268-1242/25/2/024017 PG 6 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Condensed Matter SC Engineering; Materials Science; Physics GA 546YU UT WOS:000273852300018 ER PT J AU Kim, K Moujaes, SF Kolb, GJ AF Kim, Kibum Moujaes, Samir F. Kolb, Gregory J. TI Experimental and simulation study on wind affecting particle flow in a solar receiver SO SOLAR ENERGY LA English DT Article DE Solid particle receiver (SPR); Solar energy; Wind effect ID HYDROGEN-PRODUCTION AB The solid particle receiver (SPR) is a direct absorption central receiver that can provide a solar interface with thermal storage for thermo-chemical hydrogen production processes requiring heat input at temperatures Up to 1000 degrees C. In operation. it curtain made up of approximately 697 pm ceramic particles is dropped within the receiver cavity and directly illuminated by concentrated solar energy. Since the SPR has an open aperture, the flow may be disturbed by high ambient winds. Therefore, the objective of this study was to gain insight into the wind effect on the curtain. Experiments were conducted to understand the wind influence on the particle flow and loss. The experimental results showed that winds from certain angles of the attack could cause a critical loss of particles. A MFIX simulation model was developed to validate the experimental results and observation. The Simulation has provided us with better understanding on the wind effects. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Moujaes, Samir F.] Univ Nevada Las Vegas, Dept Mech Engn, Las Vegas, NV 89154 USA. [Kim, Kibum] Hanyang Univ, Dept Mech Engn, Ansan 426791, Kyeonggi Do, South Korea. [Kolb, Gregory J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Moujaes, SF (reprint author), Univ Nevada Las Vegas, Dept Mech Engn, Las Vegas, NV 89154 USA. EM samir@me.unlv.edu FU U.S. Department of Energy (DOE) [DE-AC04-94AL85000, DE-FG36-03GO13062] FX The authors would like to acknowledge the financial support for this joint research project provided by the U.S. Department of Energy (DOE) under Contract DE-AC04-94AL85000 (Sandia National Labs) and Contract DE-FG36-03GO13062 (University of Nevada Las Vegas). This work was done as part of the DOE sponsored Solar Hydrogen Generation and Research (SHGR) project. NR 16 TC 14 Z9 14 U1 3 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-092X J9 SOL ENERGY JI Sol. Energy PD FEB PY 2010 VL 84 IS 2 BP 263 EP 270 DI 10.1016/j.solener.2009.11.005 PG 8 WC Energy & Fuels SC Energy & Fuels GA 559JJ UT WOS:000274820000011 ER PT J AU Kempe, MD AF Kempe, Michael D. TI Ultraviolet light test and evaluation methods for encapsulants of photovoltaic modules SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE Photovoltaic; Adhesion; Ultraviolet; Degradation; Cerium; Glass ID PERFORMANCE; DEGRADATION; EXPOSURE; DEVICES AB Photovoltaic (PV) modules are exposed to harsh conditions of heat, humidity, high voltage, mechanical stress, thermal cycling, and ultraviolet (UV) radiation. The current qualification tests (e.g. IEC 612 15) do not require UV exposure Sufficient to evaluate a lifespan of 20 years or more. Methods to quickly evaluate the UV durability of photovoltaic materials are needed. The initial performance and cost of encapsulant materials must be taken into account, but equally important is their ability to maintain adhesion and transmissivity under UV exposure. This can be evaluated under highly accelerated conditions with light from a xenon arc lamp using glass that transmits more UV radiation than a module would normally see. The use Of highly UV transmissive glass (no Ce to block UV-B radiation) results in a UV dose that is about 3.8 times greater with regard to adhesion than a Ce-containing glass. With this configuration, the effect of 20 years of exposure, as compared with the use of UV-B blocking glass, can be Simulated in just over 6 months using standard commercial accelerated stress chambers. This also indicates that the use of non-UV blocking glass may significantly reduce the long-term adhesive stability of PV materials. (C) 2009 Elsevier B.V. All rights reserved. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Kempe, MD (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM Michael.Kempe@NREL.gov FU US Department of Energy [DE-AC36-99G010337] FX This work was carried out under US Department of Energy, Contract no. DE-AC36-99G010337. I would like to thank Robert Tirawat, Mike Milbourne, Chris Lundquist, and Andrea Warrick for making sample transmittance measurements. Kent Terwilliger and Marc Oddo for general laboratory help. Keith Emery for providing QE data. And Chris Cording and Mark Spencer for providing glass samples and transmittance spectra. NR 42 TC 23 Z9 24 U1 1 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD FEB PY 2010 VL 94 IS 2 BP 246 EP 253 DI 10.1016/j.solmat.2009.09.009 PG 8 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 552LH UT WOS:000274291300021 ER PT J AU Mann, JR Vora, N Repins, IL AF Mann, J. R. Vora, N. Repins, I. L. TI In Situ thickness measurements of chemical bath-deposited CdS SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE Cadmium sulfide; Sensor; Thickness; Interference measurement; CIGS ID FILM SOLAR-CELLS; THIN-FILMS; EFFICIENCY; INTERFERENCE AB Chemical bath-deposited (CBD) cadmium sulfide has been a component in some of the most efficient Cu(In,Ga)Se(2)-based solar cell devices. While accurate in situ measurements of the thicknesses of Vacuum-based depositions can be accomplished with quartz crystal monitors, solution-based growth rates of CdS vary greatly oil different substrates and are therefore difficult to measure. This work discusses the effectiveness of using an optical reflectance-based measurement of the growing film to determine the film's thickness. On specular molybdenum films the Measurement is accurate, while oil the tough, poorly reflecting Cu(In,Ga)Se(2) (CIGS) films, the measurement is hampered. (C) 2009 Elsevier B.V. All rights reserved. C1 [Mann, J. R.; Vora, N.; Repins, I. L.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Mann, JR (reprint author), Natl Renewable Energy Lab, MS 3213,1617 Cole Blvd, Golden, CO 80401 USA. EM jonathan.mann@nrel.gov FU U.S. Department of Energy [DE-AC36-08GO28308] FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. Out thanks also go to Bobby To for his SEM work. NR 22 TC 12 Z9 12 U1 0 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD FEB PY 2010 VL 94 IS 2 BP 333 EP 337 DI 10.1016/j.solmat.2009.10.009 PG 5 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 552LH UT WOS:000274291300035 ER PT J AU Phan, MH Frey, NA Angst, M de Groot, J Sales, BC Mandrus, DG Srikanth, H AF Phan, M. H. Frey, N. A. Angst, M. de Groot, J. Sales, B. C. Mandrus, D. G. Srikanth, H. TI Complex magnetic phases in LuFe2O4 SO SOLID STATE COMMUNICATIONS LA English DT Article DE Magnetic oxide; Cluster glass; Magnetocaloric effect; Magnetic susceptibility ID LA0.5SR0.5COO3; BEHAVIOR; GLASS AB DC magnetization and AC susceptibility measurements on LuFe2O4 single crystals reveal a ferrimagnetic transition at 240 K followed by additional magnetic transitions at 225 K and 170 K, separating cluster glass phases, and a kinetically arrested state below 55 K. The origin of giant magnetic coercivity is attributed to the collective freezing of ferrimagnetic clusters and enhanced domain wall pinning associated with a structural transition at 170 K. Magnetocaloric effect measurements provide additional vital information about the multiple magnetic transitions and the glassy states. Our results lead to the emergence of a complex magnetic phase diagram in LuFe2O4. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Phan, M. H.; Frey, N. A.; Srikanth, H.] Univ S Florida, Dept Phys, Tampa, FL 33620 USA. [Angst, M.; de Groot, J.] Forschungszentrum Julich, JARA FIT, D-52425 Julich, Germany. [Angst, M.; de Groot, J.] Forschungszentrum Julich, JCNS, Inst Festkorperforsch, D-52425 Julich, Germany. [Angst, M.; Sales, B. C.; Mandrus, D. G.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Frey, N. A.] Brown Univ, Dept Chem, Providence, RI 02912 USA. RP Srikanth, H (reprint author), Univ S Florida, Dept Phys, PHY 114 4202 E Fowler Ave, Tampa, FL 33620 USA. EM sharihar@cas.usf.edu RI Angst, Manuel/I-4380-2012; Phan, Manh-Huong/A-6709-2014; Mandrus, David/H-3090-2014 OI Angst, Manuel/0000-0001-8892-7019; FU DOE [DE-FG02-07ER46438] FX The work at USF was supported by DOE BES Physical Behavior of Materials Program through grant number DE-FG02-07ER46438. The research at ORNL was sponsored by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy. NR 29 TC 42 Z9 42 U1 3 U2 24 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-1098 J9 SOLID STATE COMMUN JI Solid State Commun. PD FEB PY 2010 VL 150 IS 7-8 BP 341 EP 345 DI 10.1016/j.ssc.2009.11.030 PG 5 WC Physics, Condensed Matter SC Physics GA 566RQ UT WOS:000275391100009 ER PT J AU Lee, SJ Wentz, EA Gober, P AF Lee, Seung-Jae Wentz, Elizabeth A. Gober, Patricia TI Space-time forecasting using soft geostatistics: a case study in forecasting municipal water demand for Phoenix, Arizona SO STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT LA English DT Article DE Water use; Forecasting; Soft data; Statistical moments; Bayesian Maximum Entropy ID URBAN HEAT-ISLAND; SPATIOTEMPORAL ANALYSIS; ATMOSPHERIC-POLLUTION; SULFATE DEPOSITION; SERIES FRAMEWORK; PART II; REPRESENTATION; VISUALIZATION; DETERMINANTS; METHODOLOGY AB Managing environmental and social systems in the face of uncertainty requires the best possible forecasts of future conditions. We use space-time variability in historical data and projections of future population density to improve forecasting of residential water demand in the City of Phoenix, Arizona. Our future water estimates are derived using the first and second order statistical moments between a dependent variable, water use, and an independent variable, population density. The independent variable is projected at future points, and remains uncertain. We use adjusted statistical moments that cover projection errors in the independent variable, and propose a methodology to generate information-rich future estimates. These updated estimates are processed in Bayesian Maximum Entropy (BME), which produces maps of estimated water use to the year 2030. Integrating the uncertain estimates into the space-time forecasting process improves forecasting accuracy up to 43.9% over other space-time mapping methods that do not assimilate the uncertain estimates. Further validation studies reveal that BME is more accurate than co-kriging that integrates the error-free independent variable, but shows similar accuracy to kriging with measurement error that processes the uncertain estimates. Our proposed forecasting method benefits from the uncertain estimates of the future, provides up-to-date forecasts of water use, and can be adapted to other socio-economic and environmental applications. C1 [Lee, Seung-Jae] Natl Renewable Energy Lab, Strateg Energy Anal Ctr, Golden, CO 80401 USA. [Wentz, Elizabeth A.] Arizona State Univ, Sch Geog Sci, Tempe, AZ 85287 USA. [Gober, Patricia] Arizona State Univ, Sch Geog Sci, Decis Ctr Desert City, Tempe, AZ 85287 USA. [Gober, Patricia] Arizona State Univ, Sch Sustainabil, Tempe, AZ 85287 USA. RP Lee, SJ (reprint author), Natl Renewable Energy Lab, Strateg Energy Anal Ctr, 1617 Cole Blvd, Golden, CO 80401 USA. EM seungjae.lee@alumni.unc.edu FU National Science Foundation [SES-0345945] FX This material is based upon work supported by the National Science Foundation under Grant No. SES-0345945, Decision Center for a Desert City (DCDC). Any opinions, findings and conclusions or recommendation expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation (NSF). NR 44 TC 15 Z9 16 U1 0 U2 26 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1436-3240 J9 STOCH ENV RES RISK A JI Stoch. Environ. Res. Risk Assess. PD FEB PY 2010 VL 24 IS 2 BP 283 EP 295 DI 10.1007/s00477-009-0317-z PG 13 WC Engineering, Environmental; Engineering, Civil; Environmental Sciences; Statistics & Probability; Water Resources SC Engineering; Environmental Sciences & Ecology; Mathematics; Water Resources GA 543GK UT WOS:000273561400010 ER PT J AU Nguyen, DN Ashworth, SP Willis, JO Sirois, F Grilli, F AF Nguyen, Doan N. Ashworth, Stephen P. Willis, Jeffrey O. Sirois, Frederic Grilli, Francesco TI A new finite-element method simulation model for computing AC loss in roll assisted biaxially textured substrate YBCO tapes SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID NI-ALLOY SUBSTRATE; COATED CONDUCTORS AB This paper presents a new finite-element simulation model for computing the electromagnetic properties and AC losses in systems of YBCO (yttrium barium copper oxide) conductors on roll assisted biaxially textured substrates (RABiTS). In this model, the magnetic field dependent permeability and ferromagnetic loss of the substrates in RABiTS YBCO tapes are taken into account. The simulations were employed to simulate the AC loss in stacks of two parallel connected YBCO tapes. The simulation results are compared with the experimental data to check the validity of the simulation model. The result reveals an effective way of significantly reducing AC loss in YBCO tapes by stacking two RABiTS YBCO coated conductors with the appropriate relative tape orientation. C1 [Nguyen, Doan N.; Ashworth, Stephen P.; Willis, Jeffrey O.] Los Alamos Natl Lab, Superconduct Technol Ctr, Los Alamos, NM 87545 USA. [Sirois, Frederic] Ecole Polytech, Montreal, PQ H3C 3A7, Canada. [Grilli, Francesco] Forschungszentrum Karlsruhe, D-76344 Eggenstein Leopoldshafen, Germany. RP Nguyen, DN (reprint author), Los Alamos Natl Lab, Superconduct Technol Ctr, POB 1663, Los Alamos, NM 87545 USA. EM doan@lanl.gov RI Sirois, Frederic/F-3736-2010; Nguyen, Doan/F-3148-2010 OI Sirois, Frederic/0000-0003-0372-9449; NR 11 TC 48 Z9 48 U1 2 U2 17 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD FEB PY 2010 VL 23 IS 2 AR 025001 DI 10.1088/0953-2048/23/2/025001 PG 5 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 546JU UT WOS:000273807900005 ER PT J AU Orgiani, P Chen, K Cui, Y Li, Q Ferrando, V Putti, M Iavarone, M Di Capua, R Ciancio, R Vaglio, R Maritato, L Xi, XX AF Orgiani, P. Chen, Ke Cui, Yi Li, Qi Ferrando, V. Putti, M. Iavarone, M. Di Capua, R. Ciancio, R. Vaglio, R. Maritato, L. Xi, X. X. TI Anisotropic transport properties in tilted c-axis MgB2 thin films SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID DEPOSITION AB We report on superconducting magnesium diboride MgB2 thin films grown on both YSZ and MgO substrates, with two different orientations, namely [110] and [211]. MgB2 off-axis growth mode (namely, with the c-axis tilted with respect to the film surface's normal) is achievable on these substrates. Depending on the type and orientation of the substrate, tilting angle can be varied. As a consequence of tilted growth, anisotropic transport properties are observed. In very thin films, resistance measurements provide an estimate of the resistivity anisotropic ratio rho(c)/rho(ab), where rho(c) is the resistivity along the c axis and rho(ab) is the in-plane resistivity. All these findings clearly demonstrate that tilted MgB2 films offer new exciting possibilities to both investigate intrinsic fundamental properties of MgB2 and to explore possible applications in planar superconducting devices. C1 [Orgiani, P.; Maritato, L.] Univ Salerno, CNR, INFM Coherentia, I-84081 Baronissi, SA, Italy. [Orgiani, P.; Maritato, L.] Univ Salerno, Dept Math & Informat, I-84081 Baronissi, SA, Italy. [Orgiani, P.; Chen, Ke; Cui, Yi; Li, Qi; Ferrando, V.; Xi, X. X.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Ferrando, V.; Putti, M.] Univ Genoa, Dept Phys, I-16146 Genoa, Italy. [Ferrando, V.; Putti, M.] Univ Genoa, CNR, INFM, LAMIA, I-16146 Genoa, Italy. [Putti, M.] Florida State Univ, Natl High Magnet Field Lab, Ctr Appl Superconduct, Tallahassee, FL 32310 USA. [Iavarone, M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Di Capua, R.] Univ Molise, Hlth Sci Dept SpeS, I-86100 Campobasso, Italy. [Di Capua, R.; Vaglio, R.] Univ Naples Federico 2, Dept Phys, I-80125 Naples, Italy. [Di Capua, R.; Vaglio, R.] Univ Naples Federico 2, CNR, INFM, I-80125 Naples, Italy. [Ciancio, R.] TASC, Natl Lab, INFM, CNR, I-84081 Baronissi, TS, Italy. [Xi, X. X.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. RP Orgiani, P (reprint author), Univ Salerno, CNR, INFM Coherentia, I-84081 Baronissi, SA, Italy. RI Orgiani, Pasquale/E-7146-2013; Putti, Marina/N-2844-2014; Di Capua, Roberto/G-9622-2012; Ciancio, Regina/R-8845-2016 OI Orgiani, Pasquale/0000-0002-1082-9651; Putti, Marina/0000-0002-4529-1708; Di Capua, Roberto/0000-0003-3605-0993; FU CNR; ONR [N00014-00-1-0294]; DOE [DE-FG02-08ER46531]; European Community under NFFA [212348]; UChicago Argonne, LLC; US Department of Energy Office of Science [DE-AC02-06CH11357]; Italian Foreign Affairs Ministry (MAE)-General Direction for Cultural Promotion FX PO's research activity at The Pennsylvania State University was partially supported by CNR under the project Short Term Mobility. The work at Penn State is supported in part by ONR under grant N00014-00-1-0294 (for X X Xi) and DOE under grant DE-FG02-08ER46531 (for Q Li). RC's research activity has received funding from the European Community's Seventh Framework Programme 2007-2011 under NFFA Grant Agreement no. 212348. The work at Argonne National Laboratory was supported by UChicago Argonne, LLC, Operator of Argonne National Laboratory ('Argonne'). Argonne, a US Department of Energy Office of Science laboratory, is operated under contract no. DE-AC02-06CH11357. The research activity of some of the authors (MP, PO, RV, RD) was partially supported by the Italian Foreign Affairs Ministry (MAE)-General Direction for Cultural Promotion. Valuable and fruitful scientific discussions with C Ferdeghini are acknowledged. NR 17 TC 2 Z9 2 U1 2 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD FEB PY 2010 VL 23 IS 2 AR 025012 DI 10.1088/0953-2048/23/2/025012 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 546JU UT WOS:000273807900016 ER PT J AU Yunus, M Ruden, PP Smith, DL AF Yunus, M. Ruden, P. P. Smith, D. L. TI Macroscopic modeling of spin injection and spin transport in organic semiconductors SO SYNTHETIC METALS LA English DT Article DE Organic semiconductors; Spin injection; Magneto-resistance; Spin valves ID POLYMERS AB We describe device models for spin injection, transport, and magneto-resistance in structures consisting of an organic semiconductor layer sandwiched between two ferromagnetic contacts. Carrier transport in the organic semiconductor is modeled with spin-dependent transport equations in drift-diffusion approximation. The effectiveness of spin-selective tunnel contacts on spin-polarized injection and magneto-resistance is examined on the basis of a simple analytical model. In agreement with earlier results, we find that spin injection from ferromagnetic metallic contacts into organic semiconductors can be greatly enhanced if (spin-selective) tunneling is the limiting process for carrier injection. We then explore the effects of the injected space charge and of spin relaxation in the semiconductor by comparing the results of a numerical calculation with the analytical model. For relatively thick organic semiconductor layers the injected space charge has strong effects on charge injection and, hence, on spin injection at high bias. Lastly, we consider a simple model for the bias dependence of the tunnel contacts and find that this effect may limit spin injection to relatively low currents. (C) 2009 Elsevier B.V. All rights reserved. C1 [Yunus, M.; Ruden, P. P.] Univ Minnesota, Minneapolis, MN 55455 USA. [Smith, D. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Ruden, PP (reprint author), Univ Minnesota, Minneapolis, MN 55455 USA. EM ruden@umn.edu FU NSF [ECCS - 0724886]; DoE Office of Basic Energy Sciences [08SPCE973] FX This work was supported in part by NSF (ECCS - 0724886). Access to the facilities of the Minnesota Supercomputing institute for Digital Simulation and Advanced Computation is gratefully acknowledged. Work at Los Alamos National Laboratory was supported by DoE Office of Basic Energy Sciences Work Proposal No. 08SPCE973. NR 28 TC 6 Z9 6 U1 2 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0379-6779 J9 SYNTHETIC MET JI Synth. Met. PD FEB PY 2010 VL 160 IS 3-4 SI SI BP 204 EP 209 DI 10.1016/j.synthmet.2009.05.013 PG 6 WC Materials Science, Multidisciplinary; Physics, Condensed Matter; Polymer Science SC Materials Science; Physics; Polymer Science GA 571TV UT WOS:000275779600002 ER PT J AU Martin, JL Bergeson, JD Prigodin, VN Epstein, AJ AF Martin, J. L. Bergeson, J. D. Prigodin, V. N. Epstein, A. J. TI Magnetoresistance for organic semiconductors: Small molecule, oligomer, conjugated polymer, and non-conjugated polymer SO SYNTHETIC METALS LA English DT Article DE Organic semiconductor; Magnetoresistance; Recombination; OLED ID ROOM-TEMPERATURE; MAGNETIC-FIELD AB Organic semiconductor (OSC) devices have been shown to have a large magnetoresistance (MR) response at room temperature for relatively small-applied magnetic fields of 0.1 - 100 milli-Tesla (mT). This large MR is not limited to one class of organics, but is seen in small molecules, oligomers, conjugated polymers, and non-conjugated polymers. In this paper, data is presented on the MR effect for the poly(phenylene vinylene) (PPV) derivative "Super Yellow," for poly(vinylenecarbazole) (PVK), for alpha-sexithiophene (alpha-6T), and for tris(8-hydroxyquinoline) aluminum (Alq(3)). The data is analyzed in the context of the Magnetoresistance by the Interconversion of Singlets and Triplets (MIST) model. The MR data of Alq(3) for magnetic fields of less than I mT are fitted to a polynomial expansion, and an estimate for the hyperfine interaction constant, which is consistent with values for small molecules, is extracted from the fitting parameters. Curve fits at fields in the 100 mT range are also presented and they show that there exist two kinds of magnetic field behavior, inverse square root, and inverse even orders. Furthermore, the scaling factor at this range is one order of magnitude larger than that found in the 3 mT range. (C) 2010 Elsevier B.V. All rights reserved. C1 [Martin, J. L.; Prigodin, V. N.; Epstein, A. J.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Bergeson, J. D.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Epstein, A. J.] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA. RP Martin, JL (reprint author), Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. EM jessem@mps.ohio-state.edu FU DOE [DE-FG02-01ER45931]; NSF [DMR-0805220]; OSU Institute for Materials Research FX This work was supported in part by DOE Grant No. DE-FG02-01ER45931, NSF Grant No. DMR-0805220, and OSU Institute for Materials Research. We thank Covion Organic Semiconductors GmbH, presently Merck OLED Materials GmbH, for the supply of "Super Yellow." NR 22 TC 14 Z9 14 U1 1 U2 16 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0379-6779 J9 SYNTHETIC MET JI Synth. Met. PD FEB PY 2010 VL 160 IS 3-4 SI SI BP 291 EP 296 DI 10.1016/j.synthmet.2010.01.009 PG 6 WC Materials Science, Multidisciplinary; Physics, Condensed Matter; Polymer Science SC Materials Science; Physics; Polymer Science GA 571TV UT WOS:000275779600018 ER PT J AU Moloney, C Griffin, D Jones, PW Bryan, GJ McLean, K Bradshaw, JE Milbourne, D AF Moloney, Claire Griffin, Denis Jones, Peter W. Bryan, Glenn J. McLean, Karen Bradshaw, John E. Milbourne, Dan TI Development of diagnostic markers for use in breeding potatoes resistant to Globodera pallida pathotype Pa2/3 using germplasm derived from Solanum tuberosum ssp andigena CPC 2802 SO THEORETICAL AND APPLIED GENETICS LA English DT Article ID BROAD-SPECTRUM RESISTANCE; MAPPING QTLS; GENE-CLUSTER; LOCUS; CONSTRUCTION; AFLP; SPEGAZZINII; STONE; MAP AB Quantitative resistance to Globodera pallida pathotype Pa2/3, originally derived from Solanum tuberosum ssp. andigena Commonwealth Potato Collection (CPC) accession 2802, is present in several potato cultivars and advanced breeding lines. One genetic component of this resistance, a large effect quantitative trait locus (QTL) on linkage group IV (which we have renamed GpaIV (adg) (s) ) has previously been mapped in the tetraploid breeding line 12601ab1. In this study, we show that GpaIV (adg) (s) is also present in a breeding line called C1992/31 via genetic mapping in an F(1) population produced by crossing C1992/31 with the G. pallida susceptible cultivar Record. C1992/31 is relatively divergent from 12601ab1, confirming that GpaIV (adg) (s) is an ideal target for marker-assisted selection in currently available germplasm. To generate markers exhibiting diagnostic potential for GpaIV (adg) (s) , three bacterial artificial chromosome clones were isolated from the QTL region, sequenced, and used to develop 15 primer sets generating single-copy amplicons, which were examined for polymorphisms exhibiting linkage to GpaIV (adg) (s) in C1992/31. Eight such polymorphisms were found. Subsequently, one insertion/deletion polymorphism, three single nucleotide polymorphisms and a specific allele of the microsatellite marker STM3016 were shown to exhibit diagnostic potential for the QTL in a panel of 37 potato genotypes, 12 with and 25 without accession CPC2082 in their pedigrees. STM3016 and one of the SNP polymorphisms, C237(119), were assayed in 178 potato genotypes, arising from crosses between C1992/31 and 16 G. pallida susceptible genotypes, undergoing selection in a commercial breeding programme. The results suggest that the diagnostic markers would most effectively be employed in MAS-based approaches to pyramid different resistance loci to develop cultivars exhibiting strong, durable resistance to G. pallida pathotype Pa2/3. C1 [Moloney, Claire; Griffin, Denis; Milbourne, Dan] TEAGASC, Crops Res Ctr, Carlow, Ireland. [Jones, Peter W.] Univ Coll Cork, Dept Zool Ecol & Plant Sci, Cork, Ireland. [Bryan, Glenn J.; McLean, Karen; Bradshaw, John E.] Scottish Crop Res Inst, Genet Programme, Dundee DD2 5DA, Scotland. RP Milbourne, D (reprint author), TEAGASC, Crops Res Ctr, Oak Pk, Carlow, Ireland. EM dan.milbourne@teagasc.ie OI Milbourne, Dan/0000-0002-8323-6195 FU Teagasc Walsh Fellowship; National Development Plan (NPD) of Ireland; Irish Potato Marketing Limited; Scottish Government Rural Environment Research and Analysis Directorate (RERAD) FX CM was supported by a Teagasc Walsh Fellowship during the course of this study. DM is supported by the National Development Plan (NPD) of Ireland. The potato breeding programme at Oak Park (DG) is supported by the NDP and Irish Potato Marketing Limited. GJB and JEB acknowledge financial support of the Scottish Government Rural Environment Research and Analysis Directorate (RERAD). The authors wish to thank Dr Della Milbourne for help with the figures and proofreading the manuscript, Dr Helena Meally for help with fluorescent genotyping of STM3016 and Emmet Dalton for genotyping the HC and SPUD1636 markers. NR 24 TC 15 Z9 15 U1 0 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0040-5752 J9 THEOR APPL GENET JI Theor. Appl. Genet. PD FEB PY 2010 VL 120 IS 3 BP 679 EP 689 DI 10.1007/s00122-009-1185-0 PG 11 WC Agronomy; Plant Sciences; Genetics & Heredity; Horticulture SC Agriculture; Plant Sciences; Genetics & Heredity GA 545RV UT WOS:000273755200016 PM 19882336 ER PT J AU Li, GS Hu, DH Xia, GG Zhang, ZC AF Li, Guosheng Hu, Dehong Xia, Guanguang Zhang, Z. Conrad TI Catalyst Structure-Performance Relationship Identified by High-Throughput Operando Method: New Insight for Silica-Supported Vanadium Oxide for Methanol Oxidation SO TOPICS IN CATALYSIS LA English DT Article; Proceedings Paper CT 1st International Combinatorial Catalysis Symposium (ICCS) CY JUL 20-22, 2008 CL KAIST, Daejeon, SOUTH KOREA HO KAIST DE FT-IR imaging; In situ Raman spectroscopy; High throughput reactor; Methoxy group; Vanadium catalysts; Metal oxide catalysts; Methanol oxidation; Surface cluster-edge activation ID LASER RAMAN-SPECTROSCOPY; METAL-OXIDES; MOLECULAR-STRUCTURE; FORMALDEHYDE; REACTIVITY; ALUMINA; IR; TITANIA; ORIGIN; XANES AB The reaction mechanism of methanol oxidation catalyzed by vanadium oxides on a silica support (V2O5/SiO2) was investigated in a high-throughput operando reactor coupled with a Fourier transform-infrared (FT-IR) imaging system for rapid product analysis and six parallel, in situ Raman spectroscopy probes for catalyst characterization. Up to six V2O5/SiO2 catalysts with different vanadium loadings (i.e., from 0 to 7%) were simultaneously monitored under identical experimental conditions. The specific Raman bands of the different catalysts in the six parallel reaction channels are quantitatively determined in this work. Under steady-state reaction conditions, the Raman intensities of C-H stretch in Si-O-CH3 and V-O-CH3 were extensively studied at different reaction temperatures and different vanadium loadings. For the first time, we observed enhanced Si-O-CH3 formation on V2O5/SiO2 catalysts with low vanadium loadings. We attribute this phenomenon to surface cluster edge activation. Careful comparison of the in situ Raman intensity of V-O-CH3 on V2O5/SiO2 catalysts revealed different methoxy formation mechanisms in different reaction temperature regimes. C1 [Zhang, Z. Conrad] KiOR Inc, Pasadena, TX 77507 USA. [Li, Guosheng; Hu, Dehong; Xia, Guanguang; Zhang, Z. Conrad] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. RP Zhang, ZC (reprint author), KiOR Inc, 13001 Bay Pk Rd, Pasadena, TX 77507 USA. EM conrad.zhang@kior.com RI Hu, Dehong/B-4650-2010 OI Hu, Dehong/0000-0002-3974-2963 NR 38 TC 4 Z9 4 U1 0 U2 13 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 J9 TOP CATAL JI Top. Catal. PD FEB PY 2010 VL 53 IS 1-2 BP 40 EP 48 DI 10.1007/s11244-009-9437-4 PG 9 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 557RX UT WOS:000274688900007 ER PT J AU Smith, JN Wang, J Lin, YH Timchalk, C AF Smith, Jordan N. Wang, Jun Lin, Yuehe Timchalk, Charles TI Pharmacokinetics of the Chlorpyrifos Metabolite 3,5,6-Trichloro-2-Pyridinol (TCPy) in Rat Saliva SO TOXICOLOGICAL SCIENCES LA English DT Article DE chlorpyrifos; 3; 5; 6-trichloro-2-pyridinol; trichloropyridinol; pharmacokinetics; saliva; biomonitoring ID PHOSPHORYLATED ACETYLCHOLINESTERASE; ORGANOPHOSPHATE PESTICIDES; INSECTICIDE CHLORPYRIFOS; PLASMA-CONCENTRATION; EXPOSURE BIOMARKER; ANIMAL-MODEL; NERVE AGENTS; EXCRETION; ATRAZINE; TISSUE AB Biological monitoring (biomonitoring) to quantify systemic exposure to the organophosphorus insecticide chlorpyrifos (CPF) has historically focused on the quantitation of major CPF metabolites in urine. Noninvasive techniques are being advocated as novel means of biomonitoring for a variety of potential toxicants, including pesticides (like CPF), and saliva has been suggested as an ideal body fluid. However, in order to be acceptable, there is a need to understand salivary pharmacokinetics of CPF metabolites in order to extrapolate saliva measurements to whole-body exposures. In this context, in vivo pharmacokinetics of 3,5,6-trichloro-2-pyridinol (TCPy), the major chemical-specific metabolite of CPF, was quantitatively evaluated in rat saliva. Experimental results suggest that TCPy partitioning from plasma to saliva in rats is relatively constant over a range of varying physiological conditions. TCPy pharmacokinetics was very similar in blood and saliva (area under the curve values were proportional and elimination rates ranged from 0.007 to 0.019 per hour), and saliva/blood TCPy concentration ratios were not affected by TCPy concentration in blood (p = 0.35) or saliva flow rate (p = 0.26). The TCPy concentration in saliva was highly correlated to the amount of unbound TCPy in plasma (r = 0.96), and the amount of TCPy protein binding in plasma was substantial (98.5%). The median saliva/blood concentration ratio (0.049) was integrated as a saliva/blood TCPy partitioning coefficient within an existing physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model for CPF. The model was capable of accurately predicting TCPy concentrations in saliva over a range of blood concentrations. These studies suggest that saliva TCPy concentration can be utilized to ascertain CPF exposure. It is envisioned that the PBPK/PD can likewise be used to estimate CPF dosimetry based on the quantitation of TCPy in spot saliva samples obtained from biomonitoring studies. C1 [Smith, Jordan N.; Wang, Jun; Lin, Yuehe; Timchalk, Charles] Battelle Mem Inst, Pacific NW Div, Richland, WA 99354 USA. RP Timchalk, C (reprint author), Battelle Mem Inst, Pacific NW Div, POB 999, Richland, WA 99354 USA. EM charles.timchalk@pnl.gov RI Lin, Yuehe/D-9762-2011 OI Lin, Yuehe/0000-0003-3791-7587 FU Centers for Disease Control and Prevention/National Institute for Occupational Safety and Health [R01 OH008173, R01 OH003629] FX Centers for Disease Control and Prevention/National Institute for Occupational Safety and Health (R01 OH008173 and R01 OH003629). NR 46 TC 9 Z9 9 U1 3 U2 14 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1096-6080 J9 TOXICOL SCI JI Toxicol. Sci. PD FEB PY 2010 VL 113 IS 2 BP 315 EP 325 DI 10.1093/toxsci/kfp283 PG 11 WC Toxicology SC Toxicology GA 545BF UT WOS:000273706200006 PM 19920072 ER PT J AU Poet, TS Kirman, CR Bader, M van Thriel, C Gargas, ML Hinderliter, PM AF Poet, Torka S. Kirman, Chris R. Bader, Michael van Thriel, Christoph Gargas, Michael L. Hinderliter, Paul M. TI Quantitative Risk Analysis for N-Methyl Pyrrolidone Using Physiologically Based Pharmacokinetic and Benchmark Dose Modeling SO TOXICOLOGICAL SCIENCES LA English DT Article DE PBPK; benchmark dose; exposure assessment; risk assessment; human equivalent concentration ID SPRAGUE-DAWLEY RATS; N-METHYL-2-PYRROLIDONE NMP; PERCUTANEOUS-ABSORPTION; DEVELOPMENTAL TOXICITY; DERMAL ABSORPTION; EXPERIMENTAL EXPOSURE; INHALATION EXPOSURE; URINARY ELIMINATION; TISSUE DOSIMETRY; POTENTIAL IMPACT AB Establishing an occupational exposure limit (OEL) for N-methyl pyrrolidone (NMP) is important due to its widespread use as a solvent. Based on studies in rodents, the most sensitive toxic end point is a decrease in fetal/pup body weights observed after oral, dermal, and inhalation exposures of dams to NMP. Evidence indicates that the parent compound is the causative agent. To reduce the uncertainty in rat to human extrapolations, physiologically based pharmacokinetic (PBPK) models were developed to describe the pharmacokinetics of NMP in both species. Since in utero exposures are of concern, the models considered major physiological changes occurring in the dam or mother over the course of gestation. The rat PBPK model was used to determine the relationship between NMP concentrations in maternal blood and decrements in fetal/pup body weights following exposures to NMP vapor. Body weight decrements seen after vapor exposures occurred at lower NMP blood levels than those observed after oral and dermal exposures. Benchmark dose modeling was used to better define a point of departure (POD) for fetal/pup body weight changes based on dose-response information from two inhalation studies in rats. The POD and human PBPK model were then used to estimate the human equivalent concentrations (HECs) that could be used to derive an OEL value for NMP. The geometric mean of the PODs derived from the rat studies was estimated to be 350 mg h/l (expressed in terms of internal dose), a value which corresponds to an HEC of 480 ppm (occupational exposure of 8 h/day, 5 days/week). The HEC is much higher than recently developed internationally recognized OELs for NMP of 10-20 ppm, suggesting that these OELs adequately protect workers exposed to NMP vapor. C1 [Poet, Torka S.] Ctr Biol Monitoring & Modeling, Battelle Pacific NW Div, Richland, WA 99352 USA. [Kirman, Chris R.] Sapphire Grp Inc, Beachwood, OH 44122 USA. [Bader, Michael] Hannover Med Sch, Inst Occupat Med, D-30625 Hannover, Germany. [van Thriel, Christoph] Leibniz Res Ctr Working Environm & Human Factors, D-44139 Dortmund, Germany. [Gargas, Michael L.] Sapphire Grp Inc, Beavercreek, OH 45431 USA. RP Poet, TS (reprint author), Ctr Biol Monitoring & Modeling, Battelle Pacific NW Div, 902 Battelle Blvd,POB 999,MSIN P7-59, Richland, WA 99352 USA. EM torka.poet@pnl.gov FU NMP Producers Group, Inc.; NMP Producers Group, Inc FX NMP Producers Group, Inc.; We thank Robinan Gentry (Environ) for the use of the isopropanol PBPK model describing pregnancy and Lisa Sweeney (The Sapphire Group) for her review of the manuscript. Conflict of Interest: Funding and industry studies were supplied by the NMP Producers Group, Inc. NR 51 TC 9 Z9 9 U1 0 U2 9 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1096-6080 J9 TOXICOL SCI JI Toxicol. Sci. PD FEB PY 2010 VL 113 IS 2 BP 468 EP 482 DI 10.1093/toxsci/kfp264 PG 15 WC Toxicology SC Toxicology GA 545BF UT WOS:000273706200020 PM 19875680 ER PT J AU Dadkar, Y Nozick, L Jones, D AF Dadkar, Yashoda Nozick, Linda Jones, Dean TI Optimizing facility use restrictions for the movement of hazardous materials SO TRANSPORTATION RESEARCH PART B-METHODOLOGICAL LA English DT Article DE Hazardous materials; Routing; Game theory ID GAME-THEORY; MATERIALS TRANSPORTATION; RISK; TERRORISM; NETWORKS; RELIABILITY AB The modeling tools that have been developed over the last 25 years for the identification of routes for hazmat shipments emphasize the tradeoffs between cost minimization to the shipper/carrier and controlling the "natural" consequences that would stem from all accident. As the terrorist threat has grown, it has become clear that a new perspective. which allows for the representation of the goals and activities of terrorists, must be incorporated into these routing models. Government agencies can determine which specific facilities to restrict for each class of material and for which times of the day and/or week. This paper develops a game-theoretic model of the interactions among government agencies. shippers/carriers and terrorists as a framework for the analysis It also develops an effective Solution procedure for this game Finally. it illustrates the methodology on a realistic case study. (C) 2009 Elsevier Lid All rights reserved. C1 [Dadkar, Yashoda; Nozick, Linda] Cornell Univ, Sch Civil & Environm Engn, Ithaca, NY 14853 USA. [Jones, Dean] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Nozick, L (reprint author), Cornell Univ, Sch Civil & Environm Engn, Hollister Hall, Ithaca, NY 14853 USA. EM yad2@cornell.edu NR 39 TC 7 Z9 7 U1 2 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0191-2615 J9 TRANSPORT RES B-METH JI Transp. Res. Pt. B-Methodol. PD FEB PY 2010 VL 44 IS 2 BP 267 EP 281 DI 10.1016/j.trb.2009.07.006 PG 15 WC Economics; Engineering, Civil; Operations Research & Management Science; Transportation; Transportation Science & Technology SC Business & Economics; Engineering; Operations Research & Management Science; Transportation GA 551OW UT WOS:000274219900005 ER PT J AU Su, D Zhu, YM AF Su, Dong Zhu, Yimei TI Scanning moire fringe imaging by scanning transmission electron microscopy SO ULTRAMICROSCOPY LA English DT Article DE STEM; Moire fringes; Interference imaging ID TUNNELING-MICROSCOPY; HIGH-RESOLUTION; ABERRATIONS; PATTERNS; STEM AB A type of artificial contrast found in annular dark-field imaging is generated by spatial interference between the scanning grating of the electron beam and the specimen atomic lattice. The contrast is analogous to moire fringes observed in conventional transmission electron microscopy. We propose using this scanning interference for retrieving information about the atomic lattice structure at medium magnifications. Compared with the STEM atomic imaging at high magnifications, this approach might have several advantages including easy observation of lattice discontinuities and reduction of image degradation from carbon contamination and beam damage. Application of the technique to reveal the Burgers vector of misfit dislocations at the interface of epitaxial films is demonstrated and its potential for studying strain fields is discussed. (C) 2009 Elsevier By. All rights reserved. C1 [Su, Dong; Zhu, Yimei] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Su, D (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM dsu@bnl.gov RI Su, Dong/A-8233-2013 OI Su, Dong/0000-0002-1921-6683 FU US Department of Energy [DE-AC02-98CH10886] FX We are grateful to Dr. Nan Jiang, Prof. J. C. H. Spence, and Dr. Lijun Wu for helpful discussions. We also acknowledge Drs. T. Yamada, T. Kamo, H. Funakubo (Tokyo Institute of Technology, Japan) for providing the BST/STO samples and Dr. J. Ciston for his help with English. The work was supported by US Department of Energy under contract No. DE-AC02-98CH10886. NR 29 TC 17 Z9 17 U1 0 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD FEB PY 2010 VL 110 IS 3 BP 229 EP 233 DI 10.1016/j.ultramic.2009.11.015 PG 5 WC Microscopy SC Microscopy GA 569RB UT WOS:000275615500008 PM 20006440 ER PT J AU Darling, TW Allured, B Tencate, JA Carpenter, MA AF Darling, Timothy W. Allured, Bradley Tencate, James A. Carpenter, Michael A. TI Electric field effects in RUS measurements SO ULTRASONICS LA English DT Article; Proceedings Paper CT International Congress on Ultrasonics 2009 CY JAN 11-17, 2009 CL Univ Santiago Chile, Santiago, CHILE HO Univ Santiago Chile DE Dielectric; Elasticity; Electric fields; Polycrystals; Resonances; Surface waves; Quartzite ID ULTRASOUND SPECTROSCOPY; ELASTIC-CONSTANTS; RESONANCE AB Much of the power of the Resonant Ultrasound Spectroscopy (RUS) technique is the ability to make mechanical resonance measurements while the environment of the sample is changed. Temperature and magnetic field are important examples. Due to the common use of piezoelectric transducers near the sample, applied electric fields introduce complications, but many materials have technologically interesting responses to applied static and RF electric fields. Non-contact optical, buffered, or shielded transducers permit the application of charge and externally applied electric fields while making RUS measurements. For conducting samples, in vacuum, charging produces a small negative pressure in the volume of the material - a state rarely explored. At very high charges we influence the electron density near the surface so the propagation of surface waves and their resonances may give us a handle on the relationship of electron density to bond strength and elasticity. Our preliminary results indicate a charge sign dependent effect, but we are studying a number of possible other effects induced by charging. In dielectric materials, external electric fields influence the strain response, particularly in ferroelectrics. Experiments to study this connection at phase transformations are planned. The fact that many geological samples contain single crystal quartz suggests a possible use of the piezoelectric response to drive vibrations using applied RF fields. In polycrystals, averaging of strains in randomly oriented crystals implies using the "statistical residual" strain as the drive. The ability to excite vibrations in quartzite polycrystals and arenites is explored. We present results of experimental and theoretical approaches to electric field effects using RUS methods. (C) 2009 Elsevier B. V. All rights reserved. C1 [Darling, Timothy W.; Allured, Bradley] Univ Nevada, Reno, NV 89557 USA. [Tencate, James A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Carpenter, Michael A.] Univ Cambridge, Cambridge, England. RP Darling, TW (reprint author), Univ Nevada, Reno, NV 89557 USA. EM darling@unr.edu RI Carpenter, Michael/D-4860-2015 NR 18 TC 2 Z9 2 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0041-624X J9 ULTRASONICS JI Ultrasonics PD FEB PY 2010 VL 50 IS 2 BP 145 EP 149 DI 10.1016/j.ultras.2009.09.006 PG 5 WC Acoustics; Radiology, Nuclear Medicine & Medical Imaging SC Acoustics; Radiology, Nuclear Medicine & Medical Imaging GA 519PO UT WOS:000271779500010 PM 19850314 ER PT J AU Safarik, DJ Schwarz, RB Paglieri, SN Quintana, RL Tuggle, DG Byler, DD AF Safarik, D. J. Schwarz, R. B. Paglieri, S. N. Quintana, R. L. Tuggle, D. G. Byler, D. D. TI Composition dependence of the elastic constants of beta-phase and (alpha plus beta)-phase PdHx SO ULTRASONICS LA English DT Article; Proceedings Paper CT International Congress on Ultrasonics CY JAN 11-17, 2009 CL Univ Santiago Chile, Santiago, CHILE HO Univ Santiago Chile DE Palladium hydride; Elastic constants; Resonant ultrasound spectroscopy; Anelastic relaxation; Two-phase composite ID RESONANT ULTRASOUND SPECTROSCOPY; PALLADIUM HYDRIDE; HYDROGEN; MODULI AB We have measured the composition and temperature dependence of the shear moduli C' and C-44 for two-phase (alpha + beta)- and single-phase beta-PdHx. In the two-phase region, the alpha- and beta-phases are coherent. Here, the composition dependence of C-44 and C' deviate negatively from a Vegard-type volume average. We attribute the deviations to two effects: (1) the partly in-series arrangement of the precipitate and matrix phases, relative to the externally applied stress, and (2) thermally activated anelastic relaxations involving the rapid motion of H interstitial atoms, leading to slight changes in the shape of coherent precipitates. The first effect is present for both C' and C44 and is temperature-independent, whereas the second is present only for C' and is strongly temperature-dependent. Published by Elsevier B. V. C1 [Safarik, D. J.; Schwarz, R. B.; Byler, D. D.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Paglieri, S. N.; Quintana, R. L.; Tuggle, D. G.] Los Alamos Natl Lab, Appl Engn & Technol Div, Los Alamos, NM 87545 USA. RP Safarik, DJ (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM dsafarik@lanl.gov OI Safarik, Douglas/0000-0001-8648-9377 NR 15 TC 2 Z9 3 U1 1 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0041-624X J9 ULTRASONICS JI Ultrasonics PD FEB PY 2010 VL 50 IS 2 BP 155 EP 160 DI 10.1016/j.ultras.2009.09.014 PG 6 WC Acoustics; Radiology, Nuclear Medicine & Medical Imaging SC Acoustics; Radiology, Nuclear Medicine & Medical Imaging GA 519PO UT WOS:000271779500012 PM 19836816 ER PT J AU Easter, RN Chan, QL Lai, B Ritman, EL Caruso, JA Qin, ZY AF Easter, Renee N. Chan, Qilin Lai, Barry Ritman, Erik L. Caruso, Joseph A. Qin, Zhenyu TI Vascular metallomics: Copper in the vasculature SO VASCULAR MEDICINE LA English DT Article DE vascular diseases ID PLASMA-MASS SPECTROMETRY; GROWTH-FACTOR RECEPTOR-1; ATOMIC-ABSORPTION-SPECTROMETRY; HUMAN ATHEROSCLEROTIC PLAQUES; RAY-FLUORESCENCE MICROSCOPY; CORONARY-HEART-DISEASE; SERUM COPPER; CARDIOVASCULAR-DISEASE; MACROPHAGE RECRUITMENT; SUPEROXIDE-DISMUTASE AB Owing to recent progress in analytical techniques, metallomics are evolving from detecting distinct trace metals in a defined state to monitor the dynamic changes in the abundance and location of trace metals in vitro and in vivo. Vascular metallomics is an emerging field that studies the role of trace metals in vasculature. This review will introduce common metallomics techniques including atomic absorption spectrometry, inductively coupled plasma-atomic emission spectrometry, inductively coupled plasma-mass spectrometry and X-ray fluorescence spectrometry with a summary table to compare these techniques. Moreover, we will summarize recent research findings that have applied these techniques to human population studies in cardiovascular diseases, with a particular emphasis on the role of copper in these diseases. In order to address the issue of interdisciplinary studies between metallomics and vascular biology, we will review the progress of efforts to understand the role of copper in neovascularization. This recent advance in the metallomics field may be a powerful tool to elucidate the signaling pathways and specific biological functions of these trace metals. Finally, we summarize the evidence to support the notion that copper is a dynamic signaling molecule. As a future direction, vascular metallomics studies may lead to the identification of targets for diagnosis and therapy in cardiovascular disease. C1 [Easter, Renee N.; Qin, Zhenyu] Univ Cincinnati, Coll Med, Div Cardiovasc Dis, Cincinnati, OH 45267 USA. [Easter, Renee N.; Chan, Qilin; Caruso, Joseph A.] Univ Cincinnati, Dept Chem, Coll Arts & Sci, Cincinnati, OH 45267 USA. [Lai, Barry] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Ritman, Erik L.] Mayo Clin, Dept Physiol & Biomed Engn, Coll Med, Rochester, MN USA. RP Qin, ZY (reprint author), Univ Cincinnati, Coll Med, Div Cardiovasc Dis, 231 Albert Sabin Way,Mail Locat 0542, Cincinnati, OH 45267 USA. EM qinz@uc.edu FU AHA National Scientist Development [0835268N]; NIH [HL65342]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by an AHA National Scientist Development Grant (0835268N) and a NIH grant (HL65342). Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 59 TC 15 Z9 16 U1 1 U2 8 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1358-863X J9 VASC MED JI Vasc. Med. PD FEB PY 2010 VL 15 IS 1 BP 61 EP 69 DI 10.1177/1358863X09346656 PG 9 WC Peripheral Vascular Disease SC Cardiovascular System & Cardiology GA 545WX UT WOS:000273768800010 PM 19808712 ER PT J AU Lowell, JL Andersen, GL Stowkowski, RP Antolin, MF Gage, KL AF Lowell, J. L. Andersen, G. L. Stowkowski, R. P. Antolin, M. F. Gage, K. L. TI SINGLE NUCLEOTIDE POLYMORPHISM DISCOVERY TO DETERMINE YERSINIA PESTIS POPULATION STRUCTURE IN THE WESTERN UNITED STATES SO VECTOR-BORNE AND ZOONOTIC DISEASES LA English DT Meeting Abstract C1 [Lowell, J. L.] Univ Montana, Div Biol Sci, Microbial Ecol Program, Missoula, MT 59812 USA. [Andersen, G. L.] Lawrence Berkeley Natl Lab, Ctr Environm Biotechnol, Berkeley, CA USA. [Stowkowski, R. P.] Perlegen Sci, Mountain View, CA USA. [Antolin, M. F.] Colorado State Univ, Dept Biol, Ft Collins, CO 80523 USA. [Gage, K. L.] Ctr Dis Control & Prevent, Bacterial Zoonoses Branch, Div Vector Borne Infect Dis, Natl Ctr Infect Dis, Ft Collins, CO USA. RI Andersen, Gary/G-2792-2015 OI Andersen, Gary/0000-0002-1618-9827 NR 2 TC 0 Z9 0 U1 0 U2 0 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1530-3667 J9 VECTOR-BORNE ZOONOT JI Vector-Borne Zoonotic Dis. PD FEB PY 2010 VL 10 IS 1 SI SI BP 97 EP 97 PG 1 WC Public, Environmental & Occupational Health; Infectious Diseases SC Public, Environmental & Occupational Health; Infectious Diseases GA 555PS UT WOS:000274526200027 ER PT J AU Mehle, A Doudna, JA AF Mehle, Andrew Doudna, Jennifer A. TI A Host of Factors Regulating Influenza Virus Replication SO VIRUSES-BASEL LA English DT Article ID WEST-NILE-VIRUS; DENGUE-VIRUS; SCREEN; CELLS; INFECTION; TRANSPORT; PROTEIN; ENTRY AB A new series of genetic screens begins to illuminate the interaction between influenza virus and the infected cell. C1 [Mehle, Andrew; Doudna, Jennifer A.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94705 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Dept Chem, Howard Hughes Med Inst, Berkeley, CA 94705 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Doudna, JA (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94705 USA. EM doudna@berkeley.edu FU National Institute of General Medical Sciences [K99GM088484] FX We thank A. Brass and S. Elledge for sharing information before publication, M. Harrison for critical reading of the manuscript, and members of the Doudna lab for support. A.M. is supported by the National Institute of General Medical Sciences (K99GM088484). NR 19 TC 9 Z9 9 U1 0 U2 1 PU MDPI AG PI BASEL PA KANDERERSTRASSE 25, CH-4057 BASEL, SWITZERLAND SN 1999-4915 J9 VIRUSES-BASEL JI Viruses-Basel PD FEB PY 2010 VL 2 IS 2 BP 566 EP 573 DI 10.3390/v2020566 PG 8 WC Virology SC Virology GA 632HN UT WOS:000280413400010 PM 21994648 ER PT J AU Simon, JI DePaolo, DJ AF Simon, Justin I. DePaolo, Donald J. TI Stable calcium isotopic composition of meteorites and rocky planets SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE formation of rocky planets; meteorites; Ca isotopes; non-equilibrium condensation; isotope fractionation ID MURCHISON CARBONACEOUS CHONDRITE; SOLAR-SYSTEM MATERIALS; RARE-EARTH-ELEMENTS; REFRACTORY INCLUSIONS; ENSTATITE CHONDRITES; PROTOPLANETARY DISK; HIBONITE GRAINS; RICH INCLUSIONS; MC-ICPMS; FRACTIONATION AB New measurements of mass-dependent calcium isotope effects in meteorites, lunar and terrestrial samples show that Earth, Moon, Mars, and differentiated asteroids (e.g., 4-Vesta and the angrite and aubrite parent bodies) are indistinguishable from primitive ordinary chondritic meteorites at our current analytical resolution (+/-0.07 parts per thousand SD for the Ca-44/Ca-40 ratio). In contrast, enstatite chondritic meteorites are slightly enriched in heavier calcium isotopes (ca. +0.5 parts per thousand) and primitive carbonaceous chondritic meteorites are depleted in heavier calcium isotopes (ca. - 0.5 parts per thousand). The calcium isotope effects cannot be easily ascribed to evaporation or intraplanetary differentiation processes. The isotopic variations probably survive from the earliest stages of nebular condensation, and indicate that condensation occurred under non-equilibrium (undercooled nebular gas) conditions. Some of this early high-temperature calcium isotope heterogeneity is recorded by refractory inclusions (Niederer and Papanastassiou, 1984) and survived in planetesimals, but virtually none of it survived through terrestrial planet accretion. The new calcium isotope data suggest that ordinary chondrites are representative of the bulk of the refractory materials that formed the terrestrial planets; enstatite and carbonaceous chondrites are not. The enrichment of light calcium isotopes in bulk carbonaceous chondrites implies that their compositions are not fully representative of the solar nebula condensable fraction. (C) 2009 Elsevier B.V. All rights reserved. C1 [Simon, Justin I.; DePaolo, Donald J.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Ctr Isotope Geochem, Berkeley, CA 94720 USA. [Simon, Justin I.] Berkeley Geochronol Ctr, Berkeley, CA 94709 USA. [DePaolo, Donald J.] EO Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Simon, JI (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Ctr Isotope Geochem, Berkeley, CA 94720 USA. EM simon@eps.berkeley.edu RI Simon, Justin/D-7015-2011 FU NASA Astrobiology Institute [NAI02-0024-0006]; NSF [EAR0408521] FX M. Rutherford and L. Borg generously provided unused, partially processed lunar materials. The Antarctic Meteorite Working Group is thanked for giving us part of the Martian meteorite ALH84001. Other meteorite samples were kindly provided by J. Wasson, L. Borg, M. Kennedy, K. Nishiizumi, and E. Young, as was a sample of Central American arc basalt, by M. Carr. We are grateful to J. Cuzzi for helpful discussions concerning dynamical disk mechanisms in the protoplanetary nebula. We thank S. Brown and T. Owens for sharing their analytical expertise and D. Ebel for providing us results from his VAPORS code. The careful and helpful comments of reviewers A. Davis, D. Papanastassiou, and T. Ireland and Editor R. Carlson are gratefully acknowledged. This research was supported by a NASA Astrobiology Institute grant (BioMARS; NAI02-0024-0006) and the Petrology and Geochemistry program of NSF (EAR0408521). NR 95 TC 71 Z9 74 U1 2 U2 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X EI 1385-013X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD JAN 31 PY 2010 VL 289 IS 3-4 BP 457 EP 466 DI 10.1016/j.epsl.2009.11.035 PG 10 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 553FH UT WOS:000274351000013 ER PT J AU Soderquist, C Hanson, B AF Soderquist, Chuck Hanson, Brady TI Dissolution of spent nuclear fuel in carbonate-peroxide solution SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE Spent fuel; Fuel reprocessing; Fuel dissolution ID IRRADIATED UO2; OXIDE FUELS; INCLUSIONS; BEHAVIOR AB This study shows that spent UO(2) fuel can be completely dissolved in a room temperature carbonate-peroxide solution apparently without attacking the metallic Mo-Tc-Ru-Rh-Pd fission product phase. In parallel tests, identical samples of spent nuclear fuel were dissolved in nitric acid and in an ammonium carbonate, hydrogen peroxide solution. The resulting solutions were analyzed for strontium-90, technetium-99, cesium-137, europium-154, plutonium, and americium-241. The results were identical for all analytes except technetium, where the carbonate-peroxide dissolution had only about 25% of the technetium that the nitric acid dissolution had. (C) 2009 Elsevier B.V. All rights reserved. C1 [Soderquist, Chuck; Hanson, Brady] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Soderquist, C (reprint author), Pacific NW Natl Lab, MS P7-25,POB 999, Richland, WA 99352 USA. EM chuck.soderquist@pnl.gov NR 22 TC 15 Z9 15 U1 4 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JAN 31 PY 2010 VL 396 IS 2-3 BP 159 EP 162 DI 10.1016/j.jnucmat.2009.11.001 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 555ZY UT WOS:000274557100002 ER PT J AU Gan, J Keiser, DD Wachs, DM Robinson, AB Miller, BD Allen, TR AF Gan, J. Keiser, D. D., Jr. Wachs, D. M. Robinson, A. B. Miller, B. D. Allen, T. R. TI Transmission electron microscopy characterization of irradiated U-7Mo/Al-2Si dispersion fuel SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID GAS-BUBBLE SUPERLATTICE; MOLYBDENUM; BEHAVIOR; METALS AB The plate-type dispersion fuels, with the atomized U(Mo) fuel particles dispersed in the Al or Al alloy matrix, are being developed for use in research and test reactors worldwide. It is found that the irradiation performance of a plate-type dispersion fuel depends on the radiation stability of the various phases in a fuel plate. Transmission electron microscopy was performed on a sample (peak fuel mid-plane temperature similar to 109 degrees C and fission density 4.5 x 10(27) fm(-3)) taken from an irradiated U-7Mo dispersion fuel plate with Al-2Si alloy matrix to investigate the role of Si addition in the matrix on the radiation stability of the phase(s) in the U-7Mo fuel/matrix interaction layer. A similar interaction layer that forms in irradiated U-7Mo dispersion fuels with pure Al matrix has been found to exhibit poor irradiation stability, likely as a result of poor fission gas retention. The interaction layer for both U-7Mo/Al-2Si and U-7Mo/Al fuels is observed to be amorphous. However, unlike the latter, the amorphous layer for the former was found to effectively retain fission gases in areas with high Si concentration. When the Si concentration becomes relatively low, the fission gas bubbles agglomerate into fewer large pores. Within the U-7Mo fuel particles, a bubble superlattice ordered as fcc structure and oriented parallel to the bcc metal lattice was observed where the average bubble size and the superlattice constant are 3.5 nm and 11.5 nm, respectively. The estimated fission gas inventory in the bubble superlattice correlates well with the fission density in the fuel. (C) 2009 Elsevier B.V. All rights reserved. C1 [Gan, J.; Keiser, D. D., Jr.; Wachs, D. M.; Robinson, A. B.] Idaho Natl Lab, Nucl Fuels & Mat Div, Idaho Falls, ID 83403 USA. [Miller, B. D.; Allen, T. R.] Univ Wisconsin, Madison, WI 53706 USA. RP Gan, J (reprint author), Idaho Natl Lab, Nucl Fuels & Mat Div, POB 1625, Idaho Falls, ID 83415 USA. EM Jian.Gan@inl.gov OI Allen, Todd/0000-0002-2372-7259 FU US Department of Energy, Office of Nuclear Materials Threat Reduction [NA-212]; National Nuclear Security Administration, under DOE-NE Idaho Operations Office [DE-AC07-05ID14517] FX Acknowledgment is given to the INL Hot Fuel Examination Facility staff for producing the punching sample from fuel plate R2R010. This work was supported by the US Department of Energy, Office of Nuclear Materials Threat Reduction (NA-212), National Nuclear Security Administration, under DOE-NE Idaho Operations Office Contract DE-AC07-05ID14517. Accordingly, the US Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. NR 26 TC 52 Z9 52 U1 2 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JAN 31 PY 2010 VL 396 IS 2-3 BP 234 EP 239 DI 10.1016/j.jnucmat.2009.11.015 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 555ZY UT WOS:000274557100014 ER PT J AU Busby-Hjerpe, AL Campbell, JA Smith, JN Lee, S Poet, TS Barr, DB Timchalk, C AF Busby-Hjerpe, Andrea L. Campbell, James A. Smith, Jordan Ned Lee, Sookwang Poet, Torka S. Barr, Dana B. Timchalk, Charles TI Comparative pharmacokinetics of chlorpyrifos versus its major metabolites following oral administration in the rat SO TOXICOLOGY LA English DT Article DE Chlorpyrifos; Diethylthiophosphate; Trichloropyridinol; Pharmacokinetics ID ORGANOPHOSPHORUS PESTICIDE EXPOSURE; INSECTICIDE CHLORPYRIFOS; AGRICULTURAL-WORKERS; PRESCHOOL-CHILDREN; LIVER-MICROSOMES; BIRTH OUTCOMES; PHARMACOKINETIC/PHARMACODYNAMIC MODEL; PHOSPHORYLATED ACETYLCHOLINESTERASE; URINARY ALKYLPHOSPHATES; BIOMONITORING DATA AB Chlorpyrifos (CPF) is a commonly used diethylphosphorothionate organophosphorus (OP) insecticide. Diethyl phosphate (DEP), diethylthiophosphate (DETP) and 3,5,6-trichloro-2-pyridinol (TCPy) are products of both in vivo metabolism and environmental degradation of CPF and are routinely measured in urine as biomarkers of exposure. Hence, urinary biomonitoring of TCPy, DEP and DETP may be reflective of an individual's contact with both the parent pesticide and exposure to these metabolites in the environment. In the current study, simultaneous dosing of C-13- or H-2-isotopically labeled CPF (C-13-labeled CPF, 5 C-13 on the TCPy ring; or H-2-labeled CPF, diethyl-D10 (deuterium labeled) on the side chain) were exploited to directly compare the pharmacokinetics and metabolism of CPF with TCPy, and DETP. The key objective in the current study was to quantitatively evaluate the pharmacokinetics of the individual metabolites relative to their formation following a dose of CPF. Individual metabolites were co-administered (oral gavage) with the parent compound at equal molar doses (14 mu mol/kg: similar to 5 mg/kg CPF). Major differences in the pharmacokinetics between CPF and metabolite doses were observed within the first 3 h of exposure, due to the required metabolism of CPF to initially form TCPy and DETP. Nonetheless, once a substantial amount of CPF has been metabolized <= 3 h post-dosing) pharmacokinetics for both treatment groups and metabolites were very comparable. Urinary excretion rates for orally administered TCPy and DETP relative to C-13-CPF or H-2-CPF derived C-13-TCPy and H-2-DETP were consistent with blood pharmacokinetics, and the urinary clearance of metabolite dosed groups were comparable with the results for the C-13- and 2H-CPF groups. Since the pharmacokinetics of the individual metabolites were not modified by co-exposure to CPF; it suggests that environmental exposure to low dose mixtures of pesticides and metabolites will not impact their pharmacokinetics. (C) 2009 Elsevier Ireland Ltd. All rights reserved. C1 [Busby-Hjerpe, Andrea L.; Campbell, James A.; Smith, Jordan Ned; Lee, Sookwang; Poet, Torka S.; Timchalk, Charles] Pacific NW Div, Richland, WA 99354 USA. [Barr, Dana B.] Ctr Dis Control & Prevent, Natl Ctr Environm Hlth, Atlanta, GA 30341 USA. RP Timchalk, C (reprint author), Pacific NW Div, Richland, WA 99354 USA. EM charles.timchalk@pnl.gov RI Barr, Dana/E-6369-2011; Barr, Dana/E-2276-2013 FU Centers for Disease Control and Prevention/National Institute for Occupational Safety and Health (CDC/NIOSH) [R01 OH008173, R01 OH003629, GR05FED40077.02] FX This publication was supported by funding from Centers for Disease Control and Prevention/National Institute for Occupational Safety and Health (CDC/NIOSH) grants R01 OH008173, R01 OH003629 and GR05FED40077.02. Findings in this study were those of the authors and do not necessarily reflect the official opinion of the CDC/NIOSH. NR 57 TC 16 Z9 17 U1 1 U2 14 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0300-483X J9 TOXICOLOGY JI Toxicology PD JAN 31 PY 2010 VL 268 IS 1-2 BP 55 EP 63 DI 10.1016/j.tox.2009.11.022 PG 9 WC Pharmacology & Pharmacy; Toxicology SC Pharmacology & Pharmacy; Toxicology GA 570VG UT WOS:000275705800008 PM 19963030 ER PT J AU McNally, R Bowman, GD Goedken, ER O'Donnell, M Kuriyan, J AF McNally, Randall Bowman, Gregory D. Goedken, Eric R. O'Donnell, Mike Kuriyan, John TI Analysis of the role of PCNA-DNA contacts during clamp loading SO BMC STRUCTURAL BIOLOGY LA English DT Article ID CELL NUCLEAR ANTIGEN; POLYMERASE-III HOLOENZYME; REPLICATION FACTOR-C; ESCHERICHIA-COLI; LOADER COMPLEX; CRYSTAL-STRUCTURE; STRUCTURAL-ANALYSIS; SLIDING CLAMPS; GAMMA COMPLEX; STRANDED-DNA AB Background: Sliding clamps, such as Proliferating Cell Nuclear Antigen (PCNA) in eukaryotes, are ring-shaped protein complexes that encircle DNA and enable highly processive DNA replication by serving as docking sites for DNA polymerases. In an ATP-dependent reaction, clamp loader complexes, such as the Replication Factor-C (RFC) complex in eukaryotes, open the clamp and load it around primer-template DNA. Results: We built a model of RFC bound to PCNA and DNA based on existing crystal structures of clamp loaders. This model suggests that DNA would enter the clamp at an angle during clamp loading, thereby interacting with positively charged residues in the center of PCNA. We show that simultaneous mutation of Lys 20, Lys 77, Arg 80, and Arg 149, which interact with DNA in the RFC-PCNA-DNA model, compromises the ability of yeast PCNA to stimulate the DNA-dependent ATPase activity of RFC when the DNA is long enough to extend through the clamp. Fluorescence anisotropy binding experiments show that the inability of the mutant clamp proteins to stimulate RFC ATPase activity is likely caused by reduction in the affinity of the RFC-PCNA complex for DNA. We obtained several crystal forms of yeast PCNA-DNA complexes, measuring X-ray diffraction data to 3.0 angstrom resolution for one such complex. The resulting electron density maps show that DNA is bound in a tilted orientation relative to PCNA, but makes different contacts than those implicated in clamp loading. Because of apparent partial disorder in the DNA, we restricted refinement of the DNA to a rigid body model. This result contrasts with previous analysis of a bacterial clamp bound to DNA, where the DNA was well resolved. Conclusion: Mutational analysis of PCNA suggests that positively charged residues in the center of the clamp create a binding surface that makes contact with DNA. Disruption of this positive surface, which had not previously been implicated in clamp loading function, reduces RFC ATPase activity in the presence of DNA, most likely by reducing the affinity of RFC and PCNA for DNA. The interaction of DNA is not, however, restricted to one orientation, as indicated by analysis of the PCNA-DNA co-crystals. C1 [McNally, Randall; Bowman, Gregory D.; Goedken, Eric R.; Kuriyan, John] Univ Calif Berkeley, Dept Mol & Cell Biol, Dept Chem, Calif Inst Quantitat Biosci QB3,Howard Hughes Med, Berkeley, CA 94720 USA. [Kuriyan, John] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [O'Donnell, Mike] Rockefeller Univ, Howard Hughes Med Inst, New York, NY 10021 USA. RP Kuriyan, J (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, Dept Chem, Calif Inst Quantitat Biosci QB3,Howard Hughes Med, 229 Stanley Hall, Berkeley, CA 94720 USA. EM kuriyan@berkeley.edu OI O'Donnell, Michael/0000-0001-9002-4214 FU NIH [GM045547]; NCI [CA092584]; U.S. Department of Energy [DE-AC03-76SF00098] FX We thank Xiaoxian Cao, Meindert Lamers, Kyle Simonetta, Brian Kelch, and Jodi Gureasko for valuable discussions and technical assistance, Steven Kazmirski for providing the model of the open clamp, and Kouta Mayanagi and Kosuke Morikawa for sharing the ligase-PCNA-DNA EM reconstruction. This work was supported in part by grants to J.K. from the NIH (GM045547) and NCI (CA092584). The Advanced Light Source is supported by the U.S. Department of Energy under contract DE-AC03-76SF00098 at the Lawrence Berkeley National Laboratory. NR 45 TC 48 Z9 48 U1 0 U2 5 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2237 J9 BMC STRUCT BIOL JI BMC Struct. Biol. PD JAN 30 PY 2010 VL 10 AR 3 DI 10.1186/1472-6807-10-3 PG 14 WC Biophysics SC Biophysics GA 557RY UT WOS:000274689000001 PM 20113510 ER PT J AU Gonzalez, ID Navarro, RM Wen, W Marinkovic, N Rodriguez, JA Rosa, F Fierro, JLG AF Gonzalez, I. D. Navarro, R. M. Wen, W. Marinkovic, N. Rodriguez, J. A. Rosa, F. Fierro, J. L. G. TI A comparative study of the water gas shift reaction over platinum catalysts supported on CeO2, TiO2 and Ce-modified TiO2 SO CATALYSIS TODAY LA English DT Article; Proceedings Paper CT 21st Ibero American Catalysis Symposium CY 2008 CL Malaga, SPAIN DE WGS; Pt; Cerium oxide; Titanium oxide ID NOBLE-METAL CATALYSTS; LOW-TEMPERATURE; MIXED OXIDES; CERIA; OXIDATION; PT/TIO2; CO; ALUMINA; DEACTIVATION; REDUCTION AB WGS reaction has been investigated on catalysts based on platinum supported over CeO2, TiO2 and Ce-modified TiO2. XPS and XANES analyses performed on calcined catalysts revealed a close contact between Pt precursors and cerium species on CeO2 and Ce-modified TiO2 supports. TPR results corroborate the intimate contact between Pt and cerium entities in the Pt/Ce-TiO2 catalyst that facilitates the reducibility of the support at low temperatures while the Ce-O-Ti surface interactions established in the Ce-modified TiO2 support decreases the reduction of TiO2 at high temperature. The changes in the support reducibility leads to significant differences in the WGS activity of the studied catalysts. Pt supported on Ce-modified TiO2 Support exhibits better activity than those corresponding to individual CeO2 and TiO2-supported catalysts. Additionally, the Ce-TiO2-supported catalyst displays better stability at reaction temperatures higher than 573 K that observed on pure TiO2-supported counterpart. Activity measurements, when coupled with the physicochemical characterization of catalysts suggest that the modifications in the surface reducibility of the support play an essential role in the enhancement of activity and stability observed when Pt is supported on the Ce-modified TiO2 substrate. (C) 2009 Elsevier B.V. All rights reserved. C1 [Gonzalez, I. D.; Navarro, R. M.; Fierro, J. L. G.] CSIC, Inst Catalisis & Petroleoquim, E-28049 Madrid, Spain. [Wen, W.; Rodriguez, J. A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Marinkovic, N.] Univ Delaware, Dept Chem Engn, Newark, DE 19716 USA. [Rosa, F.] INTA Huelva, CEDEA, Huelva, Spain. RP Gonzalez, ID (reprint author), CSIC, Inst Catalisis & Petroleoquim, Plaza Murillo 2, E-28049 Madrid, Spain. EM r.navarro@icp.csic.es RI rosa, Felipe/K-2111-2014; Marinkovic, Nebojsa/A-1137-2016; Navarro Yerga, Rufino/F-3478-2016; jose, fierro/C-4774-2014 OI rosa, Felipe/0000-0001-8515-7418; Marinkovic, Nebojsa/0000-0003-3579-3453; Navarro Yerga, Rufino/0000-0002-8625-9544; jose, fierro/0000-0002-6880-3737 NR 52 TC 74 Z9 74 U1 5 U2 82 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 EI 1873-4308 J9 CATAL TODAY JI Catal. Today PD JAN 30 PY 2010 VL 149 IS 3-4 BP 372 EP 379 DI 10.1016/j.cattod.2009.07.100 PG 8 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 550CH UT WOS:000274104400022 ER PT J AU Unsal, M AF Unsal, Mithat TI PANDORA'S BOX AND NON-SELFDUAL TOPOLOGICAL EXCITATIONS SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article; Proceedings Paper CT Workshop on Crossing the Boundaries - Gauge Dynamics at Strong Coupling CY MAY 14-17, 2009 CL Univ Minnesota, William I Fine Theoret Phys Inst, Minneapolis, MN HO Univ Minnesota, William I Fine Theoret Phys Inst ID GAUGE-THEORIES; INSTANTONS; DIMENSIONS; MONOPOLES AB In the last few years, we have realized the existence of a new class of topological excitations, which are rather distinct from the platonic world of monopoles, monopoleinstantons and instantons. All of the latter arise as solutions of the Prasad-Sommerfield type first order differential (self-duality) equations and have been extensively discussed in the context of confinement and chiral symmetry breaking for the last 30 years. However, new calculable deformations of asymptotically free chiral and vector-like gauge theories give us a new picture of these physical phenomena. Most often, the excitations which lead to confinement are not solutions to PS-type equations, they are non-selfdual and they are often bizarre. They are referred to as magnetic bions, triplets, and quintets, due to their composite nature. Bizarre as they are, combined with large-N volume independence, these novel non-self-dual excitations may also provide hope that at least some non-abelian gauge theories may be solvable. C1 [Unsal, Mithat] Stanford Univ, SLAC, Stanford, CA 94025 USA. [Unsal, Mithat] Stanford Univ, Dept Phys, Stanford, CA 94025 USA. RP Unsal, M (reprint author), Stanford Univ, SLAC, Stanford, CA 94025 USA. EM unsal@slac.stanford.edu NR 13 TC 1 Z9 1 U1 0 U2 1 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD JAN 30 PY 2010 VL 25 IS 2-3 BP 278 EP 288 DI 10.1142/S0217751X10048603 PG 11 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 554GW UT WOS:000274424500008 ER PT J AU Balitsky, I AF Balitsky, Ian TI HIGH-ENERGY AMPLITUDES IN N=4 SYM IN THE NEXT-TO-LEADING ORDER SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article; Proceedings Paper CT Workshop on Crossing the Boundaries - Gauge Dynamics at Strong Coupling CY MAY 14-17, 2009 CL Univ Minnesota, William I Fine Theoret Phys Inst, Minneapolis, MN HO Univ Minnesota, William I Fine Theoret Phys Inst DE High energy; conformal invariance; Wilson lines ID POMERON AB The high-energy behavior of the of N=4 SYM amplitudes in the Regge limit can be calculated order by order in perturbation theory using the high-energy operator expansion in Wilson lines. At large N(c), a typical four-point amplitude is determined by a single BFKL pomeron. The conformal structure of the four-point amplitude is fixed in terms of two functions: pomeron intercept and the coefficient function in front of the pomeron (the product of two residues). The pomeron intercept is universal while the coefficient function depends on the correlator in question. The intercept is known in first two orders in coupling constant : LO BFKL intercept and NLO BFKL calculated in Ref. [1]. As an example of using the Wilson-line OPE, we calculate the coefficient function in front of the pomeron for the correlator of four Z(2) currents in the leading and next-to-leading order. C1 [Balitsky, Ian] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. [Balitsky, Ian] Jlab, Theory Grp, Newport News, VA 23606 USA. RP Balitsky, I (reprint author), Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. EM balitsky@jlab.org NR 18 TC 3 Z9 3 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD JAN 30 PY 2010 VL 25 IS 2-3 BP 401 EP 410 DI 10.1142/S0217751X10048706 PG 10 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 554GW UT WOS:000274424500018 ER PT J AU Cardarelli, L Lam, R Tuite, A Baker, LA Sadowski, PD Radford, DR Rubinstein, JL Battaile, KP Chirgadze, N Maxwell, KL Davidson, AR AF Cardarelli, Lia Lam, Robert Tuite, Ashleigh Baker, Lindsay A. Sadowski, Paul D. Radford, Devon R. Rubinstein, John L. Battaile, Kevin P. Chirgadze, Nickolay Maxwell, Karen L. Davidson, Alan R. TI The Crystal Structure of Bacteriophage HK97 gp6: Defining a Large Family of Head-Tail Connector Proteins SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE bacteriophage assembly; head-tail connector; X-ray crystallography; HK97 ID BACILLUS-SUBTILIS; PHAGE-LAMBDA; ANGSTROM RESOLUTION; TERMINATOR PROTEIN; MASS-SPECTROMETRY; NMR STRUCTURE; GENE-PRODUCT; W-GENE; DNA; REVEALS AB The final step in the morphogenesis of long-tailed double-stranded DNA bacteriophages is the joining of the DNA-filled head to the tail. The connector is a specialized structure of the head that serves as the interface for tail attachment and the point of egress for DNA from the head during infection. Here, we report the determination of a 2.1 angstrom crystal structure of gp6 of bacteriophage HK97. Through structural comparisons, functional studies, and bioinformatic analysis, gp6 has been determined to be a component of the connector of phage HK97 that is evolutionarily related to gp15, a well-characterized connector component of bacteriophage SPP1. Whereas the structure of gp15 was solved in a monomeric form, gp6 crystallized as an oligomeric ring with the dimensions expected for a connector protein. Although this ring is composed of 13 subunits, which does not match the symmetry of the connector within the phage, sequence conservation and modeling of this structure into the cryo-electron microscopy density of the SPP1 connector indicate that this oligomeric structure represents the arrangement of gp6 subunits within the mature phage particle. Through sequence searches and genomic position analysis, we determined that gp6 is a member of a large family of connector proteins that are present in long-tailed phages. We have also identified gp7 of HK97 as a homologue of gp16 of phage SPP1, which is the second component of the connector of this phage. These proteins are members of another large protein family involved in connector assembly. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Tuite, Ashleigh; Sadowski, Paul D.; Radford, Devon R.; Maxwell, Karen L.; Davidson, Alan R.] Univ Toronto, Dept Mol Genet, Toronto, ON M5S 1A8, Canada. [Cardarelli, Lia; Baker, Lindsay A.; Rubinstein, John L.; Davidson, Alan R.] Univ Toronto, Dept Biochem, Toronto, ON M5S 1A8, Canada. [Lam, Robert; Chirgadze, Nickolay] Univ Hlth Network, Toronto, ON M5C 2G4, Canada. [Baker, Lindsay A.; Rubinstein, John L.] Hosp Sick Children, Res Inst, Mol Struct & Funct Program, Toronto, ON M5G 1X8, Canada. [Battaile, Kevin P.] Argonne Natl Lab, Adv Photon Source, IMCA CAT, Argonne, IL 60439 USA. RP Maxwell, KL (reprint author), Univ Toronto, Dept Mol Genet, 100 Coll St, Toronto, ON M5S 1A8, Canada. EM karen.maxwell@utoronto.ca; alan.davidson@utoronto.ca OI Battaile, Kevin/0000-0003-0833-3259; Radford, Devon/0000-0002-7433-2521; Rubinstein, John/0000-0003-0566-2209 FU Canadian Institutes of Health Research [MOP-77680, MOP-6279]; Ontario Research and Development Challenge Fund [99-SEP-0512]; Natural Sciences and Engineering Research Council of Canada (NSERC); NSERC CGS-D Scholarship; Ontario Graduate Scholarship FX The authors thank Don Court for a bacterial strain. We also thank Roger Hendrix, Bob Duda, and James Conway for their insightful comments on our EM micrographs. This work was supported by operating grants from the Canadian Institutes of Health Research to A.R.D. (Fund No. MOP-77680) and to K.L.M. (Fund No. MOP-6279) and an Ontario Research and Development Challenge Fund to N.C. (99-SEP-0512). L.C. was supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) PGS-D scholarship, L.A.B. by a NSERC CGS-D Scholarship, and D.R.R. by an Ontario Graduate Scholarship. NR 64 TC 32 Z9 32 U1 2 U2 4 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD JAN 29 PY 2010 VL 395 IS 4 BP 754 EP 768 DI 10.1016/j.jmb.2009.10.067 PG 15 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 555ZP UT WOS:000274556000007 PM 19895817 ER PT J AU Draper, P Liu, T Wagner, CEM AF Draper, Patrick Liu, Tao Wagner, Carlos E. M. TI Prospects for Higgs boson searches at the Tevatron and LHC in the MSSM with explicit CP violation SO PHYSICAL REVIEW D LA English DT Article AB We analyze the Tevatron and Large Hadron Collider (LHC) reach for the Higgs sector of the minimal supersymmetric standard model (MSSM) in the presence of explicit CP violation. Using the most recent studies from the Tevatron and LHC collaborations, we examine the CPX benchmark scenario for a range of CP-violating phases in the soft trilinear and gluino mass terms and compute the exclusion/discovery potentials for each collider on the (MH+; tan beta) plane. Projected results from standard model (SM)-like, nonstandard, and charged Higgs searches are combined to maximize the statistical significance. We exhibit complementarity between the SM-like Higgs searches at the LHC with low luminosity and the Tevatron, and estimate the combined reach of the two colliders in the early phase of LHC running. C1 [Draper, Patrick; Liu, Tao; Wagner, Carlos E. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Wagner, Carlos E. M.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Wagner, Carlos E. M.] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. RP Draper, P (reprint author), Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. FU U.S. Department of Energy (DOE), Div. of HEP [DE-AC02-06CH11357]; DOE [DE-FG02-90ER40560, DE-FGO2-96-ER40956]; Fermi-McCormick Foundation FX We would like to thank S. Farkas, T. Junk, B. Kilminster, and M. Oreglia for helpful discussions on statistical methods. Work at ANL is supported in part by the U.S. Department of Energy (DOE), Div. of HEP, Contract No. DE-AC02-06CH11357. Work at EFI is supported in part by the DOE through Grant No. DE-FG02-90ER40560. T. L. is also supported by the Fermi-McCormick Foundation. This work was supported in part by the DOE under Task TeV of Contract No. DE-FGO2-96-ER40956. NR 88 TC 14 Z9 14 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JAN 29 PY 2010 VL 81 IS 1 AR 015014 DI 10.1103/PhysRevD.81.015014 PG 20 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA V25JR UT WOS:000208474800002 ER PT J AU Asztalos, SJ Carosi, G Hagmann, C Kinion, D van Bibber, K Hotz, M Rosenberg, LJ Rybka, G Hoskins, J Hwang, J Sikivie, P Tanner, DB Bradley, R Clarke, J AF Asztalos, S. J. Carosi, G. Hagmann, C. Kinion, D. van Bibber, K. Hotz, M. Rosenberg, L. J. Rybka, G. Hoskins, J. Hwang, J. Sikivie, P. Tanner, D. B. Bradley, R. Clarke, J. TI SQUID-Based Microwave Cavity Search for Dark-Matter Axions SO PHYSICAL REVIEW LETTERS LA English DT Article ID INVISIBLE-AXION; HARMLESS AXION; CP INVARIANCE; AMPLIFIER AB Axions in the mu eV mass range are a plausible cold dark-matter candidate and may be detected by their conversion into microwave photons in a resonant cavity immersed in a static magnetic field. We report the first result from such an axion search using a superconducting first-stage amplifier (SQUID) replacing a conventional GaAs field-effect transistor amplifier. This experiment excludes KSVZ dark-matter axions with masses between 3: 3 mu eV and 3: 53 mu eV and sets the stage for a definitive axion search utilizing near quantum-limited SQUID amplifiers. C1 [Asztalos, S. J.; Carosi, G.; Hagmann, C.; Kinion, D.; van Bibber, K.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Hotz, M.; Rosenberg, L. J.; Rybka, G.] Univ Washington, Seattle, WA 98195 USA. [Hoskins, J.; Hwang, J.; Sikivie, P.; Tanner, D. B.] Univ Florida, Gainesville, FL 32611 USA. [Bradley, R.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Clarke, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Asztalos, SJ (reprint author), XIA LLC, 31057 Genstar Rd, Hayward, CA 94544 USA. FU U.S. Department of Energy [DE-FG02-96ER40956, DE-AC52-07NA27344, DE-FG02-97ER41029, DE-AC02-05CH11231]; Lawrence Livermore National Laboratory FX This research is supported by the U.S. Department of Energy, Office of High Energy Physics under Contracts No. DE-FG02-96ER40956 (Lawrence Livermore National Laboratory), No. DE-AC52-07NA27344 (University of Washington), and No. DE-FG02-97ER41029 (University of Florida). Additional support was provided by Lawrence Livermore National Laboratory under the LDRD program. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. Development of the SQUID amplifier (J.C.) was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 28 TC 170 Z9 172 U1 3 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 29 PY 2010 VL 104 IS 4 AR 041301 DI 10.1103/PhysRevLett.104.041301 PG 4 WC Physics, Multidisciplinary SC Physics GA 553AK UT WOS:000274336600011 PM 20366699 ER PT J AU Canik, JM Maingi, R Evans, TE Bell, RE Gerhardt, SP LeBlanc, BP Manickam, J Menard, JE Osborne, TH Park, JK Paul, SF Snyder, PB Sabbagh, SA Kugel, HW Unterberg, EA AF Canik, J. M. Maingi, R. Evans, T. E. Bell, R. E. Gerhardt, S. P. LeBlanc, B. P. Manickam, J. Menard, J. E. Osborne, T. H. Park, J. -K. Paul, S. F. Snyder, P. B. Sabbagh, S. A. Kugel, H. W. Unterberg, E. A. CA NSTX Team TI On Demand Triggering of Edge Localized Instabilities Using External Nonaxisymmetric Magnetic Perturbations in Toroidal Plasmas SO PHYSICAL REVIEW LETTERS LA English DT Article ID DIII-D TOKAMAK; HIGH-CONFINEMENT; MODES; PEDESTAL; REGIME; ELMS AB The application of nonaxisymmetric magnetic fields is shown to destabilize edge-localized modes (ELMs) during otherwise ELM-free periods of discharges in the National Spherical Torus Experiment (NSTX). Profile analysis shows the applied fields increased the temperature and pressure gradients, decreasing edge stability. This robust effect was exploited for a new form of ELM control: the triggering of ELMs at will in high performance H mode plasmas enabled by lithium conditioning, yielding high time-averaged energy confinement with reduced core impurity density and radiated power. C1 [Canik, J. M.; Maingi, R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Evans, T. E.; Osborne, T. H.; Snyder, P. B.] Gen Atom, San Diego, CA USA. [Bell, R. E.; Gerhardt, S. P.; LeBlanc, B. P.; Manickam, J.; Menard, J. E.; Park, J. -K.; Paul, S. F.; Kugel, H. W.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Sabbagh, S. A.] Columbia Univ, New York, NY USA. [Unterberg, E. A.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. RP Canik, JM (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RI Sabbagh, Steven/C-7142-2011; Unterberg, Ezekial/F-5240-2016; OI Unterberg, Ezekial/0000-0003-1353-8865; Canik, John/0000-0001-6934-6681; Menard, Jonathan/0000-0003-1292-3286 FU U.S. Department of Energy [DE-AC05-00OR22725, DE-AC02-09CH11466, DE-FC02-04ER54698, DE-FG02-99ER54524] FX This research was supported by the U.S. Department of Energy Contracts No. DE-AC05-00OR22725, No. DE-AC02-09CH11466, No. DE-FC02-04ER54698, and No. DE-FG02-99ER54524. NR 29 TC 53 Z9 53 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 29 PY 2010 VL 104 IS 4 AR 045001 DI 10.1103/PhysRevLett.104.045001 PG 4 WC Physics, Multidisciplinary SC Physics GA 553AK UT WOS:000274336600031 PM 20366719 ER PT J AU Kessler, BM Girit, CO Zettl, A Bouchiat, V AF Kessler, B. M. Girit, C. Oe. Zettl, A. Bouchiat, V. TI Tunable Superconducting Phase Transition in Metal-Decorated Graphene Sheets SO PHYSICAL REVIEW LETTERS LA English DT Article ID 2-DIMENSIONAL SYSTEMS; INSULATOR TRANSITION; DEVICES AB We have produced graphene sheets decorated with a nonpercolating network of nanoscale tin clusters. These metal clusters both efficiently dope the graphene substrate and induce long-range superconducting correlations. We find that despite structural inhomogeneity on mesoscopic length scales (10-100 nm), this material behaves electronically as a homogenous dirty superconductor with a field-effect tuned Berezinskii-Kosterlitz-Thouless transition. Our facile self-assembly method establishes graphene as an ideal tunable substrate for studying induced two-dimensional electronic systems at fixed disorder and our technique can readily be extended to other order parameters such as magnetism. C1 [Kessler, B. M.; Girit, C. Oe.; Zettl, A.; Bouchiat, V.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Kessler, B. M.; Girit, C. Oe.; Zettl, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Zettl, A.] Ctr Integrated Nanomech Syst, Berkeley, CA 94720 USA. [Bouchiat, V.] CNRS, Inst Neel, F-38042 Grenoble, France. RP Kessler, BM (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Girit, Caglar/D-4845-2014; Zettl, Alex/O-4925-2016 OI Girit, Caglar/0000-0001-8953-9261; Zettl, Alex/0000-0001-6330-136X FU U.S. Department of Energy [DE-AC02-05CH11231]; Miller Institute for Basic Research in Science; CNRS/MPPU; ANR-JC/NEMESIS FX B. K., C,. G., and A. Z. were supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences, and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, through the sp2-bonded nanostructures program. V. B. acknowledges support from the Miller Institute for Basic Research in Science, CNRS/MPPU and ANR-JC/NEMESIS. We thank M. Feigelman, M. Skvortsov, J. Moore, G. Deutscher, and P. Ghaemi for helpful discussions. NR 28 TC 36 Z9 36 U1 6 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 29 PY 2010 VL 104 IS 4 AR 047001 DI 10.1103/PhysRevLett.104.047001 PG 4 WC Physics, Multidisciplinary SC Physics GA 553AK UT WOS:000274336600043 PM 20366731 ER PT J AU Mosendz, O Pearson, JE Fradin, FY Bauer, GEW Bader, SD Hoffmann, A AF Mosendz, O. Pearson, J. E. Fradin, F. Y. Bauer, G. E. W. Bader, S. D. Hoffmann, A. TI Quantifying Spin Hall Angles from Spin Pumping: Experiments and Theory SO PHYSICAL REVIEW LETTERS LA English DT Article ID PD AB Spin Hall effects intermix spin and charge currents even in nonmagnetic materials and, therefore, ultimately may allow the use of spin transport without the need for ferromagnets. We show how spin Hall effects can be quantified by integrating Ni(80)Fe(20)vertical bar normal metal (N) bilayers into a coplanar waveguide. A dc spin current in N can be generated by spin pumping in a controllable way by ferromagnetic resonance. The transverse dc voltage detected along the Ni(80)Fe(20)vertical bar N has contributions from both the anisotropic magnetoresistance and the spin Hall effect, which can be distinguished by their symmetries. We developed a theory that accounts for both. In this way, we determine the spin Hall angle quantitatively for Pt, Au, and Mo. This approach can readily be adapted to any conducting material with even very small spin Hall angles. C1 [Mosendz, O.; Pearson, J. E.; Fradin, F. Y.; Bader, S. D.; Hoffmann, A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Bauer, G. E. W.] Delft Univ Technol, Kavli Inst NanoSci, NL-2628 CJ Delft, Netherlands. [Bader, S. D.; Hoffmann, A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Mosendz, O (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM mosendz@anl.gov RI Bauer, Gerrit/F-8273-2010; Bader, Samuel/A-2995-2013; Hoffmann, Axel/A-8152-2009 OI Bauer, Gerrit/0000-0002-3615-8673; Hoffmann, Axel/0000-0002-1808-2767 FU U.S. DOE-BES [DE-AC02-06CH11357] FX We would like to thank R. Winkler, G. Mihajlovic, and M. Dyakonov for valuable discussions. This work was supported by U.S. DOE-BES under Contract No. DE-AC02-06CH11357. NR 28 TC 278 Z9 278 U1 15 U2 120 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 29 PY 2010 VL 104 IS 4 AR 046601 DI 10.1103/PhysRevLett.104.046601 PG 4 WC Physics, Multidisciplinary SC Physics GA 553AK UT WOS:000274336600037 PM 20366725 ER PT J AU Nemeth, K Harkay, KC van Veenendaal, M Spentzouris, L White, M Attenkofer, K Srajer, G AF Nemeth, Karoly Harkay, Katherine C. van Veenendaal, Michel Spentzouris, Linda White, Marion Attenkofer, Klaus Srajer, George TI High-Brightness Photocathodes through Ultrathin Surface Layers on Metals SO PHYSICAL REVIEW LETTERS LA English DT Article ID THIN FILMS; CATALYSTS; INTERFACE; SILVER AB We report how ultrathin MgO films on Ag(001) surfaces can be used to control the emittance properties of photocathodes. In addition to substantially reducing the work function of the metal surface, the MgO layers also favorably influence the shape of the surface bands resulting in the generation of high-brightness electron beams. As the number of MgO surface layers varies from 0 to 3, the emitted electron beam becomes gradually brighter, reducing its transverse emittance to 0: 06 mm mrad. We suggest the use of such photocathodes for the development of free-electron x-ray lasers and energy-recovery linac x-ray sources. C1 [Nemeth, Karoly; Harkay, Katherine C.; van Veenendaal, Michel; Spentzouris, Linda; White, Marion; Attenkofer, Klaus; Srajer, George] Argonne Natl Lab, Argonne, IL 60439 USA. [Nemeth, Karoly; van Veenendaal, Michel] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Spentzouris, Linda] IIT, Chicago, IL 60616 USA. RP Nemeth, K (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM Nemeth@ANL.Gov RI Nemeth, Karoly/L-7806-2014 OI Nemeth, Karoly/0000-0001-8366-1397 FU NERSC [DOE DE-AC0205CH11231]; U.S. DOE Office of Science [DE-AC02-06CH11357, DEFG02-03ER46097] FX The authors thank NERSC (U.S. DOE DE-AC0205CH11231) for the use of computational resources. This research was supported by the U.S. DOE Office of Science, under Contracts No. DE-AC02-06CH11357 and No. DEFG02-03ER46097. NR 44 TC 22 Z9 22 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 29 PY 2010 VL 104 IS 4 AR 046801 DI 10.1103/PhysRevLett.104.046801 PG 4 WC Physics, Multidisciplinary SC Physics GA 553AK UT WOS:000274336600038 PM 20366726 ER PT J AU Sadleir, JE Smith, SJ Bandler, SR Chervenak, JA Clem, JR AF Sadleir, John E. Smith, Stephen J. Bandler, Simon R. Chervenak, James A. Clem, John R. TI Longitudinal Proximity Effects in Superconducting Transition-Edge Sensors SO PHYSICAL REVIEW LETTERS LA English DT Article ID X-RAY MICROCALORIMETERS; NOISE; SUPERCURRENTS; SANDWICHES; DETECTORS AB We have found experimentally that the critical current of a square thin-film superconducting transition-edge sensor (TES) depends exponentially upon the side length L and the square root of the temperature T, a behavior that has a natural theoretical explanation in terms of longitudinal proximity effects if the TES is regarded as a weak link between superconducting leads. As a consequence, the effective transition temperature T-c of the TES is current dependent and at fixed current scales as 1/L-2. We have also found that the critical current can show clear Fraunhofer-like oscillations in an applied magnetic field, similar to those found in Josephson junctions. We have observed the longitudinal proximity effect in these devices over extraordinarily long lengths up to 290 mu m, 1450 times the mean-free path. C1 [Sadleir, John E.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Sadleir, John E.; Smith, Stephen J.; Bandler, Simon R.; Chervenak, James A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Clem, John R.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Clem, John R.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Sadleir, JE (reprint author), Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. EM john.e.sadleir@nasa.gov RI Bandler, Simon/A-6258-2010; Smith, Stephen/B-1256-2008 OI Bandler, Simon/0000-0002-5112-8106; Smith, Stephen/0000-0003-4096-4675 FU NASA's Solar and Heliospheric Physics Supporting Research; Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358] FX Our work at Goddard was partially funded under NASA's Solar and Heliospheric Physics Supporting Research and at the Ames Laboratory by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358. We thank J. Beyer (PTB Berlin) and K. Irwin (NIST Boulder) for providing the SQUIDS used in this work. We also thank F. Finkbeiner, R. Brekosky, and D. Kelly for essential roles in device fabrication, and C. Kilbourne, I. Robinson, F. S. Porter, R. Kelley, and M. Eckart for useful discussion of these results and the manuscript. NR 28 TC 50 Z9 50 U1 2 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 29 PY 2010 VL 104 IS 4 AR 047003 DI 10.1103/PhysRevLett.104.047003 PG 4 WC Physics, Multidisciplinary SC Physics GA 553AK UT WOS:000274336600045 PM 20366733 ER PT J AU Suzuki, N Julia-Diaz, B Kamano, H Lee, TSH Matsuyama, A Sato, T AF Suzuki, N. Julia-Diaz, B. Kamano, H. Lee, T. -S. H. Matsuyama, A. Sato, T. TI Disentangling the Dynamical Origin of P-11 Nucleon Resonances SO PHYSICAL REVIEW LETTERS LA English DT Article ID PARTICLE PHYSICS; MODEL; AMPLITUDE; MASSES AB We show that two almost degenerate poles near the pi Delta threshold and the next higher mass pole in the P-11 partial wave of pi N scattering evolve from a single bare state through its coupling with pi N, eta N, and pi pi N reaction channels. This finding provides new information on understanding the dynamical origins of the Roper N* (1440) and N* (1710) resonances listed by Particle Data Group. Our results for the resonance poles in other pi N partial waves are also presented. C1 [Suzuki, N.; Sato, T.] Osaka Univ, Dept Phys, Osaka 5600043, Japan. [Suzuki, N.; Julia-Diaz, B.; Kamano, H.; Lee, T. -S. H.; Matsuyama, A.; Sato, T.] Thomas Jefferson Natl Accelerator Facil, EBAC, Newport News, VA 23606 USA. [Julia-Diaz, B.] Univ Barcelona, Dept Estructura & Constituents Mat, E-08028 Barcelona, Spain. [Julia-Diaz, B.] Univ Barcelona, Inst Ciencies Cosmos, E-08028 Barcelona, Spain. [Lee, T. -S. H.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Matsuyama, A.] Shizuoka Univ, Dept Phys, Shizuoka 4228529, Japan. RP Suzuki, N (reprint author), Osaka Univ, Dept Phys, Osaka 5600043, Japan. RI Julia-Diaz, Bruno/E-5825-2010 OI Julia-Diaz, Bruno/0000-0002-0145-6734 FU JSPS, Kakenhi [20540270]; U.S. D.O.E. [DE-AC02-06CH11357, DE-AC05-060R23177]; CPAN [CSD 2007-0042]; [FIS2008-1661] FX This work is supported by the JSPS, Kakenhi, (C) 20540270, by the U.S. D.O.E. Nuclear Physics Division Contract No. DE-AC02-06CH11357, and Contract No. DE-AC05-060R23177 under which Jefferson Science Associates operates Jefferson Lab, and by a CPAN CSD 2007-0042 contract, by Grants No. FIS2008-1661 (Spain). NR 21 TC 84 Z9 85 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 29 PY 2010 VL 104 IS 4 AR 042302 DI 10.1103/PhysRevLett.104.042302 PG 4 WC Physics, Multidisciplinary SC Physics GA 553AK UT WOS:000274336600013 PM 20366701 ER PT J AU Blackstock, JJ Long, JCS AF Blackstock, Jason J. Long, Jane C. S. TI The Politics of Geoengineering SO SCIENCE LA English DT Editorial Material C1 [Blackstock, Jason J.] Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria. [Blackstock, Jason J.] Ctr Int Governance Innovat, Waterloo, ON N2L 6C2, Canada. [Long, Jane C. S.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Blackstock, JJ (reprint author), Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria. EM jjb@iiasa.ac.at NR 11 TC 37 Z9 37 U1 1 U2 31 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JAN 29 PY 2010 VL 327 IS 5965 BP 527 EP 527 DI 10.1126/science.1183877 PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 549CT UT WOS:000274020500018 PM 20110487 ER PT J AU Cui, HG Pashuck, ET Velichko, YS Weigand, SJ Cheetham, AG Newcomb, CJ Stupp, SI AF Cui, Honggang Pashuck, E. Thomas Velichko, Yuri S. Weigand, Steven J. Cheetham, Andrew G. Newcomb, Christina J. Stupp, Samuel I. TI Spontaneous and X-ray-Triggered Crystallization at Long Range in Self-Assembling Filament Networks SO SCIENCE LA English DT Article ID RADIATION-DAMAGE; LIPID-MEMBRANES; PROTEINS; MECHANOTRANSDUCTION; CONDENSATION; MESOPHASES; SCATTERING; CRYSTAL; ORDER AB We report here crystallization at long range in networks of like-charge supramolecular peptide filaments mediated by repulsive forces. The crystallization is spontaneous beyond a given concentration of the molecules that form the filaments but can be triggered by x-rays at lower concentrations. The crystalline domains formed by x-ray irradiation, with interfilament separations of up to 320 angstroms, can be stable for hours after the beam is turned off, and ions that screen charges on the filaments suppress ordering. We hypothesize that the stability of crystalline domains emerges from a balance of repulsive tensions linked to native or x-ray-induced charges and the mechanical compressive entrapment of filaments within a network. Similar phenomena may occur naturally in the cytoskeleton of cells and, if induced externally in biological or artificial systems, lead to possible biomedical and lithographic functions. C1 [Cui, Honggang; Pashuck, E. Thomas; Velichko, Yuri S.; Newcomb, Christina J.; Stupp, Samuel I.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Weigand, Steven J.] Northwestern Univ, APS, Argonne Natl Lab, Synchrotron Res Ctr,DND CAT, Argonne, IL 60439 USA. [Cheetham, Andrew G.; Stupp, Samuel I.] Northwestern Univ, Inst BioNanotechnol Med, Chicago, IL 60611 USA. [Stupp, Samuel I.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Stupp, Samuel I.] Northwestern Univ, Dept Med, Evanston, IL 60208 USA. RP Stupp, SI (reprint author), Northwestern Univ, Dept Mat Sci & Engn, 2220 Campus Dr, Evanston, IL 60208 USA. EM s-stupp@northwestern.edu RI Stupp, Samuel/B-6737-2009; Cui, Honggang/C-6550-2008; Velichko, Yuri/D-8596-2011; Cui, Honggang/E-8012-2010; OI Velichko, Yury S/0000-0002-2287-5727 FU U.S. Department of Energy [DE-FG02-00ER45810]; E. I. DuPont de Nemours and Company; Dow Chemical Company; state of Illinois; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; NIH National Institute of Dental and Craniofacial Research [5R01 DE015920]; NSF [DMR-0605427] FX This work was supported by the U.S. Department of Energy (grant no. DE-FG02-00ER45810). The SAXS experiments were performed at the DND-CAT located at Sector 5 of the APS. DND-CAT is supported by E. I. DuPont de Nemours and Company, Dow Chemical Company, and the state of Illinois. Use of the APS was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. Some additional support for this work was obtained from NIH National Institute of Dental and Craniofacial Research grant 5R01 DE015920 and NSF grant DMR-0605427. We thank the Biological Imaging Facility (BIF) at Northwestern for the use of TEM equipment. NR 26 TC 90 Z9 91 U1 5 U2 57 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JAN 29 PY 2010 VL 327 IS 5965 BP 555 EP 559 DI 10.1126/science.1182340 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 549CT UT WOS:000274020500031 PM 20019248 ER PT J AU Sekhar, PK Brosha, EL Mukundan, R Li, WX Nelson, MA Palanisamy, P Garzon, FH AF Sekhar, Praveen K. Brosha, Eric. L. Mukundan, Rangachary Li, Wenxia Nelson, Mark A. Palanisamy, Ponnusamy Garzon, Fernando H. TI Application of commercial automotive sensor manufacturing methods for NOx/NH3 mixed potential sensors for on-board emissions control SO SENSORS AND ACTUATORS B-CHEMICAL LA English DT Article DE Mixed potential; Commercial sensor manufacturing; Emissions control; NOx sensor; Ammonia sensor ID NOX SENSORS; STABILIZED ZIRCONIA; OXIDE ELECTRODES; GAS SENSORS AB The article details the application of commercial manufacturing methods towards the development of NOx/NH3 sensors for vehicle on-board emissions control. These sensors possess a unique mixed potential sensor design. This unique LANL (Los Alamos National Laboratory) design results in improved sensitivity, selectivity and response time over conventional mixed potential sensors incorporating a stable three-phase interface using a porous electrolyte coated over a dense electrode. A prototype gas sensing platform conducive to large-scale manufacturing and commercialization is also been presented. The observed results indicate the possibility of evolution towards a combined NOx/NH3 sensor on the same platform, Finally, critical challenges towards developing field deployable mixed potential NOx/NH3 sensors are identified and discussed. (C) 2009 Elsevier B.V. All rights reserved. C1 [Sekhar, Praveen K.; Brosha, Eric. L.; Mukundan, Rangachary; Nelson, Mark A.; Garzon, Fernando H.] Los Alamos Natl Lab, Sensors & Elect Devices Grp, Los Alamos, NM 87545 USA. [Li, Wenxia; Palanisamy, Ponnusamy] ESL ElectroSci, King Of Prussia, PA 19406 USA. RP Sekhar, PK (reprint author), Los Alamos Natl Lab, Sensors & Elect Devices Grp, POB 1663, Los Alamos, NM 87545 USA. EM psekhar@lanl.gov OI Mukundan, Rangachary/0000-0002-5679-3930 FU Roland Gravel of the DOE Office of Vehicle Technologies; DOE FX The authors wish to thank Roland Gravel of the DOE Office of Vehicle Technologies for providing the funds to enable prototyping of LANL mixed potential sensors. Recent sensor work also supported by funding obtained from DOE Hydrogen Fuel Cell and Infrastructure Programs, Hydrogen Safety Codes and Standards. Also, we wish to recognize LANL - Technology Maturation Fund and Royalty Income. NR 30 TC 38 Z9 38 U1 1 U2 16 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-4005 J9 SENSOR ACTUAT B-CHEM JI Sens. Actuator B-Chem. PD JAN 29 PY 2010 VL 144 IS 1 BP 112 EP 119 DI 10.1016/j.snb.2009.10.045 PG 8 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 561AR UT WOS:000274947800018 ER PT J AU Shew, CY Chen, WR AF Shew, Chwen-Yang Chen, Wei-Ren TI A Monte Carlo algorithm for computing spin echo small angle neutron scattering correlation functions in real space: Hard sphere liquids SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE integral equations; liquid theory; many-body problems; Monte Carlo methods; neutron diffraction ID STATIC STRUCTURE FACTOR; COMPRESSIBILITY AB A Monte Carlo algorithm is developed to compute the autocorrelation function of liquids and the corresponding spatial correlation function from spin echo small angle neutron scattering (SESANS) spectra. The accuracy of the simulation algorithm is tested with isolated hard spheres and single dumbbells consisting of two hard spheres separated by a given distance. The simulation results accurately reproduce the exact expressions of these two models. To further test the algorithm for many-body systems, two liquid models are considered including hard sphere fluids and hard spheres with an attractive tail. The many-particle Monte Carlo simulation is carried out to obtain the ensemble average of these correlation functions. Meanwhile, the Percus-Yevic (PY) integral equation theory is resorted to compute the autocorrelation function and SESANS spatial correlation function for a density that the PY theory is reasonably applicable. The agreement between simulation and theory indicates that the algorithm is quite robust and can be extended to more complex fluids in the future. Furthermore, we find that the SESANS spatial correlation function is highly sensitive to the interaction potential between particles, which may serve as a useful tool to explore particle interactions in a liquid. C1 [Shew, Chwen-Yang] CUNY Coll Staten Isl, Dept Chem, Staten Isl, NY 10314 USA. [Chen, Wei-Ren] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RP Shew, CY (reprint author), CUNY Coll Staten Isl, Dept Chem, 2800 Victory Blvd, Staten Isl, NY 10314 USA. EM shew@mail.csi.cuny.edu FU ORNL-LDRD [05272]; City University of New York PSC FX We thank the support of ORNL-LDRD grant (Project No. 05272) and the partial support from the City University of New York PSC grants. NR 24 TC 1 Z9 1 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JAN 28 PY 2010 VL 132 IS 4 AR 044906 DI 10.1063/1.3290955 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 551BK UT WOS:000274180400057 PM 20113065 ER PT J AU Wick, CD Dang, LX AF Wick, Collin D. Dang, Liem X. TI Computational investigation of the influence of organic-aqueous interfaces on NaCl dissociation dynamics SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE dissociation; molecular moments; polarisability; reaction rate constants; sodium compounds ID AIR-WATER-INTERFACE; MOLECULAR-DYNAMICS; AIR/WATER INTERFACE; LIQUID INTERFACE; RATE CONSTANTS; LIQUID/LIQUID INTERFACES; IODIDE-IONS; SPECTROSCOPY; MODELS; SIMULATIONS AB NaCl pairing and dissociation was investigated at the CCl(4)-water and 1,2-dichloroethane (DCE)-water interfaces, and compared with dissociation results in the bulk and at the air-water interface utilizing polarizable potentials. The transition path sampling methodology was used to calculate the rate constant for dissociation, while umbrella sampling was used to map out a free energy profile for NaCl dissociation. The results found that ion pairing was weakest at the organic-water interfaces, even weaker than in the water bulk. This is in contrast to what has been observed previously for the air-water interface, in which NaCl ion paring is stronger than in the bulk [C. D. Wick, J. Phys. Chem. C 113, 6356 (2009)]. A consequence of the weaker binding at the organic-water interfaces was that ion dissociation was faster than in the other systems studied. Interactions of the organic phase with the ions influenced the magnitude of the Cl(-) induced dipole moment, and at the organic-water interfaces, the average Cl(-) induced dipole was found to be lower than at the air-water interface, weakening interactions with Na(+). These weaker interactions were found to be responsible for the weaker ion pairing found at the organic-water interfaces. C1 [Wick, Collin D.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Dang, Liem X.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Wick, CD (reprint author), Louisiana Tech Univ, Ruston, LA 71270 USA. EM cwick@latech.edu; liem.dang@pnl.gov FU Louisiana Board of Regents Research Competitiveness Subprogram [3LEQSF(2008-11)-RD-A-21]; Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, U. S. Department of Energy (DOE) FX Part of the research funded by the Louisiana Board of Regents Research Competitiveness Subprogram Contract No. 3LEQSF(2008-11)-RD-A-21. Furthermore, part of the work was performed at the Pacific Northwest National Laboratory (PNNL), which is supported by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, U. S. Department of Energy (DOE). PNNL is operated by Battelle for the DOE. A majority of the computations were carried out with the resources of the Louisiana Optical Network Initiative (LONI). NR 39 TC 7 Z9 7 U1 2 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JAN 28 PY 2010 VL 132 IS 4 AR 044702 DI 10.1063/1.3299279 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 551BK UT WOS:000274180400046 PM 20113054 ER PT J AU Yang, L Fishbine, BH Migliori, A Pratt, LR AF Yang, Lu Fishbine, Brian H. Migliori, Albert Pratt, Lawrence R. TI Dielectric saturation of liquid propylene carbonate in electrical energy storage applications SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE electric potential; electrochemical electrodes; energy storage; graphite; nanotubes; permittivity; polarisation; thin films ID MOLECULAR-DYNAMICS; DIPOLE-MOMENT; TEMPERATURE; SIMULATION; THERMODYNAMICS; DEPENDENCE; CONSTANTS; MIXTURES; PRESSURE; SYSTEMS AB Dielectric characteristics of a molecular model of liquid propylene carbonate are evaluated for utilization in molecular scale simulation of electrochemical capacitors based on nanotube forests. The linear-response dielectric constant of the bulk liquid, and its temperature dependence, is in good agreement with experiment. Dielectric saturation is studied by simulations with static uniform electric fields as large as 4 V/nm. The observed polarization is well described by the Langevin equation with the low-field/high-field crossover parameter of 0.09 V/nm. Simulation of liquid propylene carbonate confined between charged parallel graphite electrodes yields a capacitance that depends on the electric potential difference across those thin films. An effective dielectric constant inferred from the capacitance is significantly less than the uniform liquid dielectric constant, but is consistent with the nonlinear dielectric response at the strong fields applied to the electrode film. Those saturation effects reduce the weak-field capacitance. C1 [Yang, Lu; Fishbine, Brian H.; Migliori, Albert] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Pratt, Lawrence R.] Tulane Univ, Dept Chem & Biomol Engn, New Orleans, LA 70118 USA. RP Yang, L (reprint author), Appl Mat Inc, Santa Clara, CA 95052 USA. EM luckyang@gmail.com; bfishbine@lanl.gov; migliori@lanl.gov; lpratt@tulane.edu RI Yang, Lu/A-5446-2010; Pratt, Lawrence/H-7955-2012 OI Pratt, Lawrence/0000-0003-2351-7451 NR 24 TC 16 Z9 16 U1 3 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JAN 28 PY 2010 VL 132 IS 4 AR 044701 DI 10.1063/1.3294560 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 551BK UT WOS:000274180400045 PM 20113053 ER PT J AU Wang, YL Zhai, HJ Xu, L Li, J Wang, LS AF Wang, Yi-Lei Zhai, Hua-Jin Xu, Lu Li, Jun Wang, Lai-Sheng TI Vibrationally Resolved Photoelectron Spectroscopy of Di-Gold Carbonyl Clusters Au-2(CO)(n)(-) (n=1-3): Experiment and Theory SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Review ID DENSITY-FUNCTIONAL THEORY; TRANSITION-METAL CLUSTERS; TEMPERATURE CO OXIDATION; SUPPORTED GOLD; CATALYTIC-ACTIVITY; MONOXIDE ADSORPTION; MOLECULAR-OXYGEN; BASIS-SETS; GAS-PHASE; ELECTRONIC-STRUCTURE AB We report vibrationally resolved photoelectron spectroscopy (PES) of Au-2(CO)(n)(-) (n = 1-3), in combination with relativistic density functional theory (DFT) and ab initio Calculations. The ground-state transition in the spectrum of Au2CO- is broad, containing vibrational structures both in the bending and in the CO stretching modes and suggesting a large structural change from Au2CO- to Au2CO. The ground-state transitions for both n = 2 and 3 display a well-resolved vibrational progression in the CO stretching mode with frequencies of 2110 +/- 40 and 2160 +/- 40 cm(-1), respectively. The PES data show that chemisorption of the first two CO's each induces a significant red-shift in the electron binding energies. The third CO is physisorbed, inducing only a slight increase in electron binding energies relative to Au-2(CO)(2). Relativistic DFT and ab initio calculations are performed to determine the ground-state structures for Au-2(CO)(n)(-) and Au-2(CO)(n), and the results agree well with the experiment. Au-2(CO), Au-2(CO)(2), and Au-2(CO)(2) are all found to be linear, while Au-2(CO)(-) is bent due to the Renner-Teller effect. A strong spin-orbit effect is found in Au-2(CO)(2) that quenches the Renner-Teller effect, keeping the linear structure for this anion. The physisorption in Au-2(CO)(3) is borne out in CCSD(T) calculations. However, a wide range of DFT methods tested fail to correctly predict the relative energies of the physisorbed versus chemisorbed isomers for Au-2(CO)(3). C1 [Wang, Yi-Lei; Xu, Lu; Li, Jun] Tsinghua Univ, Dept Chem, Minist Educ, Beijing 100084, Peoples R China. [Wang, Yi-Lei; Xu, Lu; Li, Jun] Tsinghua Univ, Minist Educ Res, Key Lab Organ Optoelect & Mol Engn, Beijing 100084, Peoples R China. [Zhai, Hua-Jin; Wang, Lai-Sheng] Washington State Univ, Dept Phys, Richland, WA 99354 USA. [Zhai, Hua-Jin; Wang, Lai-Sheng] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. [Wang, Lai-Sheng] Brown Univ, Dept Chem, Providence, RI 02912 USA. RP Li, J (reprint author), Tsinghua Univ, Dept Chem, Minist Educ, Beijing 100084, Peoples R China. EM junli@tsinghua.edu.cn; lswang@pnl.gov RI Li, Jun/E-5334-2011 OI Li, Jun/0000-0002-8456-3980 FU National Science Foundation [CHE-0749496]; W. R. Wiley Environmental Molecular Sciences Laboratory; Department of Energy's Office of Biological and Environmental Research; DOE; NKBRSF [2006CB932305, 2007CB815200]; NSFC [20525104, 20933003] FX The experimental work was supported by the National Science Foundation (CHE-0749496) and performed at the W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory, operated for DOE by Battelle. The theoretical work was supported by NKBRSF (2006CB932305, 2007CB815200) and NSFC (20525104, 20933003) in China. The calculations were performed using a HP Itanium2 cluster at Tsinghua National Laboratory for Information Science and Technology and Shanghai Supercornputing Center. NR 122 TC 34 Z9 34 U1 0 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JAN 28 PY 2010 VL 114 IS 3 BP 1247 EP 1254 DI 10.1021/jp903558v PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 544QB UT WOS:000273672600004 PM 19764770 ER PT J AU Garand, E Klein, K Stanton, JF Zhou, J Yacovitch, TI Neumark, DM AF Garand, Etienne Klein, Kerstin Stanton, John F. Zhou, Jia Yacovitch, Tara I. Neumark, Daniel M. TI Vibronic Structure of the Formyloxyl Radical (HCO2) via Slow Photoelectron Velocity-Map Imaging Spectroscopy and Model Hamiltonian Calculations SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID POTENTIAL-ENERGY SURFACES; COUPLED-CLUSTER METHOD; NEGATIVE-IONS; FORMIC-ACID; MANY-BODY; PHOTODETACHMENT SPECTROSCOPY; TRIPLE EXCITATIONS; SYMMETRY-BREAKING; 2ND DERIVATIVES; DYNAMICS AB We report high-resolution photoelectron spectra of HCO2- and DCO2 obtained with slow photoelectron velocity-map imaging. Well-resolved photodetachment transitions to the (2)A(1) and B-2(2) states of the neutral radicals were observed. In addition, vibronic levels of the HCO2 and DCO2 radicals with up to 2000 cm(-1) of internal energy were calculated using a quasidiabatic Hamiltonian approach and high-level ab initio calculations. Spectral simulations using the calculated levels Were found to be in excellent agreement with the experimental spectra and used to assign many of its features. This study unambiguously determined that the (2)A(1) state is the ground state of both HCO2 and DCO2, in contrast to earlier work that indicated the B-2(2) state was the ground state for DCO2. For both isotopologs, the B-2(2) state is a very low-lying excited state with term energies of T-0 = 318 +/- 8 cm(-1) for HCO2 and T-0 = 87 +/- 8 cm(-1) for DCO2. The adiabatic electron affinities are determined to be EA(HCO2) = 3.4961 +/- 0.0010 eV and EA(DCO2) = 3.5164 +/- 0.0010 eV. C1 [Klein, Kerstin; Stanton, John F.] Univ Texas Austin, Inst Theoret Chem, Austin, TX 78712 USA. [Klein, Kerstin; Stanton, John F.] Univ Texas Austin, Dept Chem & Biochem, Austin, TX 78712 USA. [Garand, Etienne; Zhou, Jia; Yacovitch, Tara I.; Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Klein, Kerstin] Johannes Gutenberg Univ Mainz, Inst Phys Chem, D-55099 Mainz, Germany. [Neumark, Daniel M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Stanton, JF (reprint author), Univ Texas Austin, Inst Theoret Chem, Austin, TX 78712 USA. EM jfstanton@mail.utexas.edu; dneumark@berkeley.edu RI Neumark, Daniel/B-9551-2009; OI Neumark, Daniel/0000-0002-3762-9473; Garand, Etienne/0000-0001-5062-5453 FU Air Force Office of Scientific Research [F49620-03-1-0085]; U.S. Department of Energy, Basic Energy Sciences [FG02-07ER15884]; Robert A. Welch Foundation; Deutsche Forschungsgemeinschaft [GA 370/5-1]; National Science and Engineering Research Council of Canada (NSERC.); Fonds Quebecois de la Recherche sur la Nature et les Technologies (FQRNT) FX This work was Supported by the Air Force Office of Scientific Research under Grant No. F49620-03-1-0085 (D.M.N), and the U.S. Department of Energy, Basic Energy Sciences [Contract FG02-07ER15884] and the Robert A. Welch Foundation (J.F.S). K. K. was supported for a semester in Austin through funding from the Deutsche Forschungsgemeinschaft (DFG GA 370/5-1). E.G. thanks the National Science and Engineering Research Council of Canada (NSERC.) for a post graduate scholarship and T.Y. thanks the Fonds Quebecois de la Recherche sur la Nature et les Technologies (FQRNT) fora master's scholarship. J.F.S. and K.K. also thank Takatoshi Ichino (Austin) for discussions concerning the adiabatic parametrization procedure used in this work. NR 56 TC 30 Z9 30 U1 1 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JAN 28 PY 2010 VL 114 IS 3 BP 1374 EP 1383 DI 10.1021/jp9067894 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 544QB UT WOS:000273672600020 PM 19736951 ER PT J AU Kornilov, O Wang, CC Bunermann, O Healy, AT Leonard, M Peng, C Leone, SR Neumark, DM Gessner, O AF Kornilov, Oleg Wang, Chia C. Buenermann, Oliver Healy, Andrew T. Leonard, Mathew Peng, Chunte Leone, Stephen R. Neumark, Daniel M. Gessner, Oliver TI Ultrafast Dynamics in Helium Nanodroplets Probed by Femtosecond Time-Resolved EUV Photoelectron Imaging SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID HIGH-ORDER HARMONICS; LIQUID-HELIUM; SUPERFLUID-HELIUM; ANGULAR-DISTRIBUTIONS; ELECTRON BUBBLES; LARGE DROPLETS; CLUSTERS; SPECTROSCOPY; MOLECULES; IONIZATION AB The dynamics of electronically excited helium nanodroplets are studied by femtosecond time-resolved photoelectron imaging. EUV excitation into a broad absorption band centered around 23.8 eV leads to an indirect photoemission process that generates ultraslow photoelectrons. A 1.58 eV probe pulse transiently depletes the indirect photoemission signal for pump-probe time delays <200 fs and enhances the signal beyond this delay. The depletion is due to Suppression of the indirect ionization process by the probe photon, which generates a broad, isotropically emitted photoelectron band. Similar time scales in the decay of the high energy photoelectron signal and the enhancement of the indirect photoemission signal suggest an internal relaxation process that populates states in the range of a lower energy droplet absorption band located just below the droplet ionization potential (IP similar to 23.0 eV). A nearly 70% enhancement of the ultraslow photoelectron signal indicates that interband relaxation plays a more dominant role for the droplet de-excitation mechanism than photoemission. C1 [Kornilov, Oleg; Wang, Chia C.; Buenermann, Oliver; Healy, Andrew T.; Leonard, Mathew; Peng, Chunte; Leone, Stephen R.; Neumark, Daniel M.; Gessner, Oliver] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Ultrafast Xray Sci Lab, Berkeley, CA 94720 USA. [Kornilov, Oleg; Wang, Chia C.; Buenermann, Oliver; Leonard, Mathew; Peng, Chunte; Leone, Stephen R.; Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Gessner, O (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Ultrafast Xray Sci Lab, Berkeley, CA 94720 USA. EM ogessner@lbl.gov RI Neumark, Daniel/B-9551-2009 OI Neumark, Daniel/0000-0002-3762-9473 FU U.S. Department of Energy [DE-AC02-05CH11231v] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. We thank the LBNL Center for X-ray Optics (CXRO) for providing custom-made multilayer mirrors. NR 63 TC 18 Z9 18 U1 2 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JAN 28 PY 2010 VL 114 IS 3 BP 1437 EP 1445 DI 10.1021/jp907312t PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 544QB UT WOS:000273672600028 PM 20043659 ER PT J AU Schwerin, AF Johnson, JC Smith, MB Sreearunothai, P Popovic, D Cerny, J Havlas, Z Paci, I Akdag, A MacLeod, MK Chen, XD David, DE Ratner, MA Miller, JR Nozik, AJ Michl, J AF Schwerin, Andrew F. Johnson, Justin C. Smith, Milicent B. Sreearunothai, Paiboon Popovic, Duska Cerny, Jiri Havlas, Zdenek Paci, Irina Akdag, Akin MacLeod, Matthew K. Chen, Xudong David, Donald E. Ratner, Mark A. Miller, John R. Nozik, Arthur J. Michl, Josef TI Toward Designed Singlet Fission: Electronic States and Photophysics of 1,3-Diphenylisobenzofuran SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID MAGNETIC CIRCULAR-DICHROISM; THE-IDENTITY APPROXIMATION; AUXILIARY BASIS-SETS; MULTIPLE EXCITON GENERATION; INFRARED LINEAR DICHROISM; MODEL CC2; STRETCHED POLYETHYLENE; 1ST-ORDER PROPERTIES; COULOMB POTENTIALS; AROMATIC-MOLECULES AB Single crystal molecular structure and solution photophysical properties are reported for 1,3-diphenylisobenzofuran (1), of interest its a model compound in studies of singlet fission. For the ground state of I and of its radical cation (1(+center dot)) and anion (1(-center dot)), we report the UV-visible absorption spectra, and for neutral 1, also the magnetic circular dichroism (MCD) and the decomposition of the absorption spectrum into purely polarized components, deduced from fluorescence polarization. These results were used to identify a series of singlet excited states. For the first excited singlet and triplet states of 1, the transient visible absorption spectra, S-1 -> S-x and sensitized T-1 -> T-x and single exponential lifetimes, tau(F) = similar to 5.3 ns and tau(T) = similar to 200 mu s, are reported. The spectra and lifetimes of S-1 -> S-0 fluorescence and sensitized T-1 -> T-x absorption of I were obtained in a series of solvents, as was the fluorescence quantum yield, Phi(F) = 0.95-0.99, No phosphorescence has been detected. The first triplet excitation energy of solid I (11 400 cm(-1)) was obtained by electron energy loss spectroscopy, in agreement with previously reported solution values. The fluorescence excitation spectrum suggests all onset of a nonradiative channel at similar to 37 000 cm(-1). Excitation energies and relative transition intensities are in agreement with those of ab initio (CC2) calculations after all empirical 3000 cm(-1) adjustment of the initial state energy to Correct differentially for a better quality description of the initial relative to the terminal suite of in absorption transition. The interpretation of the MCD spectrum used the semiempirical PPP method, whose results for the S-1 -> S-x spectrum require no empirical adjustment and are otherwise nearly identical with the CC2 results in all respects including the detailed nature of the electronic excitation. The ground state geometry of I Was also Calculated by the MP2, B3LYP, and CAS methods. The calculations provided a prediction of changes of molecular geometry upon excitation or ionization and permitted all interpretation of the spectra in tern-is of molecular orbitals involved. Computations suggest that 1 call exist as two nearly isoenergetic conformers of C-2 or C-x symmetry. Linear dichroism measurements in stretched polyethylene provide evidence for their existence and show that they orient to different degrees, permitting a separation of their spectra in the region Of the purely polarized first absorption band. Their excitation energies are nearly identical, but the Franck-Condon envelopes of their first transition differ to a surprising degree. C1 [Schwerin, Andrew F.; Smith, Milicent B.; Popovic, Duska; Akdag, Akin; MacLeod, Matthew K.; Chen, Xudong; David, Donald E.; Michl, Josef] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Johnson, Justin C.; Nozik, Arthur J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Sreearunothai, Paiboon; Miller, John R.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Cerny, Jiri; Havlas, Zdenek; Michl, Josef] Acad Sci Czech Republic, Inst Organ Chem & Biochem, CR-16610 Prague 6, Czech Republic. [Paci, Irina; Ratner, Mark A.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Michl, J (reprint author), Univ Colorado, Dept Chem & Biochem, 215 UCB, Boulder, CO 80309 USA. RI Havlas, Zdenek/B-2164-2012; Cerny, Jiri/I-4733-2012; Michl, Josef/G-9376-2014; Nozik, Arthur/A-1481-2012; Nozik, Arthur/P-2641-2016 OI Havlas, Zdenek/0000-0002-8369-7303; Cerny, Jiri/0000-0002-1969-9304; FU U.S. Department of Energy [XAT-5-33636-01, DE-FG36-08GO18017, DE-AC36-08GO28308, DE-AC02-98-CH10886]; NSF [OISE-0532040]; Ministry of Education, Youth, and Sport of the Czech Republic [ME09114] FX We acknowledge support from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Photovoltaics Program (A.F.S., M.B.S., D.P., I.P., A.A., M.K.M., X.C., D.E.D., M.A.R., and J.M., XAT-5-33636-01 and DE-FG36-08GO18017), U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences, and Geosciences (J.C..I. and AJ.N., DE-AC36-08GO28308; P.S. and J.R.M., DE-AC02-98-CH10886), and the NSF (OISE-0532040), and the KONTAKT project of the Ministry of Education, Youth, and Sport of the Czech Republic (J.C. and Z.H., ME09114). NR 76 TC 41 Z9 42 U1 5 U2 52 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JAN 28 PY 2010 VL 114 IS 3 BP 1457 EP 1473 DI 10.1021/jp907401t PG 17 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 544QB UT WOS:000273672600030 PM 20025258 ER PT J AU Jochnowitz, EB Zhang, X Nimlos, MR Flowers, BA Stanton, JF Ellison, GB AF Jochnowitz, Evan B. Zhang, Xu Nimlos, Mark R. Flowers, Bradley A. Stanton, John F. Ellison, G. Barney TI Infrared Spectrum of the Propargyl Peroxyl Radical, HC C-CH2OO (X)over-tilde (2)A '' SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID CAVITY RINGDOWN SPECTROSCOPY; BOND-DISSOCIATION ENERGIES; GAS-PHASE ACIDITY; SELF-REACTION; PHOTOELECTRON-SPECTROSCOPY; VIBRATIONAL FREQUENCIES; ELECTRONIC-TRANSITION; ABSORPTION SPECTRA; MOLECULAR-OXYGEN; ARGON MATRICES AB When the propargyl radical, HCCCH2, and O-2 are codeposited onto a cold argon matrix, a chemical reaction ensues; infrared absorption spectra reveal the formation of the propargyl peroxyl radical: HC = C - CH2 (H) over tilde B-2(1) + O-2 -> trans-HC=CH2OO (H) over tilde (2) A. We do not observe the isomeric adduct, CH2=C=CHOO (X) over tilde (2)A ''. The propargyl radicals are produced by a hyperthermal nozzle while a second nozzle alternately fires bursts of O2/Ar at the 20 K matrix. The absorption spectra of the radicals are measured using a Fourier transform infrared spectrometer. We observe 13 of the 18 fundamental infrared bands of the propargyl peroxyl radical in an Ar matrix at 20 K. The experimental frequencies (cm(-1)) of trans-HC C-CH2OO (H) over tilde (2) A '' are assigned. The a' modes are v(1) = 3326, v(2) = 2960, v(3) = 2149, v(4) = 1440, v(5) = 1338, v(6) = 1127. v(7) = 982, v(8) = 928, v(9) = 684, and v(10) = 499 cm(-1), while the a '' modes are v(14) = 1218, v(15) = 972, and v(16) = 637 cm(-1). Linear dichroism spectra were measured with photo-oriented HCCCH2OO radical samples to establish the experimental polarizations of several vibrational hands. The experimental frequencies (v) for the propargyl peroxyl radical are compared to the anharmonic frequencies (v) resulting from electronic structure calculations. We have used CBS-QB3 electronic structure calculations to estimate the peroxyl bond energies: Delta H-298(trans-HC CCh(2) -> OO -> CH2CCH (H) over tilde B-2(1) + O-2) = 19 +/- 1 kcal mol(-1) and Delta H-298(trans-CH2=C=CH-OO -> CH2CCH (H) over tilde B-2(1) + O-2) = 21 +/- 1 kcal mol(-1). The experimental thermochemistry for C3H3 reacting with oxygen has been reanalyzed as Delta H-rxn(298)(HCCCH2 + O-2 -> CH2=C=O + HCO) = -83 +/- 3 kcal mol(-1); Delta H-rxn(298)(HCCCH2 + O-2 -> CH3CO + CO) = -111 +/- 3 kcal mol(-1); Delta H-rxn(298)(HCCCH2 + O-2 -> CH2CHO + CO) = -106 +/- 4 kcal mol(-1); Delta H-rxn(298)(HCCCH2 + O-2 -> HCHO + HCCO) = -67 +/- 4 kcal mol(-1); Delta H-rxn(298)(HCCCH2 + O-2 -> CH2CH + CO2) = -105 +/- 3 kcal mol(-1). C1 [Jochnowitz, Evan B.; Zhang, Xu; Nimlos, Mark R.; Flowers, Bradley A.; Ellison, G. Barney] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Jochnowitz, Evan B.] Univ Basel, Inst Phys Chem, CH-4056 Basel, Switzerland. [Zhang, Xu] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Nimlos, Mark R.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Flowers, Bradley A.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Stanton, John F.] Univ Texas Austin, Dept Chem, Inst Theoret Chem, Austin, TX 78712 USA. RP Ellison, GB (reprint author), Univ Colorado, Dept Chem & Biochem, Campus Box 215, Boulder, CO 80309 USA. EM barney@jila.colorado.edu FU United States Department of Energy [DE-FG02-93ER14364, DE-FG02-07ER15884]; National Science Foundation [CHE-9813659]; Robert A. Welch Foundation; NASA FX This work was Supported by grants from the United States Department of Energy (DE-FG02-93ER14364) a and the National Science Foundation (CHE-9813659) (G.B.E., J.F.S.), the Department of Energy, Basis Energy Sciences (DE-FG02-07ER15884), and the Robert A. Welch Foundation (J.F.S.). X.Z. would like to acknowledge support from a NASA postdoctoral fellowship. NR 60 TC 8 Z9 8 U1 2 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JAN 28 PY 2010 VL 114 IS 3 BP 1498 EP 1507 DI 10.1021/jp907806g PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 544QB UT WOS:000273672600034 PM 20039710 ER PT J AU Chambreau, SD Vaghjiani, GL To, A Koh, C Strasser, D Kostko, O Leone, SR AF Chambreau, Steven D. Vaghjiani, Ghanshyam L. To, Albert Koh, Christine Strasser, Daniel Kostko, Oleg Leone, Stephen R. TI Heats of Vaporization of Room Temperature Ionic Liquids by Tunable Vacuum Ultraviolet Photoionization SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID IONIZATION CROSS-SECTIONS; AB-INITIO CALCULATIONS; VAPOR-PRESSURE; GAS-PHASE; ENTHALPIES; SALTS; DICYANAMIDE; MOLECULES; ANION AB The heats of vaporization of the room temperature ionic liquids (RTILs) N-butyl-N-methylpyrrolidinium bistrifluorosulfonylimide, N-butyl-N-methylpyrrolidinium dicyanamide, and 1-butyl-3-methylimidazolium dicyanamide are determined using a heated effusive vapor source in conjunction with single photon ionization by a tunable vacuum Ultraviolet synchrotron Source. The relative gas phase ionic liquid vapor densities in the effusive beam are monitored by clearly distinguished dissociative photoionization processes via a time-of-flight mass spectrometer at a tunable vacuum Ultraviolet beamline 9.0.2.3 (Chemical Dynamics Beamline) at the Advanced Light Source synchrotron facility. Resulting in relatively few assumptions, through the analysis of both parent cations and fragment cations, the heat of vaporization of N-butyl-N-methylpyrrolidinium bistrifluorosulfobylimide is determined to be Delta H(vap) (298.15 K) = 195 +/- 19 kJ mol(-1). The observed heats of vaporization of 1-butyl-3-methylimidazolium dicyanamide (Delta H(vap)(298.15 K) = 174 +/- 12 kJ mol(-1)) and N-butyl-N-methylpyrrolidinium dicyanamide (Delta H(vap)(298.15 K) = 171 +/- 12 kJ mol(-1)) are consistent with reported experimental Values using electron impact ionization. The tunable vacuum Ultraviolet source has enabled accurate measurement of photoion appearance energies. These appearance energies are in good agreement With MP2 calculations for dissociative photoionization of the ion pair. These experimental heats of vaporization, photoion appearance energies, and ob initio Calculations corroborate vaporization of these RTILs as intact cation-anion pairs. C1 [Chambreau, Steven D.] ERC Inc, Edwards AFB, CA 93524 USA. [Vaghjiani, Ghanshyam L.] AFRL, RZSP, Edwards AFB, CA 93524 USA. [To, Albert] Univ Pittsburgh, Dept Civil & Environm Engn, Pittsburgh, PA 15261 USA. [Koh, Christine; Strasser, Daniel; Kostko, Oleg; Leone, Stephen R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Koh, Christine; Strasser, Daniel; Kostko, Oleg; Leone, Stephen R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Koh, Christine; Strasser, Daniel; Kostko, Oleg; Leone, Stephen R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Vaghjiani, GL (reprint author), AFRL, RZSP, 10 E Saturn Blvd, Edwards AFB, CA 93524 USA. EM ghanshyam.vaghjiani@edwards.af.mil RI Kostko, Oleg/B-3822-2009; Kostko, Oleg/A-3693-2010; To, Albert/J-4991-2012 OI Kostko, Oleg/0000-0003-2068-4991; FU Air Force Office of Scientific Research [FA9300-06-C-0023]; Air Force Research Laboratory Edwards AFB [CA 93524, FA9550-07-1-0059]; Office of Science. Office of Basic Energy Sciences, of the U.S Department of Energy [DE-AC02-05CH11231]; Weizmann Institute of Science; ASEE [FA9550-07-C-0052] FX Funding for this work was provided by the Air Force Office of Scientific Research under Contract No. FA9300-06-C-0023 with the Air Force Research Laboratory Edwards AFB, CA 93524, and grant FA9550-07-1-0059 to the University of California, Berkeley. Research at the Advanced Light Source is supported by the Director, Office of Science. Office of Basic Energy Sciences, of the U.S Department of Energy under Contract No. DE-AC02-05CH11231 at the Lawrence Berkeley National Laboratory. S.R.L. gratefully acknowledges the generous Support Of a Morris Belkin Visiting Professorship at the Weizmann Institute of Science. This research is partly supported by the Air Force Summer Faculty Fellowship Program administered by the ASEE (Contract No. FA9550-07-C-0052). Special thanks to Dr. Jerry Boatz for helpful discussions on MP2 calculations and donation of CPU time. NR 33 TC 29 Z9 29 U1 1 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JAN 28 PY 2010 VL 114 IS 3 BP 1361 EP 1367 DI 10.1021/jp909423m PG 7 WC Chemistry, Physical SC Chemistry GA 544PZ UT WOS:000273672300017 PM 20050589 ER PT J AU Beckham, GT Matthews, JF Bomble, YJ Bu, LT Adney, WS Himmel, ME Nimlos, MR Crowley, MF AF Beckham, Gregg T. Matthews, James F. Bomble, Yannick J. Bu, Lintao Adney, William S. Himmel, Michael E. Nimlos, Mark R. Crowley, Michael F. TI Identification of Amino Acids Responsible for Processivity in a Family 1 Carbohydrate-Binding Module from a Fungal Cellulase SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID REESEI CELLOBIOHYDROLASE-I; X-RAY-SCATTERING; TRICHODERMA-REESEI; MICROCRYSTALLINE CELLULOSE; CRYSTAL-STRUCTURE; DOMAIN; BIOFUELS; SIMULATIONS; DYNAMICS; AFFINITY AB We probe the molecular-level behavior of the Family I carbohydrate-binding module (CBM) from a commonly Studied fungal cellulase, the Family 7 cellobiohydrolase (Cel7A) from Trichoderma reesei, on the hydrophobic ace of crystalline cellulose. With a fully atomitic model, we predict that the CBM alone exhibits regions of thermodynamic stability along a cellulose chain corresponding to a cellobiose unit, which is the catalytic product of the entire Cel7A enzyme. In addition, we determine which residues and the types of interactions that are responsible for the observed processivity length scale of the CBM: Y5, Q7, N29, and Y32. These results imply that the CBM can anchor the Cel7A enzyme at discrete points along a cellulose chain and thus aid in both recognizing cellulose chain ends for initial attachment to cellulose as well as aid in enzymatic catalysis by diffusing between stable wells oil a length scale commensurate with the catalytic, processive cycle of Cel7A during cellulose hydrolysis. Comparison of other Family 1 CBMs show high functional homology to the four amino acids responsible for the processivity length scale oil the surface of crystalline cellulose, which suggests that Family I CBMs may generally employ this type of approach for translation on the cellulose Surface. Overall, this work provides further insight into the molecular-level mechanisms by which a CBM recognizes and interacts with cellulose. C1 [Beckham, Gregg T.; Bu, Lintao; Nimlos, Mark R.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. [Matthews, James F.; Bomble, Yannick J.; Adney, William S.; Himmel, Michael E.; Crowley, Michael F.] Natl Renewable Energy Lab, Chem & Biosci Ctr, Golden, CO 80401 USA. RP Beckham, GT (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. EM Gregg.Beckham@nrel.gov; Michael.Crowley@nrel.gov RI crowley, michael/A-4852-2013 OI crowley, michael/0000-0001-5163-9398 FU Department of Energy Office of the Biomass Program; Golden Energy computing Organization at the Colorado School of Mines; National Science Foundation [TG-MCA08X015]; National Renewable Energy Laboratory FX We thank the Department of Energy Office of the Biomass Program for funding. Computational time for this research was Supported in part by the Golden Energy computing Organization at the Colorado School of Mines using resources acquired with financial assistance from the National Science Foundation and the National Renewable Energy Laboratory. Simulations were also performed in part using the Texas Advanced Computing Center Ranger cluster under the National Science Foundation Teragrid grant number TG-MCA08X015. NR 34 TC 67 Z9 68 U1 6 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JAN 28 PY 2010 VL 114 IS 3 BP 1447 EP 1453 DI 10.1021/jp908810a PG 7 WC Chemistry, Physical SC Chemistry GA 544PZ UT WOS:000273672300026 PM 20050714 ER PT J AU Moritsugu, K Njunda, BM Smith, JC AF Moritsugu, Kei Njunda, Brigitte M. Smith, Jeremy C. TI Theory and Normal-Mode Analysis of Change in Protein Vibrational Dynamics on Ligand Binding SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID DIHYDROFOLATE-REDUCTASE; MOLECULAR-DYNAMICS; ENERGY LANDSCAPES; ESCHERICHIA-COLI; RIBONUCLEASE-A; MOTIONS; SIMULATIONS; MACROMOLECULES; ENTROPY; MINIMIZATION AB The change of protein vibrations oil ligand binding is of functional and thermodynamic importance. Here, this process is characterized using a simple analytical "ball-and-spring" model and all-atom normal-mode analysis (NMA) of the binding of the cancer drug, methotrexate (MTX) to its target, dihydrofolate reductase (DHFR). The analytical model predicts that the Coupling between protein vibrations and ligand external motion generates entropy-rich, low-frequency vibrations in the complex. This is consistent with the atomistic NMA which reveals vibrational softening in forming the DHFR-MTX complex, a result also in qualitative agreement with neutron-scattering experiments. Energy minimization of the atomistic bound-state (13) structure while gradually decreasing the ligand interaction to zero allows the generation of a hypothetical "intermediate" (1) state, without the ligand force field but With a structure similar to that of B. In going from I to 13, it is found that the vibrational entropies of both the protein and MTX decrease while the complex structure becomes enthalpically stabilized. However, the relatively weak DHFR:MTX interaction energy results in the net entropy gain arising from Coupling between the protein and MTX external motion being larger than the loss of vibrational entropy oil complex formation. This. together with the I structure being more flexible than the unbound Structure, results in the observed vibrational softening on ligand binding. C1 [Moritsugu, Kei; Smith, Jeremy C.] Univ Tennessee, Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN 37831 USA. [Moritsugu, Kei] RIKEN, Res Program Computat Sci, Wako, Saitama 3510198, Japan. [Njunda, Brigitte M.] Univ Heidelberg, Interdisciplinary Ctr Sci Comp IWR, D-69120 Heidelberg, Germany. RP Moritsugu, K (reprint author), Univ Tennessee, Oak Ridge Natl Lab, Ctr Biophys Mol, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM moritsuguk@riken.jp RI smith, jeremy/B-7287-2012 OI smith, jeremy/0000-0002-2978-3227 FU U.S. Department of Energy; MEXT FX We thank Dr. E. Balog for helpful comments and Dr. M. Krishnan for useful discussions. J.C.S acknowledges funds from the U.S. Department of Energy via a Laboratory-Directed Research and Development grant. K.M. acknowledges Support by the MEXT grand challenge program using next-generation supercomputing. NR 51 TC 14 Z9 14 U1 4 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JAN 28 PY 2010 VL 114 IS 3 BP 1479 EP 1485 DI 10.1021/jp909677p PG 7 WC Chemistry, Physical SC Chemistry GA 544PZ UT WOS:000273672300030 PM 20043649 ER PT J AU Sanchez-Gonzalez, A Munoz-Losa, A Vukovic, S Corni, S Mennucci, B AF Sanchez-Gonzalez, Angel Munoz-Losa, Aurora Vukovic, Sinisa Corni, Stefano Mennucci, Benedetta TI Quantum Mechanical Approach to Solvent Effects on the Optical Properties of Metal Nanoparticles and Their Efficiency As Excitation Energy Transfer Acceptors SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID POLARIZABLE CONTINUUM MODEL; ENHANCED RAMAN-SCATTERING; EFFECTIVE CORE POTENTIALS; NONRADIATIVE DECAY-RATES; GOLD NANOPARTICLES; ANISOTROPIC DIELECTRICS; MOLECULAR CALCULATIONS; FLUORESCENCE; SURFACE; CLUSTERS AB We present a tithe-dependent density functional theory (TDDFT) investigation of the solvent effect on the light absorption of metal nanoparticles and on their efficiency as excitation energy transfer (EET) acceptors from organic dyes. The calculations consider both the dye and the metal particle at quantum-mechanical (QM) level, thus including quantum size effects. The results are compared to those of a second method that exploits a continuous dielectric model for the metal nanoparticle while keeping the same QM level for the dye. Both methods use the polarizable continuum model (PCM) for the solvent. The comparison of these two approaches for gold and silver nanoparticles has clarified how their different electronic nature specifically couples with the solvent and leads to different optical properties and EET efficiency. Moreover, a critical comparison of the QM results with the popular Forster approach to EET has been performed, quantifying the inherent limitations of the latter for dye-nanoparticle EET in solution. C1 [Sanchez-Gonzalez, Angel; Munoz-Losa, Aurora; Vukovic, Sinisa; Mennucci, Benedetta] Univ Pisa, Dept Chem & Ind Chem, I-56126 Pisa, Italy. [Vukovic, Sinisa] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Corni, Stefano] INFM, CNR, Natl Res Ctr NanoStruct & BioSyst Surfaces S3, I-41100 Modena, Italy. RP Mennucci, B (reprint author), Univ Pisa, Dept Chem & Ind Chem, Via Risorgimento 35, I-56126 Pisa, Italy. EM bene@dcci.unipi.it RI Mennucci, Benedetta/H-2216-2011; Corni, Stefano/A-6198-2012; Vukovic, Sinisa/J-3106-2013; Munoz-Losa, Aurora /J-2808-2014; Mennucci, Benedetta/G-5522-2016; OI Vukovic, Sinisa/0000-0002-7682-0705; Mennucci, Benedetta/0000-0002-4394-0129; Sanchez-Gonzalez, Angel/0000-0003-4594-602X; Corni, Stefano/0000-0001-6707-108X FU EU [FP6]; Spanish Ministerio de Ciencia a Inovacion FX This work was supported within the EU FP6, by the ERANET project NanoSci-ERA: Nanoscience in the European research area. A.M.L. thanks support froth the Spanish Ministerio de Ciencia a Inovacion (Programa Nacional de Recursos Humanos del Plan Nacional I-D+I 2008-2011). S.C. acknowledges useful discussions with Fabio Della Sala and Mauro Stener. NR 65 TC 10 Z9 10 U1 1 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JAN 28 PY 2010 VL 114 IS 3 BP 1553 EP 1561 DI 10.1021/jp911426f PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 544QA UT WOS:000273672500023 ER PT J AU Gomez, T Florez, E Rodriguez, JA Illas, F AF Gomez, Tatiana Florez, Elizabeth Rodriguez, Jose A. Illas, Francesc TI Theoretical Analysis of the Adsorption of Late Transition-Metal Atoms on the (001) Surface of Early Transition-Metal Carbides SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID AU-C INTERACTIONS; CHARGE POLARIZATION; WAVE METHOD; AU/TIC(001); CATALYSIS; ENERGIES AB The interaction of atoms of Groups 9, 10, and 1 1 with the (001) surface of TiC, ZrC, VC, and delta-MoC has been studied by means of periodic density functional calculations using slab models. The calculated values of the adsorption energy are rather large, especially for Groups 9 and 10 elements (E(ads) = 3-6 eV), but without clear trends along the series. Nevertheless, the analysis of the interaction at different sites indicates that the adsorbed atoms will be relatively mobile. Many of the admetals are electronically perturbed upon interaction with the carbide surfaces. Co, Ni, Cu, and Rh adatoms get positively or negatively charged, depending on the nature of the carbide substrate. Ir, Pd, Pt, and Au adatoms are always negatively charged. An analysis of the Bader charges for the most stable sites provides strong evidence that the most negative charge on the adatoms corresponds to the interaction with ZrC, followed by TiC. In the case of VC and delta-MoC, the charge on the adsorbed atoms may he slightly positive and of the same order for both carbides. The effect of the underlying carbide is large; with ZrC and TiC being predicted as the supports with the largest effect on the electronic structure of the adsorbed atoms with direct implications for the use of these systems in catalysis. C1 [Gomez, Tatiana; Florez, Elizabeth; Illas, Francesc] Univ Barcelona, Dept Quim Fis, E-08028 Barcelona, Spain. [Gomez, Tatiana; Florez, Elizabeth; Illas, Francesc] Univ Barcelona, Inst Quim Teor & Computac IQTCUB, E-08028 Barcelona, Spain. [Gomez, Tatiana] Univ Andres Bello, Dept Quim, Fac Ecol & Recursos Nat, Santiago, Chile. [Florez, Elizabeth] Univ Chile, Dept Fis, Santiago, Chile. [Rodriguez, Jose A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Illas, F (reprint author), Univ Barcelona, Dept Quim Fis, C Marti & Franques 1, E-08028 Barcelona, Spain. EM francesc.illas@ub.edu RI Illas, Francesc /C-8578-2011; OI Illas, Francesc /0000-0003-2104-6123; Florez, Elizabeth/0000-0002-8301-8550 FU Universidad Andres Bello (Chile) [UNAB-DI-02-9/1]; University of Antioquia (Colombia); Spanish MICINN [FIS2008-02238]; COST D-41 action; Generalitat de Catalunya [2009SGR1041]; Chile Fondecyt [3080033]; U.S. Department of Energy [DE-AC0298CH 10886]; Divisions of Chemical and Materials Science of the U.S. Department of Energy FX The authors wish to thank Dr. Francesc Vines for carefully reading the manuscript and for useful comments. T.G. is grateful to the Universidad Andres Bello (Chile) for a Ph.D. fellowship and project UNAB-DI-02-9/1, and E.F. would like to thank Colciencias and the University of Antioquia (Colombia) for supporting her postdoctoral stay at the Universidad do Chile. Financial support has been provided by the Spanish MICINN (Grant FIS2008-02238), COST D-41 action, Generalitat de Catalunya (Grants 2009SGR1041 and XRQTC), and by Chile Fondecyt Grant 3080033. Computational time provided by the Barcelona Sttpercomputing Center (BSC) is gratefully acknowledged. The research carried out at Brookhaven National Laboratory was supported by the U.S. Department of Energy (Chemical Sciences Division, DE-AC0298CH 10886). The National Synchrotron Light Source (NSLS) is supported by the Divisions of Chemical and Materials Science of the U.S. Department of Energy. NR 26 TC 8 Z9 8 U1 1 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JAN 28 PY 2010 VL 114 IS 3 BP 1622 EP 1626 DI 10.1021/jp910273z PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 544QA UT WOS:000273672500032 ER PT J AU Palma, JL Cao, C Zhang, XG Krstic, PS Krause, JL Cheng, HP AF Palma, Julio L. Cao, Chao Zhang, X-G. Krstic, Predrag S. Krause, Jeffrey L. Cheng, Hai-Ping TI Manipulating I-V Characteristics of a Molecular Switch with Chemical Modifications SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ELECTRONICS; CONDUCTANCE; AZOBENZENE; JUNCTION; PHOTOISOMERIZATION; CHEMISTRY; TRANSPORT AB We present a study of the effects of chemical modifications on the electron transport properties of the azobenzene molecule, which has been proposed as a component of alight-driven molecular switch. This molecule has two stable conformations (cis and trans) in the electronic ground state, with considerable differences in conductance. The electron transport properties were calculated using first-principles methods combining nonequilibrium Green's function techniques with density functional theory. Chemical modifications of the azobenzene consist of incorporation of electron-donating and electron-withdrawing groups in meta and ortho positions with respect to the azo group. The results show that the transport properties in electronic devices at the molecular level can be manipulated, enhanced, or suppressed by a careful consideration of the effects of chemical modification, and such modifications become crucial in optimizing the electron transport properties of chemical structures. C1 [Palma, Julio L.; Cao, Chao; Krause, Jeffrey L.; Cheng, Hai-Ping] Univ Florida, Quantum Theory Project, Gainesville, FL 32611 USA. [Palma, Julio L.; Krause, Jeffrey L.] Univ Florida, Dept Chem, Gainesville, FL 32611 USA. [Cao, Chao; Cheng, Hai-Ping] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Zhang, X-G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci & Comp Sci, Div Math, Oak Ridge, TN 37831 USA. [Krstic, Predrag S.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Cheng, HP (reprint author), Univ Florida, Quantum Theory Project, Gainesville, FL 32611 USA. EM cheng@qtp.ufl.edu RI Cao, Chao/F-5190-2010 FU DOE [DE-FG02-02ER45995]; University of Florida Alumni Fellowship FX This work was supported by DOE grant DE-FG02-02ER45995 to H.P.C. and J.L.K., and a University of Florida Alumni Fellowship to J.L.P. Computer resources were provided by the University of Florida High-Performance Computing Center. NR 40 TC 8 Z9 8 U1 2 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JAN 28 PY 2010 VL 114 IS 3 BP 1655 EP 1662 DI 10.1021/jp9062466 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 544QA UT WOS:000273672500038 ER PT J AU Fletcher, DA Mullins, D AF Fletcher, Daniel A. Mullins, Dyche TI Cell mechanics and the cytoskeleton SO NATURE LA English DT Review ID PROKARYOTIC ACTIN HOMOLOG; ARP2/3 COMPLEX; DYNAMIC INSTABILITY; IN-VITRO; EXTRACELLULAR-MATRIX; MICROTUBULE GROWTH; SELF-ORGANIZATION; EPITHELIAL-CELLS; SHEAR-STRESS; 3T3 CELLS AB The ability of a eukaryotic cell to resist deformation, to transport intracellular cargo and to change shape during movement depends on the cytoskeleton, an interconnected network of filamentous polymers and regulatory proteins. Recent work has demonstrated that both internal and external physical forces can act through the cytoskeleton to affect local mechanical properties and cellular behaviour. Attention is now focused on how cytoskeletal networks generate, transmit and respond to mechanical signals over both short and long timescales. An important insight emerging from this work is that long-lived cytoskeletal structures may act as epigenetic determinants of cell shape, function and fate. C1 [Fletcher, Daniel A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Mullins, Dyche] Univ Calif San Francisco, San Francisco, CA 94143 USA. RP Fletcher, DA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM fletch@berkeley.edu; dyche@mullinslab.ucsf.edu FU National Institutes of Health (NIH) [R01]; Cell Propulsion Lab, an NIH Nanomedicine Development Center FX We thank O. Chaudhuri, D. Richmond, V. Risca and other members of the Fletcher laboratory for discussion and assistance with this Review. We also benefited from interactions with the researchers and students in the 2009 Physiology course at the Marine Biological Laboratory, Woods Hole, Massachusetts. Work in our laboratories is supported by R01 grants from the National Institutes of Health (NIH) and by the Cell Propulsion Lab, an NIH Nanomedicine Development Center. We apologize to those colleagues whose work could not be cited because of space constraints. NR 88 TC 566 Z9 588 U1 50 U2 383 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD JAN 28 PY 2010 VL 463 IS 7280 BP 485 EP 492 DI 10.1038/nature08908 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 548QK UT WOS:000273981100040 PM 20110992 ER PT J AU Steen, EJ Kang, YS Bokinsky, G Hu, ZH Schirmer, A McClure, A del Cardayre, SB Keasling, JD AF Steen, Eric J. Kang, Yisheng Bokinsky, Gregory Hu, Zhihao Schirmer, Andreas McClure, Amy del Cardayre, Stephen B. Keasling, Jay D. TI Microbial production of fatty-acid-derived fuels and chemicals from plant biomass SO NATURE LA English DT Article ID ESCHERICHIA-COLI; ACYL-COENZYME; BIODIESEL; ETHANOL; IDENTIFICATION; BIOSYNTHESIS; REDUCTASE; BIOFUELS; GENES; CDNA AB Increasing energy costs and environmental concerns have emphasized the need to produce sustainable renewable fuels and chemicals(1). Major efforts to this end are focused on the microbial production of high-energy fuels by cost-effective 'consolidated bioprocesses'(2). Fatty acids are composed of long alkyl chains and represent nature's 'petroleum', being a primary metabolite used by cells for both chemical and energy storage functions. These energy-rich molecules are today isolated from plant and animal oils for a diverse set of products ranging from fuels to oleochemicals. A more scalable, controllable and economic route to this important class of chemicals would be through the microbial conversion of renewable feedstocks, such as biomass-derived carbohydrates. Here we demonstrate the engineering of Escherichia coli to produce structurally tailored fatty esters (biodiesel), fatty alcohols, and waxes directly from simple sugars. Furthermore, we show engineering of the biodiesel-producing cells to express hemi-cellulases, a step towards producing these compounds directly from hemicellulose, a major component of plant-derived biomass. C1 [Steen, Eric J.; Kang, Yisheng; Bokinsky, Gregory; Keasling, Jay D.] Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Steen, Eric J.; Keasling, Jay D.] Synthet Biol Engn Res Ctr, Emeryville, CA 94608 USA. [Steen, Eric J.; Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Kang, Yisheng; Bokinsky, Gregory; Keasling, Jay D.] Univ Calif Berkeley, Inst QB3, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Hu, Zhihao; Schirmer, Andreas; McClure, Amy; del Cardayre, Stephen B.] LS9 Inc, San Francisco, CA 94080 USA. [Keasling, Jay D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Keasling, JD (reprint author), Joint BioEnergy Inst, 5885 Hollis Ave, Emeryville, CA 94608 USA. EM delc@ls9.com; keasling@berkeley.edu RI Keasling, Jay/J-9162-2012 OI Keasling, Jay/0000-0003-4170-6088 FU Tien Scholar Environmental Fellowship; Synthetic Biology Engineering Research Center (SynBERC); LS9, Inc. (South San Francisco, California) through the University of California FX E.J.S. was supported by the Tien Scholar Environmental Fellowship and the Synthetic Biology Engineering Research Center (SynBERC). Y.K. and G. B. were supported by a grant from LS9, Inc. (South San Francisco, California) through the University of California Discovery Grant program. This research was performed at the Joint BioEnergy Institute. We thank M. Rude with help on the manuscript and J. Cronan and the LS9 Scientific Advisory Board for technical insight and discussion. NR 29 TC 616 Z9 652 U1 37 U2 507 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD JAN 28 PY 2010 VL 463 IS 7280 BP 559 EP U182 DI 10.1038/nature08721 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 548QK UT WOS:000273981100055 PM 20111002 ER PT J AU Carpenter, MA Buckley, A Taylor, PA Darling, TW AF Carpenter, M. A. Buckley, A. Taylor, P. A. Darling, T. W. TI Elastic relaxations associated with the Pm(3)over-barm-R(3)over-barc transition in LaAlO3: III. Superattenuation of acoustic resonances SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID DYNAMICAL MECHANICAL ANALYSIS; INELASTIC NEUTRON-SCATTERING; STRUCTURAL PHASE-TRANSITIONS; INTERNAL-FRICTION; ULTRASOUND SPECTROSCOPY; DOMAIN-WALLS; TRANSFORMATION TWINS; SRTIO3 CRYSTALS; POLYCRYSTALLINE CA1-XSRXTIO3; (CA,SR)TIO3 PEROVSKITES AB Resonant ultrasound spectroscopy has been used to characterize elastic softening and anelastic dissipation processes associated with the Pm (3) over barm. R (3) over barc transition in single crystal and ceramic samples of LaAlO3. Softening of the cubic structure ahead of the transition point is not accompanied by an increase in dissipation but follows different temperature dependences for the bulk modulus, 1/3 (C-11 + 2C(12)), and the shear components, 12 (C-11 - C-12) and C-44, as if the tilting instability contains two slightly different critical temperatures. The transition itself is marked by the complete disappearance of resonance peaks (superattenuation), which then reappear below similar to 700 K in spectra from single crystals. Comparisons with low frequency, high stress data from the literature indicate that the dissipation is not due to macroscopic displacement of needle twins. An alternative mechanism, local bowing of twin walls under low dynamic stress, is postulated. Pinning of the walls with respect to this displacement process occurs below similar to 350 K. Anelasticity maps, analogous to plastic deformation mechanism maps, are proposed to display dispersion relations and temperature/frequency/stress fields for different twin wall related dissipation mechanisms. These allow comparisons to be made of anelastic loss mechanisms under mechanical stress with elastic behaviour observed by means of Brillouin scattering at high frequencies which might also be related to microstructure. C1 [Carpenter, M. A.; Buckley, A.; Taylor, P. A.] Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England. [Darling, T. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Darling, T. W.] Univ Nevada, Dept Phys, Reno, NV 89577 USA. RP Carpenter, MA (reprint author), Univ Cambridge, Dept Earth Sci, Downing St, Cambridge CB2 3EQ, England. EM mc43@esc.cam.ac.uk RI Carpenter, Michael/D-4860-2015 FU Natural Environment Research Council of Great Britain [NER/A/S/2000/01055, NE/B505738/1] FX Elasticity measurements on LaAlO3 have been supported by The Natural Environment Research Council of Great Britain, first under grant no. NER/A/S/2000/01055 and subsequently under grant no. NE/B505738/1 (to MAC). We also thank Ekhard Salje and Richard Harrison for many fruitful and informative discussions. NR 79 TC 40 Z9 40 U1 0 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JAN 27 PY 2010 VL 22 IS 3 AR 035405 DI 10.1088/0953-8984/22/3/035405 PG 19 WC Physics, Condensed Matter SC Physics GA 536PD UT WOS:000273055400016 PM 21386288 ER PT J AU Carpenter, MA Buckley, A Taylor, PA McKnight, REA Darling, TW AF Carpenter, M. A. Buckley, A. Taylor, P. A. McKnight, R. E. A. Darling, T. W. TI Elastic relaxations associated with the Pm(3)over-barm-R(3)over-barc transition in LaAlO3: IV. An incipient instability below room temperature SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID STRUCTURAL PHASE-TRANSITIONS; OXYGEN-ISOTOPE EXCHANGE; STRONTIUM-TITANATE; SINGLE-CRYSTALS; ORDER-PARAMETER; LANDAU THEORY; 37 K; SRTIO3; FERROELECTRICITY; ANOMALIES AB Resonant ultrasound spectroscopy has been used to characterize elastic softening and acoustic dissipation behaviour in single crystal and ceramic samples of LaAlO3 between 10 and 300 K. For the twinned R (3) over barc single crystals, average values of the cubic elastic moduli 1/2(C-11 - C-12) and C-44 were followed while the ceramic sample provided data for the bulk and shear moduli. A Debye-like dissipation peak occurs in the vicinity of 250 K, from which an activation energy of 43 +/- 6 kJ mol(-1) has been obtained. The mechanism for this is not known, but it is associated with C44 and therefore could be related in some way to the cubic <-> rhombohedral transition at similar to 817 K. Slight softening in the temperature interval similar to 220 -> 70 K of resonance peaks determined by shear elastic moduli hints at an incipient E-g ferroelastic instability in LaAlO3. The softening interval ends with a further dissipation peak at similar to 60 K, the origin of which is discussed in terms of freezing of atomic motions of La and/or Al away from their high symmetry positions in the R (3) over barc structure. LaAlO3 thus shows evidence of incipient structural instability at low temperatures which is potentially analogous with the phenomenologically rich behaviour of SrTiO3. C1 [Carpenter, M. A.; Buckley, A.; Taylor, P. A.; McKnight, R. E. A.] Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England. [Darling, T. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Darling, T. W.] Univ Nevada, Dept Phys, Reno, NV 89577 USA. RP Carpenter, MA (reprint author), Univ Cambridge, Dept Earth Sci, Downing St, Cambridge CB2 3EQ, England. RI Carpenter, Michael/D-4860-2015 FU Natural Environment Research Council of Great Britain [NER/A/S/2000/01055, NE/B505738/1] FX Elasticity measurements on LaAlO3 have been supported by The Natural Environment Research Council of Great Britain, first under grant no. NER/A/S/2000/01055 and subsequently under grant no. NE/B505738/1 (to MAC). NR 49 TC 14 Z9 14 U1 1 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JAN 27 PY 2010 VL 22 IS 3 AR 035406 DI 10.1088/0953-8984/22/3/035406 PG 7 WC Physics, Condensed Matter SC Physics GA 536PD UT WOS:000273055400017 PM 21386289 ER PT J AU Drymiotis, F Drye, T Rhodes, D Zhang, Q Lashey, JC Wang, Y Cawthorne, S Ma, B Lindsey, S Tritt, T AF Drymiotis, F. Drye, T. Rhodes, D. Zhang, Q. Lashey, J. C. Wang, Y. Cawthorne, S. Ma, B. Lindsey, S. Tritt, T. TI Glassy thermal conductivity in the two-phase CuxAg3-xSbSeTe2 alloy and high temperature thermoelectric behavior SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID TRANSPORT-PROPERTIES; AGSBTE2; HEAT; CRYSTAL; MERIT AB We have measured the thermal transport properties over the temperature range 1.8 K < T < 700 K of a two-phase alloy synthesized by reacting AgSbTe2 and Ag2Se in a 1:1 molar ratio. Typical electrical resistivity values at 700 K are in the range similar to 4 m Omega cm <= rho <= 20 m Omega cm, while low thermal conductivity values (kappa < 1 W m(-1) K-1) were obtained. We find that the thermal conductivity of this crystalline alloy has a temperature dependence strikingly similar to those of amorphous solids. In addition the thermal conductivity, thermopower, and electrical resistivity decouple. This result makes it possible to optimize thermoelectric performance by minimizing the electrical resistivity. It is therefore envisaged that this system has potential as a high performance bulk thermoelectric. C1 [Drymiotis, F.; Drye, T.; Rhodes, D.; Zhang, Q.; Wang, Y.; Cawthorne, S.; Ma, B.; Lindsey, S.; Tritt, T.] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA. [Lashey, J. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Drymiotis, F (reprint author), Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA. RI Rhodes, Daniel/H-3423-2013 FU NSF [DMR-0905322]; DOE/EPSCoR Implementation [DE-FG02-04ER-46139]; SC EPSCoR; United States Department of Energy FX We would like to thank NSF-DMR-0905322 for the major support of this project. Part of the work at Clemson University is supported from DOE/EPSCoR Implementation Grant (#DE-FG02-04ER-46139), and SC EPSCoR cost sharing. The work at the Los Alamos National Laboratory is supported by the United States Department of Energy. NR 24 TC 4 Z9 4 U1 1 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JAN 27 PY 2010 VL 22 IS 3 AR 035801 DI 10.1088/0953-8984/22/3/035801 PG 5 WC Physics, Condensed Matter SC Physics GA 536PD UT WOS:000273055400024 PM 21386296 ER PT J AU Ghosh, T Vukmirovic, MB DiSalvo, FJ Adzic, RR AF Ghosh, Tanushree Vukmirovic, Miomir B. DiSalvo, Francis J. Adzic, Radoslav R. TI Intermetallics as Novel Supports for Pt Monolayer O-2 Reduction Electrocatalysts: Potential for Significantly Improving Properties SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID OXYGEN REDUCTION; NANOPARTICLES AB We report oil a new class of core-shell electrocatalysts for the oxygen-reduction reaction. These electrocatalysts comprise a Pt monolayer shell and ordered intermetallic compounds cores and have enhanced activity and stability compared with conventional ones. These advantages are derived From combining the unique properties of Pt monolayer catalysts (high activity, low metal content) and of the intermetallic compounds (high stability and, possibly, low price). This method holds excellent potential for creating efficient fuel cell electrocatalysts. C1 [Vukmirovic, Miomir B.; Adzic, Radoslav R.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Ghosh, Tanushree; DiSalvo, Francis J.] Cornell Univ, Dept Chem & Biol Chem, Ithaca, NY 14853 USA. RP Adzic, RR (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. FU U.S. Department of Energy, Divisions of Chemical and Material Sciences [DE-AC02-98CH10886] FX This work has been supported by the U.S. Department of Energy, Divisions of Chemical and Material Sciences, under the Contract No. DE-AC02-98CH10886. NR 8 TC 73 Z9 75 U1 11 U2 79 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JAN 27 PY 2010 VL 132 IS 3 BP 906 EP + DI 10.1021/ja905850c PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 562VZ UT WOS:000275084700002 PM 20039609 ER PT J AU Sgarlata, C Mugridge, JS Pluth, MD Tiedemann, BEF Zito, V Arena, G Raymond, KN AF Sgarlata, Carmelo Mugridge, Jeffrey S. Pluth, Michael D. Tiedemann, Bryan E. F. Zito, Valeria Arena, Giuseppe Raymond, Kenneth N. TI External and Internal Guest Binding of a Highly Charged Supramolecular Host in Water: Deconvoluting the Very Different Thermodynamics SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CALORIMETRIC ENTHALPIES; EQUILIBRIUM-CONSTANTS; MOLECULAR RECOGNITION; VANT-HOFF; SIGNIFICANT DISCREPANCIES; DIPYRIDYL PENDANTS; SYNTHETIC RECEPTOR; AMMONIUM CATIONS; ANIONIC HOST; DIELS-ALDER AB NMR, UV-vis, and isothermal titration calorimetry (ITC) measurements probe different aspects of competing host-guest equilibria as simple alkylammonium guest molecules interact with both the exterior (ion-association) and interior (encapsulation) of the [Ga(4)L(6)](12-) supramolecular assembly in water. Data obtained by each independent technique measure different components of the host-guest equilibria and only when analyzed together does a complete picture of the solution thermodynamics emerge. Striking differences between the internal and external guest binding are found. External binding is enthalpy driven and mainly due to attractive interactions between the guests and the exterior surface of the assembly while encapsulation is entropy driven as a result of desolvation and release of solvent molecules from the host cavity. C1 [Arena, Giuseppe] Univ Catania, Dipartimento Sci Chim, I-95125 Catania, Italy. [Sgarlata, Carmelo; Mugridge, Jeffrey S.; Pluth, Michael D.; Tiedemann, Bryan E. F.; Raymond, Kenneth N.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Sgarlata, Carmelo; Mugridge, Jeffrey S.; Pluth, Michael D.; Tiedemann, Bryan E. F.; Raymond, Kenneth N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Zito, Valeria] CNR, Ist Biostrutture & Bioimmagini, I-95125 Catania, Italy. RP Arena, G (reprint author), Univ Catania, Dipartimento Sci Chim, Viale A Doria 6, I-95125 Catania, Italy. EM garena@unict.it; raymond@socrates.berkeley.edu RI Pluth, Michael/A-7222-2012 OI Pluth, Michael/0000-0003-3604-653X NR 60 TC 38 Z9 38 U1 2 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JAN 27 PY 2010 VL 132 IS 3 BP 1005 EP 1009 DI 10.1021/ja9056739 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA 562VZ UT WOS:000275084700028 PM 20043697 ER PT J AU Cao, D Amelia, M Klivansky, LM Koshkakaryan, G Khan, SI Semeraro, M Silvi, S Venturi, M Credi, A Liu, Y AF Cao, Dennis Amelia, Matteo Klivansky, Liana M. Koshkakaryan, Gayane Khan, Saeed I. Semeraro, Monica Silvi, Serena Venturi, Margherita Credi, Alberto Liu, Yi TI Probing Donor-Acceptor Interactions and Co-Conformational Changes in Redox Active Desymmetrized [2]Catenanes SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ARTIFICIAL MOLECULAR MUSCLES; INTERLOCKED STRUCTURES; DIIMIDE DERIVATIVES; TEMPLATED SYNTHESIS; ANION TEMPLATION; UNIDIRECTIONAL ROTATION; TETRATHIAFULVALENE UNIT; PHOTOCHEMICALLY DRIVEN; MACHINE PROTOTYPES; BISTABLE ROTAXANES AB We describe the synthesis and characterization of a series of desymmetrized donor-acceptor [2]catenanes where different donor and acceptor units are assembled within a confined catenated geometry. Remarkable translational selectivity is maintained in all cases, including two fully desymmetrized [2]catenanes where both donors and acceptors are different, as revealed by X-ray crystallography in the solid state, and by (1)H NMR spectroscopy and electrochemistry in solution. In all desymmetrized [2]catenanes the co-conformation is dominated by the strongest donor and acceptor pairs, whose charge-transfer interactions also determine the visible absorption properties. Voltammetric and spectroelectrochemical experiments show that the catenanes can be reversibly switched among as many as seven states, characterized by distinct electronic and optical properties, by electrochemical stimulation in a relatively narrow and easily accessible potential window. Moreover in some of these compounds the oxidation of the electron donor units or the reduction of the electron acceptor ones causes the circumrotation of one molecular ring with respect to the other. These features make these compounds appealing for the development of molecular electronic devices and mechanical machines. C1 [Amelia, Matteo; Semeraro, Monica; Silvi, Serena; Venturi, Margherita; Credi, Alberto] Univ Bologna, Dipartimento Chim G Ciamician, I-40126 Bologna, Italy. [Cao, Dennis; Klivansky, Liana M.; Koshkakaryan, Gayane; Liu, Yi] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Cao, Dennis; Klivansky, Liana M.; Koshkakaryan, Gayane; Liu, Yi] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Khan, Saeed I.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. RP Credi, A (reprint author), Univ Bologna, Dipartimento Chim G Ciamician, Via Selmi 2, I-40126 Bologna, Italy. EM alberto.credi@unibo.it; yliu@lbl.gov RI Credi, Alberto/H-4450-2011; Liu, yi/A-3384-2008; Cao, Dennis/C-2240-2013; OI Credi, Alberto/0000-0003-2546-9801; Liu, yi/0000-0002-3954-6102; Cao, Dennis/0000-0002-0315-1619; Silvi, Serena/0000-0001-9273-4148 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05 CH11231] FX Dedicated to Professor Jean-Pierre Sauvage, pioneer of molecular catenation, for his 65th birthday. D. Cao, L. Klivansky, G. Koshkakaryan, and Y. Liu and the materials synthesis were supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under contract No. DE-AC02-05 CH11231, M. Amelia, M. Semeraro, S. Silvi, M. Venturi, and A. Credi and the detailed characterization were supported by Fondazione Cassa di Risparmio, in Bologna, Italy. NR 129 TC 53 Z9 53 U1 2 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JAN 27 PY 2010 VL 132 IS 3 BP 1110 EP 1122 DI 10.1021/ja909041g PG 13 WC Chemistry, Multidisciplinary SC Chemistry GA 562VZ UT WOS:000275084700040 PM 20043674 ER PT J AU Subramania, G Lee, YJ Fischer, AJ Koleske, DD AF Subramania, Ganapathi Lee, Yun-Ju Fischer, Arthur J. Koleske, Daniel D. TI Log-Pile TiO2 Photonic Crystal for Light Control at Near-UV and Visible Wavelengths SO ADVANCED MATERIALS LA English DT Article ID SPONTANEOUS EMISSION; NEGATIVE REFRACTION; BAND-STRUCTURE; WAVE-GUIDES; FABRICATION; LITHOGRAPHY; GAP AB Three-dimensional photonic crystals with an omnidirectional bandgap at visible frequencies can have significant impact on solid-state lighting and solar-energy conversion. Using a procedure based on multistep electron-beam lithographic processing, a 9-layer log-pile photonic crystal is fabricated composed of 70-nm-wide titanium dioxide rods with 250-nm lattice spacing that exhibit a stacking direction bandgap between 400 nm and 500 nm (see image). C1 [Subramania, Ganapathi; Lee, Yun-Ju; Fischer, Arthur J.; Koleske, Daniel D.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Subramania, G (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM gssubra@sandia.gov FU Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors thank Carlos Sanchez for assisting with nanofabrication and Michael Busse for help with thin-film characterization. We also thank Aaron Gin and Joel Wendt for useful discussions. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. Supporting Information is available online from Wiley InterScience or from the author. NR 31 TC 34 Z9 34 U1 1 U2 21 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD JAN 26 PY 2010 VL 22 IS 4 BP 487 EP + DI 10.1002/adma.200902264 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 554GV UT WOS:000274424400007 PM 20217739 ER PT J AU Huang, L Schofield, MA Zhu, YM AF Huang, Lei Schofield, Marvin A. Zhu, Yimei TI Control of Double-Vortex Domain Configurations in a Shape-Engineered Trilayer Nanomagnet System SO ADVANCED MATERIALS LA English DT Article ID ELECTRON HOLOGRAPHY; SPINTRONICS; MICROSCOPY; PERMALLOY; REVERSAL AB A shape-engineered trilayer ferromagnetic/non-magnetic/ferromagnetic nano-structure is lithographically fabricated to support four stable flux-closure domain configurations at remanence. Quantitative phase measurements using electron holography reveal the detailed magnetization reversal process and demonstrate how four domain states with distinct vortex chirality combinations can be controllably achieved by systematic manipulation of the applied magnetic field (see image). C1 [Huang, Lei; Schofield, Marvin A.; Zhu, Yimei] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Huang, Lei; Zhu, Yimei] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. RP Zhu, YM (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM zhu@bnl.gov FU U.S. Department of Energy, Office of Basic Energy Science [DE-AC02-98CH10886] FX The authors gratefully acknowledge M. Beleggia, V. V. Volkov, and J. W. Lau for stimulating discussions. Sample preparation was carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory. This work is supported by the U.S. Department of Energy, Office of Basic Energy Science, under Contract number DE-AC02-98CH10886. Supporting Information is available online from Wiley InterScience or from the author. NR 18 TC 11 Z9 11 U1 1 U2 13 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD JAN 26 PY 2010 VL 22 IS 4 BP 492 EP + DI 10.1002/adma.200902488 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 554GV UT WOS:000274424400008 PM 20217740 ER PT J AU Fisher, SZ Kovalevsky, AY Domsic, JF Mustyakimov, M McKenna, R Silverman, DN Langan, PA AF Fisher, S. Zoe Kovalevsky, Andrey Y. Domsic, John F. Mustyakimov, Marat McKenna, Robert Silverman, David N. Langan, Paul A. TI Neutron Structure of Human Carbonic Anhydrase II: Implications for Proton Transfer SO BIOCHEMISTRY LA English DT Article ID X-RAY; ACTIVE-SITE; CATALYTIC MECHANISM; MOLECULAR-DYNAMICS; TRANSFER PATHWAYS; JOINT NEUTRON; CRYSTALLOGRAPHY; DIFFRACTION; ENZYME; COMPLEXES AB Human carbonic anhydrase II (HCA II) catalyzes the reversible hydration of carbon dioxide to form bicarbonate and a proton. Despite many high-resolution X-ray crystal structures, mutagenesis, and kinetic data, the structural details of the active site, especially the proton transfer pathway,are unclear. A large HCA II crystal was prepared at pH 9.0 and Subjected to vapor H-Dexchange to replace labile hydrogens with deuteriums. Neutron diffraction studies were conducted at the Protein Crystallography Station at Los Alamos National Laboratory. The structure to 2.0 angstrom resolution reveals several interesting active site features: (1) the Zn-bound solvent appearing to be predominantly a D2O molecule, (2) the orientation and hydrogen bonding pattern of solvent molecules in the active site cavity, (3) the side chain of His64 being unprotonated (neutral) and predominantly in an inward conformation pointing toward the zinc, and (4) the phenolic side chain of Tyr7 appearing to be Unprotonated. The implications of these details are discussed, and a proposed mechanism for proton transfer is presented. C1 [Fisher, S. Zoe; Kovalevsky, Andrey Y.; Mustyakimov, Marat; Langan, Paul A.] Los Alamos Natl Lab, Biosci Div MS M888, Los Alamos, NM 87544 USA. [Domsic, John F.; McKenna, Robert] Univ Florida, Dept Biochem & Mol Biol, Gainesville, FL 32610 USA. [Silverman, David N.] Univ Florida, Dept Pharmacol & Therapeut, Gainesville, FL 32610 USA. RP Fisher, SZ (reprint author), Los Alamos Natl Lab, Biosci Div MS M888, POB 1663, Los Alamos, NM 87544 USA. EM zfisher@lanl.gov RI Langan, Paul/N-5237-2015; OI Langan, Paul/0000-0002-0247-3122; Kovalevsky, Andrey/0000-0003-4459-9142 FU Office of Biological and Environmental Research of the Department of Energy; National Institute or General Medical Sciences [IR01GM071939-01]; LDRD [20080789PRD3]; National Institutes of Health [GM25154]; Thomas Maren Foundation FX The PCS is funded by the Office of Biological and Environmental Research of the Department of Energy. M.M. and P.A.L. were partly supported by a National Institute or General Medical Sciences-funded consortium (IR01GM071939-01) between Los Alamos National Laboratory and Lawrence Berkeley National Laboratory to develop computational tools for neutron protein crystallography. A.Y.K. was Supported by LDRD Grant 20080789PRD3. This work was also partially funded by grams from the National Institutes of Health (GM25154 to D.N.S. and R.M.) and the Thomas Maren Foundation (R.M.). NR 40 TC 43 Z9 43 U1 0 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD JAN 26 PY 2010 VL 49 IS 3 BP 415 EP 421 DI 10.1021/bi901995n PG 7 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 543YR UT WOS:000273618200003 PM 20025241 ER PT J AU Kaiser, RI Mebel, A Kostko, O Ahmed, M AF Kaiser, Ralf I. Mebel, Alexander Kostko, Oleg Ahmed, Musahid TI On the ionization energies of C4H3 isomers SO CHEMICAL PHYSICS LETTERS LA English DT Article ID QUADRATIC CONFIGURATION-INTERACTION; COUPLED-CLUSTER SINGLES; AB-INITIO CALCULATIONS; CROSSED-BEAM REACTION; FRANCK-CONDON FACTORS; HYDROCARBON MOLECULES; CHEMICAL-DYNAMICS; N-C4H3 FORMATION; CARBON-ATOMS; C(P-3(J)) AB We have investigated the ionization potentials of resonantly stabilized C(4)H(3) radicals utilizing laser ablation of graphite in combination with seeding the ablated species in neat methylacetylene gas, which also reacted as a reagent. Photoionization efficiency (PIE) curves were recorded of photoionized isomers at the Advanced Light Source. The PIE curve suggests the formation of four C(4)H(3) radicals: two acyclic structures i-C(4)H(3) [1] and E/Z-n-C(4)H(3) [2E/2Z] and two cyclic isomers 3 and 4. This study provides a novel interpretation of previous data on C(4)H(3) radicals in hydrocarbon flames. (C) 2009 Elsevier B.V. All rights reserved. C1 [Kaiser, Ralf I.] Univ Hawaii Manoa, Dept Chem, Honolulu, HI 96822 USA. [Mebel, Alexander] Florida Int Univ, Dept Chem, Miami, FL 33199 USA. [Kostko, Oleg; Ahmed, Musahid] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Kaiser, RI (reprint author), Univ Hawaii Manoa, Dept Chem, Honolulu, HI 96822 USA. EM ralfk@hawaii.edu RI Ahmed, Musahid/A-8733-2009; Kostko, Oleg/B-3822-2009; Kostko, Oleg/A-3693-2010; Mebel, Alexander/A-5234-2009 OI Kostko, Oleg/0000-0003-2068-4991; FU US Department of Energy, Basic Energy Sciences [DE-FG02-03ER15411, DE-FG02-04ER15570, DE-AC02-05CH11231] FX This work was supported by the US Department of Energy, Basic Energy Sciences (DE-FG02-03ER15411 [RIK], DE-FG02-04ER15570 [AMM], and DE-AC02-05CH11231 [MA and OK]). NR 30 TC 8 Z9 8 U1 1 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD JAN 26 PY 2010 VL 485 IS 4-6 BP 281 EP 285 DI 10.1016/j.cplett.2009.12.027 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 546BP UT WOS:000273782600003 ER PT J AU Shu, CY Zhang, JF Ge, JC Sim, JH Burke, BG Williams, KA Rylander, WM Campbell, T Puretzky, A Rouleau, C Geohegan, DB More, K Esker, AR Gibson, HW Dorn, HC AF Shu, Chunying Zhang, Jianfei Ge, Jiechao Sim, Jae Hyun Burke, Brain G. Williams, Keith A. Rylander, Williams M. Campbell, Tom Puretzky, Alex Rouleau, Chris Geohegan, David B. More, Karren Esker, Alan R. Gibson, Harry W. Dorn, Harry C. TI A Facile High-speed Vibration Milling Method to Water-disperse Single-walled Carbon Nanohorns SO CHEMISTRY OF MATERIALS LA English DT Article ID ACID FUNCTIONALIZATION; PHOTOINDUCED ELECTRON; NANOSTRUCTURED CARBON; METHANE-STORAGE; DRUG CARRIERS; NANOTUBES; SOLUBILIZATION; ADSORPTION; NANOPARTICLES; THERAPEUTICS AB A high-speed vibration milling (HSVM) method was applied to synthesize water dispersible single-walled carbon nanohorns (SWNHs). Highly reactive free radicals (HOOCCH2CH2 center dot) produced from an acyl peroxide under HSVM conditions react with hydrophobic SWNHs to produce a highly water dispersible derivative (f-SWNHs), which has been characterized in detail by spectroscopic and microscopic techniques together with thermogravimetric analysis (TGA) and dynamic light scattering (DLS). The carboxylic acid functionalized, water-dispersible SWNHs material are versatile precursors that have potential applications in the biomedical area. C1 [Shu, Chunying; Zhang, Jianfei; Ge, Jiechao; Sim, Jae Hyun; Esker, Alan R.; Gibson, Harry W.; Dorn, Harry C.] Virginia Polytech Inst & State Univ, Dept Chem, Blacksburg, VA 24061 USA. [Rylander, Williams M.] Virginia Polytech Inst & State Univ, Dept Mech Engn, Blacksburg, VA 24061 USA. [Rylander, Williams M.] Virginia Polytech Inst & State Univ, Sch Biomed Engn & Sci, Blacksburg, VA 24061 USA. [Campbell, Tom] Virginia Polytech Inst & State Univ, ICTAS, Blacksburg, VA 24060 USA. [Burke, Brain G.; Williams, Keith A.] Univ Virginia, Dept Phys, Charlottesville, VA 22903 USA. [Puretzky, Alex; Rouleau, Chris; Geohegan, David B.; More, Karren] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Puretzky, Alex; Rouleau, Chris; Geohegan, David B.; More, Karren] Oak Ridge Natl Lab, SHaRE Facil, Oak Ridge, TN 37831 USA. RP Dorn, HC (reprint author), Virginia Polytech Inst & State Univ, Dept Chem, Blacksburg, VA 24061 USA. EM hdorn@vt.edu RI Zhang, Jianfei/D-7749-2012; Dorn, Harry/K-6830-2013; Rouleau, Christopher/Q-2737-2015; More, Karren/A-8097-2016; Puretzky, Alexander/B-5567-2016; Geohegan, David/D-3599-2013 OI Rouleau, Christopher/0000-0002-5488-3537; More, Karren/0000-0001-5223-9097; Puretzky, Alexander/0000-0002-9996-4429; Geohegan, David/0000-0003-0273-3139 FU National Science Foundation [CHE-0443850, DMR-0507083]; National Institutes of Health [1R01-CA119371-01]; U.S. Department of Energy FX We gratefully acknowledge support of this work by the National Science Foundation [CHE-0443850 (H.C.D.), DMR-0507083 (H.C.D., H.W.G.)] and the National Institutes of Health [1R01-CA119371-01 (H.C. D., H.W.G)]. A portion of this research at Oak Ridge National Laboratory's Center for Nanophase Materials Science and SHaRE User Facility was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. A portion of this work was carried out using instruments in the Nanoscale Characterization and Fabrication Laboratory, a Virginia Tech Facility operated by the Institute for Critical Technology and Applied Science. NR 56 TC 14 Z9 14 U1 0 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD JAN 26 PY 2010 VL 22 IS 2 BP 347 EP 351 DI 10.1021/cm902710n PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 543LZ UT WOS:000273580700011 ER PT J AU Libera, JA Elam, JW Sather, NF Rajh, T Dimitrijevic, NM AF Libera, Joseph A. Elam, Jeffrey W. Sather, Norman F. Rajh, Tijana Dimitrijevic, Nada M. TI Iron(III)-oxo Centers on TiO2 for Visible-Light Photocatalysis SO CHEMISTRY OF MATERIALS LA English DT Article ID ATOMIC LAYER DEPOSITION; ELECTRON-PARAMAGNETIC-RES; THIN-FILMS; SEMICONDUCTOR PHOTOCATALYSIS; EPR SPECTROSCOPY; IRON; WATER; IRRADIATION; ABSORPTION; RESONANCE AB Isolated iron(III)-oxo clusters were synthesized onto TiO2 using atomic layer deposition. The FexOy/TiO2 nanocomposites have unique properties that enable not only absorption of visible light, but efficient photocatalysis as demonstrated by methylene blue degradation. The localization of photogenerated electrons in core TiO2 nanocrystallites upon visible light excitation demonstrates coupling of conduction band of mixed oxides. The redox properties of photogenerated charges in nanocomposites were studied using in situ electron paramagnetic resonance spectroscopy. C1 [Rajh, Tijana; Dimitrijevic, Nada M.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Libera, Joseph A.; Elam, Jeffrey W.; Sather, Norman F.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Dimitrijevic, Nada M.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Dimitrijevic, NM (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM dimitrijevic@anl.gov FU U.S. Department of Energy [DE-AC02-06CH11357] FX The work was performed under the auspices of the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, under Contract DE-AC02-06CH11357. NR 36 TC 43 Z9 43 U1 5 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD JAN 26 PY 2010 VL 22 IS 2 BP 409 EP 413 DI 10.1021/cm902825c PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 543LZ UT WOS:000273580700018 ER PT J AU Kleiman-Shwarsctein, A Huda, MN Walsh, A Yan, YF Stucky, GD Hu, YS Al-Jassim, MM McFarland, EW AF Kleiman-Shwarsctein, Alan Huda, Muhammad N. Walsh, Aron Yan, Yanfa Stucky, Galen D. Hu, Yong-Sheng Al-Jassim, Mowafak M. McFarland, Eric W. TI Electrodeposited Aluminum-Doped alpha-Fe2O3 Photoelectrodes: Experiment and Theory SO CHEMISTRY OF MATERIALS LA English DT Article ID TOTAL-ENERGY CALCULATIONS; THIN-FILM ELECTRODES; WAVE BASIS-SET; HYDROGEN-PRODUCTION; IRON-OXIDE; ELECTROCHEMICAL SYNTHESIS; SEMICONDUCTOR PROPERTIES; VISIBLE-LIGHT; P-TYPE; WATER AB Substitutional doping call improve the electronic Properties of alpha-Fe2O3 for the solar photoelectrochemical (PEC) applications. Generally speaking, nonsovalent substitutional doping helps to enhance the electronic conductivity of alpha-Fe2O3. However, We found that file introduction of strain ill the lattice, which is achieved by isovalent substitutional doping of an Al, call also improve the electronic properties. alpha-Fe2O3 films with the Al dopant atomic concentration varying from 0 to 10%, were prepared by electrodeposition, and their performance for photoelectrochemical hydrogen production was characterized. Results indicate that the incident photon conversion efficiency (IPCE) for similar to 0.45 at-% Al substitution increases by 2- to 3-fold over undoped samples. Density-functional theory (DFT) was Utilized to interpret the experimental findings. It wits shown that although no substantial change to the electronic structure, it contraction of the crystal lattice due to the isovalent replacement of Fe3+ by an Al3+ benefits the small polaron migration, resulting ill an improvement in conductivity compared to the undoped samples. C1 [Kleiman-Shwarsctein, Alan; Hu, Yong-Sheng; McFarland, Eric W.] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA. [Kleiman-Shwarsctein, Alan; Stucky, Galen D.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. [Stucky, Galen D.] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA. [Hu, Yong-Sheng] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China. [Huda, Muhammad N.; Walsh, Aron; Yan, Yanfa; Al-Jassim, Mowafak M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Hu, YS (reprint author), Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA. EM yshu@aphy.iphy.ac.cn; mcfar@engineering.ucsb.edu RI Walsh, Aron/A-7843-2008; Huda, Muhammad/C-1193-2008; McFarland, Eric/G-1763-2014; Hu, Yong-Sheng/H-1177-2011 OI Walsh, Aron/0000-0001-5460-7033; Huda, Muhammad/0000-0002-2655-498X; Hu, Yong-Sheng/0000-0002-8430-6474 NR 57 TC 103 Z9 104 U1 6 U2 115 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD JAN 26 PY 2010 VL 22 IS 2 BP 510 EP 517 DI 10.1021/cm903135j PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 543LZ UT WOS:000273580700031 ER PT J AU Akcora, P Kumar, SK Moll, J Lewis, S Schadler, LS Li, Y Benicewicz, BC Sandy, A Narayanan, S Illavsky, J Thiyagarajan, P Colby, RH Douglas, JF AF Akcora, Pinar Kumar, Sanat K. Moll, Joseph Lewis, Sarah Schadler, Linda S. Li, Yu Benicewicz, Brian C. Sandy, Alec Narayanan, Suresh Illavsky, Jan Thiyagarajan, Pappannan Colby, Ralph H. Douglas, Jack F. TI "Gel-like" Mechanical Reinforcement in Polymer Nanocomposite Melts SO MACROMOLECULES LA English DT Article ID NONLINEAR VISCOELASTIC BEHAVIOR; DYNAMICAL LIGHT-SCATTERING; SHORT-FIBER COMPOSITES; SOFT GLASSY GELS; THERMOELASTIC PROPERTIES; NANOPARTICLE DISPERSION; GRAFTED NANOPARTICLES; ELASTOMERS; RHEOLOGY; STRATEGIES AB We critically explore the role of particle dispersion oil the melt state mechanical properties of nanocomposites formed by mixing polystyrene homopolymers with polystyrene grafted silica nanoparticles. We selected this system since we previously showed that nanoparticle spatial distribution can be controlled through judicious choices of the brush and matrix parameters. Here we focus oil the temporal evolution of the nanoparticle self-assembly dispersion state and its effect on mechanical reinforcement using rheology, electron microscopy, and the measurement of nanoscale particle dynamics using X-ray photon correlation spectroscopy. Nanoscale and macroscopic experiments show that it composite with percolating sheets of particles displays "gel-like" or solid-like mechanical behavior at lower particle loadings than one with uniform particle dispersion. This conclusion allows us to conjecture that mechanical reinforcement is primarily controlled by interparticle interactions (including those facilitated by the grafted chains) and that the matrix plays a relatively minor role. This statement has far-reaching consequences oil the design of polymer nanocomposites with desired properties. C1 [Akcora, Pinar; Kumar, Sanat K.] Columbia Univ, Dept Chem Engn, New York, NY 10027 USA. [Moll, Joseph] Columbia Univ, Dept Chem, New York, NY 10027 USA. [Lewis, Sarah; Schadler, Linda S.] Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY USA. [Li, Yu; Benicewicz, Brian C.] Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA. [Sandy, Alec; Narayanan, Suresh; Illavsky, Jan; Thiyagarajan, Pappannan] Argonne Natl Lab, Argonne, IL 60439 USA. [Colby, Ralph H.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Douglas, Jack F.] Natl Inst Stand & Technol, Div Polymers, Gaithersburg, MD 20899 USA. RP Kumar, SK (reprint author), Columbia Univ, Dept Chem Engn, New York, NY 10027 USA. RI Li, Yu/A-3565-2011; Ilavsky, Jan/D-4521-2013; USAXS, APS/D-4198-2013; OI Ilavsky, Jan/0000-0003-1982-8900; Benicewicz, Brian/0000-0003-4130-1232 FU National Science Foundation Division of Materials Research [DMR-0804647]; Nanoscale Science and Engineering Initiative of the National Science Foundation [DMR-0642573]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02paq-06CH11357] FX Partial funding for this research was provided by the National Science Foundation Division of Materials Research (S.K., P.A., NSF DMR-0804647) and through the Nanoscale Science and Engineering Initiative of the National Science Foundation under NSF DMR-0642573 at RPi (S.K., S.L., L.S.S., B.B.). Use of the Advanced Photon Source and I PNS was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02paq-06CH11357. We thank Dr. Luca Cipelletti for useful discussions on XPCS. NR 42 TC 68 Z9 69 U1 17 U2 98 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD JAN 26 PY 2010 VL 43 IS 2 BP 1003 EP 1010 DI 10.1021/ma902072d PG 8 WC Polymer Science SC Polymer Science GA 543YQ UT WOS:000273618100053 ER PT J AU Zuo, XB Wang, JB Yu, P Eyler, D Xu, H Starich, MR Tiede, DM Simon, AE Kasprzak, W Schwieters, CD Shapiro, BA Wang, YX AF Zuo, Xiaobing Wang, Jinbu Yu, Ping Eyler, Dan Xu, Huan Starich, Mary R. Tiede, David M. Simon, Anne E. Kasprzak, Wojciech Schwieters, Charles D. Shapiro, Bruce A. Wang, Yun-Xing TI Solution structure of the cap-independent translational enhancer and ribosome-binding element in the 3 ' UTR of turnip crinkle virus SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE new method; NMR; SAXS; 3 ' UTR RNA; RNA structure ID MINUS-STRAND SYNTHESIS; PLANT VIRAL RNAS; MESSENGER-RNA; GROUP-I; INITIATION; REPLICATION; PSEUDOKNOT; SCATTERING; RIBOZYME; SUBUNIT AB The 3' untranslated region (3' UTR) of turnip crinkle virus (TCV) genomic RNA contains a cap-independent translation element (CITE), which includes a ribosome-binding structural element (RBSE) that participates in recruitment of the large ribosomal subunit. In addition, a large symmetric loop in the RBSE plays a key role in coordinating the incompatible processes of viral translation and replication, which require enzyme progression in opposite directions on the viral template. To understand the structural basis for the large ribosomal subunit recruitment and the intricate interplay among different parts of the molecule, we determined the global structure of the 102-nt RBSE RNA using solution NMR and small-angle x-ray scattering. This RNA has many structural features that resemble those of a tRNA in solution. The hairpins H1 and H2, linked by a 7-nucleotide linker, form the upper part of RBSE and hairpin H3 is relatively independent from the rest of the structure and is accessible to interactions. This global structure provides insights into the three-dimensional layout for ribosome binding, which may serve as a structural basis for its involvement in recruitment of the large ribosomal subunit and the switch between viral translation and replication. The experimentally determined three-dimensional structure of a functional element in the 3' UTR of an RNA from any organism has not been previously reported. The RBSE structure represents a prototype structure of a new class of RNA structural elements involved in viral translation/replication processes. C1 [Zuo, Xiaobing; Wang, Jinbu; Yu, Ping; Xu, Huan; Wang, Yun-Xing] NCI, Prot Nucle Acid Interact Sect, Struct Biophys Lab, NIH, Frederick, MD 21702 USA. [Yu, Ping; Kasprzak, Wojciech] NCI, Basic Sci Program, SAIC Frederick Inc, Frederick, MD 21702 USA. [Eyler, Dan] Johns Hopkins Univ, Sch Med, Dept Mol Biol & Genet, Baltimore, MD 21205 USA. [Starich, Mary R.] NCI, Off Chief, Struct Biophys Lab, NIH, Frederick, MD 21702 USA. [Tiede, David M.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Simon, Anne E.] Univ Maryland, Dept Cell Biol & Mol Genet, College Pk, MD 20742 USA. [Schwieters, Charles D.] NIH, Div Computat Biosci, Ctr Informat Technol, Bethesda, MD 20892 USA. [Shapiro, Bruce A.] NCI, Ctr Canc Res, Nanobiol Program, NIH, Frederick, MD 21702 USA. RP Wang, YX (reprint author), NCI, Prot Nucle Acid Interact Sect, Struct Biophys Lab, NIH, Frederick, MD 21702 USA. EM wangyunx@mail.nih.gov RI Zuo, Xiaobing/F-1469-2010; ID, BioCAT/D-2459-2012; Simon, Anne/B-8713-2014 FU National Institutes of Health (NIH) [RR-08630]; National Cancer Institute; Center for Cancer Research; CIT Intramural Research Program; U.S. Public Health Service [GM 061515-05A2/G120CD]; National Cancer Institute, NIH [HHSN261200800001E]; Office of Basic Energy Sciences, Department of Energy [DE-AC02-06CH11357, W-31-109-ENG-38] FX We thank Professors R. Green and Samuel E. Butcher for helpful discussions. We thank Drs. L. Guo (BioCAT, sector 18-ID) and S. Seifert (BESSRC, sector 12-ID) at Argonne National Laboratory for their support for synchrotron experiments. This research was supported (in part) by the Intramural Research Program of the National Institutes of Health (NIH), National Cancer Institute, Center for Cancer Research to B. A. S. and Y-X.W.; by the Intramural Research Program of the NIH, the CIT Intramural Research Program to C. D. S, and U.S. Public Health Service (GM 061515-05A2/G120CD) to A.E.S.. This publication has been funded in whole or in part with federal funds from the National Cancer Institute, NIH, under grant HHSN261200800001E to W. K. and P.Y. Work at Argonne National Laboratory (DMT) and the Advanced Photon Source was supported by the Office of Basic Energy Sciences, Department of Energy under contract DE-AC02-06CH11357. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science, under contract No. W-31-109-ENG-38. BioCAT is a National Institutes of Health-supported Research Center RR-08630. NR 35 TC 50 Z9 51 U1 1 U2 6 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JAN 26 PY 2010 VL 107 IS 4 BP 1385 EP 1390 DI 10.1073/pnas.0908140107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 548OQ UT WOS:000273974600030 PM 20080629 ER PT J AU Benveniste, H Fowler, JS Rooney, WD Scharf, BA Backus, WW Izrailtyan, I Knudsen, GM Hasselbalch, SG Volkow, ND AF Benveniste, Helene Fowler, Joanna S. Rooney, William D. Scharf, Bruce A. Backus, W. Walter Izrailtyan, Igor Knudsen, Gitte M. Hasselbalch, Steen G. Volkow, Nora D. TI Cocaine is pharmacologically active in the nonhuman primate fetal brain SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE brain function; in vivo; pregnancy; imaging; in utero ID CEREBRAL GLUCOSE-UTILIZATION; POSITRON EMISSION TOMOGRAPHY; DOPAMINE TRANSPORTER; NORMAL VALUES; MONKEY BRAIN; COMBINED PET; IN-VIVO; METABOLISM; HUMANS; RAT AB Cocaine use during pregnancy is deleterious to the newborn child, in part via its disruption of placental blood flow. However, the extent to which cocaine can affect the function of the fetal primate brain is still an unresolved question. Here we used PET and MRI and show that in third-trimester pregnant nonhuman primates, cocaine at doses typically used by drug abusers significantly increased brain glucose metabolism to the same extent in the mother as in the fetus (similar to 100%). Inasmuch as brain glucose metabolism is a sensitive marker of brain function, the current findings provide evidence that cocaine use by a pregnant mother will also affect the function of the fetal brain. We are also unique in showing that cocaine's effects in brain glucose metabolism differed in pregnant (increased) and nonpregnant (decreased) animals, which suggests that the psychoactive effects of cocaine are influenced by the state of pregnancy. Our findings have clinical implications because they imply that the adverse effects of prenatal cocaine exposure to the newborn child include not only cocaine's deleterious effects to the placental circulation, but also cocaine's direct pharmacological effect to the developing fetal brain. C1 [Benveniste, Helene] SUNY Stony Brook, Hlth Sci Ctr, Dept Anesthesiol, Level 4, Stony Brook, NY 11794 USA. [Fowler, Joanna S.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Rooney, William D.] Oregon Hlth & Sci Univ, Adv Imaging Res Ctr, Portland, OR 97201 USA. [Scharf, Bruce A.] Univ Med & Dent New Jersey, Res Off, Newark, NJ 07101 USA. [Knudsen, Gitte M.; Hasselbalch, Steen G.] Univ Copenhagen, Rigshosp, Neurobiol Res Unit, DK-2100 Copenhagen, Denmark. [Volkow, Nora D.] NIAAA, Bethesda, MD 20892 USA. RP Benveniste, H (reprint author), SUNY Stony Brook, Hlth Sci Ctr, Dept Anesthesiol, Level 4, Stony Brook, NY 11794 USA. EM Benve-niste@bnl.gov RI Knudsen, Gitte/C-1368-2013; Izrailtyan, Igor/G-8192-2016 OI Knudsen, Gitte/0000-0003-1508-6866; Izrailtyan, Igor/0000-0003-1216-3467 FU Department of Energy Office of Biological and Environmental Research [DE-AC02-98CH10886]; National Institutes of Health; New York State Office of Science, Technology and Academic Research FX We thank Donald Warner and David Alexoff for assistance with the PET scan acquisitions; Pauline Carter, Payton King, and Barbara Hubbard for help with the preparation, anesthesia, and imaging of the nonhuman primates; and Dr. L. Rosenblum for allowing us access to pregnant M. radiata from the Primate Laboratory at State University of New York Downstate. This research was supported by Department of Energy Office of Biological and Environmental Research (Brookhaven National Laboratory Contract DE-AC02-98CH10886), National Institutes of Health, and New York State Office of Science, Technology and Academic Research. NR 41 TC 6 Z9 6 U1 0 U2 3 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JAN 26 PY 2010 VL 107 IS 4 BP 1582 EP 1587 DI 10.1073/pnas.0909585107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 548OQ UT WOS:000273974600064 PM 20080687 ER PT J AU Chen, YCK Chu, YS Yi, J McNulty, I Shen, Q Voorhees, PW Dunand, DC AF Chen, Yu-chen Karen Chu, Yong S. Yi, JaeMock McNulty, Ian Shen, Qun Voorhees, Peter W. Dunand, David C. TI Morphological and topological analysis of coarsened nanoporous gold by x-ray nanotomography SO APPLIED PHYSICS LETTERS LA English DT Article DE computerised tomography; diffusion; gold alloys; nanoporous materials; phase separation; silver alloys; X-ray microscopy ID MICROSTRUCTURAL EVOLUTION; DENDRITIC MICROSTRUCTURES; TOMOGRAPHY AB We used x-ray nanotomography to characterize the three-dimensional (3D) morphology and topology of dealloyed nanoporous gold after coarsening. The interface shape distribution obtained from the nanotomography measurement shows that the coarsening does not proceed by bulk diffusion. The surface normal distribution shows that the morphology of the nanoporous gold is anisotropic. The topology of nanoporous gold is similar to that of other bicontinuous structures created by phase separation, despite the radically different method used to produce the structures. This work opens the door to time-resolved, in situ studies of coarsening of nanoporous gold in 3D. C1 [Chen, Yu-chen Karen; Voorhees, Peter W.; Dunand, David C.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Chen, Yu-chen Karen; Yi, JaeMock; McNulty, Ian] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Chu, Yong S.; Shen, Qun] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. RP Chen, YCK (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. EM yuchenchen2010@u.northwestern.edu RI Voorhees, Peter /B-6700-2009; Dunand, David/B-7515-2009; OI Dunand, David/0000-0001-5476-7379 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We acknowledge Ms. Marie Cox, Mr. Ben Myers, and Dr. Xuexi Zhang (Northwestern University) for assistance with sample preparation. Dr. Wenjun Liu conducted the Laue diffraction at APS beamline 34-ID-E. Alix Deymier (NU) helped with the TXM measurements. Data analysis was assisted by Dr. Dimitris Kammer, Julie Fifth and Larry Aagesen (NU). We thank Dr. Yeukuang Hwu of Academia Sinica for developing the TXM capability at the APS through Partner User Proposal 64 and making it available for general users. Use of the Advanced Photon Source is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 18 TC 31 Z9 32 U1 2 U2 45 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JAN 25 PY 2010 VL 96 IS 4 AR 043122 DI 10.1063/1.3285175 PG 3 WC Physics, Applied SC Physics GA 551BH UT WOS:000274179900082 ER PT J AU Graham, RL Alers, GB Mountsier, T Shamma, N Dhuey, S Cabrini, S Geiss, RH Read, DT Peddeti, S AF Graham, R. L. Alers, G. B. Mountsier, T. Shamma, N. Dhuey, S. Cabrini, S. Geiss, R. H. Read, D. T. Peddeti, S. TI Resistivity dominated by surface scattering in sub-50 nm Cu wires SO APPLIED PHYSICS LETTERS LA English DT Article DE copper; electrical resistivity; electron backscattering; electron beam lithography; electron diffraction; electron mean free path; grain boundaries; interconnections; masks; nanolithography; nanowires; surface roughness; surface scattering ID IMPURITY INCORPORATION; COPPER; INTERCONNECTS; TRANSPORT; REGIME; FILMS AB Electron scattering mechanisms in copper lines were investigated to understand the extendibility of copper interconnects when linewidth or thickness is less than the mean free path. Electron-beam lithography and a dual hard mask were used to produce interconnects with linewidths between 25 and 45 nm. Electron backscatter diffraction characterized grain structure. Temperature dependence of the line resistance determined resistivity, which was consistent with existing models for completely diffused surface scattering and line-edge roughness, with little contribution from grain boundary scattering. A simple analytical model was developed that describes resistivity from diffuse surface scattering and line-edge roughness. C1 [Graham, R. L.; Alers, G. B.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Mountsier, T.; Shamma, N.] Novellus Syst, San Jose, CA 95134 USA. [Dhuey, S.; Cabrini, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94710 USA. [Geiss, R. H.; Read, D. T.] Natl Inst Stand & Technol, Boulder, CO 80305 USA. [Peddeti, S.] Clarkson Univ, Dept Chem & Biomol Engn, Potsdam, NY 13676 USA. RP Graham, RL (reprint author), Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. EM galers@ucsc.edu FU Office of Science; Office of Basic Energy Sciences; U.S. Department of Energy [DE-AC02-05CH11231]; NIST [2004-012] FX Portions of this work were performed at the Molecular Foundry, Lawrence Berkeley National Laboratory, which is supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Portions of this work were supported by the NIST Office of Microelectronics Programs under Project No. 2004-012. NR 20 TC 50 Z9 51 U1 1 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JAN 25 PY 2010 VL 96 IS 4 AR 042116 DI 10.1063/1.3292022 PG 3 WC Physics, Applied SC Physics GA 551BH UT WOS:000274179900047 ER PT J AU Hopkins, PE AF Hopkins, Patrick E. TI Thermoreflectance dependence on Fermi surface electron number density perturbations SO APPLIED PHYSICS LETTERS LA English DT Article DE Fermi level; Fermi surface; photoexcitation; surface scattering; thermoreflectance ID NONEQUILIBRIUM ELECTRON; TEMPERATURE MEASUREMENT; INTERBAND-TRANSITIONS; PARAMAGNETIC CR; FILMS; GOLD; DYNAMICS; LATTICE; METALS; SUPERCONDUCTORS AB The effects of an optical excitation on the thermoreflectance spectra of a solid are studied. A photonic excitation with sufficient energy will cause a perturbation in the electron number density around the Fermi surface. As the number density changes, so do the plasma frequency and carrier scattering rates, creating a change in the thermoreflectance response. Not accounting for the appropriate electron number density around the Fermi level after an optical excitation leads to an underestimate of electron scattering rates. C1 Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87123 USA. RP Hopkins, PE (reprint author), Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87123 USA. EM pehopki@sandia.gov FU LDRD program office through the Sandia National Laboratories Harry S. Truman Fellowship; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX I am grateful for funding from the LDRD program office through the Sandia National Laboratories Harry S. Truman Fellowship. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 45 TC 6 Z9 6 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JAN 25 PY 2010 VL 96 IS 4 AR 041901 DI 10.1063/1.3292212 PG 3 WC Physics, Applied SC Physics GA 551BH UT WOS:000274179900018 ER PT J AU Lee, JS Vescovo, E Arena, DA Kao, CC Beaujour, JM Kent, AD Jang, H Park, JH Kim, JY AF Lee, J. -S. Vescovo, E. Arena, D. A. Kao, C. -C. Beaujour, J. -M. Kent, A. D. Jang, H. Park, J. -H. Kim, J. -Y. TI Longitudinal and transverse magnetization components in thin films: A resonant magnetic reflectivity investigation using circularly polarized soft x-rays SO APPLIED PHYSICS LETTERS LA English DT Article DE cobalt; cobalt alloys; magnetic hysteresis; magnetic thin films; metallic thin films; polarisation ID SCATTERING; REVERSAL AB An in-plane vectorial analysis of the magnetization of thin magnetic films is presented. Longitudinal soft x-ray resonant magnetic reflectivity curves display characteristic nodes where the longitudinal scattering component is suppressed by x-ray interference. The transverse magnetic component can be effectively retrieved at these nodal points, despite the use of circular polarization and longitudinal scattering geometry. Using a single geometric configuration, transverse and longitudinal magnetic hysteresis loops can be clearly separated. Calculations based on a Stoner-Wohlfarth model satisfactorily describe both loops. Therefore, this method presents a viable alternative to standard vectorial analysis techniques, with the additional benefit of element specificity. C1 [Lee, J. -S.; Vescovo, E.; Arena, D. A.; Kao, C. -C.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Beaujour, J. -M.; Kent, A. D.] NYU, Dept Phys, New York, NY 10003 USA. [Jang, H.; Park, J. -H.] Pohang Univ Sci & Technol, Dept Phys, Pohang 790784, South Korea. [Park, J. -H.] Pohang Univ Sci & Technol, Div Adv Mat Sci, Pohang 790784, South Korea. [Kim, J. -Y.] Pohang Univ Sci & Technol, Pohang Accelerator Lab, Pohang 790784, South Korea. RP Lee, JS (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. EM jslee@bnl.gov FU U. S. DOE; Office of Science; Office of Basic Energy Sciences [DE-AC02-98CH10886]; National Science Foundation [NSF-DMR-0706322]; KRF [KRF-2006-312-C00523]; KOSEF [R31-2008-000-10059-0]; POSTECH; MOST FX We gratefully acknowledge Dr. E. Negusse for technical assistance. NSLS, Brookhaven National Laboratory, is supported by the U. S. DOE, Office of Science, Office of Basic Energy Sciences, under Grant No. DE-AC02-98CH10886. NYU is supported by National Science Foundation under Grant No. NSF-DMR-0706322. POSTECH is supported by KRF under Grant No. KRF-2006-312-C00523 and by WCU through KOSEF under Grant No. R31-2008-000-10059-0. PAL is supported by POSTECH and MOST. NR 22 TC 4 Z9 4 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JAN 25 PY 2010 VL 96 IS 4 AR 042507 DI 10.1063/1.3292207 PG 3 WC Physics, Applied SC Physics GA 551BH UT WOS:000274179900054 ER PT J AU Wu, SQ Wang, CZ Zhu, ZZ Ho, KM AF Wu, S. Q. Wang, C. Z. Zhu, Z. Z. Ho, K. M. TI Structural and dynamical heterogeneity in molten Si-rich oxides SO APPLIED PHYSICS LETTERS LA English DT Article DE ab initio calculations; aggregates (materials); liquid structure; molecular dynamics method; segregation; silicon compounds ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; SILICON-OXIDE; MOLECULAR-DYNAMICS; PHASE-SEPARATION; VITREOUS SIO2; BASIS-SET; NANOWIRES; MODEL; MELT AB Ab initio molecular dynamics simulations are performed to study the structural and dynamical properties of molten Si oxides. Segregation of SiOy (y < 2) and pure Si network are clearly observed in the Si-rich oxide liquids. The size of Si-aggregate regions increases with increasing Si composition. The dynamical properties of the Si atoms with different local environments are different due to the "oxygen slowing-down" effect. This structural and dynamical heterogeneity is consistent with previous experimental studies, and provides useful insight into the role of the Si oxide shell in the oxide-assisted growth of Si nanowires. C1 [Wu, S. Q.; Wang, C. Z.; Ho, K. M.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Wu, S. Q.; Zhu, Z. Z.] Xiamen Univ, Dept Phys, Xiamen 361005, Peoples R China. [Wu, S. Q.; Zhu, Z. Z.] Xiamen Univ, Inst Theoret Phys & Astrophys, Xiamen 361005, Peoples R China. RP Wu, SQ (reprint author), Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. EM wangcz@ameslab.gov RI Zhu, ZZ/G-4126-2010; Wu, S.Q./G-3992-2010 OI Wu, S.Q./0000-0002-2545-0054 FU U.S. Department of Energy, Basic Energy Sciences; National Energy Research Supercomputing Centre (NERSC) in Berkeley [DE-AC02-07CH11358]; NNSF of China [10774124]; China Scholarship Council FX Work at Ames Laboratory was supported by the U.S. Department of Energy, Basic Energy Sciences, including a grant of computer time at the National Energy Research Supercomputing Centre (NERSC) in Berkeley, under Contract No. DE-AC02-07CH11358. This work was also partially supported by the NNSF of China under Grant No. 10774124. S.Q. W. also acknowledges fellowship support from the China Scholarship Council. NR 29 TC 5 Z9 5 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JAN 25 PY 2010 VL 96 IS 4 AR 043121 DI 10.1063/1.3298555 PG 3 WC Physics, Applied SC Physics GA 551BH UT WOS:000274179900081 ER PT J AU Saylor, RK Miller, DL Vandersea, MW Bevelhimer, MS Schofield, PJ Bennett, WA AF Saylor, Ryan K. Miller, Debra L. Vandersea, Mark W. Bevelhimer, Mark S. Schofield, Pamela J. Bennett, Wayne A. TI Epizootic ulcerative syndrome caused by Aphanomyces invadans in captive bullseye snakehead Channa marulius collected from south Florida, USA SO DISEASES OF AQUATIC ORGANISMS LA English DT Article DE Epizootic ulcerative syndrome; Mycotic dermatitis; Mycotic myositis; Non-native fish species; Oomycete; Water mold ID ATLANTIC MENHADEN; UNITED-STATES; FISH; MYCOSIS; PATHOGENICITY; DISEASE; ESTUARINE; LESIONS; FUNGI AB Epizootic ulcerative syndrome (EUS) caused by the oomycete Aphanomyces invadans is an invasive, opportunistic disease of both freshwater and estuarine fishes. Originally documented as the cause of mycotic granulomatosis of ornamental fishes in Japan and as the cause of EUS of fishes in southeast Asia and Australia, this pathogen is also present in estuaries and freshwater bodies of the Atlantic and gulf coasts of the USA. We describe a mass mortality event of 343 captive juvenile bulls-eye snakehead Channa marulius collected from freshwater canals in Miami-Dade County, Florida. Clinical signs appeared within the first 2 d of captivity and included petechiae, ulceration, erratic swimming, and inappetence. Histological examination revealed hyphae invading from the skin lesions deep into the musculature and internal organs. Species identification was confirmed using a species-specific PCR assay. Despite therapeutic attempts, 100%, mortality occurred. This represents the first documented case of EUS in bullseye snakehead fish collected from waters in the USA. Future investigation of the distribution and prevalence of A. invadans within the bullseye snakehead range in south Florida may give insight into this pathogen-host system. C1 [Miller, Debra L.] Univ Georgia, Vet Diagnost & Invest Lab, Tifton, GA 31793 USA. [Saylor, Ryan K.; Bennett, Wayne A.] Univ W Florida, Dept Biol, Pensacola, FL 32514 USA. [Vandersea, Mark W.] NOAA, Natl Ocean Serv, Beaufort, NC 28516 USA. [Bevelhimer, Mark S.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Schofield, Pamela J.] US Geol Survey, Gainesville, FL 32653 USA. RP Miller, DL (reprint author), Univ Georgia, Vet Diagnost & Invest Lab, 43 Brighton Rd, Tifton, GA 31793 USA. EM millerdl@uga.edu OI Miller, Debra/0000-0002-8544-174X FU Department of Biology and Research [164053, 2008-003] FX We thank P. L. Shafland and the electrofishing crew of the Florida Fish and Wildlife Conservation Commission, Non-native Species Research Laboratory, in Boca Raton, Florida, for collection of and information on juvenile bullseye snakeheads (FWC Permit # ESC Possession 0814). We also thank the Department of Biology and Research and Sponsored Programs for supporting and funding (Grant #164053; IACUC #2008-003) research on bullseye snakehead as well as their transport from south Florida, Finally, we thank the staff of the University of Georgia Veterinary Diagnostic and Investigational Laboratory for help in sample processing, especially D, Rousey, K, Bridges, and M. Gandy. Use of trade or product names does not imply endorsement by the US Government. NR 30 TC 10 Z9 11 U1 1 U2 18 PU INTER-RESEARCH PI OLDENDORF LUHE PA NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY SN 0177-5103 J9 DIS AQUAT ORGAN JI Dis. Aquat. Org. PD JAN 25 PY 2010 VL 88 IS 2 BP 169 EP 175 DI 10.3354/dao02158 PG 7 WC Fisheries; Veterinary Sciences SC Fisheries; Veterinary Sciences GA 557DG UT WOS:000274648400009 PM 20225678 ER PT J AU Soni, A Alok, AK Giri, A Mohanta, R Nandi, S AF Soni, Amarjit Alok, Ashutosh Kumar Giri, Anjan Mohanta, Rukmani Nandi, Soumitra TI The fourth family: A simple explanation for the observed pattern of anomalies in B-CP asymmetries SO PHYSICS LETTERS B LA English DT Article ID HEAVY TOP-QUARK; LEADING LOGARITHMS; QCD FACTORIZATION; RARE DECAYS; VIOLATION; GENERATIONS; MASS; LEPTONS; PHYSICS; ENERGY AB We show that a fourth family of quarks with m(t), in the range of (400-600) GeV provides a rather simple explanation for the several indications of new physics that have been observed involving CP asymmetries of the b-quark. The built-in hierarchy of the 4 x 4 mixing matrix is such that the t' readily provides a needed perturbation (approximate to 15%) to sin2 beta as measured in B -> psi Ks and simultaneously is the dominant Source of CP asymmetry in B-s -> psi phi. The correlation between CP asymmetries in B-s -> psi phi and B -> psi Ks suggests m(t)' approximate to (400-600) GeV. Such heavy masses point to the tantalizing possibility that the 4th family plays an important role in the electroweak symmetry breaking. (C) 2009 Elsevier B.V. All rights reserved. C1 [Soni, Amarjit] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alok, Ashutosh Kumar] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Giri, Anjan] Panjab Univ, Dept Phys, Patiala 147002, Punjab, India. [Giri, Anjan] Indian Inst Technol Hyderabad, Dept Phys, Hyderabad 502205, Andhra Pradesh, India. [Mohanta, Rukmani] Univ Hyderabad, Sch Phys, Hyderabad 500046, Andhra Pradesh, India. [Nandi, Soumitra] Harish Chandra Res Inst, Allahabad 211019, Uttar Pradesh, India. [Nandi, Soumitra] Univ Turin, Dipartimento Fis Teor, I-10125 Turin, Italy. [Nandi, Soumitra] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. RP Soni, A (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM soni@bnl.gov NR 62 TC 88 Z9 88 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD JAN 25 PY 2010 VL 683 IS 4-5 BP 302 EP 305 DI 10.1016/j.physletb.2009.12.048 PG 4 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 555IM UT WOS:000274502900012 ER PT J AU Anchordoqui, LA Goldberg, H Hooper, D Marfatia, D Taylor, TR AF Anchordoqui, Luis A. Goldberg, Haim Hooper, Dan Marfatia, Danny Taylor, Tomasz R. TI Neutralino dark matter annihilation to monoenergetic gamma rays as a signal of low mass superstrings SO PHYSICS LETTERS B LA English DT Article ID TOPOLOGICAL AMPLITUDES; 2 PHOTONS; SUPERSYMMETRY AB We consider extensions of the standard model based on open strings ending on D-branes, in which gauge bosons and their associated gauginos exist as strings attached to stacks of D-branes, and chiral matter exists as strings stretching between intersecting D-branes. Under the assumptions that the fundamental string scale is in the TeV range and the theory is weakly coupled, we study models of supersymmetry for which signals of annihilating neutralino dark matter are observable. In particular, we construct a model with a supersymmetric R-symmetry violating (but R-parity conserving) effective Lagrangian that allows for the s-wave annihilation of neutralinos, once gauginos acquire mass through an unspecified mechanism. The model yields bino-like neutralinos (with the measured relic abundance) that annihilate to a gamma gamma final state with a substantial branching fraction (similar to 10%) that is orders of magnitude larger than in the minimal supersymmetric standard model. A very bright gamma-ray spectral line could be observed by gamma-ray telescopes. (C) 2009 Elsevier B.V. All rights reserved. C1 [Anchordoqui, Luis A.] Univ Wisconsin, Dept Phys, Milwaukee, WI 53201 USA. [Goldberg, Haim; Taylor, Tomasz R.] Northeastern Univ, Dept Phys, Boston, MA 02115 USA. [Hooper, Dan] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Hooper, Dan] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Marfatia, Danny] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Taylor, Tomasz R.] CERN, Div Theory, Dept Phys, CH-1211 Geneva 23, Switzerland. RP Anchordoqui, LA (reprint author), Univ Wisconsin, Dept Phys, Milwaukee, WI 53201 USA. EM anchordo@uwm.edu FU DoE; NASA; NSF FX We thank Ignatios Antoniadis and Dan Feldman for useful discussions. H.G. and D.M. thank the Aspen Center for Physics for hospitality. This research was supported by the DoE, NASA, and NSF. NR 23 TC 3 Z9 3 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD JAN 25 PY 2010 VL 683 IS 4-5 BP 321 EP 325 DI 10.1016/j.physletb.2009.12.037 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 555IM UT WOS:000274502900015 ER PT J AU Watson, HC Roberts, JJ Tyburczy, JA AF Watson, Heather C. Roberts, Jeffery J. Tyburczy, James A. TI Effect of conductive impurities on electrical conductivity in polycrystalline olivine SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID EARTHS MANTLE; CORE FORMATION; ROCKS; PERIDOTITE; PRESSURE; CARBON; WATER; MELT AB Bulk electrical conductivity and impedance spectroscopy of single crystal and polycrystalline San Carlos olivine with carbon or iron sulfide impurities on grain boundaries were measured at 1GPa and 350 degrees C-1200 degrees C in a piston cylinder apparatus. The addition of 0.1 wt% (similar to 0.16 vol%) C causes series-type grain boundary impedance in the samples that slightly decreases the bulk conductivity of the system. In contrast, the addition of 1.0 vol% sulfide results in conductivity much higher than plain olivine, but still lower than that of a fully interconnected sulfide phase. The sulfide is partially connected on the grain boundaries and edges and has reached the electrical percolation threshold. The effect adding sulfide is similar to the effect of adding 0.01%-0.1% H to olivine. It may not always be necessary to have hydrogen or connected melt or fluid to account for anomalously high conductivity in some parts of the mantle or crust. Citation: Watson, H. C., J. J. Roberts, and J. A. Tyburczy (2010), Effect of conductive impurities on electrical conductivity in polycrystalline olivine, Geophys. Res. Lett., 37, L02302, doi:10.1029/2009GL041566. C1 [Watson, Heather C.; Roberts, Jeffery J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Tyburczy, James A.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. RP Watson, HC (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM watson40@llnl.gov OI Watson, Heather/0000-0003-4307-6518 FU Office of Basic Energy Sciences, Geosciences; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We thank four reviewers for their constructive comments. This research was supported by the Office of Basic Energy Sciences, Geosciences. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 23 TC 31 Z9 31 U1 0 U2 22 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JAN 23 PY 2010 VL 37 AR L02302 DI 10.1029/2009GL041566 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 547OJ UT WOS:000273898600001 ER PT J AU Tollstrup, D Gill, J Kent, A Prinkey, D Williams, R Tamura, Y Ishizuka, O AF Tollstrup, Darren Gill, Jim Kent, Adam Prinkey, Debra Williams, Ross Tamura, Yoshihiko Ishizuka, Osamu TI Across-arc geochemical trends in the Izu-Bonin arc: Contributions from the subducting slab, revisited SO GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS LA English DT Article DE Izu-Bonin arc; back-arc basalts; petrogenesis; hafnium isotopes; high-precision Pb isotopes; major and trace element geochemistry ID BACK-ARC; PHILIPPINE SEA; MARIANA ARC; ISLAND-ARC; AQUEOUS FLUID; OGASAWARA ARC; MANTLE METASOMATISM; TRACE-ELEMENTS; OCEANIC-CRUST; SUMISU RIFT AB New Sr, Nd, Hf, and Pb isotope and trace element data are presented for basalts erupted in the Izu back arc. We propose that across-arc differences in the geochemistry of Izu-Bonin arc basalts are controlled by the addition of aqueous slab fluids to the volcanic front and hydrous partial melt of the slab to the back arc. The volcanic front has the lowest concentrations of incompatible elements, the strongest relative enrichments of fluid-mobile elements, and the most radiogenic Sr, Nd, Hf, and Pb, suggesting the volcanic front is the result of high degrees of partial melting of a previously depleted mantle source caused by an aqueous fluid flux from the slab. Relative to the volcanic front, the back arc has higher concentrations of incompatible elements and elevated La/Yb and Nb/Zr, suggesting lower degrees of partial melting of a less depleted or even enriched mantle source. Positive linear correlations between fluid-immobile element concentrations and the estimated degree of mantle melting suggest the slab contribution added to the mantle wedge in the Izu back arc is a supercritical melt. Pb, Nd, and Hf isotopes and Th/La systematics of back-arc basalts are consistent with a slab melt composed of >90% altered oceanic crust and <10% sediment; that is, altered oceanic crust, not subducted sediment, dominates the slab contribution. High field strength element systematics require supercritical melts to be in equilibrium with residual rutile and zircon. C1 [Tollstrup, Darren; Gill, Jim; Prinkey, Debra] Univ Calif Santa Cruz, Dept Geol, Santa Cruz, CA 95064 USA. [Kent, Adam] Oregon State Univ, Dept Geosci, Corvallis, OR 97330 USA. [Williams, Ross] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Tamura, Yoshihiko] Japan Agcy Marine Earth Sci & Technol, Inst Res Earth Evolut, Kanazawa Ku, Yokohama, Kanagawa 23609991, Japan. [Ishizuka, Osamu] AIST, Geol Survey Japan, Inst Geosci & Geoinformat, Tsukuba, Ibaraki 3058567, Japan. RP Tollstrup, D (reprint author), Univ Calif Santa Cruz, Dept Geol, 1156 High St, Santa Cruz, CA 95064 USA. EM dtollstrup@es.ucsc.edu FU NSF MARGINS [OCE-0325189, OCE-0305755] FX We thank A. Hochstaedter for his previous contributions to this work, Terry Plank for sharing data and ideas, and D. Sampson and R. Franks for their invaluable assistance and guidance in trace element analyses and instrument technical support. We thank Ivan Savov and James Walker for thoughtful and thorough reviews of this paper; additional comments and suggestions by Editor Vincent Salters and Theme Editor Jeffrey Ryan were both constructive and appreciated. This work was funded by NSF MARGINS grants OCE-0325189 and OCE-0305755. NR 85 TC 34 Z9 35 U1 1 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1525-2027 J9 GEOCHEM GEOPHY GEOSY JI Geochem. Geophys. Geosyst. PD JAN 22 PY 2010 VL 11 AR Q01X10 DI 10.1029/2009GC002847 PG 27 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 553VZ UT WOS:000274396200002 ER PT J AU Wu, MS Le, HD Wang, MT Yurkov, V Omelchenko, A Hnatowich, M Nix, J Hryshko, LV Zheng, L AF Wu, Mousheng Le, Hoa Dinh Wang, Meitian Yurkov, Vladimir Omelchenko, Alexander Hnatowich, Mark Nix, Jay Hryshko, Larry V. Zheng, Lei TI Crystal Structures of Progressive Ca2+ Binding States of the Ca2+ Sensor Ca2+ Binding Domain 1 (CBD1) from the CALX Na+/Ca2+ Exchanger Reveal Incremental Conformational Transitions SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID NA+-CA2+ EXCHANGER; DROSOPHILA-MELANOGASTER; CA2+-BINDING DOMAIN; MUTATIONAL ANALYSIS; MUTAGENESIS; ISOFORMS; MODEL; NCX1; SITE AB Na+/Ca2+ exchangers (NCX) constitute a major Ca2+ export system that facilitates the re-establishment of cytosolic Ca2+ levels in many tissues. Ca2+ interactions at its Ca2+ binding domains (CBD1 and CBD2) are essential for the allosteric regulation of Na+/Ca2+ exchange activity. The structure of the Ca2+-bound form of CBD1, the primary Ca2+ sensor from canine NCX1, but not the Ca2+-free form, has been reported, although the molecular mechanism of Ca2+ regulation remains unclear. Here, we report crystal structures for three distinct Ca2+ binding states of CBD1 from CALX, a Na+/Ca2+ exchanger found in Drosophila sensory neurons. The fully Ca2+-bound CALX-CBD1 structure shows that four Ca2+ atoms bind at identical Ca2+ binding sites as those found in NCX1 and that the partial Ca2(+) occupancy and apoform structures exhibit progressive conformational transitions, indicating incremental regulation of CALX exchange by successive Ca2+ binding at CBD1. The structures also predict that the primary Ca2+ pair plays the main role in triggering functional conformational changes. Confirming this prediction, mutagenesis of Glu(455), which coordinates the primary Ca2+ pair, produces dramatic reductions of the regulatory Ca2+ affinity for exchange current, whereas mutagenesis of Glu(520), which coordinates the secondary Ca2+ pair, has much smaller effects. Furthermore, our structures indicate that Ca2+ binding only enhances the stability of the Ca2+ binding site of CBD1 near the hinge region while the overall structure of CBD1 remains largely unaffected, implying that the Ca2+ regulatory function of CBD1, and possibly that for the entire NCX family, is mediated through domain interactions between CBD1 and the adjacent CBD2 at this hinge. C1 [Wu, Mousheng; Zheng, Lei] Univ Texas Houston, Ctr Membrane Biol, Dept Biochem & Mol Biol, Med Sch Houston, Houston, TX 77030 USA. [Le, Hoa Dinh; Yurkov, Vladimir; Omelchenko, Alexander; Hnatowich, Mark; Hryshko, Larry V.] Univ Manitoba, Inst Cardiovasc Sci, St Boniface Hosp, Res Ctr, Winnipeg, MB R2H 2A6, Canada. [Wang, Meitian] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland. [Nix, Jay] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Biol Consortium, Adv Light Source, Berkeley, CA 94720 USA. RP Zheng, L (reprint author), 6431 Fannin St, Houston, TX 77030 USA. EM lei.zheng@uth.tmc.edu RI Wang, Meitian/D-3208-2013 FU American Heart Association [0830353N]; Canadian Institutes of Health Research FX This work supported by grants from the American Heart Association (0830353N to L. Z.) and the Canadian Institutes of Health Research (to L. V. H.). NR 28 TC 17 Z9 17 U1 0 U2 1 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD JAN 22 PY 2010 VL 285 IS 4 BP 2554 EP 2561 DI 10.1074/jbc.M109.059162 PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 544YP UT WOS:000273697800034 PM 19815561 ER PT J AU Ney, A Opel, M Kaspar, TC Ney, V Ye, S Ollefs, K Kammermeier, T Bauer, S Nielsen, KW Goennenwein, STB Engelhard, MH Zhou, S Potzger, K Simon, J Mader, W Heald, SM Cezar, JC Wilhelm, F Rogalev, A Gross, R Chambers, SA AF Ney, A. Opel, M. Kaspar, T. C. Ney, V. Ye, S. Ollefs, K. Kammermeier, T. Bauer, S. Nielsen, K-W Goennenwein, S. T. B. Engelhard, M. H. Zhou, S. Potzger, K. Simon, J. Mader, W. Heald, S. M. Cezar, J. C. Wilhelm, F. Rogalev, A. Gross, R. Chambers, S. A. TI Advanced spectroscopic synchrotron techniques to unravel the intrinsic properties of dilute magnetic oxides: the case of Co:ZnO SO NEW JOURNAL OF PHYSICS LA English DT Article ID COBALT-DOPED ZNO; ELECTRONIC-STRUCTURE; SEMICONDUCTORS AB The use of synchrotron-based spectroscopy has revolutionized the way we look at matter. X-ray absorption spectroscopy (XAS) using linear and circular polarized light offers a powerful toolbox of element-specific structural, electronic and magnetic probes that is especially well suited for complex materials containing several elements. We use the specific example of Zn(1-x)Co(x)O (Co:ZnO) to demonstrate the usefulness of combining these XAS techniques to unravel its intrinsic properties. We demonstrate that as long as phase separation or excessive defect formation is absent, Co:ZnO is paramagnetic. We can establish quantitative thresholds based on four reliable quality indicators using XAS; samples that show ferromagnet-like behaviour fail to meet these quality indicators, and complementary experimental techniques indeed prove phase separation. Careful analysis of XAS spectra is shown to provide quantitative information on the presence and type of dilute secondary phases in a highly sensitive, non-destructive manner. C1 [Ney, A.; Ney, V.; Ye, S.; Ollefs, K.; Kammermeier, T.] Univ Duisburg Essen, Fak Phys, D-47057 Duisburg, Germany. [Ney, A.; Ney, V.; Ye, S.; Ollefs, K.; Kammermeier, T.] Univ Duisburg Essen, CeNIDE, D-47057 Duisburg, Germany. [Opel, M.; Bauer, S.; Nielsen, K-W; Goennenwein, S. T. B.; Gross, R.] Bayer Akademie Wissensch, Walther Meissner Inst, D-85748 Garching, Germany. [Kaspar, T. C.; Engelhard, M. H.; Chambers, S. A.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Zhou, S.; Potzger, K.] Forschungszentrum Dresden Rossendorf e V, Inst Ionenstrahlphys & Mat Forsch, D-01328 Dresden, Germany. [Simon, J.; Mader, W.] Univ Bonn, Inst Anorgan Chem, D-53117 Bonn, Germany. [Heald, S. M.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Cezar, J. C.; Wilhelm, F.; Rogalev, A.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. RP Ney, A (reprint author), Univ Duisburg Essen, Fak Phys, D-47057 Duisburg, Germany. EM andreas.ney@uni-due.de RI Engelhard, Mark/F-1317-2010; Criginski Cezar, Julio/B-2731-2008; Gross, Rudolf/A-6227-2012; Criginski Cezar, Julio/D-5039-2012; Zhou, Shengqiang/C-1497-2009; Ollefs, Katharina/F-5677-2016; Opel, Matthias/L-8784-2016; Ney, Verena/N-9480-2016; OI Gross, Rudolf/0000-0003-4524-7552; Criginski Cezar, Julio/0000-0002-7904-6874; Zhou, Shengqiang/0000-0002-4885-799X; Ollefs, Katharina/0000-0002-2301-4670; Opel, Matthias/0000-0003-4735-9574; Ney, Verena/0000-0001-9413-8649; Engelhard, Mark/0000-0002-5543-0812; Ney, Andreas/0000-0002-2388-6006 FU European Union [MEXT-CT-2004-014195]; SPP 1157 [GR 1132/13, MA 1020/11]; SPP 1285 [GR 1132/14]; Nanosystems Initiative Munich (NIM).; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We are very grateful to T Wassner and M Eickhoff from the Walter-Schottky Institute, Garching, for providing us with the MBE-grown ZnO film for the Co-ion implantation. We thank Andreas Erb for the careful preparation of the polycrystalline target materials for the PLD process at the WMI. The work at the UDE was supported by the European Union under the Marie-Curie Excellence Grant No. MEXT-CT-2004-014195 of the 6th Framework Programme; hosting of the project by Professor Farle is gratefully acknowledged. The work at the WMI was supported by the Deutsche Forschungsgemeinschaft via SPP 1157 (project GR 1132/13), SPP 1285 (project GR 1132/14) and the Nanosystems Initiative Munich (NIM). A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory. The work in Bonn was supported by the Deutsche Forschungsgemeinschaft via SPP 1157 (project MA 1020/11). Use of the Advanced Photon Source was also supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. NR 36 TC 84 Z9 84 U1 2 U2 46 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD JAN 22 PY 2010 VL 12 AR 013020 DI 10.1088/1367-2630/12/1/013020 PG 16 WC Physics, Multidisciplinary SC Physics GA 547IU UT WOS:000273881600001 ER PT J AU Berkery, JW Sabbagh, SA Betti, R Hu, B Bell, RE Gerhardt, SP Manickam, J Tritz, K AF Berkery, J. W. Sabbagh, S. A. Betti, R. Hu, B. Bell, R. E. Gerhardt, S. P. Manickam, J. Tritz, K. TI Resistive Wall Mode Instability at Intermediate Plasma Rotation SO PHYSICAL REVIEW LETTERS LA English DT Article ID HIGH-BETA PLASMAS; STABILIZATION; NSTX; TOKAMAKS AB Experimental observation of resistive wall mode (RWM) instability in the National Spherical Torus Experiment (NSTX) at plasma rotation levels intermediate to the ion precession drift and ion bounce frequencies suggests that low critical rotation threshold models are insufficient. Kinetic modifications to the ideal stability criterion yield a more complex relationship between plasma rotation and RWM stability. Good agreement is found between an experimental RWM instability at intermediate plasma rotation and the RWM marginal point calculated with kinetic effects included, by the MISK code. By self-similarly scaling the experimental plasma rotation profile and the collisionality in the calculation, resonances of the mode with the precession drift and bounce frequencies are explored. Experimentally, RWMs go unstable when the plasma rotation is between the stabilizing precession drift and bounce resonances. C1 [Berkery, J. W.; Sabbagh, S. A.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Betti, R.; Hu, B.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Bell, R. E.; Gerhardt, S. P.; Manickam, J.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Tritz, K.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. RP Berkery, JW (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. RI Berkery, John/B-7930-2011; Sabbagh, Steven/C-7142-2011 FU U. S. Department of Energy [DE-FG02-99ER54524, DE-AC02-09CH11466, DE-FG02-93ER54215] FX Supported by the U. S. Department of Energy under Contract No. DE-FG02-99ER54524, No. DE-AC02-09CH11466, and No. DE-FG02-93ER54215. NR 14 TC 61 Z9 61 U1 2 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 22 PY 2010 VL 104 IS 3 AR 035003 DI 10.1103/PhysRevLett.104.035003 PG 4 WC Physics, Multidisciplinary SC Physics GA 548XL UT WOS:000274003100020 PM 20366652 ER PT J AU Brar, VW Wickenburg, S Panlasigui, M Park, CH Wehling, TO Zhang, YB Decker, R Girit, C Balatsky, AV Louie, SG Zettl, A Crommie, MF AF Brar, Victor W. Wickenburg, Sebastian Panlasigui, Melissa Park, Cheol-Hwan Wehling, Tim O. Zhang, Yuanbo Decker, Regis Girit, Caglar Balatsky, Alexander V. Louie, Steven G. Zettl, Alex Crommie, Michael F. TI Observation of Carrier-Density-Dependent Many-Body Effects in Graphene via Tunneling Spectroscopy SO PHYSICAL REVIEW LETTERS LA English DT Article ID LIFETIME AB We find the scanning tunneling spectra of backgated graphene monolayers to be significantly altered by many-body excitations. Experimental features in the spectra arising from electron-plasmon interactions show carrier density dependence, distinguishing them from density-independent electron-phonon features. Using a straightforward model, we are able to calculate theoretical tunneling spectra that agree well with our data, providing insight into the effects of many-body interactions on the lifetime of graphene quasiparticles. C1 [Brar, Victor W.; Wickenburg, Sebastian; Panlasigui, Melissa; Park, Cheol-Hwan; Zhang, Yuanbo; Decker, Regis; Girit, Caglar; Louie, Steven G.; Zettl, Alex; Crommie, Michael F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Brar, Victor W.; Park, Cheol-Hwan; Decker, Regis; Girit, Caglar; Louie, Steven G.; Zettl, Alex; Crommie, Michael F.] Univ Calif Berkeley, Div Mat Sci, Berkeley, CA 94720 USA. [Wehling, Tim O.; Balatsky, Alexander V.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Wehling, Tim O.; Balatsky, Alexander V.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Wehling, Tim O.] Univ Hamburg, Inst Theoret Phys 1, D-20355 Hamburg, Germany. RP Brar, VW (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Park, Cheol-Hwan/A-1543-2009; Girit, Caglar/D-4845-2014; Wehling, Tim/O-4642-2014; Zettl, Alex/O-4925-2016 OI Park, Cheol-Hwan/0000-0003-1584-6896; Girit, Caglar/0000-0001-8953-9261; Wehling, Tim/0000-0002-5579-2231; Zettl, Alex/0000-0001-6330-136X FU DOE [DE-AC03-76SF0098]; Office of Naval Research MURI program; University of California [UCOP 027] FX We thank E. Rotenberg and H.-M. Solowan for useful discussions. This work was supported by the DOE Contract No. DE-AC03-76SF0098. C.-H. P. was supported by the Office of Naval Research MURI program. A. V. B., M. P., and T. W. were partially supported by the University of California UCOP 027. NR 20 TC 67 Z9 67 U1 2 U2 53 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 22 PY 2010 VL 104 IS 3 AR 036805 DI 10.1103/PhysRevLett.104.036805 PG 4 WC Physics, Multidisciplinary SC Physics GA 548XL UT WOS:000274003100039 PM 20366671 ER PT J AU Macek, JH Sternberg, JB Ovchinnikov, SY Briggs, JS AF Macek, J. H. Sternberg, J. B. Ovchinnikov, S. Y. Briggs, J. S. TI Theory of Deep Minima in (e, 2e) Measurements of Triply Differential Cross Sections SO PHYSICAL REVIEW LETTERS LA English DT Article ID IONIZATION; GEOMETRY AB Deep minima in He(e, 2e)He(+) triply differential cross sections are traced to vortices in atomic wave functions. Such vortices have been predicted earlier, but the present calculations show that they have also been observed experimentally, although not recognized as vortices. Their observation in (e, 2e) measurements shows that vortices play an important role in electron correlations related to the transfer of angular momentum between incident and ejected electrons. The vortices significantly extend the list of known features that summarize the general picture of electron correlations in impact ionization. C1 [Macek, J. H.; Sternberg, J. B.; Ovchinnikov, S. Y.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37496 USA. [Macek, J. H.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Briggs, J. S.] Univ Freiburg, Fac Phys, D-79104 Freiburg, Germany. [Ovchinnikov, S. Y.] AF Ioffe Phys Tech Inst, St Petersburg, Russia. RP Macek, JH (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37496 USA. RI Ovchinnikov, Serguei/C-4994-2014 FU Office of Basic Energy Sciences, U. S. Department of Energy [DEFG02-02ER15283]; Max-Planck Institute for Complex Systems; DFG [Br728/13-1] FX This research is sponsored by the Office of Basic Energy Sciences, U. S. Department of Energy under Grant No. DEFG02-02ER15283. Travel support for one of us (J. H. M.) by the Max-Planck Institute for Complex Systems is gratefully acknowledged. J. S. B. acknowledges support from the DFG under Contract No. Br728/13-1. NR 19 TC 18 Z9 18 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 22 PY 2010 VL 104 IS 3 AR 033201 DI 10.1103/PhysRevLett.104.033201 PG 4 WC Physics, Multidisciplinary SC Physics GA 548XL UT WOS:000274003100008 PM 20366640 ER PT J AU Ning, FL Ahilan, K Imai, T Sefat, AS McGuire, MA Sales, BC Mandrus, D Cheng, P Shen, B Wen, HH AF Ning, F. L. Ahilan, K. Imai, T. Sefat, A. S. McGuire, M. A. Sales, B. C. Mandrus, D. Cheng, P. Shen, B. Wen, H. -H TI Contrasting Spin Dynamics between Underdoped and Overdoped Ba(Fe1-xCox)(2)As-2 SO PHYSICAL REVIEW LETTERS LA English DT Article AB We report the first NMR investigation of spin dynamics in the overdoped nonsuperconducting regime of Ba(Fe1-xCox)(2)As-2 up to x = 0.26. We demonstrate that the absence of interband transitions with large momentum transfer Q(AF) similar to (pi/a, 0) between the hole and electron Fermi surfaces results in complete suppression of antiferromagnetic spin fluctuations for x greater than or similar to 0.15. Our experimental results provide direct evidence for a correlation between T-c and the strength of Q(AF) antiferromagnetic spin fluctuations. C1 [Ning, F. L.; Ahilan, K.; Imai, T.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Sefat, A. S.; McGuire, M. A.; Sales, B. C.; Mandrus, D.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Imai, T.] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada. [Cheng, P.; Shen, B.; Wen, H. -H] Chinese Acad Sci, Inst Phys, Natl Lab Superconduct, Beijing 100190, Peoples R China. [Cheng, P.; Shen, B.; Wen, H. -H] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. RP Ning, FL (reprint author), McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. RI McGuire, Michael/B-5453-2009; Mandrus, David/H-3090-2014; Sefat, Athena/R-5457-2016 OI McGuire, Michael/0000-0003-1762-9406; Sefat, Athena/0000-0002-5596-3504 FU NSERC; CFI; CIFAR; U.S. Department of Energy; NSF; Ministry of Science and Technology of China; Chinese Academy of Sciences FX The work at McMaster was supported by NSERC, CFI, and CIFAR. Research at ORNL was sponsored by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy. The work at Beijing was supported by NSF, the Ministry of Science and Technology of China, and the Chinese Academy of Sciences. NR 16 TC 177 Z9 177 U1 1 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 22 PY 2010 VL 104 IS 3 AR 037001 DI 10.1103/PhysRevLett.104.037001 PG 4 WC Physics, Multidisciplinary SC Physics GA 548XL UT WOS:000274003100042 PM 20366674 ER PT J AU Philippe, F Casner, A Caillaud, T Landoas, O Monteil, MC Liberatore, S Park, HS Amendt, P Robey, H Sorce, C Li, CK Seguin, F Rosenberg, M Petrasso, R Glebov, V Stoeckl, C AF Philippe, F. Casner, A. Caillaud, T. Landoas, O. Monteil, M. C. Liberatore, S. Park, H. S. Amendt, P. Robey, H. Sorce, C. Li, C. K. Seguin, F. Rosenberg, M. Petrasso, R. Glebov, V. Stoeckl, C. TI Experimental Demonstration of X-Ray Drive Enhancement with Rugby-Shaped Hohlraums SO PHYSICAL REVIEW LETTERS LA English DT Article ID NATIONAL IGNITION FACILITY; FUSION; OMEGA; DETECTOR; TARGETS; PLASMAS; NIF AB Rugby-shaped hohlraums have been suggested as a way to enhance x-ray drive in the indirect drive approach to inertial confinement fusion. This Letter presents an experimental comparison of rugby-shaped and cylinder hohlraums used for D(2) and D(3)He-filled capsules implosions on the Omega laser facility, demonstrating an increase of x-ray flux by 18% in rugby-shaped hohlraums. The highest yields to date for deuterium gas implosions in indirect drive on Omega (1. 5 x 10(10) neutrons) were obtained, allowing for the first time the measurement of a DD burn history. Proton spectra measurements provide additional validation of the higher drive in rugby-shaped hohlraums. C1 [Philippe, F.; Casner, A.; Caillaud, T.; Landoas, O.; Monteil, M. C.; Liberatore, S.] DIF, DAM, CEA, F-91297 Arpajon, France. [Park, H. S.; Amendt, P.; Robey, H.; Sorce, C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Li, C. K.; Seguin, F.; Rosenberg, M.; Petrasso, R.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Glebov, V.; Stoeckl, C.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. RP Philippe, F (reprint author), DIF, DAM, CEA, F-91297 Arpajon, France. RI CASNER, Alexis/B-7458-2014 OI CASNER, Alexis/0000-0003-2176-1389 NR 30 TC 32 Z9 33 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 22 PY 2010 VL 104 IS 3 AR 035004 DI 10.1103/PhysRevLett.104.035004 PG 4 WC Physics, Multidisciplinary SC Physics GA 548XL UT WOS:000274003100021 PM 20366653 ER PT J AU Seo, SSA Han, MJ Hassink, GWJ Choi, WS Moon, SJ Kim, JS Susaki, T Lee, YS Yu, J Bernhard, C Hwang, HY Rijnders, G Blank, DHA Keimer, B Noh, TW AF Seo, S. S. A. Han, M. J. Hassink, G. W. J. Choi, W. S. Moon, S. J. Kim, J. S. Susaki, T. Lee, Y. S. Yu, J. Bernhard, C. Hwang, H. Y. Rijnders, G. Blank, D. H. A. Keimer, B. Noh, T. W. TI Two-Dimensional Confinement of 3d(1) Electrons in LaTiO3/LaAlO3 Multilayers SO PHYSICAL REVIEW LETTERS LA English DT Article ID MOTT INSULATOR; ORBITAL LIQUID; SUPERLATTICES; METAL; HETEROSTRUCTURES; RECONSTRUCTION; INTERFACE; LATIO3; CU AB We report spectroscopic ellipsometry measurements of the anisotropy of the interband transitions parallel and perpendicular to the planes of (LaTiO3)n(LaAlO3)5 multilayers with n = 1-3. These provide direct information about the electronic structure of the two-dimensional (2D) 3d(1) state of the Ti ions. In combination with local density approximation, including a Hubbard U calculation, we suggest that 2D confinement in the TiO2 slabs lifts the degeneracy of the t(2g) states leaving only the planar d(xy) orbitals occupied. We outline that these multilayers can serve as a model system for the study of the t(2g) 2D Hubbard model. C1 [Seo, S. S. A.; Han, M. J.; Choi, W. S.; Moon, S. J.; Yu, J.; Noh, T. W.] Seoul Natl Univ, Dept Phys & Astron, Seoul 151747, South Korea. [Seo, S. S. A.; Kim, J. S.; Keimer, B.] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany. [Hassink, G. W. J.; Susaki, T.; Hwang, H. Y.] Univ Tokyo, Dept Adv Mat Sci, Chiba 2778561, Japan. [Hassink, G. W. J.; Rijnders, G.; Blank, D. H. A.] Univ Twente, MESA Inst Nanotechnol, NL-7500 AE Enschede, Netherlands. [Lee, Y. S.] Soongsil Univ, Dept Phys, Seoul 156743, South Korea. [Bernhard, C.] Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland. [Bernhard, C.] Univ Fribourg, Fribourg Ctr Nanomat, CH-1700 Fribourg, Switzerland. [Hwang, H. Y.] Japan Sci & Technol Agcy, Kawaguchi, Saitama 3320012, Japan. RP Seo, SSA (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM seos@ornl.gov; twnoh@snu.ac.kr RI Kim, Jun Sung/G-8861-2012; Han, Myung Joon/H-7104-2012; Hwang, Harold/I-6943-2012; Seo, Sung Seok/B-6964-2008; Noh, Tae Won /K-9405-2013; Susaki, Tomofumi/E-6394-2014; Choi, Woo Seok/G-8783-2014 OI Kim, Jun Sung/0000-0002-1413-7265; Han, Myung Joon/0000-0002-8089-7991; Seo, Sung Seok/0000-0002-7055-5314; FU National Research Foundation of Korea; Ministry of Education, Science, and Technology [2009-0080567, R17-2008-033-01000-0]; Dutch Ministry of Economic Affairs (NanoNed); Swiss National Science Foundation [20020-119784]; German Science Foundation [SFB/TRR 80] FX S. S. A. S. thanks A. Fujimori, G. Jackeli, G. Khaliullin, S. Okamoto, and A. V. Boris for useful discussions. M. J. H. is indebted to A. J. Millis and C. A. Marianetti for valuable insights. This research was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science, and Technology (No. 2009-0080567 and No. R17-2008-033-01000-0), a nanotechnology program of the Dutch Ministry of Economic Affairs (NanoNed), the Swiss National Science Foundation (SNF Project No. 20020-119784), and the German Science Foundation (SFB/TRR 80). NR 33 TC 32 Z9 33 U1 5 U2 53 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 22 PY 2010 VL 104 IS 3 AR 036401 DI 10.1103/PhysRevLett.104.036401 PG 4 WC Physics, Multidisciplinary SC Physics GA 548XL UT WOS:000274003100032 PM 20366664 ER PT J AU Shin, KY Ru, N Fisher, IR Condron, CL Toney, MF Wu, YQ Kramer, MJ AF Shin, K. Y. Ru, N. Fisher, I. R. Condron, C. L. Toney, M. F. Wu, Y. Q. Kramer, M. J. TI Observation of two separate charge density wave transitions in Gd2Te5 via transmission electron microscopy and high-resolution X-ray diffraction SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Charge density wave; Intermetallics; Transmission electron microscopy; X-ray diffraction ID NBSE3; PRESSURE; SM2TE5; SMTE3 AB Gd2Te5 is a layered material consisting of alternating single and double square planar Te sheets. At room temperature the material hosts a complex lattice modulation characterized by multiple in-plane wavevectors. Diffraction measurements performed via transmission electron microscopy and high-resolution X-ray scattering reveal two distinct transitions at T-c1 = 410(3) and T-c2 = 532(3) K, associated with an on-axis incommensurate lattice modulation and an off-axis commensurate lattice modulation respectively. Our results show that the two lattice modulations are separate in origin but that there is some coupling between them. (C) 2009 Elsevier B.V. All rights reserved. C1 [Shin, K. Y.; Ru, N.; Fisher, I. R.] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Shin, K. Y.; Ru, N.; Fisher, I. R.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Shin, K. Y.; Ru, N.; Fisher, I. R.] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [Condron, C. L.; Toney, M. F.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Wu, Y. Q.; Kramer, M. J.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Wu, Y. Q.; Kramer, M. J.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Fisher, IR (reprint author), Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. EM irfisher@stanford.edu FU DOE, Office of Basic Energy Sciences [DE-AC02-76SF00515, DE-AC02-07CH11358]; HS Lee Foundation in South Korea FX This work is supported by the DOE, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF00515. Efforts at the Ames Laboratory were supported by the DOE under Contract No. DE-AC02-07CH11358. KYS was partly supported by the HS Lee Foundation in South Korea. Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource (SSRL), a national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences. NR 27 TC 1 Z9 1 U1 1 U2 7 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD JAN 21 PY 2010 VL 489 IS 2 BP 332 EP 335 DI 10.1016/j.jallcom.2009.09.154 PG 4 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 539JU UT WOS:000273251000005 ER PT J AU Ray, PK Akinc, M Kramer, MJ AF Ray, P. K. Akinc, M. Kramer, M. J. TI Applications of an extended Miedema's model for ternary alloys SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Miedema's semi-empirical model; Thermodynamics; Formation enthalpy; Ternary alloys ID GLASS-FORMING ABILITY; TRANSITION-METAL ALLOYS; MO-SI-B; INTERMETALLIC COMPOUNDS; MECHANICAL-PROPERTIES; MOLYBDENUM SILICIDES; FORMATION ENTHALPIES; OXIDATION BEHAVIOR; STRUCTURAL MODEL; BINARY AB The extension of Miedema's semi-empirical model to ternary systems by means of an energy minimization scheme was implemented to demonstrate a number of physical phenomena associated with select ternary alloys. in order to gain a thermodynamic understanding of glass forming ability of Zr based alloys, a combination of extended Miedema's model and lattice strain energies has been invoked. The extended Miedema approach has also been used to study the phase selection during crystallization for amorphous Zr-Cu-Ni alloys. Also extended Miedema's model was used to illustrate its applicability to study the phase stability of Mo-Nb-Si alloys around M3Si composition (M = Mo, Nb), by predicting the amount of Nb (30 at.%) required to destabilize the structure. (C) 2009 Elsevier B.V. All rights reserved. C1 [Ray, P. K.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Ray, PK (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM prat@iastate.edu RI Ray, Pratik/C-5383-2008 OI Ray, Pratik/0000-0002-0656-4566 FU DOE-FE (ARM program) through Ames Laboratory through Iowa State University [DE-AC02-07CH11358] FX This work was supported by the DOE-FE (ARM program) through Ames Laboratory contract no. DE-AC02-07CH11358 through Iowa State University. NR 54 TC 22 Z9 23 U1 6 U2 30 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 EI 1873-4669 J9 J ALLOY COMPD JI J. Alloy. Compd. PD JAN 21 PY 2010 VL 489 IS 2 BP 357 EP 361 DI 10.1016/j.jallcom.2009.07.062 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 539JU UT WOS:000273251000011 ER PT J AU Denton, MH Borovsky, JE Cayton, TE AF Denton, Michael H. Borovsky, Joseph E. Cayton, Thomas E. TI A density-temperature description of the outer electron radiation belt during geomagnetic storms SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID COROTATING INTERACTION REGIONS; SUPERDENSE PLASMA SHEET; CORONAL MASS EJECTION; VAN-ALLEN RADIATION; SOLAR-WIND STREAMS; RELATIVISTIC ELECTRONS; GEOSYNCHRONOUS ORBIT; GEOSPACE INTERACTIONS; ENERGETIC PARTICLES; INNER MAGNETOSPHERE AB Bi-Maxwellian fits are made to energetic-electron flux measurements from seven satellites in geosynchronous orbit, yielding a number density (n) and temperature (T) description of the outer electron radiation belt. For 54.5 spacecraft years of measurements the median value of n is 3.7 x 10(-4) cm(-3), and the median value of T is 148 keV. General statistical properties of n, T, and the 1.1-1.5 MeV flux F are investigated, including local-time and solar-cycle dependencies. Using superposed-epoch analysis where the zero epoch is convection onset, the evolution of the outer electron radiation belt through high-speed-stream-driven storms is investigated. The number-density decay during the calm before the storm, relativistic-electron dropouts and recoveries, and the heating of the outer electron radiation belt during storms are analyzed. Using four different "triggers" (sudden storm commencement (SSC), southward interplanetary magnetic field (IMF) portions of coronal mass ejection (CME) sheaths, southward-IMF portions of magnetic clouds, and minimum Dst) a selection of CME-driven storms are analyzed with superposed-epoch techniques. For CME-driven storms, only a very modest density decay prior to storm onset is found. In addition, the compression of the outer electron radiation belt at the time of SSC is analyzed, the number-density increase and temperature decrease during storm main phase are characterized, and the increase in density and temperature during storm recovery phase is determined. During the different phases of storms, changes in the flux are sometimes in response to changes in the temperature, sometimes to changes in the number density, and sometimes to changes in both. Differences are found between the density-temperature and flux descriptions, and it is concluded that more information is available using the density-temperature description. C1 [Denton, Michael H.] Univ Lancaster, Dept Commun Syst, Lancaster LA1 4WA, England. [Borovsky, Joseph E.; Cayton, Thomas E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Denton, MH (reprint author), Univ Lancaster, Dept Commun Syst, InfoLab 21, Lancaster LA1 4WA, England. EM m.denton@lancaster.ac.uk OI Denton, Michael/0000-0002-1748-3710 FU NASA Living With a Star TRT Program; Los Alamos National Laboratory LDRD Program FX The authors would like to thank the Space Physics Data Facility (SPDF) and National Space Science Data Center (NSSDC) for providing the OMNI2 database, the World Data Centre C1 at Rutherford-Appleton Laboratory in the UK for provision of the geomagnetic indices used in this study, and Bob McPherron for providing an updated list of stream interfaces. We also thank the U. S. Air Force Research Laboratory, Hanscom Air Force Base, Massachusetts, for providing the Midnight Boundary Index. We thank Reiner Friedel for graciously running the relativistic fits to the original SOPA data, and we thank Reiner Friedel and Michelle Thomsen for helpful conversations. This work was supported by the NASA Living With a Star TR&T Program and by the Los Alamos National Laboratory LDRD Program. Parts of this work were carried out at Los Alamos National Laboratory during summer 2008, and M. H. D. wishes to thank ISR-1 and particularly J. E. B. for financial support and hospitality during this visit. NR 74 TC 23 Z9 23 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JAN 21 PY 2010 VL 115 AR A01208 DI 10.1029/2009JA014183 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 547RD UT WOS:000273905900001 ER PT J AU Whitesides, R Frenklach, M AF Whitesides, Russell Frenklach, Michael TI Detailed Kinetic Monte Carlo Simulations of Graphene-Edge Growth SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; CHEMICAL-VAPOR-DEPOSITION; SOOT PARTICLE GROWTH; SURFACE GROWTH; MONOLAYER GRAPHENE; CARBON NANOSHEETS; DIFFUSION FLAMES; ETHYLENE FLAMES; LIPID-BILAYERS; LAYER GROWTH AB A new detailed chemical-kinetic Monte Carlo model of graphene-edge growth is presented. The model employs a fine-grained approach to chemically resolved species, allows for incorporation of five-member rings into growing Structures, and links the stochastic kinetic steps to a geometry optimization, thereby properly accounting for curving of molecular Structures, The evolving morphology is greatly affected by the rates of key reactions and hence by surface-site steric environment and gas-phase species concentrations. The evolving graphene morphology and growth rates seemingly reach "asymptotic" behavior, independent of the initial substrate. Most noteworthy, growing layers become significantly Curved. The Curvature occurs regardless of initial Substrate at both 1500 and 2000 K with higher Curvature Occurring at the lower temperature. More intriguing is the observation that. at 2000 K, transition from planar to Curved growth does not commence immediately but occurs at some later time, seemingly when the growing graphene reaches a size significantly larger than coronene. No curvature is produced in numerical simulations at 2500 K, indicating that high-energy environments cause the five-member-ring to be less stable, thus preventing them from forming. C1 [Frenklach, Michael] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Frenklach, M (reprint author), Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. EM myf@me.berkeley.edu FU U.S. Department of Energy [DE-AC03-76F00098] FX This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division of the U.S. Department of Energy, under Contract No. DE-AC03-76F00098. NR 92 TC 35 Z9 37 U1 4 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JAN 21 PY 2010 VL 114 IS 2 BP 689 EP 703 DI 10.1021/jp906541a PG 15 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 541FN UT WOS:000273400600001 PM 20000728 ER PT J AU Sivaramakrishnan, R Michael, JV Klippenstein, SJ AF Sivaramakrishnan, R. Michael, J. V. Klippenstein, S. J. TI Direct Observation of Roaming Radicals in the Thermal Decomposition of Acetaldehyde SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID POTENTIAL-ENERGY SURFACE; MULTIREFERENCE PERTURBATION-THEORY; PRESSURE RATE-CONSTANT; SHOCK-TUBE; HIGH-TEMPERATURE; RATE COEFFICIENTS; ATOMIC-HYDROGEN; ACETYL RADICALS; WAVE-FUNCTIONS; BASIS-SETS AB The thermal dissociation of acetaldehyde has been studied with the reflected shock tube technique using H(D)-atom atomic resonance absorption spectrometry detection. The use of all unreversed light source yields extraordinarily sensitive H atom detection. As a result, we are able to measure both the total decomposition rate and the branching to radical versus molecular channels. This branching provides a direct measure of the contribution from the roaming radical mechanism since the contributions from the usual tight transition states are predicted by theory to be negligible. The experimental observations also provide a measure of the rate coefficient for H + CH(3)CHO. Another set of experiments employing C(2)H(5)I as an H-atom source provides additional data for this rate coefficient that extends to lower temperature. An evaluation of the available experimental results for H + CH(3)CHO can be expressed by a three-parameter Arrhenius expression as k = 7.66 x 10(-20)T(2.75) exp((-486 K)/T) cm(3) molecule(-1) s(-1) (298-1415 K). Analogous experiments employing C(2)D(5)I as a D-atom source allow for the study of the isotopically substituted reaction. The present experiments are the only direct measure for this reaction rate constant, and the results can be expressed by an Arrhenius expression as k = 5.20 x 10(-10) exp((-4430 K)/T) cm(3) molecule(-1) s(-1) (1151-1354 K). The H/D + CH(3)CHO reactions are also studied with ab initio transition-state theory, and the results are in remarkably good agreement with the current experimental data. C1 [Sivaramakrishnan, R.; Michael, J. V.; Klippenstein, S. J.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Michael, JV (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jmichael@anl.gov; sjk@anl.gov RI SIVARAMAKRISHNAN, RAGHU/C-3481-2008; Michael, Joe/E-3907-2010; OI SIVARAMAKRISHNAN, RAGHU/0000-0002-1867-1254; Klippenstein, Stephen/0000-0001-6297-9187 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC02-06CHI 1357] FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, under Contract No. DE-AC02-06CHI 1357. Drs. Lawrence B. Harding and Yuri Georgievskii are acknowledged for helpful discussions. NR 47 TC 46 Z9 46 U1 0 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JAN 21 PY 2010 VL 114 IS 2 BP 755 EP 764 DI 10.1021/jp906918z PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 541FN UT WOS:000273400600010 PM 20017515 ER PT J AU Harding, LB Georgievskii, Y Klippenstein, SJ AF Harding, Lawrence B. Georgievskii, Yuri Klippenstein, Stephen J. TI Roaming Radical Kinetics in the Decomposition of Acetaldehyde SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID STATISTICAL ADIABATIC CHANNEL; UNIMOLECULAR BOND FISSION; POTENTIAL-ENERGY SURFACE; TRANSITION-STATE THEORY; MULTIREFERENCE PERTURBATION-THEORY; REFERENCE WAVE-FUNCTIONS; CAPTURE RATE CONSTANTS; TRAJECTORY CALCULATIONS; MOLECULAR DISSOCIATION; VALENCE INTERACTIONS AB A novel theoretical framework for predicting the branching between roaming and bond fission channels in molecular dissociations is described and applied to the decomposition of acetaldehyde. This reduced dimensional trajectory (RDT) approach, which is motivated by the long-range nature of the roaming, bond fission, and abstraction dynamical bottlenecks, involves the propagation of rigid-body trajectories on an analytic potential energy Surface. The analytic potential is obtained from fits to large-scale multireference ab initio electronic structure calculations. The final potential includes one-dimensional corrections from higher-level electronic structure calculations and for the effect of conserved mode variations along both the addition and abstraction paths. The corrections along the abstraction path play a significant role in the predicted branching. Master equation Simulations are used to transform the microcanonical branching ratios obtained from the RDT simulations to the temperature- and pressure-dependent branching ratios observed in thermal decomposition experiments. For completeness, a transition-state theory treatment of the contributions of the tight transition states for the molecular channels is included in the theoretical analyses. The theoretically predicted branching between molecules and radicals in the thermal decomposition of acetaldehyde is in reasonable agreement with the corresponding shock tube measurement described in the companion paper. The prediction for the ratio of the tight to roaming contributions to the molecular channel also agrees well with results extracted from recent experimental and experimental/theoretical photodissociation studies. C1 [Harding, Lawrence B.; Georgievskii, Yuri; Klippenstein, Stephen J.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Harding, LB (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM harding@anl.gov; ygeorgi@anl.gov; sjk@anl.gov OI Klippenstein, Stephen/0000-0001-6297-9187 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC02-06CH 11357] FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, under Contract No. DE-AC02-06CH 11357. The authors also acknowledge Joe Michael, Raghu Sivaramakrishnan, David Osborn, Scott Kable, Joel Bowman, and John Kiefer for helpful discussions. NR 68 TC 55 Z9 55 U1 2 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JAN 21 PY 2010 VL 114 IS 2 BP 765 EP 777 DI 10.1021/jp906919w PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 541FN UT WOS:000273400600011 PM 20038152 ER PT J AU Strasser, D Goulay, F Belau, L Kostko, O Koh, C Chambreau, SD Vaghjiani, GL Ahmed, M Leone, SR AF Strasser, Daniel Goulay, Fabien Belau, Leonid Kostko, Oleg Koh, Christine Chambreau, Steven D. Vaghjiani, Ghanshyam L. Ahmed, Musahid Leone, Stephen R. TI Tunable Wavelength Soft Photoionization of Ionic Liquid Vapors SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID ELECTRONIC-STRUCTURE; GAS-PHASE; SOLAR-CELLS; SPECTROSCOPY; VAPORIZATION; ELECTROLYTES; CONDUCTIVITY; CLUSTERS; SURFACE AB Combined data of photoelectron spectra and photoionization efficiency curves in the near threshold ionization region of isolated ion pairs from [emim][Tf2N], [emim][Pf(2)N], and [dmpim][Tf2N] ionic liquid vapors reveal small shifts in the ionization energies of ion-pair systems due to cation and anion substitutions. Shifts toward higher binding energy following anion Substitution are attributed to increased electronegativity of the anion itself, whereas shifts toward lower binding energies following cation substitution tire attributed to an increase in the cation-anion distance [flat causes a lower Coulombic binding potential. The predominant ionization mechanism in the near threshold photon energy region is identified as dissociative ionization, involving the dissociation of the ion pair and the production of intact cations as the positively charged products. C1 [Strasser, Daniel; Goulay, Fabien; Koh, Christine; Leone, Stephen R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Strasser, Daniel; Goulay, Fabien; Koh, Christine; Leone, Stephen R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Belau, Leonid; Kostko, Oleg; Ahmed, Musahid; Leone, Stephen R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Chambreau, Steven D.] ERC Inc, Edwards AFB, CA 93524 USA. [Vaghjiani, Ghanshyam L.] USAF, Res Lab, Edwards AFB, CA 93524 USA. RP Strasser, D (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM strasser@chem.ch.huji.ac.il RI Ahmed, Musahid/A-8733-2009; Kostko, Oleg/B-3822-2009; Kostko, Oleg/A-3693-2010 OI Kostko, Oleg/0000-0003-2068-4991; FU U.S. Air Force Office of Scientific Research [FA9550-04-1-0083, F49620-03-1-0212, FA9300-06-C0023]; Department of Energy [DE-AC05CH1 1231]; National Science Foundation Extreme Ultraviolet Center [EEC-0310717]; Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy [DE-AC02-05CH1 1231] FX We gratefully acknowledge funding from the U.S. Air Force Office of Scientific Research (grant nos. FA9550-04-1-0083, F49620-03-1-0212, and FA9300-06-C0023) with additional equipment and Support from the Department of Energy under contract no. DE-AC05CH1 1231 and the National Science Foundation Extreme Ultraviolet Center, contract no. EEC-0310717. This work was also supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under contract no. DE-AC02-05CH1 1231. NR 32 TC 20 Z9 20 U1 1 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JAN 21 PY 2010 VL 114 IS 2 BP 879 EP 883 DI 10.1021/jp909727f PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 541FN UT WOS:000273400600024 PM 19957958 ER PT J AU Greenwald, EE Ghosh, B Anderson, KC Dooley, KS Zou, P Selby, T Osborn, DL Meloni, G Taatjes, CA Goulay, F North, SW AF Greenwald, Erin E. Ghosh, Buddhadeb Anderson, Katie C. Dooley, Kristin S. Zou, Peng Selby, Talitha Osborn, David L. Meloni, Giovanni Taatjes, Craig A. Goulay, Fabien North, Simon W. TI Isomer-Selective Study of the OH Initiated Oxidation of Isoprene in the Presence of O-2 and NO. I. The Minor Inner OH-Addition Channel SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID RADICAL-MOLECULE REACTIONS; TRANSITION-STATE MODEL; ALKYLPEROXY RADICALS; 2-BUTOXY RADICALS; MASS-SPECTROMETRY; AB-INITIO; BASIS-SET; PHOTODISSOCIATION; PHOTOIONIZATION; CHEMISTRY AB We report isomer-selective kinetics and mechanistic details for the hydroxyl radical-initiated oxidation of isoprene, in the presence of O-2 and NO, employing complementary experimental and theoretical techniques. Using a recently demonstrated photolytic route to initiate isomer-selective kinetics in OH-initiated oxidation of unsaturated hydrocarbons via the UV photolysis of iodohydrins, the photolysis of 1-iodo-2-methyl-3-buten-2-ol results in a single isomer of the possible four OH-isoprene adducts, specifically the minor channel associated with OH addition to one of the inner carbon atoms. Employing both the laser-photolysis/laser-induced fluorescence (LP/LIF) technique and time-dependent multiplexed photoionization mass spectrometry, we find clear experimental evidence supporting the prompt rearrangement of the initially formed beta-hydroxyalkyl radicals to alpha-hydroxyalkyl radicals, in agreement with Rice-Ramsperger-Kassel-Marcus (RRKM)/master equation predictions. We have determined a rate constant of (3.3 +/- 0.5) x 10(-11) cm(3) molecule(-1) s(-1) for molecular oxygen to abstract a hydrogen atom front the alpha-hydroxyalkyl radical to form 4-penten-2-one and HO2. This reaction provides a mechanistic route to C-5 carbonyl species as first-generation end products for the addition of hydroxyl radical to isoprene ill the presence of O-2 and NO. C1 [Greenwald, Erin E.; Ghosh, Buddhadeb; Anderson, Katie C.; Dooley, Kristin S.; North, Simon W.] Texas A&M Univ, Dept Chem, College Stn, TX 77842 USA. [Zou, Peng; Selby, Talitha; Osborn, David L.; Meloni, Giovanni; Taatjes, Craig A.; Goulay, Fabien] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Meloni, Giovanni] Univ San Francisco, Dept Chem, San Francisco, CA 94117 USA. [Goulay, Fabien] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP North, SW (reprint author), Texas A&M Univ, Dept Chem, POB 30012, College Stn, TX 77842 USA. RI North, Simon/G-5054-2012 OI North, Simon/0000-0002-0795-796X FU National Science Foundation [CHE-0204705]; Environmental Protection Agency [R03-0132]; Robert A. Welch Foundation [A-1405]; Texas Advanced Research Program [010366-0306]; National Aeronautics and Space Administration (NASA) [NAGS-13339]; U.S. Department of Energy [DE-AC02-05CH11231, DE-AC04-94-AL85000] FX This work was supported by the National Science Foundation (Grant No. CHE-0204705), the Environmental Protection Agency (Grant No. R03-0132), the Robert A. Welch Foundation (A-1405), and the Texas Advanced Research Program (Grant No. 010366-0306). The participation of F.G. was supported by the National Aeronautics and Space Administration (NASA, Grant NAGS-13339). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory. The work of P.Z., T.M.S., D.L.O., G.M., and C.A.T. was supported,by the Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, the U.S. Department of Energy. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under Contract DE-AC04-94-AL85000. NR 65 TC 15 Z9 15 U1 4 U2 47 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JAN 21 PY 2010 VL 114 IS 2 BP 904 EP 912 DI 10.1021/jp908543a PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 541FN UT WOS:000273400600028 PM 19928790 ER PT J AU Guo, JC Liang, YY Szarko, J Lee, B Son, HJ Rolczynski, BS Yu, LP Chen, LX AF Guo, Jianchang Liang, Yongye Szarko, Jodi Lee, Byeongdu Son, Hae Jun Rolczynski, Brian S. Yu, Luping Chen, Lin X. TI Structure, Dynamics, and Power Conversion Efficiency Correlations in a New Low Bandgap Polymer: PCBM Solar Cell SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID X-RAY-SCATTERING; CONJUGATED POLYMERS; SEMICONDUCTING POLYMERS; PHOTOVOLTAIC CELLS; CHARGE-TRANSPORT; FILMS; POLY(3-HEXYLTHIOPHENE); REGIOREGULARITY; POLYTHIOPHENE; PERFORMANCE AB Molecular packing structures and photoinduced charge separation dynamics have been investigated in a recently developed bulk heterojunction (BHJ) organic photovoltaic (OPV) material based on poly(thienothiophenebenzodithiophene) (PTB1) with a power conversion efficiency (PCE) of > 5% in solar cell devices. Grazing incidence X-ray scattering (GIXS) Measurements of the PTB1:PCBM ([6,6]-phenyl-C-61-butyric acid methyl ester) films revealed pi-stacked polymer backbone planes oriented parallel to the substrate surface, in contrast to the g.-stacked polymer backbone planes oriented perpendicular to the substrate surface in regioregular P3HT [poly(3-hexylthiophene)]:PCBM films. A similar to 1.7 times higher charge mobility in the PTB1:PCBM film relative to that in P3HT:PCBM films is attributed to this difference in stacking orientation. The photoinduced charge separation (CS) rate in the pristine PTB1:PCBM film is more than twice as fast as that in the annealed P3HT:PCBM film. The combination of a small optical gap, fast CS rate, and high carrier mobility in the PTB1:PCBM film contributes to its relatively high PCE in the solar cells. Contrary to P3HT:PCBM solar cells, annealing PTB1:PCBM films reduced the device PCE from 5.24% in the pristine film to 1.92% due to reduced interfacial area between the electron donor and the acceptor. Consequently, quantum yields of exciton generation and charge separation in the annealed film are significantly reduced compared to those in the pristine film. C1 [Guo, Jianchang; Liang, Yongye; Son, Hae Jun; Yu, Luping] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Guo, Jianchang; Liang, Yongye; Son, Hae Jun; Yu, Luping] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Guo, Jianchang; Chen, Lin X.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Szarko, Jodi; Rolczynski, Brian S.; Chen, Lin X.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Lee, Byeongdu] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. RP Yu, LP (reprint author), Univ Chicago, Dept Chem, 929 E 57th St, Chicago, IL 60637 USA. EM lupingyu@ychicago.edu; lchen@anl.gov RI Liang, Yongye/D-1099-2010; Liang, Yongye/D-9275-2012; OI Szarko, Jodi/0000-0002-2181-9408; Lee, Byeongdu/0000-0003-2514-8805 FU UC/ANL Collaborative Research Seed; Northwestern University Setup Fund; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; NSF; AFOSR; NSF MRSEC FX We would like to acknowledge the support by UC/ANL Collaborative Research Seed Grant (L.Y. and L.X.C.), Northwestern University Setup Fund, and the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contracts DE-AC02-06CH11357 (Argonne National Laboratory) (for L. X. C.). We are thankful for the support from NSF, AFOSR, and NSF MRSEC grant for the University of Chicago (for LRY.). We thank Dr. David J. Gosztola for his help in the transient absorption facility at the Center for Nanoscale Materials of Argonne National Laboratory and Drs. Joseph W. Strzalka and Sonke Seifert of the Advanced Photon Source for their help at the beamline setup and useful discussions in data analysis for GIXS. Work at the Advanced Photon Source and the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC020-6CH11357. NR 35 TC 102 Z9 103 U1 1 U2 58 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JAN 21 PY 2010 VL 114 IS 2 BP 742 EP 748 DI 10.1021/jp909135k PG 7 WC Chemistry, Physical SC Chemistry GA 541HD UT WOS:000273405000008 PM 20038154 ER PT J AU Yao, MZ Joly, AG Chen, W AF Yao, Mingzhen Joly, Alan G. Chen, Wei TI Formation and Luminescence Phenomena of LaF3:Ce3+ Nanoparticles and Lanthanide-Organic Compounds in Dimethyl Sulfoxide SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID DIMETHYLSULFOXIDE DMSO; OPTICAL-PROPERTIES; CDS NANOPARTICLES; X-RAY; FLUORESCENCE; PHOTOLUMINESCENCE; NANOCRYSTALS; EXCITATION; CRYSTALS; NECROSIS AB LaF3:Ce3+-doped nanoparticles were synthesized Lit different temperatures ill dimethyl sulfoxide (DMSO) by the chemical reaction of lanthanum nitrate hydrate and cerium nitrate hexahydrate with ammonium fluoride. The formation of Ce3+-doped LaF3 nanoparticles is confirmed by X-ray diffraction and high-resolution transmission electron microscopy. An intense emission at around 3 10 nm from the d-f transition of Ce3+ was observed from the LaF3:Ce3+ powder samples. However, in solution samples, the ultraviolet emission from Ce3+ is mostly absent, but intense luminescence is observed in the visible range from blue to red. The emission wavelength of the Solution samples is dependent oil the reaction time and temperature. More interestingly, the emission wavelength varies with the excitation wavelength. Most likely, this emission is from metal organic compounds of Ce3+ or La3+, and DMSO as similar phenomena are also observed when lanthanum nitrate hydrate or cerium nitrate hexahydrate are heated in DMSO. C1 [Yao, Mingzhen; Chen, Wei] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Joly, Alan G.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Chen, W (reprint author), Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA. EM weichen@uta.edu FU UTA; NSF and DHS [CBET-0736172]; U.S. Army Medical Research Acquisition Activity (USAMRAA) [W81XWH-05-C-0101]; U.S. Department of Energy [DE-AC06-76RLO183] FX W.C. thanks the Startup and LERR Funds from UTA, the NSF and DHS joint program (Grant CBET-0736172), and the U.S. Army Medical Research Acquisition Activity (USAMRAA) under Contract No.W81XWH-05-C-0101 for financial support. Part of the research described was performed at the W. R. Wife), Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. Department of Energy under Contract DE-AC06-76RLO1830, NR 49 TC 28 Z9 28 U1 1 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JAN 21 PY 2010 VL 114 IS 2 BP 826 EP 831 DI 10.1021/jp9092173 PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 541FM UT WOS:000273400400019 ER PT J AU Sun, YG AF Sun, Yugang TI Synthesis of Ag Nanoplates on GaAs Wafers: Evidence for Growth Mechanism SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SOLAR-ENERGY CONVERSION; SEMICONDUCTOR ELECTRODE SURFACES; RESONANCE RAMAN-SPECTROSCOPY; SILICON; NANOPARTICLES; NANOCRYSTALS; FABRICATION; ADSORBATES; MICROSCOPY; JUNCTION AB Direct synthesis of Ag nanoplates oil GaAs wafers has been developed in Our group through a simple solution/solid interfacial reaction (SSIR) strategy, in which aqueous Solutions Of pure AgNO3 react with the GaAs wafers at room temperature [J. Phys. Chem. C 2009, 113, 6061; 2008, 112, 8928; Chem. Mater. 2007, 19, 5845]. However, a number of questions are still riot clear yet regarding the roles of different possible pathways for reducing Ag+ ions in the growth of Av nanoplates, In this article, we try to answer these remaining questions by specifically designing experiments and extracting direct evidence from systematic characterizations of different samples. It is Conclusive that growth Of high-quality Ag nanoplates oil GaAs wafers is ascribed to the good separation between nucleation and growth steps, which are driven by two different reduction pathways. At the nucleation step, fast reduction of Ag+ ions with a high concentration Of Surface electrons is crucial for the formation of Ag nuclei with Multiple (111) twin planes parallel to each other, and remaining the environment of a high concentration Of Surface electrons for a period long enough is also important to develop the Ag nuclei into stable seeds. At the growth step, a hole injection process is mainly responsible for reduction of Ag+ ions to enlarge the stable seeds into Ag nanoplates with controlled sizes by tuning the growth time. The paralleled multiple (I 11) twin planes provide a crystalline confinement to guide the growth of the seeds into nanoplates. C1 Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Sun, YG (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ygsun@anl.gov RI Sun, Yugang /A-3683-2010 OI Sun, Yugang /0000-0001-6351-6977 FU U.S. Department of Energy, Office of Science, laboratory [DE-AC02-06CH11357, DE-AC02-06C11357, DEFG02-91-ER45439] FX Argonne National Laboratory, a U.S. Department of Energy, Office of Science, laboratory, is operated under Contract No. DE-AC02-06CH11357. Use of the Center for Nanoscale Materials and the Electron Microscopy Center for Materials Research at Argonne was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06C11357. Characterizations were also carried out by partially using file Center for Microanalysis of Materials Facilities in Frederick Seitz Materials Research Laboratory, University of Illinois, which is partially supported by the U.S. Department of Energy under Grant No. DEFG02-91-ER45439. The help from Dr. Changhuji Lei in TEM characterization is greatly appreciated. NR 30 TC 5 Z9 5 U1 0 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JAN 21 PY 2010 VL 114 IS 2 BP 857 EP 863 DI 10.1021/jp909312g PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 541FM UT WOS:000273400400023 ER PT J AU Guo, M Ding, B Li, XH Wang, XL Yu, JY Wang, MR AF Guo, Meng Ding, Bin Li, Xiaohong Wang, Xueli Yu, Jianyong Wang, Moran TI Amphiphobic Nanofibrous Silica Mats with Flexible and High-Heat-Resistant Properties SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SOL-GEL METHOD; SUPERHYDROPHOBIC SURFACES; ELECTROSPUN FIBERS; FILMS; FABRICATION; COMPOSITE; OXIDE; MEMBRANES AB In this study, for the first time, we fabricated flexible, high-heat-resistant, and amphiphobic mats by (fluoroalkyl)silane (FAS) modification Of electrospun pure silica nanofibrous mats. The inorganic silica nanofibrous mats were obtained via electrospinning the blend solutions of poly(vinyl alcohol) (PVA) and silica gel, followed by calcination to remove the organic component. The PVA/silica and silica fibers were found to be randomly oriented as nonwoven mats with fiber diameters in the range of 150-500 nm. After the FAS modification, the surface wettability of the silica mats was converted from amphiphilic to amphiphobic. The fluorinated mat with the bead-on-string Structure showed the highest water contact angle (WCA) of 154 degrees and oil contact angle (OCA) of 144 degrees. Additionally, the fluorinated inorganic fibrous mats exhibited a high heat resistance; they kept their hydrophobicity (WCA of 138 degrees) and oleophobicity (OCA of 132 degrees) even after the annealing treatment at 450 degrees C for 30 min. Potential applications of the fluorinated fibrous mats include high-temperature filtration, selective filtration, and self-cleaning coatings. C1 [Guo, Meng; Ding, Bin] Donghua Univ, Coll Mat Sci & Engn, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China. [Guo, Meng; Ding, Bin; Li, Xiaohong; Wang, Xueli; Yu, Jianyong] Donghua Univ, Modern Text Inst, Nanomat Res Ctr, Shanghai 200051, Peoples R China. [Guo, Meng; Li, Xiaohong] Donghua Univ, Coll Text, Shanghai 201620, Peoples R China. [Wang, Moran] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA. [Wang, Moran] Los Alamos Natl Lab, Ctr Nonlinear Study CNLS, Los Alamos, NM 87545 USA. RP Ding, B (reprint author), Donghua Univ, Coll Mat Sci & Engn, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China. EM binding@dhu.edu.cn RI Wang, Moran/A-1150-2010 FU National Natural Science Foundation of China [50803009, 10872048]; Programme of Introducing Talents of Discipline to Universities [111-2-04, B07024] FX This work was partly Supported by the National Natural Science Foundation of China under Grant Nos. 50803009 and 10872048. Partial Support from the Programme of Introducing Talents of Discipline to Universities (Grant Nos. 111-2-04 and B07024) is appreciated. NR 39 TC 55 Z9 57 U1 15 U2 91 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JAN 21 PY 2010 VL 114 IS 2 BP 916 EP 921 DI 10.1021/jp909672r PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 541FM UT WOS:000273400400031 ER PT J AU Calzolari, A Jin, W Reutt-Robey, JE Nardelli, MB AF Calzolari, Arrigo Jin, Wei Reutt-Robey, Janice E. Nardelli, Marco Buongiorno TI Substrate-Mediated Intermolecular Hybridization in Binary Phthalocyanine Superstructures SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SCANNING TUNNELING MICROSCOPE; COPPER-PHTHALOCYANINE; ELECTRONIC-STRUCTURE; THIN-FILMS; SPECTROSCOPY; EPITAXY; DESIGN; GROWTH; ENERGY AB Using a combination of calculations from first principles and scanning tunneling microscopy, we have investigated file interplay between substrate-mediated and intermolecular interactions in the formation of high-density checkerboard binary superstructures from the codeposition of phenyl and perfluorophenyl Zn-phthalocyanines (ZnPc-F(16)ZnPc) on the Ag(111) Surface. The analysis of the electronic structure of the interface shows the essential role played by the Substrate in the formation of the molecular layer and opens the way toward the development of tailored surfaces for advanced supramolecular design. C1 [Nardelli, Marco Buongiorno] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Jin, Wei; Reutt-Robey, Janice E.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Nardelli, Marco Buongiorno] Oak Ridge Natl Lab, CSMD, Oak Ridge, TN 37831 USA. [Calzolari, Arrigo] INFM, CNR, Natl Ctr NanoStruct & BioSyst Surfaces S3, I-41100 Modena, Italy. RP Calzolari, A (reprint author), INFM CNR DEMOCRITOS, Theory Elettra Grp, C-O Sincrotrone Trieste SS14,Km 163,5 Basovizza, I-34012 Trieste, Italy. EM arrigo.calzolari@democritos.it; mbnardelli@ncsu.edu RI Buongiorno Nardelli, Marco/C-9089-2009; Calzolari, Arrigo/B-8448-2015; Reutt-Robey, Janice /C-3517-2009 OI Calzolari, Arrigo/0000-0002-0244-7717; Reutt-Robey, Janice /0000-0002-9309-7854 FU BES; U.S. DOE [DE-FG02-98ER14847, DE-AC05-00OR22725]; NSF-CCI Center for Molecular Spintronics [CHIE-0943975]; UMD MRSEC [DMR-05-20471]; CNR-INFM; NCCS-ORNL FX The authors Wish to acknowledge Daniel B. Dougherty for having brought this problem to their attention and for the scientific discussions that have ensued. William G. Cullen and Steven W. Robe), are also acknowledged fortechnical and scientific discussions. This work has been supported, in part, by the BES, U.S. DOE, at ORNL (DE-FG02-98ER14847 and DE-AC05-00OR22725 with UT-Battelle, LLC), the NSF-CCI Center for Molecular Spintronics (CHIE-0943975), and the UMD MRSEC (NSF Grant DMR-05-20471). Calculations have been carried out at CINECA Supercornputing facilities through a grant from CNR-INFM and NCCS-ORNL. NR 36 TC 8 Z9 8 U1 2 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JAN 21 PY 2010 VL 114 IS 2 BP 1041 EP 1045 DI 10.1021/jp908166j PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 541FM UT WOS:000273400400048 ER PT J AU Borodko, Y Lee, HS Joo, SH Zhang, YW Somorjai, G AF Borodko, Yuri Lee, Hyun Sook Joo, Sang Hoon Zhang, Yawen Somorjai, Gabor TI Spectroscopic Study of the Thermal Degradation of PVP-Capped Rh and Pt Nanoparticles in H-2 and O-2 Environments SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID BLODGETT MONOLAYER FORMATION; ENHANCED RAMAN-SPECTROSCOPY; SUM-FREQUENCY GENERATION; RHODIUM NANOPARTICLES; COORDINATION CHEMISTRY; PLASMONIC PROPERTIES; OPTICAL-ABSORPTION; METAL PARTICLES; PLATINUM; SURFACE AB Poly(N-vinylpyrrolidone (PVP)-capped platinum and rhodium nanoparticles (7-12 nm) have been Studied with UV-vis, FTIR, and Raman spectroscopy. The absorption bands in the region of 190-900 nm are shown to be sensitive to the electronic structure of surface Rh and Pt atoms as well as to the aggregation of the nanoparticles. In-situ FTIR-DRIFT spectroscopy of the thermal decay of PVP-stabilized Rh and Pt nanoparticles in H-2 and O-2 atmospheres in temperatures ranging from 30 to 350 degrees C reveals the decomposition of PVP above 200 degrees C; PVP transforms into a "polyamide-polyene"-like material that is, in turn, converted into a thin layer of amorphous carbon above 300 degrees C. Adsorbed carbon monoxide was used as a probing molecule to monitor changes of the electronic structure of surface Rh and Pt atoms and accessible surface area. The behavior of surface Rh and Pt atoms with ligated CO and amide groups of pyrrolidones resembles that of surface coordination compounds. C1 [Borodko, Yuri; Lee, Hyun Sook; Somorjai, Gabor] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Borodko, Yuri; Lee, Hyun Sook; Somorjai, Gabor] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Joo, Sang Hoon; Zhang, Yawen; Somorjai, Gabor] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Somorjai, G (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu RI Joo, Sang Hoon/E-5898-2010 FU U.S. Department of Energy [DE-AC02-05CH11231] FX We are truly grateful to Prof. Herbert L. Strauss for his valuable advice during the preparation of this paper. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geological and Biosciences and Division of Materials Sciences and Engineering of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 51 TC 47 Z9 47 U1 1 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JAN 21 PY 2010 VL 114 IS 2 BP 1117 EP 1126 DI 10.1021/jp909008z PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 541FM UT WOS:000273400400057 ER PT J AU Simeon, T Balasubramanian, K Welch, CR AF Simeon, Tomekia Balasubramanian, Krishnan Welch, Charles R. TI Theoretical Study of the Interactions of In+ and In3+ with Stone-Wales Defect Single-Walled Carbon Nanotubes SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID RELATIVISTIC EFFECTIVE POTENTIALS; SPIN-ORBIT OPERATORS; ADSORPTION; GRAPHENE; METALS AB We have performed a density functional study on the binding of indium ions (In and In3+) to the surface of pristine and defective armchair single wall carbon nanotubes (SWNT). Among the various structural isomers that are studied the position above the hexagon is found to be the most stable site for absorption, while the binding is enhanced in the defective SWNT compared to that in the pristine SWNT. The computed Mulliken charges, HOMO-LUMO gap energies, interactions and interaction energies of the systems reveal fascinating electronic charge delocalization on phenomena explaining the observed electromigration. C1 [Balasubramanian, Krishnan] Calif State Univ Hayward, Dept Math & Comp Sci, Hayward, CA 94542 USA. [Simeon, Tomekia] Jackson State Univ, Dept Chem, Computat Ctr Mol Struct & Interact, Jackson, MS 39217 USA. [Balasubramanian, Krishnan] Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, Livermore, CA 94550 USA. [Balasubramanian, Krishnan] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Welch, Charles R.] USA, Informat Technol Lab, Engineer Res & Dev Ctr, Vicksburg, MS 39180 USA. RP Balasubramanian, K (reprint author), Calif State Univ Hayward, Dept Math & Comp Sci, Hayward, CA 94542 USA. EM balu@llnl.gov FU U.S. Army Engineer Research and Development Center [W912HZ-05-D-0012]; High Performance Computational Design of Novel Materials; U.S. Department of Defense High Performance Computing Modernization Office; U.S. Department of Energy [DE-FG2-05ER15657, W-7405-Eng-48] FX This work was supported in part by the U.S. Army Engineer Research and Development Center under Contract W912HZ-05-D-0012, "High Performance Computational Design of Novel Materials", and by the U.S. Department of Defense High Performance Computing Modernization Office. This work at Cal State was supported by the U.S. Department of Energy under Grant No. DE-FG2-05ER15657. The work at LLNL was performed under the auspices of the U.S. Department of Energy under Contract No. W-7405-Eng-48. NR 35 TC 6 Z9 6 U1 1 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD JAN 21 PY 2010 VL 1 IS 2 BP 457 EP 462 DI 10.1021/jz900125e PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 588BC UT WOS:000277040000001 ER PT J AU Kewalramani, S Hlaing, H Ocko, BM Kuzmenko, I Fukuto, M AF Kewalramani, Sumit Hlaing, Htay Ocko, Benjamin M. Kuzmenko, Ivan Fukuto, Masafumi TI Effects of Divalent Cations on Phase Behavior and Structure of a Zwitterionic Phospholipid (DMPC) Mono layer at the Air-Water Interface SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID PHOSPHATIDYLCHOLINE BILAYER-MEMBRANES; LANGMUIR MONOLAYERS; METAL-CATIONS; IONS; FILMS; TRANSITIONS; ADSORPTION; BINDING; ANIONS AB Effects of divalent cations (Ca2+, Mg2+, Ni2+ and Zn2+) on a zwitter-ionic phospholipid monolayer at the air-water interface are investigated by surface pressure-area isotherms and in situ X-rays scattering. Divalent cations lower the surface pressure for the fluid (LE) to condensed (L-2) phase transition in a strongly ion-specific manner. Surprisingly, the two-dimensional lattice dimensions and the tilt of the lipids' alkyl tails in the L-2 phase show a nearly ion-nonspecific dependence on the excess surface pressure above the transition pressure. "An empirical universal" relationship was found between the tail tilt and the excess pressure, with the tails in the L-2 phase always displaying a tilt of 29 degrees at the transition. A practical implication of these results is that regardless of the divalent cation present, the microscopic details of the lipid tail packing in the L-2 phase can be deduced at any surface pressure once the transition pressure is obtained from isotherms. C1 [Kewalramani, Sumit; Hlaing, Htay; Ocko, Benjamin M.; Fukuto, Masafumi] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Hlaing, Htay] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Kuzmenko, Ivan] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. RP Fukuto, M (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM fukuto@bnl.gov FU U.S. DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC02-98CH10886, DE-AC02-06CH11357] FX We thank Lin Yang for helpful suggestions and advice during the experiments, and Qiang Li and Cedomir Petrovic for allowing the use of their furnaces for baking salts. This work, including the use of the National Synchrotron Light Source and the Advanced Photon Source, was supported by the U.S. DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Contract No. DE-AC02-98CH10886 (Brookhaven) and DE-AC02-06CH11357 (Argonne). NR 28 TC 19 Z9 19 U1 4 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD JAN 21 PY 2010 VL 1 IS 2 BP 489 EP 495 DI 10.1021/jz9002873 PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 588BC UT WOS:000277040000008 ER PT J AU Leung, K AF Leung, Kevin TI Surface Potential at the Air-Water Interface Computed Using Density Functional Theory SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID LIQUID-VAPOR INTERFACE; MOLECULAR-DYNAMICS; AQUEOUS-SOLUTIONS; FREE-ENERGIES; WORK FUNCTION; SIMULATION; PHASES; IONS AB An accurate prediction of the surface potential (phi) at the air-water interface is critical to calculating ion hydration free energies and electrochemical half-cell potential. Using density functional theory (DFT) model interfacial configurations and a theoretical definition of phi, we report a value of +3.63 V at 0.92 g/cm(3) water density. A maximally localized Wannier function analysis confirms that phi is dominated by molecular quadrupole (or "spherical second moment") contributions. We find that the predicted surface potential depends on computational details and conclude that standard DFT codes and the existing theoretical definition of phi does not yield surface potentials directly comparable to existing experiments. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Leung, K (reprint author), Sandia Natl Labs, MS 1415, Albuquerque, NM 87185 USA. EM kleung@sandia.gov FU Department of Energy [AC04-94AL85000] FX We thank Chris Mundy, Shawn Kathmann, Lawrence Pratt, Susan Rempe, Michiel Sprik, Don Truhlar, and Graham Yelton for interesting discussions but stress that not all of them may agree with the perspectives expressed herein. We also thank Dr. Kathman for sharing ref 23 prior to publication. This work was supported by the Department of Energy under Contract DE-AC04-94AL85000. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy. NR 33 TC 51 Z9 52 U1 0 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD JAN 21 PY 2010 VL 1 IS 2 BP 496 EP 499 DI 10.1021/jz900268s PG 4 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 588BC UT WOS:000277040000009 ER PT J AU Darg, DW Kaviraj, S Lintott, CJ Schawinski, K Sarzi, M Bamford, S Silk, J Andreescu, D Murray, P Nichol, RC Raddick, MJ Slosar, A Szalay, AS Thomas, D Vandenberg, J AF Darg, D. W. Kaviraj, S. Lintott, C. J. Schawinski, K. Sarzi, M. Bamford, S. Silk, J. Andreescu, D. Murray, P. Nichol, R. C. Raddick, M. J. Slosar, A. Szalay, A. S. Thomas, D. Vandenberg, J. TI Galaxy Zoo: the properties of merging galaxies in the nearby Universe - local environments, colours, masses, star formation rates and AGN activity SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE catalogues; galaxies: elliptical and lenticular, cD; galaxies: evolution; galaxies: general; galaxies: interactions; galaxies: spiral ID DIGITAL-SKY-SURVEY; LUMINOUS INFRARED GALAXIES; GALACTIC NUCLEI; FORMATION HISTORIES; FORMING GALAXIES; ELLIPTIC GALAXIES; MASSIVE GALAXIES; SPIRAL GALAXIES; HOST GALAXIES; LINE SPECTRA AB Following the study of Darg et al., we explore the environments, optical colours, stellar masses, star formation and active galactic nucleus activity in a sample of 3003 pairs of merging galaxies drawn from the Sloan Digital Sky Survey using visual classifications from the Galaxy Zoo project. While Darg et al. found that the spiral-to-elliptical ratio in (major) mergers appeared higher than that of the global galaxy population, no significant differences are found between the environmental distributions of mergers and a randomly selected control sample. This makes the high occurrence of spirals in mergers unlikely to be an environmental effect and must therefore arise from differing time-scales of detectability for spirals and ellipticals. We find that merging galaxies have a wider spread in colour than the global galaxy population, with a significant blue tail resulting from intense star formation in spiral mergers. Galaxies classed as star-forming using their emission-line properties have average star formation rates approximately doubled by the merger process though star formation is negligibly enhanced in merging elliptical galaxies. We conclude that the internal properties of galaxies significantly affect the time-scales over which merging systems can be detected (as suggested by recent theoretical studies) which leads to spirals being 'over-observed' in mergers. We also suggest that the transition mass 3 x 10(10) M(circle dot), noted by Kauffmann et al., below which ellipticals are rare could be linked to disc survival/destruction in mergers. C1 [Darg, D. W.; Kaviraj, S.; Lintott, C. J.; Silk, J.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Kaviraj, S.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Schawinski, K.] Yale Univ, Yale Ctr Astron & Astrophys, New Haven, CT 06520 USA. [Sarzi, M.] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Bamford, S.] Univ Nottingham, Ctr Astron & Particle Theory, Nottingham NG7 2RD, England. [Andreescu, D.] LinkLab, Bronx, NY 10471 USA. [Murray, P.] Fingerprint Digital Media, Newtownards BT23 7GY, Co Down, North Ireland. [Nichol, R. C.; Thomas, D.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 2EG, Hants, England. [Raddick, M. J.; Szalay, A. S.; Vandenberg, J.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Slosar, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Slosar, A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Darg, DW (reprint author), Univ Oxford, Dept Phys, Keble Rd, Oxford OX1 3RH, England. EM ddarg@astro.ox.ac.uk; skaviraj@astro.ox.ac.uk; cjl@astro.ox.ac.uk RI Bamford, Steven/E-8702-2010; OI Bamford, Steven/0000-0001-7821-7195; silk, joe/0000-0002-1566-8148; Schawinski, Kevin/0000-0001-5464-0888 FU John Templeton Foundation; Royal Commission; Worcester College, Oxford,; BIPAC Institute, Oxford; Levehulme Trust; STFC Science in Society Program; Henry Skynner Junior Research; SDSS; Alfred P. Sloan Foundation; Participating Institutions; National Science Foundation; U.S. Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England FX DWD acknowledges funding from the John Templeton Foundation. SK acknowledges a Research Fellowship from the Royal Commission for the Exhibition of 1851 (from 2008 October), a Leverhulme Early-Career Fellowship (till 2008 October), a Senior Research Fellowship from Worcester College, Oxford, and support from the BIPAC Institute, Oxford. CJL acknowledges funding from The Levehulme Trust and the STFC Science in Society Program. KS was supported by the Henry Skynner Junior Research Fellowship at Balliol College, Oxford. Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society and the Higher Education Funding Council for England. The SDSS web site is http://www.sdss.org/. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory and the University of Washington. NR 55 TC 86 Z9 87 U1 0 U2 1 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JAN 21 PY 2010 VL 401 IS 3 BP 1552 EP 1563 DI 10.1111/j.1365-2966.2009.15786.x PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 543DM UT WOS:000273550500013 ER PT J AU Hilburn, G Liang, E Liu, SM Li, H AF Hilburn, Guy Liang, Edison Liu, Siming Li, Hui TI Monte Carlo simulations of the broad-band spectra of Sagittarius A* through the use of general relativistic magnetohydrodynamics SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE accretion, accretion discs; MHD; Galaxy: centre ID ADVECTION-DOMINATED ACCRETION; SUPERMASSIVE BLACK-HOLE; X-RAY OBSERVATIONS; GALACTIC-CENTER; SGR-A; DISKS; FLOWS; RADIATION; EMISSION; FLARE AB We present results of simulations of the spectrum of the accretion flow on to the supermassive black hole in our Galactic Centre, Sagittarius A*, generated with a coupling of Monte Carlo ( MC) radiation and general relativistic magnetohydrodynamic codes. In our modelling, we use the two-dimensional HARM GRMHD code to first model the physical parameters of the disc, then feed its results into our two-dimensional MC photon transport code. We will discuss results obtained which fit radio, infrared and Chandra-obtained flaring or quiescent X-ray data points, as well as the validity of the amount of scaling of input parameters ( density, temperature and magnetic field) required to fit these points. HARM output will be used to suggest whether the scaling is within reasonable limits. C1 [Hilburn, Guy; Liang, Edison] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Hilburn, Guy; Li, Hui] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Liu, Siming] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. RP Hilburn, G (reprint author), Rice Univ, Dept Phys & Astron, 6100 Main St, Houston, TX 77005 USA. EM guy.l.hilburn@rice.edu RI liu, siming/B-5389-2011 FU Los Alamos National Laboratory IGPP [NSF-AST-0406882] FX This work was supported by a Los Alamos National Laboratory IGPP research grant and NSF-AST-0406882. The authors would like to thank a number of people whose input helped shape this work, including, but not limited to, Markus Bottcher, Xuhui Chen, Justin Finke, Charles Gammie and Feng Yuan. NR 41 TC 11 Z9 11 U1 0 U2 2 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JAN 21 PY 2010 VL 401 IS 3 BP 1620 EP 1627 DI 10.1111/j.1365-2966.2009.15787.x PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 543DM UT WOS:000273550500019 ER PT J AU De, S Baron, E Hauschildt, PH AF De, Soma Baron, E. Hauschildt, P. H. TI On the hydrogen recombination time in Type II supernova atmospheres SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE line: formation; radiative transfer; supernova: individual: SN 1987A; supernova: individual: SN 1999em ID OPERATOR PERTURBATION; SN 1987A; SN-1987A; PROGENITOR; EVOLUTION; EMISSION; UNIVERSE; MODEL AB Non-local thermodynamic equilibrium radiative transfer calculations of differentially expanding supernovae atmospheres are computationally intensive and are almost universally performed in a time-independent snapshot mode, where both the radiative transfer problem and the rate equations are solved assuming the steady-state approximation. The validity of the steady-state approximation in the rate equations has recently been questioned for Type II supernova (SN II) atmospheres after maximum light on to the plateau. We calculate the effective recombination time of hydrogen in SN II using our general purpose model atmosphere code PHOENIX. While we find that the recombination time for the conditions of SNe II at early times is increased over the classical value for the case of a simple hydrogen model atom with energy levels corresponding to just the first two principal quantum numbers, the classical value of the recombination time is recovered in the case of a multilevel hydrogen atom. We also find that the recombination time at most optical depths is smaller in the case of a multilevel atom than for a simple two-level hydrogen atom. We find that time dependence in the rate equations is important in the early epochs of a supernova's lifetime. The changes due to the time-dependent rate equation ( at constant input luminosity) are manifested in physical parameters such as the level populations which directly affect the spectra. The Ha profile is affected by the time-dependent rate equations at early times. At later times, time dependence does not significantly modify the level populations and therefore the Ha profile is roughly independent of whether the steady-state or time-dependent approach is used. C1 [De, Soma; Baron, E.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Baron, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. [Hauschildt, P. H.] Hamburger Sternwarte, D-21029 Hamburg, Germany. RP De, S (reprint author), Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. EM baron@ou.edu RI Baron, Edward/A-9041-2009 OI Baron, Edward/0000-0001-5393-1608 FU NSF [AST-0707704]; Department of Energy [DE-FG02-07ER41517, DE-AC02-05CH11231]; DFG [676]; National Energy Research Scientific Computing Center (NERSC); Hochstleistungs Rechenzentrum Nord (HLRN) FX This work was supported in part by NSF grant AST-0707704, Department of Energy Award Number DE-FG02-07ER41517 and SFB grant 676 from the DFG. This research used resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231, and the Hochstleistungs Rechenzentrum Nord (HLRN). We thank both these institutions for a generous allocation of computer time. NR 29 TC 10 Z9 10 U1 0 U2 0 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JAN 21 PY 2010 VL 401 IS 3 BP 2081 EP 2092 DI 10.1111/j.1365-2966.2009.15808.x PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 543DM UT WOS:000273550500057 ER PT J AU Abraham, J Abreu, P Aglietta, M Ahn, EJ Allard, D Allekotte, I Allen, J Alvarez-Muniz, J Ambrosio, M Anchordoqui, L Andringa, S Anticic, T Anzalone, A Aramo, C Arganda, E Arisaka, K Arqueros, F Asorey, H Assis, P Aublin, J Ave, M Avila, G Backer, T Badagnani, D Balzer, M Barber, KB Barbosa, AF Barroso, SLC Baughman, B Bauleo, P Beatty, JJ Becker, BR Becker, KH Belletoile, A Bellido, JA BenZvi, S Berat, C Bergmann, T Bertou, X Biermann, PL Billoir, P Blanch-Bigas, O Blanco, F Blanco, M Bleve, C Blumer, H Bohacova, M Boncioli, D Bonifazi, C Bonino, R Borodai, N Brack, J Brogueira, P Brown, WC Bruijn, R Buchholz, P Bueno, A Burton, RE Busca, NG Caballero-Mora, KS Caramete, L Caruso, R Castellina, A Catalano, O Cataldi, G Cazon, L Cester, R Chauvin, J Chiavassa, A Chinellato, JA Chou, A Chudoba, J Clay, RW Colombo, E Coluccia, MR Conceicao, R Contreras, F Cook, H Cooper, MJ Coppens, J Cordier, A Cotti, U Coutu, S Covault, CE Creusot, A Criss, A Cronin, J Curutiu, A Dagoret-Campagne, S Dallier, R Daumiller, K Dawson, BR de Almeida, RM De Domenico, M De Donato, C de Jong, SJ De La Vega, G de Mello, WJM Neto, JRTD De Mitri, I de Souza, V de Vries, KD Decerprit, G del Peral, L Deligny, O Della Selva, A Delle Fratte, C Dembinski, H Di Giulio, C Diaz, JC Castro, MLD Diep, PN Dobrigkeit, C D'Olivo, JC Dong, PN Dorofeev, A dos Anjos, JC Dova, MT D'Urso, D Dutan, I DuVernois, MA Ebr, J Engel, R Erdmann, M Escobar, CO Etchegoyen, A San Luis, PF Falcke, H Farrar, G Fauth, AC Fazzini, N Ferrero, A Fick, B Filevich, A Filipcic, A Fleck, I Fliescher, S Fracchiolla, CE Fraenkel, ED Frohlich, U Fulgione, W Gamarra, RF Gambetta, S Garcia, B Gamez, DG Garcia-Pinto, D Garrido, X Gelmini, G Gemmeke, H Ghia, PL Giaccari, U Giller, M Glass, H Goggin, LM Gold, MS Golup, G Albarracin, FG Berisso, MG Goncalves, P Gonzalez, D Gonzalez, JG Gora, D Gorgi, A Gouffon, P Gozzini, SR Grashorn, E Grebe, S Grigat, M Grillo, AF Guardincerri, Y Guarino, F Guedes, GP Hague, JD Halenka, V Hansen, P Harari, D Harmsma, S Harton, JL Haungs, A Hebbeker, T Heck, D Herve, AE Hojvat, C Holmes, VC Homola, P Horandel, JR Horneffer, A Hrabovsky, M Huege, T Hussain, M Iarlori, M Insolia, A Ionita, F Italiano, A Jiraskova, S Kadija, K Kaducak, M Kampert, KH Karova, T Kasper, P Kegl, B Keilhauer, B Keivani, A Kelley, J Kemp, E Kieckhafer, RM Klages, HO Kleifges, M Kleinfeller, J Knapik, R Knapp, J Koang, DH Krieger, A Kromer, O Kruppke-Hansen, D Kuehn, F Kuempel, D Kulbartz, K Kunka, N Kusenko, A La Rosa, G Lachaud, C Lago, BL Lautridou, P Leao, MSAB Lebrun, D Lebrun, P Lee, J de Oliveira, MAL Lemiere, A Letessier-Selvon, A Lhenry-Yvon, I Lopez, R Aguera, AL Louedec, K Bahilo, JL Lucero, A Ludwig, M Lyberis, H Maccarone, MC Macolino, C Maldera, S Mandat, D Mantsch, P Mariazzi, AG Marin, V Maris, IC Falcon, HRM Marsella, G Martello, D Bravo, OM Mathes, HJ Matthews, J Matthews, JAJ Matthiae, G Maurizio, D Mazur, PO McEwen, M Medina-Tanco, G Melissas, M Melo, D Menichetti, E Menshikov, A Meurer, C Micanovic, S Micheletti, MI Miller, W Miramonti, L Mollerach, S Monasor, M Ragaigne, DM Montanet, F Morales, B Morello, C Moreno, E Moreno, JC Morris, C Mostafa, M Mueller, S Muller, MA Mussa, R Navarra, G Navarro, JL Navas, S Necesal, P Nellen, L Nhung, PT Nierstenhoefer, N Nitz, D Nosek, D Nozka, L Nyklicek, M Oehlschlager, J Olinto, A Oliva, P Olmos-Gilbaja, VM Ortiz, M Pacheco, N Selmi-Dei, DP Palatka, M Pallotta, J Palmieri, N Parente, G Parizot, E Parlati, S Parra, A Parrisius, J Parsons, RD Pastor, S Paul, T Pavlidou, V Payet, K Pech, M Pekala, J Pelayo, R Pepe, IM Perrone, L Pesce, R Petermann, E Petrera, S Petrinca, P Petrolini, A Petrov, Y Petrovic, J Pfendner, C Piegaia, R Pierog, T Pimenta, M Pirronello, V Platino, M Ponce, VH Pontz, M Privitera, P Prouza, M Quel, EJ Rautenberg, J Ravel, O Ravignani, D Redondo, A Revenu, B Rezende, FAS Ridky, J Riggi, S Risse, M Ristori, P Riviere, C Rizi, V Robledo, C Rodriguez, G Martino, JR Rojo, JR Rodriguez-Cabo, I Rodriguez-Frias, MD Ros, G Rosado, J Rossler, T Roth, M Rouille-d'Orfeuil, B Roulet, E Rovero, AC Salamida, F Salazar, H Salina, G Sanchez, F Santander, M Santo, CE Santo, E Santos, EM Sarazin, F Sarkar, S Sato, R Scharf, N Scherini, V Schieler, H Schiffer, P Schmidt, A Schmidt, F Schmidt, T Scholten, O Schoorlemmer, H Schovancova, J Schovanek, P Schroeder, F Schulte, S Schussler, F Schuster, D Sciutto, SJ Scuderi, M Segreto, A Semikoz, D Settimo, M Shellard, RC Sidelnik, I Siffert, BB Sigl, G Smialkowski, A Smida, R Snow, GR Sommers, P Sorokin, J Spinka, H Squartini, R Stasielak, J Stephan, M Strazzeri, E Stutz, A Suarez, F Suomijarvi, T Supanitsky, AD Susa, T Sutherland, MS Swain, J Szadkowski, Z Tamashiro, A Tamburro, A Tapia, A Tarutina, T Tascau, O Tcaciuc, R Tcherniakhovski, D Tegolo, D Thao, NT Thomas, D Tiffenberg, J Timmermans, C Tkaczyk, W Peixoto, CJT Tome, B Tonachini, A Travnicek, P Tridapalli, DB Tristram, G Trovato, E Tueros, M Ulrich, R Unger, M Urban, M Galicia, JFV Valino, I Valore, L van den Berg, AM Vazquez, JR Vazquez, RA Veberic, D Venters, T Verzi, V Videla, M Villasenor, L Vorobiov, S Voyvodic, L Wahlberg, H Wahrlich, P Wainberg, O Warner, D Watson, AA Westerhoff, S Whelan, BJ Wieczorek, G Wiencke, L Wilczynska, B Wilczynski, H Williams, C Winchen, T Winnick, MG Wundheiler, B Yamamoto, T Younk, P Yuan, G Yushkov, A Zas, E Zavrtanik, D Zavrtanik, M Zaw, I Zepeda, A Ziolkowski, M AF Abraham, J. Abreu, P. Aglietta, M. Ahn, E. J. Allard, D. Allekotte, I. Allen, J. Alvarez-Muniz, J. Ambrosio, M. Anchordoqui, L. Andringa, S. Anticic, T. Anzalone, A. Aramo, C. Arganda, E. Arisaka, K. Arqueros, F. Asorey, H. Assis, P. Aublin, J. Ave, M. Avila, G. Baecker, T. Badagnani, D. Balzer, M. Barber, K. B. Barbosa, A. F. Barroso, S. L. C. Baughman, B. Bauleo, P. Beatty, J. J. Becker, B. R. Becker, K. H. Belletoile, A. Bellido, J. A. BenZvi, S. Berat, C. Bergmann, T. Bertou, X. Biermann, P. L. Billoir, P. Blanch-Bigas, O. Blanco, F. Blanco, M. Bleve, C. Bluemer, H. Bohacova, M. Boncioli, D. Bonifazi, C. Bonino, R. Borodai, N. Brack, J. Brogueira, P. Brown, W. C. Bruijn, R. Buchholz, P. Bueno, A. Burton, R. E. Busca, N. G. Caballero-Mora, K. S. Caramete, L. Caruso, R. Castellina, A. Catalano, O. Cataldi, G. Cazon, L. Cester, R. Chauvin, J. Chiavassa, A. Chinellato, J. A. Chou, A. Chudoba, J. Clay, R. W. Colombo, E. Coluccia, M. R. Conceicao, R. Contreras, F. Cook, H. Cooper, M. J. Coppens, J. Cordier, A. Cotti, U. Coutu, S. Covault, C. E. Creusot, A. Criss, A. Cronin, J. Curutiu, A. Dagoret-Campagne, S. Dallier, R. Daumiller, K. Dawson, B. R. de Almeida, R. M. De Domenico, M. De Donato, C. de Jong, S. J. De La Vega, G. de Mello Junior, W. J. M. de Mello Neto, J. R. T. De Mitri, I. de Souza, V. de Vries, K. D. Decerprit, G. del Peral, L. Deligny, O. Della Selva, A. Delle Fratte, C. Dembinski, H. Di Giulio, C. Diaz, J. C. Castro, M. L. Diaz Diep, P. N. Dobrigkeit, C. D'Olivo, J. C. Dong, P. N. Dorofeev, A. dos Anjos, J. C. Dova, M. T. D'Urso, D. Dutan, I. DuVernois, M. A. Ebr, J. Engel, R. Erdmann, M. Escobar, C. O. Etchegoyen, A. Facal San Luis, P. Falcke, H. Farrar, G. Fauth, A. C. Fazzini, N. Ferrero, A. Fick, B. Filevich, A. Filipcic, A. Fleck, I. Fliescher, S. Fracchiolla, C. E. Fraenkel, E. D. Froehlich, U. Fulgione, W. Gamarra, R. F. Gambetta, S. Garcia, B. Garcia Gamez, D. Garcia-Pinto, D. Garrido, X. Gelmini, G. Gemmeke, H. Ghia, P. L. Giaccari, U. Giller, M. Glass, H. Goggin, L. M. Gold, M. S. Golup, G. Gomez Albarracin, F. Gomez Berisso, M. Goncalves, P. Gonzalez, D. Gonzalez, J. G. Gora, D. Gorgi, A. Gouffon, P. Gozzini, S. R. Grashorn, E. Grebe, S. Grigat, M. Grillo, A. F. Guardincerri, Y. Guarino, F. Guedes, G. P. Hague, J. D. Halenka, V. Hansen, P. Harari, D. Harmsma, S. Harton, J. L. Haungs, A. Hebbeker, T. Heck, D. Herve, A. E. Hojvat, C. Holmes, V. C. Homola, P. Hoerandel, J. R. Horneffer, A. Hrabovsky, M. Huege, T. Hussain, M. Iarlori, M. Insolia, A. Ionita, F. Italiano, A. Jiraskova, S. Kadija, K. Kaducak, M. Kampert, K. H. Karova, T. Kasper, P. Kegl, B. Keilhauer, B. Keivani, A. Kelley, J. Kemp, E. Kieckhafer, R. M. Klages, H. O. Kleifges, M. Kleinfeller, J. Knapik, R. Knapp, J. Koang, D. -H. Krieger, A. Kroemer, O. Kruppke-Hansen, D. Kuehn, F. Kuempel, D. Kulbartz, K. Kunka, N. Kusenko, A. La Rosa, G. Lachaud, C. Lago, B. L. Lautridou, P. Leao, M. S. A. B. Lebrun, D. Lebrun, P. Lee, J. Leigui de Oliveira, M. A. Lemiere, A. Letessier-Selvon, A. Lhenry-Yvon, I. Lopez, R. Lopez Aguera, A. Louedec, K. Lozano Bahilo, J. Lucero, A. Ludwig, M. Lyberis, H. Maccarone, M. C. Macolino, C. Maldera, S. Mandat, D. Mantsch, P. Mariazzi, A. G. Marin, V. Maris, I. C. Marquez Falcon, H. R. Marsella, G. Martello, D. Martinez Bravo, O. Mathes, H. J. Matthews, J. Matthews, J. A. J. Matthiae, G. Maurizio, D. Mazur, P. O. McEwen, M. Medina-Tanco, G. Melissas, M. Melo, D. Menichetti, E. Menshikov, A. Meurer, C. Micanovic, S. Micheletti, M. I. Miller, W. Miramonti, L. Mollerach, S. Monasor, M. Ragaigne, D. Monnier Montanet, F. Morales, B. Morello, C. Moreno, E. Moreno, J. C. Morris, C. Mostafa, M. Mueller, S. Muller, M. A. Mussa, R. Navarra, G. Navarro, J. L. Navas, S. Necesal, P. Nellen, L. Nhung, P. T. Nierstenhoefer, N. Nitz, D. Nosek, D. Nozka, L. Nyklicek, M. Oehlschlaeger, J. Olinto, A. Oliva, P. Olmos-Gilbaja, V. M. Ortiz, M. Pacheco, N. Selmi-Dei, D. Pakk Palatka, M. Pallotta, J. Palmieri, N. Parente, G. Parizot, E. Parlati, S. Parra, A. Parrisius, J. Parsons, R. D. Pastor, S. Paul, T. Pavlidou, V. Payet, K. Pech, M. Pekala, J. Pelayo, R. Pepe, I. M. Perrone, L. Pesce, R. Petermann, E. Petrera, S. Petrinca, P. Petrolini, A. Petrov, Y. Petrovic, J. Pfendner, C. Piegaia, R. Pierog, T. Pimenta, M. Pirronello, V. Platino, M. Ponce, V. H. Pontz, M. Privitera, P. Prouza, M. Quel, E. J. Rautenberg, J. Ravel, O. Ravignani, D. Redondo, A. Revenu, B. Rezende, F. A. S. Ridky, J. Riggi, S. Risse, M. Ristori, P. Riviere, C. Rizi, V. Robledo, C. Rodriguez, G. Rodriguez Martino, J. Rodriguez Rojo, J. Rodriguez-Cabo, I. Rodriguez-Frias, M. D. Ros, G. Rosado, J. Rossler, T. Roth, M. Rouille-d'Orfeuil, B. Roulet, E. Rovero, A. C. Salamida, F. Salazar, H. Salina, G. Sanchez, F. Santander, M. Santo, C. E. Santo, E. Santos, E. M. Sarazin, F. Sarkar, S. Sato, R. Scharf, N. Scherini, V. Schieler, H. Schiffer, P. Schmidt, A. Schmidt, F. Schmidt, T. Scholten, O. Schoorlemmer, H. Schovancova, J. Schovanek, P. Schroeder, F. Schulte, S. Schuessler, F. Schuster, D. Sciutto, S. J. Scuderi, M. Segreto, A. Semikoz, D. Settimo, M. Shellard, R. C. Sidelnik, I. Siffert, B. B. Sigl, G. Smialkowski, A. Smida, R. Snow, G. R. Sommers, P. Sorokin, J. Spinka, H. Squartini, R. Stasielak, J. Stephan, M. Strazzeri, E. Stutz, A. Suarez, F. Suomijarvi, T. Supanitsky, A. D. Susa, T. Sutherland, M. S. Swain, J. Szadkowski, Z. Tamashiro, A. Tamburro, A. Tapia, A. Tarutina, T. Tascau, O. Tcaciuc, R. Tcherniakhovski, D. Tegolo, D. Thao, N. T. Thomas, D. Tiffenberg, J. Timmermans, C. Tkaczyk, W. Peixoto, C. J. Todero Tome, B. Tonachini, A. Travnicek, P. Tridapalli, D. B. Tristram, G. Trovato, E. Tueros, M. Ulrich, R. Unger, M. Urban, M. Valdes Galicia, J. F. Valino, I. Valore, L. van den Berg, A. M. Vazquez, J. R. Vazquez, R. A. Veberic, D. Venters, T. Verzi, V. Videla, M. Villasenor, L. Vorobiov, S. Voyvodic, L. Wahlberg, H. Wahrlich, P. Wainberg, O. Warner, D. Watson, A. A. Westerhoff, S. Whelan, B. J. Wieczorek, G. Wiencke, L. Wilczynska, B. Wilczynski, H. Williams, C. Winchen, T. Winnick, M. G. Wundheiler, B. Yamamoto, T. Younk, P. Yuan, G. Yushkov, A. Zas, E. Zavrtanik, D. Zavrtanik, M. Zaw, I. Zepeda, A. Ziolkowski, M. TI Trigger and aperture of the surface detector array of the Pierre Auger Observatory SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Ultra high energy cosmic rays; Auger Observatory; Extensive air showers; Trigger; Exposure ID AIR SHOWERS; PARTICLES AB The surface detector array of the Pierre Auger Observatory consists of 1600 water-Cherenkov detectors, for the study of extensive air showers (EAS) generated by ultra-high-energy cosmic rays. We describe the trigger hierarchy, from the identification of candidate showers at the level of a single detector, amongst a large background (mainly random single cosmic ray muons), up to the selection of real events and the rejection of random coincidences. Such trigger makes the surface detector array fully efficient for the detection of EAS with energy above 3 x 10(18) eV, for all zenith angles between 0 degrees and 60 degrees, independently of the position of the impact point and of the mass of the primary particle. In these range of energies and angles, the exposure of the surface array can be determined purely on the basis of the geometrical acceptance. (C) 2009 Elsevier B.V. All rights reserved. C1 [Boncioli, D.; Delle Fratte, C.; Di Giulio, C.; Matthiae, G.; Petrinca, P.; Salina, G.; Verzi, V.] Univ Roma Tor Vergata, I-00173 Rome, Italy. [Boncioli, D.; Delle Fratte, C.; Di Giulio, C.; Matthiae, G.; Petrinca, P.; Salina, G.; Verzi, V.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Ponce, V. H.; Roulet, E.] UNCuyo, CONICET, CNEA, Ctr Atom Bariloche, San Carlos De Bariloche, Rio Negro, Argentina. [Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Ponce, V. H.; Roulet, E.] UNCuyo, CONICET, CNEA, Inst Balseiro, San Carlos De Bariloche, Rio Negro, Argentina. [Colombo, E.; Etchegoyen, A.; Ferrero, A.; Filevich, A.; Gamarra, R. F.; Krieger, A.; Micheletti, M. I.; Platino, M.; Ravignani, D.; Sanchez, F.; Sidelnik, I.; Suarez, F.; Tapia, A.; Wainberg, O.; Wundheiler, B.] UTN, CONICET, FRBA, Comis Nacl Energia Atom,Ctr Atom Constituyentes, Buenos Aires, DF, Argentina. [Guardincerri, Y.; Piegaia, R.; Tiffenberg, J.] Univ Buenos Aires, Dept Fis, FCEyN, RA-1053 Buenos Aires, DF, Argentina. [Badagnani, D.; Dova, M. T.; Gomez Albarracin, F.; Hansen, P.; Mariazzi, A. G.; Moreno, J. C.; Sciutto, S. J.; Tarutina, T.; Tueros, M.; Wahlberg, H.] Univ Nacl La Plata, IFLP, La Plata, Buenos Aires, Argentina. [Badagnani, D.; Dova, M. T.; Gomez Albarracin, F.; Hansen, P.; Mariazzi, A. G.; Moreno, J. C.; Sciutto, S. J.; Tarutina, T.; Tueros, M.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Rovero, A. C.; Tamashiro, A.] Consejo Nacl Invest Cient & Tecn, Inst Astron & Fis Espacio, RA-1033 Buenos Aires, DF, Argentina. [Abraham, J.; De La Vega, G.; Garcia, B.; Videla, M.] Natl Technol Univ, CONICET, CNEA, Fac Mendoza, Mendoza, Argentina. [Avila, G.; Contreras, F.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Santander, M.; Sato, R.; Squartini, R.] Pierre Auger So Observ, Malargue, Argentina. [Avila, G.] Comis Nacl Energia Atom, Malargue, Argentina. [Barber, K. B.; Bellido, J. A.; Clay, R. W.; Cooper, M. J.; Dawson, B. R.; Herve, A. E.; Holmes, V. C.; Sorokin, J.; Wahrlich, P.; Whelan, B. J.; Winnick, M. G.] Univ Adelaide, Adelaide, SA, Australia. [Barbosa, A. F.; dos Anjos, J. C.; Rezende, F. A. S.; Shellard, R. C.; Tome, B.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Castro, M. L. Diaz] Pontificia Univ Catolica Rio de Janeiro, Rio De Janeiro, Brazil. [de Souza, V.] Univ Sao Paulo, Inst Fis, Sao Carlos, SP, Brazil. [Gouffon, P.; Tridapalli, D. B.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Chinellato, J. A.; de Almeida, R. M.; de Mello Junior, W. J. M.; Dobrigkeit, C.; Escobar, C. O.; Fauth, A. C.; Kemp, E.; Muller, M. A.; Selmi-Dei, D. Pakk] Univ Estadual Campinas, IFGW, Campinas, SP, Brazil. [Barroso, S. L. C.] Univ Estadual Sudoeste Bahia, Vitoria Da Conquista, BA, Brazil. [Pepe, I. M.] Univ Fed Bahia, Salvador, BA, Brazil. [Leao, M. S. A. B.; Leigui de Oliveira, M. A.; Peixoto, C. J. Todero] Univ Fed ABC, Santo Andre, SP, Brazil. [Bonifazi, C.; de Mello Neto, J. R. T.; Lago, B. L.; Santos, E. M.; Siffert, B. B.] Univ Fed Rio de Janeiro, Inst Fis, Rio De Janeiro, Brazil. [Anticic, T.; Kadija, K.; Micanovic, S.; Susa, T.] Rudjer Boskovic Inst, Zagreb 10000, Croatia. [Nosek, D.] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, Prague, Czech Republic. [Chudoba, J.; Ebr, J.; Karova, T.; Mandat, D.; Necesal, P.; Nozka, L.; Nyklicek, M.; Palatka, M.; Pech, M.; Prouza, M.; Ridky, J.; Schovancova, J.; Schovanek, P.; Travnicek, P.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Halenka, V.; Hrabovsky, M.; Rossler, T.] Palacky Univ, CR-77147 Olomouc, Czech Republic. [Deligny, O.; Ghia, P. L.; Lemiere, A.; Lhenry-Yvon, I.; Lyberis, H.; Suomijarvi, T.] Univ Paris 11, CNRS, IPNO, IN2P3, F-91405 Orsay, France. [Allard, D.; Busca, N. G.; Decerprit, G.; Lachaud, C.; Parizot, E.; Semikoz, D.; Tristram, G.] Univ Paris 07, CNRS, Lab AstroParticule & Cosmol, IN2P3, Paris, France. [Cordier, A.; Dagoret-Campagne, S.; Garrido, X.; Kegl, B.; Louedec, K.; Ragaigne, D. Monnier; Strazzeri, E.; Urban, M.] Univ Paris 11, CNRS, LAL, IN2P3, F-91405 Orsay, France. [Aublin, J.; Billoir, P.; Blanch-Bigas, O.; Bonifazi, C.; Letessier-Selvon, A.; Macolino, C.; Maris, I. C.; Martello, D.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. [Aublin, J.; Billoir, P.; Blanch-Bigas, O.; Bonifazi, C.; Letessier-Selvon, A.; Macolino, C.; Maris, I. C.; Martello, D.] Univ Paris 07, CNRS, IN2P3, LPNHE, Paris, France. [Belletoile, A.; Berat, C.; Chauvin, J.; Koang, D. -H.; Lebrun, D.; Montanet, F.; Payet, K.; Riviere, C.; Stutz, A.] Univ Grenoble 1, CNRS, IN2P3, LPSC,INPG, Grenoble, France. [Dallier, R.; Lautridou, P.; Marin, V.; Ravel, O.; Revenu, B.] CNRS, IN2P3, SUBATECH, Nantes, France. [Becker, K. H.; Kampert, K. H.; Kruppke-Hansen, D.; Kuempel, D.; Nierstenhoefer, N.; Oliva, P.; Rautenberg, J.; Risse, M.; Scherini, V.; Szadkowski, Z.; Tascau, O.] Berg Univ Wuppertal, Wuppertal, Germany. [Ave, M.; Bluemer, H.; Daumiller, K.; Engel, R.; Garrido, X.; Haungs, A.; Heck, D.; Huege, T.; Keilhauer, B.; Klages, H. O.; Kleinfeller, J.; Mathes, H. J.; Mueller, S.; Oehlschlaeger, J.; Pierog, T.; Roth, M.; Salamida, F.; Schieler, H.; Schroeder, F.; Schuessler, F.; Smida, R.; Ulrich, R.; Unger, M.; Valino, I.] Karlsruhe Inst Technol, Inst Kernphys, Karlsruhe, Germany. [Balzer, M.; Bergmann, T.; Gemmeke, H.; Kleifges, M.; Kroemer, O.; Kunka, N.; Menshikov, A.; Schmidt, A.; Tcherniakhovski, D.] Karlsruhe Inst Technol, Inst Prozessdatenverarbeitung & Elekt, Karlsruhe, Germany. [Bluemer, H.; Caballero-Mora, K. S.; Gonzalez, D.; Gora, D.; Ludwig, M.; Maris, I. C.; Melissas, M.; Palmieri, N.; Parrisius, J.; Schmidt, T.; Tamburro, A.] Karlsruhe Inst Technol, Inst Expt Kernphys, Karlsruhe, Germany. [Biermann, P. L.; Caramete, L.; Curutiu, A.; Dutan, I.] Max Planck Inst Radioastron, D-5300 Bonn, Germany. [Dembinski, H.; Erdmann, M.; Fliescher, S.; Grigat, M.; Hebbeker, T.; Meurer, C.; Scharf, N.; Schiffer, P.; Schulte, S.; Stephan, M.; Winchen, T.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Kulbartz, K.; Sigl, G.] Univ Hamburg, Hamburg, Germany. [Baecker, T.; Buchholz, P.; Fleck, I.; Froehlich, U.; Pontz, M.; Risse, M.; Tcaciuc, R.; Ziolkowski, M.] Univ Siegen, Siegen, Germany. [Gambetta, S.; Pesce, R.; Petrolini, A.] Dept Fis Univ, Genoa, Italy. [Gambetta, S.; Pesce, R.; Petrolini, A.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Iarlori, M.; Macolino, C.; Petrera, S.; Rizi, V.; Salamida, F.] Univ Aquila, I-67100 Laquila, Italy. [De Donato, C.; Miramonti, L.] Sezione Ist Nazl Fis Nucl, Milan, Italy. [De Donato, C.; Miramonti, L.] Univ Milan, Milan, Italy. [Bleve, C.; Cataldi, G.; Coluccia, M. R.; De Mitri, I.; Giaccari, U.; Settimo, M.] Univ Salento, Dipartimento Fis, Lecce, Italy. [Bleve, C.; Cataldi, G.; Coluccia, M. R.; De Mitri, I.; Giaccari, U.; Marsella, G.; Perrone, L.; Settimo, M.] Sezione Ist Nazl Fis Nucl, Lecce, Italy. [Ambrosio, M.; Aramo, C.; Della Selva, A.; D'Urso, D.; Guarino, F.; Valore, L.; Yushkov, A.] Univ Naples Federico II, Naples, Italy. [Ambrosio, M.; Aramo, C.; Della Selva, A.; D'Urso, D.; Guarino, F.; Valore, L.; Yushkov, A.] Sezione Ist Nazl Fis Nucl, Naples, Italy. [Caruso, R.; De Domenico, M.; Insolia, A.; Italiano, A.; Pirronello, V.; Riggi, S.; Rodriguez Martino, J.; Scuderi, M.; Tegolo, D.; Trovato, E.] Univ Catania, Catania, Italy. [Caruso, R.; De Domenico, M.; Insolia, A.; Italiano, A.; Pirronello, V.; Riggi, S.; Rodriguez Martino, J.; Scuderi, M.; Tegolo, D.; Trovato, E.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Cester, R.; Maurizio, D.; Melo, D.; Menichetti, E.; Mussa, R.; Tonachini, A.] Univ Turin, Turin, Italy. [Aglietta, M.; Bonino, R.; Castellina, A.; Cester, R.; Chiavassa, A.; Fulgione, W.; Ghia, P. L.; Gorgi, A.; Lucero, A.; Maldera, S.; Maurizio, D.; Melo, D.; Menichetti, E.; Morello, C.; Mussa, R.; Navarra, G.; Tonachini, A.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Marsella, G.; Perrone, L.] Univ Salento, Dipartimento Ingn Innovaz, Lecce, Italy. [Anzalone, A.; Catalano, O.; La Rosa, G.; Maccarone, M. C.; Segreto, A.; Strazzeri, E.] Ist Astrofis Spaziale & Fis Cosm Palermo INAF, Palermo, Italy. [Aglietta, M.; Bonino, R.; Castellina, A.; Chiavassa, A.; Fulgione, W.; Ghia, P. L.; Gorgi, A.; Lucero, A.; Maldera, S.; Morello, C.; Navarra, G.] Univ Turin, Inst Fis Spazio Interplanetario INAF, Turin, Italy. [Grillo, A. F.; Parlati, S.] Ist Nazl Fis Nucl, Lab Nazl Gran Sasso, Laquila, Italy. [Tegolo, D.] Univ Palermo, Catania, Italy. [Lopez, R.; Martinez Bravo, O.; Moreno, E.; Robledo, C.; Salazar, H.] Univ Autonoma Puebla, Puebla 72570, Mexico. [Zepeda, A.] CINVESTAV, IPN, Mexico City 14000, DF, Mexico. [Cotti, U.; Marquez Falcon, H. R.; Villasenor, L.] Univ Michoacana, Morelia, Michoacan, Mexico. [De Donato, C.; D'Olivo, J. C.; Medina-Tanco, G.; Morales, B.; Nellen, L.; Sanchez, F.; Supanitsky, A. D.; Valdes Galicia, J. F.] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. [Coppens, J.; de Jong, S. J.; Falcke, H.; Grebe, S.; Hoerandel, J. R.; Horneffer, A.; Jiraskova, S.; Kelley, J.; Schoorlemmer, H.; Timmermans, C.] Radboud Univ Nijmegen, IMAPP, NL-6525 ED Nijmegen, Netherlands. [de Vries, K. D.; Fraenkel, E. D.; Harmsma, S.; Scholten, O.; van den Berg, A. M.] Univ Groningen, Kernfys Versneller Inst, Groningen, Netherlands. [Coppens, J.; Harmsma, S.; Petrovic, J.; Timmermans, C.] NIKHEF, Amsterdam, Netherlands. [Falcke, H.] ASTRON, Dwingeloo, Netherlands. [Borodai, N.; Gora, D.; Homola, P.; Pekala, J.; Stasielak, J.; Wilczynska, B.; Wilczynski, H.] Inst Nucl Phys PAN, Krakow, Poland. [Giller, M.; Smialkowski, A.; Szadkowski, Z.; Tkaczyk, W.; Wieczorek, G.] Univ Lodz, PL-90131 Lodz, Poland. [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Cazon, L.; Conceicao, R.; Goncalves, P.; Pimenta, M.; Santo, C. E.; Santo, E.; Tome, B.] LIP, P-1000 Lisbon, Portugal. [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Cazon, L.; Conceicao, R.; Goncalves, P.; Pimenta, M.; Santo, C. E.; Santo, E.; Tome, B.] Inst Super Tecn, Lisbon, Portugal. [Filipcic, A.; Veberic, D.; Zavrtanik, D.; Zavrtanik, M.] Jozef Stefan Inst, Ljubljana, Slovenia. [Creusot, A.; Filipcic, A.; Hussain, M.; Veberic, D.; Vorobiov, S.; Zavrtanik, D.; Zavrtanik, M.] Univ Nova Gorica, Lab Astroparticle Phys, Nova Gorica, Slovenia. [Pastor, S.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain. [Arganda, E.; Arqueros, F.; Blanco, F.; Garcia-Pinto, D.; Ortiz, M.; Rosado, J.; Vazquez, J. R.] Univ Complutense Madrid, Madrid, Spain. [Blanco, M.; del Peral, L.; McEwen, M.; Pacheco, N.; Redondo, A.; Rodriguez-Frias, M. D.; Ros, G.] Univ Alcala de Henares, Madrid, Spain. [Bueno, A.; Garcia Gamez, D.; Gonzalez, J. G.; Lozano Bahilo, J.; Navarro, J. L.; Navas, S.] Univ Granada, Granada, Spain. [Bueno, A.; Garcia Gamez, D.; Gonzalez, J. G.; Lozano Bahilo, J.; Navarro, J. L.; Navas, S.] CAFPE, Granada, Spain. [Alvarez-Muniz, J.; Facal San Luis, P.; Lopez Aguera, A.; Olmos-Gilbaja, V. M.; Parente, G.; Parra, A.; Pelayo, R.; Rodriguez, G.; Rodriguez-Cabo, I.; Vazquez, R. A.; Zas, E.] Univ Santiago Compostela, Santiago De Compostela, Spain. [Sarkar, S.] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford, England. [Bruijn, R.; Cook, H.; Gozzini, S. R.; Knapp, J.; Parsons, R. D.; Watson, A. A.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Spinka, H.] Argonne Natl Lab, Argonne, IL 60439 USA. [Burton, R. E.; Covault, C. E.] Case Western Reserve Univ, Cleveland, OH 44106 USA. [Sarazin, F.; Schuster, D.; Wiencke, L.] Colorado Sch Mines, Golden, CO 80401 USA. [Bauleo, P.; Brack, J.; Dorofeev, A.; Fracchiolla, C. E.; Harton, J. L.; Knapik, R.; Mostafa, M.; Petrov, Y.; Thomas, D.; Warner, D.; Younk, P.] Colorado State Univ, Ft Collins, CO 80523 USA. [Brown, W. C.] Colorado State Univ, Pueblo, CO USA. [Ahn, E. J.; Chou, A.; Fazzini, N.; Glass, H.; Hojvat, C.; Kaducak, M.; Kasper, P.; Kuehn, F.; Lebrun, P.; Mantsch, P.; Mazur, P. O.; Spinka, H.; Voyvodic, L.] Fermilab Natl Accelerator Lab, Batavia, IL USA. [Gonzalez, J. G.; Keivani, A.; Matthews, J.; Yuan, G.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Diaz, J. C.; Fick, B.; Kieckhafer, R. M.; Nitz, D.] Michigan Technol Univ, Houghton, MI 49931 USA. [Allen, J.; Chou, A.; Farrar, G.; Zaw, I.] NYU, New York, NY USA. [Paul, T.; Swain, J.] Northeastern Univ, Boston, MA 02115 USA. [Baughman, B.; Beatty, J. J.; Grashorn, E.; Morris, C.; Sutherland, M. S.] Ohio State Univ, Columbus, OH 43210 USA. [Coutu, S.; Criss, A.; Sommers, P.; Ulrich, R.] Penn State Univ, University Pk, PA 16802 USA. [Matthews, J.] So Univ, Baton Rouge, LA USA. [Arisaka, K.; Gelmini, G.; Kusenko, A.; Lee, J.] Univ Calif Los Angeles, Los Angeles, CA USA. [Ave, M.; Bohacova, M.; Cazon, L.; Cronin, J.; Facal San Luis, P.; Ionita, F.; Monasor, M.; Olinto, A.; Pavlidou, V.; Privitera, P.; Rouille-d'Orfeuil, B.; Schmidt, F.; Venters, T.; Williams, C.; Yamamoto, T.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [DuVernois, M. A.] Univ Hawaii, Honolulu, HI 96822 USA. [Petermann, E.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Becker, B. R.; Gold, M. S.; Hague, J. D.; Matthews, J. A. J.; Miller, W.] Univ New Mexico, Albuquerque, NM 87131 USA. [BenZvi, S.; Pfendner, C.; Westerhoff, S.] Univ Wisconsin, Madison, WI USA. [Anchordoqui, L.; Goggin, L. M.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Diep, P. N.; Dong, P. N.; Monasor, M.; Nhung, P. T.; Thao, N. T.] Inst Nucl Sci & Technol, Hanoi, Vietnam. RP Matthiae, G (reprint author), Univ Roma Tor Vergata, I-00173 Rome, Italy. EM giorgio.matthiae@roma2.infn.it RI Smida, Radomir/G-6314-2014; Ridky, Jan/H-6184-2014; Chudoba, Jiri/G-7737-2014; Pech, Miroslav/G-5760-2014; Todero Peixoto, Carlos Jose/G-3873-2012; Garcia Pinto, Diego/J-6724-2014; Pastor, Sergio/J-6902-2014; Tome, Bernardo/J-4410-2013; Espirito Santo, Maria Catarina/L-2341-2014; Pimenta, Mario/M-1741-2013; Ros, German/L-4764-2014; Anjos, Joao/C-8335-2013; Schussler, Fabian/G-5313-2013; Nierstenhofer, Nils/H-3699-2013; Goncalves, Patricia /D-8229-2013; Assis, Pedro/D-9062-2013; Prouza, Michael/F-8514-2014; Mandat, Dusan/G-5580-2014; Bohacova, Martina/G-5898-2014; Nozka, Libor/G-5550-2014; Cazon, Lorenzo/G-6921-2014; Schovanek, Petr/G-7117-2014; Travnicek, Petr/G-8814-2014; Shellard, Ronald/G-4825-2012; Petrolini, Alessandro/H-3782-2011; Muller, Marcio Aparecido/H-9112-2012; fulgione, walter/I-5232-2012; D'Urso, Domenico/I-5325-2012; Bleve, Carla/J-2521-2012; Brogueira, Pedro/K-3868-2012; Chinellato, Jose Augusto/I-7972-2012; Tamburro, Alessio/A-5703-2013; Yushkov, Alexey/A-6958-2013; Falcke, Heino/H-5262-2012; Ebr, Jan/H-8319-2012; Dias, Sandra/F-8134-2010; Dutan, Ioana/C-2337-2011; Caramete, Laurentiu/C-2328-2011; Venters, Tonia/D-2936-2012; Fauth, Anderson/F-9570-2012; de souza, Vitor/D-1381-2012; Aramo, Carla/D-4317-2011; Pesce, Roberto/G-5791-2011; Kemp, Ernesto/H-1502-2011; Chiavassa, Andrea/A-7597-2012; Verzi, Valerio/B-1149-2012; Chinellato, Carola Dobrigkeit /F-2540-2011; De Mitri, Ivan/C-1728-2017; Nosek, Dalibor/F-1129-2017; Navas, Sergio/N-4649-2014; Arqueros, Fernando/K-9460-2014; Blanco, Francisco/F-1131-2015; Conceicao, Ruben/L-2971-2014; Beatty, James/D-9310-2011; Sao Carlos Institute of Physics, IFSC/USP/M-2664-2016; Guarino, Fausto/I-3166-2012; Bonino, Raffaella/S-2367-2016; Rodriguez Frias, Maria /A-7608-2015; Oliva, Pietro/K-5915-2015; Inst. of Physics, Gleb Wataghin/A-9780-2017; de Mello Neto, Joao/C-5822-2013; Fulgione, Walter/C-8255-2016; Lozano-Bahilo, Julio/F-4881-2016; scuderi, mario/O-7019-2014; zas, enrique/I-5556-2015; Sarkar, Subir/G-5978-2011; Moura Santos, Edivaldo/K-5313-2016; Gouffon, Philippe/I-4549-2012; de Almeida, Rogerio/L-4584-2016; De Domenico, Manlio/B-5826-2014; Abreu, Pedro/L-2220-2014; Di Giulio, Claudio/B-3319-2015; Pavlidou, Vasiliki/C-2944-2011; Bueno, Antonio/F-3875-2015; Parente, Gonzalo/G-8264-2015; dos Santos, Eva/N-6351-2013; Alvarez-Muniz, Jaime/H-1857-2015; Rosado, Jaime/K-9109-2014; Valino, Ines/J-8324-2012; De Donato, Cinzia/J-9132-2015; Vazquez, Jose Ramon/K-2272-2015; Martello, Daniele/J-3131-2012; Insolia, Antonio/M-3447-2015 OI Coutu, Stephane/0000-0003-2923-2246; Dembinski, Hans/0000-0003-3337-3850; Kothandan, Divay/0000-0001-9048-7518; Ulrich, Ralf/0000-0002-2535-402X; Garcia, Beatriz/0000-0003-0919-2734; Rodriguez Fernandez, Gonzalo/0000-0002-4683-230X; Del Peral, Luis/0000-0003-2580-5668; Bonino, Raffaella/0000-0002-4264-1215; Rizi, Vincenzo/0000-0002-5277-6527; Mussa, Roberto/0000-0002-0294-9071; Segreto, Alberto/0000-0001-7341-6603; Knapp, Johannes/0000-0003-1519-1383; Petrera, Sergio/0000-0002-6029-1255; Asorey, Hernan/0000-0002-4559-8785; Andringa, Sofia/0000-0002-6397-9207; Aramo, Carla/0000-0002-8412-3846; Anzalone, Anna/0000-0003-1849-198X; Ridky, Jan/0000-0001-6697-1393; Todero Peixoto, Carlos Jose/0000-0003-3669-8212; Garcia Pinto, Diego/0000-0003-1348-6735; Tome, Bernardo/0000-0002-7564-8392; Espirito Santo, Maria Catarina/0000-0003-1286-7288; Pimenta, Mario/0000-0002-2590-0908; Ros, German/0000-0001-6623-1483; Schussler, Fabian/0000-0003-1500-6571; Goncalves, Patricia /0000-0003-2042-3759; Assis, Pedro/0000-0001-7765-3606; Prouza, Michael/0000-0002-3238-9597; Cazon, Lorenzo/0000-0001-6748-8395; Shellard, Ronald/0000-0002-2983-1815; Petrolini, Alessandro/0000-0003-0222-7594; D'Urso, Domenico/0000-0002-8215-4542; Brogueira, Pedro/0000-0001-6069-4073; Chinellato, Jose Augusto/0000-0002-3240-6270; Falcke, Heino/0000-0002-2526-6724; Ebr, Jan/0000-0001-8807-6162; Fauth, Anderson/0000-0001-7239-0288; Chinellato, Carola Dobrigkeit /0000-0002-1236-0789; maldera, simone/0000-0002-0698-4421; Matthews, James/0000-0002-1832-4420; Yuan, Guofeng/0000-0002-1907-8815; Marsella, Giovanni/0000-0002-3152-8874; La Rosa, Giovanni/0000-0002-3931-2269; Ravignani, Diego/0000-0001-7410-8522; Cataldi, Gabriella/0000-0001-8066-7718; Aglietta, Marco/0000-0001-8354-5388; Maccarone, Maria Concetta/0000-0001-8722-0361; Castellina, Antonella/0000-0002-0045-2467; De Mitri, Ivan/0000-0002-8665-1730; Nosek, Dalibor/0000-0001-6219-200X; de Jong, Sijbrand/0000-0002-3120-3367; Sigl, Guenter/0000-0002-4396-645X; Navarro Quirante, Jose Luis/0000-0002-9915-1735; Mantsch, Paul/0000-0002-8382-7745; Gomez Berisso, Mariano/0000-0001-5530-0180; Salamida, Francesco/0000-0002-9306-8447; Catalano, Osvaldo/0000-0002-9554-4128; Navas, Sergio/0000-0003-1688-5758; Arqueros, Fernando/0000-0002-4930-9282; Blanco, Francisco/0000-0003-4332-434X; Conceicao, Ruben/0000-0003-4945-5340; Beatty, James/0000-0003-0481-4952; Guarino, Fausto/0000-0003-1427-9885; Rodriguez Frias, Maria /0000-0002-2550-4462; Oliva, Pietro/0000-0002-3572-3255; de Mello Neto, Joao/0000-0002-3234-6634; Fulgione, Walter/0000-0002-2388-3809; Lozano-Bahilo, Julio/0000-0003-0613-140X; scuderi, mario/0000-0001-9026-5317; zas, enrique/0000-0002-4430-8117; Sarkar, Subir/0000-0002-3542-858X; Moura Santos, Edivaldo/0000-0002-2818-8813; Gouffon, Philippe/0000-0001-7511-4115; de Almeida, Rogerio/0000-0003-3104-2724; De Domenico, Manlio/0000-0001-5158-8594; Abreu, Pedro/0000-0002-9973-7314; Di Giulio, Claudio/0000-0002-0597-4547; Pavlidou, Vasiliki/0000-0002-0870-1368; Bueno, Antonio/0000-0002-7439-4247; Parente, Gonzalo/0000-0003-2847-0461; dos Santos, Eva/0000-0002-0474-8863; Alvarez-Muniz, Jaime/0000-0002-2367-0803; Rosado, Jaime/0000-0001-8208-9480; Valino, Ines/0000-0001-7823-0154; De Donato, Cinzia/0000-0002-9725-1281; Vazquez, Jose Ramon/0000-0001-9217-5219; Martello, Daniele/0000-0003-2046-3910; Insolia, Antonio/0000-0002-9040-1566 FU Comision Nacional de Energia Atomica; Fundacion Antorchas; Gobierno De La Provincia de Mendoza; Municipalidad de Malargue; NDM Holdings; Valle Las Lenas; Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Financiadora de Estudos e Projetos (FINEP); Fundacao de Amparo A Pesquisa do Estado de Rio de Janeiro (FAPERJ); Fundacao de Amparo Pesquisa do Estado de Sao Paulo (FAPESP); Ministerio de Ciencia e Tecnologia (MCT), Brazil [AVOZ10100502, AV0Z101100522, GAAV KJB300100801, KJB100100904, MSMT-CR LA08016, LC527, 1M06002, MSM0021620859,]; Czech Republic; Centre de Calcul [IN2P3/CNRS]; Centre National de la Recherche Scientifique (CNRS); Conseil Regional Ile-de-France; Departement Physique Nucleaire et Corpusculaire [PNC-IN2P3/CNRS]; Departement Sciences de I'Univers (SDU-INSU/CNRS), France; Bundesministerium fur Bildung und Forschung (BMBF); Deutsche Forschungsgemeinschaft (DFG); Finanzministerium Baden-Wurttemberg; Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF); Ministerium fur Wissenschaft und Forschung; Nordrhein-Westfalen; Ministerium fur Wissenschaft; Forschung und Kunst; Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN); Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO); Fundamenteel Onderzoek der Materie (FOM), Netherlands; Ministry of Science and Higher Education [1 P03 D 014 30, N202 090 31/0623, PAP/218/2006]; Fundacao para a Ciencia e a Tecnologia, Portugal; Ministry for Higher Education, Science, and Technology, Slovenian Research Agency, Slovenia; Consejeria de Educacion de la Comunidad de Castilla La Mancha; FEDER funds; Ministerio de Ciencia e Innovacion; Xunta de Galicia, Spain; Science and Technology Facilities Council, UK: Department of Energy [DE-AC02-07CH11359]; National Science Foundation [0450696]; Grainger Foundation USA; ALFA-EC / HELEN; European Union [MEIF-CT-2005-025057, PIEF-GA-2008-220240]; UNESCO FX We are very grateful to the following agencies and organisations for financial support: Comision Nacional de Energia Atomica, Fundacion Antorchas, Gobierno De La Provincia de Mendoza, Municipalidad de Malargue, NDM Holdings and Valle Las Lenas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo A Pesquisa do Estado de Rio de Janeiro (FAPERJ), Fundacao de Amparo Pesquisa do Estado de Sao Paulo (FAPESP), Ministerio de Ciencia e Tecnologia (MCT), Brazil: AVCR AVOZ10100502 and AV0Z101100522, GAAV KJB300100801 and KJB100100904, MSMT-CR LA08016, LC527, 1M06002, and MSM0021620859, Czech Republic; Centre de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS), Conseil Regional Ile-de-France, Departement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS), Departement Sciences de I'Univers (SDU-INSU/CNRS), France; Bundesministerium fur Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden-Wurttemberg, Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium fur Wissenschaft und Forschung, Nordrhein-Westfalen, Ministerium fur Wissenschaft, Forschung und Kunst, Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Italy: Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico: Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; Ministry of Science and Higher Education, Grant Nos. 1 P03 D 014 30, N202 090 31/0623, and PAP/218/2006, Poland; Fundacao para a Ciencia e a Tecnologia, Portugal; Ministry for Higher Education, Science, and Technology, Slovenian Research Agency, Slovenia; Comunidad de Madrid, Consejeria de Educacion de la Comunidad de Castilla La Mancha, FEDER funds, Ministerio de Ciencia e Innovacion, Xunta de Galicia, Spain; Science and Technology Facilities Council, UK: Department of Energy, Contract No. DE-AC02-07CH11359, National Science Foundation, Grant No. 0450696, The Grainger Foundation USA: ALFA-EC / HELEN, European Union 6th Framework Program, Grant No. MEIF-CT-2005-025057, European Union 7th Framework Program, Grant No. PIEF-GA-2008-220240, and UNESCO. NR 24 TC 86 Z9 86 U1 0 U2 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JAN 21 PY 2010 VL 613 IS 1 BP 29 EP 39 DI 10.1016/j.nima.2009.11.018 PG 11 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 558UH UT WOS:000274772800005 ER PT J AU Bourret-Courchesne, ED Bizarri, G Hanrahan, SM Gundiah, G Yan, Z Derenzo, SE AF Bourret-Courchesne, E. D. Bizarri, G. Hanrahan, S. M. Gundiah, G. Yan, Z. Derenzo, S. E. TI BaBrI:Eu2+, a new bright scintillator SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Scintillator; Halides; EuropiumEnergy resolution; Luminescence; Gamma-ray detection ID COMMON INORGANIC SCINTILLATORS AB The scintillation properties of BaBrI:Eu2+ are reported. Crystals were produced by the vertical Bridgman technique in a sealed quartz ampoule. Excellent scintillation properties were measured. A light yield of 81,000 +/- 3000 photons per MeV (ph/MeV) of absorbed gamma-ray energy was measured. An energy resolution (FWHM over peak position) of 4.8 +/- 0.5% was observed for the 662 keV full absorption peak. Pulsed X-ray luminescence measurements show two exponential decay components of 297 and 482 ns with a contribution to the total light output of 23% and 77%, respectively. Under X-ray and UV excitation, the emission corresponds to a broadband center at 413 nm. These initial values make BaBrI:Eu2+ one of the brightest and the fastest known Eu2+-doped scintillators. Published by Elsevier B.V. C1 [Bourret-Courchesne, E. D.; Yan, Z.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Bizarri, G.; Hanrahan, S. M.; Gundiah, G.; Derenzo, S. E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Bourret-Courchesne, ED (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, 1 Cyclotron Rd,Mailstop 55R0121, Berkeley, CA 94720 USA. EM EDBourret@lbl.gov FU US Department of Homeland Security/DNDO; US Department of Energy [NNSA/NA22]; Lawrence Berkeley National Laboratory [AC02-05CH1123] FX The authors would like to thank Marvin J. Weber and T.F. Budinger for valuable discussions and criticism during the preparation of this work, Kathleen Brennan, Martin Janecek, Christopher Ramsey, David Wilson and James Powell for their technical and engineering expertise. This work was supported by the US Department of Homeland Security/DNDO and the US Department of Energy/NNSA/NA22 and carried out at Lawrence Berkeley National Laboratory under Contract no. AC02-05CH11231. NR 9 TC 46 Z9 48 U1 0 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JAN 21 PY 2010 VL 613 IS 1 BP 95 EP 97 DI 10.1016/j.nima.2009.11.036 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 558UH UT WOS:000274772800013 ER PT J AU Allgaier, M Reddy, A Park, JI Ivanova, N D'haeseleer, P Lowry, S Sapra, R Hazen, TC Simmons, BA VanderGheynst, JS Hugenholtz, P AF Allgaier, Martin Reddy, Amitha Park, Joshua I. Ivanova, Natalia D'haeseleer, Patrik Lowry, Steve Sapra, Rajat Hazen, Terry C. Simmons, Blake A. VanderGheynst, Jean S. Hugenholtz, Philip TI Targeted Discovery of Glycoside Hydrolases from a Switchgrass-Adapted Compost Community SO PLOS ONE LA English DT Article ID FUNCTIONAL-ANALYSIS; BOVINE RUMEN; BIOFUELS; BIOMASS; DEGRADATION; DECOMPOSITION; STRAW; METAGENOMICS; ENVIRONMENT; MICROBIOME AB Development of cellulosic biofuels from non-food crops is currently an area of intense research interest. Tailoring depolymerizing enzymes to particular feedstocks and pretreatment conditions is one promising avenue of research in this area. Here we added a green-waste compost inoculum to switchgrass (Panicum virgatum) and simulated thermophilic composting in a bioreactor to select for a switchgrass-adapted community and to facilitate targeted discovery of glycoside hydrolases. Small-subunit (SSU) rRNA-based community profiles revealed that the microbial community changed dramatically between the initial and switchgrass-adapted compost (SAC) with some bacterial populations being enriched over 20-fold. We obtained 225 Mbp of 454-titanium pyrosequence data from the SAC community and conservatively identified 800 genes encoding glycoside hydrolase domains that were biased toward depolymerizing grass cell wall components. Of these, similar to 10% were putative cellulases mostly belonging to families GH5 and GH9. We synthesized two SAC GH9 genes with codon optimization for heterologous expression in Escherichia coli and observed activity for one on carboxymethyl cellulose. The active GH9 enzyme has a temperature optimum of 50 degrees C and pH range of 5.5 to 8 consistent with the composting conditions applied. We demonstrate that microbial communities adapt to switchgrass decomposition using simulated composting condition and that full-length genes can be identified from complex metagenomic sequence data, synthesized and expressed resulting in active enzyme. C1 [Allgaier, Martin; Reddy, Amitha; Park, Joshua I.; D'haeseleer, Patrik; Sapra, Rajat; Hazen, Terry C.; Simmons, Blake A.; VanderGheynst, Jean S.; Hugenholtz, Philip] Joint BioEnergy Inst, Deconstruct Div, Emeryville, CA USA. [Reddy, Amitha; VanderGheynst, Jean S.] Univ Calif Davis, Dept Biol & Agr Engn, Davis, CA 95616 USA. [Allgaier, Martin; Ivanova, Natalia; Lowry, Steve; Hugenholtz, Philip] Joint Genome Inst, Dept Energy DOE, Walnut Creek, CA USA. [D'haeseleer, Patrik] Lawrence Livermore Natl Lab, Microbial Syst Biol Grp, Livermore, CA USA. [Hazen, Terry C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Park, Joshua I.; Sapra, Rajat; Simmons, Blake A.] Sandia Natl Labs, Biomass Sci & Convers Technol Dept, Livermore, CA USA. RP Allgaier, M (reprint author), Joint BioEnergy Inst, Deconstruct Div, Emeryville, CA USA. EM phugenholtz@lbl.gov RI Hugenholtz, Philip/G-9608-2011; Hazen, Terry/C-1076-2012; OI Hazen, Terry/0000-0002-2536-9993; D'haeseleer, Patrik/0000-0003-0007-8150 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231] FX This work was part of the DOE Joint BioEnergy Institute (http://www.jbei.org) supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U. S. Department of Energy. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 44 TC 89 Z9 90 U1 4 U2 55 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JAN 21 PY 2010 VL 5 IS 1 AR e8812 DI 10.1371/journal.pone.0008812 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 546AJ UT WOS:000273779100006 PM 20098679 ER PT J AU Han, Q Ding, HZ Robinson, H Christensen, BM Li, JY AF Han, Qian Ding, Haizhen Robinson, Howard Christensen, Bruce M. Li, Jianyong TI Crystal Structure and Substrate Specificity of Drosophila 3,4-Dihydroxyphenylalanine Decarboxylase SO PLOS ONE LA English DT Article ID DOPA-DECARBOXYLASE; HYPERSENSITIVE GENE; ACID DECARBOXYLASE; PARKINSONS-DISEASE; LOCOMOTOR-ACTIVITY; AMINO-ACIDS; MELANOGASTER; ENZYMES; MELANIZATION; INDUCTION AB Background: 3,4-Dihydroxyphenylalanine decarboxylase (DDC), also known as aromatic L-amino acid decarboxylase, catalyzes the decarboxylation of a number of aromatic L-amino acids. Physiologically, DDC is responsible for the production of dopamine and serotonin through the decarboxylation of 3,4-dihydroxyphenylalanine and 5-hydroxytryptophan, respectively. In insects, both dopamine and serotonin serve as classical neurotransmitters, neuromodulators, or neurohormones, and dopamine is also involved in insect cuticle formation, eggshell hardening, and immune responses. Principal Findings: In this study, we expressed a typical DDC enzyme from Drosophila melanogaster, critically analyzed its substrate specificity and biochemical properties, determined its crystal structure at 1.75 Angstrom resolution, and evaluated the roles residues T82 and H192 play in substrate binding and enzyme catalysis through site-directed mutagenesis of the enzyme. Our results establish that this DDC functions exclusively on the production of dopamine and serotonin, with no activity to tyrosine or tryptophan and catalyzes the formation of serotonin more efficiently than dopamine. Conclusions: The crystal structure of Drosophila DDC and the site-directed mutagenesis study of the enzyme demonstrate that T82 is involved in substrate binding and that H192 is used not only for substrate interaction, but for cofactor binding of drDDC as well. Through comparative analysis, the results also provide insight into the structure-function relationship of other insect DDC-like proteins. C1 [Han, Qian; Ding, Haizhen; Li, Jianyong] Virginia Tech, Dept Biochem, Blacksburg, VA 24061 USA. [Robinson, Howard] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Christensen, Bruce M.] Univ Wisconsin, Dept Pathobiol Sci, Madison, WI 53706 USA. RP Han, Q (reprint author), Virginia Tech, Dept Biochem, Blacksburg, VA 24061 USA. EM lij@vt.edu RI Han, Qian/J-8696-2014 OI Han, Qian/0000-0001-6245-5252 FU NIH [AI 19769] FX NIH AI 19769. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 45 TC 14 Z9 14 U1 0 U2 7 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JAN 21 PY 2010 VL 5 IS 1 AR e8826 DI 10.1371/journal.pone.0008826 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 546AJ UT WOS:000273779100018 PM 20098687 ER PT J AU Joggerst, CC Almgren, A Bell, J Heger, A Whalen, D Woosley, SE AF Joggerst, C. C. Almgren, A. Bell, J. Heger, Alexander Whalen, Daniel Woosley, S. E. TI THE NUCLEOSYNTHETIC IMPRINT OF 15-40 M-circle dot PRIMORDIAL SUPERNOVAE ON METAL-POOR STARS SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: theory; early universe; methods: numerical; nuclear reactions, nucleosynthesis, abundances; supernovae: general ID CORE-COLLAPSE SUPERNOVAE; NEUTRINO-DRIVEN EXPLOSIONS; LESS-THAN -5.0; POPULATION-III; MASSIVE STARS; 1ST STARS; CHEMICAL ENRICHMENT; ABUNDANCE PATTERNS; UNEVOLVED STAR; EVOLUTION AB The inclusion of rotationally induced mixing in stellar evolution can alter the structure and composition of pre-supernova stars. We survey the effects of progenitor rotation on nucleosynthetic yields in Population III and II supernovae (SNe) using the new adaptive mesh refinement code CASTRO. We examine piston-driven spherical explosions in 15, 25, and 40 M-circle dot stars at Z = 0 and 10(-4) Z(circle dot) with three explosion energies and two rotation rates. Rotation in the Z = 0 models resulted in primary nitrogen production and a stronger hydrogen burning shell which led all models to die as red supergiants (in contrast to the blue supergiant progenitors made without rotation). On the other hand, the Z = 10(-4) Z(circle dot) models that included rotation ended their lives as compact blue stars. Because of their extended structure, the hydrodynamics favors more mixing and less fallback in the metal-free stars than the Z = 10(-4) models. As expected, higher energy explosions produce more enrichment and less fallback than do lower energy explosions, and at constant explosion energy, less massive stars produce more enrichment and leave behind smaller remnants than do more massive stars. We compare our nucleosynthetic yields to the chemical abundances in the three most iron-poor stars yet found and reproduce the abundance pattern of one, HE 0557-4840, with a zero metallicity, 15M(circle dot), 2.4 x 10(51) erg SN. A Salpeter IMF-averaged integration of our yields for Z = 0 models with explosion energies of 2.4 x 10(51) erg or less is in good agreement with the abundances observed in larger samples of extremely metal-poor (EMP) stars, provided 15 M-circle dot stars are included. Since the abundance patterns of EMP stars likely arise from a representative sample of progenitors, our yields suggest that 15-40 M-circle dot core-collapse SNe with moderate explosion energies contributed the bulk of the metals to the early universe. C1 [Joggerst, C. C.; Woosley, S. E.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95060 USA. [Joggerst, C. C.; Whalen, Daniel] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Almgren, A.; Bell, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. [Heger, Alexander] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. RP Joggerst, CC (reprint author), Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95060 USA. EM cchurch@ucolick.org FU UCSC; SciDAC Program [DE-FC02-06ER41438]; U.S. Department of Energy at Los Alamos National Laboratory [DE-AC5206NA25396]; Coyote at Los Alamos National Laboratory; NSF Major Research Instrumentation [AST-0521566] FX Work at UCSC and LBL was supported in part by the SciDAC Program under contract DE-FC02-06ER41438. Work at LANL was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC5206NA25396. The simulations were performed on the open cluster Coyote at Los Alamos National Laboratory. Additional computing resources were provided on the Pleiades computer at UCSC under NSF Major Research Instrumentation award number AST-0521566. NR 52 TC 76 Z9 76 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JAN 20 PY 2010 VL 709 IS 1 BP 11 EP 26 DI 10.1088/0004-637X/709/1/11 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 539TY UT WOS:000273282500002 ER PT J AU Wang, P Li, ZY Abel, T Nakamura, F AF Wang, Peng Li, Zhi-Yun Abel, Tom Nakamura, Fumitaka TI OUTFLOW FEEDBACK REGULATED MASSIVE STAR FORMATION IN PARSEC-SCALE CLUSTER-FORMING CLUMPS SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: jets and outflows; magnetic fields; methods: numerical; magnetohydrodynamics (MHD); stars: formation; turbulence ID MOLECULAR CLOUDS; SUPERSONIC TURBULENCE; DRIVEN TURBULENCE; PROTOSTELLAR CANDIDATES; DENSE GAS; ACCRETION; CORES; SIMULATIONS; COLLAPSE; EVOLUTION AB We investigate massive star formation in turbulent, magnetized, parsec-scale clumps of molecular clouds including protostellar outflow feedback using three-dimensional numerical simulations of effective resolution 2048(3). The calculations are carried out using a block structured adaptive mesh refinement code that solves the ideal magnetohydrodynamic equations including self-gravity and implements accreting sink particles. We find that, in the absence of regulation by magnetic fields and outflow feedback, massive stars form readily in a turbulent, moderately condensed clump of similar to 1600 M(circle dot) (containing similar to 10(2) initial Jeans masses), along with a cluster of hundreds of lower mass stars. The massive stars are fed at high rates by (1) transient dense filaments produced by large-scale turbulent compression at early times and (2) by the clump-wide global collapse resulting from turbulence decay at late times. In both cases, the bulk of the massive star's mass is supplied from outside a 0.1 pc-sized "core" that surrounds the star. In our simulation, the massive star is clump-fed rather than core-fed. The need for large-scale feeding makes the massive star formation prone to regulation by outflow feedback, which directly opposes the feeding processes. The outflows reduce the mass accretion rates onto the massive stars by breaking up the dense filaments that feed the massive star formation at early times, and by collectively slowing down the global collapse that fuels the massive star formation at late times. The latter is aided by a moderate magnetic field of strength in the observed range (corresponding to a dimensionless clump mass-to-flux ratio lambda similar to a few); the field allows the outflow momenta to be deposited more efficiently inside the clump. We conclude that the massive star formation in our simulated turbulent, magnetized, parsec-scale clump is outflow-regulated and clump-fed. An important implication is that the formation of low-mass stars in a dense clump can affect the formation of massive stars in the same clump, through their outflow feedback on the clump dynamics. In a companion paper, we discuss the properties of the lower mass cluster members formed along with the massive stars, including their mass distribution and spatial clustering. C1 [Wang, Peng; Abel, Tom] Stanford Univ, KIPAC, SLAC, Menlo Pk, CA 94025 USA. [Wang, Peng; Abel, Tom] Stanford Univ, Dept Phys, Menlo Pk, CA 94025 USA. [Li, Zhi-Yun] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Abel, Tom] Niigata Univ, Fac Educ, Niigata 9502181, Japan. RP Wang, P (reprint author), Stanford Univ, KIPAC, SLAC, Menlo Pk, CA 94025 USA. EM zl4h@virginia.edu NR 69 TC 175 Z9 175 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JAN 20 PY 2010 VL 709 IS 1 BP 27 EP 41 DI 10.1088/0004-637X/709/1/27 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 539TY UT WOS:000273282500003 ER PT J AU Leauthaud, A Finoguenov, A Kneib, JP Taylor, JE Massey, R Rhodes, J Ilbert, O Bundy, K Tinker, J George, MR Capak, P Koekemoer, AM Johnston, DE Zhang, YY Cappelluti, N Ellis, RS Elvis, M Giodini, S Heymans, C Le Fevre, O Lilly, S McCracken, HJ Mellier, Y Refregier, A Salvato, M Scoville, N Smoot, G Tanaka, M Van Waerbeke, L Wolk, M AF Leauthaud, Alexie Finoguenov, Alexis Kneib, Jean-Paul Taylor, James E. Massey, Richard Rhodes, Jason Ilbert, Olivier Bundy, Kevin Tinker, Jeremy George, Matthew R. Capak, Peter Koekemoer, Anton M. Johnston, David E. Zhang, Yu-Ying Cappelluti, Nico Ellis, Richard S. Elvis, Martin Giodini, Stefania Heymans, Catherine Le Fevre, Oliver Lilly, Simon McCracken, Henry J. Mellier, Yannick Refregier, Alexandre Salvato, Mara Scoville, Nick Smoot, George Tanaka, Masayuki Van Waerbeke, Ludovic Wolk, Melody TI A WEAK LENSING STUDY OF X-RAY GROUPS IN THE COSMOS SURVEY: FORM AND EVOLUTION OF THE MASS-LUMINOSITY RELATION SO ASTROPHYSICAL JOURNAL LA English DT Review DE cosmology: observations; gravitational lensing; large-scale structure of universe ID HUBBLE-SPACE-TELESCOPE; GALAXY CLUSTER SURVEY; DIGITAL SKY SURVEY; DARK-MATTER HALOS; WIDE-FIELD SURVEY; SCALING RELATIONS; COSMOLOGICAL PARAMETERS; PHOTOMETRIC REDSHIFTS; ADVANCED CAMERA; SOURCE CATALOG AB Measurements of X-ray scaling laws are critical for improving cosmological constraints derived with the halo mass function and for understanding the physical processes that govern the heating and cooling of the intracluster medium. In this paper, we use a sample of 206 X-ray-selected galaxy groups to investigate the scaling relation between X-ray luminosity (L(X)) and halo mass (M(200)) where M(200) is derived via stacked weak gravitational lensing. This work draws upon a broad array of multi-wavelength COSMOS observations including 1.64 degrees(2) of contiguous imaging with the Advanced Camera for Surveys to a limiting magnitude of I(F814W) = 26.5 and deep XMM-Newton/Chandra imaging to a limiting flux of 1.0 x 10(-15) erg cm(-2) s(-1) in the 0.5-2 keV band. The combined depth of these two data sets allows us to probe the lensing signals of X-ray-detected structures at both higher redshifts and lower masses than previously explored. Weak lensing profiles and halo masses are derived for nine sub-samples, narrowly binned in luminosity and redshift. The COSMOS data alone are well fit by a power law, M(200) alpha (L(X))(alpha), with a slope of alpha = 0.66 +/- 0.14. These results significantly extend the dynamic range for which the halo masses of X-ray-selected structures have been measured with weak gravitational lensing. As a result, tight constraints are obtained for the slope of the M-L(X) relation. The combination of our group data with previously published cluster data demonstrates that the M-L(X) relation is well described by a single power law, a = 0.64 +/- 0.03, over two decades in mass, M(200) similar to 10(13.5)-10(15.5) h(72)(-1) M(circle dot). These results are inconsistent at the 3.7 sigma level with the self-similar prediction of alpha = 0.75. We examine the redshift dependence of the M-L(X) relation and find little evidence for evolution beyond the rate predicted by self-similarity from z similar to 0.25 to z similar to 0.8. C1 [Leauthaud, Alexie] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Leauthaud, Alexie; Tinker, Jeremy; Smoot, George] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Finoguenov, Alexis; Cappelluti, Nico; Giodini, Stefania] Max Planck Inst Extraterr Phys, D-85748 Munich, Germany. [Finoguenov, Alexis] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. [Kneib, Jean-Paul; Ilbert, Olivier; Le Fevre, Oliver] Univ Aix Marseille, CNRS, LAM, F-13013 Marseille, France. [Taylor, James E.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [Massey, Richard; Heymans, Catherine] Astron Inst, Edinburgh EH9 3HJ, Midlothian, Scotland. [Rhodes, Jason] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Rhodes, Jason; Ellis, Richard S.; Salvato, Mara; Scoville, Nick] CALTECH, Pasadena, CA 91125 USA. [Bundy, Kevin; George, Matthew R.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Capak, Peter] Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Koekemoer, Anton M.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Johnston, David E.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Zhang, Yu-Ying] Univ Bonn, Argelander Inst Astron, D-53121 Bonn, Germany. [Elvis, Martin] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Lilly, Simon] ETH, Inst Astron, Dept Phys, CH-8093 Zurich, Switzerland. [McCracken, Henry J.; Mellier, Yannick] Inst Astrophys, UMR 7095, F-75014 Paris, France. [Refregier, Alexandre] CEA Saclay, Serv Astrophys, F-91191 Gif Sur Yvette, France. [Salvato, Mara] IPP Max Planck Inst Plasma Phys, D-85748 Garching, Germany. [Tanaka, Masayuki] European So Observ, D-85748 Garching, Germany. [Van Waerbeke, Ludovic] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Wolk, Melody] Ecole Normale Super, F-94235 Cachan, France. RP Leauthaud, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM asleauthaud@lbl.gov RI Le Fevre, Olivier/G-7389-2011; Kneib, Jean-Paul/A-7919-2015; OI Massey, Richard/0000-0002-6085-3780; Kneib, Jean-Paul/0000-0002-4616-4989; Cappelluti, Nico/0000-0002-1697-186X; Koekemoer, Anton/0000-0002-6610-2048 FU NASA [NAS 5-26555]; ESA Member States; European Southern Observatory [175.A-0839]; Association of Universities forResearch in Astronomy, Inc. (AURA); National Science Foundation; National Radio Astronomy Observatory; Associated Universities, Inc; CEA/DAPNIA; National Research Council of Canada; Canadian Astronomy Data Centre; Centre National de la Recherche Scientifique de France; TERAPIX; University of Hawaii FX Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA Inc, under NASA contract NAS 5-26555; also based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan; the XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA; the European Southern Observatory under Large Program 175.A-0839, Chile; Kitt Peak National Observatory, Cerro Tololo Inter-American Observatory, and the National Optical Astronomy Observatory, which are operated by the Association of Universities forResearch in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation; the National Radio Astronomy Observatory which is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc; and the Canada-France-Hawaii Telescope with MegaPrime/MegaCam operated as a joint project by the Canada-France-Hawaii-Telescope Corporation, CEA/DAPNIA, the National Research Council of Canada, the Canadian Astronomy Data Centre, the Centre National de la Recherche Scientifique de France, TERAPIX and the University of Hawaii. NR 112 TC 149 Z9 151 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JAN 20 PY 2010 VL 709 IS 1 BP 97 EP 114 DI 10.1088/0004-637X/709/1/97 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 539TY UT WOS:000273282500010 ER PT J AU Sergis, N Krimigis, SM Roelof, EC Arridge, CS Rymer, AM Mitchell, DG Hamilton, DC Krupp, N Thomsen, MF Dougherty, MK Coates, AJ Young, DT AF Sergis, N. Krimigis, S. M. Roelof, E. C. Arridge, C. S. Rymer, A. M. Mitchell, D. G. Hamilton, D. C. Krupp, N. Thomsen, M. F. Dougherty, M. K. Coates, A. J. Young, D. T. TI Particle pressure, inertial force, and ring current density profiles in the magnetosphere of Saturn, based on Cassini measurements SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID INNER MAGNETOSPHERE; SPECTROMETER; PLASMA AB We report initial results on the particle pressure distribution and its contribution to ring current density in the equatorial magnetosphere of Saturn, as measured by the Magnetospheric Imaging Instrument (MIMI) and the Cassini Plasma Spectrometer (CAPS) onboard the Cassini spacecraft. Data were obtained from September 2005 to May 2006, within +/- 0.5 R(S) from the nominal magnetic equator in the range 6 to 15 RS. The analysis of particle and magnetic field measurements, the latter provided by the Cassini magnetometer (MAG), allows the calculation of average radial profiles for various pressure components in Saturn's magnetosphere. The radial gradient of the total particle pressure is compared to the inertial body force to determine their relative contribution to the Saturnian ring current, and an average radial profile of the azimuthal current intensity is deduced. The results show that: ( 1) Thermal pressure dominates from 6 to 9 RS, while thermal and suprathermal pressures are comparable outside 9 RS with the latter becoming larger outside 12 RS. ( 2) The plasma beta (particle/magnetic pressure) remains >= 1 outside 8 RS, maximizing (similar to 3 to similar to 10) between 11 and 14 RS. ( 3) The inertial body force and the pressure gradient are similar at 9-10 R(S), but the gradient becomes larger >= 11 R(S). ( 4) The azimuthal ring current intensity develops a maximum between approximately 8 and 12 RS, reaching values of 100-150 pA/m(2). Outside this region, it drops with radial distance faster than the 1/r rate assumed by typical disk current models even though the total current is not much different to the model results. Citation: Sergis, N., et al. ( 2010), Particle pressure, inertial force, and ring current density profiles in the magnetosphere of Saturn, based on Cassini measurements, Geophys. Res. Lett., 37, L02102, doi: 10.1029/2009GL041920. C1 [Sergis, N.; Krimigis, S. M.] Acad Athens, Off Space Res & Technol, GR-15773 Athens, Greece. [Arridge, C. S.; Coates, A. J.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Dougherty, M. K.] Univ London Imperial Coll Sci Technol & Med, Space & Atmospher Phys Grp, London SW7 2BZ, England. [Hamilton, D. C.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Krupp, N.] Max Planck Inst Sonnensyst Forsch, D-37191 Lindau, Germany. [Krimigis, S. M.; Roelof, E. C.; Rymer, A. M.; Mitchell, D. G.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Thomsen, M. F.] Los Alamos Natl Lab, Los Alamos, NM USA. [Young, D. T.] SW Res Inst, Div Space Sci & Engn, San Antonio, TX 78228 USA. [Arridge, C. S.; Coates, A. J.] UCL, Ctr Planetary Sci, London, England. RP Sergis, N (reprint author), Acad Athens, Off Space Res & Technol, GR-15773 Athens, Greece. EM nsergis@phys.uoa.gr RI Arridge, Christopher/A-2894-2009; Coates, Andrew/C-2396-2008; Sergis, Nick/A-9881-2015; OI Arridge, Christopher/0000-0002-0431-6526; Coates, Andrew/0000-0002-6185-3125; Hamilton, Douglas/0000-0001-6103-8019 FU NASA; UMD; Academy of Athens; Bundesministerium fur Bildung und Forschung through the Deutsches Zentrum fur Luft und Raumfahrt; Max-Planck-Gesellschaft; Science and Technology Facilities Council; STFC FX We thank M. Kusterer (JHU/APL) for assistance with the data reduction. We are grateful to MIMI colleagues for comments that improved this study. We also thank R. J. Wilson and H. J. McAndrews for ion moment calculations. Work at JHU/APL was supported by NASA and by subcontracts at the UMD and the Academy of Athens. The German contribution of MIMI/LEMMS was financed by the Bundesministerium fur Bildung und Forschung through the Deutsches Zentrum fur Luft und Raumfahrt and by the Max-Planck-Gesellschaft. C. S. A. and A. J. C. were funded in the UK by the Science and Technology Facilities Council rolling grant to MSSL/UCL. Cassini CAPS/ELS data processing is funded in the UK by STFC. Work at LANL was conducted under the auspices of the U. S. Dep. of Energy, with support from the NASA Cassini project. NR 25 TC 34 Z9 34 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JAN 20 PY 2010 VL 37 AR L02102 DI 10.1029/2009GL041920 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 547OE UT WOS:000273898100004 ER PT J AU Jayaraman, S Thompson, AP von Lilienfeld, OA Maginn, EJ AF Jayaraman, Saivenkataraman Thompson, Aidan P. von Lilienfeld, O. Anatole Maginn, Edward J. TI Molecular Simulation of the Thermal and Transport Properties of Three Alkali Nitrate Salts SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID BORN REPULSIVE PARAMETERS; MOLTEN LINO3; DYNAMICS SIMULATION; IONIC DYNAMICS; SHEAR VISCOSITY; FORCE-FIELD; CONDUCTIVITY; HALIDES; LIQUID; NANO3 AB Thermodynamic and transport properties for nitrate salts containing lithium, sodium, and potassium cations were Computed from molecular simulations. Densities for the liquid and crystal phases calculated from simulations were within 4% of the experimental values. A nonequilibrium molecular dynamics method was used to compute viscosities and thermal conductivities. The results for the three salts were comparable to the experimental values for both viscosity and thermal conductivity. Computed heat capacities were also in reasonable agreement with experimental values. The computed melting point for NaNO(3) was within 15 K of its experimental value, while for LiNO(3) and KNO(3), computed melting points were within 100 K of the experimental values. The results show that very small free-energy differences between the crystal and liquid phases can result in large differences in computed melting point. To estimate melting points with an accuracy of around 10 K, simulation methods and force fields must yield free energies with an accuracy of around 0.25 kcal/mol. Tests conducted on a well-studied sodium chloride model indicated negligible dependence of file computed melting point on system size or choice of integration temperature. C1 [Jayaraman, Saivenkataraman; Maginn, Edward J.] Univ Notre Dame, Dept Chem & Biomol Engn, Notre Dame, IN 46556 USA. [Thompson, Aidan P.; von Lilienfeld, O. Anatole] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Maginn, EJ (reprint author), Univ Notre Dame, Dept Chem & Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. EM ed@nd.edu RI von Lilienfeld, O. Anatole/D-8529-2011; Maginn, Edward/F-7584-2014 FU Air Force Office of Scientific Research [FA 9550-07-1-0443]; Sandia National Laboratories; SNL's Laboratories Directed Research and Development Truman program [120209]; United States Department of Energy [DE-AC04-94AL85000] FX Funding for this work was provided by the Air Force Office of Scientific Research, contract FA 9550-07-1-0443. S.J. acknowledges support from Sandia National Laboratories for a summer internship. O.A.V.L. acknowledges Support from SNL's Laboratories Directed Research and Development Truman program, No. 120209. Steven J. Plimpton, Nathan P, Siegel, and Robert W. Bradshaw at Sandia National Laboratories are thanked for helpful discussions. Sandia is it multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract No. DE-AC04-94AL85000. NR 48 TC 17 Z9 17 U1 4 U2 52 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD JAN 20 PY 2010 VL 49 IS 2 BP 559 EP 571 DI 10.1021/ie9007216 PG 13 WC Engineering, Chemical SC Engineering GA 541GW UT WOS:000273404300017 ER PT J AU Pol, VG Daemen, LL Vogel, S Chertkov, G AF Pol, Vilas G. Daemen, Luke L. Vogel, Sven Chertkov, George TI Solvent-Free Fabrication of Ferromagnetic Fe3O4 Octahedra SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID MAGNETIC-PROPERTIES; NANOPARTICLES; OXIDATION; PARTICLES; FIELD; ALPHA-FE2O3; NANOWIRES; GROWTH AB The controlled thermolysis of a presynthesized single precursor, Fe-3(CH3COO)(6)(OH)(2)CH3COO, in a closed reactor at 700 degrees C in ail inert atmosphere produced ferromagnetic Fe3O4 octahedra Without using solvent or catalyst. The octahedral shape with the 6-10 mu m diameter of Fe3O4 is realized using field emission scanning electron microscope, and the composition, with an attached energy dispersive X-ray analyzer. The single-crystalline face-centered Cubic Structure of Fe3O4 octahedra is analyzed by X-ray diffraction measurements, further Supported by Raman spectroscopy and transmission electron microscopy. The thermogravimetric analysis measured the amount of carbon present oil the Fe3O4 octahedra surfaces. The vibrating magnetometer corroborated ferromagnetic behavior of Fe3O4 octahedra with 150 Oe coercive force, 48 emu/g saturation magnetization, and 5 emu/g remnent magnetization. C1 [Pol, Vilas G.] Argonne Natl Lab, IPNS, Argonne, IL 60439 USA. [Daemen, Luke L.; Vogel, Sven; Chertkov, George] Los Alamos Natl Lab, LANSCE, Los Alamos, NM 87545 USA. RP Pol, VG (reprint author), Argonne Natl Lab, IPNS, 9700 S Cass Ave, Argonne, IL 60439 USA. EM vilaspol@gmail.com RI Lujan Center, LANL/G-4896-2012; OI Vogel, Sven C./0000-0003-2049-0361 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH 11357] FX This work benefited from the Use of the facilities at the Intense Pulsed Neutron S, Center for Nanoscale Materials, and Electron Microscopy Center at Argonne National Laboratory, supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Under Contract No. DE-AC02-06CH 11357. NR 22 TC 11 Z9 11 U1 3 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD JAN 20 PY 2010 VL 49 IS 2 BP 920 EP 924 DI 10.1021/ie9011062 PG 5 WC Engineering, Chemical SC Engineering GA 541GW UT WOS:000273404300054 ER PT J AU Fattebert, JL AF Fattebert, J. -L. TI Accelerated Block Preconditioned Gradient method for large scale wave functions calculations in Density Functional Theory SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Block Preconditioned Gradient; Density Functional Theory; Kohn-Sham equations ID CONVERGENCE ACCELERATION; NONLINEAR EQUATIONS; AB-INITIO; OPTIMIZATION; SUBSPACE; MINIMIZATION; SEQUENCES; ITERATION AB An Accelerated Block Preconditioned Gradient (ABPG) method is proposed to solve electronic structure problems in Density Functional Theory. This iterative algorithm is designed to solve directly the non-linear Kohn-Sham equations for accurate discretization schemes involving a large number of degrees of freedom. It makes use of an acceleration scheme similar to what is known as RMM-DIIS in the electronic structure community. The method is illustrated with examples of convergence for large scale applications using a finite difference discretization and multigrid preconditioning. (C) 2009 Elsevier Inc. All rights reserved. C1 [Fattebert, J. -L.] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA. RP Fattebert, JL (reprint author), Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA. EM fattebertl@llnl.gov NR 25 TC 3 Z9 3 U1 3 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD JAN 20 PY 2010 VL 229 IS 2 BP 441 EP 452 DI 10.1016/j.jcp.2009.09.035 PG 12 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 532OY UT WOS:000272760500013 ER PT J AU Learmonth, T Glans, PA Guo, JH Greenblatt, M Smith, KE AF Learmonth, T. Glans, P-A Guo, J-H Greenblatt, M. Smith, K. E. TI Electronic excitations in the correlated metal BaV0.98Ti0.02S3 studied using resonant inelastic soft x-ray scattering SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID STRUCTURAL ASPECTS; BAVS3; SPECTROSCOPY; TRANSITION; ABSORPTION; EMISSION; BEHAVIOR; CRYSTAL; SPECTRA; STATE AB Electronic excitations in the correlated metal BaTi0.02V0.98S3 have been studied using resonant inelastic soft x-ray scattering at the V L edge. The intensities of the intra-atomic d-d* excitations and the elastic x-ray scattering feature are found to be temperature dependent, with the intensity increasing with decreasing temperature until saturation is reached near 100 K. The behavior of the spectral features is interpreted as evidence of a shift in the 3d electrons from more band-like states at higher temperature to more localized states at low temperature. C1 [Learmonth, T.; Glans, P-A; Smith, K. E.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Guo, J-H] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Greenblatt, M.] Rutgers State Univ, Dept Chem & Biol Chem, Piscataway, NJ USA. RP Learmonth, T (reprint author), Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA. RI Glans, Per-Anders/G-8674-2016 FU US Department of Energy [DE-FG02-98ER45680, DE-AC02-05CH11231]; ALS Doctoral FX The Boston University (BU) program is supported in part by the Department of Energy under DE-FG02-98ER45680. The ALS is supported by the US Department of Energy under Contract No. DE-AC02-05CH11231. TL acknowledges support from the ALS Doctoral Fellowship Program. Cormac McGuinness is thanked for numerous helpful comments. NR 26 TC 2 Z9 2 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JAN 20 PY 2010 VL 22 IS 2 AR 025504 DI 10.1088/0953-8984/22/2/025504 PG 5 WC Physics, Condensed Matter SC Physics GA 534IZ UT WOS:000272891100014 PM 21386258 ER PT J AU Santos, CC Guedes, I Loong, CK Boatner, LA Moura, AL de Araujo, MT Jacinto, C Vermelho, MVD AF Santos, C. C. Guedes, I. Loong, C-K Boatner, L. A. Moura, A. L. de Araujo, M. T. Jacinto, C. Vermelho, M. V. D. TI Spectroscopic properties of Er3+-doped lead phosphate glasses for photonic application SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID DOPED LUTETIUM ORTHOPHOSPHATE; RARE-EARTH IONS; UP-CONVERSION; ER3+ IONS; ABSORPTION INTENSITIES; OPTICAL SPECTROSCOPY; TELLURITE GLASSES; FIBER AMPLIFIERS; ND3+ IONS; SPECTRA AB The spectroscopic characteristics of Er3+-doped lead phosphate glasses have been investigated, and Judd-Ofelt analysis was used to evaluate the effect of increasing the Er3+ content on the glass matrices. The intensity-dependent Judd-Ofelt parameters, Omega((4)) and Omega((6)), remained constant while Omega((2)) decreased. The concentration quenching effect on the lifetime of the Er3+:I-4(13/ 2) -> I-4(15/2) (1530 nm) transition is also evaluated as a result of the addition of Er3+ to the lead phosphate glass composition. The observed relatively large reduction in the lifetime reflects the significant effects of non-radiative processes in this system. The potential use of these glasses as photonic devices is also discussed. C1 [Santos, C. C.; Guedes, I.] Univ Fed Ceara, Dept Fis, BR-60455760 Fortaleza, Ceara, Brazil. [Loong, C-K] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Boatner, L. A.] Oak Ridge Natl Lab, ORNL Ctr Radiat Detect Mat & Syst, Oak Ridge, TN 37831 USA. [Moura, A. L.; de Araujo, M. T.; Jacinto, C.; Vermelho, M. V. D.] Univ Fed Alagoas, Inst Fis, BR-57072970 Maceio, AL, Brazil. RP Vermelho, MVD (reprint author), Univ Fed Alagoas, Inst Fis, BR-57072970 Maceio, AL, Brazil. EM vermelho@if.ufal.br RI Vermelho, Marcos/F-2972-2011; Santos, Clenilton/I-2540-2012; GUEDES, ILDE/C-3451-2013; Nanobiosimes, Inct/K-2263-2013; Jacinto, Carlos/M-6982-2014; Moura, Andre/H-4803-2016; Boatner, Lynn/I-6428-2013; UFC, DF/E-1564-2017; Universidade Federal do Ceara, Physics Department/J-4630-2016; OI Jacinto, Carlos/0000-0002-1101-7196; Moura, Andre/0000-0002-3737-9689; Boatner, Lynn/0000-0002-0235-7594; Universidade Federal do Ceara, Physics Department/0000-0002-9247-6780; GUEDES, ILDE/0000-0002-1040-5891 FU PADCT; FUNCAP; CAPES; PRONEX; FAPEAL; CNPq; FINEP; US Department of Energy [DE-AC05-00OR272] FX The financial support for this research by the PADCT, FUNCAP, CAPES, PRONEX, FAPEAL, CNPq and FINEP Brazilian agencies is gratefully acknowledged. The research was sponsored in part by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy, under Contract No DE-AC05-00OR272 with Oak Ridge National Laboratory managed and operated by UT-Batelle, LLC. NR 40 TC 42 Z9 42 U1 2 U2 18 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD JAN 20 PY 2010 VL 43 IS 2 AR 025102 DI 10.1088/0022-3727/43/2/025102 PG 8 WC Physics, Applied SC Physics GA 535IA UT WOS:000272959500007 ER PT J AU Nocton, G Horeglad, P Vetere, V Pecaut, J Dubois, L Maldivi, P Edelstein, NM Mazzanti, M AF Nocton, Gregory Horeglad, Pawel Vetere, Valentina Pecaut, Jacques Dubois, Lionel Maldivi, Pascale Edelstein, Norman M. Mazzanti, Marinella TI Synthesis, Structure, and Bonding of Stable Complexes of Pentavalent Uranyl SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ELECTRONIC-STRUCTURE; URANIUM COMPLEXES; AQUEOUS-SOLUTION; TRIVALENT URANIUM; CHEMISTRY; COORDINATION; REDUCTION; DISPROPORTIONATION; REACTIVITY; ACTIVATION AB Stable complexes of pentavalent uranyl [UO2(salan-Bu-t(2))(py)K](n) (3), [UO2(salan-Bu-t(2))(py)K(18C6)] (4), and [UO2(salophen-Bu-t(2))(thf)]K(thf)(2)}(n), (8) have been synthesized from the reaction of the complex {[UO(2)py(5)][KI(2)py(2)]}(n) (1) with the bulky amine-phenolate ligand potassium salt K-2(salan-Bu-t(2)) or the Schiff base ligand potassium salt K-2(salophen-Bu-t(2)) in pyridine. They were characterized by NMR, IR, elemental analysis, single crystal X-ray diffraction, UV-vis spectroscopy, cyclic voltammetry, low-temperature EPR, and variable-temperature magnetic susceptibility. X-ray diffraction shows that 3 and 8 are polymeric and 4 is monomeric. Crystals of the monomeric complex [(UO2)-O-v(salan-Bu-t(2))(py)][Cp-2*Co], 6, were also isolated from the reduction of [(UO2)-O-VI(salan-Bu-t(2))(py)], 5, with Cp-2*Co. Addition of crown ether to 1 afforded the highly soluble pyridine stable species [UO(2)py(5)]I.py (2). The measured redox potentials E-1/2 (U-VI/U-V) are significantly different for 2 (-0.91 and -0.46 V) in comparison with 3, 4, 5, 7 and 9 (in the range -1.65 to -1.82 V). Temperature-dependent magnetic susceptibility data are reported for 4 and 7 and give mu(eff) of 2.20 and 2.23 mu(B) at 300 K respectively, which is compared with a mu(eff) of 2.6(1) mu(B) (300 K) for 2. Complexes 1 and 2 are EPR silent (4 K) while a rhombic EPR signal (g(x) = 1.98; g(y) = 1.25; g(z) = 0.74 (at 4 K) was measured for 4. The magnetic and the EPR data can be qualitatively analyzed with a simple crystal field model where the f electron has a nonbonding character. However, the temperature dependence of the magnetic susceptibility data suggests that one or more excited states are relatively low-lying. DFT studies show unambiguously the presence of a significant covalent contribution to the metal-ligand interaction in these complexes leading to a significant lowering of the pi(u)*. The presence of a back-bonding interaction is likely to play a role in the observed solution stability of the [UO2(salan-Bu-t(2))(py)K] and [UO2(salophen-Bu-t(2))(py)K] complexes with respect to disproportionation and hydrolysis. C1 [Nocton, Gregory; Horeglad, Pawel; Vetere, Valentina; Pecaut, Jacques; Dubois, Lionel; Maldivi, Pascale; Mazzanti, Marinella] CEA Grenoble, Lab Reconnaissance Ion & Chim Coordinat, SCIB, INAC, F-38054 Grenoble 09, France. [Nocton, Gregory; Horeglad, Pawel; Vetere, Valentina; Pecaut, Jacques; Dubois, Lionel; Maldivi, Pascale; Mazzanti, Marinella] UJF, CEA, UMR E 3, LCIB, F-38041 Grenoble 9, France. [Vetere, Valentina] Univ Toulouse, Lab Chim & Phys Quant, UMR5626, F-31062 Toulouse, France. [Edelstein, Norman M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Mazzanti, M (reprint author), CEA Grenoble, Lab Reconnaissance Ion & Chim Coordinat, SCIB, INAC, F-38054 Grenoble 09, France. EM marinella.mazzanti@cea.fr RI Nocton, Greg/D-4435-2009 FU Commissariat l'Energie Atomique, Direction de l'Energie Nucleaire FX This work was supported by the Commissariat l'Energie Atomique, Direction de l'Energie Nucleaire. We thank Pierre Alain Bayle for his help with the NMR experiments and Jean-Francois Jacquot for the magnetic measurements. NR 61 TC 75 Z9 75 U1 12 U2 80 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JAN 20 PY 2010 VL 132 IS 2 BP 495 EP 508 DI 10.1021/ja9037164 PG 14 WC Chemistry, Multidisciplinary SC Chemistry GA 562VY UT WOS:000275084600024 PM 20000767 ER PT J AU Tang, L Han, B Persson, K Friesen, C He, T Sieradzki, K Ceder, G AF Tang, Lei Han, Byungchan Persson, Kristin Friesen, Cody He, Ting Sieradzki, Karl Ceder, Gerbrand TI Electrochemical Stability of Nanometer-Scale Pt Particles in Acidic Environments SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SCANNING TUNNELING MICROSCOPE; OXYGEN REDUCTION ACTIVITY; CYCLIC-VOLTAMMETRY; COPPER CLUSTERS; SURFACE; PLATINUM; ELECTRODES; ALLOY; METAL; DISSOLUTION AB Understanding and controlling the electrochemical stability or corrosion behavior of nanometer-scale solids is vitally important in a variety of applications such as nanoscale electronics, sensing, and catalysis. For many applications, the increased surface to volume ratio achieved by particle size reduction leads to lower materials cost and higher efficiency, but there are questions as to whether the intrinsic stability of materials also decreases with particle size. An important example of this relates to the stability of Pt catalysts in, for example, proton exchange fuel cells. In this Article, we use electrochemical scanning tunneling microscopy to, for the first time, directly examine the stability of individual Pt nanoparticles as a function of applied potential. We combine this experimental study with ab initio computations to determine the stability, passivation, and dissolution behavior of Pt as a function of particle size and potential. Both approaches clearly show that smaller Pt particles dissolve well below the bulk dissolution potential and through a different mechanism. Pt dissolution from a nanoparticle occurs by direct electro-oxidation of Pt to soluble Pt(2+) cations, unlike bulk Pt, which dissolves from the oxide. These results have important implications for understanding the stability of Pt and Pt alloy catalysts in fuel cell architectures, and for the stability of nanoparticles in general. C1 [Tang, Lei; Friesen, Cody; Sieradzki, Karl] Arizona State Univ, Tempe, AZ 85287 USA. [Han, Byungchan; Ceder, Gerbrand] MIT, Cambridge, MA 02139 USA. [Persson, Kristin] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [He, Ting] Honda Res Inst USA Inc, Columbus, OH 43212 USA. RP Sieradzki, K (reprint author), Arizona State Univ, Tempe, AZ 85287 USA. EM karl.sieradzki@asu.edu; gceder@mit.edu RI He, Ting/B-8120-2017; OI He, Ting/0000-0002-8877-0215; HAN, BYUNGCHAN/0000-0002-2325-6733 FU Center for Renewable Energy Electrochemistry at Arizona State University; Honda Research Institute; National Science Foundation [DMR 0855969, DMR-0301007, DMR 0819762]; Ford-MIT Alliance FX K.S. and C.F. acknowledge support from the Center for Renewable Energy Electrochemistry at Arizona State University, the Honda Research Institute, and the National Science Foundation (DMR 0855969 and DMR-0301007). G.C. acknowledges the Ford-MIT Alliance for funding and the National Science Foundation (DMR 0819762). We thank Eric Krieder of HRI for his assistance in characterization of the Pt-black aggregates. NR 32 TC 118 Z9 119 U1 10 U2 101 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JAN 20 PY 2010 VL 132 IS 2 BP 596 EP 600 DI 10.1021/ja9071496 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA 562VY UT WOS:000275084600036 PM 20017546 ER PT J AU Martell, JD Li, HY Doukov, T Martasek, P Roman, LJ Soltis, M Poulos, TL Silverman, RB AF Martell, Jeffrey D. Li, Huiying Doukov, Tzanko Martasek, Pavel Roman, Linda J. Soltis, Michael Poulos, Thomas L. Silverman, Richard B. TI Heme-Coordinating Inhibitors of Neuronal Nitric Oxide Synthase. Iron-Thioether Coordination Is Stabilized by Hydrophobic Contacts without Increased Inhibitor Potency SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CRYSTAL-STRUCTURE; CYTOCHROME-C; MICROSOMAL CYTOCHROME-P-450; SELECTIVE INHIBITORS; ESCHERICHIA-COLI; L-THIOCITRULLINE; LIGAND-BINDING; COMPLEXES; BRAIN; SITE AB The heme-thioether ligand interaction often occurs between heme iron and native methionine ligands, but thioether-based heme-coordinating (type II) inhibitors are uncommon due to the difficulty in stabilizing the Fe-S bond. Here, a thioether-based inhibitor (3) of neuronal nitric oxide synthase (nNOS) was designed, and its binding was characterized by spectrophotometry and crystallography. A crystal structure of inhibitor 3 coordinated to heme iron was obtained, representing, to our knowledge, the first crystal structure of a thioether inhibitor complexed to any heme enzyme. A series of related potential inhibitors (4-8) also were evaluated. Compounds 4-8 were all found to be type I (non-heme-coordinating) inhibitors of ferric nNOS, but 4 and 6-8 were found to switch to type II upon heme reduction to the ferrous state, reflecting the higher affinity of thioethers for ferrous heme than for ferric heme. Contrary to what has been widely thought, thioether-heme ligation was found not to increase inhibitor potency, illustrating the intrinsic weakness of the thioether-ferric heme linkage. Subtle changes in the alkyl groups attached to the thioether sulfur caused drastic changes in the binding conformation, indicating that hydrophobic contacts play a crucial role in stabilizing the thioether-heme coordination. C1 [Li, Huiying; Poulos, Thomas L.] Univ Calif Irvine, Dept Mol Biol & Biochem, Irvine, CA 92697 USA. [Li, Huiying; Poulos, Thomas L.] Univ Calif Irvine, Dept Pharmaceut Chem, Irvine, CA 92697 USA. [Li, Huiying; Poulos, Thomas L.] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA. [Martell, Jeffrey D.; Silverman, Richard B.] Northwestern Univ, Ctr Mol Innovat & Drug Discovery, Dept Chem, Evanston, IL 60208 USA. [Martell, Jeffrey D.; Silverman, Richard B.] Northwestern Univ, Ctr Mol Innovat & Drug Discovery, Dept Biochem Mol Biol & Cell Biol, Evanston, IL 60208 USA. [Martell, Jeffrey D.; Silverman, Richard B.] Northwestern Univ, Chem Life Proc Inst, Evanston, IL 60208 USA. [Doukov, Tzanko; Soltis, Michael] Stanford Univ, Stanford Synchrotron Radiat Lightsource, SLAC, Macromol Crystallog Grp, Stanford, CA 94309 USA. [Martasek, Pavel; Roman, Linda J.] Univ Texas Hlth Sci Ctr San Antonio, Dept Biochem, San Antonio, TX 78384 USA. [Martasek, Pavel] Charles Univ Prague, Sch Med 1, Dept Pediat, Prague, Czech Republic. [Martasek, Pavel] Charles Univ Prague, Sch Med 1, Ctr Appl Genom, Prague, Czech Republic. RP Poulos, TL (reprint author), Univ Calif Irvine, Dept Mol Biol & Biochem, Irvine, CA 92697 USA. EM Agman@chem.northwestern.edu; poulos@uci.edu FU NIH [GM49725, GM57353, GM52419]; Welch Foundation [AQ0012]; MSMT of the Czech Republic [0021620806, 1M0520] FX We are grateful for financial support from the NIH with Grants GM49725 (R.B.S.), GM57353 (T.L.P.), and GM52419 (Bettie Sue Siler Masters, with whose laboratory P.M. and L.J.R. are affiliated; B.S.S.M. also is grateful to the Welch Foundation for a Robert A. Welch Distinguished Professorship in Chemistry, AQ0012). P.M. is supported by Grants 0021620806 and 1M0520 from MSMT of the Czech Republic. NR 59 TC 10 Z9 10 U1 0 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JAN 20 PY 2010 VL 132 IS 2 BP 798 EP 806 DI 10.1021/ja908544f PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA 562VY UT WOS:000275084600059 PM 20014790 ER PT J AU Grigoraviciute, I Karppinen, M Chan, TS Liu, RS Chen, JM Chmaissem, O Yamauchi, H AF Grigoraviciute, Inga Karppinen, Maarit Chan, Ting-Shan Liu, Ru-Shi Chen, Jin-Ming Chmaissem, Omar Yamauchi, Hisao TI Electronic Structures, Hole-Doping, and Superconductivity of the s=1, 2, 3, and 4 Members of the (Cu,Mo)-12s2 Homologous Series of Superconductive Copper Oxides SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CUO2 PLANES; BLOCK; SPECTROSCOPY; CO-12S2; CUPRATE; LAYERS AB We demonstrate that the T-c value of superconductive copper oxides does not depend on the distance between two adjacent CuO2 planes as long as the hole-doping level and the immediate (crystal) chemical surroundings of the planes are kept the same. Experimental evidence is accomplished for the homologous series of (Cu,Mo)-12s2, the member phases of which differ from each other by the number (s) of cation layers in the fluorite-structured (Ce,Y)-[O-2-(Ce,Y)](s-1) block between the CuO2 planes. X-ray absorption near-edge structure spectroscopy is employed as a probe for the hole states of these phases. The s = 1 member appears to be more strongly doped with holes than other phases of the series and accordingly to possess the highest T-c value of 87 K. For s >= 2, unexpectedly, both the CuO2 plane hole concentration and the value of T-c (similar to 55 K) remain constant, being independent of s. C1 [Grigoraviciute, Inga; Karppinen, Maarit; Yamauchi, Hisao] Tokyo Inst Technol, Mat & Struct Lab, Yokohama, Kanagawa 2268503, Japan. [Karppinen, Maarit; Yamauchi, Hisao] Aalto Univ, Dept Chem, Inorgan Chem Lab, FIN-02150 Espoo, Finland. [Chan, Ting-Shan; Liu, Ru-Shi] Natl Taiwan Univ, Dept Chem, Taipei 106, Taiwan. [Chen, Jin-Ming] Natl Synchrotron Radiat Res Ctr, Hsinchu 30076, Taiwan. [Chmaissem, Omar] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Chmaissem, Omar] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. RP Karppinen, M (reprint author), Tokyo Inst Technol, Mat & Struct Lab, Yokohama, Kanagawa 2268503, Japan. EM maarit.karppinen@tkk.fi RI Karppinen, Maarit/G-8035-2012; Liu, Ru-Shi/A-6796-2010 OI Liu, Ru-Shi/0000-0002-1291-9052 FU Tekes [1726/31/07]; Academy of Finland [116254, 126528]; Ministry of Education, Culture, Sports, Science and Technology of Japan [ID 043145]; U.S. Department of Energy, Office of Science [DE-AC02-06CH11357] FX This work was partly supported by Tekes (Grant No. 1726/31/07) and the Academy of Finland (Grant Nos. 116254 and 126528). I.G. acknowledges a scholarship (Grant ID 043145) from the Ministry of Education, Culture, Sports, Science and Technology of Japan. At Argonne, the work was supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. NR 17 TC 8 Z9 8 U1 1 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JAN 20 PY 2010 VL 132 IS 2 BP 838 EP 841 DI 10.1021/ja9087067 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 562VY UT WOS:000275084600064 PM 20017548 ER PT J AU Garand, E Wende, T Goebbert, DJ Bergmann, R Meijer, G Neumark, DM Asmis, KR AF Garand, Etienne Wende, Torsten Goebbert, Daniel J. Bergmann, Risshu Meijer, Gerard Neumark, Daniel M. Asmis, Knut R. TI Infrared Spectroscopy of Hydrated Bicarbonate Anion Clusters: HCO3-(H2O)(1-10) SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID DENSITY-FUNCTIONAL THEORY; CARBON-DIOXIDE; GAS-PHASE; VIBRATIONAL SPECTROSCOPY; MOLECULAR-DYNAMICS; AQUEOUS-SOLUTION; IONS; WATER; SYSTEM; SPECIATION AB Infrared multiple photon dissociation spectra are reported for HCO3-(H2O)(1-10) clusters in the spectral range of 600-1800 cm(-1). In addition, electronic structure calculations at the MP2/6-311+G(d,p) level have been performed on the n = 1-8 clusters to identify the structure of the low-lying isomers and to assign the observed spectral features. General trends in the stepwise solvation motifs of the bicarbonate anion can be deduced from the overall agreement between the calculated and experimental spectra. The most important of these is the strong preference of the water molecules to bind to the negatively charged CO2 moiety of the HCO3- anion. However, a maximum of four water molecules interact directly with this site. The binding motif in the most stable isomer of the n = 4 cluster, a four-membered ring with each water forming a single H-bond with the CO2 moiety, is retained in all of the lowest-energy isomers of the larger clusters. Starting at n = 6, additional solvent molecules are found to form a second hydration layer, resulting in a water-water network bound to the CO2 moiety of the bicarbonate anion. Binding of a water to the hydroxyl group of HCO3- is particularly disfavored and apparently does not occur in any of the clusters investigated here. Similarities and differences with the infrared spectrum of aqueous bicarbonate are discussed in light of these trends. C1 [Garand, Etienne; Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Wende, Torsten; Goebbert, Daniel J.; Bergmann, Risshu; Meijer, Gerard; Asmis, Knut R.] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany. [Neumark, Daniel M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Neumark, DM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM dneumark@berkeley.edu; asmis@fhi-berlin.mpg.de RI Meijer, Gerard/D-2141-2009; Asmis, Knut/N-5408-2014; Neumark, Daniel/B-9551-2009; OI Asmis, Knut/0000-0001-6297-5856; Neumark, Daniel/0000-0002-3762-9473; Garand, Etienne/0000-0001-5062-5453 FU Air Force Office of Scientific Research [F49620-03-1-0085]; National Science and Engineering Research Council of Canada (NSERC) FX We gratefully acknowledge the support of the Stichting voor Fundamenteel Onderzoek der Materie (FOM) in providing the required beam time on FELIX and highly appreciate the skillful assistance of the FELIX staff. EG and DMN were supported by the Air Force Office of Scientific Research under Grant No. F49620-03-1-0085. EG thanks the National Science and Engineering Research Council of Canada (NSERC) for a post graduate scholarship. NR 36 TC 44 Z9 44 U1 6 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JAN 20 PY 2010 VL 132 IS 2 BP 849 EP 856 DI 10.1021/ja9093132 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 562VY UT WOS:000275084600066 PM 20030394 ER PT J AU Kalinin, SV Rodriguez, BJ Borisevich, AY Baddorf, AP Balke, N Chang, HJ Chen, LQ Choudhury, S Jesse, S Maksymovych, P Nikiforov, MP Pennycook, SJ AF Kalinin, Sergei V. Rodriguez, Brian J. Borisevich, Albina Y. Baddorf, Arthur P. Balke, Nina Chang, Hye Jung Chen, Long-Qing Choudhury, Samrat Jesse, Stephen Maksymovych, Peter Nikiforov, Maxim P. Pennycook, Stephen J. TI Defect-Mediated Polarization Switching in Ferroelectrics and Related Materials: From Mesoscopic Mechanisms to Atomistic Control SO ADVANCED MATERIALS LA English DT Article ID TRANSMISSION ELECTRON-MICROSCOPY; THIN-FILMS; RESOLUTION; FIELD; ANGSTROM; SRTIO3; DISLOCATIONS; CAPACITORS; NANOSCALE; IMAGES AB The plethora of lattice and electronic behaviors in ferroelectric and multiferroic materials and heterostructures opens vistas into novel physical phenomena including magnetoelectric coupling and ferroelectric tunneling. The development of new classes of electronic, energy-storage, and information-technology devices depends critically on understanding and controlling field-induced polarization switching. Polarization reversal is controlled by defects that determine activation energy, critical switching bias, and the selection between thermodynamically equivalent polarization states in multiaxial ferroelectrics. Understanding and controlling defect functionality in ferroelectric materials is as critical to the future of oxide electronics and solid-state electrochemistry as defects in semiconductors are for semiconductor electronics. Here, recent advances in understanding the defect-mediated switching mechanisms, enabled by recent advances in electron and scanning probe microscopy, are discussed. The synergy between local probes and structural methods offers a pathway to decipher deterministic polarization switching mechanisms on the level of a single atomically defined defect. C1 [Kalinin, Sergei V.; Borisevich, Albina Y.; Baddorf, Arthur P.; Balke, Nina; Chang, Hye Jung; Jesse, Stephen; Maksymovych, Peter; Nikiforov, Maxim P.; Pennycook, Stephen J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Rodriguez, Brian J.] Univ Coll Dublin, Conway Inst Biomol & Biomed Res, Dublin 4, Ireland. [Chen, Long-Qing; Choudhury, Samrat] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. RP Kalinin, SV (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM sergei2@ornl.gov; brian.rodriguez@ucd.ie; albinab@ornl.gov RI Kim, Yu Jin/A-2433-2012; Choudhury, Samrat/B-4115-2009; Nikiforov, Maxim/C-1965-2012; Kalinin, Sergei/I-9096-2012; Chen, LongQing/I-7536-2012; Rodriguez, Brian/A-6253-2009; Borisevich, Albina/B-1624-2009; Balke, Nina/Q-2505-2015; Maksymovych, Petro/C-3922-2016; Jesse, Stephen/D-3975-2016; Baddorf, Arthur/I-1308-2016 OI Kalinin, Sergei/0000-0001-5354-6152; Chen, LongQing/0000-0003-3359-3781; Rodriguez, Brian/0000-0001-9419-2717; Borisevich, Albina/0000-0002-3953-8460; Balke, Nina/0000-0001-5865-5892; Maksymovych, Petro/0000-0003-0822-8459; Jesse, Stephen/0000-0002-1168-8483; Baddorf, Arthur/0000-0001-7023-2382 FU Divisions of Scientific User Facilities and Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy; ORNL; ORISE; UCD FX The research was supported by the Divisions of Scientific User Facilities and Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy, by the ORNL Laboratory Directed research and Development Program and by appointment to the ORNL Postdoctoral Research Program administered jointly by ORNL and ORISE. BJR also acknowledges the support of UCD Research. NR 51 TC 37 Z9 39 U1 5 U2 61 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD JAN 19 PY 2010 VL 22 IS 3 BP 314 EP 322 DI 10.1002/adma.200900813 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 552HC UT WOS:000274278500001 PM 20217712 ER PT J AU Verhaak, RGW Hoadley, KA Purdom, E Wang, V Qi, Y Wilkerson, MD Miller, CR Ding, L Golub, T Mesirov, JP Alexe, G Lawrence, M O'Kelly, M Tamayo, P Weir, BA Gabriel, S Winckler, W Gupta, S Jakkula, L Feiler, HS Hodgson, JG James, CD Sarkaria, JN Brennan, C Kahn, A Spellman, PT Wilson, RK Speed, TP Gray, JW Meyerson, M Getz, G Perou, CM Hayes, DN AF Verhaak, Roel G. W. Hoadley, Katherine A. Purdom, Elizabeth Wang, Victoria Qi, Yuan Wilkerson, Matthew D. Miller, C. Ryan Ding, Li Golub, Todd Mesirov, Jill P. Alexe, Gabriele Lawrence, Michael O'Kelly, Michael Tamayo, Pablo Weir, Barbara A. Gabriel, Stacey Winckler, Wendy Gupta, Supriya Jakkula, Lakshmi Feiler, Heidi S. Hodgson, J. Graeme James, C. David Sarkaria, Jann N. Brennan, Cameron Kahn, Ari Spellman, Paul T. Wilson, Richard K. Speed, Terence P. Gray, Joe W. Meyerson, Matthew Getz, Gad Perou, Charles M. Hayes, D. Neil CA Canc Genome Atlas Res Network TI Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1 SO CANCER CELL LA English DT Article ID NEURAL STEM-CELLS; RECURSIVE PARTITIONING ANALYSIS; MALIGNANT GLIOMA; MOLECULAR SUBTYPES; MULTIFORME TUMORS; COPY NUMBER; EXPRESSION; MUTATIONS; RECEPTOR; REVEALS AB The Cancer Genome Atlas Network recently cataloged recurrent genomic abnormalities in glioblastoma multiforme (GBM). We describe a robust gene expression-based molecular classification of GBM into Proneural, Neural, Classical, and Mesenchymal subtypes and integrate multidimensional genomic data to establish patterns of somatic mutations and DNA copy number. Aberrations and gene expression of EGFR, NF1, and PDGFRA/IDH1 each define the Classical, Mesenchymal, and Proneural subtypes, respectively. Gene signatures of normal brain cell types show a strong relationship between subtypes and different neural lineages. Additionally, response to aggressive therapy differs by subtype, with the greatest benefit in the Classical subtype and no benefit in the Proneural subtype. We provide a framework that unifies transcriptomic and genomic dimensions for GBM molecular stratification with important implications for future studies. C1 [Hoadley, Katherine A.; Qi, Yuan; Wilkerson, Matthew D.; Miller, C. Ryan; Perou, Charles M.; Hayes, D. Neil] Univ N Carolina, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA. [Verhaak, Roel G. W.; Golub, Todd; Mesirov, Jill P.; Alexe, Gabriele; Lawrence, Michael; O'Kelly, Michael; Tamayo, Pablo; Weir, Barbara A.; Gabriel, Stacey; Winckler, Wendy; Gupta, Supriya; Meyerson, Matthew; Getz, Gad] MIT, Eli & Edythe L Broad Inst, Cambridge, MA 02142 USA. [Verhaak, Roel G. W.; Golub, Todd; Mesirov, Jill P.; Alexe, Gabriele; Lawrence, Michael; O'Kelly, Michael; Tamayo, Pablo; Weir, Barbara A.; Gabriel, Stacey; Winckler, Wendy; Gupta, Supriya; Meyerson, Matthew; Getz, Gad] Harvard Univ, Cambridge, MA 02142 USA. [Verhaak, Roel G. W.; Lawrence, Michael; O'Kelly, Michael; Weir, Barbara A.; Winckler, Wendy; Meyerson, Matthew] Dana Farber Canc Inst, Dept Med Oncol, Boston, MA 02115 USA. [Hoadley, Katherine A.; Perou, Charles M.] Univ N Carolina, Dept Genet, Chapel Hill, NC 27599 USA. [Qi, Yuan; Wilkerson, Matthew D.; Hayes, D. Neil] Univ N Carolina, Div Med Oncol, Dept Internal Med, Chapel Hill, NC 27599 USA. [Miller, C. Ryan] Univ N Carolina, Dept Pathol & Lab Med, Chapel Hill, NC 27599 USA. [Purdom, Elizabeth; Speed, Terence P.] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA. [Wang, Victoria; Perou, Charles M.] Univ Calif Berkeley, Grp Biostat, Berkeley, CA 94720 USA. [Ding, Li; Wilson, Richard K.] Washington Univ, Sch Med, Dept Genet, Genome Ctr, St Louis, MO 63108 USA. [Golub, Todd] Dana Farber Canc Inst, Ctr Canc Genome Discovery, Dept Pediat Oncol, Boston, MA 02115 USA. [Jakkula, Lakshmi; Feiler, Heidi S.; Spellman, Paul T.; Gray, Joe W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Hodgson, J. Graeme; James, C. David] Univ Calif San Francisco, Dept Neurol Surg, San Francisco, CA 94143 USA. [Sarkaria, Jann N.] Mayo Clin, Dept Radiat Oncol, Rochester, MN 55905 USA. [Brennan, Cameron] Mem Sloan Kettering Canc Ctr, Dept Neurosurg, New York, NY 10065 USA. [Kahn, Ari] SRI Int, Fairfax, VA 22033 USA. [Speed, Terence P.] Walter & Eliza Hall Inst Med Res, Parkville, Vic 3052, Australia. RP Hayes, DN (reprint author), Univ N Carolina, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA. EM hayes@med.unc.edu RI Speed, Terence /B-8085-2009; leng, xianwei/F-9073-2011; Meyerson, Matthew/E-7123-2012; James, Charles/E-2721-2012; Miller, Ryan/B-9365-2008; OI Speed, Terence /0000-0002-5403-7998; James, Charles/0000-0002-1027-203X; Miller, Ryan/0000-0002-0096-8762; Brennan, Cameron/0000-0003-4064-8891; Hayes, D. Neil/0000-0001-6203-7771; Perou, Charles/0000-0001-9827-2247 FU US Department of Energy; US National Institutes of Health [U54HG003067, U54HG003079, U54HG003273, U24CA126543, U24CA126544, U24CA126546, U24CA126551, U24CA126554, U24CA126561, U24CA126563, P50CA58223, RR023248, CA108961, CA127716, NS49720, CA097257, DE-AC02-05CH11231]; Dutch Cancer Society KWF FX We thank the members of TCGA Research Network, in particular Lynda Chin, for reviewing this manuscript. We thank Michele Hayward for editorial assistance. This work was supported by the following grants from the US Department of Energy and the US National Institutes of Health: U54HG003067 and U54HG003079 to R. K. W.; U54HG003273, U24CA126543, and U24CA126544 to C.M.P., U24CA126546 to M.M.; U24CA126551 to J.W.G.; U24CA126554, U24CA126561, U24CA126563, and P50CA58223 to C.M.P., RR023248 to D.N.H.; CA108961 to J.N.S.; CA127716 to J.N.S.; NS49720 to C.D.J.; CA097257 to C.D.J.; and DE-AC02-05CH11231 to J.W.G.). R.G.W.V. is supported by a Fellowship from the Dutch Cancer Society KWF. NR 50 TC 2000 Z9 2040 U1 52 U2 265 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 1535-6108 J9 CANCER CELL JI Cancer Cell PD JAN 19 PY 2010 VL 17 IS 1 BP 98 EP 110 DI 10.1016/j.ccr.2009.12.020 PG 13 WC Oncology; Cell Biology SC Oncology; Cell Biology GA 554YA UT WOS:000274471300013 PM 20129251 ER PT J AU Yun, Y Broitman, E Gellman, AJ AF Yun, Yang Broitman, Esteban Gellman, Andrew J. TI Oxidation of Fluorinated Amorphous Carbon (a-CFx) Films SO LANGMUIR LA English DT Article ID MAGNETIC DATA-STORAGE; CHX OVERCOATS; PLASMA; SPECTROSCOPY; DEPOSITION; KINETICS; MEDIA; WEAR AB Amorphous fluorinated carbon (a-CFx) films have a variety of potential technological applications. In most such applications these films are exposed to air and undergo partial surface oxidation. X-ray photoernission spectroscopy has been used to study the oxidation of fresh a-CFx films deposited by magnetron sputtering. The oxygen sticking coefficient easured by exposure to low Pressures (< 10(-3) Torr) of oxygen at room temperature is on the order of S approximate to 10(-6), indicating that the surfaces of these films are relatively inert to oxidation when compared with most metals. The X-ray photoemission spectra indicate that the initial stages of oxygen exposure ( < 10(7) langilluirs) result in the preferential oxidation of the carbon,Atoms with zero or one fluorine atom, perhaps because these carbon atoms are more likely to be found in Configurations with unsaturated double bonds and radicals than carbon atoms with two or three fluorine atoms. Exposure of the a-CFx, Film to atmospheric pressures of air (effective exposure of 10(12) langinuirs to O-2) results in lower levels of oxygen uptake than tile low pressure exposures ( < 107 langmuirs). It is Suggested that this is the result of oxidative etching ofthe most reactive carbon atoms, leaving a relatively inert surface. Finally, low pressure exposures to air result in the adsorption of both nitrogen and oxygen onto tile surface. Some of the nitrogen adsorbed oil the surface at low pressures is in a reversibly adsorbed state in the sense that subsequent exposure to low pressures of O-2 results in the displacement of nitrogen by oxygen. Similarly when an a-CFx, Film oxidized in pure 0, is exposed to low pressures of air, some ofthe adsorbed oxygen is displaced by nitrogen. It is suggested that these forms of nitrogen and oxygen are bound to free radical sites in the film. C1 [Yun, Yang; Broitman, Esteban; Gellman, Andrew J.] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. [Gellman, Andrew J.] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Gellman, AJ (reprint author), Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. EM gellman@cmu.edu RI Gellman, Andrew/M-2487-2014; Broitman, Esteban/L-6950-2015 OI Gellman, Andrew/0000-0001-6618-7427; Broitman, Esteban/0000-0003-3277-1945 FU Information Storage Industry Consortium (INSIC); U.S. Department of Commerce, National Institute of Standards and Technology [70NANB1H3056] FX Funding for this work was provided by the Information Storage Industry Consortium (INSIC) program in Heat Assisted Magnetic Recording (HAMR), with the support of the U.S. Department of Commerce, National Institute of Standards and Technology, Advanced Technology Program, Cooperative Agreement 70NANB1H3056. NR 22 TC 4 Z9 4 U1 0 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD JAN 19 PY 2010 VL 26 IS 2 BP 908 EP 914 DI 10.1021/la902375f PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 541GN UT WOS:000273403400041 PM 19754148 ER PT J AU Kohli, V Zhang, Z Park, C Fenter, P AF Kohli, Vaibhav Zhang, Zhan Park, Changyong Fenter, Paul TI Rb+ and Sr2+ Adsorption at the TiO2 (110)-Electrolyte Interface Observed with Resonant Anomalous X-ray Reflectivity SO LANGMUIR LA English DT Article ID RUTILE-WATER INTERFACE; ELECTRIC DOUBLE-LAYER; METAL-OXIDE SURFACES; MINERAL SURFACES; (001)-SOLUTION INTERFACE; ABSORPTION SPECTROSCOPY; MOLECULAR-DYNAMICS; ION ADSORPTION; STANDING-WAVE; INNER-SPHERE AB We report the vertical density profiles of Rb+ and Sr2+ at the rutile TiO2(110)-electrolytc interface for the following bulk electrolyte conditions, [Rb+] = I mM at PH 11 and [Sr2+] = 0.1 mM at PH 10.3, using X-ray reflectivity and resonant anomalous X-ray reflectivity. We find that Rb+ specifically adsorbs with a coverage of 0.080 +/- 0.003 monolayer (ML) and a height of 3.72 +/- 0.03 A above the surface. Ti-IO plane. In comparison, Sr2+ adsorbs with a coverage of 0.40 +/- 0.07 M L and,in average height of 3.05 +/- 0.16 A, but with a significant vertical distribution width (0.35 +/- 0.02 A). The Sr2+ distribution in the presence of a background electrolyte ([Na+] = 30 mM) was also investigated, and it is found that, while the ion height and coverage are unchanged within the uncertainties of the measurements, the width of the distribution is apparently increased in the presence of Na+. Comparison is made with ;previous results, including XR and X-ray standing waves (XSW) measurements, and Molecular dynamics simulations, Our results are in excellent agreement with a recently proposed multisite adsorption mechanism that suggests simultaneous adsorption in two inner-sphere adsorption geometries, the tetradentate and the bidentate sites. C1 [Kohli, Vaibhav; Park, Changyong; Fenter, Paul] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Zhang, Zhan] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Kohli, Vaibhav] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. RP Fenter, P (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Park, Changyong/A-8544-2008; Zhang, Zhan/A-9830-2008 OI Park, Changyong/0000-0002-3363-5788; Zhang, Zhan/0000-0002-7618-6134 NR 44 TC 8 Z9 8 U1 0 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD JAN 19 PY 2010 VL 26 IS 2 BP 950 EP 958 DI 10.1021/la902419z PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 541GN UT WOS:000273403400047 PM 19754059 ER PT J AU Sokolov, A Apodaca, MM Grzybowski, BA Aranson, IS AF Sokolov, Andrey Apodaca, Mario M. Grzybowski, Bartosz A. Aranson, Igor S. TI Swimming bacteria power microscopic gears SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE collective behavior; ratchet; self-propulsion; sustained rotation ID BIOMOLECULAR MOTOR; BROWNIAN RATCHETS; MOTION; NANODEVICE; NANOSCALE; TRANSPORT; WALL AB Whereas the laws of thermodynamics prohibit extraction of useful work from the Brownian motion of particles in equilibrium, these motions can be "rectified" under nonequilibrium conditions, for example, in the presence of asymmetric geometrical obstacles. Here, we describe a class of systems in which aerobic bacteria Bacillus subtilis moving randomly in a fluid film power submillimeter gears and primitive systems of gears decorated with asymmetric teeth. The directional rotation is observed only in the regime of collective bacterial swimming and the gears' angular velocities depend on and can be controlled by the amount of oxygen available to the bacteria. The ability to harness and control the power of collective motions appears an important requirement for further development of mechanical systems driven by microorganisms. C1 [Sokolov, Andrey; Aranson, Igor S.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Sokolov, Andrey] Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08543 USA. [Apodaca, Mario M.; Grzybowski, Bartosz A.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Grzybowski, Bartosz A.] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA. [Aranson, Igor S.] Northwestern Univ, Dept Engn Sci & Appl Math, Evanston, IL 60208 USA. RP Aranson, IS (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM grzybor@northwestern.edu; aranson@anl.gov RI Grzybowski, Bartosz/B-7644-2009; Aranson, Igor/I-4060-2013 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering [DEAC02-06CH11357]; Northwestern University's Nonequilibrium Energy Research Center [DESC0000989] FX The work of I. S. A. and A. S. was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering, under Contract DEAC02-06CH11357. B. A. G. and M. M. A. gratefully acknowledge financial support from Northwestern University's Nonequilibrium Energy Research Center, one of the U.S. Department of Energy's Energy Frontier Research Centers under Award DESC0000989. NR 37 TC 156 Z9 158 U1 12 U2 56 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JAN 19 PY 2010 VL 107 IS 3 BP 969 EP 974 DI 10.1073/pnas.0913015107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 548BP UT WOS:000273934100007 PM 20080560 ER PT J AU Prasankumar, RP Chow, WW Urayama, J Attaluri, RS Shenoi, RV Krishna, S Taylor, AJ AF Prasankumar, R. P. Chow, W. W. Urayama, J. Attaluri, R. S. Shenoi, R. V. Krishna, S. Taylor, A. J. TI Density-dependent carrier dynamics in a quantum dots-in-a-well heterostructure SO APPLIED PHYSICS LETTERS LA English DT Article DE carrier density; excited states; gallium arsenide; high-speed optical techniques; III-V semiconductors; indium compounds; photoluminescence; semiconductor heterojunctions; semiconductor quantum dots; semiconductor quantum wells ID LASERS AB The incorporation of semiconductor quantum dots into different heterostructures for applications in nanoscale lasing and amplification has been an active area of research in recent years. Here, we use ultrafast differential transmission spectroscopy to temporally and spectrally resolve density-dependent carrier dynamics in a quantum dots-in-a-well (DWELL) heterostructure. We observe excitation-dependent shifts of the quantum dot energy levels at low densities, while at high densities we observe an anomalous induced absorption at the quantum dot excited state that is correlated with quantum well population dynamics. These studies reveal unique Coulomb interaction-induced phenomena with important implications for DWELL-based lasers and amplifiers. C1 [Prasankumar, R. P.; Taylor, A. J.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Chow, W. W.; Urayama, J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Attaluri, R. S.; Shenoi, R. V.; Krishna, S.] Univ New Mexico, Ctr High Technol Mat, Dept Elect & Comp Engn, Albuquerque, NM 87106 USA. RP Prasankumar, RP (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. EM rpprasan@lanl.gov RI Krishna, Sanjay /C-5766-2009 FU U.S. Department of Energy [DE-AC52-06NA25396] FX We would like to thank A. Gin, R. Averitt, N. WeisseBernstein, P. Rotella, and A. Stintz for experimental assistance and helpful discussions. This work was performed at the Center for Integrated Nanotechnologies, a U. S. Department of Energy, Office of Basic Energy Sciences user facility. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. NR 18 TC 5 Z9 5 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JAN 18 PY 2010 VL 96 IS 3 AR 031110 DI 10.1063/1.3294309 PG 3 WC Physics, Applied SC Physics GA 547LP UT WOS:000273890500010 ER PT J AU Spanakis, E Barberoglou, M Zorba, V Tzanetakis, P Fotakis, C AF Spanakis, E. Barberoglou, M. Zorba, V. Tzanetakis, P. Fotakis, C. TI Metal coated silicon spike cold-electron emitters show improvement of performance with operation SO APPLIED PHYSICS LETTERS LA English DT Article DE cathodes; chromium; coatings; electron field emission; elemental semiconductors; field emitter arrays; gold; metallic thin films; silicon ID FIELD EMITTER; ARRAYS; EMISSION AB The short lifetime of all field-emission cathodes in harsh vacuum conditions remains a serious hindrance to an attractive display technology. We studied the evolution in operation of cathodes with spikes, produced by femtosecond-laser self-driven structuring of silicon followed by coating with several different metal films. We observe a very promising behavior with gold and chromium only, opposite to that of all other coatings and of bare Si. This is the improvement in operation of the current-voltage characteristics of the cathode. Potential origins of this effect are briefly outlined. C1 [Spanakis, E.; Barberoglou, M.; Tzanetakis, P.; Fotakis, C.] Fdn Res & Technol Hellas, Inst Elect Struct & Laser, GR-71110 Iraklion, Greece. [Spanakis, E.] Univ Crete, Dept Mat Sci & Technol, GR-71003 Iraklion, Greece. [Spanakis, E.] Technol Educ Inst Crete, Dept Sci, GR-71004 Iraklion, Greece. [Barberoglou, M.; Tzanetakis, P.; Fotakis, C.] Univ Crete, Dept Phys, GR-71110 Iraklion, Greece. [Zorba, V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Spanakis, E (reprint author), Fdn Res & Technol Hellas, Inst Elect Struct & Laser, POB 1527, GR-71110 Iraklion, Greece. EM spanakis@materials.uoc.gr; tzaneta@physics.uoc.gr RI Tzanetakis, Panagiotis/G-8493-2011; Spanakis, Emmanuel/F-8988-2014; Zorba, Vassilia/C-4589-2015; Fotakis, Costas/G-8751-2011 FU Integrated Initiative of European Laser Research Infrastructures LASERLAB-II [228334] FX This work was supported by the Integrated Initiative of European Laser Research Infrastructures LASERLAB-II (Grant Agreement No. 228334). The authors are indebted to Dr. G. Konstantinidis and Mr. A. Kostopoulos for the metal evaporations and to Ms. A. Manousaki for her support with the Scanning Electron Microscope. NR 20 TC 0 Z9 0 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JAN 18 PY 2010 VL 96 IS 3 AR 033501 DI 10.1063/1.3291672 PG 3 WC Physics, Applied SC Physics GA 547LP UT WOS:000273890500057 ER PT J AU Srivastava, M Larroux, C Lu, DR Mohanty, K Chapman, J Degnan, BM Rokhsar, DS AF Srivastava, Mansi Larroux, Claire Lu, Daniel R. Mohanty, Kareshma Chapman, Jarrod Degnan, Bernard M. Rokhsar, Daniel S. TI Early evolution of the LIM homeobox gene family SO BMC BIOLOGY LA English DT Article ID CONSERVED DOMAIN DATABASE; IN-SITU HYBRIDIZATION; NEMATOSTELLA-VECTENSIS; SEA-ANEMONE; TRANSCRIPTION FACTORS; HYDRA-MAGNIPAPILLATA; CHOLINERGIC NEURONS; NERVOUS-SYSTEM; WHOLE-MOUNT; EXPRESSION AB Background: LIM homeobox (Lhx) transcription factors are unique to the animal lineage and have patterning roles during embryonic development in flies, nematodes and vertebrates, with a conserved role in specifying neuronal identity. Though genes of this family have been reported in a sponge and a cnidarian, the expression patterns and functions of the Lhx family during development in non-bilaterian phyla are not known. Results: We identified Lhx genes in two cnidarians and a placozoan and report the expression of Lhx genes during embryonic development in Nematostella and the demosponge Amphimedon. Members of the six major LIM homeobox subfamilies are represented in the genomes of the starlet sea anemone, Nematostella vectensis, and the placozoan Trichoplax adhaerens. The hydrozoan cnidarian, Hydra magnipapillata, has retained four of the six Lhx subfamilies, but apparently lost two others. Only three subfamilies are represented in the haplosclerid demosponge Amphimedon queenslandica. A tandem cluster of three Lhx genes of different subfamilies and a gene containing two LIM domains in the genome of T. adhaerens (an animal without any neurons) indicates that Lhx subfamilies were generated by tandem duplication. This tandem cluster in Trichoplax is likely a remnant of the original chromosomal context in which Lhx subfamilies first appeared. Three of the six Trichoplax Lhx genes are expressed in animals in laboratory culture, as are all Lhx genes in Hydra. Expression patterns of Nematostella Lhx genes correlate with neural territories in larval and juvenile polyp stages. In the aneural demosponge, A. queenslandica, the three Lhx genes are expressed widely during development, including in cells that are associated with the larval photosensory ring. Conclusions: The Lhx family expanded and diversified early in animal evolution, with all six subfamilies already diverged prior to the cnidarian-placozoan-bilaterian last common ancestor. In Nematostella, Lhx gene expression is correlated with neural territories in larval and juvenile polyp stages. This pattern is consistent with a possible role in patterning the Nematostella nervous system. We propose a scenario in which Lhx genes play a homologous role in neural patterning across eumetazoans. C1 [Srivastava, Mansi; Lu, Daniel R.; Mohanty, Kareshma; Rokhsar, Daniel S.] Univ Calif Berkeley, Ctr Integrat Genom, Berkeley, CA 94720 USA. [Srivastava, Mansi; Lu, Daniel R.; Mohanty, Kareshma; Rokhsar, Daniel S.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Larroux, Claire; Degnan, Bernard M.] Univ Queensland, Sch Biol Sci, Brisbane, Qld, Australia. [Chapman, Jarrod; Rokhsar, Daniel S.] Joint Genome Inst, Dept Energy, Walnut Creek, CA USA. RP Srivastava, M (reprint author), Univ Calif Berkeley, Ctr Integrat Genom, Berkeley, CA 94720 USA. EM mansi@wi.mit.edu FU Australian Research Council FX We thank the Martindale Laboratory (University of Hawaii) for critical advice on Nematostella in situ hybridization; the Patel Laboratory (University of California at Berkeley) for liberal use of their microscope; the Weisblat Laboratory (University of California at Berkeley) for help with sectioning and troubleshooting. This research was supported by a grant from the Australian Research Council to BMD. NR 74 TC 39 Z9 40 U1 2 U2 12 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1741-7007 J9 BMC BIOL JI BMC Biol. PD JAN 18 PY 2010 VL 8 AR 4 DI 10.1186/1741-7007-8-4 PG 13 WC Biology SC Life Sciences & Biomedicine - Other Topics GA 564AH UT WOS:000275182400001 PM 20082688 ER PT J AU Foster, JT Allan, GJ Chan, AP Rabinowicz, PD Ravel, J Jackson, PJ Keim, P AF Foster, Jeffrey T. Allan, Gerard J. Chan, Agnes P. Rabinowicz, Pablo D. Ravel, Jacques Jackson, Paul J. Keim, Paul TI Single nucleotide polymorphisms for assessing genetic diversity in castor bean (Ricinus communis) SO BMC PLANT BIOLOGY LA English DT Article ID POPULATION-STRUCTURE; INVASIVE PLANT; L.; GENOME; INDIVIDUALS; INFERENCES; GENOTYPE; PROGRAM; NUMBER; LOCI AB Background: Castor bean (Ricinus communis) is an agricultural crop and garden ornamental that is widely cultivated and has been introduced worldwide. Understanding population structure and the distribution of castor bean cultivars has been challenging because of limited genetic variability. We analyzed the population genetics of R. communis in a worldwide collection of plants from germplasm and from naturalized populations in Florida, U. S. To assess genetic diversity we conducted survey sequencing of the genomes of seven diverse cultivars and compared the data to a reference genome assembly of a widespread cultivar (Hale). We determined the population genetic structure of 676 samples using single nucleotide polymorphisms (SNPs) at 48 loci. Results: Bayesian clustering indicated five main groups worldwide and a repeated pattern of mixed genotypes in most countries. High levels of population differentiation occurred between most populations but this structure was not geographically based. Most molecular variance occurred within populations (74%) followed by 22% among populations, and 4% among continents. Samples from naturalized populations in Florida indicated significant population structuring consistent with local demes. There was significant population differentiation for 56 of 78 comparisons in Florida (pairwise population phi(PT) values, p < 0.01). Conclusion: Low levels of genetic diversity and mixing of genotypes have led to minimal geographic structuring of castor bean populations worldwide. Relatively few lineages occur and these are widely distributed. Our approach of determining population genetic structure using SNPs from genome-wide comparisons constitutes a framework for high-throughput analyses of genetic diversity in plants, particularly in species with limited genetic diversity. C1 [Foster, Jeffrey T.; Keim, Paul] No Arizona Univ, Ctr Microbial Genet & Genom, Flagstaff, AZ 86011 USA. [Allan, Gerard J.] No Arizona Univ, Dept Biol Sci, Environm Genet & Genom Lab, Flagstaff, AZ 86011 USA. [Chan, Agnes P.; Rabinowicz, Pablo D.; Ravel, Jacques] J Craig Venter Inst, Rockville, MD 20850 USA. [Rabinowicz, Pablo D.; Ravel, Jacques] Univ Maryland, Sch Med, Inst Genome Sci, Baltimore, MD 21201 USA. [Rabinowicz, Pablo D.] Univ Maryland, Sch Med, Dept Biochem Mol Biol, Baltimore, MD 21201 USA. [Ravel, Jacques] Univ Maryland, Sch Med, Dept Microbiol, Baltimore, MD 21201 USA. [Jackson, Paul J.] Lawrence Livermore Natl Lab, Def Biol Div, Livermore, CA 94551 USA. RP Keim, P (reprint author), No Arizona Univ, Ctr Microbial Genet & Genom, Flagstaff, AZ 86011 USA. EM Paul.Keim@nau.edu RI Keim, Paul/A-2269-2010; OI Ravel, Jacques/0000-0002-0851-2233; Foster, Jeffrey/0000-0001-8235-8564 FU Federal Bureau of Investigation, Quantico Laboratories FX We thank Amber Williams for extensive field, lab, and greenhouse work and Aubree Hinckley for plant cultivation and sample preparation. Dave Duggan of the Translational Genomics Research Institute (TGEN) graciously provided access and resources for Sequenom runs. We thank the following for their help: Northern Arizona University-Jim Schupp, Casey Donovan; TGEN-Kathleen Kennedy, Steve Beckstrom-Sternberg, Jill Muehling, Debbie Benitez, Leslie Marovich, Michelle Knowlton; TIGR- Admasu Melake. The Federal Bureau of Investigation, Quantico Laboratories, funded this work, with guidance from Jim Robertson and Mark Wilson. NR 45 TC 36 Z9 41 U1 4 U2 21 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2229 J9 BMC PLANT BIOL JI BMC Plant Biol. PD JAN 18 PY 2010 VL 10 AR 13 DI 10.1186/1471-2229-10-13 PG 11 WC Plant Sciences SC Plant Sciences GA 566VQ UT WOS:000275401700001 PM 20082707 ER PT J AU Asthagiri, D Dixit, PD Merchant, S Paulaitis, ME Pratt, LR Rempe, SB Varma, S AF Asthagiri, D. Dixit, P. D. Merchant, S. Paulaitis, M. E. Pratt, L. R. Rempe, S. B. Varma, S. TI Ion selectivity from local configurations of ligands in solutions and ion channels SO CHEMICAL PHYSICS LETTERS LA English DT Article ID SOLVATION FREE-ENERGIES; QUASI-CHEMICAL THEORY; THERMODYNAMIC FUNCTIONS; TOPOLOGICAL CONTROL; MOLECULAR-DYNAMICS; K+/NA+ SELECTIVITY; POTASSIUM CHANNEL; HYDRATION NUMBER; MIXED-SOLVENTS; LIQUID WATER AB Probabilities of numbers of ligands proximal to an ion lead to simple, general formulae for the free energy of ion selectivity between different media. That free energy does not depend on the definition of an inner shell for ligand-counting, but other quantities of mechanistic interest do. If analysis is restricted to a specific coordination number, then two distinct probabilities are required to obtain the free energy in addition. The normalizations of those distributions produce partition function formulae for the free energy. Quasi-chemical theory introduces concepts of chemical equilibrium, then seeks the probability that is simplest to estimate, that of the most probable coordination number. Quasi-chemical theory establishes the utility of distributions of ligand-number, and sharpens our understanding of quasi-chemical calculations based on electronic structure methods. This development identifies contributions with clear physical interpretations, and shows that evaluation of those contributions can establish a mechanistic understanding of the selectivity in ion channels. (C) 2009 Elsevier B. V. All rights reserved. C1 [Pratt, L. R.] Tulane Univ, Dept Chem & Biomol Engn, New Orleans, LA 70118 USA. [Asthagiri, D.; Dixit, P. D.] Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD 21218 USA. [Asthagiri, D.; Dixit, P. D.] Johns Hopkins Univ, Inst NanoBioTechnol, Baltimore, MD 21218 USA. [Merchant, S.; Paulaitis, M. E.] Ohio State Univ, Dept Chem & Biomol Engn, Columbus, OH 43210 USA. [Rempe, S. B.; Varma, S.] Sandia Natl Labs, Ctr Biol & Mat Sci, Albuquerque, NM 87185 USA. RP Pratt, LR (reprint author), Tulane Univ, Dept Chem & Biomol Engn, New Orleans, LA 70118 USA. EM dilipa@jhu.edu; dixitpd@gmail.com; safir.merchant@gmail.com; paulaitis.1@osu.edu; lpratt@tulane.edu; slrempe@sandia.gov; varma.sameer@gmail.com RI Asthagiri, Dilipkumar/A-3383-2010; Dixit, Purushottam/C-4232-2011; Rempe, Susan/H-1979-2011; Pratt, Lawrence/H-7955-2012; Asthagiri, Dilipkumar/P-9450-2016 OI Pratt, Lawrence/0000-0003-2351-7451; Asthagiri, Dilipkumar/0000-0001-5869-0807 FU NEI NIH HHS [PN2 EY016570, PN2 EY016570-06] NR 51 TC 40 Z9 40 U1 2 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD JAN 18 PY 2010 VL 485 IS 1-3 BP 1 EP 7 DI 10.1016/j.cplett.2009.12.013 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 539CV UT WOS:000273231900001 PM 23750043 ER PT J AU Young, RM Griffin, GB Kammrath, A Ehrler, OT Neumark, DM AF Young, Ryan M. Griffin, Graham B. Kammrath, Aster Ehrler, Oli T. Neumark, Daniel M. TI Time-resolved dynamics in acetonitrile cluster anions (CH3CN)(n)(-) SO CHEMICAL PHYSICS LETTERS LA English DT Article ID HYDRATED ELECTRON; PHOTOELECTRON-SPECTROSCOPY; LIQUID ACETONITRILE; EXCESS ELECTRONS; SOLVATION; ISOMERS; SURFACE; IONS AB Excited state dynamics of acetonitrile cluster anions, (CH3CN)(n)(-), were investigated using time-resolved photoelectron imaging (TRPEI) for 20 <= n <= 50. The clusters were excited and then photodetached with femtosecond pump and probe pulses at 790 and 395 nm, respectively. Excited state lifetimes varied between 200 and 270 fs over this size range, showing no obvious size trend. Experimental evidence indicates that we are exciting 'isomer II' clusters in which the excess electron is valence-bound to a solvated anionic dimer core. The absence of an obvious size-dependence in the excited state lifetimes is consistent with such a structure. (C) 2009 Elsevier B. V. All rights reserved. C1 [Young, Ryan M.; Griffin, Graham B.; Kammrath, Aster; Ehrler, Oli T.; Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Kammrath, Aster] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA. [Ehrler, Oli T.] Karlsruhe Inst Technol, Dept Chem, Karlsruhe, Germany. [Neumark, Daniel M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Neumark, DM (reprint author), Univ Calif Berkeley, Dept Chem, B64 Hildebrand Hall, Berkeley, CA 94720 USA. EM dneumark@berkeley.edu RI Ehrler, Oli/B-6215-2008; Neumark, Daniel/B-9551-2009; OI Neumark, Daniel/0000-0002-3762-9473; Young, Ryan/0000-0002-5108-0261 FU National Science Foundation [CHE-0649647]; Alexander von Humboldt Foundation FX This work was supported by the National Science Foundation (CHE-0649647). The authors thank Markus Niemeyer and Maggie Yandell for their assistance. OTE acknowledges the Alexander von Humboldt Foundation for a Feodor-Lynen Fellowship. NR 41 TC 7 Z9 7 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD JAN 18 PY 2010 VL 485 IS 1-3 BP 59 EP 63 DI 10.1016/j.cplett.2009.12.058 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 539CV UT WOS:000273231900013 ER PT J AU Yang, L Tulk, CA Klug, DD Chakoumakos, BC Ehm, L Molaison, JJ Parise, JB Simonson, JM AF Yang, L. Tulk, C. A. Klug, D. D. Chakoumakos, B. C. Ehm, L. Molaison, J. J. Parise, J. B. Simonson, J. M. TI Guest disorder and high pressure behavior of argon hydrates SO CHEMICAL PHYSICS LETTERS LA English DT Article ID METHANE HYDRATE; ICE-VII; DIFFRACTION; RIETVELD; KBAR AB The structure of argon hydrate was studied at ambient pressure and low temperature, and between 1.7 and 4.2 GPa at 295 K. This analysis produced a single Ar guest atom, positionally disordered off-center in the large cages of sII. Above 1.7 GPa Ar clathrate transformed to a mixture of a body-centered orthorhombic filled-ice phase, which can be viewed as a polytype of ice-Ih, and high pressure forms of pure ice. The guest disorder is further substantiated by analysis of the guest to host ratio in this high pressure filled-ice structure. The bulk modulus of Ar filled-ice found to be 11.7 0.4 GPa. (C) 2009 Elsevier B. V. All rights reserved. C1 [Yang, L.; Tulk, C. A.; Chakoumakos, B. C.; Molaison, J. J.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Yang, L.; Simonson, J. M.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Klug, D. D.] Natl Res Council Canada, Steacie Inst Mol Sci, Ottawa, ON K1A 0R6, Canada. [Ehm, L.; Parise, J. B.] SUNY Stony Brook, Inst Mineral Phys, Stony Brook, NY 11794 USA. RP Yang, L (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, POB 2008, Oak Ridge, TN 37831 USA. EM yangl@ornl.gov RI Chakoumakos, Bryan/A-5601-2016; Tulk, Chris/R-6088-2016 OI Chakoumakos, Bryan/0000-0002-7870-6543; Tulk, Chris/0000-0003-3400-3878 FU Oak Ridge National Laboratory; US Department of Energy (DOE) [DE-AC050-0OR22725]; National Science Foundation [DMR-0800415, DOE DE-SC0002510]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [W-31-109-Eng-38] FX Oak Ridge National Laboratory is managed by UTBattelle, LLC for the US Department of Energy (DOE) under Contract DE-AC050-0OR22725. This work was supported by the scientific user facilities division of DOE-BES at the Spallation Neutron Source (C.A.T., L.Y., and B.C.C.) and Center for Nanophase Materials Science (L.Y.) at Oak Ridge National Laboratory; and the National Science Foundation Grant DMR-0800415 and DOE DE-SC0002510 (to C. D. M., L. E., and J.B.P.). Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38. We thank D. Martin from Stony Brook University for helping us with the experiment. NR 27 TC 5 Z9 5 U1 1 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD JAN 18 PY 2010 VL 485 IS 1-3 BP 104 EP 109 DI 10.1016/j.cplett.2009.12.024 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 539CV UT WOS:000273231900022 ER PT J AU Chellappa, RS Autrey, T Somayazulu, M Struzhkin, VV Hemley, RJ AF Chellappa, Raja S. Autrey, Thomas Somayazulu, Maddury Struzhkin, Viktor V. Hemley, Russell J. TI High-Pressure Hydrogen Interactions with Polyaminoborane and Polyiminoborane SO CHEMPHYSCHEM LA English DT Article DE amines; boranes; hydrogen; Lewis acids; Lewis bases ID FRUSTRATED LEWIS PAIRS; BORON-NITROGEN COMPOUNDS; AMMONIA-BORANE; THERMAL-DECOMPOSITION; H-2 ACTIVATION; REACTIVITY; STORAGE; BONDS C1 [Chellappa, Raja S.; Somayazulu, Maddury; Struzhkin, Viktor V.; Hemley, Russell J.] Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. [Autrey, Thomas] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Chellappa, RS (reprint author), Carnegie Inst Washington, Geophys Lab, 5251 Broad Branch Rd NW, Washington, DC 20015 USA. EM rchellappa@ciw.edu RI Struzhkin, Viktor/J-9847-2013 OI Struzhkin, Viktor/0000-0002-3468-0548 FU USDOE, Office of BES; NNSA (CDAC); NSF-DMR FX We thank the USDOE, Office of BES, for funding and NNSA (CDAC) and NSF-DMR for instrumentation support. PNNL is operated by Battele. NR 28 TC 8 Z9 8 U1 0 U2 11 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1439-4235 J9 CHEMPHYSCHEM JI ChemPhysChem PD JAN 18 PY 2010 VL 11 IS 1 BP 93 EP 96 DI 10.1002/cphc.200900829 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 552CT UT WOS:000274265300013 PM 19967734 ER PT J AU Khorsand, AR Sobierajski, R Louis, E Bruijn, S van Hattum, ED van de Kruijs, RWE Jurek, M Klinger, D Pelka, JB Juha, L Burian, T Chalupsky, J Cihelka, J Hajkova, V Vysin, L Jastrow, U Stojanovic, N Toleikis, S Wabnitz, H Tiedtke, K Sokolowski-Tinten, K Shymanovich, U Krzywinski, J Hau-Riege, S London, R Gleeson, A Gullikson, EM Bijkerk, F AF Khorsand, A. R. Sobierajski, R. Louis, E. Bruijn, S. van Hattum, E. D. van de Kruijs, R. W. E. Jurek, M. Klinger, D. Pelka, J. B. Juha, L. Burian, T. Chalupsky, J. Cihelka, J. Hajkova, V. Vysin, L. Jastrow, U. Stojanovic, N. Toleikis, S. Wabnitz, H. Tiedtke, K. Sokolowski-Tinten, K. Shymanovich, U. Krzywinski, J. Hau-Riege, S. London, R. Gleeson, A. Gullikson, E. M. Bijkerk, F. TI Single shot damage mechanism of Mo/Si multilayer optics under intense pulsed XUV-exposure SO OPTICS EXPRESS LA English DT Article ID FREE-ELECTRON LASER; AMORPHOUS-SILICON; THERMAL-CONDUCTIVITY; EXTREME-ULTRAVIOLET; MOLECULAR-SOLIDS; ION-BOMBARDMENT; MO-SI; RAY; FILMS; STABILITY AB We investigated single shot damage of Mo/Si multilayer coatings exposed to the intense fs XUV radiation at the Free-electron LASer facility in Hamburg - FLASH. The interaction process was studied in situ by XUV reflectometry, time resolved optical microscopy, and "post-mortem" by interference-polarizing optical microscopy (with Nomarski contrast), atomic force microscopy, and scanning transmission electron microcopy. An ultrafast molybdenum silicide formation due to enhanced atomic diffusion in melted silicon has been determined to be the key process in the damage mechanism. The influence of the energy diffusion on the damage process was estimated. The results are of significance for the design of multilayer optics for a new generation of pulsed (from atto- to nanosecond) XUV sources. (C)2010 Optical Society of America C1 [Khorsand, A. R.; Sobierajski, R.; Louis, E.; Bruijn, S.; van Hattum, E. D.; van de Kruijs, R. W. E.; Bijkerk, F.] EURATOM, FOM, Inst Plasma Phys Rijnhuizen, NL-3430 BE Nieuwegein, Netherlands. [Sobierajski, R.; Jurek, M.; Klinger, D.; Pelka, J. B.] Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland. [Juha, L.; Burian, T.; Chalupsky, J.; Cihelka, J.; Hajkova, V.; Vysin, L.] Inst Phys AS CR, Prague 18221 8, Czech Republic. [Cihelka, J.] J Heyrovsky Inst Phys Chem ASCR, VVI, Prague 18223 8, Czech Republic. [Jastrow, U.; Stojanovic, N.; Toleikis, S.; Wabnitz, H.; Tiedtke, K.] DESY, D-22607 Hamburg, Germany. [Sokolowski-Tinten, K.; Shymanovich, U.] Univ Duisburg Essen, D-47048 Duisburg, Germany. [Krzywinski, J.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Hau-Riege, S.; London, R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Gleeson, A.] CCRLC Daresbury Lab, Warrington WA4 4AD, Cheshire, England. [Gullikson, E. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. [Bijkerk, F.] Univ Twente, MESA Inst Nanotechnol, Enschede, Netherlands. RP Khorsand, AR (reprint author), EURATOM, FOM, Inst Plasma Phys Rijnhuizen, Edisonbaan 14, NL-3430 BE Nieuwegein, Netherlands. EM sobierajski@rijnh.nl RI Sobierajski, Ryszard/E-7619-2012; Stojanovic, Nikola/H-6986-2013; Hajkova, Vera/G-9391-2014; Chalupsky, Jaromir/H-2079-2014; Burian, Tomas/H-3236-2014; Sokolowski-Tinten, Klaus/A-5415-2015; Klinger, Dorota/K-8819-2016; Pelka, Jerzy/S-8587-2016 OI Burian, Tomas/0000-0003-3982-9978; Pelka, Jerzy/0000-0002-1863-8219 FU EC [II-20022049]; Foundation for Fundamental Research on Matter (Stichting voor Fundamenteel Onderzoek der Materie, FOM); Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO); Ministry of Science and Higher Education of Poland [DESY/68/2007]; Czech Ministry of Education [LC510, LC528]; INGO [LA08024]; Czech Science Foundation [202/08/H057]; Academy of Sciences of the Czech Republic [Z10100523, IAA400100701, KAN300100702]; Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; German Federal Ministry of Education and Research [05 KS7PG1] FX Irradiation with FLASH has been performed within the framework of the Peak-Brightness-Collaboration [project II-20022049 EC]. Support from the PBC and the operators of the FLASH facility are gratefully acknowledged. This work has been partially supported by the Foundation for Fundamental Research on Matter (Stichting voor Fundamenteel Onderzoek der Materie, FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), the Ministry of Science and Higher Education of Poland, SPB nr. DESY/68/2007, the Czech Ministry of Education from the National Research Centers program (Projects LC510 and LC528) and program INGO (Grant LA08024), Czech Science Foundation (Grant 202/08/H057), by Academy of Sciences of the Czech Republic (Grants Z10100523, IAA400100701, and KAN300100702), by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and by the German Federal Ministry of Education and Research within the FSP 301 FLASH: Interaction of intense XUV-pulses with condensed matter (grant 05 KS7PG1). NR 54 TC 38 Z9 38 U1 4 U2 23 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JAN 18 PY 2010 VL 18 IS 2 BP 700 EP 712 DI 10.1364/OE.18.000700 PG 13 WC Optics SC Optics GA 547BP UT WOS:000273860400032 PM 20173890 ER PT J AU Shelton, DJ Peters, DW Sinclair, MB Brener, I Warne, LK Basilio, LI Coffey, KR Boreman, GD AF Shelton, D. J. Peters, D. W. Sinclair, M. B. Brener, I. Warne, L. K. Basilio, L. I. Coffey, K. R. Boreman, G. D. TI Effect of thin silicon dioxide layers on resonant frequency in infrared metamaterials SO OPTICS EXPRESS LA English DT Article ID DESIGN; FILMS AB Infrared metamaterials fabricated on semiconductor substrates exhibit a high degree of sensitivity to very thin (as small as 2 nm) layers of low permittivity materials between the metallic elements and the underlying substrate. We have measured the resonant frequencies of split ring resonators and square loops fabricated on Si wafers with silicon dioxide thicknesses ranging from 0 to 10 nm. Resonance features blue shift with increasing silicon dioxide thickness. These effects are explained by the silicon dioxide layer forming a series capacitance to the fringing field across the elements. Resonance coupling to the Si-O vibrational absorption has been observed. Native oxide layers which are normally ignored in numerical simulations of metamaterials must be accounted for to produce accurate predictions. (C) 2010 Optical Society of America C1 [Shelton, D. J.; Boreman, G. D.] Univ Cent Florida, CREOL, Orlando, FL 32816 USA. [Peters, D. W.; Sinclair, M. B.; Brener, I.; Warne, L. K.; Basilio, L. I.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Coffey, K. R.; Boreman, G. D.] Univ Cent Florida, AMPAC, Orlando, FL 32816 USA. RP Shelton, DJ (reprint author), Univ Cent Florida, CREOL, 4000 Cent Florida Blvd, Orlando, FL 32816 USA. EM dshelton@creol.ucf.edu RI Brener, Igal/G-1070-2010 OI Brener, Igal/0000-0002-2139-5182 FU Laboratory Directed Research and Development program at Sandia National Laboratories; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This research was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 17 TC 14 Z9 14 U1 2 U2 10 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JAN 18 PY 2010 VL 18 IS 2 BP 1085 EP 1090 DI 10.1364/OE.18.001085 PG 6 WC Optics SC Optics GA 547BP UT WOS:000273860400072 PM 20173930 ER PT J AU Rubenchik, AM Turitsyn, SK Fedoruk, MP AF Rubenchik, Alexander M. Turitsyn, Sergey K. Fedoruk, Michail P. TI Modulation instability in high power laser amplifiers SO OPTICS EXPRESS LA English DT Article ID BEAMS AB The modulation instability (MI) is one of the main factors responsible for the degradation of beam quality in high-power laser systems. The so-called B-integral restriction is commonly used as the criteria for MI control in passive optics devices. For amplifiers the adiabatic model, assuming locally the Bespalov-Talanov expression for MI growth, is commonly used to estimate the destructive impact of the instability. We present here the exact solution of MI development in amplifiers. We determine the parameters which control the effect of MI in amplifiers and calculate the MI growth rate as a function of those parameters. The safety range of operational parameters is presented. The results of the exact calculations are compared with the adiabatic model, and the range of validity of the latest is determined. We demonstrate that for practical situations the adiabatic approximation noticeably overestimates MI. The additional margin of laser system design is quantified. (C) 2010 Optical Society of America C1 [Rubenchik, Alexander M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Turitsyn, Sergey K.] Aston Univ, Sch Engn & Appl Sci, Photon Res Grp, Birmingham B4 7ET, W Midlands, England. [Fedoruk, Michail P.] Inst Computat Technol, Novosibirsk 630090, Russia. RP Rubenchik, AM (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM rubenchik1@llnl.gov RI Turitsyn, Sergei/J-5562-2013 OI Turitsyn, Sergei/0000-0003-0101-3834 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Siberian Branch of the Russian Academy of Science [42]; EPSRC; Royal Society FX We are grateful to A. Erlandson, K. Manes, and J. Trenholme for useful discussions. This work was partially performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and interdisciplinary grant 42 from the Siberian Branch of the Russian Academy of Science. The financial support of the EPSRC and the Royal Society is acknowledged. NR 9 TC 18 Z9 18 U1 0 U2 0 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JAN 18 PY 2010 VL 18 IS 2 BP 1380 EP 1388 DI 10.1364/OE.18.001380 PG 9 WC Optics SC Optics GA 547BP UT WOS:000273860400107 PM 20173965 ER PT J AU Manuel, AM Phillion, DW Olivier, SS Baker, KL Cannon, B AF Manuel, Anastacia M. Phillion, Donald W. Olivier, Scot S. Baker, Kevin L. Cannon, Brice TI Curvature wavefront sensing performance evaluation for active correction of the Large Synoptic Survey Telescope (LSST) SO OPTICS EXPRESS LA English DT Article ID RECONSTRUCTION; DENSITY; COUNTS AB The Large Synoptic Survey Telescope (LSST) uses a novel, three-mirror, modified Paul-Baker design, with an 8.4-meter primary mirror, a 3.4-m secondary, and a 5.0-m tertiary, along with three refractive corrector lenses to produce a flat focal plane with a field of view of 9.6 square degrees. In order to maintain image quality during operation, the deformations and rigid body motions of the three large mirrors must be actively controlled to minimize optical aberrations, which arise primarily from forces due to gravity and thermal expansion. We describe the methodology for measuring the telescope aberrations using a set of curvature wavefront sensors located in the four corners of the LSST camera focal plane. We present a comprehensive analysis of the wavefront sensing system, including the availability of reference stars, demonstrating that this system will perform to the specifications required to meet the LSST performance goals. (C) 2010 Optical Society of America C1 [Manuel, Anastacia M.; Phillion, Donald W.; Olivier, Scot S.; Baker, Kevin L.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Manuel, AM (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM olivier1@llnl.gov FU National Science Foundation [9 (AST-0551161), 1 (AST-0244680), AST-0132798]; U.S. Department of Energy [DE-AC02-76SF00515, DE-AC02-98CH10886, W-7405-Eng-48, DE-AC52-07NA27344]; LSSTC Institutional Members; Lawrence Livermore National Laboratory FX LSST is a public-private partnership. Funding for design and development activity comes from the National Science Foundation, private donations, grants to universities, and in-kind support at Department of Energy laboratories and other LSSTC Institutional Members. This work is supported by in part the National Science Foundation under Scientific Program Order No. 9 (AST-0551161) and Scientific Program Order No. 1 (AST-0244680) through Cooperative Agreement AST-0132798. Portions of this work are supported by the U.S. Department of Energy under contract DE-AC02-76SF00515 with the Stanford Linear Accelerator Center, contract DE-AC02-98CH10886 with Brookhaven National Laboratory, and with the Lawrence Livermore National Laboratory under the auspices of the U. S. Department of Energy in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. NR 23 TC 12 Z9 12 U1 2 U2 4 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JAN 18 PY 2010 VL 18 IS 2 BP 1528 EP 1552 DI 10.1364/OE.18.001528 PG 25 WC Optics SC Optics GA 547BP UT WOS:000273860400123 PM 20173981 ER PT J AU Abelev, BI Aggarwal, MM Ahammed, Z Anderson, BD Arkhipkin, D Averichev, GS Balewski, J Barannikova, O Barnby, LS Baudot, J Baumgart, S Beavis, DR Bellwied, R Benedosso, F Betancourt, MJ Betts, RR Bhasin, A Bhati, AK Bichsel, H Bielcik, J Bielcikova, J Biritz, B Bland, LC Bombara, M Bonner, BE Botje, M Bouchet, J Braidot, E Brandin, AV Bruna, E Bueltmann, S Burton, TP Bystersky, M Cai, XZ Caines, H Sanchez, MCD Catu, O Cebra, D Cendejas, R Cervantes, MC Chajecki, Z Chaloupka, P Chattopadhyay, S Chen, HF Chen, JH Chen, JY Cheng, J Cherney, M Chikanian, A Choi, KE Christie, W Clarke, RF Codrington, MJM Corliss, R Cormier, TM Cosentino, MR Cramer, JG Crawford, HJ Das, D Dash, S Daugherity, M De Silva, LC Dedovich, TG DePhillips, M Derevschikov, AA de Souza, RD Didenko, L Djawotho, P Dogra, SM Dong, X Drachenberg, JL Draper, JE Du, F Dunlop, JC Mazumdar, MRD Edwards, WR Efimov, LG Elhalhuli, E Elnimr, M Emelianov, V Engelage, I Eppley, G Erazmus, B Estienne, M Eun, L Fachini, P Fatemi, R Fedorisin, J Feng, A Filip, P Finch, E Fine, V Fisyak, Y Gagliardi, CA Gaillard, L Gangadharan, DR Ganti, MS Garcia-Solis, EJ Geromitsos, A Geurts, F Ghazikhanian, V Ghosh, P Gorbunov, YN Gordon, A Grebenyuk, O Grosnick, D Grube, B Guertin, SM Guimaraes, KSFF Gupta, A Gupta, N Guryn, W Haag, B Hallman, TJ Hamed, A Harris, JW He, W Heinz, M Heppelmann, S Hippolyte, B Hirsch, A Hjort, E Hoffman, AM Hoffmann, GW Hofman, DJ Hollis, RS Huang, HZ Humanic, TJ Huo, L Igo, G Iordanova, A Jacobs, P Jacobs, WW Jakl, P Jena, C Jin, F Jones, CL Jones, PG Joseph, J Judd, EG Kabana, S Kajimoto, K Kang, K Kapitan, J Keane, D Kechechyan, A Kettler, D Khodyrev, VY Kikola, DP Kiryluk, J Kisiel, A Klein, SR Knospe, AG Kocoloski, A Koetke, DD Kopytine, M Korsch, W Kotchenda, L Kouchpil, V Kravtsov, P Kravtsov, VI Krueger, K Krus, M Kuhn, C Kumar, L Kurnadi, P Lamont, MAC Landgraf, JM LaPointe, S Lauret, J Lebedev, A Lednicky, R Lee, CH Lee, JH Leight, W LeVine, MJ Li, N Li, C Li, Y Lin, G Lindenbaum, SJ Lisa, MA Liu, F Liu, J Liu, L Ljubicic, T Llope, WJ Longacre, RS Love, WA Lu, Y Ludlam, T Ma, GL Ma, YG Mahapatram, DP Majka, R Mall, OI Mangotra, LK Manweiler, R Margetis, S Markert, C Matis, HS Matulenko, YA McShane, TS Meschanin, A Milner, R Minaev, NG Mioduszewski, S Mischke, A Mitchell, J Mohanty, B Morozov, DA Munhoz, MG Nandi, BK Nattrass, C Nayak, TK Nelson, JM Netrakanti, PK Ng, MJ Nogach, LV Nurushev, SB Odyniec, G Ogawa, A Okada, H Okorokov, V Olson, D Pachr, M Page, BS Pal, SK Pandit, Y Panebratsev, Y Pawlak, T Peitzmann, T Perevoztchikov, V Perkins, C Peryt, W Phatak, SC Planinic, M Pluta, J Poljak, N Poskanzer, AM Potukuchi, BVKS Prindle, D Pruneau, C Pruthi, NK Pujahari, PR Putschke, J Raniwala, R Raniwala, S Ray, RL Redwine, R Reed, R Ridiger, A Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Rose, A Roy, C Ruan, L Russcher, MJ Sahoo, R Sakrejda, I Sakuma, T Salur, S Sandweiss, J Sarsour, M Schambach, J Scharenberg, RP Schmitz, N Seger, J Selyuzhenkov, I Seyboth, P Shabetai, A Shahaliev, E Shao, M Sharma, M Shi, SS Shi, XH Sichtermann, ER Simon, F Singaraju, RN Skoby, MJ Smirnov, N Snellings, R Sorensen, P Sowinski, J Spinka, HM Srivastava, B Stadnik, A Stanislaus, TDS Staszak, D Strikhanov, M Stringfellow, B Suaide, AAR Suarez, MC Subba, NL Sumbera, M Sun, XM Sun, Y Sun, Z Surrow, B Symons, TJM de Toledo, AS Takahashi, J Tang, AH Tang, Z Tarnowsky, T Thein, D Thomas, JH Tian, J Timmins, AR Timoshenko, S Tlusty, D Tokarev, M Trainor, TA Tram, VN Trattner, AL Trentalange, S Tribble, RE Tsai, OD Ulery, J Ullrich, T Underwood, DG Van Buren, G Van Leeuwen, M Molen, AMV Vanfossen, JA Varma, R Vasconcelos, GMS Vasilevski, IM Vasiliev, AN Videbaek, F Vigdor, SE Viyogi, YP Vokal, S Voloshin, SA Wada, M Waggoner, WT Walker, M Wang, F Wang, G Wang, JS Wang, Q Wang, X Wang, XL Wang, Y Webb, G Webb, JC Westfall, GD Whitten, C Wieman, H Wissink, SW Witt, R Wu, Y Xie, W Xu, N Xu, QH Xu, Y Xu, Z Yang, Y Yepes, P Yoo, IK Yue, Q Zawisza, M Zbroszczyk, H Zhan, W Zhang, S Zhang, WM Zhang, XP Zhang, Y Zhang, ZP Zhao, Y Zhong, C Zhou, J Zoulkarneev, R Zoulkarneeva, Y Zuo, JX AF Abelev, B. I. Aggarwal, M. M. Ahammed, Z. Anderson, B. D. Arkhipkin, D. Averichev, G. S. Balewski, J. Barannikova, O. Barnby, L. S. Baudot, J. Baumgart, S. Beavis, D. R. Bellwied, R. Benedosso, F. Betancourt, M. J. Betts, R. R. Bhasin, A. Bhati, A. K. Bichsel, H. Bielcik, J. Bielcikova, J. Biritz, B. Bland, L. C. Bombara, M. Bonner, B. E. Botje, M. Bouchet, J. Braidot, E. Brandin, A. V. Bruna, E. Bueltmann, S. Burton, T. P. Bystersky, M. Cai, X. Z. Caines, H. de la Barca Sanchez, M. Calderon Catu, O. Cebra, D. Cendejas, R. Cervantes, M. C. Chajecki, Z. Chaloupka, P. Chattopadhyay, S. Chen, H. F. Chen, J. H. Chen, J. Y. Cheng, J. Cherney, M. Chikanian, A. Choi, K. E. Christie, W. Clarke, R. F. Codrington, M. J. M. Corliss, R. Cormier, T. M. Cosentino, M. R. Cramer, J. G. Crawford, H. J. Das, D. Dash, S. Daugherity, M. De Silva, L. C. Dedovich, T. G. DePhillips, M. Derevschikov, A. A. de Souza, R. Derradi Didenko, L. Djawotho, P. Dogra, S. M. Dong, X. Drachenberg, J. L. Draper, J. E. Du, F. Dunlop, J. C. Mazumdar, M. R. Dutta Edwards, W. R. Efimov, L. G. Elhalhuli, E. Elnimr, M. Emelianov, V. Engelage, I. Eppley, G. Erazmus, B. Estienne, M. Eun, L. Fachini, P. Fatemi, R. Fedorisin, J. Feng, A. Filip, P. Finch, E. Fine, V. Fisyak, Y. Gagliardi, C. A. Gaillard, L. Gangadharan, D. R. Ganti, M. S. Garcia-Solis, E. J. Geromitsos, A. Geurts, F. Ghazikhanian, V. Ghosh, P. Gorbunov, Y. N. Gordon, A. Grebenyuk, O. Grosnick, D. Grube, B. Guertin, S. M. Guimaraes, K. S. F. F. Gupta, A. Gupta, N. Guryn, W. Haag, B. Hallman, T. J. Hamed, A. Harris, J. W. He, W. Heinz, M. Heppelmann, S. Hippolyte, B. Hirsch, A. Hjort, E. Hoffman, A. M. Hoffmann, G. W. Hofman, D. J. Hollis, R. S. Huang, H. Z. Humanic, T. J. Huo, L. Igo, G. Iordanova, A. Jacobs, P. Jacobs, W. W. Jakl, P. Jena, C. Jin, F. Jones, C. L. Jones, P. G. Joseph, J. Judd, E. G. Kabana, S. Kajimoto, K. Kang, K. Kapitan, J. Keane, D. Kechechyan, A. Kettler, D. Khodyrev, V. Yu. Kikola, D. P. Kiryluk, J. Kisiel, A. Klein, S. R. Knospe, A. G. Kocoloski, A. Koetke, D. D. Kopytine, M. Korsch, W. Kotchenda, L. Kouchpil, V. Kravtsov, P. Kravtsov, V. I. Krueger, K. Krus, M. Kuhn, C. Kumar, L. Kurnadi, P. Lamont, M. A. C. Landgraf, J. M. LaPointe, S. Lauret, J. Lebedev, A. Lednicky, R. Lee, C. -H. Lee, J. H. Leight, W. LeVine, M. J. Li, N. Li, C. Li, Y. Lin, G. Lindenbaum, S. J. Lisa, M. A. Liu, F. Liu, J. Liu, L. Ljubicic, T. Llope, W. J. Longacre, R. S. Love, W. A. Lu, Y. Ludlam, T. Ma, G. L. Ma, Y. G. Mahapatram, D. P. Majka, R. Mall, O. I. Mangotra, L. K. Manweiler, R. Margetis, S. Markert, C. Matis, H. S. Matulenko, Yu. A. McShane, T. S. Meschanin, A. Milner, R. Minaev, N. G. Mioduszewski, S. Mischke, A. Mitchell, J. Mohanty, B. Morozov, D. A. Munhoz, M. G. Nandi, B. K. Nattrass, C. Nayak, T. K. Nelson, J. M. Netrakanti, P. K. Ng, M. J. Nogach, L. V. Nurushev, S. B. Odyniec, G. Ogawa, A. Okada, H. Okorokov, V. Olson, D. Pachr, M. Page, B. S. Pal, S. K. Pandit, Y. Panebratsev, Y. Pawlak, T. Peitzmann, T. Perevoztchikov, V. Perkins, C. Peryt, W. Phatak, S. C. Planinic, M. Pluta, J. Poljak, N. Poskanzer, A. M. Potukuchi, B. V. K. S. Prindle, D. Pruneau, C. Pruthi, N. K. Pujahari, P. R. Putschke, J. Raniwala, R. Raniwala, S. Ray, R. L. Redwine, R. Reed, R. Ridiger, A. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Rose, A. Roy, C. Ruan, L. Russcher, M. J. Sahoo, R. Sakrejda, I. Sakuma, T. Salur, S. Sandweiss, J. Sarsour, M. Schambach, J. Scharenberg, R. P. Schmitz, N. Seger, J. Selyuzhenkov, I. Seyboth, P. Shabetai, A. Shahaliev, E. Shao, M. Sharma, M. Shi, S. S. Shi, X. -H. Sichtermann, E. R. Simon, F. Singaraju, R. N. Skoby, M. J. Smirnov, N. Snellings, R. Sorensen, P. Sowinski, J. Spinka, H. M. Srivastava, B. Stadnik, A. Stanislaus, T. D. S. Staszak, D. Strikhanov, M. Stringfellow, B. Suaide, A. A. R. Suarez, M. C. Subba, N. L. Sumbera, M. Sun, X. M. Sun, Y. Sun, Z. Surrow, B. Symons, T. J. M. de Toledo, A. Szanto Takahashi, J. Tang, A. H. Tang, Z. Tarnowsky, T. Thein, D. Thomas, J. H. Tian, J. Timmins, A. R. Timoshenko, S. Tlusty, D. Tokarev, M. Trainor, T. A. Tram, V. N. Trattner, A. L. Trentalange, S. Tribble, R. E. Tsai, O. D. Ulery, J. Ullrich, T. Underwood, D. G. Van Buren, G. Van Leeuwen, M. Molen, A. M. Vander Vanfossen, J. A., Jr. Varma, R. Vasconcelos, G. M. S. Vasilevski, I. M. Vasiliev, A. N. Videbaek, F. Vigdor, S. E. Viyogi, Y. P. Vokal, S. Voloshin, S. A. Wada, M. Waggoner, W. T. Walker, M. Wang, F. Wang, G. Wang, J. S. Wang, Q. Wang, X. Wang, X. L. Wang, Y. Webb, G. Webb, J. C. Westfall, G. D. Whitten, C., Jr. Wieman, H. Wissink, S. W. Witt, R. Wu, Y. Xie, W. Xu, N. Xu, Q. H. Xu, Y. Xu, Z. Yang, Y. Yepes, P. Yoo, I-K. Yue, Q. Zawisza, M. Zbroszczyk, H. Zhan, W. Zhang, S. Zhang, W. M. Zhang, X. P. Zhang, Y. Zhang, Z. P. Zhao, Y. Zhong, C. Zhou, J. Zoulkarneev, R. Zoulkarneeva, Y. Zuo, J. X. TI System size dependence of associated yields in hadron-triggered jets STAR Collaboration SO PHYSICS LETTERS B LA English DT Article DE Parton energy loss; Jet quenching; Di-hadron fragmentation function; Relativistic heavy-ion collisions ID RADIATIVE ENERGY-LOSS; COLLISIONS; SUPPRESSION AB We present results on the system size dependence of high transverse momentum di-hadron correlations at root s(NN) = 200 GeV as measured by STAR at RHIC. Measurements in d + Au, Cu + Cu and Au + Au collisions reveal similar jet-like near-side correlation yields (correlations at small angular separation Delta phi similar to 0, Delta eta similar to 0) for all systems and centralities. Previous measurements have shown Chat the away-side (Delta phi similar to pi) yield is suppressed in heavy-ion collisions. We present measurements of the away-side Suppression as a function of transverse momentum and centrality in Cu + Cu and Au + Au collisions. The suppression is found to be similar in Cu + Cu and An + An collisions at a similar number of participants. The results are compared to theoretical calculations based on the patron quenching model and the modified fragmentation model. The observed differences between data and theory indicate that the correlated yields presented here will further constrain dynamic energy loss models and provide information about the dynamic density profile in heavy-ion collisions. (C) 2009 Elsevier B.V. All rights reserved. C1 [Baumgart, S.; Bruna, E.; Caines, H.; Catu, O.; Chikanian, A.; Du, F.; Finch, E.; Heinz, M.; Knospe, A. G.; Lin, G.; Majka, R.; Nattrass, C.; Putschke, J.; Sandweiss, J.; Smirnov, N.] Yale Univ, New Haven, CT 06520 USA. [Draper, J. E.; Krueger, K.; Underwood, D. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Barnby, L. S.; Bombara, M.; Burton, T. P.; Elhalhuli, E.; Gaillard, L.; Nelson, J. M.; Timmins, A. R.] Univ Birmingham, Birmingham, W Midlands, England. [Beavis, D. R.; Bland, L. C.; Christie, W.; DePhillips, M.; Didenko, L.; Dunlop, J. C.; Fachini, P.; Fine, V.; Fisyak, Y.; Gordon, A.; Guryn, W.; Hallman, T. J.; Lamont, M. A. C.; Landgraf, J. M.; Lauret, J.; Lebedev, A.; Lee, J. H.; LeVine, M. J.; Ljubicic, T.; Longacre, R. S.; Love, W. A.; Ludlam, T.; Ogawa, A.; Okada, H.; Perevoztchikov, V.; Ruan, L.; Sorensen, P.; Tang, A. H.; Ullrich, T.; Van Buren, G.; Videbaek, F.; Xu, Z.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Crawford, H. J.; Engelage, I.; Judd, E. G.; Ng, M. J.; Perkins, C.; Trattner, A. L.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [de la Barca Sanchez, M. Calderon; Cebra, D.; Das, D.; Haag, B.; Leight, W.; Mall, O. I.; Reed, R.; Romero, J. L.] Univ Calif Davis, Davis, CA 95616 USA. [Biritz, B.; Cendejas, R.; Gangadharan, D. R.; Ghazikhanian, V.; Guertin, S. M.; Huang, H. Z.; Igo, G.; Kurnadi, P.; Staszak, D.; Trentalange, S.; Tsai, O. D.; Wang, G.; Whitten, C., Jr.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [de Souza, R. Derradi; Takahashi, J.; Vasconcelos, G. M. S.] Univ Estadual Campinas, Sao Paulo, Brazil. [Abelev, B. I.; Barannikova, O.; Betts, R. R.; Garcia-Solis, E. J.; Hofman, D. J.; Hollis, R. S.; Iordanova, A.; Suarez, M. C.] Univ Illinois, Chicago, IL 60607 USA. [Cherney, M.; Gorbunov, Y. N.; McShane, T. S.; Seger, J.; Waggoner, W. T.] Creighton Univ, Omaha, NE 68178 USA. [Bielcik, J.; Bielcikova, J.; Bystersky, M.; Chaloupka, P.; Jakl, P.; Kapitan, J.; Kouchpil, V.; Krus, M.; Pachr, M.; Sumbera, M.; Tlusty, D.] Nucl Phys Inst AS CR, Rez 25068, Czech Republic. [Averichev, G. S.; Dedovich, T. G.; Efimov, L. G.; Fedorisin, J.; Kechechyan, A.; Panebratsev, Y.; Rogachevskiy, O. V.; Shahaliev, E.; Stadnik, A.; Tokarev, M.; Vokal, S.] Lab High Energy JINR, Dubna, Russia. [Arkhipkin, D.; Filip, P.; Lednicky, R.; Vasilevski, I. M.; Zoulkarneev, R.; Zoulkarneeva, Y.] Particle Phys Lab JINR, Dubna, Russia. [Dash, S.; Jena, C.; Mahapatram, D. P.; Phatak, S. C.; Viyogi, Y. P.] Inst Phys, Bhubaneswar 751005, Orissa, India. [Nandi, B. K.; Pujahari, P. R.; Varma, R.] Indian Inst Technol, Mumbai 400076, Maharashtra, India. [He, W.; Jacobs, W. W.; Page, B. S.; Selyuzhenkov, I.; Sowinski, J.; Vigdor, S. E.; Wissink, S. W.] Indiana Univ, Bloomington, IN 47408 USA. [Baudot, J.; Estienne, M.; Hippolyte, B.; Jones, P. G.; Kuhn, C.; Shabetai, A.] Inst Rech Subatom, Strasbourg, France. [Bhasin, A.; Dogra, S. M.; Gupta, A.; Gupta, N.; Mangotra, L. K.; Potukuchi, B. V. K. S.] Univ Jammu, Jammu 180001, India. [Anderson, B. D.; Bouchet, J.; Chen, J. H.; Joseph, J.; Keane, D.; Kopytine, M.; Margetis, S.; Pandit, Y.; Subba, N. L.; Vanfossen, J. A., Jr.; Zhang, W. M.] Kent State Univ, Kent, OH 44242 USA. [Fatemi, R.; Korsch, W.; Webb, G.] Univ Kentucky, Lexington, KY 40506 USA. [Sun, Z.; Wang, J. S.; Yang, Y.; Zhan, W.] Inst Modern Phys, Lanzhou, Peoples R China. [Dong, X.; Edwards, W. R.; Grebenyuk, O.; Hjort, E.; Jacobs, P.; Kikola, D. P.; Kiryluk, J.; Klein, S. R.; Matis, H. S.; Odyniec, G.; Olson, D.; Poskanzer, A. M.; Ritter, H. G.; Rose, A.; Sakrejda, I.; Salur, S.; Sichtermann, E. R.; Sun, X. M.; Symons, T. J. M.; Thomas, J. H.; Tram, V. N.; Wieman, H.; Xu, N.; Zhang, X. P.; Zhang, Y.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Balewski, J.; Betancourt, M. J.; Hoffman, A. M.; Jones, C. L.; Kocoloski, A.; Milner, R.; Redwine, R.; Sakuma, T.; Surrow, B.; Walker, M.] MIT, Cambridge, MA 02139 USA. [Schmitz, N.; Seyboth, P.; Simon, F.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Molen, A. M. Vander; Westfall, G. D.] Michigan State Univ, E Lansing, MI 48824 USA. [Bhasin, A.; Brandin, A. V.; Emelianov, V.; Kotchenda, L.; Kravtsov, P.; Okorokov, V.; Ridiger, A.; Strikhanov, M.; Timoshenko, S.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Harris, J. W.; Lindenbaum, S. J.] CUNY City Coll, New York, NY 10031 USA. [Benedosso, F.; Bhasin, A.; Botje, M.; Braidot, E.; Mischke, A.; Peitzmann, T.; Russcher, M. J.; Snellings, R.; Van Leeuwen, M.] NIKHEF H, NL-1009 DB Amsterdam, Netherlands. [Benedosso, F.; Botje, M.; Braidot, E.; Mischke, A.; Peitzmann, T.; Russcher, M. J.; Snellings, R.; Van Leeuwen, M.] Univ Utrecht, Amsterdam, Netherlands. [Chajecki, Z.; Humanic, T. J.; Kisiel, A.; Lisa, M. A.] Ohio State Univ, Columbus, OH 43210 USA. [Bueltmann, S.] Old Dominion Univ, Norfolk, VA 23529 USA. [Aggarwal, M. M.; Bhati, A. K.; Kumar, L.; Pruthi, N. K.] Panjab Univ, Chandigarh 160014, India. [Eun, L.; Heppelmann, S.; Zawisza, M.] Penn State Univ, University Pk, PA 16802 USA. [Derevschikov, A. A.; Khodyrev, V. Yu.; Kravtsov, V. I.; Matulenko, Yu. A.; Meschanin, A.; Minaev, N. G.; Morozov, D. A.; Nogach, L. V.; Nurushev, S. B.; Vasiliev, A. N.] Inst High Energy Phys, Protvino, Russia. [Choi, K. E.; Grube, B.; Lee, C. -H.; Yoo, I-K.] Purdue Univ, W Lafayette, IN 47907 USA. [Choi, K. E.; Grube, B.; Lee, C. -H.; Yoo, I-K.] Pusan Natl Univ, Pusan 609735, South Korea. [Raniwala, R.; Raniwala, S.] Univ Rajasthan, Jaipur 302004, Rajasthan, India. [Bonner, B. E.; Eppley, G.; Geurts, F.; Liu, J.; Llope, W. J.; Mitchell, J.; Roberts, J. B.; Yepes, P.; Zhou, J.] Rice Univ, Houston, TX 77251 USA. [Cosentino, M. R.; Guimaraes, K. S. F. F.; Munhoz, M. G.; Suaide, A. A. R.; de Toledo, A. Szanto] Univ Sao Paulo, Sao Paulo, Brazil. [Chen, H. F.; Li, C.; Lu, Y.; Shao, M.; Sun, Y.; Tang, Z.; Wang, X. L.; Xu, Y.; Zhang, Z. P.; Zhao, Y.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Xu, Q. H.] Shandong Univ, Jinan 250100, Shandong, Peoples R China. [Cai, X. Z.; Jin, F.; Ma, G. L.; Ma, Y. G.; Shi, X. -H.; Tian, J.; Zhang, S.; Zhong, C.; Zuo, J. X.] Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Erazmus, B.; Geromitsos, A.; Kabana, S.; Roy, C.; Sahoo, R.] SUBATECH, Nantes, France. [Cervantes, M. C.; Clarke, R. F.; Codrington, M. J. M.; Djawotho, P.; Drachenberg, J. L.; Gagliardi, C. A.; Hamed, A.; Huo, L.; Mioduszewski, S.; Sarsour, M.; Tribble, R. E.] Texas A&M Univ, College Stn, TX 77843 USA. [Daugherity, M.; Hoffmann, G. W.; Kajimoto, K.; Markert, C.; Ray, R. L.; Schambach, J.; Thein, D.; Wada, M.] Univ Texas Austin, Austin, TX 78712 USA. [Cheng, J.; Kang, K.; Li, Y.; Wang, X.; Wang, Y.; Yue, Q.] Tsinghua Univ, Beijing 100084, Peoples R China. [Sharma, M.; Witt, R.] US Naval Acad, Annapolis, MD 21402 USA. [Grosnick, D.; Koetke, D. D.; Manweiler, R.; Stanislaus, T. D. S.; Webb, J. C.] Valparaiso Univ, Valparaiso, IN 46383 USA. [Ahammed, Z.; Chattopadhyay, S.; Mazumdar, M. R. Dutta; Ganti, M. S.; Ghosh, P.; Mohanty, B.; Nayak, T. K.; Pal, S. K.; Singaraju, R. N.] Ctr Variable Energy Cyclotron, Kolkata 700064, India. [Pawlak, T.; Peryt, W.; Pluta, J.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Schmitz, N.; Seyboth, P.; Simon, F.] Univ Washington, Seattle, WA 98195 USA. [Bellwied, R.; Cormier, T. M.; De Silva, L. C.; Elnimr, M.; LaPointe, S.; Pruneau, C.; Voloshin, S. A.] Wayne State Univ, Detroit, MI 48201 USA. [Chen, J. Y.; Feng, A.; Li, N.; Liu, F.; Liu, L.; Shi, S. S.; Wu, Y.] CCNU HZNU, Inst Particle Phys, Wuhan 430079, Peoples R China. [Planinic, M.; Poljak, N.] Univ Zagreb, HR-10002 Zagreb, Croatia. RP Catu, O (reprint author), Yale Univ, New Haven, CT 06520 USA. EM catu@rhig.physics.yale.edu RI Fornazier Guimaraes, Karin Silvia/H-4587-2016; Chaloupka, Petr/E-5965-2012; Nattrass, Christine/J-6752-2016; Derradi de Souza, Rafael/M-4791-2013; Cosentino, Mauro/L-2418-2014; Suaide, Alexandre/L-6239-2016; Inst. of Physics, Gleb Wataghin/A-9780-2017; Okorokov, Vitaly/C-4800-2017; Strikhanov, Mikhail/P-7393-2014; Barnby, Lee/G-2135-2010; Mischke, Andre/D-3614-2011; Takahashi, Jun/B-2946-2012; Planinic, Mirko/E-8085-2012; Yoo, In-Kwon/J-6222-2012; Peitzmann, Thomas/K-2206-2012; Witt, Richard/H-3560-2012; Voloshin, Sergei/I-4122-2013; Lednicky, Richard/K-4164-2013; Yang, Yanyun/B-9485-2014; Bielcikova, Jana/G-9342-2014; Sumbera, Michal/O-7497-2014; Dogra, Sunil /B-5330-2013 OI Bhasin, Anju/0000-0002-3687-8179; Sorensen, Paul/0000-0001-5056-9391; Thomas, James/0000-0002-6256-4536; van Leeuwen, Marco/0000-0002-5222-4888; Fornazier Guimaraes, Karin Silvia/0000-0003-0578-9533; Nattrass, Christine/0000-0002-8768-6468; Derradi de Souza, Rafael/0000-0002-2084-7001; Cosentino, Mauro/0000-0002-7880-8611; Suaide, Alexandre/0000-0003-2847-6556; Okorokov, Vitaly/0000-0002-7162-5345; Fisyak, Yuri/0000-0002-3151-8377; Strikhanov, Mikhail/0000-0003-2586-0405; Barnby, Lee/0000-0001-7357-9904; Takahashi, Jun/0000-0002-4091-1779; Peitzmann, Thomas/0000-0002-7116-899X; Yang, Yanyun/0000-0002-5982-1706; Sumbera, Michal/0000-0002-0639-7323; FU Offices of NP; HEP within the US DOE Office of Science; US NSF; Sloan Foundation; DFG; CNRS/IN2P3; RA; RPL; EMN of France; STFC; EPSRC of the United Kingdom; FAPESP of Brazil; Russian Ministry of Sci. and Tech.; NNSFC; CAS; MoST; MoE of China; IRP; GA of the Czech Republic; FOM of the Netherlands; DAE; DST; CSIR of the Government of India; Polish State Committee for Scientific Research; Korea Sci. & Eng. Foundation FX We thank the RHIC Operations Group and RCF at BNL, and the NERSC Center at LBNL and the resources provided by the Open Science Grid consortium for their support. This work was supported in part by the Offices of NP and HEP within the US DOE Office of Science, the US NSF, the Sloan Foundation, the DFG cluster of excellence 'Origin and Structure of the Universe', CNRS/IN2P3, RA, RPL, and EMN of France, STFC and EPSRC of the United Kingdom, FAPESP of Brazil, the Russian Ministry of Sci. and Tech., the NNSFC, CAS, MoST, and MoE of China, IRP and GA of the Czech Republic, FOM of the Netherlands, DAE, DST, and CSIR of the Government of India, the Polish State Committee for Scientific Research, and the Korea Sci. & Eng. Foundation. NR 35 TC 7 Z9 7 U1 0 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD JAN 18 PY 2010 VL 683 IS 2-3 BP 123 EP 128 DI 10.1016/j.physletb.2009.12.020 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 554FO UT WOS:000274421100008 ER PT J AU Cox, MJ Huang, YJ Fujimura, KE Liu, JT McKean, M Boushey, HA Segal, MR Brodie, EL Cabana, MD Lynch, SV AF Cox, Michael J. Huang, Yvonne J. Fujimura, Kei E. Liu, Jane T. McKean, Michelle Boushey, Homer A. Segal, Mark R. Brodie, Eoin L. Cabana, Michael D. Lynch, Susan V. TI Lactobacillus casei Abundance Is Associated with Profound Shifts in the Infant Gut Microbiome SO PLOS ONE LA English DT Article ID PLACEBO-CONTROLLED TRIAL; IRRITABLE-BOWEL-SYNDROME; INTESTINAL MICROBIOTA; BACTERIAL DIVERSITY; PROBIOTIC BACTERIA; COMMUNITY ECOLOGY; ASTHMA PREVENTION; IMMUNE FUNCTION; ATOPIC DISEASE; CLONE LIBRARY AB Colonization of the infant gut by microorganisms over the first year of life is crucial for development of a balanced immune response. Early alterations in the gastrointestinal microbiota of neonates has been linked with subsequent development of asthma and atopy in older children. Here we describe high-resolution culture-independent analysis of stool samples from 6-month old infants fed daily supplements of Lactobacillus casei subsp. Rhamnosus (LGG) or placebo in a double-blind, randomized Trial of Infant Probiotic Supplementation (TIPS). Bacterial community composition was examined using a high-density microarray, the 16S rRNA PhyloChip, and the microbial assemblages of infants with either high or low LGG abundance were compared. Communities with high abundance of LGG exhibited promotion of phylogenetically clustered taxa including a number of other known probiotic species, and were significantly more even in their distribution of community members. Ecologically, these aspects are characteristic of communities that are more resistant to perturbation and outgrowth of pathogens. PhyloChip analysis also permitted identification of taxa negatively correlated with LGG abundance that have previously been associated with atopy, as well as those positively correlated that may prove useful alternative targets for investigation as alternative probiotic species. From these findings we hypothesize that a key mechanism for the protective effect of LGG supplementation on subsequent development of allergic disease is through promotion of a stable, even, and functionally redundant infant gastrointestinal community. C1 [Cox, Michael J.; Fujimura, Kei E.; Lynch, Susan V.] Univ Calif San Francisco, Div Gastroenterol, San Francisco, CA 94143 USA. [Huang, Yvonne J.; Liu, Jane T.; Boushey, Homer A.; Cabana, Michael D.] Univ Calif San Francisco, Dept Med, San Francisco, CA 94143 USA. [McKean, Michelle; Cabana, Michael D.] Univ Calif San Francisco, Dept Pediat, San Francisco, CA 94143 USA. [Segal, Mark R.] Univ Calif San Francisco, Dept Epidemiol & Biostat, San Francisco, CA 94143 USA. [Brodie, Eoin L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Dept Ecol, Berkeley, CA 94720 USA. RP Cox, MJ (reprint author), Univ Calif San Francisco, Div Gastroenterol, San Francisco, CA 94143 USA. EM susan.lynch@ucsf.edu RI Cox, Michael/A-6959-2010; Lynch, Susan/B-6272-2009; Huang, Yvonne /A-7360-2015; Brodie, Eoin/A-7853-2008; OI Brodie, Eoin/0000-0002-8453-8435; Cox, Michael/0000-0002-4002-1506 FU National Institutes of Health (NIH) [HL080074, HL074207]; Tobacco-Related Disease Research Program; National Institutes of Health/National Center for Research Resources (NIH/NCRR) [UL1 RR024131] FX SVL is supported by an American Lung Association Award (http://www.lungusa.org/), MDC and and HAB are supported by a National Institutes of Health (NIH) award (http://www.nih.gov/), HL080074 to MDC and HL074207 to HAB and ELB, and YLH by a Tobacco-Related Disease Research Program award (http://www.trdrp.org/). Part of this work was performed at Lawrence Berkeley National Laboratory under the auspices of the University of California under contract number DOE DE-AC02-05CH11231. This study was also supported in part by National Institutes of Health/National Center for Research Resources (NIH/NCRR) University of California San Francisco Clinical and Translational Science (UCSF-CTSI) Grant Number UL1 RR024131. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the National Institutes of Health. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 73 TC 58 Z9 61 U1 3 U2 23 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JAN 18 PY 2010 VL 5 IS 1 AR e8745 DI 10.1371/journal.pone.0008745 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 545EJ UT WOS:000273715000006 PM 20090909 ER PT J AU Ma, CB Yeung, ES AF Ma, Changbei Yeung, Edward S. TI Single Molecule Imaging of Protein Molecules in Nanopores SO ANALYTICAL CHEMISTRY LA English DT Article ID SIZE-EXCLUSION CHROMATOGRAPHY; SELF-ASSEMBLED MONOLAYERS; DNA-MOLECULES; NANOTUBE MEMBRANES; ULTRAFILTRATION MEMBRANES; CAPILLARY-ELECTROPHORESIS; FLUORESCENCE MICROSCOPY; LIQUID/SOLID INTERFACES; INDIVIDUAL MOLECULES; LATERAL DIFFUSION AB The interactions between single protein molecules and nanoporous polycarbonate membranes were investigated at the single molecule level. Entrapment of proteins was shown to be size selective and was dependent on the membrane pore diameter. A pore size that is only slightly larger than the maximum dimension of the proteins was inadequate for intrusion into the pores. For a given protein, the number of molecules found at a given depth decreased as the pore size decreased. In addition, as the depth increased, for a given size pore, the number of molecules decreased rapidly. The depth-dependent histograms nicely fit a one-dimensional diffusion model. However, a highly restricted motion was observed even when the pore diameter was 10 times the size of the protein, resulting in anomalously small diffusion coefficients. We also demonstrated the subtle differences in depth distribution among BSA and hemoglobin that have nearly the same molecular weight but slightly different molecular shapes. These results give unique insights into the detailed mechanism of size-exclusion chromatography and membrane filtration. C1 [Yeung, Edward S.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Yeung, ES (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. EM yeung@ameslab.gov FU U.S. Department of Energy by Iowa State University [DE-AC02WCH11358]; Director of Science, Office of Basic Energy Science, Division of Chemical Sciences FX The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02WCH11358. This work was supported by the Director of Science, Office of Basic Energy Science, Division of Chemical Sciences. NR 67 TC 14 Z9 14 U1 4 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD JAN 15 PY 2010 VL 82 IS 2 BP 478 EP 482 DI 10.1021/ac902487c PG 5 WC Chemistry, Analytical SC Chemistry GA 542HR UT WOS:000273484200006 PM 20000771 ER PT J AU Dansby-Sparks, RN Jin, J Mechery, SJ Sampathkumaran, U Owen, TW Yu, BD Goswami, K Hong, KL Grant, J Xue, ZL AF Dansby-Sparks, Royce N. Jin, Jun Mechery, Shelly J. Sampathkumaran, Uma Owen, Thomas William Yu, Bi Dan Goswami, Kisholoy Hong, Kunlun Grant, Joseph Xue, Zi-Ling TI Fluorescent-Dye-Doped Sol-Gel Sensor for Highly Sensitive Carbon Dioxide Gas Detection below Atmospheric Concentrations SO ANALYTICAL CHEMISTRY LA English DT Article ID FILM SENSORS; CO2; OXYGEN; ICE; AIR AB Optical fluorescence sol-gel sensors have been developed for the detection of carbon dioxide gas in the 0.03-30% range with a detection limit of 0.008% (or 80 ppm) and a quantitation limit of 0.02% (or 200 ppm) CO2. Sol-gels were spin-coated on glass slides to create an organically modified silica-doped matrix with the 1-hydroxypyrene-3,6,8-trisulfonate (HPTS) fluorescent indicator. The luminescence intensity of the HPTS indicator (513 nm) is quenched by CO2, which protonates the anionic form of HPTS. An ion pair technique was used to incorporate the lipophilic dye into the hydrophilic sol-gel matrix. TiO2 particles (<5 mu m diameter) were added to induce Mie scattering and increase the incident light interaction with the sensing film, thus increasing the signal-to-noise ratio. Moisture-proof overcoatings have been used to maintain a constant level of water inside the sensor films. The optical sensors are inexpensive to prepare and can be easily coupled to fiber optics for remote sensing capabilities. A fiber-optic bundle was used for the gas detection and shown to work as part of a multianalyte platform for simultaneous detection of multiple analytes. The studies reported here resulted in the development of sol-gel optical fluorescent sensors for CO2 gas with sensitivity below that in the atmosphere (ca. 387 ppm). These sensors are a complementary approach to current FT-IR measurements for real-time carbon dioxide detection in environmental applications. C1 [Mechery, Shelly J.; Sampathkumaran, Uma; Owen, Thomas William; Yu, Bi Dan; Goswami, Kisholoy] InnoSense LLC, Torrance, CA 90505 USA. [Dansby-Sparks, Royce N.; Jin, Jun; Xue, Zi-Ling] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Hong, Kunlun] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Grant, Joseph] NASA, Div Sci & Technol, Stennis Space Ctr, MS 39529 USA. RP Sampathkumaran, U (reprint author), InnoSense LLC, 2531 W 237th St,Suite 127, Torrance, CA 90505 USA. RI Hong, Kunlun/E-9787-2015 OI Hong, Kunlun/0000-0002-2852-5111 FU NASA SBIR [07-1 T9.01-9883]; Chinese Government Scholarship Program; Hilton A. Smith Graduate Fellowship Program; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department. of Energy FX This work was supported under an STTR proposal to the NASA SBIR (Grant 07-1 T9.01-9883) and by the Chinese Government Scholarship Program (J.J.) and Hilton A. Smith Graduate Fellowship Program (R.N.D.-S.). The work (SEM and film thickness measurements) at the Center for Nanophase Materials Sciences (CNMS), Oak Ridge National Laboratory, was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. We are thankful to Joe Horton, Dale Hensley, and David Joy (CNMS) for expert assistance in obtaining SEM images and Deepak Bhandari (The University of Tennessee, Knoxville) for help in obtaining film thickness measurements by noncontact profilometry. NR 29 TC 41 Z9 43 U1 4 U2 57 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD JAN 15 PY 2010 VL 82 IS 2 BP 593 EP 600 DI 10.1021/ac901890r PG 8 WC Chemistry, Analytical SC Chemistry GA 542HR UT WOS:000273484200022 PM 20038093 ER PT J AU Ma, CB Yeung, ES AF Ma, Changbei Yeung, Edward S. TI Entrapment of Individual DNA Molecules and Nanoparticles in Porous Alumina Membranes SO ANALYTICAL CHEMISTRY LA English DT Article ID SINGLE-PROTEIN MOLECULES; LIQUID/SOLID INTERFACES; FLUORESCENCE MICROSCOPY; LATERAL DIFFUSION; SURFACE-DIFFUSION; ENZYME-KINETICS; ADSORPTION; DYNAMICS; ELECTROPHORESIS; SPECTROSCOPY AB Depth-resolved fluorescence imaging allows the motion of single DNA molecules and single nanoparticles at the liquid/solid interface to be recorded in real time. Porous alumina membranes were employed as model chromatographic packing material. Using a suitable pH and ionic strength, adsorptive interactions are suppressed. The effects of 3-dimensional topography, specifically the presence of nanopores, on DNA and nanoparticle migration across the surface are, thus, revealed. The residence times and the number of immobilized DNA molecules or particles increased as the pores size increased. Yet, we found that the pore diameter must be significantly larger than the particle diameter or the DNA short radius before entrapment can occur. Furthermore, the depth distribution of particles does not conform to one-dimensional diffusion in the pores, probably because of collisions with the walls. These observations provide new insights into conventional liquid chromatography as well as size-exclusion chromatography and membrane separations. C1 [Yeung, Edward S.] US DOE, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Yeung, ES (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM yeung@ameslab.gov FU U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358]; Director of Science, Office of Basic Energy Science, Division of Chemical Sciences FX We thank Dr. Hung-Ting (Tommy) Chen for the SEM images in Figure 1. E.S.Y. thanks the Robert Allen Wright Endowment for Excellence for support. The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. This work was supported by the Director of Science, Office of Basic Energy Science, Division of Chemical Sciences. NR 44 TC 10 Z9 10 U1 1 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD JAN 15 PY 2010 VL 82 IS 2 BP 654 EP 657 DI 10.1021/ac902109g PG 4 WC Chemistry, Analytical SC Chemistry GA 542HR UT WOS:000273484200030 PM 20014757 ER PT J AU Hoggard, JC Wahl, JH Synovec, RE Mong, GM Fraga, CG AF Hoggard, Jamin C. Wahl, Jon H. Synovec, Robert E. Mong, Gary M. Fraga, Carlos G. TI Impurity Profiling of a Chemical Weapon Precursor for Possible Forensic Signatures by Comprehensive Two-Dimensional Gas Chromatography/Mass Spectrometry and Chemometrics SO ANALYTICAL CHEMISTRY LA English DT Article ID PARALLEL FACTOR-ANALYSIS; GC-TOFMS DATA AB In this report we present the feasibility of using analytical and chemometric methodologies to reveal and exploit the chemical impurity profiles from commercial dimethyl methylphosphonate (DMMP) samples to illustrate the type of forensic information that may be obtained from chemical-attack evidence. Using DMMP as a model compound of a toxicant that may be used in a chemical attack, we used comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC x GC/TOF-MS) to detect and identify trace organic impurities in six samples of commercially acquired DMMP. The GC x GC/TOF-MS data was analyzed to produce impurity profiles for all six DMMP samples using 29 analyte impurities. The use of PARAFAC for the mathematical resolution of overlapped GC x GC peaks ensured clean spectra for the identification of many of the detected analytes by spectral library matching. The use of statistical pairwise comparison revealed that there were trace impurities that were quantitatively similar and different among five of the six DMMP samples. Two of the DMMP samples were revealed to have identical impurity profiles by this approach. The use of nonnegative matrix factorization indicated that there were five distinct DMMP sample types as illustrated by the clustering of the multiple DMMP analyses into five distinct clusters in the scores plots. The two indistinguishable DMMP samples were confirmed by their chemical supplier to be from the same bulk source. Sample information from the other chemical suppliers supported the idea that the other four DMMP samples were likely from different bulk sources. These results demonstrate that the matching of synthesized products from the same source is possible using impurity profiling. In addition, the identified impurities common to all six DMMP samples provide strong evidence that basic route information can be obtained from impurity profiles. Finally, impurities that may be unique to the sole bulk manufacturer of DMMP were found in some of the DMMP samples. C1 [Wahl, Jon H.; Mong, Gary M.; Fraga, Carlos G.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Hoggard, Jamin C.; Synovec, Robert E.] Univ Washington, Dept Chem, Seattle, WA 98195 USA. RP Fraga, CG (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99354 USA. EM carlos.fraga@pnl.gov FU Science and Technology Directorate, U.S. Department of Homeland Security FX Funding for this work was provided by the Science and Technology Directorate, U.S. Department of Homeland Security. NR 16 TC 35 Z9 36 U1 5 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD JAN 15 PY 2010 VL 82 IS 2 BP 689 EP 698 DI 10.1021/ac902247x PG 10 WC Chemistry, Analytical SC Chemistry GA 542HR UT WOS:000273484200035 PM 20014817 ER PT J AU Margolis, JJ El-Etr, S Joubert, LM Moore, E Robison, R Rasley, A Spormann, AM Monack, DM AF Margolis, Jeffrey J. El-Etr, Sahar Joubert, Lydia-Marie Moore, Emily Robison, Richard Rasley, Amy Spormann, Alfred M. Monack, Denise M. TI Contributions of Francisella tularensis subsp novicida Chitinases and Sec Secretion System to Biofilm Formation on Chitin SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID SHEWANELLA-ONEIDENSIS MR-1; ESCHERICHIA-COLI; VIBRIO-CHOLERAE; PSEUDOMONAS-FLUORESCENS; PROTEIN TRANSLOCATION; BACTERIAL BIOFILMS; MEMBRANE-PROTEIN; MARINE-BACTERIA; UNITED-STATES; TULAREMIA AB Francisella tularensis, the zoonotic cause of tularemia, can infect numerous mammals and other eukaryotes. Although studying F. tularensis pathogenesis is essential to comprehending disease, mammalian infection is just one step in the ecology of Francisella species. F. tularensis has been isolated from aquatic environments and arthropod vectors, environments in which chitin could serve as a potential carbon source and as a surface for attachment and growth. We show that F. tularensis subsp. novicida forms biofilms during the colonization of chitin surfaces. The ability of F. tularensis to persist using chitin as a sole carbon source is dependent on chitinases, since mutants lacking chiA or chiB are attenuated for chitin colonization and biofilm formation in the absence of exogenous sugar. A genetic screen for biofilm mutants identified the Sec translocon export pathway and 14 secreted proteins. We show that these genes are important for initial attachment during biofilm formation. We generated defined deletion mutants by targeting two chaperone genes (secB1 and secB2) involved in Sec-dependent secretion and four genes that encode putative secreted proteins. All of the mutants were deficient in attachment to polystyrene and chitin surfaces and for biofilm formation compared to wild-type F. novicida. In contrast, mutations in the Sec translocon and secreted factors did not affect virulence. Our data suggest that biofilm formation by F. tularensis promotes persistence on chitin surfaces. Further study of the interaction of F. tularensis with the chitin microenvironment may provide insight into the environmental survival and transmission mechanisms of this pathogen. C1 [Margolis, Jeffrey J.; Monack, Denise M.] Stanford Univ, Dept Microbiol & Immunol, Sch Med, Stanford, CA 94305 USA. [El-Etr, Sahar; Rasley, Amy] Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Livermore, CA 94550 USA. [Joubert, Lydia-Marie] Stanford Univ, Cell Sci Imaging Facil, Sch Med, Stanford, CA 94305 USA. [Moore, Emily; Robison, Richard] Brigham Young Univ, Dept Mol Biol & Microbiol, Provo, UT 84602 USA. [Spormann, Alfred M.] Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94304 USA. RP Monack, DM (reprint author), 299 Campus Dr,Fairchild Bldg D347, Stanford, CA 94305 USA. EM dmonack@stanford.edu FU National Science Foundation; Department of Homeland Security; National Institutes of Health Cell and Molecular Biology; NIH-NIAID [AI063302, AI065359] FX We thank Melanie Blokesch for her generous gifts of reagents and technical assistance, Gary K. Schoolnik for his thoughtful discussions and for providing the chitin films, Jonathan W. Jones and Thomas Henry for help with mouse experiments, and Carmen D. Cordova for assistance with the biofilm CLSM imaging. Jean Celli graciously provided the SchuS4 strain.; J.J.M. was supported by National Science Foundation and Department of Homeland Security graduate fellowships, as well as a National Institutes of Health Cell and Molecular Biology training grant. This work was supported by grants AI063302 and AI065359 from the NIH-NIAID to D.M.M. NR 79 TC 18 Z9 20 U1 1 U2 8 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD JAN 15 PY 2010 VL 76 IS 2 BP 596 EP 608 DI 10.1128/AEM.02037-09 PG 13 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 540RE UT WOS:000273354200027 PM 19948864 ER PT J AU Subramani, K Tauras, C Madduri, K AF Subramani, K. Tauras, C. Madduri, K. TI Space-time tradeoffs in negative cycle detection - An empirical analysis of the Stressing Algorithm SO APPLIED MATHEMATICS AND COMPUTATION LA English DT Article DE Negative-cycle detection; Stressing approach; Relaxation-based approach; Contraction-based approach; Difference constraint system ID PATH PROBLEMS; CONTRACTION; RELAXATION; NETWORKS AB This paper discusses space-time tradeoffs associated with algorithms for the problem of detecting negative cost cycles in networks (NCCD). NCCD is one of the more ubiquitous problems in computer science and operations research, with applications ranging from program veri. cation and real-time scheduling to image segmentation and shortest path identification. Typical algorithmic analysis, whether theoretical or empirical, focuses almost exclusively on the running time of the algorithm. However, there exist applications in which space is just as important a parameter as time is. This is especially true when the problem instances are very large, as is the case in program veri. cation. Consequently, an algorithm that minimizes running time while ignoring the space overhead may be impractical. In this paper, we analyze a number of the more common algorithms for NCCD from the perspectives of both time and space, with a view towards providing a space-time tradeoff for the practitioner. All the algorithms discussed in this paper (with the exception of Network Simplex) run in O(m . n) time on a network with m arcs and n vertices; however, their space requirements range from O(1) (Stressing Algorithm) to Omega(n) (all the Bell-man-Ford and Network Simplex variants). Our empirical results demonstrate that in the cases where space is paramount, the Stressing Algorithm is a useful alternative to the Bell-man-Ford variants. (C) 2009 Published by Elsevier Inc. C1 [Subramani, K.; Tauras, C.] W Virginia Univ, LDCSEE, Morgantown, WV 26506 USA. [Madduri, K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Subramani, K (reprint author), W Virginia Univ, LDCSEE, Morgantown, WV 26506 USA. EM ksmani@csee.wvu.edu; tauras@csee.wvu.edu; KMadduri@lbl.gov FU Air Force Office of Scientific Research [FA9550-06-1-0050]; National Science Foundation [CCF-0827397] FX This research has been supported in part by the Air Force Office of Scientific Research under grant FA9550-06-1-0050 and in part by the National Science Foundation through Award CCF-0827397. NR 25 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0096-3003 J9 APPL MATH COMPUT JI Appl. Math. Comput. PD JAN 15 PY 2010 VL 215 IS 10 BP 3563 EP 3575 DI 10.1016/j.amc.2009.10.053 PG 13 WC Mathematics, Applied SC Mathematics GA 539CP UT WOS:000273231300010 ER PT J AU Caporaso, JG Bittinger, K Bushman, FD DeSantis, TZ Andersen, GL Knight, R AF Caporaso, J. Gregory Bittinger, Kyle Bushman, Frederic D. DeSantis, Todd Z. Andersen, Gary L. Knight, Rob TI PyNAST: a flexible tool for aligning sequences to a template alignment SO BIOINFORMATICS LA English DT Article AB Motivation: The Nearest Alignment Space Termination (NAST) tool is commonly used in sequence-based microbial ecology community analysis, but due to the limited portability of the original implementation, it has not been as widely adopted as possible. Python Nearest Alignment Space Termination (PyNAST) is a complete reimplementation of NAST, which includes three convenient interfaces: a Mac OS X GUI, a command-line interface and a simple application programming interface (API). Results: The availability of PyNAST will make the popular NAST algorithm more portable and thereby applicable to datasets orders of magnitude larger by allowing users to install PyNAST on their own hardware. Additionally because users can align to arbitrary template alignments, a feature not available via the original NAST web interface, the NAST algorithm will be readily applicable to novel tasks outside of microbial community analysis. C1 [Caporaso, J. Gregory; Knight, Rob] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Bittinger, Kyle; Bushman, Frederic D.] Univ Penn, Sch Med, Dept Microbiol, Philadelphia, PA 19104 USA. [DeSantis, Todd Z.; Andersen, Gary L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Environm Biotechnol, Berkeley, CA 94720 USA. RP Knight, R (reprint author), Univ Colorado, Dept Chem & Biochem, Campus Box 215, Boulder, CO 80309 USA. EM rob.knight@colorado.edu RI Andersen, Gary/G-2792-2015; Knight, Rob/D-1299-2010; OI Andersen, Gary/0000-0002-1618-9827; Bushman, Frederic/0000-0003-4740-4056 FU Bill and Melinda Gates Foundation; Human Microbiome Demonstration project [UH2DK083981]; NIH Roadmap Initiative and National Cancer Institute [UH2CA140233]; [T15LM009451]; [1U01HG004866-01] FX This work was funded in part by grants T15LM009451 to JGC; a Bill and Melinda Gates Foundation Mal-ED Network Discovery Project to William Petri; 1U01HG004866-01 to Owen White; Human Microbiome Demonstration project grant UH2DK083981 to FDB, James Lewis, and Gary Wu. This work was also partially supported by grant UH2CA140233 from Human Microbiome Project of the NIH Roadmap Initiative and National Cancer Institute to Zhiheng Pei. NR 7 TC 955 Z9 973 U1 23 U2 152 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1367-4803 J9 BIOINFORMATICS JI Bioinformatics PD JAN 15 PY 2010 VL 26 IS 2 BP 266 EP 267 DI 10.1093/bioinformatics/btp636 PG 2 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Computer Science, Interdisciplinary Applications; Mathematical & Computational Biology; Statistics & Probability SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Computer Science; Mathematical & Computational Biology; Mathematics GA 544YJ UT WOS:000273696900018 PM 19914921 ER PT J AU Beagley, N Stratton, KG Webb-Robertson, BJM AF Beagley, Nathaniel Stratton, Kelly G. Webb-Robertson, Bobbie-Jo M. TI VIBE 2.0: Visual Integration for Bayesian Evaluation SO BIOINFORMATICS LA English DT Article ID FRAMEWORK AB Data fusion methods are powerful tools for evaluating experiments designed to discover measurable features of directly unobservable systems. We describe an interactive software platform, Visual Integration for Bayesian Evaluation, that ingests or creates Bayesian posterior probability matrices, performs data fusion and allows the user to interactively evaluate the classification power of fusing various combinations of data sources, such as transcriptomic, proteomics, metabolomics, biochemistry and function. C1 [Beagley, Nathaniel; Stratton, Kelly G.; Webb-Robertson, Bobbie-Jo M.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Webb-Robertson, BJM (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM bj@pnl.gov FU U.S. Department of Energy through the Environmental Biomarkers Initiative at Pacific Northwest National Laboratory; National Institutes of Health [U54 016015, U54 AI057141] FX U.S. Department of Energy through the Environmental Biomarkers Initiative at Pacific Northwest National Laboratory; National Institutes of Health (grants U54 016015 and U54 AI057141). NR 10 TC 6 Z9 6 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1367-4803 J9 BIOINFORMATICS JI Bioinformatics PD JAN 15 PY 2010 VL 26 IS 2 BP 280 EP 282 DI 10.1093/bioinformatics/btp639 PG 3 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Computer Science, Interdisciplinary Applications; Mathematical & Computational Biology; Statistics & Probability SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Computer Science; Mathematical & Computational Biology; Mathematics GA 544YJ UT WOS:000273696900024 PM 19933164 ER PT J AU Sartorius, A Kiening, KL Kirsch, P von Gall, CC Haberkorn, U Unterberg, AW Henn, FA Meyer-Lindenberg, A AF Sartorius, Alexander Kiening, Karl L. Kirsch, Peter von Gall, Carl C. Haberkorn, Uwe Unterberg, Andreas W. Henn, Fritz A. Meyer-Lindenberg, Andreas TI Remission of Major Depression Under Deep Brain Stimulation of the Lateral Habenula in a Therapy-Refractory Patient SO BIOLOGICAL PSYCHIATRY LA English DT Letter C1 [Sartorius, Alexander; Kirsch, Peter; Meyer-Lindenberg, Andreas] Cent Inst Mental Hlth, Dept Psychiat & Psychotherapy, D-68159 Mannheim, Germany. [Kiening, Karl L.] Univ Heidelberg Hosp, Dept Neurosurg, Div Stereotact Neurosurg, Heidelberg, Germany. [von Gall, Carl C.; Haberkorn, Uwe] Univ Heidelberg, Dept Nucl Med, Heidelberg, Germany. [Henn, Fritz A.] Brookhaven Natl Lab, Long Isl City, NY USA. RP Sartorius, A (reprint author), Cent Inst Mental Hlth, Dept Psychiat & Psychotherapy, J5, D-68159 Mannheim, Germany. EM alexander.sartorius@zi-mannheim.de RI Meyer-Lindenberg, Andreas/H-1076-2011; OI Meyer-Lindenberg, Andreas/0000-0001-5619-1123; Kirsch, Peter/0000-0002-0817-1248 NR 15 TC 198 Z9 208 U1 3 U2 17 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0006-3223 J9 BIOL PSYCHIAT JI Biol. Psychiatry PD JAN 15 PY 2010 VL 67 IS 2 BP E9 EP E11 DI 10.1016/j.biopsych.2009.08.027 PG 3 WC Neurosciences; Psychiatry SC Neurosciences & Neurology; Psychiatry GA V23YT UT WOS:000208378800001 PM 19846068 ER PT J AU Egbebi, A Schwartz, V Overbury, SH Spivey, JJ AF Egbebi, Adefemi Schwartz, Viviane Overbury, Steven H. Spivey, James J. TI Effect of Li Promoter on titania-supported Rh catalyst for ethanol formation from CO hydrogenation SO CATALYSIS TODAY LA English DT Article; Proceedings Paper CT International Symposium on Catalysis CY JUL 21-24, 2008 CL Seoul, SOUTH KOREA DE Syngas; Ethanol; Rhodium catalyst; Lithium promoter; Titania support ID RHODIUM CATALYSTS; HIGH-PRESSURE; SYNGAS CONVERSION; ALKALI PROMOTION; SYNTHESIS GAS; FT-IR; RH/SIO2; RH/TIO2; ADSORPTION; MIXTURES AB The addition of 0.10 wt% Li to Rh/TiO(2) more than doubled the CO conversion for CO hydrogenation while increasing ethanol selectivity. The addition of Li also increases formation Of C(2) oxygenates at the expense of C(1) species, methanol and methane. This is attributed to enhanced dispersion of Rh by Li that appears to reduce dissociation of CO, which previous studies have shown requires large ensembles of Rh atoms on the surface. Li promotion appears to increase the associatively adsorbed CO, allowing for increased H(2) chemisorption on the surface compared to the dissociative adsorption of the same number of CO atoms This increases selectivity to ethanol compared to the unpromoted catalysts. CO-TPD shows more reactive adsorbed CO species on the Li-promoted catalyst. FTIR results suggest that Li promotion alters CO bonding at bridged or interfacial sites and its effect is more structural than electronic. (C) 2009 Elsevier B V. All rights reserved. C1 [Egbebi, Adefemi; Schwartz, Viviane; Spivey, James J.] Louisiana State Univ, Cain Dept Chem Engn, Baton Rouge, LA 70803 USA. [Overbury, Steven H.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Spivey, JJ (reprint author), Louisiana State Univ, Cain Dept Chem Engn, Jesse Coates Hall,S Stadium Dr, Baton Rouge, LA 70803 USA. EM jjspivey@lsu.edu RI Overbury, Steven/C-5108-2016; OI Overbury, Steven/0000-0002-5137-3961; EGBEBI, ADEFEMI/0000-0002-0734-053X NR 32 TC 26 Z9 28 U1 1 U2 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 J9 CATAL TODAY JI Catal. Today PD JAN 15 PY 2010 VL 149 IS 1-2 BP 91 EP 97 DI 10.1016/j.cattod.2009.07.104 PG 7 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 550RH UT WOS:000274145600014 ER PT J AU Purcell, JW Davis, J Reddy, M Martin, S Samayoa, K Vo, H Thomsen, K Bean, P Kuo, WL Ziyad, S Billig, J Feiler, HS Gray, JW Wood, KW Cases, S AF Purcell, James W. Davis, Jefferson Reddy, Mamatha Martin, Shamra Samayoa, Kimberly Vo, Hung Thomsen, Karen Bean, Peter Kuo, Wen Lin Ziyad, Safiyyah Billig, Jessica Feiler, Heidi S. Gray, Joe W. Wood, Kenneth W. Cases, Sylvaine TI Activity of the Kinesin Spindle Protein Inhibitor Ispinesib (SB-715992) in Models of Breast Cancer SO CLINICAL CANCER RESEARCH LA English DT Article ID PHASE-II; ANTITUMOR-ACTIVITY; ANTIMITOTIC DRUGS; CELL-LINES; CHEMOTHERAPY; PACLITAXEL; PHOSPHORYLATION; CYCLINS; TRIAL; CAPECITABINE AB Purpose: Ispinesib (SB-715992) is a potent inhibitor of kinesin spindle protein, a kinesin motor protein essential for the formation of a bipolar mitotic spindle and cell cycle progression through mitosis. Clinical studies of ispinesib have shown a 9% response rate in patients with locally advanced or metastatic breast cancer and a favorable safety profile without significant neurotoxicities, gastrointestinal toxicities, or hair loss. To better understand the potential of ispinesib in the treatment of breast cancer, we explored the activity of ispinesib alone and in combination with several therapies approved for the treatment of breast cancer. Experimental Design: We measured the ispinesib sensitivity and pharmacodynamic response of breast cancer cell lines representative of various subtypes in vitro and as xenografts in vivo and tested the ability of ispinesib to enhance the antitumor activity of approved therapies. Results: In vitro, ispinesib displayed broad antiproliferative activity against a panel of 53 breast cell lines. In vivo, ispinesib produced regressions in each of five breast cancer models and tumor-free survivors in three of these models. The effects of ispinesib treatment on pharmacodynamic markers of mitosis and apoptosis were examined in vitro and in vivo, revealing a greater increase in both mitotic and apoptotic markers in the MDA-MB-468 model than in the less sensitive BT-474 model. In vivo, ispinesib enhanced the antitumor activity of trastuzumab, lapatinib, doxorubicin, and capecitabine and exhibited activity comparable with paclitaxel and ixabepilone. Conclusions: These findings support further clinical exploration of kinesin spindle protein inhibitors for the treatment of breast cancer. Clin Cancer Res; 16(2); 566-76. (C)2010 AACR. C1 [Purcell, James W.; Davis, Jefferson; Reddy, Mamatha; Martin, Shamra; Samayoa, Kimberly; Vo, Hung; Thomsen, Karen; Bean, Peter; Wood, Kenneth W.; Cases, Sylvaine] Cytokinet Inc, San Francisco, CA 94080 USA. [Kuo, Wen Lin; Ziyad, Safiyyah; Billig, Jessica; Feiler, Heidi S.; Gray, Joe W.] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA USA. RP Wood, KW (reprint author), Cytokinet Inc, 280 E Grand Ave, San Francisco, CA 94080 USA. EM kwood@cytokinetics.com FU Cytokinetics, Inc; Director, Office of Science, Office of Biological and Environmental Research; U.S. Department of Energy [DE-AC0205CH11231]; NIH, National Cancer Institute [P50 CA 58207, P50 CA 83639] FX This work was supported by Cytokinetics, Inc. J.W. Gray received grant support from the Director, Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy under Contract No. DE-AC0205CH11231; NIH, National Cancer Institute grants P50 CA 58207 and P50 CA 83639; and Cytokinetics, Inc. NR 44 TC 38 Z9 39 U1 2 U2 3 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 1078-0432 EI 1557-3265 J9 CLIN CANCER RES JI Clin. Cancer Res. PD JAN 15 PY 2010 VL 16 IS 2 BP 566 EP 576 DI 10.1158/1078-0432.CCR-09-1498 PG 11 WC Oncology SC Oncology GA 607ZE UT WOS:000278545000021 PM 20068098 ER PT J AU Perlroth, DJ Glass, RJ Davey, VJ Cannon, D Garber, AM Owens, DK AF Perlroth, Daniella J. Glass, Robert J. Davey, Victoria J. Cannon, Daniel Garber, Alan M. Owens, Douglas K. TI Health Outcomes and Costs of Community Mitigation Strategies for an Influenza Pandemic in the United States SO CLINICAL INFECTIOUS DISEASES LA English DT Article ID NONPHARMACEUTICAL INTERVENTIONS; OSELTAMIVIR TREATMENT; SEASONAL INFLUENZA; US CITIES; IMPACT; MORTALITY; ZANAMIVIR; EFFICACY; DESIGN; SAFETY AB Background. The optimal community-level approach to control pandemic influenza is unknown. Methods. We estimated the health outcomes and costs of combinations of 4 social distancing strategies and 2 antiviral medication strategies to mitigate an influenza pandemic for a demographically typical US community. We used a social network, agent-based model to estimate strategy effectiveness and an economic model to estimate health resource use and costs. We used data from the literature to estimate clinical outcomes and health care utilization. Results. At 1% influenza mortality, moderate infectivity (R(o) of 2.1 or greater), and 60% population compliance, the preferred strategy is adult and child social distancing, school closure, and antiviral treatment and prophylaxis. This strategy reduces the prevalence of cases in the population from 35% to 10%, averts 2480 cases per 10,000 population, costs $2700 per case averted, and costs $31,300 per quality-adjusted life-year gained, compared with the same strategy without school closure. The addition of school closure to adult and child social distancing and antiviral treatment and prophylaxis, if available, is not cost-effective for viral strains with low infectivity (R(o) of 1.6 and below) and low case fatality rates (below 1%). High population compliance lowers costs to society substantially when the pandemic strain is severe (R(o) of 2.1 or greater). Conclusions. Multilayered mitigation strategies that include adult and child social distancing, use of antivirals, and school closure are cost-effective for a moderate to severe pandemic. Choice of strategy should be driven by the severity of the pandemic, as defined by the case fatality rate and infectivity. C1 [Perlroth, Daniella J.] Stanford Univ, Ctr Hlth Policy, Stanford, CA 94305 USA. [Perlroth, Daniella J.; Garber, Alan M.; Owens, Douglas K.] Vet Affairs Palo Alto Hlth Care Syst, Palo Alto, CA USA. [Glass, Robert J.; Cannon, Daniel] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Davey, Victoria J.] Vet Hlth Adm, Dept Vet Affairs, Washington, DC USA. [Davey, Victoria J.] Uniformed Serv Univ Hlth Sci, Bethesda, MD 20814 USA. RP Perlroth, DJ (reprint author), Stanford Univ, Ctr Hlth Policy, 117 Encina Commons,Rm 205, Stanford, CA 94305 USA. EM dperl@stanford.edu RI Garber, Alan/F-1476-2010 FU US Department of Veterans Affairs Medical Informatics; National Institute on Drug Abuse [2 R01 DA15612-016] FX US Department of Veterans Affairs Medical Informatics Fellowship (to D.J.P.), the US Department of Veterans Affairs (to D.K.O., A.M.G., R.J.G., D.C., and V.J.D.), and the National Institute on Drug Abuse (grant 2 R01 DA15612-016 to D.K.O.). Sandia is operated by Sandia Corporation, a Lockheed Martin Company of the US Department of Energy's National Nuclear Security Administration, under contract DE-AC04-94AL85000. NR 49 TC 24 Z9 25 U1 0 U2 2 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 1058-4838 J9 CLIN INFECT DIS JI Clin. Infect. Dis. PD JAN 15 PY 2010 VL 50 IS 2 BP 165 EP 174 DI 10.1086/649867 PG 10 WC Immunology; Infectious Diseases; Microbiology SC Immunology; Infectious Diseases; Microbiology GA 536UK UT WOS:000273069100003 PM 20021259 ER PT J AU Catalli, K Shim, SH Prakapenka, VB Zhao, JY Sturhahn, W Chow, P Xiao, YM Liu, HZ Cynn, H Evans, WJ AF Catalli, Krystle Shim, Sang-Heon Prakapenka, Vitali B. Zhao, Jiyong Sturhahn, Wolfgang Chow, Paul Xiao, Yuming Liu, Haozhe Cynn, Hyunchae Evans, William J. TI Spin state of ferric iron in MgSiO3 perovskite and its effect on elastic properties SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE spin transition; ferric iron; lower mantle; silicate perovskite; elastic properties ID EARTHS LOWER MANTLE; EQUATION-OF-STATE; RAY-EMISSION SPECTROSCOPY; MAGNESIUM-SILICATE PEROVSKITE; HIGH-PRESSURE PHASES; THERMOELASTIC PROPERTIES; (MG,FE)SIO3 PEROVSKITE; CRYSTAL-STRUCTURE; POST-PEROVSKITE; MOSSBAUER-SPECTROSCOPY AB Recent studies have indicated that a significant amount of iron in MgSiO3 perovskite (Pv) is Fe3+ (Fe3+/Sigma Fe = 10-60%) due to crystal chemistry effects at high pressure (P) and that Fe3+ is more likely than Fe2+ to undergo a high-spin (HS) to low-spin (LS) transition in Pv in the mantle. We have measured synchrotron Mossbauer spectroscopy (SMS), X-ray emission spectroscopy (XES), and X-ray diffraction (XRD) of Pv with all iron in Fe3+ in the laser-heated diamond-anvil cell to over 100 GPa. Fe3+ increases the anisotropy of the Pv unit cell, whereas Fe2+ decreases it. In Pv synthesized above 50GPa, Fe3+ enters into both the dodecahedral (A) and octahedral (B) sites approximately equally, suggesting charge coupled substitution. Combining SMS and XES, we found that the LS population in the B site gradually increases with pressure up to 50-60 GPa where all Fe3+ in the B site becomes LS, while Fe3+ in the A site remains HS to at least 136 GPa. Fe3+ makes Pv more compressible than Mg-endmember below 50 GPa because of the gradual spin transition in the B site together with lattice compression. The completion of the spin transition at 50-60 GPa increases bulk modulus with no associated change in density. This elasticity change can be a useful seismic probe for investigating compositional heterogeneities associated with Fe3+. (C) 2009 Elsevier B.V. All rights reserved. C1 [Catalli, Krystle; Shim, Sang-Heon] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Prakapenka, Vitali B.] Univ Chicago, GeoSoilEnviroCARS, Argonne Natl Lab, Argonne, IL 60439 USA. [Zhao, Jiyong] Argonne Natl Lab, Sector 3, Adv Photon Source, Argonne, IL 60439 USA. [Chow, Paul; Xiao, Yuming; Liu, Haozhe] Argonne Natl Lab, HPCAT, Adv Photon Source, Argonne, IL 60439 USA. [Cynn, Hyunchae; Evans, William J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Catalli, K (reprint author), MIT, Dept Earth Atmospher & Planetary Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM krystle@mit.edu RI Liu, Haozhe/E-6169-2011; OI Shim, Sang-Heon/0000-0001-5203-6038 FU DOE NNSA; NSF [EAR0738655] FX We thank N. Chatterjee, J. Hustoft, B. Grocholski, S. Slotznick, and D. LaBounty for experimental assistance and two anonymous reviewers for their comments on the manuscript. Measurements performed at GeoSoilEnviroCARS, APS, were supported by the National Science Foundation (NSF), Department of Energy (DOE) and the State of Illinois. Portions of this work performed at HPCAT, APS, were supported by DOE, NSF, and the W. M. Keck Foundation. Use of Sector 3 was partially supported by COMPRES, the Consortium for Materials Properties Research in Earth Sciences. Use of the APS was supported by the DOE. K.C. is supported by the DOE NNSA Stewardship Science Graduate Fellowship. This work is supported by NSF to S.H.S. (EAR0738655). NR 71 TC 78 Z9 81 U1 1 U2 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X EI 1385-013X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD JAN 15 PY 2010 VL 289 IS 1-2 BP 68 EP 75 DI 10.1016/j.epsl.2009.10.029 PG 8 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 551AU UT WOS:000274178000007 ER PT J AU Kraus, RG Stewart, ST Seifter, A Obst, AW AF Kraus, R. G. Stewart, S. T. Seifter, A. Obst, A. W. TI Shock and post-shock temperatures in an ice-quartz mixture: implications for melting during planetary impact events SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE shock temperature; impact cratering; melting; water ice; equation of state ID INDUCED THERMAL-RADIATION; WAVE PROPAGATION; COMPOSITE-MATERIALS; COMPRESSION; SILICA; WATER; DIFFUSIVITY; DEPENDENCE; PRESSURE; MINERALS AB Melting of H(2)O ice during planetary impact events is a widespread phenomenon. On planetary surfaces, ice is often mixed with other materials; yet, at present, the partitioning of energy between the components of a shocked mixture is still an open question in the shock physics community. Knowledge of how much energy is partitioned into the ice component is necessary to predict and interpret a wide range of processes, including shock-induced melting and chemistry. In this work, we construct a conceptual framework for the thermodynamic pathways of the components in a shocked hydrodynamic mixture by defining three broad regimes based on the characteristic length scale of the mixture compared to the thickness of the shock front: (I) small length scale mixtures where pressure and temperature equilibrate immediately behind the shock front; (2) intermediate length scales where pressure but not thermal equilibration is achieved behind the shock front; and (3) long length scales where pressure equilibration requires multiple shock wave reflections. We conduct shock wave experiments, reaching pressures from 8 to 23 GPa, in an H(2)O ice-SiO(2) quartz mixture in the intermediate length scale regime. In each experiment, all the parameters required to address the question of energy partitioning were determined: the shock velocity in the mixture, the shock front thickness, and the shock and post-shock temperatures of the H(2)O component. The measured pressure is in agreement with the bulk compressibility of the mixture. The shock and post-shock temperatures of the H(2)O component indicate that the ice was shocked close to the principal Hugoniot. Therefore, in the intermediate length scale regime, the partitioning of shock energy is defined initially by the Hugoniots of the components at the equilibrated pressure. We discuss energy partitioning in mixtures over the wide range of length and time scales encountered during planetary impact events and identify the current challenges in calculating the volume of melted ice. In some cases, the criteria for shock-induced melting of ice in a mixture are the same as for pure ice. (C) 2009 Elsevier B.V. All rights reserved. C1 [Kraus, R. G.; Stewart, S. T.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. [Seifter, A.; Obst, A. W.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. RP Kraus, RG (reprint author), Harvard Univ, Dept Earth & Planetary Sci, 20 Oxford St, Cambridge, MA 02138 USA. EM rkraus@fas.harvard.edu OI Stewart, Sarah/0000-0001-9606-1593 FU DOE NNSA SSGF [DE-FC52-08NA28752]; NASA [NNX06AC13G] FX We thank two anonymous reviewers, Neil Holmes, David Holtkamp, and William Nellis for their insightful comments and conversations. We acknowledge support from DOE NNSA SSGF (grant number DE-FC52-08NA28752) and NASA (grant number NNX06AC13G). We also thank Lee Farina and Sonya Mollinger for their technical assistance. NR 46 TC 11 Z9 11 U1 4 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD JAN 15 PY 2010 VL 289 IS 1-2 BP 162 EP 170 DI 10.1016/j.epsl.2009.11.002 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 551AU UT WOS:000274178000016 ER PT J AU Armstrong, PA Perez, R Owen, LA Finkel, RC AF Armstrong, Phillip A. Perez, Rene Owen, Lewis A. Finkel, Robert C. TI Timing and controls on late Quaternary landscape development along the eastern Sierra El Mayor range front in northern Baja California, Mexico SO GEOMORPHOLOGY LA English DT Article DE Colorado River delta; Tectonics; Terraces; Climate; Optically stimulated luminescence; Terrestrial cosmogenic nuclides; Uplift ID OPTICALLY STIMULATED LUMINESCENCE; LAGUNA-SALADA FAULT; GULF-OF-CALIFORNIA; ANGLE NORMAL-FAULT; SEA-LEVEL CHANGE; NEOGENE STRATIGRAPHY; SOUTHERN CALIFORNIA; COSMOGENIC NUCLIDES; LATE PLEISTOCENE; SINGLE-ALIQUOT AB The Sierra El Mayor-Sierra Cucapa mountain range in northern Baja separates the Colorado River delta from the Laguna Salada Basin and is important in terms of understanding the structural transition from the northern Gulf Extensional Province to the San Andreas system. One of the principal Quaternary landscape features of the eastern Sierra El Mayor-Sierra Cucapa is a prominent surface that slopes similar to 1-2 degrees eastward towards the Colorado River Delta. Along the eastern side of the Sierra El Mayor and facing the Colorado River delta, but not along other piedmont mountain fronts that face the delta, this surface is terminated by a series of stepped terrace surfaces. The terrace surfaces are cut into fluvial-deltaic deposits from the Colorado River delta system and are capped by similar to 1 m thick gravels. Optically stimulated luminescence ages from interbedded coarse sands in the capping gravels of the upper surface and two of the inset terraces range from similar to 17 to 31 ka (average 24+/-3 ka) but lack a systematic age trend from upper to lower surface. The underlying fluvial-deltaic deposits have older optically stimulated luminescence ages of 31 to 39 ka and suggest Colorado River delta deposition during the relatively stable interstadial of the Middle Wisconsinan substage (Marine Isotope Stage 3) when sea level was ca - 60 to - 80 m. Samples from depth-profiles in the capping gravels and from the top of the upper surface have a mean (10)Be terrestrial cosmogenic nuclicle age of 59+/-5 ka. When corrected for inheritance, an average age of similar to 21 ka is computed for exposure of the capping gravels on the upper surface and inset terraces, which is in the range of the optically stimulated luminescence burial ages. Both the upper surface and inset terraces formed 17-30 ka at a transition time from dry to relatively wet climate when increased aggradation caused alluvial fan development on the upper surface. Regionally, these surfaces correlate with the Q2c-Q3a age deposits of the southwestern North America alluvial fan and terrace deposits. Sea level was also falling rapidly at this time, which may have caused the Colorado River to become entrenched near the range front thus allowing rapid response and down-cutting to form the inset terraces on the east side of the Sierra El Mayor facing the delta. Assuming the 34 ka delta deposits graded to a base level that was - 60 to - 80 m during Marine Isotope Stage 3, the Computed surface uplift rate for the eastern side of the Sierra El Mayor is similar to 2.1-2.7 mm/yr. This uplift may be accommodated on a fault or fault system that is a southward extension of the Mexicali spreading and seismic zone that is buried beneath the Colorado River delta east of the Sierra El Mayor. The uplift rates from this study are consistent with geologic and geodetic data for the Sierra El Mayor and Sierra Cucapa, and account for much of the missing extensional strain across the area. Published by Elsevier B.V. C1 [Armstrong, Phillip A.; Perez, Rene] Calif State Univ Fullerton, Dept Geol Sci, Fullerton, CA 92831 USA. [Owen, Lewis A.] Univ Cincinnati, Dept Geol, Cincinnati, OH 45221 USA. [Finkel, Robert C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Armstrong, PA (reprint author), Calif State Univ Fullerton, Dept Geol Sci, Fullerton, CA 92831 USA. EM parmstrong@fullerton.edu FU California State University FX This research was partially supported by a California State University Fullerton Faculty-Student Research/Creative Activity Grant. We thank J. Fletcher and R. Spelz for their discussions in the field about terraces of the Sierra El Mayor and for preprints of their work on the western side of the range. J. Knott provided valuable help with the soil descriptions. We thank P. Gibbard and an anonymous reviewer for their very helpful and insightful reviews. NR 84 TC 13 Z9 13 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-555X J9 GEOMORPHOLOGY JI Geomorphology PD JAN 15 PY 2010 VL 114 IS 3 BP 415 EP 430 DI 10.1016/j.geomorph.2009.08.005 PG 16 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA 537KA UT WOS:000273110600028 ER PT J AU Atim, S Wang, XP Richmond, MG AF Atim, Silvia Wang, Xiaoping Richmond, Michael G. TI Synthesis of the donor-acceptor ligand 2-(4-dimethylaminobenzylidene)-4,5-bis(diphenylphosphino)-4-cyclopenten- 1,3-dione (dbpcd) and X-ray diffraction structure of the platinum(II) compound PtCl2(dbpcd)center dot 1.5CH(2)Cl(2) SO INORGANICA CHIMICA ACTA LA English DT Article DE Platinum compounds; Diphosphine ligand; Redox chemistry; MO calculations; Crystallography ID 2-(FERROCENYLIDENE)-4,5-BIS(DIPHENYLPHOSPHINO)-4-CYCLOPENTEN-1,3-DIONE FBPCD; PHOTOPHYSICAL PROPERTIES; CRYSTAL-STRUCTURE; COMPLEXES; REACTIVITY; ISOMERIZATION; PALLADIUM(II); ANHYDRIDE; KINETICS; SPECTRA AB Knoevenagel condensation of 4-(dimethylamino)benzaldehyde with 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) gives the donor-acceptor ligand 2-(4-dimethylaminobenzylidene)-4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (dbpcd). The reaction of dbpcd with PtCl2(cod) affords the platinum(II) complex PtCl2(dbpcd) in high yield. The free dbpcd ligand and PtCl2(dbpcd) have been isolated and fully characterized in solution by IR and NMR spectroscopies, and the solid-state structure of PtCl2(dbpcd) determined by X-ray diffraction analysis. PtCl2(dbpcd), as the 1.5CH(2)Cl(2) solvate, crystallizes in the triclinic space group P (1) over bar, a = 11.7412(7) angstrom, b = 12.0486(7) angstrom, c = 14.4781(9) angstrom, alpha = 82.866(1), beta = 75.049(1), gamma = 83.905(1), V = 1957.6(2) angstrom(3), Z = 2, and D-calc = 1.678 mg/m(3), R = 0.0291 and wR(2) = 0.0723 for 8315 reflections with I > 2 sigma(I). The molecular structure of PtCl2(dbpcd)center dot 1.5CH(2)Cl(2) consists of a square-planar platinum architecture containing two chlorines and the ancillary dbpcd diphosphine ligand. The redox properties of the dbpcd ligand and PtCl2(dbpcd) have been explored by cyclic voltammetry, and these data are discussed with respect to extended Huckel MO calculations. (C) 2009 Elsevier B. V. All rights reserved. C1 [Wang, Xiaoping] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Atim, Silvia] Coastal Carolina Univ, Dept Chem & Phys, Conway, SC 29528 USA. [Richmond, Michael G.] Univ N Texas, Dept Chem, Denton, TX 76203 USA. RP Wang, XP (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. EM wangx@ornl.gov; cobalt@unt.edu RI Wang, Xiaoping/E-8050-2012 OI Wang, Xiaoping/0000-0001-7143-8112 FU Robert A. Welch Foundation [B-1093-MGR]; US Department of Energy, Office of Science [DE-AC05-00OR22725]; UT Battelle, LLC FX Financial support from the Robert A. Welch Foundation (Grant B-1093-MGR) is greatly appreciated. X. Wang acknowledges the support by the US Department of Energy, Office of Science, under Contract No. DE-AC05-00OR22725 managed by UT Battelle, LLC. Ms. Nicole Ledbetter is thanked for recording the ESI mass spectrum of PtCl2(dbpcd). NR 41 TC 2 Z9 2 U1 0 U2 3 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0020-1693 J9 INORG CHIM ACTA JI Inorg. Chim. Acta PD JAN 15 PY 2010 VL 363 IS 2 BP 418 EP 423 DI 10.1016/j.ica.2009.11.011 PG 6 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 534IX UT WOS:000272890900019 ER PT J AU Andersson, P Lindahl, AO Hanstorp, D Havener, CC Liu, Y Liu, Y AF Andersson, P. Lindahl, A. O. Hanstorp, D. Havener, C. C. Liu, Yun Liu, Yuan TI Nearly complete isobar suppression by photodetachment SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE atom-photon collisions; cobalt; electron detachment; ion beams; negative ions; particle traps ID NEGATIVE-IONS; ACCELERATOR; LASERS AB The efficiency of selective suppression of negative ions by photodetachment in a gas-filled radio frequency quadrupole ion cooler was investigated with a new detection method. A neodymium doped yttrium aluminum garnet laser beam at 1064 nm was used to remove Co(-) ions in the radio frequency quadrupole cooler and the remaining ions were then probed by photodetachment and neutral particle detection. More than 99.99% suppression of the Co(-) ions was observed. Under identical conditions, only 20% of a Ni(-) beam was suppressed. The results demonstrate that this isobar suppression technique can lead to nearly complete elimination of certain isobaric contaminants in negative ion beams, opening up new experimental possibilities in nuclear and atomic research and accelerator mass spectrometry. C1 [Andersson, P.; Lindahl, A. O.; Hanstorp, D.] Univ Gothenburg, Dept Phys, SE-41296 Gothenburg, Sweden. [Havener, C. C.; Liu, Yuan] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Liu, Yun] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP Andersson, P (reprint author), Univ Gothenburg, Dept Phys, SE-41296 Gothenburg, Sweden. EM dag.hanstorp@physics.gu.se RI Lindahl, Anton/A-5366-2011 OI Lindahl, Anton/0000-0001-6569-2800 FU Swedish Research Council; U. S. Department of Energy [DE-AC05-00OR22725] FX This work was supported by the Swedish Research Council and by the U. S. Department of Energy under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. NR 9 TC 10 Z9 10 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JAN 15 PY 2010 VL 107 IS 2 AR 026102 DI 10.1063/1.3291104 PG 3 WC Physics, Applied SC Physics GA 551BM UT WOS:000274180600134 ER PT J AU Buchanan, KS Hoffmann, A Novosad, V Bader, SD AF Buchanan, K. S. Hoffmann, A. Novosad, V. Bader, S. D. TI Translational-mode dynamics of exchange-biased vortices (vol 103, 07B102, 2008) SO JOURNAL OF APPLIED PHYSICS LA English DT Correction DE exchange interactions (electron); vortices C1 [Buchanan, K. S.; Hoffmann, A.; Bader, S. D.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Buchanan, K. S.] Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA. [Hoffmann, A.; Novosad, V.; Bader, S. D.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Buchanan, KS (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM kristen.buchanan@colostate.edu RI Bader, Samuel/A-2995-2013; Hoffmann, Axel/A-8152-2009; Novosad, Valentyn/C-2018-2014; Novosad, V /J-4843-2015; OI Hoffmann, Axel/0000-0002-1808-2767; Buchanan, Kristen/0000-0003-0879-0038 NR 1 TC 0 Z9 0 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JAN 15 PY 2010 VL 107 IS 2 AR 029902 DI 10.1063/1.3291136 PG 1 WC Physics, Applied SC Physics GA 551BM UT WOS:000274180600138 ER PT J AU Chau, R Stolken, J Asoka-Kumar, P Kumar, M Holmes, NC AF Chau, R. Stolken, J. Asoka-Kumar, P. Kumar, M. Holmes, N. C. TI Shock Hugoniot of single crystal copper SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE acoustic wave velocity; copper; crystal orientation; elastic constants; shock wave effects ID COMPRESSION; ORIENTATION; SYSTEM; SCALES AB The shock Hugoniot of single crystal copper is reported for stresses below 66 GPa. Symmetric impact experiments were used to measure the Hugoniots of three different crystal orientations of copper, [100], [110], and [111]. The photonic doppler velocimetry (PDV) diagnostic was adapted into a very high precision time of arrival detector for these experiments. The measured Hugoniots along all three crystal directions were nearly identical to the experimental Hugoniot for polycrystalline Cu. The predicted orientation dependence of the Hugoniot from molecular dynamics calculations was not observed. At the lowest stresses, the sound speed in Cu was extracted from the PDV data. The measured sound speeds are in agreement with values calculated from the elastic constants for Cu. C1 [Chau, R.; Stolken, J.; Asoka-Kumar, P.; Kumar, M.; Holmes, N. C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Chau, R (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM chau2@llnl.gov FU U. S. Department of Energy [W-7405-Eng-48, DE-AC52-07NA27344] FX This work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract No. W-7405-Eng-48 and in part under Contract No. DE-AC52-07NA27344. NR 12 TC 15 Z9 16 U1 1 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JAN 15 PY 2010 VL 107 IS 2 AR 023506 DI 10.1063/1.3283924 PG 6 WC Physics, Applied SC Physics GA 551BM UT WOS:000274180600029 ER PT J AU Hsueh, CH Wei, WCJ AF Hsueh, C. H. Wei, W. C. J. TI Effective viscosity of semidilute suspensions of rigid ellipsoids SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE inclusions; suspensions; viscosity ID HARD-SPHERE DISPERSIONS; CONCENTRATION-DEPENDENCE; RHEOLOGICAL PROPERTIES; NEWTONIAN VISCOSITY; HIGH-TEMPERATURE; SHEAR VISCOSITY; PARTICLES; STRESS; BEHAVIOR; COEFFICIENTS AB Hard and refractory particles with various shapes have been added to ceramic materials to enhance creep resistance. Also, many of the particles in food emulsions, magnetic particle suspensions, and other industrial systems may have nonspherical shapes. Hence, it is important to understand the effects of particle shape on the viscosity of suspensions. While the shape of many particles can be approximated as prolate or oblate spheroids, the purpose of the present study is to model the effective viscosity of semidilute suspensions of rigid ellipsoids. Closed-form expressions are obtained; however, their formulations are formidable. For the special cases of rodlike or disklike particles, simple closed-form expressions can be obtained. The present solutions are compared with existing solutions. C1 [Hsueh, C. H.; Wei, W. C. J.] Natl Taiwan Univ, Dept Mat Sci & Engn, Taipei 106, Taiwan. [Hsueh, C. H.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Hsueh, C. H.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Hsueh, CH (reprint author), Natl Taiwan Univ, Dept Mat Sci & Engn, Taipei 106, Taiwan. EM hsuehc@ornl.gov RI Hsueh, Chun-Hway/G-1345-2011 FU National Science Council of Taiwan [NSC96-2811-E-002-022] FX Research sponsored by the National Science Council of Taiwan under Contract No. NSC96-2811-E-002-022. NR 49 TC 3 Z9 3 U1 1 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JAN 15 PY 2010 VL 107 IS 2 AR 024905 DI 10.1063/1.3283925 PG 10 WC Physics, Applied SC Physics GA 551BM UT WOS:000274180600128 ER PT J AU Hurley, DH Wright, OB Matsuda, O Shinde, SL AF Hurley, D. H. Wright, O. B. Matsuda, O. Shinde, S. L. TI Time resolved imaging of carrier and thermal transport in silicon SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE carrier density; carrier lifetime; elemental semiconductors; silicon; thermal diffusion ID SOLAR-CELLS; THIN-FILMS; CONDUCTIVITY; SURFACE; SPECTROSCOPY; MICROSCOPE; THERMOREFLECTANCE; RECOMBINATION; REFLECTIVITY; DEFLECTION AB We use ultrashort optical pulses to microscopically image carrier and thermal diffusion in two spatial dimensions in pristine and mechanically polished surfaces of crystalline silicon. By decomposing changes in reflectivity in the latter sample into a transient component that varies with delay time and a steady-state component that varies with pump chopping frequency, the influence of thermal diffusion is isolated from that of carrier diffusion and recombination. Additionally, studies using carrier injection density as a parameter are used to clearly identify the carrier recombination pathway. C1 [Hurley, D. H.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Wright, O. B.; Matsuda, O.] Hokkaido Univ, Grad Sch Engn, Div Appl Phys, Sapporo, Hokkaido 0608628, Japan. [Shinde, S. L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Hurley, DH (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM david.hurley@inl.gov RI Matsuda, Osamu/A-7193-2012 OI Matsuda, Osamu/0000-0002-0736-1242 FU INL; SNL LDRD [DE-AC07-05ID14517] FX This work was supported by an INL and SNL LDRD under DOE Contract No. DE-AC07-05ID14517. NR 38 TC 9 Z9 9 U1 0 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JAN 15 PY 2010 VL 107 IS 2 AR 023521 DI 10.1063/1.3272827 PG 5 WC Physics, Applied SC Physics GA 551BM UT WOS:000274180600044 ER PT J AU Lee, SY Sun, Y An, K Choo, H Hubbard, CR Liaw, PK AF Lee, S. Y. Sun, Y. An, K. Choo, H. Hubbard, C. R. Liaw, P. K. TI Evolution of residual-strain distribution through an overload-induced retardation period during fatigue-crack growth SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE crack-edge stress field analysis; fatigue cracks; internal stresses; neutron diffraction; plasticity ID SINGLE TENSILE OVERLOAD; X-RAY-DIFFRACTION; FRACTURE-TOUGHNESS; CLOSURE BEHAVIOR; STEEL; PROPAGATION; MODEL; NEUTRON; TIP; DEFORMATION AB Neutron diffraction was employed to investigate the crack-growth retardation phenomenon after a single tensile overload by mapping both one-dimensional and two-dimensional residual-strain distributions around the crack tip in a series of compact-tension specimens representing various crack-growth stages through an overload-induced retardation period. The results clearly show a large compressive residual-strain field near the crack tip immediately after the overload. As the fatigue crack propagates through the overload-induced plastic zone, the compressive residual strains are gradually relaxed, and a new compressive residual-strain field is developed around the propagating crack tip, illustrating that the subsequent fatigue-induced plastic zone grows out of the large plastic zone caused by the overloading. The relationship between the overload-induced plastic zone and subsequent fatigue-induced plastic zone, and its influence on the residual-strain distributions in the perturbed plastic zone are discussed. C1 [Lee, S. Y.; Sun, Y.; Choo, H.; Liaw, P. K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [An, K.; Choo, H.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [An, K.; Hubbard, C. R.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Lee, SY (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM pliaw@utk.edu RI An, Ke/G-5226-2011; Choo, Hahn/A-5494-2009 OI An, Ke/0000-0002-6093-429X; Choo, Hahn/0000-0002-8006-8907 FU U. S. National Science Foundation (NSF) [DMR-0231320]; Assistant Secretary for Energy Efficiency and Renewable Energy; Office of FreedomCAR and Vehicle Technologies; High Temperature Materials Laboratory User Program; Oak Ridge National Laboratory FX This work is supported by the U. S. National Science Foundation (NSF) International Materials Institutes (IMI) Program under Contract No. DMR-0231320, with Dr. U. Venkateswaran, Dr. D. Finotello, and Dr. C. Huber as the program directors. Measurements at the Neutron Residual Stress Mapping Facility (NRSF2) are sponsored by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of FreedomCAR and Vehicle Technologies, as a part of the High Temperature Materials Laboratory User Program, Oak Ridge National Laboratory, managed by UTBattelle, LLC, for the U. S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 40 TC 7 Z9 7 U1 2 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JAN 15 PY 2010 VL 107 IS 2 AR 023517 DI 10.1063/1.3234388 PG 8 WC Physics, Applied SC Physics GA 551BM UT WOS:000274180600040 ER PT J AU Narayanan, M Ma, BH Balachandran, U Li, W AF Narayanan, Manoj Ma, Beihai Balachandran, U. (Balu) Li, Wei TI Dielectric spectroscopy of Pb0.92La0.08Zr0.52Ti0.48O3 films on hastelloy substrates with and without LaNiO3 buffer layers SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE buffer layers; carbon; chromium alloys; cobalt alloys; dielectric relaxation; dielectric thin films; iron alloys; lanthanum compounds; lead compounds; manganese alloys; molybdenum alloys; permittivity; silicon alloys; sol-gel processing; tungsten alloys; vanadium alloys; zirconium compounds ID TITANATE THIN-FILMS; METAL FOILS; CAPACITORS; MECHANISMS; CERAMICS AB Pb0.92La0.08Zr0.52Ti0.48O3 (PLZT) films were deposited by sol-gel synthesis on Hastelloy substrates with and without a LaNiO3 buffer. The dielectric properties were measured as a function of temperature and frequency to study the cause of dielectric degradation in PLZT films directly on hastelloy substrates. These measurements indicated an increased charge carrier activity in films without a buffer layer. We propose that a region of the film closer to the substrate surface is more oxygen deficient than the bulk and is responsible for the degradation in properties rather than the presence of a low parasitic secondary-phase interfacial layer such as NiOx. C1 [Narayanan, Manoj; Ma, Beihai; Balachandran, U. (Balu)] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Li, Wei] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Narayanan, M (reprint author), Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. EM mnarayanan@anl.gov RI Narayanan, Manoj/A-4622-2011; Ma, Beihai/I-1674-2013 OI Ma, Beihai/0000-0003-3557-2773 FU U.S. Department of Energy, Office of Vehicle Technologies Program [DEAC02-06CH11357] FX Work funded by the U.S. Department of Energy, Office of Vehicle Technologies Program, under Contract No. DEAC02-06CH11357. This work benefited from the use of the Electron Microscopy Center (EMC) at Argonne National Laboratory. The authors would like to thank Dr. R.E. Koritala at EMC for her help with scanning electron microscopy and IGC-SuperPower for providing HC substrates. Authors thank Sheng Tong for help with the measurements. NR 19 TC 13 Z9 13 U1 1 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JAN 15 PY 2010 VL 107 IS 2 AR 024103 DI 10.1063/1.3291127 PG 5 WC Physics, Applied SC Physics GA 551BM UT WOS:000274180600081 ER PT J AU Seo, H Kim, YB Lucovsky, G Kim, ID Chung, KB Kobayashi, H Choi, DK AF Seo, Hyungtak Kim, Young-Bae Lucovsky, Gerald Kim, Il-Doo Chung, Kwun-Bum Kobayashi, Hikaru Choi, Duck-Kyun TI Enhanced leakage current properties of Ni-doped Ba0.6Sr0.4TiO3 thin films driven by modified band edge state SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID VOLTAGE ORGANIC TRANSISTORS; BARIUM STRONTIUM-TITANATE; DIELECTRIC-RELAXATION; ELECTRICAL-PROPERTIES; CONDUCTION; SEMICONDUCTORS; RELIABILITY; INSULATORS; CAPACITORS; INJECTION AB 1% Ni-doped barium strontium titanate (BST) thin film deposited at room temperature reveals the significantly enhanced leakage current performance which is extraordinarily effective for low temperature applications. Significant leakage current suppression of >2 orders was achieved for electric fields from 0.25 to 2 MV/cm in Pt/Ni-doped BST/Pt metal-insulator-metal (MIM) capacitor cells compared to undoped BST. For Ni doping at the 1% level, the spectral dependence of (i) the imaginary part of the complex dielectric constant, epsilon(2), obtained from the rotating compensator enhanced spectroscopic ellipsometry and (ii) OK1 absorption spectra obtained from synchrotron x-ray absorption spectroscopy shows significant differences (0.26 +/- 0.15 eV) in the conduction band edge trap depth relative to undoped BST. The valence band (VB) edge x-ray photoelectron spectroscopy analysis reveals the Fermi energy level downshift of 0.4 eV for Ni-doped BST toward the VB edge. There is a direct correlation between these changes in band edge states of BST thin films with Ni doping and the improved electrical performance in MIM capacitors led by the qualitatively different charge injection mechanism. The proposed transition metal doping process and analysis approach provide a pathway for charge injection control driven by band edge state changes in other perovskite oxides for low temperature (i.e., room temperature) applications. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3291124] C1 [Seo, Hyungtak] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Chem, Berkeley, CA 94720 USA. [Seo, Hyungtak] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Kim, Young-Bae] Samsung Adv Inst Technol, Suwon 440600, South Korea. [Lucovsky, Gerald] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Kim, Il-Doo] Korea Inst Sci & Technol, Ctr Energy Mat Res, Seoul 130650, South Korea. [Chung, Kwun-Bum] Dankook Univ, Dept Phys, Cheonan 330714, South Korea. [Kobayashi, Hikaru] Osaka Univ, Inst Sci & Ind Res, Osaka 5670047, Japan. [Choi, Duck-Kyun] Hanyang Univ, Div Mat Sci & Engn, Seoul 133791, South Korea. RP Seo, H (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Chem, Berkeley, CA 94720 USA. EM yb305.kim@samsung.com; duck@hanyang.ac.kr RI Kim, Il-Doo/C-1850-2011 NR 52 TC 6 Z9 6 U1 1 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JAN 15 PY 2010 VL 107 IS 2 AR 024109 DI 10.1063/1.3291124 PG 7 WC Physics, Applied SC Physics GA 551BM UT WOS:000274180600087 ER PT J AU Zurbuchen, MA Sherman, VO Tagantsev, AK Schubert, J Hawley, ME Fong, DD Streiffer, SK Jia, Y Tian, W Schlom, DG AF Zurbuchen, M. A. Sherman, V. O. Tagantsev, A. K. Schubert, J. Hawley, M. E. Fong, D. D. Streiffer, S. K. Jia, Y. Tian, W. Schlom, D. G. TI Synthesis, structure, and electrical behavior of Sr4Bi4Ti7O24 SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE bismuth compounds; epitaxial layers; ferroelectric capacitors; ferroelectric thin films; ferroelectric transitions; finite element analysis; insulating thin films; relaxor ferroelectrics; strontium compounds; transmission electron microscopy; X-ray diffraction ID COMPLEX BISMUTH OXIDES; EPITAXIAL THIN-FILMS; CU-O SYSTEM; HOMOLOGOUS SERIES; INTERGROWTH STRUCTURES; AURIVILLIUS FAMILY; SOLID-SOLUTIONS; DIELECTRIC-PROPERTIES; DEFECT STRUCTURE; SINGLE-CRYSTALS AB An n=7 Aurivillius phase, Sr4Bi4Ti7O24, with c=6.44 nm, was synthesized as an epitaxial (001)-oriented film. This phase and its purity were confirmed by x-ray diffraction and transmission electron microscopy. The material is ferroelectric, with a P-r=5.3 mu C/cm(2) oriented in the (001) plane and a paraelectric-to-ferroelectric transition temperature of T-C=324 K. Some indications of relaxorlike behavior are observed. Such behavior is out of character for Srn-1Bi2TinO3n+3 Aurivillius phases and is closer to the bulk behavior of doped SrTiO3, implying a spatial limit to the elastic interlayer interactions in these layered oxides. A finite-element solution to the interpretation of data from interdigitated capacitors on thin films is also described. C1 [Zurbuchen, M. A.] Aerosp Corp, Microelect Technol Dept, El Segundo, CA 90245 USA. [Sherman, V. O.; Tagantsev, A. K.] Ecole Polytech Fed Lausanne, Lab Ceram, CH-1015 Lausanne, Switzerland. [Schubert, J.] Forschungszentrum Julich GmbH, IBN1 IT, D-52425 Julich, Germany. [Schubert, J.] Forschungszentrum Julich GmbH, JARA Fundamentals Future Informat Technol, D-52425 Julich, Germany. [Hawley, M. E.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Fong, D. D.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Streiffer, S. K.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Jia, Y.; Tian, W.; Schlom, D. G.] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA. RP Zurbuchen, MA (reprint author), Aerosp Corp, Microelect Technol Dept, El Segundo, CA 90245 USA. EM mark.a.zurbuchen@aero.org RI Tagantsev, Alexander/E-3707-2010; Zurbuchen, Mark/H-1664-2012; Schlom, Darrell/J-2412-2013; Schubert, Jurgen/K-9543-2013 OI Zurbuchen, Mark/0000-0002-8947-6309; Schlom, Darrell/0000-0003-2493-6113; Schubert, Jurgen/0000-0003-0185-6794 FU The Aerospace Corporation's Independent Research and Development Program; National Science Foundation [DMR-0507146, DMR-0820404]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [W-31-109-ENG-38, DE-AC02-06CH11357] FX This work was supported by The Aerospace Corporation's Independent Research and Development Program. The authors also gratefully acknowledge the financial support of the National Science Foundation through Grant Nos. DMR-0507146 and DMR-0820404 and the U.S. Department of Energy through Contract No. W-31-109-ENG-38. Work at Argonne National Laboratory, and use of Argonne's Center for Nanoscale Materials and Electron Microscopy Center was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The authors thank Professor Susan Trolier- McKinstry for helpful discussions. NR 84 TC 7 Z9 7 U1 1 U2 20 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JAN 15 PY 2010 VL 107 IS 2 AR 024106 DI 10.1063/1.3273388 PG 9 WC Physics, Applied SC Physics GA 551BM UT WOS:000274180600084 ER PT J AU Asnin, L Gritti, F Kaczmarski, K Guiochon, G AF Asnin, Leonid Gritti, Fabrice Kaczmarski, Krzysztof Guiochon, Georges TI Features of the adsorption of Naproxen on the chiral stationary phase (S,S)-Whelk-O1 under reversed-phase conditions SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article DE Adsorption isotherms; Naproxen; Pirkle phase; Whelk-O1 ID PERFORMANCE LIQUID-CHROMATOGRAPHY; BUFFERED MOBILE PHASES; ELUTION PROFILES; GLASS-ELECTRODE; BINARY-MIXTURES; METHANOL-WATER; DEAD-VOLUME; HPLC; ENANTIOSEPARATION; RETENTION AB Using elution chromatography, we studied the adsorption mechanism of the Naproxen enantiomers on the chiral stationary phase (S,S)-Whelk-O1, from buffered methanol-water solutions. We propose an adsorption mechanism that assumes monolayer adsorption of the more retained enantiomer and the associative adsorption of the less retained one. The effects of the mobile phase composition on the adsorption of Naproxen are discussed. The combination of an elevated column temperature and of the use of an acidic mobile phase led to the degradation of the column and caused a major loss of its separation ability. The use of a moderately acidic mobile phase at temperature slightly above ambient did not produce rapid severe damages but, nevertheless, hampered the experiments and caused a slow gradual deterioration of the column. (C) 2009 Elsevier B.V. All rights reserved. C1 [Asnin, Leonid; Gritti, Fabrice; Guiochon, Georges] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Asnin, Leonid] Russian Acad Sci, Ural Branch, Inst Tech Chem, Perm 614990, Russia. [Asnin, Leonid; Gritti, Fabrice; Guiochon, Georges] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Kaczmarski, Krzysztof] Rzeszow Univ Technol, Fac Chem, PL-35959 Rzeszow, Poland. RP Guiochon, G (reprint author), Univ Tennessee, Dept Chem, 552 Buehler Hall, Knoxville, TN 37996 USA. EM guiochon@utk.edu OI Asnin, Leonid/0000-0001-6309-6140 FU National Science Foundation [CHE-06-08659]; University of Tennessee; Oak Ridge National Laboratory; Russian Federation [MK-3723.2008.3] FX This work Was Supported by grant CHE-06-08659 of the National Science Foundation and by the cooperative agreement between the University of Tennessee and the Oak Ridge National Laboratory. L.A also thanks the Council on Grants at the President of the Russian Federation for support (grant for young scientist MK-3723.2008.3). The authors highly appreciate the generous gift of a column by Regis Technologies (Morton Grove, IL, USA) and thanks Christopher Welch (Merck Research Laboratories, Rahway, NJ) and Ted Szczerba (Regis Technologies) for fruitful discussions. NR 57 TC 15 Z9 15 U1 1 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 J9 J CHROMATOGR A JI J. Chromatogr. A PD JAN 15 PY 2010 VL 1217 IS 3 BP 264 EP 275 DI 10.1016/j.chroma.2009.11.039 PG 12 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 547TO UT WOS:000273912300004 PM 20003981 ER PT J AU Wang, M Chen, SY AF Wang, Moran Chen, Shiyi TI Electroosmosis in homogeneously charged micro- and nanoscale random porous media (vol 314, pg 264, 2007) SO JOURNAL OF COLLOID AND INTERFACE SCIENCE LA English DT Correction C1 [Wang, Moran] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Wang, Moran; Chen, Shiyi] Johns Hopkins Univ, Dept Mech Engn, Baltimore, MD 21218 USA. [Chen, Shiyi] Peking Univ, Coll Engn, Beijing 100871, Peoples R China. [Chen, Shiyi] Peking Univ, LTCS, Beijing 100871, Peoples R China. RP Wang, M (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM moralwang@jhu.edu RI Chen, Shiyi/A-3234-2010 NR 1 TC 0 Z9 0 U1 0 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9797 J9 J COLLOID INTERF SCI JI J. Colloid Interface Sci. PD JAN 15 PY 2010 VL 341 IS 2 BP 390 EP 390 DI 10.1016/j.jcis.2009.09.067 PG 1 WC Chemistry, Physical SC Chemistry GA 530KB UT WOS:000272588100027 ER PT J AU Dunjo, J Fthenakis, V Vilchez, JA Arnaldos, J AF Dunjo, Jordi Fthenakis, Vasilis Vilchez, Juan A. Arnaldos, Josep TI Hazard and operability (HAZOP) analysis. A literature review SO JOURNAL OF HAZARDOUS MATERIALS LA English DT Review DE HAZOP; Process Hazard Analysis; Hazard identification; Hazardous materials; Review ID SAFETY INSTRUMENTED FUNCTIONS; KNOWLEDGE-BASED SYSTEM; BATCH CHEMICAL-PLANTS; RISK ANALYSIS; PROTECTION ANALYSIS; DYNAMIC SIMULATION; MATHEMATICAL-MODEL; INTEGRITY LEVELS; COMBINING HAZOP; PASSIVE SYSTEMS AB Hazard and operability (HAZOP) methodology is a Process Hazard Analysis (PHA) technique used worldwide for studying not only the hazards of a system, but also its operability problems, by exploring the effects of any deviations from design conditions. Our paper is the first HAZOP review intended to gather HAZOP-related literature from books, guidelines, standards, major journals, and conference proceedings, with the purpose of classifying the research conducted over the years and define the HAZOP state-of-the-art. (C) 2009 Elsevier B.V. All rights reserved. C1 [Dunjo, Jordi; Vilchez, Juan A.; Arnaldos, Josep] Univ Politecn Cataluna, Dept Chem Engn, CERTEC, E-08028 Barcelona, Catalonia, Spain. [Fthenakis, Vasilis] Columbia Univ, Dept Earth & Environm Engn, CLCA, New York, NY 10027 USA. [Fthenakis, Vasilis] Brookhaven Natl Lab, Natl Photovolta EH&S Res Ctr, Upton, NY 11973 USA. RP Dunjo, J (reprint author), Univ Politecn Cataluna, Dept Chem Engn, CERTEC, Diagonal 647, E-08028 Barcelona, Catalonia, Spain. EM jdunjo@hotmail.com RI Arnaldos, Josep/K-4442-2014 OI Arnaldos, Josep/0000-0002-1885-9118 FU Tramites; Informes y Proyectos; S.L.; Universitat Politecnica de Catalunya FX The author acknowledges financial aid from Tramites, Informes y Proyectos, S.L. and Universitat Politecnica de Catalunya. NR 165 TC 51 Z9 60 U1 8 U2 66 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3894 J9 J HAZARD MATER JI J. Hazard. Mater. PD JAN 15 PY 2010 VL 173 IS 1-3 BP 19 EP 32 DI 10.1016/j.jhazmat.2009.08.076 PG 14 WC Engineering, Environmental; Engineering, Civil; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 537SZ UT WOS:000273135600002 PM 19733970 ER PT J AU Huisman, JA Rings, J Vrugt, JA Sorg, J Vereecken, H AF Huisman, J. A. Rings, J. Vrugt, J. A. Sorg, J. Vereecken, H. TI Hydraulic properties of a model dike from coupled Bayesian and multi-criteria hydrogeophysical inversion SO JOURNAL OF HYDROLOGY LA English DT Article DE Hydrogeophysics; Inversion; TDR; ERT ID ELECTRICAL-RESISTIVITY TOMOGRAPHY; GEOPHYSICAL-DATA; VADOSE ZONE; DIFFERENTIAL EVOLUTION; PARAMETER-ESTIMATION; METROPOLIS ALGORITHM; GENETIC ALGORITHM; UNSATURATED FLOW; BOREHOLE RADAR; WATER-CONTENT AB Coupled hydrogeophysical inversion aims to improve the use of geophysical data for hydrological model Parameterization. Several numerical studies have illustrated the feasibility and advantages of a coupled approach. However, there is still a lack of studies that apply the coupled inversion approach to actual field data. In this paper, we test the feasibility of coupled hydrogeophysical inversion for determining the hydraulic properties of a model dike using measurements of electrical resistance tomography (ERT). Our analysis uses a two-dimensional (2D) finite element hydrological model (HYDRUS-2D) coupled to a 2.5D finite element electrical resistivity code (CRMOD), and includes explicit recognition of parameter uncertainty by using a Bayesian and multiple criteria framework with the DREAM and AMALGAM population based search algorithms. To benchmark our inversion results, soil hydraulic properties determined from ERT data are compared with those separately obtained from detailed in situ soil water content measurements using Time Domain Reflectometry (TDR). Our most important results are as follows. (1) TDR and ERT data theoretically contain sufficient information to resolve most of the soil hydraulic properties, (2) the DREAM-derived posterior distributions of the hydraulic parameters are quite similar when estimated separately using TDR and ERT measurements for model calibration, (3) among all parameters, the saturated hydraulic conductivity of the dike material is best constrained, (4) the saturation exponent of the petrophysical model is well defined, and matches independently measured values, (5) measured ERT data sufficiently constrain model predictions of water table dynamics within the model dike. This finding demonstrates an innate ability of ERT data to provide accurate hydrogeophysical parameterizations for flooding events, which is of particular relevance to dike management, and (6) the AMALGAM-derived Pareto front demonstrates trade-off in the fitting of ERT and TDR measurements. Altogether, we conclude that coupled hydrogeophysical inversion using a Bayesian approach is especially powerful for hydrological model calibration. The posterior probability density functions of the model parameters and model output predictions contain important information to determine if geophysical measurements provide constraints on hydrological predictions. (C) 2009 Elsevier B.V. All rights reserved. C1 [Huisman, J. A.; Rings, J.; Sorg, J.; Vereecken, H.] Forschungszentrum Julich, ICG Agrosphere 4, D-52425 Julich, Germany. [Vrugt, J. A.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Vrugt, J. A.] Univ Amsterdam, IBED, Amsterdam, Netherlands. RP Huisman, JA (reprint author), Forschungszentrum Julich, ICG Agrosphere 4, D-52425 Julich, Germany. EM s.huisman@fz-juelich.de RI Rings, Joerg/C-4899-2008; Huisman, J.A. (Sander)/I-7078-2012; Vrugt, Jasper/C-3660-2008; OI Huisman, Johan Alexander/0000-0002-1327-0945 FU Los Alamos National Laboratory; Deutsche Forschungsgemeinschaft [HU1312/2-1] FX We thank A. Scheuermann and A. Bieberstein at the IBF, University of Karlsruhe and the BAW Karlsruhe for the possibility to take measurements on the dike model. J.A. Vrugt is supported by a J. Robert Oppenheimer Fellowship from the Los Alamos National Laboratory postdoctoral program. J.A. Huisman and J. Sorg are supported by Grant HU1312/2-1 of the Deutsche Forschungsgemeinschaft. NR 50 TC 49 Z9 51 U1 2 U2 34 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-1694 EI 1879-2707 J9 J HYDROL JI J. Hydrol. PD JAN 15 PY 2010 VL 380 IS 1-2 BP 62 EP 73 DI 10.1016/j.jhydrol.2009.10.023 PG 12 WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA 553FZ UT WOS:000274353000007 ER PT J AU Kao, SC Govindaraju, RS AF Kao, Shih-Chieh Govindaraju, Rao S. TI A copula-based joint deficit index for droughts SO JOURNAL OF HYDROLOGY LA English DT Article DE Copulas; Drought; Standardized precipitation index; Frequency analysis; Risk assessment ID BIVARIATE FREQUENCY-ANALYSIS; UNITED-STATES; SEVERITY INDEX; MODEL; DEPENDENCE; DURATION; PERIODS; STORMS AB Current drought information is based on indices that do not capture the joint behaviors of hydrologic variables. To address this limitation, the potential Of copulas in characterizing droughts from multiple variables is explored in this Study. Starting from the standardized index (SI) algorithm, a modified index accounting for seasonality is proposed for precipitation and streamflow marginals. Utilizing Indiana stations with long-term observations (a minimum of 80 years for precipitation and 50 years for streamflow), the dependence structures of precipitation and streamflow marginals with Various window sizes from I to 12-months are constructed from empirical copulas. A joint deficit index (JDI) is defined by using the distribution function of copulas. This index provides a probability-based description of the overall drought status. Not only is the proposed JDI able to reflect both emerging and prolonged droughts in a timely manner, it also allows a month-by-month drought assessment Such that the required amount of precipitation for achieving normal conditions in future call be computed. The use of JDI is generalizable to other hydrologic variables as evidenced by similar drought severities gleaned from JDIs constructed separately from precipitation and streamflow data. JDI further allows the construction Of all inter-variable drought index, where the entire dependence structure of precipitation and streamflow marginals is preserved. (C) 2009 Elsevier B.V. Ail rights reserved. C1 [Govindaraju, Rao S.] Purdue Univ, Sch Civil Engn, W Lafayette, IN 47907 USA. [Kao, Shih-Chieh] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA. RP Govindaraju, RS (reprint author), Purdue Univ, Sch Civil Engn, W Lafayette, IN 47907 USA. EM kaos@ornl.gov; govind@purdue.edu RI Kao, Shih-Chieh/B-9428-2012; OI Kao, Shih-Chieh/0000-0002-3207-5328; Govindaraju, Rao/0000-0003-3957-3319 NR 61 TC 149 Z9 174 U1 10 U2 53 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-1694 J9 J HYDROL JI J. Hydrol. PD JAN 15 PY 2010 VL 380 IS 1-2 BP 121 EP 134 DI 10.1016/j.jhydrol.2009.10.029 PG 14 WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA 553FZ UT WOS:000274353000013 ER PT J AU Leiva, C Lo, HC Fish, RH AF Leiva, Carmen Lo, H. Christine Fish, Richard H. TI Aqueous organometallic chemistry. 3. Catalytic hydride transfer reactions with ketones and aldehydes using [Cp*Rh(bpy)(H2O)](OTf)(2) as the precatalyst and sodium formate as the hydride source: Kinetic and activation parameters, and the significance of steric and electronic effects SO JOURNAL OF ORGANOMETALLIC CHEMISTRY LA English DT Article DE Aqueous organometallic chemistry; Kinetics and activation parameters; Mechanisms ID DEPENDENT TRANSFER HYDROGENATION; SOLUBLE CARBONYL-COMPOUNDS; 1,4-NADH DERIVATIVES; CP-ASTERISK; 1,3,5-TRIAZA-7-PHOSPHAADAMANTANE COMPLEXES; BIOORGANOMETALLIC CHEMISTRY; REGIOSELECTIVE REDUCTION; MECHANISTIC ASPECTS; NAD(+) MODELS; ACIDIC MEDIA AB The reaction of a precatalyst, [Cp* Rh(bpy)(H2O)](OTf)(2) (1), with sodium formate provided the hydride complex, [Cp* Rh(bpy)(H)](+) (2), in situ, at pH 7.0, which was then evaluated in an aqueous, catalytic hydride transfer process with water soluble substrates that encompass 2-pentanone (3), cyclohexanone (4), acetophenone (5), propionaldehyde (6), benzaldehyde (7), and p-methoxybenzaldehyde (8). The initial rates, r(i), of appearance of the reduction product alcohols at 23 degrees C provided a relative rate scale: 8 > 7 approximate to 6 > 5 > 4 > 3, while the effect of concentration of substrate, precatalyst, and sodium formate on ri, using 7 as an example, implicates [Cp* Rh(bpy)(H)](+) formation as the rate-limiting step. The experimental kinetic rate expression was found to be: d[alcohol]/dt = k(cat)[1][HCO2Na]; substrate being pseudo zero order in water. The steric effects were also analyzed and appeared to be of less importance intra both the ketone and aldehyde series, but an inter series comparison appeared to show that the aldehydes had less of a steric effect on the initial rate, i.e., 7 > 4 by a factor of 3.6, while the aldehyde series appeared to have some moderate electronic influence on rates, presumably via electron donation to increase binding to the Cp* Rh metal ion center, in accordance with these proposed concerted binding/hydride transfer reactions. A proposed catalytic cycle will also be presented. (C) 2009 Elsevier B. V. All rights reserved. C1 [Leiva, Carmen; Lo, H. Christine; Fish, Richard H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Fish, RH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM rhfish@lbl.gov FU Advanced Energy Projects and Technology Research Division, Office of Computational and Technology Research [DE AC02-05CH11231] FX We gratefully acknowledge Department of Energy funding from the Advanced Energy Projects and Technology Research Division, Office of Computational and Technology Research under DOE Contract No. DE AC02-05CH11231. NR 24 TC 17 Z9 17 U1 1 U2 14 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0022-328X J9 J ORGANOMET CHEM JI J. Organomet. Chem. PD JAN 15 PY 2010 VL 695 IS 2 BP 145 EP 150 DI 10.1016/j.jorganchem.2009.10.015 PG 6 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA 539CT UT WOS:000273231700001 ER PT J AU Zhang, S Shao, YY Li, XH Nie, ZM Wang, Y Liu, J Yin, GP Lin, YH AF Zhang, Sheng Shao, Yuyan Li, Xiaohong Nie, Zimin Wang, Yong Liu, Jun Yin, Geping Lin, Yuehe TI Low-cost and durable catalyst support for fuel cells: Graphite submicronparticles SO JOURNAL OF POWER SOURCES LA English DT Article DE Polymer electrolyte membrane fuel cell; Electrocatalyst; Graphite submicronparticle; Carbon nanotubes; Durability ID CARBON NANOTUBE ELECTRODES; MESOPOROUS CARBON; METHANOL OXIDATION; ELECTRICAL-CONDUCTIVITY; SUPERCRITICAL-FLUID; SURFACE-CHEMISTRY; OXYGEN-REDUCTION; ANODE CATALYST; DURABILITY; PLATINUM AB Low-cost graphite submicronparticles (GSP) are employed as a possible catalyst support for polymer electrolyte membrane (PEM) fuel cells. Platinum nanoparticles are deposited on Vulcan XC-72 carbon black (XC-72), carbon nanotubes (CNT), and GSP via ethylene glycol (EG) reduction method. The morphologies and the crystallinity of Pt/XC-72, Pt/CNT, and Pt/GSP are characterized with X-ray diffraction and transmission electron microscope, which shows that Pt nanoparticles (similar to 3.5 nm) are uniformly dispersed on supports. Pt/GSP exhibits the highest activity towards oxygen-reduction reactions. The durability study indicates that Pt/GSP is 2-3 times durable than Pt/CNT and Pt/XC-72. The enhanced durability of Pt/GSP catalyst is attributed to the higher corrosion resistance of graphite submicronparticles, which results from higher graphitization degree of GSP support. Considering its low production cost, graphite submicronparticles are promising electrocatalyst support for fuel cells. (C) 2009 Elsevier B. V. All rights reserved. C1 [Zhang, Sheng; Yin, Geping] Harbin Inst Technol, Sch Chem Engn & Technol, Harbin 150001, Peoples R China. [Zhang, Sheng; Shao, Yuyan; Li, Xiaohong; Nie, Zimin; Wang, Yong; Liu, Jun; Lin, Yuehe] Pacific NW Natl Lab, Fundamental Sci Div, Richland, WA 99352 USA. RP Yin, GP (reprint author), Harbin Inst Technol, Sch Chem Engn & Technol, Harbin 150001, Peoples R China. EM yingphit@hit.edu.cn; yuehe.lin@pnl.gov RI Zhang, Sheng/H-2452-2011; Shao, Yuyan/A-9911-2008; Lin, Yuehe/D-9762-2011; Wang, Yong/C-2344-2013 OI Zhang, Sheng/0000-0001-7532-1923; Shao, Yuyan/0000-0001-5735-2670; Lin, Yuehe/0000-0003-3791-7587; FU Natural Science Foundation of China [50872027, 20606007]; U.S. DOE-EERE; U.S. Department of Energy's (DOE's) Office of Biological and Environmental Research; China Scholarship Council; [DE-AC05-76L01830] FX This work is partially supported by the Natural Science Foundation of China (Nos. 50872027 and 20606007) and partially by the U.S. DOE-EERE Hydrogen Program. Part of the research described in this paper was performed at the Environmental Molecular Sciences Laboratory, a national scientific-user facility sponsored by the U.S. Department of Energy's (DOE's) Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. PNNL is operated for DOE by Battelle under Contract DE-AC05-76L01830. The authors would like to acknowledge Dr. Chongmin Wang for TEM measurements. Sheng Zhang would like to acknowledge the fellowship from the China Scholarship Council to work at PNNL. NR 29 TC 30 Z9 32 U1 1 U2 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD JAN 15 PY 2010 VL 195 IS 2 BP 457 EP 460 DI 10.1016/j.jpowsour.2009.08.012 PG 4 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 534GC UT WOS:000272883300009 ER PT J AU Riley, LA Lee, SH Gedvilias, L Dillon, AC AF Riley, Leah A. Lee, Se-Hee Gedvilias, Lynn Dillon, Anne C. TI Optimization of MoO3 nanoparticles as negative-electrode material in high-energy lithium ion batteries SO JOURNAL OF POWER SOURCES LA English DT Article DE Molybdenum oxide; Anode; Nanoparticles; Annealing; Lithium-ion battery; Temperature programmed desorption ID THERMAL-DEGRADATION; ELECTROCHEMICAL PERFORMANCES; OXIDE NANOPARTICLES; SI ELECTRODES; ANODE; CRYSTALLINE; PARTICLES; COSB3; FILMS; PVDF AB Highly uniform MoO3 nanoparticles, created using a unique hot-wire chemical vapor deposition (HWCVD) system, were studied as active material for negative electrodes in high-energy lithium ion batteries. Transmission electron microscopy (TEM), surface area analysis (BET), and X-ray diffraction (XRD) were utilized for powder characterization. Electrodes were fabricated from a slurry of MoO3, acetylene black (AB), and polyvinylidene fluoride (PVDF) binder deposited on copper foil. Electrochemical performance was optimized as a function of pre-annealing temperature and AB: PVDF ratio. Temperature programmed desorption (TPD) and Fourier transform infrared (FTIR) spectroscopy indicated both water removal and binder decomposition during heat treatment. However, melting binder rich electrodes appeared to redistribute the conductive additive and create a uniform coating that lead to improved durability. An optimized reversible high capacity of similar to 1050 mAh g(-1) was obtained for an electrode fabricated from 70: 10: 20 active material: AB: PVDF with a 250 degrees C pre-heat treatment. (C) 2009 Elsevier B. V. All rights reserved. C1 [Gedvilias, Lynn; Dillon, Anne C.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Riley, Leah A.; Lee, Se-Hee] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. RP Dillon, AC (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM anne.dillon@nrel.gov RI Lee, Sehee/A-5989-2011 FU U. S. Department of Energy [DE-AC36-08GO28308] FX The authors thank Kim Jones for the TEM images. This work was funded by the U. S. Department of Energy under subcontract number DE-AC36-08GO28308 through DOE Office of Energy Efficiency and Renewable Energy Office of the Vehicle Technologies Program. NR 23 TC 76 Z9 77 U1 7 U2 74 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD JAN 15 PY 2010 VL 195 IS 2 BP 588 EP 592 DI 10.1016/j.jpowsour.2009.08.013 PG 5 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 534GC UT WOS:000272883300031 ER PT J AU Xiang, HF Chen, CH Zhang, J Amine, K AF Xiang, H. F. Chen, C. H. Zhang, J. Amine, K. TI Temperature effect on the graphite exfoliation in propylene carbonate based electrolytes SO JOURNAL OF POWER SOURCES LA English DT Article DE Graphite; Intercalation; Exfoliation; Lithium battery ID LITHIUM-ION BATTERIES; LI-ION; IRREVERSIBLE CAPACITY; ELECTRODES; ANODES; CALORIMETRY; MECHANISMS; REACTIVITY; CELLS AB Graphite exfoliation at a low potential has long been an issue for lithium-ion cells using a propylene carbonate (PC) based electrolyte. Two different mechanisms have been proposed in literature to explain this structural degradation. In this study, the initial lithium intercalation temperature is found to have a great impact on the extent of the graphite exfoliation. At an elevated temperature, the exfoliation can be largely suppressed and the irreversible capacity loss is reduced substantially. After the initial cycling at 50 degrees C, the graphite anode can be cycled in a PC-based electrolyte at room temperature without the exfoliation problem. It is also discovered that such a graphite anode gives rise to a specific capacity of over 372 mAh g(-1) at 50 degrees C and a room temperature capacity higher than that of a graphite anode with the initial lithium intercalation at room temperature. This finding sheds a new light on the exfoliation mechanism. It may lead to a simple cycling procedure that allows us to make rechargeable lithium-ion batteries with better safety and higher capacity. (C) 2009 Elsevier B. V. All rights reserved. C1 [Xiang, H. F.; Chen, C. H.; Zhang, J.] Univ Sci & Technol China, CAS Key Lab Mat Energy Convers, Dept Mat Sci & Engn, Hefei 230026, Anhui, Peoples R China. [Chen, C. H.; Amine, K.] Argonne Natl Lab, Div Chem Technol, Argonne, IL 60439 USA. RP Chen, CH (reprint author), Univ Sci & Technol China, CAS Key Lab Mat Energy Convers, Dept Mat Sci & Engn, Hefei 230026, Anhui, Peoples R China. EM cchchen@ustc.edu.cn RI Chen, Chunhua/F-5897-2010; Amine, Khalil/K-9344-2013; OI Xiang, Hongfa/0000-0002-6182-1932 FU Education Department of Anhui Province [KJ2009A142, W-31-109-Eng-38] FX This work was partially supported Education Department of Anhui Province (grant no. KJ2009A142) and partially supported by a grant W-31-109-Eng-38 from U.S. We are also grateful to Dr. C. S. Johnson from Argonne National Lab for his help at the beginning of this study. NR 25 TC 10 Z9 10 U1 3 U2 39 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD JAN 15 PY 2010 VL 195 IS 2 BP 604 EP 609 DI 10.1016/j.jpowsour.2009.07.036 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 534GC UT WOS:000272883300034 ER PT J AU Basavapathruni, A Yeh, WW Coffey, RT Whitney, JB Hraber, PT Giri, A Korber, BT Rao, SS Nabel, GJ Mascola, JR Seaman, MS Letvin, NL AF Basavapathruni, Aravind Yeh, Wendy W. Coffey, Rory T. Whitney, James B. Hraber, Peter T. Giri, Ayush Korber, Bette T. Rao, Srinivas S. Nabel, Gary J. Mascola, John R. Seaman, Michael S. Letvin, Norman L. TI Envelope Vaccination Shapes Viral Envelope Evolution following Simian Immunodeficiency Virus Infection in Rhesus Monkeys SO JOURNAL OF VIROLOGY LA English DT Article ID ANTIBODY-MEDIATED NEUTRALIZATION; SUBTYPE-C INFECTION; GLYCOSYLATION SITES; SEQUENCE VARIATION; TYPE-1 INFECTION; V1 REGION; AIDS; GLYCOPROTEIN; MACAQUES; GP120 AB The evolution of envelope mutations by replicating primate immunodeficiency viruses allows these viruses to escape from the immune pressure mediated by neutralizing antibodies. Vaccine-induced anti-envelope antibody responses may accelerate and/or alter the specificity of the antibodies, thus shaping the evolution of envelope mutations in the replicating virus. To explore this possibility, we studied the neutralizing antibody response and the envelope sequences in rhesus monkeys vaccinated with either gag-pol-nef immunogens or gag-pol-nef immunogens in combination with env and then infected with simian immunodeficiency virus (SIV). Using a pseudovirion neutralization assay, we demonstrate that envelope vaccination primed for an accelerated neutralizing antibody response following virus challenge. To monitor viral envelope evolution in these two cohorts of monkeys, full-length envelopes from plasma virus isolated at weeks 37 and 62 postchallenge were sequenced by single genome amplification to identify sites of envelope mutations. We show that env vaccination was associated with a change in the pattern of envelope mutations. Prevalent mutations in sequences from gag-pol-nef vaccinees included deletions in both variable regions 1 and 4 (V1 and V4), whereas deletions in the env vaccinees occurred only in V1. These data show that env vaccination altered the focus of the antibody-mediated selection pressure on the evolution of envelope following SIV challenge. C1 [Basavapathruni, Aravind; Yeh, Wendy W.; Coffey, Rory T.; Whitney, James B.; Giri, Ayush; Seaman, Michael S.; Letvin, Norman L.] Harvard Univ, Sch Med, Beth Israel Deaconess Med Ctr, Div Viral Pathogenesis,Dept Med, Boston, MA 02215 USA. [Hraber, Peter T.; Korber, Bette T.] Los Alamos Natl Lab, Los Alamos, NM USA. [Rao, Srinivas S.; Nabel, Gary J.; Mascola, John R.; Letvin, Norman L.] NIAID, Vaccine Res Ctr, NIH, Bethesda, MD 20892 USA. RP Letvin, NL (reprint author), Harvard Univ, Sch Med, Beth Israel Deaconess Med Ctr, Div Viral Pathogenesis,Dept Med, 330 Brookline Ave, Boston, MA 02215 USA. EM nletvin@bidmc.harvard.edu OI Korber, Bette/0000-0002-2026-5757; Hraber, Peter/0000-0002-2920-4897 FU Vaccine Research Center, NIAID, NIH; NIH [N01-AI30033, K08-AI06995]; Bill and Melinda Gates Collaboration for AIDS Vaccine Discovery Vaccine Immune Monitoring Consortium [38619] FX TZM. bl cells were obtained through the NIH AIDS Research and Reference Reagent Program, Division of AIDS, NIAID, NIH, from John C. Kappes, Xiaoyun Wu, and Tranzyme, Inc. (4, 23, 26). We are grateful to Yair Benita for helpful discussions regarding sequencing results, Alida Ault and John Paul Todd for coordinating animal procedure logistics, Alan Dodson and Tammy Jenkins at BioQual, Inc., for housing and care of the nonhuman primates used in the study, Rebecca Gelman for help with statistical analyses, Richard M. White for help with Mutation Surveyor, and Joseph Sodroski for manuscript preparation.; This work was supported in part by funds from the intramural research program of the Vaccine Research Center, NIAID, NIH; NIH grant N01-AI30033; K08-AI06995 (W.W.Y.); and the Bill and Melinda Gates Collaboration for AIDS Vaccine Discovery Vaccine Immune Monitoring Consortium grant 38619 to M. S. S. NR 40 TC 9 Z9 9 U1 0 U2 0 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X J9 J VIROL JI J. Virol. PD JAN 15 PY 2010 VL 84 IS 2 BP 953 EP 963 DI 10.1128/JVI.01679-09 PG 11 WC Virology SC Virology GA 535TN UT WOS:000272994300026 PM 19906933 ER PT J AU Narayanan, M Ma, B Balachandran, U AF Narayanan, M. Ma, B. Balachandran, U. TI Improved dielectric properties of lead lanthanum zirconate titanate thin films on copper substrates SO MATERIALS LETTERS LA English DT Article DE Ferroelectric; High energy density; Sol-gel; PLZT; Thin film; Perovskite ID ELECTRODES; CAPACITORS AB Thin films of lead lanthanum zirconate titanate (PLZT) were directly deposited on copper substrates by chemical solution deposition and crystallized at temperatures of similar to 650 degrees C under low oxygen partial pressure (pO(2)) to create film-on-foil capacitor sheets. The dielectric properties of the capacitors formed have much improved dielectric properties compared to those reported previously. The key to the enhanced properties is a reduction in the time that the film is exposed to lower pO(2) by employing a direct insertion strategy to crystallize the films together with the solution chemistry employed. Films exhibited well-saturated hysteresis loops with remanent polarization of similar to 20 mu C/cm(2), dielectric constant of > 1100, and dielectric loss of < 0.07. Energy densities of similar to 32 J/cm(3) were obtained at a field of similar to 1.9 MV/cm on a similar to 1 mu m thick film with 250 mu m Pt electrodes. (C) 2009 Elsevier B.V. All rights reserved. C1 [Narayanan, M.; Ma, B.; Balachandran, U.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Narayanan, M (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM mnarayanan@anl.gov RI Narayanan, Manoj/A-4622-2011; Ma, Beihai/I-1674-2013 OI Ma, Beihai/0000-0003-3557-2773 FU U.S. Department of Energy [DE-AC02-06CH11357] FX Work was funded by the U.S. Department of Energy, Office of Vehicle Technologies Program, under Contract DE-AC02-06CH11357. NR 13 TC 12 Z9 12 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-577X J9 MATER LETT JI Mater. Lett. PD JAN 15 PY 2010 VL 64 IS 1 BP 22 EP 24 DI 10.1016/j.matlet.2009.09.059 PG 3 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 532UQ UT WOS:000272775900008 ER PT J AU Cao, BY Lassila, DH Huang, CX Xu, YB Meyers, MA AF Cao, Buyang Lassila, David H. Huang, Chongxiang Xu, Yongbo Meyers, Marc Andre TI Shock compression of monocrystalline copper: Experiments, characterization, and analysis SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Shock compression; Shock loading; Slip bands; Microtwins; Microbands ID STRAIN RATE HISTORY; SINGLE-CRYSTALS; GRAIN-SIZE; CONSTITUTIVE DESCRIPTION; PLASTIC-DEFORMATION; MECHANICAL RESPONSE; DEFORMED METALS; LOADED NICKEL; SUBSTRUCTURE; RECRYSTALLIZATION AB Monocrystalline copper samples with [001] and [221] orientations were subjected to shock/recovery experiments at 30 and 57 GPa and 90 K. The slip system activity and the microstructural evolution were investigated. Different defect structures, including dislocations, stacking faults, twins, microbands, and recrystallized grains were observed in the specimens. The residual microstructures were dependent on crystalline orientation and pressure. The differences with crystalline orientations are most likely due to different resolved shear stresses on specific crystalline planes. The geometric relationships between the shock propagation direction and crystalline orientation are presented under uniaxial strain. It is shown that the [2 2 11 orientation, by virtue of having fewer highly activated slip systems, exhibits greater concentration of deformation with more intense shear on the primary system. This, in turn leads to greater local temperature rise and full recrystallization, in spite of the thermodynamic residual temperature of similar to 500 K and rapid cooling (within 20 s) to ambient temperature. The profuse observation of microbands is interpreted in terms of the mechanism proposed by Huang and Gray [J.C. Huang, G.T. Gray III, Acta Metallurgica 37 (1989) 3335-3347]. (C) 2009 Elsevier B.V. All rights reserved. C1 [Cao, Buyang] Johns Hopkins Univ, Dept Mech Engn, Baltimore, MD 21218 USA. [Lassila, David H.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Huang, Chongxiang; Xu, Yongbo] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China. [Meyers, Marc Andre] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. [Meyers, Marc Andre] Univ Calif San Diego, Dept Nanoengn, La Jolla, CA 92093 USA. RP Cao, BY (reprint author), Johns Hopkins Univ, Dept Mech Engn, Baltimore, MD 21218 USA. EM bcao3@jhu.edu RI Cao, Buyang/A-6136-2010; Meyers, Marc/A-2970-2016 OI Meyers, Marc/0000-0003-1698-5396 FU Department of Energy [DEFG0398DP00212, DEFG0300SF2202]; Shenyang National Laboratory of Metal Research FX This research was supported by the Department of Energy through Grants DEFG0398DP00212 and DEFG0300SF2202. We thank the Shenyang National Laboratory of Metal Research for support of Buyang Cao during her stay in China. The use of the facilities of the National Center for Electron Microscopy, Lawrence Berkeley Laboratory, and especially the help of Dr. A. Minor are gratefully acknowledged. We thank Dr. J. N. Florando, Lawrence Livermore National Laboratory for the computer program for calculating the net slip. NR 46 TC 6 Z9 6 U1 1 U2 19 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD JAN 15 PY 2010 VL 527 IS 3 BP 424 EP 434 DI 10.1016/j.msea.2009.08.047 PG 11 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 548RL UT WOS:000273983800003 ER PT J AU Radetic, T Popovic, M Romhanji, E Verlinden, B AF Radetic, Tamara Popovic, Miljana Romhanji, Endre Verlinden, Bert TI The effect of ECAP and Cu addition on the aging response and grain substructure evolution in an Al-4.4 wt.% Mg alloy SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE ECAP; Al-Mg-Cu; Precipitation hardening; Substructure evolution; Grain refinement ID SEVERE PLASTIC-DEFORMATION; ROOM-TEMPERATURE PRECIPITATION; YIELD-STRENGTH DEVELOPMENT; ALUMINUM-ALLOYS; REACTION-KINETICS; GPB ZONES; MICROSTRUCTURE; REFINEMENT; SI; PRINCIPLES AB The effect of ECAP conducted at 200 degrees C on the grain substructure evolution in an AA5182 alloy and the same alloy with 1.2 wt.% Cu addition was investigated. Severe plastic deformation was found to accelerate the precipitation kinetics in the AA5182 + Cu alloy, leading to the formation of a fine dispersion of the stable S phase precipitates. These particles homogenized slip, causing a delay of the band/cell substructure formation in the AA5182 + Cu alloy compared to the AA5182 alloy processed in the same manner. Aside from the conventional particle hardening effect, the precipitates also play a role in retarding the recovery and recrystallization processes, retaining the effects of strain in the material after ECAP at elevated temperature. (c) 2009 Elsevier B.V. All rights reserved. C1 [Radetic, Tamara; Popovic, Miljana; Romhanji, Endre] Univ Belgrade, Fac Technol & Met, Dept Met Engn, Belgrade 11120, Serbia. [Radetic, Tamara] Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Verlinden, Bert] Katholieke Univ Leuven, Dept Met & Mat Engn, B-3001 Louvain, Belgium. RP Popovic, M (reprint author), Univ Belgrade, Fac Technol & Met, Dept Met Engn, Karnegijeva 4,POB 35-03, Belgrade 11120, Serbia. EM miljana@tmf.bg.ac.rs FU 'Interuniversity Attraction Poles Program - Belgian Science Policy'P6/24 [P6/24]; Belgian OSTC; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX Part of this work was carried out in the frame of the 'Interuniversity Attraction Poles Program - Belgian Science Policy' under contract number P6/24. One of the authors (MP) acknowledges the special post doc research grant provided by Belgian OSTC for enhanced cooperation with Central and East Europe. This work was performed in part at the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, and was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. NR 40 TC 9 Z9 10 U1 2 U2 11 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD JAN 15 PY 2010 VL 527 IS 3 BP 634 EP 644 DI 10.1016/j.msea.2009.08.037 PG 11 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 548RL UT WOS:000273983800031 ER PT J AU Caris, J Li, DQ Stephens, JJ Lewandowski, JJ AF Caris, Joshua Li, Dingqiang Stephens, John J., Jr. Lewandowski, John J. TI Microstructural effects on tension behavior of Cu-15Ni-8Sn sheet SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Copper alloys; Spring materials ID NI-SN ALLOYS; SUPERIMPOSED HYDROSTATIC-PRESSURE; SPINODAL DECOMPOSITION; MECHANICAL-PROPERTIES; DEFORMATION; FRACTURE; TRANSFORMATION; COPPER; SYSTEM AB The effects of systematic changes in microstructure/heat treatment on the mechanical behavior of Cu-15Ni-8Sn (Pfinodal (R)) were evaluated in uniaxial tension. Multiple samples were tested and fracture surfaces were analyzed via scanning electron microscopy (SEM). Significant effects of cold work and heat treatment on the tension behavior were obtained and rationalized based on the mechanisms of failure, revealed by SEM, for this system. (c) 2009 Elsevier B.V. All rights reserved. C1 [Caris, Joshua; Li, Dingqiang; Lewandowski, John J.] Case Western Reserve Univ, Dept Mat Sci & Engn, Cleveland, OH 44106 USA. [Stephens, John J., Jr.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Caris, J (reprint author), Case Western Reserve Univ, Dept Mat Sci & Engn, Cleveland, OH 44106 USA. EM joshua.caris@case.edu FU National Physical Science Consortium (NPSC); Case Prime Fellowship FX This research was conducted in collaboration with Sandia National Laboratories with funding available through the National Physical Science Consortium (NPSC) and the Case Prime Fellowship. Technical support was provided by Chris Tuma, Alan Mcllwain, and the Metal Matrix Composites (MMC) Group of Case Western Reserve University as well as Bonnie McKenzie and Alice Kilgo of Sandia National Laboratories. NR 33 TC 3 Z9 3 U1 6 U2 12 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD JAN 15 PY 2010 VL 527 IS 3 BP 769 EP 781 DI 10.1016/j.msea.2009.08.049 PG 13 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 548RL UT WOS:000273983800048 ER PT J AU Asoro, MA Kovar, D Shao-Horn, Y Allard, LF Ferreira, PJ AF Asoro, M. A. Kovar, D. Shao-Horn, Y. Allard, L. F. Ferreira, P. J. TI Coalescence and sintering of Pt nanoparticles: in situ observation by aberration-corrected HAADF STEM SO NANOTECHNOLOGY LA English DT Article ID SURFACE-DIFFUSION; ROOM-TEMPERATURE; SELF-DIFFUSION; FUEL-CELLS; PLATINUM; INSTABILITY AB An aberration-corrected JEOL 2200FS scanning-transmission electron microscope (STEM), equipped with a high-angle annular dark-field detector (HAADF), is used to monitor the coalescence and sintering of Pt nanoparticles with an average diameter of 2.8 nm. This in situ STEM capability is combined with an analysis methodology that together allows direct measurements of mass transport phenomena that are important in understanding how particle size influences coalescence and sintering at the nanoscale. To demonstrate the feasibility of this methodology, the surface diffusivity is determined from measurements obtained from STEM images acquired during the initial stages of sintering. The measured surface diffusivities are in reasonable agreement with measurements made on the surface of nanoparticles, using other techniques. In addition, the grain boundary mobility is determined from measurements made during the latter stages of sintering. C1 [Asoro, M. A.; Kovar, D.; Ferreira, P. J.] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA. [Kovar, D.; Ferreira, P. J.] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA. [Shao-Horn, Y.] MIT, Dept Mech Engn, Cambridge, MA 02139 USA. [Shao-Horn, Y.] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [Allard, L. F.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Asoro, MA (reprint author), Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA. FU US Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program [DE-AC04-94AL85000, DE-FG02-05ER15728]; Sandia National Laboratories; National Science Foundation [DMR 02-13282] FX This research at the Oak Ridge National Laboratory's High Temperature Materials Laboratory was sponsored by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. This work was also supported by the Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Additional support was provided by the DOE Hydrogen Initiative program under award no. DE-FG02-05ER15728 and made use of the Shared Experimental Facilities supported by the MRSEC Program of the National Science Foundation under award no. DMR 02-13282. NR 20 TC 58 Z9 58 U1 4 U2 55 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD JAN 15 PY 2010 VL 21 IS 2 AR 025701 DI 10.1088/0957-4484/21/2/025701 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 531DB UT WOS:000272641800019 PM 19955618 ER PT J AU Grace, MD Dominy, J Kosut, RL Brif, C Rabitz, H AF Grace, Matthew D. Dominy, Jason Kosut, Robert L. Brif, Constantin Rabitz, Herschel TI Environment-invariant measure of distance between evolutions of an open quantum system SO NEW JOURNAL OF PHYSICS LA English DT Article ID DECOHERENCE; GATES; CONTROLLABILITY; LANDSCAPES; FIDELITY; STATES; PHASE AB The problem of quantifying the difference between evolutions of an open quantum system (in particular, between the actual evolution of an open system and the ideal target operation on the corresponding closed system) is important in quantum control, especially in control of quantum information processing. Motivated by this problem, we develop a measure for evaluating the distance between unitary evolution operators of a composite quantum system that consists of a sub-system of interest (e. g. a quantum information processor) and environment. The main characteristic of this measure is the invariance with respect to the effect of the evolution operator on the environment, which follows from an equivalence relation that exists between unitary operators acting on the composite system, when the effect on only the sub-system of interest is considered. The invariance to the environment's transformation makes it possible to quantitatively compare the evolution of an open quantum system and its closed counterpart. The distance measure also determines the fidelity bounds of a general quantum channel (a completely positive and trace-preserving map acting on the sub-system of interest) with respect to a unitary target transformation. This measure is also independent of the initial state of the system and straightforward to numerically calculate. As an example, the measure is used in numerical simulations to evaluate fidelities of optimally controlled quantum gate operations (for one-and two-qubit systems), in the presence of a decohering environment. This example illustrates the utility of this measure for optimal control of quantum operations in the realistic case of open-system dynamics. C1 [Grace, Matthew D.] Sandia Natl Labs, Dept Scalable Comp Res & Dev, Livermore, CA 94550 USA. [Dominy, Jason] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA. [Kosut, Robert L.] SC Solut Inc, Sunnyvale, CA 94085 USA. [Brif, Constantin; Rabitz, Herschel] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. RP Grace, MD (reprint author), Sandia Natl Labs, Dept Scalable Comp Res & Dev, Livermore, CA 94550 USA. EM mgrace@sandia.gov; jdominy@math.princeton.edu; kosut@scsolutions.com; cbrif@princeton.edu; hrabitz@princeton.edu RI Brif, Constantin/A-6779-2008 OI Brif, Constantin/0000-0003-1134-4952 NR 82 TC 29 Z9 29 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD JAN 15 PY 2010 VL 12 AR 015001 DI 10.1088/1367-2630/12/1/015001 PG 30 WC Physics, Multidisciplinary SC Physics GA 545XO UT WOS:000273770500001 ER PT J AU Dashdorj, D Mitchell, GE Kawano, T Devlin, M Fotiades, N Nelson, RO Becker, JA Wu, CY Garrett, PE Kuneida, S AF Dashdorj, D. Mitchell, G. E. Kawano, T. Devlin, M. Fotiades, N. Nelson, R. O. Becker, J. A. Wu, C. Y. Garrett, P. E. Kuneida, S. TI (n,2n) and (n,3n) cross-sections of neutron-induced reactions on Sm-150 for E-n=1-35 MeV SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE gamma-Ray production cross-section; Reaction mechanism; GEANIE; Neutron-induced reaction cross-sections; (n,2n) (n,3n); Statistical reaction code; Samarium ID ENERGIES AB Cross-section measurements were made of prompt discrete gamma-ray production as a function of incident neutron energy (E-n = 1-135 MeV) on a Sm-150 sample of 1550 mg/cm(2) of Sm2O3 enriched to 95.6% in Sm-150. Results are compared with enhanced Hauser-Feshbach model calculations including the pre-equilibrium reactions. Energetic neutrons were delivered by the Los Alamos Neutron Science Center facility. The prompt-reaction gamma-rays were detected with the compton-suppressed germanium array for neutron-induced excitations (GEANIE). Incident neutron energies were determined by the time-of-flight technique. Excitation functions for thirteen individual gamma-rays up to E-x = 0.8 MeV in Sm-149 and one gamma-ray transition between the first excited and ground state in Sm-148 were measured. Partial gamma-ray cross-sections were calculated using GNASH, an enhanced Hauser-Feshbach statistical nuclear reaction model code, and compared with the experimental results. The particle transmission coefficients were calculated with new systematic "global" optical model potential parameters. A coupled-channels optical model based on a soft rotor model was employed to calculate the particle transmission coefficients. The pre-equilibrium part of the spin-distribution in Sm-150 was calculated using the quantum mechanical theory of Feshbach, Kerman, and Koonin (FKK) and incorporated into the GNASH reaction model code. The partial cross-sections for discrete gamma-ray cascade paths leading to the ground state in Sm-149 and Sm-148 have been summed (without double counting) to estimate lower limits for reaction cross-sections. These lower limits are combined with Hauser-Feshbach model calculations to deduce the reaction channel cross-sections. These reaction channel cross-sections agree with previously measured experimental and ENDF/B-VII evaluations. (C) 2009 Elsevier B.V. All rights reserved. C1 [Dashdorj, D.; Mitchell, G. E.] N Carolina State Univ, Raleigh, NC 27695 USA. [Dashdorj, D.; Becker, J. A.; Wu, C. Y.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Dashdorj, D.] MonAme Sci Res Ctr, Ulaanbaatar, Mongol Peo Rep. [Mitchell, G. E.] Triangle Univ Nucl Lab, Durham, NC 27708 USA. [Kawano, T.; Devlin, M.; Fotiades, N.; Nelson, R. O.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Garrett, P. E.] Univ Guelph, Guelph, ON N1G 2W1, Canada. [Kuneida, S.] Japan Atom Energy Agcy, Tokai, Ibaraki 3191195, Japan. RP Dashdorj, D (reprint author), N Carolina State Univ, Raleigh, NC 27695 USA. EM dashdorj1@llnl.gov RI Devlin, Matthew/B-5089-2013 OI Devlin, Matthew/0000-0002-6948-2154 FU US Department of Energy [DE-FG52-06NA26194, DE-FG02-97-ER41042, DE-AC52-06NA4464, DE-AC52-06NA25396] FX This work was supported by in part by the US Department of Energy Grants Nos. DE-FG52-06NA26194 and DE-FG02-97-ER41042, work performed in part under the auspices of the US Department of Energy by Livermore National Security, LLC, Lawrence Livermore National Laboratory under Contract No. DE-AC52-06NA4464, and work performed in part under auspices of the US Department of Energy by Los Alamos National Security, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. This work has benefited from the use of the LANSCE accelerator facility, supported under DOE Contract No. DE-AC52-06NA25396. NR 19 TC 1 Z9 1 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD JAN 15 PY 2010 VL 268 IS 2 BP 114 EP 119 DI 10.1016/j.nimb.2009.10.189 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 556RY UT WOS:000274610200003 ER PT J AU Semkova, V Bauge, E Plompen, AJM Smith, DL AF Semkova, V. Bauge, E. Plompen, A. J. M. Smith, D. L. TI Neutron activation cross sections for zirconium isotopes SO NUCLEAR PHYSICS A LA English DT Review DE NUCLEAR REACTION (90)Zr(n, P); (n, 2n) (n, X)(89)mY; (91)Zr(n, n alpha); (n,p); (n, X)(90m)Y; (92)Zr(n, p); (n, X)(91)mY; (94)Zr(n, alpha); (n,p); (n, X)(93)Y; E=13 1-20 6 MeV; measured sigma using activation method Comparison with three different TALYS calculations ID CLOSED SHELL NUCLIDES; NUCLEAR-DATA LIBRARY; EXCITATION-FUNCTIONS; ENERGY-RANGE; N,2N REACTIONS; OPTICAL-MODEL; ISOMER-RATIOS; 2N REACTIONS; N,P REACTION; N,ALPHA AB New experimental cross sections me presented for (90)Zr(n, alpha)(87m)Sr. (90)Zr(n, x)(89m)Y, (90)Zr(n, p)(90m)Y. (90)Zr(n. 2n)(89)Zr. (90)Zr(n. 2n)(89m)Zr, (91)Zr(n, n alpha)(87m)Sr. (91)Zr(n, x)(90m)Y. (91)Zr(n, p)(91m)Y, (92)Zr(n.x)(91m)Y, (92)Zr(n, p)(92)Y. (94)Zr(n. alpha)(91)Sr, (94)Zr(n, x)(93)Y and (94)Zr(n, p)(94)Y reactions. These have been obtained with the activation technique using gamma-ray spectrometry and irradiations at the MINIM Van de Graaff laboratory. The new data were obtained in the energy range front 14 to 21 MeV In nearly all cases this work provides the first data above 15 MeV and for the (92)Zr(n. x) (91m)Y and (91)Zr(n. n alpha)(87m)Sr reactions no earlier data were reported The experimental results are compared with model calculations using the TALYS code to obtain it first indication of the impact of the new data on modeling of n + Zr reactions (C) 2009 Elsevier B.V. All rights reserved C1 [Semkova, V.; Plompen, A. J. M.] European Commis, Joint Res Ctr, Inst Reference Mat & Measurements, B-2440 Geel, Belgium. [Semkova, V.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, BU-1784 Sofia, Bulgaria. [Bauge, E.] CEA, DAM, DIF, F-91297 Arpajon, France. [Smith, D. L.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Plompen, AJM (reprint author), European Commis, Joint Res Ctr, Inst Reference Mat & Measurements, B-2440 Geel, Belgium. FU European Commission FX The authors thank the crew operating the Van de Graaff accelerator for the conditions that made this work possible. V.S. thanks file European Commission for financial support Numerical data from publications and evaluations were retrieved from Ref [102] NR 103 TC 7 Z9 7 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD JAN 15 PY 2010 VL 832 IS 3-4 BP 149 EP 169 DI 10.1016/j.nuclphysa.2009.10.133 PG 21 WC Physics, Nuclear SC Physics GA 553ME UT WOS:000274370200001 ER PT J AU Lappi, T McLerran, L AF Lappi, T. McLerran, L. TI Long range rapidity correlations as seen in the STAR experiment SO NUCLEAR PHYSICS A LA English DT Article DE Heavy Ion collisions; Rapidity correlations; Glasma; Impact parameter fluctuations ID COLOR GLASS CONDENSATE; GLUON DISTRIBUTION-FUNCTIONS; TRANSVERSE-MOMENTUM; RENORMALIZATION-GROUP; NUCLEAR COLLISIONS; EVOLUTION; EQUATION; DENSITY; QUARK AB We analyze long range rapidity correlations observed in the STAR experiment at RHIC our goal is to extract properties of the two particle correlation matrix, accounting tor the analysis method of the STAR experiment We find a surprisingly large correlation strength for central collisions of gold nuclei at highest RHIC energies We argue that such correlations cannot. be the result of impact parameter fluctuations (C) 2009 Elsevier B V All rights reserved C1 [Lappi, T.] Univ Jyvaskyla, Dept Phys, Jyvaskyla 40014, Finland. [Lappi, T.] CEA Saclay, Inst Theoret Phys, DSM, F-91191 Gif Sur Yvette, France. [McLerran, L.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [McLerran, L.] Brookhaven Natl Lab, RIKEN, BNL Ctr, Upton, NY 11973 USA. RP Lappi, T (reprint author), Univ Jyvaskyla, Dept Phys, POB 35, Jyvaskyla 40014, Finland. NR 43 TC 32 Z9 32 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD JAN 15 PY 2010 VL 832 IS 3-4 BP 330 EP 345 PG 16 WC Physics, Nuclear SC Physics GA 553ME UT WOS:000274370200010 ER PT J AU Baker, KL Moallem, MM AF Baker, K. L. Moallem, M. M. TI Iterative wave-front reconstruction for open-loop metrology applications: Shack-Hartmann and shearing interferometer wave-front sensing using Fourier or Multigrid reconstructors SO OPTICS COMMUNICATIONS LA English DT Article ID ADAPTIVE OPTICS; HUMAN EYE; SENSOR; ABERRATION; DENSITY AB Numerous techniques exist to reconstruct the wave-front in Shack-Hartmann and shearing interferometer wave-front sensors. Two of these techniques involve solving the least-squares wave-front reconstruction via Fourier transform or Multigrid methods. These two techniques operate on a square grid and are sensitive to both nonlinearities and to the methods used to extend the gradients beyond the aperture to the edges of the square grid. Both of these sensitivities can lead to large residual wave-front errors when reconstructing large aberrations. In this article we introduce an iterative computational loop in the reconstruction process which is designed to improve the reconstruction variances introduced by these parameters. This technique allows for accurate reconstruction of large phases which can arise in applications such as open-loop compensation of atmospheric turbulence, aberrometers and metrology. In this article, it is demonstrated that large aberrations can be accurately reconstructed utilizing this iterative method with Fourier or Multigrid reconstructors. (C) 2009 Elsevier B.V. All rights reserved. C1 [Baker, K. L.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Moallem, M. M.] KM Optix, Fremont, CA USA. RP Baker, KL (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM Baker7@llnl.gov; MmoallemOD@yahoo.com FU U.S. Department of Energy [W-7405-Eng-48, DE-AC52-07NA27344] FX The authors would like to acknowledge useful discussions with L. Poyneer and suggested refinements by D. Gerwe. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. NR 17 TC 2 Z9 2 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0030-4018 J9 OPT COMMUN JI Opt. Commun. PD JAN 15 PY 2010 VL 283 IS 2 BP 226 EP 231 DI 10.1016/j.optcom.2009.09.036 PG 6 WC Optics SC Optics GA 532SL UT WOS:000272769900003 ER PT J AU Han, LB An, Q Fu, RS Zheng, LQ Luo, SN AF Han, Li-Bo An, Qi Fu, Rong-Shan Zheng, Lianqing Luo, Sheng-Nian TI Local and bulk melting of Cu at grain boundaries SO PHYSICA B-CONDENSED MATTER LA English DT Article DE Molecular dynamics; Melting; Grain boundary ID MOLECULAR-DYNAMICS; MODEL; DEFECTS; SYSTEMS; METALS AB We investigate grain boundary (GB) melting using molecular dynamics simulations on face-centered-cubic Cu bicrystals with symmetric < 1 1 0 > tilt GBs. Two representative types of GBs are explored: Sigma = 11 /(113)/50.48 degrees (low GB energy) and Sigma = 27/(552)/148.41 degrees (high GB energy). The temperature and temporal evolutions of the Cu bicrystals under stepped heating are characterized in terms of order parameters and diffusion coefficients, as well as the nucleation and growth of melt. Within the GB region, continuous local melting precedes discontinuous bulk melting, while continuous solid state disordering may precede local melting. Premelting may occur for local melting but not for bulk melting. For Sigma = 11/(113)/50.48 degrees, premelting of the GB region is negligible, and local melting occurs near the thermodynamic melting temperature. The GB region as a whole is superheated by about 13% before its bulk melting. In the case of Sigma = 27/(552)/148.41 degrees, considerable premelting is observed for local melting, while the bulk melting occurs with negligible superheating. The exact melting behavior of a general GB depends on the GB energy, but is likely bracketed within these two cases. (C) 2009 Elsevier B.V. All rights reserved. C1 [Luo, Sheng-Nian] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. [Zheng, Lianqing] Florida State Univ, Inst Mol Biophys, Tallahassee, FL 32306 USA. [Han, Li-Bo; An, Qi; Fu, Rong-Shan] Univ Sci & Technol China, Sch Earth & Space Sci, Hefei 230026, Anhui, Peoples R China. RP Luo, SN (reprint author), Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. EM sluo@lanl.gov RI Zheng, Lianqing/B-4171-2008; Luo, Sheng-Nian /D-2257-2010; An, Qi/G-4517-2011; An, Qi/I-6985-2012 OI Luo, Sheng-Nian /0000-0002-7538-0541; FU NSFC [40574043, 40425005]; U.S. Department of Energy [DE-AC52-06NA25396] FX L.B.H. and Q.A. were partially supported by NSFC Grant nos. 40574043 and 40425005. L.Z. is grateful for W. Yang's support. S.N.L. acknowledges the support from LDRD programs at LANL. LANL is under the auspices of U.S. Department of Energy under contract no. DE-AC52-06NA25396. We have benefited from discussions with S. Zhao. NR 34 TC 12 Z9 12 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD JAN 15 PY 2010 VL 405 IS 2 BP 748 EP 753 DI 10.1016/j.physb.2009.09.099 PG 6 WC Physics, Condensed Matter SC Physics GA 537DA UT WOS:000273091900046 ER PT J AU Gardner, JS Kam, KC Ehlers, G AF Gardner, J. S. Kam, K. C. Ehlers, G. TI New relaxation processes in diluted Ho2Ti2O7 SO PHYSICA B-CONDENSED MATTER LA English DT Article DE Spin-ice; Magnetic frustration; Neutron-spin-echo ID HOT SPIN ICE; MAGNETIC-PROPERTIES; DYNAMICS; HO2RU2O7; Y2MO2O7 AB We have studied the spin relaxation in diluted spin ice Ho2-xRxTi2O7 (R La or Y) by means of neutron scattering. Remarkably, doping with nonmagnetic ions does not relieve the geometrical frustration and the dynamics of the freezing is unaltered whilst the cubic unit cell is maintained. When the nonmagnetic substitution starts to distort the lattice, a new relaxation process is revealed. We present new data from several diluted spin ice samples where Arrhenius behaviour observed in the parent compound, Ho2Ti2O7 is superseded by other processes including a quantum tunnelling process. Published by Elsevier B.V. C1 [Gardner, J. S.] Indiana Univ, Bloomington, IN 47408 USA. [Gardner, J. S.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Kam, K. C.] Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA. [Ehlers, G.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP Gardner, JS (reprint author), Indiana Univ, 2401 Milo B Sampson Lane, Bloomington, IN 47408 USA. EM jsg@nist.gov RI Gardner, Jason/A-1532-2013; Ehlers, Georg/B-5412-2008 OI Ehlers, Georg/0000-0003-3513-508X FU U.S. Department of Energy [DE-AC05-000R22725]; National Science Foundation [DMR-0454672] FX We thank our collaborators in Refs. [18,20] for their role in this ongoing study. We acknowledge useful discussions with M.J.P. Gingras, S.T. Bramwell, T. Fennell, J. Greedan, B.D. Gaulin. Support for this work was provided through ORNL/SNS which is managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract DE-AC05-000R22725 and the Centre for High Resolution Neutron Scattering at NIST by the National Science Foundation under Agreement No. DMR-0454672. NR 25 TC 1 Z9 2 U1 2 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD JAN 15 PY 2010 VL 405 IS 2 BP 774 EP 777 DI 10.1016/j.physb.2009.09.104 PG 4 WC Physics, Condensed Matter SC Physics GA 537DA UT WOS:000273091900051 ER PT J AU Desjacques, V Seljak, U AF Desjacques, Vincent Seljak, Uros TI Signature of primordial non-Gaussianity of phi(3) type in the mass function and bias of dark matter haloes SO PHYSICAL REVIEW D LA English DT Article ID LARGE-SCALE STRUCTURE; N-BODY SIMULATIONS; INFLATIONARY UNIVERSE; DENSITY PERTURBATIONS; GRAVITATIONAL-INSTABILITY; INITIAL CONDITIONS; FLUCTUATIONS; PROBE; CLUSTERS; EVOLUTION AB We explore the effect of a cubic correction g(NL)phi(3) on the mass function and bias of dark matter haloes extracted from a series of large N-body simulations and compare it to theoretical predictions. Such cubic terms can be motivated in scenarios like the curvaton model, in which a large cubic correction can be produced while simultaneously keeping the quadratic f(NL)phi(2) correction small. The deviation from the Gaussian halo mass function is in reasonable agreement with the theoretical predictions. The scale-dependent bias correction Delta b(kappa)(k, g(NL)) measured from the auto-and cross-power spectrum of haloes, is similar to the correction in f(NL) models, but the amplitude is lower than theoretical expectations. Using the compilation of LSS data in [A. Slosar et al., J. Cosmol. Astropart. Phys. 08 (2008) 031], we obtain for the first time a limit on g(NL) of -3.5 x 10(5) < g(NL) < +8.2 x 10(5) (at 95% CL). This limit will improve with the future LSS data by 1-2 orders of magnitude, which should test many of the scenarios of this type. C1 [Desjacques, Vincent; Seljak, Uros] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland. [Seljak, Uros] Univ Calif Berkeley, Dept Phys & Astron, Berkeley, CA 94720 USA. [Seljak, Uros] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Seljak, Uros] Ewha Womans Univ, IEU, Seoul, South Korea. RP Desjacques, V (reprint author), Univ Zurich, Inst Theoret Phys, Winterthurerstr 190, CH-8057 Zurich, Switzerland. EM dvince@physik.uzh.ch; seljak@physik.uzh.ch RI Desjacques, Vincent/A-1892-2014 FU Swiss National Foundation [200021-116696/1]; WCU [R32-2008-000-10130-0] FX We thank Paolo Creminelli and Leonardo Senatore for useful discussions. We acknowledge support from the Swiss National Foundation under Contract No. 200021-116696/1 and WCU Grant No. R32-2008-000-10130-0. NR 80 TC 76 Z9 76 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JAN 15 PY 2010 VL 81 IS 2 AR 023006 DI 10.1103/PhysRevD.81.023006 PG 21 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 562QS UT WOS:000275068900013 ER PT J AU Mottola, E Szep, Z AF Mottola, Emil Szep, Zsolt TI Systematics of high temperature perturbation theory: The two-loop electron self-energy in QED SO PHYSICAL REVIEW D LA English DT Article ID HOT GAUGE-THEORIES; QUARK-GLUON PLASMA; FINITE-TEMPERATURE; DAMPING RATE; FIELD-THEORY; TRANSPORT-COEFFICIENTS; QCD; AMPLITUDES; EXCITATIONS; PARTICLES AB In order to investigate the systematics of the loop expansion in high temperature gauge theories beyond the leading order hard thermal loop (HTL) approximation, we calculate the two-loop electron proper self-energy Sigma in high temperature QED. The two-loop bubble diagram of Sigma contains a linear infrared divergence. Even if regulated with a nonzero photon mass M of order of the Debye mass, this infrared sensitivity implies that the two-loop self-energy contributes terms to the fermion dispersion relation that are comparable to or even larger than the next-to-leading order (NLO) contributions of the one-loop Sigma. Additional evidence for the necessity of a systematic restructuring of the loop expansion comes from the explicit gauge-parameter dependence of the fermion damping rate at both one and two loops. The leading terms in the high temperature expansion of the two-loop self-energy for all topologies arise from an explicit hard-soft factorization pattern, in which one of the loop integrals is hard (p similar or equal to T), nested inside a second loop integral which is soft (0 <= p less than or similar to T for real parts; p similar or equal to eT for imaginary parts). There are no hard-hard contributions to the two-loop Sigma at leading order at high T. Provided the same factorization pattern holds for arbitrary l loops, the NLO high temperature contributions to the electron self-energy come from l - 1 hard loops factorized with one soft loop integral. This hard-soft pattern is a necessary condition for the resummation over l to coincide with the one-loop self-energy calculated with HTL dressed propagators and vertices, and to yield the complete NLO correction to Sigma at scales similar to eT, which is both infrared finite and gauge invariant. We employ spectral representations and the Gaudin method for evaluating finite temperature Matsubara sums, which facilitates the analysis of multiloop diagrams at high T. C1 [Mottola, Emil] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Szep, Zsolt] Hungarian Acad Sci, Stat & Biol Phys Res Grp, H-1117 Budapest, Hungary. RP Mottola, E (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM emil@lanl.gov; szepzs@achilles.elte.hu RI Szep, Zsolt/A-6779-2012; OI Szep, Zsolt/0000-0003-2215-0942; Mottola, Emil/0000-0003-1067-1388 NR 45 TC 5 Z9 5 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JAN 15 PY 2010 VL 81 IS 2 AR 025014 DI 10.1103/PhysRevD.81.025014 PG 39 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 562QS UT WOS:000275068900104 ER PT J AU Aubert, B Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Martinelli, M Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Battaglia, M Brown, DN Hooberman, B Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Asgeirsson, DJ Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Randle-Conde, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Yasin, Z Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Wang, L Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Ongmongkolkul, P Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Toki, WH Feltresi, E Hauke, A Jasper, H Karbach, TM Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Nogowski, R Schubert, KR Schwierz, R Bernard, D Latour, E Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Fioravanti, E Franchini, P Luppi, E Munerato, M Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Tosi, S Morii, M Adametz, A Marks, J Schenk, S Uwer, U Bernlochner, FU Lacker, HM Lueck, T Volk, A Dauncey, PD Tibbetts, M Behera, PK Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Arnaud, N D'Orazio, A Davier, M Derkach, D da Costa, JF Grosdidier, G Le Diberder, F Lepeltier, V Lutz, AM Malaescu, B Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK Di Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Hafner, A Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Salvati, E Cowan, R Dujmic, D Fisher, PH Henderson, SW Sciolla, G Spitznagel, M Yamamoto, RK Zhao, M Patel, PM Robertson, SH Schram, M Biassoni, P Lazzaro, A Lombardo, V Palombo, F Stracka, S Cremaldi, L Godang, R Kroeger, R Sonnek, P Summers, DJ Zhao, HW Nguyen, X Simard, M Taras, P Nicholson, H De Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Sekula, SJ Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Bonneaud, GR Briand, H Chauveau, J Hamon, O Leruste, P Marchiori, G Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Manoni, E Angelini, C Batignani, G Bettarini, S Calderini, G Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S Esteve, L de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Allen, MT Aston, D Bard, DJ Bartoldus, R Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Sevilla, MF Fulsom, BG Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Young, CC Ziegler, V Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Bellis, M Burchat, PR Edwards, AJ Miyashita, TS Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Soffer, A Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Wray, BC Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K King, GJ Kowalewski, R Lewczuk, MJ Lindsay, CD Locke, CB Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Puccio, EMT Band, HR Chen, X Dasu, S Flood, KT Pan, Y Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Garra Tico, J. Grauges, E. Martinelli, M. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Battaglia, M. Brown, D. N. Hooberman, B. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Asgeirsson, D. J. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Randle-Conde, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Yasin, Z. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Wang, L. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Ongmongkolkul, P. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Feltresi, E. Hauke, A. Jasper, H. Karbach, T. M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Nogowski, R. Schubert, K. R. Schwierz, R. Bernard, D. Latour, E. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Fioravanti, E. Franchini, P. Luppi, E. Munerato, M. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Tosi, S. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Bernlochner, F. U. Lacker, H. M. Lueck, T. Volk, A. Dauncey, P. D. Tibbetts, M. Behera, P. K. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Arnaud, N. D'Orazio, A. Davier, M. Derkach, D. da Costa, J. Firmino Grosdidier, G. Le Diberder, F. Lepeltier, V. Lutz, A. M. Malaescu, B. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Hafner, A. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Salvati, E. Cowan, R. Dujmic, D. Fisher, P. H. Henderson, S. W. Sciolla, G. Spitznagel, M. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Schram, M. Biassoni, P. Lazzaro, A. Lombardo, V. Palombo, F. Stracka, S. Cremaldi, L. Godang, R. Kroeger, R. Sonnek, P. Summers, D. J. Zhao, H. W. Nguyen, X. Simard, M. Taras, P. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Sekula, S. J. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Bonneaud, G. R. Briand, H. Chauveau, J. Hamon, O. Leruste, Ph. Marchiori, G. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Calderini, G. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Esteve, L. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Allen, M. T. Aston, D. Bard, D. J. Bartoldus, R. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Sevilla, M. Franco Fulsom, B. G. Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Young, C. C. Ziegler, V. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Bellis, M. Burchat, P. R. Edwards, A. J. Miyashita, T. S. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Soffer, A. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Wray, B. C. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. King, G. J. Kowalewski, R. Lewczuk, M. J. Lindsay, C. D. Locke, C. B. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Puccio, E. M. T. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BaBar Collaboration TI Searches for Lepton Flavor Violation in the Decays tau(+/-) -> e(+/-)gamma and tau(+/-) -> mu(+/-)gamma SO PHYSICAL REVIEW LETTERS LA English DT Article ID HIGH-ENERGY-PHYSICS; MONTE-CARLO; COLLISIONS; DETECTOR; JETS AB Searches for lepton-flavor-violating decays of a tau lepton to a lighter mass lepton and a photon have been performed with the entire data set of (963 +/- 7) x 10(6) tau decays collected by the BABAR detector near the Y(4S), Y(3S) and Y(2S) resonances. The searches yield no evidence of signals and we set upper limits on the branching fractions of B(tau(+/-) -> e(+/-)gamma) < 3.3 X 10(-8) and B(tau(+/-) -> mu(+/-)gamma) < 4.4 X 10(-8) at 90% confidence level. C1 [Aubert, B.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, CNRS, IN2P3, Lab Annecy le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. [Garra Tico, J.; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Martinelli, M.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Martinelli, M.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Battaglia, M.; Brown, D. N.; Hooberman, B.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Randle-Conde, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Ongmongkolkul, P.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Toki, W. H.] Colorado State Univ, Ft Collins, CO 80523 USA. [Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Nogowski, R.; Schubert, K. R.; Schwierz, R.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Latour, E.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bernlochner, F. U.; Lacker, H. M.; Lueck, T.; Volk, A.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; D'Orazio, A.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; D'Orazio, A.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Clarke, C. K.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Salvati, E.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Sciolla, G.; Spitznagel, M.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Biassoni, P.; Lazzaro, A.; Palombo, F.; Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Nguyen, X.; Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Sekula, S. J.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.; Calderini, G.] Univ Denis Diderot Paris 7, Univ Paris 06, CNRS, Lab Phys Nucl & Hautes Energies,IN2P3, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Adametz, A.; Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Esteve, L.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] Ctr Saclay, SPP, CEA, F-91191 Gif Sur Yvette, France. [Allen, M. T.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Sevilla, M. Franco; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Bellis, M.; Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Lindsay, C. D.; Locke, C. B.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Aubert, B (reprint author), Univ Savoie, CNRS, IN2P3, Lab Annecy le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. RI Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Stracka, Simone/M-3931-2015; Della Ricca, Giuseppe/B-6826-2013; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Patrignani, Claudia/C-5223-2009 OI Strube, Jan/0000-0001-7470-9301; Chen, Chunhui /0000-0003-1589-9955; Raven, Gerhard/0000-0002-2897-5323; Bellis, Matthew/0000-0002-6353-6043; Lanceri, Livio/0000-0001-8220-3095; Ebert, Marcus/0000-0002-3014-1512; Corwin, Luke/0000-0001-7143-3821; Carpinelli, Massimo/0000-0002-8205-930X; Sciacca, Crisostomo/0000-0002-8412-4072; Adye, Tim/0000-0003-0627-5059; Lafferty, George/0000-0003-0658-4919; Martinelli, Maurizio/0000-0003-4792-9178; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Stracka, Simone/0000-0003-0013-4714; Della Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Patrignani, Claudia/0000-0002-5882-1747 FU DOE; NSF (USA); NSERC (Canada); CEA; CNRS-IN2P3 ( France); BMBF; DFG (Germany); INFN (Italy); FOM (The Netherlands); NFR (Norway); MES (Russia); MEC (Spain); STFC (United Kingdom); Marie Curie EIF (European Union); A. P. Sloan Foundation FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 ( France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation. NR 24 TC 192 Z9 192 U1 3 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 15 PY 2010 VL 104 IS 2 AR 021802 DI 10.1103/PhysRevLett.104.021802 PG 7 WC Physics, Multidisciplinary SC Physics GA 548XK UT WOS:000274002900013 ER PT J AU Bonatsos, D McCutchan, EA Casten, RF AF Bonatsos, Dennis McCutchan, E. A. Casten, R. F. TI SU(3) Quasidynamical Symmetry Underlying the Alhassid-Whelan Arc of Regularity SO PHYSICAL REVIEW LETTERS LA English DT Article ID INTERACTING-BOSON MODEL; NUCLEAR COLLECTIVE MODELS; PHASE-TRANSITIONS; CHAOTIC PROPERTIES; REGION; U(5); IBM AB The first example of an empirically manifested quasidynamical symmetry trajectory in the interior of the symmetry triangle of the interacting boson approximation model is identified for large boson numbers. Along this curve, extending from SU(3) to near the critical line of the first order phase transition, spectra exhibit nearly the same degeneracies that characterize the low energy levels of SU( 3). This trajectory also lies close to the Alhassid-Whelan arc of regularity, the unique interior region of regular behavior connecting the SU(3) and U(5) vertices, thus offering a possible symmetry-based interpretation of that narrow zone of regularity amidst regions of more chaotic spectra. C1 [Bonatsos, Dennis] NCSR Demokritos, Inst Nucl Phys, GR-15310 Athens, Greece. [McCutchan, E. A.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Casten, R. F.] Yale Univ, Wright Nucl Struct Lab, New Haven, CT 06520 USA. RP Bonatsos, D (reprint author), NCSR Demokritos, Inst Nucl Phys, GR-15310 Athens, Greece. FU U.S. DOE [DE-FG02-91ER-40609]; DOE Office of Nuclear Physics [DE-AC02-06CH11357] FX The authors are grateful to R. J. Casperson for the code IBAR, which made the present study possible, to S. Heinze for an IBA code for B(E2)'s, and to V. Werner, E. Williams, J. Dobes., P. Cejnar, and M. Macek for useful discussions. Work supported by U.S. DOE Grant No. DE-FG02-91ER-40609 and by the DOE Office of Nuclear Physics under Contract No. DE-AC02-06CH11357. NR 25 TC 21 Z9 21 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 15 PY 2010 VL 104 IS 2 AR 022502 DI 10.1103/PhysRevLett.104.022502 PG 4 WC Physics, Multidisciplinary SC Physics GA 548XK UT WOS:000274002900016 PM 20366589 ER PT J AU Chia, EEM Talbayev, D Zhu, JX Yuan, HQ Park, T Thompson, JD Panagopoulos, C Chen, GF Luo, JL Wang, NL Taylor, AJ AF Chia, Elbert E. M. Talbayev, D. Zhu, Jian-Xin Yuan, H. Q. Park, T. Thompson, J. D. Panagopoulos, C. Chen, G. F. Luo, J. L. Wang, N. L. Taylor, A. J. TI Ultrafast Pump-Probe Study of Phase Separation and Competing Orders in the Underdoped (Ba, K)Fe2As2 Superconductor SO PHYSICAL REVIEW LETTERS LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; SPIN-DENSITY-WAVE; PHOTOEMISSION-SPECTROSCOPY; BA0.6K0.4FE2AS2; BA1-XKXFE2AS2; SMFEASO1-XFX; TRANSPORT; DYNAMICS; FEAS; GAPS AB We report measurements of quasiparticle relaxation dynamics in the high-temperature superconductor (Ba, K)Fe2As2 in optimally doped, underdoped, and undoped regimes. In the underdoped sample, spindensity wave (SDW) order forms at similar to 85 K, followed by superconductivity at similar to 28 K. We find the emergence of a normal-state order that suppresses SDW at a temperature T* similar to 60 K and argue that this normal-state order is a precursor to superconductivity. C1 [Chia, Elbert E. M.; Panagopoulos, C.] Nanyang Technol Univ, Div Phys & Appl Phys, Sch Phys & Math Sci, Singapore 637371, Singapore. [Talbayev, D.; Zhu, Jian-Xin; Yuan, H. Q.; Park, T.; Thompson, J. D.; Taylor, A. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Yuan, H. Q.] Zhejiang Univ, Dept Phys, Hangzhou 310027, Peoples R China. [Park, T.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Panagopoulos, C.] Univ Crete, Dept Phys, Iraklion 71003, Greece. [Panagopoulos, C.] FORTH, Iraklion 71003, Greece. [Chen, G. F.; Luo, J. L.; Wang, N. L.] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. RP Chia, EEM (reprint author), Nanyang Technol Univ, Div Phys & Appl Phys, Sch Phys & Math Sci, Singapore 637371, Singapore. RI Chia, Elbert/B-6996-2011; Talbayev, Diyar/C-5525-2009; PANAGOPOULOS, CHRISTOS/G-8754-2011; Park, Tuson/A-1520-2012 OI Chia, Elbert/0000-0003-2066-0834; Zhu, Jianxin/0000-0001-7991-3918; Talbayev, Diyar/0000-0003-3537-1656; FU LANL LDRD program; Singapore Ministry of Education [RG41/07, ARC23/08]; National Science Foundation of China; 973 project; National Basic Research Program of China [2009CB929104]; Chinese Academy of Sciences; PCSIRT of the Ministry of Education of China [IRT0754]; National Research Foundation of Singapore; [MEXT-CT-2006-039047] FX This work was supported by the LANL LDRD program, the Singapore Ministry of Education AcRF Tier 1 (RG41/07) and Tier 2 (ARC23/08), the National Science Foundation of China, the 973 project and the National Basic Research Program of China (Contract No. 2009CB929104), the Chinese Academy of Sciences, PCSIRT of the Ministry of Education of China (Contract No. IRT0754), MEXT-CT-2006-039047, and the National Research Foundation of Singapore. NR 39 TC 69 Z9 69 U1 4 U2 39 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 15 PY 2010 VL 104 IS 2 AR 027003 DI 10.1103/PhysRevLett.104.027003 PG 4 WC Physics, Multidisciplinary SC Physics GA 548XK UT WOS:000274002900046 PM 20366619 ER PT J AU Nisoli, C Abraham, D Lookman, T Saxena, A AF Nisoli, Cristiano Abraham, Douglas Lookman, Turab Saxena, Avadh TI Thermally Induced Local Failures in Quasi-One-Dimensional Systems: Collapse in Carbon Nanotubes, Necking in Nanowires, and Opening of Bubbles in DNA SO PHYSICAL REVIEW LETTERS LA English DT Article ID DENATURATION AB We present a general framework to explore thermally activated failures in quasi-one-dimensional systems. We apply it to the collapse of carbon nanotubes, the formation of bottlenecks in nanowires, both of which affect conductance, and the opening of local regions or "bubbles'' of base pairs in strands of DNA that are relevant for transcription and denaturation. We predict an exponential behavior for the probability of the opening of bubbles in DNA, the average distance between flattened regions of a nanotube or necking in a nanowire as a monotonically decreasing function of temperature, and compute a temperature below which these events become extremely rare. C1 [Nisoli, Cristiano; Abraham, Douglas; Lookman, Turab; Saxena, Avadh] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Nisoli, Cristiano; Abraham, Douglas; Lookman, Turab; Saxena, Avadh] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Abraham, Douglas] Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England. RP Nisoli, C (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. OI Nisoli, Cristiano/0000-0003-0053-1023; Lookman, Turab/0000-0001-8122-5671 FU U. S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; EPSRC [DRRKH10] FX We wish to thank Saul Ares (Max-Planck-Institut, Dresden) and Boian Alexandrov (Los Alamos National Laboratory) for useful discussions on DNA modeling. This work was carried out under the auspices of the National Nuclear Security Administration of the U. S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. We acknowledge EPSRC Grant No. DRRKH10. NR 21 TC 12 Z9 12 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 15 PY 2010 VL 104 IS 2 AR 025503 DI 10.1103/PhysRevLett.104.025503 PG 4 WC Physics, Multidisciplinary SC Physics GA 548XK UT WOS:000274002900035 PM 20366608 ER PT J AU Wang, S Pan, LD Pindak, R Liu, ZQ Nguyen, HT Huang, CC AF Wang, Shun Pan, LiDong Pindak, R. Liu, Z. Q. Nguyen, H. T. Huang, C. C. TI Discovery of a Novel Smectic-C* Liquid-Crystal Phase with Six-Layer Periodicity SO PHYSICAL REVIEW LETTERS LA English DT Article ID X-RAY-SCATTERING; MODEL AB We report the discovery of a new smectic-C* liquid-crystal phase with six-layer periodicity by resonant x-ray diffraction. Upon cooling, the new phase appears between the SmC(alpha)* phase having a helical structure and the SmC(d4)* phase with four-layer periodicity. This SmC(d6)* phase was identified in two mixtures which have an unusual reversed SmC(d4)*-SmC* phase sequence. The SmC(d6)* phase shows a distorted clock structure. Three theoretical models have predicted the existence of a six-layer phase. However, our experimental findings are not consistent with the theories. C1 [Wang, Shun; Pan, LiDong; Huang, C. C.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Pindak, R.] Brookhaven Natl Lab, NSLS, Upton, NY 11973 USA. [Liu, Z. Q.] St Cloud State Univ, Dept Phys Astron & Engn Sci, St Cloud, MN 56301 USA. [Nguyen, H. T.] Univ Bordeaux 1, Ctr Rech Paul Pascal, CNRS, F-33600 Pessac, France. RP Wang, S (reprint author), Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. RI Shun, Wang/O-6978-2015 OI Shun, Wang/0000-0002-7996-8887 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; National Science Foundation [DMR-0605760]; BNL FX Use of the National Synchrotron Light Source, BNL, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. The research was supported in part by the National Science Foundation, Solid State Chemistry Program under Grant No. DMR-0605760. We want to thank Professor P. Barois for the x-ray oven and Mr. K. Barry for his help. S. W. acknowledges support from the University of Minnesota. Z. L. acknowledges the support by FSRSP from BNL. NR 21 TC 55 Z9 55 U1 1 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 15 PY 2010 VL 104 IS 2 AR 027801 DI 10.1103/PhysRevLett.104.027801 PG 4 WC Physics, Multidisciplinary SC Physics GA 548XK UT WOS:000274002900052 PM 20366625 ER PT J AU Wittstock, A Zielasek, V Biener, J Friend, CM Baumer, M AF Wittstock, A. Zielasek, V. Biener, J. Friend, C. M. Baeumer, M. TI Nanoporous Gold Catalysts for Selective Gas-Phase Oxidative Coupling of Methanol at Low Temperature SO SCIENCE LA English DT Article ID MOLECULAR-TRANSFORMATIONS; AEROBIC OXIDATION; CARBON-MONOXIDE; POROUS GOLD; OXYGEN; NANOPARTICLES; CHEMISTRY; ALCOHOLS; AU; EFFICIENT AB Gold (Au) is an interesting catalytic material because of its ability to catalyze reactions, such as partial oxidations, with high selectivities at low temperatures; but limitations arise from the low O(2) dissociation probability on Au. This problem can be overcome by using Au nanoparticles supported on suitable oxides which, however, are prone to sintering. Nanoporous Au, prepared by the dealloying of AuAg alloys, is a new catalyst with a stable structure that is active without any support. It catalyzes the selective oxidative coupling of methanol to methyl formate with selectivities above 97% and high turnover frequencies at temperatures below 80 degrees C. Because the overall catalytic characteristics of nanoporous Au are in agreement with studies on Au single crystals, we deduced that the selective surface chemistry of Au is unaltered but that O(2) can be readily activated with this material. Residual silver is shown to regulate the availability of reactive oxygen. C1 [Wittstock, A.; Zielasek, V.; Baeumer, M.] Univ Bremen, Inst Appl & Phys Chem, D-28359 Bremen, Germany. [Biener, J.] Lawrence Livermore Natl Lab, Nanoscale Synth & Characterizat Lab, Livermore, CA 94550 USA. [Friend, C. M.] Harvard Univ, Dept Chem, Cambridge, MA 02138 USA. RP Biener, J (reprint author), Univ Bremen, Inst Appl & Phys Chem, D-28359 Bremen, Germany. EM biener2@llnl.gov; cfriend@seas.harvard.edu; mbaeumer@uni-bremen.de RI SHANG, Jintang/A-3715-2012; Baumer, Marcus/S-5441-2016 OI Baumer, Marcus/0000-0002-8620-1764 FU Alexander von Humboldt Foundation; HanseWissenschaftskolleg in Germany; U.S. DOE [DE-FG02-84-ER13289]; University of Bremen FX We are grateful to R. Schlogl (Fritz-Haber-Institute, Berlin) for critically reading the manuscript. Work at LLNL was performed under the auspices of the U.S. Department of Energy (DOE) by LLNL under contract DE-AC52-07NA27344. C. M. F. acknowledges a Senior Research Award from the Alexander von Humboldt Foundation and a fellowship from the HanseWissenschaftskolleg in Germany as well as research support from the U.S. DOE under contract DE-FG02-84-ER13289. M. B. acknowledges financial support from the University of Bremen. NR 33 TC 492 Z9 504 U1 63 U2 499 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JAN 15 PY 2010 VL 327 IS 5963 BP 319 EP 322 DI 10.1126/science.1183591 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 544CM UT WOS:000273629700039 PM 20075249 ER PT J AU Werren, JH Richards, S Desjardins, CA Niehuis, O Gadau, J Colbourne, JK Beukeboom, LW Desplan, C Elsik, CG Grimmelikhuijzen, CJP Kitts, P Lynch, JA Murphy, T Oliveira, DCSG Smith, CD van de Zande, L Worley, KC Zdobnov, EM Aerts, M Albert, S Anaya, VH Anzola, JM Barchuk, AR Behura, SK Bera, AN Berenbaum, MR Bertossa, RC Bitondi, MMG Bordenstein, SR Bork, P Bornberg-Bauer, E Brunain, M Cazzamali, G Chaboub, L Chacko, J Chavez, D Childers, CP Choi, JH Clark, ME Claudianos, C Clinton, RA Cree, AG Cristino, AS Dang, PM Darby, AC de Graaf, DC Devreese, B Dinh, HH Edwards, R Elango, N Elhaik, E Ermolaeva, O Evans, JD Foret, S Fowler, GR Gerlach, D Gibson, JD Gilbert, DG Graur, D Grunder, S Hagen, DE Han, Y Hauser, F Hultmark, D Hunter, HC Jhangian, SN Jiang, HY Johnson, RM Jones, AK Junier, T Kadowaki, T Kamping, A Kapustin, Y Kechavarzi, B Kim, J Kim, J Kiryutin, B Koevoets, T Kovar, CL Kriventseva, EV Kucharski, R Lee, H Lee, SL Lees, K Lewis, LR Loehlin, DW Logsdon, JM Lopez, JA Lozado, RJ Maglott, D Maleszka, R Mayampurath, A Mazur, DJ McClure, MA Moore, AD Morgan, MB Muller, J Munoz-Torres, MC Muzny, DM Nazareth, LV Neupert, S Nguyen, NB Nunes, FMF Oakeshott, JG Okwuonu, GO Pannebakker, BA Pejaver, VR Peng, ZG Pratt, SC Predel, R Pu, LL Ranson, H Raychoudhury, R Rechtsteiner, A Reese, JT Reid, JG Riddle, M Robertson, IM Romero-Severson, J Rosenberg, M Sackton, TB Sattelle, DB Schluns, H Schmitt, T Schneider, M Schuler, A Schurko, AM Shuker, DM Simoes, ZLP Sinha, S Smith, Z Solovyev, V Souvorov, A Springauf, A Stafflinger, E Stage, DE Stanke, M Tanaka, Y Telschow, A Trent, C Vattathil, S Verhulst, EC Viljakainen, L Wanner, KW Waterhouse, RM Whitfield, JB Wilkes, TE Williamson, M Willis, JH Wolschin, F Wyder, S Yamada, T Yi, SV Zecher, CN Zhang, L Gibbs, RA AF Werren, John H. Richards, Stephen Desjardins, Christopher A. Niehuis, Oliver Gadau, Juergen Colbourne, John K. Beukeboom, Leo W. Desplan, Claude Elsik, Christine G. Grimmelikhuijzen, Cornelis J. P. Kitts, Paul Lynch, Jeremy A. Murphy, Terence Oliveira, Deodoro C. S. G. Smith, Christopher D. van de Zande, Louis Worley, Kim C. Zdobnov, Evgeny M. Aerts, Maarten Albert, Stefan Anaya, Victor H. Anzola, Juan M. Barchuk, Angel R. Behura, Susanta K. Bera, Agata N. Berenbaum, May R. Bertossa, Rinaldo C. Bitondi, Marcia M. G. Bordenstein, Seth R. Bork, Peer Bornberg-Bauer, Erich Brunain, Marleen Cazzamali, Giuseppe Chaboub, Lesley Chacko, Joseph Chavez, Dean Childers, Christopher P. Choi, Jeong-Hyeon Clark, Michael E. Claudianos, Charles Clinton, Rochelle A. Cree, Andrew G. Cristino, Alexandre S. Dang, Phat M. Darby, Alistair C. de Graaf, Dirk C. Devreese, Bart Dinh, Huyen H. Edwards, Rachel Elango, Navin Elhaik, Eran Ermolaeva, Olga Evans, Jay D. Foret, Sylvain Fowler, Gerald R. Gerlach, Daniel Gibson, Joshua D. Gilbert, Donald G. Graur, Dan Grunder, Stefan Hagen, Darren E. Han, Yi Hauser, Frank Hultmark, Dan Hunter, Henry C. Jhangian, Shalini N. Jiang, Huaiyang Johnson, Reed M. Jones, Andrew K. Junier, Thomas Kadowaki, Tatsuhiko Kamping, Albert Kapustin, Yuri Kechavarzi, Bobak Kim, Jaebum Kim, Jay Kiryutin, Boris Koevoets, Tosca Kovar, Christie L. Kriventseva, Evgenia V. Kucharski, Robert Lee, Heewook Lee, Sandra L. Lees, Kristin Lewis, Lora R. Loehlin, David W. Logsdon, John M., Jr. Lopez, Jacqueline A. Lozado, Ryan J. Maglott, Donna Maleszka, Ryszard Mayampurath, Anoop Mazur, Danielle J. McClure, Marcella A. Moore, Andrew D. Morgan, Margaret B. Muller, Jean Munoz-Torres, Monica C. Muzny, Donna M. Nazareth, Lynne V. Neupert, Susanne Nguyen, Ngoc B. Nunes, Francis M. F. Oakeshott, John G. Okwuonu, Geoffrey O. Pannebakker, Bart A. Pejaver, Vikas R. Peng, Zuogang Pratt, Stephen C. Predel, Reinhard Pu, Ling-Ling Ranson, Hilary Raychoudhury, Rhitoban Rechtsteiner, Andreas Reese, Justin T. Reid, Jeffrey G. Riddle, Megan Robertson, Il High M. Romero-Severson, Jeanne Rosenberg, Miriam Sackton, Timothy B. Sattelle, David B. Schluens, Helge Schmitt, Thomas Schneider, Martina Schueler, Andreas Schurko, Andrew M. Shuker, David M. Simoes, Zila L. P. Sinha, Saurabh Smith, Zachary Solovyev, Victor Souvorov, Alexandre Springauf, Andreas Stafflinger, Elisabeth Stage, Deborah E. Stanke, Mario Tanaka, Yoshiaki Telschow, Arndt Trent, Carol Vattathil, Selina Verhulst, Eveline C. Viljakainen, Lumi Wanner, Kevin W. Waterhouse, Robert M. Whitfield, James B. Wilkes, Timothy E. Williamson, Michael Willis, Judith H. Wolschin, Florian Wyder, Stefan Yamada, Takuji Yi, Soojin V. Zecher, Courtney N. Zhang, Lan Gibbs, Richard A. CA Nasonia Genome Working Grp TI Functional and Evolutionary Insights from the Genomes of Three Parasitoid Nasonia Species SO SCIENCE LA English DT Article ID WASP NASONIA; DNA METHYLATION; SOCIAL INSECTS; APIS-MELLIFERA; VITRIPENNIS; HYMENOPTERA; GENES; PTEROMALIDAE; DROSOPHILA; HONEYBEE AB We report here genome sequences and comparative analyses of three closely related parasitoid wasps: Nasonia vitripennis, N. giraulti, and N. longicornis. Parasitoids are important regulators of arthropod populations, including major agricultural pests and disease vectors, and Nasonia is an emerging genetic model, particularly for evolutionary and developmental genetics. Key findings include the identification of a functional DNA methylation tool kit; hymenopteran-specific genes including diverse venoms; lateral gene transfers among Pox viruses, Wolbachia, and Nasonia; and the rapid evolution of genes involved in nuclear-mitochondrial interactions that are implicated in speciation. Newly developed genome resources advance Nasonia for genetic research, accelerate mapping and cloning of quantitative trait loci, and will ultimately provide tools and knowledge for further increasing the utility of parasitoids as pest insect-control agents. C1 [Werren, John H.; Desjardins, Christopher A.; Oliveira, Deodoro C. S. G.; Clark, Michael E.; Edwards, Rachel; Loehlin, David W.; Raychoudhury, Rhitoban; Stage, Deborah E.] Univ Rochester, Dept Biol, Rochester, NY 14627 USA. [Richards, Stephen; Worley, Kim C.; Chaboub, Lesley; Chacko, Joseph; Chavez, Dean; Cree, Andrew G.; Dinh, Huyen H.; Fowler, Gerald R.; Han, Yi; Jhangian, Shalini N.; Jiang, Huaiyang; Kamping, Albert; Kovar, Christie L.; Lee, Sandra L.; Lewis, Lora R.; Lozado, Ryan J.; Morgan, Margaret B.; Muzny, Donna M.; Nazareth, Lynne V.; Nguyen, Ngoc B.; Okwuonu, Geoffrey O.; Pu, Ling-Ling; Reid, Jeffrey G.; Vattathil, Selina; Zhang, Lan; Gibbs, Richard A.] Baylor Coll Med, Human Genome Sequencing Ctr, Houston, TX 77030 USA. [Niehuis, Oliver; Gadau, Juergen; Gibson, Joshua D.; Pratt, Stephen C.; Wolschin, Florian] Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA. [Colbourne, John K.; Choi, Jeong-Hyeon; Lopez, Jacqueline A.; Rechtsteiner, Andreas; Smith, Zachary] Indiana Univ, Ctr Genom & Bioinformat, Bloomington, IN 47405 USA. [Beukeboom, Leo W.; van de Zande, Louis; Koevoets, Tosca; Pannebakker, Bart A.; Verhulst, Eveline C.] Univ Groningen, Evolutionary Genet Ctr Ecol & Evolutionary Studie, NL-9750 AA Haren, Netherlands. [Desplan, Claude; Rosenberg, Miriam] NYU, Dept Biol, New York, NY 10003 USA. [Elsik, Christine G.; Childers, Christopher P.; Hagen, Darren E.; Munoz-Torres, Monica C.; Reese, Justin T.] Georgetown Univ, Dept Biol, Washington, DC 20057 USA. [Grimmelikhuijzen, Cornelis J. P.; Cazzamali, Giuseppe; Hauser, Frank; Schneider, Martina; Stafflinger, Elisabeth; Williamson, Michael] Univ Copenhagen, Dept Biol, Ctr Comparat & Funct Insect Genom, DK-2100 Copenhagen, Denmark. [Kitts, Paul; Murphy, Terence; Ermolaeva, Olga; Kapustin, Yuri; Kiryutin, Boris; Maglott, Donna; Souvorov, Alexandre] Natl Lib Med, Natl Ctr Biotechnol Informat, NIH, Bethesda, MD 20894 USA. [Lynch, Jeremy A.] Univ Cologne, Inst Entwicklungsphysiol, D-50923 Cologne, Germany. [Smith, Christopher D.; Hunter, Henry C.; Kim, Jay] San Francisco State Univ, Dept Biol, San Francisco, CA 94132 USA. [Smith, Christopher D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Drosophila Heterochromatin Genome Project, Berkeley, CA 94720 USA. [Zdobnov, Evgeny M.; Gerlach, Daniel; Junier, Thomas; Wyder, Stefan] Univ Geneva, Sch Med, Dept Genet Med & Dev, CH-1211 Geneva, Switzerland. [Zdobnov, Evgeny M.; Gerlach, Daniel] Swiss Inst Bioinformat, CH-1211 Geneva, Switzerland. [Zdobnov, Evgeny M.; Waterhouse, Robert M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Aerts, Maarten; Devreese, Bart] Univ Ghent, Lab Prot Biochem & Biomol Engn, B-9000 Ghent, Belgium. [Albert, Stefan] Univ Wurzburg, BEEgrp, D-97082 Wurzburg, Germany. [Albert, Stefan] Univ Wurzburg, Inst Pharmaceut Biol, D-97082 Wurzburg, Germany. [Anaya, Victor H.] Humboldt Univ, Inst Theoret Biol, D-10115 Berlin, Germany. [Anzola, Juan M.] Texas A&M Univ, College Stn, TX 77843 USA. [Barchuk, Angel R.] Univ Fed Alfenas, Dept Ciencias Biomed, BR-37130000 Alfenas, MG, Brazil. [Behura, Susanta K.] Univ Notre Dame, Dept Biol Sci, Eck Inst Global Hlth, Notre Dame, IN 46556 USA. [Bera, Agata N.; Jones, Andrew K.; Lees, Kristin; Sattelle, David B.] Univ Oxford, Dept Physiol Anat & Genet, MRC, Funct Genom Unit, Oxford OX1 3QX, England. [Berenbaum, May R.; Robertson, Il High M.; Whitfield, James B.] Univ Illinois, Dept Entomol, Urbana, IL 61801 USA. [Bertossa, Rinaldo C.] Univ Groningen, Chronobiol Ctr Behav & Neurosci, NL-9750 AA Haren, Netherlands. [Bitondi, Marcia M. G.; Nunes, Francis M. F.; Simoes, Zila L. P.] Univ Sao Paulo, Dept Biol, Fac Filosofia Ciencias & Letras Ribeirao Pret, BR-14040901 Sao Paulo, Brazil. [Bordenstein, Seth R.] Vanderbilt Univ, Dept Biol Sci, Nashville, TN 37235 USA. [Bordenstein, Seth R.; Zecher, Courtney N.] Marine Biol Lab, Josephine Bay Paul Ctr Comparat Mol Biol & Evolut, Woods Hole, MA 02536 USA. [Bork, Peer; Muller, Jean; Yamada, Takuji] European Mol Biol Lab, D-69117 Heidelberg, Germany. [Bornberg-Bauer, Erich; Moore, Andrew D.; Romero-Severson, Jeanne; Schueler, Andreas; Telschow, Arndt] Univ Munster, Inst Evolut & Biodivers, D-48143 Munster, Germany. [Brunain, Marleen; de Graaf, Dirk C.] Univ Ghent, Lab Zoophysiol, B-9000 Ghent, Belgium. [Claudianos, Charles; Cristino, Alexandre S.] Univ Queensland, Queensland Brain Inst, Brisbane, Qld 4072, Australia. [Clinton, Rochelle A.; McClure, Marcella A.] Montana State Univ, Dept Microbiol, Bozeman, MT 59715 USA. [Clinton, Rochelle A.; McClure, Marcella A.] Montana State Univ, Ctr Computat Biol, Bozeman, MT 59715 USA. [Cristino, Alexandre S.] Univ Sao Paulo, Dept Fis & Informat, Inst Fis Sao Carlos, BR-13560970 Sao Paulo, Brazil. [Dang, Phat M.] ARS, Subtrop Insects Res Unit, USDA, US Hort Res Lab, Ft Pierce, FL 34945 USA. [Darby, Alistair C.; Wilkes, Timothy E.] Univ Liverpool, Sch Biol Sci, Liverpool L69 7ZB, Merseyside, England. [Elango, Navin; Peng, Zuogang; Yi, Soojin V.] Georgia Inst Technol, Sch Biol, Atlanta, GA 30332 USA. [Elhaik, Eran; Graur, Dan] Univ Houston, Dept Biol & Biochem, Houston, TX 77204 USA. [Evans, Jay D.] ARS, Bee Res Lab, USDA, Beltsville, MD 20705 USA. [Foret, Sylvain] James Cook Univ, Australian Res Council, Ctr Excellence Coral Reef Studies, Townsville, Qld 4811, Australia. [Gilbert, Donald G.] Indiana Univ, Dept Biol, Bloomington, IN 47405 USA. [Grunder, Stefan; Springauf, Andreas] Rhein Westfal TH Aachen, Inst Physiol, D-52074 Aachen, Germany. [Hultmark, Dan] Umea Univ, Dept Mol Biol, S-90187 Umea, Sweden. [Johnson, Reed M.] Univ Nebraska, Dept Entomol, Lincoln, NE 68583 USA. [Kadowaki, Tatsuhiko] Nagoya Univ, Grad Sch Bioagr Sci, Nagoya, Aichi 4648601, Japan. [Kechavarzi, Bobak; Lee, Heewook; Mayampurath, Anoop; Pejaver, Vikas R.] Indiana Univ, Sch Informat, Bloomington, IN 47405 USA. [Kim, Jaebum; Sinha, Saurabh] Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA. [Kriventseva, Evgenia V.] Univ Geneva, Sch Med, Dept Struct Biol & Bioinformat, CH-1211 Geneva, Switzerland. [Kucharski, Robert; Maleszka, Ryszard] Australian Natl Univ, Res Sch Biol, Canberra, ACT 2601, Australia. [Logsdon, John M., Jr.; Mazur, Danielle J.; Schurko, Andrew M.] Univ Iowa, Roy J Carver Ctr Comparat Genom, Iowa City, IA 52242 USA. [Logsdon, John M., Jr.; Mazur, Danielle J.; Schurko, Andrew M.] Univ Iowa, Dept Biol, Iowa City, IA 52242 USA. [Munoz-Torres, Monica C.] Clemson Univ, Dept Biochem & Genet, Clemson, SC 29634 USA. [Neupert, Susanne; Predel, Reinhard] Univ Jena, Inst Gen Zool, D-7743 Jena, Germany. [Nunes, Francis M. F.] Univ Sao Paulo, Dept Genet, Fac Med Ribeirao Preto, BR-14049900 Sao Paulo, Brazil. [Oakeshott, John G.] CSIRO, Div Entomol, Canberra, ACT 2601, Australia. [Pannebakker, Bart A.] Univ Edinburgh, Sch Biol Sci, Inst Evolutionary Biol, Edinburgh EH9 3JT, Midlothian, Scotland. [Ranson, Hilary] Univ Liverpool, Liverpool Sch Trop Med, Vector Grp, Liverpool L3 5QA, Merseyside, England. [Rechtsteiner, Andreas] Univ Calif Santa Cruz, Dept Mol Cell & Dev Biol, Santa Cruz, CA 95064 USA. [Reese, Justin T.] Reese Consulting, Amphur Muang, Nong Khai, Thailand. [Riddle, Megan; Trent, Carol] Western Washington Univ, Dept Biol, Bellingham, WA 98225 USA. [Romero-Severson, Jeanne] Univ Notre Dame, Dept Biol Sci, Notre Dame, IN 46556 USA. [Sackton, Timothy B.] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA. [Schluens, Helge] James Cook Univ, Sch Marine & Trop Biol, Townsville, Qld 4811, Australia. [Schluens, Helge] James Cook Univ, Ctr Comparat Genom, Townsville, Qld 4811, Australia. [Schmitt, Thomas] Univ Freiburg, Dept Evolutionary Biol & Anim Ecol, D-79104 Freiburg, Germany. [Shuker, David M.] Univ St Andrews, Sch Biol, St Andrews KY16 9TH, Fife, Scotland. [Solovyev, Victor] Univ London, Dept Comp Sci, Egham TW20 0EX, Surrey, England. [Stanke, Mario] Univ Gottingen, Inst Mikrobiol & Genet, D-37077 Gottingen, Germany. [Tanaka, Yoshiaki] Natl Inst Agrobiol Sci, Div Insect Sci, Tsukuba, Ibaraki 3058634, Japan. [Viljakainen, Lumi] Univ Oulu, Dept Biol, Oulu 90014, Finland. [Viljakainen, Lumi] Univ Oulu, Bioctr Oulu, Oulu 90014, Finland. [Wanner, Kevin W.] Montana State Univ, Dept Plant Sci & Plant Pathol, Bozeman, MT 59717 USA. [Willis, Judith H.] Univ Georgia, Dept Cellular Biol, Athens, GA 30602 USA. [Wolschin, Florian] Norwegian Univ Life Sci, Dept Biotechnol Chem & Food Sci, N-1432 As, Norway. RP Werren, JH (reprint author), Univ Rochester, Dept Biol, Rochester, NY 14627 USA. EM werr@mail.rochester.edu; stephenr@bcm.tmc.edu RI Simoes, Zila/H-7314-2014; Colbourne, John/L-7748-2014; Hauser, Frank/M-2952-2014; Aerts, Maarten/O-6194-2014; Bordenstein, Seth/F-1298-2010; Predel, Reinhard/O-5243-2015; Hultmark, Dan/C-5058-2013; Waterhouse, Robert/A-1858-2010; Verhulst, Eveline/J-2641-2013; Sao Carlos Institute of Physics, IFSC/USP/M-2664-2016; Bitondi, Marcia/E-8014-2012; Elsik, Christine/C-4120-2017; Pannebakker, Bart/D-3823-2012; Darby, Alistair/I-6485-2012; Zdobnov, Evgeny/K-1133-2012; Beukeboom, Leo/D-1808-2012; Bornberg-Bauer, Erich/A-1563-2013; Shuker, David/E-8827-2013; Bork, Peer/F-1813-2013; Lopez, Jacqueline/F-9712-2013; Schmitt, Thomas/H-3033-2013; Oakeshott, John/B-5365-2009; Maleszka, Ryszard/A-6078-2008; Evans, Jay/C-8408-2012; Choi, Justin/F-8792-2014; Nunes, Francis/F-5871-2010; Johnson, Reed/H-3742-2011; Junier, Thomas/A-6748-2011; Pannebakker, Bart/D-1479-2010; Pratt, Stephen/C-5418-2011; Cristino, Alexandre/A-5834-2012; FORET, Sylvain/B-9207-2012; Romero-Severson, Jeanne/B-5259-2011; Choi, Jeong-Hyeon/E-3084-2010; Foret, Sylvain/C-7661-2011; Schluns, Helge/B-1753-2009; Peng, Zuogang/D-4448-2011; Devreese, Bart/B-2011-2009 OI Colbourne, John/0000-0002-6966-2972; Hauser, Frank/0000-0001-5563-2345; Aerts, Maarten/0000-0003-0125-6721; Bordenstein, Seth/0000-0001-7346-0954; Hultmark, Dan/0000-0002-6506-5855; Waterhouse, Robert/0000-0003-4199-9052; Verhulst, Eveline/0000-0002-4781-535X; Bitondi, Marcia/0000-0002-5619-6378; Elsik, Christine/0000-0002-4248-7713; Pannebakker, Bart/0000-0001-8503-3896; Darby, Alistair/0000-0002-3786-6209; Bornberg-Bauer, Erich/0000-0002-1826-3576; Bork, Peer/0000-0002-2627-833X; Maleszka, Ryszard/0000-0003-1855-555X; Evans, Jay/0000-0002-0036-4651; Ranson, Hilary/0000-0003-2332-8247; Wyder, Stefan/0000-0002-3412-0292; Childers, Chris/0000-0002-1253-5550; Solovyev, Victor/0000-0001-8885-493X; Gerlach, Daniel/0000-0001-9338-3765; Claudianos, Charles/0000-0002-9799-9572; Grunder, Stefan/0000-0002-7635-9883; Muller, Jean/0000-0002-7682-559X; Sackton, Timothy/0000-0003-1673-9216; Grimmelikhuijzen, Cornelis/0000-0001-6486-2046; Nunes, Francis/0000-0002-7769-3058; Johnson, Reed/0000-0002-2431-0180; Cristino, Alexandre/0000-0002-3468-0919; Romero-Severson, Jeanne/0000-0003-4112-7238; Peng, Zuogang/0000-0001-8810-2025; Devreese, Bart/0000-0002-9764-2581 FU National Human Genome Research Institute [NHGRI U54 HG003273] FX Genome sequencing, assembly and annotation were funded by the National Human Genome Research Institute (NHGRI U54 HG003273). The whole-genome shotgun project has been deposited at the DNA Databank of Japan (DDBJ)/European Molecular Biology Laboratory (EMBL)/GenBank under accession numbers AAZX00000000 (N. vitripennis), ADAO00000000 (N. giraulti), and ADAP00000000 (N. longicornis). Additional support, acknowledgments, and accession numbers are provided in the supporting online material. NR 39 TC 392 Z9 464 U1 31 U2 233 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD JAN 15 PY 2010 VL 327 IS 5963 BP 343 EP 348 DI 10.1126/science.1178028 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 544CM UT WOS:000273629700047 PM 20075255 ER PT J AU Vogel, MB Des Marais, DJ Parenteau, MN Jahnke, LL Turk, KA Kubo, MDY AF Vogel, Marilyn B. Des Marais, David J. Parenteau, Mary N. Jahnke, Linda L. Turk, Kendra A. Kubo, Michael D. Y. TI Biological influences on modern sulfates: Textures and composition of gypsum deposits from Guerrero Negro, Baja California Sur, Mexico SO SEDIMENTARY GEOLOGY LA English DT Article DE Gypsum; Sulfates; Biological influence; Sabkha; Biofilm-mineral interactions; Carbonate replacement ID RAY-ABSORPTION SPECTROSCOPY; SCANNING FORCE MICROSCOPY; DEATH-VALLEY; PRECIPITATION KINETICS; MICROBIAL COMMUNITIES; CRYSTAL MORPHOLOGY; EVAPORITE DEPOSITS; LENTICULAR GYPSUM; GROWTH-INHIBITORS; GALLOCANTA LAKE AB Gypsum (CaSO(4)center dot 2H(2)O) deposits from a range of sedimentary environments at Guerrero Negro, Baja California Sur, Mexico were investigated for microscale texture and composition in order to differentiate features formed under substantial microbial influence from those for which microbial effects were relatively minor or absent. Gypsum deposits were classified according to their sedimentary environment, textures, crystal habit, brine composition and other geochemical factors. The environments studied included subaqueous sediments in anchialine pools and in solar salterns, as well as subsurface sediments of mudflats and saltpans. Gypsum that developed in the apparent absence of biofilms included crystals precipitated in the water column and subsedimentary discs that precipitated from phreatic brines. Subsedimentary gypsum developed in sabkha environments exhibited a sinuous microtexture and poikilitically enclosed detrital particles. Water column precipitates had euhedral prismatic habits and extensive penetrative twinning. Gypsum deposits influenced by biofilms included bottom nucleated crusts and gypsolites developing in anchialine pools and saltern ponds. Gypsum precipitating within benthic biofilms, and in biofilms within subaerial sediment surfaces provided compelling evidence of biological influences on crystal textures and habits. This evidence included irregular, high relief surface textures, accessory minerals (S degrees, Ca-carbonate, Sr/Ca-sulfate and Mg-hydroxide) and distinctive crystal habits such as equant forms and crystals having distorted prism faces. (C) 2009 Elsevier B.V. All rights reserved. C1 [Vogel, Marilyn B.; Turk, Kendra A.; Kubo, Michael D. Y.] SETI Inst, Mountain View, CA 94043 USA. [Des Marais, David J.; Jahnke, Linda L.] NASA, Ames Res Ctr, Astrobiol Branch N239 4, Moffett Field, CA 94035 USA. [Parenteau, Mary N.] Oak Ridge Associated Univ, NPP, NASA, Astrobiol Branch,ARC, Moffett Field, CA 94035 USA. RP Vogel, MB (reprint author), SETI Inst, 415 N Whisman Rd, Mountain View, CA 94043 USA. EM Marilyn.B.Vogel@nasa.gov FU NASA Exobiology and Evolutionary Biology; NASA Astrobiology Institute (NAI); Oak Ridge Associated Universities NASA Postdoctoral Program FX This work was funded by grants from the NASA Exobiology and Evolutionary Biology program and the NASA Astrobiology Institute (NAI) to DJD and the Ames Team of the NAL MBV acknowledges support from Oak Ridge Associated Universities NASA Postdoctoral Program. We also thank the staff of the Stanford/U.S.G.S SUMAC facility for microscopy support. F. Mazdab of the U.S. Geological Survey provided helpful feedback on crystallographic descriptions. D. Blake and D. Cardace are thanked for use of and assistance with the Terra XRD/XRF instrument. The manuscript greatly benefitted from reviews by C. Pierre and B.C. Schrieber. NR 84 TC 12 Z9 13 U1 0 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0037-0738 J9 SEDIMENT GEOL JI Sediment. Geol. PD JAN 15 PY 2010 VL 223 IS 3-4 BP 265 EP 280 DI 10.1016/j.sedgeo.2009.11.013 PG 16 WC Geology SC Geology GA 561LW UT WOS:000274979800004 ER PT J AU Deshlahra, P Tiwari, B Bernstein, GH Ocola, LE Wolf, EE AF Deshlahra, P. Tiwari, B. Bernstein, G. H. Ocola, L. E. Wolf, E. E. TI FTIR sensitivity enhancement on Pt/SiO2/Au layered structures: A novel method for CO adsorption studies on Pt surfaces SO SURFACE SCIENCE LA English DT Article DE Reflectance infrared spectroscopy; CO chemisorption; Pt thin film; Model catalysts ID REFLECTION ABSORPTION-SPECTROSCOPY; SUM-FREQUENCY GENERATION; IN-SITU FTIR; INFRARED-SPECTROSCOPY; SUPPORTED CATALYSTS; CRYSTALLITE SIZE; METAL-SURFACES; OXIDATION; PRESSURE; PD(111) AB Specular reflectance FTIR study of carbon monoxide adsorbed on platinum is performed on Pt/SiO2/Au layered structures prepared by deposition of thin films on silicon (1 0 0) wafers. The layered structures consist of 5 nm thick platinum films over SiO2 films of varying thicknesses with 50 nm thick reflecting gold films underneath. Due to optical interference effects, the reflectance of each of these structures varies with the incident infrared wavelength and goes through a minimum at a wavelength that depends on the thickness of the SiO2 layer. The decrease in the reflectance R causes an effective increase in the Delta R/R value resulting in a large increase in the infrared absorption band intensity of linearly-adsorbed CO. The peak height changes with changing the SiO2 thickness in the structures and is greatest for the sample which has lowest reflectance near the absorption wavelength of CO (similar to 2100 cm(-1)). This improvement in the ratio of FTIR signal to background reflectance can be very useful for probing low surface area model catalytic surfaces at atmospheric pressures and under reaction conditions. A spectrum of CO adsorbed on nanofabricated Pt nanowire catalysts on TiO2 Support is also shown as an example of the sensitivity enhancement on layered structures. (C) 2009 Elsevier B.V. All rights reserved. C1 [Deshlahra, P.; Wolf, E. E.] Univ Notre Dame, Dept Chem & Biomol Engn, Notre Dame, IN 46556 USA. [Tiwari, B.; Bernstein, G. H.] Univ Notre Dame, Dept Elect Engn, Notre Dame, IN 46556 USA. [Ocola, L. E.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Wolf, EE (reprint author), Univ Notre Dame, Dept Chem & Biomol Engn, Notre Dame, IN 46556 USA. EM ewolf@nd.edu FU National Science Foundation [0854324]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors are grateful to the National Science Foundation (Grant No. 0854324) for financial support, the Notre Dame Nano-fabrication Facility for providing resources for preparation of thin film samples used in this study and the Center for Nanoscale Materials, Argonne National Lab for the fabrication facilities used in preparation of nanowire samples. Use of the Center for Nanoscale Materials was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 30 TC 6 Z9 6 U1 5 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD JAN 15 PY 2010 VL 604 IS 2 BP 79 EP 83 DI 10.1016/j.susc.2009.10.011 PG 5 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 556KY UT WOS:000274591000003 ER PT J AU Pasyanos, ME AF Pasyanos, Michael E. TI Preface to "Insights into the Earth's Deep Lithosphere" Preface SO TECTONOPHYSICS LA English DT Editorial Material C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Pasyanos, ME (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM pasyanos1@llnl.gov RI Pasyanos, Michael/C-3125-2013 NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0040-1951 J9 TECTONOPHYSICS JI Tectonophysics PD JAN 15 PY 2010 VL 481 IS 1-4 SI SI BP 1 EP 2 DI 10.1016/j.tecto.2009.11.014 PG 2 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 551SG UT WOS:000274229300001 ER PT J AU Forte, AM Moucha, R Simmons, NA Grand, SP Mitrovica, JX AF Forte, A. M. Moucha, R. Simmons, N. A. Grand, S. P. Mitrovica, J. X. TI Deep-mantle contributions to the surface dynamics of the North American continent SO TECTONOPHYSICS LA English DT Article DE North America; Seismic tomography; Mantle flow; Dynamic topography; Gravity anomalies; Stress and Anisotropy ID WESTERN UNITED-STATES; PLATE-TECTONICS; THERMOCHEMICAL STRUCTURE; AZIMUTHAL ANISOTROPY; SEISMIC ANISOTROPY; LATERAL VARIATION; THERMAL STRUCTURE; GEODYNAMIC DATA; ROOT BENEATH; FLOW MODELS AB The regional and continental scale dynamics of North America and vicinity are explored using a high-resolution model of mantle flow The model is constrained by simultaneously inverting global seismic and mantle convection data sets and it includes an explicit treatment of the positive chemical buoyancy of the continental tectosphere Moreover, it adopts a depth-dependent mantle viscosity structure which reconciles both glacial isostatic adjustment (GIA) and convection data The flow model successfully reproduces plate velocities and observations of surface gravity and topography, including the continent-scale quasi-linear depression (after corrections for GIA and crustal heterogeneity) extending from northern Alaska to Venezuela The predictions also match lithospheric flow and stress fields inferred from local and regional measurements of seismic anisotropy and surface deformation We demonstrate that these signals are largely driven by Viscous flow coupled to density anomalies in the deep portions of the upper mantle and within the lower mantle. where the latter may be associated with the descent of the ancient Kula-Farallon plate system and an active mantle upwelling below the Pacific margin of the North American plate More importantly, the flow calculations elucidate how these large-scale heterogeneities give rise to regional-scale flow and stress patterns below the southwestern US. and below the central U.S (c) 2009 Elsevier B V All rights reserved C1 [Forte, A. M.; Moucha, R.] Univ Quebec, Geotop, Montreal, PQ H3C 3P8, Canada. [Simmons, N. A.] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94551 USA. [Grand, S. P.] Univ Texas Austin, Jackson Sch Geosci, Austin, TX 78712 USA. [Mitrovica, J. X.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. RP Forte, AM (reprint author), Univ Quebec, Geotop, Montreal, PQ H3C 3P8, Canada. EM forte60@gmail.com RI Grand, Stephen/B-4238-2011; Simmons, Nathan/J-9022-2014 FU Canadian Institute for Advanced Research (CIFAR); Natural Sciences and Engineering Research Council of Canada; Canada Research Chair program; US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; NSF [EAR0309189] FX We thank the anonymous reviewers for their comments and suggestions that helped to improve this paper. Postdoctoral support for RM was provided by the Earth System Evolution Program of the Canadian institute for Advanced Research (CIFAR). AMF and JXM acknowledge the funding provided by CIFAR and by the Natural Sciences and Engineering Research Council of Canada. AMF also thanks the Canada Research Chair program for supporting this work. Work performed by NAS is under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. SPG acknowledges NSF grant EAR0309189. NR 87 TC 41 Z9 41 U1 1 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0040-1951 EI 1879-3266 J9 TECTONOPHYSICS JI Tectonophysics PD JAN 15 PY 2010 VL 481 IS 1-4 SI SI BP 3 EP 15 DI 10.1016/j.tecto.2009.06.010 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 551SG UT WOS:000274229300002 ER PT J AU Pasyanos, ME AF Pasyanos, Michael E. TI Lithospheric thickness modeled from long-period surface wave dispersion SO TECTONOPHYSICS LA English DT Article DE Lithosphere; Lithospheric thickness; Upper mantle; Surface waves; Eurasia; Africa; Mantle lid ID UPPER-MANTLE; NORTHERN EURASIA; BENEATH; PLATEAU; EVOLUTION; ANISOTROPY; CRUSTAL; AFRICA; EARTH; FLOW AB The behavior of surface waves at long periods is indicative of subcrustal velocity structure. Using recently published dispersion models, we invert surface wave group velocities for lithospheric structure. including lithospheric thickness, over much of the Eastern Hemisphere, encompassing Eurasia, Africa, and the Indian Ocean. Thicker lithospheres tinder Precambrian shields and platforms are clearly observed, not only under the lira cratons (West Africa, Congo, Baltic, Russia, Siberia, India), but also under smaller blocks like the Tarim Basin and Yangtze craton. In contrast. It IS found that remobilized Precambrian structures like the Saharan Shield and Sino-Korean Paraplatform do not have well-established lithospheric keels The thinnest lithospheric thickness is found under oceanic and continental rifts, as well as along convergence zones. We compare our results to thermal models of continental lithosphere, lithospheric cooling models of oceanic lithosphere, lithosphere-asthenosphere boundary (LAB) estimates from S-wave receiver functions, and velocity variations of global tomography models. In addition to comparing results for the broad region, we examine in detail the regions of Central Africa. Siberia, and Tibet. While there are clear differences in the various estimates, overall the results are generally consistent. Inconsistencies between the estimates may be due to a variety of reasons including lateral and depth resolution differences and the comparison of what may be different lithospheric features. (c) 2009 Elsevier B.V. All rights reserved C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Pasyanos, ME (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RI Pasyanos, Michael/C-3125-2013 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344, LLNL-JRNL-403927] FX We thank two anonymous reviewers for their comments. We gratefully acknowledge discussions with Irina Artemieva and Stewart Fishwick. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344, LLNL-JRNL-403927. NR 37 TC 31 Z9 31 U1 0 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0040-1951 EI 1879-3266 J9 TECTONOPHYSICS JI Tectonophysics PD JAN 15 PY 2010 VL 481 IS 1-4 SI SI BP 38 EP 50 DI 10.1016/j.tecto.2009.02.023 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 551SG UT WOS:000274229300005 ER PT J AU Brown, WM Thompson, AP Schultz, PA AF Brown, W. Michael Thompson, Aidan P. Schultz, Peter A. TI Efficient hybrid evolutionary optimization of interatomic potential models SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE genetic algorithms; potential energy functions; search problems ID MODIFIED SHEPARD INTERPOLATION; MOLECULE-SURFACE REACTION; COARSE-GRAINED MODELS; ENERGY SURFACES; COMPUTER-SIMULATION; NEURAL-NETWORKS; DISSOCIATION; H-2+PT(111); DYNAMICS; H-2 AB The lack of adequately predictive atomistic empirical models precludes meaningful simulations for many materials systems. We describe advances in the development of a hybrid, population based optimization strategy intended for the automated development of material specific interatomic potentials. We compare two strategies for parallel genetic programming and show that the Hierarchical Fair Competition algorithm produces better results in terms of transferability, despite a lower training set accuracy. We evaluate the use of hybrid local search and several fitness models using system energies and/or particle forces. We demonstrate a drastic reduction in the computation time with the use of a correlation-based fitness statistic. We show that the problem difficulty increases with the number of atoms present in the systems used for model development and demonstrate that vectorization can help to address this issue. Finally, we show that with the use of this method, we are able to "rediscover" the exact model for simple known two- and three-body interatomic potentials using only the system energies and particle forces from the supplied atomic configurations. C1 [Brown, W. Michael; Thompson, Aidan P.; Schultz, Peter A.] Sandia Natl Labs, Dept Multiscale Dynam Mat Modeling, Albuquerque, NM 87185 USA. RP Brown, WM (reprint author), Sandia Natl Labs, Dept Multiscale Dynam Mat Modeling, POB 5800, Albuquerque, NM 87185 USA. EM wmbrown@sandia.gov; athomps@sandia.gov; paschul@sandia.gov FU Sandia Corporation; Lockheed-Martin Co.; U.S. Department of Energy [DE-AC04-94AL85000]; DOE Non-proliferation, Simulation, Algorithms; Sandia National Laboratories'; CSRF; LDRD FX Sandia is a multipurpose laboratory operated by Sandia Corporation, a Lockheed-Martin Co., for the U.S. Department of Energy under Contract No. DE-AC04-94AL85000. Support for this work was provided by the DOE Non-proliferation, Simulation, Algorithms, and Modeling program along with Sandia National Laboratories' CSRF and LDRD programs. NR 40 TC 6 Z9 6 U1 2 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JAN 14 PY 2010 VL 132 IS 2 AR 024108 DI 10.1063/1.3294562 PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 544WA UT WOS:000273689000010 PM 20095664 ER PT J AU Herrmann, C Solomon, GC Subotnik, JE Mujica, V Ratner, MA AF Herrmann, Carmen Solomon, Gemma C. Subotnik, Joseph E. Mujica, Vladimiro Ratner, Mark A. TI Ghost transmission: How large basis sets can make electron transport calculations worse SO JOURNAL OF CHEMICAL PHYSICS LA English DT Review DE density functional theory; electrodes; Green's function methods; molecular electronics; tunnelling ID DENSITY-FUNCTIONAL THEORY; SHAM ORBITAL ENERGIES; GAUSSIAN-BASIS SETS; MOLECULAR ELECTRONICS; AB-INITIO; ATOMS LI; CONDUCTANCE; JUNCTIONS; DEVICES; NANOSTRUCTURES AB The Landauer approach has proven to be an invaluable tool for calculating the electron transport properties of single molecules, especially when combined with a nonequilibrium Green's function approach and Kohn-Sham density functional theory. However, when using large nonorthogonal atom-centered basis sets, such as those common in quantum chemistry, one can find erroneous results if the Landauer approach is applied blindly. In fact, basis sets of triple-zeta quality or higher sometimes result in an artificially high transmission and possibly even qualitatively wrong conclusions regarding chemical trends. In these cases, transport persists when molecular atoms are replaced by basis functions alone ("ghost atoms"). The occurrence of such ghost transmission is correlated with low-energy virtual molecular orbitals of the central subsystem and may be interpreted as a biased and thus inaccurate description of vacuum transmission. An approximate practical correction scheme is to calculate the ghost transmission and subtract it from the full transmission. As a further consequence of this study, it is recommended that sensitive molecules be used for parameter studies, in particular those whose transmission functions show antiresonance features such as benzene-based systems connected to the electrodes in meta positions and other low-conducting systems such as alkanes and silanes. C1 [Herrmann, Carmen; Solomon, Gemma C.; Subotnik, Joseph E.; Mujica, Vladimiro; Ratner, Mark A.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Mujica, Vladimiro] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Mujica, Vladimiro] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. RP Herrmann, C (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM c-herrmann@northwestern.edu RI Herrmann, Carmen/C-7716-2013; Solomon, Gemma/L-8344-2014 OI Herrmann, Carmen/0000-0002-9496-0664; Solomon, Gemma/0000-0002-2018-1529 NR 127 TC 38 Z9 38 U1 0 U2 22 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD JAN 14 PY 2010 VL 132 IS 2 AR 024103 DI 10.1063/1.3283062 PG 17 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 544WA UT WOS:000273689000005 PM 20095659 ER PT J AU Kim, Y Abou-Hamad, E Rubio, A Wagberg, T Talyzin, AV Boesch, D Aloni, S Zettl, A Luzzi, DE Goze-Bac, C AF Kim, Y. Abou-Hamad, E. Rubio, A. Wagberg, T. Talyzin, A. V. Boesch, D. Aloni, S. Zettl, A. Luzzi, D. E. Goze-Bac, C. TI Communications: Nanomagnetic shielding: High-resolution NMR in carbon allotropes SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE carbon nanotubes; diamagnetic materials; doping; nanomagnetics; nuclear magnetic resonance; paramagnetic materials; proton magnetic resonance; vacancies (crystal) ID MAGNETIC RESPONSE; NANOTUBES; C-60; EXCITATION; PEAPODS AB The understanding and control of the magnetic properties of carbon-based materials is of fundamental relevance in applications in nano- and biosciences. Ring currents do play a basic role in those systems. In particular the inner cavities of nanotubes offer an ideal environment to investigate the magnetism of synthetic materials at the nanoscale. Here, by means of C-13 high resolution NMR of encapsulated molecules in peapod hybrid materials, we report the largest diamagnetic shifts (down to -68.3 ppm) ever observed in carbon allotropes, which is connected to the enhancement of the aromaticity of the nanotube envelope upon doping. This diamagnetic shift can be externally controlled by in situ modifications such as doping or electrostatic charging. Moreover, defects such as C-vacancies, pentagons, and chemical functionalization of the outer nanotube quench this diamagnetic effect and restore NMR signatures to slightly paramagnetic shifts compared to nonencapsulated molecules. The magnetic interactions reported here are robust phenomena independent of temperature and proportional to the applied magnetic field. The magnitude, tunability, and stability of the magnetic effects make the peapod nanomaterials potentially valuable for nanomagnetic shielding in nanoelectronics and nanobiomedical engineering. C1 [Abou-Hamad, E.; Goze-Bac, C.] Univ Montpellier 2, CNRS, Lab Colloides Verres & Nanomat, NanoMRI Grp, F-34090 Montpellier, France. [Kim, Y.; Luzzi, D. E.] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Rubio, A.] Univ Basque Country, ETSF, EHU, Dpto Fis Mat, San Sebastian 20018, Spain. [Rubio, A.] Univ Basque Country, ETSF, EHU, CSIC,Ctr Mixto, San Sebastian 20018, Spain. [Wagberg, T.; Talyzin, A. V.] Umea Univ, Dept Phys, S-90187 Umea, Sweden. [Boesch, D.; Aloni, S.; Zettl, A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Boesch, D.; Aloni, S.; Zettl, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Luzzi, D. E.] Northeastern Univ, Snell Engn Res Ctr, Off Dean, Boston, MA 02115 USA. RP Goze-Bac, C (reprint author), Univ Montpellier 2, CNRS, Lab Colloides Verres & Nanomat, NanoMRI Grp, Pl Eugene Bataillon, F-34090 Montpellier, France. EM abou@lcvn.univ-montp2.fr; goze@univ-montp2.fr RI CSIC-UPV/EHU, CFM/F-4867-2012; Rubio, Angel/A-5507-2008; Wagberg, Thomas/C-2912-2008; Zettl, Alex/O-4925-2016 OI Rubio, Angel/0000-0003-2060-3151; Wagberg, Thomas/0000-0002-5080-8273; Zettl, Alex/0000-0001-6330-136X FU Centre National de la Recherche Scientifique; Region LanguedocRoussillon; Office of Basic Energy Sciences; Materials Sciences and Engineering Division; U.S. Department of Energy [DE-AC02-05CH11231]; Wenner-Gren Foundations; Vetenskapsradet; Spanish MEC [FIS2007-65702-C02-01]; Grupos Consolidados UPV/EHU of the Basque Country Government [IT-319-07]; European Community FX This work was supported by the Centre National de la Recherche Scientifique and the Region LanguedocRoussillon, the Office of Basic Energy Sciences, Materials Sciences and Engineering Division, the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, via the sp2-bonded nanostructures program and the Molecular Foundry, the Wenner-Gren Foundations, and Vetenskapsradet, the Spanish MEC (Grant No. FIS2007-65702-C02-01), Grupos Consolidados UPV/EHU of the Basque Country Government (Grant No. IT-319-07), and European Community e-I3 ETSF project. Y.K. and E.A.-H. contributed equally to this work. NR 26 TC 10 Z9 10 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JAN 14 PY 2010 VL 132 IS 2 AR 021102 DI 10.1063/1.3284740 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 544WA UT WOS:000273689000002 PM 20095656 ER PT J AU Kurten, T Kuang, CA Gomez, P McMurry, PH Vehkamaki, H Ortega, I Noppel, M Kulmala, M AF Kurten, Theo Kuang, Chongai Gomez, Pedro McMurry, Peter H. Vehkamaki, Hanna Ortega, Ismael Noppel, Madis Kulmala, Markku TI The role of cluster energy nonaccommodation in atmospheric sulfuric acid nucleation SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE atmospheric composition; nucleation; organic compounds; sulphur compounds ID VAPOR-LIQUID NUCLEATION; PARTICLE FORMATION; STICKING PROBABILITIES; WATER NUCLEATION; LOW-PRESSURES; GAS REACTIONS; GROWTH; MECHANISMS; DEPENDENCE; AMMONIA AB We discuss the possible role of energy nonaccommodation (monomer-cluster collisions that do not result in stable product formation due to liberated excess energy) in atmospheric nucleation processes involving sulfuric acid. Qualitative estimates of the role of nonaccommodation are computed using quantum Rice-Ramsberger-Kassel theory together with quantum chemically calculated vibrational frequencies and anharmonic coupling constants for small sulfuric acid-containing clusters. We find that energy nonaccommodation effects may, at most, decrease the net formation rate of sulfuric acid dimers by up to a factor of 10 with respect to the hard-sphere collision rate. A decrease in energy nonaccommodation due to an increasing number of internal degrees of freedom may kinetically slightly favor the participation of amines rather than ammonia as stabilizing agents in sulfuric acid nucleation, though the kinetic enhancement factor is likely to be less than three. However, hydration of the clusters (which always occurs in ambient conditions) is likely to increase the energy accommodation factor, reducing the role that energy nonaccommodation plays in atmospheric nucleation. C1 [Kurten, Theo; Vehkamaki, Hanna; Ortega, Ismael; Kulmala, Markku] Univ Helsinki, Dept Phys Sci, Div Atmospher Sci, FIN-00014 Helsinki, Finland. [Kuang, Chongai] Brookhaven Natl Lab, Dept Atmospher Sci, Upton, NY 11973 USA. [Gomez, Pedro] Univ Complutense Madrid, Dept Quim Fis 1, E-28040 Madrid, Spain. [McMurry, Peter H.] Univ Minnesota, Dept Mech Engn, Minneapolis, MN 55455 USA. [Noppel, Madis] Univ Tartu, Inst Environm Phys, EE-50090 Tartu, Estonia. RP Kurten, T (reprint author), Univ Helsinki, Dept Phys Sci, Div Atmospher Sci, POB 64, FIN-00014 Helsinki, Finland. EM theo.kurten@helsinki.fi RI Ortega Colomer, Ismael Kenneth/A-7930-2008; Kurten, Theo/G-2120-2012; Kuang, Chongai/E-4446-2013; Vehkamaki, Hanna/A-8262-2008; McMurry, Peter/A-8245-2008; Kulmala, Markku/I-7671-2016 OI Ortega Colomer, Ismael Kenneth/0000-0002-9299-2013; Kurten, Theo/0000-0002-6416-4931; Vehkamaki, Hanna/0000-0002-5018-1255; McMurry, Peter/0000-0003-1609-5131; Kulmala, Markku/0000-0003-3464-7825 FU Academy of Finland [1118615, 1127372]; Estonian Research Council [SF0180043s08]; National Science Foundation [DGE-0114372, ATM-050067]; University of Helsinki; Universidad Complutense de Madrid; Spanish Ministry of Education [FIS2007-6168, CTQ2008-02578/BQU] FX This research was supported by the Academy of Finland (Project Nos. 1118615 and 1127372) and the Estonian Research Council (Project No. SF0180043s08). P. H. M. and C. K. gratefully acknowledge financial support from the National Science Foundation (Contract Nos. DGE-0114372 and ATM-050067). P. G. gratefully acknowledges hospitality from the University of Helsinki (Dept. of Physics) and financial support from Universidad Complutense de Madrid. Also funding from the Spanish Ministry of Education, Project Nos. FIS2007-6168 and CTQ2008-02578/BQU are acknowledged. We thank the CSC IT Center for Science for computer time. NR 49 TC 11 Z9 11 U1 5 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JAN 14 PY 2010 VL 132 IS 2 AR 024304 DI 10.1063/1.3291213 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 544WA UT WOS:000273689000017 PM 20095671 ER PT J AU Landt, L Staiger, M Wolter, D Klunder, K Zimmermann, P Willey, TM van Buuren, T Brehmer, D Schreiner, PR Tkachenko, BA Fokin, AA Moller, T Bostedt, C AF Landt, Lasse Staiger, Matthias Wolter, David Kluender, Kathrin Zimmermann, Peter Willey, Trevor M. van Buuren, Tony Brehmer, Daniel Schreiner, Peter R. Tkachenko, Boryslav A. Fokin, Andrey A. Moeller, Thomas Bostedt, Christoph TI The influence of a single thiol group on the electronic and optical properties of the smallest diamondoid adamantane SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE electron affinity; energy gap; nanostructured materials; organic compounds ID SELF-ASSEMBLED MONOLAYERS; FUNCTIONALIZED NANODIAMONDS; PHOTOELECTRON SPECTRA; AU(111); SPECTROSCOPY; MOLECULES; PHOTOEMISSION; NANOCRYSTALS; DISPLACEMENT; ULTRAVIOLET AB At the nanoscale, the surface becomes pivotal for the properties of semiconductors due to an increased surface-to-bulk ratio. Surface functionalization is a means to include semiconductor nanocrystals into devices. In this comprehensive experimental study we determine in detail the effect of a single thiol functional group on the electronic and optical properties of the hydrogen-passivated nanodiamond adamantane. We find that the optical properties of the diamondoid are strongly affected due to a drastic change in the occupied states. Compared to adamantane, the optical gap in adamantane-1-thiol is lowered by similar to 0.6 eV and UV luminescence is quenched. The lowest unoccupied states remain delocalized at the cluster surface leaving the diamondoid's negative electron affinity intact. C1 [Landt, Lasse; Staiger, Matthias; Wolter, David; Kluender, Kathrin; Zimmermann, Peter; Moeller, Thomas; Bostedt, Christoph] Tech Univ Berlin, Inst Opt & Atomare Phys, D-10623 Berlin, Germany. [Willey, Trevor M.; van Buuren, Tony] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94550 USA. [Brehmer, Daniel] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Schreiner, Peter R.; Tkachenko, Boryslav A.; Fokin, Andrey A.] Univ Giessen, Inst Organ Chem, D-35392 Giessen, Germany. RP Landt, L (reprint author), Tech Univ Berlin, Inst Opt & Atomare Phys, Eugene Wigner Bldg EW 3-1,Hardenbergstr 36, D-10623 Berlin, Germany. EM landt@physik.tu-berlin.de RI Willey, Trevor/A-8778-2011; Schreiner, Peter Richard/A-4084-2008; Brehmer, Daniel/A-2196-2013; Zimmermann, Peter/H-3989-2013; OI Willey, Trevor/0000-0002-9667-8830; Schreiner, Peter Richard/0000-0002-3608-5515; Fokin, Andrey/0000-0002-6381-8948 FU Studienstiftung des Deutschen Volkes; DFG [BO3169/1-1] FX The authors are thankful to C. Thomsen and J. Maultzsch for access to the Raman spectroscopy setup, D. Heinrich for help with taking the Raman spectra, and to A. Kulesza, R. Mitric, and V. Bonacic-Koutecky for discussion on the optical spectra. L. L. acknowledges support from the Studienstiftung des Deutschen Volkes. T. M. W. acknowledges funding from the UCOP management fee grant "carbon nanostructures." This work has been supported by the DFG under Grant No. BO3169/1-1. NR 54 TC 21 Z9 21 U1 2 U2 32 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JAN 14 PY 2010 VL 132 IS 2 AR 024710 DI 10.1063/1.3280388 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 544WA UT WOS:000273689000043 PM 20095697 ER PT J AU Wang, MR Chang, CC Yang, RJ AF Wang, Moran Chang, Chi-Chang Yang, Ruey-Jen TI Electroviscous effects in nanofluidic channels SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE channel flow; chemically reactive flow; electrodynamics; lattice Boltzmann methods; nanofluidics; viscosity ID POISSON-BOLTZMANN EQUATION; ELECTROOSMOTIC FLOWS; LIQUID FLOW; MICROFLUIDIC CONTRACTION; ELECTROKINETIC TRANSPORT; ENERGY-CONVERSION; ION-TRANSPORT; MICROCHANNELS; NANOCHANNELS; PRESSURE AB This paper presents a systematical study of electroviscous effects in nanofluidic channels using a triple layer model and a numerical framework. A chemical dissociation layer is introduced at solid-liquid interfaces to bridge the surface charge condition with the local properties of both solid surfaces and the ionic liquid. The electrokinetic transport in the electrical double layers is modeled by a lattice Poisson-Boltzmann method. The results indicate that there is an ionic concentration leading to the maximum electroviscosity for a given channel height, pH value, and environmental temperature. For a very high ionic concentration, a smaller channel height leads to a higher electroviscosity. When the bulk concentration reduces from 10(-3)M to 10(-6)M, there is a critical channel height that maximizes the electroviscosity for a given ionic concentration, and the critical height increases with the decreasing ionic concentration. The electroviscosity increases with the pH of electrolyte solutions and is nearly proportional to the environmental temperature. The present study may help to improve the understanding of electrokinetic transport in nanofluidic channels. C1 [Wang, Moran] Los Alamos Natl Lab, Computat Earth Sci Grp EES 16, Earth & Environm Sci Phys Condensed Matter & Comp, Los Alamos, NM 87545 USA. [Wang, Moran] Los Alamos Natl Lab, Div Theoret, Ctr Nonlinear Study CNLS, Los Alamos, NM 87545 USA. [Chang, Chi-Chang; Yang, Ruey-Jen] Natl Cheng Kung Univ, Dept Engn Sci, Tainan 70101, Taiwan. RP Wang, MR (reprint author), Los Alamos Natl Lab, Computat Earth Sci Grp EES 16, Earth & Environm Sci Phys Condensed Matter & Comp, Los Alamos, NM 87545 USA. EM mwang@lanl.gov RI Chang, Chih-Chang/B-5968-2009; Yang, Ruey-Jen/A-1122-2009; Wang, Moran/A-1150-2010 OI Yang, Ruey-Jen/0000-0002-1958-0389; FU LANL's LDRD Project [20080727PRD2] FX This work was supported by LANL's LDRD Project under Grant No. 20080727PRD2 through the J. R. Oppenheimer Fellowship awarded to M. W. The authors would like to thank Professor D. Q. Li, Professor J. Santiago, and Professor X. C. Xuan for helpful discussions. NR 56 TC 23 Z9 23 U1 0 U2 29 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD JAN 14 PY 2010 VL 132 IS 2 AR 024701 DI 10.1063/1.3290814 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 544WA UT WOS:000273689000034 PM 20095688 ER PT J AU Fullekrug, M Roussel-Dupre, R Symbalisty, EMD Chanrion, O Odzimek, A van der Velde, O Neubert, T AF Fuellekrug, Martin Roussel-Dupre, Robert Symbalisty, Eugene M. D. Chanrion, Olivier Odzimek, Anna van der Velde, Oscar Neubert, Torsten TI Relativistic runaway breakdown in low-frequency radio SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID SPRITES94 AIRCRAFT CAMPAIGN; GAMMA-RAY FLASHES; AIR BREAKDOWN; RED-SPRITES; LIGHTNING INITIATION; CONTINUING CURRENT; LOWER IONOSPHERE; ELF RADIATION; BLUE JETS; DISCHARGES AB The electromagnetic radiation emitted by an electron avalanche beam resulting from relativistic runaway breakdown within the Earth's atmosphere is investigated. It is found from theoretical modeling with a computer simulation that the electron beam emits electromagnetic radiation which is characterized by consecutive broadband pulses in the low-frequency radio range from similar to 10 to 300 kHz at a distance of similar to 800 km. Experimental evidence for the existence of consecutive broadband pulses is provided by low-frequency radio observations of sprite-producing lightning discharges at a distance of similar to 550 km. The measured broadband pulses occur similar to 4-9 ms after the sprite-producing lightning discharge, they exhibit electromagnetic radiation which mainly spans the frequency range from similar to 50 to 350 kHz, and they exhibit complex waveforms without the typical ionospheric reflection of the first hop sky wave. Two consecutive pulses occur similar to 4.5 ms and similar to 3 ms after the causative lightning discharge and coincide with the sprite luminosity. It is concluded that relativistic runaway breakdown within the Earth's atmosphere can emit broadband electromagnetic pulses and possibly generates sprites. The source location of the broadband pulses can be determined with an interferometric network of wideband low-frequency radio receivers to lend further experimental support to the relativistic runaway breakdown theory. C1 [Fuellekrug, Martin] Univ Bath, Dept Elect & Elect Engn, Ctr Space Atmospher & Ocean Sci, Bath BA2 7AY, Avon, England. [Roussel-Dupre, Robert] SciTech Solut, Santa Fe, NM 87506 USA. [Symbalisty, Eugene M. D.] Los Alamos Natl Lab, Atmospher Climate & Environm Dynam Grp, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Chanrion, Olivier; Neubert, Torsten] Tech Univ Denmark, Natl Space Inst, DK-2100 Copenhagen, Denmark. [Odzimek, Anna] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [van der Velde, Oscar] Univ Politecn Cataluna, Dept Elect Engn, E-08222 Terrassa, Spain. RP Fullekrug, M (reprint author), Univ Bath, Dept Elect & Elect Engn, Ctr Space Atmospher & Ocean Sci, Bath BA2 7AY, Avon, England. EM eesmf@bath.ac.uk RI Chanrion, Olivier/F-7050-2013; OI Chanrion, Olivier/0000-0002-4484-4104; van der Velde, Oscar/0000-0002-1638-6628; Odzimek, Anna/0000-0003-3490-5257 FU Science and Technology Facilities Council [PP/E0011483/1]; International Space Science Institute (ISSI) FX This work was sponsored by the Science and Technology Facilities Council under grant PP/E0011483/1. The International Space Science Institute (ISSI) kindly supported and hosted the Coupling of Atmospheric Regions with Near-Earth Space team meetings ( ISSI 105) which stimulated this work. NR 59 TC 16 Z9 16 U1 2 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JAN 14 PY 2010 VL 115 AR A00E09 DI 10.1029/2009JA014468 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 545LE UT WOS:000273732800003 ER PT J AU Turner, DL Li, XL Reeves, GD Singer, HJ AF Turner, Drew L. Li, Xinlin Reeves, Geoff D. Singer, Howard J. TI On phase space density radial gradients of Earth's outer-belt electrons prior to sudden solar wind pressure enhancements: Results from distinctive events and a superposed epoch analysis SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID WHISTLER-MODE CHORUS; RELATIVISTIC ELECTRONS; MAGNETIC STORMS; GEOSYNCHRONOUS ORBIT; INNER MAGNETOSPHERE; RESONANT DIFFUSION; MARCH 24; ACCELERATION; ENERGIZATION; SIMULATION AB Here, we present the results of a study of phase space density radial gradients for outer-belt electrons at and beyond geosynchronous orbit prior to 86 sudden solar wind pressure enhancements from 1993 through 2007. All of the events are classified and analyzed based on the results for equatorial electrons with first adiabatic invariants of 50, 200, 750, and 2000 MeV/G. Examples of three distinctive events are compared, and the results from a superposed epoch analysis are presented. We find that the radial gradients are dependent on the first adiabatic invariant (i.e., energy), and that for the majority of cases, the gradient is negative for electrons with energies above a couple of hundred keV, while it is either positive or relatively flat for electrons with energies lower than this, which is evidence of two distinct populations. In the cases where a positive gradient is observed for 2000 MeV/G electrons, the solar wind and geomagnetic conditions are very quiet for at least two days prior to the event, but for the events when the gradient for the same electrons is negative, there is a consistent evidence of enhanced substorm activity and/or convection in the days leading up to the events. Overall, this study puts previous observations of phase space density (PSD) gradients into a broader context of solar wind and geomagnetic conditions, while encompassing a broad range of energies, from the source population of tens to hundreds of keV electrons to relativistic electrons with energies exceeding 1 MeV. We discuss how 41 of the 86 events are consistent with and can be explained by local heating by wave-particle interactions, and we provide evidence of the solar wind and geomagnetic conditions that are important to different types of sources of outer-belt electron PSD. C1 [Turner, Drew L.; Li, Xinlin] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA. [Turner, Drew L.; Li, Xinlin] Chinese Acad Sci, Lab Space Weather, Beijing, Peoples R China. [Turner, Drew L.; Li, Xinlin] Univ Colorado, Dept Aerosp Engn Sci, Boulder, CO 80303 USA. [Reeves, Geoff D.] Los Alamos Natl Lab, Space & Atmospher Sci Grp, Los Alamos, NM 87545 USA. [Singer, Howard J.] NOAA, Space Weather Predict Ctr, Boulder, CO 80305 USA. RP Turner, DL (reprint author), Univ Colorado, Atmospher & Space Phys Lab, 1234 Innovat Dr, Boulder, CO 80303 USA. EM drew.lawson.turner@gmail.com RI Turner, Drew/G-3224-2012; Reeves, Geoffrey/E-8101-2011 OI Reeves, Geoffrey/0000-0002-7985-8098 FU NSF [ATM-0549093, ATM-0902813]; National Natural Science Foundation of China [40621003, 40728005] FX We would like to thank James McCollough, Weichao Tu, and Edward Burin des Roziers for useful insight and discussions. We are also very grateful to theWorld Data Center for Geomagnetism, Kyoto, Japan, the Coordinated Data Analysis Web (CDAWeb), and the LANL energetic particles team for their online data access. This work was supported by NSF grants (ATM-0549093 and ATM-0902813) and also by grants from the National Natural Science Foundation of China (40621003 and 40728005). NR 48 TC 26 Z9 26 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JAN 14 PY 2010 VL 115 AR A01205 DI 10.1029/2009JA014423 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 545LE UT WOS:000273732800002 ER PT J AU Mincher, BJ Mezyk, SP Cooper, WJ Cole, SK Fox, RV Gardinali, PR AF Mincher, Bruce J. Mezyk, Stephen P. Cooper, William J. Cole, S. Kirkham Fox, Robert V. Gardinali, Piero R. TI Free-Radical Chemistry of Disinfection Byproducts. 3. Degradation Mechanisms of Chloronitromethane, Bromonitromethane, and Dichloronitromethane SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID BY-PRODUCTS; RATE CONSTANTS; DRINKING-WATER; HALONITROMETHANES; MUTAGENICITY; CHLOROPICRIN; SALMONELLA AB Halonitromethanes (HNMs) are byproducts formed through ozonation and chlorine/ chloramine disinfection processes in drinking waters that contain dissolved organic matter and bromide ions. These species occur at low concentration but have been determined to have high cytotoxicity and mutagenicity and therefore may represent a human health hazard. In this study, we have investigated the chemistry involved in the mineralization of HNMs to nonhazardous inorganic products through the application of advanced oxidation and reduction processes. We have combined measured absolute reaction rate constants for the reactions of chloronitromethane, bromonitromethane, and dichloronitromethane with the hydroxyl radical and the hydrated electron with a kinetic computer model in an attempt to elucidate the reaction pathways of these HNMs. The results are compared to measurements of stable products resulting from steady-state (60)Co gamma-irradiations of the same compounds. The model predicted the decomposition of the parent compounds and ingrowth of chloride and bromide ions with excellent accuracy, but the prediction of the total nitrate ion concentration was slightly in error, reflecting the complexity of nitrogen oxide species reactions in irradiated solution. C1 [Mincher, Bruce J.; Fox, Robert V.] Idaho Natl Lab, Aqueous Separat & Radiochem Grp, Idaho Falls, ID 83415 USA. [Mezyk, Stephen P.] Calif State Univ Long Beach, Dept Chem & Biochem, Long Beach, CA 90840 USA. [Cooper, William J.] Univ Calif Irvine, Dept Civil & Environm Engn, Urban Water Res Ctr, Irvine, CA 92697 USA. [Cole, S. Kirkham] Old Dominion Univ, Dept Civil & Environm Engn, Norfolk, VA 23529 USA. [Gardinali, Piero R.] Florida Int Univ, Dept Chem & Biochem, Miami, FL 33199 USA. RP Mincher, BJ (reprint author), Idaho Natl Lab, Aqueous Separat & Radiochem Grp, POB 1625, Idaho Falls, ID 83415 USA. EM bruce.mincher@inl.gov; smezyk@csulb.edu RI Cooper, William/D-4502-2011; Mincher, Bruce/C-7758-2017 FU Office of Basic Energy Sciences, U.S. Department of Energy; US Department of Energy, Office of Nuclear Energy, Science and Technology [DE-AC07-99ID13727] FX Some of this work was performed at the Radiation Laboratory, University of Notre Dame, which is supported by the Office of Basic Energy Sciences, U.S. Department of Energy. Partial financial support was also provided by McKim & Creed, PA. B.J.M. was supported by the US Department of Energy, Office of Nuclear Energy, Science and Technology under DOE Idaho Operations Office contract DE-AC07-99ID13727. This is contribution 44 from the University of California, Irvine, Urban Water Research Center. NR 20 TC 5 Z9 5 U1 4 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JAN 14 PY 2010 VL 114 IS 1 BP 117 EP 125 DI 10.1021/jp907305g PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 539PP UT WOS:000273268900016 PM 20055512 ER PT J AU Klippenstein, SJ Georgievskii, Y McCall, BJ AF Klippenstein, Stephen J. Georgievskii, Yuri McCall, Benjamin J. TI Temperature Dependence of Two Key Interstellar Reactions of H-3(+): O(P-3) + H-3(+) and CO + H-3(+) SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID PROTON-TRANSFER REACTIONS; RAY IONIZATION RATE; DENSE MOLECULAR CLOUDS; DISSOCIATIVE RECOMBINATION; PREDICTIVE THEORY; ABUNDANCE RATIO; CARBON-MONOXIDE; WAVE-FUNCTIONS; BASIS-SETS; KINETICS AB The reactions of H-3(+) with CO and with 0(3 P) are the two most important reactions for the destruction of H-3(+) in dense interstellar clouds. These two reactions are studied with sophisticated theoretical methods that should provide accurate predictions for the rate coefficients. The potential energy surfaces are studied with high-level electronic structure methods. For both reactions, simple long-range expansions are shown to be sufficiently accurate for predicting the kinetics at room temperature and lower. The kinetics is predicted from a combination of transition state theory, trajectory simulations, and master equation analysis. For the O(P-3) reaction, the interplay between the spin-orbit and the charge-quadrupole interactions is explicitly considered. For the CO reaction, we also consider the isomerization and decomposition dynamics of the two initially formed adducts. The final predictions, which are expected to be accurate to about 10 to 20%, are compared with the available experimental data. For the O(P-3) reaction, the predicted rate coefficient is accurately reproduced by the expression 1.14 x 10(-9) (T/300)(-0.156) exp(-1.41/T) cm(3) molecule(-1) s(-1) over the 5 to 400 K temperature range. For the CO reaction, the predicted rate coefficients for the H-2 + HCO+ and H-2 + HOC+ channels are accurately reproduced by the expressions 1.36 x 10(-9) (T/300)(-0.142) exp(3.41/T) and 8.49 x 10(-10) (T/300)(0.0661) exp(-5.21/T) cm(3) molecule(-1) s(-1), respectively, over the 10 to 400 K temperature range. These revised rate coefficient expressions imply an increase in the destruction of H-3(+) at temperatures that are typical of dense clouds (10-30 K) by a factor of 2.5 to 3.0. C1 [Klippenstein, Stephen J.; Georgievskii, Yuri] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [McCall, Benjamin J.] Univ Illinois, Dept Chem, Urbana, IL 61801 USA. [McCall, Benjamin J.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. RP Klippenstein, SJ (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. OI Klippenstein, Stephen/0000-0001-6297-9187 FU U.S. Department of Energy; Office of Basic Energy Sciences; Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC0-206CH11357]; David and Lucile Packard Foundation FX The work by S.J.K. and Y.G. was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, under Contract No. DE-AC0-206CH11357. B.J.M. acknowledges support from the David and Lucile Packard Foundation. Helpful discussions with Eric Herbst and Takeshi Oka are gratefully acknowledged. NR 65 TC 17 Z9 17 U1 0 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JAN 14 PY 2010 VL 114 IS 1 BP 278 EP 290 DI 10.1021/jp908500h PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 539PP UT WOS:000273268900033 PM 19856956 ER PT J AU Sanii, B Szmodis, AW Bricarello, DA Oliver, AE Parikh, AN AF Sanii, Babak Szmodis, Alan W. Bricarello, Daniel A. Oliver, Ann E. Parikh, Atul N. TI Frustrated Phase Transformations in Supported, Interdigitating Lipid Bilayers SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID IMAGING ELLIPSOMETRY; PHOSPHOLIPID-MEMBRANES; PHYSICAL-PROPERTIES; TRANSITIONS AB In free bilayers, the fluid to gel main phase transition of a monofluorinated phospholipid (F-DPPC) transforms a disordered fluid bilayer into a fully interdigitated monolayer consisting of ordered acyl tails. This transformation results in an increase in molecular area and decrease in bilayer thickness. We show that when confined in patches near a solid surface this reorganization proceeds under constraints of planar topography and total surface area. One consequence of these constraints is to limit the complete formation of the energetically favored, interdigitated gel phase. The noninterdigitated lipids experience enhanced lateral tension, due to the expansion of the growing interdigitated phase within the constant area. The corresponding rise in equilibrium transition temperatures produces supercooled lipids that vitrify when cooled further. Ultimately, this frustrated phase change reflects a coupling between dynamics and thermodynamics and gives rise to ail unusual phase coexistence characterized by the presence of two qualitatively different gel phases. C1 [Szmodis, Alan W.; Parikh, Atul N.] Univ Calif Davis, Biophys Grad Grp, Davis, CA 95616 USA. [Sanii, Babak] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Bricarello, Daniel A.; Oliver, Ann E.; Parikh, Atul N.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. RP Parikh, AN (reprint author), Univ Calif Davis, Biophys Grad Grp, Davis, CA 95616 USA. EM anparikh@ucdavis.edu RI PARIKH, ATUL/D-2243-2014 OI PARIKH, ATUL/0000-0002-5927-4968 FU U.S. Department of Energy's Biomolecular Materials Program [DE-FG02-04ER46173]; University of California's Graduate Research and Training Program in Adaptive Biotechnology (GREAT); Physical Bioscience Institute at LLNL FX This work was carried Out under a grant From U.S. Department of Energy's Biomolecular Materials Program (DE-FG02-04ER46173). B.S. and AW.S. are supported by fellowships from University of California's Graduate Research and Training Program in Adaptive Biotechnology (GREAT) and the UEPP Fellowship from the Physical Bioscience Institute at LLNL, respectively. We thank R. El-Khouri, M. Vinchurkar, M. Salmeron, PD, Ashby, and A.M. Smith for their help and A. Janshoff for insightful comments. NR 23 TC 7 Z9 7 U1 1 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JAN 14 PY 2010 VL 114 IS 1 BP 215 EP 219 DI 10.1021/jp908585u PG 5 WC Chemistry, Physical SC Chemistry GA 541GY UT WOS:000273404500026 PM 20000828 ER PT J AU Shkrob, IA AF Shkrob, Ilya A. TI Deprotonation and Oligomerization in Photo-, Radiolytically, and Electrochemically Induced Redox Reactions in Hydrophobic Alkylalkylimidazolium Ionic Liquids SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID N-HETEROCYCLIC CARBENES; EXTRACTION SOLVENTS; SOLVATED ELECTRONS; EXCITATION; DYNAMICS; CATION; IMIDAZOL-2-YLIDENES; COMPLEXES; CHEMISTRY; GREENNESS AB Radical chemistry initiated by one-electron reduction of 1-methyl-3-alkylimidazolium cations in the corresponding ionic liquids (ILs) is examined. The reaction scheme is examined in fight of the recent experimental data on photo-, radiation-, and electrochemically induced degradation of the practically important hydrophobic alkylimidazolium ILs. It is suggested that the primary species leading to the formation of the oligomers and acidification of the ILs a sigma sigma* dimer radical cation that loses a proton, yielding a neutral radical whose Subsequent reactions produce C(2)-C(2) linked oligomers, both neutral and charged. The neutral oligomers (Up to the tetramer) account for the features observed in the NMR spectra of cathodic liquid generated in electrolytic breakdown of the IL solvent. In photolysis and radiolysis, these neutral species and/or their radical precursors ire oxidized by radical (ions) derived from the counteranions, and only charged dimers are observed. The dication dimers account for the features observed in the mass spectra of irradiated ILs. The products of these ion radical and radical reactions closely resemble those generated via carbene chemistry, without the formation of the carbene via the deprotonation of the parent cation. As the loss of 2-protons increases the proticity of the irradiated IL, it interferes with the extraction of metal ions by ionophore solutes, while the formation of the oligomers modifies solvent properties. Thus, the peculiarities of radical chemistry in the alkylimidazolium ILs have significant import for their practical applications. C1 Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Shkrob, IA (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM shkrob@anl.gov FU Office of Science, Division of Chemical Sciences; US-DOE [DE-AC-02-06CH11357] FX The author thanks T. W. Marin, C. D. Jonah, D. M. Bartels, R. A. Crowell, J. F. Wishart, P. Moisy, and K. Takahashi for stimulating discussions and sharing of their results. This work was supported by the Office of Science, Division of Chemical Sciences, US-DOE under contract No. DE-AC-02-06CH11357. Programmatic support by BES DOE through SISGR collaboration is gratefully acknowledged. NR 53 TC 17 Z9 17 U1 1 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JAN 14 PY 2010 VL 114 IS 1 BP 368 EP 375 DI 10.1021/jp9081678 PG 8 WC Chemistry, Physical SC Chemistry GA 541GY UT WOS:000273404500043 PM 19852456 ER PT J AU Gomes, DEB Lins, RD Pascutti, PG Lei, CH Soares, TA AF Gomes, Diego E. B. Lins, Roberto D. Pascutti, Pedro G. Lei, Chenghong Soares, Thereza A. TI The Role of Nonbonded Interactions in the Conformational Dynamics of Organophosphorous Hydrolase Adsorbed onto Functionalized Mesoporous Silica Surfaces SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID GROMOS FORCE-FIELD; CARBON MOLECULAR-SIEVES; PSEUDOMONAS-DIMINUTA; DRUG-DELIVERY; PARAMETER SET; CYTOCHROME-C; ACTIVE-SITE; BACTERIAL PHOSPHOTRIESTERASE; ENZYME IMMOBILIZATION; PROTEIN ADSORPTION AB The enzyme organophosphorous hydrolase (OPH) catalyzes the hydrolysis of a wide variety of organophosphorous Compounds with high catalytic efficiency and broad substrate specificity. The immobilization of OPH in functionalized mesoporous Silica (FMS) surfaces increases significantly its catalytic specific activity, as compared to the enzyme ill Solution, with important applications for the detection and decontamination of insecticides and chemical warfare agents. Experimental measurements of immobilization efficiency as a function of the charge and coverage percentage of different functional groups have been interpreted as electrostatic forces being the predominant interactions underlying the adsorption of OPH onto FMS Surfaces. Explicit solvent molecular dynamics simulations have been performed for OPH in bulk Solution and adsorbed onto two distinct interaction potential models of the FMS functional groups to investigate the relative contributions of nonbonded interactions to the conformational dynamics and adsorption of the protein. Our results support the Conclusion that electrostatic interactions are responsible for the binding of OPH to the FMS surface. However, these results also show that van der Waals forces are detrimental for interfacial adhesion. In addition, it is found that OPH adsorption onto the FMS models favors a protein conformation whose active site is fully accessible to the Substrate, in Contrast to the unconfined protein. C1 [Gomes, Diego E. B.; Lins, Roberto D.; Lei, Chenghong; Soares, Thereza A.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Gomes, Diego E. B.; Pascutti, Pedro G.] Univ Fed Rio de Janeiro, Inst Biofis Carlos Chagas Filho, BR-21949900 Rio De Janeiro, Brazil. [Lins, Roberto D.; Soares, Thereza A.] Univ Fed Pernambuco, Dept Quim Fundamental, BR-50590470 Recife, PE, Brazil. RP Soares, TA (reprint author), Pacific NW Natl Lab, POB 999,MSIN K7-90, Richland, WA 99352 USA. EM tasoares@pnl.gov RI Lins, Roberto/J-7511-2012; Soares, Thereza/G-1065-2010; Inbeb, Inct/K-2317-2013 OI Lins, Roberto/0000-0002-3983-8025; Soares, Thereza/0000-0002-5891-6906; FU NIH National Institute of General Medical Sciences [R01GM080987]; Pacific Northwest National Laboratory; Brazilian National Council for Research and Development (CNPq) FX This work Was supported by the NIH National Institute of General Medical Sciences (Grant no. R01GM080987), the Laboratory Directed Research & Development program "Modeling Protein-Nanomaterial Interactions" funded by the Pacific Northwest National Laboratory, and the Brazilian National Council for Research and Development (CNPq). Computational resources were provided by the Environmental Molecular Sciences Laboratory at Pacific Northwest National Laboratory. Pacific Northwest National Laboratory is operated for DOE by Battelle. NR 74 TC 19 Z9 19 U1 1 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JAN 14 PY 2010 VL 114 IS 1 BP 531 EP 540 DI 10.1021/jp9083635 PG 10 WC Chemistry, Physical SC Chemistry GA 541GY UT WOS:000273404500063 PM 19938866 ER PT J AU Jeon, SH Xu, P Mack, NH Chiang, LY Brown, L Wang, HL AF Jeon, Sea-Ho Xu, Ping Mack, Nathan H. Chiang, Long Y. Brown, Leif Wang, Hsing-Lin TI Understanding and Controlled Growth of Silver Nanoparticles Using Oxidized N-Methyl-pyrrolidone as a Reducing Agent SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID POLY(VINYL PYRROLIDONE); REDUCTION; OXIDATION; SHAPE; MECHANISMS; PARTICLES; ROUTE; GOLD AB We report a facile synthesis of silver nanoparticles (AgNPs) by using a new reducing agent, pretreated N-methyl-pyrrolidone (NMP*). The resulting AgNPs are characterized by using UV-vis, TEM, and X-ray spectroscopy. These AgNPs exhibit strong surface enhanced Raman scattering response on addition of 4-mercaptobenzoic acid. A possible redox mechanism involving silver ion and NMP* was proposed. The oxidized species resulting from thermally treated NMP/O(2) were analyzed by nuclear magnetic resonance and gas chromatography techniques, and it was determined that 5-hydroxy-N-methyl-2-pyrrolidone played the role of reducing agent. The facile synthesis of functional metal nanoparticles via an environmentally friendly procedure with control in particle size, and understanding of the reaction mechanisms pave the ways to further developing metal nanoparticles for chemical and biological detections. C1 [Jeon, Sea-Ho; Xu, Ping; Mack, Nathan H.; Brown, Leif; Wang, Hsing-Lin] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Chiang, Long Y.] Univ Massachusetts, Dept Chem, Lowell, MA 01854 USA. [Xu, Ping] Harbin Inst Technol, Dept Chem, Harbin 150001, Peoples R China. RP Wang, HL (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM hwang@lanl.gov RI Xu, Ping/I-1910-2013 OI Xu, Ping/0000-0002-1516-4986 FU Laboratory Directed Research and Development (LDRD), DOE; BES Office of Science; National Nanotechnology Enterprise Development Center (NNEDC); U.S. Department of Energy; Center for Integrated Nanotechnologies [DE-AC52-06NA25396]; Sandia National Laboratories [DE-AC04-94AL85000] FX The authors acknowledge the financial support from Laboratory Directed Research and Development (LDRD) fund under the auspices of DOE, BES Office of Science, and the National Nanotechnology Enterprise Development Center (NNEDC). This work was performed in part at the U.S. Department of Energy, Center for Integrated Nanotechnologies, at Los Alamos National Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories (Contract DE-AC04-94AL85000). NR 26 TC 25 Z9 25 U1 1 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JAN 14 PY 2010 VL 114 IS 1 BP 36 EP 40 DI 10.1021/jp907757u PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 539PN UT WOS:000273268600006 ER PT J AU Wu, ZL Dai, S Overbury, SH AF Wu, Zili Dai, Sheng Overbury, Steven H. TI Multiwavelength Raman Spectroscopic Study of Silica-Supported Vanadium Oxide Catalysts SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID DIFFUSE-REFLECTANCE SPECTROSCOPY; TEMPERATURE-PROGRAMMED REDUCTION; OXIDATIVE DEHYDROGENATION; MOLECULAR-STRUCTURE; METHANOL OXIDATION; STRUCTURAL-CHARACTERIZATION; QUANTITATIVE-DETERMINATION; V2O5/SIO2 CATALYSTS; DYNAMIC STATES; V-51 NMR AB The molecular structure of silica-supported vanadium oxide (VO(x)) catalysts over wide range of surface VO(x) density (0.0002-8 V/nm(2)) has been investigated in detail under dehydrated conditions by in situ multiwavelength Raman spectroscopy (laser excitations at 244, 325, 442, 532, and 633 nm) and in situ UV-vis diffuse reflectance spectroscopy. Resonance Raman scattering is clearly observed using 244 and 325 nm excitations, whereas normal Raman scattering occurs using excitation at the three visible wavelengths. The observation of strong fundamentals, overtones, and combinational bands due to selective resonance enhancement effect helps clarify assignments of some of the VO(x) Raman bands (920, 1032, and 1060 cm(-1)) whose assignments have been controversial. The resonance Raman spectra of dehydrated VO(x)/SiO(2) show a V=O band at a smaller Raman shift than that in visible Raman spectra, an indication of the presence of two different surface VO(x) species on dehydrated SiO(2) even at submonolayer VO(x) loading. Quantitative estimation shows that the two different monomeric VO(x) species coexist on silica surface from very low VO(x) loadings and transform to crystalline V(2)O(5) at VO(x) loadings above the monolayer. It is postulated that one of the two monomeric VO(x) species has pyramidal structure and the other is in the partially hydroxylated pyramidal mode. The two VO(x) species show similar reduction-oxidation behavior and may both participate in redox reactions catalyzed by VO(x)/SiO(2) catalysts. This study demonstrates the advantages of multiwavelength Raman spectroscopy over conventional single-wavelength Raman spectroscopy in structural characterization of Supported metal-oxide catalysts. C1 [Wu, Zili; Dai, Sheng; Overbury, Steven H.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Wu, ZL (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM wuzl@ornl.gov RI Wu, Zili/F-5905-2012; Overbury, Steven/C-5108-2016; Dai, Sheng/K-8411-2015 OI Wu, Zili/0000-0002-4468-3240; Overbury, Steven/0000-0002-5137-3961; Dai, Sheng/0000-0002-8046-3931 FU Center for Nanophase Materials Sciences (CNMS); U.S. Department of Energy FX This research was supported by the Center for Nanophase Materials Sciences (CNMS), which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. We thank Dr. Ilia Ivanov at CNMS for help with the in situ UV-vis-DRS measurements. We are grateful for the fruitful discussion with Prof. Peter C. Stair at Northwestern University. NR 66 TC 46 Z9 46 U1 4 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JAN 14 PY 2010 VL 114 IS 1 BP 412 EP 422 DI 10.1021/jp9084876 PG 11 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 539PN UT WOS:000273268600058 ER PT J AU Zhou, YK Holme, T Berry, J Ohno, TR Ginley, D O'Hayre, R AF Zhou, Yingke Holme, Timothy Berry, Joe Ohno, Timothy R. Ginley, David O'Hayre, Ryan TI Dopant-Induced Electronic Structure Modification of HOPG Surfaces: Implications for High Activity Fuel Cell Catalysts SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; DIFFERENTIAL CAPACITANCE; CARBON FUNCTIONALITY; SUPPORT INTERACTIONS; PYROLYTIC-GRAPHITE; HYDROGEN ANODES; BAND-STRUCTURE; METHANOL AB N-doped graphite has been reported to provide enhanced catalytic properties as a support material for Pt catalysts in fuel cell applications. With use of a combined experimental and modeling approach, this work identifies the potential fundamental mechanisms for this enhancement effect. To ensure a well-defined experimental system, this work employs highly oriented pyrolitic graphite (HOPG) as a model analogue of the graphite support commonly used in fuel Cell applications. Undoped, Ar-doped, and N-doped HOPG substrates have been investigated via electrochemical capacitance and X-ray photoelectron spectroscopy (XPS) measurements. The results indicate that doping, especially N-doping, induces significant modification to the electronic structure of the HOPG surface. A simplified model of the doping effects and band structures for the doped graphite surfaces are proposed to explain these results. When Pt nanoparticles are grown on top of these dopant-modified HOPG surfaces, the resulting Pt/surface-defect interactions significantly impact the Pt nanoparticle nucleation, growth, and catalytic activity. C1 [Zhou, Yingke; O'Hayre, Ryan] Colorado Sch Mines, Dept Met & Mat Engn, Golden, CO 80401 USA. [Holme, Timothy] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. [Berry, Joe; Ginley, David] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Ohno, Timothy R.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. RP Zhou, YK (reprint author), Colorado Sch Mines, Dept Met & Mat Engn, 1500 Illinois St, Golden, CO 80401 USA. EM yzhou@mines.edu; rohayre@mines.edu RI O'Hayre, Ryan/A-8183-2009; Ohno, Timothy/J-9384-2014 FU U.S. Army Research Office [W911NF-07-1-0258]; AFOSR [FA9550-08-1-0007]; Petroleum Research Fund (ACS-PRF) FX This work is supported by the U.S. Army Research Office under grant no. W911NF-07-1-0258. The authors greatly thank Prof. Gerard P. Martins and Prof. Michael Kaufman at the MME department of CSM for many helpful discussions and suggestions. Partial support for this work is also provided by the AFOSR under grant no. FA9550-08-1-0007 and the Petroleum Research Fund (ACS-PRF). NR 56 TC 45 Z9 45 U1 0 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JAN 14 PY 2010 VL 114 IS 1 BP 506 EP 515 DI 10.1021/jp9088386 PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 539PN UT WOS:000273268600069 ER PT J AU Schmutz, J Cannon, SB Schlueter, J Ma, JX Mitros, T Nelson, W Hyten, DL Song, QJ Thelen, JJ Cheng, JL Xu, D Hellsten, U May, GD Yu, Y Sakurai, T Umezawa, T Bhattacharyya, MK Sandhu, D Valliyodan, B Lindquist, E Peto, M Grant, D Shu, SQ Goodstein, D Barry, K Futrell-Griggs, M Abernathy, B Du, JC Tian, ZX Zhu, LC Gill, N Joshi, T Libault, M Sethuraman, A Zhang, XC Shinozaki, K Nguyen, HT Wing, RA Cregan, P Specht, J Grimwood, J Rokhsar, D Stacey, G Shoemaker, RC Jackson, SA AF Schmutz, Jeremy Cannon, Steven B. Schlueter, Jessica Ma, Jianxin Mitros, Therese Nelson, William Hyten, David L. Song, Qijian Thelen, Jay J. Cheng, Jianlin Xu, Dong Hellsten, Uffe May, Gregory D. Yu, Yeisoo Sakurai, Tetsuya Umezawa, Taishi Bhattacharyya, Madan K. Sandhu, Devinder Valliyodan, Babu Lindquist, Erika Peto, Myron Grant, David Shu, Shengqiang Goodstein, David Barry, Kerrie Futrell-Griggs, Montona Abernathy, Brian Du, Jianchang Tian, Zhixi Zhu, Liucun Gill, Navdeep Joshi, Trupti Libault, Marc Sethuraman, Anand Zhang, Xue-Cheng Shinozaki, Kazuo Nguyen, Henry T. Wing, Rod A. Cregan, Perry Specht, James Grimwood, Jane Rokhsar, Dan Stacey, Gary Shoemaker, Randy C. Jackson, Scott A. TI Genome sequence of the palaeopolyploid soybean SO NATURE LA English DT Article ID PHYLOGENETIC ANALYSIS; GLYCINE-MAX; GENES; EVOLUTION; IDENTIFICATION; PROTEIN; PLANTS; DNA; DIVERSIFICATION; RESISTANCE AB Soybean (Glycine max) is one of the most important crop plants for seed protein and oil content, and for its capacity to fix atmospheric nitrogen through symbioses with soil-borne microorganisms. We sequenced the 1.1-gigabase genome by a whole-genome shotgun approach and integrated it with physical and high-density genetic maps to create a chromosome-scale draft sequence assembly. We predict 46,430 protein-coding genes, 70% more than Arabidopsis and similar to the poplar genome which, like soybean, is an ancient polyploid (palaeopolyploid). About 78% of the predicted genes occur in chromosome ends, which comprise less than one-half of the genome but account for nearly all of the genetic recombination. Genome duplications occurred at approximately 59 and 13 million years ago, resulting in a highly duplicated genome with nearly 75% of the genes present in multiple copies. The two duplication events were followed by gene diversification and loss, and numerous chromosome rearrangements. An accurate soybean genome sequence will facilitate the identification of the genetic basis of many soybean traits, and accelerate the creation of improved soybean varieties. C1 [Schlueter, Jessica; Ma, Jianxin; Futrell-Griggs, Montona; Abernathy, Brian; Du, Jianchang; Tian, Zhixi; Zhu, Liucun; Gill, Navdeep; Jackson, Scott A.] Purdue Univ, Dept Agron, W Lafayette, IN 47906 USA. [Schmutz, Jeremy; Sethuraman, Anand; Grimwood, Jane] HudsonAlpha Genome Sequencing Ctr, Huntsville, AL 35806 USA. [Schmutz, Jeremy; Hellsten, Uffe; Lindquist, Erika; Shu, Shengqiang; Goodstein, David; Barry, Kerrie; Grimwood, Jane; Rokhsar, Dan] Joint Genome Inst, Walnut Creek, CA 94598 USA. [Cannon, Steven B.; Peto, Myron; Grant, David; Shoemaker, Randy C.] ARS, USDA, Corn Insects & Crop Genet Res Unit, Ames, IA 50011 USA. [Schlueter, Jessica] Univ N Carolina, Dept Bioinformat & Genom, Charlotte, NC 28223 USA. [Mitros, Therese] Univ Calif Berkeley, Ctr Integrat Genom, Berkeley, CA 94720 USA. [Nelson, William] Univ Arizona, Inst BIO5, Arizona Genom Computat Lab, Tucson, AZ 85721 USA. [Hyten, David L.; Song, Qijian; Cregan, Perry] ARS, USDA, Soybean Genom & Improvement Lab, Beltsville, MD 20705 USA. [Song, Qijian] Univ Maryland, Dept Plant Sci & Landscape Architecture, College Pk, MD 20742 USA. [Thelen, Jay J.; Stacey, Gary] Univ Missouri, Christopher S Bond Life Sci Ctr 109, Div Biochem, Columbia, MO 65211 USA. [Thelen, Jay J.; Stacey, Gary] Univ Missouri, Christopher S Bond Life Sci Ctr 109, Interdisciplinary Plant Grp, Columbia, MO 65211 USA. [Cheng, Jianlin; Xu, Dong; Joshi, Trupti] Univ Missouri, Dept Comp Sci, Columbia, MO 65211 USA. [May, Gregory D.] Natl Ctr Genome Resources, Santa Fe, NM 87505 USA. [Yu, Yeisoo; Wing, Rod A.] Univ Arizona, Sch Plant Sci, Arizona Genom Inst, Tucson, AZ 85721 USA. [Sakurai, Tetsuya; Umezawa, Taishi; Shinozaki, Kazuo] RIKEN, Plant Sci Ctr, Yokohama, Kanagawa 2300045, Japan. [Bhattacharyya, Madan K.] Iowa State Univ, Dept Agron, Ames, IA 50011 USA. [Sandhu, Devinder] Univ Wisconsin, Dept Biol, Stevens Point, WI 54481 USA. [Valliyodan, Babu; Libault, Marc; Zhang, Xue-Cheng; Nguyen, Henry T.; Stacey, Gary] Univ Missouri, Div Plant Sci, Natl Ctr Soybean Biotechnol, Columbia, MO 65211 USA. [Specht, James] Univ Nebraska, Dept Agron & Hort, Lincoln, NE 68583 USA. RP Jackson, SA (reprint author), Purdue Univ, Dept Agron, 915 W State St, W Lafayette, IN 47906 USA. EM sjackson@purdue.edu RI Umezawa, Taishi/E-3028-2010; Schmutz, Jeremy/N-3173-2013; Sakurai, Tetsuya/B-2690-2010; Cheng, Jianlin/N-8209-2013; Shinozaki, Kazuo/G-4202-2013; OI Umezawa, Taishi/0000-0003-3750-0503; Schmutz, Jeremy/0000-0001-8062-9172; zhu, liucun/0000-0002-8334-0216; Hyten, David/0000-0001-6324-9389; Wing, Rod/0000-0001-6633-6226; Valliyodan, Babu/0000-0001-9457-9508 FU National Science Foundation [DBI-0421620, DBI-0501877, 082225]; United Soybean Board FX We thank N. Weeks for informatics support and C. Gunter for critical reading of the manuscript. We acknowledge funding from the National Science Foundation (DBI-0421620 to G. S.; DBI-0501877 and 082225 to S. A. J.) and the United Soybean Board. NR 44 TC 1467 Z9 1596 U1 28 U2 299 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD JAN 14 PY 2010 VL 463 IS 7278 BP 178 EP 183 DI 10.1038/nature08670 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 543MQ UT WOS:000273582700025 PM 20075913 ER PT J AU Iavarone, M Karapetrov, G Fedor, J Rosenmann, D Nishizaki, T Kobayashi, N AF Iavarone, M. Karapetrov, G. Fedor, J. Rosenmann, D. Nishizaki, T. Kobayashi, N. TI The local effect of magnetic impurities on superconductivity in CoxNbSe2 and MnxNbSe2 single crystals SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID ELECTRON-TUNNELING OBSERVATION; PARAMAGNETIC IMPURITIES; NBSE2; ALLOYS; STATES; ATOMS AB We investigate the effect of individual atomic impurities on the superconducting state that they are embedded in. Using low temperature scanning tunneling microscopy and spectroscopy we could identify Co and Mn atoms in the CoxNbSe2 and MnxNbSe2 single crystals and observe the influence on the local electronic density of states (LDOS) at 0.4 K. We find that Co is in the weak scattering limit. In this case the LDOS is quite homogeneous on the sample surface, despite the number of defects, and retains sharp coherent superconducting peaks. This is in strong contrast to the effects of Mn impurities, which locally destroy superconductivity. In this case the LDOS shows a strong enhancement of spectral weight inside the superconducting gap even far from the Mn atoms. Moreover, two impurity bound states are found within the superconducting gap at E/Delta(0) = 0.18 and 0.36 at locations close to defects. C1 [Iavarone, M.; Karapetrov, G.; Fedor, J.; Rosenmann, D.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Nishizaki, T.; Kobayashi, N.] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan. RP Iavarone, M (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM maria@anl.gov RI Kobayashi, Norio/C-1909-2009; Nishizaki, Terukazu/C-1500-2011; Karapetrov, Goran/C-2840-2008 OI Karapetrov, Goran/0000-0003-1113-0137 FU International Frontier Center for Advanced Materials (IFCAM) at Tohoku University, Japan (MI); Argonne National Laboratory ('Argonne'); US Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX The authors would like to thank K Matveev, A Koshelev and A Balatski for useful discussions. We also would like to acknowledge the support by the International Frontier Center for Advanced Materials (IFCAM) at Tohoku University, Japan (MI). This work as well as the use of the Center for Nanoscale Materials and the Electron Microscopy Center at Argonne National Laboratory was supported by UChicago Argonne, LLC, Operator of Argonne National Laboratory ('Argonne'). Argonne, a US Department of Energy Office of Science laboratory, is operated under contract no. DE-AC02-06CH11357. NR 33 TC 12 Z9 12 U1 2 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JAN 13 PY 2010 VL 22 IS 1 AR 015501 DI 10.1088/0953-8984/22/1/015501 PG 6 WC Physics, Condensed Matter SC Physics GA 534IV UT WOS:000272890700013 PM 21386227 ER PT J AU Vasiliev, A Volkova, O Presniakov, I Baranov, A Demazeau, G Broto, JM Millot, M Leps, N Klingeler, R Buchner, B Stone, MB Zheludev, A AF Vasiliev, A. Volkova, O. Presniakov, I. Baranov, A. Demazeau, G. Broto, J-M Millot, M. Leps, N. Klingeler, R. Buechner, B. Stone, M. B. Zheludev, A. TI Thermodynamic properties and neutron diffraction studies of silver ferrite AgFeO2 SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID TRIANGULAR-LATTICE ANTIFERROMAGNET; NOBLE METAL OXIDES; CUFEO2; SPIN; CHEMISTRY; BEHAVIOR; STATE; PHASE AB We present thermodynamic and neutron scattering data on silver ferrite AgFeO2. The data imply that strong magnetic frustration Theta/T-N similar to 10 and magnetic ordering arise via two successive phase transitions at T-2 = 7 K and T-1 = 16 K. At T < T-2, two metamagnetic phase transitions at B-1 similar to 14 T and B-2 similar to 30 T can be identified through the change of slope in the magnetization curve measured up to 53 T. These transitions roughly correspond to an eighth and a quarter of the saturation magnetizations. Unlike for the 'classical' delafossite CuFeO2, the wavevector of the magnetic structure is independent of temperature both at T < T-2 and at T-2 < T < T-1. C1 [Vasiliev, A.; Volkova, O.; Presniakov, I.; Baranov, A.] Moscow MV Lomonosov State Univ, Moscow 119991, Russia. [Baranov, A.; Demazeau, G.] Univ Bordeaux, CNRS, Inst Chim Matiere Condensee Bordeaux, F-33608 Pessac, France. [Broto, J-M; Millot, M.] Univ Toulouse, CNRS, UPR 3228, LNCMI, F-31400 Toulouse, France. [Leps, N.; Klingeler, R.; Buechner, B.] IFW Dresden, Leibniz Inst Solid State & Mat Res, D-01171 Dresden, Germany. [Stone, M. B.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Zheludev, A.] Swiss Fed Inst Technol Zurich, Neutron Scattering Lab, CH-5232 Villigen, Switzerland. [Zheludev, A.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. RP Vasiliev, A (reprint author), Moscow MV Lomonosov State Univ, Moscow 119991, Russia. RI Volkova, Olga/A-4072-2008; Stone, Matthew/G-3275-2011; Presniakov, Igor/B-8752-2009; Klingeler, Rudiger/E-5941-2010; Vasiliev, Alexander/A-7562-2008; Buchner, Bernd/E-2437-2016; OI Stone, Matthew/0000-0001-7884-9715; Klingeler, Rudiger/0000-0002-8816-9614; Buchner, Bernd/0000-0002-3886-2680; Millot, Marius/0000-0003-4414-3532 FU RFBR [07-02-00350, 07-02-92000]; DFG [436]; ISTC [3501]; EuroMagNet; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX This work was supported by RFBR grants 07-02-00350, 07-02-92000, DFG grant 436 RUS and ISTC grant 3501 and EuroMagNet. A portion of this Research at Oak Ridge National Laboratory's High Flux Isotope Reactor was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. NR 25 TC 14 Z9 14 U1 1 U2 28 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JAN 13 PY 2010 VL 22 IS 1 AR 016007 DI 10.1088/0953-8984/22/1/016007 PG 6 WC Physics, Condensed Matter SC Physics GA 534IV UT WOS:000272890700028 PM 21386242 ER PT J AU Phillips, AE Halder, GJ Chapman, KW Goodwin, AL Kepert, CJ AF Phillips, Anthony E. Halder, Gregory J. Chapman, Karena W. Goodwin, Andrew L. Kepert, Cameron J. TI Zero Thermal Expansion in a Flexible, Stable Framework: Tetramethylammonium Copper(I) Zinc(II) Cyanide SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID PRUSSIAN BLUE ANALOGS; DISPLACEMENT PARAMETERS; CADMIUM CYANIDE; TRANSITION; CRYSTALS; AG2O; ZN; CD AB Tetramethylammonium copper(I) zinc(II) cyanide, which consists of N(CH(3))(4)(+) ions trapped within a cristobalite-like metal cyanide framework, has been studied by variable-temperature powder and single-crystal X-ray diffraction. Its coefficient of thermal expansion is approximately zero over the temperature range 200-400 K and comparable with the best commercial zero thermal expansion materials. The atomic displacement parameters, apparent bond lengths, and structure of a low-temperature, low-symmetry phase reveal that the low-energy vibrational modes responsible for this behavior maintain approximately rigid Zn coordination tetrahedra but involve significant distortion of their Cu counterparts. C1 [Phillips, Anthony E.; Halder, Gregory J.; Goodwin, Andrew L.; Kepert, Cameron J.] Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia. [Phillips, Anthony E.] Univ Cambridge, Cavendish Lab, Dept Phys, Cambridge CB3 0HE, England. [Halder, Gregory J.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Chapman, Karena W.] Argonne Natl Lab, Xray Sci Div, Adv Photon Source, Argonne, IL 60439 USA. [Goodwin, Andrew L.] Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England. RP Kepert, CJ (reprint author), Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia. EM c.kepert@chem.usyd.edu.au RI Phillips, Anthony/E-4846-2012; Chapman, Karena/G-5424-2012; Halder, Gregory/C-5357-2013; Goodwin, Andrew/A-5256-2016; OI Phillips, Anthony/0000-0003-4225-0158; Goodwin, Andrew/0000-0001-9231-3749; Kepert, Cameron/0000-0002-6105-9706 FU ARC [DP0664834, DP0985611]; Australian Synchrotron Research Program; Commonwealth of Australia under the Major National Research Facilities Program; U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-AC02-06CH11357] FX We thank J. J. Chadbourne for making TGA measurements. This work was supported by ARC Discovery Project Grants DP0664834 and DP0985611 and by the Australian Synchrotron Research Program, which is funded by the Commonwealth of Australia under the Major National Research Facilities Program. Work done at Argonne National Laboratory and use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 20 TC 42 Z9 42 U1 6 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JAN 13 PY 2010 VL 132 IS 1 BP 10 EP + DI 10.1021/ja906895j PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 562VW UT WOS:000275084400005 PM 20014833 ER PT J AU Hornes, A Hungria, AB Bera, P Camara, AL Fernandez-Garcia, M Martinez-Arias, A Barrio, L Estrella, M Zhou, G Fonseca, JJ Hanson, JC Rodriguez, JA AF Hornes, A. Hungria, A. B. Bera, P. Lopez Camara, A. Fernandez-Garcia, M. Martinez-Arias, A. Barrio, L. Estrella, M. Zhou, G. Fonseca, J. J. Hanson, J. C. Rodriguez, J. A. TI Inverse CeO2/CuO Catalyst As an Alternative to Classical Direct Configurations for Preferential Oxidation of CO in Hydrogen-Rich Stream SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CUO-CEO2 CATALYSTS; CARBON-MONOXIDE; REDUCTION; SUBOXIDES; CUO/CEO2; OXIDES; OXYGEN; CU2O; GAS; CUO AB A novel inverse CeO2/CuO catalyst for preferential oxidation of CO in H-2-rich stream (CO-PROX) has been developed on the basis of a hypothesis extracted from previous work of the group (JACS 2007, 129, 12064). Possible separation of the two competing oxidation reactions involved in the process (of CO and H-2, respectively) is the key to modulation of overall CO-PROX activity and is based on involvement of different sites as most active ones for each of the two reactions. Achievement of large size CuO particles and adequate CeO2-CuO interfacial configurations in the inverse catalyst apparently allows appreciable enhancement of the catalytic properties of this kind of system for CO-PROX, constituting an interesting alternative to classic direct configurations so far explored for this process. Reasons for such behavior are analyzed on the basis of operando-XRD, -XAFS, and -DRIFTS studies. C1 [Hornes, A.; Bera, P.; Lopez Camara, A.; Fernandez-Garcia, M.; Martinez-Arias, A.] CSIC, Inst Catalisis & Petroleoquim, Madrid 28049, Spain. [Hungria, A. B.] Univ Cadiz, Fac Ciencias, Dept Ciencia Mat Ingn Met & Quim Inorgan, Cadiz 11510, Spain. [Barrio, L.; Estrella, M.; Zhou, G.; Fonseca, J. J.; Hanson, J. C.; Rodriguez, J. A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Martinez-Arias, A (reprint author), CSIC, Inst Catalisis & Petroleoquim, C Marie Curie 2,Campus Cantoblanco, Madrid 28049, Spain. EM amartinez@icp.csic.es RI Estrella, Michael/G-3188-2010; Barrio, Laura/A-9509-2008; Zhou, Gong/C-7085-2009; Bera, Parthasarathi/E-6157-2013; Fernandez-Garcia, Marcos/A-8122-2014; Hungria, Ana/I-8739-2014; Hornes, Aitor/B-2281-2009; Hanson, jonathan/E-3517-2010 OI Barrio, Laura/0000-0003-3496-4329; Hungria, Ana/0000-0002-4622-6967; Hornes, Aitor/0000-0002-0970-4595; FU Marie Curie International Incoming Fellowship; Comunidad de Madrid [ENERCAM S-0505/ENE/000304]; MICINN [CTQ2006-15600/BQU, CTQ2009-14527/BQU]; U.S. Department of Energy [DE-AC02-98CH10086]; FP7 People program under the project Marie Curie [IOF-219674] FX A.H. and A.L.C. thank the MICINN and CSIC for FPU and JAE grants, respectively. P.B. thanks the sixth EC Framework Programme for a Marie Curie International Incoming Fellowship. Financial support by Comunidad de Madrid (ENERCAM S-0505/ENE/000304) and MICINN (CTQ2006-15600/BQU and CTQ2009-14527/BQU) is acknowledged. The work at BNL was financed by the U.S. Department of Energy (DE-AC02-98CH10086). L.B. acknowledges funding by the FP7 People program under the project Marie Curie IOF-219674. NR 17 TC 107 Z9 113 U1 19 U2 168 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JAN 13 PY 2010 VL 132 IS 1 BP 34 EP + DI 10.1021/ja9089846 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 562VW UT WOS:000275084400017 PM 20014841 ER PT J AU Mulvihill, MJ Ling, XY Henzie, J Yang, PD AF Mulvihill, Martin J. Ling, Xing Yi Henzie, Joel Yang, Peidong TI Anisotropic Etching of Silver Nanoparticles for Plasmonic Structures Capable of Single-Particle SERS SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ENHANCED RAMAN-SCATTERING; OPTICAL-PROPERTIES; GOLD NANOPARTICLES; NANO-HEXAPODS; SURFACE; SPECTROSCOPY; NANOCRYSTALS; MOLECULES; NANOSHELLS; DEPENDENCE AB The understanding of the localized surface plasmons (LSPs) that occur at the geometrically bounded surface of metal nanoparticles continues to advance as new and more complex nanostructures are found. It has been shown that the oscillation of electrons at the metal dielectric interface is strongly dependent on the size, symmetry, and proximity of nanoparticles. Here, we present a new method to chemically control the shape of silver nanocrystals by using a highly anisotropic etching process. Tuning of the etchant strength and reaction conditions allows the preparation of new nanoparticle shapes in high yield and purity, which cannot be synthesized with conventional nanocrystal growth methods. The etching process produces intraparticle gaps, which introduce modified plasmonic characteristics and significant scattering intensity in the near-infrared. These new silver particles serve as excellent substrates for wavelength-tunable, single-particle surface enhanced Raman spectroscopy (spSERS). C1 [Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Yang, PD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM p_yang@berkeley.edu RI Mulvihill, Martin/E-8009-2012; Ling, Xing Yi/H-9755-2012; Henzie, Joel/B-9564-2013; Henzie, Joel/E-2332-2015 OI Mulvihill, Martin/0000-0002-6354-828X; Ling, Xing Yi/0000-0001-5495-6428; Henzie, Joel/0000-0002-9190-2645; Henzie, Joel/0000-0002-9190-2645 FU DARPA SERS; Superfund Office of Basic Research; Netherlands Organization for Scientific Research (NWO) FX ne authors acknowledge the DARPA SERS program for funding. Martin Mulvihill also acknowledges financial support from the Superfund Office of Basic Research and Xing Yi Ling thanks the Rubicon grant from Netherlands Organization for Scientific Research (NWO) for the financial support. The authors would like to thanks Dr. Dan Gargas for helpful discussions and assistance editing the manuscript. Additionally the authors thank Jean Benjauthrit for her assistance during the early stages of this project. NR 39 TC 270 Z9 272 U1 26 U2 272 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JAN 13 PY 2010 VL 132 IS 1 BP 268 EP 274 DI 10.1021/ja906954f PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 562VW UT WOS:000275084400060 PM 20000421 ER PT J AU Rupich, SM Shevchenko, EV Bodnarchuk, MI Lee, B Talapin, DV AF Rupich, Sara M. Shevchenko, Elena V. Bodnarchuk, Maryna I. Lee, Byeongdu Talapin, Dmitri V. TI Size-Dependent Multiple Twinning in Nanocrystal Superlattices SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID STACKING-FAULT ENERGIES; NANOPARTICLE SUPERLATTICES; SMALL PARTICLES; ELECTRON-MICROSCOPY; COLLOIDAL CRYSTALS; HIGH-RESOLUTION; PHASE SYNTHESIS; FINE PARTICLES; GOLD; SILVER AB We report a size-dependent change in the morphology of superlattices self-assembled from monodisperse colloidal PbS nanocrystals. Superlattices of large (>7 nm) PbS nanocrystals showed a strong tendency to form multiply twinned face-centered cubic superlattices with decahedral and icosahedral symmetry, exhibiting crystallographically forbidden five-fold symmetry elements. On the other hand, superlattices of small (<4 nm) PbS nanocrystals exhibited no twinning. To explain such a dramatic difference in the twinning probability, we showed that twinning energy in a nanocrystal superlattice is strongly size-dependent. In addition, the interparticle potentials acting during the self-assembly process are "softer" in the case of larger PbS nanocrystals, thus favoring the formation of multiply twinned superlattices. Our work introduces a new class of materials exhibiting multiple twinning, while offering flexibility in designing interparticle potentials. C1 [Rupich, Sara M.; Bodnarchuk, Maryna I.; Talapin, Dmitri V.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Shevchenko, Elena V.; Talapin, Dmitri V.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Lee, Byeongdu] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Talapin, DV (reprint author), Univ Chicago, Dept Chem, 5735 S Ellis Ave, Chicago, IL 60637 USA. EM dvtalapin@uchicago.edu OI Lee, Byeongdu/0000-0003-2514-8805 FU NSF MRSEC [DMR-0213745]; NSF CAREER [DMR-0847535]; U.S. Department of Energy [DE-AC02-06CH157] FX We thank M. Kovalenko, T. Witten, E. Wong, and B. Spokoyny (University of Chicago) for stimulating discussions. D.V.T. acknowledges support from the NSF MRSEC Program under Award No. DMR-0213745 and NSF CAREER under Award No. DMR-0847535. The work at the Center for Nanoscale Materials (ANL) was supported by the U.S. Department of Energy under Contract DE-AC02-06CH157. NR 57 TC 65 Z9 65 U1 6 U2 76 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JAN 13 PY 2010 VL 132 IS 1 BP 289 EP 296 DI 10.1021/ja9074425 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 562VW UT WOS:000275084400063 PM 19968283 ER EF