FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Green, JR Jellinek, J Berry, RS AF Green, Jason R. Jellinek, Julius Berry, R. Stephen TI Space-time properties of Gram-Schmidt vectors in classical Hamiltonian evolution SO PHYSICAL REVIEW E LA English DT Article DE atomic clusters; chaos; many-body problems; nonlinear dynamical systems; potential energy surfaces; statistical mechanics; vectors ID LOCAL LYAPUNOV EXPONENTS; LENNARD-JONES CLUSTERS; PROBABILITY-DISTRIBUTIONS; LIAPUNOV EXPONENTS; SINGULAR VECTORS; CHAOTIC DYNAMICS; SYSTEMS; FLUIDS; LOCALIZATION; EQUILIBRIUM AB Not all tangent space directions play equivalent roles in the local chaotic motions of classical Hamiltonian many-body systems. These directions are numerically represented by basis sets of mutually orthogonal Gram-Schmidt vectors, whose statistical properties may depend on the chosen phase space-time domain of a trajectory. We examine the degree of stability and localization of Gram-Schmidt vector sets simulated with trajectories of a model three-atom Lennard-Jones cluster. Distributions of finite-time Lyapunov exponent and inverse participation ratio spectra formed from short-time histories reveal that ergodicity begins to emerge on different time scales for trajectories spanning different phase-space regions, in a narrow range of total energy and history length. Over a range of history lengths, the most localized directions were typically the most unstable and corresponded to atomic configurations near potential landscape saddles. C1 [Green, Jason R.] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England. [Green, Jason R.; Jellinek, Julius] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Green, Jason R.; Berry, R. Stephen] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Green, Jason R.; Berry, R. Stephen] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. RP Green, JR (reprint author), Univ Cambridge, Dept Chem, Lensfield Rd, Cambridge CB2 1EW, England. EM jg525@cam.ac.uk; jellinek@anl.gov; berry@uchicago.edu RI Green, Jason/C-5432-2009 FU National Science Foundation [OISE-0700911]; Argonne National Laboratory/University of Chicago Joint Theory Institute; Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, U.S. Department of Energy [DE-AC-02-06CH11357] FX J.R.G. acknowledges support from the National Science Foundation (Grant No. OISE-0700911), the Argonne National Laboratory/University of Chicago Joint Theory Institute, and helpful discussions with David J. Wales. J. J. was supported by the Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, U.S. Department of Energy under Contract No. DE-AC-02-06CH11357. NR 42 TC 8 Z9 8 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD DEC PY 2009 VL 80 IS 6 AR 066205 DI 10.1103/PhysRevE.80.066205 PN 2 PG 10 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 539BI UT WOS:000273228000040 PM 20365252 ER PT J AU Kugland, NL Gregori, G Bandyopadhyay, S Brenner, CM Brown, CRD Constantin, C Glenzer, SH Khattak, FY Kritcher, AL Niemann, C Otten, A Pasley, J Pelka, A Roth, M Spindloe, C Riley, D AF Kugland, N. L. Gregori, G. Bandyopadhyay, S. Brenner, C. M. Brown, C. R. D. Constantin, C. Glenzer, S. H. Khattak, F. Y. Kritcher, A. L. Niemann, C. Otten, A. Pasley, J. Pelka, A. Roth, M. Spindloe, C. Riley, D. TI Evolution of elastic x-ray scattering in laser-shocked warm dense lithium SO PHYSICAL REVIEW E LA English DT Article DE foils; ionisation; lithium; plasma diagnostics; plasma heating by laser; plasma shock waves; plasma simulation ID ONE-COMPONENT PLASMA; STATISTICAL-MECHANICS; THOMSON SCATTERING; MONTE-CARLO; MATTER; ENERGY; EQUATION; CODE AB We have studied the dynamics of warm dense Li with near-elastic x-ray scattering. Li foils were heated and compressed using shock waves driven by 4-ns-long laser pulses. Separate 1-ns-long laser pulses were used to generate a bright source of 2.96 keV Cl Ly-alpha photons for x-ray scattering, and the spectrum of scattered photons was recorded at a scattering angle of 120 degrees using a highly oriented pyrolytic graphite crystal operated in the von Hamos geometry. A variable delay between the heater and backlighter laser beams measured the scattering time evolution. Comparison with radiation-hydrodynamics simulations shows that the plasma is highly coupled during the first several nanoseconds, then relaxes to a moderate coupling state at later times. Near-elastic scattering amplitudes have been successfully simulated using the screened one-component plasma model. Our main finding is that the near-elastic scattering amplitudes are quite sensitive to the mean ionization state Z and by extension to the choice of ionization model in the radiation-hydrodynamics simulations used to predict plasma properties within the shocked Li. C1 [Kugland, N. L.; Constantin, C.; Niemann, C.] Univ Calif Los Angeles, Dept Phys, Los Angeles, CA 90095 USA. [Kugland, N. L.; Glenzer, S. H.; Kritcher, A. L.; Niemann, C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Gregori, G.] Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England. [Bandyopadhyay, S.; Brenner, C. M.; Spindloe, C.] Rutherford Appleton Lab, CLF, Chilton OX11 0QX, Didcot, England. [Brenner, C. M.] Univ Strathclyde, Dept Phys, SUPA, Glasgow G4 0NG, Lanark, Scotland. [Brown, C. R. D.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England. [Brown, C. R. D.] AWE Plc, Reading RG7 4PR, Berks, England. [Khattak, F. Y.] Kohat Univ Sci & Technol, Dept Phys, Kohat 26000, Nwfp, Pakistan. [Kritcher, A. L.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94709 USA. [Otten, A.; Pelka, A.; Roth, M.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. [Pasley, J.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. [Riley, D.] Queens Univ Belfast, Sch Math & Phys, Belfast BT7 1NN, Antrim, North Ireland. RP Kugland, NL (reprint author), Univ Calif Los Angeles, Dept Phys, Los Angeles, CA 90095 USA. RI KHATTAK, Fida Younus/L-2404-2015; Brennan, Patricia/N-3922-2015; OI Brenner, Ceri/0000-0003-0347-4415 FU LDRD [08-ERI-002, 08-LW-004]; U.S. Department of Energy by the Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; LLNL Lawrence Scholar Program; Science and Technology Facilities Council of the United Kingdom; EPSRC [EP/G007187/1, EP/C001869/1]; German BMBF FX We would like to thank the staff of the RAL CLF for their assistance. The work of N.L.K., A. L. K., and S. H. G. was supported by LDRD Grants No. 08-ERI-002 and No. 08-LW-004, and was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. We also acknowledge support from the LLNL Lawrence Scholar Program. G. G. was partially supported by the Science and Technology Facilities Council of the United Kingdom and by EPSRC Grant No. EP/G007187/1. A.O. was supported by the German BMBF. F.Y.K and D. R. were supported by EPSRC Grant No. EP/C001869/1. NR 51 TC 5 Z9 5 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD DEC PY 2009 VL 80 IS 6 AR 066406 DI 10.1103/PhysRevE.80.066406 PN 2 PG 10 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 539BI UT WOS:000273228000073 PM 20365285 ER PT J AU Larkin, J Bandi, MM Pumir, A Goldburg, WI AF Larkin, Jason Bandi, M. M. Pumir, Alain Goldburg, Walter I. TI Power-law distributions of particle concentration in free-surface flows SO PHYSICAL REVIEW E LA English DT Article DE probability; turbulence ID TURBULENCE; RANGE AB Particles floating on the surface of a turbulent incompressible fluid accumulate along string-like structures, while leaving large regions of the flow domain empty. This is reflected experimentally by a very peaked probability distribution function of c(r), the coarse-grained particle concentration at scale r, around c(r)=0, with a power-law decay over two decades of c(r), Pi(c(r))proportional to c(r)(r)(-beta). The positive exponent beta(r) decreases with scale in the inertial range and stays approximately constant in the dissipative range, thus, indicating a qualitative difference between the dissipative and the inertial ranges of scales, also visible in the first moment of c(r). C1 [Larkin, Jason; Goldburg, Walter I.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Bandi, M. M.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Bandi, M. M.] Los Alamos Natl Lab, Condensed Matter & Thermal Phys Grp, Los Alamos, NM 87545 USA. [Pumir, Alain] Ecole Normale Super Lyon, Phys Lab, F-69364 Lyon, France. RP Larkin, J (reprint author), Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. FU U.S. National Science Foundation [DMR-0604477]; French ANR; IDRIS; U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX We acknowledge very helpful discussions with G. Falkovich and K. Gawedzki. Funding was provided by the U.S. National Science Foundation Grant No. DMR-0604477 and by the French ANR (contract DSPET) and by IDRIS. This work was partially carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. NR 22 TC 5 Z9 5 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD DEC PY 2009 VL 80 IS 6 AR 066301 DI 10.1103/PhysRevE.80.066301 PN 2 PG 5 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 539BI UT WOS:000273228000049 PM 20365261 ER PT J AU Mau, Y Hagberg, A Meron, E AF Mau, Yair Hagberg, Aric Meron, Ehud TI Dual-mode spiral vortices SO PHYSICAL REVIEW E LA English DT Article DE bifurcation; chaos; oscillations; pattern formation; spatiotemporal phenomena; vortices ID GINZBURG-LANDAU EQUATION; LOCALIZED STRUCTURES; SPATIOTEMPORAL PATTERNS; HOPF BIFURCATIONS; TURING PATTERNS; SYSTEM; BIRHYTHMICITY; INSTABILITIES; CONVECTION; DESIGN AB We show that spiral vortices in oscillatory systems can lose stability to secondary modes to form dual-mode spiral vortices. The secondary modes grow at the vortex core where the oscillation amplitude vanishes but are nonlinearly damped by the oscillatory mode away from the core. Gradients of the oscillation phase, induced by the hosted secondary mode, can lead to additional hosting events that culminate in periodic core oscillations or in a novel form of spatiotemporal chaos. The results of this study apply to physical, chemical, and biological systems that go through cusp-Hopf, fold-Hopf, and Hopf-Turing bifurcations. C1 [Mau, Yair; Meron, Ehud] Ben Gurion Univ Negev, Dept Phys, IL-84105 Beer Sheva, Israel. [Hagberg, Aric] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Meron, Ehud] Ben Gurion Univ Negev, BIDR, Dept Solar Energy & Environm Phys, IL-84990 Sede Boqer, Israel. RP Mau, Y (reprint author), Ben Gurion Univ Negev, Dept Phys, IL-84105 Beer Sheva, Israel. RI MERON, EHUD/F-1810-2012; Mau, Yair/A-9673-2013 NR 25 TC 5 Z9 5 U1 2 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD DEC PY 2009 VL 80 IS 6 AR 065203 DI 10.1103/PhysRevE.80.065203 PN 2 PG 4 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 539BI UT WOS:000273228000008 PM 20365220 ER PT J AU Oppelstrup, T Bulatov, VV Donev, A Kalos, MH Gilmer, GH Sadigh, B AF Oppelstrup, Tomas Bulatov, Vasily V. Donev, Aleksandar Kalos, Malvin H. Gilmer, George H. Sadigh, Babak TI First-passage kinetic Monte Carlo method SO PHYSICAL REVIEW E LA English DT Article DE Brownian motion; Green's function methods; Monte Carlo methods; N-body problems; reaction-diffusion systems ID 2-SPECIES ANNIHILATION; STOCHASTIC SIMULATION; DIFFUSION; ALGORITHMS; MODELS AB We present an efficient method for Monte Carlo simulations of diffusion-reaction processes. Introduced by us in a previous paper [Phys. Rev. Lett. 97, 230602 (2006)], our algorithm skips the traditional small diffusion hops and propagates the diffusing particles over long distances through a sequence of superhops, one particle at a time. By partitioning the simulation space into nonoverlapping protecting domains each containing only one or two particles, the algorithm factorizes the N-body problem of collisions among multiple Brownian particles into a set of much simpler single-body and two-body problems. Efficient propagation of particles inside their protective domains is enabled through the use of time-dependent Green's functions (propagators) obtained as solutions for the first-passage statistics of random walks. The resulting Monte Carlo algorithm is event-driven and asynchronous; each Brownian particle propagates inside its own protective domain and on its own time clock. The algorithm reproduces the statistics of the underlying Monte Carlo model exactly. Extensive numerical examples demonstrate that for an important class of diffusion-reaction models the algorithm is efficient at low particle densities, where other existing algorithms slow down severely. C1 [Oppelstrup, Tomas; Bulatov, Vasily V.; Donev, Aleksandar; Kalos, Malvin H.; Gilmer, George H.; Sadigh, Babak] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Oppelstrup, Tomas] Royal Inst Technol KTH, S-10044 Stockholm, Sweden. [Donev, Aleksandar] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Computat Sci & Engn, Berkeley, CA 94720 USA. RP Oppelstrup, T (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. NR 21 TC 28 Z9 28 U1 2 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD DEC PY 2009 VL 80 IS 6 AR 066701 DI 10.1103/PhysRevE.80.066701 PN 2 PG 14 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 539BI UT WOS:000273228000084 PM 20365296 ER PT J AU Weinstein, M Horn, D AF Weinstein, Marvin Horn, David TI Dynamic quantum clustering: A method for visual exploration of structures in data SO PHYSICAL REVIEW E LA English DT Article DE eigenvalues and eigenfunctions; Schrodinger equation; wave functions ID DIFFUSION MAPS AB A given set of data points in some feature space may be associated with a Schroumldinger equation whose potential is determined by the data. This is known to lead to good clustering solutions. Here we extend this approach into a full-fledged dynamical scheme using a time-dependent Schroumldinger equation. Moreover, we approximate this Hamiltonian formalism by a truncated calculation within a set of Gaussian wave functions (coherent states) centered around the original points. This allows for analytic evaluation of the time evolution of all such states opening up the possibility of exploration of relationships among data points through observation of varying dynamical distances among points and convergence of points into clusters. This formalism may be further supplemented by preprocessing such as dimensional reduction through singular-value decomposition or feature filtering. C1 [Weinstein, Marvin] Stanford Linear Accelerator Ctr, Stanford, CA 94025 USA. [Horn, David] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. RP Weinstein, M (reprint author), Stanford Linear Accelerator Ctr, Stanford, CA 94025 USA. FU U.S. DOE [DE-AC02-76SF00515] FX This work was supported by the U.S. DOE under Contract No. DE-AC02-76SF00515. NR 14 TC 10 Z9 10 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD DEC PY 2009 VL 80 IS 6 AR 066117 DI 10.1103/PhysRevE.80.066117 PN 2 PG 10 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 539BI UT WOS:000273228000029 PM 20365241 ER PT J AU Widmer-Cooper, A Harrowell, P AF Widmer-Cooper, Asaph Harrowell, Peter TI Central role of thermal collective strain in the relaxation of structure in a supercooled liquid SO PHYSICAL REVIEW E LA English DT Article DE glass transition; liquid mixtures; liquid theory; molecular dynamics method; plastic flow; stress relaxation; supercooling ID DYNAMICS; GLASS; DEFORMATION; MIXTURE; FLOW AB The spatial distribution of structural relaxation in a supercooled liquid is studied using molecular dynamics simulations of a two-dimensional binary mixture. It is shown that the spatial heterogeneity of the relaxation along with the time scale of the relaxation is determined, not by the frequency with which particles move a distance pi/2k(Bragg), but by the frequency with which particles can achieve persistent displacements. We show that these persistent displacements are achieved through the coupled action of local reorganizations and unrecoverable thermal strains. C1 [Widmer-Cooper, Asaph; Harrowell, Peter] Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia. [Widmer-Cooper, Asaph] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Widmer-Cooper, A (reprint author), Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia. RI Widmer-Cooper, Asaph/E-6923-2010 OI Widmer-Cooper, Asaph/0000-0001-5459-6960 NR 36 TC 10 Z9 10 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD DEC PY 2009 VL 80 IS 6 AR 061501 DI 10.1103/PhysRevE.80.061501 PN 1 PG 6 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 539BD UT WOS:000273227500073 PM 20365173 ER PT J AU Balbekov, V AF Balbekov, V. TI Transverse modes of a bunched beam with space charge dominated impedance SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB Transverse coherent oscillations of a bunched beam in a ring accelerator are considered with space charge dominated impedance, taking into account linear synchrotron oscillations. A general equation of the bunch eigenmodes is derived, its exact analytical solution is presented for boxcar bunch, and numerical solutions are found for several realistic models. Both low and high synchrotron frequency approximations are considered and compared, fields of their applicability are determined, and some estimations are developed in the intermediate region. It is shown that most of the bunch eigenmodes are stabilized by Landau damping due to the space charge produced tune spread. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Balbekov, V (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM balbekov@fnal.gov NR 11 TC 10 Z9 10 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD DEC PY 2009 VL 12 IS 12 AR 124402 DI 10.1103/PhysRevSTAB.12.124402 PG 11 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 540LR UT WOS:000273333600010 ER PT J AU Franchetti, G Hofmann, I Fischer, W Zimmermann, F AF Franchetti, G. Hofmann, I. Fischer, W. Zimmermann, F. TI Incoherent effect of space charge and electron cloud SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID RESONANCES; RINGS AB Trapping by resonances or scattering off resonances induced by space charge (SC) or electron cloud (EC) in conjunction with synchrotron motion can explain observations of slow beam loss and emittance growth, which are often accompanied by changes in the longitudinal beam profile. In this paper we review the recent progress in understanding and modeling of the underlying mechanisms, highlight the differences and similarities between space charge and electron cloud, and discuss simulation results in the light of experimental observations, e. g., at GSI, CERN, and BNL. In particular, we address the role of the pinched electrons and describe in detail the complexity of the electron pinch formation. We present simulation results within a dipole or in a field-free region of the beam pipe, which reveal the morphology and main features of this phenomenon, explain the physical origin of the complex electron structures like stripe in either field configuration, and discuss the dependence on some key parameters. C1 [Franchetti, G.; Hofmann, I.] GSI, D-64291 Darmstadt, Germany. [Fischer, W.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Zimmermann, F.] CERN, CH-1211 Geneva, Switzerland. RP Franchetti, G (reprint author), GSI, D-64291 Darmstadt, Germany. NR 51 TC 11 Z9 11 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD DEC PY 2009 VL 12 IS 12 AR 124401 DI 10.1103/PhysRevSTAB.12.124401 PG 18 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 540LR UT WOS:000273333600009 ER PT J AU Jing, C Gao, F Antipov, S Yusof, Z Conde, M Power, JG Xu, P Zheng, S Chen, H Tang, C Gai, W AF Jing, C. Gao, F. Antipov, S. Yusof, Z. Conde, M. Power, J. G. Xu, P. Zheng, S. Chen, H. Tang, C. Gai, W. TI Observation of wakefields in a beam-driven photonic band gap accelerating structure SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB Wakefield excitation has been experimentally studied in a three-cell X-band standing wave photonic band gap (PBG) accelerating structure. Major monopole (TM(01)- and TM(02)-like) and dipole (TM(11)- and TM(12)-like) modes were identified and characterized by precisely controlling the position of beam injection. The quality factor Q of the dipole modes was measured to be similar to 10 times smaller than that of the accelerating mode. A charge sweep, up to 80 nC, has been performed, equivalent to similar to 30 MV/m accelerating field on axis. A variable delay low charge witness bunch following a high charge drive bunch was used to calibrate the gradient in the PBG structure by measuring its maximum energy gain and loss. Experimental results agree well with numerical simulations. C1 [Jing, C.; Gao, F.; Antipov, S.; Yusof, Z.; Conde, M.; Power, J. G.; Gai, W.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Jing, C.; Gao, F.] Euclid Techlabs LLC, Solon, OH 44139 USA. [Xu, P.; Zheng, S.; Chen, H.; Tang, C.] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. RP Jing, C (reprint author), Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. FU Department of Energy, High Energy Physics Division [DE-AC02-06CH11357] FX This work was supported by the Department of Energy, High Energy Physics Division, under Contract No. DE-AC02-06CH11357. We thank Huyu (Allen) Zhao, James Zmuda, and Marvin Lien for their work in building the stepping motor-driven translation stage. NR 21 TC 17 Z9 17 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD DEC PY 2009 VL 12 IS 12 AR 121302 DI 10.1103/PhysRevSTAB.12.121302 PG 5 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 540LR UT WOS:000273333600007 ER PT J AU Leemann, SC Andersson, A Eriksson, M Lindgren, LJ Wallen, E Bengtsson, J Streun, A AF Leemann, S. C. Andersson, A. Eriksson, M. Lindgren, L. -J. Wallen, E. Bengtsson, J. Streun, A. TI Beam dynamics and expected performance of Sweden's new storage-ring light source: MAX IV SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID EMITTANCE; LATTICE AB MAX IV will be Sweden's next-generation high-performance synchrotron radiation source. The project has recently been granted funding and construction is scheduled to begin in 2010. User operation for a broad and international user community should commence in 2015. The facility is comprised of two storage rings optimized for different wavelength ranges, a linac-based short-pulse facility and a free-electron laser for the production of coherent radiation. The main radiation source of MAX IV will be a 528 m ultralow emittance storage ring operated at 3 GeV for the generation of high-brightness hard x rays. This storage ring was designed to meet the requirements of state-of-the-art insertion devices which will be installed in nineteen 5 m long dispersion-free straight sections. The storage ring is based on a novel multibend achromat design delivering an unprecedented horizontal bare lattice emittance of 0.33 nm rad and a vertical emittance below the 8 pm rad diffraction limit for 1 angstrom radiation. In this paper we present the beam dynamics considerations behind this storage-ring design and detail its expected unique performance. C1 [Leemann, S. C.; Andersson, A.; Eriksson, M.; Lindgren, L. -J.; Wallen, E.] Lund Univ, Max Lab, S-22363 Lund, Sweden. [Bengtsson, J.] Brookhaven Natl Lab, NSLS 2, Upton, NY 11973 USA. [Streun, A.] Paul Scherrer Inst, SLS, CH-5232 Villigen, Switzerland. RP Leemann, SC (reprint author), Lund Univ, Max Lab, S-22363 Lund, Sweden. EM simon.leemann@maxlab.lu.se NR 47 TC 40 Z9 40 U1 4 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD DEC PY 2009 VL 12 IS 12 AR 120701 DI 10.1103/PhysRevSTAB.12.120701 PG 15 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 540LR UT WOS:000273333600003 ER PT J AU Rihaoui, M Piot, P Power, JG Yusof, Z Gai, W AF Rihaoui, M. Piot, P. Power, J. G. Yusof, Z. Gai, W. TI Observation and simulation of space-charge effects in a radio-frequency photoinjector using a transverse multibeamlet distribution SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID EMITTANCE GROWTH; ELECTRON-BEAM AB We report on an experimental study of space-charge effects in a radio-frequency (rf) photoinjector. A 5 MeV electron bunch, consisting of a number of beamlets separated transversely, was generated in an rf photocathode gun and propagated in the succeeding drift space. The collective interaction of these beamlets was studied for different experimental conditions. The experiment allowed the exploration of space-charge effects and its comparison with 3D particle-in-cell simulations. Our observations also suggest the possible use of a multibeam configuration to tailor the transverse distribution of an electron beam. C1 [Rihaoui, M.; Piot, P.] No Illinois Univ, No Illinois Ctr Accelerator & Detector Dev, De Kalb, IL 60115 USA. [Rihaoui, M.; Piot, P.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Rihaoui, M.; Power, J. G.; Yusof, Z.; Gai, W.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Piot, P.] Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, Batavia, IL 60510 USA. RP Rihaoui, M (reprint author), No Illinois Univ, No Illinois Ctr Accelerator & Detector Dev, De Kalb, IL 60115 USA. NR 34 TC 2 Z9 2 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD DEC PY 2009 VL 12 IS 12 AR 124201 DI 10.1103/PhysRevSTAB.12.124201 PG 11 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 540LR UT WOS:000273333600008 ER PT J AU Stygar, WA Corcoran, PA Ives, HC Spielman, RB Douglas, JW Whitney, BA Mostrom, MA Wagoner, TC Speas, CS Gilliland, TL Allshouse, GA Clark, RE Donovan, GL Hughes, TP Humphreys, DR Jaramillo, DM Johnson, MF Kellogg, JW Leeper, RJ Long, FW Martin, TH Mulville, TD Pelock, MD Peyton, BP Poukey, JW Ramirez, JJ Reynolds, PG Seamen, JF Seidel, DB Seth, AP Sharpe, AW Shoup, RW Smith, JW Van De Valde, DM Wavrik, RW AF Stygar, W. A. Corcoran, P. A. Ives, H. C. Spielman, R. B. Douglas, J. W. Whitney, B. A. Mostrom, M. A. Wagoner, T. C. Speas, C. S. Gilliland, T. L. Allshouse, G. A. Clark, R. E. Donovan, G. L. Hughes, T. P. Humphreys, D. R. Jaramillo, D. M. Johnson, M. F. Kellogg, J. W. Leeper, R. J. Long, F. W. Martin, T. H. Mulville, T. D. Pelock, M. D. Peyton, B. P. Poukey, J. W. Ramirez, J. J. Reynolds, P. G. Seamen, J. F. Seidel, D. B. Seth, A. P. Sharpe, A. W. Shoup, R. W. Smith, J. W. Van De Valde, D. M. Wavrik, R. W. TI 55-TW magnetically insulated transmission-line system: Design, simulations, and performance SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID CATHODE PLASMA FORMATION; POST-HOLE CONVOLUTE; ELECTRON FLOW; Z-PINCHES; DIODES; PROPAGATION; ACCELERATOR AB We describe herein a system of self-magnetically insulated vacuum transmission lines (MITLs) that operated successfully at 20 MA, 3 MV, and 55 TW. The system delivered the electromagnetic-power pulse generated by the Z accelerator to a physics-package load on over 1700 Z shots. The system included four levels that were electrically in parallel. Each level consisted of a water flare, vacuum-insulator stack, vacuum flare, and 1.3-m-radius conical outer MITL. The outputs of the four outer MITLs were connected in parallel by a 7.6-cm-radius 12-post double-post-hole vacuum convolute. The convolute added the currents of the four outer MITLs, and delivered the combined current to a single 6-cm-long inner MITL. The inner MITL delivered the current to the load. The total initial inductance of the stack-MITL system was 11 nH. A 300-element transmission-line-circuit model of the system has been developed using the TL code. The model accounts for the following: (i) impedance and electrical length of each of the 300 circuit elements, (ii) electron emission from MITL-cathode surfaces wherever the electric field has previously exceeded a constant threshold value, (iii) Child-Langmuir electron loss in the MITLs before magnetic insulation is established, (iv) MITL-flow-electron loss after insulation, assuming either collisionless or collisional electron flow, (v) MITL-gap closure, (vi) energy loss to MITL conductors operated at high lineal current densities, (vii) time-dependent self-consistent inductance of an imploding z-pinch load, and (viii) load resistance, which is assumed to be constant. Simulations performed with the TL model demonstrate that the nominal geometric outer-MITL-system impedance that optimizes overall performance is a factor of similar to 3 greater than the convolute-load impedance, which is consistent with an analytic model of an idealized MITL-load system. Power-flow measurements demonstrate that, until peak current, the Z stack-MITL system performed as expected. TL calculations of the peak electromagnetic power at the stack, stack energy, stack voltage, outer-MITL current, and load current, as well as the pinch-implosion time, agree with measurements to within 5%. After peak current, TL calculations and measurements diverge, which appears to be due in part to the idealized pinch model assumed by TL. The results presented suggest that the design of the Z accelerator's stack-MITL system, and the TL model, can serve as starting points for the design of stack-MITL systems of future superpower accelerators. C1 [Stygar, W. A.; Speas, C. S.; Allshouse, G. A.; Donovan, G. L.; Hughes, T. P.; Humphreys, D. R.; Jaramillo, D. M.; Kellogg, J. W.; Leeper, R. J.; Long, F. W.; Martin, T. H.; Mulville, T. D.; Pelock, M. D.; Poukey, J. W.; Ramirez, J. J.; Seamen, J. F.; Seidel, D. B.; Seth, A. P.; Sharpe, A. W.; Smith, J. W.; Wavrik, R. W.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Corcoran, P. A.; Douglas, J. W.; Whitney, B. A.] L3 Commun, San Leandro, CA 94577 USA. [Ives, H. C.; Van De Valde, D. M.] EG&G, Albuquerque, NM 87107 USA. [Spielman, R. B.; Wagoner, T. C.; Gilliland, T. L.; Peyton, B. P.] Ktech Corp Inc, Albuquerque, NM 87123 USA. [Mostrom, M. A.] Mission Res Corp, Albuquerque, NM 87110 USA. [Clark, R. E.] Voss Sci LLC, Albuquerque, NM 87108 USA. [Johnson, M. F.; Reynolds, P. G.] Team Specialty Prod Corp, Albuquerque, NM 87123 USA. [Shoup, R. W.] ITT Corp, Albuquerque, NM 87110 USA. RP Stygar, WA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 85 TC 24 Z9 35 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD DEC PY 2009 VL 12 IS 12 AR 120401 DI 10.1103/PhysRevSTAB.12.120401 PG 19 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 540LR UT WOS:000273333600002 ER PT J AU Wenk, HR Barton, N Bortolotti, M Vogel, SC Voltolini, M Lloyd, GE Gonzalez, GB AF Wenk, Hans-Rudolf Barton, N. Bortolotti, M. Vogel, S. C. Voltolini, M. Lloyd, G. E. Gonzalez, G. B. TI Dauphin, twinning and texture memory in polycrystalline quartz. Part 3: texture memory during phase transformation SO PHYSICS AND CHEMISTRY OF MINERALS LA English DT Article DE Quartz phase transformation; Texture memory; Twinning; Neutron diffraction ID ALPHA-BETA-TRANSITION; SYNCHROTRON DIFFRACTION IMAGES; IN-SITU OBSERVATION; NEUTRON-DIFFRACTION; TEMPERATURE-DEPENDENCE; TOF DIFFRACTOMETER; HIGH-PRESSURE; X-RAY; THERMODYNAMICS; ZIRCONIUM AB Samples of quartz-bearing rocks were heated above the alpha (trigonal)-beta (hexagonal) phase transformation of quartz (625-950A degrees C) to explore changes in preferred orientation patterns. Textures were measured both in situ and ex situ with neutron, synchrotron X-ray and electron backscatter diffraction. The trigonal-hexagonal phase transformation does not change the orientation of c- and a-axes, but positive and negative rhombs become equal in the hexagonal beta-phase. In naturally deformed quartzites measured by neutron diffraction a perfect texture memory was observed, i.e. crystals returned to the same trigonal orientation they started from, with no evidence of twin boundaries. Samples measured by electron back-scattered diffraction on surfaces show considerable twinning and memory loss after the phase transformation. In experimentally deformed quartz rocks, where twinning was induced mechanically before heating, the orientation memory is lost. A mechanical model can explain the memory loss but so far it does not account for the persistence of the memory in quartzites. Stresses imposed by neighboring grains remain a likely cause of texture memory in this mineral with a very high elastic anisotropy. If stresses are imposed experimentally the internal stresses are released during the phase transformation and the material returns to its original state prior to deformation. Similarly, on surfaces there are no tractions and thus texture memory is partially lost. C1 [Wenk, Hans-Rudolf; Bortolotti, M.; Voltolini, M.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Barton, N.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Vogel, S. C.] Los Alamos Natl Lab, Lujan Ctr, Los Alamos, NM 87545 USA. [Gonzalez, G. B.] ESRF, F-38043 Grenoble, France. [Lloyd, G. E.] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England. RP Wenk, HR (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. EM wenk@berkeley.edu RI Lujan Center, LANL/G-4896-2012; Bortolotti, Mauro/H-2159-2012; Voltolini, Marco/G-2781-2015 FU U. S. Department of Energy [DE-AC52-06NA25396, DE-FG02-05ER15637]; NSF [EAR 0836402] FX Neutron scattering experiments were performed with HIPPO at the Lujan Center, Los Alamos National Laboratory. This facility is funded by the U. S. Department of Energy's Office of Basic Energy Sciences under contract DE-AC52-06NA25396. Synchrotron X-ray diffraction was done at ESRF (beamline ID15-B) and HASY (beamline PETRA 2). We acknowledge access to these facilities. Some samples were obtained from Jan Tullis (Brown University) and Erik Rybacki (GfZ Potsdam). Research was supported by NSF (EAR 0836402), DOE (DE-FG02-05ER15637) and IGPP-LLNL. Paulo Monteiro kindly provided the quartzite from Brazil. The work of NB was performed under the auspices of the U. S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48 (UCRL-JRNL-220357). Comments on the manuscript by D. Mainprice and an anonymous reviewer were very helpful for making improvements. NR 70 TC 8 Z9 11 U1 0 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0342-1791 J9 PHYS CHEM MINER JI Phys. Chem. Miner. PD DEC PY 2009 VL 36 IS 10 BP 567 EP 583 DI 10.1007/s00269-009-0302-6 PG 17 WC Materials Science, Multidisciplinary; Mineralogy SC Materials Science; Mineralogy GA 523LV UT WOS:000272075800003 ER PT J AU Chen, H Wilks, SC Bonlie, JD Chen, SN Cone, KV Elberson, LN Gregori, G Meyerhofer, DD Myatt, J Price, DF Schneider, MB Shepherd, R Stafford, DC Tommasini, R Maren, R Beiersdorfer, P AF Chen, Hui Wilks, S. C. Bonlie, J. D. Chen, S. N. Cone, K. V. Elberson, L. N. Gregori, G. Meyerhofer, D. D. Myatt, J. Price, D. F. Schneider, M. B. Shepherd, R. Stafford, D. C. Tommasini, R. Van Maren, R. Beiersdorfer, P. TI Making relativistic positrons using ultraintense short pulse lasers SO PHYSICS OF PLASMAS LA English DT Article DE plasma production by laser; plasma sources; positron sources; relativistic plasmas ID PAIR PRODUCTION; FEMTOSECOND-LASER; ELECTRON; PLASMA; BEAMS; CONDENSATION; TARGETS; PHOTON AB This paper describes a new positron source using ultraintense short pulse lasers. Although it has been theoretically studied since the 1970s, the use of lasers as a valuable new positron source was not demonstrated experimentally until recent years, when the petawatt-class short pulse lasers were developed. In 2008 and 2009, in a series of experiments performed at the Lawrence Livermore National Laboratory, a large number of positrons were observed after shooting a millimeter thick solid gold target. Up to 2x10(10) positrons/s ejected at the back of approximately millimeter thick gold targets were detected. The targets were illuminated with short (similar to 1 ps) ultraintense (similar to 1x10(20) W/cm(2)) laser pulses. These positrons are produced predominantly by the Bethe-Heitler process and have an effective temperature of 2-4 MeV, with the distribution peaking at 4-7 MeV. The angular distribution of the positrons is anisotropic. For a wide range of applications, this new laser-based positron source with its unique characteristics may complement the existing sources based on radioactive isotopes and accelerators. C1 [Chen, Hui; Wilks, S. C.; Bonlie, J. D.; Chen, S. N.; Cone, K. V.; Elberson, L. N.; Price, D. F.; Schneider, M. B.; Shepherd, R.; Stafford, D. C.; Tommasini, R.; Van Maren, R.; Beiersdorfer, P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Gregori, G.] Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England. [Meyerhofer, D. D.; Myatt, J.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. RP Chen, H (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RI Tommasini, Riccardo/A-8214-2009; OI Tommasini, Riccardo/0000-0002-1070-3565; chen, sophia n./0000-0002-3372-7666 FU U.S. DOE [DE-AC52-07NA27344, DE-FC52-08NA28302]; LLNL's Institute for Laser Science and Applications.; University of Rochester; New York State Energy Research and Development Authority; [LDRD-08-LW-058] FX This work was performed under the auspices of the U.S. DOE by LLNL under Contract No. DE-AC52-07NA27344 and was funded by LDRD-08-LW-058. Additional support was provided from LLNL's Institute for Laser Science and Applications. Work performed by the University of Rochester was supported by the U.S. DOE Office of Inertial Confinement Fusion under Grant No. DE-FC52-08NA28302, the University of Rochester, and the New York State Energy Research and Development Authority. The authors gratefully acknowledge support from the staff at Jupiter Laser Facility and Dr. Mark Eckart, Dr. Andrew Ng, Dr. Robert Cauble, Dr. William Goldstein, and Dr. Don Correll, and discussions with Dr. Robert Heeter. NR 46 TC 16 Z9 16 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2009 VL 16 IS 12 AR 122702 DI 10.1063/1.3271355 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 538XI UT WOS:000273217200035 ER PT J AU Dorf, MA Davidson, RC Startsev, EA Qin, H AF Dorf, Mikhail A. Davidson, Ronald C. Startsev, Edward A. Qin, Hong TI Adiabatic formation of a matched-beam distribution for an alternating-gradient quadrupole lattice SO PHYSICS OF PLASMAS LA English DT Article DE plasma diagnostics; plasma simulation; plasma-beam interactions ID FOCUSING CHANNEL; HALO FORMATION; ION-BEAM; SIMULATION; BUNCHES; LIMITS AB The formation of a quasiequilibrium beam distribution matched to an alternating-gradient quadrupole focusing lattice by means of the adiabatic turn-on of the oscillating focusing field is studied numerically using particle-in-cell simulations. Quiescent beam propagation over several hundred lattice periods is demonstrated for a broad range of beam intensities and vacuum phase advances describing the strength of the oscillating focusing field. Properties of the matched-beam distribution are investigated. In particular, self-similar evolution of the beam density profile is observed over a wide range of system parameters. The numerical simulations are performed using the WARP particle-in-cell code. C1 [Dorf, Mikhail A.; Davidson, Ronald C.; Startsev, Edward A.; Qin, Hong] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Dorf, MA (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. FU U.S. Department of Energy [DE-AC02-76CH-O3073] FX This research was supported by the U.S. Department of Energy under Contract No. DE-AC02-76CH-O3073 with the Princeton Plasma Physics Laboratory. NR 31 TC 2 Z9 2 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2009 VL 16 IS 12 AR 123107 DI 10.1063/1.3271467 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 538XI UT WOS:000273217200043 ER PT J AU Fredrickson, ED Crocker, NA Bell, RE Darrow, DS Gorelenkov, NN Kramer, GJ Kubota, S Levinton, FM Liu, D Medley, SS Podesta, M Tritz, K White, RB Yuh, H AF Fredrickson, E. D. Crocker, N. A. Bell, R. E. Darrow, D. S. Gorelenkov, N. N. Kramer, G. J. Kubota, S. Levinton, F. M. Liu, D. Medley, S. S. Podesta, M. Tritz, K. White, R. B. Yuh, H. TI Modeling fast-ion transport during toroidal Alfveacuten eigenmode avalanches in National Spherical Torus Experiment SO PHYSICS OF PLASMAS LA English DT Review DE plasma Alfven waves; plasma diagnostics; plasma instability; plasma simulation; plasma toroidal confinement; plasma transport processes; Tokamak devices ID FUSION TEST REACTOR; INDUCED ALFVEN EIGENMODES; BEAM-DRIVEN INSTABILITIES; DIII-D TOKAMAK; NEUTRAL-BEAM; INTERNAL KINK; PARTICLE EXPERIMENTS; ENERGETIC PARTICLES; MHD SPECTROSCOPY; ALPHA-PARTICLES AB Experiments on the National Spherical Torus Experiment [M. Ono , Nucl. Fusion 40, 557 (2000)] found strong bursts of toroidal Alfveacuten eigenmode (TAE) activity correlated with abrupt drops in the neutron rate. A fairly complete data set offers the opportunity to benchmark the NOVA [C. Z. Cheng, Phys. Rep. 211, 1 (1992)] and ORBIT [R. B. White and M. S. Chance, Phys. Fluids 27, 2455 (1984)] codes in the low aspect ratio tokamak (ST) geometry. The internal structure of TAE was modeled with NOVA and good agreement is found with measurements made with an array of five fixed-frequency reflectometers. The fast-ion transport resulting from these bursts of multiple TAE was then modeled with the ORBIT code. The simulations are reasonably consistent with the observed drop in neutron rate, however, further refinements in both the simulation of the TAE structure and in the modeling of the fast-ion transport are needed. Benchmarking stability codes against present experiments is an important step in developing the predictive capability needed to plan future experiments. C1 [Fredrickson, E. D.; Bell, R. E.; Darrow, D. S.; Gorelenkov, N. N.; Kramer, G. J.; Medley, S. S.; White, R. B.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Crocker, N. A.; Kubota, S.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Levinton, F. M.; Yuh, H.] Nova Photon, Princeton, NJ 08543 USA. [Liu, D.; Podesta, M.] Univ Calif Irvine, Irvine, CA 92697 USA. [Tritz, K.] Johns Hopkins Univ, Baltimore, MD 21287 USA. RP Fredrickson, ED (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM efredrickson@pppl.gov RI White, Roscoe/D-1773-2013; Liu, Deyong/Q-2797-2015 OI White, Roscoe/0000-0002-4239-2685; Liu, Deyong/0000-0001-9174-7078 FU U.S. DOE [DE-AC02-09CH11466, DE-FG03-99ER54527, DE-FG0206ER54867, DE-FG02-99ER54527] FX This work was supported by U.S. DOE Contract Nos. DE-AC02-09CH11466, DE-FG03-99ER54527, DE-FG0206ER54867, and DE-FG02-99ER54527. NR 119 TC 39 Z9 39 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2009 VL 16 IS 12 AR 122505 DI 10.1063/1.3265965 PG 16 WC Physics, Fluids & Plasmas SC Physics GA 538XI UT WOS:000273217200031 ER PT J AU Hey, DS Foord, ME Key, MH LePape, SL Mackinnon, AJ Patel, PK Ping, Y Akli, KU Stephens, RB Bartal, T Beg, FN Fedosejevs, R Friesen, H Tiedje, HF Tsui, YY AF Hey, D. S. Foord, M. E. Key, M. H. LePape, S. L. Mackinnon, A. J. Patel, P. K. Ping, Y. Akli, K. U. Stephens, R. B. Bartal, T. Beg, F. N. Fedosejevs, R. Friesen, H. Tiedje, H. F. Tsui, Y. Y. TI Laser-accelerated proton conversion efficiency thickness scaling SO PHYSICS OF PLASMAS LA English DT Article DE foils; gold; plasma-beam interactions ID FAST IGNITION; PLASMA; DRIVEN; SOLIDS; BEAMS AB The conversion efficiency from laser energy into proton kinetic energy is measured with the 0.6 ps, 9x10(19) W/cm(2) Titan laser at the Jupiter Laser Facility as a function of target thickness in Au foils. For targets thicker than 20 mu m, the conversion efficiency scales approximately as 1/L, where L is the target thickness. This is explained by the domination of hot electron collisional losses over adiabatic cooling. In thinner targets, the two effects become comparable, causing the conversion efficiency to scale weaker than 1/L; the measured conversion efficiency is constant within the scatter in the data for targets between 5 and 15 mu m, with a peak conversion efficiency of 4% into protons with energy greater than 3 MeV. Depletion of the hydrocarbon contaminant layer is eliminated as an explanation for this plateau by using targets coated with 200 nm of ErH(3) on the rear surface. The proton acceleration is modeled with the hybrid-particle in cell code LSP, which reproduced the conversion efficiency scaling observed in the data. C1 [Hey, D. S.; Foord, M. E.; Key, M. H.; LePape, S. L.; Mackinnon, A. J.; Patel, P. K.; Ping, Y.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Akli, K. U.; Stephens, R. B.] Gen Atom Co, La Jolla, CA 92186 USA. [Bartal, T.; Beg, F. N.] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. [Fedosejevs, R.; Friesen, H.; Tiedje, H. F.; Tsui, Y. Y.] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 2V4, Canada. RP Hey, DS (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM hey2@llnl.gov RI Patel, Pravesh/E-1400-2011; MacKinnon, Andrew/P-7239-2014; OI MacKinnon, Andrew/0000-0002-4380-2906; Stephens, Richard/0000-0002-7034-6141 FU U.S. Department of Energy [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract No. DE-AC52-07NA27344. NR 25 TC 9 Z9 9 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2009 VL 16 IS 12 AR 123108 DI 10.1063/1.3270079 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 538XI UT WOS:000273217200044 ER PT J AU Lee, WW Kolesnikov, RA AF Lee, W. W. Kolesnikov, R. A. TI Response to "Comment on 'On higher-order corrections to gyrokinetic Vlasov-Poisson equations in the long wavelength limit'" [Phys. Plasmas 16, 124701 (2009)] SO PHYSICS OF PLASMAS LA English DT Editorial Material DE plasma kinetic theory; plasma toroidal confinement; plasma transport processes; plasma turbulence; Poisson equation; Tokamak devices; Vlasov equation AB We show in this response that the nonlinear Poisson's equation in our original paper derived from the drift kinetic approach can be verified by using the nonlinear gyrokinetic Poisson's equation of Dubin [Phys. Fluids 26, 3524 (1983)]. This nonlinear contribution in phi(2) is indeed of the order of k(perpendicular to)(4) in the long wavelength limit and remains finite for zero ion temperature, in contrast with the nonlinear term by Parra and Catto [Plasma Phys. Controlled Fusion 50, 065014 (2008)], which is of the order of k(perpendicular to)(2) and diverges for T(i)-> 0. For comparison, the leading term for the gyrokinetic Poisson's equation in this limit is of the order of k(perpendicular to)(2)phi. C1 [Lee, W. W.; Kolesnikov, R. A.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Lee, WW (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. NR 4 TC 1 Z9 1 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2009 VL 16 IS 12 AR 124702 DI 10.1063/1.3272154 PG 2 WC Physics, Fluids & Plasmas SC Physics GA 538XI UT WOS:000273217200067 ER PT J AU Ping, Y Kirkwood, RK Wang, TL Clark, DS Wilks, SC Meezan, N Berger, RL Wurtele, J Fisch, NJ Malkin, VM Valeo, EJ Martins, SF Joshi, C AF Ping, Y. Kirkwood, R. K. Wang, T. -L. Clark, D. S. Wilks, S. C. Meezan, N. Berger, R. L. Wurtele, J. Fisch, N. J. Malkin, V. M. Valeo, E. J. Martins, S. F. Joshi, C. TI Development of a nanosecond-laser-pumped Raman amplifier for short laser pulses in plasma SO PHYSICS OF PLASMAS LA English DT Article DE gas lasers; optical pulse generation; optical pumping; plasma density; plasma heating by laser; plasma jets; plasma light propagation; plasma simulation; Raman lasers; stimulated Raman scattering ID CROSS-SECTION; AMPLIFICATION; GENERATION; REGIME AB Progress on developing a plasma amplifier/compressor based on stimulated Raman scattering of nanosecond laser pulses is reported. Generation of a millijoule seed pulse at a wavelength that is redshifted relative to the pump beam has been achieved using an external Raman gas cell. By interacting the shifted picosecond seed pulse and the nanosecond pump pulse in a gas jet plasma at a density of similar to 10(19) cm(-3), the upper limit of the pump intensity to avoid angular spray of the amplified seed has been determined. The Raman amplification has been studied as a function of the pump and seed intensities. Although the heating of plasma by the nanosecond pump pulse results in strong Landau damping of the plasma wave, an amplified pulse with an energy of up to 14 mJ has been demonstrated, which is, to the best of our knowledge, the highest output energy so far by Raman amplification in a plasma. One-dimensional particle-in-cell simulations indicate that the saturation of amplification is consistent with onset of particle trapping, which might be overcome by employing a shorter seed pulse. C1 [Ping, Y.; Kirkwood, R. K.; Clark, D. S.; Wilks, S. C.; Meezan, N.; Berger, R. L.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Wang, T. -L.; Martins, S. F.; Joshi, C.] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA. [Wurtele, J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Fisch, N. J.; Malkin, V. M.; Valeo, E. J.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. RP Ping, Y (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RI wurtele, Jonathan/J-6278-2016 OI wurtele, Jonathan/0000-0001-8401-0297 FU U.S. Department of Energy [DE-AC52-07NA27344] FX We wish to thank JLF Team for laser operation and G. Freeze for technical support. We also thank W. B. Mori and the OSIRIS consortium for use of the OSIRIS code. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract No. DE-AC52-07NA27344. NR 32 TC 26 Z9 27 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2009 VL 16 IS 12 AR 123113 DI 10.1063/1.3276739 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 538XI UT WOS:000273217200049 ER PT J AU Svidzinski, VA Li, H Rose, HA Albright, BJ Bowers, KJ AF Svidzinski, V. A. Li, H. Rose, H. A. Albright, B. J. Bowers, K. J. TI Particle in cell simulations of fast magnetosonic wave turbulence in the ion cyclotron frequency range SO PHYSICS OF PLASMAS LA English DT Article DE cyclotron resonance; plasma instability; plasma ion acoustic waves; plasma magnetohydrodynamics; plasma oscillations; plasma simulation; plasma turbulence ID COMPRESSIBLE MAGNETOHYDRODYNAMIC TURBULENCE; ANISOTROPY; PLASMAS; FLUID; FIELD AB Fully electromagnetic particle in cell simulations of nonlinear waves propagation and interaction are performed in two-dimensional plane geometry in magnetized plasma in ion cyclotron frequency range. A spectrum of fast magnetosonic wave modes with wave numbers parallel and perpendicular to the uniform equilibrium magnetic field is launched into plasma and the nonlinear dynamics of these waves is analyzed. Results show that the wave magnetic energy spectrum cascades to smaller scales. In the low frequency in the magnetohydrodynamic regime, the cascade is basically isotropic. Once entering the high frequency kinetic regime the cascade exhibits strong anisotropy, it extends to much smaller scales in direction perpendicular to the equilibrium magnetic field. The shape of the cascade is established after a few ion cyclotron periods and most of the energy in the cascade stays in the fast wave oscillations. Collisionless damping on electrons is the main dissipation channel in these results. C1 [Svidzinski, V. A.; Li, H.; Rose, H. A.; Albright, B. J.; Bowers, K. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Svidzinski, VA (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. OI Albright, Brian/0000-0002-7789-6525 NR 18 TC 24 Z9 24 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2009 VL 16 IS 12 AR 122310 DI 10.1063/1.3274559 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 538XI UT WOS:000273217200026 ER PT J AU Wang, TL Michta, D Lindberg, RR Charman, AE Martins, SF Wurtele, JS AF Wang, T. -L. Michta, D. Lindberg, R. R. Charman, A. E. Martins, S. F. Wurtele, J. S. TI Feasibility study for using an extended three-wave model to simulate plasma-based backward Raman amplification in one spatial dimension SO PHYSICS OF PLASMAS LA English DT Article DE Maxwell equations; plasma light propagation; plasma simulation; Vlasov equation AB Results are reported of a one-dimensional simulation study comparing the modeling capability of a recently formulated extended three-wave model [R. R. Lindberg, A. E. Charman, and J. S. Wurtele, Phys. Plasmas 14, 122103 (2007); Phys. Plasmas 15, 055911 (2008)] to that of a particle-in-cell (PIC) code, as well as to a more conventional three-wave model, in the context of the plasma-based backward Raman amplification (PBRA) [G. Shvets, N. J. Fisch, A. Pukhov , Phys. Rev. Lett. 81, 4879 (1998); V. M. Malkin, G. Shvets, and N. J. Fisch, Phys. Rev. Lett. 82, 4448 (1999); Phys. Rev. Lett. 84, 1208 (2000)]. The extended three-wave model performs essentially as well as or better than a conventional three-wave description in all temperature regimes tested, and significantly better at the higher temperatures studied, while the computational savings afforded by the extended three-wave model make it a potentially attractive tool that can be used prior to or in conjunction with PIC simulations to model the kinetic effects of PBRA for nonrelativistic laser pulses interacting with underdense thermal plasmas. Very fast but reasonably accurate at moderate plasma temperatures, this model may be used to perform wide-ranging parameter scans or other exploratory analyses quickly and efficiently, in order to guide subsequent simulation via more accurate if intensive PIC techniques or other algorithms approximating the full Vlasov-Maxwell equations. C1 [Wang, T. -L.; Martins, S. F.] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90024 USA. [Michta, D.; Lindberg, R. R.; Charman, A. E.; Wurtele, J. S.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Lindberg, R. R.] Argonne Natl Lab, Argonne Accelerator Inst, Argonne, IL 60439 USA. [Wurtele, J. S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Beam Phys, Berkeley, CA 94720 USA. RP Wang, TL (reprint author), Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90024 USA. RI wurtele, Jonathan/J-6278-2016 OI wurtele, Jonathan/0000-0001-8401-0297 FU Lawrence Livermore University Education Partnership Program; U.S. Department of Energy (DOE) [DE-FG02-04ER41289]; NNSA [DE-FG5207NA28122] FX This work was supported by the Lawrence Livermore University Education Partnership Program, by the U.S. Department of Energy (DOE), Grant No. DE-FG02-04ER41289, and by the NNSA under the SSAA Program through U.S. DOE Research Grant No. DE-FG5207NA28122. We thank W. B. Mori for the use of the OSIRIS code for conducting this comparative study. NR 23 TC 9 Z9 9 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2009 VL 16 IS 12 AR 123110 DI 10.1063/1.3280012 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 538XI UT WOS:000273217200046 ER PT J AU Welch, DR Rose, DV Bruner, N Clark, RE Oliver, BV Hahn, KD Johnston, MD AF Welch, Dale R. Rose, David V. Bruner, Nichelle Clark, Robert E. Oliver, Bryan V. Hahn, Kelly D. Johnston, Mark D. TI Hybrid simulation of electrode plasmas in high-power diodes SO PHYSICS OF PLASMAS LA English DT Article DE numerical analysis; plasma density; plasma diodes; plasma kinetic theory; plasma simulation ID BEAM AB New numerical techniques for simulating the formation and evolution of cathode and anode plasmas have been successfully implemented in a hybrid code. The dynamics of expanding electrode plasmas has long been recognized as a limiting factor in the impedance lifetimes of high-power vacuum diodes and magnetically insulated transmission lines. Realistic modeling of such plasmas is being pursued to aid in understanding the operating characteristics of these devices as well as establishing scaling relations for reliable extrapolation to higher voltages. Here, in addition to kinetic and fluid modeling, a hybrid particle-in-cell technique is described that models high density, thermal plasmas as an inertial fluid which transitions to kinetic electron or ion macroparticles above a prescribed energy. The hybrid technique is computationally efficient and does not require resolution of the Debye length. These techniques are first tested on a simple planar diode then applied to the evolution of both cathode and anode plasmas in a high-power self-magnetic pinch diode. The impact of an intense electron flux on the anode surface leads to rapid heating of contaminant material and diode impedance loss. C1 [Welch, Dale R.; Rose, David V.; Bruner, Nichelle; Clark, Robert E.] Voss Sci LLC, Albuquerque, NM 87108 USA. [Oliver, Bryan V.; Hahn, Kelly D.; Johnston, Mark D.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Welch, DR (reprint author), Voss Sci LLC, 418 Washington St, Albuquerque, NM 87108 USA. FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94-AL85000] FX The authors would like to thank Jim Threadgold for his perseverance in pursuing the SMP diode, and John Maenchen, John Porter, and Bill Stygar for many years of discussion and support. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94-AL85000. NR 21 TC 16 Z9 19 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2009 VL 16 IS 12 AR 123102 DI 10.1063/1.3270471 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 538XI UT WOS:000273217200038 ER PT J AU Brown, H Tarter, CB AF Brown, Harold Tarter, C. Bruce TI Herbert Frank York SO PHYSICS TODAY LA English DT Biographical-Item C1 [Brown, Harold] Ctr Strateg & Int Studies, Washington, DC 20006 USA. [Tarter, C. Bruce] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Brown, H (reprint author), Ctr Strateg & Int Studies, Washington, DC 20006 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 J9 PHYS TODAY JI Phys. Today PD DEC PY 2009 VL 62 IS 12 BP 64 EP 65 PG 2 WC Physics, Multidisciplinary SC Physics GA 526JF UT WOS:000272283600023 ER PT J AU Crease, RP AF Crease, Robert P. TI Surely you're joking, Mr Duchamp! SO PHYSICS WORLD LA English DT Article C1 [Crease, Robert P.] SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11790 USA. [Crease, Robert P.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Crease, RP (reprint author), SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11790 USA. EM rcrease@notes.cc.sunysb.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD DEC PY 2009 VL 22 IS 12 BP 28 EP 33 PG 6 WC Physics, Multidisciplinary SC Physics GA 531YH UT WOS:000272708900028 ER PT J AU McAndrews, HJ Thomsen, MF Arridge, CS Jackman, CM Wilson, RJ Henderson, MG Tokar, RL Khurana, KK Sittler, EC Coates, AJ Dougherty, MK AF McAndrews, H. J. Thomsen, M. F. Arridge, C. S. Jackman, C. M. Wilson, R. J. Henderson, M. G. Tokar, R. L. Khurana, K. K. Sittler, E. C. Coates, A. J. Dougherty, M. K. TI Plasma in Saturn's nightside magnetosphere and the implications for global circulation SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Saturn; Magnetospheric; Ions; Planetary wind; Magnetotail ID JOVIAN MAGNETOSPHERE; SPECTROMETER; ATMOSPHERE; COROTATION; ENCELADUS AB We present a bulk ion flow map from the nightside, equatorial region of Saturn's magnetosphere derived from the Cassini CAPS ion mass spectrometer data. The map clearly demonstrates the dominance of corotation flow over radial flow and suggests that the flux tubes sampled are still closed and attached to the planet up to distances of 50R(S). The plasma characteristics in the near-midnight region are described and indicate a transition between the region of the magnetosphere containing plasma on closed drift paths and that containing flux tubes which may not complete a full rotation around the planet. Data from the electron spectrometer reveal two plasma states of high and low density. These are attributed either to the sampling of mass-loaded and depleted flux tubes, respectively, or to the latitudinal structure of the plasma sheet. Depleted, returning flux tubes are not, in general, directly observed in the ions, although the electron observations suggest that such a process must take place in order to produce the low-density population. Flux-tube content is conserved below a limit defined by the mass-loading and magnetic field strength and indicates that the flux tubes sampled may survive their passage through the tail. The conditions for mass-release are evaluated using measured densities, angular velocities and magnetic held strength. The results suggest that for the relatively dense ion populations detectable by the ion mass spectrometer (IMS), the condition for flux-tube breakage has not yet been exceeded. However, the low-density regimes observed in the electron data suggest that loaded flux tubes at greater distances do exceed the threshold for mass-loss and subsequently return to the inner magnetosphere significantly depleted of plasma. (C) 2009 Published by Elsevier Ltd. C1 [McAndrews, H. J.; Thomsen, M. F.; Wilson, R. J.; Henderson, M. G.; Tokar, R. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Arridge, C. S.; Coates, A. J.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Arridge, C. S.; Coates, A. J.] UCL, Ctr Planetary Sci, UCL Birkbeck, London WC1E 6BT, England. [Jackman, C. M.; Dougherty, M. K.] Imperial Coll London, Space & Atmospher Phys Grp, London SW7 2BW, England. [Khurana, K. K.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. [Sittler, E. C.] NASA, Goddard Space Flight Ctr, Heliosphys Sci Div, Geospace Phys Lab Code 673, Greenbelt, MD 20771 USA. RP McAndrews, HJ (reprint author), Los Alamos Natl Lab, POB 1663,D466, Los Alamos, NM 87545 USA. EM hazelm@lanl.gov; mthomsen@lanl.gov; csa@mssl.ucl.ac.uk; c.jackman@imperial.ac.uk; rjw@lanl.gov; mghenderson@lanl.gov; rlt@lanl.gov; kkhurana@igpp.ucla.edu; Edward.C.Sittler@nasa.gov; ajc@mssl.ucl.ac.uk; m.dougherty@imperial.ac.uk RI Arridge, Christopher/A-2894-2009; Coates, Andrew/C-2396-2008; Wilson, Rob/C-2689-2009; Henderson, Michael/A-3948-2011; OI Arridge, Christopher/0000-0002-0431-6526; Coates, Andrew/0000-0002-6185-3125; Wilson, Rob/0000-0001-9276-2368; Henderson, Michael/0000-0003-4975-9029; Jackman, Caitriona/0000-0003-0635-7361 FU US DOE; NASA Cassini program; JPL [1243218]; STFC; ISSI FX The work at Los Alamos was performed under the auspices of the US DOE and was supported by the NASA Cassini program. Work at Southwest Research Institute was supported by the JPL Contract 1243218. Cassini is managed by the jet Propulsion Laboratory for NASA. Work at Imperial was supported by the STFC C.S.A. and A.J.C. were supported in this work by the STFC rolling grant to MSSL/UCL. Part of this work was discussed during a tearn meeting at the International Space Science Institute in Bern, Switzerland. HJM, MFT, CSA and ECS acknowledge funding from ISSI to attend this meeting. NR 39 TC 61 Z9 61 U1 0 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD DEC PY 2009 VL 57 IS 14-15 BP 1714 EP 1722 DI 10.1016/j.pss.2009.03.003 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 537FR UT WOS:000273099100008 ER PT J AU Masters, A Achilleos, N Bertucci, C Dougherty, MK Kanani, SJ Arridge, CS McAndrews, HJ Coates, AJ AF Masters, A. Achilleos, N. Bertucci, C. Dougherty, M. K. Kanani, S. J. Arridge, C. S. McAndrews, H. J. Coates, A. J. TI Surface waves on Saturn's dawn flank magnetopause driven by the Kelvin-Helmholtz instability SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Saturn; Magnetosphere; Magnetopause; Waves; Kelvin-Helmholtz instability ID WIND DYNAMIC PRESSURE; MAGNETIC-FIELD; SOLAR-WIND; MAGNETOSPHERIC BOUNDARY; HYDROMAGNETIC STABILITY; EARTHS MAGNETOPAUSE; RECONNECTION; VORTICES; FLUX; DISCONTINUITY AB Crossings of Saturn's magnetopause made by the Cassini spacecraft on 12, 13 and 17 March 2006 are analysed. During this period Cassini's trajectory was approximately parallel to the magnetopause boundary given by a model of the surface. Magnetic field and electron data are used to identify excursions into the magnetosheath bounded by crossings of the magnetopause current layer. Minimum variance analysis of the magnetic field vector measurements is used to determine the normal to the boundary for each crossing. The normals corresponding to the crossings oscillate about an average orientation that is consistent with the unperturbed normal predicted by the surface model. This reveals the presence of regular boundary waves with a direction of propagation found to be within 24 degrees of Saturn's rotational equator. Two categories of boundary wave are identified: the first with a period of the order of hours, and the second with a period of 45+/-9 min. Based on the propagation direction and a comparison of magnetospheric and magnetosheath magnetic fields, we conclude that both types of wave were driven by the Kelvin-Helmholtz instability. The observed boundary perturbations are consistent with a superposition of different types of surface wave activity. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Masters, A.; Bertucci, C.; Dougherty, M. K.] Univ London Imperial Coll Sci Technol & Med, Space & Atmospher Phys Grp, Blackett Lab, London SW7 2AZ, England. [Achilleos, N.] Univ London Imperial Coll Sci Technol & Med, Dept Phys & Astron, Atmospher Phys Lab, London WC1E 6BT, England. [Bertucci, C.] Inst Astron & Space Phys, Buenos Aires, DF, Argentina. [Kanani, S. J.; Arridge, C. S.; Coates, A. J.] Univ Coll London, Mullard Space Sci Lab, Dept Space & Climate Phys, Dorking RH5 6NT, Surrey, England. [Kanani, S. J.; Arridge, C. S.; Coates, A. J.] UCL, Ctr Planetary Sci, London WC1E 6BT, England. [McAndrews, H. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Masters, A (reprint author), Univ London Imperial Coll Sci Technol & Med, Space & Atmospher Phys Grp, Blackett Lab, Prince Consort Road, London SW7 2AZ, England. EM adam.masters02@imperial.ac.uk RI Arridge, Christopher/A-2894-2009; Coates, Andrew/C-2396-2008; OI Arridge, Christopher/0000-0002-0431-6526; Coates, Andrew/0000-0002-6185-3125; Bertucci, Cesar/0000-0002-2540-5384; Achilleos, Nicholas/0000-0002-5886-3509 FU UK STFC; Imperial College London FX AM acknowledges useful discussions with K. Nykyri, M.G. Kivelson and the support of the Royal Astronomical Society. We acknowledge the support of the MAG data processing/distribution staff and L.K. Gilbert and G.R. Lewis for ELS data processing. This work was supported by UK STFC through the award of a studentship (AM) and research grants to MSSL/UCL and Imperial College London. NR 51 TC 36 Z9 36 U1 3 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD DEC PY 2009 VL 57 IS 14-15 BP 1769 EP 1778 DI 10.1016/j.pss.2009.02.010 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 537FR UT WOS:000273099100013 ER PT J AU Arridge, CS McAndrews, HJ Jackman, CM Forsyth, C Walsh, AP Sittler, EC Gilbert, LK Lewis, GR Russell, CT Coates, AJ Dougherty, MK Collinson, GA Wellbrock, A Young, DT AF Arridge, C. S. McAndrews, H. J. Jackman, C. M. Forsyth, C. Walsh, A. P. Sittler, E. C. Gilbert, L. K. Lewis, G. R. Russell, C. T. Coates, A. J. Dougherty, M. K. Collinson, G. A. Wellbrock, A. Young, D. T. TI Plasma electrons in Saturn's magnetotail: Structure, distribution and energisation SO PLANETARY AND SPACE SCIENCE LA English DT Article DE Cassini; Magnetotail; Plasma sheet; Electrons ID MAGNETIC RECONNECTION; MAGNETOSPHERE; SPECTROMETER; SHEET; JUPITER; FIELD AB In this paper Saturn's nightside and pre-dawn electron (0.5 eV-28 keV) plasma sheet is studied using Cassini plasma electron and magnetic field data from 2006. Case studies are presented which exemplify the typical and atypical states of the plasma sheet, and are complemented by a statistical study of the plasma sheet. It will be shown that Saturn's nightside and pre-dawn electron plasma sheet exists in two states: a quiescent state with a steady electron temperature of similar to 100 eV and where the electron distribution functions are best characterised by Kappa distributions, and a disturbed state where the electrons are hot (similar to 1 keV) and often seen in alternating layers between warm and hot populations. Evidence is also presented for bimodal cold/warm (both quiet and disturbed states) and warm/hot distributions (disturbed states). The disturbed states are qualitatively similar to electron distributions from Earth's magnetotail during intervals of reconnection and we argue that these disturbed states also result from periods of tail reconnection. We present statistics of electron number density, temperature, partial electron beta, and pressure, and show that large values of partial beta are necessary but not sufficient to uniquely identify the central plasma sheet. Finally the thermodynamic properties of the electron plasma sheet are studied and we show that the electrons behave isothermally. These results are important for modelling and theoretical analyses, and for use in studies which examine dynamics in Saturn's magnetosphere. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Arridge, C. S.; Forsyth, C.; Walsh, A. P.; Gilbert, L. K.; Lewis, G. R.; Coates, A. J.; Collinson, G. A.; Wellbrock, A.] Univ Coll London, Mullard Space Sci Lab, Dept Space & Climate Phys, Dorking RH5 6NT, Surrey, England. [Arridge, C. S.; Gilbert, L. K.; Lewis, G. R.; Coates, A. J.; Wellbrock, A.] UCL, UCL Birkbeck, Ctr Planetary Sci, London WC1E 6BT, England. [Sittler, E. C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [McAndrews, H. J.] Los Alamos Natl Lab, Space Sci & Applicat ISR 1, Los Alamos, NM 87545 USA. [Russell, C. T.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. [Jackman, C. M.; Dougherty, M. K.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Space & Atmospher Phys Grp, London SW7 2AZ, England. [Young, D. T.] SW Res Inst, San Antonio, TX 78228 USA. [Wellbrock, A.] UCL, Dept Phys & Astron, Atmospher Phys Lab, London WC1E 6BT, England. RP Arridge, CS (reprint author), Univ Coll London, Mullard Space Sci Lab, Dept Space & Climate Phys, Holmbury St Mary, Dorking RH5 6NT, Surrey, England. EM csa@mssl.ucl.ac.uk RI Arridge, Christopher/A-2894-2009; Forsyth, Colin/E-4159-2010; Walsh, Andrew/E-6701-2011; Collinson, Glyn/D-5700-2012; Coates, Andrew/C-2396-2008; OI Arridge, Christopher/0000-0002-0431-6526; Forsyth, Colin/0000-0002-0026-8395; Coates, Andrew/0000-0002-6185-3125; Walsh, Andrew/0000-0002-1682-1212; Jackman, Caitriona/0000-0003-0635-7361; Russell, Christopher/0000-0003-1639-8298 FU NASA [1243218]; International Space Science Institute FX C.S.A. acknowledges useful discussions with N. Andre, A.N. Fazakerley, S. Grimald, J.S. Leisner, J. Matthews and A.M. Rymer. The authors thank S. Kellock, R Slootweg, T. Seears and L.-N. Alconcel at Imperial College for MAG data processing. C.S.A. thanks K.H. Arridge and J. Matthews for valuable comments on the manuscript. C.S.A., AJ.C. and C.F. were funded in this work by the STFC rolling grant to MSSL/UCL. A.P.W., G.A.C. and AW were funded by STFC quota studentships. E.C.S. and D.T.Y. were supported by NASA contract 1243218 with NASA/JPL. Cassini CAPS/ELS and MAG data processing activities, at MSSL and Imperial College, respectively, were funded by STFC. C.S.A., H.J.M., E.C.S., K.K.K. and C.T.R. also acknowledge funding from the International Space Science Institute. NR 46 TC 22 Z9 22 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD DEC PY 2009 VL 57 IS 14-15 BP 2032 EP 2047 DI 10.1016/j.pss.2009.09.007 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 537FR UT WOS:000273099100039 ER PT J AU Kang, BG Osburn, L Kopsell, D Tuskan, GA Cheng, ZM AF Kang, Byung-guk Osburn, Lori Kopsell, Dean Tuskan, Gerald A. Cheng, Zong-Ming TI Micropropagation of Populus trichocarpa 'Nisqually-1': the genotype deriving the Populus reference genome SO PLANT CELL TISSUE AND ORGAN CULTURE LA English DT Article DE Activated charcoal; Cytokinin; Gelling agent; Gelrite; Tissue culture; Poplar ID TISSUE CULTURE MEDIA; ACTIVATED-CHARCOAL; PLANT-REGENERATION; NORWAY SPRUCE; CHLOROPHYLL; INVITRO; TRANSFORMATION; EMBRYOGENESIS; MORPHOGENESIS; CLONES AB Populus serves as a model tree for biotechnology and molecular biology research due to the availability of the reference genome sequence of Populus trichocarpa (Torr. & Gray) genotype 'Nisqually-1'. However, 'Nisqually-1' has been shown to be very recalcitrant to micropropagation, regeneration and transformation. In this study, a highly efficient micropropagation protocol from greenhouse-grown shoot tips of 'Nisqually-1' was established. The optimal micropropagation protocol involves growing in vitro shoots in plant growth regulator-free Murashige and Skoog (MS) basal medium supplemented with 3% sucrose, 0.3% Gelrite(A (R)) and 5-10 g L(-1) of activated charcoal. Plants grown on this medium were significantly longer, and contained significantly higher concentrations of chlorophyll. This highly effective protocol provides a consistent supply of quality leaf and stem materials throughout the year for transformation experiments and other in vitro manipulations, therefore eliminating inconsistency due to seasonal and greenhouse environmental variations and the need for repetitive tissue sterilization. C1 [Kang, Byung-guk; Osburn, Lori; Kopsell, Dean; Cheng, Zong-Ming] Univ Tennessee, Dept Plant Sci, Knoxville, TN 37996 USA. [Tuskan, Gerald A.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Cheng, ZM (reprint author), Univ Tennessee, Dept Plant Sci, Knoxville, TN 37996 USA. EM zcheng@utk.edu RI Tuskan, Gerald/A-6225-2011 OI Tuskan, Gerald/0000-0003-0106-1289 FU DOEBioenergy Center (BESC); US Department of Energy/Oak Ridge National Laboratory; Tennessee Agricultural Experiment Station; Office of Biological and Environmental Research in the DOE Office of Science FX This project was supported in part by DOEBioenergy Center (BESC) grant, by the US Department of Energy/Oak Ridge National Laboratory (subcontract to Z.-M.C.), and by the Tennessee Agricultural Experiment Station. The BESC is a US Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. NR 35 TC 15 Z9 19 U1 1 U2 10 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0167-6857 J9 PLANT CELL TISS ORG JI Plant Cell Tissue Organ Cult. PD DEC PY 2009 VL 99 IS 3 BP 251 EP 257 DI 10.1007/s11240-009-9596-9 PG 7 WC Biotechnology & Applied Microbiology; Plant Sciences SC Biotechnology & Applied Microbiology; Plant Sciences GA 515WP UT WOS:000271503900002 ER PT J AU Byrne, SL Guiney, E Donnison, IS Mur, LAJ Milbourne, D Barth, S AF Byrne, Stephen Laurence Guiney, Emma Donnison, Iain S. Mur, Luis A. J. Milbourne, Dan Barth, Susanne TI Identification of genes involved in the floral transition at the shoot apical meristem of Lolium perenne L. by use of suppression subtractive hybridisation SO PLANT GROWTH REGULATION LA English DT Article DE Lolium perenne; Suppression subtractive hybridisation; Flowering; Heading ID TRANSCRIPTION FACTOR FAMILY; MADS-BOX GENES; VERNALIZATION RESPONSE; ARABIDOPSIS-THALIANA; FLOWERING TIME; DOMAIN PROTEINS; DNA METHYLATION; GENOME-WIDE; RYEGRASS; RICE AB Generally, heading in Lolium perenne L. (perennial ryegrass) is associated with a reduction in the feed quality of the forage and therefore extending the period of vegetative growth during the growing season will contribute to an improvement in quality. The genetic control of floral transition has been well studied in model plant species but less research has been done in economically important crop species such as perennial ryegrass. A differential gene expression study was performed between two full sibling lines of L. perenne with contrasting flowering time. Suppression subtractive hybridization was used to identify 155 transcripts differentially expressed between the two sibling lines in the shoot apical meristem after primary and during secondary induction. Transcripts with a putative role in the floral transition were further characterized, through floral induction stages, by real time RT-PCR. This revealed five genes with greater than tenfold difference in expression between the lines during floral induction. Furthermore, a putative methyl binding domain protein and bHLH transcription factor were identified, which show clear differential expression patterns through floral induction and may act as potential enhancers of flowering in L. perenne. C1 [Byrne, Stephen Laurence; Guiney, Emma; Milbourne, Dan; Barth, Susanne] TEAGASC, Crops Res Ctr, Carlow, Ireland. [Donnison, Iain S.; Mur, Luis A. J.] Aberystwyth Univ, Inst Biol Environm & Rural Sci, Gogerddan SY23 3EB, Ceredigion, Wales. RP Byrne, SL (reprint author), TEAGASC, Crops Res Ctr, Oak Pk, Carlow, Ireland. EM stephen.byrne@teagasc.ie RI Donnison, Iain/K-6138-2014; Barth, Susanne/P-3366-2014; OI Barth, Susanne/0000-0002-4104-5964; Mur, Luis/0000-0002-0961-9817; Donnison, Iain/0000-0001-6276-555X; Byrne, Stephen/0000-0002-1179-2272 FU Teagasc, Ireland FX S. Byrne was funded by a Walsh Fellowship awarded by Teagasc, Ireland. NR 44 TC 0 Z9 0 U1 1 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0167-6903 EI 1573-5087 J9 PLANT GROWTH REGUL JI Plant Growth Regul. PD DEC PY 2009 VL 59 IS 3 BP 215 EP 225 DI 10.1007/s10725-009-9407-7 PG 11 WC Plant Sciences SC Plant Sciences GA 510KT UT WOS:000271088100004 ER PT J AU Gao, JP Ajjawi, I Manoli, A Sawin, A Xu, CC Froehlich, JE Last, RL Benning, C AF Gao, Jinpeng Ajjawi, Imad Manoli, Arthur Sawin, Andrew Xu, Changcheng Froehlich, John E. Last, Robert L. Benning, Christoph TI FATTY ACID DESATURASE4 of Arabidopsis encodes a protein distinct from characterized fatty acid desaturases SO PLANT JOURNAL LA English DT Article DE FAD4; map-based cloning; metalloenzyme; histidine motif; phosphatidylglycerol ID BACTERIUM MYXOCOCCUS-XANTHUS; ACYL-CARRIER-PROTEIN; MUTANT; PHOSPHATIDYLGLYCEROL; EXPRESSION; THALIANA; PLANTS; GENE; DIACYLGLYCEROL; BIOSYNTHESIS AB P>Polar membrane glycerolipids occur in a mixture of molecular species defined by a polar head group and characteristic acyl groups esterified to a glycerol backbone. A molecular species of phosphatidylglycerol specific to chloroplasts of plants carries a Delta 3-trans hexadecenoic acid in the sn-2 position of its core glyceryl moiety. The fad4-1 mutant of Arabidopsis thaliana missing this particular phosphatidylglycerol molecular species lacks the necessary fatty acid desaturase, or a component thereof. The overwhelming majority of acyl groups associated with membrane lipids in plants contains double bonds with a cis configuration. However, FAD4 is unusual because it is involved in the formation of a trans double bond introduced close to the carboxyl group of palmitic acid, which is specifically esterified to the sn-2 glyceryl carbon of phosphatidylglycerol. As a first step towards the analysis of this unusual desaturase reaction, the FAD4 gene was identified by mapping of the FAD4 locus and coexpression analysis with known lipid genes. FAD4 encodes a predicted integral membrane protein that appears to be unrelated to classic membrane bound fatty acid desaturases based on overall sequence conservation. However, the FAD4 protein contains two histidine motifs resembling those of metalloproteins such as fatty acid desaturases. FAD4 is targeted to the plastid. Overexpression of the cDNA in transgenic Arabidopsis led to increased accumulation of the Delta 3-trans hexadecanoyl group in phosphatidylglycerol relative to wild type. Taken together these results are consistent with the hypothesis that FAD4 is the founding member of a novel class of fatty acid desaturases. C1 [Gao, Jinpeng; Ajjawi, Imad; Manoli, Arthur; Sawin, Andrew; Last, Robert L.; Benning, Christoph] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. [Xu, Changcheng] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Froehlich, John E.] Michigan State Univ, Dept Energy, Plant Res Lab, E Lansing, MI 48824 USA. [Last, Robert L.] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. RP Last, RL (reprint author), Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. EM lastr@msu.edu RI Last, Robert/D-9197-2011; Gao, Jinpeng/F-8460-2012; OI Last, Robert/0000-0001-6974-9587 FU NSF Arabidopsis [MCB-0519740]; DOE [DE-FD02-98ER20305, DE-FG02-91ER20021]; NSF [MCB-0741395] FX We are grateful to John Ohlrogge for his advice and critique of the manuscript, to Dan Jones for help with the mass spectrometry analysis and Barry Williams and Kristine Cox for help with yeast functional assays. We thank John Browse for providing the Arabidopsis fad4-1 allele, Federica Brandizzi for providing the plasmid VKH18-EN6-Sec12-vYPF and Peter Griac and Maria Simockova for the crd1 mutant. This work was funded by NSF Arabidopsis 2010 grant MCB-0519740 to RL, CB and others, by DOE grant DE-FD02-98ER20305 to CB and NSF grant MCB-0741395 to CB. JEF was funded by DOE grant DE-FG02-91ER20021 to Ken Keegstra. NR 41 TC 27 Z9 31 U1 2 U2 13 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0960-7412 J9 PLANT J JI Plant J. PD DEC PY 2009 VL 60 IS 5 BP 832 EP 839 DI 10.1111/j.1365-313X.2009.04001.x PG 8 WC Plant Sciences SC Plant Sciences GA 525BU UT WOS:000272188900007 PM 19682287 ER PT J AU Li, M Xiong, GY Li, R Cui, JJ Tang, D Zhang, BC Pauly, M Cheng, ZK Zhou, YH AF Li, Ming Xiong, Guangyan Li, Rui Cui, Jiajun Tang, Ding Zhang, Baocai Pauly, Markus Cheng, Zhukuan Zhou, Yihua TI Rice cellulose synthase-like D4 is essential for normal cell-wall biosynthesis and plant growth SO PLANT JOURNAL LA English DT Article DE OsCSLD4; cell-wall biosynthesis; plant growth; dwarfism; rice ID SIGNAL-TRANSDUCTION; XYLAN BIOSYNTHESIS; DEFICIENT MUTANT; ALPHA-SUBUNIT; CSL GENES; ARABIDOPSIS; PROTEIN; ENCODES; HOMOGALACTURONAN; FAMILY AB P>Cellulose synthase-like (CSL) proteins of glycosyltransferase family 2 (GT2) are believed to be involved in the biosynthesis of cell-wall polymers. The CSL D sub-family (CSLD) is common to all plants, but the functions of CSLDs remain to be elucidated. We report here an in-depth characterization of a narrow leaf and dwarf1 (nd1) rice mutant that shows significant reduction in plant growth due to retarded cell division. Map-based cloning revealed that ND1 encodes OsCSLD4, one of five members of the CSLD sub-family in rice. OsCSLD4 is mainly expressed in tissues undergoing rapid growth. Expression of OsCSLD4 fluorescently tagged at the C- or N-terminus in rice protoplast cells or Nicotiana benthamiana leaves showed that the protein is located in the endoplasmic reticulum or Golgi vesicles. Golgi localization was verified using phenotype-rescued transgenic plants expressing OsCSLD4-GUS under the control of its own promoter. Two phenotype-altered tissues, culms and root tips, were used to investigate the specific wall defects. Immunological studies and monosaccharide compositional and glycosyl linkage analyses explored several wall compositional effects caused by disruption of OsCSLD4, including alterations in the structure of arabinoxylan and the content of cellulose and homogalacturonan, which are distinct in the monocot grass species Oryza sativa (rice). The inconsistent alterations in the two tissues and the observable structural defects in primary walls indicate that OsCSLD4 plays important roles in cell-wall formation and plant growth. C1 [Li, Ming; Xiong, Guangyan; Li, Rui; Cui, Jiajun; Tang, Ding; Zhang, Baocai; Cheng, Zhukuan; Zhou, Yihua] Chinese Acad Sci, Inst Genet & Dev Biol, Natl Ctr Plant Gene Res, Beijing 100101, Peoples R China. [Pauly, Markus] Michigan State Univ, DOE Plant Res Lab, E Lansing, MI 48824 USA. [Pauly, Markus] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. RP Cheng, ZK (reprint author), Chinese Acad Sci, Inst Genet & Dev Biol, Natl Ctr Plant Gene Res, Beijing 100101, Peoples R China. EM zkcheng@genetics.ac.cn; yhzhou@genetics.ac.cn RI Pauly, Markus/B-5895-2008; li, rui/M-6671-2014 OI Pauly, Markus/0000-0002-3116-2198; FU National Natural Science Foundation of China [90717117]; Ministry of Sciences and Technology of China [2005CB120805, 2006AA10A101]; Chinese Academy of Sciences [KSCX2-YW-G-033] FX We thank Yinhong Zhang (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China) for confocal microscope examination, Hongjing Hao (Institute of Atomic Energy, Chinese Academy of Agricultural Sciences, Beijing, China) for transmission electron microscopy, and Jianhua Wei (Beijing Academy of Agriculture and Forestry Sciences) for GC-MS analysis. Karen Bird (US Department of Energy Plant Research Laboratory) is thanked for text editing. This work was supported by grants from the National Natural Science Foundation of China (90717117), the Ministry of Sciences and Technology of China (2005CB120805 and 2006AA10A101), and the Knowledge Innovation Program of the Chinese Academy of Sciences (KSCX2-YW-G-033). NR 52 TC 63 Z9 81 U1 3 U2 23 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0960-7412 J9 PLANT J JI Plant J. PD DEC PY 2009 VL 60 IS 6 BP 1055 EP 1069 DI 10.1111/j.1365-313X.2009.04022.x PG 15 WC Plant Sciences SC Plant Sciences GA 530KN UT WOS:000272590000011 PM 19765235 ER PT J AU Penning, BW Hunter, CT Tayengwa, R Eveland, AL Dugard, CK Olek, AT Vermerris, W Koch, KE McCarty, DR Davis, MF Thomas, SR McCann, MC Carpita, NC AF Penning, Bryan W. Hunter, Charles T., III Tayengwa, Reuben Eveland, Andrea L. Dugard, Christopher K. Olek, Anna T. Vermerris, Wilfred Koch, Karen E. McCarty, Donald R. Davis, Mark F. Thomas, Steven R. McCann, Maureen C. Carpita, Nicholas C. TI Genetic Resources for Maize Cell Wall Biology SO PLANT PHYSIOLOGY LA English DT Review ID MULTIPLE SEQUENCE ALIGNMENT; PECTIN METHYLESTERASE GENE; D-GLUCURONATE 4-EPIMERASE; COBRA-LIKE PROTEIN; ARABIDOPSIS-THALIANA; CELLULOSE SYNTHASE; MOLECULAR CHARACTERIZATION; RHAMNOGALACTURONAN-II; LIGNIN BIOSYNTHESIS; EXPRESSION ANALYSIS AB Grass species represent a major source of food, feed, and fiber crops and potential feedstocks for biofuel production. Most of the biomass is contributed by cell walls that are distinct in composition from all other flowering plants. Identifying cell wall-related genes and their functions underpins a fundamental understanding of growth and development in these species. Toward this goal, we are building a knowledge base of the maize (Zea mays) genes involved in cell wall biology, their expression profiles, and the phenotypic consequences of mutation. Over 750 maize genes were annotated and assembled into gene families predicted to function in cell wall biogenesis. Comparative genomics of maize, rice (Oryza sativa), and Arabidopsis (Arabidopsis thaliana) sequences reveal differences in gene family structure between grass species and a reference eudicot species. Analysis of transcript profile data for cell wall genes in developing maize ovaries revealed that expression within families differed by up to 100-fold. When transcriptional analyses of developing ovaries before pollination from Arabidopsis, rice, and maize were contrasted, distinct sets of cell wall genes were expressed in grasses. These differences in gene family structure and expression between Arabidopsis and the grasses underscore the requirement for a grass-specific genetic model for functional analyses. A UniformMu population proved to be an important resource in both forward-and reverse-genetics approaches to identify hundreds of mutants in cell wall genes. A forward screen of field-grown lines by near-infrared spectroscopic screen of mature leaves yielded several dozen lines with heritable spectroscopic phenotypes. Pyrolysis-molecular beam mass spectrometry confirmed that several nir mutants had altered carbohydrate-lignin compositions. C1 [Penning, Bryan W.; Dugard, Christopher K.; Olek, Anna T.; Carpita, Nicholas C.] Purdue Univ, Dept Bot & Plant Pathol, W Lafayette, IN 47907 USA. [Penning, Bryan W.; Dugard, Christopher K.; McCann, Maureen C.] Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA. [Hunter, Charles T., III; Eveland, Andrea L.; Koch, Karen E.; McCarty, Donald R.] Univ Florida, Dept Hort Sci, Gainesville, FL 32611 USA. [Tayengwa, Reuben; Vermerris, Wilfred] Univ Florida, Genet Inst, Gainesville, FL 32610 USA. [Tayengwa, Reuben; Vermerris, Wilfred] Univ Florida, Dept Agron, Gainesville, FL 32610 USA. [Davis, Mark F.; Thomas, Steven R.] Natl Bioenergy Ctr, Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Carpita, NC (reprint author), Purdue Univ, Dept Bot & Plant Pathol, W Lafayette, IN 47907 USA. EM carpita@purdue.edu RI Eveland, Andrea/M-9886-2014; OI Eveland, Andrea/0000-0003-4825-1282; davis, mark/0000-0003-4541-9852 FU National Science Foundation [DBI-0217552]; Office of Science, U. S. Department of Energy [DE-FG02-08ER64702] FX This work was supported by the National Science Foundation Plant Genome Research Program (grant no. DBI-0217552 to W. V., K. E. K., D. R. M., S. R. T., M. C. M., and N.C.C.) and the Office of Science, U. S. Department of Energy (grant no. DE-FG02-08ER64702 to N.C.C. and M. C. M.). NR 150 TC 71 Z9 75 U1 4 U2 72 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 0032-0889 J9 PLANT PHYSIOL JI Plant Physiol. PD DEC PY 2009 VL 151 IS 4 BP 1703 EP 1728 DI 10.1104/pp.109.136804 PG 26 WC Plant Sciences SC Plant Sciences GA 528KK UT WOS:000272443500002 PM 19926802 ER PT J AU Landau, AM Lokstein, H Scheller, HV Lainez, V Maldonado, S Prina, AR AF Mabel Landau, Alejandra Lokstein, Heiko Scheller, Henrik Vibe Lainez, Veronica Maldonado, Sara Raul Prina, Alberto TI A Cytoplasmically Inherited Barley Mutant Is Defective in Photosystem I Assembly Due to a Temperature-Sensitive Defect in ycf3 Splicing SO PLANT PHYSIOLOGY LA English DT Article ID EFFICIENT ELECTRON-TRANSFER; IRON-SULFUR PROTEIN; PSI-D SUBUNIT; ARABIDOPSIS-THALIANA; HIGHER-PLANTS; CHLAMYDOMONAS-REINHARDTII; PHOTOAUTOTROPHIC GROWTH; CHLOROPLAST DEVELOPMENT; TARGETED INACTIVATION; GENE AB A cytoplasmically inherited chlorophyll-deficient mutant of barley (Hordeum vulgare) termed cytoplasmic line 3 (CL3), displaying a viridis (homogeneously light-green colored) phenotype, has been previously shown to be affected by elevated temperatures. In this article, biochemical, biophysical, and molecular approaches were used to study the CL3 mutant under different temperature and light conditions. The results lead to the conclusion that an impaired assembly of photosystem I (PSI) under higher temperatures and certain light conditions is the primary cause of the CL3 phenotype. Compromised splicing of ycf3 transcripts, particularly at elevated temperature, resulting from a mutation in a noncoding region (intron 1) in the mutant ycf3 gene results in a defective synthesis of Ycf3, which is a chaperone involved in PSI assembly. The defective PSI assembly causes severe photoinhibition and degradation of PSII. C1 [Mabel Landau, Alejandra; Raul Prina, Alberto] Inst Nacl Tecnol Agropecuaria, Inst Genet EA Favret, Ctr Invest Ciencias Vet & Agron, Castelar, Buenos Aires, Argentina. [Lokstein, Heiko] Univ Potsdam, Inst Biochem & Biol, D-14476 Potsdam, Germany. [Scheller, Henrik Vibe] Univ Copenhagen, Dept Plant Biol & Biotechnol, DK-1871 Frederiksberg C, Denmark. [Scheller, Henrik Vibe] Joint Bioenergy Inst, Emeryville, CA 94608 USA. [Lainez, Veronica; Maldonado, Sara] Univ Buenos Aires, Consejo Nacl Invest Cient & Tecn, Dept Biodiversidad & Biol Expt, Fac Ciencias Exactas & Nat, Buenos Aires, DF, Argentina. [Maldonado, Sara] Inst Nacl Tecnol Agropecuaria, Inst Recursos Biol, Ctr Invest Recursos Nat, Castelar, Buenos Aires, Argentina. RP Landau, AM (reprint author), Inst Nacl Tecnol Agropecuaria, Inst Genet EA Favret, Ctr Invest Ciencias Vet & Agron, B1712WAA, Castelar, Buenos Aires, Argentina. EM alandau@cnia.inta.gov.ar RI Scheller, Henrik/A-8106-2008 OI Scheller, Henrik/0000-0002-6702-3560 FU Instituto Nacional de Tecnologia Agropecuaria and Proyecto de Investigacion Cientifica y Tecnica, Agencia Nacional de Promocion Cientifica y Tecnologica, Argentina [04841]; U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; Danish National Research Foundation; Deutsche Forschungsgemeinschaft [SFB 429, TPA2] FX This work was supported by Instituto Nacional de Tecnologia Agropecuaria and Proyecto de Investigacion Cientifica y Tecnica (no. 04841), Agencia Nacional de Promocion Cientifica y Tecnologica, Argentina; the U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research (through contract no. DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U. S. Department of Energy); and the Danish National Research Foundation. H. L. acknowledges financial support by the Deutsche Forschungsgemeinschaft (grant no. SFB 429, TPA2). NR 48 TC 16 Z9 20 U1 0 U2 10 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 0032-0889 J9 PLANT PHYSIOL JI Plant Physiol. PD DEC PY 2009 VL 151 IS 4 BP 1802 EP 1811 DI 10.1104/pp.109.147843 PG 10 WC Plant Sciences SC Plant Sciences GA 528KK UT WOS:000272443500010 PM 19812182 ER PT J AU Amendt, PA Milovich, JL Wilks, SC Li, CK Petrasso, RD Seguin, FH AF Amendt, P. A. Milovich, J. L. Wilks, S. C. Li, C. K. Petrasso, R. D. Seguin, F. H. TI Electric field and ionization-gradient effects on inertial-confinement-fusion implosions SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT 36th European-Physical-Society Conference on Plasma Physics CY JUN 29-JUL 03, 2009 CL Natl Palace Culture, Sofia, BULGARIA SP European Phys Soc, Union Physicists, Sofia Univ St Kliment Ohrids, Fac Phys HO Natl Palace Culture ID NATIONAL IGNITION FACILITY; TARGETS AB The generation of strong, self-generated electric fields (10(8)-10(9) V m(-1)) in direct-drive, inertial-confinement-fusion capsules has been reported (Li et al 2008 Phys. Rev. Lett. 100 225001). Various models are considered herein to explain the observed electric field evolution, including the potential roles of electron pressure gradients near the fuel-pusher interface and plasma polarization effects that are predicted to occur across shock fronts (Zel'dovich and Raizer 2002 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Mineola, NY: Dover) p 522). In the latter case, strong fields in excess of 10(10) V m(-1) and localized to 10-100 nm may be consistent with the data obtained from proton radiography. Such field strengths are similar in magnitude to the criterion for runaway electron generation that could lead to plasma kinetic effects and potential shock-front broadening. The observed electric field generation may also be partly due to plasma ionization gradients localized near the fuel-pusher interface. A model is proposed that allows for differing electron-and ion-density gradient scale lengths in the presence of ionization gradients while preserving overall charge neutrality. Such a redistribution of electrons compared with standard, charge-neutral, single-fluid radiation-hydrodynamics modelling may affect the interpretation of imploded-core x-ray diagnostics as well as alter alpha particle deposition in the thermonuclear fuel. C1 [Amendt, P. A.; Milovich, J. L.; Wilks, S. C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Li, C. K.; Petrasso, R. D.; Seguin, F. H.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. RP Amendt, PA (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM amendt1@llnl.gov NR 16 TC 16 Z9 16 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2009 VL 51 IS 12 AR 124048 DI 10.1088/0741-3335/51/12/124048 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 521RJ UT WOS:000271940800059 ER PT J AU Bell, MG Kugel, HW Kaita, R Zakharov, LE Schneider, H LeBlanc, BP Mansfield, D Bell, RE Maingi, R Ding, S Kaye, SM Paul, SF Gerhardt, SP Canik, JM Hosea, JC Taylor, G AF Bell, M. G. Kugel, H. W. Kaita, R. Zakharov, L. E. Schneider, H. LeBlanc, B. P. Mansfield, D. Bell, R. E. Maingi, R. Ding, S. Kaye, S. M. Paul, S. F. Gerhardt, S. P. Canik, J. M. Hosea, J. C. Taylor, G. CA NSTX Res Team TI Plasma response to lithium-coated plasma-facing components in the National Spherical Torus Experiment SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT 36th European-Physical-Society Conference on Plasma Physics CY JUN 29-JUL 03, 2009 CL Natl Palace Culture, Sofia, BULGARIA SP European Phys Soc, Union Physicists, Sofia Univ St Kliment Ohrids, Fac Phys HO Natl Palace Culture ID NSTX; LIMITER AB Experiments in the National Spherical Torus Experiment ( NSTX) have shown beneficial effects on the performance of divertor plasmas as a result of applying lithium coatings on the graphite and carbon-fiber-composite plasma-facing components. These coatings have mostly been applied by a pair of lithium evaporators mounted at the top of the vacuum vessel which inject collimated streams of lithium vapor toward the lower divertor. In neutral beam injection (NBI)-heated deuterium H-mode plasmas run immediately after the application of lithium, performance modifications included decreases in the plasma density, particularly in the edge, and inductive flux consumption, and increases in the electron and ion temperatures and the energy confinement time. Reductions in the number and amplitude of edge-localized modes (ELMs) were observed, including complete ELM suppression for periods of up to 1.2 s, apparently as a result of altering the stability of the edge. However, in the plasmas where ELMs were suppressed, there was a significant secular increase in the effective ion charge Z(eff) and the radiated power as a result of increases in the carbon and medium-Z metallic impurities, although not of lithium itself which remained at a very low level in the plasma core, <0.1%. The impurity buildup could be inhibited by repetitively triggering ELMs with the application of brief pulses of an n = 3 radial field perturbation. The reduction in the edge density by lithium also inhibited parasitic losses through the scrape-off-layer of ICRF power coupled to the plasma, enabling the waves to heat electrons in the core of H-mode plasmas produced by NBI. Lithium has also been introduced by injecting a stream of chemically stabilized, fine lithium powder directly into the scrape-off-layer of NBI-heated plasmas. The lithium was ionized in the SOL and appeared to flow along the magnetic field to the divertor plates. This method of coating produced similar effects to the evaporated lithium but at lower amounts. C1 [Bell, M. G.; Kugel, H. W.; Kaita, R.; Zakharov, L. E.; Schneider, H.; LeBlanc, B. P.; Mansfield, D.; Bell, R. E.; Kaye, S. M.; Paul, S. F.; Gerhardt, S. P.; Hosea, J. C.; Taylor, G.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Maingi, R.; Canik, J. M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Ding, S.] Acad Sci Inst Plasma Phys, Hefei, Peoples R China. RP Bell, MG (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. OI Canik, John/0000-0001-6934-6681 NR 27 TC 84 Z9 84 U1 2 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2009 VL 51 IS 12 AR 124054 DI 10.1088/0741-3335/51/12/124054 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 521RJ UT WOS:000271940800065 ER PT J AU Heidbrink, WW Murakami, M Park, JM Petty, CC Van Zeeland, MA Yu, JH McKee, GR AF Heidbrink, W. W. Murakami, M. Park, J. M. Petty, C. C. Van Zeeland, M. A. Yu, J. H. McKee, G. R. TI Beam-ion confinement for different injection geometries SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID DIII-D TOKAMAK; ENERGETIC PARTICLES; THOMSON SCATTERING; SPHERICAL TOKAMAK; RIPPLE LOSS; TRANSPORT; SPECTROSCOPY; EMISSION; INSTABILITIES; TURBULENCE AB The DIII-D tokamak is equipped with neutral beam sources that inject in four different directions; in addition, the plasma can be moved up or down to compare off-axis with on-axis injection. Fast-ion data for eight different conditions have been obtained: co/counter, near-tangential/near-perpendicular and on-axis/off-axis. Neutron measurements during short beam pulses assess prompt and delayed losses under low-power conditions. As expected, co-injection has fewer losses than counter, tangential fewer than perpendicular and on-axis fewer than off-axis; the differences are greater at low current than at higher current. The helicity of the magnetic field has a weak effect on the overall confinement. Fast-ion D(alpha) (FIDA) and neutron measurements diagnose the confinement at higher power. The basic trends are the same as in low-power plasmas but, even in plasmas without long wavelength Alfven modes or other MHD, discrepancies with theory are observed, especially in higher temperature plasmas. At modest temperature, two-dimensional images of the FIDA light are in good agreement with the simulations for both on-axis and off-axis injection. Discrepancies with theory are more pronounced at low fast-ion energy and at high plasma temperature, suggesting that fast-ion transport by microturbulence is responsible for the anomalies. C1 [Heidbrink, W. W.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Murakami, M.; Park, J. M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Petty, C. C.; Van Zeeland, M. A.] Gen Atom Co, San Diego, CA 92186 USA. [Yu, J. H.] Univ Calif San Diego, La Jolla, CA 92093 USA. [McKee, G. R.] Univ Wisconsin, Madison, WI 53726 USA. RP Heidbrink, WW (reprint author), Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. FU US Department of Energy [SC-G903402, DE-FC02-04ER54698] FX The authors gratefully acknowledge the assistance of K Burrell, B Grierson, R Groebner, Deyong Liu, Yadong Luo, T Osborne, D Pace, R Prater, E Ruskov, Yubao Zhu and the entire DIII-D team. Wenlu Zhang kindly provided data from [30]. This work was supported by the US Department of Energy under SC-G903402 and DE-FC02-04ER54698. NR 54 TC 26 Z9 26 U1 0 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2009 VL 51 IS 12 AR 125001 DI 10.1088/0741-3335/51/12/125001 PG 32 WC Physics, Fluids & Plasmas SC Physics GA 521RJ UT WOS:000271940800002 ER PT J AU Kaganovich, ID Demidov, VI Adams, SF Raitses, Y AF Kaganovich, I. D. Demidov, V. I. Adams, S. F. Raitses, Y. TI Non-local collisionless and collisional electron transport in low-temperature plasma SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT 36th European-Physical-Society Conference on Plasma Physics CY JUN 29-JUL 03, 2009 CL Natl Palace Culture, Sofia, BULGARIA SP European Phys Soc, Union Physicists, Sofia Univ St Kliment Ohrids, Fac Phys HO Natl Palace Culture ID GAS-DISCHARGE PLASMAS; GLOW-DISCHARGE; KINETICS; MODEL AB This paper reviews recent advances in non-local electron kinetics in low-pressure discharges. Non-local electron kinetics, non-local electrodynamics with collisionless electron heating and non-linear processes in the sheaths are typical for such discharges. Progress in understanding the non-local interaction of electric fields with real, bounded plasma created by the fields has been one of the major achievements of the past few decades. C1 [Kaganovich, I. D.; Raitses, Y.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Demidov, V. I.] UES Inc, Dayton, OH 45432 USA. [Demidov, V. I.] W Virginia Univ, Morgantown, WV 26506 USA. [Adams, S. F.] USAF, Res Labs, Wright Patterson AFB, OH 45433 USA. RP Kaganovich, ID (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM ikaganov@pppl.gov RI Demidov, Vladimir/A-4247-2013 OI Demidov, Vladimir/0000-0002-2672-7684 NR 35 TC 9 Z9 9 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2009 VL 51 IS 12 AR 124003 DI 10.1088/0741-3335/51/12/124003 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 521RJ UT WOS:000271940800014 ER PT J AU Perez, F Koenig, M Batani, D Baton, SD Beg, FN Benedetti, C Brambrink, E Chawla, S Dorchies, F Fourment, C Galimberti, M Gizzi, LA Heathcote, R Higginson, DP Hulin, S Jafer, R Koester, P Labate, L Lancaster, K MacKinnon, AJ McPhee, AG Nazarov, W Nicolai, P Pasley, J Ravasio, A Richetta, M Santos, JJ Sgattoni, A Spindloe, C Vauzour, B Volpe, L AF Perez, F. Koenig, M. Batani, D. Baton, S. D. Beg, F. N. Benedetti, C. Brambrink, E. Chawla, S. Dorchies, F. Fourment, C. Galimberti, M. Gizzi, L. A. Heathcote, R. Higginson, D. P. Hulin, S. Jafer, R. Koester, P. Labate, L. Lancaster, K. MacKinnon, A. J. McPhee, A. G. Nazarov, W. Nicolai, P. Pasley, J. Ravasio, A. Richetta, M. Santos, J. J. Sgattoni, A. Spindloe, C. Vauzour, B. Volpe, L. TI Fast-electron transport in cylindrically laser-compressed matter SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT 36th European-Physical-Society Conference on Plasma Physics CY JUN 29-JUL 03, 2009 CL Natl Palace Culture, Sofia, BULGARIA SP European Phys Soc, Union Physicists, Sofia Univ St Kliment Ohrids, Fac Phys HO Natl Palace Culture ID CENTERED LAGRANGIAN SCHEME; FLOW PROBLEMS AB Experimental and theoretical results of relativistic electron transport in cylindrically compressed matter are presented. This experiment, which is a part of the HiPER roadmap, was achieved on the VULCAN laser facility (UK) using four long pulses beams (similar to 4 x 50 J, 1 ns, at 0.53 mu m) to compress a hollow plastic cylinder filled with plastic foam of three different densities (0.1, 0.3 and 1 g cm(-3)). 2D simulations predict a density of 2-5 g cm(-3) and a plasma temperature up to 100 eV at maximum compression. Ashort pulse (10 ps, 160 J) beam generated fast electrons that propagate through the compressed matter by irradiating a nickel foil at an intensity of 5 x 10(18) W cm(-2). X-ray spectrometer and imagers were implemented in order to estimate the compressed plasma conditions and to infer the hot electron characteristics. Results are discussed and compared with simulations. C1 [Perez, F.; Koenig, M.; Baton, S. D.; Brambrink, E.; Ravasio, A.] Lab Utilisat Lasers Intenses, Palaiseau, France. [Batani, D.; Jafer, R.; Volpe, L.] Univ Milano Bicocca, Dipartimento Fis, Milan, Italy. [Beg, F. N.; Chawla, S.; Higginson, D. P.] Univ Calif San Diego, San Diego, CA 92103 USA. [Benedetti, C.; Sgattoni, A.] Univ Bologna, Dipartimento Fis, I-40126 Bologna, Italy. [Dorchies, F.; Fourment, C.; Hulin, S.; Nicolai, P.; Santos, J. J.; Vauzour, B.] Univ Bordeaux, CNRS, CEA, Ctr Lasers Intenses & Applicat, F-33405 Talence, France. [Galimberti, M.; Heathcote, R.; Lancaster, K.; Pasley, J.; Spindloe, C.] Rutherford Appleton Lab, Cent Laser Facil, Didcot OX11 0QX, Oxon, England. [Gizzi, L. A.; Koester, P.; Labate, L.] CNR, LIL IPCF, Pisa, Italy. [MacKinnon, A. J.; McPhee, A. G.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Nazarov, W.] Univ St Andrews, St Andrews KY16 9AJ, Fife, Scotland. [Pasley, J.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. [Richetta, M.] Univ Roma Tor Vergata, Dipartimento Ingn Meccan, I-00173 Rome, Italy. RP Perez, F (reprint author), Lab Utilisat Lasers Intenses, Palaiseau, France. RI Koenig, Michel/A-2167-2012; Gizzi, Leonida/F-4782-2011; RICHETTA, MARIA/I-8513-2012; Vauzour, Benjamin/N-8385-2013; Jafer, Rashida/K-2078-2014; MacKinnon, Andrew/P-7239-2014; Higginson, Drew/G-5942-2016; Brennan, Patricia/N-3922-2015 OI Gizzi, Leonida A./0000-0001-6572-6492; MacKinnon, Andrew/0000-0002-4380-2906; Higginson, Drew/0000-0002-7699-3788; NR 13 TC 23 Z9 23 U1 2 U2 19 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2009 VL 51 IS 12 AR 124035 DI 10.1088/0741-3335/51/12/124035 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 521RJ UT WOS:000271940800046 ER PT J AU Puiatti, ME Alfier, A Auriemma, F Cappello, S Carraro, L Cavazzana, R Dal Bello, S Fassina, A Escande, DF Franz, P Gobbin, M Innocente, P Lorenzini, R Marrelli, L Martin, P Piovesan, P Predebon, I Sattin, F Spizzo, G Terranova, D Valisa, M Zaniol, B Zanotto, L Zuin, M Agostini, M Antoni, V Apolloni, L Baruzzo, M Bolzonella, T Bonfiglio, D Bonomo, F Boozer, A Brombin, M Canton, A Delogu, R De Masi, G Gaio, E Gazza, E Giudicotti, L Grando, L Guo, SC Manduchi, G Marchiori, G Martines, E Martini, S Menmuir, S Momo, B Moresco, M Munaretto, S Novello, L Paccagnella, R Pasqualotto, R Piovan, R Piron, L Pizzimenti, A Pomphrey, N Scarin, P Serianni, G Spada, E Soppelsa, A Spagnolo, S Spolaore, M Taliercio, C Vianello, N Zamengo, A Zanca, P AF Puiatti, M. E. Alfier, A. Auriemma, F. Cappello, S. Carraro, L. Cavazzana, R. Dal Bello, S. Fassina, A. Escande, D. F. Franz, P. Gobbin, M. Innocente, P. Lorenzini, R. Marrelli, L. Martin, P. Piovesan, P. Predebon, I. Sattin, F. Spizzo, G. Terranova, D. Valisa, M. Zaniol, B. Zanotto, L. Zuin, M. Agostini, M. Antoni, V. Apolloni, L. Baruzzo, M. Bolzonella, T. Bonfiglio, D. Bonomo, F. Boozer, A. Brombin, M. Canton, A. Delogu, R. De Masi, G. Gaio, E. Gazza, E. Giudicotti, L. Grando, L. Guo, S. C. Manduchi, G. Marchiori, G. Martines, E. Martini, S. Menmuir, S. Momo, B. Moresco, M. Munaretto, S. Novello, L. Paccagnella, R. Pasqualotto, R. Piovan, R. Piron, L. Pizzimenti, A. Pomphrey, N. Scarin, P. Serianni, G. Spada, E. Soppelsa, A. Spagnolo, S. Spolaore, M. Taliercio, C. Vianello, N. Zamengo, A. Zanca, P. TI Helical equilibria and magnetic structures in the reversed field pinch and analogies to the tokamak and stellarator SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT 36th European-Physical-Society Conference on Plasma Physics CY JUN 29-JUL 03, 2009 CL Natl Palace Culture, Sofia, BULGARIA SP European Phys Soc, Union Physicists, Sofia Univ St Kliment Ohrids, Fac Phys HO Natl Palace Culture ID INTERNAL TRANSPORT BARRIERS; STEADY-STATE OPERATION; MHD ACTIVE CONTROL; RFX-MOD; SELF-ORGANIZATION; CONFINEMENT; PLASMAS; PHYSICS; REGIMES; UPGRADE AB The reversed field pinch configuration is characterized by the presence of magnetic structures both in the core and at the edge: in the core, at high plasma current the spontaneous development of a helical structure is accompanied by the appearance of internal electron transport barriers; at the edge strong pressure gradients, identifying an edge transport barrier, are observed too, related to the position of the field reversal surface. The aim of this paper is the experimental characterization of both the internal and edge transport barriers in relation to the magnetic topology, discussing possible analogies and differences with other confinement schemes. C1 [Puiatti, M. E.; Alfier, A.; Auriemma, F.; Cappello, S.; Carraro, L.; Cavazzana, R.; Dal Bello, S.; Fassina, A.; Escande, D. F.; Franz, P.; Gobbin, M.; Innocente, P.; Lorenzini, R.; Marrelli, L.; Martin, P.; Piovesan, P.; Predebon, I.; Sattin, F.; Spizzo, G.; Terranova, D.; Valisa, M.; Zaniol, B.; Zanotto, L.; Zuin, M.; Agostini, M.; Antoni, V.; Apolloni, L.; Baruzzo, M.; Bolzonella, T.; Bonfiglio, D.; Bonomo, F.; Brombin, M.; Canton, A.; Delogu, R.; De Masi, G.; Gaio, E.; Gazza, E.; Giudicotti, L.; Grando, L.; Guo, S. C.; Manduchi, G.; Marchiori, G.; Martines, E.; Martini, S.; Menmuir, S.; Momo, B.; Moresco, M.; Munaretto, S.; Novello, L.; Paccagnella, R.; Pasqualotto, R.; Piovan, R.; Piron, L.; Pizzimenti, A.; Scarin, P.; Serianni, G.; Spada, E.; Soppelsa, A.; Spagnolo, S.; Spolaore, M.; Taliercio, C.; Vianello, N.; Zamengo, A.; Zanca, P.] Assoc EURATOM ENEA Fus, Consorzio RFX, I-35137 Padua, Italy. [Escande, D. F.] Univ Aix Marseille 1, CNRS, UMR 6633, Marseille, France. [Boozer, A.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA. [Pomphrey, N.] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. RP Puiatti, ME (reprint author), Assoc EURATOM ENEA Fus, Consorzio RFX, I-35137 Padua, Italy. RI Martines, Emilio/B-1418-2009; pomphrey, neil/G-4405-2010; Soppelsa, Anton/G-6971-2011; Pasqualotto, Roberto/B-6676-2011; Bonfiglio, Daniele/I-9398-2012; Sattin, Fabio/B-5620-2013; Auriemma, Finizia/B-7218-2014; Spizzo, Gianluca/B-7075-2009; Marrelli, Lionello/G-4451-2013; Innocente, Paolo/G-4381-2013; Marchiori, Giuseppe/I-6853-2013; zaniol, barbara/L-7745-2013; Cappello, Susanna/H-9968-2013; Vianello, Nicola/B-6323-2008; Momo, Barbara/I-7686-2015; spagnolo, silvia/E-9384-2017; OI Martines, Emilio/0000-0002-4181-2959; Bonfiglio, Daniele/0000-0003-2638-317X; Auriemma, Finizia/0000-0003-4604-2057; Spizzo, Gianluca/0000-0001-8586-2168; Marrelli, Lionello/0000-0001-5370-080X; zaniol, barbara/0000-0001-9934-8370; Cappello, Susanna/0000-0002-2022-1113; Vianello, Nicola/0000-0003-4401-5346; Momo, Barbara/0000-0001-7760-8960; Escande, Dominique/0000-0002-0460-8385; AGOSTINI, MATTEO/0000-0002-3823-1002; antoni, vanni/0000-0002-4588-8168; Munaretto, Stefano/0000-0003-1465-0971 NR 68 TC 32 Z9 32 U1 3 U2 20 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2009 VL 51 IS 12 AR 124031 DI 10.1088/0741-3335/51/12/124031 PG 14 WC Physics, Fluids & Plasmas SC Physics GA 521RJ UT WOS:000271940800042 ER PT J AU Roach, CM Abel, IG Akers, RJ Arter, W Barnes, M Camenen, Y Casson, FJ Colyer, G Connor, JW Cowley, SC Dickinson, D Dorland, W Field, AR Guttenfelder, W Hammett, GW Hastie, RJ Highcock, E Loureiro, NF Peeters, AG Reshko, M Saarelma, S Schekochihin, AA Valovic, M Wilson, HR AF Roach, C. M. Abel, I. G. Akers, R. J. Arter, W. Barnes, M. Camenen, Y. Casson, F. J. Colyer, G. Connor, J. W. Cowley, S. C. Dickinson, D. Dorland, W. Field, A. R. Guttenfelder, W. Hammett, G. W. Hastie, R. J. Highcock, E. Loureiro, N. F. Peeters, A. G. Reshko, M. Saarelma, S. Schekochihin, A. A. Valovic, M. Wilson, H. R. TI Gyrokinetic simulations of spherical tokamaks SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT 36th European-Physical-Society Conference on Plasma Physics CY JUN 29-JUL 03, 2009 CL Natl Palace Culture, Sofia, BULGARIA SP European Phys Soc, Union Physicists, Sofia Univ St Kliment Ohrids, Fac Phys HO Natl Palace Culture ID TURBULENCE SIMULATIONS; TRANSPORT; PLASMA; MODE; CONFINEMENT; MICROSTABILITY; INSTABILITIES; EQUILIBRIUM; PHYSICS; FIELD AB This paper reviews transport and confinement in spherical tokamaks (STs) and our current physics understanding of this that is partly based on gyrokinetic simulations. Equilibrium flow shear plays an important role, and we show how this is consistently included in the gyrokinetic framework for flows that greatly exceed the diamagnetic velocity. The key geometry factors that influence the effectiveness of turbulence suppression by flow shear are discussed, and we show that toroidal equilibrium flow shear can sometimes entirely suppress ion scale turbulence in today's STs. Advanced nonlinear simulations of electron temperature gradient (ETG) driven turbulence, including kinetic ion physics, collisions and equilibrium flow shear, support the model that ETG turbulence can explain electron heat transport in many ST discharges. C1 [Roach, C. M.; Akers, R. J.; Arter, W.; Barnes, M.; Colyer, G.; Connor, J. W.; Cowley, S. C.; Field, A. R.; Hastie, R. J.; Loureiro, N. F.; Saarelma, S.; Valovic, M.] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Abel, I. G.; Barnes, M.; Highcock, E.; Schekochihin, A. A.] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England. [Camenen, Y.; Casson, F. J.; Guttenfelder, W.; Peeters, A. G.] Univ Warwick, Dept Phys, CFSA, Coventry CV4 7AL, W Midlands, England. [Dickinson, D.; Reshko, M.; Wilson, H. R.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. [Dorland, W.] Univ Maryland, College Pk, MD 20742 USA. [Hammett, G. W.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08544 USA. RP Roach, CM (reprint author), UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. RI Peeters, Arthur/A-1281-2009; Schekochihin, Alexander/C-2399-2009; Hammett, Gregory/D-1365-2011; Barnes, Michael/F-4934-2011; Roach, Colin/C-4839-2011; Dorland, William/B-4403-2009; Loureiro, Nuno/E-8719-2011 OI Hammett, Gregory/0000-0003-1495-6647; Dorland, William/0000-0003-2915-724X; Loureiro, Nuno/0000-0001-9755-6563 NR 37 TC 43 Z9 43 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2009 VL 51 IS 12 AR 124020 DI 10.1088/0741-3335/51/12/124020 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 521RJ UT WOS:000271940800031 ER PT J AU Roth, M Alber, I Bagnoud, V Brown, CRD Clarke, R Daido, H Fernandez, J Flippo, K Gaillard, S Gauthier, C Geissel, M Glenzer, S Gregori, G Gunther, M Harres, K Heathcote, R Kritcher, A Kugland, N LePape, S Li, B Makita, M Mithen, J Niemann, C Nurnberg, F Offermann, D Otten, A Pelka, A Riley, D Schaumann, G Schollmeier, M Schutrumpf, J Tampo, M Tauschwitz, A Tauschwitz, A AF Roth, M. Alber, I. Bagnoud, V. Brown, C. R. D. Clarke, R. Daido, H. Fernandez, J. Flippo, K. Gaillard, S. Gauthier, C. Geissel, M. Glenzer, S. Gregori, G. Guenther, M. Harres, K. Heathcote, R. Kritcher, A. Kugland, N. LePape, S. Li, B. Makita, M. Mithen, J. Niemann, C. Nuernberg, F. Offermann, D. Otten, A. Pelka, A. Riley, D. Schaumann, G. Schollmeier, M. Schuetrumpf, J. Tampo, M. Tauschwitz, A. Tauschwitz, An TI Proton acceleration experiments and warm dense matter research using high power lasers SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT 36th European-Physical-Society Conference on Plasma Physics CY JUN 29-JUL 03, 2009 CL Natl Palace Culture, Sofia, BULGARIA SP European Phys Soc, Union Physicists, Sofia Univ St Kliment Ohrids, Fac Phys HO Natl Palace Culture ID ION-ACCELERATION; BEAMS; IGNITION; DRIVEN; SOLIDS; PLASMA AB The acceleration of intense proton and ion beams by ultra-intense lasers has matured to a point where applications in basic research and technology are being developed. Crucial for harvesting the unmatched beam parameters driven by the relativistic electron sheath is the precise control of the beam. In this paper we report on recent experiments using the PHELIX laser at GSI, the VULCAN laser at RAL and the TRIDENT laser at LANL to control and use laser accelerated proton beams for applications in high energy density research. We demonstrate efficient collimation of the proton beam using high field pulsed solenoid magnets, a prerequisite to capture and transport the beam for applications. Furthermore, we report on two campaigns to use intense, short proton bunches to isochorically heat solid targets up to the warm dense matter state. The temporal profile of the proton beam allows for rapid heating of the target, much faster than the hydrodynamic response time thereby creating a strongly coupled plasma at solid density. The target parameters are then probed by x-ray Thomson scattering to reveal the density and temperature of the heated volume. This combination of two powerful techniques developed during the past few years allows for the generation and investigation of macroscopic samples of matter in states present in giant planets or the interior of the earth. C1 [Roth, M.; Alber, I.; Guenther, M.; Harres, K.; Nuernberg, F.; Otten, A.; Pelka, A.; Schaumann, G.; Schollmeier, M.; Schuetrumpf, J.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. [Bagnoud, V.; Tauschwitz, A.] GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany. [Brown, C. R. D.] Univ London Imperial Coll Sci Technol & Med, Plasma Phys Grp, London SW7 2BZ, England. [Brown, C. R. D.] AWE Plc, Reading RG7 4PR, Berks, England. [Clarke, R.; Heathcote, R.; Li, B.; Schaumann, G.] Rutherford Appleton Lab, STFC, Didcot OX14 OQX, Oxon, England. [Daido, H.; Tampo, M.] JAEA, Photo Med Res Ctr, Kizugawa City, Kyoto 6190215, Japan. [Fernandez, J.; Flippo, K.; Gaillard, S.; Gauthier, C.; Offermann, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Geissel, M.; Schollmeier, M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Glenzer, S.; Kritcher, A.; Kugland, N.; LePape, S.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Gregori, G.; Mithen, J.] Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England. [Makita, M.; Riley, D.] Queens Univ Belfast, Sch Math & Phys, Belfast BT7 1NN, Antrim, North Ireland. [Niemann, C.] Univ Calif Los Angeles, Dept Phys, Los Angeles, CA 90095 USA. [Tauschwitz, An] Goethe Univ Frankfurt, Inst Theor Phys, D-60438 Frankfurt, Germany. RP Roth, M (reprint author), Tech Univ Darmstadt, Inst Kernphys, Petersenstr 30, D-64289 Darmstadt, Germany. EM markus.roth@physik.tu-darmstadt.de RI Bagnoud, Vincent/K-4266-2015; Flippo, Kirk/C-6872-2009; Fernandez, Juan/H-3268-2011; Schollmeier, Marius/H-1056-2012; Tampo, Motonobu/I-2897-2012 OI Bagnoud, Vincent/0000-0003-1512-4578; Flippo, Kirk/0000-0002-4752-5141; Offermann, Dustin/0000-0002-6033-4905; Fernandez, Juan/0000-0002-1438-1815; Schollmeier, Marius/0000-0002-0683-022X; NR 24 TC 13 Z9 13 U1 1 U2 19 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2009 VL 51 IS 12 AR 124039 DI 10.1088/0741-3335/51/12/124039 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 521RJ UT WOS:000271940800050 ER PT J AU Spizzo, G White, RB Cappello, S Marrelli, L AF Spizzo, G. White, R. B. Cappello, S. Marrelli, L. TI Nonlocal transport in the reversed field pinch SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT 36th European-Physical-Society Conference on Plasma Physics CY JUN 29-JUL 03, 2009 CL Natl Palace Culture, Sofia, BULGARIA SP European Phys Soc, Union Physicists, Sofia Univ St Kliment Ohrids, Fac Phys HO Natl Palace Culture ID ANOMALOUS TRANSPORT; PARTICLE-TRANSPORT; SELF-ORGANIZATION; RANDOM-WALKS; RFX; DIFFUSION; CHAOS; TURBULENCE; TOKAMAKS; BEHAVIOR AB Several heuristic models for nonlocal transport in plasmas have been developed, but they have had a limited possibility of detailed comparison with experimental data. Nonlocal aspects introduced by the existence of a known spectrum of relatively stable saturated tearing modes in a low current reversed field pinch (RFP) offers a unique possibility for such a study. A numerical modeling of the magnetic structure and associated particle transport is carried out for the RFP experiment at the Consorzio RFX, Padova, Italy. A reproduction of the tearing mode spectrum with a guiding center code (White and Chance 1984 Phys. Fluids 27 2455) reliably reproduces the observed soft x-ray tomography. Following particle trajectories in the stochastic magnetic field shows the transport across the unperturbed flux surfaces to be due to a spectrum of Levy flights, with the details of the spectrum position dependent. The resulting transport is subdiffusive, and cannot be described by RechesterRosenbluth diffusion, which depends on a random phase approximation. If one attempts to fit the local transport phenomenologically, the subdiffusion can be fit with a combination of diffusion and inward pinch (Spizzo et al 2007 Phys. Plasmas 14 102310). It is found that whereas passing particles explore the stochastic field and hence participate in Levy flights, the trapped particles experience normal neoclassical diffusion. A two fluid nonlocal Montroll equation is used to model this transport, with a Levy flight defined as the motion of an ion during the period that the pitch has one sign. The necessary input to the Montroll equation consists of a time distribution for the Levy flights, given by the pitch angle scattering operator, and a distribution of the flight distances, determined numerically using a guiding center code. Results are compared with the experiment. The relation of this formulation to fractional kinetics is also described. C1 [Spizzo, G.; Cappello, S.; Marrelli, L.] Euratom ENEA Assoc, Consorzio RFX, I-35127 Padua, Italy. [White, R. B.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Spizzo, G (reprint author), Euratom ENEA Assoc, Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy. EM gianluca.spizzo@igi.cnr.it RI Marrelli, Lionello/G-4451-2013; Cappello, Susanna/H-9968-2013; White, Roscoe/D-1773-2013; Spizzo, Gianluca/B-7075-2009 OI Marrelli, Lionello/0000-0001-5370-080X; Cappello, Susanna/0000-0002-2022-1113; White, Roscoe/0000-0002-4239-2685; Spizzo, Gianluca/0000-0001-8586-2168 NR 45 TC 19 Z9 19 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2009 VL 51 IS 12 AR 124026 DI 10.1088/0741-3335/51/12/124026 PG 19 WC Physics, Fluids & Plasmas SC Physics GA 521RJ UT WOS:000271940800037 ER PT J AU Theobald, W Anderson, KS Betti, R Craxton, RS Delettrez, JA Frenje, JA Glebov, VY Gotchev, OV Kelly, JH Li, CK Mackinnon, AJ Marshall, FJ McCrory, RL Meyerhofer, DD Myatt, JF Norreys, PA Nilson, PM Patel, PK Petrasso, RD Radha, PB Ren, C Sangster, TC Seka, W Smalyuk, VA Solodov, AA Stephens, RB Stoeckl, C Yaakobi, B AF Theobald, W. Anderson, K. S. Betti, R. Craxton, R. S. Delettrez, J. A. Frenje, J. A. Glebov, V. Yu Gotchev, O. V. Kelly, J. H. Li, C. K. Mackinnon, A. J. Marshall, F. J. McCrory, R. L. Meyerhofer, D. D. Myatt, J. F. Norreys, P. A. Nilson, P. M. Patel, P. K. Petrasso, R. D. Radha, P. B. Ren, C. Sangster, T. C. Seka, W. Smalyuk, V. A. Solodov, A. A. Stephens, R. B. Stoeckl, C. Yaakobi, B. TI Advanced-ignition-concept exploration on OMEGA SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT 36th European-Physical-Society Conference on Plasma Physics CY JUN 29-JUL 03, 2009 CL Natl Palace Culture, Sofia, BULGARIA SP European Phys Soc, Union Physicists, Sofia Univ St Kliment Ohrids, Fac Phys HO Natl Palace Culture ID LASER FUSION IGNITION; PARTICLES; TRANSPORT; DENSITY; PLASMAS AB Advanced ignition concepts, such as fast ignition and shock ignition, are being investigated at the Omega Laser Facility. Integrated fast-ignition experiments with room-temperature re-entrant cone targets have begun, using 18 kJ of 351 nm drive energy to implode empty 40 mu m thick CD shells, followed by 1.0 kJ of 1053 nm wavelength, short-pulse energy. Short pulses of 10 ps width have irradiated the inside of a hollow gold re-entrant cone at the time of peak compression. A threefold increase in the time-integrated, 2 to 7 keV x-ray emission was observed with x-ray pinhole cameras, indicating that energy is coupled from the short-pulse laser into the core by fast electrons. In shock-ignition experiments, spherical plastic-shell targets were compressed to high areal densities on a low adiabat, and a strong shock wave was sent into the converging, compressed capsule. In one experiment, 60 beams were used with an intensity spike at the end of the laser pulse, and the implosion performance was studied through neutron-yield and areal-density measurements. In a second experiment, the 60 OMEGA beams were split into a 40 + 20 configuration, with 40 low-intensity beams used for fuel assembly and 20 delayed beams with a short, high-intensity pulse shape (up to 1 x 10(16) W cm(-2)) for shock generation. C1 [Theobald, W.; Anderson, K. S.; Betti, R.; Craxton, R. S.; Delettrez, J. A.; Glebov, V. Yu; Gotchev, O. V.; Kelly, J. H.; Marshall, F. J.; McCrory, R. L.; Meyerhofer, D. D.; Myatt, J. F.; Nilson, P. M.; Radha, P. B.; Ren, C.; Sangster, T. C.; Seka, W.; Smalyuk, V. A.; Solodov, A. A.; Stoeckl, C.; Yaakobi, B.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Frenje, J. A.; Li, C. K.; Petrasso, R. D.] MIT, Cambridge, MA 02439 USA. [Mackinnon, A. J.; Patel, P. K.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Norreys, P. A.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Stephens, R. B.] Gen Atom, San Diego, CA 91286 USA. [Anderson, K. S.; Betti, R.; Gotchev, O. V.; Meyerhofer, D. D.; Nilson, P. M.; Ren, C.; Solodov, A. A.] Univ Rochester, Fus Sci Ctr Extreme States Matter & Fast Ignit Ph, Rochester, NY 14623 USA. [Betti, R.; McCrory, R. L.; Meyerhofer, D. D.; Ren, C.] Univ Rochester, Dept Mech Engn, Rochester, NY 14623 USA. [Betti, R.; McCrory, R. L.; Meyerhofer, D. D.] Univ Rochester, Dept Phys, Rochester, NY 14623 USA. RP Theobald, W (reprint author), Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. EM wthe@lle.rochester.edu RI Patel, Pravesh/E-1400-2011; MacKinnon, Andrew/P-7239-2014; OI MacKinnon, Andrew/0000-0002-4380-2906; Stephens, Richard/0000-0002-7034-6141 NR 45 TC 29 Z9 29 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2009 VL 51 IS 12 AR 124052 DI 10.1088/0741-3335/51/12/124052 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 521RJ UT WOS:000271940800063 ER PT J AU Angly, FE Willner, D Prieto-Davo, A Edwards, RA Schmieder, R Vega-Thurber, R Antonopoulos, DA Barott, K Cottrell, MT Desnues, C Dinsdale, EA Furlan, M Haynes, M Henn, MR Hu, YF Kirchman, DL McDole, T McPherson, JD Meyer, F Miller, RM Mundt, E Naviaux, RK Rodriguez-Mueller, B Stevens, R Wegley, L Zhang, LX Zhu, BL Rohwer, F AF Angly, Florent E. Willner, Dana Prieto-Davo, Alejandra Edwards, Robert A. Schmieder, Robert Vega-Thurber, Rebecca Antonopoulos, Dionysios A. Barott, Katie Cottrell, Matthew T. Desnues, Christelle Dinsdale, Elizabeth A. Furlan, Mike Haynes, Matthew Henn, Matthew R. Hu, Yongfei Kirchman, David L. McDole, Tracey McPherson, John D. Meyer, Folker Miller, R. Michael Mundt, Egbert Naviaux, Robert K. Rodriguez-Mueller, Beltran Stevens, Rick Wegley, Linda Zhang, Lixin Zhu, Baoli Rohwer, Forest TI The GAAS Metagenomic Tool and Its Estimations of Viral and Microbial Average Genome Size in Four Major Biomes SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID SPECTRAL ABUNDANCE FACTORS; FIELD GEL-ELECTROPHORESIS; STATISTICAL SIGNIFICANCE; ONLINE TOOL; DIVERSITY; VIRUSES; VIRIOPLANKTON; INFORMATION; RESOURCE; PHAGES AB Metagenomic studies characterize both the composition and diversity of uncultured viral and microbial communities. BLAST-based comparisons have typically been used for such analyses; however, sampling biases, high percentages of unknown sequences, and the use of arbitrary thresholds to find significant similarities can decrease the accuracy and validity of estimates. Here, we present Genome relative Abundance and Average Size (GAAS), a complete software package that provides improved estimates of community composition and average genome length for metagenomes in both textual and graphical formats. GAAS implements a novel methodology to control for sampling bias via length normalization, to adjust for multiple BLAST similarities by similarity weighting, and to select significant similarities using relative alignment lengths. In benchmark tests, the GAAS method was robust to both high percentages of unknown sequences and to variations in metagenomic sequence read lengths. Re-analysis of the Sargasso Sea virome using GAAS indicated that standard methodologies for metagenomic analysis may dramatically underestimate the abundance and importance of organisms with small genomes in environmental systems. Using GAAS, we conducted a meta-analysis of microbial and viral average genome lengths in over 150 metagenomes from four biomes to determine whether genome lengths vary consistently between and within biomes, and between microbial and viral communities from the same environment. Significant differences between biomes and within aquatic sub-biomes (oceans, hypersaline systems, freshwater, and microbialites) suggested that average genome length is a fundamental property of environments driven by factors at the sub-biome level. The behavior of paired viral and microbial metagenomes from the same environment indicated that microbial and viral average genome sizes are independent of each other, but indicative of community responses to stressors and environmental conditions. C1 [Angly, Florent E.; Willner, Dana; Prieto-Davo, Alejandra; Edwards, Robert A.; Barott, Katie; Dinsdale, Elizabeth A.; Furlan, Mike; Haynes, Matthew; McDole, Tracey; Rodriguez-Mueller, Beltran; Wegley, Linda; Rohwer, Forest] San Diego State Univ, Dept Biol, San Diego, CA 92182 USA. [Angly, Florent E.; Schmieder, Robert; Rodriguez-Mueller, Beltran] San Diego State Univ, Computat Sci Res Ctr, San Diego, CA 92182 USA. [Edwards, Robert A.; Schmieder, Robert] San Diego State Univ, Dept Comp Sci, San Diego, CA 92182 USA. [Edwards, Robert A.; Meyer, Folker; Stevens, Rick] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Antonopoulos, Dionysios A.; Miller, R. Michael] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Vega-Thurber, Rebecca] Florida Int Univ, Dept Biol, Miami, FL 33199 USA. [Cottrell, Matthew T.; Kirchman, David L.] Univ Delaware, Sch Marine Sci & Policy, Lewes, DE 19958 USA. [Desnues, Christelle] Univ Aix Marseille 2, URMITE, CNRS, UMR IRD 6236, Marseille, France. [Haynes, Matthew] Massachusetts Inst Technol & Harvard, Broad Inst, Cambridge, MA USA. [Hu, Yongfei; Zhang, Lixin; Zhu, Baoli] Chinese Acad Sci, Inst Microbiol, Key Lab Pathogen Microbiol & Immunol, Beijing, Peoples R China. [McPherson, John D.] MaRS Ctr, Ontario Inst Canc Res, Toronto, ON, Canada. [Mundt, Egbert] Univ Georgia, Coll Vet Med, Poultry Diagnost & Res Ctr, Athens, GA USA. [Naviaux, Robert K.] Univ Calif San Diego, Sch Med, San Diego, CA 92103 USA. RP Angly, FE (reprint author), San Diego State Univ, Dept Biol, San Diego, CA 92182 USA. EM forent.angly@gmail.com RI Angly, Florent/A-7717-2011; Cottrell, Matthew/C-3266-2009; Desnues, Christelle/B-1383-2010; OI Angly, Florent/0000-0002-8999-0738; Desnues, Christelle/0000-0002-2178-0355; Meyer, Folker/0000-0003-1112-2284; Barott, Katie/0000-0001-7371-4870 FU Massachusetts Institute of Technology; Agouron Institute; National High Technology Research and Development Program of China [2007AA09Z443, 2007AA021301]; The Chinese Academy of Sciences [KSCX2-YW-G-022]; Gordon and Betty Moore Foundation; NSF [OPP 0124733] FX The Massachusetts Institute of Technology and the Agouron Institute for sequencing funded the Oxygen Minimum Zone project. The National High Technology Research and Development Program of China (2007AA09Z443 and 2007AA021301) and Knowledge Innovation Project of The Chinese Academy of Sciences (KSCX2-YW-G-022) supported the South China sediments microbiome project. The Antarctica Lakes research was supported by the Gordon and Betty Moore Foundation. NSF OPP 0124733 funded the Arctic microbiome sampling. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 44 TC 112 Z9 113 U1 4 U2 21 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-734X J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD DEC PY 2009 VL 5 IS 12 AR e1000593 DI 10.1371/journal.pcbi.1000593 PG 10 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 551SE UT WOS:000274229000011 PM 20011103 ER PT J AU Wall, ME Markowitz, DA Rosner, JL Martin, RG AF Wall, Michael E. Markowitz, David A. Rosner, Judah L. Martin, Robert G. TI Model of Transcriptional Activation by MarA in Escherichia coli SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID LAMBDA-PRM PROMOTER; RNA-POLYMERASE; TERMINAL DOMAIN; BINDING-SITES; HSP70 GENE; REPRESSOR; PROTEIN; DNA; MELANOGASTER; ORIENTATION AB The AraC family transcription factor MarA activates similar to 40 genes (the marA/soxS/rob regulon) of the Escherichia coli chromosome resulting in different levels of resistance to a wide array of antibiotics and to superoxides. Activation of marA/soxS/rob regulon promoters occurs in a well-defined order with respect to the level of MarA; however, the order of activation does not parallel the strength of MarA binding to promoter sequences. To understand this lack of correspondence, we developed a computational model of transcriptional activation in which a transcription factor either increases or decreases RNA polymerase binding, and either accelerates or retards post-binding events associated with transcription initiation. We used the model to analyze data characterizing MarA regulation of promoter activity. The model clearly explains the lack of correspondence between the order of activation and the MarA-DNA affinity and indicates that the order of activation can only be predicted using information about the strength of the full MarA-polymerase-DNA interaction. The analysis further suggests that MarA can activate without increasing polymerase binding and that activation can even involve a decrease in polymerase binding, which is opposite to the textbook model of activation by recruitment. These findings are consistent with published chromatin immunoprecipitation assays of interactions between polymerase and the E. coli chromosome. We find that activation involving decreased polymerase binding yields lower latency in gene regulation and therefore might confer a competitive advantage to cells. Our model yields insights into requirements for predicting the order of activation of a regulon and enables us to suggest that activation might involve a decrease in polymerase binding which we expect to be an important theme of gene regulation in E. coli and beyond. C1 [Wall, Michael E.; Markowitz, David A.] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA. [Wall, Michael E.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA. [Wall, Michael E.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Rosner, Judah L.; Martin, Robert G.] NIDDK, Mol Biol Lab, NIH, Bethesda, MD 20892 USA. RP Wall, ME (reprint author), Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA. EM mewall@lanl.gov OI Alexandrov, Ludmil/0000-0003-3596-4515 FU Department of Energy [DE-FG02-97ER25308]; National Institutes of Health FX This work was supported by funding from the Department of Energy (LANL Laboratory-Directed Research & Development, MEW) and the National Institutes of Health (Intramural Research Program, RGM and JLR). Early modeling and analysis of promoter activity data were made possible by Department of Energy Computational Science Graduate Fellowship Grant DE-FG02-97ER25308 to DAM. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 40 TC 15 Z9 16 U1 0 U2 3 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-734X J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD DEC PY 2009 VL 5 IS 12 AR e1000614 DI 10.1371/journal.pcbi.1000614 PG 11 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 551SE UT WOS:000274229000032 PM 20019803 ER PT J AU Bernstein, R Gillen, KT AF Bernstein, R. Gillen, K. T. TI Predicting the lifetime of fluorosilicone o-rings SO POLYMER DEGRADATION AND STABILITY LA English DT Article DE o-Ring; Fluorosilicone; Arrhenius evaluation; Field aging; Compression set; Sealing force ID NON-ARRHENIUS BEHAVIOR; WEAR-OUT APPROACH; EPR MATERIALS; DEGRADATION; EXTRAPOLATION; TEMPERATURE; RELAXATION; ELASTOMERS; POLYMERS AB Long-term (up to 1000 days) accelerated oven-aging studies on a commercial fluorosilicone o-ring seal are used to predict the sealing lifetime at room temperature (23 degrees C). The study follows force decay (relaxation) on squeezed o-ring material using isothermal compression stress relaxation (CSR) techniques. The relaxation is normally a complex mix of reversible physical effects and non-reversible chemical effects but we utilize an over-strain approach to quickly achieve physical equilibrium. This allows us to concentrate the measurements on the chemical relaxation effects of primary interest to lifetime assessment. The long-term studies allow us to access a fairly broad temperature range (80-138 degrees C) which results in improved modeling of the temperature dependence of the accelerated data. Non-Arrhenius behavior is observed with evidence of a significant lowering of the activation energy at the lowest accelerated aging temperature (80 degrees C). This observation is consistent with numerous recent accelerated aging studies that probed temperature ranges large enough to observe similar non-Arrhenius behavior. The extrapolated predictions imply that significant loss of sealing force requires on the order of 50-100 years at 23 degrees C. Field aging results out to similar to 25 years at 23 degrees C are shown to be in reasonable accord with the significant change in Arrhenius slope observed from the accelerated aging study. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Bernstein, R.; Gillen, K. T.] Sandia Natl Labs, Organ Mat Dept, Albuquerque, NM 87185 USA. RP Bernstein, R (reprint author), Sandia Natl Labs, Organ Mat Dept, POB 5800, Albuquerque, NM 87185 USA. EM rbernst@sandia.gov FU National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors wish to acknowledge Donald Bradley and Mat Celina in their help obtaining modulus profiling data. NR 29 TC 18 Z9 22 U1 5 U2 33 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0141-3910 J9 POLYM DEGRAD STABIL JI Polym. Degrad. Stabil. PD DEC PY 2009 VL 94 IS 12 BP 2107 EP 2113 DI 10.1016/j.polymdegradstab.2009.10.005 PG 7 WC Polymer Science SC Polymer Science GA 530WY UT WOS:000272624400001 ER PT J AU Salazar, MR Kress, JD Lightfoot, JM Russell, BG Rodin, WA Woods, L AF Salazar, Michael R. Kress, Joel D. Lightfoot, J. Michael Russell, Bobby G. Rodin, Wayne A. Woods, Lorelei TI Low-temperature oxidative degradation of PBX 9501 and its components determined via molecular weight analysis of the Poly[ester urethane] binder SO POLYMER DEGRADATION AND STABILITY LA English DT Article DE Aging; Degradation; Oxidation; Explosives; Polyurethanes; Molecular weight analysis ID POLY(ESTER URETHANE) ELASTOMER; DECOMPOSITION; HYDROLYSIS; PBX-9501; DIFFUSION; WATER AB The results of following the oxidative degradation of a plastic-bonded explosive (PBX 9501) are reported. Into over 1100 sealed containers were placed samples of PBX 9501 and combinations of its components and aged at relatively low temperatures to induce oxidative degradation of the samples. One of the components of the explosive is a poly(ester urethane) polymer and the oxidative degradation of the samples were following by measuring the molecular weight change of the polymer by gel permeation chromatography (coupled with both differential refractive index and multiangle laser light scattering detectors). Multiple temperatures between 40 and 64 degrees C were used to accelerate the aging of the samples. Interesting induction period behavior, along with both molecular weight increasing (cross-linking) and decreasing (chain scissioning) processes, were found at these relatively mild conditions. The molecular weight growth rates were fit to a random crosslinking model for all the combinations of components. The fit rate coefficients show Arrhenius behavior and activation energies and frequency factors were obtained. The kinetics of molecular weight growth shows a compensatory effect between the Arrhenius prefactors and activation energies, suggesting a common degradation process between PBX 9501 and the various combinations of its constituents. An oxidative chemical mechanism of the polymer is postulated, consistent with previous experimental results, that involves a competition between urethane radical crosslinking and carbonyl formation. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Salazar, Michael R.; Kress, Joel D.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Salazar, Michael R.] Union Univ, Dept Chem, Jackson, TN 38305 USA. [Lightfoot, J. Michael; Russell, Bobby G.; Rodin, Wayne A.; Woods, Lorelei] BWXT Pantex LLC, Amarillo, TX 79120 USA. RP Salazar, MR (reprint author), Los Alamos Natl Lab, Div Theoret, T-12,MS B268, Los Alamos, NM 87545 USA. EM msalazar@uu.edu FU Los Alamos National Security, LLC; U.S. Department of Energy [DE-AC5206NA25396] FX We would like to thank Russ Pack and Pat Foster for help in the experimental design of the CAS studies. We also thank Gordon Osborn for the CAS sample formulations, Gail Watson, Jerry Bishop for the sample containers, and Judy Pitts for coordinating sample removal. For the analytical results, we thank Debbie Jones, George Howard IV, Susan Britten, Rebecca Kennon, and Michele McWilliams. We thank Denise Pauler, Sheldon Larson, Debra Wrobleski, Bruce Orler, and David Hanson for very helpful discussions on this work. This work was supported by the Enhanced Surveillance Program. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC5206NA25396. NR 17 TC 3 Z9 3 U1 3 U2 15 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0141-3910 J9 POLYM DEGRAD STABIL JI Polym. Degrad. Stabil. PD DEC PY 2009 VL 94 IS 12 BP 2231 EP 2240 DI 10.1016/j.polymdegradstab.2009.08.011 PG 10 WC Polymer Science SC Polymer Science GA 530WY UT WOS:000272624400017 ER PT J AU Evrin, C Clarke, P Zech, J Lurz, R Sun, JC Uhle, S Li, HL Stillman, B Speck, C AF Evrin, Cecile Clarke, Pippa Zech, Juergen Lurz, Rudi Sun, Jingchuan Uhle, Stefan Li, Huilin Stillman, Bruce Speck, Christian TI A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE helicase; initiation; mini chromosome maintenance; ORC; pre-RC ID BUDDING YEAST; IN-VITRO; ATP HYDROLYSIS; HUMAN-CELLS; T-ANTIGEN; HELICASE; PROTEINS; RECOGNITION; INITIATION; CDC6 AB During pre-replication complex (pre-RC) formation, origin recognition complex (ORC), Cdc6, and Cdt1 cooperatively load the 6-subunit mini chromosome maintenance (MCM2-7) complex onto DNA. Loading of MCM2-7 is a prerequisite for DNA licensing that restricts DNA replication to once per cell cycle. During S phase MCM2-7 functions as part of the replicative helicase but within the pre-RC MCM2-7 is inactive. The organization of replicative DNA helicases before and after loading onto DNA has been studied in bacteria and viruses but not eukaryotes and is of major importance for understanding the MCM2-7 loading mechanism and replisome assembly. Lack of an efficient reconstituted pre-RC system has hindered the detailed mechanistic and structural analysis of MCM2-7 loading for a long time. We have reconstituted Saccharomyces cerevisiae pre-RC formation with purified proteins and showed efficient loading of MCM2-7 onto origin DNA in vitro. MCM2-7 loading was found to be dependent on the presence of all pre-RC proteins, origin DNA, and ATP hydrolysis. The quaternary structure of MCM2-7 changes during pre-RC formation: MCM2-7 before loading is a single hexamer in solution but is transformed into a double-hexamer during pre-RC formation. Using electron microscopy (EM), we observed that loaded MCM2-7 encircles DNA. The loaded MCM2-7 complex can slide on DNA, and sliding is not directional. Our results provide key insights into mechanisms of pre-RC formation and have important implications for understanding the role of the MCM2-7 in establishment of bidirectional replication forks. C1 [Stillman, Bruce] Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724 USA. [Evrin, Cecile; Clarke, Pippa; Zech, Juergen; Uhle, Stefan; Speck, Christian] Univ London Imperial Coll Sci Technol & Med, DNA Replicat Grp, MRC, Ctr Clin Sci, London W12 0NN, England. [Lurz, Rudi] Max Planck Inst Mol Genet, Microscopy Unit, D-14195 Berlin, Germany. [Sun, Jingchuan; Li, Huilin] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Stillman, B (reprint author), Cold Spring Harbor Lab, POB 100, Cold Spring Harbor, NY 11724 USA. EM stillman@cshl.edu; christian.speck@csc.mrc.ac.uk RI Speck, Christian/G-2882-2011; OI Speck, Christian/0000-0001-6646-1692; Stillman, Bruce/0000-0002-9453-4091 FU United Kingdom Medical Research Council; National Institutes of Health (NIH) [GM45436, GM74985]; Goldring Family Foundation; Brookhaven National Laboratory Laboratory Directed Research and Development [06-06] FX We thank Niall Dillon, Matthias Merkenschlager, Ana Pombo, and members of the DNA Replication Group for helpful comments on the manuscript; and Luis Aragon for yeast strains. This work was supported by the United Kingdom Medical Research Council (C. S.), National Institutes of Health (NIH) Grant GM45436 (to B. S.), the Goldring Family Foundation (B. S.), NIH Grant GM74985 (to H. L.), and by Brookhaven National Laboratory Laboratory Directed Research and Development project number 06-06 (to H. L.). NR 43 TC 203 Z9 210 U1 1 U2 5 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD DEC 1 PY 2009 VL 106 IS 48 BP 20240 EP 20245 DI 10.1073/pnas.0911500106 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 525YQ UT WOS:000272254400022 PM 19910535 ER PT J AU Verhelst, S Wallner, T AF Verhelst, Sebastian Wallner, Thomas TI Hydrogen-fueled internal combustion engines SO PROGRESS IN ENERGY AND COMBUSTION SCIENCE LA English DT Review DE Hydrogen; Internal combustion engine; NO(x) emissions; Direct injection; Port-fuel injection; Abnormal combustion ID LAMINAR BURNING VELOCITIES; SPARK-IGNITION ENGINE; EXHAUST-GAS RECIRCULATION; TURBULENT PREMIXED FLAMES; NOX EMISSION REDUCTION; AIR MIXTURES; FLAME/STRETCH INTERACTIONS; MARKSTEIN LENGTHS; KINETIC MECHANISM; PORT INJECTION AB The threat posed by climate change and the striving for security of energy supply are issues high on the political agenda these days. Governments are putting strategic plans in motion to decrease primary energy use, take carbon out of fuels and facilitate modal shifts. Taking a prominent place in these strategic plans is hydrogen as a future energy carrier. A number of manufacturers are now leasing demonstration vehicles to consumers using hydrogen-fueled internal combustion engines (H(2)ICEs) as well as fuel cell vehicles. Developing countries in particular are pushing for H(2)ICEs (powering two- and three-wheelers as well as passenger cars and buses) to decrease local pollution at an affordable cost. This article offers a comprehensive overview of H(2)ICEs. Topics that are discussed include fundamentals of the combustion of hydrogen, details on the different mixture formation strategies and their emissions characteristics, measures to convert existing vehicles, dedicated hydrogen engine features, a state of the art on increasing power output and efficiency while controlling emissions and modeling. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Verhelst, Sebastian] Univ Ghent, Dept Flow Heat & Combust Mech, B-9000 Ghent, Belgium. [Wallner, Thomas] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Verhelst, S (reprint author), Univ Ghent, Dept Flow Heat & Combust Mech, Sint Pietersnieuwstr 41, B-9000 Ghent, Belgium. EM sebastian.verhelst@ugent.be; twallner@anl.gov OI Verhelst, Sebastian/0000-0003-2421-580X FU Belgian Science Policy TAP [CP/02/222]; European Commission [ENK6-CT-2000-57]; DOE [DE-AC02-06CH11357] FX Research referenced in this manuscript was partially funded by DOE's FreedomCAR and Vehicle Technologies Program, Office of Energy Efficiency and Renewable Energy. T. Wallner wishes to thank Gurpreet Singh and Lee Slezak, program managers at DOE, for their support. NR 279 TC 208 Z9 213 U1 16 U2 134 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-1285 J9 PROG ENERG COMBUST JI Prog. Energy Combust. Sci. PD DEC PY 2009 VL 35 IS 6 BP 490 EP 527 DI 10.1016/j.pecs.2009.08.001 PG 38 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 523KV UT WOS:000272073000003 ER PT J AU Steiner, MA Wanlass, MW Carapella, JJ Duda, A Ward, JS Moriarty, TE Emery, KA AF Steiner, M. A. Wanlass, M. W. Carapella, J. J. Duda, A. Ward, J. S. Moriarty, T. E. Emery, K. A. TI A Monolithic Three-Terminal GaInAsP/GaInAs Tandem Solar Cell SO PROGRESS IN PHOTOVOLTAICS LA English DT Article DE III-V semiconductors; tandem; three terminal; concentrator; solar cell; GaAs filter; GaInAsP; GaInAs AB We describe the design and performance of a three-terminal tandem solar cell for low-concentration terrestrial applications. Designed for operation under a GaAs filter, the tandem demonstrates cumulative conversion efficiencies of 10.2 and 11.9% at 1 sun and 45 suns, respectively, under the concentrated direct spectrum. The middle terminal is shared between the two subcells and allows them to be operated independently at their respective maximum power points. Copyright (C) 2009 John Wiley & Sons, Ltd. C1 [Steiner, M. A.; Wanlass, M. W.; Carapella, J. J.; Duda, A.; Ward, J. S.; Moriarty, T. E.; Emery, K. A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Steiner, MA (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM myles.steiner@nrel.gov FU Defense Advanced Research Projects Agency (DARPA) [HR0011-0709-0005]; US Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory FX This research was funded in part by the Defense Advanced Research Projects Agency (DARPA) "Very High Efficiency Solar Cell" program, under Agreement No. HR0011-0709-0005. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the US Government. Work was also supported by the US Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. This document is approved for public release, distribution unlimited. NR 17 TC 15 Z9 15 U1 0 U2 3 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1062-7995 J9 PROG PHOTOVOLTAICS JI Prog. Photovoltaics PD DEC PY 2009 VL 17 IS 8 BP 587 EP 593 DI 10.1002/pip.913 PG 7 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 532GE UT WOS:000272733500007 ER PT J AU Chavez, DE Tappan, BC Mason, BA Parrish, D AF Chavez, David E. Tappan, Bryce C. Mason, Benjamin Aaron Parrish, Damon TI Synthesis and Energetic Properties of Bis-(Triaminoguanidinium) 3,3 '-Dinitro-5,5 '-Azo-1,2,4-Triazolate (TAGDNAT): A New High-Nitrogen Material SO PROPELLANTS EXPLOSIVES PYROTECHNICS LA English DT Article DE Explosives; Propellants ID RICH SALTS AB This paper describes the synthesis and characterization of bis-(triaminoguanidinium)-3,3'-dinitro-5,5'-azo-1,2,4-triazolate (TAGDNAT), a novel high-nitrogen molecule that derives its energy release from both a high heat of formation and intramolecular oxidation reactions. TAGDNAT shows promise as a propellant or explosive ingredient not only due to its high nitrogen content (66.35 wt.-%) but also due to its high hydrogen content (4.34 wt.-%). This new molecule has been characterized with respect to its morphology, sensitivity properties, explosive, and combustion performance. The heat of formation of TAGDNAT was also experimentally determined. The results of these studies show that TAGDNAT has one of the fastest low-pressure burning rates (at 6.9 MPa) measured till date, 6.79 cm s(-1) at 6.9 MPa (39% faster than triaminoguanidinium azotetrazolate (TAGzT), a comparable high-nitrogen/high-hydrogen material). Furthermore, its pressure sensitivity is 0.507, a 33% reduction compared to TAGzT. C1 [Chavez, David E.; Tappan, Bryce C.; Mason, Benjamin Aaron] Los Alamos Natl Lab, Dynam & Energet Mat Div, Los Alamos, NM 87545 USA. [Parrish, Damon] USN, Res Lab, Washington, DC 20375 USA. RP Chavez, DE (reprint author), Los Alamos Natl Lab, Dynam & Energet Mat Div, POB 1663, Los Alamos, NM 87545 USA. EM dechavez@lanl.gov FU Defense Threat Reduction Agency (DTRA) - Advanced Energetics Initiative FX This work was supported by the joint Department of Defense and the Department of Energy Munitions Technology Development Program with partial funding from the Defense Threat Reduction Agency (DTRA) - Advanced Energetics Initiative. The Los Alamos National Laboratory is operated by Los Alamos National Security for the U.S. Department of Energy's National Nuclear Security Agency. We also would like to thank Gabriel Avilucea for sensitivity testing, Stephanie Hagelberg for elemental analysis, Jose Archuleta for chemical analysis, and Joe Lloyd for performing the rate stick/plate dent experiments. NR 22 TC 32 Z9 32 U1 2 U2 10 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0721-3115 J9 PROPELL EXPLOS PYROT JI Propellants Explos. Pyrotech. PD DEC PY 2009 VL 34 IS 6 BP 475 EP 479 DI 10.1002/prep.200800081 PG 5 WC Chemistry, Applied; Engineering, Chemical SC Chemistry; Engineering GA 539GV UT WOS:000273242900003 ER PT J AU Maiti, A Gee, RH AF Maiti, Amitesh Gee, Richard H. TI Modeling Growth, Surface Kinetics, and Morphology Evolution in PETN SO PROPELLANTS EXPLOSIVES PYROTECHNICS LA English DT Article DE Molecular Modeling; PETN ID ATOMIC-FORCE MICROSCOPE; PENTAERYTHRITOL TETRANITRATE CRYSTALS; THERMODYNAMIC ANALYSIS; DISTRIBUTIONS; DYNAMICS; COMPASS; FIELD AB Pentaerythritol tetranitrate (PETN) is a commonly used energetic material with both military and civilian applications. Good ignition properties mandate a powdered material with a high Surface area. However. existing experimental data on PETN powder suggest an active surface that leads to particle coarsening and gradual reduction of the specific surface area over time. In this work we review some of the atomic-level and coarse-grained potential models developed for PETN and discuss their applications for studying particle morphology, growth, and surface kinetics, including molecular diffusion and evaporation/condensation rates. Simulation methods include classical molecular dynamics, kinetic Monte Carlo, and transition state calculations. C1 [Maiti, Amitesh; Gee, Richard H.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Maiti, A (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM maiti2@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We acknowledge the collaboration with a number of colleagues, including A. Burnham, L. Zepeda-Ruiz, C. Wu, G. Gilmer, R. Qiu, H. Huang, B. Weeks, G. Overturf, and C. Hrousis. We also thank M. Moore and A. Duncan of the Applied Technology division of BWXT Pantex for stimulating discussions and giving us access to unpublished experimental data. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 38 TC 12 Z9 13 U1 0 U2 9 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0721-3115 J9 PROPELL EXPLOS PYROT JI Propellants Explos. Pyrotech. PD DEC PY 2009 VL 34 IS 6 BP 489 EP 497 DI 10.1002/prep.200800066 PG 9 WC Chemistry, Applied; Engineering, Chemical SC Chemistry; Engineering GA 539GV UT WOS:000273242900006 ER PT J AU Harlin, J Nemzek, R AF Harlin, Jeremiah Nemzek, Robert TI Physical Properties of Conventional Explosives Deduced from Radio Frequency Emissions SO PROPELLANTS EXPLOSIVES PYROTECHNICS LA English DT Article DE Electric Field Change; Free Charge; Ionization; Radio Frequency Emissions AB Los Alamos National Laboratory collected broadband radio frequency (RF) electric field change measurements from multiple detonations of high explosives (HE). Three types of HE were used: small cylinders of flake TNT, solid TNT, and PBX-9501. Low frequency signals (< 80 MHz) were shot-to-shot repeatable and occurred within the first 100 mu s at measured amplitudes of about 2 V m(-1) at 35 m distance. High frequency signals (> 290 MHz) occurred later, were an order of magnitude lower in signal strength, and were not repeatable. There is a positive correlation between the maximum electric field change and the shock velocity of the HE. The amount of free charge produced in the explosion estimated from the first RF pulse is between 10 and 150 mu C. This implies a weakly ionized plasma with temperatures between 2600 and 2900 K. C1 [Harlin, Jeremiah; Nemzek, Robert] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Harlin, J (reprint author), Los Alamos Natl Lab, MS-D436, Los Alamos, NM 87545 USA. EM harlin@lanl.gov FU Los Alamos National Laboratory; Department of Energy FX This project was supported by Los Alamos National Laboratory and the Department of Energy. NR 12 TC 1 Z9 1 U1 1 U2 2 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0721-3115 J9 PROPELL EXPLOS PYROT JI Propellants Explos. Pyrotech. PD DEC PY 2009 VL 34 IS 6 BP 544 EP 550 DI 10.1002/prep.200800076 PG 7 WC Chemistry, Applied; Engineering, Chemical SC Chemistry; Engineering GA 539GV UT WOS:000273242900014 ER PT J AU Rau, A Kulkarni, SR Law, NM Bloom, JS Ciardi, D Djorgovski, GS Fox, DB Gal-Yam, A Grillmair, CC Kasliwal, MM Nugent, PE Ofek, EO Quimby, RM Reach, WT Shara, M Bildsten, L Cenko, SB Drake, AJ Filippenko, AV Helfand, DJ Helou, G Howell, DA Poznanski, D Sullivan, M AF Rau, Arne Kulkarni, Shrinivas R. Law, Nicholas M. Bloom, Joshua S. Ciardi, David Djorgovski, George S. Fox, Derek B. Gal-Yam, Avishay Grillmair, Carl C. Kasliwal, Mansi M. Nugent, Peter E. Ofek, Eran O. Quimby, Robert M. Reach, William T. Shara, Michael Bildsten, Lars Cenko, S. Bradley Drake, Andrew J. Filippenko, Alexei V. Helfand, David J. Helou, George Howell, D. Andrew Poznanski, Dovi Sullivan, Mark TI Exploring the Optical Transient Sky with the Palomar Transient Factory SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Review ID GAMMA-RAY BURSTS; FOLLOW-UP OBSERVATIONS; EXTRASOLAR GIANT PLANETS; CORE-COLLAPSE SUPERNOVAE; NEAR-EARTH OBJECTS; II-P SUPERNOVAE; BLACK-HOLE MASS; CATACLYSMIC VARIABLES; TIDAL DISRUPTION; GALAXY CLUSTERS AB The Palomar Transient Factory (PTF) is a wide-field experiment designed to investigate the optical transient and variable sky on time scales from minutes to years. PTF uses the CFH12k mosaic camera, with a field of view of 7:9 deg(2) and a plate scale of 1 '' pixel(-1), mounted on the Palomar Observatory 48 inch Samuel Oschin Telescope. The PTF operation strategy is devised to probe the existing gaps in the transient phase space and to search for theoretically predicted, but not yet detected, phenomena, such as fallback supernovae, macronovae, .Ia supernovae, and the orphan afterglows of gamma-ray bursts. PTF will also discover many new members of known source classes, from cataclysmic variables in their various avatars to supernovae and active galactic nuclei, and will provide important insights into understanding galactic dynamics (through RR Lyrae stars) and the solar system (asteroids and near-Earth objects). The lessons that can be learned from PTF will be essential for the preparation of future large synoptic sky surveys like the Large Synoptic Survey Telescope. In this article we present the scientific motivation for PTF and describe in detail the goals and expectations for this experiment. C1 [Rau, Arne; Kulkarni, Shrinivas R.; Law, Nicholas M.; Djorgovski, George S.; Kasliwal, Mansi M.; Ofek, Eran O.; Quimby, Robert M.; Drake, Andrew J.] CALTECH, Caltech Opt Observ, Pasadena, CA 91125 USA. [Rau, Arne] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Bloom, Joshua S.; Cenko, S. Bradley; Filippenko, Alexei V.; Poznanski, Dovi] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Ciardi, David] CALTECH, Michelson Sci Ctr, Pasadena, CA 91125 USA. [Fox, Derek B.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Gal-Yam, Avishay] Weizmann Inst Sci, Benoziyo Ctr Astrophys, IL-76100 Rehovot, Israel. [Grillmair, Carl C.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Nugent, Peter E.; Poznanski, Dovi] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Reach, William T.; Helou, George] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Shara, Michael] Amer Museum Nat Hist, Dept Astrophys, New York, NY 10024 USA. [Bildsten, Lars] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. [Bildsten, Lars] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Helfand, David J.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Howell, D. Andrew] Las Cumbres Global Telescope Network, Goleta, CA 93117 USA. [Sullivan, Mark] Univ Oxford, Dept Phys Astrophys, Oxford OX1 3RH, England. RP Rau, A (reprint author), CALTECH, Caltech Opt Observ, Pasadena, CA 91125 USA. EM arau@mpe.mpg.de OI Reach, William/0000-0001-8362-4094 NR 174 TC 348 Z9 351 U1 1 U2 9 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD DEC PY 2009 VL 121 IS 886 BP 1334 EP 1351 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 527YM UT WOS:000272407200005 ER PT J AU Law, NM Kulkarni, SR Dekany, RG Ofek, EO Quimby, RM Nugent, PE Surace, J Grillmair, CC Bloom, JS Kasliwal, MM Bildsten, L Brown, T Cenko, SB Ciardi, D Croner, E Djorgovski, SG van Eyken, J Filippenko, AV Fox, DB Gal-Yam, A Hale, D Hamam, N Helou, G Henning, J Howell, DA Jacobsen, J Laher, R Mattingly, S McKenna, D Pickles, A Poznanski, D Rahmer, G Rau, A Rosing, W Shara, M Smith, R Starr, D Sullivan, M Velur, V Walters, R Zolkower, J AF Law, Nicholas M. Kulkarni, Shrinivas R. Dekany, Richard G. Ofek, Eran O. Quimby, Robert M. Nugent, Peter E. Surace, Jason Grillmair, Carl C. Bloom, Joshua S. Kasliwal, Mansi M. Bildsten, Lars Brown, Tim Cenko, S. Bradley Ciardi, David Croner, Ernest Djorgovski, S. George van Eyken, Julian Filippenko, Alexei V. Fox, Derek B. Gal-Yam, Avishay Hale, David Hamam, Nouhad Helou, George Henning, John Howell, D. Andrew Jacobsen, Janet Laher, Russ Mattingly, Sean McKenna, Dan Pickles, Andrew Poznanski, Dovi Rahmer, Gustavo Rau, Arne Rosing, Wayne Shara, Michael Smith, Roger Starr, Dan Sullivan, Mark Velur, Viswa Walters, Richard Zolkower, Jeff TI The Palomar Transient Factory: System Overview, Performance, and First Results SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID SKY SURVEY; CLASSIFICATION; SUPERNOVAE; PIPELINE AB The Palomar Transient Factory (PTF) is a fully-automated, wide-field survey aimed at a systematic exploration of the optical transient sky. The transient survey is performed using a new 8.1 square degree camera installed on the 48 inch Samuel Oschin telescope at Palomar Observatory; colors and light curves for detected transients are obtained with the automated Palomar 60 inch telescope. PTF uses 80% of the 1.2 m and 50% of the 1.5 m telescope time. With an exposure of 60 s the survey reaches a depth of m(g') approximate to 21:3 and m(R) approximate to 20:6 (5 sigma, median seeing). Four major experiments are planned for the five-year project:(1) a 5 day cadence supernova search; (2) a rapid transient search with cadences between 90 s and 1 day; (3) a search for eclipsing binaries and transiting planets in Orion; and (4) a 3 pi sr deep H-alpha survey. PTF provides automatic, real-time transient classification and follow-up, as well as a database including every source detected in each frame. This paper summarizes the PTF project, including several months of on-sky performance tests of the new survey camera, the observing plans, and the data reduction strategy. We conclude by detailing the first 51 PTF optical transient detections, found in commissioning data. C1 [Law, Nicholas M.; Kulkarni, Shrinivas R.; Dekany, Richard G.; Ofek, Eran O.; Quimby, Robert M.; Kasliwal, Mansi M.; Croner, Ernest; Djorgovski, S. George; Hale, David; Henning, John; McKenna, Dan; Rahmer, Gustavo; Rau, Arne; Smith, Roger; Velur, Viswa; Walters, Richard; Zolkower, Jeff] CALTECH, Caltech Opt Observ, Pasadena, CA 91125 USA. [Nugent, Peter E.; Jacobsen, Janet; Poznanski, Dovi] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Surace, Jason; Grillmair, Carl C.; Ciardi, David; van Eyken, Julian; Hamam, Nouhad; Helou, George; Laher, Russ; Mattingly, Sean] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Bloom, Joshua S.; Cenko, S. Bradley; Filippenko, Alexei V.; Poznanski, Dovi; Starr, Dan] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Bildsten, Lars] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. [Bildsten, Lars; Howell, D. Andrew] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Brown, Tim; Howell, D. Andrew; Pickles, Andrew; Rosing, Wayne; Starr, Dan] Global Telescope Network, Las Cumbres Observ, Santa Barbara, CA 93117 USA. [Fox, Derek B.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Gal-Yam, Avishay] Weizmann Inst Sci, Benoziyo Ctr Astrophys, IL-76100 Rehovot, Israel. [Rau, Arne] Max Planck Inst Extra Terr Phys, D-85748 Garching, Germany. [Shara, Michael] Amer Museum Nat Hist, Dept Astrophys, New York, NY 10024 USA. [Sullivan, Mark] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. RP Law, NM (reprint author), CALTECH, Caltech Opt Observ, Pasadena, CA 91125 USA. EM nlaw@astro.caltech.edu FU NSF [AST-0507734, AST-0607485, AST-0407448, CNS-0540369, PHY 05-51164, AST 07-07633]; NSF/DDDAS-TNRP [CNS-0540352]; TABASGO foundation; EU; Minerva Foundation, Benoziyo Center for Astrophysics; NASA [HST-GO-11104.01-A, NNX08AM04G, 07-GLAST1-0023, HST-AR-11766.01-A]; DOE/SciDAC [DE-FC02-06ER41453, DE-FG02-08ER41563, DE-AC02-05CH11231]; Sylvia and Jim Katzman Foundation; Royal Society; University of Oxford Fell Fund FX This paper is based on observations obtained with the Samuel Oschin Telescope and the 60 inch Telescope at the Palomar Observatory as part of the Palomar Transient Factory project, a scientific collaboration between the California Institute of Technology, Columbia University, Las Cumbres Observatory, the Lawrence Berkeley National Laboratory, the National Energy Research Scientific Computing Center, the University of Oxford, and the Weizmann Institute of Science. S. R. K. and his group were partially supported by the NSF grant AST-0507734. J. S. B. and his group were partially supported by a Hellman Family Grant, a Sloan Foundation Fellowship, NSF/DDDAS-TNRP grant CNS-0540352, and a continuing grant from DOE/SciDAC. T. B., A. P., W. R. and D. A. H. are supported by the TABASGO foundation and the Las Cumbres Observatory Global Telescope Network. The Weizmann Institute PTF partnership is supported by an ISF equipment grant to A. G. A. G.' s activity is further supported by a Marie Curie IRG grant from the EU, and by the Minerva Foundation, Benoziyo Center for Astrophysics, a research grant from Peter and Patricia Gruber Awards, and the William Z. and Eda Bess Novick New Scientists Fund at the Weizmann Institute. E. O. O. acknowledges partial support from NASA through grants HST-GO-11104.01-A; NNX08AM04G; 07-GLAST1-0023; and HST-AR-11766.01-A. A. V. F. and his group are grateful for funding from NSF grant AST-0607485, DOE/SciDAC grant DE-FC02-06ER41453, DOE grant DE-FG02- 08ER41563, the TABASGO Foundation, Gary and Cynthia Bengier, and the Sylvia and Jim Katzman Foundation. S. G. D. and A. A. M. were supported in part by NSF grants AST-0407448 and CNS-0540369, and also by the Ajax Foundation. The National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231, has provided resources for this project by supporting staff and providing computational resources and data storage. A. V. F. and his group are grateful for funding from NSF grant AST-0607485, DOE/ SciDAC grant DE-FC02-06ER41453, DOE grant DE-FG02-08ER41563, the TABASGO Foundation, Gary and Cynthia Bengier, the Richard and Rhoda Goldman Fund, and the Sylvia and Jim Katzman Foundation. L. B.'s research is supported by the NSF via grants PHY 05-51164 and AST 07-07633. M. S. acknowledges support from the Royal Society and the University of Oxford Fell Fund. NR 29 TC 430 Z9 433 U1 1 U2 10 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD DEC PY 2009 VL 121 IS 886 BP 1395 EP 1408 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 527YM UT WOS:000272407200011 ER PT J AU Bochanski, JJ Hennawi, JF Simcoe, RA Prochaska, JX West, AA Burgasser, AJ Burles, SM Bernstein, RA Williams, CL Murphy, MT AF Bochanski, John J. Hennawi, Joseph F. Simcoe, Robert A. Prochaska, J. Xavier West, Andrew A. Burgasser, Adam J. Burles, Scott M. Bernstein, Rebecca A. Williams, Christopher L. Murphy, Michael T. TI MASE: A New Data-Reduction Pipeline for the Magellan Echellette Spectrograph SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID DIGITAL SKY SURVEY; SOUTHERN SPECTROPHOTOMETRIC STANDARDS; OPTIMAL EXTRACTION; DATA RELEASE; SPECTRA; SPECTROSCOPY AB We introduce a data-reduction package written in Interactive Data Language (IDL) for the Magellan Echellete Spectrograph (MAGE). MAGE is a medium-resolution (R similar to 4100), cross-dispersed, optical spectrograph, with coverage from similar to 3000-10000 angstrom. The MAGE Spectral Extractor (MASE) incorporates the entire image reduction and calibration process, including bias subtraction, flat fielding, wavelength calibration, sky subtraction, object extraction, and flux calibration of point sources. We include examples of the user interface and reduced spectra. We show that the wavelength calibration is sufficient to achieve similar to 5 km s(-1) rms accuracy and relative flux calibrations better than 10%. A lightweight version of the full reduction pipeline has been included for real-time source extraction and signal-to-noise estimation at the telescope. C1 [Bochanski, John J.; Simcoe, Robert A.; West, Andrew A.; Burgasser, Adam J.; Williams, Christopher L.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Hennawi, Joseph F.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Hennawi, Joseph F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Prochaska, J. Xavier; Bernstein, Rebecca A.] Univ Calif Santa Cruz, Dept Astron & Astrophys, UCO Lick Observ, Santa Cruz, CA 95064 USA. [Burles, Scott M.] DE Shaw & Co LP, Cupertino, CA 95014 USA. [Murphy, Michael T.] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia. RP Bochanski, JJ (reprint author), MIT, Kavli Inst Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RI Murphy, Michael/B-8832-2008; West, Andrew/H-3717-2014 OI Murphy, Michael/0000-0002-7040-5498; FU Magellan Echellette Specrograph; Observatories of the Carnegie Institution of Washington; School of Science of the Massachusetts Institute of Technology; National Science Foundation; Carnegie and MIT [AST-0215989]; NSF CAREER [AST-0548180] FX Support for the design and construction of the Magellan Echellette Specrograph was received from the Observatories of the Carnegie Institution of Washington, the School of Science of the Massachusetts Institute of Technology, and the National Science Foundation in the form of a collaborative Major Research Instrument grant to Carnegie and MIT (AST-0215989). J. X. P. is partially supported by an NSF CAREER grant (AST-0548180). We thank the referee for constructive comments that improved this manuscript. J. J. B. acknowledges Jackie Faherty and Dagny Looper for their illuminating conversations and extensive vetting of MAGE data. We thank Mason Betha for early inspiration in this project. We thank Ricardo Covvarubias for early testing of the MAGE quicklook tool. Finally, thanks to the entire Magellan staff, in particular Mauricio Martinez and Hernan Nunez. NR 27 TC 56 Z9 57 U1 0 U2 0 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD DEC PY 2009 VL 121 IS 886 BP 1409 EP 1418 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 527YM UT WOS:000272407200012 ER PT J AU Zhang, ZW Kim, DW Wang, JH Lehner, MJ Chen, WP Byun, YI Alcock, C Axelrod, T Bianco, FB Coehlo, NK Cook, KH Dave, R de Pater, I Giammarco, J King, SK Lee, T Lin, HC Marshall, SL Porrata, R Protopapas, P Rice, JA Schwamb, ME Wang, SY Wen, CY AF Zhang, Z. -W. Kim, D. -W. Wang, J. -H. Lehner, M. J. Chen, W. P. Byun, Y. -I. Alcock, C. Axelrod, T. Bianco, F. B. Coehlo, N. K. Cook, K. H. Dave, R. de Pater, I. Giammarco, J. King, S. -K. Lee, T. Lin, H. -C. Marshall, S. L. Porrata, R. Protopapas, P. Rice, J. A. Schwamb, M. E. Wang, S. -Y. Wen, C. -Y. TI The TAOS Project: High-Speed Crowded Field Aperture Photometry SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID AMERICAN OCCULTATION SURVEY; BODIES AB We have devised an aperture photometry pipeline for data reduction of image data from the Taiwanese-American Occultation Survey (TAOS). The photometry pipeline has high computational performance, and is capable of real-time photometric reduction of images containing up to 1000 stars, within the sampling rate of 5 Hz. The pipeline is optimized for both speed and signal-to-noise performance, and in the latter category it performs nearly as well as DAOPHOT. This paper provides a detailed description of the TAOS aperture photometry pipeline. C1 [Zhang, Z. -W.; Chen, W. P.; Lin, H. -C.] Natl Cent Univ, Inst Astron, Jhongli 320, Taoyuan, Taiwan. [Kim, D. -W.; Byun, Y. -I.] Yonsei Univ, Dept Astron, Seoul 120749, South Korea. [Wang, J. -H.; Lehner, M. J.; King, S. -K.; Lee, T.; Wang, S. -Y.; Wen, C. -Y.] Acad Sinica, Inst Astron & Astrophys, Taipei 106, Taiwan. [Lehner, M. J.; Bianco, F. B.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Lehner, M. J.; Alcock, C.; Bianco, F. B.; Protopapas, P.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Axelrod, T.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Coehlo, N. K.; Rice, J. A.] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA. [Cook, K. H.; Marshall, S. L.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Dave, R.; Protopapas, P.] Harvard Univ, Initiat Innovat Comp, Cambridge, MA 02138 USA. [de Pater, I.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Giammarco, J.] Eastern Univ, Dept Phys & Astron, St Davids, PA 19087 USA. [Marshall, S. L.] Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Porrata, R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94270 USA. [Schwamb, M. E.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. RP Zhang, ZW (reprint author), Natl Cent Univ, Inst Astron, 300 Jhongda Rd, Jhongli 320, Taoyuan, Taiwan. EM zwzhang@asiaa.sinica.edu.tw RI Lee, Typhoon/N-8347-2013; OI Lehner, Matthew/0000-0003-4077-0985 FU National Central University [NSC 96-2112-M-008-024-MY3]; National Research Foundation of Korea [2009-0075376]; National Science Foundation [AST-0501681]; NASA [NNG04G113G]; U.S. Department of Energy [W-7405-Eng-48]; Stanford Linear Accelerator Center [DE-AC02-76SF00515]; U.S. Department of Energy by Lawrence Livermore National Laboratory [W-7405-Eng-48, DE-AC52- 07NA27344]; [AS-88-TP-A02] FX The work at National Central University was supported by grant NSC 96-2112-M-008-024-MY3. Y. I. B. acknowledges the support of National Research Foundation of Korea through grant 2009-0075376. Work at Academia Sinica was supported in part by the thematic research program AS-88-TP-A02. Work at the Harvard College Observatory was supported in part by the National Science Foundation under grant AST-0501681 and by NASA under grant NNG04G113G. S. L. M.'s work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under contract W-7405-Eng-48 and by Stanford Linear Accelerator Center under contract DE-AC02-76SF00515. K. H. C.'s work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under contract W-7405-Eng-48 and in part under contract DE-AC52- 07NA27344. NR 13 TC 6 Z9 6 U1 0 U2 0 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD DEC PY 2009 VL 121 IS 886 BP 1429 EP 1439 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 527YM UT WOS:000272407200014 ER PT J AU Ma, SQ AF Ma, Shengqian TI Gas adsorption applications of porous metal-organic frameworks SO PURE AND APPLIED CHEMISTRY LA English DT Article DE gas adsorption; hydrogen storage; methane storage; porous metal-organic framework; selective gas adsorption ID HIGH H-2 ADSORPTION; HYDROGEN STORAGE; METHANE STORAGE; SELECTIVE SORPTION; KINETIC SEPARATION; SITES; CATENATION; MOLECULES; BINDING; STABILITY AB Porous metal-organic frameworks (MOFs) represent a new type of functional materials and have recently become a hot research field due to their great potential in various applications. In this review, recent progress of gas adsorption applications of porous MOFs, mainly including hydrogen storage, methane storage, and selective gas adsorption will be briefly summarized. C1 Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Ma, SQ (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM sma@anl.gov RI Ma, Shengqian/B-4022-2012 OI Ma, Shengqian/0000-0002-1897-7069 FU Miami University; Argonne National Laboratory; NSF; DOE FX I would first like to thank IUPAC for giving me the precious opportunity to present this work. I would also like to thank the Dissertation Scholarship from Miami University and the Director's Postdoctoral Fellowship from Argonne National Laboratory. Last but not least, I would like to express my deepest appreciation to my Ph.D. advisor, Prof. Hong-Cai Zhou, for his excellent education, tremendous support, and constant encouragement throughout my graduate career and beyond. Financial support for my Ph.D. research work is from Miami University, NSF, and DOE, all of which I would like to acknowledge here as well. NR 63 TC 74 Z9 76 U1 2 U2 27 PU WALTER DE GRUYTER GMBH PI BERLIN PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY SN 0033-4545 EI 1365-3075 J9 PURE APPL CHEM JI Pure Appl. Chem. PD DEC PY 2009 VL 81 IS 12 BP 2235 EP 2251 DI 10.1351/PAC-CON-09-07-09 PG 17 WC Chemistry, Multidisciplinary SC Chemistry GA 538TF UT WOS:000273206200006 ER PT J AU Burr, T Hamada, MS Graves, TL Myers, S AF Burr, T. Hamada, M. S. Graves, T. L. Myers, S. TI Augmenting Real Data with Synthetic Data: An Application in Assessing Radio-Isotope Identification Algorithms SO QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL LA English DT Article DE bias-variance tradeoff; isotope identification algorithm; Lehman-Scheffe theorem; Nal detector; synthetic data AB The performance of Radio-Isotope IDentification (RIID) algorithms using gamma spectroscopy is increasingly becoming important. For example, sensors at locations that screen for illicit nuclear material rely on isotope identification to resolve innocent nuisance alarms arising from naturally occurring radioactive material. Recent data collections for RIID testing consist of repeat measurements for each of several scenarios to test RIID algorithms. Efficient allocation of measurement resources requires an appropriate number of repeats for each scenario. To help allocate measurement resources in such data collections for RIID algorithm testing, we consider using only a few real repeals per scenario. In order to reduce uncertainty in the estimated RIID algorithm performance for each scenario, the potential merit of augmenting these real repeals with realistic synthetic repeals is also considered. Our results suggest that for the scenarios and algorithm considered, approximately 10 real repeals augmented with simulated repeals will result in all estimate having comparable uncertainty to the estimate based oil using 60 real repeals. Published in 2009 by John Wiley & Sons, Ltd. C1 [Burr, T.; Hamada, M. S.; Graves, T. L.; Myers, S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Burr, T (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM tburr@lanl.gov FU DOE [DE-AC52-06NA25396] FX The Department of Homeland Security sponsored the production of this material under DOE Contract Number DE-AC52-06NA25396 for the management and operation of Los Alamos National Laboratory. NR 13 TC 0 Z9 0 U1 0 U2 1 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0748-8017 J9 QUAL RELIAB ENG INT JI Qual. Reliab. Eng. Int. PD DEC PY 2009 VL 25 IS 8 BP 899 EP 911 DI 10.1002/qre.1003 PG 13 WC Engineering, Multidisciplinary; Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA 532PN UT WOS:000272762000002 ER PT J AU Li, JH Liang, L Borror, CM Anderson-Cook, C Montgomery, DC AF Li, Jiahong Liang, Li Borror, Connie M. Anderson-Cook, Christine Montgomery, Douglas C. TI Graphical Summaries to Compare Prediction Variance Performance for Variations of the Central Composite Design for 6 to 10 Factors SO QUALITY TECHNOLOGY AND QUANTITATIVE MANAGEMENT LA English DT Article DE Design comparison; fraction of design space plots; G-optimality; I-optimality AB Three readily available second-order response surface designs for a relatively large number of factors are examined and compared. The number of factors in this study range from 6 <= k <= 10 for both spherical and cuboidal regions of interest. As the number of factors in an experiment increases, the number of terms in the second-order model, as well as the total number of observations can increase quite rapidly. Hence finding economical designs that still predict well in the region of interest is an important objective. The scaled and unscaled prediction variances are investigated over the design region for the central composite design (CCD), small composite design (SCD), and minimum-run resolution (MinRes) V designs. For each of the cuboidal and spherical regions, several choices of axial values are compared. Fraction of design space (FDS) plots and box plots are constructed to characterize the prediction variance properties for the designs in this study. C1 [Li, Jiahong; Montgomery, Douglas C.] Arizona State Univ, Dept Ind Engn, Tempe, AZ 85287 USA. [Liang, Li] Duke Clin Res Inst, Durham, NC USA. [Borror, Connie M.] Arizona State Univ, Div Math & Nat Sci, Glendale, AZ USA. [Anderson-Cook, Christine] Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM USA. RP Li, JH (reprint author), Arizona State Univ, Dept Ind Engn, Tempe, AZ 85287 USA. NR 11 TC 4 Z9 4 U1 0 U2 1 PU NCTU-NATIONAL CHIAO TUNG UNIV PRESS PI TAICHUNG PA NO 100, WENHWA RD, TAICHUNG, 40724 ROC, TAIWAN SN 1684-3703 J9 QUAL TECHNOL QUANT M JI Qual. Technol. Quant. Manag. PD DEC PY 2009 VL 6 IS 4 BP 433 EP 449 PG 17 WC Engineering, Industrial; Operations Research & Management Science; Statistics & Probability SC Engineering; Operations Research & Management Science; Mathematics GA V18HY UT WOS:000207997100006 ER PT J AU Holm, DD Trouve, A Younes, L AF Holm, Darryl D. Trouve, Alain Younes, Laurent TI THE EULER-POINCARE THEORY OF METAMORPHOSIS SO QUARTERLY OF APPLIED MATHEMATICS LA English DT Article DE Groups of diffeomorphisms; EPDiff; image registration; shape analysis; deformable templates ID LARGE-DEFORMATION DIFFEOMORPHISMS; FRAMEWORK; EQUATIONS; FLOWS; SPACE AB In the pattern matching approach to imaging science, the process of "metamorphosis" is template matching with dynamical templates (Trouve and Younes, Found. Comp. Math., 2005). Here, we recast the metamorphosis equations of that paper into the Euler-Poincare variational framework of Holm, Marsden, and Ratiu, Adv. in Math., 1998 and show that the metamorphosis equations contain the equations for a perfect complex fluid (Holm, Springer, 2002). This result connects the ideas underlying the process of metamorphosis in image matching to the physical concept of an order parameter in the theory of complex fluids. After developing the general theory, we reinterpret various examples, including point set, image and density metamorphosis. We finally discuss the issue of matching measures with metamorphosis, for which we provide existence theorems for the initial and boundary value problems. C1 [Holm, Darryl D.] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England. [Holm, Darryl D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Trouve, Alain] Ecole Normale Super, CMLA, CNRS, URA 1611, F-94235 Cachan, France. [Younes, Laurent] Johns Hopkins Univ, Ctr Imaging Sci, Baltimore, MD 21218 USA. RP Holm, DD (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England. EM d.holm@ic.ac.uk; trouve@cmla.ens-cachan.fr; laurent.younes@jhu.edu RI Younes, E. Laurent/A-3349-2010; OI Holm, Darryl D/0000-0001-6362-9912 FU US Department of Energy, Office of Science, Applied Mathematical Research; Royal Society of London Wolfson Research Merit Award; NSF [DMS-0456253] FX The work of Laurent Younes was partially supported by NSF DMS-0456253. NR 33 TC 20 Z9 20 U1 0 U2 0 PU UNIV PRESS INC PI PROVIDENCE PA C/O AMER MATHEMATICAL SOC, DISTRIBUTOR, 201 CHARLES ST, PROVIDENCE, RI 02940-2294 USA SN 0033-569X J9 Q APPL MATH JI Q. Appl. Math. PD DEC PY 2009 VL 67 IS 4 BP 661 EP 685 AR PII S0033-569X(09)01134-2 PG 25 WC Mathematics, Applied SC Mathematics GA 529YU UT WOS:000272556300004 ER PT J AU Hall, SR Farber, DL Ramage, JM Rodbell, DT Finkel, RC Smith, JA Mark, BG Kassel, C AF Hall, Sarah R. Farber, Daniel L. Ramage, Joan M. Rodbell, Donald T. Finkel, Robert C. Smith, Jacqueline A. Mark, Bryan G. Kassel, Christopher TI Geochronology of Quaternary glaciations from the tropical Cordillera Huayhuash, Peru SO QUATERNARY SCIENCE REVIEWS LA English DT Article ID SURFACE EXPOSURE AGES; COSMOGENIC NUCLIDES; CENTRAL ANDES; PRODUCTION-RATES; ATACAMA DESERT; EROSION RATES; NORTHERN PERU; ICE CORE; CLIMATE; MAXIMUM AB The Cordillera Huayhuash in the central Peruvian Andes (10.3 degrees S, 76.9 degrees W) is an ideal mountain range in which to study regional climate through variations in paleoglacier extents. The range trends nearly north-south with modern glaciers confined to peaks >4800 m a.s.l. Geomorphology and geochronology in the nearby Cordillera Blanca and Junin Plain reveal that the Peruvian Andes preserve a detailed record of tropical glaciation. Here, we use ASTER imagery, aerial photographs, and GPS to map and date glacial features in both the western and eastern drainages of the Cordillera Huayhuash. We have used in situ produced cosmogenic Be-10 concentrations in quartz bearing erratics on moraine crests and ice-polished bedrock surfaces to develop an exposure age chronology for Pleistocene glaciation within the range. We have also collected sediment cores from moraine-dammed lakes and bogs to provide limiting C-14 ages for glacial deposits. In contrast to the ranges to the north and south, most glacial features within the Cordillera Huayhuash are Lateglacial in age, however we have identified features with ages that span similar to 0.2 to similar to 38 ka with moraine sets marking the onset of glacier retreat at similar to 0.3 ka, similar to 9-10 ka, similar to 13-14 ka, similar to 20-22 ka, and >26 ka. The range displays a pronounced east-west variation in maximum down-valley distance from the headwall of moraine crests with considerably longer paleoglaciers in the eastern drainages. Importantly, Lateglacial paleoglaciers reached a terminal elevation of similar to 4000 m a.s.l. on both sides of the Cordillera Huayhuash; suggesting that temperature may have been a dominant factor in controlling the maximum glacier extent. We suggest that valley morphology, specifically valley slope, strongly influences down-valley distance to the maximum glacier extent and potential for moraine preservation. While regionally there is an extensive record of older (>50 ka) advances to the north (Cordillera Blanca) and to the south (Junin region), the apparent lack of old moraines in this locality may be explained by the confined morphology of the Cordillera Huayhuash valleys that has inhibited the preservation of older glacial geomorphic features. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Hall, Sarah R.; Farber, Daniel L.] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. [Farber, Daniel L.; Finkel, Robert C.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. [Ramage, Joan M.] Lehigh Univ, Earth & Environm Sci, Bethlehem, PA 18015 USA. [Rodbell, Donald T.; Kassel, Christopher] Union Coll, Dept Geol, Schenectady, NY 12308 USA. [Smith, Jacqueline A.] Coll St Rose, Dept Phys & Biol Sci, Albany, NY 12203 USA. [Mark, Bryan G.] Ohio State Univ, Dept Geog, Columbus, OH 43210 USA. [Finkel, Robert C.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Finkel, Robert C.] Ctr Europeen Rech & Enseignement Geosci Environm, ASTER, F-13100 Aix En Provence, France. RP Hall, SR (reprint author), McGill Univ, Adams Bldg,3450 Univ St, Montreal, PQ H2J 1Y8, Canada. EM sarah.hall@mcgill.ca RI Farber, Daniel/F-9237-2011 FU NSF [EAR-0345895]; LLNL/IGPP [B553611-02]; National Geographic Society; NASA [NNG04GO95G] FX We are grateful to numerous individuals for assistance in the field: Ing. Alcides Ames coordinated all field logistics, and, Patrick Canniff, John Garver, Matt Montario, Molly Luft, Ellyn McFadden, Jeffrey Mackenzie, Michael Ramage, Colby Smith, and Pilar Rojas Linero participated in all aspects of fieldwork. This manuscript was greatly improved by thorough and insightful reviews by 4 anonymous reviewers. Support for this work was provided by the NSF (EAR-0345895; DF), LLNL/IGPP (B553611-02; DF and SH), the National Geographic Society (to DTR), and NASA (NNG04GO95G to JMR). NR 53 TC 12 Z9 12 U1 1 U2 31 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0277-3791 J9 QUATERNARY SCI REV JI Quat. Sci. Rev. PD DEC PY 2009 VL 28 IS 25-26 BP 2991 EP 3009 DI 10.1016/j.quascirev.2009.08.004 PG 19 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA 520TS UT WOS:000271872200032 ER PT J AU Lall-Ramnarine, SI Castano, A Subramaniam, G Thomas, MF Wishart, JF AF Lall-Ramnarine, Sharon I. Castano, Alejandra Subramaniam, Gopal Thomas, Marie F. Wishart, James F. TI Synthesis, characterization and radiolytic properties of bis(oxalato)borate containing ionic liquids SO RADIATION PHYSICS AND CHEMISTRY LA English DT Article; Proceedings Paper CT 2nd Asia-Pacific Symposium on Radiation Chemistry CY AUG 29-SEP 01, 2008 CL Waseda Univ, Int Conf Ctr, Tokyo, JAPAN SP Japanese Soc Radiat Chem, RadTech Japan HO Waseda Univ, Int Conf Ctr DE Ionic liquid; Solvated electron; Pulse radiolysis; Bis(oxalato)borate ID PULSE-RADIOLYSIS; ROOM-TEMPERATURE; METHYLTRIBUTYLAMMONIUM; ACTINIDES; ELECTRON; LITHIUM; CATIONS; ANIONS; SALTS AB Previously unreported bis(oxalato)borate (BOB) ionic liquids (ILs) containing imidazolium, pyridinium, and pyrrolidinium cations were prepared from the corresponding halide salts by reaction with sodium bis(oxalato)borate (NaBOB), and their properties are reported. Pulse radiolysis experiments revealed that the BOB anion scavenges solvated electrons with rate constants of similar to 3 x 108 M(-1) s(-1) in the ionic liquid C(4)mpyrr NTf(2) and 2.8 x 10(7) M(-1) s(-1) in water. This reactivity indicates that BOB ILS may be too sensitive to be used as neat solvents for nuclear separations processes in high radiation fields but may still be useful for preventing criticality while processing relatively "cold" fissile actinides. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Thomas, Marie F.; Wishart, James F.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Lall-Ramnarine, Sharon I.] CUNY Queensborough Community Coll, Dept Chem, Bayside, NY 11364 USA. [Castano, Alejandra; Subramaniam, Gopal; Thomas, Marie F.] CUNY Queens Coll, Dept Chem & Biochem, Flushing, NY 11367 USA. RP Wishart, JF (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM wishart@bnl.gov RI Wishart, James/L-6303-2013 OI Wishart, James/0000-0002-0488-7636 NR 25 TC 16 Z9 17 U1 2 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-806X J9 RADIAT PHYS CHEM JI Radiat. Phys. Chem. PD DEC PY 2009 VL 78 IS 12 BP 1120 EP 1125 DI 10.1016/j.radphyschem.2009.02.007 PG 6 WC Chemistry, Physical; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical SC Chemistry; Nuclear Science & Technology; Physics GA 513QD UT WOS:000271337100025 ER PT J AU Takahashi, K Suda, K Seto, T Katsumura, Y Katoh, R Crowell, RA Wishart, JF AF Takahashi, Kenji Suda, Kayo Seto, Takafumi Katsumura, Yosuke Katoh, Ryuzi Crowell, Robert A. Wishart, James F. TI Photo-detrapping of solvated electrons in an ionic liquid SO RADIATION PHYSICS AND CHEMISTRY LA English DT Article; Proceedings Paper CT 2nd Asia-Pacific Symposium on Radiation Chemistry CY AUG 29-SEP 01, 2008 CL Waseda Univ, Int Conf Ctr, Tokyo, JAPAN SP Japanese Soc Radiat Chem, RadTech Japan HO Waseda Univ, Int Conf Ctr DE Solvated electron; Dry electron; Heterogeneous environment ID PUMP-PROBE SPECTROSCOPY; ROOM-TEMPERATURE; METHYLTRIBUTYLAMMONIUM BIS(TRIFLUOROMETHYLSULFONYL)IMIDE; REACTION-KINETICS; PULSE-RADIOLYSIS; DYNAMICS; SOLVENTS; EXCITATION; RADICALS; SPECTRUM AB We studied the dynamics of photo-detrapped solvated electrons in the ionic liquid trimethyl-N-propylammonium bis(trifluoromethanesulfonyl)imide (TMPA-TFSI) using laser flash photolysis. The solvated electrons were produced by the electron photodetachment from iodide via a 248 nm KrF excimer laser. The solvated electron decayed by first-order kinetics with a lifetime of about 240 ns. The spectrum of the solvated electron in the ionic liquid TMPA-TFSI is very broad with a peak around 1100 nm. After the 248 nm pulse, a 532 nm pulse was used to subsequently detrap the solvated electrons. After the detrapping pulse, quasi-permanent bleaching was observed. The relative magnitude of the bleaching in the solvated electron absorbance was measured from 500 to 1000 nm. The amount of bleaching depends on the probe wavelength. The fraction of bleached absorbance was larger at 500 nm than that at 1000 nm, suggesting that there are at least two species that absorb 532 nm light. We discuss the present results from viewpoint of the heterogeneity of ionic liquids. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Takahashi, Kenji; Suda, Kayo; Seto, Takafumi] Kanazawa Univ, Grad Sch Nat Sci & Technol, Div Mat Sci, Kanazawa, Ishikawa 9201192, Japan. [Katsumura, Yosuke] Tokai Univ, Dept Nucl Engn & Management, Sch Engn, Bunkyo Ku, Tokyo 1138656, Japan. [Katoh, Ryuzi] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058565, Japan. [Crowell, Robert A.; Wishart, James F.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Takahashi, K (reprint author), Kanazawa Univ, Grad Sch Nat Sci & Technol, Div Mat Sci, Kakuma Machi, Kanazawa, Ishikawa 9201192, Japan. EM ktkenji@t.kanazawa-u.ac.jp RI Takahashi, Kenji/C-8846-2011; Wishart, James/L-6303-2013; Seto, Takafumi/D-2874-2012; Takahashi, Kenji/F-4885-2014 OI Wishart, James/0000-0002-0488-7636; NR 23 TC 8 Z9 8 U1 3 U2 16 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-806X J9 RADIAT PHYS CHEM JI Radiat. Phys. Chem. PD DEC PY 2009 VL 78 IS 12 BP 1129 EP 1132 DI 10.1016/j.radphyschem.2009.07.016 PG 4 WC Chemistry, Physical; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical SC Chemistry; Nuclear Science & Technology; Physics GA 513QD UT WOS:000271337100027 ER PT J AU Ainsbury, EA Livingston, GK Abbott, MG Moquet, JE Hone, PA Jenkins, MS Christensen, DM Lloyd, DC Rothkamm, K AF Ainsbury, E. A. Livingston, G. K. Abbott, M. G. Moquet, J. E. Hone, P. A. Jenkins, M. S. Christensen, D. M. Lloyd, D. C. Rothkamm, K. TI Interlaboratory Variation in Scoring Dicentric Chromosomes in a Case of Partial-Body X-Ray Exposure: Implications for Biodosimetry Networking and Cytogenetic "Triage Mode" Scoring SO RADIATION RESEARCH LA English DT Article ID RADIATION; ABERRATIONS; LABORATORIES; DOSIMETRY AB Ainsbury, E. A., Livingston, G. K., Abbott, M. G., Moquet, J. E., Hone, P. A., Jenkins, M. S., Christensen, D. M., Lloyd, D. C. and Rothkamm, K. Interlaboratory Variation in Scoring Dicentric Chromosomes in a Case of Partial-Body X-Ray Exposure: Implications for Biodosimetry Networking and Cytogenetic "Triage Mode" Scoring. Radiat. Res. 172, 746752(2009). The international radiation biodosimetry community has recently been engaged in activities focused on establishing cooperative networks for biodosimetric triage for radiation emergency scenarios involving mass casualties. To this end, there have been several recent publications in the literature regarding the potential for shared scoring in such an accident or incident. We present details from a medical irradiation case where two independently validated laboratories found very different yields of dicentric chromosome aberrations. The potential reasons for this disparity are discussed, and the actual reason is identified as being the partial-body nature of the radiation exposure combined with differing criteria for metaphase selection. In the context of the recent networking activity, this report is intended to highlight the fact that shared scoring may produce inconsistencies and that further validation of the scoring protocols and experimental techniques may be required before the networks are prepared to deal satisfactorily with a radiological or nuclear emergency. Also, the findings presented here clearly demonstrate the limitations of the dicentric assay for estimating radiation doses after partial-body exposures and bring into question the usefulness of rapid "triage mode" scoring in such exposure scenarios. (C) 2009 by Radiation Research Society C1 [Ainsbury, E. A.; Moquet, J. E.; Hone, P. A.; Lloyd, D. C.; Rothkamm, K.] Hlth Protect Agcy, Radiat Protect Div, Ctr Radiat Chem & Environm Hazards, Didcot OX11 0RQ, Oxon, England. [Livingston, G. K.; Abbott, M. G.; Jenkins, M. S.; Christensen, D. M.] Oak Ridge Inst Sci & Educ, Radiat Emergency Assistance Ctr, Oak Ridge, TN USA. RP Ainsbury, EA (reprint author), Hlth Protect Agcy, Radiat Protect Div, Ctr Radiat Chem & Environm Hazards, Didcot OX11 0RQ, Oxon, England. EM liz.ainsbury@hpa.org.uk RI Rothkamm, Kai/A-2164-2014 OI Rothkamm, Kai/0000-0001-7414-5729 NR 15 TC 18 Z9 19 U1 0 U2 2 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 J9 RADIAT RES JI Radiat. Res. PD DEC PY 2009 VL 172 IS 6 BP 746 EP 752 DI 10.1667/RR1934.1 PG 7 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA 527OT UT WOS:000272377100010 PM 19929421 ER PT J AU Bradshaw, JA Ovchinnikova, OS Meyer, KA Goeringer, DE AF Bradshaw, James A. Ovchinnikova, Olga S. Meyer, Kent A. Goeringer, Douglas E. TI Combined chemical and topographic imaging at atmospheric pressure via microprobe laser desorption/ionization mass spectrometry-atomic force microscopy SO RAPID COMMUNICATIONS IN MASS SPECTROMETRY LA English DT Article ID DESORPTION; MALDI; RESOLUTION; ABLATION; SENSITIVITY; IONIZATION; ANALYZER; SURFACE; TISSUE; BEAM AB The operational characteristics and imaging performance are described for a new instrument comprising an atomic force microscope coupled with a pulsed laser and a linear ion trap mass spectrometer. The operating mode of the atomic force microscope is used to produce topographic surface images having sub-micrometer spatial and height resolution. Spatially resolved mass spectra of ions, produced from the same surface via microprobe-mode laser desorption/ionization at atmospheric pressure, are also used to create a 100 x 100 mu m chemical image. The effective spatial resolution of the image (similar to 2 mu m) was constrained by the limit of detection (estimated to be 10(9)-10(10) molecules) rather than by the diameter of the focused laser spot or the step size of the sample stage. The instrument has the potential to be particularly useful for surface analysis scenarios in which chemical analysis of targeted topographic features is desired; consequently, it should have extensive application in a number of scientific areas. Because the number density of desorbed neutral species in laser desorption/ionization is known to be orders-of-magnitude greater than that of ions, it is expected that improvements in imaging performance can be realized by implementation of post-ionization methods. Published in 2009 by John Wiley & Sons, Ltd. C1 [Bradshaw, James A.; Ovchinnikova, Olga S.; Meyer, Kent A.; Goeringer, Douglas E.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Goeringer, DE (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Bldg 4500S,MS 6131, Oak Ridge, TN 37831 USA. EM goeringerde@ornl.gov FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, United States Department of Energy; United States Department of Energy [DE-AC05-00OR22725] FX We thank Stephen Jesse for providing LabVIEW code that enabled flexible array-based sampling with the MultiMode AFM. Vilmos Kertesz is acknowledged for-making his imaging software (HandsFree Surface Analysis (R)) available to us. This research was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, United States Department of Energy. ORNL is managed and operated by UT-Battelle, LLC, for the United States Department of Energy under Contract DE-AC05-00OR22725. NR 33 TC 21 Z9 21 U1 2 U2 16 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0951-4198 J9 RAPID COMMUN MASS SP JI Rapid Commun. Mass Spectrom. PD DEC PY 2009 VL 23 IS 23 BP 3781 EP 3786 DI 10.1002/rcm.4313 PG 6 WC Chemistry, Analytical; Spectroscopy SC Chemistry; Spectroscopy GA 529MY UT WOS:000272522700021 PM 19908223 ER PT J AU Chakraborty, S Kramer, B Kroposki, B AF Chakraborty, Sudipta Kramer, Bill Kroposki, Benjamin TI A review of power electronics interfaces for distributed energy systems towards achieving low-cost modular design SO RENEWABLE & SUSTAINABLE ENERGY REVIEWS LA English DT Review DE Distributed energy; Power electronics interface; Modularity; Integrated power electronics modules ID DC-DC CONVERTER; FUEL-CELL AB Due to increased attention towards clean and sustainable energy, distributed energy (DE) systems are gaining popularity all over the world. Power electronics are an integral part of these energy systems being able to convert generated electricity into consumer usable and utility compatible forms. But the addition of power electronics adds costs to the DE capital investments along with some reliability issues. Therefore, widespread use of distributed energy requires power electronics topologies that are less expensive and more dependable. Use of modular power electronics is a way to address these issues. Adoption of functional building blocks that can be used for multiple applications results in high volume production and reduced engineering effort, design testing, onsite installation and maintenance work for specific customer applications. In this paper, different power electronics topologies are reviewed that are typically used with distributed energy systems. The integrated power electronics module (IPEM) based back-to-back converter topologies are found to be most suitable interface that can operate with different DE systems with small or no modifications. Also the requirements for a hierarchical control structure with standardized power and communication interfaces are addressed in the paper along with some discussion on future design possibilities for the IPEM-based power electronics topologies. It is expected that modular and flexible power electronics and standardized controls and interfaces. will provide commonality in hardware and software for the power electronics interfaces, thus will enable their volume production and decrease their cost share in distributed energy applications. (C) 2009 Published by Elsevier Ltd. C1 [Chakraborty, Sudipta; Kramer, Bill; Kroposki, Benjamin] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Chakraborty, S (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd,Mail Stop 3911, Golden, CO 80401 USA. EM sudipta.chakraborty@nrel.gov FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory; California Energy Commission (CEC) FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. The authors wish to thank the California Energy Commission (CEC) for funding this project1. NR 30 TC 48 Z9 50 U1 0 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-0321 J9 RENEW SUST ENERG REV JI Renew. Sust. Energ. Rev. PD DEC PY 2009 VL 13 IS 9 BP 2323 EP 2335 DI 10.1016/j.rser.2009.05.005 PG 13 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA 504SG UT WOS:000270637000008 ER PT J AU Al-Karaghouli, A Renne, D Kazmerski, LL AF Al-Karaghouli, Ali Renne, David Kazmerski, Lawrence L. TI Solar and wind opportunities for water desalination in the Arab regions SO RENEWABLE & SUSTAINABLE ENERGY REVIEWS LA English DT Review DE Renewable energy; Water desalination; Solar thermal; Solar photovoltaic; Wind energy; Arab region ID OF-THE-ART; POWERED DESALINATION AB Despite the abundance of renewable energy resources in the Arab region, the use of solar thermal, solar photovoltaics, and wind is still in its technological and economic infancy. Great potential exists, but economic constraints have impeded more rapid growth for many applications. These technologies have certainly advanced technically over the last quarter century to the point where they should now be considered clean-energy alternatives to fossil fuels. For the Arab countries and many other regions of the world, potable water is becoming as critical a commodity as electricity. As renewable energy technologies advance and environmental concerns rise, these technologies are becoming more interesting partners for powering water desalination projects. We evaluate the current potential and viability of solar and wind, emphasizing the strict mandate for accurate, reliable site-specific resource data. Water desalination can be achieved through either thermal energy (using phase-change processes) or electricity (driving membrane processes), and these sources are best matched to the particular desalination technology. Desalination using solar thermal can be accomplished by multistage flash distillation, multi-effect distillation, vapor compression, freeze separation, and solar still methods. Concentrating solar power offers the best match to large-scale plants that require both high-temperature fluids and electricity. Solar and wind electricity can be effective energy sources for reverse osmosis, electrodialysis, and ultra- and nano-filtration. All these water desalination processes have special operational and high energy requirements that put additional requisites on the use of solar and wind to power these applications. We summarize the characteristics of the various desalination technologies. The effective match of solar thermal, solar photovoltaics, and wind to each of these is discussed in detail. An economic analysis is provided that incorporates energy consumption, water production levels, and environmental benefits in its model. Finally, the expected evolution of the renewable technologies over the near- to mid-term is discussed with the implications for desalination applications over these timeframes. (C) 2009 Published by Elsevier Ltd. C1 [Al-Karaghouli, Ali; Renne, David; Kazmerski, Lawrence L.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Al-Karaghouli, A (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM ali_al_karaghouli@nrel.gov NR 19 TC 37 Z9 40 U1 5 U2 39 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-0321 J9 RENEW SUST ENERG REV JI Renew. Sust. Energ. Rev. PD DEC PY 2009 VL 13 IS 9 BP 2397 EP 2407 DI 10.1016/j.rser.2008.05.007 PG 11 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA 504SG UT WOS:000270637000014 ER PT J AU Fthenakis, V AF Fthenakis, Vasilis TI Sustainability of photovoltaics: The case for thin-film solar cells SO RENEWABLE & SUSTAINABLE ENERGY REVIEWS LA English DT Review DE Photovoltaics; Tellurium; Indium; Germanium; Availability; Resources; Recycling ID AVAILABILITY; EMISSIONS; CADMIUM; METAL; ELECTRICITY; TE; US AB To ensure photovoltaics become a major sustainable player in a competitive power-generation market, they must provide abundant, affordable electricity. with environmental impacts drastically lower than those from conventional power generation. The recent reduction in the cost of 2nd generation thin-film PV is remarkable, meeting the production milestone of $1 per watt in the fourth quarter of 2008. This achievement holds great promise for the future. However, the questions remaining are whether the expense of PV modules can be lowered further, and if there are resource- and environmental-impact constraints to growth. I examine the potential of thin-films in a prospective life-cycle analysis, focusing on direct costs, resource availability, and environmental impacts. These three aspects are closely related; developing thinner solar cells and recycling spent modules will become increasingly important in resolving cost, resource, and environmental constraints to large scales of sustainable growth. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Fthenakis, Vasilis] Brookhaven Natl Lab, Photovolta Environm Res Ctr, Upton, NY 11973 USA. [Fthenakis, Vasilis] Columbia Univ, Ctr Life Cycle Anal, Upton, NY 11973 USA. RP Fthenakis, V (reprint author), Brookhaven Natl Lab, Photovolta Environm Res Ctr, Bldg 130, Upton, NY 11973 USA. EM vmf@bnl.gov FU Solar Technologies Program, US Department of Energy [DE-AC02-76CH000016] FX Many people contributed to this work with helpful discussions; we would like especially to acknowledge H. Kim, Columbia U., K. Zweibel, GWU, F. Ojebuoboh and A. Meader, FirstSolar, B. Stanbery, HelioVolt, J. Britt, GlobalSolar, S. Guha, Uni-Solar, X. Deng, Xunlight, J. Sites, Colorado State U. and B. von Roedern, NREL. This work was supported by the Solar Technologies Program, US Department of Energy, under Contract: DE-AC02-76CH000016 with the US-DOE. NR 24 TC 163 Z9 164 U1 7 U2 77 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-0321 J9 RENEW SUST ENERG REV JI Renew. Sust. Energ. Rev. PD DEC PY 2009 VL 13 IS 9 BP 2746 EP 2750 DI 10.1016/j.rser.2009.05.001 PG 5 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA 504SG UT WOS:000270637000055 ER PT J AU Schafer, T Teaney, D AF Schaefer, Thomas Teaney, Derek TI Nearly perfect fluidity: from cold atomic gases to hot quark gluon plasmas SO REPORTS ON PROGRESS IN PHYSICS LA English DT Review ID HEAVY-ION COLLISIONS; LIQUID-HELIUM-II; COUPLING-CONSTANT DEPENDENCE; YANG-MILLS THEORY; ELLIPTIC FLOW; FIELD-THEORY; FERMI GAS; TRANSITION-TEMPERATURE; TRANSPORT-COEFFICIENTS; SHEAR VISCOSITY AB Shear viscosity is a measure of the amount of dissipation in a simple fluid. In kinetic theory shear viscosity is related to the rate of momentum transport by quasi-particles, and the uncertainty relation suggests that the ratio of shear viscosity eta to entropy density s in units of (h) over bar /k(B) is bounded by a constant. Here, (h) over bar is Planck's constant and k(B) is Boltzmann's constant. A specific bound has been proposed on the basis of string theory where, for a large class of theories, one can show that eta/s >= (h) over bar/(4 pi k(B)). We will refer to a fluid that saturates the string theory bound as a perfect fluid. In this review we summarize theoretical and experimental information on the properties of the three main classes of quantum fluids that are known to have values of eta/s that are smaller than (h) over bar /k(B). These fluids are strongly coupled Bose fluids, in particular liquid helium, strongly correlated ultracold Fermi gases and the quark gluon plasma. We discuss the main theoretical approaches to transport properties of these fluids: kinetic theory, numerical simulations based on linear response theory and holographic dualities. We also summarize the experimental situation, in particular with regard to the observation of hydrodynamic behavior in ultracold Fermi gases and the quark gluon plasma. C1 [Schaefer, Thomas] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Teaney, Derek] SUNY Stony Brook, Dept Phys, Stony Brook, NY 11794 USA. [Teaney, Derek] Brookhaven Natl Lab, RIKEN, Res Ctr, Upton, NY 11973 USA. RP Schafer, T (reprint author), N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. OI Schaefer, Thomas/0000-0002-2297-782X FU US Department of Energy [DE-FG02-03ER41260, DE-FG02-08ER41540]; Alfred P Sloan foundation FX This work was supported in parts by the US Department of Energy grant DE-FG02-03ER41260 (TS) and DE-FG02-08ER41540 (DT). DT is also supported by the Alfred P Sloan foundation. The authors would like to thank Gordon Baym for providing the impetus to write this review. They would like to acknowledge useful discussions with Dam Son, Edward Shuryak and John Thomas. In preparing a revised version the authors benefited from the remarks of an anonymous referee, and from communications by G Aarts, C Greiner, A Sinha and F Zwerger. NR 236 TC 178 Z9 180 U1 5 U2 23 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0034-4885 EI 1361-6633 J9 REP PROG PHYS JI Rep. Prog. Phys. PD DEC PY 2009 VL 72 IS 12 AR 126001 DI 10.1088/0034-4885/72/12/126001 PG 40 WC Physics, Multidisciplinary SC Physics GA 523MC UT WOS:000272076800002 ER PT J AU Bechtel, HA Martin, MC May, TE Lerch, P AF Bechtel, Hans A. Martin, Michael C. May, T. E. Lerch, Philippe TI Improved spatial resolution for reflection mode infrared microscopy SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID ADVANCED LIGHT-SOURCE; SYNCHROTRON-RADIATION; SPECTROMICROSCOPY; LIMITS; MICROSPECTROSCOPY; PERFORMANCE; BEAMLINES AB Standard commercial infrared microscopes operating in reflection mode use a mirror to direct the reflected light from the sample to the detector. This mirror blocks about half of the incident light, however, and thus degrades the spatial resolution by reducing the numerical aperture of the objective. Here, we replace the mirror with a 50% beamsplitter to allow full illumination of the objective and retain a way to direct the reflected light to the detector. The improved spatial resolution is demonstrated using two different microscopes capable of diffraction-limited resolution: the first microscope is coupled to a synchrotron source and utilizes a single point detector, whereas the second microscope has a standard blackbody source and uses a focal plane array detector. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3270260] C1 [Bechtel, Hans A.; Martin, Michael C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source Div, Berkeley, CA 94720 USA. [May, T. E.] Univ Saskatchewan, Canadian Light Source Inc, Saskatoon, SK S7N 0X4, Canada. [Lerch, Philippe] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland. RP Martin, MC (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM mcmartin@lbl.gov FU U.S. Department of Energy [DE-nAC02-05CH11231] FX The authors thank G. L. Carr for help with Zemax simulations. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-nAC02-05CH11231. NR 13 TC 11 Z9 11 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD DEC PY 2009 VL 80 IS 12 AR 126106 DI 10.1063/1.3270260 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 538XJ UT WOS:000273217300058 PM 20059180 ER PT J AU Blum, M Weinhardt, L Fuchs, O Bar, M Zhang, Y Weigand, M Krause, S Pookpanratana, S Hofmann, T Yang, W Denlinger, JD Umbach, E Heske, C AF Blum, M. Weinhardt, L. Fuchs, O. Baer, M. Zhang, Y. Weigand, M. Krause, S. Pookpanratana, S. Hofmann, T. Yang, W. Denlinger, J. D. Umbach, E. Heske, C. TI Solid and liquid spectroscopic analysis (SALSA)-a soft x-ray spectroscopy endstation with a novel flow-through liquid cell SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID ABSORPTION SPECTROSCOPY; EMISSION SPECTROSCOPY; WATER AB We present a novel synchrotron endstation with a flow-through liquid cell designed to study the electronic structure of liquids using soft x-ray spectroscopies. In this cell, the liquid under study is separated from the vacuum by a thin window membrane, such that the sample liquid can be investigated at ambient pressure. The temperature of the probing volume can be varied in a broad range and with a fast temperature response. The optimized design of the cell significantly reduces the amount of required sample liquid and allows the use of different window membrane types necessary to cover a broad energy range. The liquid cell is integrated into the solid and liquid spectroscopic analysis (SALSA) endstation that includes a high-resolution, high-transmission x-ray spectrometer and a state-of-the-art electron analyzer. The modular design of SALSA also allows the measurement of solid-state samples. The capabilities of the liquid cell and the x-ray spectrometer are demonstrated using a resonant inelastic x-ray scattering map of a 25 wt % NaOD solution. (C) 2009 American Institute of Physics. [doi:10.1063/1.3257926] C1 [Blum, M.; Weinhardt, L.; Fuchs, O.; Weigand, M.; Krause, S.; Umbach, E.] Univ Wurzburg, D-97074 Wurzburg, Germany. [Blum, M.; Baer, M.; Zhang, Y.; Krause, S.; Pookpanratana, S.; Hofmann, T.; Heske, C.] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. [Baer, M.] Helmholtz Zentrum Berlin Mat & Energie, D-14109 Berlin, Germany. [Yang, W.; Denlinger, J. D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Umbach, E.] Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany. [Umbach, E.] Forschungszentrum Karlsruhe, D-76021 Karlsruhe, Germany. RP Blum, M (reprint author), Univ Wurzburg, D-97074 Wurzburg, Germany. EM monika.blum@physik.uni-wuerzburg.de; lothar.weinhardt@physik.uni-wuerzburg.de; heske@unlv.nevada.edu RI Krause, Stefan/A-1281-2011; Weinhardt, Lothar/G-1689-2013; Yang, Wanli/D-7183-2011 OI Yang, Wanli/0000-0003-0666-8063 FU German BMBF [05 KS4WWA/6, 05 KS4VHA/4]; Stiftung der Deutschen Wirtschaft; Deutsche Forschungsgemeinschaft FX This work was supported by the German BMBF (Project Nos. 05 KS4WWA/6 and 05 KS4VHA/4). M. Blum acknowledges the support by the Stiftung der Deutschen Wirtschaft and M. Bar the support by the Emmy-Noether-Programm of the Deutsche Forschungsgemeinschaft. NR 27 TC 28 Z9 28 U1 2 U2 23 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD DEC PY 2009 VL 80 IS 12 AR 123102 DI 10.1063/1.3257926 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 538XJ UT WOS:000273217300002 PM 20059126 ER PT J AU Boedo, JA Crocker, N Chousal, L Hernandez, R Chalfant, J Kugel, H Roney, P Wertenbaker, J AF Boedo, J. A. Crocker, N. Chousal, L. Hernandez, R. Chalfant, J. Kugel, H. Roney, P. Wertenbaker, J. CA NSTX Team TI Fast scanning probe for the NSTX spherical tokamak SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID SCRAPE-OFF LAYER; ALCATOR C-MOD; DIII-D; EDGE PLASMA; TORUS-EXPERIMENT; RECIPROCATING PROBE; MAGNETIZED PLASMAS; BOUNDARY PLASMA; H TRANSITION; TURBULENCE AB We describe a fast reciprocating Langmuir probe and drive system, which has four main new features: (1) use of high-temperature, vacuum, circuit boards instead of cables to reduce weight and increase to 21 the number of possible connections, (2) rotatable and removable shaft, (3) 10 tip construction with designed hardware bandwidth up to 10 MHz, and (4) a detachable and modular tip assembly for easy maintenance. The probe is mounted in a fast pneumatic drive capable of speeds similar to 7 m/s and similar to 20g's acceleration in order to reach the scrape-off layer (SOL) and pedestal regions and remain inserted long enough to obtain good statistics while minimizing the heat deposition to the tips and head in a power density environment of 1-10 MW/m(2). The National Spherical Torus Experiment SOL features electron temperature, T(e) similar to 10-30 eV, and electron density, n(e) similar to 0.1-5 x 10(12) cm(-3) while the pedestal features n(e) similar to 0.5-1.5 x 10(13) cm(-3) and T(e) similar to 30-150 eV. The probe described here has ten tips which obtain a wide spectrum of plasma parameters: electron temperature profile T(e)(r), electron density profile n(e)(r) and Mach number profile M(r), floating potential V(f)(r), poloidal and radial electric field profiles E(theta)(r) and E(rho)(r), saturation current profile I(sat)(r), and their fluctuations up to 3 MHz. We describe the probe and show representative radial profiles of various parameters. (C) 2009 American Institute of Physics. [doi:10.1063/1.3266065] C1 [Boedo, J. A.; Crocker, N.; Chousal, L.; Hernandez, R.; Chalfant, J.] Univ Calif San Diego, Dept Mech & Aerosp Engn, Energy Res Ctr, La Jolla, CA 92093 USA. [Kugel, H.; Roney, P.; Wertenbaker, J.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Boedo, JA (reprint author), Univ Calif San Diego, Dept Mech & Aerosp Engn, Energy Res Ctr, La Jolla, CA 92093 USA. RI Sabbagh, Steven/C-7142-2011; Stotler, Daren/J-9494-2015; Stutman, Dan/P-4048-2015 OI Stotler, Daren/0000-0001-5521-8718; FU DOE [DE-FG02-03ER54731] FX This work has been supported by the DOE Contract No. DE-FG02-03ER54731. The authors are grateful to the NSTX technical support, to Dr. J-W Ahn, and to UCSD's CER-Fusion Energy Division Technical Support Staff for their assistance support. In particular, we are indebted to G. Mounce and T. Lynch. NR 44 TC 9 Z9 9 U1 1 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD DEC PY 2009 VL 80 IS 12 AR 123506 DI 10.1063/1.3266065 PG 10 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 538XJ UT WOS:000273217300020 PM 20073119 ER PT J AU Major, J Vorobiev, A Ruhm, A Maier, R Major, M Mezger, M Nulle, M Dosch, H Felcher, GP Falus, P Keller, T Pynn, R AF Major, Janos Vorobiev, Alexei Ruehm, Adrian Maier, Ralf Major, Marton Mezger, Markus Nuelle, Max Dosch, Helmut Felcher, Gian P. Falus, Peter Keller, Thomas Pynn, Roger TI A spin-echo resolved grazing incidence scattering setup for the neutron interrogation of buried nanostructures SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID ANOMALOUS SURFACE REFLECTION; X-RAYS; INCIDENCE DIFFRACTION; SPECTROMETRY; INSTRUMENT; FILTER AB We present a dedicated experimental spin-echo resolved grazing incidence scattering (SERGIS) setup for the investigation of surfaces and thin films exhibiting large lateral length scales. This technique uses the neutron spin to encode one in-plane component of the wave-vector transfer in a grazing angle scattering experiment. Instead of the scattering angle, the depolarization of the scattered beam is measured. This allows one to achieve a very high in-plane momentum resolution without collimation of the incident neutron beam in the corresponding direction. SERGIS can therefore offer an alternative or complementary method to conventional grazing incidence neutron scattering experiments. We describe the experimental setup installed at the neutron sources ILL (Grenoble) and FRM II (Garching) and present data obtained with this setup on various samples exhibiting characteristic mesoscopic length scales in the range of several hundred nanometers. We also derive general formulas and error margins for the analysis and interpretation of SERGIS data and apply them to the cases of a one-dimensional structure and of an island morphology. (C) 2009 American Institute of Physics. [doi:10.1063/1.3240598] C1 [Major, Janos; Vorobiev, Alexei; Ruehm, Adrian; Maier, Ralf; Major, Marton; Mezger, Markus; Nuelle, Max; Dosch, Helmut] Max Planck Inst Met Res, D-70569 Stuttgart, Germany. [Felcher, Gian P.; Falus, Peter] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Keller, Thomas] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany. [Pynn, Roger] Indiana Univ, Bloomington, IN 47408 USA. RP Major, J (reprint author), Max Planck Inst Met Res, Heisenbergstr 3, D-70569 Stuttgart, Germany. RI Mezger, Markus/D-6897-2014; Major, Marton/A-8208-2013 OI Mezger, Markus/0000-0001-9049-6983; Major, Marton/0000-0001-6074-6144 NR 51 TC 10 Z9 10 U1 1 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD DEC PY 2009 VL 80 IS 12 AR 123903 DI 10.1063/1.3240598 PG 29 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 538XJ UT WOS:000273217300028 PM 20059150 ER PT J AU Barron-Palos, L Alarcon, R Alonzi, LP Baessler, S Balascuta, S Bowman, JD Bychkov, M Calarco, JR Carlini, RD Chavez, E Chen, WC Chupp, TE Crawford, C Curiel-Garcia, Q Dabaghyan, M Dadras, J Danagoulian, A Estes, MC Fomin, N Freedman, SJ Frlez, E Gentile, TR Gericke, MT Gillis, RC Greene, GL Hersman, FW Hona, B Huerta, A Ino, T Jones, GL Komives, A Lauss, B Lee, W Leuschner, M Losowski, W Mahurin, R Marin-Lambarri, D Martin, E Masuda, Y Mei, J Mitchell, GS Mueller, PE Musgrave, M Muto, S Nann, H Ortiz, ME Palladino, A Page, S Penttila, SI Pocanic, D Prince, J Ramsay, D Rodriguez-Zamora, P Salas-Bacci, A Santra, S Seo, PN Sharapov, E Sharma, M Smith, T Snow, WM Tang, Z Vorndran, S Wilburn, WS Whitehead, M Yuan, V AF Barron-Palos, L. Alarcon, R. Alonzi, L. P. Baessler, S. Balascuta, S. Bowman, J. D. Bychkov, M. Calarco, J. R. Carlini, R. D. Chavez, E. Chen, W. C. Chupp, T. E. Crawford, C. Curiel-Garcia, Q. Dabaghyan, M. Dadras, J. Danagoulian, A. Estes, M. C. Fomin, N. Freedman, S. J. Frlez, E. Gentile, T. R. Gericke, M. T. Gillis, R. C. Greene, G. L. Hersman, F. W. Hona, B. Huerta, A. Ino, T. Jones, G. L. Komives, A. Lauss, B. Lee, W. Leuschner, M. Losowski, W. Mahurin, R. Marin-Lambarri, D. Martin, E. Masuda, Y. Mei, J. Mitchell, G. S. Mueller, P. E. Musgrave, M. Muto, S. Nann, H. Ortiz, M. E. Palladino, A. Page, S. Penttila, S. I. Pocanic, D. Prince, J. Ramsay, D. Rodriguez-Zamora, P. Salas-Bacci, A. Santra, S. Seo, P. -N. Sharapov, E. Sharma, M. Smith, T. Snow, W. M. Tang, Z. Vorndran, S. Wilburn, W. S. Whitehead, M. Yuan, V. TI Measurement of parity-violating neutron capture gamma asymmetries at low-energies SO REVISTA MEXICANA DE FISICA LA English DT Article; Proceedings Paper CT 32nd Symposium on Nuclear Physics CY JAN 05-08, 2009 CL Cocoyoc, MEXICO DE Hadronic weak interaction; parity-violation observables; few nucleon systems; fundamental neutron physics AB A sensitive measurement of parity-violating (PV) observables in few-nucleon systems can shed light on our current understanding of the hadronic weak interaction at low momentum transfers. Theoretical models describe the nucleon-nucleon weak interaction at low energies with 6 parameters that need, in principle, to be determined in the same number of independent experiments. In this context, a series of experiments with cold neutrons are being proposed and developed. Particularly, experiments that aim to measure the parity-violating asymmetry in the distribution of the gamma-rays emitted in the capture of polarized neutrons by protons and deuterium, will be discussed in this paper. C1 [Barron-Palos, L.; Chavez, E.; Curiel-Garcia, Q.; Huerta, A.; Marin-Lambarri, D.; Ortiz, M. E.; Rodriguez-Zamora, P.] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. [Alarcon, R.; Balascuta, S.] Arizona State Univ, Tempe, AZ 85287 USA. [Alonzi, L. P.; Bychkov, M.; Frlez, E.; Palladino, A.; Pocanic, D.; Prince, J.] Univ Virginia, Charlottesville, VA 22904 USA. [Baessler, S.; Bowman, J. D.; Crawford, C.; Greene, G. L.; Lee, W.; Mueller, P. E.; Penttila, S. I.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Calarco, J. R.; Hersman, F. W.] Univ New Hampshire, Durham, NH 03824 USA. [Carlini, R. D.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Chen, W. C.; Gentile, T. R.] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. [Chupp, T. E.; Sharma, M.] Univ Michigan, Ann Arbor, MI 48109 USA. [Crawford, C.; Estes, M. C.; Hona, B.; Martin, E.] Univ Kentucky, Lexington, KY 40506 USA. [Dabaghyan, M.] Harvard Univ, Sch Med, Dept Radiol, Brigham & Womens Hosp, Boston, MA 02115 USA. [Dadras, J.; Fomin, N.; Greene, G. L.; Mahurin, R.; Musgrave, M.] Univ Tennessee, Knoxville, TN 37996 USA. [Danagoulian, A.; Salas-Bacci, A.; Wilburn, W. S.; Yuan, V.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Freedman, S. J.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Gericke, M. T.; Page, S.; Ramsay, D.] Univ Manitoba, Winnipeg, MB R3T 2N2, Canada. [Gillis, R. C.; Leuschner, M.; Losowski, W.; Mei, J.; Nann, H.; Snow, W. M.; Tang, Z.] Indiana Univ, Bloomington, IN 47405 USA. [Ino, T.; Masuda, Y.; Muto, S.] High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. [Jones, G. L.] Hamilton Coll, Clinton, NY 13323 USA. [Komives, A.; Vorndran, S.; Whitehead, M.] DePaw Univ, Greencastle, IN 46135 USA. [Lauss, B.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Mitchell, G. S.] Univ Calif Davis, Davis, CA 95616 USA. [Santra, S.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Seo, P. -N.] Duke Univ, Durham, NC 27708 USA. [Seo, P. -N.] Triangle Univ Nucl Lab, Raleigh, NC 27695 USA. [Sharapov, E.] Joint Inst Nucl Res, Dubna, Russia. [Smith, T.] Univ Dayton, Dayton, OH 45469 USA. RP Barron-Palos, L (reprint author), Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. EM libertad@fisica.unam.mx RI Frlez, Emil/B-6487-2013; Balascuta, Septimiu/J-7679-2015 OI Balascuta, Septimiu/0000-0003-2331-294X NR 12 TC 1 Z9 1 U1 0 U2 3 PU SOC MEXICANA FISICA PI COYOACAN PA APARTADO POSTAL 70-348, COYOACAN 04511, MEXICO SN 0035-001X J9 REV MEX FIS JI Rev. Mex. Fis. PD DEC PY 2009 VL 55 IS 2 SU S BP 18 EP 22 PG 5 WC Physics, Multidisciplinary SC Physics GA 536SP UT WOS:000273064400005 ER PT J AU Wilburn, WS Cirigliano, V Klein, A Makela, MF McGaughey, PL Morris, CL Ramsey, J Salas-Bacci, A Saunders, A Brousard, LJ Young, AR AF Wilburn, W. S. Cirigliano, V. Klein, A. Makela, M. F. McGaughey, P. L. Morris, C. L. Ramsey, J. Salas-Bacci, A. Saunders, A. Brousard, L. J. Young, A. R. TI Measurement of the neutrino-spin correlation parameter b in neutron decay using ultracold neutrons SO REVISTA MEXICANA DE FISICA LA English DT Article; Proceedings Paper CT 32nd Symposium on Nuclear Physics CY JAN 05-08, 2009 CL Cocoyoc, MEXICO DE beta decay; weak-interaction ID BETA-DECAY; PHYSICS AB We present a new approach to measuring the neutrino-spin correlation parameter B in neutron decay. The approach combines the technology of large-area ion-implanted silicon detectors being developed for the abBA experiment, with an ultracold neutron source to provide more precise neutron polarimetry. The technique detects both proton and electron from the neutron decay in coincidence. B is determined from an electron-energy-dependent measurement of the proton-spin asymmetry. This approach will provide a statistical precision of 1 x 10(-4). The systematic precision is still being evaluated, but is expected to be below 1 x 10(-3), and could approach 1 x 10(-4). A measurement of B with this precision would place constraints on supersymmetric extensions to the Standard Model. C1 [Wilburn, W. S.; Cirigliano, V.; Klein, A.; Makela, M. F.; McGaughey, P. L.; Morris, C. L.; Ramsey, J.; Salas-Bacci, A.; Saunders, A.] Los Alamos Natl Lab, Los Alamos, NM USA. [Brousard, L. J.] Duke Univ, Durham, NC 27706 USA. [Young, A. R.] N Carolina State Univ, Raleigh, NC 27695 USA. RP Wilburn, WS (reprint author), Los Alamos Natl Lab, Los Alamos, NM USA. NR 13 TC 10 Z9 10 U1 0 U2 1 PU SOC MEXICANA FISICA PI COYOACAN PA APARTADO POSTAL 70-348, COYOACAN 04511, MEXICO SN 0035-001X J9 REV MEX FIS JI Rev. Mex. Fis. PD DEC PY 2009 VL 55 IS 2 BP 119 EP 122 PG 4 WC Physics, Multidisciplinary SC Physics GA 536SP UT WOS:000273064400021 ER PT J AU Stickel, JJ Knutsen, JS Liberatore, MW Luu, W Bousfield, DW Klingenberg, DJ Scott, CT Root, TW Ehrhardt, MR Monz, TO AF Stickel, Jonathan J. Knutsen, Jeffrey S. Liberatore, Matthew W. Luu, Wing Bousfield, Douglas W. Klingenberg, Daniel J. Scott, C. Tim Root, Thatcher W. Ehrhardt, Max R. Monz, Thomas O. TI Rheology measurements of a biomass slurry: an inter-laboratory study SO RHEOLOGICA ACTA LA English DT Article DE Biomass; Yield stress; Shear thinning; Viscoelasticity; Wall slip ID HIGH-SOLIDS CONCENTRATIONS; YIELD-STRESS MEASUREMENTS; CORN STOVER; FIBER SUSPENSIONS; PULP SUSPENSIONS; ENZYMATIC-HYDROLYSIS; PARTICLE-SIZE; WALL SLIP; ETHANOL; SHEAR AB The conversion of biomass, specifically lignocellulosic biomass, into fuels and chemicals has recently gained national attention as an alternative to the use of fossil fuels. Increasing the concentration of the biomass solids during biochemical conversion has a large potential to reduce production costs. These concentrated biomass slurries have highly viscous, non-Newtonian behavior that poses several technical challenges to the conversion process. A collaborative effort to measure the rheology of a biomass slurry at four separate laboratories has been undertaken. A comprehensive set of rheological properties were measured using several different rheometers, flow geometries, and experimental methods. The tendency for settling, water evaporation, and wall slip required special care when performing the experiments. The rheological properties were measured at different concentrations up to 30% insoluble solids by mass. The slurry was found to be strongly shear-thinning, to be viscoelastic, and to have a significant concentration-dependent yield stress. The elastic modulus was found to be almost an order of magnitude larger than the loss modulus and weakly dependent on frequency. The techniques and results of this work will be useful to characterize other biomass slurries and in the design of biochemical conversion processing steps that operate at high solids concentrations. C1 [Stickel, Jonathan J.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. [Knutsen, Jeffrey S.; Liberatore, Matthew W.] Colorado Sch Mines, Dept Chem Engn, Golden, CO 80401 USA. [Luu, Wing; Bousfield, Douglas W.] Univ Maine, Dept Chem & Biol Engn, Orono, ME USA. [Klingenberg, Daniel J.; Root, Thatcher W.; Ehrhardt, Max R.; Monz, Thomas O.] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI USA. [Klingenberg, Daniel J.; Root, Thatcher W.; Ehrhardt, Max R.; Monz, Thomas O.] Univ Wisconsin, Rheol Res Ctr, Madison, WI USA. [Scott, C. Tim] US Forest Serv, Forest Prod Lab, Madison, WI 53705 USA. RP Stickel, JJ (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. EM jonathan.stickel@nrel.gov RI Liberatore, Matthew/B-6828-2008 FU National Research Initiative of the USDA Cooperative State Research, Education, and Extension Service [2006-35504-17401] FX This work was funded in part by the U. S. Department of Energy Office of the Biomass Program and in part by the National Research Initiative of the USDA Cooperative State Research, Education, and Extension Service, grant number 2006-35504-17401. J. Stickel would like to thank Christine Roche for help with sample preparation. NR 38 TC 68 Z9 68 U1 7 U2 61 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0035-4511 EI 1435-1528 J9 RHEOL ACTA JI Rheol. Acta PD DEC PY 2009 VL 48 IS 9 BP 1005 EP 1015 DI 10.1007/s00397-009-0382-8 PG 11 WC Mechanics SC Mechanics GA 510TU UT WOS:000271116000005 ER PT J AU Wiley, S AF Wiley, Steven TI Speak Your Mind SO SCIENTIST LA English DT Editorial Material C1 Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Wiley, S (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU SCIENTIST INC PI PHILADELPHIA PA 400 MARKET ST, STE 1250, PHILADELPHIA, PA 19106 USA SN 0890-3670 J9 SCIENTIST JI Scientist PD DEC PY 2009 VL 23 IS 12 BP 25 EP 25 PG 1 WC Information Science & Library Science; Multidisciplinary Sciences SC Information Science & Library Science; Science & Technology - Other Topics GA 525OA UT WOS:000272224300016 ER PT J AU Rodriguez-Pascua, MA Bischoff, J Garduno-Monroy, VH Perez-Lopez, R Giner-Robles, JL Israde-Alcantara, I Calvo, JP Williams, RW AF Rodriguez-Pascua, M. A. Bischoff, J. Garduno-Monroy, V. H. Perez-Lopez, R. Giner-Robles, J. L. Israde-Alcantara, I. Calvo, J. P. Williams, R. W. TI Estimation of the tectonic slip-rate from Quaternary lacustrine facies within the intraplate Albacete province (SE of Spain) SO SEDIMENTARY GEOLOGY LA English DT Article DE Lacustrine record; Quaternary fault; Slip rate; Intraplate; Paleoearthquake AB The Quaternary lacustrine basin of Cordovilla (CB) represents one of the most active tectonic areas of the Prebetic Zone (Albacete, SE of Spain). The Quaternary sedimentary deposits of this basin are mainly endoreic lacustrine carbonate and alluvial deposits, developed in a semi-arid climate (Pleistocene-present). The basin is a NW-SE-elongated graben bounded by a major right-lateral oblique-fault, the Pozohondo Fault. This fault trends NW-SE, with an approximate trace of 55 km, and is composed of various segments which are identified by fault scarps. In order to establish the slip-rate of the most active segment of the Pozohondo Fault, called the Cordovilla segment, we carried out a detailed study of the affected Quaternary lacustrine deposits. We found that the lacustrine facies could be related to episodic moderate paleoearthquakes. The slip-rate is calculated to be 0.05 and 0.09 mm/yr, using radiometric dating for the vertical offsets of the lacustrine facies. A trenching study at the northern part of the Cordovilla segment revealed two events caused by paleoearthquakes, with the most recent expressed as an oblique-fault off-setting a poorly-developed soil. The magnitude of the last event was greater than 6, using various empirical relationships for the fault displacement and the surface-length rupture. We estimate episodic activity across the Cordovilla segment, to be characterized by moderate-sized paleoearthquakes (M6), which is in agreement with the tectonic context of an intraplate zone of the Iberian plate. (C) 2009 Elsevier B.V. All rights reserved. C1 [Rodriguez-Pascua, M. A.; Perez-Lopez, R.; Calvo, J. P.] Inst Geol & Minero Espana, Madrid 28003, Spain. [Bischoff, J.] US Geol Survey, Menlo Pk, CA 94025 USA. [Garduno-Monroy, V. H.; Israde-Alcantara, I.] Univ Michoacana, Morelia 58060, Michoacan, Mexico. [Giner-Robles, J. L.] Univ Autonoma Madrid, Fac Ciencias, E-28049 Madrid, Spain. [Williams, R. W.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Rodriguez-Pascua, MA (reprint author), Inst Geol & Minero Espana, C Rios Rosas 23, Madrid 28003, Spain. EM ma.rodriguez@igme.es; jbischoff@usgs.gov; vgmonroy@umich.mx; r.perez@igme.es; jlginer@gmail.com RI Giner-Robles, Jorge /H-5063-2011; Perez-Lopez, Raul/P-3485-2014; Rodriguez-Pascua, Miguel/H-9323-2015; OI Giner-Robles, Jorge /0000-0002-1507-4796; Rodriguez-Pascua, Miguel/0000-0001-5174-119X; Perez, Raul/0000-0002-9132-4806; Garduno-Monroy, Victor Hugo/0000-0001-7128-992X FU Spanish Ministry of Science and Innovation (MCI) [CGL2006-05001/BTE, CGL2006-28134-E/CLI] FX We are strongly indebted to Dr. Concha Arenas, Dr. Klaus Reicherter, and Dr. Elisabeth Gierlowski-Kordesch for their constructive comments and remarks, with the aim to improve this work. We wish to thank Dr. Ana Alonso Zarza for her kind invitation to the 4th International Limnogeology Congress at Barcelona. This work was supported by the Spanish Ministry of Science and Innovation (MCI), through the project ACTISIS (CGL2006-05001/BTE), and part of the results are included in the project TECTO2 (CGL2006-28134-E/CLI). NR 17 TC 7 Z9 7 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0037-0738 J9 SEDIMENT GEOL JI Sediment. Geol. PD DEC 1 PY 2009 VL 222 IS 1-2 SI SI BP 89 EP 97 DI 10.1016/j.sedgeo.2009.06.007 PG 9 WC Geology SC Geology GA 528GP UT WOS:000272431100009 ER PT J AU Levinson, R Akbari, H Pomerantz, M Gupta, S AF Levinson, Ronnen Akbari, Hashem Pomerantz, Melvin Gupta, Smita TI Solar access of residential rooftops in four California cities SO SOLAR ENERGY LA English DT Article DE Solar access; Shading; Residential rooftops; Photovoltaics; Trees; California ID ENERGY USE AB Shadows cast by trees and buildings can limit the solar access of rooftop solar-energy systems, including photovoltaic panels and thermal collectors. This study characterizes residential rooftop shading in Sacramento, San Jose, Los Angeles and San Diego, CA. Our analysis can be used to better estimate power production and/or thermal collection by rooftop solar-energy equipment. It can also be considered when designing programs to plant shade trees. High-resolution orthophotos and LiDAR (Light Detection And Ranging) measurements of surface height were used to create a digital elevation model of all trees and buildings in a well-treed 2.5-4 km(2) residential neighborhood. On-hour shading of roofing planes (the flat elements of roofs) was computed geometrically from the digital elevation model. Values in future years were determined by repeating these calculations after simulating tree growth. Parcel boundaries were used to determine the extent to which roofing planes were shaded by trees and buildings in neighboring parcels. For the subset of S + SW + W-facing planes on which solar equipment is commonly installed for maximum solar access, absolute light loss in spring, summer and fall peaked about 2 to 4 h after sunrise and about 2 to 4 h before sunset. The fraction of annual insolation lost to shading increased from 0.07-0.08 in the year of surface-height measurement to 0.11-0.14 after 30 years of tree growth. Only about 10% of this loss resulted from shading by trees and buildings in neighboring parcels. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Levinson, Ronnen] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Heat Isl Grp, Berkeley, CA 94720 USA. [Gupta, Smita] Calif Energy Commiss, Sacramento, CA 95814 USA. RP Levinson, R (reprint author), Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Heat Isl Grp, 1 Cyclotron Rd,MS 90R2000, Berkeley, CA 94720 USA. EM RML27@cornell.edu FU California Energy Commission (CEC); Assistant Secretary for Energy Efficiency and Renewable Energy [DE-AC02-05CH11231] FX This work was supported by the California Energy Commission (CEC) through its Public Interest Energy Research Program (PIER) and by the Assistant Secretary for Energy Efficiency and Renewable Energy under Contract No. DE-AC02-05CH11231. We thank Bill Pennington of the California Energy Commission for helping to organize the study and for his guidance and support. For identifying trees, we thank Dan Pskowski, arborist, City of Sacramento; Ralph Mize, arborist, City of San Jose; David Lofgren, arborist, Los Angeles County Arboretum; and Drew Potocki, arborist, City of San Diego. For providing spatial data, we thank Nathan Jennings, City of Sacramento; Kevin Briggs and Roland Gong, City of San Jose; and Lisa Lubeley, City of San Diego. Finally, we thank Kimberly Fujita for tracing the outlines of roughly 100,000 roofs, planes and trees in our study-region images. NR 15 TC 36 Z9 37 U1 2 U2 24 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-092X J9 SOL ENERGY JI Sol. Energy PD DEC PY 2009 VL 83 IS 12 BP 2120 EP 2135 DI 10.1016/j.solener.2009.07.016 PG 16 WC Energy & Fuels SC Energy & Fuels GA 529OD UT WOS:000272526100003 ER PT J AU Hung, I Shetty, K Ellis, PD Brey, WW Gan, ZH AF Hung, Ivan Shetty, Kiran Ellis, Paul D. Brey, William W. Gan, Zhehong TI High-field QCPMG NMR of large quadrupolar patterns using resistive magnets SO SOLID STATE NUCLEAR MAGNETIC RESONANCE LA English DT Article DE Resistive; High field; (35)Cl; QCPMG; NMR; NHMFL ID SOLID-STATE NMR; HIGH-RESOLUTION; STRUCTURAL-CHARACTERIZATION; HYDROCHLORIDE SALTS; ADIABATIC PULSES; HYBRID MAGNETS; ZINC PROTEINS; CHLORINE NMR; ZR-91 NMR; SPECTROSCOPY AB Spectroscopy in a high magnetic field reduces second-order quadrupolar shift while increasing chemical shift. It changes the scale between quadrupolar and chemical shift of half-integer quadrupolar spins. The application of QCPMG multiple echo for acquiring large quadrupolar pattern under the high magnetic field of a 25 T resistive magnet is presented for acquiring large quadrupolar patterns. It shows that temporal field fluctuations and spatial homogeneity of the Keck magnet at the NHMFL contribute about +/- 20 ppm in line broadening. NMR patterns which have breadths of hundreds to thousands of kilohertz can be efficiently recorded using a combination of QCPMG and magnetic field stepping with negligible hindrance from the inhomogeneity and field fluctuations of powered magnets. (C) 2009 Elsevier Inc. All rights reserved. C1 [Hung, Ivan; Shetty, Kiran; Brey, William W.; Gan, Zhehong] Natl High Magnet Field Lab, Ctr Interdisciplinary Magnet Resonance, Tallahassee, FL 32310 USA. [Ellis, Paul D.] Pacific NW Natl Lab, Biol Sci Div Cell Biol & Biochem, Richland, WA 99352 USA. RP Gan, ZH (reprint author), Natl High Magnet Field Lab, Ctr Interdisciplinary Magnet Resonance, 1800 E Paul Dirac Dr, Tallahassee, FL 32310 USA. EM gan@magnet.fsu.edu RI Gan, Zhehong/C-2400-2011 FU National High Magnetic Field Laboratory through National Science Foundation Cooperative Agreement [DMR-0084173] FX This work was supported by the National High Magnetic Field Laboratory through National Science Foundation Cooperative Agreement (DMR-0084173). NR 51 TC 10 Z9 10 U1 1 U2 13 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0926-2040 J9 SOLID STATE NUCL MAG JI Solid State Nucl. Magn. Reson. PD DEC PY 2009 VL 36 IS 4 BP 159 EP 163 DI 10.1016/j.ssnmr.2009.10.001 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Physics, Condensed Matter; Spectroscopy SC Chemistry; Physics; Spectroscopy GA 555WI UT WOS:000274546900001 PM 19913391 ER PT J AU Julia, J Nyblade, AA Durrheim, RJ Linzer, LM Gok, R Walter, W Spottiswoode, SM Dirks, PHGM AF Julia, J. Nyblade, A. A. Durrheim, R. J. Linzer, L. M. Gok, R. Walter, W. Spottiswoode, S. M. Dirks, P. H. G. M. TI A WADATI FILTER FOR MINE-INDUCED SEISMICITY SO SOUTH AFRICAN JOURNAL OF GEOLOGY LA English DT Article AB We introduce a procedure based on Wadati diagrams to assess and improve the consistency of P- and S-wave travel-time picks with the assumption of propagation at constant wave-speed. Wadati diagrams are plots of S-P vs P-wave travel-times and they are expected to lie along a straight line for a medium of constant velocity. Our procedure automatically searches for the largest subset of (P,S-P) travel-time pairs with regression coefficient above 0.9, which effectively removes travel-times associated with non-homogeneous ray-paths. Inaccuracies in travel-time picks clue to clock drifts or complex arrivals and/or erroneous event associations are also identified and eliminated through this procedure. An application to P- and S-wave travel-times from 11,224 events recorded during 2007 on an in-mine network in Savuka mine near Carletonville (South Africa), reveals that a high correlation coefficient alone is not sufficient to ensure consistency. The histogram of v(p)/v(s) values inferred from the slopes of the Wadati diagrams peaks at values of 1.62 to 1.63, in agreement with the underlying geology, but a significant portion of the catalogued events show unrealistic v(p)/v(s) values. Adding realistic constraints on the slopes of the linear fits to the Wadati filter is critical to ensure the consistency of the travel-time picks. Event relocations obtained for the filtered data set assuming propagation at constant wave-speed do not deviate significantly from locations reported by the in-mine network operator. C1 [Julia, J.; Nyblade, A. A.] Penn State Univ, Dept Geosci, University Pk, PA 16801 USA. [Durrheim, R. J.; Linzer, L. M.; Dirks, P. H. G. M.] Univ Witwatersrand, Sch Geosci, ZA-2050 Wits, South Africa. [Durrheim, R. J.; Linzer, L. M.; Spottiswoode, S. M.] CSIR, ZA-2006 Auckland Pk, South Africa. [Gok, R.; Walter, W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Julia, J (reprint author), Penn State Univ, Dept Geosci, University Pk, PA 16801 USA. EM jjulia@geosc.psu.edu; andy@geosc.psu.edu; rdurrhei@csir.co.za; llinzer@csir.co.za; gok1@llnl.gov; walter5@llnl.gov; sspottis@csir.co.za; paul.dirks@wits.ac.za RI Walter, William/C-2351-2013; Gok, Rengin/O-6639-2014 OI Walter, William/0000-0002-0331-0616; FU United States Department of Energy [DE-FC52-06NA27320]; United States National Science Foundation [OISE-0530062] FX AngloGold Ashanti is thanked for the sharing of the proprietary data used in this study. We are also indebted to ISS International for their role in providing the in-mine data, as well as for providing the thousands of related P- and S-wave travel-time picks, event locations, and magnitudes. We are also grateful to Andrew King, Artur Cichowicz, and Shariar Talebi for,critically reviewing the original manuscript. This work has been supported by the United States Department of Energy (contract number DE-FC52-06NA27320) and the United States National Science Foundation (grant OISE-0530062). NR 9 TC 0 Z9 0 U1 0 U2 1 PU GEOLOGICAL SOC SOUTH AFRICA PI MARSHALLTOWN PA PO BOX 61809, MARSHALLTOWN 2107, SOUTH AFRICA SN 1012-0750 J9 S AFR J GEOL JI S. Afr. J. Geol. PD DEC PY 2009 VL 112 IS 3-4 SI SI BP 371 EP 380 DI 10.2113/gssajg.112.3-4.371 PG 10 WC Geology SC Geology GA 593ZB UT WOS:000277500800013 ER PT J AU Foltyn, SR Wang, H Civale, L Maiorov, B Jia, QX AF Foltyn, S. R. Wang, H. Civale, L. Maiorov, B. Jia, Q. X. TI The role of interfacial defects in enhancing the critical current density of YBa2Cu3O7-delta coatings SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID YBCO COATED CONDUCTOR; MISFIT DISLOCATIONS; FILMS; TEMPERATURE; WIRE AB The critical current density (J(c)) of very thin YBa2Cu3O7-delta (YBCO) films can approach 10 MA cm(-2) at 77 K in self-field, but for such films J(c) drops sharply as the film thickness is increased. We have shown previously that this strong thickness dependence results from an enhancement of J(c) near the film-substrate interface. In the present paper we investigate interfacial enhancement using laser-deposited YBCO films on NdGaO3 substrates, and find that we can adjust deposition conditions to switch the enhancement on and off. We find that the 'on' state is accompanied by a dense array of interfacial misfit dislocations, while we do not observe dislocations in films prepared in the 'off' state. This result appears to be but one of many examples in which interfacial properties of electronic film materials are profoundly affected by stress-induced defects at the film-substrate interface; however, to our knowledge the present work is the only case in which electronic properties are shown to be enhanced by such defects. C1 [Foltyn, S. R.; Civale, L.; Maiorov, B.; Jia, Q. X.] Los Alamos Natl Lab, Superconduct Technol Ctr, Los Alamos, NM 87545 USA. [Wang, H.] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. RP Foltyn, SR (reprint author), Los Alamos Natl Lab, Superconduct Technol Ctr, POB 1663, Los Alamos, NM 87545 USA. EM sfoltyn@lanl.gov RI Jia, Q. X./C-5194-2008; Wang, Haiyan/P-3550-2014 OI Wang, Haiyan/0000-0002-7397-1209 NR 21 TC 16 Z9 16 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD DEC PY 2009 VL 22 IS 12 AR 125002 DI 10.1088/0953-2048/22/12/125002 PG 5 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 523MI UT WOS:000272077600002 ER PT J AU Maiorov, B Baily, SA Kohama, Y Hiramatsu, H Civale, L Hirano, M Hosono, H AF Maiorov, B. Baily, S. A. Kohama, Y. Hiramatsu, H. Civale, L. Hirano, M. Hosono, H. TI Angular and field properties of the critical current and melting line of Co-doped SrFe2As2 epitaxial films SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID YBA2CU3O7 COATED CONDUCTORS; MAGNETIC-FIELDS; THIN-FILMS; SUPERCONDUCTOR; TRANSITION AB We present measurements of the field and angular dependence of the critical current density (J(c)) and melting line made using transport and magnetization techniques for SrFe1.8Co0.2As2 (nominal composition) biaxially oriented films. At high magnetic fields the angular dependence of the melting line and J(c) (for mu H-0 > 2 T) can be successfully scaled using an anisotropic scaling with gamma = 2, indicating a random-point-like pinning contribution. At lower fields, angular and field J(c) dependences strongly depend on the magnetic field history. We find a hysteretic behaviour of J(c) with H with higher J(c) in the descending branch, similar to that attributed to magnetic pinning and granularity effects. Furthermore this allows us to tune J(c)(Theta) such that a J(c) peak along the c axis can be enhanced up to 30%. The low values of J(c) measured suggest that granularity depresses J(c) but does not rule out the possibility of dilute magnetic pinning. C1 [Maiorov, B.; Baily, S. A.; Civale, L.] Los Alamos Natl Lab, MPA STC, Los Alamos, NM 87545 USA. [Baily, S. A.; Kohama, Y.] Los Alamos Natl Lab, MPA NHMFL, Los Alamos, NM 87545 USA. [Kohama, Y.] Tokyo Inst Technol, Mat & Struct Lab, Midori Ku, Yokohama, Kanagawa 2268503, Japan. [Hiramatsu, H.; Hirano, M.; Hosono, H.] Tokyo Inst Technol, Japan Sci & Technol Agcy, Frontier Res Ctr, ERATO SORST,Midori Ku, Yokohama, Kanagawa 2268503, Japan. RP Maiorov, B (reprint author), Los Alamos Natl Lab, MPA STC, POB 1663, Los Alamos, NM 87545 USA. EM maiorov@lanl.gov RI Hiramatsu, Hidenori/E-8882-2014; Hosono, Hideo/J-3489-2013; OI Hiramatsu, Hidenori/0000-0002-5664-5831; Hosono, Hideo/0000-0001-9260-6728; Maiorov, Boris/0000-0003-1885-0436 FU JSPS [19.9728]; NHMFL UCGP; US National Science Foundation; US Department of Energy; State of Florida FX Grant-in-Aid JSPS (Grant No 19.9728) provided support for Y Kohama. This work is also supported by an NHMFL UCGP grant, the US National Science Foundation, the US Department of Energy, and the State of Florida. NR 29 TC 16 Z9 17 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD DEC PY 2009 VL 22 IS 12 AR 125011 DI 10.1088/0953-2048/22/12/125011 PG 5 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 523MI UT WOS:000272077600011 ER PT J AU Kim, DH Kwak, JH Szanyi, J Wang, XQ Engelhard, MH Peden, CHF AF Kim, Do Heui Kwak, Ja Hun Szanyi, Janos Wang, Xianqin Engelhard, Mark H. Peden, Charles H. F. TI Promotional Effect of CO2 on Desulfation Processes for Pre-Sulfated Pt-BaO/Al2O3 Lean NOx Trap Catalysts SO TOPICS IN CATALYSIS LA English DT Article; Proceedings Paper CT 8th Congress on Catalysis and Automotive Pollution Control (CAPoC8) CY APR 15-17, 2009 CL Brussels, BELGIUM DE NOx trap; SO2; Desulfation; H-2 TPRX; TR-XRD; XPS ID BAO/AL2O3; MECHANISM; METAL AB A combination of H-2 TPRX, TR-XRD and XPS analysis has been used to investigate the effects of CO2 on the desulfation of pre-sulfated Pt-BaO/Al2O3 samples. The results demonstrate that the presence of CO2 promotes the removal of sulfur species, especially at temperatures below 500 degrees C, with a corresponding suppression of BaS formation, thus resulting in a lower amount of residual sulfur on the sample after desulfation. C1 [Kim, Do Heui; Kwak, Ja Hun; Szanyi, Janos; Engelhard, Mark H.; Peden, Charles H. F.] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. [Wang, Xianqin] New Jersey Inst Technol, Dept Chem Biol & Pharmaceut Engn, Newark, NJ 07102 USA. RP Kim, DH (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. EM do.kim@pnl.gov RI Engelhard, Mark/F-1317-2010; Kwak, Ja Hun/J-4894-2014; Kim, Do Heui/I-3727-2015; OI Peden, Charles/0000-0001-6754-9928; Engelhard, Mark/0000-0002-5543-0812 NR 9 TC 3 Z9 3 U1 1 U2 7 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 J9 TOP CATAL JI Top. Catal. PD DEC PY 2009 VL 52 IS 13-20 BP 1719 EP 1722 DI 10.1007/s11244-009-9328-8 PG 4 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 521ST UT WOS:000271945000005 ER PT J AU Grierson, DS Konicek, AR Wabiszewski, GE Sumant, AV de Boer, MP Corwin, AD Carpick, RW AF Grierson, D. S. Konicek, A. R. Wabiszewski, G. E. Sumant, A. V. de Boer, M. P. Corwin, A. D. Carpick, R. W. TI Characterization of Microscale Wear in a Polysilicon-Based MEMS Device Using AFM and PEEM-NEXAFS Spectromicroscopy SO TRIBOLOGY LETTERS LA English DT Article DE Microscale wear; Microelectromechanical systems (MEMS); Nanotractor; Photoelectron emission microscopy (PEEM); Atomic force microscopy (AFM) ID X-RAY-ABSORPTION; AMBIENT AIR; IN-SITU; FRICTION; MECHANISMS; ADHESION; ACTUATOR; FILMS AB Mechanisms of microscale wear in silicon-based microelectromechanical systems (MEMS) are elucidated by studying a polysilicon nanotractor, a device specifically designed to conduct friction and wear tests under controlled conditions. Photoelectron emission microscopy (PEEM) was combined with near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and atomic force microscopy (AFM) to quantitatively probe chemical changes and structural modification, respectively, in the wear track of the nanotractor. The ability of PEEM-NEXAFS to spatially map chemical variations in the near-surface region of samples at high lateral spatial resolution is unparalleled and therefore ideally suited for this study. The results show that it is possible to detect microscopic chemical changes using PEEM-NEXAFS, specifically, oxidation at the sliding interface of a MEMS device. We observe that wear induces oxidation of the polysilicon at the immediate contact interface, and the spectra are consistent with those from amorphous SiO(2). The oxidation is correlated with gouging and debris build-up in the wear track, as measured by AFM and scanning electron microscopy (SEM). C1 [Grierson, D. S.] Univ Wisconsin, Dept Mech Engn, Madison, WI 53706 USA. [Konicek, A. R.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Wabiszewski, G. E.; Carpick, R. W.] Univ Penn, Dept Mech Engn & Appl Mech, Philadelphia, PA 19104 USA. [Sumant, A. V.] Argonne Natl Labs, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [de Boer, M. P.] Sandia Natl Labs, MEMS Devices & Reliabil Phys Dept, Albuquerque, NM 87185 USA. [Corwin, A. D.] Sandia Natl Labs, MEMS Sci & Technol Dept, Albuquerque, NM 87185 USA. RP Grierson, DS (reprint author), Univ Wisconsin, Dept Mech Engn, Madison, WI 53706 USA. EM dsgrierson@wisc.edu RI de Boer, Maarten/C-1525-2013 OI de Boer, Maarten/0000-0003-1574-9324 FU Air Force grant [FA9550-08-1-0024]; Sandia-a multiprogram laboratory; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; DOE [DE-AC02-05CH11231, DE-AC02-06CH11357] FX This study was partly funded by Air Force grant FA9550-08-1-0024, and partly by Sandia-a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors thank Dr. Scholl and Dr. Doran for their help with PEEM II at the Advanced Light Source (ALS). The ALS and use of the Center for Nanoscale Materials facility are supported by the DOE under Contract DE-AC02-05CH11231 and Contract DE-AC02-06CH11357, respectively. NR 23 TC 7 Z9 7 U1 1 U2 12 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1023-8883 J9 TRIBOL LETT JI Tribol. Lett. PD DEC PY 2009 VL 36 IS 3 BP 233 EP 238 DI 10.1007/s11249-009-9478-7 PG 6 WC Engineering, Chemical; Engineering, Mechanical SC Engineering GA 512XA UT WOS:000271284100005 ER PT J AU Masoner, A Erck, R Ajayi, O Fenske, G Comfort, A AF Masoner, Ashley Erck, Robert Ajayi, Oyelayo Fenske, George Comfort, Allen TI Lubrication Properties of a 15W-40 Diesel Engine Oil and Its Base Stock with Additives SO TRIBOLOGY & LUBRICATION TECHNOLOGY LA English DT Article C1 [Masoner, Ashley; Erck, Robert; Ajayi, Oyelayo; Fenske, George] Argonne Natl Lab, Argonne, IL 60439 USA. [Comfort, Allen] Force Project Technol, Fuels & Lubricants Tech Team, Warren, MI USA. RP Masoner, A (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM amasoner@gmail.com NR 8 TC 0 Z9 0 U1 0 U2 1 PU SOC TRIBOLOGISTS & LUBRICATION ENGINEERS PI PARK RIDGE PA 840 BUSSE HIGHWAY, PARK RIDGE, IL 60068 USA SN 1545-858X J9 TRIBOL LUBR TECHNOL JI Tribol. Lubr. Technol. PD DEC PY 2009 VL 65 IS 12 BP 16 EP 17 PG 2 WC Engineering, Mechanical SC Engineering GA 528GV UT WOS:000272431800006 ER PT J AU Reed, BW Morgan, DG Okamoto, NL Kulkarni, A Gates, BC Browning, ND AF Reed, B. W. Morgan, D. G. Okamoto, N. L. Kulkarni, A. Gates, B. C. Browning, N. D. TI Validation and generalization of a method for precise size measurements of metal nanoclusters on supports SO ULTRAMICROSCOPY LA English DT Article DE Scanning transmission electron microscopy (STEM); Microscopic methods, specifically for catalysts and small particles; Data processing/image processing ID ELECTRON-MICROSCOPY; MODEL AB We recently described a data analysis method for precise (similar to 0.1 angstrom random error in the mean for a 200 kV instrument with a 3 angstrom FWHM probe size) size measurements of small clusters of heavy metal atoms on supports as imaged in a scanning transmission electron microscope, including an experimental demonstration using clusters that were primarily triosmium or decaosmium. The method is intended for low signal-to-noise ratio images of radiation-sensitive samples. We now present a detailed analysis, including a generalization to address issues of particle anisotropy and biased orientation distributions. In the future, this analysis should enable extraction of shape as well as size information, up to the noise-defined limit of information present in the image. We also present results from an extensive series of simulations designed to determine the method's range of applicability and expected performance in realistic situations. The simulations reproduce the experiments quite accurately, enabling a correction of systematic errors so that only the similar to 0.1 angstrom random error remains. The results are very stable over a wide range of parameters. We introduce a variation on the method with improved precision and stability relative to the original version, while also showing how simple diagnostics can test whether the results are reliable in any particular instance. (C) 2009 Elsevier B.V. All rights reserved. C1 [Reed, B. W.; Browning, N. D.] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94550 USA. [Morgan, D. G.; Okamoto, N. L.; Kulkarni, A.; Gates, B. C.; Browning, N. D.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Morgan, D. G.] Indiana Univ, Dept Chem, Nanosci Ctr, Bloomington, IN 47405 USA. [Okamoto, N. L.] Kyoto Univ, Dept Mat Sci & Engn, Sakyo Ku, Kyoto, Japan. RP Reed, BW (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave,L-356, Livermore, CA 94551 USA. EM reed12@llnl.gov RI Okamoto, Norihiko/A-7345-2010; Reed, Bryan/C-6442-2013; OI Okamoto, Norihiko/0000-0003-0199-7271; Browning, Nigel/0000-0003-0491-251X FU National Science Foundation [CTS-0500511]; Japan Society for the Promotion of Science for Young Scientists; U.S. Department of Energy; Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the U.S. Department of Energy [DE-AC52-07NA27344] FX This work was supported in part by the National Science Foundation under GOALI Grant no. CTS-0500511, performed in collaboration with ExxonMobil, and by the Japan Society for the Promotion of Science for Young Scientists. This work was performed in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory supported by Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the U.S. Department of Energy under Contract DE-AC52-07NA27344. NR 18 TC 4 Z9 4 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD DEC PY 2009 VL 110 IS 1 BP 48 EP 60 DI 10.1016/j.ultramic.2009.09.005 PG 13 WC Microscopy SC Microscopy GA 532GD UT WOS:000272733400008 PM 19800736 ER PT J AU Ortalan, V Herrera, M Morgan, DG Browning, ND AF Ortalan, V. Herrera, M. Morgan, D. G. Browning, N. D. TI Application of image processing to STEM tomography of low-contrast materials SO ULTRAMICROSCOPY LA English DT Article DE Scanning transmission electron microscopy; Electron tomography; Image processing; Low-contrast materials; Heterostructured superconductors ID ELECTRON TOMOGRAPHY; 3-DIMENSIONAL RECONSTRUCTION; RUTHERFORD SCATTERING; NANOMETER-SCALE; 3 DIMENSIONS; OBJECT; PROJECTIONS; RESOLUTION; GOLGI; CELLS AB In this study, the effect of various image-processing techniques on the visibility of tomographic reconstructions is investigated for a low-contrast material system of non-uniform thickness containing complex features such as grain boundaries and nanoparticles. Starting with a tilt series of high-angle annular dark-field (HAADF) images from an area of Dy-doped YBa(2)Cu(3)O(7-x)-coated superconductor obtained using a scanning transmission electron microscope, various image-processing techniques were applied. These can be classified as edge detection, contrast-enhancing methods for non-uniform thickness and image sharpening. Although the processing methods violate the projection criterion for tomographic reconstruction, they were found, at least in this case, to enhance contrast and define the correct shape and size of structural features with minimal artifacts. Enhancing the visibility of structural features in this way allows the spatial distribution of the nanoparticles, their size, number density and location relative to each other and grain boundaries to be determined, which are essential to understand the flux-pinning characteristics of these materials. Published by Elsevier B.V. C1 [Ortalan, V.; Herrera, M.; Morgan, D. G.; Browning, N. D.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Morgan, D. G.] Indiana Univ, Dept Chem, Nanofabricat Ctr, Bloomington, IN 47405 USA. [Browning, N. D.] Lawrence Livermore Natl Lab, Div Mat Sci & Technol, Chem Mat Earth & Life Sci Directorate, Livermore, CA 94550 USA. RP Ortalan, V (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, 1 Shields Ave, Davis, CA 95616 USA. EM vortalan@ucdavis.edu OI Herrera Collado, Miriam/0000-0002-2325-5941; Browning, Nigel/0000-0003-0491-251X FU NSF [DMR04557660] FX This work was supported in part by NSF Grant no. DMR04557660. NR 44 TC 11 Z9 11 U1 1 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD DEC PY 2009 VL 110 IS 1 BP 67 EP 81 DI 10.1016/j.ultramic.2009.09.007 PG 15 WC Microscopy SC Microscopy GA 532GD UT WOS:000272733400010 PM 19833437 ER PT J AU He, C El-Khatib, S Eisenberg, S Manno, M Lynn, JW Zheng, H Mitchell, JF Leighton, C AF He, C. El-Khatib, S. Eisenberg, S. Manno, M. Lynn, J. W. Zheng, H. Mitchell, J. F. Leighton, C. TI Transport signatures of percolation and electronic phase homogeneity in La1-xSrxCoO3 single crystals SO APPLIED PHYSICS LETTERS LA English DT Article DE ferromagnetic materials; lanthanum compounds; magnetic transitions; magnetoresistance; metal-insulator transition; nanostructured materials; percolation; phase separation; spin fluctuations; strontium compounds ID MANGANITES; SEPARATION; TRANSITION; CONDUCTION AB The influence of nanoscopic magnetoelectronic phase separation on electrical transport in La1-xSrxCoO3 crystals is reported. It is demonstrated; (i) that the T=0 metal-insulator transition can be quantitatively understood using double exchange-modified percolation theory, and, (ii) that the onset of a phase-pure low T ferromagnetic state at high x has a profound effect on the high T transport due to a crossover in the nature of the spin fluctuations. It is concluded that many features of the transport in La1-xSrxCoO3 can be thoroughly understood based on our current understanding of the phase-separated state. C1 [He, C.; El-Khatib, S.; Eisenberg, S.; Manno, M.; Leighton, C.] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA. [El-Khatib, S.; Lynn, J. W.] Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Zheng, H.; Mitchell, J. F.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Leighton, C (reprint author), Univ Minnesota, Dept Chem Engn & Mat Sci, 421 Washington Ave SE, Minneapolis, MN 55455 USA. EM leighton@umn.edu FU DoE [DE-FG0206ER46275, DE-AC02-06CH11357]; NSF [DMR0804432]; Dept. of Commerce FX Work at UMN supported by DoE (Grant No. DE-FG0206ER46275, for neutron scattering), NSF (Grant No. DMR0804432), and Dept. of Commerce. Work at ANL supported by DoE under Grant No. DE-AC02-06CH11357. NR 27 TC 9 Z9 9 U1 0 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 30 PY 2009 VL 95 IS 22 AR 222511 DI 10.1063/1.3269192 PG 3 WC Physics, Applied SC Physics GA 530XZ UT WOS:000272627600049 ER PT J AU Huang, L Zhu, Y AF Huang, L. Zhu, Y. TI Controlled reversal of coupled Neacuteel walls in flux-closure magnetic trilayer elements SO APPLIED PHYSICS LETTERS LA English DT Article DE magnetic domain walls; magnetic multilayers; magnetic switching; magnetisation reversal; micromagnetics; Neel temperature; transmission electron microscopy AB We report the detailed field-induced transformation of coupled Neacuteel walls in micron-sized trilayer elliptical elements for novel domain-wall-based device applications. Using in situ Lorentz transmission electron microscopy and micromagnetic simulation, we demonstrate that the magnetostatically coupled composite wall structure can be switched controllably without affecting the overall flux-closure domain configuration via separate translation of vortex cores in the two magnetic layers. The top and bottom Neacuteel walls either trap or expel each other depending on the relative orientation of their magnetization directions, leading to the interesting domain switching behavior observed during magnetization reversal. C1 [Huang, L.; Zhu, Y.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RP Huang, L (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. EM lhuang@bnl.gov FU U. S. Department of Energy, Office of Basic Energy Science [DE-AC0298CH10886] FX The authors gratefully acknowledge M. A. Schofield, S. D. Pollard, and V. V. Volkov for stimulating discussions. Sample preparation was carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory. This work is supported by U. S. Department of Energy, Office of Basic Energy Science, under Contract No. DE-AC0298CH10886. NR 11 TC 4 Z9 4 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 30 PY 2009 VL 95 IS 22 AR 222502 DI 10.1063/1.3269608 PG 3 WC Physics, Applied SC Physics GA 530XZ UT WOS:000272627600040 ER PT J AU Kim, JW Ryan, PJ Ding, Y Lewis, LH Ali, M Kinane, CJ Hickey, BJ Marrows, CH Arena, DA AF Kim, J. W. Ryan, P. J. Ding, Y. Lewis, L. H. Ali, M. Kinane, C. J. Hickey, B. J. Marrows, C. H. Arena, D. A. TI Surface influenced magnetostructural transition in FeRh films SO APPLIED PHYSICS LETTERS LA English DT Article DE antiferromagnetic materials; ferromagnetic materials; ferromagnetic-antiferromagnetic transitions; iron alloys; lattice constants; magnetic epitaxial layers; rhodium alloys; solid-state phase transformations; surface structure; X-ray scattering AB Surface structural effects accompanying the antiferromagnetic-ferromagnetic magnetostructral transition of epitaxial FeRh thin films were investigated by grazing incidence x-ray scattering. Measurement of the film lattice parameters and variation of x-ray incident angles allow observation of the transition character on scales ranging from a few nm to the total through-thickness of the film. Out-of-plane lattice measurements confirm that the ferromagnetic phase nucleates from the surface during the heating process and is retained at the surface below the transition temperature during the cooling process. These results suggest that surface strain relief fosters nucleation of the ferromagnetic phase. C1 [Kim, J. W.] Argonne Natl Lab, Argonne, IL 60439 USA. [Ryan, P. J.] Ames Lab, Ames, IA 50011 USA. [Ding, Y.; Arena, D. A.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Lewis, L. H.] Northeastern Univ, Dept Chem Engn, Boston, MA 02115 USA. [Ali, M.; Kinane, C. J.; Hickey, B. J.; Marrows, C. H.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. RP Kim, JW (reprint author), Argonne Natl Lab, Argonne, IL 60439 USA. EM jwkim@aps.anl.gov RI Marrows, Christopher/D-7980-2011; Hickey, B J/B-3333-2016; OI Hickey, B J/0000-0001-8289-5618; Marrows, Christopher/0000-0003-4812-6393 FU UK EPSRC; STFC FX Work at the University of Leeds was supported by the UK EPSRC and STFC. NR 12 TC 16 Z9 16 U1 2 U2 27 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 30 PY 2009 VL 95 IS 22 AR 222515 DI 10.1063/1.3265921 PG 3 WC Physics, Applied SC Physics GA 530XZ UT WOS:000272627600053 ER PT J AU Shi, DL Cho, HS Huth, C Wang, F Dong, ZY Pauletti, GM Lian, J Wang, W Liu, GK Bud'ko, SL Wang, LM Ewing, RC AF Shi, Donglu Cho, Hoon Sung Huth, Chris Wang, Feng Dong, Zhongyun Pauletti, Giovanni. M. Lian, Jie Wang, Wei Liu, Guokui Bud'ko, Sergey L. Wang, Lumin Ewing, Rodney C. TI Conjugation of quantum dots and Fe3O4 on carbon nanotubes for medical diagnosis and treatment SO APPLIED PHYSICS LETTERS LA English DT Article DE biomagnetism; biomedical optical imaging; cancer; carbon nanotubes; fluorescence; hyperthermia; hysteresis; nanoparticles; nanotechnology; quantum dots; tumours ID ULTRATHIN POLYMER-FILMS; IN-VIVO; SURFACE FUNCTIONALIZATION; AL2O3 NANOPARTICLES; CANCER; CELLS; DEPOSITION; DELIVERY AB Quantum dots (QDs) and Fe3O4 nanoparticles were conjugated onto the surfaces of carbon nanotubes (CNTs) for medical diagnosis and treatment. The nanoassembly was designed to meet the specific needs in cancer in vivo imaging and simultaneous treatment. The key functionalities needed for clinical applications were integrated, including CNT surface functionalization for attachment of biological molecules in targeting, drug storage capabilities, fluorescent emissions near the infrared range, and magnetic hyperthermia. CNT-QD-Fe3O4 developed exhibited a strong fluorescence near the infrared region for noninvasive optical in vivo imaging. Magnetization measurements showed nearly reversible hysteresis curves from CNT-QD-Fe3O4 nanoassembly. Fe3O4 conjugated CNT was found to experience hyperthermia heating under alternating electromagnetic field. C1 [Shi, Donglu; Cho, Hoon Sung; Huth, Chris; Wang, Feng; Wang, Wei] Univ Cincinnati, Dept Chem & Mat Engn, Cincinnati, OH 45221 USA. [Shi, Donglu] Tongji Univ, Inst Adv Mat & Nano Biomed, Shanghai 200092, Peoples R China. [Dong, Zhongyun] Univ Cincinnati, Coll Med, Dept Internal Med, Cincinnati, OH 45267 USA. [Pauletti, Giovanni. M.] Univ Cincinnati, James L Winkle Coll Pharm, Cincinnati, OH 45267 USA. [Lian, Jie] Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, Troy, NY 12180 USA. [Liu, Guokui] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Bud'ko, Sergey L.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Bud'ko, Sergey L.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Wang, Lumin; Ewing, Rodney C.] Univ Michigan, Dept Geol Sci Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. [Wang, Lumin; Ewing, Rodney C.] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. RP Shi, DL (reprint author), Univ Cincinnati, Dept Chem & Mat Engn, Cincinnati, OH 45221 USA. EM shid@ucmail.uc.edu RI Lian, Jie/A-7839-2010; Pauletti, Giovanni M./I-5468-2015; Wang, Feng/P-3082-2015 OI Pauletti, Giovanni M./0000-0002-0053-4964; Wang, Feng/0000-0003-1133-2804 FU National Science Foundation [DGE-0333377]; Institute for Nanoscience and Technology at University of Cincinnati FX Support from the National Science Foundation under Grant No. DGE-0333377 and the Institute for Nanoscience and Technology at University of Cincinnati are appreciated. NR 27 TC 12 Z9 14 U1 2 U2 43 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 30 PY 2009 VL 95 IS 22 AR 223702 DI 10.1063/1.3268469 PG 3 WC Physics, Applied SC Physics GA 530XZ UT WOS:000272627600083 ER PT J AU Yan, JQ Nandi, S Zarestky, JL Tian, W Kreyssig, A Jensen, B Kracher, A Dennis, KW McQueeney, RJ Goldman, AI McCallum, RW Lograsso, TA AF Yan, J. -Q. Nandi, S. Zarestky, J. L. Tian, W. Kreyssig, A. Jensen, B. Kracher, A. Dennis, K. W. McQueeney, R. J. Goldman, A. I. McCallum, R. W. Lograsso, T. A. TI Flux growth at ambient pressure of millimeter-sized single crystals of LaFeAsO, LaFeAsO1-xFx, and LaFe1-xCoxAsO SO APPLIED PHYSICS LETTERS LA English DT Article DE cobalt compounds; crystal growth from solution; electrical resistivity; high-temperature superconductors; iron compounds; lanthanum compounds; lattice constants; magnetic susceptibility; magnetisation ID SUPERCONDUCTIVITY; LAO1-XFXFEAS; COMPOUND AB Millimeter-sized single crystals of LaFeAsO, LaFeAsO1-xFx, and LaFe1-xCoxAsO were grown in NaAs flux at ambient pressure. The detailed growth procedure and crystal characterizations are reported. The as-grown crystals have typical dimensions of 3x4x0.05-0.3 mm(3) with the crystallographic c-axis perpendicular to the plane of the platelike single crystals. Various characterizations confirmed the high quality of our LaFeAsO crystals. Co and F were introduced into the lattice leading to superconducting LaFe1-xCoxAsO and LaFeAsO1-xFx single crystals, respectively. This growth protocol is expected to be broadly applicable to grow other RMAsO (R=rare earth, M=transition metal) compounds. C1 [Yan, J. -Q.; Nandi, S.; Zarestky, J. L.; Tian, W.; Kreyssig, A.; Jensen, B.; Kracher, A.; Dennis, K. W.; McQueeney, R. J.; Goldman, A. I.; McCallum, R. W.; Lograsso, T. A.] Iowa State Univ, US DOE, Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. [Nandi, S.; Kreyssig, A.; McQueeney, R. J.; Goldman, A. I.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [McCallum, R. W.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Yan, JQ (reprint author), Iowa State Univ, US DOE, Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. EM jqyan@ameslab.gov RI Tian, Wei/C-8604-2013; McQueeney, Robert/A-2864-2016 OI Tian, Wei/0000-0001-7735-3187; McQueeney, Robert/0000-0003-0718-5602 FU U. S. DOE [DE-AC02-06CH11357]; United States Department of Energy, Office of Basic Energy Sciences, Materials Science [DE-AC05-00OR22725]; [DE-AC02-07CH11358] FX J.Q.Y. thanks Professor P. C. Canfield for fruitful discussions and for making part of the synthesis possible. The assistance of D. S. Robinson in performing the HEXRD studies at the APS is highly appreciated. S. N. thanks M. G. Kim for crystal orientation. Ames Laboratory is operated for the U. S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. Use of the Advanced Photon Source was supported by U. S. DOE under Contract No. DE-AC02-06CH11357. The HFIR Center for Neutron Scattering is a national user facility funded by the United States Department of Energy, Office of Basic Energy Sciences, Materials Science, under Contract No. DE-AC05-00OR22725 with UT-Battelle. NR 21 TC 63 Z9 64 U1 0 U2 19 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 30 PY 2009 VL 95 IS 22 AR 222504 DI 10.1063/1.3268435 PG 3 WC Physics, Applied SC Physics GA 530XZ UT WOS:000272627600042 ER PT J AU King, BV Moore, JF Veryovkin, IV Zinovev, AV Pellin, MJ AF King, B. V. Moore, J. F. Veryovkin, I. V. Zinovev, A. V. Pellin, M. J. TI Sputtering of neutral clusters from silver-gold alloys SO APPLIED SURFACE SCIENCE LA English DT Article; Proceedings Paper CT 4th Vacuum and Surface Science Conference of Asia and Australia CY OCT 28-31, 2008 CL Matsue City, JAPAN DE Sputtering; Clusters; SNMS; Photoionisation AB Polycrystalline Ag, Ag(20)Au(80), Ag(40)Au(60), Ag(80)Au(20) and Au samples were bombarded with 15 keV Ar(+) at 60 degrees incidence and the resulting secondary neutral yield distribution was studied by non-resonant laser postionisation mass spectrometry. Neutral clusters containing up to 21 atoms were observed for the targets. The yield of neutral clusters, Ag(m)Au(n) (m), containing n atoms, Y(n), was found to follow a power in n, i.e. Y(n) proportional to n (delta), where the exponent delta varied from 3.2 to 4.0. For a fixed n, the cluster yields showed a variation with number of gold atoms similar to that expected for a binomial distribution. In addition, the cluster compositions from the sputtered alloys were indicative of sputtering from a gold rich surface. (C) 2009 Elsevier B.V. All rights reserved. C1 [King, B. V.] Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW 2308, Australia. [Moore, J. F.; Veryovkin, I. V.; Zinovev, A. V.; Pellin, M. J.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Moore, J. F.] MassThink LLC, Naperville, IL 60565 USA. RP King, BV (reprint author), Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW 2308, Australia. EM bruce.king@newcastle.edu.au RI Pellin, Michael/B-5897-2008 OI Pellin, Michael/0000-0002-8149-9768 NR 16 TC 3 Z9 3 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD NOV 30 PY 2009 VL 256 IS 4 BP 991 EP 994 DI 10.1016/j.apsusc.2009.05.084 PG 4 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 527BX UT WOS:000272342300018 ER PT J AU Seidl, V Song, LF Lindquist, E Gruber, S Koptchinskiy, A Zeilinger, S Schmoll, M Martinez, P Sun, JB Grigoriev, I Herrera-Estrella, A Baker, SE Kubicek, CP AF Seidl, Verena Song, Lifu Lindquist, Erika Gruber, Sabine Koptchinskiy, Alexeji Zeilinger, Susanne Schmoll, Monika Martinez, Pedro Sun, Jibin Grigoriev, Igor Herrera-Estrella, Alfredo Baker, Scott E. Kubicek, Christian P. TI Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the presence of a fungal prey SO BMC GENOMICS LA English DT Article ID ACTIVATED PROTEIN-KINASE; SACCHAROMYCES-CEREVISIAE; PLANT-PATHOGENS; ASPERGILLUS-NIDULANS; SECONDARY METABOLISM; HARZIANUM CECT-2413; BIOCONTROL ACTIVITY; NEUROSPORA-CRASSA; GENE PRB1; SEQUENCE AB Background: Combating the action of plant pathogenic microorganisms by mycoparasitic fungi has been announced as an attractive biological alternative to the use of chemical fungicides since two decades. The fungal genus Trichoderma includes a high number of taxa which are able to recognize, combat and finally besiege and kill their prey. Only fragments of the biochemical processes related to this ability have been uncovered so far, however. Results: We analyzed genome-wide gene expression changes during the begin of physical contact between Trichoderma atroviride and two plant pathogens Botrytis cinerea and Rhizoctonia solani, and compared with gene expression patterns of mycelial and conidiating cultures, respectively. About 3000 ESTs, representing about 900 genes, were obtained from each of these three growth conditions. 66 genes, represented by 442 ESTs, were specifically and significantly overexpressed during onset of mycoparasitism, and the expression of a subset thereof was verified by expression analysis. The upregulated genes comprised 18 KOG groups, but were most abundant from the groups representing posttranslational processing, and amino acid metabolism, and included components of the stress response, reaction to nitrogen shortage, signal transduction and lipid catabolism. Metabolic network analysis confirmed the upregulation of the genes for amino acid biosynthesis and of those involved in the catabolism of lipids and aminosugars. Conclusion: The analysis of the genes overexpressed during the onset of mycoparasitism in T. atroviride has revealed that the fungus reacts to this condition with several previously undetected physiological reactions. These data enable a new and more comprehensive interpretation of the physiology of mycoparasitism, and will aid in the selection of traits for improvement of biocontrol strains by recombinant techniques. C1 [Seidl, Verena; Gruber, Sabine; Koptchinskiy, Alexeji; Zeilinger, Susanne; Schmoll, Monika; Kubicek, Christian P.] Vienna Univ Technol, Inst Chem Engn, Res Area Gene Technol & Appl Biochem, A-1060 Vienna, Austria. [Song, Lifu; Sun, Jibin] Chinese Acad Sci, Tianjin Inst Ind Biotechnol, Tianjin 300308, Peoples R China. [Lindquist, Erika; Grigoriev, Igor] US DOE, Joint Genome Inst, Walnut Creek, CA USA. [Martinez, Pedro; Herrera-Estrella, Alfredo] CINVESTAV, Lab Nacl Genom Biodiversidada, Guanajuato 36500, Mexico. [Martinez, Pedro; Herrera-Estrella, Alfredo] CINVESTAV, Dept Ingn Genet, Guanajuato 36500, Mexico. [Baker, Scott E.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Kubicek, CP (reprint author), Vienna Univ Technol, Inst Chem Engn, Res Area Gene Technol & Appl Biochem, Getreidemarkt 9-166, A-1060 Vienna, Austria. EM vseidl@mail.zserv.tuwien.ac.at; lifusong1@gmail.com; EALindquist@lbl.gov; sgruber@mail.zserv.tuwien.ac.at; akop@mail.zserv.tuwien.ac.at; szeiling@mail.zserv.tuwien.ac.at; mschmoll@mail.zserv.tuwien.ac.at; pmartinez@ira.cinvestav.mx; sun.jibin@googlemail.com; IVGrigoriev@lbl.gov; aherrera@ira.cinvestav.mx; scott.baker@pnl.gov; ckubicek@mail.zserv.tuwien.ac.at RI Moreira, Eder/B-2309-2010; Herrera-Estrella, Alfredo/F-3185-2011; Schmoll, Monika/I-6541-2016; OI Herrera-Estrella, Alfredo/0000-0002-4589-6870; Schmoll, Monika/0000-0003-3918-0574; Zeilinger, susanne/0000-0003-3112-0948 FU University of California, Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Los Alamos National Laboratory [DE-AC02-06NA25396]; Austrian Science Foundation [P18109] FX This work was performed under the auspices of the US Department of Energy's Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and Los Alamos National Laboratory under contract No. DE-AC02-06NA25396. The contrubitions of SZ were supported by a grant (P18109) of the Austrian Science Foundation. NR 63 TC 48 Z9 51 U1 3 U2 19 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD NOV 30 PY 2009 VL 10 AR 567 DI 10.1186/1471-2164-10-567 PG 13 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 533DZ UT WOS:000272804500001 PM 19948043 ER PT J AU Zheng, LG Apps, JA Zhang, YQ Xu, TF Birkholzer, JT AF Zheng, Liange Apps, John A. Zhang, Yingqi Xu, Tianfu Birkholzer, Jens T. TI On mobilization of lead and arsenic in groundwater in response to CO2 leakage from deep geological storage SO CHEMICAL GEOLOGY LA English DT Article DE CO sequestration; Lead; Arsenic; Reactive transport; Numerical simulation; Groundwater quality ID DISSOLUTION KINETICS; CRYSTAL DISSOLUTION; CLAY-MINERALS; ARSENOPYRITE OXIDATION; FELDSPAR DISSOLUTION; AQUEOUS-SOLUTIONS; PYRITE OXIDATION; FREE-ENERGY; ADSORPTION; MODEL AB If carbon dioxide stored in deep saline aquifers were to leak into an overlying aquifer containing potable groundwater, the intruding CO2 would change the geochemical conditions and cause secondary effects mainly induced by changes in pH. In particular, hazardous trace elements such as lead and arsenic, which are present in the aquifer host rock, could be mobilized. In an effort to evaluate the potential risks to potable water quality, reactive transport simulations were conducted to evaluate to what extent and mechanisms through which lead and arsenic might be mobilized by intrusion of CO2. An earlier geochemical evaluation of more than 38,000 groundwater quality analyses from aquifers throughout the United States and an associated literature review provided the basis for setting up a reactive transport model and examining its sensitivity to model variation. The evaluation included identification of potential mineral hosts containing hazardous trace elements, characterization of the modal bulk mineralogy for an arenaceous aquifer, and augmentation of the required thermodynamic data. The reactive transport simulations suggest that CO2 ingress into a shallow aquifer can mobilize significant lead and arsenic, contaminating the groundwater near the location of intrusion and further downstream. Although substantial increases in aqueous concentrations are predicted compared to the background values, the maximum permitted concentration for arsenic in drinking water was exceeded in only a few cases, whereas that for lead was never exceeded. Published by Elsevier B.V. C1 [Zheng, Liange; Apps, John A.; Zhang, Yingqi; Xu, Tianfu; Birkholzer, Jens T.] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94709 USA. RP Zheng, LG (reprint author), Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd,Mail Stop 90-1116, Berkeley, CA 94709 USA. EM lzheng@lbl.gov RI Birkholzer, Jens/C-6783-2011; Zheng, Liange/E-9521-2010; zheng, liange/B-9748-2011; Zhang, Yingqi/D-1203-2015 OI Birkholzer, Jens/0000-0002-7989-1912; zheng, liange/0000-0002-9376-2535; FU U.S. Department of Energy [DE-AC02-05CH11231] FX We thank the U.S. Environmental Protection Agency, Office of Water and Office of Air and Radiation, for funding this study under an Interagency Agreement with the U.S. Department of Energy at the Lawrence Berkeley National Laboratory, Contract No. DE-AC02-05CH11231. NR 65 TC 103 Z9 109 U1 1 U2 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2541 EI 1878-5999 J9 CHEM GEOL JI Chem. Geol. PD NOV 30 PY 2009 VL 268 IS 3-4 BP 281 EP 297 DI 10.1016/j.chemgeo.2009.09.007 PG 17 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 527JW UT WOS:000272364300010 ER PT J AU Shen, PZ He, YH Gao, HY Zou, J Xu, NP Jiang, Y Huang, BY Liu, CT AF Shen, P. Z. He, Y. H. Gao, H. Y. Zou, J. Xu, N. P. Jiang, Y. Huang, B. Y. Liu, C. T. TI Development of a new graded-porosity FeAl alloy by elemental reactive synthesis SO DESALINATION LA English DT Article DE Porous material; Graded structure; Coating; FeAl ID MICROFILTRATION MEMBRANES; IRON ALUMINIDE; BEHAVIOR; METALS AB A new graded-porosity FeAl alloy can be fabricated through Fe and Al elemental reactive synthesis. FeAl alloy with large connecting open pores and permeability were used as porous supports. The coating was obtained by spraying slurries consisting of mixtures of Fe powder and Al powder with 3-5 mu m diameter onto porous FeAl support and then sintered at 1100 degrees C. The performances of the coating were compared in terms of thickness, pore diameter and permeability. With an increase in the coating thickness up to 200 mu m, the changes of maximum pore size decreased from 23.6 mu m to 5.9 mu m and the permeability decreased from 184.2 m(3) m(-2) kPa(-1) h(-1) to 76.2 m(3) m(-2) kPa(-1) h(-1), respectively, for a sintering temperature equal to 1100 degrees C. The composite membranes have potential application for excellent filters in severe environments. (C) 2009 Elsevier B.V. All rights reserved. C1 [Shen, P. Z.; He, Y. H.; Gao, H. Y.; Jiang, Y.; Huang, B. Y.] Cent S Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China. [Zou, J.] Univ Queensland, Sch Engn, Brisbane, Qld 4072, Australia. [Zou, J.] Univ Queensland, Ctr Microscopy & Microanal, Brisbane, Qld 4072, Australia. [Xu, N. P.] Nanjing Univ Technol, Membrane Sci & Technol Res Ctr, Nanjing 210009, Peoples R China. [Liu, C. T.] Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37831 USA. RP He, YH (reprint author), Cent S Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China. EM yuehui@mail.csu.edu.cn; j.zou@uq.edu.cn RI Zou, Jin/B-3183-2009 OI Zou, Jin/0000-0001-9435-8043 FU National Basic Research Program of China [2003CB615707]; National Natural Science Foundation of China [20476106, 20636020] FX This research was performed under the auspices of the National Basic Research Program of China (No. 2003CB615707) and National Natural Science Foundation of China (No. 20476106 and No. 20636020). NR 29 TC 15 Z9 17 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0011-9164 J9 DESALINATION JI Desalination PD NOV 30 PY 2009 VL 249 IS 1 BP 29 EP 33 DI 10.1016/j.desal.2009.06.012 PG 5 WC Engineering, Chemical; Water Resources SC Engineering; Water Resources GA 521WA UT WOS:000271955400006 ER PT J AU Mukherjee, PP Wang, CY Kang, QJ AF Mukherjee, Partha P. Wang, Chao-Yang Kang, Qinjun TI Mesoscopic modeling of two-phase behavior and flooding phenomena in polymer electrolyte fuel cells SO ELECTROCHIMICA ACTA LA English DT Article DE Polymer electrolyte fuel cell; Two-phase transport; Flooding phenomena; Lattice Boltzmann model; Stochastic microstructure reconstruction ID LATTICE-BOLTZMANN METHOD; GAS-DIFFUSION LAYERS; DIRECT NUMERICAL-SIMULATION; POROUS-MEDIA; CAPILLARY-PRESSURE; IMMISCIBLE DROPLET; WATER TRANSPORT; FLOW; CATHODE; FLUIDS AB A key performance limitation in polymer electrolyte fuel cells (PEFC), manifested in terms of mass transport loss, originates from liquid water transport and resulting flooding phenomena in the constituent components. Liquid water covers the electrochemically active sites in the catalyst layer (CL) rendering reduced catalytic activity and blocks the available pore space in the porous CL and fibrous gas diffusion layer (GDL) resulting in hindered oxygen transport to the active reaction sites. The cathode CL and the GDL play a major role in the mass transport loss and hence in the water management of a PEFC. In this work the development of a mesoscopic modeling formalism coupled with realistic microstructural delineation is presented to study the influence of the pore structure and surface wettability on liquid water transport and interfacial dynamics in the PEFC catalyst layer and gas diffusion layer. The two-phase regime transition phenomenon in the capillary dominated transport in the CL and the influence of the mixed wetting characteristics on the flooding dynamics in the GDL are highlighted. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Mukherjee, Partha P.; Wang, Chao-Yang] Penn State Univ, ECEC, University Pk, PA 16802 USA. [Mukherjee, Partha P.; Wang, Chao-Yang] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA. [Kang, Qinjun] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Wang, CY (reprint author), Penn State Univ, ECEC, University Pk, PA 16802 USA. EM partham@lanl.gov; cxw31@psu.edu RI Wang, Chao-Yang/C-4122-2009; Kang, Qinjun/A-2585-2010 OI Kang, Qinjun/0000-0002-4754-2240 FU NSF [0609727] FX PPM would like to thank V.P. Schulz, A. Wiegmann and J. Becker from Fraunhofer ITWM, Germany, for collaboration with GDL microstructure generation. Financial support from NSF through grant no. 0609727 and ECEC industrial sponsors is gratefully acknowledged. NR 61 TC 101 Z9 101 U1 2 U2 50 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD NOV 30 PY 2009 VL 54 IS 27 BP 6861 EP 6875 DI 10.1016/j.electacta.2009.06.066 PG 15 WC Electrochemistry SC Electrochemistry GA 529VP UT WOS:000272547200014 ER PT J AU Gidofalvi, G Shepard, R AF Gidofalvi, Gergely Shepard, Ron TI Computation of Determinant Expansion Coefficients Within the Graphically Contracted Function Method SO JOURNAL OF COMPUTATIONAL CHEMISTRY LA English DT Article DE graphical unitary group approach; configuration interaction; configuration state function; Slater determinant; graphically contracted function method ID UNITARY-GROUP-APPROACH; ELECTRON CORRELATION-PROBLEM; NONLINEAR-WAVE FUNCTIONS; CONFIGURATION-INTERACTION; MATRIX AB Most electronic structure methods express the wavefunction as ail expansion of N-electron basis functions that are chosen to be either Slater determinants or configuration state functions. Although the expansion coefficient of a single determinant may be readily computed from configuration state function coefficients for small wavefunction expansions, traditional algorithms are impractical for systems with a large number of electrons and spatial orbitals. In this work, we describe an efficient algorithm for the evaluation of a single determinant expansion coefficient for wavefunctions expanded as a linear combination of graphically contracted functions. Each graphically contracted function has significant multiconfigurational character and depends on a relatively small number of variational parameters called arc factors. Because the graphically contracted function approach expresses the configuration state function coefficients as products of are factors, a determinant expansion coefficient may be computed recursively more efficiently than with traditional configuration interaction methods. Although the cost of computing determinant coefficients scales exponentially with the number of spatial orbitals for traditional methods, the algorithm presented here exploits two levels of recursion and scales polynomially with system size. Hence, as demonstrated through applications to systems with hundreds of electrons and orbitals, it may readily be applied to very large systems. (C) 2009 Wiley Periodicals, Inc. J Comput Chem 30: 2414-2419, 2009 C1 [Gidofalvi, Gergely; Shepard, Ron] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Gidofalvi, G (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM gidofalvi@anl.gov FU Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences. and Biosciences, U.S. Department of Energy; SciDAC [DE-AC02-06CH11357] FX Contract/grant sponsors: Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences. and Biosciences, U.S. Department of Energy, and the SciDAC project Advanced Software for the Calculation of Thermochemistry, Kinetics, and Dynamics; contract/grant number: DE-AC02-06CH11357 NR 19 TC 8 Z9 8 U1 0 U2 4 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0192-8651 J9 J COMPUT CHEM JI J. Comput. Chem. PD NOV 30 PY 2009 VL 30 IS 15 BP 2414 EP 2419 DI 10.1002/jcc.21275 PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA 507QN UT WOS:000270869600004 PM 19360796 ER PT J AU Marquet, C Xiao, BW Yuan, F AF Marquet, Cyrille Xiao, Bo-Wen Yuan, Feng TI Semi-inclusive deep inelastic scattering at small-x SO PHYSICS LETTERS B LA English DT Article ID COLOR GLASS CONDENSATE; GLUON DISTRIBUTION-FUNCTIONS; TRANSVERSE-MOMENTUM; LARGE NUCLEI; HIGH-ENERGY; SATURATION; QCD; COLLISIONS; REGION; BFKL AB We Study the semi-inclusive hadron production in deep inelastic scattering at small-x. A transverse-momentum-dependent factorization is found consistent with the results calculated in the small-x approaches, such as the color-dipole framework and the color glass condensate, in the appropriate kinematic region at the lowest order. The transverse-momentum-dependent quark distribution can be studied in this process as a probe for the small-x saturation physics. Especially, the ratio of quark distributions as a function of transverse momentum at different x demonstrates strong dependence on the saturation scale. The Q(2) dependence of the same ratio is also studied by applying the Collins-Soper-Sterman resummation method. (C) 2009 Elsevier B.V. All rights reserved. C1 [Xiao, Bo-Wen; Yuan, Feng] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Marquet, Cyrille] CEA Saclay, Inst Phys Theor, F-91191 Gif Sur Yvette, France. [Marquet, Cyrille] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Yuan, Feng] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. RP Xiao, BW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM cyrille@phys.columbia.edu; bxiao@lbl.gov; fyuan@lbl.gov RI Yuan, Feng/N-4175-2013 FU European Commission [MOIF-CT-2006-039860]; U.S. Department of Energy [DE-AC02-05CH11231, DE-AC02-98CH10886] FX F.Y. thanks Anna Stasto and George Sterman for interesting conversations a few years back about the topic studied in this Letter. C.M. would like to thank the nuclear theory group at LBL for hospitality during the start of this work. We thank Al Mueller, Pavel Nadolsky, Jianwei Qiu, and Raju Venugopalan for stimulating discussions and comments. C.M. is supported by the European Commission under the FP6 program, contract No. MOIF-CT-2006-039860. This work was supported in part by the U.S. Department of Energy under contract DE-AC02-05CH11231. We are grateful to RIKEN, Brookhaven National Laboratory and the U.S. Department of Energy (contract number DE-AC02-98CH10886) for providing the facilities essential for the completion of this work. NR 59 TC 19 Z9 19 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD NOV 30 PY 2009 VL 682 IS 2 BP 207 EP 211 DI 10.1016/j.physletb.2009.10.099 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 530QM UT WOS:000272607400007 ER PT J AU Malakhova, M Kurinov, I Liu, KD Zheng, D D'Angelo, I Shim, JH Steinman, V Bode, AM Dong, ZG AF Malakhova, Margarita Kurinov, Igor Liu, Kangdong Zheng, Duo D'Angelo, Igor Shim, Jung-Hyun Steinman, Valerie Bode, Ann M. Dong, Zigang TI Structural Diversity of the Active N-Terminal Kinase Domain of p90 Ribosomal S6 Kinase 2 SO PLOS ONE LA English DT Article ID CANCER-CELL-PROLIFERATION; PROTEIN-KINASE; CRYSTAL-STRUCTURE; DOCKING SITE; MOTIF PHOSPHORYLATION; HISTONE H3; AMP-PNP; C-SRC; ACTIVATION; IDENTIFICATION AB The p90 ribosomal protein kinase 2 (RSK2) is a highly expressed Ser/Thr kinase activated by growth factors and is involved in cancer cell proliferation and tumor promoter-induced cell transformation. RSK2 possesses two non-identical kinase domains, and the structure of its N-terminal domain (NTD), which is responsible for phosphorylation of a variety of substrates, is unknown. The crystal structure of the NTD RSK2 was determined at 1.8 angstrom resolution in complex with AMP-PNP. The N-terminal kinase domain adopted a unique active conformation showing a significant structural diversity of the kinase domain compared to other kinases. The NTD RSK2 possesses a three-stranded beta B-sheet inserted in the N-terminal lobe, resulting in displacement of the alpha C-helix and disruption of the Lys-Glu interaction, classifying the kinase conformation as inactive. The purified protein was phosphorylated at Ser227 in the T-activation loop and exhibited in vitro kinase activity. A key characteristic is the appearance of a new contact between Lys216 (beta B-sheet) and the beta-phosphate of AMP-PNP. Mutation of this lysine to alanine impaired both NTDs in vitro and full length RSK2 ex vivo activity, emphasizing the importance of this interaction. Even though the N-terminal lobe undergoes structural re-arrangement, it possesses an intact hydrophobic groove formed between the alpha C-helix, the beta 4-strand, and the beta B-sheet junction, which is occupied by the N-terminal tail. The presence of a unique beta B-sheet insert in the N-lobe suggests a different type of activation mechanism for RSK2. C1 [Malakhova, Margarita; Liu, Kangdong; Zheng, Duo; Shim, Jung-Hyun; Bode, Ann M.; Dong, Zigang] Univ Minnesota, Hormel Inst, Dept Cellular & Mol Biol, Austin, MN 55912 USA. [Kurinov, Igor] Cornell Univ, NE CAT, APS, Argonne, IL USA. [D'Angelo, Igor] Canadian Light Source Inc, Canadian Macromol Crystallog Facil, Saskatoon, SK, Canada. [Steinman, Valerie] Coll St Benedict, Dept Biochem, St Joseph, MN USA. RP Malakhova, M (reprint author), Univ Minnesota, Hormel Inst, Dept Cellular & Mol Biol, 801 16th Ave NE, Austin, MN 55912 USA. EM mailtozgdong@hi.umn.edu FU Hormel Foundation; National Institutes of Health (NIH) [CA027502, CA077646, CA120388, R37CA08164, ES016548] FX This work was funded by The Hormel Foundation and National Institutes of Health (NIH) grants CA027502, CA077646, CA120388, R37CA08164, and ES016548. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 59 TC 12 Z9 13 U1 0 U2 1 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD NOV 30 PY 2009 VL 4 IS 11 AR e8044 DI 10.1371/journal.pone.0008044 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 533MQ UT WOS:000272828400007 PM 19956600 ER PT J AU Goldman, N Reed, EJ Fried, LE AF Goldman, Nir Reed, Evan J. Fried, Laurence E. TI Quantum mechanical corrections to simulated shock Hugoniot temperatures SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE ab initio calculations; equations of state; liquid structure; liquid theory; molecular dynamics method; organic compounds; vibrational modes; water ID GRUNEISEN-PARAMETER; MOLECULAR-DYNAMICS; DENSITY; PRESSURE; METHANE; WAVES; WATER; PSEUDOPOTENTIALS; DISSOCIATION; COMPRESSION AB We present a straightforward method for the inclusion of quantum nuclear vibrational effects in molecular dynamics calculations of shock Hugoniot temperatures. Using a Gruumlneisen equation of state and a quasiharmonic approximation to the vibrational energies, we derive a simple, postprocessing method for calculation of the quantum corrected Hugoniot temperatures. We have used our novel technique on ab initio simulations of shock compressed water and methane. Our results indicate significantly closer agreement with all available experimental temperature data for these two systems. Our formalism can be easily applied to a number of different shock compressed molecular liquids or solids, and has the potential to decrease the large uncertainties inherent in many experimental Hugoniot temperature measurements of these systems. C1 [Goldman, Nir; Reed, Evan J.; Fried, Laurence E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Goldman, N (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM goldman14@llnl.gov RI Fried, Laurence/L-8714-2014 OI Fried, Laurence/0000-0002-9437-7700 FU Lawrence Livermore National Laboratory [DE-AC52-07NA27344.]; Laboratory Directed Research and Development Program at LLNL. [06-ERD-037] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. The project 06-ERD-037 was funded by the Laboratory Directed Research and Development Program at LLNL. Computations were performed at LLNL using the following massively parallel computers: prism, MCR, Thunder, uP, and Blue Gene L (BG/L). NR 50 TC 23 Z9 23 U1 2 U2 22 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 28 PY 2009 VL 131 IS 20 AR 204103 DI 10.1063/1.3262710 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 534KG UT WOS:000272894500004 PM 19947671 ER PT J AU Berman, GP Bishop, AR Chernobrod, BM Gorshkov, VN Lizon, DC Moody, DI Nguyen, DC Torous, SV AF Berman, G. P. Bishop, A. R. Chernobrod, B. M. Gorshkov, V. N. Lizon, D. C. Moody, D. I. Nguyen, D. C. Torous, S. V. TI Reduction of laser intensity scintillations in turbulent atmospheres using time averaging of a partially coherent beam SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID SPACE OPTICAL COMMUNICATIONS; DIFFERENT WAVELENGTHS; RANDOM-MEDIA; COMMUNICATION; PROPAGATION; MODEL AB We demonstrate experimentally and numerically that the application of a partially coherent beam (PCB) in combination with time averaging leads to a significant reduction in the scintillation index. We use a simplified experimental approach in which the atmospheric turbulence is simulated by a phase diffuser. The role of the speckle size, the amplitude of the phase modulation and the strength of the atmospheric turbulence are examined. We obtain good agreement between our numerical simulations and our experimental results. This study provides a useful foundation for future applications of PCB-based methods of scintillation reduction in physical atmospheres. C1 [Berman, G. P.; Chernobrod, B. M.; Gorshkov, V. N.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Bishop, A. R.] Los Alamos Natl Lab, Theory Simulat & Computat Directorate, Los Alamos, NM 87545 USA. [Gorshkov, V. N.; Torous, S. V.] Natl Tech Univ Ukraine KPI, UA-03056 Kiev, Ukraine. [Gorshkov, V. N.] Natl Acad Sci Ukraine, Inst Phys, UA-680028 Kiev, Ukraine. RP Berman, GP (reprint author), Los Alamos Natl Lab, Div Theoret, T-4 & CNLS,MS B213, Los Alamos, NM 87545 USA. EM gpb@lanl.gov RI Gorshkov, Vyacheslav/J-3329-2015; OI Gorshkov, Vyacheslav/0000-0002-7700-5649; Moody, Daniela/0000-0002-4452-8208; Nguyen, Dinh/0000-0001-8017-6599 FU National Nuclear Security Administration of the U. S. Department of Energy [DE-AC52-06NA25396]; ONR FX We thank A A Chumak for useful discussions. This work was carried out under the auspices of the National Nuclear Security Administration of the U. S. Department of Energy at Los Alamos National Laboratory under contract no DE-AC52-06NA25396. GPB, BMC, VNG, DCL thank ONR for support. NR 15 TC 8 Z9 8 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD NOV 28 PY 2009 VL 42 IS 22 AR 225403 DI 10.1088/0953-4075/42/22/225403 PG 11 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 531BM UT WOS:000272637700015 ER PT J AU Ludlow, JA Colgan, J Lee, TG Pindzola, MS Robicheaux, F AF Ludlow, J. A. Colgan, J. Lee, Teck-Ghee Pindzola, M. S. Robicheaux, F. TI Double photoionization of helium including quadrupole radiation effects SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID DIFFERENTIAL CROSS-SECTIONS; PHOTO-DOUBLE-IONIZATION AB Non-perturbative time-dependent close-coupling calculations are carried out for the double photoionization of helium including both dipole and quadrupole radiation effects. At a photon energy of 800 eV, accessible at current synchrotron light sources, the quadrupole interaction contributes around 6% to the total integral double photoionization cross section. The pure quadrupole single energy differential cross section shows a local maximum at equal energy sharing, as opposed to the minimum found in the pure dipole single energy differential cross section. The sum of the pure dipole and pure quadrupole single energy differentials is insensitive to non-dipole effects at 800 eV. However, the triple differential cross section at equal energy sharing of the two ejected electrons shows strong non-dipole effects due to the quadrupole interaction that may be experimentally observable. C1 [Ludlow, J. A.; Lee, Teck-Ghee; Pindzola, M. S.; Robicheaux, F.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. [Colgan, J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Ludlow, JA (reprint author), Auburn Univ, Dept Phys, Auburn, AL 36849 USA. RI Lee, Teck Ghee/D-5037-2012; Robicheaux, Francis/F-4343-2014; OI Lee, Teck Ghee/0000-0001-9472-3194; Robicheaux, Francis/0000-0002-8054-6040; Colgan, James/0000-0003-1045-3858 FU U. S. Department of Energy [DE-AC5206NA25396]; National Science Foundation FX We would like to thank Alan Landers for suggesting this problem and the referees for helpful suggestions. This work was supported in part by grants from the U. S. Department of Energy and the National Science Foundation. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U. S. Department of Energy under Contract No. DE-AC5206NA25396. Computational work was carried out at the National Energy Research Scientific Computing Center in Oakland, CA. NR 17 TC 5 Z9 6 U1 2 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD NOV 28 PY 2009 VL 42 IS 22 AR 225204 DI 10.1088/0953-4075/42/22/225204 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 531BM UT WOS:000272637700012 ER PT J AU Motomura, K Fukuzawa, H Foucar, L Liu, XJ Prumper, G Ueda, K Saito, N Iwayama, H Nagaya, K Murakami, H Yao, M Belkacem, A Nagasono, M Higashiya, A Yabashi, M Ishikawa, T Ohashi, H Kimura, H AF Motomura, K. Fukuzawa, H. Foucar, L. Liu, X-J Pruemper, G. Ueda, K. Saito, N. Iwayama, H. Nagaya, K. Murakami, H. Yao, M. Belkacem, A. Nagasono, M. Higashiya, A. Yabashi, M. Ishikawa, T. Ohashi, H. Kimura, H. TI Multiple ionization of atomic argon irradiated by EUV free-electron laser pulses at 62 nm: evidence of sequential electron strip SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID COHERENT RADIATION; HELIUM AB We have investigated multiple ionization of atomic argon by extreme-ultraviolet light pulses (62 nm, 100 fs in width, <2 x 10(14) W cm(-2)) at the free-electron laser facility in Japan, and observed highly charged ions with the charge state up to +6. The measured laser power dependence of the highly charged ions indicates that the multiple ionization proceeds via the sequential stripping of electrons. C1 [Motomura, K.; Fukuzawa, H.; Foucar, L.; Liu, X-J; Pruemper, G.; Ueda, K.] Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Sendai, Miyagi 9808577, Japan. [Motomura, K.; Fukuzawa, H.; Foucar, L.; Liu, X-J; Pruemper, G.; Ueda, K.; Saito, N.; Iwayama, H.; Nagaya, K.; Murakami, H.; Yao, M.; Nagasono, M.; Higashiya, A.; Yabashi, M.; Ishikawa, T.; Ohashi, H.; Kimura, H.] RIKEN, XFEL, Project Head Off, Sayo, Hyogo 6795148, Japan. [Foucar, L.] Goethe Univ Frankfurt, Inst Kernphys, D-60486 Frankfurt, Germany. [Saito, N.] AIST, Natl Metrol Inst Japan, Tsukuba, Ibaraki 3058568, Japan. [Iwayama, H.; Nagaya, K.; Murakami, H.; Yao, M.] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan. [Belkacem, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Ohashi, H.; Kimura, H.] Japan Synchrotron Radiat Res Inst, Sayo, Hyogo 6795198, Japan. RP Motomura, K (reprint author), Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Sendai, Miyagi 9808577, Japan. EM ueda@tagen.tohoku.ac.jp RI Ishikawa, Tetsuya/I-4775-2012; Yabashi, Makina/A-2832-2015; Saito, Norio/E-2890-2014 OI Ishikawa, Tetsuya/0000-0002-6906-9909; Yabashi, Makina/0000-0002-2472-1684; FU Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT); Japan Society for the Promotion of Science (JSPS); IMRAM FX We are grateful to the SCSS Test Accelerator Operation Group at RIKEN for continuous support, to the staff of the technical service section in IMRAM, Tohoku University, for their assistance in constructing the apparatus, to A Czasch for his contributions in constructing the software, and to A Rudenko, J Ullrich and R Dorner for discussion. This study was supported by the X-ray Free Electron Laser Utilization Research Project of the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT), by the Japan Society for the Promotion of Science (JSPS), and by the IMRAM project. NR 25 TC 25 Z9 25 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD NOV 28 PY 2009 VL 42 IS 22 AR 221003 DI 10.1088/0953-4075/42/22/221003 PG 4 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 531BM UT WOS:000272637700003 ER PT J AU Gatti-Bono, C Colella, P AF Gatti-Bono, Caroline Colella, Phillip TI An all-speed projection and filtering method for gravity-stratified flows SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Article DE non-hydrostatic atmospheric model; embedded-boundary method; all-speed; gravity waves; normal-mode analysis; filtering AB Gravity waves arise in gravitationally stratified compressible flows at low Mach and Froude numbers, and these waves impose a sharp restriction on the time step. This paper presents a filtering strategy for the fully compressible equations based on normal-mode analysis that is used throughout the simulation to compute the fast dynamics and is able to damp only chosen modes. This method is based on an asymptotic analysis and respects the dynamics of gravity waves for thin layers. Finally, the filtering method is tested on a series of examples. C1 [Gatti-Bono, Caroline] Lawrence Livermore Natl Lab, Livermore, CA 94566 USA. [Colella, Phillip] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Gatti-Bono, C (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave,L-560, Livermore, CA 94566 USA. EM caroline.bono@gmail.com NR 4 TC 1 Z9 1 U1 0 U2 0 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-503X J9 PHILOS T R SOC A JI Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. PD NOV 28 PY 2009 VL 367 IS 1907 BP 4543 EP 4558 DI 10.1098/rsta.2009.0169 PG 16 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 507OQ UT WOS:000270864400005 PM 19840980 ER PT J AU Pau, GSH Almgren, AS Bell, JB Lijewski, MJ AF Pau, George S. H. Almgren, Ann S. Bell, John B. Lijewski, Michael J. TI A parallel second-order adaptive mesh algorithm for incompressible flow in porous media SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Article DE adaptive mesh refinement; Darcy flow; porous media ID HYPERBOLIC CONSERVATION-LAWS; REFINEMENT; SIMULATION AB In this paper, we present a second-order accurate adaptive algorithm for solving multi-phase, incompressible flow in porous media. We assume a multi-phase form of Darcy's law with relative permeabilities given as a function of the phase saturation. The remaining equations express conservation of mass for the fluid constituents. In this setting, the total velocity, defined to be the sum of the phase velocities, is divergence free. The basic integration method is based on a total-velocity splitting approach in which we solve a second-order elliptic pressure equation to obtain a total velocity. This total velocity is then used to recast component conservation equations as nonlinear hyperbolic equations. Our approach to adaptive refinement uses a nested hierarchy of logically rectangular grids with simultaneous refinement of the grids in both space and time. The integration algorithm on the grid hierarchy is a recursive procedure in which coarse grids are advanced in time, fine grids are advanced multiple steps to reach the same time as the coarse grids and the data at different levels are then synchronized. The single-grid algorithm is described briefly, but the emphasis here is on the time-stepping procedure for the adaptive hierarchy. Numerical examples are presented to demonstrate the algorithm's accuracy and convergence properties and to illustrate the behaviour of the method. C1 [Pau, George S. H.; Almgren, Ann S.; Bell, John B.; Lijewski, Michael J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Pau, GSH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM gpau@lbl.gov RI Pau, George Shu Heng/F-2363-2015 OI Pau, George Shu Heng/0000-0002-9198-6164 NR 24 TC 13 Z9 14 U1 1 U2 15 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-503X J9 PHILOS T R SOC A JI Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. PD NOV 28 PY 2009 VL 367 IS 1907 BP 4633 EP 4654 DI 10.1098/rsta.2009.0160 PG 22 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 507OQ UT WOS:000270864400010 PM 19840985 ER PT J AU Whitaker, MJ Bordowitz, JR Montgomery, BL AF Whitaker, Melissa J. Bordowitz, Juliana R. Montgomery, Beronda L. TI CpcF-dependent regulation of pigmentation and development in Fremyella diplosiphon SO BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS LA English DT Article DE Bilin lyase; Complementary chromatic adaptation; Morphology; Photosensing; Phycobiliprotein ID COMPLEMENTARY CHROMATIC ADAPTATION; SUBUNIT PHYCOCYANOBILIN LYASE; CYANOBACTERIAL ISCA HOMOLOG; HEAT-REPEATS; BILIN ATTACHMENT; PHYCOERYTHRIN; PROTEIN; GENES; LIGHT; GREEN AB Cyanobacteria harvest light for photosynthesis using photosynthetic light-harvesting complexes called phycobilisomes (PBSs). Lyases are enzymes responsible for covalent attachment of light-absorbing chromophores to the phycobiliproteins (PBPs) contained in PBSs. We isolated a pigmentation mutant in the filamentous cyanobacterium Fremyella diplosiphon and determined that it possesses an insertional mutation in cpcF, which encodes one component of a heterodimeric phycocyanin lyase. Here, we discuss the implications of the mutation in cpcF on light-dependent pigmentation and Morphology responses characteristic of complementary chromatic adaptation in F diplosiphon. Although cpcF encodes a phycocyanin lyase, significant decreases in the levels of all classes of PBPs are associated with CpcF deficiency in F. diplosiphon. Notably, CpcF deficiency has a limited effect on the shape of F diplosiphon cells, but significantly impacts filament length. Possible mechanisms for the broad impact of CpcF deficiency on pigmentation and filament morphology are discussed. (C) 2009 Elsevier Inc. All rights reserved. C1 [Whitaker, Melissa J.; Bordowitz, Juliana R.; Montgomery, Beronda L.] Michigan State Univ, Plant Res Lab, DOE, E Lansing, MI 48824 USA. [Bordowitz, Juliana R.; Montgomery, Beronda L.] Michigan State Univ, Cell & Mol Biol Grad Program, E Lansing, MI 48824 USA. [Montgomery, Beronda L.] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. RP Montgomery, BL (reprint author), Michigan State Univ, Plant Res Lab, DOE, 106 Plant Biol Bldg, E Lansing, MI 48824 USA. EM montg133@msu.edu FU National Science Foundation [MCB-0643516]; U.S. Department of Energy [DE-FG02-91ER20021] FX This work was supported by a CAREER award from the National Science Foundation (Grant No. MCB-0643516 to B.L.M.) and by the U.S. Department of Energy (Chemical Sciences, Geosciences and Bicisciences Division, Office of Basic Energy Sciences, Office of Science, Grant No. DE-FG02-91ER20021 to B.L.M.). The authors would like to thank Bagmi Pattanaik and Sankalpi Warnasooriya for critically reading and commenting on the manuscript. NR 37 TC 9 Z9 9 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0006-291X J9 BIOCHEM BIOPH RES CO JI Biochem. Biophys. Res. Commun. PD NOV 27 PY 2009 VL 389 IS 4 BP 602 EP 606 DI 10.1016/j.bbrc.2009.09.030 PG 5 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 511GE UT WOS:000271151100008 PM 19748483 ER PT J AU Ben-Naim, E Krapivsky, PL AF Ben-Naim, E. Krapivsky, P. L. TI Stratification in the preferential attachment network SO JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL LA English DT Article ID GROWING NETWORKS; TREES AB We study structural properties of trees grown by preferential attachment. In this mechanism, nodes are added sequentially and attached to existing nodes at a rate that is strictly proportional to the degree. We classify nodes by their depth n, defined as the distance from the root of the tree, and find that the network is strongly stratified. Most notably, the distribution f(k)((n)) of nodes with degree k at depth n has a power-law tail, f(k)((n)) similar to k(-gamma(n)). The exponent grows linearly with depth, gamma(n) = 2 + n-1/< n-1 > , where the brackets denote an average over all nodes. Therefore, nodes that are closer to the root are better connected, and moreover, the degree distribution strongly varies with depth. Similarly, the in-component size distribution has a power-law tail and the characteristic exponent grows linearly with depth. Qualitatively, these behaviors extend to a class of networks that grow by redirection. C1 [Ben-Naim, E.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Ben-Naim, E.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Krapivsky, P. L.] Boston Univ, Dept Phys, Boston, MA 02215 USA. RP Ben-Naim, E (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI Ben-Naim, Eli/C-7542-2009; Krapivsky, Pavel/A-4612-2014 OI Ben-Naim, Eli/0000-0002-2444-7304; FU DOE [DE-AC5206NA25396]; NSF [CCF-0829541] FX We thank Sergei Dorogovtsev for collaboration on the in-component distribution in the first layer, equation (21). We are grateful for financial support from DOE grant DE-AC5206NA25396 and NSF grant CCF-0829541. NR 24 TC 5 Z9 5 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1751-8113 J9 J PHYS A-MATH THEOR JI J. Phys. A-Math. Theor. PD NOV 27 PY 2009 VL 42 IS 47 AR 475001 DI 10.1088/1751-8113/42/47/475001 PG 10 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA 521DM UT WOS:000271900200006 ER PT J AU Khare, A Saxena, A Law, KJH AF Khare, Avinash Saxena, Avadh Law, Kody J. H. TI Mapping between generalized nonlinear Schrodinger equations and neutral scalar field theories and new solutions of the cubic-quintic NLS equation SO JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL LA English DT Article ID SOLITONS AB We highlight an interesting mapping between the moving breather solutions of the generalized nonlinear Schrodinger (NLS) equations and the static solutions of neutral scalar field theories. Using this connection, we then obtain several new moving breather solutions of the cubic-quintic NLS equation both with and without uniform phase in space. The stability of some stationary solutions is investigated numerically and the results are confirmed via dynamical evolution. C1 [Khare, Avinash] Inst Phys, Bhubaneswar 751005, Orissa, India. [Saxena, Avadh] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Saxena, Avadh] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Law, Kody J. H.] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA. RP Khare, A (reprint author), Inst Phys, Bhubaneswar 751005, Orissa, India. EM avadh@lanl.gov RI Law, Kody/A-6375-2010; OI Law, Kody/0000-0003-3133-2537 NR 20 TC 3 Z9 3 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1751-8113 EI 1751-8121 J9 J PHYS A-MATH THEOR JI J. Phys. A-Math. Theor. PD NOV 27 PY 2009 VL 42 IS 47 AR 475404 DI 10.1088/1751-8113/42/47/475404 PG 23 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA 521DM UT WOS:000271900200032 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Albrow, MG Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzurri, P Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Bednar, P Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Copic, K Cordelli, M Cortiana, G Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U Guimaraes da Costa, J Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Koay, SA Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kusakabe, Y Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lu, RS Lucchesi, D Lueck, J Luci, C Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Moon, CS Moore, R Morello, MJ Morlok, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Sherman, D Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spalding, J Spreitzer, T Squillacioti, P Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Tu, Y Turini, N Ukegawa, F Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner-Kuhr, J Wagner, W Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Albrow, M. G. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzurri, P. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Bartsch, V. Bauer, G. Beauchemin, P.-H. Bedeschi, F. Bednar, P. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Copic, K. Cordelli, M. Cortiana, G. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. Guimaraes da Costa, J. Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Koay, S. A. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lu, R. -S. Lucchesi, D. Lueck, J. Luci, C. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Morlok, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spreitzer, T. Squillacioti, P. Stanitzki, M. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wuerthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner-Kuhr, J. Wagner, W. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Search for the Associated Production of the Standard-Model Higgs Boson in the All-Hadronic Channel SO PHYSICAL REVIEW LETTERS LA English DT Article ID P(P)OVER-BAR COLLISIONS; TEV; PHYSICS AB We report on a search for the standard-model Higgs boson in pp collisions at s=1.96 TeV using an integrated luminosity of 2.0 fb(-1). We look for production of the Higgs boson decaying to a pair of bottom quarks in association with a vector boson V (W or Z) decaying to quarks, resulting in a four-jet final state. Two of the jets are required to have secondary vertices consistent with B-hadron decays. We set the first 95% confidence level upper limit on the VH production cross section with V(-> qq/qq('))H(-> bb) decay for Higgs boson masses of 100-150 GeV/c(2) using data from run II at the Fermilab Tevatron. For m(H)=120 GeV/c(2), we exclude cross sections larger than 38 times the standard-model prediction. C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.; Lu, R. -S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, P.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Martinez, M.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Plager, C.; Stelzer, B.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Hsu, S. -C.; Lipeles, E.; Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Koay, S. A.; Krutelyov, V.; Rossin, R.; Scott, A. L.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.; Tiwari, V.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Krop, D.; Kwang, S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wolfe, C.; Yang, U. K.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA. [Albrow, M. G.; Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Reisert, B.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Sfyrla, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St Denis, R.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; Guimaraes da Costa, J.; Mills, C.; Sherman, D.; Zaw, I.] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Bridgeman, A.; Budd, S.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Neubauer, M. S.; Norniella, O.; Rogers, E.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Jeon, E. J.; Kreps, M.; Kuhr, T.; Lueck, J.; Mack, P.; Marino, C.; Marino, C. P.; Milnik, M.; Morlok, J.; Muller, Th.; Papaikonomou, A.; Richter, S.; Scheidle, T.; Schmidt, A.; Wagner-Kuhr, J.; Wagner, W.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Heinemann, B.; Lin, C. S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P.-H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P.-H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Amidei, D.; Campbell, M.; Copic, K.; Cully, J. C.; Gerdes, D.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Rekovic, V.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Kilminster, B.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.; Stelzer-Chilton, O.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bisello, D.; Brigliadori, L.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, LPNHE, IN2P3, CNRS,UMR7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Squillacioti, P.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Giunta, M.; Morello, M. J.; Punzi, G.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Azzurri, P.; Ferrazza, C.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Lytken, E.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Dionisi, C.; Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Dionisi, C.; Giagu, S.; Iori, M.; Luci, C.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.; Yamaoka, J.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Goncharov, M.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, Trieste, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, Trieste, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Kusakabe, Y.; Naganoma, J.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Handler, R.; Herndon, M.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Xie, Si/O-6830-2016; Canelli, Florencia/O-9693-2016; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; vilar, rocio/P-8480-2014; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Chiarelli, Giorgio/E-8953-2012; Muelmenstaedt, Johannes/K-2432-2015; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; Moon, Chang-Seong/J-3619-2014; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014 OI Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Xie, Si/0000-0003-2509-5731; Canelli, Florencia/0000-0001-6361-2117; Giordani, Mario/0000-0002-0792-6039; Casarsa, Massimo/0000-0002-1353-8964; Latino, Giuseppe/0000-0002-4098-3502; iori, maurizio/0000-0002-6349-0380; Lancaster, Mark/0000-0002-8872-7292; Gallinaro, Michele/0000-0003-1261-2277; Turini, Nicola/0000-0002-9395-5230; Osterberg, Kenneth/0000-0003-4807-0414; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Chiarelli, Giorgio/0000-0001-9851-4816; Muelmenstaedt, Johannes/0000-0003-1105-6678; Ruiz, Alberto/0000-0002-3639-0368; Moon, Chang-Seong/0000-0001-8229-7829; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; FU U.S. Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A.P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean Science and Engineering Foundation; Korean Research Foundation; Science and Technology Facilities Council; Royal Society, U.K.; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Comision Interministerial de Ciencia y Tecnologia, Spain; European Community's; Slovak RD Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, U. K.; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Comision Interministerial de Ciencia y Tecnologia, Spain; the European Community's Human Potential Programme; the Slovak R&D Agency; and the Academy of Finland. NR 26 TC 10 Z9 10 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 27 PY 2009 VL 103 IS 22 AR 221801 DI 10.1103/PhysRevLett.103.221801 PG 8 WC Physics, Multidisciplinary SC Physics GA 524ZD UT WOS:000272182000013 ER PT J AU Abbasi, R Abdou, Y Abu-Zayyad, T Adams, J Aguilar, JA Ahlers, M Andeen, K Auffenberg, J Bai, X Baker, M Barwick, SW Bay, R Alba, JLB Beattie, K Beatty, JJ Bechet, S Becker, JK Becker, KH Benabderrahmane, ML Berdermann, J Berghaus, P Berley, D Bernardini, E Bertrand, D Besson, DZ Bissok, M Blaufuss, E Boersma, DJ Bohm, C Botner, O Bradley, L Braun, J Breder, D Carson, M Castermans, T Chirkin, D Christy, B Clem, J Cohen, S Cowen, DF D'Agostino, MV Danninger, M Day, CT De Clercq, C Demirors, L Depaepe, O Descamps, F Desiati, P de Vries-Uiterweerd, G DeYoung, T Diaz-Velez, JC Dreyer, J Dumm, JP Duvoort, MR Edwards, WR Ehrlich, R Eisch, J Ellsworth, RW Engdegard, O Euler, S Evenson, PA Fadiran, O Fazely, AR Feusels, T Filimonov, K Finley, C Foerster, MM Fox, BD Franckowiak, A Franke, R Gaisser, TK Gallagher, J Ganugapati, R Gerhardt, L Gladstone, L Goldschmidt, A Goodman, JA Gozzini, R Grant, D Griesel, T Gross, A Grullon, S Gunasingha, RM Gurtner, M Ha, C Hallgren, A Halzen, F Han, K Hanson, K Hasegawa, Y Helbing, K Herquet, P Hickford, S Hill, GC Hoffman, KD Homeier, A Hoshina, K Hubert, D Huelsnitz, W Hulss, JP Hulth, PO Hultqvist, K Hussain, S Imlay, RL Inaba, M Ishihara, A Jacobsen, J Japaridze, GS Johansson, H Joseph, JM Kampert, KH Kappes, A Karg, T Karle, A Kelley, JL Kemming, N Kenny, P Kiryluk, J Kislat, F Klein, SR Knops, S Kohnen, G Kolanoski, H Kopke, L Koskinen, DJ Kowalski, M Kowarik, T Krasberg, M Krings, T Kroll, G Kuehn, K Kuwabara, T Labare, M Lafebre, S Laihem, K Landsman, H Lauer, R Lehmann, R Lennarz, D Lundberg, J Lunemann, J Madsen, J Majumdar, P Maruyama, R Mase, K Matis, HS McParland, CP Meagher, K Merck, M Meszaros, P Meures, T Middell, E Milke, N Miyamoto, H Montaruli, T Morse, R Movit, SM Nahnhauer, R Nam, JW Niessen, P Nygren, DR Odrowski, S Olivas, A Olivo, M Ono, M Panknin, S Patton, S Paul, L de los Heros, CP Petrovic, J Piegsa, A Pieloth, D Pohl, AC Porrata, R Potthoff, N Price, PB Prikockis, M Przybylski, GT Rawlins, K Redl, P Resconi, E Rhode, W Ribordy, M Rizzo, A Rodrigues, JP Roth, P Rothmaier, F Rott, C Roucelle, C Rutledge, D Ruzybayev, B Ryckbosch, D Sander, HG Sarkar, S Schatto, K Schlenstedt, S Schmidt, T Schneider, D Schukraft, A Schulz, O Schunck, M Seckel, D Semburg, B Seo, SH Sestayo, Y Seunarine, S Silvestri, A Slipak, A Spiczak, GM Spiering, C Stamatikos, M Stanev, T Stephens, G Stezelberger, T Stokstad, RG Stoufer, MC Stoyanov, S Strahler, EA Straszheim, T Sullivan, GW Swillens, Q Taboada, I Tamburro, A Tarasova, O Tepe, A Ter-Antonyan, S Terranova, C Tilav, S Toale, PA Tooker, J Tosi, D Turcan, D van Eijndhoven, N Vandenbroucke, J Van Overloop, A van Santen, J Voigt, B Walck, C Waldenmaier, T Wallraff, M Walter, M Wendt, C Westerhoff, S Whitehorn, N Wiebe, K Wiebusch, CH Wiedemann, A Wikstrom, G Williams, DR Wischnewski, R Wissing, H Woschnagg, K Xu, C Xu, XW Yodh, G Yoshida, S AF Abbasi, R. Abdou, Y. Abu-Zayyad, T. Adams, J. Aguilar, J. A. Ahlers, M. Andeen, K. Auffenberg, J. Bai, X. Baker, M. Barwick, S. W. Bay, R. Alba, J. L. Bazo Beattie, K. Beatty, J. J. Bechet, S. Becker, J. K. Becker, K. -H. Benabderrahmane, M. L. Berdermann, J. Berghaus, P. Berley, D. Bernardini, E. Bertrand, D. Besson, D. Z. Bissok, M. Blaufuss, E. Boersma, D. J. Bohm, C. Botner, O. Bradley, L. Braun, J. Breder, D. Carson, M. Castermans, T. Chirkin, D. Christy, B. Clem, J. Cohen, S. Cowen, D. F. D'Agostino, M. V. Danninger, M. Day, C. T. De Clercq, C. Demirors, L. Depaepe, O. Descamps, F. Desiati, P. de Vries-Uiterweerd, G. DeYoung, T. Diaz-Velez, J. C. Dreyer, J. Dumm, J. P. Duvoort, M. R. Edwards, W. R. Ehrlich, R. Eisch, J. Ellsworth, R. W. Engdegard, O. Euler, S. Evenson, P. A. Fadiran, O. Fazely, A. R. Feusels, T. Filimonov, K. Finley, C. Foerster, M. M. Fox, B. D. Franckowiak, A. Franke, R. Gaisser, T. K. Gallagher, J. Ganugapati, R. Gerhardt, L. Gladstone, L. Goldschmidt, A. Goodman, J. A. Gozzini, R. Grant, D. Griesel, T. Gross, A. Grullon, S. Gunasingha, R. M. Gurtner, M. Ha, C. Hallgren, A. Halzen, F. Han, K. Hanson, K. Hasegawa, Y. Helbing, K. Herquet, P. Hickford, S. Hill, G. C. Hoffman, K. D. Homeier, A. Hoshina, K. Hubert, D. Huelsnitz, W. Huelss, J.-P. Hulth, P. O. Hultqvist, K. Hussain, S. Imlay, R. L. Inaba, M. Ishihara, A. Jacobsen, J. Japaridze, G. S. Johansson, H. Joseph, J. M. Kampert, K. -H. Kappes, A. Karg, T. Karle, A. Kelley, J. L. Kemming, N. Kenny, P. Kiryluk, J. Kislat, F. Klein, S. R. Knops, S. Kohnen, G. Kolanoski, H. Koepke, L. Koskinen, D. J. Kowalski, M. Kowarik, T. Krasberg, M. Krings, T. Kroll, G. Kuehn, K. Kuwabara, T. Labare, M. Lafebre, S. Laihem, K. Landsman, H. Lauer, R. Lehmann, R. Lennarz, D. Lundberg, J. Luenemann, J. Madsen, J. Majumdar, P. Maruyama, R. Mase, K. Matis, H. S. McParland, C. P. Meagher, K. Merck, M. Meszaros, P. Meures, T. Middell, E. Milke, N. Miyamoto, H. Montaruli, T. Morse, R. Movit, S. M. Nahnhauer, R. Nam, J. W. Niessen, P. Nygren, D. R. Odrowski, S. Olivas, A. Olivo, M. Ono, M. Panknin, S. Patton, S. Paul, L. de los Heros, C. Perez Petrovic, J. Piegsa, A. Pieloth, D. Pohl, A. C. Porrata, R. Potthoff, N. Price, P. B. Prikockis, M. Przybylski, G. T. Rawlins, K. Redl, P. Resconi, E. Rhode, W. Ribordy, M. Rizzo, A. Rodrigues, J. P. Roth, P. Rothmaier, F. Rott, C. Roucelle, C. Rutledge, D. Ruzybayev, B. Ryckbosch, D. Sander, H. -G. Sarkar, S. Schatto, K. Schlenstedt, S. Schmidt, T. Schneider, D. Schukraft, A. Schulz, O. Schunck, M. Seckel, D. Semburg, B. Seo, S. H. Sestayo, Y. Seunarine, S. Silvestri, A. Slipak, A. Spiczak, G. M. Spiering, C. Stamatikos, M. Stanev, T. Stephens, G. Stezelberger, T. Stokstad, R. G. Stoufer, M. C. Stoyanov, S. Strahler, E. A. Straszheim, T. Sullivan, G. W. Swillens, Q. Taboada, I. Tamburro, A. Tarasova, O. Tepe, A. Ter-Antonyan, S. Terranova, C. Tilav, S. Toale, P. A. Tooker, J. Tosi, D. Turcan, D. van Eijndhoven, N. Vandenbroucke, J. Van Overloop, A. van Santen, J. Voigt, B. Walck, C. Waldenmaier, T. Wallraff, M. Walter, M. Wendt, C. Westerhoff, S. Whitehorn, N. Wiebe, K. Wiebusch, C. H. Wiedemann, A. Wikstrom, G. Williams, D. R. Wischnewski, R. Wissing, H. Woschnagg, K. Xu, C. Xu, X. W. Yodh, G. Yoshida, S. CA IceCube Collaboration TI Extending the Search for Neutrino Point Sources with IceCube above the Horizon SO PHYSICAL REVIEW LETTERS LA English DT Article ID GAMMA-RAYS; TELESCOPE; DETECTOR; JETS AB Point source searches with the IceCube neutrino telescope have been restricted to one hemisphere, due to the exclusive selection of upward going events as a way of rejecting the atmospheric muon background. We show that the region above the horizon can be included by suppressing the background through energy-sensitive cuts. This improves the sensitivity above PeV energies, previously not accessible for declinations of more than a few degrees below the horizon due to the absorption of neutrinos in Earth. We present results based on data collected with 22 strings of IceCube, extending its field of view and energy reach for point source searches. No significant excess above the atmospheric background is observed in a sky scan and in tests of source candidates. Upper limits are reported, which for the first time cover point sources in the southern sky up to EeV energies. C1 [Alba, J. L. Bazo; Benabderrahmane, M. L.; Berdermann, J.; Berghaus, P.; Bernardini, E.; Franke, R.; Kislat, F.; Lauer, R.; Majumdar, P.; Middell, E.; Nahnhauer, R.; Schlenstedt, S.; Spiering, C.; Tarasova, O.; Tosi, D.; Voigt, B.; Walter, M.; Wischnewski, R.] DESY, D-15735 Zeuthen, Germany. [Bissok, M.; Boersma, D. J.; Euler, S.; Huelss, J.-P.; Knops, S.; Krings, T.; Laihem, K.; Lennarz, D.; Meures, T.; Paul, L.; Schukraft, A.; Schunck, M.; Wallraff, M.; Wiebusch, C. H.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Williams, D. R.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Rawlins, K.] Univ Alaska, Dept Phys & Astron, Anchorage, AK 99508 USA. [Fadiran, O.; Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Taboada, I.; Tooker, J.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Taboada, I.; Tooker, J.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Fazely, A. R.; Gunasingha, R. M.; Imlay, R. L.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Bay, R.; D'Agostino, M. V.; Filimonov, K.; Gerhardt, L.; Kiryluk, J.; Klein, S. R.; Porrata, R.; Price, P. B.; Vandenbroucke, J.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Beattie, K.; Day, C. T.; Edwards, W. R.; Gerhardt, L.; Goldschmidt, A.; Joseph, J. M.; Kiryluk, J.; Klein, S. R.; Matis, H. S.; McParland, C. P.; Nygren, D. R.; Patton, S.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.; Stoufer, M. C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Franckowiak, A.; Homeier, A.; Kemming, N.; Kolanoski, H.; Lehmann, R.; Panknin, S.; van Santen, J.; Waldenmaier, T.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Becker, J. K.; Dreyer, J.; Olivo, M.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany. [Kowalski, M.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Bechet, S.; Bertrand, D.; Labare, M.; Petrovic, J.; Swillens, Q.] Univ Libre Bruxelles, Fac Sci, B-1050 Brussels, Belgium. [De Clercq, C.; Depaepe, O.; Hubert, D.; Rizzo, A.; van Eijndhoven, N.] Vrije Univ Brussels, Dienst ELEM, B-1050 Brussels, Belgium. [Hasegawa, Y.; Inaba, M.; Ishihara, A.; Mase, K.; Miyamoto, H.; Ono, M.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Adams, J.; Gross, A.; Han, K.; Hickford, S.; Seunarine, S.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand. [Berley, D.; Blaufuss, E.; Christy, B.; Ehrlich, R.; Ellsworth, R. W.; Goodman, J. A.; Hoffman, K. D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Roth, P.; Schmidt, T.; Straszheim, T.; Sullivan, G. W.; Turcan, D.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Beatty, J. J.; Kuehn, K.; Rott, C.; Stamatikos, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Beatty, J. J.; Kuehn, K.; Rott, C.; Stamatikos, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Beatty, J. J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Dreyer, J.; Milke, N.; Pieloth, D.; Rhode, W.; Wiedemann, A.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany. [Abdou, Y.; Carson, M.; Descamps, F.; de Vries-Uiterweerd, G.; Feusels, T.; Ryckbosch, D.; Van Overloop, A.] Univ Ghent, Dept Subatom & Radiat Phys, B-9000 Ghent, Belgium. [Gross, A.; Odrowski, S.; Resconi, E.; Roucelle, C.; Schulz, O.; Sestayo, Y.] Max Planck Inst Kernphys, D-69177 Heidelberg, Germany. [Barwick, S. W.; Nam, J. W.; Silvestri, A.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Cohen, S.; Demirors, L.; Ribordy, M.; Terranova, C.; Tilav, S.] Ecole Polytech Fed Lausanne, High Energy Phys Lab, CH-1015 Lausanne, Switzerland. [Besson, D. Z.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Abbasi, R.; Aguilar, J. A.; Andeen, K.; Baker, M.; Berghaus, P.; Braun, J.; Chirkin, D.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Ganugapati, R.; Gladstone, L.; Grullon, S.; Halzen, F.; Hanson, K.; Hill, G. C.; Hoshina, K.; Jacobsen, J.; Kappes, A.; Karle, A.; Kelley, J. L.; Krasberg, M.; Landsman, H.; Merck, M.; Montaruli, T.; Morse, R.; Rodrigues, J. P.; Schneider, D.; Strahler, E. A.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Xu, C.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Gozzini, R.; Griesel, T.; Kenny, P.; Koepke, L.; Kowarik, T.; Kroll, G.; Luenemann, J.; Piegsa, A.; Rothmaier, F.; Sander, H. -G.; Schatto, K.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Castermans, T.; Herquet, P.; Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Bai, X.; Clem, J.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Maruyama, R.; Niessen, P.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Stoyanov, S.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Bai, X.; Clem, J.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Maruyama, R.; Niessen, P.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Stoyanov, S.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Ahlers, M.; Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England. [Abu-Zayyad, T.; Madsen, J.; Spiczak, G. M.; Tamburro, A.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Bohm, C.; Danninger, M.; Finley, C.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Seo, S. H.; Walck, C.; Wikstrom, G.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Bohm, C.; Danninger, M.; Finley, C.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Seo, S. H.; Walck, C.; Wikstrom, G.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Cowen, D. F.; Meszaros, P.; Movit, S. M.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Bradley, L.; Cowen, D. F.; DeYoung, T.; Foerster, M. M.; Fox, B. D.; Grant, D.; Ha, C.; Koskinen, D. J.; Lafebre, S.; Meszaros, P.; Prikockis, M.; Rutledge, D.; Slipak, A.; Stephens, G.; Toale, P. A.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Botner, O.; Engdegard, O.; Hallgren, A.; Lundberg, J.; Olivo, M.; de los Heros, C. Perez; Pohl, A. C.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Duvoort, M. R.] Univ Utrecht, SRON, Dept Phys & Astron, NL-3584 CC Utrecht, Netherlands. [Auffenberg, J.; Becker, K. -H.; Breder, D.; Gurtner, M.; Helbing, K.; Kampert, K. -H.; Karg, T.; Potthoff, N.; Semburg, B.; Tepe, A.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Kappes, A.] Univ Erlangen Nurnberg, Inst Phys, D-91058 Erlangen, Germany. [Pohl, A. C.] Kalmar Univ, Sch Pure & Appl Nat Sci, S-39182 Kalmar, Sweden. RP Lauer, R (reprint author), DESY, D-15735 Zeuthen, Germany. EM elisa.bernardini@desy.de; robert.lauer@desy.de RI Wiebusch, Christopher/G-6490-2012; Kowalski, Marek/G-5546-2012; Tamburro, Alessio/A-5703-2013; Hallgren, Allan/A-8963-2013; Botner, Olga/A-9110-2013; Sarkar, Subir/G-5978-2011; Beatty, James/D-9310-2011; Tjus, Julia/G-8145-2012; Auffenberg, Jan/D-3954-2014; Koskinen, David/G-3236-2014; Aguilar Sanchez, Juan Antonio/H-4467-2015; Maruyama, Reina/A-1064-2013 OI Schukraft, Anne/0000-0002-9112-5479; Perez de los Heros, Carlos/0000-0002-2084-5866; Carson, Michael/0000-0003-0400-7819; Hubert, Daan/0000-0002-4365-865X; Benabderrahmane, Mohamed Lotfi/0000-0003-4410-5886; Wiebusch, Christopher/0000-0002-6418-3008; Sarkar, Subir/0000-0002-3542-858X; Beatty, James/0000-0003-0481-4952; Ter-Antonyan, Samvel/0000-0002-5788-1369; Auffenberg, Jan/0000-0002-1185-9094; Koskinen, David/0000-0002-0514-5917; Aguilar Sanchez, Juan Antonio/0000-0003-2252-9514; Maruyama, Reina/0000-0003-2794-512X FU U.S. National Science Foundation-Office of Polar Program; U.S. National Science Foundation-Physics Division; University of Wisconsin Alumni Research Foundation; U.S. Department of Energy; National Energy Research Scientific Computing Center; Louisiana Optical Network Initiative (LONI) grid computing resources; Swedish Research Council; Swedish Polar Research Secretariat; Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF); Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO); Flanders Institute to encourage scientific and technological research in industry (IWT); Belgian Federal Science Policy Office (Belspo); Marsden Fund, New Zealand; SNF (Switzerland); EU Marie Curie; Capes Foundation; Ministry of Education of Brazil FX We acknowledge the support from the following agencies: U.S. National Science Foundation-Office of Polar Program, U.S. National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, U.S. Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; Swedish Research Council, Swedish Polar Research Secretariat, and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo); Marsden Fund, New Zealand; M. Ribordy acknowledges the support of the SNF (Switzerland); A. Kappes and A. Gross acknowledge support by the EU Marie Curie OIF Program; J. P. Rodrigues acknowledge support by the Capes Foundation, Ministry of Education of Brazil. E. B. thanks A. M. Atoyan, C. Dermer, A. Reimer for useful discussion and A. Marscher for providing multi-wavelength data on 3C279. NR 25 TC 26 Z9 26 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 27 PY 2009 VL 103 IS 22 AR 221102 DI 10.1103/PhysRevLett.103.221102 PG 6 WC Physics, Multidisciplinary SC Physics GA 524ZD UT WOS:000272182000012 PM 20366087 ER PT J AU Knudson, MD Desjarlais, MP AF Knudson, M. D. Desjarlais, M. P. TI Shock Compression of Quartz to 1.6 TPa: Redefining a Pressure Standard SO PHYSICAL REVIEW LETTERS LA English DT Article ID EQUATION-OF-STATE; HYDROGEN; ALUMINUM; DENSITY AB Evaluation of models and theory of high-pressure material response is largely made through comparison with shock wave data, which rely on impedance match standards. The recent use of quartz as a shock wave standard has prompted a need for improved data. We report here on measurements of the quartz Hugoniot curve from 0.1-1.6 TPa. The new data, in agreement with our ab initio calculations, reveal substantial errors in the standard and have immediate ramifications for the equations of state of deuterium, helium, and carbon at pressures relevant to giant planets and other high-energy density conditions. C1 [Knudson, M. D.; Desjarlais, M. P.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Knudson, MD (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. FU U. S. Department of Energy's National Nuclear Securities Administration [DE-AC04-94AL85000] FX The authors would like to acknowledge the large team at Sandia that contributed to the design, fabrication, and fielding of the Z experiments. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U. S. Department of Energy's National Nuclear Securities Administration under Contract No. DE-AC04-94AL85000. NR 26 TC 96 Z9 98 U1 2 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 27 PY 2009 VL 103 IS 22 AR 225501 DI 10.1103/PhysRevLett.103.225501 PG 4 WC Physics, Multidisciplinary SC Physics GA 524ZD UT WOS:000272182000029 PM 20366104 ER PT J AU Nascimento, VB Freeland, JW Saniz, R Moore, RG Mazur, D Liu, H Pan, MH Rundgren, J Gray, KE Rosenberg, RA Zheng, H Mitchell, JF Freeman, AJ Veltruska, K Plummer, EW AF Nascimento, V. B. Freeland, J. W. Saniz, R. Moore, R. G. Mazur, D. Liu, H. Pan, M. H. Rundgren, J. Gray, K. E. Rosenberg, R. A. Zheng, H. Mitchell, J. F. Freeman, A. J. Veltruska, K. Plummer, E. W. TI Surface-Stabilized Nonferromagnetic Ordering of a Layered Ferromagnetic Manganite SO PHYSICAL REVIEW LETTERS LA English DT Article ID PLANE-WAVE METHOD; MAGNETORESISTIVE OXIDES; INSULATOR-TRANSITION; CRYSTAL; CHARGE; SPIN AB An outstanding question regarding the probing or possible device applications of correlated electronic materials (CEMs) with layered structure is the extent to which their bulk and surface properties differ or not. The broken translational symmetry at the surface can lead to distinct functionality due to the charge, lattice, orbital, and spin coupling. Here we report on the case of bilayered manganites with hole doping levels corresponding to bulk ferromagnetic order. We find that, although the hole doping level is measured to be the same as in the bulk, the surface layer is not ferromagnetic. Further, our low-energy electron diffraction and x-ray measurements show that there is a c-axis collapse in the outermost layer. Bulk theoretical calculations reveal that, even at fixed doping level, the relaxation of the Jahn-Teller distortion at the surface is consistent with the stabilization of an A-type antiferromagnetic state. C1 [Nascimento, V. B.; Plummer, E. W.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Freeland, J. W.; Rosenberg, R. A.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Saniz, R.; Freeman, A. J.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Moore, R. G.; Liu, H.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Mazur, D.; Gray, K. E.; Zheng, H.; Mitchell, J. F.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Pan, M. H.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Rundgren, J.] Royal Inst Technol, Dept Phys, SE-10691 Stockholm, Sweden. [Veltruska, K.] Charles Univ Prague, Fac Math & Phys, Dept Surface & Plasma Sci, CR-18000 Prague 8, Czech Republic. RP Nascimento, VB (reprint author), Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. EM vnascimento@lsu.edu RI Rosenberg, Richard/K-3442-2012; Mazur, Daniel/B-8303-2014 OI Mazur, Daniel/0000-0003-2524-5226 FU Distinguished Scientist Program at UTK-ORNL; NSF; DOE (DMSE) [NSF-DMR-0451163]; U. S. Department of Energy, Office of Science [DE-AC02-06CH11357]; U. S. DOE [DE-FG02-88ER45372] FX V. B. N. acknowledges support from the Distinguished Scientist Program at UTK-ORNL (E. W. P.). Part of this work, performed at the University of Tennessee and ORNL, has received support from NSF and DOE (DMS&E) (Grant No. NSF-DMR-0451163). Work at Argonne, including the Advanced Photon Source, is supported by the U. S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. Work at Northwestern University is supported by the U. S. DOE under Grant No. DE-FG02-88ER45372 and a grant of computer time at the National Energy Research Scientific Computing Center. NR 24 TC 7 Z9 7 U1 1 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 27 PY 2009 VL 103 IS 22 AR 227201 DI 10.1103/PhysRevLett.103.227201 PG 4 WC Physics, Multidisciplinary SC Physics GA 524ZD UT WOS:000272182000047 PM 20366122 ER PT J AU Qin, H Chung, M Davidson, RC AF Qin, Hong Chung, Moses Davidson, Ronald C. TI Generalized Kapchinskij-Vladimirskij Distribution and Envelope Equation for High-Intensity Beams in a Coupled Transverse Focusing Lattice SO PHYSICAL REVIEW LETTERS LA English DT Article AB In an uncoupled lattice, the Kapchinskij-Vladimirskij (KV) distribution function first analyzed in 1959 is the only known exact solution of the nonlinear Vlasov-Maxwell equations for high-intensity beams including self-fields in a self-consistent manner. The KV solution is generalized here to high-intensity beams in a coupled transverse lattice using the recently developed generalized Courant-Snyder invariant for coupled transverse dynamics. This solution projects to a rotating, pulsating elliptical beam in transverse configuration space, determined by the generalized matrix envelope equation. C1 [Qin, Hong; Davidson, Ronald C.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. [Chung, Moses] Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, Batavia, IL 60510 USA. RP Qin, H (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. FU U.S. Department of Energy FX This research was supported by the U.S. Department of Energy. NR 19 TC 19 Z9 19 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 27 PY 2009 VL 103 IS 22 AR 224802 DI 10.1103/PhysRevLett.103.224802 PG 4 WC Physics, Multidisciplinary SC Physics GA 524ZD UT WOS:000272182000024 PM 20366099 ER PT J AU Sprinkle, M Siegel, D Hu, Y Hicks, J Tejeda, A Taleb-Ibrahimi, A Le Fevre, P Bertran, F Vizzini, S Enriquez, H Chiang, S Soukiassian, P Berger, C de Heer, WA Lanzara, A Conrad, EH AF Sprinkle, M. Siegel, D. Hu, Y. Hicks, J. Tejeda, A. Taleb-Ibrahimi, A. Le Fevre, P. Bertran, F. Vizzini, S. Enriquez, H. Chiang, S. Soukiassian, P. Berger, C. de Heer, W. A. Lanzara, A. Conrad, E. H. TI First Direct Observation of a Nearly Ideal Graphene Band Structure SO PHYSICAL REVIEW LETTERS LA English DT Article ID EPITAXIAL GRAPHENE; GRAPHITE AB Angle-resolved photoemission and x-ray diffraction experiments show that multilayer epitaxial graphene grown on the SiC(0001) surface is a new form of carbon that is composed of effectively isolated graphene sheets. The unique rotational stacking of these films causes adjacent graphene layers to electronically decouple leading to a set of nearly independent linearly dispersing bands (Dirac cones) at the graphene K point. Each cone corresponds to an individual macroscale graphene sheet in a multilayer stack where AB-stacked sheets can be considered as low density faults. C1 [Sprinkle, M.; Hu, Y.; Hicks, J.; Berger, C.; de Heer, W. A.; Conrad, E. H.] Georgia Inst Technol, Atlanta, GA 30332 USA. [Siegel, D.; Lanzara, A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Siegel, D.; Lanzara, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Tejeda, A.] Univ Nancy, UPV Metz, CNRS, Inst Jean Lamour, F-54506 Vandoeuvre Les Nancy, France. [Taleb-Ibrahimi, A.] URI, CNRS, Synchrotron SOLEIL, F-91192 Gif Sur Yvette, France. [Vizzini, S.; Enriquez, H.; Chiang, S.; Soukiassian, P.] CEA, SIMA, DSM, IRAMIS,SPCSI, F-91191 Gif Sur Yvette, France. [Vizzini, S.; Enriquez, H.; Soukiassian, P.] Univ Paris 11, Dept Phys, F-91405 Orsay, France. [Chiang, S.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Berger, C.] CNRS, Inst Neel, F-38042 Grenoble, France. RP Sprinkle, M (reprint author), Georgia Inst Technol, Atlanta, GA 30332 USA. RI Vizzini, Sebastien/F-8063-2012; BERTRAN, Francois/B-7515-2008; Tejeda, Antonio/C-4711-2014 OI BERTRAN, Francois/0000-0002-2416-0514; Tejeda, Antonio/0000-0003-0125-4603 FU W. M. Keck Foundation; French Embassy; NSF [DMR-0820382]; ANR Foundation (France); U. S. DOE through Ames Lab [W-7405-Eng-82]; DMS; U. S. DOE [DEAC03-76SF00098] FX This research was supported by the W. M. Keck Foundation, the Partner University Fund from the French Embassy and the NSF under Grant No. DMR-0820382, and the ANR Foundation (France). The mu CAT beam line is supported by the U. S. DOE through Ames Lab under Contract No. W-7405-Eng-82. ARPES measurements at UC Berkeley and LBNL were supported by the DMS and Engineering of the U. S. DOE under Contract No. DEAC03-76SF00098. Both the ALS and APS are operated by the DOE's Office of BES. NR 28 TC 242 Z9 242 U1 6 U2 99 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 27 PY 2009 VL 103 IS 22 AR 226803 DI 10.1103/PhysRevLett.103.226803 PG 4 WC Physics, Multidisciplinary SC Physics GA 524ZD UT WOS:000272182000044 PM 20366119 ER PT J AU Zhu, WG Qiu, XF Iancu, V Chen, XQ Pan, H Wang, W Dimitrijevic, NM Rajh, T Meyer, HM Paranthaman, MP Stocks, GM Weitering, HH Gu, BH Eres, G Zhang, ZY AF Zhu, Wenguang Qiu, Xiaofeng Iancu, Violeta Chen, Xing-Qiu Pan, Hui Wang, Wei Dimitrijevic, Nada M. Rajh, Tijana Meyer, Harry M., III Paranthaman, M. Parans Stocks, G. M. Weitering, Hanno H. Gu, Baohua Eres, Gyula Zhang, Zhenyu TI Band Gap Narrowing of Titanium Oxide Semiconductors by Noncompensated Anion-Cation Codoping for Enhanced Visible-Light Photoactivity SO PHYSICAL REVIEW LETTERS LA English DT Article ID AUGMENTED-WAVE METHOD; N-DOPED TIO2; PHOTOCATALYSIS; NANOPARTICLES; PRINCIPLES; DIOXIDE; ORIGIN; CELLS; FILMS; WATER AB "Noncompensated n-p codoping" is established as an enabling concept for enhancing the visible-light photoactivity of TiO(2) by narrowing its band gap. The concept embodies two crucial ingredients: The electrostatic attraction within the n-p dopant pair enhances both the thermodynamic and kinetic solubilities, and the noncompensated nature ensures the creation of tunable intermediate bands that effectively narrow the band gap. The concept is demonstrated using first-principles calculations, and is validated by direct measurements of band gap narrowing using scanning tunneling spectroscopy, dramatically redshifted optical absorbance, and enhanced photoactivity manifested by efficient electron-hole separation in the visible-light region. This concept is broadly applicable to the synthesis of other advanced functional materials that demand optimal dopant control. C1 [Zhu, Wenguang; Chen, Xing-Qiu; Meyer, Harry M., III; Stocks, G. M.; Weitering, Hanno H.; Eres, Gyula; Zhang, Zhenyu] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Zhu, Wenguang; Iancu, Violeta; Weitering, Hanno H.; Zhang, Zhenyu] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Qiu, Xiaofeng; Paranthaman, M. Parans] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Pan, Hui; Wang, Wei; Gu, Baohua] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Dimitrijevic, Nada M.; Rajh, Tijana] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Dimitrijevic, Nada M.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Zhu, WG (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Gu, Baohua/B-9511-2012; Paranthaman, Mariappan/N-3866-2015; Stocks, George Malcollm/Q-1251-2016; Iancu, Violeta/B-7657-2008; Zhu, Wenguang/F-4224-2011; Wang, Wei/B-5924-2012; Eres, Gyula/C-4656-2017; Pan, Hui/A-2702-2009; Krausnick, Jennifer/D-6291-2013 OI Gu, Baohua/0000-0002-7299-2956; Paranthaman, Mariappan/0000-0003-3009-8531; Stocks, George Malcollm/0000-0002-9013-260X; Iancu, Violeta/0000-0003-1146-2959; Zhu, Wenguang/0000-0003-0819-595X; Eres, Gyula/0000-0003-2690-5214; Pan, Hui/0000-0002-6515-4970; FU Division of Materials Science and Engineering, Office of Basic Energy Sciences, Department of Energy; ORNL; DOE [DE-AC02-06CH11357] FX This work was supported by the Division of Materials Science and Engineering, Office of Basic Energy Sciences, Department of Energy, and in part by the LDRD Program of ORNL. The calculations were performed at NERSC of DOE. The EPR experiments were performed at Argonne under DOE BES Contract No. DE-AC02-06CH11357. NR 36 TC 207 Z9 213 U1 15 U2 146 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 27 PY 2009 VL 103 IS 22 AR 226401 DI 10.1103/PhysRevLett.103.226401 PG 4 WC Physics, Multidisciplinary SC Physics GA 524ZD UT WOS:000272182000039 PM 20366114 ER PT J AU Schmid, B Flynn, CJ Newsom, RK Turner, DD Ferrare, RA Clayton, MF Andrews, E Ogren, JA Johnson, RR Russell, PB Gore, WJ Dominguez, R AF Schmid, Beat Flynn, Connor J. Newsom, Rob K. Turner, David D. Ferrare, Richard A. Clayton, Marian F. Andrews, Elisabeth Ogren, John A. Johnson, Roy R. Russell, Philip B. Gore, Warren J. Dominguez, Roseanne TI Validation of aerosol extinction and water vapor profiles from routine Atmospheric Radiation Measurement Program Climate Research Facility measurements SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID INTENSIVE OBSERVATION PERIODS; SOUTHERN GREAT-PLAINS; RAMAN LIDAR; SUN PHOTOMETER; COLUMN CLOSURE; OPTICAL DEPTH; ACE-ASIA; RADIOMETERS; AIRBORNE; CALIBRATION AB The accuracy with which vertical profiles of aerosol extinction sigma(ep)(lambda) can be measured using routine Atmospheric Radiation Measurement Program (ARM) Climate Research Facility (ACRF) measurements and was assessed using data from two airborne field campaigns, the ARM Aerosol Intensive Operation Period (AIOP, May 2003), and the Aerosol Lidar Validation Experiment (ALIVE, September 2005). This assessment pertains to the aerosol at its ambient concentration and thermodynamic state (i.e., sigma(ep)(lambda) either free of or corrected for sampling artifacts) and includes the following ACRF routine methods: Raman lidar, micropulse lidar (MPL), and in situ aerosol profiles (IAP) with a small aircraft. Profiles of aerosol optical depth tau(p)(lambda), from which the profiles of sigma(ep)(lambda) are derived through vertical differentiation, were measured by the NASA Ames Airborne Tracking 14-channel Sun photometer (AATS-14); these data were used as benchmark in this evaluation. The ACRF IAP sigma(ep)(550 nm) were lower by 11% (during AIOP) and higher by 1% (during ALIVE) when compared to AATS-14. The ACRF MPL sigma(ep)(523 nm) measurements were higher by 24% (AIOP) and 19-21% (ALIVE) compared to AATS-14, but the correlation improved significantly during ALIVE. In the AIOP, a second MPL operated by NASA showed a smaller positive bias (13%) with respect to AATS-14. The ACRF Raman lidar sigma(ep)(355 nm) measurements were larger by 54% (AIOP) and by 6% (ALIVE) compared to AATS-14. The large bias in the Raman lidar measurements during AIOP stemmed from a gradual loss of Raman lidar sensitivity starting about the end of 2001 going unnoticed until after AIOP. A major refurbishment and upgrade of the instrument and improvements to a data processing algorithm led to the significant improvement and very small bias in ALIVE. Finally, we find that during ALIVE the Raman lidar water vapor densities rho(w) are 8% larger when compared to AATS-14, whereas in situ measured rho(w) aboard two different aircraft are smaller than the AATS-14 values by 0.3-3%. C1 [Schmid, Beat; Flynn, Connor J.; Newsom, Rob K.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Turner, David D.] Univ Wisconsin, Atmospher & Ocean Sci Dept, Madison, WI 53706 USA. [Clayton, Marian F.] NASA, Langley Res Ctr, SSAI, Hampton, VA 23681 USA. [Andrews, Elisabeth] Univ Colorado, CIRES, Boulder, CO 80309 USA. [Ogren, John A.] NOAA, ESRL, Boulder, CO 80305 USA. [Dominguez, Roseanne] Univ Calif Santa Cruz, Univ Affiliated Res Ctr, NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Schmid, B (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. EM beat.schmid@pnl.gov; connor.flynn@pnl.gov; rob.newsom@pnl.gov; dturner@ssec.wisc.edu; richard.a.ferrare@nasa.gov; marian.b.clayton@nasa.gov; betsy.andrews@noaa.gov; john.a.ogren@noaa.gov; roy.r.johnson@nasa.gov; philip.b.russell@nasa.gov; warren.j.gore@nasa.gov; roseanne.dominguez@nasa.gov RI Ogren, John/M-8255-2015 OI Ogren, John/0000-0002-7895-9583 FU DOE ARM [DE-FG02-08ER64538] FX The Atmospheric Radiation Measurement Program (ARM) is sponsored by the U. S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research. The success of ALIVE and AIOP was due to the hard work and dedicated efforts from a large team of scientists and engineers; CIRPAS Twin Otter, Sky Research Jetstream 31, and Cessna pilots, crew, and support personnel; SGP site personnel; ARM infrastructure support; weather forecasters; and support from Greenwood Aviation at Ponca City airport. We thank ARM for the support of these campaigns. Support from NASA's Radiation Science and Airborne Science Programs is also greatly acknowledged. Work at the University of Wisconsin-Madison was supported by the DOE ARM grant DE-FG02-08ER64538. NR 38 TC 12 Z9 12 U1 1 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 26 PY 2009 VL 114 AR D22207 DI 10.1029/2009JD012682 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 524MI UT WOS:000272147000005 ER PT J AU Maggi, F Riley, WJ AF Maggi, Federico Riley, William J. TI Transient competitive complexation in biological kinetic isotope fractionation explains nonsteady isotopic effects: Theory and application to denitrification in soils SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article ID NITROUS-OXIDE; CHEMICAL-REACTIONS; ACTIVATED COMPLEX; NITRIFICATION AB The theoretical formulation of biological kinetic isotope fractionation often assumes first-order or Michaelis-Menten kinetics, the latter solved under the quasi-steady state assumption. Both formulations lead to a constant isotope fractionation factor, therefore they may return incorrect estimations of isotopic effects and misleading interpretations of isotopic signatures when fractionation is not a steady process. We have analyzed the isotopic signature of denitrification in biogeochemical soil systems by Menyailo and Hungate (2006) in which high and variable (15)N-N(2)O enrichment during N(2)O production and inverse isotope fractionation during N(2)O consumption could not be explained with first-order kinetics and the Rayleigh equation, or with Michaelis-Menten kinetics. When Michaelis-Menten kinetics were coupled to Monod kinetics to describe biomass and enzyme dynamics, and the quasi-steady state assumption was relaxed, transient Michaelis-Menten-Monod kinetics accurately reproduced the observed concentrations, and variable and inverse isotope fractionations. These results imply a substantial revision in modeling isotopic effects, suggesting that steady state kinetics such as first-order, Rayleigh, and classic Michaelis-Menten kinetics should be superseded by transient kinetics in conjunction with biomass and enzyme dynamics. C1 [Maggi, Federico] Univ Sydney, Sch Civil Engn, Sydney, NSW 2006, Australia. [Maggi, Federico; Riley, William J.] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Maggi, F (reprint author), Univ Sydney, Sch Civil Engn, Bldg J05, Sydney, NSW 2006, Australia. EM f.maggi@usyd.edu.au RI Riley, William/D-3345-2015 OI Riley, William/0000-0002-4615-2304 FU Laboratory Directed Research and Development (LDRD); Berkeley Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors thank Christof Meile and Bruce Hungate for their comments and suggestions on the first development of the models. This work was supported by Laboratory Directed Research and Development (LDRD) funding from Berkeley Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under contract DE-AC02-05CH11231. NR 21 TC 13 Z9 13 U1 1 U2 21 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD NOV 26 PY 2009 VL 114 AR G04012 DI 10.1029/2008JG000878 PG 13 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 524ML UT WOS:000272147300001 ER PT J AU Lin, W Pringle, WC Novick, SE Blake, TA AF Lin, Wei Pringle, Wallace C. Novick, Stewart E. Blake, Thomas A. TI Microwave Spectrum of the Argon-Tropolone van der Waals Complex SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID S-1 STATE; PROTON; CLUSTERS AB The rotational spectrum of the argon-tropolone van der Waals complex in the ground vibrational state has been measured in the frequency range of 6-17 GHz using a pulsed-jet, Balle-Flygare-type Fourier transform microwave spectrometer. Eighty-six transitions for the complex (Ar-(C7H6O2)-C-12-O-16) were observed, assigned, and fit using a Watson A-reduction Hamiltonian giving the rotational and centrifugal distortion constants A = 1080.4365(3) MHz, B = 883.4943(3) MHz, C = 749.057](2) MHz, Delta(J) = 2.591(2) kHz, Delta(JK) = -3.32(1) kHz, Delta(K) = 5.232(9) kHz, delta(J) = 0.944(1) kHz, and delta(K) = -0.028(8) kHz. The tunneling motion of the hydroxyl proton in the tropolone moiety is quenched in the ground electronic state by complexation with argon. The coordinates of the argon atom in the monomer's principal axis system are a = 0.43 angstrom, b = 0.23 angstrom, and c 3.48 angstrom. C1 [Blake, Thomas A.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Lin, Wei] Univ St Mary, Dept Nat Sci & Math, Leavenworth, KS 66048 USA. [Pringle, Wallace C.; Novick, Stewart E.] Wesleyan Univ, Dept Chem, Middletown, CT 06459 USA. RP Blake, TA (reprint author), Pacific NW Natl Lab, MS K8-88,POB 999, Richland, WA 99352 USA. EM ta.blake@pnl.gov RI lin, wei/D-3591-2009 FU Petroleum Research Fund; Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory; [DE-AC05-76RLO 1830] FX This work is supported by the Petroleum Research Fund in the form of research grants (to S.E.N.). T.A.B. is a scientific consultant with the W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory. PNNL is operated for the United States Department of Energy by the Battelle Memorial Institute under contract DE-AC05-76RLO 1830. NR 14 TC 1 Z9 1 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD NOV 26 PY 2009 VL 113 IS 47 BP 13076 EP 13080 DI 10.1021/jp901086a PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 520FL UT WOS:000271825800003 PM 19441806 ER PT J AU Haber, LH Doughty, B Leone, SR AF Haber, Louis H. Doughty, Benjamin Leone, Stephen R. TI Photoelectron Angular Distributions and Cross Section Ratios of Two-Color Two-Photon Above Threshold Ionization of Argon SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID ELECTRONS; PHOTOIONIZATION; SCATTERING; LIGHT; WAVE AB Anisotropy parameters and cross section ratios of two-color two-photon above threshold ionization sidebands from argon are measured using photoelectron velocity map imaging with the selected 13th or 15th high-order harmonics in a perturbative 800 nm dressing field. A new data analysis technique determines accurate anisotropy parameters of the photoelectron angular distributions for each sideband by subtracting a sequence of percentages of the single-photon ionization background from the above threshold ionization signal to correct for the angular averaging of overlapping photoelectron energies. The results provide a fundamental test of theoretical predictions based on second-order perturbation theory with a one-electron model and the soft-photon approximation and show agreement with theory for the cross section ratios. However, discrepancies between the theoretically predicted and experimentally determined photoelectron angular distributions demonstrate the need for a more comprehensive theoretical description of two-color two-photon above threshold ionization. C1 [Leone, Stephen R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Phys, Berkeley, CA 94720 USA. RP Leone, SR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem, Berkeley, CA 94720 USA. RI Haber, Louis/A-6762-2013; Doughty, Benjamin /M-5704-2016 OI Doughty, Benjamin /0000-0001-6429-9329 FU Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation Engineering Research Center, Extreme Ultraviolet Science and Technology [EEC-0310717]; Weizmann Institute of Science FX The authors thank Daniel Strasser and Frederic Fournier for their helpful discussions. The authors gratefully acknowledge financial support by the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors are also grateful for related support for high-order harmonic generation studies from the National Science Foundation Engineering Research Center, Extreme Ultraviolet Science and Technology, EEC-0310717. Stephen Leone gratefully acknowledges the generous support of a Morris Belkin Visiting Professorship at the Weizmann Institute of Science. Stephen Leone also gratefully acknowledges the constant support and friendship of Bob Field throughout our entire careers. NR 28 TC 20 Z9 20 U1 2 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD NOV 26 PY 2009 VL 113 IS 47 BP 13152 EP 13158 DI 10.1021/jp903231n PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 520FL UT WOS:000271825800012 PM 19610629 ER PT J AU Hause, ML Hall, GE Sears, TJ AF Hause, Michael L. Hall, Gregory E. Sears, Trevor J. TI Sub-Doppler Stark Spectroscopy in the A-X (1,0) Band of CN SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID ELECTRIC-DIPOLE-MOMENT; STATES; TRANSITION; MOLECULE; 2PI; RED AB The effect of external electric fields has been measured in hyperfine-resolved sub-Doppler transitions in the A (2)Pi-X (2)Sigma (1,0) band of the CN radical near 10 900 cm(-1). Static electric fields less than 1 kV/cm are sufficient to mix the most closely spaced Lambda-dpublets in the A state, leading to Stark spectra with both new and shifted resonances. Simulations of the saturation-dip Stark spectral line profiles allow extraction of the A-state permanent electric dipole moment with a magnitude of 0.06 +/- 0.02 D. C1 [Hause, Michael L.; Hall, Gregory E.; Sears, Trevor J.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11793 USA. RP Sears, TJ (reprint author), Brookhaven Natl Lab, Dept Chem, Bldg 555,POB 5000, Upton, NY 11793 USA. EM gehall@bnl.gov; sears@bnl.gov RI Hall, Gregory/D-4883-2013; Sears, Trevor/B-5990-2013 OI Hall, Gregory/0000-0002-8534-9783; Sears, Trevor/0000-0002-5559-0154 FU U.S. Department of Energy, Office of Science [DE-AC02-98CH10886]; Division of Chemical Sciences, Geosciences, & Biosciences within the Office of Basic Energy Science FX This work was carried out at Brookhaven National Laboratory under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy, Office of Science, and supported by its Division of Chemical Sciences, Geosciences, & Biosciences within the Office of Basic Energy Sciences. NR 15 TC 6 Z9 6 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD NOV 26 PY 2009 VL 113 IS 47 BP 13342 EP 13346 DI 10.1021/jp906085e PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 520FL UT WOS:000271825800032 PM 19645435 ER PT J AU Yang, ZZ Xu, T Ito, YS Welp, U Kwoko, WK AF Yang, Zhenzhen Xu, Tao Ito, Yasuo Welp, Ulrich Kwoko, Wai Kwong TI Enhanced Electron Transport in Dye-Sensitized Solar Cells Using Short ZnO Nanotips on A Rough Metal Anode SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY; CHARGE-COLLECTION; NANOTUBE ARRAYS; NANOWIRE ARRAYS; TIO2 NANOTUBES; WORK FUNCTION; ZINC-OXIDE; EFFICIENCY; RECOMBINATION; INJECTION AB Many efforts have been directed toward the enhancement of electron transport in dye-sensitized solar cells (DSSC) using one-dimensional nanoarchitectured semiconductors. However, the improvement resulting from these ordered 1-D nanostructured electrodes is often offset or diminished by the deterioration in other device parameters intrinsically associated with the use of these 1-D nanostrucutres, such as the two-sided effect of the length of the nanowires impacting the series resistance and roughness factor. In this work, we mitigate this problem by allocating part of the roughness factor to the collecting anode instead of imparting all the roughness factors onto the semiconductor layer attached to the anode. A microscopically rough Zn microtip array is used as ail electron-collecting anode on which ZnO nanotips are grown to serve as the semiconductor component of the DSSC. For the same surface roughness factor, our Zn-microtip vertical bar ZnO-nanotip DSSC exhibits an enhanced fill factor compared with DSSCs that have ZnO nanowires Supported by a planar anode. In addition, the open-circuit voltage of the Zn-microtip vertical bar ZnO-nanotip DSSC is also improved due to a favorable band shift at the Zn-ZnO interface, which raises the Fermi level of the semiconductor and consequently enlarges the energy gap between the quasi-Fermi level of ZnO and the redox species. With these improvements, the overall efficiency becomes 1.4% with ail open-circuit voltage of 770 mV, while the surface roughness factor of ZnO is approximately 60. Electrochemical impedance spectroscopic study reveals that the electron collection time is much shorter than the electron lifetime, suggesting that fast electron collection occurs in our device due to the significantly reduced electron collection distance along the short ZnO nanotips. The overall improvement demonstrates a new approach to enhance the efficiency of dye-sensitized solar cells. C1 [Yang, Zhenzhen; Xu, Tao] No Illinois Univ, Dept Chem & Biochem, De Kalb, IL 60115 USA. [Ito, Yasuo] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Welp, Ulrich; Kwoko, Wai Kwong] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Xu, T (reprint author), No Illinois Univ, Dept Chem & Biochem, De Kalb, IL 60115 USA. EM txu@niu.edu RI Yang, Zhenzhen/A-5904-2012 FU American Chemical Society Petroleum Research Fund [46374-G10]; U.S. Department of Energy [DE-AC02-06CH11357] FX We acknowledge the financial support from the American Chemical Society Petroleum Research Fund (Type G 46374-G10) and the U.S. Department of Energy, under contract No. DE-AC02-06CH11357. TX is grateful for the stimulating discussions with Dr. Alex B. F. Martinson at the Materials Science Division, Argonne National Laboratory. NR 43 TC 51 Z9 52 U1 0 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 26 PY 2009 VL 113 IS 47 BP 20521 EP 20526 DI 10.1021/jp908678x PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 520FM UT WOS:000271826100058 ER PT J AU Peers, G Truong, TB Ostendorf, E Busch, A Elrad, D Grossman, AR Hippler, M Niyogi, KK AF Peers, Graham Truong, Thuy B. Ostendorf, Elisabeth Busch, Andreas Elrad, Dafna Grossman, Arthur R. Hippler, Michael Niyogi, Krishna K. TI An ancient light-harvesting protein is critical for the regulation of algal photosynthesis SO NATURE LA English DT Article ID CARBON-CONCENTRATING MECHANISM; CHLAMYDOMONAS-REINHARDTII; PHOTOOXIDATIVE STRESS; BIOENERGETIC PATHWAYS; ENERGY-DISSIPATION; IRON-DEFICIENCY; GENOME REVEALS; GENES; CYCLE; EXPRESSION AB Light is necessary for photosynthesis, but its absorption by pigment molecules such as chlorophyll can cause severe oxidative damage and result in cell death. The excess absorption of light energy by photosynthetic pigments has led to the evolution of protective mechanisms that operate on the timescale of seconds to minutes and involve feedback-regulated de-excitation of chlorophyll molecules in photosystem II (qE). Despite the significant contribution of eukaryotic algae to global primary production(1), little is known about their qE mechanism, in contrast to that in flowering plants(2,3). Here we show that a qE-deficient mutant of the unicellular green alga Chlamydomonas reinhardtii, npq4, lacks two of the three genes encoding LHCSR (formerly called LI818). This protein is an ancient member of the light-harvesting complex superfamily, and orthologues are found throughout photosynthetic eukaryote taxa(4), except in red algae and vascular plants. The qE capacity of Chlamydomonas is dependent on environmental conditions and is inducible by growth under high light conditions. We show that the fitness of the npq4 mutant in a shifting light environment is reduced compared to wild-type cells, demonstrating that LHCSR is required for survival in a dynamic light environment. Thus, these data indicate that plants and algae use different proteins to dissipate harmful excess light energy and protect the photosynthetic apparatus from damage. C1 [Peers, Graham; Truong, Thuy B.; Niyogi, Krishna K.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Truong, Thuy B.; Niyogi, Krishna K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Ostendorf, Elisabeth; Busch, Andreas; Hippler, Michael] Univ Munster, Inst Plant Biochem & Biotechnol, D-48143 Munster, Germany. [Elrad, Dafna; Grossman, Arthur R.] Carnegie Inst, Dept Plant Biol, Stanford, CA 94305 USA. RP Niyogi, KK (reprint author), Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. EM mhippler@uni-muenster.de; niyogi@berkeley.edu FU Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy; Deutsche Forschungsgemeinschaft; National Science Foundation FX We thank M. Guertin for providing the anti-LHCSR (LI818) antibody. This work was supported by grants from the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy ( K. K. N.), the Deutsche Forschungsgemeinschaft ( M. H.), and the National Science Foundation ( A. R. G.). NR 33 TC 271 Z9 275 U1 11 U2 119 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD NOV 26 PY 2009 VL 462 IS 7272 BP 518 EP U215 DI 10.1038/nature08587 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 524LG UT WOS:000272144200047 PM 19940928 ER PT J AU Ong, DCT Ho, YM Rudduck, C Chin, K Kuo, WL Lie, DKH Chua, CLM Tan, PH Eu, KW Seow-Choen, F Wong, CY Hong, GS Gray, JW Lee, ASG AF Ong, D. C. T. Ho, Y. M. Rudduck, C. Chin, K. Kuo, W-L Lie, D. K. H. Chua, C. L. M. Tan, P. H. Eu, K. W. Seow-Choen, F. Wong, C. Y. Hong, G. S. Gray, J. W. Lee, A. S. G. TI LARG at chromosome 11q23 has functional characteristics of a tumor suppressor in human breast and colorectal cancer SO ONCOGENE LA English DT Article DE LARG; tumor suppressor; breast cancer; colorectal cancer ID NUCLEOTIDE-EXCHANGE FACTORS; LEUKEMIA-ASSOCIATED RHOGEF; CELL LUNG-CANCER; PDZ DOMAINS; HETEROZYGOSITY; IDENTIFICATION; CARCINOMA; GENE; PROTEINS; DELETION AB Deletion of 11q23-q24 is frequent in a diverse variety of malignancies, including breast and colorectal carcinoma, implicating the presence of a tumor suppressor gene at that chromosomal region. We examined a 6-Mb region on 11q23 by high-resolution deletion mapping, using both loss of heterozygosity analysis and customized microarray comparative genomic hybridization. LARG (leukemia-associated Rho guanine-nucleotide exchange factor) (also called ARHGEF12), identified from the analysed region, is frequently underexpressed in breast and colorectal carcinomas with a reduced expression observed in all breast cancer cell lines (n = 11), in 12 of 38 (32%) primary breast cancers, 5 of 10 (50%) colorectal cell lines and in 20 of 37 (54%) primary colorectal cancers. Underexpression of the LARG transcript was significantly associated with genomic loss (P = 0.00334). Hypermethylation of the LARG promoter was not detected in either breast or colorectal cancer, and treatment of four breast and four colorectal cancer cell lines with 5-aza-2'-deoxycytidine and/or trichostatin A did not result in a reactivation of LARG. Enforced expression of LARG in breast and colorectal cancer cells by stable transfection resulted in reduced cell proliferation and colony formation, as well as in a markedly slower cell migration rate in colorectal cancer cells, providing functional evidence for LARG as a candidate tumor suppressor gene. Oncogene (2009) 28, 4189-4200; doi: 10.1038/onc.2009.266; published online 7 September 2009 C1 [Lee, A. S. G.] Natl Canc Ctr, Div Med Sci, Mol Oncol Lab, Singapore 169610, Singapore. [Rudduck, C.; Tan, P. H.] Singapore Gen Hosp, Dept Pathol, Singapore 0316, Singapore. [Chin, K.; Kuo, W-L; Gray, J. W.] Univ Calif San Francisco, UCSF Comprehens Canc Ctr, San Francisco, CA 94143 USA. [Kuo, W-L; Gray, J. W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Eu, K. W.; Seow-Choen, F.] Singapore Gen Hosp, Dept Colorectal Surg, Singapore 0316, Singapore. [Wong, C. Y.; Hong, G. S.] Singapore Gen Hosp, Dept Gen Surg, Singapore 0316, Singapore. [Lee, A. S. G.] Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Microbiol, Singapore 117595, Singapore. RP Lee, ASG (reprint author), Natl Canc Ctr, Div Med Sci, Mol Oncol Lab, Singapore 169610, Singapore. EM dmslsg@nccs.com.sg FU National Medical Research Council (NMRC) of Singapore [NMRC/0076/1995, NMRC/0440/2000, NMRC/0570/2001, NMRC/0843/2004]; SingHealth Foundation [SHF/FG235P/2005]; Singapore Cancer Society; SGH Research Fund; Cancer Research Education Fund; NCC and Department of Clinical Research, SGH; US Department of Energy [DE-AC02-05CH11231, USAMRMC BC 061995]; National Institutes of Health, National Cancer Institute [P50 CA 58207, P50 CA 83639, P30 CA 82103, U54 CA 112970, U24 CA 126477, P01 CA 64602]; National Human Genome Research Institute [U24 CA 126551]; SmithKline Beecham Corporation FX We thank Dr Glenn Koh for assistance with review of case notes; YC Seo, Angela Chang, S Tohari, Irene HK Lim and Gan Yar Chze for excellent technical assistance; and Dr Eric Yap for helpful discussions. This study was supported by Grants from the National Medical Research Council (NMRC) of Singapore (NMRC/0076/1995, NMRC/0440/2000, NMRC/0570/2001, NMRC/0843/2004); SingHealth Foundation (SHF/FG235P/2005); the Singapore Cancer Society, SGH Research Fund, Cancer Research Education Fund, NCC and Department of Clinical Research, SGH, to AL. We gratefully acknowledge the grant support from the US Department of Energy under Contract No. DE-AC02-05CH11231, USAMRMC BC 061995; National Institutes of Health, National Cancer Institute (P50 CA 58207, P50 CA 83639, P30 CA 82103, U54 CA 112970, U24 CA 126477 P01 CA 64602); National Human Genome Research Institute (U24 CA 126551) and SmithKline Beecham Corporation, to JWG. NR 42 TC 14 Z9 15 U1 0 U2 2 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0950-9232 J9 ONCOGENE JI Oncogene PD NOV 26 PY 2009 VL 28 IS 47 BP 4189 EP 4200 DI 10.1038/onc.2009.266 PG 12 WC Biochemistry & Molecular Biology; Oncology; Cell Biology; Genetics & Heredity SC Biochemistry & Molecular Biology; Oncology; Cell Biology; Genetics & Heredity GA 534DQ UT WOS:000272876100005 PM 19734946 ER PT J AU Pan, H Qiu, XF Ivanovc, IN Meyer, HM Wang, W Zhu, WG Paranthaman, MP Zhang, ZY Eres, G Gu, BH AF Pan, Hui Qiu, Xiaofeng Ivanovc, Ilia N. Meyer, Harry M. Wang, Wei Zhu, Wenguang Paranthaman, M. Parans Zhang, Zhenyu Eres, Gyula Gu, Baohua TI Fabrication and characterization of brookite-rich, visible light-active TiO2 films for water splitting SO APPLIED CATALYSIS B-ENVIRONMENTAL LA English DT Article DE Brookite; TiO2; Water splitting; Catalysis; Bandgap; Photoenergy ID TITANIUM-DIOXIDE; NANOCRYSTALLINE TIO2; PHOTOCATALYTIC ACTIVITY; NANOTUBE ARRAYS; SOLAR-CELLS; BAND-GAP; PHASE; PERFORMANCE; OXIDATION; PARTICLES AB We report that mild oxidation of Ti foils in air results in brookite-rich titanium oxide (TiO2) films with similar spectral response to that of dye-sensitized TiO2. X-ray powder diffraction and Raman spectroscopy show that the onset of brookite formation occurs at 500 degrees C, and the material is characterized by a strong absorption band in the visible spectral range. The first-principle calculations show that enhanced visible light absorption correlates with the presence of Ti interstitials. Photocurrent density measurements of water splitting reveal that the brookite-rich TiO2 exhibits the highest photocatalytic performance among the different forms of TiO2 produced by oxidation of Ti foils. With increasing oxidation temperature transformation to the rutile phase accompanied by declining visible range photoactivity is observed. (C) 2009 Elsevier B.V. All rights reserved. C1 [Pan, Hui; Wang, Wei; Gu, Baohua] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Qiu, Xiaofeng; Paranthaman, M. Parans] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Ivanovc, Ilia N.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Meyer, Harry M.; Zhang, Zhenyu; Eres, Gyula] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Zhu, Wenguang; Zhang, Zhenyu] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Gu, BH (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM gub1@ornl.gov RI Zhu, Wenguang/F-4224-2011; Wang, Wei/B-5924-2012; Gu, Baohua/B-9511-2012; Dom, Rekha/B-7113-2012; Pan, Hui/A-2702-2009; Paranthaman, Mariappan/N-3866-2015; Eres, Gyula/C-4656-2017; OI Zhu, Wenguang/0000-0003-0819-595X; Gu, Baohua/0000-0002-7299-2956; Pan, Hui/0000-0002-6515-4970; Paranthaman, Mariappan/0000-0003-3009-8531; Eres, Gyula/0000-0003-2690-5214; ivanov, ilia/0000-0002-6726-2502 FU Oak Ridge National Laboratory (ORNL); U.S. Department of Energy (DOE) [DE-AC05-00OR22725] FX This work was sponsored in part by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL) and the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, U.S. Department of Energy (DOE). ORNL is managed by UT-Battelle LLC for DOE under contract No. DE-AC05-00OR22725. The DFT calculations were performed at Computational Center of Science (CCS) of ORNL. NR 42 TC 29 Z9 31 U1 3 U2 34 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-3373 J9 APPL CATAL B-ENVIRON JI Appl. Catal. B-Environ. PD NOV 25 PY 2009 VL 93 IS 1-2 BP 90 EP 95 DI 10.1016/j.apcatb.2009.09.016 PG 6 WC Chemistry, Physical; Engineering, Environmental; Engineering, Chemical SC Chemistry; Engineering GA 525XR UT WOS:000272251600011 ER PT J AU Ouellet, M Adams, PD Keasling, JD Mukhopadhyay, A AF Ouellet, Mario Adams, Paul D. Keasling, Jay D. Mukhopadhyay, Aindrila TI A rapid and inexpensive labeling method for microarray gene expression analysis SO BMC BIOTECHNOLOGY LA English DT Article ID QUALITY-CONTROL MAQC; PCR; QUANTIFICATION; CDNA AB Background: Global gene expression profiling by DNA microarrays is an invaluable tool in biological research. However, existing labeling methods are time consuming and costly and therefore often limit the scale of microarray experiments and sample throughput. Here we introduce a new, fast, inexpensive method for direct random-primed fluorescent labeling of eukaryotic cDNA for gene expression analysis and compare the results obtained on the NimbleGen microarray platform with two other widely-used labeling methods, namely the NimbleGen-recommended double-stranded cDNA protocol and the indirect (aminoallyl) method. Results: Two total RNA samples were labeled with each method and hybridized to NimbleGen expression arrays. Although all methods tested here provided similar global results and biological conclusions, the new direct random-primed cDNA labeling method provided slightly better correlation between replicates compared to the other methods and thus increased ability to find statistically significant differentially expressed genes. Conclusion: The new direct random-primed cDNA labeling method introduced here is suitable for gene expression microarrays and provides a rapid, inexpensive alternative to existing methods. Using NimbleGen microarrays, the method produced excellent results comparable to those obtained with other methods. However, the simplicity and cost-effectiveness of the new method allows for increased sample throughput in microarray experiments and makes the process amenable to automation with a relatively simple liquid handling system. C1 [Ouellet, Mario; Adams, Paul D.; Keasling, Jay D.; Mukhopadhyay, Aindrila] Lawrence Berkeley Natl Lab, Joint Bioenergy Inst, Emeryville, CA USA. [Ouellet, Mario; Adams, Paul D.; Keasling, Jay D.; Mukhopadhyay, Aindrila] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Adams, Paul D.; Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. RP Mukhopadhyay, A (reprint author), Lawrence Berkeley Natl Lab, Joint Bioenergy Inst, Emeryville, CA USA. EM mouellet@lbl.gov; pdadams@lbl.gov; keasling@berkeley.edu; amukhopadhyay@lbl.gov RI Keasling, Jay/J-9162-2012; Adams, Paul/A-1977-2013 OI Keasling, Jay/0000-0003-4170-6088; Adams, Paul/0000-0001-9333-8219 FU U.S. Department of Energy [DE-AC02-05CH11231] FX This work was part of the DOE Joint BioEnergy Institute http://www.jbei.org supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy. NR 15 TC 11 Z9 12 U1 0 U2 4 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1472-6750 J9 BMC BIOTECHNOL JI BMC Biotechnol. PD NOV 25 PY 2009 VL 9 AR 97 DI 10.1186/1472-6750-9-97 PG 12 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 532XC UT WOS:000272782700001 PM 19939278 ER PT J AU Sato, A Isaac, B Phillips, CM Rillo, R Carlton, PM Wynne, DJ Kasad, RA Dernburg, AF AF Sato, Aya Isaac, Berith Phillips, Carolyn M. Rillo, Regina Carlton, Peter M. Wynne, David J. Kasad, Roshni A. Dernburg, Abby F. TI Cytoskeletal Forces Span the Nuclear Envelope to Coordinate Meiotic Chromosome Pairing and Synapsis SO CELL LA English DT Article ID C-ELEGANS MEIOSIS; FISSION YEAST; CAENORHABDITIS-ELEGANS; SACCHAROMYCES-CEREVISIAE; BOUQUET FORMATION; PROPHASE; RECOMBINATION; MOVEMENT; PROTEIN; MICROTUBULES AB During meiosis, each chromosome must pair with its unique homologous partner, a process that usually culminates with the formation of the synaptonemal complex (SC). In the nematode Caenorhabditis elegans, special regions on each chromosome known as pairing centers are essential for both homologous pairing and synapsis. We report that during early meiosis, pairing centers establish transient connections to the cytoplasmic microtubule network. These connections through the intact nuclear envelope require the SUN/KASH domain protein pair SUN-1 and ZYG-12. Disruption of microtubules inhibits chromosome pairing, indicating that these connections promote interhomolog interactions. Dynein activity is essential to license formation of the SC once pairing has been accomplished, most likely by overcoming a barrier imposed by the chromosome-nuclear envelope connection. Our findings thus provide insight into how homolog pairing is accomplished in meiosis and into the mechanisms regulating synapsis so that it occurs selectively between homologs. For a video summary of this article, see the PaperFlick file with the Supplemental Data available online. C1 [Sato, Aya; Rillo, Regina; Wynne, David J.; Kasad, Roshni A.; Dernburg, Abby F.] Howard Hughes Med Inst, Chevy Chase, MD 20815 USA. [Sato, Aya; Phillips, Carolyn M.; Rillo, Regina; Wynne, David J.; Kasad, Roshni A.; Dernburg, Abby F.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Sato, Aya; Isaac, Berith; Rillo, Regina; Wynne, David J.; Kasad, Roshni A.; Dernburg, Abby F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Isaac, Berith] Weizmann Inst Sci, Dept Organ Chem, IL-76100 Rehovot, Israel. [Carlton, Peter M.] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA. RP Dernburg, AF (reprint author), Howard Hughes Med Inst, Chevy Chase, MD 20815 USA. EM afdernburg@lbl.gov RI Phillips, Carolyn/E-8305-2011; OI Phillips, Carolyn/0000-0002-6228-6468; Carlton, Peter/0000-0002-5320-6024; Dernburg, Abby/0000-0001-8037-1079 FU Japan Society for the Promotion of Science; National Science Foundation; Keck Laboratory for Advanced Microscopy at the University of California, San Francisco; American Cancer Society [RSG-07-187-01-GMC]; National Institutes of Health/National Institute of General Medical Sciences [R01 GM065591] FX This work was supported by graduate research fellowships from the Japan Society for the Promotion of Science (A. S.) and the National Science Foundation (C. M. P., D. J. W and R. K.), by a research grant from the Keck Laboratory for Advanced Microscopy at the University of California, San Francisco, to P. M. C, and by research grants from the American Cancer Society (RSG-07-187-01-GMC) and the National Institutes of Health/National Institute of General Medical Sciences (R01 GM065591) to A. F. D. We are grateful to John Sedat for the use of the OMX microscope and to Kent McDonald for expert assistance with EM sample preparation. We thank Chris Malone, Miles Pfaff, Verena Jantsch, Tito Fojo, Eva Nogales, Bruce Bowerman, Yossi Gruenbaum, Pierre Gonczy, Ahna Skop, Anthony Hyman, Anne Villeneuve, and the Caenorhabditis Genetic Center for providing antibodies, strains, reagents, and technical assistance. We thank Dan Starr, Aaron Severson, Anne Villeneuve, and members of the Dernburg lab for helpful discussions. NR 47 TC 121 Z9 144 U1 0 U2 16 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0092-8674 J9 CELL JI Cell PD NOV 25 PY 2009 VL 139 IS 5 BP 907 EP 919 DI 10.1016/j.cell.2009.10.039 PG 13 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 524UR UT WOS:000272169400015 PM 19913287 ER PT J AU Zeidler, A Drewitt, JWE Salmon, PS Barnes, AC Crichton, WA Klotz, S Fischer, HE Benmore, CJ Ramos, S Hannon, AC AF Zeidler, Anita Drewitt, James W. E. Salmon, Philip S. Barnes, Adrian C. Crichton, Wilson A. Klotz, Stefan Fischer, Henry E. Benmore, Chris J. Ramos, Silvia Hannon, Alex C. TI Establishing the structure of GeS2 at high pressures and temperatures: a combined approach using x-ray and neutron diffraction SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Review ID MEDIUM RANGE ORDER; LIQUID GESE2; CHALCOGENIDE GLASSES; CRYSTAL-STRUCTURE; DISORDERED MATERIALS; RAMAN-SCATTERING; ABSORPTION-EDGE; BINARY-ALLOYS; GERMANIUM; INTERMEDIATE AB The change in structure of glassy GeS2 with pressure increasing to similar or equal to 5 GPa at ambient temperature was explored by using in situ neutron and x-ray diffraction. Under ambient conditions, the glass structure is made from a mixture of corner-and edge-sharing Ge(S-1/2)(4) tetrahedra where 47(5)% of the Ge atoms are involved in edge-sharing configurations. The network formed by these tetrahedra orders on an intermediate range as manifested by the appearance of a pronounced first sharp diffraction peak in the measured total structure factors at a scattering vector k = 1.02(2) angstrom(-1) which has a large contribution from Ge-Ge correlations. The intermediate range order breaks down when the pressure on the glass increases above approximate to 2 GPa but there does not appear to be a significant alteration of the Ge-S coordination number or corresponding bond length with increasing density. The results for the glass are consistent with a densification mechanism in which there is a replacement of edge-sharing by corner-sharing Ge centred tetrahedral motifs and/or a reduction in the Ge-(S) over cap -Ge bond angle between corner-sharing tetrahedral motifs with increasing pressure. The change in structure with increasing temperature at a pressure of similar or equal to 5 GPa was also investigated by means of in situ x-ray diffraction as the glass crystallized and then liquefied. At 5.2(1) GPa and 828(50) K the system forms a tetragonal crystal, with space group I (4) over bar 2d and cell parameters a = b = 4.97704(12) and c = 9.5355(4) angstrom, wherein corner-sharing Ge(S-1/2)(4) tetrahedra pack to form a dense three-dimensional network. A method is described for correcting x-ray diffraction data taken in situ under high pressure, high temperature conditions for a cylindrical sample, container and gasket geometry with a parallel incident beam and with a scattered beam that is defined using an oscillating radial collimator. A method is also outlined for obtaining coordination numbers from direct integration of the peaks in measured x-ray total pair distribution functions. C1 [Zeidler, Anita; Drewitt, James W. E.; Salmon, Philip S.] Univ Bath, Dept Phys, Bath BA2 7AY, Avon, England. [Barnes, Adrian C.] HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Crichton, Wilson A.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Klotz, Stefan] Univ Paris 06, IMPMC, F-75252 Paris, France. [Fischer, Henry E.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble 9, France. [Benmore, Chris J.] Argonne Natl Lab, Argonne, IL 60439 USA. [Ramos, Silvia] Diamond Light Source Ltd, Didcot OX11 0DE, Oxon, England. [Hannon, Alex C.] Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. RP Zeidler, A (reprint author), Univ Bath, Dept Phys, Bath BA2 7AY, Avon, England. RI Drewitt, James/A-1631-2010; Salmon, Philip/Q-9512-2016; Klotz, Stefan/D-6497-2017; Fischer, Henry/D-5299-2012; OI Drewitt, James/0000-0002-3510-4155; Salmon, Philip/0000-0001-8671-1011; Fischer, Henry/0000-0002-1204-0750; Zeidler, Anita/0000-0001-6501-8525; Benmore, Chris/0000-0001-7007-7749; Hannon, Alex/0000-0001-5914-1295 NR 106 TC 42 Z9 43 U1 2 U2 26 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD NOV 25 PY 2009 VL 21 IS 47 AR 474217 DI 10.1088/0953-8984/21/47/474217 PG 22 WC Physics, Condensed Matter SC Physics GA 516CL UT WOS:000271519200019 PM 21832496 ER PT J AU Somorjai, GA Frei, H Park, JY AF Somorjai, Gabor A. Frei, Heinz Park, Jeong Y. TI Advancing the Frontiers in Nanocatalysis, Biointerfaces, and Renewable Energy Conversion by Innovations of Surface Techniques SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Review ID SUM-FREQUENCY GENERATION; FT-IR SPECTROSCOPY; SCANNING-TUNNELING-MICROSCOPY; CATALYTIC CO OXIDATION; BLODGETT MONOLAYER FORMATION; OXYGEN-EVOLVING CATALYST; SINGLE-CRYSTAL SURFACES; VIBRATIONAL SPECTROSCOPY; MESOPOROUS SILICA; PLATINUM NANOPARTICLES AB The challenge of chemistry in the 21st century is to achieve 100% selectivity of the desired product molecule in multipath reactions ("green chemistry") and develop renewable energy based processes. Surface chemistry and catalysis play key roles in this enterprise. Development of in situ surface techniques such as high-pressure scanning tunneling microscopy, sum frequency generation (SFG) vibrational spectroscopy, time-resolved Fourier transform infrared methods, and ambient pressure X-ray photoelectron spectroscopy enabled the rapid advancement of three fields: nanocatalysts, biointerfaces, and renewable energy conversion chemistry. In materials nanoscience, synthetic methods have been developed to produce monodisperse metal and oxide nanoparticles (NPs) in the 0.8-10 nm range with controlled shape, oxidation states, and composition; these NPs, can be used as selective catalysts since chemical selectivity appears to be dependent on all of these experimental parameters. New spectroscopic and microscopic techniques have been developed that operate under reaction conditions and reveal the dynamic change of molecular structure of catalysts and adsorbed molecules as the reactions proceed with changes in reaction intermediates, catalyst composition, and oxidation states. SFG vibrational spectroscopy detects amino acids, peptides, and proteins adsorbed at hydrophobic and hydrophilic interfaces and monitors the change of surface structure and interactions with coadsorbed water. Exothermic reactions and photons generate hot electrons in metal NPs that may be utilized in chemical energy conversion. The photosplitting of water and carbon dioxide, an important research direction in renewable energy conversion, is discussed. C1 [Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu RI Park, Jeong Young/A-2999-2008 FU U.S. Department of Energy [DE-AC02-05CH11231] FX The authors acknowledge Wenyu Huang for his help. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geological and Biosciences, and Division of Materials Sciences and Engineering of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. NR 127 TC 293 Z9 298 U1 18 U2 319 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 25 PY 2009 VL 131 IS 46 BP 16589 EP 16605 DI 10.1021/ja9061954 PG 17 WC Chemistry, Multidisciplinary SC Chemistry GA 525AL UT WOS:000272185400001 PM 19919130 ER PT J AU Luther, JM Zheng, HM Sadtler, B Alivisatos, AP AF Luther, Joseph M. Zheng, Haimei Sadtler, Bryce Alivisatos, A. Paul TI Synthesis of PbS Nanorods and Other Ionic Nanocrystals of Complex Morphology by Sequential Cation Exchange Reactions SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID COLLOIDAL SEMICONDUCTOR NANORODS; QUANTUM DOTS; SHAPE CONTROL; INORGANIC NANOCRYSTALS; CDSE NANOCRYSTALS; SOLAR-CELLS; NANOPARTICLES; RODS; SIZE; RELAXATION AB We show that nanocrystals (NCs) with well-established synthetic protocols for high shape and size monodispersity can be used as templates to independently control the NC composition through successive cation exchange reactions. Chemical transformations like cation exchange reactions overcome a limitation in traditional colloidal synthesis, where the NC shape often reflects the inherent symmetry of the underlying lattice. Specifically we show that full or partial interconversion between wurtzite CdS, chalcocite Cu(2)S, and rock salt PbS NCs can occur while preserving anisotropic shapes unique to the as-synthesized materials. The exchange reactions are driven by disparate solubilites between the two cations by using ligands that preferentially coordinate to either monovalent or divalent transition metals. Starting with CdS, highly anisotropic PbS nanorods are created, which serve as an important material for studying strong two-dimensional quantum confinement, as well as for optoelectronic applications. In NC heterostructures containing segments of different materials, the exchange reaction can be made highly selective for just one of the components of the heterostructure. Thus, through precise control over ion insertion and removal, we can obtain interesting CdSlPbS heterostructure nanorods, where the spatial arrangement of materials is controlled through an intermediate exchange reaction. C1 [Alivisatos, A. Paul] Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94705 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Alivisatos, AP (reprint author), Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94705 USA. EM alivis@berkeley.edu RI Alivisatos , Paul /N-8863-2015 OI Alivisatos , Paul /0000-0001-6895-9048 FU U.S. Department of Energy [DE-AC02-05CH11231] FX Acknowledgment. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors acknowledge the National Center for Electron Microscopy for providing the advanced electron microscopy facilities for this work. J.M.L. thanks Jon Owen for helpful discussion. NR 48 TC 218 Z9 219 U1 20 U2 208 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 25 PY 2009 VL 131 IS 46 BP 16851 EP 16857 DI 10.1021/ja906503w PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 525AL UT WOS:000272185400056 PM 19863102 ER PT J AU Sun, X Choi, KS Soulami, A Liu, WN Khaleel, MA AF Sun, X. Choi, K. S. Soulami, A. Liu, W. N. Khaleel, M. A. TI On key factors influencing ductile fractures of dual phase (DP) steels SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Dual phases; Ductility; Finite element analysis (FEA); Fracture; Phase inhomogeneity ID FINITE-ELEMENT-ANALYSIS; DEFORMATION-BEHAVIOR; MICROSTRUCTURE; DAMAGE; LOCALIZATION; MARTENSITE AB In this paper, we examine the key factors influencing ductile failure of various grades of dual phase (DP) steels using the microstructure-based modeling approach. Various microstructure-based finite element models are generated based on the actual microstructures of DP steels with different martensite volume fractions. These models are, then, used to investigate the influence of ductility of the constituent ferrite phase and also the influence of voids introduced in the ferrite phase on the overall ductility of DP steels. It is found that with volume fraction of martensite in the microstructure less than 15%, the overall ductility of the DP steels strongly depends on the ductility of the ferrite matrix, hence pre-existing micro-voids in the microstructure significantly reduce the overall ductility of the steel. When the volume fraction of martensite is above 15%, the pre-existing voids in the ferrite matrix does not significantly reduce the overall ductility of the DP steels, and the overall ductility is more influenced by the mechanical property disparity between the two phases. The applicability of the phase inhomogeneity driven ductile failure of DIP steels is then discussed based on the obtained computational results for various grades of DP steels, and the experimentally obtained scanning electron microscopy (SEM) pictures of the corresponding grades of DP steels near fracture surface are used as evidence for result validations. (C) 2009 Elsevier B.V. All rights reserved. C1 [Sun, X.; Choi, K. S.; Soulami, A.; Liu, W. N.; Khaleel, M. A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Sun, X (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM xin.sun@pnl.gov OI khaleel, mohammad/0000-0001-7048-0749 FU Department of Energy Office of FreedomCAR and Vehicle Technologies [DE-AC05-76RL01830] FX Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract No. DE-AC05-76RL01830. This work was funded by the Department of Energy Office of FreedomCAR and Vehicle Technologies under the Automotive Lightweighting Materials Program managed by Dr. Joseph Carpenter. The authors would like to acknowledge the help of Mr. John Serkowski and Mr. Tao Fu for their help in generating the finite element mesh. NR 26 TC 77 Z9 78 U1 6 U2 34 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD NOV 25 PY 2009 VL 526 IS 1-2 BP 140 EP 149 DI 10.1016/j.msea.2009.08.010 PG 10 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 514AW UT WOS:000271366700023 ER PT J AU Young, ML Rao, R Almer, JD Haeffner, DR Lewis, JA Dunand, DC AF Young, M. L. Rao, R. Almer, J. D. Haeffner, D. R. Lewis, J. A. Dunand, D. C. TI Effect of ceramic preform geometry on load partitioning in Al2O3-Al composites with three-dimensional periodic architecture SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Metal matrix composites (MMC); Synchrotron radiation; X-ray diffraction (XRD); Aluminum; Compression test ID SYNCHROTRON X-RAY; PHASE-CONTRAST MICROTOMOGRAPHY; IN-SITU; INTERPENETRATING NETWORKS; ALUMINUM COMPOSITES; DUCTILE PARTICLES; THERMAL-EXPANSION; MICROSTRUCTURE; DIFFRACTION; DEFORMATION AB Interpenetrating Al2O3/Al composites were created by liquid-metal infiltration of 3D periodic ceramic preforms with face-centered-tetragonal symmetry produced by direct-write assembly. Volume-averaged lattice strains in the ceramic phase of the composite were measured by synchrotron X-ray diffraction for various levels of uniaxial compression stresses. Load transfer is found to occur from the metal phase to the ceramic phase, and the magnitude of the effect is in general agreement with simple rule-of-mixtures models. Spatially resolved diffraction measurements show variations in load transfer at two different positions within the composite for the elastic- and damage-deformation regimes, the latter being observed using phase-enhanced synchrotron imaging. The mechanical behavior of these interpenetrating Al2O3/Al composites with face-centered-tetragonal symmetry are compared with previous interpenetrating Al2O3/Al composites with simple-tetragonal symmetry. (C) 2009 Elsevier B.V. All rights reserved. C1 [Young, M. L.; Dunand, D. C.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Rao, R.; Lewis, J. A.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Almer, J. D.; Haeffner, D. R.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Young, ML (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. EM marcus.young@rub.de RI Dunand, David/B-7515-2009; OI Dunand, David/0000-0001-5476-7379 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Science [DE-AC02-06CH11357] FX The authors thank Drs. Ulrich Lienert, Kamel Fezzaa, and Wah-Keat Lee at the APS (SRI-CAT) and Dr. Mark Beno and Chuck Kurtz at the APS (BESSRC-CAT) at ANL for experimental assistance. Dr. Jennifer A. Lewis and Ranjeet Rao acknowledge funding provided by NSF Grant # (DMR01-17792). The robocasting apparatus used in this work was designed and built by J. Cesarano, and customized software for 3D fabrication was developed by J.E. Smay. Dr. Deming Shu at the APS built the compression rig. Use of the APS was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Science, under contract number DE-AC02-06CH11357. NR 46 TC 6 Z9 7 U1 6 U2 22 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 EI 1873-4936 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD NOV 25 PY 2009 VL 526 IS 1-2 BP 190 EP 196 DI 10.1016/j.msea.2009.07.033 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 514AW UT WOS:000271366700030 ER PT J AU Jiang, DE Chen, XQ Luo, WD Shelton, WA AF Jiang, De-en Chen, Xing-Qiu Luo, Weidong Shelton, William A. TI From trans-polyacetylene to zigzag-edged graphene nanoribbons SO CHEMICAL PHYSICS LETTERS LA English DT Article ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; ELECTRONIC-STRUCTURE; CARBON NANOTUBES; HALF-METALLICITY; GROUND-STATE; BASIS-SET; POLYACENE; GRAPHITE; POLYMERS AB A zigzag-edged graphene nanoribbon (ZGNR) can be indexed by a width, N, which is the number of parallel trans-polyacetylene-like chains comprising the ribbon. Although ZGNRs with N = 4 or greater have been found to have an antiferromagnetic ground state and a ferromagnetic metastable state, how the ribbon makes the transition from N = 1 (namely, trans-polyacetylene-a one-dimensional, nonmagnetic semiconductor) to the wider ones is unclear. Using hybrid density functional theory, we show that N = 2 (polyacene) can be considered the narrowest ZGNR with an antiferromagnetic insulating ground state and a metastable, metallic ferromagnetic state. (C) 2009 Published by Elsevier B.V. C1 [Jiang, De-en] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Chen, Xing-Qiu; Luo, Weidong] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Luo, Weidong] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Shelton, William A.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Jiang, DE (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM jiangd@ornl.gov; sheltonwajr@ornl.gov RI Jiang, De-en/D-9529-2011; Luo, Weidong/A-8418-2009 OI Jiang, De-en/0000-0001-5167-0731; Luo, Weidong/0000-0003-3829-1547 FU Office of Basic Energy Sciences, US Department of Energy [DE-AC05-00OR22725] FX This work was supported by Office of Basic Energy Sciences, US Department of Energy under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. NR 39 TC 20 Z9 20 U1 1 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD NOV 24 PY 2009 VL 483 IS 1-3 BP 120 EP 123 DI 10.1016/j.cplett.2009.10.061 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 519IA UT WOS:000271758000023 ER PT J AU Li, LY King, DL Liu, J Huo, QS Zhu, KK Wang, CM Gerber, M Stevens, D Wang, Y AF Li, Liyu King, David L. Liu, Jun Huo, Qisheng Zhu, Kake Wang, Chongmin Gerber, Mark Stevens, Don Wang, Yong TI Stabilization of Metal Nanoparticles in Cubic Mesostructured Silica and Its Application in Regenerable Deep Desulfurization of Warm Syngas SO CHEMISTRY OF MATERIALS LA English DT Article ID MESOPOROUS SILICA; SUPPORTED NICKEL; SULFUR CHEMISORPTION; CATALYTIC-ACTIVITY; PORE STRUCTURE; H2S REMOVAL; HOT-GAS; COPOLYMER; ZNO; THERMODYNAMICS AB Metal and metal oxide nanoparticles supported on high surface area materials are widely used in industry for fuel and chemical production and for environmental pollution control, but preventing nanosized particle sintering has remained a great challenge. In this paper, we report that Ni-Cu alloy nanoparticles can be effectively stabilized in cubic mesostructured silica (SBA-16) following a conventional impregnation and thermal treatment process. The three-dimensional interconnected cage structure of the mesoporous SBA-16 allows good accessibility of reactant gas molecules to the metal nanoparticles and confines these particles within its nanosized cages. This confinement hinders metal nanoparticle migration and sintering under harsh conditions. A new class of regenerable metal-based adsorbents which can remove sulfur impurities from warm syngas stream down to less than 60 parts per billion by volume (ppbv) is described. This same confinement strategy is expected to have impact for minimizing sintering or particle coarsening of nanosized materials employed in other applications. C1 [Li, Liyu; King, David L.; Liu, Jun; Huo, Qisheng; Zhu, Kake; Wang, Chongmin; Gerber, Mark; Stevens, Don; Wang, Yong] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99354 USA. RP Li, LY (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, POB 999, Richland, WA 99354 USA. EM liyu.li@pnl.gov RI Wang, Yong/C-2344-2013 FU Laboratory Directed Research and Development Program at the PNNL; U.S. Department of Energy FX This work was performed in part at the Interfacial and Nano Science Facility in the William R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the orrice or Biological and Environmental Research of the U.S. Department of Energy and located at the Pacific Northwest National Laboratory (PNNL). PNNL is operated for the U.S. Department of Energy by Battelle. The authors wish to acknowledge Financial support from the Laboratory Directed Research and Development Program at the PNNL and the Biomass Energy Technology Program or the U.S. Department of Energy. L.L. thanks Dr. F. Gao (PNNL) for preparing Figure 2. NR 33 TC 22 Z9 23 U1 4 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD NOV 24 PY 2009 VL 21 IS 22 BP 5358 EP 5364 DI 10.1021/cm901227e PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 519HR UT WOS:000271756400002 ER PT J AU Oh, JH Sun, YS Schmidt, R Toney, MF Nordlund, D Konemann, M Wurthner, F Bao, ZA AF Oh, Joon Hak Sun, Ya-Sen Schmidt, Ruediger Toney, Michael F. Nordlund, Dennis Koenemann, Martin Wuerthner, Frank Bao, Zhenan TI Interplay between Energetic and Kinetic Factors on the Ambient Stability of n-Channel Organic Transistors Based on Perylene Diimide Derivatives SO CHEMISTRY OF MATERIALS LA English DT Article ID THIN-FILM TRANSISTORS; SELF-ASSEMBLED MONOLAYERS; ABSORPTION FINE-STRUCTURE; CHARGE-TRANSPORT; SEMICONDUCTORS; MOBILITY; PENTACENE; GROWTH; ELECTRONICS; DEPENDENCE AB The effects of the interplay between energetic and kinetic factors on the air stability of n-channel organic thin-film transistors (OTFTs) were studied using two perylene diimide (PDI) compounds with distinctly different lowest unoccupied molecular orbital (LUMO) levels. On the basis of the empirical energy level windows, one compound (N,N'-bis(2,2,3,3,4,4,5,5,5-nonafluoropentyl)-3,4:9,10-tetracarboxylic acid diimide (PDI-F): -3.84 eV) is at the onset region for air stability, whereas the other (N,N'-bis(cyclohexyl)-1,7-dicyano-perylene-3,4:9,10-tetracarboxylic acid diimide (PDI-CN2): -4.33 eV) is in the air-stable region. Charge-transport behaviors under an inert atmosphere and in air were investigated as a function of active layer thickness. Charge transport in air was greatly affected by the active layer thickness for both compounds, an effect that has been overlooked so far. The ambient stability of the air-unstable PDI-F TFTs increased significantly for thicknesses over similar to 10 monolayers (ML). Surprisingly, the previously considered "air-stable" PDI-CN2 TFTs were not stable in air if the active layer thickness was less than similar to 4 ML. The molecular packing and orientation of the PDI thin Films were investigated using grazing incidence X-ray diffraction (GIXD) and near-edge X-ray absorption fine structure (NEXAFS). We found that the minimum thickness required for air stability is closely related to the LUMO level, film morphology, and film growth mode. C1 [Oh, Joon Hak; Sun, Ya-Sen; Bao, Zhenan] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. [Toney, Michael F.; Nordlund, Dennis] Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Schmidt, Ruediger; Wuerthner, Frank] Univ Wurzburg, Inst Organ Chem, D-97074 Wurzburg, Germany. [Schmidt, Ruediger; Wuerthner, Frank] Rontgen Res Ctr Complex Mat Syst, D-97074 Wurzburg, Germany. [Koenemann, Martin] BASF SE, GVP C, D-67056 Ludwigshafen, Germany. RP Bao, ZA (reprint author), Stanford Univ, Dept Chem Engn, 381 North South Mall, Stanford, CA 94305 USA. EM zbao@stanford.edu RI Oh, Joon Hak/F-1454-2010; Nordlund, Dennis/A-8902-2008; Wurthner, Frank/K-5181-2015 OI Oh, Joon Hak/0000-0003-0481-6069; Nordlund, Dennis/0000-0001-9524-6908; Wurthner, Frank/0000-0001-7245-0471 FU BASF SE [NSC-095-SAF-1-564-626-TMS]; NSF-DMR; Sloan Research Fellowship FX Y.S.S. acknowledges financial support from the Taiwan Merit scholarship (NSC-095-SAF-1-564-626-TMS). Z.B. acknowledges financial support from BASF SE, the NSF-DMR solid state chemistry, and the Sloan Research Fellowship. F.W. acknowledges financial support from BASF SE and DFG. We also thank the Center for Polymeric Interfaces and Macromolecular Assemblies (NSF-Center MRSEC) for providing characterization facilities. Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource (SSRL), a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences, NR 58 TC 50 Z9 50 U1 1 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD NOV 24 PY 2009 VL 21 IS 22 BP 5508 EP 5518 DI 10.1021/cm902531d PG 11 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 519HR UT WOS:000271756400019 ER PT J AU Fan, JW Yuan, TL Comstock, JM Ghan, S Khain, A Leung, LR Li, ZQ Martins, VJ Ovchinnikov, M AF Fan, Jiwen Yuan, Tianle Comstock, Jennifer M. Ghan, Steven Khain, Alexander Leung, L. Ruby Li, Zhanqing Martins, Vanderlei J. Ovchinnikov, Mikhail TI Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID PART I; ATMOSPHERIC AEROSOLS; PRECIPITATION; MICROPHYSICS; CLIMATE; MODEL; SENSITIVITY; SIMULATION; POLLUTION; IMPACT AB Aerosol-cloud interaction is recognized as one of the key factors influencing cloud properties and precipitation regimes across local, regional, and global scales and remains one of the largest uncertainties in understanding and projecting future climate changes. Deep convective clouds (DCCs) play a crucial role in the general circulation, energy balance, and hydrological cycle of our climate system. The complex aerosol-DCC interactions continue to be puzzling as more "aerosol effects'' unfold, and systematic assessment of such effects is lacking. Here we systematically assess the aerosol effects on isolated DCCs based on cloud-resolving model simulations with spectral bin cloud microphysics. We find a dominant role of vertical wind shear in regulating aerosol effects on isolated DCCs, i.e., vertical wind shear qualitatively determines whether aerosols suppress or enhance convective strength. Increasing aerosols always suppresses convection under strong wind shear and invigorates convection under weak wind shear until this effect saturates at an optimal aerosol loading. We also found that the decreasing rate of convective strength is greater in the humid air than that in the dry air when wind shear is strong. Our findings may resolve some of the seemingly contradictory results among past studies by considering the dominant effect of wind shear. Our results can provide the insights to better parameterize aerosol effects on convection by adding the factor of wind shear to the entrainment term, which could reduce uncertainties associated with aerosol effects on climate forcing. C1 [Fan, Jiwen; Comstock, Jennifer M.; Ghan, Steven; Leung, L. Ruby; Ovchinnikov, Mikhail] Pacific NW Natl Lab, Climate Phys Grp, Richland, WA 99352 USA. [Yuan, Tianle; Martins, Vanderlei J.] NASA, Goddard Space Flight Ctr, Climate Branch, Greenbelt, MD 20771 USA. [Yuan, Tianle; Martins, Vanderlei J.] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. [Khain, Alexander] Hebrew Univ Jerusalem, Inst Earth Sci, IL-91904 Jerusalem, Israel. [Li, Zhanqing] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20740 USA. [Li, Zhanqing] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20740 USA. RP Fan, JW (reprint author), Pacific NW Natl Lab, Climate Phys Grp, POB 999,MSIN K9-24, Richland, WA 99352 USA. EM jiwen.fan@pnl.gov RI Li, Zhanqing/F-4424-2010; Yuan, Tianle/D-3323-2011; Fan, Jiwen/E-9138-2011; Ghan, Steven/H-4301-2011 OI Li, Zhanqing/0000-0001-6737-382X; Ghan, Steven/0000-0001-8355-8699 FU PNNL Aerosol Climate Initiative (ACI); NASA [NNX08AH71G]; DOE [527055]; Binational U.S.-Israel Science Foundation (BSF) [2006437] FX This work was supported by PNNL Aerosol Climate Initiative (ACI) and grants from NASA (NNX08AH71G) and DOE (527055). A. Khain was supported by the Binational U.S.-Israel Science Foundation (BSF), grant 2006437. We thank the reviewers of the paper for their helpful comments. NR 49 TC 96 Z9 99 U1 3 U2 28 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 24 PY 2009 VL 114 AR D22206 DI 10.1029/2009JD012352 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 524MG UT WOS:000272146800004 ER PT J AU Riley, WJ Biraud, SC Torn, MS Fischer, ML Billesbach, DP Berry, JA AF Riley, W. J. Biraud, S. C. Torn, M. S. Fischer, M. L. Billesbach, D. P. Berry, J. A. TI Regional CO2 and latent heat surface fluxes in the Southern Great Plains: Measurements, modeling, and scaling SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article ID NET PRIMARY PRODUCTION; CARBON-DIOXIDE FLUXES; WATER-VAPOR; VEGETATION DISTRIBUTION; ENVIRONMENTAL CONTROLS; PARAMETERIZATION SIB2; ATMOSPHERIC GCMS; CLIMATE SYSTEM; BOREAL FOREST; LAND MODEL AB Characterizing net ecosystem exchanges (NEE) of CO2 and sensible and latent heat fluxes in heterogeneous landscapes is difficult, yet critical given expected changes in climate and land use. We report here a measurement and modeling study designed to improve our understanding of surface to atmosphere gas exchanges under very heterogeneous land cover in the mostly agricultural U.S. Southern Great Plains (SGP). We combined three years of site-level, eddy covariance measurements in several of the dominant land cover types with regional-scale climate data from the distributed Mesonet stations and Next Generation Weather Radar precipitation measurements to calibrate a land surface model of trace gas and energy exchanges (isotope-enabled land surface model (ISOLSM)). Yearly variations in vegetation cover distributions were estimated from Moderate Resolution Imaging Spectroradiometer normalized difference vegetation index and compared to regional and subregional vegetation cover type estimates from the U.S. Department of Agriculture census. We first applied ISOLSM at a 250 m spatial scale to account for vegetation cover type and leaf area variations that occur on hundred meter scales. Because of computational constraints, we developed a subsampling scheme within 10 km "macrocells'' to perform these high-resolution simulations. We estimate that the Atmospheric Radiation Measurement Climate Research Facility SGP region net CO2 exchange with the local atmosphere was -240, -340, and -270 gC m(-2) yr(-1) (positive toward the atmosphere) in 2003, 2004, and 2005, respectively, with large seasonal variations. We also performed simulations using two scaling approaches at resolutions of 10, 30, 60, and 90 km. The scaling approach applied in current land surface models led to regional NEE biases of up to 50 and 20% in weekly and annual estimates, respectively. An important factor in causing these biases was the complex leaf area index (LAI) distribution within cover types. Biases in predicted weekly average regional latent heat fluxes were smaller than for NEE, but larger than for either ecosystem respiration or assimilation alone. However, spatial and diurnal variations of hundreds of W m(-2) in latent heat fluxes were common. We conclude that, in this heterogeneous system, characterizing vegetation cover type and LAI at the scale of spatial variation are necessary for accurate estimates of bottom-up, regional NEE and surface energy fluxes. C1 [Riley, W. J.; Biraud, S. C.; Torn, M. S.; Fischer, M. L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Berry, J. A.] Carnegie Inst Washington, Dept Plant Biol, Stanford, CA 94305 USA. [Billesbach, D. P.] Univ Nebraska, Dept Biol Syst Engn, Lincoln, NE 68588 USA. RP Riley, WJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM wjriley@lbl.gov RI Berry, Joseph/B-8211-2009; Biraud, Sebastien/M-5267-2013; Riley, William/D-3345-2015; Torn, Margaret/D-2305-2015 OI Berry, Joseph/0000-0002-5849-6438; Biraud, Sebastien/0000-0001-7697-933X; Riley, William/0000-0002-4615-2304; FU Office of Science, Office of Biological and Environmental Research, Climate Change Research Division, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Biological and Environmental Research, Climate Change Research Division, of the U.S. Department of Energy under contract DE-AC02-05CH11231. This study was also part of the North American Carbon Program. The MTI image was provided by the Office of Nonproliferation and National Security of the U.S. Department of Energy. We also thank the groups making their MCI inversion results available: CarbonTracker 2008 results provided by NOAA ESRL, Boulder, Colorado, USA, from the website at http://carbontracker.noaa.gov; UT results provided by J. Chen, University of Toronto, Canada; and LSCE results provided by F. Chevallier, Laboratoire des Sciences du Climat et de l'Environnement, France. NR 74 TC 15 Z9 15 U1 4 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD NOV 24 PY 2009 VL 114 AR G04009 DI 10.1029/2009JG001003 PG 15 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 524MJ UT WOS:000272147100002 ER PT J AU Knychala, P Banaszak, M Park, MJ Balsara, NP AF Knychala, P. Banaszak, M. Park, M. J. Balsara, N. P. TI Microphase Separation in Sulfonated Block Copolymers Studied by Monte Carlo Simulations SO MACROMOLECULES LA English DT Article ID DIBLOCK COPOLYMER; COMPUTER-SIMULATION; STRONG-SEGREGATION; PHASE-BEHAVIOR; MELTS; SYSTEMS; BLENDS; MODEL; POLYSTYRENE; TRANSITIONS AB The underpinnings of microphase separation in symmetric poly(styrenesulfonate-block-methylbutylene) (PSS-PMB) copolymer melts were examined by Monte Carlo lattice simulations. The main challenge is understanding the effect of ion pairs in the PSS block on thermodynamics. We assume that experimentally determined Flory-Huggins interaction parameters are adequate for describing intermonomer interactions. Our model does not account for either electrostatic or dipolar interactions. This enables comparisons between simulated and experimentally observed microphases reported by Park and Balsara [Macromolecules 2008, 41, 3678] without resorting to any adjustable parameters. The PSS block in both experiments and theory is partially sulfonated. We quantified the effect of sequence distribution on phase behavior by using alternating and blocky PSS chains in the simulations. Depending on temperature and sequence distribution, simulations show performed lamellae, gyroid, and hexagonally packed cylinders in addition to the lamellar phase found in simple symmetric block copolymers that do not contain ions. This is driven by extremely repulsive interactions between styrenesulfonate monomers and the uncharged species in the melts. The symmetry of the microphases and the locations of the order-disorder and order-order phase transitions are in qualitative agreement with experimental observations. C1 [Knychala, P.; Banaszak, M.] Adam Mickiewicz Univ Poznan, Fac Phys, PL-61614 Poznan, Poland. [Park, M. J.] Pohang Univ Sci & Technol, Dept Chem, Pohang 790784, South Korea. [Park, M. J.] Pohang Univ Sci & Technol, Div Adv Mat Sci, Pohang 790784, South Korea. [Balsara, N. P.] Univ Calif Berkeley, Dept Chem Engn, Div Mat Sci, Berkeley, CA 94720 USA. [Balsara, N. P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Banaszak, M (reprint author), Adam Mickiewicz Univ Poznan, Fac Phys, Ul Umultowska 85, PL-61614 Poznan, Poland. EM mbanasz@amu.edu.pl RI Banaszak, Michal /A-9411-2010; Park, Moon Jeong/F-5752-2013 OI Banaszak, Michal /0000-0003-0106-632X; FU National Science Foundation [CTS 0625785]; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. National Science Foundation FX P.K. and M.B. gratefully acknowledge the computational grant from the Supercomputing and Networking Center (PCSS) in Poznan, Poland. M.J.P. and N.P.B. were supported by a grant from the National Science Foundation (CTS 0625785) and the Electron Microscopy of Soft Matter Program at Lawrence Berkeley National Laboratory (LBNL) supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy under contract no. DE-AC02-05CH11231, This work was initiated at a joint Poland-U.S. workshop on nanomaterials organized by Dr. Robert M. Wellek and sponsored by the U.S. National Science Foundation. NR 34 TC 25 Z9 27 U1 3 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD NOV 24 PY 2009 VL 42 IS 22 BP 8925 EP 8932 DI 10.1021/ma901647b PG 8 WC Polymer Science SC Polymer Science GA 519HS UT WOS:000271756500049 ER PT J AU Koerner, H Kelley, J George, J Drummy, L Mirau, P Bell, NS Hsu, JWP Vaia, RA AF Koerner, Hilmar Kelley, John George, Justin Drummy, Lawrence Mirau, Peter Bell, Nelson S. Hsu, Julia W. P. Vaia, Richard A. TI ZnO Nanorod-Thermoplastic Polyurethane Nanocomposites: Morphology and Shape Memory Performance SO MACROMOLECULES LA English DT Article ID POLYMER NANOCOMPOSITES; ZINC-OXIDE; BEHAVIOR; COMPOSITES; CRYSTALLIZATION; NANOPARTICLES; DEFORMATION; ELASTOMERS; PARTICLES; COPOLYMER AB The impact of dispersed alkylthiol-modified ZnO nanorods, as a function of rod aspect ratio and concentration, on the shape memory character of a thermoplastic polyurethane with low hard-segment density (LHS-TPU) is examined relative to the enhanced performance occurring for carbon nanofiber (CNF) dispersion. Solution blending resulted in uniform dispersion within the LHS-TPU of the ZnO nanorods at low volume (weight) fractions (< 2.9% v/v (17.75% w/w)). Tensile modulus enhancements were modest though, comparable to values observed for spherical nanofillers. Shape memory characteristics, which in this LHS-TPU result when strain-induced crystallites retard the entropic recovery of the deformed chains, were unchanged for these low volume fraction ZnO nanocomposites. Higher ZnO loadings (12% v/v (50% w/w)) exhibited clustering of ZnO nanorods into a mesh-like structure. Here, tensile modulus and shape recovery characteristics were improved, although not as great as seen for comparable CNF addition. Wide angle X-ray diffraction and NMR revealed that the addition of ZnO nanorods did not impact the inherent strain induced crystallization of the LHS-TPU, which is in contrast to the impact of CNFs and emphasizes the impact of interactions at the polymer-nanoparticle interface. Overall, these findings reinforce the hypothesis that the shape memory properties of polymer nanocomposites are governed by the extent to which nanoparticle addition, via nanoparticle aspect ratio, hierarchical morphology, and interfacial interactions, impacts the molecular mechanism responsible for trapping elastic strain. C1 [Koerner, Hilmar; Kelley, John; George, Justin; Drummy, Lawrence; Mirau, Peter; Vaia, Richard A.] USAF, Res Lab, RXBN, Mat & Mfg Directorate, Wright Patterson AFB, OH 45433 USA. [Bell, Nelson S.; Hsu, Julia W. P.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Koerner, Hilmar] Universal Technol Corp, Dayton, OH 45432 USA. RP Vaia, RA (reprint author), USAF, Res Lab, RXBN, Mat & Mfg Directorate, 2941 Hobson Way, Wright Patterson AFB, OH 45433 USA. EM richard.vaia@wpafb.af.mil FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC52-06NA25396]; Sandia National Laboratories [DE-AC04-94AL85000]; Center for Integrated Nanotechnologies FX The authors are very grateful to the Air Force Office of Scientific Research and the Air Force Research Laboratory, Materials and Manufacturing Directorate, for funding. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility at Los Alamos National Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories (Contract DE-AC04-94AL85000). The authors would like to thank Gary Price for assistance in X-ray experiments and Lixia Rong at beamline X27C of the National Synchrotron Light Source at Brookhaven for help with the in situ X-ray experiments. NR 60 TC 23 Z9 23 U1 5 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD NOV 24 PY 2009 VL 42 IS 22 BP 8933 EP 8942 DI 10.1021/ma901671v PG 10 WC Polymer Science SC Polymer Science GA 519HS UT WOS:000271756500050 ER PT J AU Lokitz, BS Messman, JM Hinestrosa, JP Alonzo, J Verduzco, R Brown, RH Osa, M Ankner, JF Kilbey, SM AF Lokitz, Bradley S. Messman, Jamie M. Hinestrosa, Juan Pablo Alonzo, Jose Verduzco, Rafael Brown, Rebecca H. Osa, Masashi Ankner, John F. Kilbey, S. Michael, II TI Dilute Solution Properties and Surface Attachment of RAFT Polymerized 2-Vinyl-4,4-dimethyl Azlactone (VDMA) SO MACROMOLECULES LA English DT Article ID LIVING RADICAL POLYMERIZATION; MACROMOLECULAR ANCHORING LAYER; HYDRODYNAMIC RADIUS; CLICK CHEMISTRY; MOLECULAR-WEIGHT; BRUSHES; POLYSTYRENES; COPOLYMERS; AGENTS AB We report the controlled radical polymerization of 2-vinyl-4,4-dimethyl azlactone (VDMA), a 2-alkenyl-2-oxazolin-5-one monomer that contains a polymerizable vinyl moiety and a highly reactive, pendant azlactone, as well as dilute solution properties and surface attachment and functionalization. Reversible addition-fragmentation chain transfer (RAFT) was used to polymerize VDMA in benzene at 65 degrees C using either 2-(2-cyanopropyl) dithiobenzoate (CPDB) or 2-dodecylsulfanylthiocarbotlylsulfanyl-2-methylpropionic acid (DMP) as RAFT chain transfer agents (CTAs). The pseudo-first-order kinetics and resultant well-defined polymers of low polydispersity indicate that both CTAs afford control over the RAFT polymerization of VDMA. Dynamic and static light scattering and small-angle neutron scattering (SANS) were performed to determine the weight-average molecular weight, radius of gyration, and second virial coefficient of VDMA homopolymers in THF. Additionally, well-defined polymers of VDMA containing carboxyl end groups were covalently attached to epoxy-modified silicon wafers via esterification to produce polymeric scaffolds that can be subsequently functionalized for various bio-inspired applications. C1 [Lokitz, Bradley S.; Ankner, John F.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. [Messman, Jamie M.; Verduzco, Rafael; Osa, Masashi; Kilbey, S. Michael, II] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Hinestrosa, Juan Pablo] Clemson Univ, Dept Chem & Biomol Engn, Clemson, SC 29634 USA. [Alonzo, Jose] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Brown, Rebecca H.] Virginia Polytech Inst & State Univ, Dept Chem, Blacksburg, VA 24061 USA. [Osa, Masashi] Kyoto Univ, Dept Polymer Chem, Kyoto 6158510, Japan. [Kilbey, S. Michael, II] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Lokitz, BS (reprint author), Oak Ridge Natl Lab, Spallat Neutron Source, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM lokitzbs@ornl.gov RI Lokitz, Bradley/Q-2430-2015; OI Lokitz, Bradley/0000-0002-1229-6078; Ankner, John/0000-0002-6737-5718 FU Oak Ridge National Laboratory by the Scientific User Facilities Division; U.S. Department of Energy [DE-AC05-00OR22725]; ORNL's Laboratory Directed Research and Development Program [D07-138]; National Institute of Standards and Technology; U.S. Department of Commerce FX This research was conducted at the Center for Nanophase Materials Sciences and Spallation Neutron Source, which are sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, U.S. Department of Energy, (under contract DE-AC05-00OR22725), and enabled through ORNL's Laboratory Directed Research and Development Program, Project No. D07-138. We acknowledge the support of the National Institute of Standards and Technology, U.S. Department of Commerce, in providing the neutron research facilities for the SANS used in this work. Jim Browning and Candice Halbert of ORNL are acknowledged for their help with reflectivity measurements. NR 49 TC 31 Z9 32 U1 4 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD NOV 24 PY 2009 VL 42 IS 22 BP 9018 EP 9026 DI 10.1021/ma9015399 PG 9 WC Polymer Science SC Polymer Science GA 519HS UT WOS:000271756500060 ER PT J AU Mavromatis, K Chu, K Ivanova, N Hooper, SD Markowitz, VM Kyrpides, NC AF Mavromatis, Konstantinos Chu, Ken Ivanova, Natalia Hooper, Sean D. Markowitz, Victor M. Kyrpides, Nikos C. TI Gene Context Analysis in the Integrated Microbial Genomes (IMG) Data Management System SO PLOS ONE LA English DT Article ID PROTEIN FAMILIES; FUSION EVENTS AB Computational methods for determining the function of genes in newly sequenced genomes have been traditionally based on sequence similarity to genes whose function has been identified experimentally. Function prediction methods can be extended using gene context analysis approaches such as examining the conservation of chromosomal gene clusters, gene fusion events and co-occurrence profiles across genomes. Context analysis is based on the observation that functionally related genes are often having similar gene context and relies on the identification of such events across phylogenetically diverse collection of genomes. We have used the data management system of the Integrated Microbial Genomes (IMG) as the framework to implement and explore the power of gene context analysis methods because it provides one of the largest available genome integrations. Visualization and search tools to facilitate gene context analysis have been developed and applied across all publicly available archaeal and bacterial genomes in IMG. These computations are now maintained as part of IMG's regular genome content update cycle. IMG is available at: http://img.jgi.doe.gov. C1 [Mavromatis, Konstantinos; Ivanova, Natalia; Hooper, Sean D.; Kyrpides, Nikos C.] Joint Genome Inst, Dept Energy, Genome Biol Program, Walnut Creek, CA USA. [Chu, Ken; Markowitz, Victor M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Biol Data Management & Technol Ctr, Berkeley, CA 94720 USA. RP Mavromatis, K (reprint author), Joint Genome Inst, Dept Energy, Genome Biol Program, Walnut Creek, CA USA. EM KMavrommatis@lbl.gov RI Kyrpides, Nikos/A-6305-2014; OI Kyrpides, Nikos/0000-0002-6131-0462; Ivanova, Natalia/0000-0002-5802-9485 FU US Department of Energy; University of California, Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Los Alamos National Laboratory [DE-AC02-06NA25396] FX This work was performed under the auspices of the US Department of Energy's Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and Los Alamos National Laboratory under contract No. DE-AC02-06NA25396. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 18 TC 36 Z9 36 U1 2 U2 5 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD NOV 24 PY 2009 VL 4 IS 11 AR e7979 DI 10.1371/journal.pone.0007979 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 533MH UT WOS:000272827500010 PM 19956731 ER PT J AU Erbil, WK Price, MS Wemmer, DE Marletta, MA AF Erbil, W. Kaya Price, Mark S. Wemmer, David E. Marletta, Michael A. TI A structural basis for H-NOX signaling in Shewanella oneidensis by trapping a histidine kinase inhibitory conformation SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE hemoprotein; nitric oxide; signaling; NMR; phosphorylation ID SOLUBLE GUANYLATE-CYCLASE; NUCLEAR-MAGNETIC-RESONANCE; NMR-SPECTROSCOPY; NITRIC-OXIDE; HEME-PROTEINS; MYOGLOBIN; BINDING; MODELS; LIGAND; DOMAIN AB Heme nitric oxide/oxygen (H-NOX) proteins are found in eukaryotes where they are typically part of a larger protein such as soluble guanylate cyclase and in prokaryotes where they are often found in operons with a histidine kinase, suggesting that H-NOX proteins serve as sensors for NO and O(2) in signaling pathways. The Fe(II)-NO complex of the H-NOX protein from Shewanella oneidensis inhibits the autophosphorylation of the operon-associated histidine kinase, whereas the ligand-free H-NOX has no effect on the kinase. NMR spectroscopy was used to determine the structures of the Fe(II)-CO complex of the S. oneidensis H-NOX and the Fe(II)-CO complex of the H103G H-NOX mutant as a mimic of the ligand-free and kinase-inhibitory Fe(II)-NO H-NOX, respectively. The results provide a molecular glimpse into the ligand-induced conformational changes that may underlie kinase inhibition and the subsequent control of downstream signaling. C1 [Erbil, W. Kaya; Wemmer, David E.; Marletta, Michael A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Price, Mark S.; Marletta, Michael A.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Wemmer, David E.; Marletta, Michael A.] Univ Calif Berkeley, Inst QB3, Berkeley, CA 94720 USA. [Wemmer, David E.; Marletta, Michael A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys Biosci, Berkeley, CA 94720 USA. RP Marletta, MA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM marletta@berkeley.edu FU National Institutes of Health (NIH) [GM68933, GM070671, GM08295, RR 15756]; NSF [BBS 01-19304] FX We thank Joey Davis (MIT) for help with protein preparations; Douglas Mitchell (University of Illinois) for help with mass spectrometry; Milton Werner (Rockefeller University, New York) for help with RDC measurements; and James Chou (Harvard Medical School, Boston) for help with RDC measurements and structure calculations. We thank Dr. Jeff Pelton (University of California, Berkeley) and the Central California 900 MHz Facility (supported by NIH-GM68933) for experimental resources and assistance. This work was supported by National Institutes of Health Grant GM070671. W. K. E. was supported in part by NIH Training Grant GM08295. We also thank the NSF (BBS 01-19304) and the NIH (RR 15756) for funding for the 800 MHz NMR spectrometer. NR 39 TC 45 Z9 45 U1 0 U2 2 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 24 PY 2009 VL 106 IS 47 BP 19753 EP 19760 DI 10.1073/pnas.0911645106 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 524YS UT WOS:000272180900005 PM 19918063 ER PT J AU Nam, CY Su, D Black, CT AF Nam, Chang-Yong Su, Dong Black, Charles T. TI High-Performance Air-Processed Polymer-Fullerene Bulk Heterojunction Solar Cells SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID FIELD-EFFECT TRANSISTORS; CHARGE-LIMITED CURRENT; OPEN-CIRCUIT VOLTAGE; OPTICAL-PROPERTIES; SELF-ORGANIZATION; THIN-FILMS; MORPHOLOGY; EFFICIENCY; OXYGEN; POLY(3-HEXYLTHIOPHENE) AB High photovoltaic device performance is demonstrated in ambient-air-processed bulk heterojunction solar cells having an active blend layer of organic poly(3-hexylthiophene) (P3HT): [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM), with power conversion efficiencies as high as 4.1% which is comparable to state-of-the-art bulk heterojunction devices fabricated in air-free environments. High-resolution transmission electron microscopy is combined with detailed analysis of electronic carrier transport in order to quantitatively understand the effects of oxygen exposure and different thermal treatments on electronic conduction through the highly nanostructured active blend network. Improvement in photovoltaic device performance by suitable post-fabrication thermal processing results from the reduced oxygen charge trap density in the active blend layer and is consistent with a corresponding slight increase in thickness of an similar to 4 nm aluminum oxide hole-blocking layer present at the electron-collecting contact interface. C1 [Nam, Chang-Yong; Su, Dong; Black, Charles T.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Nam, CY (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM cynam@bnl.gov RI Su, Dong/A-8233-2013; Nam, Chang-Yong/D-4193-2009 OI Su, Dong/0000-0002-1921-6683; Nam, Chang-Yong/0000-0002-9093-4063 FU U.S. Department of Energy, Division of Materials Sciences and Division of Chemical Sciences [DE-AC02-98CH10886]; Brookhaven National Laboratory FX This research was supported by the U.S. Department of Energy, Division of Materials Sciences and Division of Chemical Sciences, under contract no. DE-AC02-98CH10886. CYN acknowledges the generous support by Goldhaber Distinguished Fellowship of Brookhaven National Laboratory. Supporting Information is available online from Wiley InterScience or from the author. NR 52 TC 59 Z9 60 U1 3 U2 29 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1616-301X J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD NOV 23 PY 2009 VL 19 IS 22 BP 3552 EP 3559 DI 10.1002/adfm.200900311 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 529GG UT WOS:000272503500004 ER PT J AU Lin, ZJ Wang, L Zhang, JZ Mao, HK Zhao, YS AF Lin, Zhijun Wang, Lin Zhang, Jianzhong Mao, Ho-kwang Zhao, Yusheng TI Nanocrystalline tungsten carbide: As incompressible as diamond SO APPLIED PHYSICS LETTERS LA English DT Article DE ab initio calculations; compressibility; density functional theory; elastic moduli; nanostructured materials; synchrotron radiation; X-ray diffraction ID ELASTIC-MODULI AB We investigate the compressibility of nanocrystalline tungsten carbide (nano-WC) using synchrotron x-ray diffraction. Nano-WC displays a bulk modulus (452 GPa) comparable to that of diamond; it is 10%-15% larger than previously reported values for bulk WC. This finding is consistent with a generalized model of nanocrystal with a compressed surface layer. The linear bulk moduli of nano-WC along a- and c-axes were determined to be 407 and 546 GPa, respectively. First-principles density functional theory (DFT) calculations confirm the experimental observations of an anisotropic linear compressibility and a lower bulk modulus for microsized WC. C1 [Lin, Zhijun; Zhang, Jianzhong; Zhao, Yusheng] Los Alamos Natl Lab, LANSCE Div, Los Alamos, NM 87545 USA. [Wang, Lin; Mao, Ho-kwang] Carnegie Inst Sci, HPSynC, Argonne, IL 60439 USA. [Wang, Lin] Jilin Univ, State Key Lab Superhard Mat, Changchun 130012, Peoples R China. RP Lin, ZJ (reprint author), Los Alamos Natl Lab, LANSCE Div, POB 1663, Los Alamos, NM 87545 USA. EM zlin@lanl.gov; yzhao@lanl.gov RI Lujan Center, LANL/G-4896-2012; WANG, LIN/G-7884-2012; Lin, Zhijun/A-5543-2010; OI Zhang, Jianzhong/0000-0001-5508-1782 FU DOE [DE-AC52-06NA25396, DE-SC0001057E, DE-AC02-06CH11357]; NSF; W. M. Keck Foundation FX This research is supported by the Los Alamos National Laboratory under DOE Contract No. DE-AC52-06NA25396. This work is also supported as part of the EFree, an Energy Frontier Research Center funded by the DOE, Office of Science, and Office of Basic Energy Sciences under Award No. DE-SC0001057E. Use of the HPCAT facility was supported by DOE-BES, DOE-NNSA, NSF, and the W. M. Keck Foundation. Use of the APS was supported by the US DOE, Office of Science, Office of Basic Energy Sciences, under No. DE-AC02-06CH11357. NR 16 TC 22 Z9 22 U1 1 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 23 PY 2009 VL 95 IS 21 AR 211906 DI 10.1063/1.3268457 PG 3 WC Physics, Applied SC Physics GA 534KL UT WOS:000272895100014 ER PT J AU Spoerke, ED Lloyd, MT McCready, EM Olson, DC Lee, YJ Hsu, JWP AF Spoerke, Erik D. Lloyd, Matthew T. McCready, Erica M. Olson, Dana C. Lee, Yun-Ju Hsu, Julia W. P. TI Improved performance of poly(3-hexylthiophene)/zinc oxide hybrid photovoltaics modified with interfacial nanocrystalline cadmium sulfide SO APPLIED PHYSICS LETTERS LA English DT Article DE band structure; cadmium compounds; II-VI semiconductors; nanostructured materials; photoconductivity; polymers; power conversion; semiconductor thin films; semiconductor-insulator boundaries; solar cells; wide band gap semiconductors; zinc compounds ID HETEROJUNCTION SOLAR-CELLS; OPEN-CIRCUIT VOLTAGE; THIN-LAYER; POLYMER; DEVICES; RECOMBINATION; EFFICIENCY; NANORODS; FILMS AB To improve zinc oxide/poly(3-hexylthiophene) (ZnO/P3HT) hybrid solar cell performance, we introduce a nanocrystalline cadmium sulfide (CdS) film at the ZnO/P3HT heterojunction, creating a cascading energy band structure. Current-voltage characteristics under AM1.5 illumination show that, compared to unmodified ZnO/P3HT devices, CdS modification leads to an approximate doubling of the open-circuit voltage and a mild increase in fill factor, without sacrificing any short-circuit current. These characteristics double the power conversion efficiency for devices with an interfacial CdS layer. External quantum efficiency spectra reveal definite photocurrent contributions from the CdS layer, confirming the cascading band structure. The mechanisms behind open-circuit voltage increase are discussed. C1 [Spoerke, Erik D.; Lloyd, Matthew T.; McCready, Erica M.; Olson, Dana C.; Lee, Yun-Ju; Hsu, Julia W. P.] Sandia Natl Labs, Albuquerque, NM 87109 USA. RP Spoerke, ED (reprint author), Sandia Natl Labs, Albuquerque, NM 87109 USA. EM edspoer@sandia.gov FU AOP PV Program; Department of Energy [DE-AC04-94AL85000] FX The authors acknowledge Dr. Y-B. Jiang for transmission electron microscopy, and Dr. M. Brumbach for insightful technical discussions. This work was supported by the AOP PV Program through the Energy Efficiency and Renewable Energy within the Department of Energy, Sandia's Laboratory Directed Research and Development program, and the Division of Material Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 29 TC 49 Z9 50 U1 1 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 23 PY 2009 VL 95 IS 21 AR 213506 DI 10.1063/1.3232231 PG 3 WC Physics, Applied SC Physics GA 534KL UT WOS:000272895100050 ER PT J AU Yu, HCY Argyros, A Leon-Saval, SG Fuerbach, A Efimov, A Barton, GW AF Yu, Helmut C. Y. Argyros, Alexander Leon-Saval, Sergio G. Fuerbach, Alex Efimov, Anatoly Barton, Geoff W. TI Emission properties of quantum dots in polymer optical fibres SO OPTICS EXPRESS LA English DT Article ID SENSORS AB CdSe/ZnS core-shell quantum dots have been embedded within microstructured polymer optical fibres. The emission properties of quantum dots within fibres have been explored to show that variation in concentration, sample length and pumping regimes effects the emission characteristics of these quantum dots. (C) 2009 Optical Society of America C1 [Yu, Helmut C. Y.; Argyros, Alexander; Leon-Saval, Sergio G.] Univ Sydney, Sch Phys, Inst Photon & Opt Sci, Sydney, NSW 2006, Australia. [Yu, Helmut C. Y.; Barton, Geoff W.] Univ Sydney, Sch Chem & Biomol Engn, Sydney, NSW 2006, Australia. [Fuerbach, Alex; Efimov, Anatoly] Macquarie Univ, MQPhoton Res Ctr, Ctr Ultrahigh Bandwidth Devices Opt Syst, N Ryde, NSW 2109, Australia. Los Alamos Natl Lab, MPA CINT, Los Alamos, NM 87545 USA. RP Yu, HCY (reprint author), Univ Sydney, Sch Phys, Inst Photon & Opt Sci, Sydney, NSW 2006, Australia. EM h.yu@usyd.edu.au RI Argyros, Alexander/C-1140-2008; OI Argyros, Alexander/0000-0002-2278-6273; Efimov, Anatoly/0000-0002-5559-4147 FU The National Collaborative Research Infrastructure Strategy (NCRIS) FX This work was partly supported by The National Collaborative Research Infrastructure Strategy (NCRIS). The authors would also like to thank Richard Lwin for the assistance in fibre fabrication and John McGuire for his discussions on quantum dots. NR 19 TC 3 Z9 3 U1 0 U2 15 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD NOV 23 PY 2009 VL 17 IS 24 BP 21344 EP 21349 DI 10.1364/OE.17.021344 PG 6 WC Optics SC Optics GA 525PU UT WOS:000272229400001 PM 19997374 ER PT J AU Cense, B Gao, WH Brown, JM Jones, SM Jonnal, RS Mujat, M Park, BH de Boer, JF Miller, DT AF Cense, Barry Gao, Weihua Brown, Jeffrey M. Jones, Steven M. Jonnal, Ravi S. Mujat, Mircea Park, B. Hyle de Boer, Johannes F. Miller, Donald T. TI Retinal imaging with polarization-sensitive optical coherence tomography and adaptive optics SO OPTICS EXPRESS LA English DT Article ID NERVE-FIBER LAYER; IN-VIVO; HIGH-RESOLUTION; HUMAN SKIN; BIREFRINGENCE; THICKNESS; OCT; GLAUCOMA; TISSUE AB Various layers of the retina are well known to alter the polarization state of light. Such changes in polarization may be a sensitive indicator of tissue structure and function, and as such have gained increased clinical attention. Here we demonstrate a polarization-sensitive optical coherence tomography (PS-OCT) system that incorporates adaptive optics (AO) in the sample arm and a single line scan camera in the detection arm. We quantify the benefit of AO for PS-OCT in terms of signal-to-noise, lateral resolution, and speckle size. Double pass phase retardation per unit depth values ranging from 0.25 degrees/mu m to 0.65 degrees/mu m were found in the birefringent nerve fiber layer at 6 eccentricity, superior to the fovea, with the highest values being noticeably higher than previously reported with PS-OCT around the optic nerve head. Moreover, fast axis orientation and degree of polarization uniformity measurements made with AO-PS-OCT demonstrate polarization scrambling in the retinal pigment epithelium at the highest resolution reported to date. (C) 2009 Optical Society of America C1 [Cense, Barry; Gao, Weihua; Brown, Jeffrey M.; Jonnal, Ravi S.; Miller, Donald T.] Indiana Univ, Sch Optometry, Bloomington, IN 47405 USA. [Jones, Steven M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Mujat, Mircea] Phys Sci Inc, Andover, MA 01810 USA. [Park, B. Hyle] Univ Calif Riverside, Riverside, CA 92521 USA. [de Boer, Johannes F.] Rotterdam Ophthalm Inst, Rotterdam, Netherlands. [de Boer, Johannes F.] Vrije Univ Amsterdam, Amsterdam, Netherlands. RP Cense, B (reprint author), Indiana Univ, Sch Optometry, Bloomington, IN 47405 USA. EM bcense@indiana.edu RI de Boer, Johannes/B-7590-2012; OI de Boer, Johannes/0000-0003-1253-4950; Jonnal, Ravi/0000-0002-9545-1837 FU National Eye Institute [5R01 EY014743, 1R01 EY018339]; National Science Foundation Science and Technology Center; University of California at Santa Cruz [AST-9876783] FX The authors are indebted to the subjects who volunteered for this study. They also thank Daniel Jackson and William Monette for machining and electronic support. Furthermore, fruitful discussions with Drs Robert Knighton and Steve Burns are acknowledged. Financial support was provided by the National Eye Institute grants 5R01 EY014743 and 1R01 EY018339. This work was also supported in part by the National Science Foundation Science and Technology Center for Adaptive Optics, managed by the University of California at Santa Cruz under cooperative agreement No. AST-9876783. NR 36 TC 36 Z9 37 U1 4 U2 13 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD NOV 23 PY 2009 VL 17 IS 24 BP 21634 EP 21651 DI 10.1364/OE.17.021634 PG 18 WC Optics SC Optics GA 525PU UT WOS:000272229400032 PM 19997405 ER PT J AU Aquila, A Salmassi, F Liu, YW Gullikson, EM AF Aquila, A. Salmassi, F. Liu, Yanwei Gullikson, E. M. TI Tri-material multilayer coatings with high reflectivity and wide bandwidth for 25 to 50 nm extreme ultraviolet light SO OPTICS EXPRESS LA English DT Article ID SUB-QUARTERWAVE MULTILAYERS; REFLECTANCE ENHANCEMENT; ABSORBING MATERIALS; X-RAYS; MIRRORS; DESIGN AB Magnesium/silicon carbide (Mg/SiC) multilayers have been fabricated with normal incidence reflectivity in the vicinity of 40% to 50% for wavelengths in the 25 to 50 nm wavelength range. However many applications, for example solar telescopes and ultrafast studies using high harmonic generation sources, desire larger bandwidths than provided by high reflectivity Mg/SiC multilayers. We investigate introducing a third material, Scandium, to create a tri-material Mg/Sc/SiC multilayer allowing an increase the bandwidth while maintaining high reflectivity. (C) 2009 Optical Society of America C1 [Aquila, A.; Salmassi, F.; Liu, Yanwei; Gullikson, E. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. RP Aquila, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. EM ALAquila@lbl.gov FU National Science Foundation Engineering Research Center (NSF ERC); EUV Science and Technology; U. S. Department of Energy (DOE) FX This work was supported by the National Science Foundation Engineering Research Center (NSF ERC) or EUV Science and Technology, and by the U. S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Division of Materials Sciences and Engineering. The authors would also like to thank Eberhard Spiller for suggesting the linearity relation for the index of refraction and wavelength as an explanation to the asymmetry. NR 18 TC 13 Z9 13 U1 0 U2 6 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD NOV 23 PY 2009 VL 17 IS 24 BP 22102 EP 22107 DI 10.1364/OE.17.022102 PG 6 WC Optics SC Optics GA 525PU UT WOS:000272229400083 PM 19997456 ER PT J AU Chekanov, S Derrick, M Magill, S Musgrave, B Nicholass, D Repond, J Yoshida, R Mattingly, MCK Antonioli, P Bari, G Bellagamba, L Boscherini, D Bruni, A Bruni, G Cindolo, F Corradi, M Iacobucci, G Margotti, A Nania, R Polini, A Antonelli, S Basile, M Bindi, M Cifarelli, L Contin, A De Pasquale, S Sartorelli, G Zichichi, A Bartsch, D Brock, I Hartmann, H Hilger, E Jakob, HP Jungst, M Nuncio-Quiroz, AE Paul, E Samson, U Schonberg, V Shehzadi, R Wlasenko, M Brook, NH Heath, GP Morris, JD Kaur, M Kaur, P Singh, I Capua, M Fazio, S Mastroberardino, A Schioppa, M Susinno, G Tassi, E Kim, JY Ibrahim, ZA Idris, FM Kamaluddin, B Abdullah, WATW Ning, Y Ren, Z Sciulli, F Chwastowski, J Eskreys, A Figiel, J Galas, A Olkiewicz, K Pawlik, B Stopa, P Zawiejski, L Adamczyk, L Bold, T Grabowska-Bold, I Kisielewska, D Lukasik, J Przybycien, M Suszycki, L Kotanski, A Slominski, W Behnke, O Behr, J Behrens, U Blohm, C Borras, K Bot, D Ciesielski, R Coppola, N Fang, S Geiser, A Gottlicher, P Grebenyuk, J Gregor, I Haas, T Hain, W Huttmann, A Januschek, F Kahle, B Katkov, IJ Klein, U Kotz, U Kowalski, H Lisovyi, M Lobodzinska, E Lohr, B Mankel, R Melzer-Pellmann, IA Miglioranzi, S Montanari, A Namsoo, T Notz, D Parenti, A Roloff, P Rubinsky, I Schneekloth, U Spiridonov, A Szuba, D Szuba, J Theedt, T Tomaszewska, J Wolf, G Wrona, K Yagues-Molina, AG Youngman, C Zeuner, W Drugakov, V Lohmann, W Schlenstedt, S Barbagli, G Gallo, E Pelfer, PG Bamberger, A Dobur, D Karstens, F Vlasov, NN Bussey, PJ Doyle, AT Forrest, M Saxon, DH Skillicorn, IO Gialas, I Papageorgiu, K Holm, U Klanner, R Lohrmann, E Perrey, H Schleper, P Schorner-Sadenius, T Sztuk, J Stadie, H Turcato, M Foudas, C Fry, C Long, KR Tapper, AD Matsumoto, T Nagano, K Tokushuku, K Yamada, S Yamazaki, Y Barakbaev, AN Boos, EG Pokrovskiy, NS Zhautykov, BO Aushev, V Bachynska, O Borodin, M Kadenko, I Kuprash, O Libov, V Lontkovskyi, D Makarenko, I Sorokin, I Verbytskyi, A Volynets, O Zolko, M Son, D de Favereau, J Piotrzkowski, K Barreiro, F Glasman, C Jimenez, M del Peso, J Ron, E Terron, J Uribe-Estrada, C Corriveau, F Schwartz, J Zhou, C Tsurugai, T Antonov, A Dolgoshein, BA Gladkov, D Sosnovtsev, V Stifutkin, A Suchkov, S Dementiev, RK Ermolov, PF Gladilin, LK Golubkov, YA Khein, LA Korzhavina, IA Kuzmin, VA Levchenko, BB Lukina, OY Proskuryakov, AS Shcheglova, LM Zotkin, DS Abt, I Caldwell, A Kollar, D Reisert, B Schmidke, WB Grigorescu, G Keramidas, A Koffeman, E Kooijman, P Pellegrino, A Tiecke, H Vazquez, M Wiggers, L Brummer, N Bylsma, B Durkin, LS Lee, A Ling, TY Allfrey, PD Bell, MA Cooper-Sarkar, AM Devenish, RCE Ferrando, J Foster, B Gwenlan, C Horton, K Oliver, K Robertson, A Walczak, R Bertolin, A Dal Corso, F Dusini, S Longhin, A Stanco, L Brugnera, R Carlin, R Garfagnini, A Limentani, S Oh, BY Raval, A Whitmore, JJ Iga, Y D'Agostini, G Marini, G Nigro, A Cole, JE Hart, JC Abramowicz, H Ingbir, R Kananov, S Levy, A Stern, A Kuze, M Maeda, J Hori, R Kagawa, S Okazaki, N Shimizu, S Tawara, T Hamatsu, R Kaji, H Kitamura, S Ota, O Ri, YD Costa, M Ferrero, MI Monaco, V Sacchi, R Sola, V Solano, A Arneodo, M Ruspa, M Fourletov, S Martin, JF Stewart, TP Boutle, SK Butterworth, JM Jones, TW Loizides, JH Wing, M Brzozowska, B Ciborowski, J Grzelak, G Kulinski, P Luzniak, P Malka, J Nowak, RJ Pawlak, JM Perlanski, W Zarnecki, AF Adamus, M Plucinski, P Eisenberg, Y Hochman, D Karshon, U Brownson, E Reeder, DD Savin, AA Smith, WH Wolfe, H Bhadra, S Catterall, CD Cui, Y Hartner, G Menary, S Noor, U Standage, J Whyte, J AF Chekanov, S. Derrick, M. Magill, S. Musgrave, B. Nicholass, D. Repond, J. Yoshida, R. Mattingly, M. C. K. Antonioli, P. Bari, G. Bellagamba, L. Boscherini, D. Bruni, A. Bruni, G. Cindolo, F. Corradi, M. Iacobucci, G. Margotti, A. Nania, R. Polini, A. Antonelli, S. Basile, M. Bindi, M. Cifarelli, L. Contin, A. De Pasquale, S. Sartorelli, G. Zichichi, A. Bartsch, D. Brock, I. Hartmann, H. Hilger, E. Jakob, H-P. Juengst, M. Nuncio-Quiroz, A. E. Paul, E. Samson, U. Schoenberg, V. Shehzadi, R. Wlasenko, M. Brook, N. H. Heath, G. P. Morris, J. D. Kaur, M. Kaur, P. Singh, I. Capua, M. Fazio, S. Mastroberardino, A. Schioppa, M. Susinno, G. Tassi, E. Kim, J. Y. Ibrahim, Z. A. Idris, F. Mohamad Kamaluddin, B. Abdullah, W. A. T. Wan Ning, Y. Ren, Z. Sciulli, F. Chwastowski, J. Eskreys, A. Figiel, J. Galas, A. Olkiewicz, K. Pawlik, B. Stopa, P. Zawiejski, L. Adamczyk, L. Bold, T. Grabowska-Bold, I. Kisielewska, D. Lukasik, J. Przybycien, M. Suszycki, L. Kotanski, A. Slominski, W. Behnke, O. Behr, J. Behrens, U. Blohm, C. Borras, K. Bot, D. Ciesielski, R. Coppola, N. Fang, S. Geiser, A. Goettlicher, P. Grebenyuk, J. Gregor, I. Haas, T. Hain, W. Huettmann, A. Januschek, F. Kahle, B. Katkov, I. J. Klein, U. Koetz, U. Kowalski, H. Lisovyi, M. Lobodzinska, E. Loehr, B. Mankel, R. Melzer-Pellmann, I-A. Miglioranzi, S. Montanari, A. Namsoo, T. Notz, D. Parenti, A. Roloff, P. Rubinsky, I. Schneekloth, U. Spiridonov, A. Szuba, D. Szuba, J. Theedt, T. Tomaszewska, J. Wolf, G. Wrona, K. Yaguees-Molina, A. G. Youngman, C. Zeuner, W. Drugakov, V. Lohmann, W. Schlenstedt, S. Barbagli, G. Gallo, E. Pelfer, P. G. Bamberger, A. Dobur, D. Karstens, F. Vlasov, N. N. Bussey, P. J. Doyle, A. T. Forrest, M. Saxon, D. H. Skillicorn, I. O. Gialas, I. Papageorgiu, K. Holm, U. Klanner, R. Lohrmann, E. Perrey, H. Schleper, P. Schoerner-Sadenius, T. Sztuk, J. Stadie, H. Turcato, M. Foudas, C. Fry, C. Long, K. R. Tapper, A. D. Matsumoto, T. Nagano, K. Tokushuku, K. Yamada, S. Yamazaki, Y. Barakbaev, A. N. Boos, E. G. Pokrovskiy, N. S. Zhautykov, B. O. Aushev, V. Bachynska, O. Borodin, M. Kadenko, I. Kuprash, O. Libov, V. Lontkovskyi, D. Makarenko, I. Sorokin, Iu. Verbytskyi, A. Volynets, O. Zolko, M. Son, D. de Favereau, J. Piotrzkowski, K. Barreiro, F. Glasman, C. Jimenez, M. del Peso, J. Ron, E. Terron, J. Uribe-Estrada, C. Corriveau, F. Schwartz, J. Zhou, C. Tsurugai, T. Antonov, A. Dolgoshein, B. A. Gladkov, D. Sosnovtsev, V. Stifutkin, A. Suchkov, S. Dementiev, R. K. Ermolov, P. F. Gladilin, L. K. Golubkov, Yu. A. Khein, L. A. Korzhavina, I. A. Kuzmin, V. A. Levchenko, B. B. Lukina, O. Yu. Proskuryakov, A. S. Shcheglova, L. M. Zotkin, D. S. Abt, I. Caldwell, A. Kollar, D. Reisert, B. Schmidke, W. B. Grigorescu, G. Keramidas, A. Koffeman, E. Kooijman, P. Pellegrino, A. Tiecke, H. Vazquez, M. Wiggers, L. Bruemmer, N. Bylsma, B. Durkin, L. S. Lee, A. Ling, T. Y. Allfrey, P. D. Bell, M. A. Cooper-Sarkar, A. M. Devenish, R. C. E. Ferrando, J. Foster, B. Gwenlan, C. Horton, K. Oliver, K. Robertson, A. Walczak, R. Bertolin, A. Dal Corso, F. Dusini, S. Longhin, A. Stanco, L. Brugnera, R. Carlin, R. Garfagnini, A. Limentani, S. Oh, B. Y. Raval, A. Whitmore, J. J. Iga, Y. D'Agostini, G. Marini, G. Nigro, A. Cole, J. E. Hart, J. C. Abramowicz, H. Ingbir, R. Kananov, S. Levy, A. Stern, A. Kuze, M. Maeda, J. Hori, R. Kagawa, S. Okazaki, N. Shimizu, S. Tawara, T. Hamatsu, R. Kaji, H. Kitamura, S. Ota, O. Ri, Y. D. Costa, M. Ferrero, M. I. Monaco, V. Sacchi, R. Sola, V. Solano, A. Arneodo, M. Ruspa, M. Fourletov, S. Martin, J. F. Stewart, T. P. Boutle, S. K. Butterworth, J. M. Jones, T. W. Loizides, J. H. Wing, M. Brzozowska, B. Ciborowski, J. Grzelak, G. Kulinski, P. Luzniak, P. Malka, J. Nowak, R. J. Pawlak, J. M. Perlanski, W. Zarnecki, A. F. Adamus, M. Plucinski, P. Eisenberg, Y. Hochman, D. Karshon, U. Brownson, E. Reeder, D. D. Savin, A. A. Smith, W. H. Wolfe, H. Bhadra, S. Catterall, C. D. Cui, Y. Hartner, G. Menary, S. Noor, U. Standage, J. Whyte, J. CA ZEUS Collaboration TI Measurement of the longitudinal proton structure function at HERA SO PHYSICS LETTERS B LA English DT Article ID CENTRAL TRACKING DETECTOR; PHYSICS EVENT GENERATION; INELASTIC EP SCATTERING; ZEUS BARREL CALORIMETER; CROSS-SECTIONS; QCD ANALYSIS; LOW-X; PERTURBATION-THEORY; DESIGN; CONSTRUCTION AB The reduced cross sections for ep, deep inelastic scattering have been measured with the ZEUS detector at HERA at three different centre-of-mass energies, 318, 251 and 225 GeV. From the cross sections, measured double differentially in Bjorken x and the virtuality, Q(2), the proton structure (f)unctions F(L) and F(2) have been extracted in the region 5 x 10(-4) < x < 0.007 and 20 < Q(2) < 130 GeV(2). (C) 2009 Elsevier B.V. All rights reserved. C1 [Behnke, O.; Behr, J.; Behrens, U.; Blohm, C.; Borras, K.; Bot, D.; Ciesielski, R.; Coppola, N.; Fang, S.; Geiser, A.; Goettlicher, P.; Grebenyuk, J.; Gregor, I.; Haas, T.; Hain, W.; Huettmann, A.; Januschek, F.; Kahle, B.; Katkov, I. J.; Klein, U.; Koetz, U.; Kowalski, H.; Lisovyi, M.; Lobodzinska, E.; Loehr, B.; Mankel, R.; Melzer-Pellmann, I-A.; Miglioranzi, S.; Montanari, A.; Namsoo, T.; Notz, D.; Parenti, A.; Roloff, P.; Rubinsky, I.; Schneekloth, U.; Spiridonov, A.; Szuba, D.; Szuba, J.; Theedt, T.; Tomaszewska, J.; Wolf, G.; Wrona, K.; Yaguees-Molina, A. G.; Youngman, C.; Zeuner, W.] Deutsch Elektronen Synchrotron DESY, Hamburg, Germany. [Chekanov, S.; Derrick, M.; Magill, S.; Musgrave, B.; Nicholass, D.; Repond, J.; Yoshida, R.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mattingly, M. C. K.] Andrews Univ, Berrien Springs, MI 49104 USA. [Antonioli, P.; Bari, G.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cindolo, F.; Corradi, M.; Iacobucci, G.; Margotti, A.; Nania, R.; Polini, A.; Antonelli, S.; Basile, M.; Bindi, M.; Cifarelli, L.; Contin, A.; De Pasquale, S.; Sartorelli, G.; Zichichi, A.] Ist Nazl Fis Nucl, I-40126 Bologna, Italy. [Antonelli, S.; Basile, M.; Bindi, M.; Cifarelli, L.; Contin, A.; De Pasquale, S.; Sartorelli, G.; Zichichi, A.] Univ Bologna, Bologna, Italy. [Bartsch, D.; Brock, I.; Hartmann, H.; Hilger, E.; Jakob, H-P.; Juengst, M.; Nuncio-Quiroz, A. E.; Paul, E.; Samson, U.; Schoenberg, V.; Shehzadi, R.; Wlasenko, M.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Brook, N. H.; Heath, G. P.; Morris, J. D.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Kaur, M.; Kaur, P.; Singh, I.] Panjab Univ, Dept Phys, Chandigarh 160014, India. [Capua, M.; Fazio, S.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dept Phys, I-87036 Cosenza, Italy. [Capua, M.; Fazio, S.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Cosenza, Italy. [Kim, J. Y.] Chonnam Natl Univ, Kwangju, South Korea. [Ibrahim, Z. A.; Idris, F. Mohamad; Kamaluddin, B.; Abdullah, W. A. T. Wan] Univ Malaya, Kuala Lumpur 50603, Malaysia. [Ning, Y.; Ren, Z.; Sciulli, F.] Columbia Univ, Nevis Labs, Irvington, NY 10027 USA. [Chwastowski, J.; Eskreys, A.; Figiel, J.; Galas, A.; Olkiewicz, K.; Pawlik, B.; Stopa, P.; Zawiejski, L.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Adamczyk, L.; Bold, T.; Grabowska-Bold, I.; Kisielewska, D.; Lukasik, J.; Przybycien, M.; Suszycki, L.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Kotanski, A.; Slominski, W.] Jagiellonian Univ, Dept Phys, Krakow, Poland. [Drugakov, V.; Lohmann, W.; Schlenstedt, S.] Deutsch Elektronen Synchrotron DESY, Zeuthen, Germany. [Barbagli, G.; Gallo, E.; Pelfer, P. G.] Ist Nazl Fis Nucl, I-50125 Florence, Italy. [Pelfer, P. G.] Univ Florence, Florence, Italy. [Bamberger, A.; Dobur, D.; Karstens, F.; Vlasov, N. N.] Univ Freiburg, Fak Phys, D-7800 Freiburg, Germany. [Bussey, P. J.; Doyle, A. T.; Forrest, M.; Saxon, D. H.; Skillicorn, I. O.] Univ Glasgow, Dept Phys & Astron, Glasgow, Lanark, Scotland. [Gialas, I.; Papageorgiu, K.] Univ Aegean, Dept Engn Management & Finance, Aegean, Greece. [Holm, U.; Klanner, R.; Lohrmann, E.; Perrey, H.; Schleper, P.; Schoerner-Sadenius, T.; Sztuk, J.; Stadie, H.; Turcato, M.; Wing, M.] Univ Hamburg, Inst Exp Phys, Hamburg, Germany. [Foudas, C.; Fry, C.; Long, K. R.; Tapper, A. D.] Univ London Imperial Coll Sci Technol & Med, High Energy Nucl Phys Grp, London, England. [Matsumoto, T.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.] Natl Lab High Energy Phys, KEK, Inst Particle & Nucl Studies, Tsukuba, Ibaraki 305, Japan. [Barakbaev, A. N.; Boos, E. G.; Pokrovskiy, N. S.; Zhautykov, B. O.] Minist Educ & Sci Kazakhstan, Inst Phys & Technol, Alma Ata, Kazakhstan. [Aushev, V.; Bachynska, O.; Borodin, M.; Kadenko, I.; Kuprash, O.; Libov, V.; Lontkovskyi, D.; Makarenko, I.; Sorokin, Iu.; Verbytskyi, A.; Volynets, O.; Zolko, M.] Natl Acad Sci, Inst Nucl Res, Kiev, Ukraine. [Aushev, V.; Bachynska, O.; Borodin, M.; Kadenko, I.; Kuprash, O.; Libov, V.; Lontkovskyi, D.; Makarenko, I.; Sorokin, Iu.; Verbytskyi, A.; Volynets, O.; Zolko, M.] Kiev Natl Univ, Kiev, Ukraine. [Son, D.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu, South Korea. [de Favereau, J.; Piotrzkowski, K.] Univ Catholique Louvain, Inst Phys Nucl, B-1348 Louvain, Belgium. [Barreiro, F.; Glasman, C.; Jimenez, M.; del Peso, J.; Ron, E.; Terron, J.; Uribe-Estrada, C.] Univ Autonoma Madrid, Dept Fis Teor, Madrid, Spain. [Corriveau, F.; Schwartz, J.; Zhou, C.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Tsurugai, T.] Meiji Gakuin Univ, Fac Gen Educ, Yokohama, Kanagawa, Japan. [Antonov, A.; Dolgoshein, B. A.; Gladkov, D.; Sosnovtsev, V.; Stifutkin, A.; Suchkov, S.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Dementiev, R. K.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Yu. A.; Khein, L. A.; Korzhavina, I. A.; Kuzmin, V. A.; Levchenko, B. B.; Lukina, O. Yu.; Proskuryakov, A. S.; Shcheglova, L. M.; Zotkin, D. S.] Moscow MV Lomonosov State Univ, Inst Nucl Phys, Moscow, Russia. [Abt, I.; Caldwell, A.; Kollar, D.; Reisert, B.; Schmidke, W. B.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Grigorescu, G.; Keramidas, A.; Koffeman, E.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Wiggers, L.] NIKHEF, Amsterdam, Netherlands. [Grigorescu, G.; Keramidas, A.; Koffeman, E.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Wiggers, L.] Univ Amsterdam, Amsterdam, Netherlands. [Bruemmer, N.; Bylsma, B.; Durkin, L. S.; Lee, A.; Ling, T. Y.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Allfrey, P. D.; Bell, M. A.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Ferrando, J.; Foster, B.; Gwenlan, C.; Horton, K.; Oliver, K.; Robertson, A.; Walczak, R.] Univ Oxford, Dept Phys, Oxford, England. [Bertolin, A.; Dal Corso, F.; Dusini, S.; Longhin, A.; Stanco, L.; Brugnera, R.; Carlin, R.; Garfagnini, A.; Limentani, S.] Ist Nazl Fis Nucl, Padua, Italy. [Brugnera, R.; Carlin, R.; Garfagnini, A.; Limentani, S.] Univ Padua, Dipartimento Fis, Padua, Italy. [Oh, B. Y.; Raval, A.; Whitmore, J. J.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Iga, Y.] Polytech Univ, Sagamihara, Kanagawa, Japan. [D'Agostini, G.; Marini, G.; Nigro, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [D'Agostini, G.; Marini, G.; Nigro, A.] Ist Nazl Fis Nucl, Rome, Italy. [Cole, J. E.; Hart, J. C.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Abramowicz, H.; Ingbir, R.; Kananov, S.; Levy, A.; Stern, A.] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Phys, IL-69978 Tel Aviv, Israel. [Hori, R.; Kagawa, S.; Okazaki, N.; Shimizu, S.; Tawara, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Kuze, M.; Maeda, J.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Hamatsu, R.; Kaji, H.; Kitamura, S.; Ota, O.; Ri, Y. D.] Tokyo Metropolitan Univ, Dept Phys, Tokyo, Japan. [Costa, M.; Ferrero, M. I.; Monaco, V.; Sacchi, R.; Sola, V.; Solano, A.] Univ Turin, Turin, Italy. [Costa, M.; Ferrero, M. I.; Monaco, V.; Sacchi, R.; Sola, V.; Solano, A.; Arneodo, M.; Ruspa, M.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Arneodo, M.; Ruspa, M.] Univ Piemonte Orientale, Turin, Italy. [Fourletov, S.; Martin, J. F.; Stewart, T. P.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Boutle, S. K.; Butterworth, J. M.; Jones, T. W.; Loizides, J. H.; Wing, M.] UCL, Dept Phys & Astron, London, England. [Brzozowska, B.; Ciborowski, J.; Grzelak, G.; Kulinski, P.; Luzniak, P.; Malka, J.; Nowak, R. J.; Pawlak, J. M.; Perlanski, W.; Zarnecki, A. F.] Warsaw Univ, Inst Expt Phys, Warsaw, Poland. [Adamus, M.; Plucinski, P.] Inst Nucl Studies, PL-00681 Warsaw, Poland. [Eisenberg, Y.; Hochman, D.; Karshon, U.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Brownson, E.; Reeder, D. D.; Savin, A. A.; Smith, W. H.; Wolfe, H.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Bhadra, S.; Catterall, C. D.; Cui, Y.; Hartner, G.; Menary, S.; Noor, U.; Standage, J.; Whyte, J.] York Univ, Dept Phys, N York, ON M3J 1P3, Canada. [Kaur, P.; Singh, I.; Abramowicz, H.] Max Planck Inst, Munich, Germany. [Spiridonov, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Szuba, D.] INP, Krakow, Poland. [Szuba, J.] AGH UST, FPACS, Krakow, Poland. [Gialas, I.] DESY, Hamburg, Germany. [Ciborowski, J.] Univ Lodz, PL-90131 Lodz, Poland. RP Haas, T (reprint author), Deutsch Elektronen Synchrotron DESY, Hamburg, Germany. EM tobias.haas@desy.de RI Tassi, Enrico/K-3958-2015; Suchkov, Sergey/M-6671-2015; De Pasquale, Salvatore/B-9165-2008; dusini, stefano/J-3686-2012; Capua, Marcella/A-8549-2015; Gladilin, Leonid/B-5226-2011; Doyle, Anthony/C-5889-2009; IBRAHIM, ZAINOL ABIDIN/C-1121-2010; Levchenko, B./D-9752-2012; Proskuryakov, Alexander/J-6166-2012; Dementiev, Roman/K-7201-2012; WAN ABDULLAH, WAN AHMAD TAJUDDIN/B-5439-2010; Korzhavina, Irina/D-6848-2012; Wiggers, Leo/B-5218-2015; Fazio, Salvatore /G-5156-2010; Ferrando, James/A-9192-2012 OI De Pasquale, Salvatore/0000-0001-9236-0748; dusini, stefano/0000-0002-1128-0664; Capua, Marcella/0000-0002-2443-6525; Arneodo, Michele/0000-0002-7790-7132; Longhin, Andrea/0000-0001-9103-9936; Raval, Amita/0000-0003-0164-4337; Gladilin, Leonid/0000-0001-9422-8636; Doyle, Anthony/0000-0001-6322-6195; Wiggers, Leo/0000-0003-1060-0520; Ferrando, James/0000-0002-1007-7816 NR 63 TC 49 Z9 49 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD NOV 23 PY 2009 VL 682 IS 1 BP 8 EP 22 DI 10.1016/j.physletb.2009.10.050 PG 15 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 525OU UT WOS:000272226600002 ER PT J AU Larmat, CS Guyer, RA Johnson, PA AF Larmat, C. S. Guyer, R. A. Johnson, P. A. TI Tremor source location using time reversal: Selecting the appropriate imaging field SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SPECTRAL-ELEMENT; ADJOINT METHODS; CALIFORNIA; EARTHQUAKES; SEISMOLOGY; JAPAN AB Studying triggered Non Volcanic Tremor (NVT) is important because it may help to map the depth of the locked zones of faults associated with high seismic risk. The success of this mapping depends on precisely locating the depth of tremor. Tremor, like other long-lived signals (e. g., Earth hum) lacks distinct sharp timing features making it impossible to locate with classical approaches. Time Reversal has the advantage of exploiting the full waveform with no a priori assumption regarding the source or the observed signal. We perform a synthetic study of time reversal location of a long-lasting source in the Los Angeles basin with a realistic 3D velocity model and sparse station set. We show that, the key to successfully locating NVT, is application of suitable imaging fields, such as the wave divergence, curl and energy current. Citation: Larmat, C. S., R. A. Guyer, and P. A. Johnson (2009), Tremor source location using time reversal: Selecting the appropriate imaging field, Geophys. Res. Lett., 36, L22304, doi:10.1029/2009GL040099. C1 [Larmat, C. S.; Guyer, R. A.; Johnson, P. A.] Los Alamos Natl Lab, Geophys Grp, EES 17, Los Alamos, NM 87544 USA. [Guyer, R. A.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. RP Larmat, CS (reprint author), Los Alamos Natl Lab, Geophys Grp, EES 17, POB 1663, Los Alamos, NM 87544 USA. EM carene@lanl.gov RI Larmat, Carene/B-4686-2011; OI Larmat, Carene S/0000-0002-3607-7558; Johnson, Paul/0000-0002-0927-4003 FU Institutional Support (LDRD) at Los Alamos National Laboratory FX This work was supported by Institutional Support (LDRD) at Los Alamos National Laboratory. NR 23 TC 17 Z9 17 U1 1 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 21 PY 2009 VL 36 AR L22304 DI 10.1029/2009GL040099 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 522KA UT WOS:000271995300001 ER PT J AU Artyomov, MN Mathur, M Samoilov, MS Chakraborty, AK AF Artyomov, Maxim N. Mathur, Manikandan Samoilov, Michael S. Chakraborty, Arup K. TI Stochastic bimodalities in deterministically monostable reversible chemical networks due to network topology reduction SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE Fokker-Planck equation; master equation; network topology; reaction kinetics; stochastic processes ID BISTABILITY; PHOSPHORYLATION; CASCADES; CYCLES; NOISE AB Recently, stochastic simulations of networks of chemical reactions have shown distributions of steady states that are inconsistent with the steady state solutions of the corresponding deterministic ordinary differential equations. One such class of systems is comprised of networks that have irreversible reactions, and the origin of the anomalous behavior in these cases is understood to be due to the existence of absorbing states. More puzzling is the report of such anomalies in reaction networks without irreversible reactions. One such biologically important example is the futile cycle. Here we show that, in these systems, nonclassical behavior can originate from a stochastic elimination of all the molecules of a key species. This leads to a reduction in the topology of the network and the sampling of steady states corresponding to a truncated network. Surprisingly, we find that, in spite of the purely discrete character of the topology reduction mechanism revealed by "exact" numerical solutions of the master equations, this phenomenon is reproduced by the corresponding Fokker-Planck equations. C1 [Artyomov, Maxim N.; Chakraborty, Arup K.] MIT, Dept Chem, Cambridge, MA 02139 USA. [Mathur, Manikandan] MIT, Dept Mech Engn, Cambridge, MA 02139 USA. [Samoilov, Michael S.] Univ Calif Berkeley, Calif Inst Quantitat Biosci QB3, Berkeley, CA 94720 USA. [Samoilov, Michael S.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Chakraborty, Arup K.] MIT, Dept Chem Engn, Cambridge, MA 02139 USA. [Chakraborty, Arup K.] MIT, Dept Biol Engn, Cambridge, MA 02139 USA. RP Artyomov, MN (reprint author), MIT, Dept Chem, Cambridge, MA 02139 USA. EM arupc@mit.edu OI Samoilov, Michael/0000-0003-3559-5326 FU NIH [IPO1/AI071195/01] FX We would like to acknowledge helpful discussions with Jayajit Das, Jason Locasale, and Adam Arkin. Funding provided through NIH Director's Pioneer Award to A. K. C. and Contract No. IPO1/AI071195/01 (A.K.C.). NR 17 TC 10 Z9 10 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 21 PY 2009 VL 131 IS 19 AR 195103 DI 10.1063/1.3264948 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 523CT UT WOS:000272050200041 PM 19929080 ER PT J AU Cook, PL Liu, XS Yang, WL Himpsel, FJ AF Cook, Peter L. Liu, Xiaosong Yang, Wanli Himpsel, F. J. TI X-ray absorption spectroscopy of biomimetic dye molecules for solar cells SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE biomimetics; dyes; molecular electronic states; oxidation; solar cells; XANES ID MAGNETIC-CIRCULAR-DICHROISM; PHOTOELECTRON VALENCE-BAND; ELECTRONIC-STRUCTURE; PHTHALOCYANINE COMPOUNDS; PHOTOEMISSION-SPECTROSCOPY; METAL PHTHALOCYANINES; COPPER PHTHALOCYANINE; FINE-STRUCTURE; CYTOCHROME-C; NEAR-EDGE AB Dye-sensitized solar cells are potentially inexpensive alternatives to traditional semiconductor solar cells. In order to optimize dyes for solar cells we systematically investigate the electronic structure of a variety of porphyrins and phthalocyanines. As a biological model system we use the heme group in cytochrome c which plays a role in biological charge transfer processes. X-ray absorption spectroscopy of the N 1s and C 1s edges reveals the unoccupied molecular orbitals and the orientation of the molecules in thin films. The transition metal 2p edges reflect the oxidation state of the central metal atom, its spin state, and the ligand field of the surrounding N atoms. The latter allows tuning of the energy position of the lowest unoccupied orbital by several tenths of an eV by tailoring the molecules and their deposition. Fe and Mn containing phthalocyanines oxidize easily from +2 to +3 in air and require vacuum deposition for obtaining a reproducible oxidation state. Chlorinated porphyrins, on the other hand, are reduced from +3 to +2 during vacuum deposition at elevated temperatures. These findings stress the importance of controlled thin film deposition for obtaining photovoltaic devices with an optimum match between the energy levels of the dye and those of the donor and acceptor electrodes, together with a molecular orientation for optimal overlap between the pi orbitals in the direction of the carrier transport. C1 [Cook, Peter L.; Liu, Xiaosong; Himpsel, F. J.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Yang, Wanli] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Cook, PL (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. EM fhimpsel@wisc.edu RI Liu, Xiaosong/D-7564-2011; Yang, Wanli/D-7183-2011 OI Yang, Wanli/0000-0003-0666-8063 FU NSF [DMR-0520527, DMR-008440]; DOE [DE-FG02-01ER45917, DE-AC03-76SF00098] FX X. L. acknowledges support by a pre-doctoral fellowship at the ALS. This work was supported by the NSF under Award Nos. DMR-0520527 (MRSEC) and DMR-0084402 (SRC) and by the DOE under Contract Nos. DE-FG02-01ER45917 and DE-AC03-76SF00098 (ALS). NR 66 TC 37 Z9 38 U1 0 U2 32 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 21 PY 2009 VL 131 IS 19 AR 194701 DI 10.1063/1.3257621 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 523CT UT WOS:000272050200026 PM 19929065 ER PT J AU Cunsolo, A Formisano, F Ferrero, C Bencivenga, F Finet, S AF Cunsolo, A. Formisano, F. Ferrero, C. Bencivenga, F. Finet, S. TI Pressure dependence of the large-scale structure of water SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE hydrogen bonds; liquid structure; liquid theory; water; X-ray scattering ID X-RAY-SCATTERING; SUPERCOOLED WATER; DENSITY-FLUCTUATIONS; LOW-TEMPERATURES; BEHAVIOR; VELOCITY; LIQUID; H2O; D2O AB We report on small-angle x-ray scattering measurements on liquid water aimed at characterizing the pressure evolution of its large-scale structure. Diffraction profiles have been fitted assuming a Lorentzian dependence on the exchanged momentum. As a result, we observe an anomalous behavior of the diffracted intensity that tends to disappear, increasing either the pressure or the temperature. This effect is discussed in detail and imputed to the ability of hydrostatic pressure to weaken hydrogen bonds. C1 [Cunsolo, A.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Formisano, F.] Ctr Ric & Sviluppo SOFT, CNR, INFM, I-00185 Rome, Italy. [Formisano, F.] OGG, F-38043 Grenoble, France. [Ferrero, C.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Bencivenga, F.] Sincrotrone Trieste, I-34012 Trieste, Italy. [Finet, S.] Univ Paris 06, CNRS, F-75252 Paris 05, France. RP Cunsolo, A (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM acunsolo@bnl.gov RI Cunsolo, Alessandro/C-7617-2013; Formisano, Ferdinando/G-8888-2013 NR 25 TC 13 Z9 13 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 21 PY 2009 VL 131 IS 19 AR 194502 DI 10.1063/1.3259882 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 523CT UT WOS:000272050200016 PM 19929055 ER PT J AU Griffin, GB Young, RM Ehrler, OT Neumark, DM AF Griffin, Graham B. Young, Ryan M. Ehrler, Oli T. Neumark, Daniel M. TI Electronic relaxation dynamics in large anionic water clusters: (H2O)(n)- and (D2O)(n)- (n=25-200) SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE deuterium compounds; excited states; ground states; molecular clusters; negative ions; nonradiative transitions; photoelectron spectra; radiative lifetimes; solvent effects; time resolved spectra; water ID PHOTOEXCITED HYDRATED ELECTRON; PUMP-PROBE SPECTROSCOPY; EXCESS ELECTRONS; SOLVATED ELECTRON; PHOTOELECTRON-SPECTROSCOPY; ABSORPTION-SPECTRA; COMPUTER-SIMULATION; QUANTUM SIMULATION; LIQUID WATER; REAL-TIME AB Electronic relaxation dynamics subsequent to s -> p excitation of the excess electron in large anionic water clusters, (H2O)(n)- and (D2O)(n)- with 25 < n < 200, were investigated using time-resolved photoelectron imaging. Experimental improvements have enabled considerably larger clusters to be probed than in previous work, and the temporal resolution of the instrument has been improved. New trends are seen in the size-dependent p-state lifetimes for clusters with n >= 70, suggesting a significant change in the electron-water interaction for clusters in this size range. Extrapolating the results for these larger clusters to the infinite-size limit yields internal conversion lifetimes tau(IC) of 60 and 160 fs for electrons dissolved in H2O and D2O, respectively. In addition, the time-evolving spectra show evidence for solvent relaxation in the excited electronic state prior to internal conversion and in the ground state subsequent to internal conversion. Relaxation in the excited state appears to occur on a time scale similar to that of internal conversion, while ground state solvent dynamics occur on a similar to 1 ps time scale, in reasonable agreement with previous measurements on water cluster anions and electrons solvated in liquid water. C1 [Griffin, Graham B.; Young, Ryan M.; Ehrler, Oli T.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Neumark, Daniel M.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Neumark, DM (reprint author), Univ Calif Berkeley, Dept Chem, B64 Latimer Hall, Berkeley, CA 94720 USA. EM dneumark@berkeley.edu RI Ehrler, Oli/B-6215-2008; Neumark, Daniel/B-9551-2009 OI Neumark, Daniel/0000-0002-3762-9473 FU National Science Foundation [CHE-0649647]; Alexander von Humboldt foundation (Germany) FX This research was supported by the National Science Foundation under Grant No. CHE-0649647. O.T.E. is thankful to the Alexander von Humboldt foundation (Germany) for support through a Feodor Lynen fellowship. NR 79 TC 20 Z9 20 U1 1 U2 15 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 21 PY 2009 VL 131 IS 19 AR 194302 DI 10.1063/1.3263419 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 523CT UT WOS:000272050200007 PM 19929046 ER PT J AU Hong, L Gujrati, PD Novikov, VN Sokolov, AP AF Hong, L. Gujrati, P. D. Novikov, V. N. Sokolov, A. P. TI Molecular cooperativity in the dynamics of glass-forming systems: A new insight SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE glass structure; glass transition; nuclear magnetic resonance; vibrational modes ID SUPERCOOLED LIQUIDS; RAMAN-SCATTERING; VIBRATIONAL EXCITATIONS; STRUCTURAL RELAXATION; PROPYLENE-GLYCOL; LENGTH SCALE; RANGE ORDER; BOSON PEAK; TRANSITION; TEMPERATURE AB The mechanism behind the steep slowing down of molecular motions upon approaching the glass transition remains a great puzzle. Most of the theories relate this mechanism to the cooperativity in molecular motion. In this work, we estimate the length scale of molecular cooperativity xi for many glass-forming systems from the collective vibrations (the so-called boson peak). The obtained values agree well with the dynamic heterogeneity length scale estimated using four-dimensional NMR. We demonstrate that xi directly correlates to the dependence of the structural relaxation on volume. This dependence presents only one part of the mechanism of slowing down the structural relaxation. Our analysis reveals that another part, the purely thermal variation in the structural relaxation (at constant volume), does not have a direct correlation with molecular cooperativity. These results call for a conceptually new approach to the analysis of the mechanism of the glass transition and to the role of molecular cooperativity. C1 [Hong, L.; Gujrati, P. D.; Sokolov, A. P.] Univ Akron, Dept Polymer Sci, Akron, OH 44325 USA. [Novikov, V. N.] Russian Acad Sci, Inst Automat & Electrometry, Novosibirsk 630090, Russia. [Sokolov, A. P.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Sokolov, A. P.] ORNL, Div Chem Sci, Oak Ridge, TN 37837 USA. RP Sokolov, AP (reprint author), Univ Akron, Dept Polymer Sci, Akron, OH 44325 USA. EM sokolov@utk.edu RI hong, liang/D-5647-2012 FU NSF [DMR-0804571]; RFBR FX The authors thank M. Ediger, K. Schweizer, and J. Douglas for helpful discussions and acknowledge funding from the NSF, Polymer program (Grant No. DMR-0804571), and from the RFBR. NR 59 TC 40 Z9 40 U1 3 U2 38 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 21 PY 2009 VL 131 IS 19 AR 194511 DI 10.1063/1.3266508 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 523CT UT WOS:000272050200025 PM 19929064 ER PT J AU McGraw, R Lewis, ER AF McGraw, Robert Lewis, Ernie R. TI Deliquescence and efflorescence of small particles SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE adsorbed layers; chemical potential; free energy; humidity; nanoparticles; nucleation; phase transformations; surface energy ID SODIUM-CHLORIDE PARTICLES; NUCLEATION THEORY; HYGROSCOPIC GROWTH; FREE-ENERGY; WATER; SURFACES; NUCLEUS; THEOREM; SIZE AB We examine size-dependent deliquescence/efflorescence phase transformation for particles down to several nanometers in size. Thermodynamic properties of inorganic salt particles, coated with aqueous solution layers of varying thickness and surrounded by vapor, are analyzed. A thin layer criterion (TLC) is introduced to define a limiting deliquescence relative humidity (RH(D)) for small particles. This requires: (1) equality of chemical potentials between salt in an undissolved core, and thin adsorbed solution layer, and (2) equality of chemical potentials between water in the thin layer and vapor phase. The usual bulk deliquescence conditions are recovered in the limit of large dry particle size. Nanosize particles are found to deliquesce at relative humidity just below the RH(D) on crossing a nucleation barrier, located at a critical solution layer thickness. This barrier vanishes precisely at the RH(D) defined by the TLC. Concepts and methods from nucleation theory including the kinetic potential, self-consistent nucleation theory, nucleation theorems, and the Gibbs dividing surface provide theoretical foundation and point to unifying features of small particle deliquescence/efflorescence processes. These include common thermodynamic area constructions, useful for interpretation of small particle water uptake measurements, and a common free-energy surface, with constant RH cross sections describing deliquescence and efflorescence related through the nucleation theorem. C1 [McGraw, Robert; Lewis, Ernie R.] Brookhaven Natl Lab, Dept Environm Sci, Div Atmospher Sci, Upton, NY 11973 USA. RP McGraw, R (reprint author), Brookhaven Natl Lab, Dept Environm Sci, Div Atmospher Sci, Upton, NY 11973 USA. EM rlm@bnl.gov FU DOE FX This research was supported by the DOE Atmospheric Sciences Program. The authors thank DOE GCEP fellow Mackenzie Smith, Dr. Amanda Mifflin, Dr. George Biskos, and Professor Scot Martin of Harvard University for sharing results from their measurements prior to publication. Discussions with Dr. Susan Oatis during the early stages of this work are greatly appreciated. NR 30 TC 14 Z9 14 U1 1 U2 22 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 21 PY 2009 VL 131 IS 19 AR 194705 DI 10.1063/1.3251056 PG 14 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 523CT UT WOS:000272050200030 PM 19929069 ER PT J AU Widmer-Cooper, A Perry, H Harrowell, P Reichman, DR AF Widmer-Cooper, Asaph Perry, Heidi Harrowell, Peter Reichman, David R. TI Localized soft modes and the supercooled liquid's irreversible passage through its configuration space SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE glass transition; liquid structure; liquid theory; localised modes; supercooling ID FREQUENCY VIBRATIONAL-MODES; GLASS-TRANSITION; HETEROGENEOUS DYNAMICS; SPHERE GLASS; RELAXATION; DIFFUSION; MOTION AB Using computer simulations, we show that the localized low frequency normal modes of a configuration in a supercooled liquid are strongly correlated with the irreversible structural reorganization of the particles within that configuration. Establishing this correlation constitutes the identification of the aspect of a configuration that determines the heterogeneity of the subsequent motion. We demonstrate that the spatial distribution of the summation over the soft local modes can persist in spite of particle reorganization that produces significant changes in individual modes. Along with spatial localization, the persistent influence of soft modes in particle relaxation results in anisotropy in the displacements of mobile particles over the time scale referred to as beta-relaxation. C1 [Widmer-Cooper, Asaph] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Widmer-Cooper, Asaph; Harrowell, Peter] Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia. [Perry, Heidi; Reichman, David R.] Columbia Univ, Dept Chem, New York, NY 10027 USA. RP Widmer-Cooper, A (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM peter@chem.usyd.edu.au RI Widmer-Cooper, Asaph/E-6923-2010 OI Widmer-Cooper, Asaph/0000-0001-5459-6960 FU NSF; Australian Research Council FX We would like to thank L. Berthier, G. Biroli, J. P. Bouchaud, A. Heuer, C. O'Hern, and L. O. Hedges for useful discussions. H. P. and D. R. R. would like to thank P. Verrocchio for providing the equilibrated 3D configurations and the NSF for financial support. A. W. and P. H. acknowledge the support of the Australian Research Council. NR 56 TC 42 Z9 42 U1 2 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 21 PY 2009 VL 131 IS 19 AR 194508 DI 10.1063/1.3265983 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 523CT UT WOS:000272050200022 PM 19929061 ER PT J AU Lee, SH Lee, S Ha, JS Lee, HJ Lee, JW Lee, JY Hong, SK Goto, T Cho, MW Yao, T AF Lee, Sang Hyun Lee, Seogwoo Ha, Jun-Seok Lee, Hyo-Jong Lee, Jae Wook Lee, Jeong Yong Hong, Soon-Ku Goto, Takenari Cho, Meoung Whan Yao, Takafumi TI Structural and stimulated emission characteristics of diameter-controlled ZnO nanowires using buffer structure SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID ROOM-TEMPERATURE; CARBON NANOTUBE; NANOROD ARRAYS; ORDERED ARRAYS; TRANSISTOR; GROWTH; LASERS AB The diameter of ZnO nanowires grown by chemical vapour deposition was controlled by employing CrN buffer structures on the c-Al(2)O(3) substrate. The nanosized CrN islands with different morphologies were prepared by nitridation of thickness-controlled Cr film in NH(3) atmosphere. The ZnO nanowires grew normal to the surface of the CrN/c-Al(2)O(3) templates due to reduction in the lattice mismatch between ZnO and c-Al(2)O(3) by the CrN buffer layer. Investigation of the interface between CrN and ZnO by high resolution transmission electron microscopy revealed the presence of reactive layers such as ZnCr(2)O(4) and Cr(2)O(3). The diameter of nanowires significantly affected their stimulated emission characteristics. At room temperature, the threshold intensity for stimulated emission increased from 35 to above 500kW cm(-2) as the diameter of ZnO nanowires decreases from 223 to 77 nm. This dependence of threshold intensity for stimulated emission from nanowires is caused by an increase in the surface recombination and/or enhanced leakage of optical field in narrower nanowires. C1 [Lee, Sang Hyun; Lee, Seogwoo; Ha, Jun-Seok; Lee, Hyo-Jong; Goto, Takenari; Cho, Meoung Whan; Yao, Takafumi] Tohoku Univ, Interdisciplinary Res Ctr, Aoba Ku, Sendai, Miyagi 9808578, Japan. [Lee, Jae Wook; Lee, Jeong Yong] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Taejon 305701, South Korea. [Hong, Soon-Ku] Chungnam Natl Univ, Dept Nano Informat Syst Engn, Taejon 305764, South Korea. RP Lee, SH (reprint author), Oak Ridge Natl Lab, POB 2008,MS6201, Oak Ridge, TN 37831 USA. EM shlee7579@gmail.com RI Lee, Jeong Yong/C-8864-2011; Lee, Junyoung/D-5463-2012 OI Lee, Junyoung/0000-0001-6689-2759 FU Japan Society for the Promotion of Science (JSPS) FX A part of this work is supported by the Research Fellowships for Young Scientists Program of the Japan Society for the Promotion of Science (JSPS). NR 25 TC 4 Z9 4 U1 2 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD NOV 21 PY 2009 VL 42 IS 22 AR 225403 DI 10.1088/0022-3727/42/22/225403 PG 6 WC Physics, Applied SC Physics GA 516CJ UT WOS:000271519000042 ER PT J AU Lee, HY Giorgi, EE Keele, BF Gaschen, B Athreya, GS Salazar-Gonzalez, JF Pham, KT Goepfert, PA Kilby, JM Saag, MS Delwart, EL Busch, MP Hahn, BH Shaw, GM Korber, BT Bhattacharya, T Perelson, AS AF Lee, Ha Youn Giorgi, Elena E. Keele, Brandon F. Gaschen, Brian Athreya, Gayathri S. Salazar-Gonzalez, Jesus F. Pham, Kimmy T. Goepfert, Paula A. Kilby, J. Michael Saag, Michael S. Delwart, Eric L. Busch, Michael P. Hahn, Beatrice H. Shaw, George M. Korber, Bette T. Bhattacharya, Tanmoy Perelson, Alan S. TI Modeling sequence evolution in acute HIV-1 infection SO JOURNAL OF THEORETICAL BIOLOGY LA English DT Review DE HIV-1; Population dynamics; Viral evolution ID IMMUNODEFICIENCY-VIRUS TYPE-1; IN-VIVO; NEUTRALIZING ANTIBODY; POPULATION-DYNAMICS; VIRAL DYNAMICS; MUTATION-RATE; STOCHASTIC-MODEL; RHESUS MACAQUES; MONTE-CARLO; TRANSMISSION AB We describe a mathematical model and Monte Carlo( MC) simulation of viral evolution during acute infection. We consider both synchronous and a synchronous processes of viral infection of new target cells. The model enables an assessment of the expected sequence diversity in new HIV-1 infections originating from a single transmitted viral strain, estimation of the most recent common ancestor (MRCA) of the transmitted viral lineage, and estimation of the time to coalesce back to the MRCA. We also calculate the probability of the MRCA being the transmitted virus or an evolved variant. Excluding insertions and deletions, we assume HIV-1 evolves by base substitution without selection pressure during the earliest phase of HIV-1 infection prior to the immune response. Unlike phylogenetic methods that follow a lineage backwards to coalescence, we compare the observed data to a model of the diversification of a viral population forward in time. To illustrate the application of these methods, we provide detailed comparisons of the model and simulations results to 306 envelope sequences obtained from eight newly infected subjects at a single time point. The data from 6/8 patients were in good agreement with model predictions, and hence compatible with a single-strain infection evolving under no selection pressure. The diversity of the samples from the other two patients was too great to be explained by the model, suggesting multiple HIV-1-strains were transmitted. The model can also be applied to longitudinal patient data to estimate within-host viral evolutionary parameters. Published by Elsevier Ltd. C1 [Lee, Ha Youn; Giorgi, Elena E.; Gaschen, Brian; Athreya, Gayathri S.; Korber, Bette T.; Bhattacharya, Tanmoy; Perelson, Alan S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Lee, Ha Youn] Univ Rochester, Med Ctr, Dept Biostat & Computat Biol, Rochester, NY 14642 USA. [Giorgi, Elena E.] Univ Massachusetts, Amherst, MA 01002 USA. [Keele, Brandon F.; Salazar-Gonzalez, Jesus F.; Pham, Kimmy T.; Goepfert, Paula A.; Kilby, J. Michael; Saag, Michael S.; Hahn, Beatrice H.; Shaw, George M.] Univ Alabama, Birmingham, AL 35223 USA. [Delwart, Eric L.; Busch, Michael P.] Blood Syst Res Inst, San Francisco, CA 94118 USA. [Korber, Bette T.; Bhattacharya, Tanmoy] Santa Fe Inst, Santa Fe, NM 87501 USA. RP Perelson, AS (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM asp@lanl.gov RI Bhattacharya, Tanmoy/J-8956-2013; OI Bhattacharya, Tanmoy/0000-0002-1060-652X; Delwart, Eric/0000-0002-6296-4484; Korber, Bette/0000-0002-2026-5757 FU US Department of Energy [DE-AC52-06NA25396]; Center for HIV/AIDS Vaccine Immunology [AI67854]; Bill & Melinda Gates Foundation Grand Challenges Program [37874]; University of Alabama at Birmingham Center for AIDS Research [AI27767]; University of Rochester Developmental Center for AIDS Research [P30-AI078498]; NIH [AI083115, AI028433, RR06555] FX Portions of this work were done under the auspices of the US Department of Energy under Contract DE-AC52-06NA25396 and supported in part by the Center for HIV/AIDS Vaccine Immunology (AI67854), the Bill & Melinda Gates Foundation Grand Challenges Program (37874), the University of Alabama at Birmingham Center for AIDS Research (AI27767), the University of Rochester Developmental Center for AIDS Research (P30-AI078498) and NIH Grants AI083115, AI028433, and RR06555. We thank Marcus Daniels for technical assistance. NR 75 TC 82 Z9 86 U1 1 U2 12 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-5193 J9 J THEOR BIOL JI J. Theor. Biol. PD NOV 21 PY 2009 VL 261 IS 2 BP 341 EP 360 DI 10.1016/j.jtbi.2009.07.038 PG 20 WC Biology; Mathematical & Computational Biology SC Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology GA 559CU UT WOS:000274798900017 PM 19660475 ER PT J AU Battaglia, M Bisello, D Contarato, D Giubilato, P Pantano, D Tessaro, M AF Battaglia, M. Bisello, D. Contarato, D. Giubilato, P. Pantano, D. Tessaro, M. TI A DAQ system for pixel detectors R&D SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE MAPS; DAQ; Pixels; Data acquisition AB Pixel detector R&D for HEP and imaging applications require an easily configurable and highly versatile DAQ system able to drive and read out many different chip designs in a transparent way, with different control logics and/or clock signals. An integrated, real-time data collection and analysis environment is essential to achieve fast and reliable detector characterization. We present a DAQ system developed to fulfill these specific needs, able to handle multiple devices at the same time while providing a convenient, ROOT based data display and online analysis environment. (C) 2009 Elsevier B V. All rights reserved. C1 [Bisello, D.; Giubilato, P.; Pantano, D.] Univ Padua, Dept Phys, I-35131 Padua, Italy. [Battaglia, M.; Contarato, D.; Giubilato, P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Bisello, D.; Tessaro, M.] Ist Nazl Fis Nucl Padova, I-35131 Padua, Italy. RP Giubilato, P (reprint author), Univ Padua, Dept Phys, I-35131 Padua, Italy. OI Giubilato, Piero/0000-0003-4358-5355 FU Office of Science, of the US Department of energy; University of Padova FX This work was supported by the Director, Office of Science, of the US Department of energy under contract ##### and by the University of Padova. NR 3 TC 9 Z9 9 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 21 PY 2009 VL 611 IS 1 BP 105 EP 110 DI 10.1016/j.nima.2009.09.008 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 534VW UT WOS:000272926600012 ER PT J AU Balitsky, I Chirilli, GA AF Balitsky, Ian Chirilli, Giovanni A. TI NLO evolution of color dipoles in N=4 SYM SO NUCLEAR PHYSICS B LA English DT Article DE High-energy asymptotics; Evolution of Wilson lines; Conformal invariance ID SMALL-X; BFKL POMERON; HIGH-ENERGY; QCD; EQUATION; SATURATION; SCATTERING AB High-energy behavior of amplitudes in a gauge theory can be reformulated in terms of the evolution of Wilson-line operators. In the leading logarithmic approximation it is given by the conformally invariant BK equation for the evolution of color dipoles. In QCD, the next-to-leading order BK equation has both conformal and non-conformal parts, the latter providing the running of the coupling constant. To separate the conformally invariant effects from the running-coupling effects, we calculate the NLO evolution of the color dipoles in the conformal N = 4 SYM theory. We define the "composite dipole operators" with the rapidity cutoff preserving conformal invariance. The resulting Mobius-invariant kernel for these operators agrees with the forward NLO BFKL calculation of [A.V. Kotikov. L.N. Lipatov, Nucl. Phys. B 582 (2000) 19; A.V. Kotikov, L.N. Lipatov, Nucl. Phys. B 661 (2003) 19; A.V. Kotikov, L.N. Lipatov. Nucl. Phys. B 685 (2004) 405, Erratum]. (C) 2009 Elsevier B.V. All rights reserved. C1 [Balitsky, Ian; Chirilli, Giovanni A.] Jlab, Theory Grp, Newport News, VA 23606 USA. [Balitsky, Ian; Chirilli, Giovanni A.] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. RP Balitsky, I (reprint author), Jlab, Theory Grp, 12000 Jefferson Ave, Newport News, VA 23606 USA. EM balitsky@jlab.org; chirilli@jlab.org NR 41 TC 46 Z9 46 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0550-3213 J9 NUCL PHYS B JI Nucl. Phys. B PD NOV 21 PY 2009 VL 822 IS 1-2 BP 45 EP 87 DI 10.1016/j.nuclphysb.2009.07.003 PG 43 WC Physics, Particles & Fields SC Physics GA 496QS UT WOS:000269990900002 ER PT J AU Kim, KY Liao, JF AF Kim, Keun-young Liao, Jinfeng TI On the baryonic density and susceptibilities in a holographic model of QCD SO NUCLEAR PHYSICS B LA English DT Article DE Holographic QCD; AdS/CFT; Baryonic susceptibilities ID QUARK-GLUON PLASMA; STRING/GAUGE THEORY CORRESPONDENCE; CHIRAL-SYMMETRY RESTORATION; COLOR SUPERCONDUCTIVITY; HIGH-TEMPERATURE; PHYSICS; MATTER AB In this paper, we calculate analytically the baryonic density and susceptibilities, which are sensitive probes to the fermionic degrees of freedom, in a holographic model of QCD both in its hot QGP phase and in its cold dense phase. Interesting patterns due to strong coupling dynamics will be shown and valuable lessons for QCD will be discussed. (C) 2009 Elsevier B.V. All rights reserved. C1 [Liao, Jinfeng] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Kim, Keun-young] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. RP Liao, JF (reprint author), Lawrence Berkeley Natl Lab, Div Nucl Sci, MS70R0319,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM jliao@lbl.gov NR 84 TC 8 Z9 8 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0550-3213 J9 NUCL PHYS B JI Nucl. Phys. B PD NOV 21 PY 2009 VL 822 IS 1-2 BP 201 EP 218 DI 10.1016/j.nuclphysb.2009.07.013 PG 18 WC Physics, Particles & Fields SC Physics GA 496QS UT WOS:000269990900008 ER PT J AU Ellis, RK Giele, WT Kunszt, Z Melnikov, K AF Ellis, R. Keith Giele, Walter T. Kunszt, Zoltan Melnikov, Kirill TI Masses, fermions and generalized D-dimensional unitarity SO NUCLEAR PHYSICS B LA English DT Article ID ONE-LOOP AMPLITUDES; SUPER-YANG-MILLS; QCD; COLLISIONS; CUT AB We extend the generalized D-dimensional Unitarity method for numerical evaluation of one-loop amplitudes by incorporating massive particles. The issues related to extending the spinor algebra to higher dimensions. treatment of external self-energy diagrams and mass renormalization are discussed within the context of the D-dimensional unitarity method. To validate our approach, we calculate in QCD the one-loop scattering amplitudes of a massive quark pair with up to three additional gluons for arbitrary spin states of the external quarks and gluons. (C) 2009 Elsevier B.V. All rights reserved. C1 [Kunszt, Zoltan] ETH, Inst Theoret Phys, CH-8093 Zurich, Switzerland. [Ellis, R. Keith; Giele, Walter T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Melnikov, Kirill] Univ Hawaii, Dept Phys & Astron, Honolulu, HI 96822 USA. RP Kunszt, Z (reprint author), ETH, Inst Theoret Phys, CH-8093 Zurich, Switzerland. EM ellis@fnal.gov; giele@fnal.gov; kunszt@itp.phys.ethz.ch; kirill@phys.hawaii.edu RI Kunszt, Zoltan/G-3420-2013 FU DOE [DE-FG03-94ER-40833] FX K.M. is supported in part by the DOE grant DE-FG03-94ER-40833 NR 41 TC 85 Z9 85 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0550-3213 J9 NUCL PHYS B JI Nucl. Phys. B PD NOV 21 PY 2009 VL 822 IS 1-2 BP 270 EP 282 DI 10.1016/j.nuclphysb.2009.07.023 PG 13 WC Physics, Particles & Fields SC Physics GA 496QS UT WOS:000269990900012 ER PT J AU Mauche, CW AF Mauche, Christopher W. TI CHANDRA HIGH-ENERGY TRANSMISSION GRATING SPECTRUM OF AE AQUARII SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: close; novae, cataclysmic variables; stars: individual (AE Aquarii); X-rays: binaries ID STATIONARY RADIATION HYDRODYNAMICS; MAGNETIC WHITE-DWARFS; X-RAY PULSATIONS; HELIUM-LIKE IONS; CATACLYSMIC VARIABLES; CIRCULAR-POLARIZATION; ROSAT OBSERVATIONS; LINE INTENSITIES; EX-HYDRAE; AQR AB The nova-like cataclysmic binary AE Aqr, which is currently understood to be a former supersoft X-ray binary and current magnetic propeller, was observed for over two binary orbits (78 ks) in 2005 August with the High-Energy Transmission Grating (HETG) on board the Chandra X-ray Observatory. The long, uninterrupted Chandra observation provides a wealth of details concerning the X-ray emission of AE Aqr, many of which are new and unique to the HETG. First, the X-ray spectrum is that of an optically thin multi-temperature thermal plasma; the X-ray emission lines are broad, with widths that increase with the line energy from sigma approximate to 1 eV (510 km s(-1)) for O VIII to sigma approximate to 5.5 eV (820 km s(-1)) for Si XIV; the X-ray spectrum is reasonably well fit by a plasma model with a Gaussian emission measure distribution that peaks at log T (K) = 7.16, has a width sigma = 0.48, an Fe abundance equal to 0.44 times solar, and other metal (primarily Ne, Mg, and Si) abundances equal to 0.76 times solar; and for a distance d = 100 pc, the total emission measure EM = 8.0 x 10(53) cm(-3) and the 0.5-10 keV luminosity L(X) = 1.1 x 10(31) erg s(-1). Second, based on the f/(i + r) flux ratios of the forbidden (f), intercombination (i), and recombination (r) lines of the He alpha triplets of N VI, O VII, and Ne IX measured by Itoh et al. in the XMM-Newton Reflection Grating Spectrometer spectrum and those of O VII, Ne IX, Mg XI, and Si XIII in the Chandra HETG spectrum, either the electron density of the plasma increases with temperature by over three orders of magnitude, from n(e) approximate to 6 x 10(10) cm(-3) for N VI [log T(K) approximate to 6] to n(e) approximate to 1 x 10(14) cm(-3) for Si XIII [log T(K) approximate to 7], and/or the plasma is significantly affected by photoexcitation. Third, the radial velocity of the X-ray emission lines varies on the white dwarf spin phase, with two oscillations per spin cycle and an amplitude K approximate to 160 km s(-1). These results appear to be inconsistent with the recent models of Itoh et al., Ikhsanov, and Venter & Meintjes of an extended, low-density source of X-rays in AE Aqr, but instead support earlier models in which the dominant source of X-rays is of high density and/or in close proximity to the white dwarf. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Mauche, CW (reprint author), Lawrence Livermore Natl Lab, L-473,7000 East Ave, Livermore, CA 94550 USA. EM mauche@cygnus.llnl.gov FU NASA [GO5-6020X, NAS8-03060]; U.S. Department of Energy [DE-AC52-07NA27344] FX Facility: CXO (HETG) NR 56 TC 7 Z9 7 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2009 VL 706 IS 1 BP 130 EP 141 DI 10.1088/0004-637X/706/1/130 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 516JS UT WOS:000271538900012 ER PT J AU Cushing, MC Roellig, TL Marley, MS Saumon, D Leggett, SK Kirkpatrick, JD Wilson, JC Sloan, GC Mainzer, AK Van Cleve, JE Houck, JR AF Cushing, Michael C. Roellig, Thomas L. Marley, Mark S. Saumon, D. Leggett, S. K. Kirkpatrick, J. Davy Wilson, John C. Sloan, G. C. Mainzer, Amy K. Van Cleve, Jeff E. Houck, James R. TI A SPITZER INFRARED SPECTROGRAPH SPECTRAL SEQUENCE OF M, L, AND T DWARFS (vol 648, pg 614, 2006) SO ASTROPHYSICAL JOURNAL LA English DT Correction C1 [Roellig, Thomas L.; Marley, Mark S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Saumon, D.] Los Alamos Natl Lab, Div Appl Phys, Los Alamos, NM 87544 USA. [Leggett, S. K.] Joint Astron Ctr, Hilo, HI 96720 USA. [Kirkpatrick, J. Davy] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Wilson, John C.] Univ Virginia, Charlottesville, VA 22903 USA. [Sloan, G. C.; Houck, James R.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Mainzer, Amy K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Van Cleve, Jeff E.] Ball Aerosp & Technol Corp, Boulder, CO 80301 USA. [Cushing, Michael C.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. RP Cushing, MC (reprint author), Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. EM michael.cushing@gmail.com; thomas.l.roellig@nasa.gov; mmarley@mail.arc.nasa.gov; dsaumon@lanl.gov; s.leggett@jach.hawaii.edu; davy@ipac.caltech.edu; jcw6z@virginia.edu; sloan@isc.astro.cornell.edu; amainzer@jpl.nasa.gov; jvanclev@ball.com; jrh13@cornell.edu RI Marley, Mark/I-4704-2013 NR 1 TC 0 Z9 0 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2009 VL 706 IS 1 BP 923 EP 923 DI 10.1088/0004-637X/706/1/923 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 516JS UT WOS:000271538900076 ER PT J AU Abdo, AA Ackermann, M Ajello, M Asano, K Atwood, WB Axelsson, M Baldini, L Ballet, J Barbiellini, G Baring, MG Bastieri, D Bechtol, K Bellazzini, R Berenji, B Bhat, PN Bissaldi, E Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bouvier, A Bregeon, J Brez, A Briggs, MS Brigida, M Bruel, P Burgess, JM Burrows, DN Buson, S Caliandro, GA Cameron, RA Caraveo, PA Casandjian, JM Cecchi, C Celik, O Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Cominsky, LR Connaughton, V Conrad, J Cutini, S d'Elia, V Dermer, CD de Angelis, A de Palma, F Digel, SW Dingus, BL Silva, EDE Drell, PS Dubois, R Dumora, D Farnier, C Favuzzi, C Fegan, SJ Finke, J Fishman, G Focke, WB Fortin, P Frailis, M Fukazawa, Y Funk, S Fusco, P Gargano, F Gehrels, N Germani, S Giavitto, G Giebels, B Giglietto, N Giordano, F Glanzman, T Godfrey, G Goldstein, A Granot, J Greiner, J Grenier, IA Grove, JE Guillemot, L Guiriec, S Hanabata, Y Harding, AK Hayashida, M Hays, E Horan, D Hughes, RE Jackson, MS Johannesson, G Johnson, AS Johnson, RP Johnson, WN Kamae, T Katagiri, H Kataoka, J Kawai, N Kerr, M Kippen, RM Knodlseder, J Kocevski, D Komin, N Kouveliotou, C Kuss, M Lande, J Latronico, L Lemoine-Goumard, M Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Madejski, GM Makeev, A Mazziotta, MN McBreen, S McEnery, JE McGlynn, S Meegan, C Meszaros, P Meurer, C Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Moretti, E Morselli, A Moskalenko, IV Murgia, S Nakamori, T Nolan, PL Norris, JP Nuss, E Ohno, M Ohsugi, T Omodei, N Orlando, E Ormes, JF Paciesas, WS Paneque, D Panetta, JH Pelassa, V Pepe, M Pesce-Rollins, M Petrosian, V Piron, F Porter, TA Preece, R Raino, S Rando, R Rau, A Razzano, M Razzaque, S Reimer, A Reimer, O Reposeur, T Ritz, S Rochester, LS Rodriguez, AY Roming, PWA Roth, M Ryde, F Sadrozinski, HFW Sanchez, D Sander, A Parkinson, PMS Scargle, JD Schalk, TL Sgro, C Siskind, EJ Smith, PD Spinelli, P Stamatikos, M Stecker, FW Stratta, G Strickman, MS Suson, DJ Swenson, CA Tajima, H Takahashi, H Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Torres, DF Tosti, G Tramacere, A Uchiyama, Y Uehara, T Usher, TL van der Horst, AJ Vasileiou, V Vilchez, N Vitale, V von Kienlin, A Waite, AP Wang, P Wilson-Hodge, C Winer, BL Wood, KS Yamazaki, R Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Asano, K. Atwood, W. B. Axelsson, M. Baldini, L. Ballet, J. Barbiellini, G. Baring, M. G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Bhat, P. N. Bissaldi, E. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bouvier, A. Bregeon, J. Brez, A. Briggs, M. S. Brigida, M. Bruel, P. Burgess, J. M. Burrows, D. N. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Casandjian, J. M. Cecchi, C. Celik, Oe. Chekhtman, A. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Cominsky, L. R. Connaughton, V. Conrad, J. Cutini, S. d'Elia, V. Dermer, C. D. de Angelis, A. de Palma, F. Digel, S. W. Dingus, B. L. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Farnier, C. Favuzzi, C. Fegan, S. J. Finke, J. Fishman, G. Focke, W. B. Fortin, P. Frailis, M. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gehrels, N. Germani, S. Giavitto, G. Giebels, B. Giglietto, N. Giordano, F. Glanzman, T. Godfrey, G. Goldstein, A. Granot, J. Greiner, J. Grenier, I. A. Grove, J. E. Guillemot, L. Guiriec, S. Hanabata, Y. Harding, A. K. Hayashida, M. Hays, E. Horan, D. Hughes, R. E. Jackson, M. S. Johannesson, G. Johnson, A. S. Johnson, R. P. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Kawai, N. Kerr, M. Kippen, R. M. Knoedlseder, J. Kocevski, D. Komin, N. Kouveliotou, C. Kuss, M. Lande, J. Latronico, L. Lemoine-Goumard, M. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Madejski, G. M. Makeev, A. Mazziotta, M. N. McBreen, S. McEnery, J. E. McGlynn, S. Meegan, C. Meszaros, P. Meurer, C. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Moretti, E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakamori, T. Nolan, P. L. Norris, J. P. Nuss, E. Ohno, M. Ohsugi, T. Omodei, N. Orlando, E. Ormes, J. F. Paciesas, W. S. Paneque, D. Panetta, J. H. Pelassa, V. Pepe, M. Pesce-Rollins, M. Petrosian, V. Piron, F. Porter, T. A. Preece, R. Raino, S. Rando, R. Rau, A. Razzano, M. Razzaque, S. Reimer, A. Reimer, O. Reposeur, T. Ritz, S. Rochester, L. S. Rodriguez, A. Y. Roming, P. W. A. Roth, M. Ryde, F. Sadrozinski, H. F. -W. Sanchez, D. Sander, A. Parkinson, P. M. Saz Scargle, J. D. Schalk, T. L. Sgro, C. Siskind, E. J. Smith, P. D. Spinelli, P. Stamatikos, M. Stecker, F. W. Stratta, G. Strickman, M. S. Suson, D. J. Swenson, C. A. Tajima, H. Takahashi, H. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Uchiyama, Y. Uehara, T. Usher, T. L. van der Horst, A. J. Vasileiou, V. Vilchez, N. Vitale, V. von Kienlin, A. Waite, A. P. Wang, P. Wilson-Hodge, C. Winer, B. L. Wood, K. S. Yamazaki, R. Ylinen, T. Ziegler, M. TI FERMI OBSERVATIONS OF GRB 090902B: A DISTINCT SPECTRAL COMPONENT IN THE PROMPT AND DELAYED EMISSION SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE gamma rays: bursts ID GAMMA-RAY BURST; HIGH-ENERGY; BATSE OBSERVATIONS; REDSHIFT; BEHAVIOR; PHOTONS; 080514B; MISSION; 080916C; ESCAPE AB We report on the observation of the bright, long gamma-ray burst (GRB), GRB 090902B, by the Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) instruments on-board the Fermi observatory. This was one of the brightest GRBs to have been observed by the LAT, which detected several hundred photons during the prompt phase. With a redshift of z = 1.822, this burst is among the most luminous detected by Fermi. Time-resolved spectral analysis reveals a significant power-law component in the LAT data that is distinct from the usual Band model emission that is seen in the sub-MeV energy range. This power-law component appears to extrapolate from the GeV range to the lowest energies and is more intense than the Band component, both below similar to 50 keV and above 100 MeV. The Band component undergoes substantial spectral evolution over the entire course of the burst, while the photon index of the power-law component remains constant for most of the prompt phase, then hardens significantly toward the end. After the prompt phase, power-law emission persists in the LAT data as late as 1 ks post-trigger, with its flux declining as t(-1.5). The LAT detected a photon with the highest energy so far measured from a GRB, 33.4(-3.5)(+ 2.7) GeV. This event arrived 82 s after the GBM trigger and similar to 50 s after the prompt phase emission had ended in the GBM band. We discuss the implications of these results for models of GRB emission and for constraints on models of the extragalactic background light. C1 [Abdo, A. A.; Chekhtman, A.; Cheung, C. C.; Dermer, C. D.; Finke, J.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Razzaque, S.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Abdo, A. A.; Cheung, C. C.; Finke, J.; Razzaque, S.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Cameron, R. A.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocevski, D.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Petrosian, V.; Reimer, A.; Reimer, O.; Rochester, L. S.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Cameron, R. A.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocevski, D.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Petrosian, V.; Reimer, A.; Reimer, O.; Rochester, L. S.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Asano, K.; Kataoka, J.; Kawai, N.; Nakamori, T.] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. [Asano, K.] Tokyo Inst Technol, Interact Res Ctr Sci, Tokyo 1528551, Japan. [Atwood, W. B.; Johnson, R. P.; Porter, T. A.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Johnson, R. P.; Porter, T. A.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Axelsson, M.] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden. [Axelsson, M.; Conrad, J.; Jackson, M. S.; McGlynn, S.; Meurer, C.; Ryde, F.; Ylinen, T.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Omodei, N.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Komin, N.; Tibaldo, L.] Univ Paris Diderot, CNRS, CEA IRFU, Lab AIM,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Giavitto, G.; Longo, F.; Moretti, E.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.; Moretti, E.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Baring, M. G.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. [Bastieri, D.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bhat, P. N.; Briggs, M. S.; Burgess, J. M.; Connaughton, V.; Goldstein, A.; Guiriec, S.; Paciesas, W. S.; Preece, R.] Univ Alabama, Huntsville, AL 35899 USA. [Bissaldi, E.; Greiner, J.; McBreen, S.; Orlando, E.; Rau, A.; von Kienlin, A.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Brigida, M.; Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Politecn Bari, I-70126 Bari, Italy. [Brigida, M.; Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.; Giebels, B.; Horan, D.; Sanchez, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Burrows, D. N.; Gehrels, N.; Meszaros, P.; Roming, P. W. A.; Swenson, C. A.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Celik, Oe.; Cheung, C. C.; Gehrels, N.; Harding, A. K.; Hays, E.; McEnery, J. E.; Stamatikos, M.; Stecker, F. W.; Thompson, D. J.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, Oe.; Moiseev, A. A.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Celik, Oe.; Vasileiou, V.] Univ Maryland, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.] George Mason Univ, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Farnier, C.; Komin, N.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Cominsky, L. R.] Sonoma State Univ, Dept Phys & Astron, Rohnert Pk, CA 94928 USA. [Conrad, J.; Jackson, M. S.; Meurer, C.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Cutini, S.; d'Elia, V.; Stratta, G.] ASI Sci Data Ctr, I-00044 Rome, Italy. [de Angelis, A.; Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.; Frailis, M.] Grp Coll Udine, Sez Trieste, Ist Nazl Fis Nucl, I-33100 Udine, Italy. [Dingus, B. L.; Kippen, R. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Dumora, D.; Lemoine-Goumard, M.; Lott, B.; Reposeur, T.] Univ Bordeaux, CEN Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Dumora, D.; Lemoine-Goumard, M.; Lott, B.; Reposeur, T.] CEN Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France. [Fishman, G.; Kouveliotou, C.; van der Horst, A. J.; Wilson-Hodge, C.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Fukazawa, Y.; Hanabata, Y.; Katagiri, H.; Mizuno, T.; Ohsugi, T.; Takahashi, H.; Uehara, T.; Yamazaki, R.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Gehrels, N.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, College Pk, MD 20742 USA. [Granot, J.] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Guillemot, L.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Hughes, R. E.; Sander, A.; Smith, P. D.; Stamatikos, M.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Jackson, M. S.; McGlynn, S.; Ryde, F.; Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Kataoka, J.] Waseda Univ, Shinjuku Ku, Tokyo 1698050, Japan. [Kawai, N.] RIKEN, Inst Phys & Chem Res, Cosm Radiat Lab, Wako, Saitama 3510198, Japan. [Kerr, M.; Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Knoedlseder, J.; Vilchez, N.] CNRS UPS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [McBreen, S.] Univ Coll Dublin, Dublin 4, Ireland. [Meegan, C.] Univ Space Res Assoc, Columbia, MD 21044 USA. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohno, M.; Uchiyama, Y.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Reimer, A.; Reimer, O.] Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Rodriguez, A. Y.; Torres, D. F.] Inst Ciencies Espai IEEC CSIC, Barcelona 08193, Spain. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Torres, D. F.] ICREA, Barcelona, Spain. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Abdo, AA (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. RI Komin, Nukri/J-6781-2015; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Reimer, Olaf/A-3117-2013; Funk, Stefan/B-7629-2015; Gargano, Fabio/O-8934-2015; Johannesson, Gudlaugur/O-8741-2015; Loparco, Francesco/O-8847-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Bissaldi, Elisabetta/K-7911-2016; Stratta, Maria Giuliana/L-3045-2016; Torres, Diego/O-9422-2016; Thompson, David/D-2939-2012; Tosti, Gino/E-9976-2013; Saz Parkinson, Pablo Miguel/I-7980-2013; Rando, Riccardo/M-7179-2013; Stecker, Floyd/D-3169-2012; Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Nolan, Patrick/A-5582-2009; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012 OI Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Axelsson, Magnus/0000-0003-4378-8785; Moretti, Elena/0000-0001-5477-9097; Cutini, Sara/0000-0002-1271-2924; Rando, Riccardo/0000-0001-6992-818X; Sgro', Carmelo/0000-0001-5676-6214; Giordano, Francesco/0000-0002-8651-2394; Dingus, Brenda/0000-0001-8451-7450; D'Elia, Valerio/0000-0002-7320-5862; SPINELLI, Paolo/0000-0001-6688-8864; De Angelis, Alessandro/0000-0002-3288-2517; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Komin, Nukri/0000-0003-3280-0582; Preece, Robert/0000-0003-1626-7335; Burgess, James/0000-0003-3345-9515; Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080; Gargano, Fabio/0000-0002-5055-6395; Johannesson, Gudlaugur/0000-0003-1458-7036; Loparco, Francesco/0000-0002-1173-5673; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Bissaldi, Elisabetta/0000-0001-9935-8106; Stratta, Maria Giuliana/0000-0003-1055-7980; Torres, Diego/0000-0002-1522-9065; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888 FU NASA and DOE in the United States; CEA/Irfu and IN2P3/CNRS in France; ASI and INFN in Italy; MEXT, KEK, and JAXA in Japan; K. A. Wallenberg Foundation; Swedish Research Council and the National Space Board in Sweden; INAF in Italy; CNES in France FX The Fermi LAT Collaboration acknowledges support from a number of agencies and institutes for both development and the operation of the LAT as well as scientific data analysis. These include NASA and DOE in the United States, CEA/Irfu and IN2P3/CNRS in France, ASI and INFN in Italy, MEXT, KEK, and JAXA in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the National Space Board in Sweden. Additional support from INAF in Italy and CNES in France for science analysis during the operations phase is also gratefully acknowledged. NR 49 TC 249 Z9 252 U1 1 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 20 PY 2009 VL 706 IS 1 BP L138 EP L144 DI 10.1088/0004-637X/706/1/L138 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 516HP UT WOS:000271533200029 ER PT J AU Fitzgerald, MP Kalas, PG Graham, JR AF Fitzgerald, Michael P. Kalas, Paul G. Graham, James R. TI ORBITAL CONSTRAINTS ON THE beta Pic INNER PLANET CANDIDATE WITH KECK ADAPTIVE OPTICS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE circumstellar matter; planetary systems; stars: individual (HD 39060) ID PICTORIS CIRCUMSTELLAR DISK; FALLING EVAPORATING BODIES; DUST DISK; CORONAGRAPHIC OBSERVATIONS; SYSTEM; ASYMMETRIES; L' AB A point source observed 8 AU in projection from beta Pictoris in L' (3.8 mu m) imaging in 2003 has been recently presented as a planet candidate. Here we show the results of L'-band adaptive optics imaging obtained at Keck Observatory in 2008. We do not detect beta Pic b beyond a limiting radius of 0.'' 29, or 5.5 AU in projection, from the star. If beta Pic b is an orbiting planet, then it has moved >= 0.'' 12 (2.4 AU in projection) closer to the star in the five years separating the two epochs of observation. We examine the range of orbital parameters consistent with the observations, including likely bounds from the locations of previously inferred planetesimal belts. We find a family of low-eccentricity orbits with semimajor axes similar to 8-9 AU that are completely allowed, as well as a broad region of orbits with e less than or similar to 0.2, a greater than or similar to 10 AU that are allowed if the apparent motion of the planet was toward the star in 2003. We compare this allowed space with predictions of the planetary orbital elements from the literature. Additionally, we show how similar observations in the next several years can further constrain the space of allowed orbits. Non-detections of the source through 2013 will exclude the interpretation of the candidate as a planet orbiting between the 6.4 and 16 AU planetesimal belts. C1 [Fitzgerald, Michael P.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Fitzgerald, Michael P.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Kalas, Paul G.; Graham, James R.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. RP Fitzgerald, MP (reprint author), Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, L-413,7000 East Ave, Livermore, CA 94550 USA. EM mpfitz@ucla.edu RI Fitzgerald, Michael/C-2642-2009 OI Fitzgerald, Michael/0000-0002-0176-8973 FU Michelson Fellowship Program, under contract with JPL; NASA; DOE [DE-AC52-07NA27344]; NSF Center for Adaptive Optics [AST-0909188]; University of California at Santa Cruz under cooperative agreement [AST-9876783]; University of California Research Program [09-LR-01-118057-GRAJ] FX We thank Bruce Macintosh and Herve Beust for helpful discussions. M. P. F. acknowledges support from the Michelson Fellowship Program, under contract with JPL, funded by NASA. Work at LLNL was performed under the auspices of DOE under contract DE-AC52-07NA27344. P. G. K. and J.R.G. are supported in part by the NSF Center for Adaptive Optics, managed by the University of California at Santa Cruz under cooperative agreement No. AST-9876783. This work was supported in part by the University of California Research Program 09-LR-01-118057-GRAJ and NSF AST-0909188. NR 29 TC 9 Z9 9 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 20 PY 2009 VL 706 IS 1 BP L41 EP L45 DI 10.1088/0004-637X/706/1/L41 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 516HP UT WOS:000271533200009 ER PT J AU Yu, HG AF Yu, Hua-Gen TI PRODUCT BRANCHING RATIOS OF THE REACTION OF CO WITH H-3(+) AND H2D+ SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE astrochemistry; ISM: molecules; methods: numerical; stars: abundances ID DENSE INTERSTELLAR CLOUDS; PROTON-TRANSFER REACTIONS; ABUNDANCE RATIO; MOLECULAR CLOUDS; AB-INITIO; HOC+; H-2; DYNAMICS; AFFINITY; COMPLEX AB The reaction of CO with H-3(+) and H2D+ has been studied to investigate thermal rate coefficients and product branching ratios in the temperature range [20, 350] K, by using a direct ab initio molecular dynamics method. In trajectory simulations, the energies and forces are calculated using a scaling all correlation second-order M phi ller-Plesset perturbation theory (SAC-MP2) method with the correlation consistent polarized valence triplet-zeta basis (cc-pVTZ). Results show that total thermal rate coefficients for both the CO + H-3(+) and the CO + H2D+ reactions have a weakly positive temperature dependence. At room temperature, the rate coefficients are predicted to be (1.42 +/- 0.03) x10(-9) cm(3) molecule(-1) s(-1) with a product branching ratio of [HOC+]/[HCO+] = 0.36 +/- 0.01 for the CO + H-3(+) reaction, and (1.26 +/- 0.03) x 10(-9) cm(3) molecule(-1) s(-1) with the product branching ratios: 0.37 +/- 0.01 (([HOC+] + [DOC+])/([HCO+] + [DOC+])), 0.54 +/- 0.02 ([DCO+]/[HCO+]), and 0.49 +/- 0.02 ([DOC+]/[HOC+]) for CO + H2D+. The product branching ratios have a noticeable temperature dependence as well as a pronounced isotopic effect for the H/DOC+ product channel. C1 Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Yu, HG (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RI Yu, Hua-Gen/N-7339-2015 FU Brookhaven National Laboratory [DE-AC02-98CH10886]; Division of Chemical Sciences, Office of Basic Energy Sciences; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX The author thanks Dr. Hui Li and Prof. Robert Le Roy for many discussions. This work was performed at Brookhaven National Laboratory under Contract No. DE-AC02-98CH10886 with the U. S. Department of Energy and supported by its Division of Chemical Sciences, Office of Basic Energy Sciences. This research used resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 26 TC 5 Z9 5 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 20 PY 2009 VL 706 IS 1 BP L52 EP L55 DI 10.1088/0004-637X/706/1/L52 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 516HP UT WOS:000271533200011 ER PT J AU Kenoyer, AL Press, OW Park, SI Back, T Hamlin, DK Wilbur, DS Fisher, DR Wilbur, SM Axtman, A Orgun, N Lin, Y Gopal, AK Shenoi, J Green, DJ Appelbaum, FR Pagel, JM AF Kenoyer, Aimee L. Press, Oliver W. Park, Steven I. Back, Tom Hamlin, Donald K. Wilbur, D. Scott Fisher, Darrell R. Wilbur, Shani M. Axtman, Amanda Orgun, Nural Lin, Yukang Gopal, Ajay K. Shenoi, Jaideep Green, Damian J. Appelbaum, Frederick R. Pagel, John M. TI Anti-CD45 Ab Pretargeted Radioimmunotherapy Using An Alpha Emitting Radionuclide (213Bi) Delivers Selective Radiation to Human Myeloid Leukemias in a Mouse Xenograft Model and Results in High Rates of Complete Remission and Long Term Survival. SO BLOOD LA English DT Meeting Abstract CT 51st Annual Meeting of the American-Society-of-Hematology CY DEC 05-08, 2009 CL New Orleans, LA SP Amer Soc Hematol C1 [Kenoyer, Aimee L.; Wilbur, Shani M.; Axtman, Amanda; Orgun, Nural; Lin, Yukang] Fred Hutchinson Canc Res Ctr, Seattle, WA 98104 USA. [Appelbaum, Frederick R.; Pagel, John M.] Univ Washington, Fred Hutchinson Canc Res Ctr, Div Clin Res, Seattle, WA 98195 USA. [Back, Tom] Univ Gothenburg, Inst Clin Sci, Dept Radiat Phys, Sahlgrenska Acad, Gothenburg, Sweden. [Fisher, Darrell R.] Pacific NW Natl Lab, Richland, WA 99352 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC HEMATOLOGY PI WASHINGTON PA 1900 M STREET. NW SUITE 200, WASHINGTON, DC 20036 USA SN 0006-4971 J9 BLOOD JI Blood PD NOV 20 PY 2009 VL 114 IS 22 BP 428 EP 428 PG 1 WC Hematology SC Hematology GA 532DS UT WOS:000272725801215 ER PT J AU Park, SI Shenoi, J Pagel, JM Hamlin, DK Orgun, N Kenoyer, AL Wilbur, SM Axtman, A Wilbur, DS Lin, YK Fisher, DR Gopal, AK Green, DJ Press, OW AF Park, Steven I. Shenoi, Jaideep Pagel, John M. Hamlin, Donald K. Orgun, Nural Kenoyer, Aimee L. Wilbur, Shani M. Axtman, Amanda Wilbur, D. Scott Lin, Yukang Fisher, Darrell R. Gopal, Ajay K. Green, Damian J. Press, Oliver W. TI Conventional and Pretargeted Radioimmunotherapy with Bismuth-213 to Target and Treat CD20-Expressing Non-Hodgkin Lymphoma: A Preclinical Model for Consolidation Therapy to Eradicate Minimal Residual Disease. SO BLOOD LA English DT Meeting Abstract CT 51st Annual Meeting of the American-Society-of-Hematology CY DEC 05-08, 2009 CL New Orleans, LA SP Amer Soc Hematol C1 [Park, Steven I.; Shenoi, Jaideep; Pagel, John M.; Gopal, Ajay K.; Green, Damian J.; Press, Oliver W.] Univ Washington, Fred Hutchinson Canc Res Ctr, Seattle, WA 98195 USA. [Fisher, Darrell R.] Pacific NW Natl Lab, Richland, WA 99352 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC HEMATOLOGY PI WASHINGTON PA 1900 M STREET. NW SUITE 200, WASHINGTON, DC 20036 USA SN 0006-4971 J9 BLOOD JI Blood PD NOV 20 PY 2009 VL 114 IS 22 BP 1059 EP 1059 PG 1 WC Hematology SC Hematology GA 532DS UT WOS:000272725803260 ER PT J AU Green, R Miller, JW Lee, KS Sutter, S Allen, LH Buchholz, BA Dueker, S AF Green, Ralph Miller, Joshua W. Lee, Kyung-Seon Sutter, Syrukh Allen, Lindsay H. Buchholz, Bruce A. Dueker, Stephen TI Oral Administration of Carbon-14 Labeled Cyanocobalamin (14C-Cbl) Reveals Variable Degradation of Vitamin B12 in the Gastrointestinal Tract That Impacts Vitamin B12 Absorption and Status SO BLOOD LA English DT Meeting Abstract CT 51st Annual Meeting of the American-Society-of-Hematology CY DEC 05-08, 2009 CL New Orleans, LA SP Amer Soc Hematol C1 [Green, Ralph; Miller, Joshua W.; Lee, Kyung-Seon] Univ Calif Davis, Sacramento, CA 95817 USA. [Sutter, Syrukh; Allen, Lindsay H.] USDA ARS, Western Human Nutr Res Ctr, Davis, CA USA. [Sutter, Syrukh; Allen, Lindsay H.] Univ Calif Davis, Davis, CA 95616 USA. [Buchholz, Bruce A.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. [Dueker, Stephen] Vitalea Sci, Davis, CA USA. RI Buchholz, Bruce/G-1356-2011 NR 0 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC HEMATOLOGY PI WASHINGTON PA 1900 M STREET. NW SUITE 200, WASHINGTON, DC 20036 USA SN 0006-4971 J9 BLOOD JI Blood PD NOV 20 PY 2009 VL 114 IS 22 BP 1176 EP 1176 PG 1 WC Hematology SC Hematology GA 532DS UT WOS:000272725803573 ER PT J AU An, XL Liu, J Chen, K Heck, S Chasis, JA Mohandas, N AF An, Xiuli Liu, Jing Chen, Ke Heck, Sussane Chasis, Joel Anne Mohandas, Narla TI Dynamic Changes in Membrane Protein Expression During Murine and Human Erythropoiesis: Resolving the Distinct Stages in Terminal Erythroid Differentiation SO BLOOD LA English DT Meeting Abstract CT 51st Annual Meeting of the American-Society-of-Hematology CY DEC 05-08, 2009 CL New Orleans, LA SP Amer Soc Hematol C1 [Heck, Sussane] New York Blood Ctr, Flowcytometry Lab, New York, NY 10021 USA. [Chasis, Joel Anne] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC HEMATOLOGY PI WASHINGTON PA 1900 M STREET. NW SUITE 200, WASHINGTON, DC 20036 USA SN 0006-4971 J9 BLOOD JI Blood PD NOV 20 PY 2009 VL 114 IS 22 BP 1549 EP 1550 PG 2 WC Hematology SC Hematology GA 532DS UT WOS:000272725804703 ER PT J AU Parra, MK Mohandas, N Conboy, JG AF Parra, Marilyn K. Mohandas, Narla Conboy, John G. TI Splicing Mechanisms That Generate Distinct Isoforms of Protein 4.1R During Terminal Erythroid Differentiation SO BLOOD LA English DT Meeting Abstract CT 51st Annual Meeting of the American-Society-of-Hematology CY DEC 05-08, 2009 CL New Orleans, LA SP Amer Soc Hematol C1 [Parra, Marilyn K.; Conboy, John G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Mohandas, Narla] New York Blood Ctr, New York, NY 10021 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC HEMATOLOGY PI WASHINGTON PA 1900 M STREET. NW SUITE 200, WASHINGTON, DC 20036 USA SN 0006-4971 J9 BLOOD JI Blood PD NOV 20 PY 2009 VL 114 IS 22 BP 1549 EP 1549 PG 1 WC Hematology SC Hematology GA 532DS UT WOS:000272725804700 ER PT J AU Chen, LJ Bortnik, J Thorne, RM Horne, RB Jordanova, VK AF Chen, Lunjin Bortnik, Jacob Thorne, Richard M. Horne, Richard B. Jordanova, Vania K. TI Three-dimensional ray tracing of VLF waves in a magnetospheric environment containing a plasmaspheric plume SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID DISCRETE CHORUS EMISSIONS; RADIATION; ORIGIN; HISS AB A three dimensional ray tracing of whistler-mode chorus is performed in a realistic magnetosphere using the HOTRAY code. A variety of important propagation characteristics are revealed associated with azimuthal density gradients and a plasmaspheric plume. Specifically, whistler mode chorus originating from a broad region on the dayside can propagate into the plasmasphere. After entry into the plasmasphere, waves can propagate eastward in MLT and merge to form hiss. This explains how chorus generated on the dayside can contribute to plasmaspheric hiss in the dusk sector. A subset of waves entering the plasmasphere can even propagate globally onto the nightside. Citation: Chen, L., J. Bortnik, R. M. Thorne, R. B. Horne, and V. K. Jordanova (2009), Three-dimensional ray tracing of VLF waves in a magnetospheric environment containing a plasmaspheric plume, Geophys. Res. Lett., 36, L22101, doi:10.1029/2009GL040451. C1 [Chen, Lunjin; Bortnik, Jacob; Thorne, Richard M.] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90024 USA. [Horne, Richard B.] British Antarctic Survey, NERC, Cambridge CB3 0ET, England. [Jordanova, Vania K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Chen, LJ (reprint author), Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90024 USA. EM clj@atmos.ucla.edu RI Chen, Lunjin/L-1250-2013; OI Chen, Lunjin/0000-0003-2489-3571; Horne, Richard/0000-0002-0412-6407; Jordanova, Vania/0000-0003-0475-8743 FU NASA [NNX08A135G, NNH08AJ01I] FX This research was supported by the NASA grants NNX08A135G and NNH08AJ01I. NR 17 TC 35 Z9 35 U1 1 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 20 PY 2009 VL 36 AR L22101 DI 10.1029/2009GL040451 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 522JZ UT WOS:000271995200002 ER PT J AU Hodges, MKV Link, PK Fanning, CM AF Hodges, Mary K. V. Link, Paul Karl Fanning, C. Mark TI The Pliocene Lost River found to west: Detrital zircon evidence of drainage disruption along a subsiding hotspot track SO JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH LA English DT Article; Proceedings Paper CT Symposium on the Track of the Yellowstone Hotspot held at the Annual Meeting of the Geological-Society-of-America CY OCT, 2007 CL Denver, CO SP Geol Soc Amer DE Idaho; detrital zircon; Big Lost River; Snake River Plain; Neogene; Axial Volcanic Zone; Cryogenian magmatism; drainage disruption; INL ID YELLOWSTONE HOTSPOT; CRETACEOUS STRATA; SILICIC VOLCANISM; IDAHO; PLAIN; PROVENANCE; EVOLUTION; MIOCENE; BASIN; QUATERNARY AB SHRIMP analysis of U/Pb ages of detrital zircons in twelve late Miocene to Pleistocene sand samples from six drill cores on the Snake River Plain (SRP), Idaho, suggests that an ancestral Lost River system was drained westward along the northern side of the SRP. Neoproterozoic (650 to 740 Ma, Cryogenian) detrital zircon grains from the Wildhorse Creek drainage of the Pioneer Mountains core complex, with a source in 695 Ma orthogneiss, and which are characteristic of the Big Lost River system, are found in Pliocene sand from cores drilled in the central SRP (near Wendell) and western SRP (at Mountain Home). In addition to these Neoproterozoic grains, fluvial sands sourced from the northern margin of the SRP contain detrital zircons with the following ages: 42 to 52 Ma from the Challis magmatic belt, 80 to 100 Ma from the Atlanta lobe of the Idaho batholith, and mixed Paleozoic and Proterozoic ages (1400 to 2000 Ma). In contrast, sands in the Mountain Home Air Base well (MHAB) that contain 155-Ma Jurassic detrital grains with a source in northern Nevada are interpreted to represent an integrated Snake River, with provenance on the southern, eastern and northern sides of the SRP. We propose that late Pliocene and early Pleistocene construction of basaltic volcanoes and rhyolitic domes of the Axial Volcanic Zone of the eastern SRP and the northwest-trending Arco Volcanic Rift Zone (including the Craters of the Moon volcanic center), disrupted the paleo-Lost River drainage, confining it to the Big Lost Trough, a volcanically dammed basin of internal drainage on the Idaho National Laboratory (INL). After the Axial Volcanic Zone and Arco Volcanic Rift Zone were constructed to form a volcanic eruptive and intrusive highland to the southwest, sediment from the Big Lost River was trapped in the Big Lost Trough instead of being delivered by surface streams to the western SRP. Today, water from drainages north of the SRP enters the Snake River Plain regional aquifer through sinks in the Big Lost Trough, and the water resurfaces at Thousand Springs, Idaho, about 195 km to the southwest. Holocene to latest Pliocene samples from drill core in the Big Lost Trough reveal interplay between the glacio-fluvial outwash of the voluminous Big Lost River system and the relatively minor Little Lost River system. A mixed provenance signature is recognized in fine-grained sands deposited in a highstand of a Pleistocene pluvial-lake system. (C) 2009 Elsevier B.V. All rights reserved. C1 [Link, Paul Karl] Idaho State Univ, Dept Geosci, Pocatello, ID 83209 USA. [Hodges, Mary K. V.] US Geol Survey, Idaho Natl Lab, Project Off, Idaho Falls, ID 83415 USA. [Fanning, C. Mark] Australian Natl Univ, Res Sch Earth Sci, Canberra, ACT 0200, Australia. RP Link, PK (reprint author), Idaho State Univ, Dept Geosci, Pocatello, ID 83209 USA. EM linkpaul@isu.edu RI Fanning, C. Mark/I-6449-2016 OI Fanning, C. Mark/0000-0003-3331-3145 NR 74 TC 4 Z9 4 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0377-0273 J9 J VOLCANOL GEOTH RES JI J. Volcanol. Geotherm. Res. PD NOV 20 PY 2009 VL 188 IS 1-3 SI SI BP 237 EP 249 DI 10.1016/j.jvolgeores.2009.08.019 PG 13 WC Geosciences, Multidisciplinary SC Geology GA 540YP UT WOS:000273377600018 ER PT J AU Al-Hassanieh, KA Batista, CD Ortiz, G Bulaevskii, LN AF Al-Hassanieh, K. A. Batista, C. D. Ortiz, G. Bulaevskii, L. N. TI Field-Induced Orbital Antiferromagnetism in Mott Insulators SO PHYSICAL REVIEW LETTERS LA English DT Article ID DENSITY-MATRIX RENORMALIZATION; QUANTUM; CHAINS; SPIN; CHIRALITY; LADDER AB We report on a new electromagnetic phenomenon that emerges in Mott insulators. The phenomenon manifests as antiferromagnetic ordering due to orbital electric currents which are spontaneously generated from the coupling between spin currents and an external homogenous magnetic field. This novel spin-charge-current effect provides the mechanism to measure the so-far elusive spin currents by means of unpolarized neutron scattering, nuclear magnetic resonance or muon spectroscopy. We illustrate this mechanism by solving a half-filled Hubbard model on a frustrated ladder. C1 [Al-Hassanieh, K. A.; Batista, C. D.; Bulaevskii, L. N.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Ortiz, G.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. RP Al-Hassanieh, KA (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI Batista, Cristian/J-8008-2016 FU U. S. DOE [DE-AC52-06NA25396] FX This work was carried out under the auspices of the NNSA of the U. S. DOE at LANL under Contract No. DE-AC52-06NA25396. NR 20 TC 17 Z9 17 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 20 PY 2009 VL 103 IS 21 AR 216402 DI 10.1103/PhysRevLett.103.216402 PG 4 WC Physics, Multidisciplinary SC Physics GA 523EH UT WOS:000272054300038 PM 20366056 ER PT J AU Aubert, B Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, J Grauges, E Martinelli, M Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Battaglia, M Brown, DN Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Asgeirsson, DJ Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Randle-Conde, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Wang, L Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Toki, WH Wilson, RJ Feltresi, E Hauke, A Jasper, H Karbach, TM Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Nogowski, R Schubert, KR Schwierz, R Volk, A Bernard, D Latour, E Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Fioravanti, E Franchini, P Luppi, E Munerato, M Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Tosi, S Chaisanguanthum, KS Morii, M Adametz, A Marks, J Schenk, S Uwer, U Bernlochner, FU Klose, V Lacker, HM Bard, DJ Dauncey, PD Tibbetts, M Behera, PK Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Arnaud, N Bequilleux, J D'Orazio, A Davier, M Derkach, D da Costa, JF Grosdidier, G Le Diberder, F Lepeltier, V Lutz, AM Malaescu, B Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Hafner, A Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Henderson, SW Sciolla, G Spitznagel, M Yamamoto, RK Zhao, M Patel, PM Robertson, SH Schram, M Lazzaro, A Lombardo, V Palombo, F Stracka, S Bauer, JM Cremaldi, L Godang, R Kroeger, R Sonnek, P Summers, DJ Zhao, HW Simard, M Taras, P Nicholson, H De Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Bonneaud, GR Briand, H Chauveau, J Hamon, O Leruste, P Marchiori, G Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Manoni, E Angelini, C Batignani, G Bettarini, S Calderini, G Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Li Gioi, L Mazzoni, MA Morganti, S Piredda, G Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S Esteve, L de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Allen, MT Aston, D Bartoldus, R Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Sevilla, MF Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Young, CC Ziegler, V Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Burchat, PR Edwards, AJ Miyashita, TS Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Soffer, A Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Wray, BC Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K King, GJ Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Puccio, EMT Band, HR Chen, X Dasu, S Flood, KT Pan, Y Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Garra Tico, J. Grauges, E. Martinelli, M. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Battaglia, M. Brown, D. N. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Asgeirsson, D. J. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Randle-Conde, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Wang, L. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Wilson, R. J. Feltresi, E. Hauke, A. Jasper, H. Karbach, T. M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Nogowski, R. Schubert, K. R. Schwierz, R. Volk, A. Bernard, D. Latour, E. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Fioravanti, E. Franchini, P. Luppi, E. Munerato, M. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Tosi, S. Chaisanguanthum, K. S. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Bernlochner, F. U. Klose, V. Lacker, H. M. Bard, D. J. Dauncey, P. D. Tibbetts, M. Behera, P. K. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. Derkach, D. da Costa, J. Firmino Grosdidier, G. Le Diberder, F. Lepeltier, V. Lutz, A. M. Malaescu, B. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Hafner, A. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Henderson, S. W. Sciolla, G. Spitznagel, M. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Schram, M. Lazzaro, A. Lombardo, V. Palombo, F. Stracka, S. Bauer, J. M. Cremaldi, L. Godang, R. Kroeger, R. Sonnek, P. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Bonneaud, G. R. Briand, H. Chauveau, J. Hamon, O. Leruste, Ph. Marchiori, G. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Calderini, G. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Li Gioi, L. Mazzoni, M. A. Morganti, S. Piredda, G. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Esteve, L. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Allen, M. T. Aston, D. Bartoldus, R. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Sevilla, M. Franco Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Young, C. C. Ziegler, V. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Burchat, P. R. Edwards, A. J. Miyashita, T. S. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Soffer, A. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Wray, B. C. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. King, G. J. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Puccio, E. M. T. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BABAR Collaboration TI Measurement of B -> K-*(892)gamma Branching Fractions and CP and Isospin Asymmetries SO PHYSICAL REVIEW LETTERS LA English DT Article ID K-ASTERISK-GAMMA; TO-LEADING ORDER; DECAYS AB We present an analysis of the decays B-0 -> K-*0(892)gamma and B+-> K*+(892)gamma using a sample of about 383x10(6) BB events collected with the BABAR detector at the PEP-II asymmetric energy B factory. We measure the branching fractions B(B-0 -> K-*0 gamma)=(4.47 +/- 0.10 +/- 0.16)x10(-5) and B(B+-> K*+gamma)=(4.22 +/- 0.14 +/- 0.16)x10(-5). We constrain the direct CP asymmetry to be -0.033 < A(B -> K-*gamma)< 0.028 and the isospin asymmetry to be 0.017 K+pi(-)pi(0) Decays SO PHYSICAL REVIEW LETTERS LA English DT Article AB We present evidence of D-0-D-0 mixing using a time-dependent amplitude analysis of the decay D-0 -> K+pi(-)pi(0) in a data sample of 384 fb(-1) collected with the BABAR detector at the PEP-II e(+)e(-) collider at the Stanford Linear Accelerator Center. Assuming CP conservation, we measure the mixing parameters x(K pi pi)(0')=[2.61(-0.68)(+0.57)(stat)+/- 0.39(syst)]%, y(K pi pi)(0')=[-0.06(-0.64)(+0.55)(stat)+/- 0.34(syst)]%. This result is inconsistent with the no-mixing hypothesis with a significance of 3.2 standard deviations. We find no evidence of CP violation in mixing. C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Garra Tico, J.; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Cahn, R. N.; Jacobsen, R. G.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Mader, W. F.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Thiebaux, Ch.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Gradl, W.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Vazquez, W. Panduro; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Denig, A. G.; Fritsch, M.; Schott, G.] Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Clarke, C. K.; George, K. A.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Li, X.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Koeneke, K.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.] Univ Paris 07, Univ Paris 06, CNRS, Lab Phys Nucl & Hautes Energies,IN2P3, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Li Gioi, L.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Polci, F.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Escalier, M.; Esteve, L.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA Saclay, DSM Irfu, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gabareen, A. M.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Pierini, M.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Della Ricca, Giuseppe/B-6826-2013; Negrini, Matteo/C-8906-2014; Patrignani, Claudia/C-5223-2009; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012 OI Raven, Gerhard/0000-0002-2897-5323; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Della Ricca, Giuseppe/0000-0003-2831-6982; Negrini, Matteo/0000-0003-0101-6963; Patrignani, Claudia/0000-0002-5882-1747; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255 FU DOE; NSF (USA); NSERC (Canada); CEA; CNRS-IN2P3 (France); BMBF; DFG (Germany); INFN (Italy); FOM (The Netherlands); NFR (Norway); MES (Russia); MEC (Spain); STFC (United Kingdom); Marie Curie EIF (European Union); A. P. Sloan Foundation FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation. NR 17 TC 31 Z9 31 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 20 PY 2009 VL 103 IS 21 AR 211801 DI 10.1103/PhysRevLett.103.211801 PG 8 WC Physics, Multidisciplinary SC Physics GA 523EH UT WOS:000272054300009 ER PT J AU Froula, DH Clayton, CE Doppner, T Marsh, KA Barty, CPJ Divol, L Fonseca, RA Glenzer, SH Joshi, C Lu, W Martins, SF Michel, P Mori, WB Palastro, JP Pollock, BB Pak, A Ralph, JE Ross, JS Siders, CW Silva, LO Wang, T AF Froula, D. H. Clayton, C. E. Doeppner, T. Marsh, K. A. Barty, C. P. J. Divol, L. Fonseca, R. A. Glenzer, S. H. Joshi, C. Lu, W. Martins, S. F. Michel, P. Mori, W. B. Palastro, J. P. Pollock, B. B. Pak, A. Ralph, J. E. Ross, J. S. Siders, C. W. Silva, L. O. Wang, T. TI Measurements of the Critical Power for Self-Injection of Electrons in a Laser Wakefield Accelerator SO PHYSICAL REVIEW LETTERS LA English DT Article ID PLASMA-WAVES; BEAMS; PULSES AB A laser wakefield acceleration study has been performed in the matched, self-guided, blowout regime producing 720 +/- 50 MeV quasimonoenergetic electrons with a divergence Delta theta(FWHM) of 2.85 +/- 0.15 mrad using a 10 J, 60 fs 0.8 mu m laser. While maintaining a nearly constant plasma density (3x10(18) cm(-3)), the energy gain increased from 75 to 720 MeV when the plasma length was increased from 3 to 8 mm. Absolute charge measurements indicate that self-injection of electrons occurs when the laser power P exceeds 3 times the critical power P(cr) for relativistic self-focusing and saturates around 100 pC for P/P(cr)> 5. The results are compared with both analytical scalings and full 3D particle-in-cell simulations. C1 [Froula, D. H.; Doeppner, T.; Barty, C. P. J.; Divol, L.; Glenzer, S. H.; Michel, P.; Palastro, J. P.; Pollock, B. B.; Ralph, J. E.; Ross, J. S.; Siders, C. W.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Clayton, C. E.; Marsh, K. A.; Joshi, C.; Lu, W.; Mori, W. B.; Pak, A.; Ralph, J. E.; Wang, T.] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA. [Pollock, B. B.; Ross, J. S.] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. [Fonseca, R. A.; Martins, S. F.; Silva, L. O.] Inst Super Tecn, Inst Plasmas & Fusao Nucl, GoLP, Lisbon, Portugal. RP Froula, DH (reprint author), Lawrence Livermore Natl Lab, L-399,POB 808, Livermore, CA 94551 USA. EM froula1@llnl.gov RI Fonseca, Ricardo/B-7680-2009; Michel, Pierre/J-9947-2012; Lu, Wei/F-2504-2016 OI Fonseca, Ricardo/0000-0001-6342-6226; FU U. S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Department of Energy [DEFG03-92ER40727]; Laboratory Directed Research and Development Program [08-LW-070] FX We would like to thank B. Stuart, D. Price, S. Maricle, and J. Bonlie for their contributions to upgrading the Callisto Laser System for this experiment. This work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and a Department of Energy Grant No. DEFG03-92ER40727 (UCLA) and was partially funded by the Laboratory Directed Research and Development Program under project tracking code 08-LW-070. NR 29 TC 91 Z9 91 U1 6 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 20 PY 2009 VL 103 IS 21 AR 215006 DI 10.1103/PhysRevLett.103.215006 PG 4 WC Physics, Multidisciplinary SC Physics GA 523EH UT WOS:000272054300030 ER PT J AU Gotchev, OV Chang, PY Knauer, JP Meyerhofer, DD Polomarov, O Frenje, J Li, CK Manuel, MJE Petrasso, RD Rygg, JR Seguin, FH Betti, R AF Gotchev, O. V. Chang, P. Y. Knauer, J. P. Meyerhofer, D. D. Polomarov, O. Frenje, J. Li, C. K. Manuel, M. J. -E. Petrasso, R. D. Rygg, J. R. Seguin, F. H. Betti, R. TI Laser-Driven Magnetic-Flux Compression in High-Energy-Density Plasmas SO PHYSICAL REVIEW LETTERS LA English DT Article ID INERTIAL-CONFINEMENT-FUSION; FIELDS; IGNITION AB The demonstration of magnetic field compression to many tens of megagauss in cylindrical implosions of inertial confinement fusion targets is reported for the first time. The OMEGA laser [T. R. Boehly , Opt. Commun. 133, 495 (1997)] was used to implode cylindrical CH targets filled with deuterium gas and seeded with a strong external field (> 50 kG) from a specially developed magnetic pulse generator. This seed field was trapped (frozen) in the shock-heated gas fill and compressed by the imploding shell at a high implosion velocity, minimizing the effect of resistive flux diffusion. The magnetic fields in the compressed core were probed via proton deflectrometry using the fusion products from an imploding D(3)He target. Line-averaged magnetic fields between 30 and 40 MG were observed. C1 [Gotchev, O. V.; Chang, P. Y.; Knauer, J. P.; Meyerhofer, D. D.; Polomarov, O.; Betti, R.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Gotchev, O. V.; Chang, P. Y.; Knauer, J. P.; Meyerhofer, D. D.; Polomarov, O.; Frenje, J.; Li, C. K.; Manuel, M. J. -E.; Petrasso, R. D.; Seguin, F. H.; Betti, R.] Univ Rochester, Fus Sci Ctr Extreme States Matter, Rochester, NY 14623 USA. [Gotchev, O. V.; Meyerhofer, D. D.; Polomarov, O.; Betti, R.] Univ Rochester, Dept Mech Engn, Rochester, NY 14627 USA. [Chang, P. Y.; Meyerhofer, D. D.; Betti, R.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Frenje, J.; Li, C. K.; Manuel, M. J. -E.; Petrasso, R. D.; Seguin, F. H.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Rygg, J. R.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Gotchev, OV (reprint author), Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA. RI Chang, Po-Yu/A-9004-2013; Manuel, Mario/L-3213-2015; Chang, Po-Yu/L-5745-2016 OI Manuel, Mario/0000-0002-5834-1161; FU U. S. Department of Energy [DE-FG02-04ER54768, DE-FC02-ER54789, DE-FC52-08NA28302]; University of Rochester; New York State Energy Research and Development Authority FX The authors would like to thank Dr. F. Y. Thio and Dr. A. Velikovich for many illuminating discussions and for their encouragement in pursuing these novel experiments. This work was supported by the U. S. Department of Energy under Grant No. DE-FG02-04ER54768 and Cooperative Agreement Nos. DE-FC02-ER54789 and DE-FC52-08NA28302, the University of Rochester, and the New York State Energy Research and Development Authority. NR 23 TC 27 Z9 33 U1 1 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 20 PY 2009 VL 103 IS 21 AR 215004 DI 10.1103/PhysRevLett.103.215004 PG 4 WC Physics, Multidisciplinary SC Physics GA 523EH UT WOS:000272054300028 PM 20366046 ER PT J AU Moller, P Sierk, AJ Bengtsson, R Sagawa, H Ichikawa, T AF Moeller, Peter Sierk, Arnold J. Bengtsson, Ragnar Sagawa, Hiroyuki Ichikawa, Takatoshi TI Global Calculation of Nuclear Shape Isomers SO PHYSICAL REVIEW LETTERS LA English DT Article ID GROUND-STATE; MASS NUCLEI; COEXISTENCE; ISOTOPES AB To determine which nuclei may exhibit shape isomerism, we use a well-benchmarked macroscopic-microscopic model to calculate potential-energy surfaces as functions of spheroidal (epsilon(2)), hexadecapole (epsilon(4)), and axial-asymmetry (gamma) shape coordinates for 7206 nuclei from A=31 to A=290. We analyze these and identify the deformations and energies of all minima deeper than 0.2 MeV. These minima may correspond to characteristic experimentally observable shape-isomeric states. Shape isomers mainly occur in the A=80 region, the A=100 region, and in an extended region centered around (208)Pb. We compare our model to experimental results for Kr isotopes. Moreover, in a plot versus N and Z we show for each of the 7206 nuclei the calculated number of minima. The results reveal one fairly unexplored region of shape isomerism, which is experimentally accessible, namely the region northeast of (208)(82)Pb. C1 [Moeller, Peter; Sierk, Arnold J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Bengtsson, Ragnar] Lund Inst Technol, Dept Math Phys, SE-22100 Lund, Sweden. [Sagawa, Hiroyuki] Univ Aizu Aizu Wakamatsu, Ctr Math Sci, Fukushima 96580, Japan. [Ichikawa, Takatoshi] RIKEN, Nishina Ctr, Wako, Saitama 3510198, Japan. RP Moller, P (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM moller@lanl.gov OI Moller, Peter/0000-0002-5848-3565 FU U. S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; P. M. to JUSTIPEN at RIKEN [DE-FG02-06ER41407] FX This work was carried out under the auspices of the National Nuclear Security Administration of the U. S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396, and a travel grant for P. M. to JUSTIPEN at RIKEN (Japan-U. S. Theory Institute for Physics with Exotic Nuclei) under Grant No. DE-FG02-06ER41407 (U. Tennessee). NR 23 TC 24 Z9 25 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 20 PY 2009 VL 103 IS 21 AR 212501 DI 10.1103/PhysRevLett.103.212501 PG 4 WC Physics, Multidisciplinary SC Physics GA 523EH UT WOS:000272054300012 PM 20366030 ER PT J AU Nomura, K Ryu, S Lee, DH AF Nomura, Kentaro Ryu, Shinsei Lee, Dung-Hai TI Field-Induced Kosterlitz-Thouless Transition in the N=0 Landau Level of Graphene SO PHYSICAL REVIEW LETTERS LA English DT Article ID METALLIC CARBON NANOTUBES; MAGNETIC-FIELDS; LATTICE DISTORTION; SOLITONS AB At the charge neutral point, graphene exhibits a very unusual high-resistance metallic state and a transition to a complete insulating phase in a strong magnetic field. We propose that the current carriers in this state are the charged vortices of the XY valley-pseudospin order parameter, a situation which is dual to a conventional thin superconducting film. We study energetics and the stability of this phase in the presence of disorder. C1 [Nomura, Kentaro] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan. [Ryu, Shinsei; Lee, Dung-Hai] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Lee, Dung-Hai] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Nomura, K (reprint author), Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan. RI nomura, kentaro/C-1414-2009 FU MEXT [20740167]; DOE [DE-AC02-05CH11231] FX We are grateful to N. P. Ong and Y. Zhang for useful discussions. K. N. thanks R. Saito and K. Sasaki for helpful arguments on electron-phonon coupling, and A. H. MacDonald and J. Sinova on the HF calculation. K. N. was supported by MEXT Grant-in-Aid No. 20740167. D. H. L. was supported by DOE Grant No. DE-AC02-05CH11231. S. R. thanks the Center for Condensed Matter Theory at University of California, Berkeley for its support. NR 35 TC 52 Z9 52 U1 2 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 20 PY 2009 VL 103 IS 21 AR 216801 DI 10.1103/PhysRevLett.103.216801 PG 4 WC Physics, Multidisciplinary SC Physics GA 523EH UT WOS:000272054300041 PM 20366059 ER PT J AU Pinto-Tomas, AA Anderson, MA Suen, G Stevenson, DM Chu, FST Cleland, WW Weimer, PJ Currie, CR AF Pinto-Tomas, Adrian A. Anderson, Mark A. Suen, Garret Stevenson, David M. Chu, Fiona S. T. Cleland, W. Wallace Weimer, Paul J. Currie, Cameron R. TI Symbiotic Nitrogen Fixation in the Fungus Gardens of Leaf-Cutter Ants SO SCIENCE LA English DT Article ID TROPICAL RAIN-FOREST; ATTA-CEPHALOTES; CUTTING ANTS; DIVERSITY; ABUNDANCE; COLOMBICA; TERMITES; REFUSE; PLANTS; NESTS AB Bacteria-mediated acquisition of atmospheric N(2) serves as a critical source of nitrogen in terrestrial ecosystems. Here we reveal that symbiotic nitrogen fixation facilitates the cultivation of specialized fungal crops by leaf-cutter ants. By using acetylene reduction and stable isotope experiments, we demonstrated that N(2) fixation occurred in the fungus gardens of eight leaf-cutter ant species and, further, that this fixed nitrogen was incorporated into ant biomass. Symbiotic N(2)-fixing bacteria were consistently isolated from the fungus gardens of 80 leaf-cutter ant colonies collected in Argentina, Costa Rica, and Panama. The discovery of N(2) fixation within the leaf-cutter ant-microbe symbiosis reveals a previously unrecognized nitrogen source in neotropical ecosystems. C1 [Pinto-Tomas, Adrian A.; Suen, Garret; Currie, Cameron R.] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA. [Pinto-Tomas, Adrian A.] Univ Costa Rica, Dept Bioquim, Fac Med, San Jose, Costa Rica. [Pinto-Tomas, Adrian A.] Univ Costa Rica, Ctr Invest Estruct Microscop, San Jose, Costa Rica. [Anderson, Mark A.; Chu, Fiona S. T.; Cleland, W. Wallace] Univ Wisconsin, Dept Biochem, Inst Enzyme Res, Madison, WI 53726 USA. [Suen, Garret; Currie, Cameron R.] Univ Wisconsin, US DOE, Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Stevenson, David M.; Weimer, Paul J.] ARS, USDA, US Dairy Forage Res Ctr, Madison, WI 53706 USA. RP Currie, CR (reprint author), Univ Wisconsin, Dept Bacteriol, 1550 Linden Dr, Madison, WI 53706 USA. EM currie@bact.wisc.edu OI Suen, Garret/0000-0002-6170-711X FU NSF [MCB-0731822, MCB-0702025, DEB-0747002]; NIH [GM 18938]; OTS; U. S. Department of Energy's Great Lakes Bioenergy Research Center [DE-FC02-07ER64494]; U. S. Department of Agriculture-Agricultural Research Service Current Research Information System [3655-41000-005-00D] FX We thank R. Steffensen, L. Schwab, L. Uribe, M. Mora, B. Matarrita, D. Brenes, R. Araya, H. Read, J. Mentzer, D. Maly, and G. Pine for technical assistance; Y. Zhang, E. Pohlmann, and G. Roberts for assistance with acetylene reduction assays; A. Little, S. Price, and U. Mueller for leaf-cutter ant colony collection; M. Rogel-Hernandez and E. Martinez-Romero for providing isolate K. variicola F2R9; B. Ma, A. Charkowski, and N. Perna for assistance with phylogenetic analyses; E. Sanchez, R. Moreira, and T. Escalante for assistance with microscopic analyses; N. Keuler for statistical advice; the sequencing and production teams at the Joint Genome Institute; and S. Adams, F. Aylward, E. Caldera, N. Gerardo, H. Goodrich-Blair, K. Grubbs, S. Marsh, M. Poulsen, K. Raffa, G. Roberts, E. Ruby, T. Schultz, and J. Scott for comments on the manuscript. We acknowledge the Organization for Tropical Studies (OTS) and the Ministerio de Ambiente y Energia in Costa Rica, the Autoridad Nacional del Ambiente in Panama, and the Government of Argentina for facilitating the research and granting collecting permits. This work was funded by NSF grants MCB-0731822, MCB-0702025, and DEB-0747002 to C. R. C.; NIH grant GM 18938 to W. W. C., and an OTS research fellowship to A. A. P.-T. G. S. and C. R. C. were supported by the U. S. Department of Energy's Great Lakes Bioenergy Research Center under contract DE-FC02-07ER64494; D. M. S. and P. J. W. were supported by U. S. Department of Agriculture-Agricultural Research Service Current Research Information System project 3655-41000-005-00D. DNA sequence data were deposited in GenBank under accession numbers FJ593730 to FJ593840 and GQ342603 to GQ342604. NR 27 TC 101 Z9 103 U1 7 U2 96 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD NOV 20 PY 2009 VL 326 IS 5956 BP 1120 EP 1123 DI 10.1126/science.1173036 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 521UW UT WOS:000271951000047 PM 19965433 ER PT J AU Khain, AP Leung, LR Lynn, B Ghan, S AF Khain, A. P. Leung, L. R. Lynn, B. Ghan, S. TI Effects of aerosols on the dynamics and microphysics of squall lines simulated by spectral bin and bulk parameterization schemes SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID STOCHASTIC COLLECTION EQUATION; CLOUD-RESOLVING MODEL; PART I; MESOSCALE MODEL; CUMULUS CLOUD; EXPLICIT FORECASTS; NUMERICAL-SOLUTION; CONVECTIVE CLOUDS; DROPLET SPECTRUM; ICE-NUCLEATION AB A new spectral bin microphysical scheme (SBM) was implemented into the Weather Research and Forecasting model referred to as Fast- SBM, which uses a smaller number of size distribution functions than the original version of the scheme referred to as Exact- SBM. It was shown that both schemes produced similar dynamical and microphysical structure of a squall line simulated. An excellent agreement in the simulated precipitation amounts between the schemes was found within a range of cloud condensation nuclei concentrations from 100 to 3000 cm(-3). The Fast- SBM requires about 40% of the computing power of the Exact- SBM, allowing it to be used for "real-time" simulations over limited domains. The results obtained using the SBM simulations have been compared with those using a modified version of the Thompson bulk parameterization scheme. The main extension of the bulk scheme was the implementation of the process of drop nucleation, so that drop concentration is no longer prescribed a priori but rather calculated using the prescribed aerosol concentration. This scheme is referred to as the Drop scheme. A large set of sensitivity studies have been performed, in which microphysical parameters and precipitation, droplet nucleation above cloud base, etc., have been compared with those obtained from SBM. The SBM scheme produces more realistic dynamical and microphysical structure of the squall line. The Drop scheme did relatively little to change the cloud structures simulated by the bulk scheme. Unlike the SBM simulations that show different precipitation sensitivities to aerosol concentrations in relatively dry and humid environments, the Drop scheme indicates monotonic decrease in precipitation with increasing aerosol concentrations. C1 [Khain, A. P.; Lynn, B.] Hebrew Univ Jerusalem, Dept Atmospher Sci, IL-91904 Jerusalem, Israel. [Leung, L. R.; Ghan, S.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Khain, AP (reprint author), Hebrew Univ Jerusalem, Dept Atmospher Sci, IL-91904 Jerusalem, Israel. EM khain@vms.huji.ac.il RI Ghan, Steven/H-4301-2011 OI Ghan, Steven/0000-0001-8355-8699 FU Israel Science Foundation [140/07]; U.S. National Aeronautic and Space Administration (NASA) Energy and Water Cycle Studies (NEWS); U.S. Department of Energy by Battelle Memorial Institute [DE-AC06-76RLO1830] FX The study has been performed under support of the Israel Science Foundation (grant 140/07) and the U.S. National Aeronautic and Space Administration (NASA) Energy and Water Cycle Studies (NEWS). PNNL is operated for the U.S. Department of Energy by Battelle Memorial Institute under contract DE-AC06-76RLO1830. NR 67 TC 17 Z9 18 U1 3 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 19 PY 2009 VL 114 AR D22203 DI 10.1029/2009JD011902 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 522KG UT WOS:000271996000001 ER PT J AU Yu, HG Francisco, JS AF Yu, Hua-Gen Francisco, Joseph S. TI Ab Initio and RRKM Study of the Reaction of ClO with HOCO Radicals SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID POTENTIAL-ENERGY SURFACE; UNIMOLECULAR RATE THEORY; RATE-CONSTANT; PRESSURE-DEPENDENCE; TRANS-HOCO; TEMPERATURE-DEPENDENCE; PRODUCT FORMATION; HO2+CLO REACTION; HO2 RADICALS; BASIS-SETS AB The reaction pathways for the ClO + HOCO reaction have been explored using the coupled-cluster method to locate and optimize the critical points on the ground-state potential-energy surface. Results show that the ClO + HOCO reaction can produce Cl + HOC(O)O, HOCl + CO(2), HCl + CO(3), and HClO + CO(2) via an addition or a direct hydrogen abstraction reaction mechanism. The reaction kinetics has been studied using the variational RRKM theory. It is found that the ClO + HOCO reaction is fast and has a negative temperature dependence at low temperatures. At room temperature, the thermal rate coefficient is obtained as 4.26 x 10(-12) cm(3) molecules(-1) s(-1) with product branching fractions of Cl (0.518), HOCl (0.469), HCl (0.01), and HClO (0.003) at zero pressure, The Cl + HOC(O)O products are major, compared to the HOCl + CO(2) products, because of the loose transition state along the dissociation pathway to eliminate Cl. In addition, the RRKM/master equation simulations indicate that the stabilization of the HOC(O)OCl intermediates is noticeable at moderate pressures as its thermal rate constants reach about 6.0 x 10(-13) cm(3) molecules(-1) s(-1). In contrast, the other product branching ratios for the ClO + HOCO reaction are weakly dependent on pressure. C1 [Francisco, Joseph S.] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA. [Yu, Hua-Gen] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Francisco, JS (reprint author), Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA. EM francisc@purdue.edu RI Yu, Hua-Gen/N-7339-2015 FU Brookhaven National Laboratory, U.S. Department of Energy [DE-AC02-98CH10886]; Division of Chemical Sciences, Office of Basic Energy Sciences FX This work was performed at Brookhaven National Laboratory under contract no. DE-AC02-98CH10886 with the U.S. Department of Energy and supported by its Division of Chemical Sciences, Office of Basic Energy Sciences. NR 69 TC 9 Z9 9 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD NOV 19 PY 2009 VL 113 IS 46 BP 12932 EP 12941 DI 10.1021/jp9040088 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 516ZT UT WOS:000271583100023 PM 19831339 ER PT J AU Winoto, W Shen, YQ Radosz, M Hong, KL Mays, JW AF Winoto, Winoto Shen, Youqing Radosz, Maciej Hong, Kunlun Mays, Jimmy W. TI Deuteration Impact on Micellization Pressure and Cloud Pressure of Polystyrene-block-polybutadiene and Polystyrene-block-polyisoprene in Compressible Propane SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID SMALL-ANGLE NEUTRON; ANIONIC-POLYMERIZATION; MODEL POLYDIENES; SCATTERING; TEMPERATURE; POLYOLEFINS; SYSTEMS AB The deuterated homopolymers and their corresponding polystyrene-block-polybutadiene and polystyreneblock-polyisoprene copolymers require lower cloud pressures than their hydrogenous analogues to dissolve in a compressible alkane solvent, such as propane. For symmetric diblocks, deuteration reduces the micellization pressure. By contrast, for asymmetric diblocks with a long diene block relative to the styrene block, deuteration can increase the micellization pressure. All in all, however, the deuteration effects, while measurable, do not qualitatively change the principal diblock properties in compressible propane solutions, such as pressure-induced micelle decomposition, micelle formation and micelle size, and their temperature dependence. Therefore, isotope labeling should be a useful approach to neutron-scattering characterization for styrene-diene block copolymers in compressible alkane systems. C1 [Winoto, Winoto; Shen, Youqing; Radosz, Maciej] Univ Wyoming, Soft Mat Lab, Dept Chem & Petr Engn, Laramie, WY 82071 USA. [Hong, Kunlun; Mays, Jimmy W.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Radosz, M (reprint author), Univ Wyoming, Soft Mat Lab, Dept Chem & Petr Engn, Laramie, WY 82071 USA. EM radosz@uwyo.edu RI Shen, Youqing/E-6144-2011; Hong, Kunlun/E-9787-2015 OI Shen, Youqing/0000-0003-1837-7976; Hong, Kunlun/0000-0002-2852-5111 FU National Science Foundation [CTS-0625338]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy [CNMS2006-114] FX This work is funded by a National Science Foundation Grant (CTS-0625338) at the University of Wyoming. Part of this research was done at Oak Ridge National Laboratory's Center for Nanophase Materials Sciences, which was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy, through User Project CNMS2006-114. A preliminary account of the paper, presented at AIChE Annual Meeting 2007, was entitled: Pressure-Induced Micellization of Polystyrene-block-polybutadiene, Polystyrene-block-polyisoprene and Their Deuterated Analogs in Near Critical Propane. NR 18 TC 1 Z9 1 U1 1 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD NOV 19 PY 2009 VL 113 IS 46 BP 15156 EP 15161 DI 10.1021/jp904917w PG 6 WC Chemistry, Physical SC Chemistry GA 516YY UT WOS:000271580700006 PM 19860441 ER PT J AU Schlau-Cohen, GS Calhoun, TR Ginsberg, NS Read, EL Ballottari, M Bassi, R van Grondelle, R Fleming, GR AF Schlau-Cohen, Gabriela S. Calhoun, Tessa R. Ginsberg, Naomi S. Read, Elizabeth L. Ballottari, Matteo Bassi, Roberto van Grondelle, Rienk Fleming, Graham R. TI Pathways of Energy Flow in LHCII from Two-Dimensional Electronic Spectroscopy SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID LIGHT-HARVESTING-COMPLEX; PHOTOSYSTEM-II; HIGHER-PLANTS; PEAK SHIFT; DYNAMICS; PHOTOSYNTHESIS; ABSORPTION; RESOLUTION; BINDING; PROTEIN AB Photosynthetic light-harvesting complexes absorb energy and guide photoexcitations to reaction centers with speed and efficacy that produce near-perfect efficiency, Light harvesting complex II (LHCII) is the most abundant light-harvesting complex and is responsible for absorbing the majority of light energy in plants. We apply two-dimensional electronic spectroscopy to examine energy flow in LHCII. This technique allows for direct mapping of excitation energy pathways as a function of absorption and emission wavelength. The experimental and theoretical results reveal that excitation energy transfers through the complex on three time scales: previously unobserved sub-100 fs relaxation through spatially overlapping states, several hundred femtosecond transfer between nearby chlorophylls, and picosecond energy transfer steps between layers of pigments. All energy is observed to collect into the energetically lowest and most delocalized states, which serve as exit sites. We examine the angular distribution of optimal energy transfer produced by this delocalized electronic structure and discuss how it facilitates the exit step in which the energy moves from LHCII to other complexes toward the reaction center. C1 [Schlau-Cohen, Gabriela S.; Calhoun, Tessa R.; Ginsberg, Naomi S.; Read, Elizabeth L.; Fleming, Graham R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Schlau-Cohen, Gabriela S.; Calhoun, Tessa R.; Ginsberg, Naomi S.; Read, Elizabeth L.; Fleming, Graham R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Ballottari, Matteo; Bassi, Roberto] Univ Verona, Dipartimento Biotecnol, Fac Sci, I-37134 Verona, Italy. [van Grondelle, Rienk] Vrije Univ Amsterdam, Dept Biophys, Div Phys & Astron, Fac Sci, NL-1081 HV Amsterdam, Netherlands. RP Fleming, GR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. OI Ballottari, Matteo/0000-0001-8410-3397; bassi, roberto/0000-0002-4140-8446 FU Chemical Sciences [DE-AC03-76SF000098]; Geosciences and Biosciences Division; Office of Basic Energy Sciences; Office of Science; U.S. Department of Energy; Glenn T. Seaborg Fellowship from LBNL FX The authors thank Gregory S. Engel for helpful discussions. This work was supported by Grant No. DE-AC03-76SF000098 from the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy to G.R.F. N.S.G. acknowledges support from a Glenn T. Seaborg Fellowship from LBNL. NR 39 TC 96 Z9 97 U1 3 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD NOV 19 PY 2009 VL 113 IS 46 BP 15352 EP 15363 DI 10.1021/jp9066586 PG 12 WC Chemistry, Physical SC Chemistry GA 516YY UT WOS:000271580700031 PM 19856954 ER PT J AU Lambert, TN Chavez, CA Hernandez-Sanchez, B Lu, P Bell, NS Ambrosini, A Friedman, T Boyle, TJ Wheeler, DR Huber, DL AF Lambert, Timothy N. Chavez, Carlos A. Hernandez-Sanchez, Bernadette Lu, Ping Bell, Nelson S. Ambrosini, Andrea Friedman, Thomas Boyle, Timothy J. Wheeler, David R. Huber, Dale L. TI Synthesis and Characterization of Titania-Graphene Nanocomposites SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID EXFOLIATED GRAPHITE OXIDE; CARBON NANOTUBES; AQUEOUS DISPERSIONS; SURFACE-AREA; ANATASE TIO2; SHEETS; NANOPARTICLES; COMPOSITES; NANOSTRUCTURES; NANOSHEETS AB In this work, the synthesis and physiochemical characterization of titanium oxide nanoparticle-graphene oxide (TiO(2)-GO) and titanium oxide nanoparticle-reduced graphene oxide (TiO(2)-RGO) composites was undertaken. TiO(2)-GO materials were prepared via the hydrolysis of TiF(4) at 60 degrees C for 24 h in the presence of air aqueous dispersion of graphene oxide (GO). The reaction proceeded to yield an insoluble material that is composed of TiO(2) and GO. Composites were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), Raman spectroscopy, N(2) adsorption-desorption, and thermal gravimetric analysis/differential thermal analysis (TGA/DTA). This approach yielded highly faceted anatase nanocrystals with petal-like morphologies on and embedded between the graphene sheets. At higher GO concentrations with no stirring of the reaction media, a long-range ordered assembly for TiO(2)-GO sheets was observed due to self-assembly. GO-TiO(2) composites formed colloidal dispersions at low concentrations (similar to 0.75 mg/mL) in water and ethanol but were not amenable to forming graphene papers via filtration through Anodisc membranes (0.2 mu M pore diameter) due to their high titania concentration. Zeta potential measurements and particle size distributions from dynamic light scattering (DLS) experiments on these materials explain the stability of the TiO(2)-GO colloidal solutions. Chemical and thermal methods were also used to reduce TiO(2)-GO to give TiO(2)-RGO materials. C1 [Lambert, Timothy N.; Chavez, Carlos A.; Ambrosini, Andrea] Sandia Natl Labs, Dept Mat Devices & Energy Technol, Albuquerque, NM 87185 USA. [Hernandez-Sanchez, Bernadette; Boyle, Timothy J.] Sandia Natl Labs, Dept Ceram Proc & Inorgan Mat, Albuquerque, NM 87185 USA. [Lu, Ping] Sandia Natl Labs, Dept Mat Characterizat, Albuquerque, NM 87185 USA. [Bell, Nelson S.] Sandia Natl Labs, Dept Nanostructured & Elect Mat, Albuquerque, NM 87185 USA. [Friedman, Thomas] Sandia Natl Labs, Dept Nanomat Sci, Albuquerque, NM 87185 USA. [Wheeler, David R.] Sandia Natl Labs, Dept Biosensors & Nanomat, Albuquerque, NM 87185 USA. [Huber, Dale L.] Sandia Natl Labs, Dept CINT Sci, Albuquerque, NM 87185 USA. RP Lambert, TN (reprint author), Sandia Natl Labs, Dept Mat Devices & Energy Technol, POB 5800, Albuquerque, NM 87185 USA. EM tnlambe@sandia.gov RI Huber, Dale/A-6006-2008 OI Huber, Dale/0000-0001-6872-8469 FU Sandia's Laboratory Directed Research and Development program; Sandia Corporation; Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by Sandia's Laboratory Directed Research and Development program. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. Professor Rod Ruoff (UT - Austin) and Dr. Sungjin Park (UT - Austin) are thanked for technical assistance with the initial graphene oxide preparation. NR 59 TC 255 Z9 259 U1 51 U2 360 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 19 PY 2009 VL 113 IS 46 BP 19812 EP 19823 DI 10.1021/jp905456f PG 12 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 516ZX UT WOS:000271583600008 ER PT J AU Florez, E Feria, L Vines, F Rodriguez, JA Illas, F AF Florez, Elizabeth Feria, Leticia Vines, Francesc Rodriguez, Jose A. Illas, Francesc TI Effect of the Support on the Electronic Structure of Au Nanoparticles Supported on Transition Metal Carbides: Choice of the Best Substrate for Au Activation SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID TEMPERATURE CO OXIDATION; GAS SHIFT ACTIVITY; GOLD CATALYSTS; CHEMOSELECTIVE HYDROGENATION; SUBSTITUTED NITROAROMATICS; CHARGE POLARIZATION; MOLECULAR-MECHANISM; ACTIVE-SITES; 001 SURFACE; SIZE AB Periodic density functional theory calculations on large supercells have been carried out to investigate the atomic and electronic structure of small gold particles (Au(2), Au(4), Au(9), Au(13), and Au(14)) supported on the (001) surface of various transition metal carbides (TiC, ZrC, VC, and delta-MoC). All the supported Au particles exhibited strong interactions with the C sites of the metal-carbide surfaces. Nevertheless, the interactions between adsorbed Au atoms were attractive, thus ultimately facilitating nucleation of two- or three-dimensional metal particles. The presence of the underlying carbide strongly modified the electronic structure and charge density of the supported metal particles resulting in the experimentally proven improved catalytic performance of the resulting systems as compared with cases where the support is an oxide. The electronic perturbations were quite strong for two-dimensional gold particles directly in contact with the carbide substrates and gradually decreased for two-layer and three-layer thick supported particles. While all the metal carbides examined induced a qualitatively similar perturbation on the supported Au particles, the effect is significantly larger for ZrC thus suggesting that the resulting model catalyst would perform even better than the already tried Au/TiC system. C1 [Florez, Elizabeth; Feria, Leticia; Illas, Francesc] Univ Barcelona, Dept Quim Fis, E-08028 Barcelona, Spain. [Florez, Elizabeth; Feria, Leticia; Illas, Francesc] Univ Barcelona, Inst Quim Teor & Computac, E-08028 Barcelona, Spain. [Florez, Elizabeth] Univ Chile, Dept Fis, Santiago, Chile. [Vines, Francesc] Univ Erlangen Nurnberg, Lehrstuhl Theoret Chem, D-91058 Erlangen, Germany. [Vines, Francesc] Univ Erlangen Nurnberg, Interdisciplinary Ctr Interface Controlled Proc, D-91058 Erlangen, Germany. [Rodriguez, Jose A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Illas, F (reprint author), Univ Barcelona, Dept Quim Fis, C Marti & Franques 1, E-08028 Barcelona, Spain. RI Illas, Francesc /C-8578-2011; OI Illas, Francesc /0000-0003-2104-6123; Florez, Elizabeth/0000-0002-8301-8550; Vines, Francesc/0000-0001-9987-8654 FU ICyTDF; Alexander von Humboldt Foundation; Spanish MICINN [FIS2008-02238]; Generalitat de Catalunya [2009SGR1041]; Chile Fondecyt Grant [3080033]; U.S. Department of Energy (Chemical Sciences Division) [DE-AC02-98CH10886]; Divisions of Chemical and Materials Science of the U.S. Department of Energy FX E.F. would like to thank Colciencias and the University of Antioquia (Colombia) for her scholarship. L.F. is grateful to ICyTDF for a Postdoctoral Fellowship. F.V. is grateful to the Alexander von Humboldt Foundation for a Postdoctoral Fellowship. Financial support has been provided by the Spanish MICINN (grant FIS2008-02238), Generalitat de Catalunya (grants 2009SGR1041 and XRQTC), and Chile Fondecyt Grant 3080033. Computational time provided by the Barcelona Supercomputing Center (BSC) is gratefully acknowledged. The research carried out at Brookhaven National Laboratory was supported by the U.S. Department of Energy (Chemical Sciences Division, DE-AC02-98CH10886). The National Synchrotron Light Source (NSLS) is supported by the Divisions of Chemical and Materials Science of the U.S. Department of Energy. NR 66 TC 13 Z9 13 U1 1 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 19 PY 2009 VL 113 IS 46 BP 19994 EP 20001 DI 10.1021/jp907043g PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 516ZX UT WOS:000271583600032 ER PT J AU Kim, YK Zhang, ZR Parkinson, GS Li, SC Kay, BD Dohnalek, Z AF Kim, Yu Kwon Zhang, Zhenrong Parkinson, Gareth S. Li, Shao-Chun Kay, Bruce D. Dohnalek, Zdenek TI Reactivity of FeO(111)/Pt(111) with Alcohols SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SURFACE-CHEMISTRY; (WO3)(3) CLUSTERS; OXIDE-FILMS; MGO FILMS; TERMINATED FEO(111); THERMAL-DESORPTION; WATER-ADSORPTION; CO DISSOCIATION; LOW-TEMPERATURE; PT(111) AB We report on the reactivity of a FeO(111) monolayer grown on Pt(111) toward aliphatic alcohols. Using a combination of temperature-programmed desorption, infrared reflection-absorption spectroscopy, and scanning tunneling microscopy techniques, we show that the alcohols dissociate primarily at FeO(111) step edges and their oxidation leads to the removal of the FeO(111) film. Upon annealing, FeO(111) lattice oxygen is incorporated into the reaction products, and reduced iron left behind dissolves into the underlying Pt(111) substrate. Ethanol is employed in a more detailed spectroscopic study to follow the reaction products and surface intermediates as the removal of FeO(111) proceeds. The ethoxy species formed upon dissociative adsorption of ethanol at the FeO(111) step edges undergo partial oxidation to acetaldehyde and a complete oxidation to CO and H(2)O. Other products, CH(4) and H(2), associated with the reactions occurring oil Pt(111) are also observed as the bare Pt(111) surface appears. A similar etching process was also observed for n-decane. C1 [Kim, Yu Kwon; Zhang, Zhenrong; Parkinson, Gareth S.; Li, Shao-Chun; Kay, Bruce D.; Dohnalek, Zdenek] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Kay, BD (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Div Chem & Mat Sci, POB 999,Mail Stop K8-88, Richland, WA 99352 USA. EM Bruce.Kay@pnl.gov; Zdenek.Dohnalek@pnl.gov OI Parkinson, Gareth/0000-0003-2457-8977; Zhang, Zhenrong/0000-0003-3969-2326; Dohnalek, Zdenek/0000-0002-5999-7867 FU U.S. Department of Energy Office of Basic Energy Sciences, Chemical Sciences Division; Robert A. Welch Foundation [F-0032]; National Science Foundation [CHE-0412609]; W. R. Wiley Environmental Molecular Science Laboratory; Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory (PNNL) FX This work was supported by the U.S. Department of Energy Office of Basic Energy Sciences, Chemical Sciences Division, the Robert A. Welch Foundation (F-0032), and the National Science Foundation (CHE-0412609), and performed at W. R. Wiley Environmental Molecular Science Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the U.S. DOE by Battelle Memorial Institute tinder Contract DE-AC06-76RLO 1830. NR 46 TC 13 Z9 13 U1 2 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 19 PY 2009 VL 113 IS 46 BP 20020 EP 20028 DI 10.1021/jp907844j PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 516ZX UT WOS:000271583600035 ER PT J AU Luo, WF Cowgill, DF Causey, RA AF Luo, Weifang Cowgill, Donald F. Causey, Rion A. TI Equilibrium Isotope Effect for Hydrogen Absorption in Palladium SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID DEUTERIUM; EXCHANGE; SYSTEM; PD AB Absorption isotherms at 323 K for the H-D-Pd system were measured by introducing H(2) and D(2) into Pd in sequence. The method using addition of isotopes to the system in sequence to investigate isotope exchange effects has not been previously reported. The equilibrium absorption pressure in the plateau region of the mixed-isotope system varies with the ratio of HID in the solid phase. It lies between those of the single-isotope systems of H-Pd and D-Pd. Higher equilibrium pressures are associated with high D/H ratios in the solid phase. A model proposed previously (Luo, W.; Cowgill, D.; Causey, R.; Stewart, K. J. Phys. Chem., B 2008, 112, 8099) for mixed isotope hydride desorption, which correlates the equilibrium plateau pressure of the mixed H-D system with the fractions of D and H in the solid and the equilibrium plateau pressures of the single-isotope systems, is also successfully applied to absorption, When D(2) is introduced into the H-Pd system in the plateau region, both the H-D exchange processes in the gas phase and net H (D) absorption take place. The former does not result in a total pressure change, but the latter creates a total pressure decrease. These reactions produce a D concentration increase in both the bulk Pd and the gaseous phase, as expected. Curiously, however, they also result in a counterintuitive small H concentration increase in bulk Pd and a decrease in gaseous H. Analogous results are obtained when the order of D(2)-H(2) introduction is reversed. In the plateau region, isotope displacement does not take place. Once in the beta-phase, isotope displacement does take place. The equilibrium isotope H-D partitions in the gas phase, H(2), HD, and D(2), are controlled by the equilibrium constant, K(HD), and their equilibrium partitions among H and D between gas and bulk Pd are controlled by the separation factor, alpha. C1 [Luo, Weifang; Cowgill, Donald F.; Causey, Rion A.] Sandia Natl Labs, Dept Hydrogen & Met Sci, Livermore, CA 94551 USA. RP Luo, WF (reprint author), Sandia Natl Labs, Dept Hydrogen & Met Sci, 7011 E Ave, Livermore, CA 94551 USA. EM wluo@sandia.gov FU Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. W. Luo thanks Prof. T. B. Flanagan at University of Vermont for valuable suggestions and advice. The authors thank Mr. K. Stewart for technical support for experimental setup design. NR 15 TC 7 Z9 7 U1 2 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 19 PY 2009 VL 113 IS 46 BP 20076 EP 20080 DI 10.1021/jp905614x PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 516ZX UT WOS:000271583600042 ER PT J AU Vijayakumar, M Kerisit, S Yang, ZG Graff, GL Liu, J Sears, JA Burton, SD Rosso, KM Hu, JZ AF Vijayakumar, M. Kerisit, Sebastien Yang, Zhenguo Graff, Gordon L. Liu, Jun Sears, Jesse A. Burton, Sarah D. Rosso, Kevin M. Hu, Jianzhi TI Combined Li-6,Li-7 NMR and Molecular Dynamics Study of Li Diffusion in Li2TiO3 SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID NUCLEAR-MAGNETIC-RESONANCE; SOLID-STATE NMR; ELECTRICAL-CONDUCTIVITY; ATOMISTIC SIMULATION; EXCHANGE PROCESSES; THERMAL-PROPERTIES; LITHIUM BATTERIES; NANO-CRYSTALLINE; SHELL-MODEL; SPECTROSCOPY AB Understanding lithium diffusion properties in electrode materials is important for designing rechargeable lithium-ion batteries with improved performance. In this work, the lithium dynamics in layered Li2TiO3 were characterized using a combination of Li-6,Li-7 nuclear magnetic resonance (NMR) over a wide temperature range (150-500 K) and molecular dynamics (MD) simulations. The Li-7 static NMR and stimulated echo experiments show slow and partial lithium diffusion in Li2TiO3. The high-field (21.1 T) Li-6 magic-angle spinning NMR shows a new tetrahedral lithium site along with the three crystallographic octahedral sites in Li2TiO3 sample. MD simulations predict that lithium can occupy a tetrahedral site if two or more vacancies exist in the vicinity, which may result, for example, from the presence of a Ti defect in the LiTi2 layer. Li-6 two-dimensional (2D) exchange NMR experiments show evidence of lithium diffusion between the pure Li and LiTi2 layers along the c axis. Although the 2D exchange NMR data are not sensitive to lithium diffusion in the ab plane, MD simulations show that lithium diffusion in the pure Li layer is equally probable. Combining these results, a detailed picture of the lithium diffusion pathways in Li2TiO3 is presented. C1 [Vijayakumar, M.; Kerisit, Sebastien; Yang, Zhenguo; Graff, Gordon L.; Liu, Jun; Sears, Jesse A.; Burton, Sarah D.; Rosso, Kevin M.; Hu, Jianzhi] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Rosso, KM (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM kevin.rosso@pnl.gov; jianzhi.hu@pnl.gov RI Murugesan, Vijayakumar/C-6643-2011; Hu, Jian Zhi/F-7126-2012 OI Murugesan, Vijayakumar/0000-0001-6149-1702; FU Laboratory-Directed Research and Development Program (LDRD) of the Pacific Northwest National Laboratory (PNNL); Office of Basic Energy Sciences (BES); U.S. Department of Energy (DOE); DOE's Office of Biological and Environmental Research (BER); Battelle Memorial Institute for the Department of Energy [DE-AC05-76RL01830] FX This work is supported by the Laboratory-Directed Research and Development Program (LDRD) of the Pacific Northwest National Laboratory (PNNL) and by the Office of Basic Energy Sciences (BES), U.S. Department of Energy (DOE). The NMR work was carried out at the Environmental and Molecular Science Laboratory, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research (BER). PNNL is a multiprogram, laboratory operated by Battelle Memorial Institute for the Department of Energy under contract DE-AC05-76RL01830. NR 53 TC 48 Z9 50 U1 7 U2 70 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 19 PY 2009 VL 113 IS 46 BP 20108 EP 20116 DI 10.1021/jp9072125 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 516ZX UT WOS:000271583600046 ER PT J AU Abdo, AA Ackermann, M Ajello, M Asano, K Atwood, WB Axelsson, M Baldini, L Ballet, J Barbiellini, G Baring, MG Bastieri, D Bechtol, K Bellazzini, R Berenji, B Bhat, PN Bissaldi, E Bloom, ED Bonamente, E Bonnell, J Borgland, AW Bouvier, A Bregeon, J Brez, A Briggs, MS Brigida, M Bruel, P Burgess, JM Burnett, TH Caliandro, GA Cameron, RA Caraveo, PA Casandjian, JM Cecchi, C Celik, O Chaplin, V Charles, E Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Cominsky, LR Connaughton, V Conrad, J Cutini, S Dermer, CD de Angelis, A de Palma, F Digel, SW Dingus, BL Silva, EDE Drell, PS Dubois, R Dumora, D Farnier, C Favuzzi, C Fegan, SJ Finke, J Fishman, G Focke, WB Foschini, L Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Gibby, L Giebels, B Giglietto, N Giordano, F Glanzman, T Godfrey, G Granot, J Greiner, J Grenier, IA Grondin, MH Grove, JE Grupe, D Guillemot, L Guiriec, S Hanabata, Y Harding, AK Hayashida, M Hays, E Hoversten, EA Hughes, RE Johannesson, G Johnson, AS Johnson, RP Johnson, WN Kamae, T Katagiri, H Kataoka, J Kawai, N Kerr, M Kippen, RM Knodlseder, J Kocevski, D Kouveliotou, C Kuehn, F Kuss, M Lande, J Latronico, L Lemoine-Goumard, M Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Madejski, GM Makeev, A Mazziotta, MN McBreen, S McEnery, JE McGlynn, S Meszaros, P Meurer, C Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Moretti, E Morselli, A Moskalenko, IV Murgia, S Nakamori, T Nolan, PL Norris, JP Nuss, E Ohno, M Ohsugi, T Omodei, N Orlando, E Ormes, JF Ozaki, M Paciesas, WS Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Petrosian, V Piron, F Porter, TA Preece, R Raino, S Ramirez-Ruiz, E Rando, R Razzano, M Razzaque, S Reimer, A Reimer, O Reposeur, T Ritz, S Rochester, LS Rodriguez, AY Roth, M Ryde, F Sadrozinski, HFW Sanchez, D Sander, A Parkinson, PMS Scargle, JD Schalk, TL Sgro, C Siskind, EJ Smith, DA Smith, PD Spandre, G Spinelli, P Stamatikos, M Stecker, FW Strickman, MS Suson, DJ Tajima, H Takahashi, H Takahashi, T Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Toma, K Torres, DF Tosti, G Troja, E Uchiyama, Y Uehara, T Usher, TL van der Horst, AJ Vasileiou, V Vilchez, N Vitale, V von Kienlin, A Waite, AP Wang, P Wilson-Hodge, C Winer, BL Wood, KS Wu, XF Yamazaki, R Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Asano, K. Atwood, W. B. Axelsson, M. Baldini, L. Ballet, J. Barbiellini, G. Baring, M. G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Bhat, P. N. Bissaldi, E. Bloom, E. D. Bonamente, E. Bonnell, J. Borgland, A. W. Bouvier, A. Bregeon, J. Brez, A. Briggs, M. S. Brigida, M. Bruel, P. Burgess, J. M. Burnett, T. H. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Casandjian, J. M. Cecchi, C. Celik, Oe Chaplin, V. Charles, E. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Cominsky, L. R. Connaughton, V. Conrad, J. Cutini, S. Dermer, C. D. de Angelis, A. de Palma, F. Digel, S. W. Dingus, B. L. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Farnier, C. Favuzzi, C. Fegan, S. J. Finke, J. Fishman, G. Focke, W. B. Foschini, L. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Gibby, L. Giebels, B. Giglietto, N. Giordano, F. Glanzman, T. Godfrey, G. Granot, J. Greiner, J. Grenier, I. A. Grondin, M. -H. Grove, J. E. Grupe, D. Guillemot, L. Guiriec, S. Hanabata, Y. Harding, A. K. Hayashida, M. Hays, E. Hoversten, E. A. Hughes, R. E. Johannesson, G. Johnson, A. S. Johnson, R. P. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Kawai, N. Kerr, M. Kippen, R. M. Knoedlseder, J. Kocevski, D. Kouveliotou, C. Kuehn, F. Kuss, M. Lande, J. Latronico, L. Lemoine-Goumard, M. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Madejski, G. M. Makeev, A. Mazziotta, M. N. McBreen, S. McEnery, J. E. McGlynn, S. Meszaros, P. Meurer, C. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Moretti, E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakamori, T. Nolan, P. L. Norris, J. P. Nuss, E. Ohno, M. Ohsugi, T. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Paciesas, W. S. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Petrosian, V. Piron, F. Porter, T. A. Preece, R. Raino, S. Ramirez-Ruiz, E. Rando, R. Razzano, M. Razzaque, S. Reimer, A. Reimer, O. Reposeur, T. Ritz, S. Rochester, L. S. Rodriguez, A. Y. Roth, M. Ryde, F. Sadrozinski, H. F. -W. Sanchez, D. Sander, A. Parkinson, P. M. Saz Scargle, J. D. Schalk, T. L. Sgro, C. Siskind, E. J. Smith, D. A. Smith, P. D. Spandre, G. Spinelli, P. Stamatikos, M. Stecker, F. W. Strickman, M. S. Suson, D. J. Tajima, H. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Toma, K. Torres, D. F. Tosti, G. Troja, E. Uchiyama, Y. Uehara, T. Usher, T. L. van der Horst, A. J. Vasileiou, V. Vilchez, N. Vitale, V. von Kienlin, A. Waite, A. P. Wang, P. Wilson-Hodge, C. Winer, B. L. Wood, K. S. Wu, X. F. Yamazaki, R. Ylinen, T. Ziegler, M. TI A limit on the variation of the speed of light arising from quantum gravity effects SO NATURE LA English DT Article ID GAMMA-RAY BURSTS; HIGH-ENERGY; VIOLATION; EMISSION; PHOTONS; LORENTZ; TESTS; FOAM AB A cornerstone of Einstein's special relativity is Lorentz invariance-the postulate that all observers measure exactly the same speed of light in vacuum, independent of photon-energy. While special relativity assumes that there is no fundamental length-scale associated with such invariance, there is a fundamental scale (the Planck scale, l(Planck) approximate to 1.62 x 10(-33) cm or E-Planck = M(Planck)c(2) approximate to 1.22 x 10(19) GeV), at which quantum effects are expected to strongly affect the nature of space-time. There is great interest in the (not yet validated) idea that Lorentz invariance might break near the Planck scale. A key test of such violation of Lorentz invariance is a possible variation of photon speed with energy(1-7). Even a tiny variation in photon speed, when accumulated over cosmological light-travel times, may be revealed by observing sharp features in gamma-ray burst (GRB) light-curves(2). Here we report the detection of emission up to similar to 31GeV from the distant and short GRB090510. We find no evidence for the violation of Lorentz invariance, and place a lower limit of 1.2E(Planck) on the scale of a linear energy dependence (or an inverse wavelength dependence), subject to reasonable assumptions about the emission (equivalently we have an upper limit of l(Planck)/1.2 on the length scale of the effect). Our results disfavour quantum-gravity theories(3,6,7) in which the quantum nature of space-time on a very small scale linearly alters the speed of light. C1 [Granot, J.] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Abdo, A. A.; Cheung, C. C.; Dermer, C. D.; Finke, J.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Razzaque, S.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Abdo, A. A.; Cheung, C. C.; Finke, J.; Razzaque, S.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocevski, D.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Petrosian, V.; Reimer, A.; Reimer, O.; Rochester, L. S.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, Dept Phys, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocevski, D.; Lande, J.; Madejski, G. M.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Petrosian, V.; Reimer, A.; Reimer, O.; Rochester, L. S.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Uchiyama, Y.; Usher, T. L.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Asano, K.; Kataoka, J.; Kawai, N.; Nakamori, T.; Troja, E.] Tokyo Inst Technol, Dept Phys, Meguro, Tokyo 1528551, Japan. [Asano, K.] Tokyo Inst Technol, Interact Res Ctr Sci, Meguro, Tokyo 1528551, Japan. [Atwood, W. B.; Johnson, R. P.; Porter, T. A.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Johnson, R. P.; Porter, T. A.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Ramirez-Ruiz, E.] Univ Calif Santa Cruz, Univ Calif Observ, Lick Observ, Santa Cruz, CA 95064 USA. [Axelsson, M.] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden. [Axelsson, M.; Conrad, J.; McGlynn, S.; Meurer, C.; Ryde, F.; Ylinen, T.] Royal Inst Technol KTH, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; McGlynn, S.; Meurer, C.; Ryde, F.; Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Omodei, N.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Tibaldo, L.] Univ Paris Diderot, CEA Saclay, Lab AIM,CEA IRFU,CNRS, Serv Astrophys, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.; Moretti, E.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.; Moretti, E.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Baring, M. G.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. [Bastieri, D.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bhat, P. N.; Briggs, M. S.; Burgess, J. M.; Chaplin, V.; Connaughton, V.; Guiriec, S.; Paciesas, W. S.; Preece, R.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Bissaldi, E.; Greiner, J.; McBreen, S.; Orlando, E.; von Kienlin, A.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Bonnell, J.; Celik, Oe; Cheung, C. C.; Gehrels, N.; Harding, A. K.; Hays, E.; McEnery, J. E.; Stamatikos, M.; Stecker, F. W.; Thompson, D. J.; Troja, E.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bonnell, J.; Gehrels, N.; Moiseev, A. A.; Spinelli, P.] Univ Maryland, College Pk, MD 20742 USA. [Brigida, M.; Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.] Univ & Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Giebels, B.; Sanchez, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Burnett, T. H.; Kerr, M.; Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Celik, Oe; Vasileiou, V.] Univ Maryland, Baltimore, MD 21250 USA. [Cohen-Tanugi, J.; Farnier, C.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, F-34095 Montpellier 5, France. [Cominsky, L. R.] Sonoma State Univ, Dept Phys & Astron, Rohnert Pk, CA 94928 USA. [Cutini, S.; Gasparrini, D.] ASI, Sci Data Ctr, I-00044 Frascati, Roma, Italy. [de Angelis, A.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.] Ist Nazl Fis Nucl, Sez Trieste, Grp Coll Udine, I-33100 Udine, Italy. [Dingus, B. L.; Kippen, R. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Dumora, D.; Grondin, M. -H.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] Univ Bordeaux, F-33175 Gradignan, France. [Dumora, D.; Grondin, M. -H.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] CEN Bordeaux Gradignan, CNRS, UMR 5797, IN2P3, F-33175 Gradignan, France. [Fishman, G.; Kouveliotou, C.; van der Horst, A. J.; Wilson-Hodge, C.] NASA, George C Marshall Space Flight Ctr, Space Sci Off, VP62, Huntsville, AL 35812 USA. [Foschini, L.] INAF Osservatorio Astron Brera, I-23807 Merate, Italy. [Fukazawa, Y.; Hanabata, Y.; Katagiri, H.; Mizuno, T.; Ohsugi, T.; Takahashi, H.; Uehara, T.; Yamazaki, R.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Gibby, L.] Jacobs Technol, Huntsville, AL 35806 USA. [Grupe, D.; Hoversten, E. A.; Meszaros, P.; Toma, K.; Wu, X. F.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Guillemot, L.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Hughes, R. E.; Kuehn, F.; Sander, A.; Smith, P. D.; Stamatikos, M.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Kataoka, J.] Waseda Univ, Shinjuku Ku, Tokyo 1698050, Japan. [Kawai, N.] RIKEN, Inst Phys & Chem Res, Cosm Radiat Lab, Wako, Saitama 3510198, Japan. [Knoedlseder, J.; Vilchez, N.] UPS, CNRS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Makeev, A.] George Mason Univ, Fairfax, VA 22030 USA. [McBreen, S.] Natl Univ Ireland Univ Coll Dublin, Dublin 4, Ireland. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohno, M.; Ozaki, M.; Takahashi, T.; Uchiyama, Y.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Rodriguez, A. Y.; Torres, D. F.] CSIC, IEEC, Inst Ciencies Espai, Barcelona 08193, Spain. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Torres, D. F.] ICREA, Barcelona 08193, Spain. [Wu, X. F.] Chinese Acad Sci, Joint Ctr Particle Nucl Phys & Cosmol, Nanjing 210008, Peoples R China. [Wu, X. F.] Chinese Acad Sci, Purple Mt Observ, Nanjing 210008, Peoples R China. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Granot, J (reprint author), Univ Hertfordshire, Ctr Astrophys Res, Coll Lane, Hatfield AL10 9AB, Herts, England. EM j.granot@herts.ac.uk; sylvain.guiriec@nasa.gov; ohno@astro.isas.jaxa.jp; pelassa@lpta.in2p3.fr RI Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Reimer, Olaf/A-3117-2013; Funk, Stefan/B-7629-2015; Loparco, Francesco/O-8847-2015; Gargano, Fabio/O-8934-2015; Johannesson, Gudlaugur/O-8741-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Bissaldi, Elisabetta/K-7911-2016; Wu, Xuefeng/G-5316-2015; Thompson, David/D-2939-2012; Stecker, Floyd/D-3169-2012; Harding, Alice/D-3160-2012; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Tosti, Gino/E-9976-2013; Ozaki, Masanobu/K-1165-2013; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Foschini, Luigi/H-3833-2012; Nolan, Patrick/A-5582-2009; Torres, Diego/O-9422-2016; OI Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080; Loparco, Francesco/0000-0002-1173-5673; Gargano, Fabio/0000-0002-5055-6395; Johannesson, Gudlaugur/0000-0003-1458-7036; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Bissaldi, Elisabetta/0000-0001-9935-8106; Wu, Xuefeng/0000-0002-6299-1263; Thompson, David/0000-0001-5217-9135; giglietto, nicola/0000-0002-9021-2888; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; Foschini, Luigi/0000-0001-8678-0324; Torres, Diego/0000-0002-1522-9065; Sgro', Carmelo/0000-0001-5676-6214; Giordano, Francesco/0000-0002-8651-2394; Dingus, Brenda/0000-0001-8451-7450; SPINELLI, Paolo/0000-0001-6688-8864; De Angelis, Alessandro/0000-0002-3288-2517; Caraveo, Patrizia/0000-0003-2478-8018; Preece, Robert/0000-0003-1626-7335; Burgess, James/0000-0003-3345-9515; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Moretti, Elena/0000-0001-5477-9097; Cutini, Sara/0000-0002-1271-2924; Gasparrini, Dario/0000-0002-5064-9495; Baldini, Luca/0000-0002-9785-7726 FU Royal Society Wolfson Research Merit Award; NASA United States; DRL Germany; Royal Swedish Academy of Sciences; K. A. Wallenberg Foundation; Canon Foundation in Europe FX The Fermi LAT Collaboration acknowledges support from a number of agencies and institutes for both the development and the operation of the LAT as well as scientific data analysis. These include NASA and DOE in the United States, CEA/Irfu and IN2P3/CNRS in France, ASI and INFN in Italy, MEXT, KEK, and JAXA in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the National Space Board in Sweden. Additional support from INAF in Italy for science analysis during the operations phase is also acknowledged. J. Granot gratefully acknowledges a Royal Society Wolfson Research Merit Award. The Fermi GBM Collaboration acknowledges the support of NASA in the United States and DRL in Germany. J. Conrad is a Royal Swedish Academy of Sciences Research Fellow, funded by a grant from the K. A. Wallenberg Foundation. E. T. is a NASA Postdoctoral Program Fellow and a Canon Foundation in Europe Fellow. A. J. v. d. H. is a NASA Postdoctoral Program Fellow. We thank J. Ellis for comments. NR 25 TC 267 Z9 272 U1 5 U2 41 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD NOV 19 PY 2009 VL 462 IS 7271 BP 331 EP 334 DI 10.1038/nature08574 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 521DF UT WOS:000271899300039 PM 19865083 ER PT J AU Pearson, T Giffard, P Beckstrom-Sternberg, S Auerbach, R Hornstra, H Tuanyok, A Price, EP Glass, MB Leadem, B Beckstrom-Sternberg, JS Allan, GJ Foster, JT Wagner, DM Okinaka, RT Sim, SH Pearson, O Wu, ZN Chang, J Kaul, R Hoffmaster, AR Brettin, TS Robison, RA Mayo, M Gee, JE Tan, P Currie, BJ Keim, P AF Pearson, Talima Giffard, Philip Beckstrom-Sternberg, Stephen Auerbach, Raymond Hornstra, Heidie Tuanyok, Apichai Price, Erin P. Glass, Mindy B. Leadem, Benjamin Beckstrom-Sternberg, James S. Allan, Gerard J. Foster, Jeffrey T. Wagner, David M. Okinaka, Richard T. Sim, Siew Hoon Pearson, Ofori Wu, Zaining Chang, Jean Kaul, Rajinder Hoffmaster, Alex R. Brettin, Thomas S. Robison, Richard A. Mayo, Mark Gee, Jay E. Tan, Patrick Currie, Bart J. Keim, Paul TI Phylogeographic reconstruction of a bacterial species with high levels of lateral gene transfer SO BMC BIOLOGY LA English DT Article ID SINGLE-NUCLEOTIDE POLYMORPHISMS; SEQUENCE TYPING DATA; BURKHOLDERIA-PSEUDOMALLEI; ESCHERICHIA-COLI; NEISSERIA-MENINGITIDIS; STAPHYLOCOCCUS-AUREUS; CLINICAL PRESENTATION; POPULATION-STRUCTURE; NORTHERN AUSTRALIA; BACILLUS-ANTHRACIS AB Background: Phylogeographic reconstruction of some bacterial populations is hindered by low diversity coupled with high levels of lateral gene transfer. A comparison of recombination levels and diversity at seven housekeeping genes for eleven bacterial species, most of which are commonly cited as having high levels of lateral gene transfer shows that the relative contributions of homologous recombination versus mutation for Burkholderia pseudomallei is over two times higher than for Streptococcus pneumoniae and is thus the highest value yet reported in bacteria. Despite the potential for homologous recombination to increase diversity, B. pseudomallei exhibits a relative lack of diversity at these loci. In these situations, whole genome genotyping of orthologous shared single nucleotide polymorphism loci, discovered using next generation sequencing technologies, can provide very large data sets capable of estimating core phylogenetic relationships. We compared and searched 43 whole genome sequences of B. pseudomallei and its closest relatives for single nucleotide polymorphisms in orthologous shared regions to use in phylogenetic reconstruction. Results: Bayesian phylogenetic analyses of > 14,000 single nucleotide polymorphisms yielded completely resolved trees for these 43 strains with high levels of statistical support. These results enable a better understanding of a separate analysis of population differentiation among > 1,700 B. pseudomallei isolates as defined by sequence data from seven housekeeping genes. We analyzed this larger data set for population structure and allele sharing that can be attributed to lateral gene transfer. Our results suggest that despite an almost panmictic population, we can detect two distinct populations of B. pseudomallei that conform to biogeographic patterns found in many plant and animal species. That is, separation along Wallace's Line, a biogeographic boundary between Southeast Asia and Australia. Conclusion: We describe an Australian origin for B. pseudomallei, characterized by a single introduction event into Southeast Asia during a recent glacial period, and variable levels of lateral gene transfer within populations. These patterns provide insights into mechanisms of genetic diversification in B. pseudomallei and its closest relatives, and provide a framework for integrating the traditionally separate fields of population genetics and phylogenetics for other bacterial species with high levels of lateral gene transfer. C1 [Pearson, Talima; Beckstrom-Sternberg, Stephen; Auerbach, Raymond; Hornstra, Heidie; Tuanyok, Apichai; Price, Erin P.; Leadem, Benjamin; Foster, Jeffrey T.; Wagner, David M.; Okinaka, Richard T.; Keim, Paul] No Arizona Univ, Ctr Microbial Genet & Genom, Flagstaff, AZ 86011 USA. [Giffard, Philip; Mayo, Mark; Currie, Bart J.] Queensland Univ Technol, Inst Hlth & Biomed Innovat, Kelvin Grove, Australia. [Giffard, Philip] Charles Darwin Univ, Menzies Sch Hlth Res, Darwin, NT 0909, Australia. [Beckstrom-Sternberg, Stephen; Price, Erin P.; Beckstrom-Sternberg, James S.; Keim, Paul] Translat Genom Res Inst, Pathogen Genom Div, Phoenix, AZ USA. [Glass, Mindy B.; Hoffmaster, Alex R.; Gee, Jay E.] Ctr Dis Control & Prevent, Bacterial Zoonoses Branch, Div Foodborne Bacterial & Mycot Dis, Natl Ctr Zoonot Vector Borne & Enter Dis, Atlanta, GA USA. [Allan, Gerard J.] No Arizona Univ, Dept Biol Sci, Environm Genet & Genom Facil, Flagstaff, AZ 86011 USA. [Okinaka, Richard T.] Los Alamos Natl Lab, Los Alamos, NM USA. [Sim, Siew Hoon; Tan, Patrick] Def Med & Environm Res Inst, Singapore, Singapore. [Pearson, Ofori] US Geol Survey, Denver Fed Ctr, Denver, CO 80225 USA. [Wu, Zaining; Chang, Jean; Kaul, Rajinder] Univ Washington, Genome Ctr, Seattle, WA 98195 USA. [Wu, Zaining; Chang, Jean; Kaul, Rajinder] Univ Washington, Div Med Genet, Dept Med, Seattle, WA 98195 USA. [Brettin, Thomas S.] Los Alamos Natl Lab, DOE, Joint Genome Inst, Biosci Div, Los Alamos, NM USA. [Robison, Richard A.] Brigham Young Univ, Dept Mol Biol & Microbiol, Provo, UT 84602 USA. [Tan, Patrick] Genome Inst Singapore, Singapore, Singapore. [Currie, Bart J.] Royal Darwin Hosp, No Terr Clin Sch, Darwin, NT, Australia. [Auerbach, Raymond] Yale Univ, Program Computat Biol & Bioinformat, New Haven, CT USA. RP Keim, P (reprint author), No Arizona Univ, Ctr Microbial Genet & Genom, Flagstaff, AZ 86011 USA. EM Talima.Pearson@NAU.edu; Phil.Giffard@menzies.edu.au; sbeckstrom@tgen.org; Raymond.Auerbach@yale.edu; Heidie.Hornstra-ONeill@nau.edu; apichai.tuanyok@nau.edu; Erin.price@nau.edu; wzg0@cdc.gov; bleadem1@jhu.edu; jbeckstrom@tgen.org; Gery.allan@nau.edu; jeff.foster@nau.edu; dave.wagner@nau.edu; Richard.Okinaka@nau.edu; ssiewhoo@dso.org.sg; opearson@usgs.gov; znwu@u.washington.edu; mspiggy1@u.washington.edu; rkkaul@u.washington.edu; amh9@cdc.gov; brettin@lanl.gov; richard_robison@byu.edu; Mark.mayo@menzies.edu.au; xzg4@cdc.gov; gmstanp@nus.edu.sg; bart@menzies.edu.au; paul.keim@nau.edu RI Wagner, David/A-5125-2010; Keim, Paul/A-2269-2010; Giffard, Philip/N-2293-2013; Price, Erin/N-2336-2013; OI Price, Erin/0000-0002-1079-4882; Robison, Richard/0000-0002-4324-5169; Foster, Jeffrey/0000-0001-8235-8564 FU U.S. Department of Homeland Security S&T CB Division Bioforensics R&D Program, NIH-NIAID [U54AI-56359, U01AI-075568]; Australian National Health and Medical Research Council [383504] FX We would like to thank Richard Lenski for helpful comments on a previous version of this manuscript. This work was supported by the U.S. Department of Homeland Security S&T CB Division Bioforensics R&D Program, NIH-NIAID grants U54AI-56359 and U01AI-075568, and Project Grant (no. 383504) from the Australian National Health and Medical Research Council. Use of products/names does not constitute endorsement by DHS of USG. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 79 TC 67 Z9 68 U1 2 U2 16 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1741-7007 J9 BMC BIOL JI BMC Biol. PD NOV 18 PY 2009 VL 7 AR 78 DI 10.1186/1741-7007-7-78 PG 14 WC Biology SC Life Sciences & Biomedicine - Other Topics GA 526ZW UT WOS:000272336500001 PM 19922616 ER PT J AU Pan, D Zhu, QW Luo, KX AF Pan, Deng Zhu, Qingwei Luo, Kunxin TI SnoN functions as a tumour suppressor by inducing premature senescence SO EMBO JOURNAL LA English DT Article DE p53; PML (promyelocytic leukaemia); senescence; SnoN; tumour suppressor ID GROWTH-FACTOR-BETA; ONCOGENE-INDUCED SENESCENCE; ANAPHASE-PROMOTING COMPLEX; LEUKEMIA NUCLEAR-BODIES; TGF-BETA; CELLULAR SENESCENCE; PROGNOSTIC MARKER; MURINE HOMOLOG; CDNA-CLONES; P53 AB SnoN represses TGF-beta signalling to promote cell proliferation and has been defined as a proto-oncogene partly due to its elevated expression in many human cancer cells. Although the anti-tumourigenic activity of SnoN has been suggested, the molecular basis for this has not been defined. We showed here that high levels of SnoN exert anti-oncogenic activity by inducing senescence. SnoN interacts with the promyelocytic leukaemia (PML) protein and is recruited to the PML nuclear bodies where it stabilizes p53, leading to premature senescence. Furthermore, overexpression of SnoN inhibits oncogenic transformation induced by Ras and Myc in vitro and significantly blocks papilloma development in vivo in a carcinogen-induced skin tumourigenesis model. The few papillomas that were developed displayed high levels of senescence and spontaneously regressed. Our study has revealed a novel Smad-independent pathway of SnoN function that mediates its anti-oncogenic activity. The EMBO Journal (2009) 28, 3500-3513. doi:10.1038/emboj.2009.250; Published online 10 September 2009 C1 [Pan, Deng; Zhu, Qingwei; Luo, Kunxin] Univ Calif Berkeley, Dept Mol Cell Biol, Berkeley, CA 94720 USA. [Luo, Kunxin] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Luo, KX (reprint author), Univ Calif Berkeley, Dept Mol Cell Biol, 16 Barker Hall,MC3204, Berkeley, CA 94720 USA. EM kluo@berkeley.edu RI Pan, Deng/F-8418-2012 FU NIH [RO1 CA101891]; Philip Morris External Research Program [019016]; DOE BCRP FX We thank Drs Ellen Solomon and Kun-Sang Chang for PML cDNA, Hitoshi Nishimura and Dragana Cado for generating the knock-in mice, and William Skarnes for advice. We are grateful to Dr Rosemary Akhurst and Marie Lee for assistance on carcinogen-induced skin tumourigenesis. We also thank Dr Judy Campisi for discussions. This study is supported funds from NIH RO1 CA101891, Philip Morris External Research Program grant 019016 to KL, and DOE BCRP pre-doctoral fellowship to DP. NR 70 TC 22 Z9 22 U1 0 U2 5 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 0261-4189 J9 EMBO J JI Embo J. PD NOV 18 PY 2009 VL 28 IS 22 BP 3500 EP 3513 DI 10.1038/emboj.2009.250 PG 14 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 521AR UT WOS:000271891700005 PM 19745809 ER PT J AU Van Essendelft, DT Schobert, HH AF Van Essendelft, Dirk T. Schobert, Harold H. TI Kinetics of the Acid Digestion of Serpentine with Concurrent Grinding. 2. Detailed Investigation and Model Development SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID CO2 MINERAL SEQUESTRATION; SULFURIC-ACID; KAOLINITE; DISSOLUTION; ADSORPTION; EXTRACTION; MOLECULES; OXIDE; DYES AB The rapid extraction of magnesium from serpentine is critical to novel low-pressure mineral carbonation methodology. Though almost any acid can dissolve the magnesium, the rate plays a critical role in the industrialization of the process. It has been demonstrated that including a low-energy, attrition-type grinding with the chemical attack of the acid can more than double the extraction rate. In part I of this investigation, it was found that a model that accounts for surface reaction, Surface speciation, the electrical double layer, particle size distribution, and ash layer diffusion can adequately describe the kinetics of the dissolution of serpentine with concurrent grinding. However, the model did not account for changes in temperature, concentration, and grinding energy input. We report here the model developments and changes as well as a detailed experimental investigation to provide validation for the model. C1 [Van Essendelft, Dirk T.; Schobert, Harold H.] Penn State Univ, Energy Inst, University Pk, PA 16802 USA. RP Van Essendelft, DT (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd,POB 880, Morgantown, WV 26507 USA. EM dirk.vanessendelft@netl.doe.gov NR 25 TC 6 Z9 6 U1 2 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD NOV 18 PY 2009 VL 48 IS 22 BP 9892 EP 9901 DI 10.1021/ie9005832 PG 10 WC Engineering, Chemical SC Engineering GA 516TU UT WOS:000271566700016 ER PT J AU Russell, RL Billing, JM Smith, HD Peterson, RA AF Russell, R. L. Billing, J. M. Smith, H. D. Peterson, R. A. TI Validation of Ultrafilter Performance Model Based on Systematic Simulant Evaluation SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID FLOW MEMBRANE FILTRATION; CONCENTRATION POLARIZATION; LAYER AB Because of limited availability of test data with actual Hanford tank-waste samples, a method was developed to estimate expected filtration performance based on physical characterization data for the Hanford Tank Waste Treatment and Immobilization Plant. This method relies upon the similarity between the gel concentration measured during crossflow filtration and the slurry concentration measured after a sample is centrifuged. Testing was performed to determine the centrifuged-solids concentration, and then a subset of simulants was tested to determine the gel concentration during crossflow filtration. These two approaches produced identical results, indicating the centrifuged-solids concentration call be used to represent the gel concentration for filtration. This substitution will allow the expected filtration performance to be characterized at a significantly reduced cost. C1 [Russell, R. L.; Billing, J. M.; Smith, H. D.; Peterson, R. A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Russell, RL (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM renee.russell@pnl.gov OI Peterson, Reid/0000-0003-3368-1896 FU U.S. Department of Energy [DE-AC05-76RL01830] FX Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle under Contract DE-AC05-76RL01830. This work was funded by the U.S. Department of Energy through the Office of Environmental Management and under the guidance of Bechtel National, Inc. NR 14 TC 3 Z9 3 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD NOV 18 PY 2009 VL 48 IS 22 BP 10077 EP 10086 DI 10.1021/ie901042w PG 10 WC Engineering, Chemical SC Engineering GA 516TU UT WOS:000271566700037 ER PT J AU Grest, GS Oshanin, G Webb, EB AF Grest, Gary S. Oshanin, Gleb Webb, Edmund B., III TI Dynamics of wetting PREFACE SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Editorial Material C1 [Grest, Gary S.] Sandia Natl Labs, Surface & Interface Sci, Livermore, CA 94550 USA. [Oshanin, Gleb] Univ Paris 06, Theoret Condensed Matter Lab, F-75252 Paris 05, France. [Oshanin, Gleb] Independent Univ Moscow, JV Poncelet Lab, Moscow, Russia. RP Grest, GS (reprint author), Sandia Natl Labs, Surface & Interface Sci, Livermore, CA 94550 USA. NR 9 TC 0 Z9 0 U1 0 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD NOV 18 PY 2009 VL 21 IS 46 AR 460302 DI 10.1088/0953-8984/21/46/460302 PG 2 WC Physics, Condensed Matter SC Physics GA 512RR UT WOS:000271268400002 ER PT J AU Sun, Y Webb, EB AF Sun, Y. Webb, E. B., III TI The atomistic mechanism of high temperature contact line advancement: results from molecular dynamics simulations SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID EMBEDDED-ATOM-METHOD; SURFACE-DIFFUSION; SOLID-SURFACE; PB; KINETICS; METALS; FILMS; AG; CU; SYSTEM AB Atomic scale phenomena driving contact line advancement during the wetting of a solid by a liquid are investigated via molecular dynamics simulations of Ag(1) drops spreading on Ni substrates. For the homologous temperature similar to 5% above melting for Ag, essentially non-reactive wetting is observed with relatively high spreading velocity. Analyzing atomic positions with time, including computing flow fields, permits investigation of atomic scale transport mechanisms associated with advancement of the contact line. Delivery of material to the contact line occurs preferentially along the liquid/vapor interface. Ag(1) atoms transported along the liquid/vapor interface become new droplet edge material, effectively displacing existing edge material. Evidence is also shown of a prominent transport and flow mechanism more typically associated with the molecular kinetic theory of spreading: some portion of Ag(1) atoms move along the solid/liquid interface to eventually occupy the contact line region. Selected atomic trajectories are shown to illustrate atoms moving with the contact line, detaching and re-attaching at sites along the solid/liquid interface. However, this latter solid/liquid interface transport mechanism contributed a lower percentage of new material to the advancing contact line compared to the liquid/vapor interface transport mechanism. Features of the AgNi system that may contribute to the dominance of a liquid/vapor interface transport mechanism are highlighted, including a relatively low liquid/vapor surface tension. C1 [Sun, Y.] Drexel Univ, Philadelphia, PA 19104 USA. [Webb, E. B., III] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Sun, Y (reprint author), Drexel Univ, Philadelphia, PA 19104 USA. EM ysun@coe.drexel.edu; ebwebb@sandia.gov FU National Science Foundation [DMR-0606408] FX This work was supported in part by the National Science Foundation under Grant No. DMR-0606408. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 42 TC 6 Z9 6 U1 0 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD NOV 18 PY 2009 VL 21 IS 46 AR 464135 DI 10.1088/0953-8984/21/46/464135 PG 13 WC Physics, Condensed Matter SC Physics GA 512RR UT WOS:000271268400039 ER PT J AU Wang, XB Wang, YL Yang, J Xing, XP Li, J Wang, LS AF Wang, Xue-Bin Wang, Yi-Lei Yang, Jie Xing, Xiao-Peng Li, Jun Wang, Lai-Sheng TI Evidence of Significant Covalent Bonding in Au(CN)(2)(-) SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID PHOTOELECTRON-SPECTROSCOPY; ELECTROSPRAY-IONIZATION; ELECTRONIC-STRUCTURE; GOLD; COMPLEXES; SPECTRA; CHEMISTRY; KAU(CN)2; ELEMENTS; AUCN AB The Au(CN)(2)(-) ion is the most stable Au compound known for centuries, yet a detailed understanding of its chemical bonding is stilt lacking. Here we report direct experimental evidence of significant covalent bonding character in the Au-bonds in Au(CN)(2)(-) using photoelectron spectroscopy and comparisons with its lighter congeners, Ag(CN)(2)(-) and Cu(CN)(2)(-). Vibrational progressions in the Au-C stretching mode were observed for all detachment transitions for Au(CN)(2)(-), in contrast to the atomic-like transitions for Cu(CN)(2)(-), revealing the Au-C covalent bonding character. In addition, rich electronic structural information was obtained for Au(CN)(2)(-) by employing 118 nm detachment photons. Density functional theory and high-level ab initio calculations were carried out to understand the photoetectron spectra and obtain insight into the nature of the chemical bonding in the M(CN)(2)(-) complexes. Significant covalent character in the Au-C bonding due to the strong relativistic effects was revealed in Au(CN)(2)(-), consistent with its high stability. C1 [Wang, Yi-Lei; Li, Jun] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China. [Wang, Xue-Bin; Yang, Jie; Xing, Xiao-Peng] Washington State Univ, Dept Phys, Richland, WA 99354 USA. [Wang, Xue-Bin; Yang, Jie; Xing, Xiao-Peng] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. [Wang, Yi-Lei; Li, Jun] Tsinghua Univ, Key Lab Organ Optoelect & Mol Engn, Minist Educ, Beijing 100084, Peoples R China. [Wang, Lai-Sheng] Brown Univ, Dept Chem, Providence, RI 02912 USA. RP Li, J (reprint author), Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China. EM junli@tsinghua.edu.cn; lai-sheng_wang@brown.edu RI Li, Jun/E-5334-2011 OI Li, Jun/0000-0002-8456-3980 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences; National Science Foundation [CRE-0749496]; DOE's Office of Biological and Environmental Research; NKBRSF [2006CB932305, 2007CB815200]; NSFC in China [20525104, 20933003] FX The experimental work carried out in Richland was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, and by the National Science Foundation (CRE-0749496) and performed at the W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, which is operated for DOE by Battelle. The theoretical work was supported by NKBRSF (2006CB932305, 2007CB815200) and NSFC (20525104, 20933003) in China. ne calculations were per-formed using an HP Itanium2 cluster at Tsinghua National Laboratory for Information Science and Technology and at Shanghai Supercomputing Center. NR 26 TC 89 Z9 89 U1 3 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 18 PY 2009 VL 131 IS 45 BP 16368 EP + DI 10.1021/ja908106e PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA 518VK UT WOS:000271723000019 PM 19860420 ER PT J AU Lee, B Podsiadlo, P Rupich, S Talapin, DV Rajh, T Shevchenko, EV AF Lee, Byeongdu Podsiadlo, Paul Rupich, Sara Talapin, Dmitri V. Rajh, Tijana Shevchenko, Elena V. TI Comparison of Structural Behavior of Nanocrystals in Randomly Packed Films and Long-Range Ordered Superlattices by Time-Resolved Small Angle X-ray Scattering SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID MONODISPERSE FEPT NANOPARTICLES; PBS NANOCRYSTALS; GOLD NANOPARTICLES; LIGAND SHELL; IN-SITU; CRYSTAL; TRANSITION; MICROSCOPY; MONOLAYERS; DISORDER AB We evaluated the difference between randomly packed NCs (disordered films), periodic films, and three-dimensional crystals in terms of their lattice structure and interparticle spacing using time-resolved small-angle X-ray scattering (SAXS) technique. The work was performed on nanocrystal solids formed by 7 nm PbS nanocrystals capped with oleic acid. We have found that interparticle spacing in faceted three-dimensional crystals is similar to 25% smaller as compared with three-dimensional films formed by solvent evaporation. We showed that interparticle spacing in faceted three-dimensional crystals is significantly smaller than the length of a fully extended molecule of oleic acid, and hence, full interdigitation of molecules from neighboring particle is doubtful. Also we demonstrated that postpreparative mild thermal treatment allows further manipulation of interparticle spacing. C1 [Podsiadlo, Paul; Talapin, Dmitri V.; Rajh, Tijana; Shevchenko, Elena V.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Lee, Byeongdu] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Rupich, Sara; Talapin, Dmitri V.] Univ Chicago, Chicago, IL 60637 USA. RP Shevchenko, EV (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM eshevchenko@anl.gov OI Lee, Byeongdu/0000-0003-2514-8805 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; University of Chicago; NSF MRSEC Program [DMR-0213745] FX The work is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. D.V.T. acknowledges financial support from the University of Chicago and NSF MRSEC Program under Award Number DMR-0213745. NR 35 TC 35 Z9 35 U1 1 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 18 PY 2009 VL 131 IS 45 BP 16386 EP + DI 10.1021/ja906632b PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA 518VK UT WOS:000271723000025 PM 19863066 ER PT J AU Hiraoka, Y Dernburg, AF AF Hiraoka, Yasushi Dernburg, Abby F. TI The SUN Rises on Meiotic Chromosome Dynamics SO DEVELOPMENTAL CELL LA English DT Review ID SPINDLE POLE BODY; NUCLEAR-MEMBRANE PROTEIN; FISSION YEAST; BUDDING YEAST; C-ELEGANS; BOUQUET FORMATION; SACCHAROMYCES-CEREVISIAE; CAENORHABDITIS-ELEGANS; ANCHOR TELOMERES; DOMAIN PROTEINS AB Recent studies in diverse eukaryotes have implicated a family of nuclear envelope proteins containing SUN domains as key components of meiotic nuclear organization and chromosome dynamics. In many cases, these transmembrane proteins are also known to contribute to centrosome or spindle pole body function in mitotically dividing cells. During meiotic prophase, the apparent role of these SUN-domain proteins, together with their partner KASH-domain proteins, is to connect chromosomes through the intact nuclear envelope to force-generating mechanisms in the cytoplasm. C1 [Hiraoka, Yasushi] Osaka Univ, Grad Sch Frontier Biosci, Suita, Osaka 5650871, Japan. [Hiraoka, Yasushi] Natl Inst Informat & Commun Technol, Kobe Adv ICT Res Ctr, Nishi Ku, Kobe, Hyogo 6512492, Japan. [Dernburg, Abby F.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Dernburg, Abby F.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Dernburg, Abby F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Hiraoka, Y (reprint author), Osaka Univ, Grad Sch Frontier Biosci, 1-3 Yamadaoka, Suita, Osaka 5650871, Japan. EM hiraoka@fbs.osaka-u.ac.jp; afdernburg@lbl.gov RI Hiraoka, Yasushi/B-5111-2009; OI Hiraoka, Yasushi/0000-0001-9407-8228; Dernburg, Abby/0000-0001-8037-1079 FU Howard Hughes Medical Institute NR 71 TC 120 Z9 120 U1 1 U2 5 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 1534-5807 J9 DEV CELL JI Dev. Cell PD NOV 17 PY 2009 VL 17 IS 5 BP 598 EP 605 DI 10.1016/j.devcel.2009.10.014 PG 8 WC Cell Biology; Developmental Biology SC Cell Biology; Developmental Biology GA 523US UT WOS:000272100700005 PM 19922865 ER PT J AU del Campo, V Cisternas, E Taub, H Vergara, I Corrales, T Soza, P Volkmann, UG Bai, MJ Wang, SK Hansen, FY Mo, HD Ehrlich, SN AF del Campo, Valeria Cisternas, Edgardo Taub, Haskell Vergara, Ignacio Corrales, Tomas Soza, Pamela Volkmann, Ulrich G. Bai, Mengjun Wang, Siao-Kwan Hansen, Flemming Y. Mo, Haiding Ehrlich, Steven N. TI Structure and Growth of Vapor-Deposited n-Dotriacontane Films Studied by X-ray Reflectivity SO LANGMUIR LA English DT Article ID ALKANE FILMS; SIO2 SURFACE; MONOLAYERS; GRAPHITE AB We have used synchrotron X-ray reflectivity measurements to investigate the structure n-dotriacontane (n-C32H66 or C32) films deposited from the vapor phase onto it SiO2-coated Si(100) surface. Our primary motivation was to determine whether the structure and growth mode of these films differ from those deposited from solution on the same substrate. The vapor-deposited films had it thickness of similar to 50 angstrom thick as monitored to red in situ by high-resolution ellipsometry and were stable in air. Similar to the case of solution-deposited C32 films, we find that film growth ill vacuum begins with a nearly complete bilayer adjacent to file SiO2 surface formed by C32 molecules aligned with their long axis parallel to the interface followed by one or more partial layers of perpendicular molecules. These molecular layers coexist with bulk particles at higher coverages. Furthermore, after thermally cycling our vapor-deposited samples at atmospheric pressure above the bulk C32 melting point, we find the structure odour Films as a function of temperature to be consistent with it phase diagram inferred previously for similarly treated solution-deposited films. Our results resolve Some Of the discrepancies that Basu and Satija (Basu, S.: Satija, S. K. Langmuir 2007, 23, 8331) found between the structure of vapor-deposited and solution-deposited films of intermediate-length alkanes at room temperature. C1 [Taub, Haskell; Bai, Mengjun; Wang, Siao-Kwan] Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA. [Taub, Haskell; Bai, Mengjun; Wang, Siao-Kwan] Univ Missouri, Univ Missouri Res Reactor, Columbia, MO 65211 USA. [del Campo, Valeria; Cisternas, Edgardo; Vergara, Ignacio; Corrales, Tomas; Soza, Pamela; Volkmann, Ulrich G.] Pontificia Univ Catolica Chile, Fac Fis, Santiago 22, Chile. [Hansen, Flemming Y.] Tech Univ Denmark, Dept Chem, DK-2800 Lyngby, Denmark. [Mo, Haiding] Adv Optowave Corp, Holbrook, NY 11741 USA. [Ehrlich, Steven N.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Taub, H (reprint author), Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA. RI Corrales, Tomas/I-1969-2013; Volkmann, Ulrich/H-1802-2014; Corrales, Tomas/F-1717-2016 FU Chilean government [1060628]; CONICYT scholarships [7080105]; U.S. National Science Foundation [DMR-0705974] FX This work was supported by the Chilean government through FONDECYT Grant Nos. 1060628 and 7080105 by CONICYT scholarships (VA.C., E.C., and P.S.), and by the U.S. National Science Foundation under Grant No. DMR-0705974. NR 15 TC 11 Z9 11 U1 0 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD NOV 17 PY 2009 VL 25 IS 22 BP 12962 EP 12967 DI 10.1021/la901808t PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 516DV UT WOS:000271522800020 PM 19583228 ER PT J AU Christine, CW Starr, A Larson, PS Eberling, JL Jagust, WJ Hawkins, RA VanBrocklin, HF Wright, JF Bankiewicz, KS Aminoff, MJ AF Christine, C. W. Starr, P. A. Larson, P. S. Eberling, J. L. Jagust, W. J. Hawkins, R. A. VanBrocklin, H. F. Wright, J. F. Bankiewicz, K. S. Aminoff, M. J. TI Safety and tolerability of putaminal AADC gene therapy for Parkinson disease SO NEUROLOGY LA English DT Article ID PHASE-I TRIAL; ADENOASSOCIATED VIRUS; MOTOR FLUCTUATIONS; OPEN-LABEL; AAV-HAADC; DELIVERY; INFUSION; PRIMATES; MONKEYS; VECTOR AB Background: In Parkinson disease (PD), the benefit of levodopa therapy becomes less marked over time, perhaps because degeneration of nigrostrial neurons causes progressive loss of aromatic L-amino acid decarboxylase (AADC), the enzyme that converts levodopa into dopamine. In a primate model of PD, intrastriatal infusion of an adeno-associated viral type 2 vector containing the human AADC gene (AAV-hAADC) results in robust response to low-dose levodopa without the side effects associated with higher doses. These data prompted a clinical trial. Methods: Patients with moderately advanced PD received bilateral intraputaminal infusion of AAV-hAADC vector. Low-dose and high-dose cohorts (5 patients in each) were studied using standardized clinical rating scales at baseline and 6 months. PET scans using the AADC tracer [18F] fluoro-L-m-tyrosine (FMT) were performed as a measure of gene expression. Results: The gene therapy was well tolerated, but 1 symptomatic and 2 asymptomatic intracranial hemorrhages followed the operative procedure. Total and motor rating scales improved in both cohorts. Motor diaries also showed increased on-time and reduced off-time without increased "on" time dyskinesia. At 6 months, FMT PET showed a 30% increase of putaminal uptake in the low-dose cohort and a 75% increase in the high-dose cohort. Conclusion: This study provides class IV evidence that bilateral intrastriatal infusion of adeno-associated viral type 2 vector containing the human AADC gene improves mean scores on the Unified Parkinson's Disease Rating Scale by approximately 30% in the on and off states, but the surgical procedure may be associated with an increased risk of intracranial hemorrhage and self-limited headache. Neurology (R) 2009; 73: 1662-1669 C1 [Christine, C. W.; Bankiewicz, K. S.; Aminoff, M. J.] Univ Calif San Francisco, Dept Neurol, San Francisco, CA 94143 USA. [Starr, P. A.; Larson, P. S.; Bankiewicz, K. S.] Univ Calif San Francisco, Dept Neurol Surg, San Francisco, CA 94143 USA. [Hawkins, R. A.; VanBrocklin, H. F.] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, San Francisco, CA 94143 USA. [Eberling, J. L.] Michael J Fox Fdn Parkinsons Res, New York, NY USA. [Jagust, W. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Mol Imaging & Neurosci, Berkeley, CA 94720 USA. [Jagust, W. J.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. [Wright, J. F.] Univ Penn, Sch Med, Philadelphia, PA 19104 USA. RP Aminoff, MJ (reprint author), Univ Calif San Francisco, Dept Neurol, 505 Parnassus Ave,Room 795-M, San Francisco, CA 94143 USA. EM aminoffm@neurology.ucsf.edu FU NIH [NINDS 5U10NS044460, RO1NS046487, AG027859, AG027984, AG 024904, AG030241, R01 CA119414, R01 CA135626, R01 CA135358, S10 RR023051, R01 CA94253-01, R01 EB000482-01, U54 CA90788, U10 NS044460, R01 NS37167]; Avigen, Inc.; Genzyme Corporation; Dystonia Medical Research Foundation FX Aminoff served as Editor-in-Chief of Muscle & Nerve (1998-2007); receives royalties from publishing Neurology & General Medicine (Elsevier, 2008), Electrodiagnosis in Clinical Neurology (Elsevier, 2005), Clincal Neurology (McGraw-Hill, 2009), chapters in Cecil Textbook of Medicine (W. B. Saunders; 2004 and 2008), Harrison's Principles of Internal Medicine (McGraw-Hill, 1994-2008), Handbook of Clinical Neurology (Elsevier; 2003-2009), and Current Medical Diagnosis & Treatment (McGraw-Hill, 1985-2009); has received honoraria for lectures or educational activities not funded by industry; serves as Editor-in-chief, Neurology section, Up-to-Date, for which he receives royalties; and receives research support from Genzyme Corporation, the NIH [NINDS 5 U10 NS044460 (Site PI) and R01 NS37167 (Site PI)] and the University of Rochester. NR 20 TC 162 Z9 167 U1 4 U2 9 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0028-3878 J9 NEUROLOGY JI Neurology PD NOV 17 PY 2009 VL 73 IS 20 BP 1662 EP 1669 DI 10.1212/WNL.0b013e3181c29356 PG 8 WC Clinical Neurology SC Neurosciences & Neurology GA 520FD UT WOS:000271824800010 PM 19828868 ER PT J AU Dobrzhinetskaya, LF Wirth, R Yang, JS Hutcheon, ID Weber, PK Green, HW AF Dobrzhinetskaya, Larissa F. Wirth, Richard Yang, Jingsui Hutcheon, Ian D. Weber, Peter K. Green, Harry W., II TI High-pressure highly reduced nitrides and oxides from chromitite of a Tibetan ophiolite SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE boron nitride; coesite after stishovite; Luobasa chromitite; TiO(2) II; titanium nitride-osbornite ID CARBON ISOTOPIC COMPOSITION; LUOBUSA OPHIOLITE; PERIDOTITE MASSIF; 300 KILOMETERS; UPPER-MANTLE; SUTURE ZONE; NITROGEN; STISHOVITE; COESITE; GARNET AB The deepest rocks known from within Earth are fragments of normal mantle (approximate to 400 km) and metamorphosed sediments (approximate to 350 km), both found exhumed in continental collision terranes. Here, we report fragments of a highly reduced deep mantle environment from at least 300 km, perhaps very much more, extracted from chromite of a Tibetan ophiolite. The sample consists, in part, of diamond, coesite-after-stishovite, the high-pressure form of TiO(2), native iron, high-pressure nitrides with a deep mantle isotopic signature, and associated SiC. This appears to be a natural example of the recently discovered disproportionation of Fe2(+) at very high pressure and consequent low oxygen fugacity (fO(2)) in deep Earth. Encapsulation within chromitite enclosed within upwelling solid mantle rock appears to be the only vehicle capable of transporting these phases and preserving their low-fO(2) environment at the very high temperatures of oceanic spreading centers. C1 [Dobrzhinetskaya, Larissa F.; Green, Harry W., II] Univ Calif Riverside, Inst Geophys & Planetary Phys, Riverside, CA 92521 USA. [Dobrzhinetskaya, Larissa F.; Green, Harry W., II] Univ Calif Riverside, Dept Earth Sci, Riverside, CA 92521 USA. [Wirth, Richard] Geoforschungszentrum Potsdam, D-14473 Potsdam, Germany. [Yang, Jingsui] Inst Geol, Key Lab Continental Dynam, Beijing 100037, Peoples R China. [Hutcheon, Ian D.; Weber, Peter K.] Lawrence Livermore Natl Lab, Glenn T Seaborg Inst, Livermore, CA 94551 USA. RP Dobrzhinetskaya, LF (reprint author), Univ Calif Riverside, Inst Geophys & Planetary Phys, Riverside, CA 92521 USA. EM larissa@ucr.edu FU Chinese National Science Foundation; University of California Lab Fees Research Program [09LR-05-116946DOBL] FX We thank W. Heinrich (GeoForschungsZentrum Potsdam), A. Navrotsky (University of California, Davis), and A. El Goresy (Bayreuth Geoinstitute, Bayreuth, Germany) for discussions of nitrogen significance for Earth's deep interior; L. Nittler for assistance with image processing; and two anonymous reviewers for their fruitful comments on the manuscript. This work was supported by the Chinese National Science Foundation (to J.Y.) and a GeoForschungsZentrum travel grant (to L. F. D.) L. F. D.'s research was partly supported by University of California Lab Fees Research Program Grant 09LR-05-116946DOBL. NR 39 TC 52 Z9 55 U1 3 U2 24 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 17 PY 2009 VL 106 IS 46 BP 19233 EP 19238 DI 10.1073/pnas.0905514106 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 521GC UT WOS:000271907400005 PM 19880742 ER PT J AU Gelinas, AD Paschini, M Reyes, FE Heroux, A Batey, RT Lundblad, V Wuttke, DS AF Gelinas, Amy D. Paschini, Margherita Reyes, Francis E. Heroux, Annie Batey, Robert T. Lundblad, Victoria Wuttke, Deborah S. TI Telomere capping proteins are structurally related to RPA with an additional telomere-specific domain SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE end capping; Stn1; Ten1; Cdc13; t-RPA ID SINGLE-STRANDED-DNA; CRYSTAL-STRUCTURE; END-PROTECTION; MAMMALIAN TELOMERES; RAD9 CHECKPOINT; BINDING; CDC13; RECOGNITION; COMPLEX; MUTANTS AB Telomeres must be capped to preserve chromosomal stability. The conserved Stn1 and Ten1 proteins are required for proper capping of the telomere, although the mechanistic details of how they contribute to telomere maintenance are unclear. Here, we report the crystal structures of the C-terminal domain of the Saccharomyces cerevisiae Stn1 and the Schizosaccharomyces pombe Ten1 proteins. These structures reveal striking similarities to corresponding subunits in the replication protein A complex, further supporting an evolutionary link between telomere maintenance proteins and DNA repair complexes. Our structural and in vivo data of Stn1 identify a new domain that has evolved to support a telomere-specific role in chromosome maintenance. These findings endorse a model of an evolutionarily conserved mechanism of DNA maintenance that has developed as a result of increased chromosomal structural complexity. C1 [Gelinas, Amy D.; Reyes, Francis E.; Batey, Robert T.; Wuttke, Deborah S.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Paschini, Margherita; Lundblad, Victoria] Salk Inst Biol Studies, Mol & Cell Biol Lab, La Jolla, CA 92037 USA. [Paschini, Margherita] Univ Calif San Diego, Div Biol Sci, La Jolla, CA USA. [Heroux, Annie] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Wuttke, DS (reprint author), Univ Colorado, Dept Chem & Biochem, UCB 215, Boulder, CO 80309 USA. EM deborah.wuttke@colorado.edu RI Batey, Robert/A-8265-2009 OI Batey, Robert/0000-0002-1384-6625 FU National Science Foundation [0617956]; University of Colorado Cancer Center Pilot Award; National Institutes of Health (NIH) [GM083953]; Mathers Charitable Foundation; NIH Training Appointment [T32 GM-008732] FX We thank Dr. David McKay for assistance with crystallography, Dr. PeterBaumannfor providing a S. pombecDNAlibrary, and Sarah Altschuler for valuable comments on the manuscript. This work was supported by the National Science Foundation Grant 0617956 (to D. S. W.), University of Colorado Cancer Center Pilot Award (to D. S. W.), National Institutes of Health (NIH) Grant GM083953 (to R. T. B.), the G. Harold and Leila Y. Mathers Charitable Foundation (to V. L.), and NIH Training Appointment T32 GM-008732 (to A. D. G.). NR 36 TC 41 Z9 41 U1 0 U2 4 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 17 PY 2009 VL 106 IS 46 BP 19298 EP 19303 DI 10.1073/pnas.0909203106 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 521GC UT WOS:000271907400016 PM 19884503 ER PT J AU Uchida, M McDermott, G Wetzler, M Le Gros, MA Myllys, M Knoechel, C Barron, AE Larabell, CA AF Uchida, Maho McDermott, Gerry Wetzler, Modi Le Gros, Mark A. Myllys, Markko Knoechel, Christian Barron, Annelise E. Larabell, Carolyn A. TI Soft X-ray tomography of phenotypic switching and the cellular response to antifungal peptoids in Candida albicans SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article ID ANTIMICROBIAL PEPTIDES; DRUG DISCOVERY; SACCHAROMYCES-CEREVISIAE; SPATIAL-RESOLUTION; FUNGAL-INFECTIONS; CELLS; EPIDEMIOLOGY; MICROSCOPY; RESISTANCE; NUCLEOLUS AB The opportunistic pathogen Candida albicans can undergo phenotypic switching between a benign, unicellular phenotype and an invasive, multicellular form that causes candidiasis. Increasingly, strains of Candida are becoming resistant to antifungal drugs, making the treatment of candidiasis difficult, especially in immunocompromised or critically ill patients. Consequently, there is a pressing need to develop new drugs that circumvent fungal drug-resistance mechanisms. In this work we used soft X-ray tomography to image the subcellular changes that occur as a consequence of both phenotypic switching and of treating C. albicans with antifungal peptoids, a class of candidate therapeutics unaffected by drug resistance mechanisms. Peptoid treatment suppressed formation of the pathogenic hyphal phenotype and resulted in striking changes in cell and organelle morphology, most dramatically in the nucleus and nucleolus, and in the number, size, and location of lipidic bodies. In particular, peptoid treatment was seen to cause the inclusion of lipidic bodies into the nucleus. C1 [Uchida, Maho; McDermott, Gerry; Myllys, Markko; Knoechel, Christian; Larabell, Carolyn A.] Univ Calif San Francisco, Sch Med, Dept Anat, San Francisco, CA 94143 USA. [Wetzler, Modi; Barron, Annelise E.] Stanford Univ, Dept Bioengn, Palo Alto, CA 94304 USA. [Le Gros, Mark A.; Larabell, Carolyn A.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA USA. [Myllys, Markko] Univ Jyvaskyla, Dept Phys, SF-40351 Jyvaskyla, Finland. RP Larabell, CA (reprint author), Univ Calif San Francisco, Sch Med, Dept Anat, San Francisco, CA 94143 USA. EM carolyn.larabell@ucsf.edu RI Uchida, Maho/E-1637-2011; Barron, Annelise/B-7639-2009 FU Department of Energy Office of Biological and Environmental Research [DE-AC02-05CH11231]; National Institutes of Health (NIH) National Institute for Allergy and Infectious Diseases [GM072666]; NIH National Center for Research Resources [RR019664] FX We thank Zeny Serrano for her skillful assistance with cell culture and peptoid treatment; Drs. Weiwei Gu and Dula Parkinson for assistance in the processing and alignment of the projection images and in the calculation of the tomographic reconstructions; and Tyler M. Miller for help with the peptoid synthesis. This work was funded by the Department of Energy Office of Biological and Environmental Research Grant DE-AC02-05CH11231, the National Institutes of Health (NIH) National Institute for Allergy and Infectious Diseases Grant GM072666, and the NIH National Center for Research Resources Grant RR019664. NR 42 TC 63 Z9 65 U1 5 U2 27 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 17 PY 2009 VL 106 IS 46 BP 19375 EP 19380 DI 10.1073/pnas.0906145106 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 521GC UT WOS:000271907400029 PM 19880740 ER PT J AU Guzman, J Shin, SJ Liao, CY Yuan, CW Stone, PR Dubon, OD Yu, KM Beeman, JW Watanabe, M Ager, JW Chrzan, DC Haller, EE AF Guzman, J. Shin, S. J. Liao, C. Y. Yuan, C. W. Stone, P. R. Dubon, O. D. Yu, K. M. Beeman, J. W. Watanabe, M. Ager, J. W., III Chrzan, D. C. Haller, E. E. TI Photoluminescence enhancement of Er-doped silica containing Ge nanoclusters SO APPLIED PHYSICS LETTERS LA English DT Article DE annealing; erbium; germanium; ion implantation; nanostructured materials; optical films; photoluminescence; silicon compounds ID RARE-EARTH IONS; SI NANOCRYSTALS; ENERGY-TRANSFER; ERBIUM; EXCITATION; SIO2-FILMS AB The photoluminescence (PL) of Er-doped silica films containing Ge nanoclusters synthesized by ion implantation was investigated. The area of the 1540 nm Er3+ PL peak was enhanced by up to a factor of 200 by the addition of Ge nanoclusters. The PL enhancement was found to be proportional to the concentration of Ge atoms. Control experiments with argon ion implantation were used to show that the enhancement is due to the presence of Ge and not radiation damage. Furthermore, the Er3+ PL was found to be strongly influenced by the postgrowth annealing and the crystallinity of the Ge nanoclusters. C1 [Guzman, J.; Shin, S. J.; Liao, C. Y.; Yuan, C. W.; Stone, P. R.; Dubon, O. D.; Chrzan, D. C.; Haller, E. E.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Guzman, J.; Shin, S. J.; Liao, C. Y.; Yuan, C. W.; Stone, P. R.; Dubon, O. D.; Yu, K. M.; Beeman, J. W.; Ager, J. W., III; Chrzan, D. C.; Haller, E. E.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Watanabe, M.] Lehigh Univ, Dept Mat Sci & Engn, Bethlehem, PA 18015 USA. RP Guzman, J (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM eehaller@lbl.gov RI Yu, Kin Man/J-1399-2012; OI Yu, Kin Man/0000-0003-1350-9642; Ager, Joel/0000-0001-9334-9751 FU Berkeley Graduate Fellowship; National Science Foundation; National Defense Science and Engineering; Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; U. S. Department of Energy [DE-AC02-05CH11231]; U. S. NSF [DMR-0405472, DMR-0902179] FX J.G. acknowledges support from the Berkeley Graduate Fellowship. P. R. S. acknowledges support from the National Science Foundation and the National Defense Science and Engineering Graduate Fellowship. This work is supported in part by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231 and in part by U. S. NSF Grant No. DMR-0405472 and DMR-0902179. NR 17 TC 4 Z9 5 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 16 PY 2009 VL 95 IS 20 AR 201904 DI 10.1063/1.3266846 PG 3 WC Physics, Applied SC Physics GA 523DN UT WOS:000272052200025 ER PT J AU Highstrete, C Lee, M Talin, AA Vance, AL AF Highstrete, Clark Lee, Mark Talin, A. Alec Vance, Andrew L. TI Microwave conductance spectra of single-walled carbon nanotube arrays SO APPLIED PHYSICS LETTERS LA English DT Article DE carbon nanotubes; high-frequency effects ID TRANSPORT; CONTACTS; SILICON; MODEL AB Complex conductance spectra of single-walled carbon nanotube (SWCNT) arrays have been measured from 0.1 to 50 GHz at temperatures between 4 and 293 K. Using purely capacitive contacts to separate contact effects from the NTs' response, the intrinsic SWCNT array conductance increased with frequency as f(s) with exponent s=0.67 +/- 0.08 regardless of array size and temperature. The spectra are consistent with the behavior found in many strongly inhomogeneous electronic systems. The origin of disorder in these arrays is likely topological rather than energetic. C1 [Highstrete, Clark; Lee, Mark] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Talin, A. Alec; Vance, Andrew L.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Highstrete, C (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mlee1@sandia.gov FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported from the Sandia Laboratory Directed Research and Development program. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 28 TC 5 Z9 5 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 16 PY 2009 VL 95 IS 20 AR 203111 DI 10.1063/1.3263708 PG 3 WC Physics, Applied SC Physics GA 523DN UT WOS:000272052200058 ER PT J AU Li, HQ Misra, A Baldwin, JK Picraux, ST AF Li, Hongqi Misra, Amit Baldwin, Jon K. Picraux, S. T. TI Synthesis and characterization of nanoporous Pt-Ni alloys SO APPLIED PHYSICS LETTERS LA English DT Article DE elastic constants; foams; hardness; nanopatterning; nanoporous materials; nickel alloys; platinum alloys; thermal stability ID THIN-FILMS; MECHANICAL-BEHAVIOR; GOLD; PLATINUM; AU AB Two nanoporous Pt-Ni alloys were synthesized by dealloying ternary amorphous Si-Pt-Ni precursors. Both foams have nearly the same composition, ligament diameter size, and density. However, their ligament patterns are different, depending on the microstructure of precursors. The difference in morphology is shown to have a profound effect on mechanical properties. The structure with well-aligned long nanoligaments exhibited over 50% higher hardness and stiffness than the structure with short random-oriented nanoligaments. These nanoporous Pt-Ni structures are thermally stable at 300 degrees C. C1 [Li, Hongqi; Misra, Amit; Baldwin, Jon K.; Picraux, S. T.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Li, HQ (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. EM hongqi2007@gmail.com RI Li, Hongqi/B-6993-2008; Misra, Amit/H-1087-2012 FU DOE; Office of Science, Office of Basic Energy Sciences FX This study was supported by the DOE, Office of Science, Office of Basic Energy Sciences. The work was performed at the Center for Integrated Nanotechnologies, a U. S. Department of Energy, Office of Basic Energy Sciences user facility. NR 28 TC 14 Z9 14 U1 2 U2 29 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 16 PY 2009 VL 95 IS 20 AR 201902 DI 10.1063/1.3265744 PG 3 WC Physics, Applied SC Physics GA 523DN UT WOS:000272052200023 ER PT J AU Nordberg, EP Stalford, HL Young, R Eyck, GA Eng, K Tracy, LA Childs, KD Wendt, JR Grubbs, RK Stevens, J Lilly, MP Eriksson, MA Carroll, MS AF Nordberg, E. P. Stalford, H. L. Young, R. Ten Eyck, G. A. Eng, K. Tracy, L. A. Childs, K. D. Wendt, J. R. Grubbs, R. K. Stevens, J. Lilly, M. P. Eriksson, M. A. Carroll, M. S. TI Charge sensing in enhancement mode double-top-gated metal-oxide-semiconductor quantum dots SO APPLIED PHYSICS LETTERS LA English DT Article DE MIS structures; point contacts; semiconductor quantum dots ID SINGLE-ELECTRON SPIN; BLOCKADE AB Laterally coupled charge sensing of quantum dots is highly desirable because it enables measurement even when conduction through the quantum dot itself is suppressed. In this work, we demonstrate such charge sensing in a double-top-gated metal-oxide-semiconductor system. The current through a point contact constriction integrated near a quantum dot shows sharp 2% changes corresponding to charge transitions between the dot and a nearby lead. We extract the coupling capacitance between the charge sensor and the quantum dot, and we show that it agrees well with a three-dimensional capacitance model of the integrated sensor and quantum dot system. C1 [Nordberg, E. P.; Lilly, M. P.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Nordberg, E. P.; Eriksson, M. A.] Univ Wisconsin, Madison, WI 53706 USA. [Stalford, H. L.] Univ Oklahoma, Norman, OK 73019 USA. RP Nordberg, EP (reprint author), Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. EM epnordberg@wisc.edu FU Sandia National Laboratories Directed Research; Sandia National Laboratories; Sandia Corporation; Lockheed-Martin Co.; U. S. Department of Energy [DE-AC04-94AL85000] FX This work was performed, in part, at the Center for Integrated Nanotechnologies, a U. S. DOE, Office of Basic Energy Sciences user facility. The work at both Sandia National Laboratories and the University of Wisconsin was supported by the Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Co., for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. NR 21 TC 24 Z9 24 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 16 PY 2009 VL 95 IS 20 AR 202102 DI 10.1063/1.3259416 PG 3 WC Physics, Applied SC Physics GA 523DN UT WOS:000272052200029 ER PT J AU Parashar, ND Keavney, DJ Wessels, BW AF Parashar, N. D. Keavney, D. J. Wessels, B. W. TI Electronic structure of substitutional Mn in epitaxial In0.965Mn0.035Sb film SO APPLIED PHYSICS LETTERS LA English DT Article DE electronic structure; ferromagnetic materials; III-V semiconductors; indium compounds; magnetic circular dichroism; magnetic epitaxial layers; magnetic structure; magnetisation; manganese compounds; semimagnetic semiconductors; X-ray absorption spectra ID 2P ABSORPTION-SPECTRA; FERROMAGNETIC SEMICONDUCTOR; MAGNETIC SEMICONDUCTOR; TRANSITION; DICHROISM; ORDER AB The magnetic and electronic structure of Mn in In0.965Mn0.035Sb ferromagnetic semiconductor thin film was studied by x-ray absorption spectroscopy and x-ray magnetic circular dichroism. Comparison with atomic multiplet calculations suggests that manganese substitutes on sites with tetrahedral symmetry. Strong magnetic dichroism was observed from 5 to 300 K, at an applied field of 2 T. The temperature dependence of dichroism indicates presence of two magnetic Mn species having very similar spectral features. A high temperature species dominates the dichroic response over 50-300 K and a low temperature species is observed below 50 K. C1 [Parashar, N. D.; Wessels, B. W.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Parashar, N. D.; Wessels, B. W.] Northwestern Univ, Mat Res Ctr, Evanston, IL 60208 USA. [Keavney, D. J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Parashar, ND (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. EM b-wessels@northwestern.edu RI Wessels, Bruce/B-7541-2009 FU National Science Foundation (NSF) [DMR-0804479]; U. S. Department of Energy; Office of Science; Office of Basic Energy Sciences [DE-AC02-06 CH11357] FX The authors thank Qing Ma from DND-CAT, Argonne National Laboratory for technical discussion regarding EXAFS experiments. This work is supported by the National Science Foundation (NSF) under Grant No. DMR-0804479. Use of the Advanced Photon Source at Argonne National Laboratory is supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06 CH11357. NR 24 TC 6 Z9 6 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 16 PY 2009 VL 95 IS 20 AR 201905 DI 10.1063/1.3256192 PG 3 WC Physics, Applied SC Physics GA 523DN UT WOS:000272052200026 ER PT J AU Selinsky, RS Keavney, DJ Bierman, MJ Jin, S AF Selinsky, Rachel S. Keavney, David J. Bierman, Matthew J. Jin, Song TI Element-specific magnetometry of EuS nanocrystals SO APPLIED PHYSICS LETTERS LA English DT Article DE europium compounds; ferromagnetic materials; magnetic circular dichroism; magnetic moments; magnetic semiconductors; magnetometers; nanofabrication; nanostructured materials; wide band gap semiconductors; X-ray absorption spectra ID MAGNETIC-PROPERTIES; NANOPARTICLES; SEMICONDUCTORS; SPINTRONICS; ELECTRONICS; GDS AB A soft x-ray absorption and x-ray magnetic circular dichroism (XMCD) study of the ferromagnetism in solution-grown EuS nanocrystals (NCs) is reported. The absorption edges of Eu M(5) and M(4), S K, O K, and P K were probed to determine elementally specific contributions to the magnetism of EuS NCs. Differential spin absorption was observed by XMCD at the Eu M(5,4) edges confirming the presence of a magnetic moment on the Eu(2+) 4f shell. No dichroic signal was observed for S, O, or P. Vibrating sample magnetometry of ensembles of NCs shows ferromagnetic properties consistent with the XMCD studies. C1 [Selinsky, Rachel S.; Bierman, Matthew J.; Jin, Song] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA. [Keavney, David J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Jin, S (reprint author), Univ Wisconsin, Dept Chem, Madison, WI 53706 USA. EM jin@chem.wisc.edu RI Jin, Song/B-4300-2008; Bierman, Matthew/C-2657-2013 OI Bierman, Matthew/0000-0002-9053-6356 FU NSF [DMR-0548232]; NIH [CA126701]; U. S. Department of Energy; Office of Science; Office of Basic Energy Sciences [DE-AC0206CH11357] FX This work is supported by NSF (Grant No. DMR-0548232) and NIH (Grant No. CA126701). S. J. also thanks Research Corporation Cottrell Scholar award, Sloan Research Fellowship, and Dupont Young Professor Grant for support. Use of the Advance Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC0206CH11357. We would like to thank Dr. Michel van Veenendaal for his assistance with atomistic multiplet calculations. See EPAPS supplementary material at Ref. 27 for details on structure and magnetic property characterization of EuS NCs. NR 26 TC 9 Z9 9 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 16 PY 2009 VL 95 IS 20 AR 202501 DI 10.1063/1.3251777 PG 3 WC Physics, Applied SC Physics GA 523DN UT WOS:000272052200037 PM 20011248 ER PT J AU Zhang, GX Weeks, B Gee, R Maiti, A AF Zhang, Gengxin Weeks, Brandon Gee, Richard Maiti, Amitesh TI Fractal growth in organic thin films: Experiments and modeling SO APPLIED PHYSICS LETTERS LA English DT Article DE atomic force microscopy; dendrites; desorption; fractals; organic compounds; silicon; solidification; surface diffusion; thin films ID DIFFUSION-LIMITED AGGREGATION; NITRATE ESTERS; SURFACE AB Optical microscopy and atomic force microscopy were used to investigate the solidification process of the organic energetic material pentaerythritol tetranitrate thermally deposited on a silicon surface. The metastable films spontaneously undergo dendrite formation where the measured fractal dimensions indicate a diffusion-limited-aggregation mechanism. The branch growth rate was investigated as a function of temperature and fitted by a theoretical model that takes into account competing thermally activated processes of surface diffusion and molecular desorption. Consideration of the internal molecular degrees of freedom is shown to be essential for quantitative consistency between theory and experiment. C1 [Zhang, Gengxin; Weeks, Brandon] Texas Tech Univ, Dept Chem Engn, Lubbock, TX 79409 USA. [Weeks, Brandon] Texas Tech Univ, Dept Chem & Biochem, Lubbock, TX 79409 USA. [Gee, Richard; Maiti, Amitesh] Lawrence Livermore Natl Lab, Livermore, CA 94451 USA. RP Weeks, B (reprint author), Texas Tech Univ, Dept Chem Engn, Lubbock, TX 79409 USA. EM brandon.weeks@ttu.edu; amaiti@llnl.gov RI Weeks, Brandon/P-6331-2014 OI Weeks, Brandon/0000-0003-2552-4129 FU NSF CAREER [CBET-0644832]; U. S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors would like to thank finical support from NSF CAREER (Grant No. CBET-0644832). The work at LLNL was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 23 TC 9 Z9 9 U1 1 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 16 PY 2009 VL 95 IS 20 AR 204101 DI 10.1063/1.3238316 PG 3 WC Physics, Applied SC Physics GA 523DN UT WOS:000272052200078 ER PT J AU Mayer, BP Chinn, SC Maxwell, RS Reimer, JA AF Mayer, Brian P. Chinn, Sarah C. Maxwell, Robert S. Reimer, Jeffrey A. TI Modeling H-1 NMR transverse magnetization decay in polysiloxane-silica composites SO CHEMICAL ENGINEERING SCIENCE LA English DT Article DE Polymers; Soft solids; NMR; Residual dipolar coupling; Mathematical modeling; Parameter identification ID MULTIPLE-QUANTUM NMR; POLY(DIMETHYLSILOXANE) NETWORK; CHAIN DYNAMICS; ELASTOMERS AB Nuclear magnetic resonance (NMR) spectroscopy has been used effectively in the analysis of elastomeric, soft materials and has been proven to be both sensitive to micro- and macroscopic changes associated with "aging" mechanisms. Traditional analyses, however, rely on empirical formulae containing a large number of (often arbitrary) independent variables. The resulting ambiguity can be circumvented largely by developing models of NMR observables that are based on basic polymer physics. We compare two such models, one previously published and one derived herein, along with two empirical expressions that describe the proton transverse magnetization decay associated with complex polymer networks. One particular extracted parameter, the proton-proton residual dipolar coupling (RDC), can be directly related to network topology, and a comparison of the extracted RDCs reveals high consistency among the models. An expression derived from the properties of a static Gaussian chain can minimize the number of parameters necessarily to describe the solid-like, networked proton population to a single independent parameter, the average RDC, D,,. The distribution of RDCs derived via this methodology is qualitatively similar to those derived from previously published multiple quantum techniques, although quantitative differences between the derived RDCs persist, suggesting that further analysis is necessary. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Mayer, Brian P.; Reimer, Jeffrey A.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Chinn, Sarah C.; Maxwell, Robert S.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Reimer, JA (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM reimer@berkeley.edu RI Chinn, Sarah/E-1195-2011 FU Lawrence Livermore National Laboratory,; U.S. Department of Energy, National Nuclear Security Administration [DE-AC52-07NA27344] FX This work is supported by the Lawrence Livermore National Laboratory, which is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. NR 12 TC 11 Z9 11 U1 1 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0009-2509 J9 CHEM ENG SCI JI Chem. Eng. Sci. PD NOV 16 PY 2009 VL 64 IS 22 SI SI BP 4684 EP 4692 DI 10.1016/j.ces.2009.01.020 PG 9 WC Engineering, Chemical SC Engineering GA 513CG UT WOS:000271299200026 ER PT J AU Hall, DM Lookman, T Banerjee, S AF Hall, David M. Lookman, Turab Banerjee, Sanjoy TI Non-equilibrium particle-field simulations of polymer-nanocomposite dynamics SO CHEMICAL ENGINEERING SCIENCE LA English DT Article DE Nanocomposites; SCFT; HSCFT; DSCFT; Block copolymers; Nanorods; Complex fluids ID NANOPARTICLES; COMPOSITES; TRANSPORT; HYBRID AB We present a theoretical framework for simulating dynamic processes in polymeric fluids with embedded nanoparticles. The method couples an Eulerian, field-theoretic description of polymer hydrodynamics with a Lagrangian technique for tracking particles of arbitrary shape and size. Results are presented which reproduce nanoparticle localization in diblock nanosphere composites and interfacial jamming in homopolymer blend nanocomposites. Some of the method's unique capabilities are demonstrated by simulating systems containing non-spherical particles, particles of multiple sizes, and surface driven self-assembly. Published by Elsevier Ltd. C1 [Hall, David M.] Univ Colorado, Dept Aerosp Engn Sci, Boulder, CO 80309 USA. [Lookman, Turab] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Banerjee, Sanjoy] CUNY, Inst Sustainable Energy Technol, New York, NY 10031 USA. RP Hall, DM (reprint author), Univ Colorado, Dept Aerosp Engn Sci, Boulder, CO 80309 USA. EM halldm2000@gmail.com RI Hall, David/F-2342-2011; OI Hall, David/0000-0002-0961-1196; Hall, David/0000-0003-4663-2508; Lookman, Turab/0000-0001-8122-5671 NR 18 TC 5 Z9 5 U1 2 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0009-2509 J9 CHEM ENG SCI JI Chem. Eng. Sci. PD NOV 16 PY 2009 VL 64 IS 22 SI SI BP 4754 EP 4757 DI 10.1016/j.ces.2009.07.031 PG 4 WC Engineering, Chemical SC Engineering GA 513CG UT WOS:000271299200034 ER PT J AU McGrath, P Fojas, AM Reimer, JA Cairns, EJ AF McGrath, Patrick Fojas, Aurora Marie Reimer, Jeffrey A. Cairns, Elton J. TI Electro-oxidation kinetics of adsorbed CO on platinum electrocatalysts SO CHEMICAL ENGINEERING SCIENCE LA English DT Article DE Electrocatalysis; Carbon monoxide; Platinum; Fuel cells; Adsorption ID SINGLE-CRYSTAL SURFACES; CARBON-MONOXIDE; FUEL-CELL; H-2/CO MIXTURES; 1ST PRINCIPLES; ACID-SOLUTIONS; SULFURIC-ACID; ONLINE DEMS; OXIDATION; METHANOL AB We describe the voltammetric measurement of the full oxidation of adsorbed CO on unsupported platinum electrocatalysts, with concomitant cyclic voltammetry of the hydrogen adsorption and desorption. The hydrogen region of platinum is used to parse the platinum surface into sites associated with weakly bound (WB) hydrogen and strongly bound (SB) hydrogen. By monitoring changes in the hydrogen region while following the two observed CO oxidation peaks, we are able to identify the WB sites as being the most active sites for CO(ads) electro-oxidation. The full oxidation peak is fitted to a model based on a modified Butler-Volmer equation that includes the two families of sites. Excellent agreement with experimental results is obtained, and the resulting fits yield the kinetic parameters for the two families of sites. When combined with coulometry, these kinetic analyses also show the importance of linear- and bridged-CO(ads) species in the electro-oxidation process. Limitations of the model and the role of CO(ads), dynamics amongst the various surface sites are discussed. (C) 2009 Elsevier Ltd. All rights reserved. C1 [McGrath, Patrick; Fojas, Aurora Marie; Reimer, Jeffrey A.; Cairns, Elton J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [McGrath, Patrick; Fojas, Aurora Marie; Reimer, Jeffrey A.; Cairns, Elton J.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. RP Cairns, EJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM EJCairns@lbl.gov RI Cairns, Elton/E-8873-2012 OI Cairns, Elton/0000-0002-1179-7591 FU US Army Research Laboratory; US Army Research Office [48713CH] FX This material is based upon work supported by the US Army Research Laboratory and the US Army Research Office under contract/Grant no. 48713CH. NR 43 TC 4 Z9 4 U1 0 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0009-2509 J9 CHEM ENG SCI JI Chem. Eng. Sci. PD NOV 16 PY 2009 VL 64 IS 22 SI SI BP 4765 EP 4771 DI 10.1016/j.ces.2009.05.053 PG 7 WC Engineering, Chemical SC Engineering GA 513CG UT WOS:000271299200036 ER PT J AU Newman, J AF Newman, John TI Stefan-Maxwell mass transport SO CHEMICAL ENGINEERING SCIENCE LA English DT Article DE Multicomponent diffusion ID LIMITING CURRENTS; DIFFUSION; MIGRATION; ELECTRODES; CONVECTION; EQUATIONS; COPPER; FLOWS AB Stefan-Maxwell multicomponent transport equations have a lot of appeal because of their symmetry and because the diffusion coefficients are independent of composition for ideal gases. A simple numerical solution method, which can easily be extended to more components, is illustrated for the popular chemical-engineering film, penetration, and boundary-layer models with a particular example of evaporation of acetone and methanol through air. Extension of each model to other geometries and chemical systems is discussed. In the boundary-layer model there is no need to assume that both total concentration and density are constant. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Newman, John] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Newman, John] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Newman, J (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM newman@newman.cchem.berkeley.edu RI Newman, John/B-8650-2008 OI Newman, John/0000-0002-9267-4525 NR 31 TC 6 Z9 6 U1 1 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0009-2509 EI 1873-4405 J9 CHEM ENG SCI JI Chem. Eng. Sci. PD NOV 16 PY 2009 VL 64 IS 22 SI SI BP 4796 EP 4803 DI 10.1016/j.ces.2009.07.002 PG 8 WC Engineering, Chemical SC Engineering GA 513CG UT WOS:000271299200039 ER PT J AU Monroe, CW Newman, J AF Monroe, Charles W. Newman, John TI Onsager's shortcut to proper forces and fluxes SO CHEMICAL ENGINEERING SCIENCE LA English DT Article DE Transport phenomena; Mass transfer; Diffusion; Statistical thermodynamics; Onsager reciprocal relations; Extended Stefan-Maxwell equation ID RECIPROCAL RELATIONS; IRREVERSIBLE-PROCESSES AB In his 1931 papers, Onsager mentioned that his diffusion driving forces and fluxes, when multiplied and added pairwise, summed to the entropy generation. In 1945 he stated a minimum-dissipation principle, that any set of forces and fluxes which yield the entropy generation when so added would also yield a symmetric transport matrix. This last statement has been criticized by Coleman and Truesdell. This work discusses how to construct a transport formulation with a symmetric matrix and how to connect Onsager's forces and fluxes with gradients of mole fractions and species velocity differences. More general sets of forces and fluxes can be expressed in terms of those given here. (C) 2009 Published by Elsevier Ltd. C1 [Newman, John] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Monroe, Charles W.] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA. [Newman, John] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Newman, J (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM newman@newman.cchem.berkeley.edu RI Newman, John/B-8650-2008 OI Newman, John/0000-0002-9267-4525 NR 9 TC 4 Z9 4 U1 0 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0009-2509 J9 CHEM ENG SCI JI Chem. Eng. Sci. PD NOV 16 PY 2009 VL 64 IS 22 SI SI BP 4804 EP 4809 DI 10.1016/j.ces.2009.05.009 PG 6 WC Engineering, Chemical SC Engineering GA 513CG UT WOS:000271299200040 ER PT J AU Zhang, GX Spycher, N Sonnenthal, E Steefel, C AF Zhang, Guoxiang Spycher, Nicolas Sonnenthal, Eric Steefel, Carl TI Modeling acid-gas generation from boiling chloride brines SO GEOCHEMICAL TRANSACTIONS LA English DT Article ID YUCCA MOUNTAIN; THERMODYNAMIC PROPERTIES; CALCIUM-CHLORIDE; DEGREES-C; SYSTEM CACL2-H2O; NATURAL-WATERS; TRANSPORT; NEVADA; FLOW; PREDICTION AB Background: This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Results: Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150 degrees C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. Conclusion: The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC) processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual and modeled distillation experiments do not represent expected conditions in an emplacement drift, but nevertheless illustrate the potential for acid-gas generation at moderate temperatures (<150 degrees C). C1 [Zhang, Guoxiang; Spycher, Nicolas; Sonnenthal, Eric; Steefel, Carl] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Zhang, GX (reprint author), Lawrence Berkeley Natl Lab, Div Earth Sci, MS 90-1116,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM GXzhang@lbl.gov; NSpycher@lbl.gov; ELSonnenthal@lbl.gov; CISteefel@lbl.gov RI Steefel, Carl/B-7758-2010; Spycher, Nicolas/E-6899-2010; Sonnenthal, Eric/A-4336-2009 FU Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX The authors would like to thank three anonymous reviewers for their careful and helpful reviews. We also thank John Apps for a very useful internal review of this paper, and Daniel Hawkes for editorial support. This manuscript has been authored by Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231 with the U. S. Department of Energy. The views and opinions of authors expressed in this article do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California. NR 38 TC 3 Z9 3 U1 0 U2 7 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1467-4866 J9 GEOCHEM T JI Geochem. Trans. PD NOV 16 PY 2009 VL 10 BP 1 EP 10 AR 11 DI 10.1186/1467-4866-10-11 PG 10 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 525MF UT WOS:000272219500001 PM 19917082 ER PT J AU Silva, GWC Yeamans, CB Sattelberger, AP Hartmann, T Cerefice, GS Czerwinski, KR AF Silva, G. W. Chinthaka Yeamans, Charles B. Sattelberger, Alfred P. Hartmann, Thomas Cerefice, Gary S. Czerwinski, Kenneth R. TI Reaction Sequence and Kinetics of Uranium Nitride Decomposition SO INORGANIC CHEMISTRY LA English DT Article ID (U,PU)N FUEL PELLETS; X-RAY; THERMODYNAMIC PROPERTIES; CARBOTHERMIC SYNTHESIS; OXIDATIVE AMMONOLYSIS; NITROGEN SYSTEM; FABRICATION; SESQUINITRIDE AB The reaction mechanism and kinetics of the thermal decomposition of uranium dinitride/uranium sesquinitride to uranium mononitride under inert atmosphere at elevated temperature were studied. An increase in the lattice parameter of the UN(2)/alpha-U(2)N(3) phase was observed as the reaction temperature increased, corresponding to a continuous removal of nitrogen. Electron density calculations for these two compounds using XRD powder patterns of the samples utilizing charge-flipping technique were performed for the first time to visualize the decrease in nitrogen level as a function of temperature. Complete decomposition of UN(2) into alpha-U(2)N(3) at 675 degrees C and the UN formation after a partial decomposition of alpha-U(2)N(3) at 975 degrees C were also identified in this study. The activation energy for the decomposition of the UN(2)/alpha-U(2)N(3) phase into UN, 423.8 +/- 0.3 kJ/mol (101.3 kcal/mol), was determined under an inert argon atmosphere and is reported here experimentally for the first time. C1 [Silva, G. W. Chinthaka; Sattelberger, Alfred P.; Hartmann, Thomas; Cerefice, Gary S.; Czerwinski, Kenneth R.] Univ Nevada, Harry Reid Ctr Environm Studies, Las Vegas, NV 89154 USA. [Yeamans, Charles B.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Sattelberger, Alfred P.] Argonne Natl Lab, Energy Sci & Engn Directorate, Argonne, IL 60439 USA. RP Czerwinski, KR (reprint author), Univ Nevada, Harry Reid Ctr Environm Studies, Box 454009,4505 Maryland Pkwy, Las Vegas, NV 89154 USA. EM czerwin2@univ.nevada.edu RI Silva, Chinthaka/E-1416-2017 OI Silva, Chinthaka/0000-0003-4637-6030 FU U.S. Department of Energy [DE-FG07-OIAL67358] FX We thank Dr. Anthony Hechanova for administrating the UNLV Transmutation Research Program under the financial support of the U.S. Department of Energy (Grant DE-FG07-OIAL67358). We are indebted to Tom O'Dou and Trevor LoNA, for Outstanding laboratory management and radiation safety. NR 35 TC 31 Z9 32 U1 5 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD NOV 16 PY 2009 VL 48 IS 22 BP 10635 EP 10642 DI 10.1021/ic901165j PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 514XC UT WOS:000271428600022 PM 19845318 ER PT J AU Jakubikova, E Chen, WZ Dattelbaum, DM Rein, FN Rocha, RC Martin, RL Batista, ER AF Jakubikova, Elena Chen, Weizhong Dattelbaum, Dana M. Rein, Francisca N. Rocha, Reginaldo C. Martin, Richard L. Batista, Enrique R. TI Electronic Structure and Spectroscopy of [Ru(tpy)(2)](2+), [Ru(tpy)(bpy)(H2O)](2+), and [Ru(tpy)(bpy)(Cl)](+) SO INORGANIC CHEMISTRY LA English DT Article ID DENSITY-FUNCTIONAL THEORY; POLYPYRIDYL COMPLEXES; EXCITATION-ENERGIES; ABSORPTION-SPECTRA; TIO2 FILMS; RUTHENIUM; OXIDATION; MOLECULES; FORCE; NANOCRYSTALLINE AB We use a combined, theoretical and experimental, approach to investigate the spectroscopic properties and electronic structure of three ruthenium polypyridyl complexes, [Ru(tpy)(2)](2+), [Ru(tpy)(bpy)(H2O)](2+), and [Ru(tpy)(bpy)(Cl)](+) (tpy = 2,2':6,2 ''-terpyridine and bpy = 2,2'-bipyridine) in acetone, dichloromethane, and water. All three complexes display strong absorption bands in the visible region corresponding to a metal-to-ligand-charge-transfer (MLCT) transition, as well as the emission bands arising from the lowest lying (MLCT)-M-3 state. [Ru(tpy)(bpy)(Cl)](+) undergoes substitution of the Cl- ligand by H2O in the presence of water. Density functional theory (DFT) calculations demonstrate that the triplet potential energy surfaces of these molecules are complicated, with several metal-centered ((MC)-M-3) and (MLCT)-M-3 states very close in energy. Solvent effects are included in the calculations via the polarizable continuum model as well as explicitly, and it is shown that they are critical for proper characterization of the triplet excited states of these complexes. C1 [Jakubikova, Elena; Chen, Weizhong; Dattelbaum, Dana M.; Rein, Francisca N.; Rocha, Reginaldo C.; Martin, Richard L.; Batista, Enrique R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Rocha, RC (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM rcrocha@lanl.gov; erb@lanl.gov FU Laboratory Directed Research and Development (LDRD); Los Alamos National Laboratory is operated by Los Alamos National Security; U.S. Department of Energy [DE-AC52-06NA25396] FX We would like to thank Drs. Gabriel Montano and Andrew Dattelbaum for help with emission measurements and Dr. Sergei Tretial, for providing us with a program for Computing the Huang-Rhys factors. This work was supported by the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory, Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. NR 36 TC 57 Z9 57 U1 1 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD NOV 16 PY 2009 VL 48 IS 22 BP 10720 EP 10725 DI 10.1021/ic901477m PG 6 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 514XC UT WOS:000271428600032 PM 19842666 ER PT J AU McIntyre, A AF McIntyre, Annie TI Final institute report refines, forecasts cyber-security issues SO OIL & GAS JOURNAL LA English DT Article C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP McIntyre, A (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM amcinty@sandia.gov FU US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; US Department of Homeland Security under the auspices of the Institute for Information Infrastructure Protection (I3P) [2006-CS-001-000001] FX Sandia is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin Co., for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.; This material is based upon work supported by the US Department of Homeland Security under Grant Award Number 2006-CS-001-000001, under the auspices of the Institute for Information Infrastructure Protection (I3P) research program. The I3P is managed by Dartmouth College. NR 8 TC 0 Z9 0 U1 0 U2 0 PU PENNWELL PUBL CO ENERGY GROUP PI TULSA PA 1421 S SHERIDAN RD PO BOX 1260, TULSA, OK 74112 USA SN 0030-1388 J9 OIL GAS J JI Oil Gas J. PD NOV 16 PY 2009 VL 107 IS 43 BP 52 EP 57 PG 6 WC Energy & Fuels; Engineering, Petroleum SC Energy & Fuels; Engineering GA 670XQ UT WOS:000283463800016 ER PT J AU Shifman, M Unsal, M AF Shifman, M. Uensal, M. TI Multiflavor QCD* on R-3 x S-1: Studying transition from Abelian to non-Abelian confinement SO PHYSICS LETTERS B LA English DT Article ID CHIRAL-SYMMETRY BREAKING; DUALITY AB The center-stabilized multiflavor QCD* theories formulated on R-3 x S-1 exhibit both Abelian and non-Abelian confinement as a function of the S, radius, similar to the Seiberg-Witten theory as a function of the mass deformation parameter. For sufficiently small number of flavors and small r(S-1), we show Occurrence of a mass gap ill gauge fluctuations, and linear confinement. This is a regime of confinement without Continuous chiral symmetry breaking (chi SB). Unlike one-flavor theories where there is no phase transition in r(S-1), the multiflavor theories possess a single phase transition associated with breaking of the continuous chi S. We conjecture that the scale of the chi SB is parametrically tied up with the scale of Abelian to non-Abelian confinement transition. (C) 2009 Elsevier B.V. All rights reserved. C1 [Shifman, M.] Univ Minnesota, William I Fine Theoret Phys Inst, Minneapolis, MN 55455 USA. [Uensal, M.] Stanford Univ, SLAC, Menlo Pk, CA 94025 USA. [Uensal, M.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. RP Shifman, M (reprint author), Univ Minnesota, William I Fine Theoret Phys Inst, Minneapolis, MN 55455 USA. EM shifman@umn.edu FU DOE [DE-FG02-94ER-40823]; US Department of Energy [DE-AC02-76SF00515] FX We are grateful to E. Poppitz for useful discussions. M.S. is supported in part by DOE Grant DE-FG02-94ER-40823. The work of M.U. is supported by the US Department of Energy Grant DE-AC02-76SF00515. NR 10 TC 10 Z9 10 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD NOV 16 PY 2009 VL 681 IS 5 BP 491 EP 494 DI 10.1016/j.physletb.2009.10.060 PG 4 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 523WC UT WOS:000272104300020 ER PT J AU Roman, MO Schaaf, CB Woodcock, CE Strahler, AH Yang, XY Braswell, RH Curtis, PS Davis, KJ Dragoni, D Goulden, ML Gu, LH Hollinger, DY Kolb, TE Meyers, TP Munger, JW Privette, JL Richardson, AD Wilson, TB Wofsy, SC AF Roman, Miguel O. Schaaf, Crystal B. Woodcock, Curtis E. Strahler, Alan H. Yang, Xiaoyuan Braswell, Rob H. Curtis, Peter S. Davis, Kenneth J. Dragoni, Danilo Goulden, Michael L. Gu, Lianhong Hollinger, David Y. Kolb, Thomas E. Meyers, Tilden P. Munger, J. William Privette, Jeffrey L. Richardson, Andrew D. Wilson, Tim B. Wofsy, Steven C. TI The MODIS (Collection V005) BRDF/albedo product: Assessment of spatial representativeness over forested landscapes SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE MODIS; BRDF; Surface albedo; Validation; Spatial analysis; Remote sensing; AmeriFlux; FLUXNET; EOS Land Validation Core Sites; ETM; 6S; Geostatistics ID LAND-SURFACE ALBEDO; BROAD-BAND CONVERSIONS; BIDIRECTIONAL REFLECTANCE; NADIR REFLECTANCE; NORTHERN ARIZONA; CARBON STORAGE; NARROW-BAND; BRDF MODELS; VALIDATION; VEGETATION AB A new methodology for establishing the spatial representativeness of tower albedo measurements that are routinely used in validation of satellite retrievals from global land surface albedo and reflectance anisotropy products is presented. This method brings together knowledge of the intrinsic biophysical properties of a measurement site, and the surrounding landscape to produce a number of geostatistical attributes that describe the overall variability, spatial extent, strength of the spatial correlation, and spatial structure of surface albedo patterns at separate seasonal periods throughout the year. Variogram functions extracted from Enhanced Thematic Mapper Plus (ETM+) retrievals of surface albedo using multiple spatial and temporal thresholds were used to assess the degree to which a given point (tower) measurement is able to capture the intrinsic variability of the immediate landscape extending to a satellite pixel. A validation scheme was implemented over a wide range of forested landscapes, looking at both deciduous and coniferous sites, from tropical to boreal ecosystems. The experiment focused on comparisons between tower measurements of surface albedo acquired at local solar noon and matching retrievals from the MODerate Resolution Imaging Spectroradiometer (MODIS) (Collection V005) Bidirectional Reflectance Distribution Function (BRDF)/albedo algorithm. Assessments over a select group of field stations with comparable landscape features and daily retrieval scenarios further demonstrate the ability of this technique to identify measurement sites that contain the intrinsic spatial and seasonal features of surface albedo over sufficiently large enough footprints for use in modeling and remote sensing studies. This approach, therefore, improves our understanding of product uncertainty both in terms of the representativeness of the field data and its relationship to the larger satellite pixel. (C) 2009 Elsevier Inc. All rights reserved. C1 [Roman, Miguel O.] NASA, Goddard Space Flight Ctr, Terr Informat Syst Branch, Greenbelt, MD USA. [Roman, Miguel O.; Schaaf, Crystal B.; Woodcock, Curtis E.; Strahler, Alan H.; Yang, Xiaoyuan] Boston Univ, Dept Geog & Environm, Boston, MA 02215 USA. [Braswell, Rob H.] Complex Syst Res Ctr, Inst Study Earth Oceans & Space, Durham, NH USA. [Curtis, Peter S.] Ohio State Univ, Dept Evolut Ecol & Organism Biol, Columbus, OH 43210 USA. [Davis, Kenneth J.] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. [Dragoni, Danilo] Indiana Univ, Dept Geog, Bloomington, IN 47405 USA. [Goulden, Michael L.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA. [Gu, Lianhong] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Hollinger, David Y.] USDA Forest Serv, No Res Stn, Durham, NH USA. [Kolb, Thomas E.] No Arizona Univ, Sch Forestry, Flagstaff, AZ 86011 USA. [Meyers, Tilden P.; Wilson, Tim B.] NOAA, Atmospher Turbulence & Diffus Div, Oak Ridge, IN USA. [Munger, J. William; Wofsy, Steven C.] Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA. [Privette, Jeffrey L.] NOAA, Natl Climat Data Ctr, Asheville, NC USA. [Richardson, Andrew D.] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA. RP Roman, MO (reprint author), NASA, Goddard Space Flight Ctr, Terr Informat Syst Branch, Greenbelt, MD USA. EM romanm@ieee.org RI Goulden, Michael/B-9934-2008; Privette, Jeffrey/G-7807-2011; Richardson, Andrew/F-5691-2011; Hollinger, David/G-7185-2012; Roman, Miguel/D-4764-2012; Meyers, Tilden/C-6633-2016; Braswell, Bobby/D-6411-2016; Munger, J/H-4502-2013; Gu, Lianhong/H-8241-2014 OI Privette, Jeffrey/0000-0001-8267-9894; Richardson, Andrew/0000-0002-0148-6714; Roman, Miguel/0000-0003-3953-319X; Braswell, Bobby/0000-0002-4061-9516; Munger, J/0000-0002-1042-8452; Gu, Lianhong/0000-0001-5756-8738 FU National Aeronautics and Space Administration [NASA-NNX07AT35H, NASA-NNX08AE94A]; U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Program [DOE-DEFG02-06ER64178]; Office of Science (BER); U.S. Department of Energy [DE-FG0207ER64371] FX The authors would like to thank the anonymous reviewers whose close reading and suggestions led to a better organized and stronger paper. Support for this research was provided by the National Aeronautics and Space Administration under grants NASA-NNX07AT35H and NASA-NNX08AE94A; and the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Program under grant DOE-DEFG02-06ER64178. Research at the MMSF site was supported by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG0207ER64371. NR 71 TC 91 Z9 105 U1 6 U2 50 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD NOV 16 PY 2009 VL 113 IS 11 BP 2476 EP 2498 DI 10.1016/j.rse.2009.07.009 PG 23 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 506DW UT WOS:000270754800019 ER PT J AU Polsky, R Washburn, CM Montano, G Liu, HQ Edwards, TL Lopez, DM Harper, JC Brozik, SM Wheeler, DR AF Polsky, Ronen Washburn, Cody M. Montano, Gabriel Liu, Haiqing Edwards, Thayne L. Lopez, DeAnna M. Harper, Jason C. Brozik, Susan M. Wheeler, David R. TI Reactive Ion Etching of Gold-Nanoparticle-Modified Pyrolyzed Photoresist Films SO SMALL LA English DT Article DE carbon electrodes; electrodeposition; nanoparticles; reactive ion etching ID GLASSY-CARBON ELECTRODES; FABRICATION; SYSTEMS; SURFACE C1 [Polsky, Ronen; Washburn, Cody M.; Edwards, Thayne L.; Lopez, DeAnna M.; Harper, Jason C.; Brozik, Susan M.; Wheeler, David R.] Sandia Natl Labs, Dept Biosensors & Nanomat, Albuquerque, NM 87185 USA. [Montano, Gabriel; Liu, Haiqing] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Brozik, SM (reprint author), Sandia Natl Labs, Dept Biosensors & Nanomat, POB 5800,MS-0892, Albuquerque, NM 87185 USA. EM smbrozi@sandia.gov; drwheel@sandia.gov FU United States Department of Energy [DE-AC04-94AL8500]; Lockheed Martin Shared Vision Program FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL8500. This work was partially funded under the Lockheed Martin Shared Vision Program. We also thank Bonnie McKenzie for SEM imaging. NR 18 TC 5 Z9 5 U1 2 U2 13 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1613-6810 J9 SMALL JI Small PD NOV 16 PY 2009 VL 5 IS 22 BP 2510 EP 2513 DI 10.1002/smll.200901007 PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 525OB UT WOS:000272224400002 PM 19714735 ER PT J AU Sun, W Wang, GF Fang, N Yeung, ES AF Sun, Wei Wang, Gufeng Fang, Ning Yeung, Edward S. TI Wavelength-Dependent Differential Interference Contrast Microscopy: Selectively Imaging Nanoparticle Probes in Live Cells SO ANALYTICAL CHEMISTRY LA English DT Article ID SURFACE-PLASMON RESONANCE; PENETRATING PEPTIDES; SINGLE; SPECTROSCOPY AB Gold and silver nanoparticles display extraordinarily large apparent refractive indices near their plasmon resonance (PR) wavelengths. These nanoparticles show good contrast in a narrow spectral band but are poorly resolved at other wavelengths in differential interference contrast (DIC) microscopy. The wavelength dependence of DIC contrast of gold/silver nanoparticles is interpreted in terms of Mie's theory and DIC working principles. We further exploit this wavelength dependence by modifying a DIC microscope to enable simultaneous imaging at two wavelengths. We demonstrate that gold/silver nanoparticles immobilized on the same glass slides through hybridization can be differentiated and imaged separately. High-contrast, video-rate images of living cells can be recorded both with and without illuminating the gold nanoparticle probes, providing definitive probe identification. Dual-wavelength DIC microscopy thus presents a new approach to the simultaneous detection of multiple probes of interest for high-speed live-cell imaging. C1 [Fang, Ning] Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Fang, N (reprint author), Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. EM nfang@iastate.edu RI Wang, Gufeng/B-3972-2011; Fang, Ning/A-8456-2011 FU U.S. Department of Energy by Iowa State University [DE-AC020-7CH11358]; Director of Science, Office of Basic Energy Sciences, Division of Chemical Sciences FX The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under contract no. DE-AC020-7CH11358. This work was supported by the Director of Science, Office of Basic Energy Sciences, Division of Chemical Sciences. The first two authors contributed equally to this work. NR 22 TC 37 Z9 37 U1 0 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD NOV 15 PY 2009 VL 81 IS 22 BP 9203 EP 9208 DI 10.1021/ac901623b PG 6 WC Chemistry, Analytical SC Chemistry GA 518AQ UT WOS:000271662400001 PM 19788254 ER PT J AU Du, D Wang, J Smith, JN Timchalk, C Lin, YH AF Du, Dan Wang, Jun Smith, Jordan N. Timchalk, Charles Lin, Yuehe TI Biomonitoring of Organophosphorus Agent Exposure by Reactivation of Cholinesterase Enzyme Based on Carbon Nanotube-Enhanced Flow-Injection Amperometric Detection SO ANALYTICAL CHEMISTRY LA English DT Article ID CHEMICAL WARFARE NERVE; IN-VITRO; ACETYLCHOLINESTERASE BIOSENSOR; SALIVARY CHOLINESTERASE; PESTICIDES; ASSAY; INHIBITION; MECHANISM; OXIMES; MATRIX AB A portable, rapid, and sensitive assessment of subclinical organophosphorus (OP) agent exposure based on reactivation of cholinesterase (ChE) from OP-inhibited ChE using rat saliva (in vitro) was developed using an electrochemical sensor coupled with a microflow-injection system. The sensor was based on a carbon nanotube (CNT)-modified screen printed carbon electrode (SPE), which was integrated into a flow cell. Because of the extent of interindividual ChE activity variability, ChE biomonitoring often requires an initial baseline determination (noninhibited) of enzyme activity which is then directly compared with activity after OP exposure. This manuscript describes an alternative strategy where reactivation of the phosphorylated enzyme was exploited to enable measurement of both inhibited and baseline ChE activity (after reactivation by an oxime, i.e., pralidoxime iodide) in the same sample. The use of CNT makes the electrochemical detection of the products from enzymatic reactions more feasible with extremely high sensitivity (5% ChE inhibition) and selectivity. Paraoxon was selected as a model OP compound for in vitro inhibition studies. Some experimental parameters, e.g., inhibition and reactivation time, have been optimized such that 92-95% of ChE reactivation can be achieved over a broad range of ChE inhibition (5-94%) with paraoxon. The extent of enzyme inhibition using this electrochemical sensor correlates well with conventional enzyme activity measurements. On the basis of the double determinations of enzyme activity, this flow-injection device has been successfully used to detect paraoxon inhibition efficiency in saliva samples (95% of ChE activity is due to butyrylcholinesterase), which demonstrated its promise as a sensitive monitor of OP exposure in biological fluids. Since it excludes inter- or intraindividual variation in the normal levels of ChE, this new CNT-based electrochemical sensor thus provides a sensitive and quantitative tool for point-of-care assessment and noninvasive biomonitoring of the exposure to OP pesticides and chemical nerve agents. C1 [Du, Dan; Wang, Jun; Smith, Jordan N.; Timchalk, Charles; Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. [Du, Dan; Lin, Yuehe] Cent China Normal Univ, Key Lab Pesticide & Chem Biol, Minist Educ, Coll Chem, Wuhan 430079, Peoples R China. RP Lin, YH (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM yuehe.lin@pnl.gov RI Lin, Yuehe/D-9762-2011; Du, Dan (Annie)/G-3821-2012 OI Lin, Yuehe/0000-0003-3791-7587; FU CDC/NIOSH [R01 OH008173-01]; National Institute of Neurological Disorders and Stroke, NIH [U01 NS058161-01]; National Natural Science Foundation of China [20705010]; Research Fund for the Doctoral Program of Higher Education of China [20070511015]; DOE [DE-AC05-76RL01830] FX The work was done at Pacific Northwest National Laboratory (PNNL) and supported partially by CDC/NIOSH Grant R01 OH008173-01 and Grant Number U01 NS058161-01 from the National Institutes of Health CounterACT Program through the National Institute of Neurological Disorders and Stroke, NIH. This work was also supported partially by the National Natural Science Foundation of China (Grant 20705010) and the Research Fund for the Doctoral Program of Higher Education of China (Grant 20070511015). PNNL is operated by Battelle for the DOE under Contract DE-AC05-76RL01830. NR 44 TC 56 Z9 60 U1 2 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD NOV 15 PY 2009 VL 81 IS 22 BP 9314 EP 9320 DI 10.1021/ac901673a PG 7 WC Chemistry, Analytical SC Chemistry GA 518AQ UT WOS:000271662400015 PM 19839597 ER PT J AU Martin, AN Farquar, GR Steele, PT Jones, AD Frank, M AF Martin, Audrey N. Farquar, George R. Steele, Paul T. Jones, A. Daniel Frank, Matthias TI Use of Single Particle Aerosol Mass Spectrometry for the Automated Nondestructive Identification of Drugs in Multicomponent Samples SO ANALYTICAL CHEMISTRY LA English DT Article ID DESORPTION ELECTROSPRAY-IONIZATION; PHARMACEUTICAL SAMPLES; AMBIENT CONDITIONS; TABLETS; ELECTROPHORESIS; PRODUCTS; SECONDS AB In this work, single particle aerosol mass spectrometry (SPAMS) was used to identify the active drug ingredients in samples of multicomponent over-the-counter (OTC) drug tablets with minimal damage to the tablets. OTC drug tablets in various formulations were analyzed including single active ingredient tablets and multi-ingredient tablets. Using a sampling apparatus developed in-house, micrometer-sized particles were simultaneously dislodged from tablets and introduced to the SPAMS, where dual-polarity mass spectra were obtained from individual particles. Active ingredients were identified from the parent ions and fragment ions formed from each sample, and alarm files were developed for each active ingredient, allowing successful automated identification of each compound in a mixture. The alarm algorithm developed for SPAMS correctly identified all drug compounds in all single-ingredient and multi-ingredient tablets studied. A further study demonstrated the ability of this technique to identify the active ingredient in a single tablet analyzed in the presence of several other nonidentical tablets. In situ measurements were also made by sampling directly from a drug sample in its original bottle. A single tablet embedded in 11 identical tablets of different composition was detected in this manner. Overall, this work demonstrates the ability of the SPAMS technique to detect a target drug compound both in complex tablets, i.e., multidrug ingredient tablets, and complex sampling environments, i.e., multitablet sampling sources. The technique is practically nondestructive, leaving the characteristic shape, color, and imprint of a tablet intact for further analysis. Applications of this technique may include forensic and pharmaceutical analysis. C1 [Martin, Audrey N.; Farquar, George R.; Steele, Paul T.; Frank, Matthias] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Martin, Audrey N.; Jones, A. Daniel] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. [Martin, Audrey N.; Jones, A. Daniel] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA. RP Farquar, GR (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94550 USA. EM gfarquar@llnl.gov RI Jones, Arthur/C-2670-2013; Frank, Matthias/O-9055-2014 OI Jones, Arthur/0000-0002-7408-6690; FU LLNL; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The original development of the SPAMS system at LLNL was partially funded through the LLNL Laboratory Directed Research and Development (LDRD) program and through DARPA and TSWG of the Department of Defense. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 34 TC 5 Z9 5 U1 0 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD NOV 15 PY 2009 VL 81 IS 22 BP 9336 EP 9342 DI 10.1021/ac901208h PG 7 WC Chemistry, Analytical SC Chemistry GA 518AQ UT WOS:000271662400018 PM 19842633 ER PT J AU Qafoku, NP Kukkadapu, RK McKinley, JP Arey, BW Kelly, SD Wang, CM Resch, CT Long, PE AF Qafoku, Nikolla P. Kukkadapu, Ravi K. McKinley, James P. Arey, Bruce W. Kelly, Shelly D. Wang, Chongmin Resch, Charles T. Long, Philip E. TI Uranium in Framboidal Pyrite from a Naturally Bioreduced Alluvial Sediment SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID RAY-ABSORPTION SPECTROSCOPY; CONTAMINATED AQUIFER; SULFIDE MINERALS; IRON SULFIDE; ADSORPTION; SURFACE; U(VI); COMPLEXATION; REDUCTION; GOETHITE AB Samples of a naturally bioreduced, U-contaminated alluvial sediment were characterized with various microscopic and spectroscopic techniques and wet chemical extraction methods. The objective was to investigate U association and interaction with minerals of the sediment. Bioreduced sediment comprises similar to 10% of an alluvial aquifer adjacent to the Colorado River, in Rifle, CO, that was the site of a former U milling operation. Past and ongoing research has demonstrated that bioreduced sediment is elevated in solid-associated U, total organic carbon, and acid-volatile sulfide, and depleted in bioavailable Fe(III) confirming that sulfate and Fe(III) reduction have occurred naturally in the sediment SEM/EDS analyses demonstrated that framboidal pyrites (FeS2) of different sizes (similar to 10-20 mu m in diameter), and of various microcrystal morphology, degree of surface weathering, and internal porosity were abundant in the <53 mu m fraction (silt + clay) of the sediment and absent in adjacent sediments that were not bioreduced. SEM-EMPA, XRF, EXAFS, and XANES measurements showed elevated U was present in framboidal pyrite as both U(VI) and U(M. This result indicates that U may be sequestered in situ under conditions of microbially driven sulfate reduction and pyrite formation. Conversely, such pyrites in alluvial sediments provide a long-term source of U under conditions of slow oxidation, contributing to the persistence of U of some U plumes. These results may also help in developing remedial measures for U-contaminated aquifers. C1 [Qafoku, Nikolla P.; McKinley, James P.; Arey, Bruce W.; Wang, Chongmin; Resch, Charles T.; Long, Philip E.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Kelly, Shelly D.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Qafoku, NP (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM nik.qafoku@pnl.gov RI ID, MRCAT/G-7586-2011; Long, Philip/F-5728-2013; OI Long, Philip/0000-0003-4152-5682; Qafoku, Nikolla P./0000-0002-3258-5379 FU U.S. Department of Energy (DOE), Office of Science [DE-AC06-76RLO 1830, DE-AC02-06CH11357] FX N.P.Q. and R.K.K. contributed equally to this work. This research was supported by the U.S. Department of Energy (DOE), Office of Science, Environmental Remediation Sciences Program (ERSP), through the Integrated Field Research Challenge Site (IFRC) at Rifle, CO. Pacific Northwest National Laboratory is operated for the Department of Energy (DOE) by Battelle Memorial Institute under the Contract DE-AC06-76RLO 1830. The research presented in this paper was conducted in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U.S. DOE Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory in Richland, WA. Use of the Advanced Photon Source (APS) at the Argonne National Laboratory is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. We acknowledge the contribution made by Soma Chattopadyay and Tomohiro Shibata to the EXAFS and XANES measurements made at APS, and Herbert T. Schaef (PNNL) for the XRD analysis. NR 42 TC 42 Z9 42 U1 4 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD NOV 15 PY 2009 VL 43 IS 22 BP 8528 EP 8534 DI 10.1021/es9017333 PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 516ZV UT WOS:000271583400013 PM 20028047 ER PT J AU Miller, CL Southworth, G Brooks, S Liang, LY Gu, BH AF Miller, Carrie L. Southworth, George Brooks, Scott Liang, Liyuan Gu, Baohua TI Kinetic Controls on the Complexation between Mercury and Dissolved Organic Matter in a Contaminated Environment SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID REDUCED SULFUR GROUPS; WASTE-WATER EFFLUENT; HUMIC SUBSTANCES; FLORIDA EVERGLADES; METHYL MERCURY; NATURAL-WATERS; STRONG HG(II); BINDING; SOIL; CONSTANTS AB The interaction of mercury (Hg) with dissolved natural organic matter (NOM) under equilibrium conditions is the focus of many studies but the kinetic controls on Hg-NOM complexation in aquatic systems have often been overlooked, We examined the rates of Hg-NOM complexation both in a contaminated Upper East Fork Poplar Creek (UEFPC) in Oak Ridge, Tennessee, and in controlled laboratory experiments using reducible Hg (Hg(R)) measurements and C(18) solid phase extraction techniques. Of the filterable Hg at the headwaters of UEFPC, >90% was present as HgR and this fraction decreased downstream but remained >29% of the filterable Hg at all sites. The presence of higher HgR concentrations than would be predicted under equilibrium conditions in UEFPC and in experiments with a NOM isolate suggests that kinetic reactions are controlling the complexation between Hg and NOM. The slow formation of Hg-NOM complexes is attributed to competitive ligand exchange among various moieties and functional groups in NOM with a range of binding strengths and configurations. This study demonstrates the need to consider the effects of Hg-NOM complexation kinetics on processes such as Hg methylation and solid phase partitioning. C1 [Miller, Carrie L.; Southworth, George; Brooks, Scott; Liang, Liyuan; Gu, Baohua] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Miller, CL (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM millercl@ornl.gov; gub1@ornl.gov RI Gu, Baohua/B-9511-2012; Miller, Carrie/B-8943-2012; Liang, Liyuan/O-7213-2014 OI Gu, Baohua/0000-0002-7299-2956; Liang, Liyuan/0000-0003-1338-0324 FU Office of the Biological and Environmental Research, Office of Science, U.S. Department of Energy (DOE) [DE-AC05-00OR22725] FX This research is part of the Science Focus Area (SFA) at Oak Ridge National Laboratory (ORNL) supported by the Office of the Biological and Environmental Research, Office of Science, U.S. Department of Energy (DOE). ORNL is managed by UT-Battelle LLC for the U.S. DOE under contract DE-AC05-00OR22725. NR 32 TC 50 Z9 52 U1 1 U2 67 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD NOV 15 PY 2009 VL 43 IS 22 BP 8548 EP 8553 DI 10.1021/es901891t PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 516ZV UT WOS:000271583400016 PM 20028050 ER PT J AU Zheng, JY Shao, M Che, WW Zhang, LJ Zhong, LJ Zhang, YH Streets, D AF Zheng, Junyu Shao, Min Che, Wenwei Zhang, Lijun Zhong, Liuju Zhang, Yuanhang Streets, David TI Speciated VOC Emission Inventory and Spatial Patterns of Ozone Formation Potential in the Pearl River Delta, China SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID VOLATILE ORGANIC-COMPOUNDS; LIQUEFIED PETROLEUM GAS; NONMETHANE HYDROCARBONS; SOURCE APPORTIONMENT; REGION AB The Pearl River Delta region (PRD) of China has long suffered from severe ground-level ozone pollution. Knowledge of the sources of volatile organic compounds (VOCs) is essential for ozone chemistry. In this work, a speciated VOC emission inventory was established on the basis of updated emissions and local VOC source profiles. The top 10 species, in terms of ozone formation potentials (OFPs), consisted of isoprene, mp-xylene, toluene, ethylene, propene, o-xylene, 1,2,4-trimethylbenzene, 2-methyl-2-butene, 1-butene, and alpha-pinene. These species contributed only 35.9% to VOCs emissions but accounted for 64.1% of the OFP in the region. The spatial patterns of the VOC source inventory agreed well with city-based source apportionment results, especially for vehicle emissions and industry plus VOC product-related emissions. Mapping of the UPS and measured ozone concentrations indicated that the formation of higher ozone in the south and southeast of the PRD region differed from that in the Conghua area, a remote area in the north of the PRD. We recommend that the priorities for the control of VOC sources include motorcycles, gasoline vehicles, and solvent use because of their larger OFP contributions. C1 [Shao, Min; Zhang, Yuanhang] Peking Univ, Coll Environm Sci & Engn, Beijing 100871, Peoples R China. [Zheng, Junyu; Che, Wenwei; Zhang, Lijun] S China Univ Technol, Univ Town, Coll Environm Sci & Engn, Guangzhou 510006, Guangdong, Peoples R China. [Zhong, Liuju] Guangzhou Environm Monitoring Ctr, Guangzhou 510045, Guangdong, Peoples R China. [Streets, David] Argonne Natl Lab, Argonne, IL 60439 USA. RP Shao, M (reprint author), Peking Univ, Coll Environm Sci & Engn, Beijing 100871, Peoples R China. EM mshao@pku.edu.cnUH RI Zhang, Yuanhang/F-7038-2011; SHAO, Min/C-7351-2014; OI Streets, David/0000-0002-0223-1350 FU Ministry of Science and Technology of China [2006AA06A305, 2006AA06A308, 2006AA06A309] FX This work was supported by the Ministry of Science and Technology of China (2006AA06A305, 2006AA06A308, and 2006AA06A309). NR 32 TC 68 Z9 94 U1 24 U2 151 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD NOV 15 PY 2009 VL 43 IS 22 BP 8580 EP 8586 DI 10.1021/es901688e PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 516ZV UT WOS:000271583400021 PM 20028055 ER PT J AU Savarese, F Davila, A Nechanitzky, R De La Rosa-Velazquez, I Pereira, CF Engelke, R Takahashi, K Jenuwein, T Kohwi-Shigematsu, T Fisher, AG Grosschedl, R AF Savarese, Fabio Davila, Amparo Nechanitzky, Robert De La Rosa-Velazquez, Inti Pereira, Carlos F. Engelke, Rudolf Takahashi, Keiko Jenuwein, Thomas Kohwi-Shigematsu, Terumi Fisher, Amanda G. Grosschedl, Rudolf TI Satb1 and Satb2 regulate embryonic stem cell differentiation and Nanog expression SO GENES & DEVELOPMENT LA English DT Article DE Embryonic stem cells; pluripotency; differentiation; Satb1; Satb2; Nanog ID MAR-BINDING PROTEIN; SELF-RENEWAL; ES CELLS; CHROMATIN-STRUCTURE; FACTOR OCT4; PLURIPOTENCY; TRANSCRIPTION; GENES; CIRCUITRY; LOCUS AB Satb1 and the closely related Satb2 proteins regulate gene expression and higher-order chromatin structure of multigene clusters in vivo. In examining the role of Satb proteins in murine embryonic stem (ES) cells, we find that Satb1(-/-) cells display an impaired differentiation potential and augmented expression of the pluripotency determinants Nanog, Klf4, and Tbx3. Metastable states of self-renewal and differentiation competence have been attributed to heterogeneity of ES cells in the expression of Nanog. Satb1(-/-) cultures have a higher proportion of Nanog high cells, and an increased potential to reprogram human B lymphocytes in cell fusion experiments. Moreover, Satb1-deficient ES cells show an increased expression of Satb2, and we find that forced Satb2 expression in wild-type ES cells antagonizes differentiation-associated silencing of Nanog and enhances the induction of NANOG in cell fusions with human B lymphocytes. An antagonistic function of Satb1 and Satb2 is also supported by the almost normal differentiation potential of Satb1(-/-) Satb2(-/-) ES cells. Taken together with the finding that both Satb1 and Satb2 bind the Nanog locus in vivo, our data suggest that the balance of Satb1 and Satb2 contributes to the plasticity of Nanog expression and ES cell pluripotency. C1 [Savarese, Fabio; Davila, Amparo; Nechanitzky, Robert; Engelke, Rudolf; Grosschedl, Rudolf] Max Planck Inst Immunobiol, Dept Cellular & Mol Immunol, D-79108 Freiburg, Germany. [De La Rosa-Velazquez, Inti; Jenuwein, Thomas] Max Planck Inst Immunobiol, Dept Epigenet, D-79108 Freiburg, Germany. [Pereira, Carlos F.; Fisher, Amanda G.] Univ London Imperial Coll Sci Technol & Med, MRC, Ctr Clin Sci, London W12 ONN, England. [Takahashi, Keiko; Kohwi-Shigematsu, Terumi] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Grosschedl, R (reprint author), Max Planck Inst Immunobiol, Dept Cellular & Mol Immunol, D-79108 Freiburg, Germany. EM grosschedl@immunbio.mpg.de RI Pereira, Carlos/B-8438-2013; OI Pereira, Carlos/0000-0002-9724-1382; Engelke, Rudolf/0000-0001-6773-0655 FU Max Planck Society; German Research Foundation [SFB746] FX We thank Marcel Dautzenberg and Albert Grunder for assistance in the generation of the ES cell lines, Steffie Fietze for assistance in the genotyping of the established cell lines, and Hye-Jung Han for discussions. We are grateful to Austin Smith for providing the Oct4-IRES-HygTKpA vector and valuable discussions, and to Erwin Wagner for comments on the manuscripts. F. S. is the recipient by a FWF Erwin Schroedinger fellowship. This work was supported by funds of the Max Planck Society and a grant of the German Research Foundation (SFB746). NR 55 TC 69 Z9 71 U1 0 U2 9 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI WOODBURY PA 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2924 USA SN 0890-9369 J9 GENE DEV JI Genes Dev. PD NOV 15 PY 2009 VL 23 IS 22 BP 2625 EP 2638 DI 10.1101/gad.1815709 PG 14 WC Cell Biology; Developmental Biology; Genetics & Heredity SC Cell Biology; Developmental Biology; Genetics & Heredity GA 519XT UT WOS:000271803900007 PM 19933152 ER PT J AU Prietzel, J Tyufekchieva, N Eusterhues, K Kogel-Knabner, I Thieme, J Paterson, D McNulty, I de Jonge, M Eichert, D Salome, M AF Prietzel, Joerg Tyufekchieva, Nora Eusterhues, Karin Koegel-Knabner, Ingrid Thieme, Juergen Paterson, David McNulty, Ian de Jonge, Martin Eichert, Diane Salome, Murielle TI Anoxic versus oxic sample pretreatment: Effects on the speciation of sulfur and iron in well-aerated and wetland soils as assessed by X-ray absorption near-edge spectroscopy (XANES) SO GEODERMA LA English DT Article DE S speciation; Fe speciation; Freshwater wetlands; Cambisol; Stagnosol; Histosol ID FRESH-WATER WETLAND; ACID SULFATE SOILS; ORGANIC SULFUR; FORESTED CATCHMENT; SULFIDE OXIDATION; HUMIC SUBSTANCES; PEAT; REDUCTION; SEDIMENTS; CLUSTERS AB For a toposequence with increasing groundwater influence (Cambisol, Stagnosol, Histosol) and with different groundwater regimes (Histosols 1 and 2) in a forested watershed in the Fichtelgebirge (Germany), the speciation of sulfur (S) and iron (Fe) in the soils was assessed by X-ray absorption near-edge spectroscopy (XANES) after anoxic and conventional oxic sample pretreatments. For samples with anoxic pretreatment, the contribution of reduced inorganic S compounds (monosulfide, pyrite) to total S increased with soil depth for the Cambisol and the Stagnosol, but decreased for the Histosols; the opposite trend was noticed for the contribution of reduced organic S (organic mono- and disulfides, thiols). The contribution of reduced S to the soil S pool increased and the contribution of oxidized S compounds decreased in the sequence Cambisol-Stagnosol-Histosol 1 (permanently anoxic). Histosol 2 (seasonally oxic) showed a markedly larger contribution of oxidized and intermediate S compounds to total S than Histosol 1. The dominating Fe-bearing phases in the Cambisol were Fe(III) oxyhydroxides; the contribution of sulfide-bound Fe was < 5% of total Fe in all horizons. In Histosol 1, the contribution of sulfide-bound Fe increased with soil depth up to 50% in the Cr horizon, whereas in Histosol 2 Fe(III) phases strongly dominated in all horizons. After conventional oxic sample pretreatment, the contribution of reduced inorganic S to total S was markedly decreased in all soils. In the organic surface horizons, the contribution of reduced organic S was increased to the same extent: the contribution of oxidized S (sulfate) remained more or less unchanged. In the mineral soil, the contribution of sulfate and the mean oxidation state of sulfur (MOS) were strongly increased after oxic sample preparation. In Histosol 1, oxic sample pretreatment resulted in oxidation of labile Fe(II) compounds, probably sulfides or Fe(II)-S-org-complexes, to Fe(III). Our study shows that for anoxic wetland soils which contain inorganic sulfide and/or divalent Fe, the exclusion Of O(2) during the entire period between sampling and analysis is crucial for a correct S and Fe speciation. Only after appropriate sample preparation, clear relationships between the mean oxidation states of S and Fe (MOFe) on one hand and soil hydrological conditions on the other become evident: a concomitant systematic decrease of MOS and MOFe from the well-aerated Cambisol to the permanently anoxic Histosol 1, and larger MOS and MOFe in the seasonally oxic Histosol 2 than in Histosol 1 indicate a close coupling of S and Fe cycling in the soils. Finally, the results of our study suggest that in organic horizons of wetland soils inorganic sulfide S is overestimated and reduced organic S is underestimated by S K-edge XANES, if a significant portion of the thiol groups in reduced organic S is complex-bound to Fe(2+) or other chalcophilic metal cations. This is supported by the observation that synthetic organic compounds (cysteine; 1,3,5-trimer-captotriazine [TMT]; ferredoxin) after addition of Fe show spectra with pre-edge peaks at energies <2472 eV that are typical for inorganic sulfide. (C) 2009 Elsevier B.V. All rights reserved. C1 [Prietzel, Joerg; Tyufekchieva, Nora; Eusterhues, Karin; Koegel-Knabner, Ingrid] Tech Univ Munich, Lehrstuhl Bodenkunde, D-85354 Freising Weihenstephan, Germany. [Thieme, Juergen] Univ Gottingen, Inst Rontgenphys, D-37077 Gottingen, Germany. [Paterson, David; McNulty, Ian; de Jonge, Martin] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Eichert, Diane; Salome, Murielle] European Synchrotron Radiat Facil, Xray Microscopy Beamline ID 21, F-38043 Grenoble, France. RP Prietzel, J (reprint author), Tech Univ Munich, Lehrstuhl Bodenkunde, Hochanger 2, D-85354 Freising Weihenstephan, Germany. EM prietzel@wzw.tum.de RI de Jonge, Martin/C-3400-2011; Thieme, Juergen/D-6814-2013; Kogel-Knabner, Ingrid/A-7905-2008; OI Kogel-Knabner, Ingrid/0000-0002-7216-8326; Eusterhues, Karin/0000-0003-1754-2298 FU Deutsche Forschungsgerneinschaft (DFG); U.S. Department of Energy, Basic Energy Sciences, Office of Science [W-31 109-Eng-38] FX We gratefully acknowledge the assistance of Mrs. B. Angres and Mrs. G. Harrington during sample preparation and analysis. The study was funded by the Deutsche Forschungsgerneinschaft (DFG); grant Pr 534/4. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science under Contract No. W-31 109-Eng-38. NR 55 TC 13 Z9 13 U1 2 U2 39 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0016-7061 J9 GEODERMA JI Geoderma PD NOV 15 PY 2009 VL 153 IS 3-4 BP 318 EP 330 DI 10.1016/j.geoderma.2009.08.015 PG 13 WC Soil Science SC Agriculture GA 516SF UT WOS:000271562200004 ER PT J AU Ao, T Knudson, MD Asay, JR Davis, JP AF Ao, T. Knudson, M. D. Asay, J. R. Davis, J. -P. TI Strength of lithium fluoride under shockless compression to 114 GPa SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID ELASTIC PRECURSOR DECAY; X-RAY-DIFFRACTION; ISENTROPIC COMPRESSION; CONSTITUTIVE MODEL; LIF; ALUMINUM; INTERFEROMETER; VELOCITIES; CRYSTALS; SOLIDS AB A magnetic loading technique was used to ramp load single-crystal [100] lithium fluoride specimens to peak stresses of 5-114 GPa. Wave analysis of in situ particle velocity profiles was used to estimate the compressive strength of LiF at peak stress. It was found that the strength increased with peak stress and showed two distinct regions of hardening; the first is believed to be governed by strain hardening and the second by pressure hardening. The quasielastic strain obtained from the initial part of the unloading was shown to saturate at about 1.3% for peak stresses greater than approximately 30 GPa. Over the studied pressure range, the measured strength of LiF varied from its initial value of 0.08 to about 1.1 GPa at the highest compressed state of 114 GPa. Comparison of the measured strength to results from two strength models showed good agreement. It was demonstrated that the strength of LiF introduces systematic error of about 10% when used as an interferometer window for measurements of material strength in isentropic compression experiments. (C) 2009 American Institute of Physics. [doi:10.1063/1.3259387] C1 [Ao, T.; Knudson, M. D.; Asay, J. R.; Davis, J. -P.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Ao, T (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM tao@sandia.gov FU United States Department of Energy [DE-AC04-94AL85000] FX The authors would like to thank the operational crews of both the Z and Veloce machines for performing the isentropic compression experiments. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 55 TC 14 Z9 17 U1 2 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 15 PY 2009 VL 106 IS 10 AR 103507 DI 10.1063/1.3259387 PG 12 WC Physics, Applied SC Physics GA 534YB UT WOS:000272932300019 ER PT J AU Barron, SC Noginov, MM Werder, D Schneemeyer, LF van Dover, RB AF Barron, S. C. Noginov, M. M. Werder, D. Schneemeyer, L. F. van Dover, R. B. TI Dielectric response of tantalum oxide subject to induced ion bombardment during oblique sputter deposition SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID ULTRAVIOLET OZONE OXIDATION; HAFNIUM OXIDE; THIN-FILMS; ELECTRICAL CHARACTERISTICS; INTERFACIAL LAYER; HUMIDITY SENSOR; METAL-FILMS; MICROSTRUCTURE; ADSORPTION; SILICON AB We describe the deposition of insulating tantalum oxide thin films under conditions of controlled ion bombardment, which can be achieved using reactive sputtering on 90 degrees off-axis substrates with an applied substrate bias. Capacitive measurements of Ta(2)O(5) deposited on unbiased off-axis substrates indicate low frequency dielectric constants as high as epsilon(r) similar to 300. Low frequency loss tangents are high, tan delta > 0.5, and have a pronounced frequency dependence. Deposition of the film off-axis with sufficient applied rf bias to the substrate (negative bias >-70 V) recovers the on-axis properties typical of Ta(2)O(5), e.g., epsilon(r) similar to 22 and tan delta similar to 0.02. The recovery of normal dielectric behavior is attributed to the ion bombardment of the growing film under substrate bias, similar to on-axis depositions but absent from depositions on off-axis substrates with no applied substrate bias. We suggest that insufficiently bombarded films develop a Maxwell-Wagner type polarization along columnar voids. The void structure and the associated dielectric response vary with distance from the sputtering source due to variations in ion density and angle from the sputtering source. A similar dielectric response is observed in depositions on on-axis substrates as a function of angle from the central sputter gun axis. Our results suggest that ion bombardment is necessary for good quality sputtered dielectric films but that a controlled Ar(+) flux is essentially equivalent to the uncontrolled O(2)(-)/O(2-) flux of on-axis reactive sputtering. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3253719] C1 [Barron, S. C.; van Dover, R. B.] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA. [Noginov, M. M.] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA. [Werder, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Schneemeyer, L. F.] Montclair State Univ, Dept Chem & Biochem, Montclair, NJ 07043 USA. RP Barron, SC (reprint author), Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA. EM vandover@cornell.edu RI van Dover, Robert/B-6362-2011 OI van Dover, Robert/0000-0002-6166-5650 FU U.S. Department of Energy [DE-FG02-06ER06-15]; National Science Foundation [ECS-0335765]; National Science Foundation Materials Research Science and Engineering Center [DMR-0520404] FX This work was supported by the U.S. Department of Energy under Grant No. DE-FG02-06ER06-15. This work was performed in part at the Cornell NanoScale Facility, a member of the National Nanotechnology Infrastructure Network, which is supported by the National Science Foundation under Grant No. ECS-0335765. Additionally, this work made use of the AFM facility of the Cornell Center for Materials Research with support from the National Science Foundation Materials Research Science and Engineering Center program under Grant No. DMR-0520404. Initial studies were performed at Bell Laboratories, Lucent Technologies. NR 44 TC 3 Z9 3 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 15 PY 2009 VL 106 IS 10 AR 104110 DI 10.1063/1.3253719 PG 9 WC Physics, Applied SC Physics GA 534YB UT WOS:000272932300096 ER PT J AU Farshchi, R Hwang, DJ Chopdekar, RV Ashby, PD Grigoropoulos, CP Dubon, OD AF Farshchi, R. Hwang, D. J. Chopdekar, R. V. Ashby, P. D. Grigoropoulos, C. P. Dubon, O. D. TI Ultrafast pulsed-laser dissociation of Mn-H complexes in GaAs SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SEMICONDUCTOR; SPINTRONICS; GA1-XMNXAS; (GA,MN)AS; HYDROGEN; METAL AB We demonstrate direct writing of ferromagnetism in hydrogenated Ga(0.96)Mn(0.04)As using femtosecond laser pulses. Tight beam focusing results in the local dissociation of Mn-H defect complexes with sub-500 nm resolution and no detected surface damage. Dot, line, and Hall-bar patterns were drawn in the hydrogenated films by translating the sample during laser irradiation. Magnetotransport measurements on the Hall-bar patterns reveal recovery of hole-mediated ferromagnetism with a Curie temperature of 50 K while magnetic anisotropy is similar to prehydrogenated Ga(0.96)Mn(0.04)As. Interruption of the laser beam during writing leads to the formation of a paramagnetic gap with controllable conductance separating two ferromagnetic line segments. These features, along with the laser tunability of magnetic and electrical properties in the activated regions, represent a planar approach to defining all-semiconductor spintronic structures for device applications. (C) 2009 American Institute of Physics. [doi:10.1063/1.3253724] C1 [Farshchi, R.; Dubon, O. D.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Farshchi, R.; Chopdekar, R. V.; Dubon, O. D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Hwang, D. J.; Grigoropoulos, C. P.] Univ Calif Berkeley, Dept Mech Engn, Laser Thermal Lab, Berkeley, CA 94720 USA. [Grigoropoulos, C. P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Farshchi, R (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM rfarshchi@berkeley.edu; oddubon@berkeley.edu RI Chopdekar, Rajesh/D-2067-2009; Han, Kyuhee/B-6201-2009; Schaff, William/B-5839-2009 OI Chopdekar, Rajesh/0000-0001-6727-6501; FU National Science Foundation [DMR-0526330]; U.S. Department of Energy [DE-AC02-05CH11231]; Intel Fellowship FX The authors acknowledge R R. Stone, J. W. Beeman, and E. E. Haller for ion implantation. This work was supported in part by the National Science Foundation under Contract No. DMR-0526330. Film synthesis and characterization were supported by the Director, Office of Science,. Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. R.F. acknowledges support from an Intel Fellowship. NR 21 TC 0 Z9 0 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 15 PY 2009 VL 106 IS 10 AR 103918 DI 10.1063/1.3253724 PG 4 WC Physics, Applied SC Physics GA 534YB UT WOS:000272932300075 ER PT J AU Kobayashi, M Thareja, G Ishibashi, M Sun, Y Griffin, P McVittie, J Pianetta, P Saraswat, K Nishi, Y AF Kobayashi, Masaharu Thareja, Gaurav Ishibashi, Masato Sun, Yun Griffin, Peter McVittie, Jim Pianetta, Piero Saraswat, Krishna Nishi, Yoshio TI Radical oxidation of germanium for interface gate dielectric GeO2 formation in metal-insulator-semiconductor gate stack SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID CYCLOTRON-RESONANCE PLASMA; INVERSION LAYER MOBILITY; THERMAL-OXIDATION; ELECTRICAL-PROPERTIES; MOS DEVICES; SILICON; OXYGEN; PASSIVATION; TRANSITION; DENSITY AB GeO2 was grown by a slot-plane-antenna (SPA) high density radical oxidation, and the oxidation kinetics of radical oxidation GeO2 was examined. By the SPA radical oxidation, no substrate orientation dependence of growth rate attributed to highly reactive oxygen radicals with low oxidation activation energy was demonstrated, which is highly beneficial to three-dimensional structure devices, such as multigate field-effect transistors, to form conformal gate dielectrics. The electrical properties of an aluminum oxide (Al2O3) metal-oxide-semiconductor gate stack with a GeO2 interfacial layer were investigated, showing very low interface state density (D-it), 1.4 x 10(11) cm(-2) eV(-1). By synchrotron radiation photoemission spectroscopy, the conduction and the valence band offsets of GeO2 with respect to Ge were estimated to be 1.2 +/- 0.3 and 3.6 +/- 0.1 eV, which are sufficiently high to suppress gate leakage. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3259407] C1 [Kobayashi, Masaharu; Thareja, Gaurav; Ishibashi, Masato; Griffin, Peter; McVittie, Jim; Saraswat, Krishna; Nishi, Yoshio] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. [Sun, Yun; Pianetta, Piero] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94305 USA. RP Kobayashi, M (reprint author), Stanford Univ, Dept Elect Engn, 420 Via Palou Mall, Stanford, CA 94305 USA. EM masaharu@stanford.edu NR 36 TC 52 Z9 52 U1 1 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 15 PY 2009 VL 106 IS 10 AR 104117 DI 10.1063/1.3259407 PG 7 WC Physics, Applied SC Physics GA 534YB UT WOS:000272932300103 ER PT J AU Liang, LY Li, YL Chen, LQ Hu, SY Lu, GH AF Liang, Linyun Li, Y. L. Chen, Long-Qing Hu, S. Y. Lu, Guang-Hong TI Thermodynamics and ferroelectric properties of KNbO3 SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID FREE PIEZOELECTRIC CERAMICS; NIOBATE SINGLE-CRYSTALS; POTASSIUM NIOBATE; HIGH-PRESSURE; SPONTANEOUS POLARIZATION; ORTHORHOMBIC KNBO3; OPTICAL-PROPERTIES; PHASE-TRANSITIONS; TEMPERATURE-DEPENDENCE; REFRACTIVE-INDEXES AB The Landau-Ginzburg-Devonshire phenomenological theory is employed to model and predict the ferroelectric phase transitions and properties of single-domain potassium niobate (KNbO3). Based on the LGD theory and the experimental data of KNbO3 single crystal, an eighth-order polynomial of free energy function is proposed. The fitted coefficients are validated by comparing to a set of experimental measured values including phase transition temperatures, spontaneous polarization, dielectric constants, and lattice constants. The effects of hydrostatic pressure and external electric field on phase transition temperatures and piezoelectric coefficients are investigated. The free energy function may be used to predict ferroelectric domain structures and properties of KNbO3 bulk and films by phase-field approach. (C) 2009 American Institute of Physics. [doi:10.1063/1.3260242] C1 [Liang, Linyun; Lu, Guang-Hong] Beijing Univ Aeronaut & Astronaut, Dept Phys, Beijing 100191, Peoples R China. [Li, Y. L.; Hu, S. Y.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Chen, Long-Qing] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. RP Lu, GH (reprint author), Beijing Univ Aeronaut & Astronaut, Dept Phys, Beijing 100191, Peoples R China. EM lgh@buaa.edu.cn RI Chen, LongQing/I-7536-2012; OI Chen, LongQing/0000-0003-3359-3781; HU, Shenyang/0000-0002-7187-3082 NR 47 TC 16 Z9 16 U1 2 U2 36 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 15 PY 2009 VL 106 IS 10 AR 104118 DI 10.1063/1.3260242 PG 9 WC Physics, Applied SC Physics GA 534YB UT WOS:000272932300104 ER PT J AU Yang, ST Matthews, MJ Elhadj, S Draggoo, VG Bisson, SE AF Yang, Steven T. Matthews, Manyalibo J. Elhadj, Selim Draggoo, Vaughn G. Bisson, Scott E. TI Thermal transport in CO2 laser irradiated fused silica: In situ measurements and analysis SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SURFACE-TEMPERATURE MEASUREMENT; LASER-BEAM; GLASS; CONDUCTIVITY; DEPENDENCE; RADIATION; EMISSIVITY AB In situ spatial and temporal temperature measurements of pristine fused silica surfaces heated with a 10.6 mu m CO2 laser were obtained using an infrared radiation thermometer based on a mercury cadmium telluride camera. Laser spot sizes ranged from 250 to 1000 mu m diameter with peak axial irradiance levels of 0.13-16 kW/cm(2). For temperatures below 2800 K, the measured steady-state surface temperature is observed to rise linearly with both increasing beam size and incident. laser irradiance. The effective thermal conductivity estimated over this range was approximately 2 W/m-K, in good agreement with classical calculations based on phonon heat capacities. Similarly, time-dependent temperature measurements up to 2000 K yielded thermal diffusivity, values which were close to reported values of 7 x 10(-7) m(2)/s. Above similar to 2800 K, the fused silica surface temperature asymptotically approaches 3 100 K as laser power is further increased, consistent with the onset of evaporative heat losses near the silica boiling point. These results show that in the laser heating regime studied here, the T-3 temperature dependent thermal conductivity due to radiation transport can be neglected, but at temperatures above 2800 K heat transport due to evaporation must also be considered. The thermal transport in fused silica up to 2800 K, over a range of conditions, can then be adequately described by a linear diffusive heat equation assuming constant thermal properties. (C) 2009 American Institute of Physics. [doi:10.1063/1.3259419] C1 [Yang, Steven T.; Matthews, Manyalibo J.; Elhadj, Selim; Draggoo, Vaughn G.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bisson, Scott E.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Elhadj, S (reprint author), Lawrence Livermore Natl Lab, POB 5508, Livermore, CA 94550 USA. EM elhadj2@llnl.gov FU Department of Energy [W-7405-Eng-48] FX The authors would like to acknowledge Dr. Jarnes Stolken, Dr. Jeffrey Bude, and Dr. Michael Feit for stimulating discussions and insights into evaluating heat transport mechanisms. Thanks are due to Dr. Michael A. Johnson for gracious use of laboratory equipment and suggesting use of thermal lacquer. This work was supported by the Department of Energy under Contract No. W-7405-Eng-48. NR 37 TC 33 Z9 33 U1 2 U2 22 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 15 PY 2009 VL 106 IS 10 AR 103106 DI 10.1063/1.3259419 PG 7 WC Physics, Applied SC Physics GA 534YB UT WOS:000272932300006 ER PT J AU Yu, KM Novikov, SV Broesler, R Demchenko, IN Denlinger, JD Liliental-Weber, Z Luckert, F Martin, RW Walukiewicz, W Foxon, CT AF Yu, K. M. Novikov, S. V. Broesler, R. Demchenko, I. N. Denlinger, J. D. Liliental-Weber, Z. Luckert, F. Martin, R. W. Walukiewicz, W. Foxon, C. T. TI Highly mismatched crystalline and amorphous GaN1-xAsx alloys in the whole composition range SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MOLECULAR-BEAM EPITAXY; VAPOR-PHASE EPITAXY; BAND-GAP ENERGY; SOLAR-CELLS; ION-IMPLANTATION; RICH SIDE; GAINNAS; STATES; EVOLUTION; HYDROGEN AB Alloying is a commonly accepted method to tailor properties of semiconductor materials for specific applications. Only a limited number of semiconductor alloys can be easily synthesized in the full composition range. Such alloys are, in general, formed of component elements that are well matched in terms of ionicity, atom size, and electronegativity. In contrast there is a broad class of potential semiconductor alloys formed of component materials with distinctly different properties. In most instances these mismatched alloys are immiscible under standard growth conditions. Here we report on the properties of GaN1-xAsx, a highly mismatched, immiscible alloy system that was successfully synthesized in the whole composition range using a nonequilibrium low temperature molecular beam epitaxy technique. The alloys are amorphous in the composition range of 0.17 < x < 0.75 and crystalline outside this region. The amorphous films have smooth morphology, homogeneous composition, and sharp, well defined optical absorption edges. The band gap energy varies in a broad energy range from similar to 3.4 eV in GaN to similar to 0.8 eV at x similar to 0.85. The reduction in the band gap can be attributed primarily to the downward movement of the conduction band for alloys with x > 0.2, and to the upward movement of the valence band for alloys with x < 0.2. The unique features of the band structure offer an opportunity of using GaN1-xAsx alloys for various types of solar power conversion devices. (C) 2009 American Institute of Physics. [doi:10.1063/1.3259434] C1 [Yu, K. M.; Broesler, R.; Liliental-Weber, Z.; Walukiewicz, W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Novikov, S. V.; Foxon, C. T.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Broesler, R.] Univ Calif Berkeley, Mat Sci & Engn Dept, Berkeley, CA 94720 USA. [Demchenko, I. N.; Denlinger, J. D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Demchenko, I. N.] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. [Demchenko, I. N.] Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland. [Luckert, F.; Martin, R. W.] Univ Strathclyde, Dept Phys, SUPA, Glasgow G4 0NG, Lanark, Scotland. RP Yu, KM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM kmyu@lbl.gov RI Liliental-Weber, Zuzanna/H-8006-2012; Yu, Kin Man/J-1399-2012; martin, rob/A-7127-2010 OI Yu, Kin Man/0000-0003-1350-9642; martin, rob/0000-0002-6119-764X FU U.S. Department of Energy [DE-AC02-05CH11231]; EPSRC [EP/G007160/1, EP/D051487/1] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The work at the University of Nottingham was undertaken with support from the EPSRC (Grant Nos. EP/G007160/1 and EP/D051487/1). NR 39 TC 46 Z9 47 U1 0 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 15 PY 2009 VL 106 IS 10 AR 103709 DI 10.1063/1.3259434 PG 8 WC Physics, Applied SC Physics GA 534YB UT WOS:000272932300047 ER PT J AU Sankaran, B Bonnett, SA Shah, K Gabriel, S Reddy, R Schimmel, P Rodionov, DA de Crecy-Lagard, V Helmann, JD Iwata-Reuyl, D Swairjo, MA AF Sankaran, Banumathi Bonnett, Shilah A. Shah, Kinjal Gabriel, Scott Reddy, Robert Schimmel, Paul Rodionov, Dmitry A. de Crecy-Lagard, Valerie Helmann, John D. Iwata-Reuyl, Dirk Swairjo, Manal A. TI Zinc-Independent Folate Biosynthesis: Genetic, Biochemical, and Structural Investigations Reveal New Metal Dependence for GTP Cyclohydrolase IB SO JOURNAL OF BACTERIOLOGY LA English DT Article ID FEEDBACK REGULATORY PROTEIN; BACILLUS-SUBTILIS; GUANOSINE TRIPHOSPHATE; REACTION-MECHANISM; ESCHERICHIA-COLI; TETRAHYDROBIOPTERIN; REFINEMENT; SEQUENCE; BINDING; SYSTEM AB GTP cyclohydrolase I (GCYH-I) is an essential Zn(2+)-dependent enzyme that catalyzes the first step of the de novo folate biosynthetic pathway in bacteria and plants, the 7-deazapurine biosynthetic pathway in Bacteria and Archaea, and the biopterin pathway in mammals. We recently reported the discovery of a new prokaryotic-specific GCYH-I (GCYH-IB) that displays no sequence identity to the canonical enzyme and is present in similar to 25% of bacteria, the majority of which lack the canonical GCYH-I (renamed GCYH-IA). Genomic and genetic analyses indicate that in those organisms possessing both enzymes, e. g., Bacillus subtilis, GCYH-IA and -IB are functionally redundant, but differentially expressed. Whereas GCYH-IA is constitutively expressed, GCYH-IB is expressed only under Zn(2+)-limiting conditions. These observations are consistent with the hypothesis that GCYH-IB functions to allow folate biosynthesis during Zn(2+) starvation. Here, we present biochemical and structural data showing that bacterial GCYH-IB, like GCYH-IA, belongs to the tunneling-fold (T-fold) superfamily. However, the GCYH-IA and -IB enzymes exhibit significant differences in global structure and activesite architecture. While GCYH-IA is a unimodular, homodecameric, Zn(2+)-dependent enzyme, GCYH-IB is a bimodular, homotetrameric enzyme activated by a variety of divalent cations. The structure of GCYH-IB and the broad metal dependence exhibited by this enzyme further underscore the mechanistic plasticity that is emerging for the T-fold superfamily. Notably, while humans possess the canonical GCYH-IA enzyme, many clinically important human pathogens possess only the GCYH-IB enzyme, suggesting that this enzyme is a potential new molecular target for antibacterial development. C1 [Bonnett, Shilah A.; Iwata-Reuyl, Dirk] Portland State Univ, Dept Chem, Portland, OR 97207 USA. [Sankaran, Banumathi] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley Ctr Struct Biol, Berkeley, CA 94720 USA. [Shah, Kinjal; Swairjo, Manal A.] Western Univ Hlth Sci, Coll Osteopath Med Pacific, Dept Basic Med Sci, Pomona, CA 91766 USA. [Gabriel, Scott; Helmann, John D.] Cornell Univ, Dept Microbiol, Ithaca, NY 14853 USA. [Reddy, Robert; Schimmel, Paul] Scripps Res Inst, Skaggs Inst Chem Biol, Dept Chem, La Jolla, CA 92037 USA. [Reddy, Robert; Schimmel, Paul] Scripps Res Inst, Skaggs Inst Chem Biol, Dept Mol Biol, La Jolla, CA 92037 USA. [Rodionov, Dmitry A.] Burnham Inst Med Res, La Jolla, CA 92037 USA. [de Crecy-Lagard, Valerie] Univ Florida, Dept Microbiol & Cell Sci, Gainesville, FL 32611 USA. RP Iwata-Reuyl, D (reprint author), Portland State Univ, Dept Chem, POB 751, Portland, OR 97207 USA. EM iwatareuyld@pdx.edu; mswairjo@burnham.org OI Rodionov, Dmitry/0000-0002-0939-390X; Helmann, John/0000-0002-3832-3249 FU National Institutes of Health [GM70641, GM059323, GM15539]; National Foundation for Cancer Research; Department of Energy; National Institutes of Health; National Institute of General Medical Sciences; National Institutes of Health (NIGMS) FX This work was partly supported by National Institutes of Health grants GM70641 to D. I.-R. and V.d.C.-L., GM059323 to J.D.H., and GM15539 to P. S. and by a fellowship from the National Foundation for Cancer Research. The Stanford Synchrotron Research Laboratory Structural Molecular Biology Program is supported by the Department of Energy, National Institutes of Health, and the National Institute of General Medical Sciences. The Berkeley Center for Structural Biology is supported in part by the National Institutes of Health (NIGMS). NR 55 TC 21 Z9 21 U1 0 U2 6 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD NOV 15 PY 2009 VL 191 IS 22 BP 6936 EP 6949 DI 10.1128/JB.00287-09 PG 14 WC Microbiology SC Microbiology GA 511UO UT WOS:000271195300019 PM 19767425 ER PT J AU Muller, MG Forsberg, LS Keating, DH AF Mueller, Maike G. Forsberg, Lennart S. Keating, David H. TI The rkp-1 Cluster Is Required for Secretion of Kdo Homopolymeric Capsular Polysaccharide in Sinorhizobium meliloti Strain Rm1021 SO JOURNAL OF BACTERIOLOGY LA English DT Article ID LIPO-OLIGOSACCHARIDE SIGNALS; ROOT-NODULE ORGANOGENESIS; GRAM-NEGATIVE BACTERIA; RHIZOBIUM-MELILOTI; ESCHERICHIA-COLI; LIPOPOLYSACCHARIDE MUTANT; GENE-CLUSTER; K-ANTIGENS; AZORHIZOBIUM-CAULINODANS; SURFACE POLYSACCHARIDES AB Under conditions of nitrogen stress, leguminous plants form symbioses with soil bacteria called rhizobia. This partnership results in the development of structures called root nodules, in which differentiated endosymbiotic bacteria reduce molecular dinitrogen for the host. The establishment of rhizobium-legume symbioses requires the bacterial synthesis of oligosaccharides, exopolysaccharides, and capsular polysaccharides. Previous studies suggested that the 3-deoxy-D-manno-oct-2-ulopyranosonic acid (Kdo) homopolymeric capsular polysaccharide produced by strain Sinorhizobium meliloti Rm1021 contributes to symbiosis with Medicago sativa under some conditions. However, a conclusive symbiotic role for this polysaccharide could not be determined due to a lack of mutants affecting its synthesis. In this study, we have further characterized the synthesis, secretion, and symbiotic function of the Kdo homopolymeric capsule. We showed that mutants lacking the enigmatic rkp-1 gene cluster fail to display the Kdo capsule on the cell surface but accumulate an intracellular polysaccharide of unusually high M(r). In addition, we have demonstrated that mutations in kdsB2, smb20804, and smb20805 affect the polymerization of the Kdo homopolymeric capsule. Our studies also suggest a role for the capsular polysaccharide in symbiosis. Previous reports have shown that the overexpression of rkpZ from strain Rm41 allows for the symbiosis of exoY mutants of Rm1021 that are unable to produce the exopolysaccharide succinoglycan. Our results demonstrate that mutations in the rkp-1 cluster prevent this phenotypic suppression of exoY mutants, although mutations in kdsB2, smb20804, and smb20805 have no effect. C1 [Mueller, Maike G.; Keating, David H.] Loyola Univ Chicago, Dept Microbiol & Immunol, Maywood, IL 60153 USA. [Forsberg, Lennart S.] Univ Georgia, Complex Carbohydrate Res Ctr, Athens, GA 30602 USA. RP Keating, DH (reprint author), Univ Wisconsin Madison, Great Lakes Bioenergy Res Ctr, 3552 Microbial Sci,1550 Linden Dr, Madison, WI 53706 USA. EM dkeating@glbrc.wisc.edu FU U.S. Department of Agriculture [2005-35319-15304]; Department of Energy [DEFG02-93ER20097] FX This work was funded by Award 2005-35319-15304 from the U.S. Department of Agriculture. The Complex Carbohydrate Research Center was supported in part by Department of Energy grant DEFG02-93ER20097. NR 81 TC 10 Z9 10 U1 0 U2 2 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD NOV 15 PY 2009 VL 191 IS 22 BP 6988 EP 7000 DI 10.1128/JB.00466-09 PG 13 WC Microbiology SC Microbiology GA 511UO UT WOS:000271195300024 PM 19734304 ER PT J AU Kouvelis, VN Saunders, E Brettin, TS Bruce, D Detter, C Han, C Typas, MA Pappas, KM AF Kouvelis, Vassili N. Saunders, Elizabeth Brettin, Thomas S. Bruce, David Detter, Chris Han, Cliff Typas, Milton A. Pappas, Katherine M. TI Complete Genome Sequence of the Ethanol Producer Zymomonas mobilis NCIMB 11163 SO JOURNAL OF BACTERIOLOGY LA English DT Article ID PROTEIN FAMILIES; FUEL ETHANOL; RNA GENES; DATABASE; TOOL AB Zymomonas mobilis is an ethanol-producing alphaproteobacterium currently considered a major candidate organism for bioethanol production. Here we report the finished and annotated genome sequence of Z. mobilis subsp. mobilis strain NCIMB 11163, a British ale-infecting isolate. This is the first Z. mobilis strain whose genome, chromosomal and plasmid, is presented in its entirety. C1 [Kouvelis, Vassili N.; Typas, Milton A.; Pappas, Katherine M.] Univ Athens, Dept Genet & Biotechnol, Fac Biol, Athens 15701, Greece. [Saunders, Elizabeth; Brettin, Thomas S.; Detter, Chris; Han, Cliff] Los Alamos Natl Lab, DOE Joint Genome Inst, Biosci Div, Los Alamos, NM 87545 USA. [Bruce, David] DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. RP Pappas, KM (reprint author), Univ Athens, Dept Genet & Biotechnol, Fac Biol, Athens 15701, Greece. EM kmpappas@biol.uoa.gr FU NKUA Research Committee [70/4/7809] FX K. M. P. acknowledges the NKUA Research Committee for providing award 70/4/7809. NR 22 TC 24 Z9 29 U1 1 U2 1 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD NOV 15 PY 2009 VL 191 IS 22 BP 7140 EP 7141 DI 10.1128/JB.01084-09 PG 2 WC Microbiology SC Microbiology GA 511UO UT WOS:000271195300041 PM 19767433 ER PT J AU Zhang, T Sun, DZ Neale, R Rasch, PJ AF Zhang, Tao Sun, De-Zheng Neale, Richard Rasch, Philip J. TI An Evaluation of ENSO Asymmetry in the Community Climate System Models: A View from the Subsurface SO JOURNAL OF CLIMATE LA English DT Article ID SEA-SURFACE TEMPERATURE; EL-NINO; LA-NINA; ATMOSPHERE MODEL; NATIONAL-CENTER; EQUATORIAL PACIFIC; TROPICAL PACIFIC; WATER-VAPOR; OCEAN; CONVECTION AB The asymmetry between El Nino and La Nina is a key aspect of ENSO that needs to be simulated well by models in order to fully capture the role of ENSO in the climate system. Here the asymmetry between the two phases of ENSO in five successive versions of the Community Climate System Model (CCSM1, CCSM2, CCSM3 at T42 resolution, CCSM3 at T85 resolution, and the latest CCSM3 + NR, with the Neale and Richter convection scheme) is evaluated. Different from the previous studies, not only is the surface signature of ENSO asymmetry examined, but so too is its subsurface signature. By comparing the differences among these models as well as the differences between the models and the observations, an understanding of the causes of the ENSO asymmetry is sought. An underestimate of the ENSO asymmetry is noted in all of the models, but the latest version with the Neale and Richter scheme (CCSM3 + NR) is getting closer to the observations than the earlier versions. The net surface heat flux is found to damp the asymmetry in the SST field in both the models and observations, but the damping effect in the models is weaker than that in the observations, thus excluding a role of the surface heat flux in contributing to the weaker asymmetry in the SST anomalies associated with ENSO. Examining the subsurface signatures of ENSO-the thermocline depth and the associated subsurface temperature for the western and eastern Pacific-reveals the same bias; that is, the asymmetry in the models is weaker than that in the observations. The analysis of the corresponding Atmospheric Model Intercomparison Project (AMIP) runs in conjunction with the coupled runs suggests that the weaker asymmetry in the subsurface signatures in the models is related to the lack of asymmetry in the zonal wind stress over the central Pacific, which in turn is due to a lack of sufficient asymmetry in deep convection (i.e., the nonlinear dependence of the deep convection on SST). In particular, the lack of a westward shift in the deep convection in the models in response to a cold phase SST anomaly is found as a common factor that is responsible for the weak asymmetry in the models. It is also suggested that a more eastward extension of the deep convection in response to a warm phase SST anomaly may also help to increase the asymmetry of ENSO. The better performance of CCSM3 + NR is apparently linked to an enhanced convection over the eastern Pacific during the warm phase of ENSO. Apparently, either a westward shift of deep convection in response to a cold phase SST anomaly or an increase of convection over the eastern Pacific in response to a warm phase SST anomaly leads to an increase in the asymmetry of zonal wind stress and therefore an increase in the asymmetry of subsurface signal, favoring an increase in ENSO asymmetry. C1 [Zhang, Tao; Sun, De-Zheng] Univ Colorado, CIRES, Boulder, CO 80305 USA. [Zhang, Tao; Sun, De-Zheng] NOAA, Div Phys Sci, Earth Syst Res Lab, Boulder, CO USA. [Neale, Richard] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Rasch, Philip J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Zhang, T (reprint author), Univ Colorado, CIRES, 325 Broadway,R-PSD1, Boulder, CO 80305 USA. EM tao.zhang@noaa.gov FU NOAA's Climate Dynamics and Environmental Prediction Program; NSF [ATM-9912434, ATM-0331760, ATM 0553111] FX This research was supported by NOAA's Climate Dynamics and Environmental Prediction Program, and by NSF's Climate Dynamics Program under ATM-9912434, ATM-0331760, and ATM 0553111. The leading author would like to thank Jon K. Eischeid for providing the t-test code. NR 52 TC 13 Z9 13 U1 0 U2 4 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD NOV 15 PY 2009 VL 22 IS 22 BP 5933 EP 5961 DI 10.1175/2009JCLI2933.1 PG 29 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 521PM UT WOS:000271934200010 ER PT J AU Gilbert, B Ono, RK Ching, KA Kim, CS AF Gilbert, Benjamin Ono, Reyn K. Ching, Kristen A. Kim, Christopher S. TI The effects of nanoparticle aggregation processes on aggregate structure and metal uptake SO JOURNAL OF COLLOID AND INTERFACE SCIENCE LA English DT Article DE Adsorption; Aggregation; Desorption; EXAFS; Nanoparticle; SAXS ID HYDROUS FERRIC-OXIDE; SURFACE COMPLEXATION MODEL; SMALL-ANGLE SCATTERING; IRON OXYHYDROXIDE; EXAFS SPECTROSCOPY; FRACTAL DIMENSION; SORPTION KINETICS; LEAD SORPTION; FERRIHYDRITE; ADSORPTION AB Adsorption at the mineral-water interface is ail important process governing metal ion concentration and mobility in aqueous systems. Ferric iron oxyhydroxide nanoparticles possess a large capacity for the adsorption of heavy metals but quantification of metal uptake and sequestration is challenging due to the tendency of natural nanoparticles to aggregate in natural waters. We studied the effects of aggregation via pH, ionic strength, drying, and freezing on the uptake and release of copper from ferrihydrite nanoparticles employing small-angle X-ray scattering (SAXS) studies of aggregate morphology, macroscopic Cu(II) sorption and desorption batch experiments, and extended X-ray absorption fine structure (EXAFS) spectroscopic studies of copper sorption geometries. Results show that the mechanism of aggregation has a large effect upon aggregate morphology and consequently on the net sorption/retention of ions from solution. While aggregation reduces the total amount of copper that can be adsorbed, it also may introduce physical constraints to desorption and/or increased proportions of higher strength binding sites that lead to greater retention, and hence more effective sequestration, of metal ion contaminants. (C) 2009 Elsevier Inc. All rights reserved. C1 [Gilbert, Benjamin] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Gilbert, Benjamin] Chapman Univ, Schmid Coll Sci, Dept Chem, Orange, CA 92866 USA. RP Gilbert, B (reprint author), Chapman Univ, Schmid Coll Sci, Dept Chem, 1 Univ Dr, Orange, CA 92866 USA. EM cskim@chapman.edu RI Gilbert, Benjamin/E-3182-2010 FU US Department of Energy [DE-AC02-05CH11231]; American Chemical Society - Petroleum Research [PRF 44721-GB10]; Research Corporation [6940]; National Science Foundation; Division of Earth Sciences [061821711] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231, the American Chemical Society - Petroleum Research Grant, PRF #44721-GB10, Cottrell College Science Award #6940 from the Research Corporation, and the National Science Foundation, Division of Earth Sciences, Grant #061821711. Small-angle X-ray scattering experiments were performed on beamline 1-4 and the EXAFS experiments on beamline 11-2 at the Stanford Synchrotron Radiation Lightsource (SSRL) and we thank John Pople and Joe Rogers, respectively, for their assistance. We also thank Bridget Ingham and Mike Toney for advice on the generation of pore morphologies from SAXS data. Thanks also to Chapman University Environmental Geochemistry Lab members Megan McKee and Lauryn DeGreeff for their earlier studies on pH-dependent Cu(II) uptake to ferrihydrite nanoparticles which aided in the design of the macroscopic uptake experiments, Chris Lentini for help acquiring SAXS data at beamline 1-4, and James Dale for assistance in fitting of the EXAFS data and measuring the uncertainties in copper sorption experiments. NR 57 TC 87 Z9 90 U1 8 U2 100 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9797 J9 J COLLOID INTERF SCI JI J. Colloid Interface Sci. PD NOV 15 PY 2009 VL 339 IS 2 BP 285 EP 295 DI 10.1016/j.jcis.2009.07.058 PG 11 WC Chemistry, Physical SC Chemistry GA 506BR UT WOS:000270748500002 PM 19709669 ER PT J AU Estep, D Pernice, M Pham, D Tavener, S Wang, HY AF Estep, Don Pernice, Michael Pham, Du Tavener, Simon Wang, Haiying TI A posteriori error analysis of a cell-centered finite volume method for semilinear elliptic problems SO JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS LA English DT Article DE A posteriori error analysis; Adjoint problem; Cell-centered finite volume method; Convection-diffusion-reaction problem; Mixed finite element method; Quadrature error; Residual error ID DIFFERENTIAL-EQUATIONS AB In this paper, we conduct a goal-oriented a posteriori analysis for the error in a quantity of interest computed from a cell-centered finite volume scheme for a semilinear elliptic problem. The a posteriori error analysis is based on variational analysis, residual errors and the adjoint problem. To carry out the analysis, we use an equivalence between the cell-centered finite volume scheme and a mixed finite element method with special choice of quadrature. Published by Elsevier B.V. C1 [Estep, Don; Pham, Du; Tavener, Simon; Wang, Haiying] Colorado State Univ, Dept Math, Ft Collins, CO 80524 USA. [Estep, Don] Colorado State Univ, Dept Stat, Ft Collins, CO 80524 USA. [Pernice, Michael] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Wang, HY (reprint author), Colorado State Univ, Dept Math, Ft Collins, CO 80524 USA. EM estep@math.colostate.edu; Michael.Pernice@inl.gov; pham@math.colostate.edu; tavener@math.colostate.edu; wangh@math.colostate.edu NR 29 TC 9 Z9 9 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0377-0427 J9 J COMPUT APPL MATH JI J. Comput. Appl. Math. PD NOV 15 PY 2009 VL 233 IS 2 BP 459 EP 472 DI 10.1016/j.cam.2009.07.046 PG 14 WC Mathematics, Applied SC Mathematics GA 504MC UT WOS:000270619900034 ER PT J AU Sherrill, CD Sumpter, BG Sinnokrot, MO Marshall, MS Hohenstein, EG Walker, RC Gould, IR AF Sherrill, C. David Sumpter, Bobby G. Sinnokrot, Mutasem O. Marshall, Michael S. Hohenstein, Edward G. Walker, Ross C. Gould, Ian R. TI Assessment of Standard Force Field Models Against High-Quality Ab Initio Potential Curves for Prototypes of pi-pi, CH/pi, and SH/pi Interactions SO JOURNAL OF COMPUTATIONAL CHEMISTRY LA English DT Article DE quantum chemistry; electronic structure; coupled cluster theory; molecular mechanics; computational chemistry ID MOLECULAR-MECHANICS; NUCLEIC-ACIDS; STACKING INTERACTIONS; SEMIEMPIRICAL METHODS; BENZENE DIMERS; BASIS-SETS; ENERGY; PROTEINS; SIMULATION; SANDWICH AB Several popular force fields, namely, CHARMM, AMBER, OPLS-AA, and MM3, have been tested for their ability to reproduce highly accurate quantum mechanical potential energy curves for noncovalent interactions in the benzene dimer, the benzene-CH(4) complex, and the benzene-H(2)S complex. All of the force fields are semi-quantitatively correct, but none of them is consistently reliable quantitatively. Re-optimization of Lennard-Jones parameters and symmetry-adapted perturbation theory analysis for the benzene dimer suggests that better agreement cannot be expected unless more flexible functional forms (particularly for the electrostatic contributions) are employed for the empirical force fields. (C) 2009 Wiley Periodicals, Inc. J Comput Chem 30: 2187-2193, 2009 C1 [Sherrill, C. David; Marshall, Michael S.; Hohenstein, Edward G.] Georgia Inst Technol, Sch Chem & Biochem, Ctr Computat Mol Sci & Technol, Atlanta, GA 30332 USA. [Sumpter, Bobby G.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Sumpter, Bobby G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Sinnokrot, Mutasem O.] Univ Jordan, Dept Chem, Fac Sci, Amman 11942, Jordan. [Walker, Ross C.] Univ Calif San Diego, San Diego Supercomp Ctr, La Jolla, CA 92093 USA. [Gould, Ian R.] Univ London Imperial Coll Sci Technol & Med, Dept Chem, London SW7 2AZ, England. RP Sherrill, CD (reprint author), Georgia Inst Technol, Sch Chem & Biochem, Ctr Computat Mol Sci & Technol, Atlanta, GA 30332 USA. EM sherrill@gatech.edu RI Sumpter, Bobby/C-9459-2013 OI Sumpter, Bobby/0000-0001-6341-0355 FU National Science Foundation [CHE-0715268, 0438741]; CRIF [CHE-04-43564]; Petroleum Research Fund [44262-AC6]; Division of Scientific User Facilities; U.S. Department of Energy; SDSC Strategic Applications Collaborations program FX Contract/grant sponsor: National Science Foundation: contract/grant number: CHE-0715268 Contract/grant sponsor: CRIF: contract/grant number: CHE-04-43564 Contract/grant sponsor: Petroleum Research Fund of the ACS: contract/grant number: 44262-AC6 Contract/grant sponsor: Division of Scientific User Facilities,. U.S. Department of Energy Contract/grant sponsor: SDSC Strategic Applications Collaborations program and National Science Foundation: contract/grant number: 0438741 NR 50 TC 77 Z9 77 U1 1 U2 33 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0192-8651 J9 J COMPUT CHEM JI J. Comput. Chem. PD NOV 15 PY 2009 VL 30 IS 14 BP 2187 EP 2193 DI 10.1002/jcc.21226 PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 496AL UT WOS:000269939600004 PM 19242959 ER PT J AU Ostwal, M Lau, JM Orme, CJ Stewart, FF Way, JD AF Ostwal, Mayur Lau, Joshua M. Orme, Christopher J. Stewart, Frederick F. Way, J. Douglas TI The influence of temperature on the sorption and permeability of CO2 in poly(fluoroalkoxyphosphazene) membranes SO JOURNAL OF MEMBRANE SCIENCE LA English DT Article DE Permeability; Sorption; Carbon dioxide; Polymer membranes; Poly(fluoroalkoxyphosphazene); Nitrogen; CO2/N-2 separation; Polyphosphazene ID POLYPHOSPHAZENE MEMBRANES; GAS PERMEATION; POLY(DIMETHYLSILOXANE); DIFFUSION AB This paper reports the transport and sorption properties of poly(fluoroalkoxyphosphazene) (PFAP) membranes for carbon dioxide and nitrogen in both pure and mixed gas experiments. The CO2 permeability decreased from 336 to 142 Barters with an increase in the CO2/N-2 ideal separation factor from 12 to 21 as the membrane temperature was decreased from 303 K to 258 K at feed pressure of 2.9 bars. At lower feed pressure (1.5 bars) the CO2 permeability decreased from 327 to 140 Barrers, while the CO2/N-2 ideal separation factor increased from 13 to 22 over the same temperature range. CO2 sorption isotherms were measured using the pressure decay equilibrium method. Solubility of CO2 was determined using the sorption isotherms and the diffusion coefficients were calculated from CO2 permeabilities and solubilities. Sorption isotherms were linear at each temperature for the pressure range studied and the enthalpy of sorption was -5.8 kcal/mol. The solubility coefficient values for CO2 increased from 0.95 to 5.43 cm(3) CO2(STP)/cm(3) polymer atm whereas the diffusion coefficient decreased from 2.71 x 10(-6) to 0.19 x 10(-6) cm(2)/s as the temperature decreased from 303 K to 258 K. (C) 2009 Elsevier B.V. All rights reserved. C1 [Ostwal, Mayur; Lau, Joshua M.; Way, J. Douglas] Colorado Sch Mines, Dept Chem Engn, Golden, CO 80401 USA. [Orme, Christopher J.; Stewart, Frederick F.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Way, JD (reprint author), Colorado Sch Mines, Dept Chem Engn, Golden, CO 80401 USA. EM dway@mines.edu FU U.S. Department of Energy [DE-FG36-05GO15093]; DOE Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division; U.S. Department of Energy; Office of Nuclear Energy; DOE Idaho Operations Office [DE-AC07-05ID14517] FX The authors gratefully acknowledge financial support from the U.S. Department of Energy through Grant #DE-FG36-05GO15093 from the DOE Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division as well as the U.S. Department of Energy, Office of Nuclear Energy, under DOE Idaho Operations Office Contract DE-AC07-05ID14517. NR 15 TC 4 Z9 4 U1 0 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0376-7388 J9 J MEMBRANE SCI JI J. Membr. Sci. PD NOV 15 PY 2009 VL 344 IS 1-2 BP 199 EP 203 DI 10.1016/j.memsci.2009.08.002 PG 5 WC Engineering, Chemical; Polymer Science SC Engineering; Polymer Science GA 505LF UT WOS:000270694200025 ER PT J AU Tombola, F Ulbrich, MH Isacoff, EY AF Tombola, Francesco Ulbrich, Maximilian H. Isacoff, Ehud Y. TI Architecture and gating of Hv1 proton channels SO JOURNAL OF PHYSIOLOGY-LONDON LA English DT Article ID SHAKER K+ CHANNEL; VOLTAGE SENSOR; CHLORIDE CHANNEL; SODIUM-CHANNELS; MOLECULAR-BASIS; ION-PERMEATION; PORE; CURRENTS; DOMAIN; REVEALS AB Voltage-gated proton channels have been described in different cells and organisms since the early '80s, but the first member of the family, Hv1, was cloned only recently. The Hv1 channel was found to contain a voltage-sensing domain (VSD), similar to those of voltage-gated sodium, potassium and calcium channels. All these other channels also contain a pore domain, which forms a central pore at the interface of the four subunits. The pore domain is missing in Hv1. This raised several questions on the location of the proton pore and on the mechanism of gating. Here, we briefly review our effort to understand the structural organization of Hv1 channels and discuss the relationship between the gating of Hv1 and the gating of ion-conducting pores recently discovered in the VSDs of mutant voltage-gated potassium and sodium channels. C1 [Isacoff, Ehud Y.] Univ Calif Berkeley, MCB, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Tombola, Francesco] Univ Calif Irvine, Dept Physiol & Biophys, Irvine, CA 92697 USA. [Isacoff, Ehud Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Isacoff, Ehud Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Isacoff, EY (reprint author), Univ Calif Berkeley, MCB, Dept Mol & Cell Biol, 271 Life Sci Addit, Berkeley, CA 94720 USA. EM ehud@berkeley.edu RI Tombola, Francesco/C-7311-2011 FU National Institutes of Health [R01NS035549]; American Heart Association WSA [09BGIA2160044]; American Heart Association; Deutsche Forschungsgesellschaft FX The research was supported by the National Institutes of Health (R01NS035549 to E.Y.I.), by the American Heart Association WSA (09BGIA2160044 to F.T.) and by postdoctoral fellowships from the American Heart Association and Deutsche Forschungsgesellschaft (to M.H.U.). NR 41 TC 12 Z9 13 U1 1 U2 7 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0022-3751 J9 J PHYSIOL-LONDON JI J. Physiol.-London PD NOV 15 PY 2009 VL 587 IS 22 BP 5325 EP 5329 DI 10.1113/jphysiol.2009.180265 PG 5 WC Neurosciences; Physiology SC Neurosciences & Neurology; Physiology GA 517VM UT WOS:000271647000008 PM 19915215 ER PT J AU Cady, CM Gray, GT Liu, C Lovato, ML Mukai, T AF Cady, C. M. Gray, G. T., III Liu, C. Lovato, M. L. Mukai, T. TI Compressive properties of a closed-cell aluminum foam as a function of strain rate and temperature SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Aluminum foam; High-strain rate; Closed-cell foam ID ENERGY-ABSORPTION; ALLOY FOAMS; ELEVATED-TEMPERATURES; RATE SENSITIVITY; HEAT-TREATMENT; DEFORMATION; BEHAVIOR AB The compressive constitutive behavior of a closed-cell aluminum foam (ALPORAS) manufactured by Shinko Wire Co. in Japan was evaluated under static and dynamic loading conditions as a function of temperature. High-strain-rate tests (1000-2000 s(-1)) were conducted using a split-Hopkinson pressure bar (SHPB). Quasi-static and intermediate-strain-rate tests were conducted on a hydraulic load frame. A small but discernable change in the flow stress behavior as a function of strain rate was measured. The deformation behavior of the Al-foam was however found to be strongly temperature dependent under both quasi-static and dynamic loading. Localized deformation and stress state instability during testing of metal foams is discussed in detail since the mechanical behavior over the entire range of strain rates indicates non-uniform deformation. Additionally, investigation of the effect of residual stresses created during manufacturing on the mechanical behavior was investigated. (C) 2009 Published by Elsevier B.V. C1 [Cady, C. M.; Gray, G. T., III; Liu, C.; Lovato, M. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Mukai, T.] Natl Inst Mat Sci, Tsukuba, Ibaraki 3050047, Japan. RP Cady, CM (reprint author), Los Alamos Natl Lab, MST 8 MS G755, Los Alamos, NM 87545 USA. EM cady@lanl.gov RI Mukai, Toshiji/F-9570-2014; Totsukawa, Nobuhisa/D-2028-2017 OI Mukai, Toshiji/0000-0002-9628-5762; FU LANS, LLC [DE-AC52-06NA25396]; Joint DoD/DOE Munitions Technology Development Program FX Los Alamos National Laboratory is operated by LANS, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. This work has been performed under the auspices of the United States Department of Energy and was supported by the Joint DoD/DOE Munitions Technology Development Program. NR 31 TC 42 Z9 48 U1 4 U2 35 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD NOV 15 PY 2009 VL 525 IS 1-2 BP 1 EP 6 DI 10.1016/j.msea.2009.07.007 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 504QY UT WOS:000270633400001 ER PT J AU Zhao, YH Guo, YZ Wei, Q Topping, TD Dangelewicz, AM Zhu, YT Langdon, TG Lavernia, EJ AF Zhao, Y. H. Guo, Y. Z. Wei, Q. Topping, T. D. Dangelewicz, A. M. Zhu, Y. T. Langdon, T. G. Lavernia, E. J. TI Influence of specimen dimensions and strain measurement methods on tensile stress-strain curves SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Strain measurements; Tensile testing; Finite element modeling (FEM); Miniature specimens; Stress-strain curves ID ULTRAFINE-GRAINED METALS; NANOSTRUCTURED METALS; CRYSTAL PLASTICITY; MECHANICAL-PROPERTIES; ULTRAHIGH STRENGTH; LENGTH SCALES; DUCTILITY; SIZE; NANOCRYSTALLINE; BEHAVIOR AB Miniature tensile specimens, having various sizes and geometries, are often used to measure the mechanical properties of bulk nanostructured materials. However, these samples are generally too small for use with conventional extensometers so that the strains are usually calculated from the crosshead displacements. This study uses experimental results and finite element modeling (FEM) to critically evaluate the influence of the specimen dimensions and strain measurement methods on the tensile curves obtained from miniature specimens. Using coarse-grained Cu as a model material, the results demonstrate that the values of strain obtained from the crosshead displacement are critically influenced by the specimen dimensions such that the uniform elongation and the post-necking elongation both increase with decreasing gauge length and increasing specimen thickness. The results provide guidance on the optimum procedures for the tensile testing of miniature specimens of both coarse-grained and nanostructured materials. (C) 2009 Elsevier B.V. All rights reserved. C1 [Zhao, Y. H.; Topping, T. D.; Lavernia, E. J.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Guo, Y. Z.; Wei, Q.] Univ N Carolina, Dept Mech Engn, Charlotte, NC 28223 USA. [Guo, Y. Z.] Northwestern Polytech Univ, Sch Aeronaut, Xian 710072, Peoples R China. [Dangelewicz, A. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Zhu, Y. T.] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. [Langdon, T. G.] Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA. [Langdon, T. G.] Univ So Calif, Dept Mat Sci, Los Angeles, CA 90089 USA. [Langdon, T. G.] Univ Southampton, Sch Engn Sci, Mat Res Grp, Southampton SO17 1BJ, Hants, England. RP Zhao, YH (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. EM yhzhao@ucdavis.edu; qwei@uncc.edu RI Zhu, Yuntian/B-3021-2008; Wei, Qiuming/B-7579-2008; Langdon, Terence/B-1487-2008; Zhao, Yonghao/A-8521-2009; Lujan Center, LANL/G-4896-2012; Lavernia, Enrique/I-6472-2013; Guo, Yazhou/E-3318-2016 OI Zhu, Yuntian/0000-0002-5961-7422; Lavernia, Enrique/0000-0003-2124-8964; FU Office of Naval Research [N00014-08-1-0405] FX Y.H. Zhao and E.J. Lavernia would like to acknowledge support by the Office of Naval Research (Grant number N00014-08-1-0405) with Dr. Lawrence Kabacoff as program officer. NR 48 TC 96 Z9 98 U1 7 U2 53 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD NOV 15 PY 2009 VL 525 IS 1-2 BP 68 EP 77 DI 10.1016/j.msea.2009.06.031 PG 10 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 504QY UT WOS:000270633400010 ER PT J AU Sun, PL Zhao, YH Cooley, JC Kassner, ME Horita, Z Langdon, TG Lavernia, EJ Zhu, YT AF Sun, Pei-Ling Zhao, Y. H. Cooley, J. C. Kassner, M. E. Horita, Z. Langdon, T. G. Lavernia, E. J. Zhu, Y. T. TI Effect of stacking fault energy on strength and ductility of nanostructured alloys: An evaluation with minimum solution hardening SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Ductility; High-pressure torsion; Severe plastic deformation; Stacking fault energy; Strength ID SEVERE PLASTIC-DEFORMATION; ULTRAFINE-GRAINED ALUMINUM; HIGH-TENSILE DUCTILITY; MECHANICAL-PROPERTIES; FCC METALS; BOUNDARY STRUCTURE; COPPER; BEHAVIOR; PRECIPITATION; TEMPERATURE AB The effect of stacking fault energy (SFE) on the mechanical properties was investigated in Ni-Co alloys which have minimum solution hardening effects. Cobalt reduces the SFE in nickel and this promotes grain refinement during processing and increases the dislocation and twin densities. A reduction in SFE increases strength and tensile ductility. The higher strength is due to grain refinement and higher dislocation and pre-existing twin densities whereas the higher ductility is attributed to a higher work hardening rate. (C) 2009 Elsevier B.V. All rights reserved. C1 [Sun, Pei-Ling] Feng Chia Univ, Dept Mat Sci & Engn, Taichung 407, Taiwan. [Zhao, Y. H.; Lavernia, E. J.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Cooley, J. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Kassner, M. E.; Langdon, T. G.] Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA. [Horita, Z.] Kyushu Univ, Fac Engn, Dept Mat Sci & Engn, Fukuoka 8190395, Japan. [Langdon, T. G.] Univ Southampton, Sch Engn Sci, Mat Res Grp, Southampton SO17 1BJ, Hants, England. [Zhu, Y. T.] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. RP Sun, PL (reprint author), Feng Chia Univ, Dept Mat Sci & Engn, Taichung 407, Taiwan. EM plsun@fcu.edu.tw RI Lavernia, Enrique/I-6472-2013; U-ID, Kyushu/C-5291-2016; Lujan Center, LANL/G-4896-2012; Zhu, Yuntian/B-3021-2008; Langdon, Terence/B-1487-2008; Zhao, Yonghao/A-8521-2009; Cooley, Jason/E-4163-2013 OI Lavernia, Enrique/0000-0003-2124-8964; Zhu, Yuntian/0000-0002-5961-7422; FU National Science Council of ROC [NSC-96-2218-E-035-008]; Office of Naval Research [N00014-08-1-0405] FX This work was supported by the National Science Council of ROC under contract NSC-96-2218-E-035-008. Y.H. Zhao and E.J. Lavernia would like to acknowledge support by the Office of Naval Research (Grant number N00014-08-1-0405) with Dr. Lawrence Kabacoff as program officer. NR 35 TC 37 Z9 40 U1 3 U2 28 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD NOV 15 PY 2009 VL 525 IS 1-2 BP 83 EP 86 DI 10.1016/j.msea.2009.06.030 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 504QY UT WOS:000270633400012 ER PT J AU Yang, ZY Anheier, NC Qiao, HA Lucas, P AF Yang, Zhiyong Anheier, Norman C., Jr. Qiao, Hong A. Lucas, Pierre TI Sub-wavelength imaging of photo-induced refractive index pattern in chalcogenide glass films SO OPTICS COMMUNICATIONS LA English DT Article ID NEAR-FIELD MEASUREMENTS; WAVE-GUIDES; AS2S3 GLASS; OPTICS; FORCE AB Mapping of refractive index patterns with sub-wavelength resolution is achieved using Near-field Scanning Optical Microscopy (NSOM) in reflection mode. Imaging of index pattern is performed on surface gratings photo-imprinted in As(2)S(3) films. The NSOM is adapted with a near infrared laser which wavelength (785 nm) is chosen to be within the transparency window of the glass film therefore allowing consistent measure of reflected light. Quantitative measurements of photo-induced index changes can then be obtained from knowledge of the initial film index. Images of gratings with a period of 0.5 micron are easily collected therefore demonstrating sub-wavelength spatial resolution. The technique permits to concurrently obtain a topographic image and index image of the gratings thereby permitting to quantify the extent of photodarkening and photoexpansion simultaneously. It is shown that relief gratings tend to vanish in films aged in air for several months however the index gratings remain. (c) 2009 Elsevier B.V. All rights reserved. C1 [Yang, Zhiyong; Lucas, Pierre] Univ Arizona, Dept Mat Sci & Engn, Tucson, AZ 85712 USA. [Anheier, Norman C., Jr.; Qiao, Hong A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Lucas, P (reprint author), Univ Arizona, Dept Mat Sci & Engn, 4715 E Ft Lowell Rd, Tucson, AZ 85712 USA. EM Pierre@u.arizona.edu RI Yang, Zhiyong/H-1309-2013 FU DOE [DE-FG52-06NA27501] FX This work was supported by DOE Grant DE-FG52-06NA27501. NR 22 TC 3 Z9 3 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0030-4018 J9 OPT COMMUN JI Opt. Commun. PD NOV 15 PY 2009 VL 282 IS 22 BP 4370 EP 4373 DI 10.1016/j.optcom.2009.08.014 PG 4 WC Optics SC Optics GA 514BE UT WOS:000271367500011 ER PT J AU Wu, H Wang, J Kang, XH Wang, CM Wang, DH Liu, J Aksay, IA Lin, YH AF Wu, Hong Wang, Jun Kang, Xinhuang Wang, Chongmin Wang, Donghai Liu, Jun Aksay, Ilhan A. Lin, Yuehe TI Glucose biosensor based on immobilization of glucose oxidase in platinum nanoparticles/graphene/chitosan nanocomposite film SO TALANTA LA English DT Article DE Graphene; Platinum nanoparticles; Nanocomposite; Biosensor; Glucose ID FUNCTIONALIZED GRAPHENE; CARBON NANOTUBES; GRAPHITE; SHEETS; SENSOR AB The bionanocomposite film consisting of glucose oxidase/Pt/functional graphene sheets/chitosan (GOD/Pt/FGS/chitosan) for glucose sensing is described. With the electrocatalytic synergy of FGS and Pt nanoparticles to hydrogen peroxide, a sensitive biosensor with a detection limit of 0.6 mu M glucose was achieved. The biosensor also has good reproducibility, long-term stability and negligible interfering signals from ascorbic acid and uric acid comparing with the response to glucose. The large surface area and good electrical conductivity of graphene suggests that graphene is a potential candidate as a sensor material. The hybrid nanocomposite glucose sensor provides new opportunity for clinical diagnosis and point-of-care applications. (C) 2009 Published by Elsevier B.V. C1 [Wu, Hong; Wang, Jun; Kang, Xinhuang; Wang, Chongmin; Wang, Donghai; Liu, Jun; Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. [Aksay, Ilhan A.] Princeton Univ, Dept Chem Engn, Princeton, NJ 08544 USA. RP Lin, YH (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999, Richland, WA 99352 USA. EM yuehe.lin@pnl.gov RI Aksay, Ilhan/B-9281-2008; Lin, Yuehe/D-9762-2011; Wang, Donghai/L-1150-2013 OI Lin, Yuehe/0000-0003-3791-7587; Wang, Donghai/0000-0001-7261-8510 FU Pacific Northwest National Laboratory (PNNL); DOE [DE-AC05-76RL01830]; Army Research Office (ARO)/Multidisciplinary Research Initiative (MURI) [W911NF-04-1-0170]; Directed Technologies, Inc FX This work was supported by a laboratory-directed research and development program at Pacific Northwest National Laboratory (PNNL). The work was performed at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy (DOE) and located at PNNL PNNL is operated by Battelle for DOE under Contract DE-AC05-76RL01830. Ilhan A. Aksay acknowledges support from Army Research Office (ARO)/Multidisciplinary Research Initiative (MURI) under grant number W911NF-04-1-0170 and the Directed Technologies, Inc. NR 19 TC 227 Z9 233 U1 16 U2 187 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-9140 J9 TALANTA JI Talanta PD NOV 15 PY 2009 VL 80 IS 1 BP 403 EP 406 DI 10.1016/j.talanta.2009.06.054 PG 4 WC Chemistry, Analytical SC Chemistry GA 509YR UT WOS:000271055700059 PM 19782243 ER PT J AU Chernyak, VY Sinitsyn, NA AF Chernyak, V. Y. Sinitsyn, N. A. TI Robust quantization of a molecular motor motion in a stochastic environment SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID TRANSPORT AB We explore quantization of the response of a molecular motor to periodic modulation of control parameters. We formulate the pumping-quantization theorem (PQT) that identifies the conditions for robust integer quantized behavior of a periodically driven molecular machine. Implication of PQT on experiments with catenane molecules are discussed. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3263821] C1 [Chernyak, V. Y.] Wayne State Univ, Dept Chem, Detroit, MI 48202 USA. [Chernyak, V. Y.; Sinitsyn, N. A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Chernyak, VY (reprint author), Wayne State Univ, Dept Chem, 5101 Cass Ave, Detroit, MI 48202 USA. EM nsinitsyn@lanl.gov RI Sinitsyn, nikolai/B-5617-2009; Chernyak, Vladimir/F-5842-2016 OI Chernyak, Vladimir/0000-0003-4389-4238 FU NSF [CHE-0808910, ECCS-0925618] FX We are grateful to M. Chertkov, J. R. Klein, and J. Horowitz for useful discussions. This material is based upon work supported by NSF under Grant Nos. CHE-0808910 and ECCS-0925618. NR 9 TC 14 Z9 14 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 14 PY 2009 VL 131 IS 18 AR 181101 DI 10.1063/1.3263821 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 528NY UT WOS:000272454500001 PM 19916586 ER PT J AU Pindzola, MS Ludlow, JA Robicheaux, F Colgan, J Griffin, DC AF Pindzola, M. S. Ludlow, J. A. Robicheaux, F. Colgan, J. Griffin, D. C. TI Electron-impact double ionization of magnesium SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID MULTIPLE IONIZATION; SINGLE; STATES; MG; HELIUM; IONS AB Theory and experiment are compared for the electron-impact double ionization of Mg. Direct ionization cross sections, involving the simultaneous ionization of both 3s electrons, are calculated using a non-perturbative time-dependent close-coupling method. Indirect ionization cross sections, involving the ionization of either a 2p or 2s electron followed by autoionization, are calculated using a perturbative time-independent distorted-wave method. At low energies the direct ionization cross sections are found to be in good agreement with experiments, while at the higher energies the indirect ionization cross sections are also found to be in good agreement with experiments. C1 [Pindzola, M. S.; Ludlow, J. A.; Robicheaux, F.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. [Colgan, J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. [Griffin, D. C.] Rollins Coll, Dept Phys, Winter Pk, FL 32789 USA. RP Pindzola, MS (reprint author), Auburn Univ, Dept Phys, Auburn, AL 36849 USA. RI Robicheaux, Francis/F-4343-2014; OI Robicheaux, Francis/0000-0002-8054-6040; Colgan, James/0000-0003-1045-3858 FU US Department of Energy; US National Science Foundation FX This work was supported in part by grants from the US Department of Energy and the US National Science Foundation. Computational work was carried out at the National Energy Research Scientific Computing Center in Oakland, California and at the National Center for Computational Sciences in Oak Ridge, Tennessee. NR 21 TC 14 Z9 14 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD NOV 14 PY 2009 VL 42 IS 21 AR 215204 DI 10.1088/0953-4075/42/21/215204 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 511FS UT WOS:000271149900007 ER PT J AU Zhang, H Mudryk, Y Zou, M Pecharsky, VK Gschneidner, KA Long, Y AF Zhang, H. Mudryk, Ya. Zou, M. Pecharsky, V. K. Gschneidner, K. A., Jr. Long, Y. TI Phase relationships and crystallography of annealed alloys in the Ce5Si4-Ce5Ge4 pseudobinary system SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Rare earth compounds; Crystal structure; Phase diagram; Ce5Si4; Ce5Ge4; Ce5Si4-Ce5Ge4 pseudobinary system ID CRYSTAL-STRUCTURE; SILICON; GD5SI4-GD5GE4 AB The phase relationships of annealed alloys in the Ce5Si4-xGex system were determined by X-ray powder diffraction (XRD). Two structurally distinct terminal phase regions were observed in this system: the Ce5Si4-based solid solution (0 <= x < 2.85) crystallizing in the Zr(5)si(4)-type tetragonal structure with space group P4(1)2(1)2, and the Ce5Ge4-based solid solution (3.35 < x <= 4) crystallizing in the Sm5Ge4-type orthorhombic structure with space group Prima. An intermediate phase, which has a narrow composition range with the monoclinic Gd5Si2Ge2-type structure, space group P112(1)/a, was found to exist at x=2.95 +/- 0.05. The Rietveld powder diffraction profile fitting technique was used to refine the crystal structures, lattice parameters, and the atomic positions. The phase relationships of the Ce5Si4-xGex pseudobinary system after heat treatment were established from these data. (C) 2009 Elsevier B.V. All rights reserved. C1 [Zhang, H.; Mudryk, Ya.; Zou, M.; Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. [Zhang, H.; Long, Y.] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China. [Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Gschneidner, KA (reprint author), Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. EM cagey@ameslab.gov FU U.S. Department of Energy [DE-AC02-07CH11358]; Office of Basic Energy Sciences; Materials Sciences Division of the Office of Science.; National Science Foundation of China; National High Technology Research and Development program of China; National Basic Research Program of China FX The Ames Laboratory is operated by Iowa State University of Science and Technology for the U.S. Department of Energy under contract No. DE-AC02-07CH11358. Work at Ames Laboratory is supported by the Office of Basic Energy Sciences, Materials Sciences Division of the Office of Science. H.Z.'s work at the Ames Laboratory was also supported by the National Science Foundation of China, the National High Technology Research and Development program of China, and the National Basic Research Program of China. NR 20 TC 1 Z9 1 U1 0 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD NOV 13 PY 2009 VL 487 IS 1-2 BP 98 EP 102 DI 10.1016/j.jallcom.2009.07.131 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 529MR UT WOS:000272521900026 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartos, P Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burke, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cordelli, M Cortiana, G Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF Di Canto, A di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Garosi, P Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hays, C Heck, M Heijboer, A Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Hussein, M Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lucchesi, D Luci, C Lueck, J Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Mondragon, MN Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Rutherford, B Saarikko, H Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spreitzer, T Squillacioti, P Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wurthwein, F Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartos, P. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burke, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cordelli, M. Cortiana, G. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. Di Canto, A. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Garosi, P. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heijboer, A. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Hussein, M. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. -S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lucchesi, D. Luci, C. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Mondragon, M. N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Rutherford, B. Saarikko, H. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spreitzer, T. Squillacioti, P. Stanitzki, M. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wuerthwein, F. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Search for Higgs Bosons Predicted in Two-Higgs-Doublet Models via Decays to Tau Lepton Pairs in 1.96 TeV pp Collisions SO PHYSICAL REVIEW LETTERS LA English DT Article ID BENCHMARK SCENARIOS; BROKEN SYMMETRIES AB We present the results of a search for Higgs bosons predicted in two-Higgs-doublet models, in the case where the Higgs bosons decay to tau lepton pairs, using 1.8 fb(-1) of integrated luminosity of pp collisions recorded by the CDF II experiment at the Fermilab Tevatron. Studying the mass distribution in events where one or both tau leptons decay leptonically, no evidence for a Higgs boson signal is observed. The result is used to infer exclusion limits in the two-dimensional space of tan beta versus m(A) (the ratio of the vacuum expectation values of the two Higgs doublets and the mass of the pseudoscalar boson, respectively). C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.; Martin, V.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Martinez, M.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Frank, M. J.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Canelli, F.; Fedorko, W. T.; Grosso-Pilcher, C.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bartos, P.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Antos, J.; Bartos, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burke, S.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Chung, K.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Mondragon, M. N.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Rutherford, B.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yi, K.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.] Harvard Univ, Cambridge, MA 02138 USA. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. Chonbuk Natl Univ, Jeonju 561756, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambient & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Goncharov, M.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, LPNHE, CNRS, IN2P3,UMR7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Punzi, G.; Sforza, F.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Garosi, P.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Ferrazza, C.; Trovato, M.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Aurisano, A.; Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Dionisi, C.; Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Dionisi, C.; Giagu, S.; Iori, M.; Luci, C.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl, I-34100 Trieste, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, I-33100 Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Ruiz, Alberto/E-4473-2011; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; vilar, rocio/P-8480-2014; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Chiarelli, Giorgio/E-8953-2012; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Xie, Si/O-6830-2016; Canelli, Florencia/O-9693-2016; OI Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Chiarelli, Giorgio/0000-0001-9851-4816; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Xie, Si/0000-0003-2509-5731; Canelli, Florencia/0000-0001-6361-2117; Gallinaro, Michele/0000-0003-1261-2277; Turini, Nicola/0000-0002-9395-5230 FU U.S. Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A.P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean Science and Engineering Foundation; Korean Research Foundation; Science and Technology Facilities Council and the Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; Slovak RD Agency; Academy of Finland FX We thank A. Belyaev, M. Carena, J. Gunion, T. Han, S. Heinemeyer, W. Kilgore, S. Mrenna, M. Spira, C. Wagner, G. Weiglein, and S. Willenbrock for illuminating discussions on the theory of MSSM Higgs production and decays. We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland. NR 26 TC 34 Z9 34 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 13 PY 2009 VL 103 IS 20 AR 201801 DI 10.1103/PhysRevLett.103.201801 PG 8 WC Physics, Multidisciplinary SC Physics GA 520RT UT WOS:000271864600012 ER PT J AU Aczel, AA Kohama, Y Marcenat, C Weickert, F Jaime, M Ayala-Valenzuela, OE McDonald, RD Selesnic, SD Dabkowska, HA Luke, GM AF Aczel, A. A. Kohama, Y. Marcenat, C. Weickert, F. Jaime, M. Ayala-Valenzuela, O. E. McDonald, R. D. Selesnic, S. D. Dabkowska, H. A. Luke, G. M. TI Field-Induced Bose-Einstein Condensation of Triplons up to 8 K in Sr3Cr2O8 SO PHYSICAL REVIEW LETTERS LA English DT Article ID QUANTUM CRITICAL-POINT; NOBEL LECTURE; TLCUCL3; MAGNONS; MODEL AB Single crystals of the spin dimer system Sr3Cr2O8 have been grown for the first time. Magnetization, heat capacity, and magnetocaloric effect data up to 65 T reveal magnetic order between applied fields of H-c1 similar to 30.4 T and H-c2 similar to 62 T. This field-induced order persists up to T-c(max)similar to 8 K at H similar to 44 T, the highest observed in any quantum magnet where H-c2 is experimentally accessible. We fit the temperature-field phase diagram boundary close to H-c1 using the expression T-c=A(H-H-c1)(nu). The exponent nu=0.65(2), obtained at temperatures much smaller than T-c(max), is that of the 3D Bose-Einstein condensate (BEC) universality class. This finding strongly suggests that Sr3Cr2O8 is a new realization of a triplon BEC where the universal regimes corresponding to both H-c1 and H-c2 are accessible at He-4 temperatures. C1 [Aczel, A. A.; Selesnic, S. D.; Luke, G. M.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Kohama, Y.; Jaime, M.; Ayala-Valenzuela, O. E.; McDonald, R. D.] Los Alamos Natl Lab, MPA CMMS, Los Alamos, NM 87545 USA. [Marcenat, C.] SPSMS LATEQS, Inst Nanosci & Cryognie, CEA, F-38054 Grenoble 9, France. [Weickert, F.] Max Planck Inst Chem Phys Solids, D-01187 Dresden, Germany. [Dabkowska, H. A.; Luke, G. M.] McMaster Univ, Brockhouse Inst Mat Res, Hamilton, ON L8S 4M1, Canada. [Luke, G. M.] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada. RP Aczel, AA (reprint author), McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. RI McDonald, Ross/H-3783-2013; Weickert, Franziska/F-3557-2015; Jaime, Marcelo/F-3791-2015; Luke, Graeme/A-9094-2010; Aczel, Adam/A-6247-2016; OI McDonald, Ross/0000-0002-0188-1087; Weickert, Franziska/0000-0002-1545-9645; Jaime, Marcelo/0000-0001-5360-5220; Aczel, Adam/0000-0003-1964-1943; Luke, Graeme/0000-0003-4762-1173; Mcdonald, Ross/0000-0002-5819-4739 FU NSERC; CIFAR; National Science Foundation; Department of Energy; State of Florida FX We acknowledge useful discussions with C. D. Batista and technical or experimental assistance from A. B. Dabkowski, F. Balakirev, and N. Harrison. Research at McMaster University is supported by NSERC and CIFAR. Research at NHMFL is supported by the National Science Foundation, the Department of Energy, and the State of Florida. NR 26 TC 40 Z9 40 U1 1 U2 26 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 13 PY 2009 VL 103 IS 20 AR 207203 DI 10.1103/PhysRevLett.103.207203 PG 4 WC Physics, Multidisciplinary SC Physics GA 520RT UT WOS:000271864600044 PM 20366007 ER PT J AU Cusanno, F Urciuoli, GM Acha, A Ambrozewicz, P Aniol, KA Baturin, P Bertin, PY Benaoum, H Blomqvist, KI Boeglin, WU Breuer, H Brindza, P Bydzovsky, P Camsonne, A Chang, CC Chen, JP Choi, S Chudakov, EA Cisbani, E Colilli, S Coman, L Craver, BJ De Cataldo, G de Jager, CW De Leo, R Deur, AP Ferdi, C Feuerbach, RJ Folts, E Fratoni, R Frullani, S Garibaldi, F Gayou, O Giuliani, F Gomez, J Gricia, M Hansen, JO Hayes, D Higinbotham, DW Holmstrom, TK Hyde, CE Ibrahim, HF Iodice, M Jiang, X Kaufman, LJ Kino, K Kross, B Lagamba, L LeRose, JJ Lindgren, RA Lucentini, M Margaziotis, DJ Markowitz, P Marrone, S Meziani, ZE McCormick, K Michaels, RW Millener, DJ Miyoshi, T Moffit, B Monaghan, PA Moteabbed, M Camacho, CM Nanda, S Nappi, E Nelyubin, VV Norum, BE Okasyasu, Y Paschke, KD Perdrisat, CF Piasetzky, E Punjabi, VA Qiang, Y Raue, B Reimer, PE Reinhold, J Reitz, B Roche, RE Rodriguez, VM Saha, A Santavenere, F Sarty, AJ Segal, J Shahinyan, A Singh, J Sirca, S Snyder, R Solvignon, PH Sotona, M Subedi, R Sulkosky, VA Suzuki, T Ueno, H Ulmer, PE Veneroni, P Voutier, E Wojtsekhowski, BB Zheng, X Zorn, C AF Cusanno, F. Urciuoli, G. M. Acha, A. Ambrozewicz, P. Aniol, K. A. Baturin, P. Bertin, P. Y. Benaoum, H. Blomqvist, K. I. Boeglin, W. U. Breuer, H. Brindza, P. Bydzovsky, P. Camsonne, A. Chang, C. C. Chen, J. -P. Choi, Seonho Chudakov, E. A. Cisbani, E. Colilli, S. Coman, L. Craver, B. J. De Cataldo, G. de Jager, C. W. De Leo, R. Deur, A. P. Ferdi, C. Feuerbach, R. J. Folts, E. Fratoni, R. Frullani, S. Garibaldi, F. Gayou, O. Giuliani, F. Gomez, J. Gricia, M. Hansen, J. O. Hayes, D. Higinbotham, D. W. Holmstrom, T. K. Hyde, C. E. Ibrahim, H. F. Iodice, M. Jiang, X. Kaufman, L. J. Kino, K. Kross, B. Lagamba, L. LeRose, J. J. Lindgren, R. A. Lucentini, M. Margaziotis, D. J. Markowitz, P. Marrone, S. Meziani, Z. E. McCormick, K. Michaels, R. W. Millener, D. J. Miyoshi, T. Moffit, B. Monaghan, P. A. Moteabbed, M. Camacho, C. Munoz Nanda, S. Nappi, E. Nelyubin, V. V. Norum, B. E. Okasyasu, Y. Paschke, K. D. Perdrisat, C. F. Piasetzky, E. Punjabi, V. A. Qiang, Y. Raue, B. Reimer, P. E. Reinhold, J. Reitz, B. Roche, R. E. Rodriguez, V. M. Saha, A. Santavenere, F. Sarty, A. J. Segal, J. Shahinyan, A. Singh, J. Sirca, S. Snyder, R. Solvignon, P. H. Sotona, M. Subedi, R. Sulkosky, V. A. Suzuki, T. Ueno, H. Ulmer, P. E. Veneroni, P. Voutier, E. Wojtsekhowski, B. B. Zheng, X. Zorn, C. CA Jefferson Lab Hall Collaboration TI High-Resolution Spectroscopy of N-16(Lambda) by Electroproduction SO PHYSICAL REVIEW LETTERS LA English DT Article ID HALL-A SPECTROMETERS; JEFFERSON-LAB; LAMBDA-HYPERNUCLEI; RICH DETECTOR; KAON PHYSICS; JLAB HALL; P-SHELL; STRANGENESS; PERFORMANCE AB An experimental study of the O-16(e,e(')K(+))(Lambda)N-16 reaction has been performed at Jefferson Lab. A thin film of falling water was used as a target. This permitted a simultaneous measurement of the p(e,e(')K(+))Lambda,Sigma(0) exclusive reactions and a precise calibration of the energy scale. A ground-state binding energy of 13.76 +/- 0.16 MeV was obtained for N-16(Lambda) with better precision than previous measurements on the mirror hypernucleus O-16(Lambda). Precise energies have been determined for peaks arising from a Lambda in s and p orbits coupled to the p(1/2) and p(3/2) hole states of the N-15 core nucleus. C1 [Cusanno, F.; Urciuoli, G. M.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Acha, A.; Ambrozewicz, P.; Boeglin, W. U.; Coman, L.; Markowitz, P.; Moteabbed, M.; Raue, B.; Reinhold, J.] Florida Int Univ, Miami, FL 33199 USA. [Aniol, K. A.; Margaziotis, D. J.] Calif State Univ Los Angeles, Los Angeles, CA 90032 USA. [Baturin, P.; Jiang, X.; McCormick, K.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Bertin, P. Y.; Camsonne, A.; Ferdi, C.; Hyde, C. E.] Univ Clermont Ferrand, IN2P3, F-63177 Aubiere, France. [Benaoum, H.] Syracuse Univ, Syracuse, NY 13244 USA. [Blomqvist, K. I.] Johannes Gutenberg Univ Mainz, Mainz, Germany. [Breuer, H.; Chang, C. C.] Univ Maryland, College Pk, MD 20742 USA. [Brindza, P.; Chen, J. -P.; Chudakov, E. A.; de Jager, C. W.; Feuerbach, R. J.; Folts, E.; Gomez, J.; Hansen, J. O.; Higinbotham, D. W.; Kross, B.; LeRose, J. J.; Michaels, R. W.; Nanda, S.; Reitz, B.; Saha, A.; Segal, J.; Wojtsekhowski, B. B.; Zorn, C.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Bydzovsky, P.; Sotona, M.] Acad Sci Czech Republic, Inst Nucl Phys, CZ-25068 Rez, Czech Republic. [Choi, Seonho; Meziani, Z. E.; Solvignon, P. H.] Temple Univ, Philadelphia, PA 19122 USA. [Cisbani, E.; Colilli, S.; Fratoni, R.; Frullani, S.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lucentini, M.; Santavenere, F.; Veneroni, P.] Ist Nazl Fis Nucl, Sez Roma, Grp Collegato Sanita, I-00161 Rome, Italy. [Cisbani, E.; Colilli, S.; Fratoni, R.; Frullani, S.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lucentini, M.; Santavenere, F.; Veneroni, P.] Ist Super Sanita, I-00161 Rome, Italy. [Craver, B. J.; Deur, A. P.; Lindgren, R. A.; Nelyubin, V. V.; Norum, B. E.; Singh, J.; Snyder, R.] Univ Virginia, Charlottesville, VA 22904 USA. [De Cataldo, G.; De Leo, R.; Lagamba, L.; Marrone, S.; Nappi, E.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [De Cataldo, G.; De Leo, R.; Lagamba, L.; Marrone, S.; Nappi, E.] Univ Bari, I-70126 Bari, Italy. [Gayou, O.; Monaghan, P. A.; Qiang, Y.] MIT, Cambridge, MA 02139 USA. [Hayes, D.; Hyde, C. E.; Ibrahim, H. F.; Ulmer, P. E.] Old Dominion Univ, Norfolk, VA 23508 USA. [Holmstrom, T. K.; Moffit, B.; Perdrisat, C. F.; Sulkosky, V. A.] Coll William & Mary, Williamsburg, VA 23187 USA. [Iodice, M.] Ist Nazl Fis Nucl, Sez Roma Tre, I-00146 Rome, Italy. [Kaufman, L. J.; Paschke, K. D.] Univ Massachusetts, Amherst, MA 01003 USA. [Kino, K.] Osaka Univ, Nucl Phys Res Ctr, Osaka 5670047, Japan. [Millener, D. J.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Miyoshi, T.; Okasyasu, Y.; Suzuki, T.] Tohoku Univ, Sendai, Miyagi 9808578, Japan. [Camacho, C. Munoz] CEA Saclay, DAPNIA SPhN, F-91191 Gif Sur Yvette, France. [Piasetzky, E.] Tel Aviv Univ, Sackler Fac Exact Sci, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Punjabi, V. A.] Norfolk State Univ, Norfolk, VA 23504 USA. [Reimer, P. E.; Zheng, X.] Argonne Natl Lab, Argonne, IL 60439 USA. [Roche, R. E.] Florida State Univ, Tallahassee, FL 32306 USA. [Rodriguez, V. M.] Univ Houston, Houston, TX 77204 USA. [Sarty, A. J.] St Marys Univ, Halifax, NS B3H 3C3, Canada. [Shahinyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Sirca, S.] Univ Ljubljana, Dept Phys, Ljubljana 61000, Slovenia. [Subedi, R.] Kent State Univ, Kent, OH 44242 USA. [Ueno, H.] Yamagata Univ, Yamagata 9908560, Japan. [Voutier, E.] Univ Grenoble 1, LPSC, CNRS, INPG,IN2P3, F-38026 Grenoble, France. RP Cusanno, F (reprint author), Ist Nazl Fis Nucl, Sez Roma, Piazzale Aldo Moro 2, I-00185 Rome, Italy. RI Cisbani, Evaristo/C-9249-2011; kino, koichi/D-6173-2012; Reimer, Paul/E-2223-2013; Singh, Jaideep/H-2346-2013; Sarty, Adam/G-2948-2014; Higinbotham, Douglas/J-9394-2014 OI Cisbani, Evaristo/0000-0002-6774-8473; Singh, Jaideep/0000-0002-4810-4824; Higinbotham, Douglas/0000-0003-2758-6526 FU U.S. DOE [DE-AC05-84ER40150]; Southeastern Universities Research Association (SURA); Italian Istituto Nazionale di Fisica Nucleare; Grant Agency of the Czech Republic [202/08/0984]; French CEA; CNRS/IN2P3; U.S. National Science Foundation [DE-AC02-06CH11357, DE-FG02-99ER41110, DE-AC02-98CH10886] FX We acknowledge the Jefferson Lab Physics and Accelerator Division staff for the outstanding efforts that made this work possible. This work was supported by U.S. DOE Contract No. DE-AC05-84ER40150, Modification No. 175, under which the Southeastern Universities Research Association (SURA) operates the Thomas Jefferson National Accelerator Facility, by the Italian Istituto Nazionale di Fisica Nucleare and by the Grant Agency of the Czech Republic under Grant No. 202/08/0984, by the French CEA and CNRS/IN2P3, and by the U.S. DOE under Contracts No. DE-AC02-06CH11357, No. DE-FG02-99ER41110, and No. DE-AC02-98CH10886, and by the U.S. National Science Foundation. NR 30 TC 33 Z9 33 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 13 PY 2009 VL 103 IS 20 AR 202501 DI 10.1103/PhysRevLett.103.202501 PG 5 WC Physics, Multidisciplinary SC Physics GA 520RT UT WOS:000271864600016 PM 20365979 ER PT J AU Giedt, J Thomas, AW Young, RD AF Giedt, Joel Thomas, Anthony W. Young, Ross D. TI Dark Matter, Constrained Minimal Supersymmetric Standard Model, and Lattice QCD SO PHYSICAL REVIEW LETTERS LA English DT Article ID SIGMA-TERM; PARTICLE PHYSICS; BENCHMARKS; SYMMETRY; MASSES AB Recent lattice measurements have given accurate estimates of the quark condensates in the proton. We use these results to significantly improve the dark matter predictions in benchmark models within the constrained minimal supersymmetric standard model. The predicted spin-independent cross sections are at least an order of magnitude smaller than previously suggested and our results have significant consequences for dark matter searches. C1 [Giedt, Joel] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. [Thomas, Anthony W.] Jefferson Lab, Newport News, VA 23606 USA. [Thomas, Anthony W.] Univ Adelaide, Sch Chem & Phys, Special Res Ctr Subat Struct Matter, Adelaide, SA 5005, Australia. [Young, Ross D.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Giedt, J (reprint author), Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, 110 8th St, Troy, NY 12180 USA. RI Thomas, Anthony/G-4194-2012; Young, Ross/H-8207-2012 OI Thomas, Anthony/0000-0003-0026-499X; FU U.S. Department of Energy [DE-AC05-06OR23177]; Jefferson Science Associates, LLC operates Jefferson Laboratory [DEAC02-06CH11357]; UChicago Argonne, LLC, operates Argonne National Laboratory FX We thank Keith Olive for discussions and the use of a version of his collaborations' RGE code in order to perform comparisons to SOFTSUSY. J.G. was supported by Rensselaer faculty development funds. This work was supported by the U.S. Department of Energy contracts DE-AC05-06OR23177, under which Jefferson Science Associates, LLC operates Jefferson Laboratory and DEAC02-06CH11357, under which UChicago Argonne, LLC, operates Argonne National Laboratory. NR 34 TC 134 Z9 134 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 13 PY 2009 VL 103 IS 20 AR 201802 DI 10.1103/PhysRevLett.103.201802 PG 4 WC Physics, Multidisciplinary SC Physics GA 520RT UT WOS:000271864600013 PM 20365976 ER PT J AU McDevitt, CJ Diamond, PH Gurcan, OD Hahm, TS AF McDevitt, C. J. Diamond, P. H. Gurcan, O. D. Hahm, T. S. TI Toroidal Rotation Driven by the Polarization Drift SO PHYSICAL REVIEW LETTERS LA English DT Article ID WAVE TURBULENCE; TOKAMAKS; REVERSAL; PLASMA AB Starting from a phase space conserving gyrokinetic formulation, a systematic derivation of parallel momentum conservation uncovers a novel mechanism by which microturbulence may drive intrinsic rotation. This mechanism, which appears in the gyrokinetic formulation through the parallel nonlinearity, emerges due to charge separation induced by the polarization drift. The derivation and physical discussion of this mechanism will be pursued throughout this Letter. C1 [McDevitt, C. J.; Diamond, P. H.; Gurcan, O. D.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. [McDevitt, C. J.; Diamond, P. H.; Gurcan, O. D.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Hahm, T. S.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP McDevitt, CJ (reprint author), Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. EM cmcdevitt@ucsd.edu RI Gurcan, Ozgur/A-1362-2013; OI Gurcan, Ozgur/0000-0002-2278-1544; McDevitt, Christopher/0000-0002-3674-2909 FU U.S. Department of Energy [DE-FG02-04ER54738, DEFC02-08ER54959, DE-FC02-08ER54983] FX This research was supported by U.S. Department of Energy Contracts No. DE-FG02-04ER54738, No. DEFC02-08ER54959,and No. DE-FC02-08ER54983. NR 32 TC 26 Z9 27 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 13 PY 2009 VL 103 IS 20 AR 205003 DI 10.1103/PhysRevLett.103.205003 PG 4 WC Physics, Multidisciplinary SC Physics GA 520RT UT WOS:000271864600024 PM 20365987 ER PT J AU Ryutov, DD AF Ryutov, D. D. TI Relating the Proca Photon Mass and Cosmic Vector Potential via Solar Wind SO PHYSICAL REVIEW LETTERS LA English DT Article ID MAGNETIC-FIELD; PHYSICS; LIMITS AB The effect of the Proca photon mass m(ph) and cosmic vector potential A(C) on the dynamics of solar wind is considered. For large-enough values of the parameter A(C)m(ph)(2), the solar wind structure at a distance of similar to 40 AU from the Sun should change significantly with respect to the actual observed flow. The absence of such deviations gives an upper bound on the parameter A(C)m(ph)(2) 9 orders of magnitude less than in laboratory experiments measuring torque on a toroidal magnet. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Ryutov, DD (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. FU LLNL [DE-AC5207NA27344] FX Prepared by LLNL under Contract No. DE-AC5207NA27344. NR 23 TC 4 Z9 4 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 13 PY 2009 VL 103 IS 20 AR 201803 DI 10.1103/PhysRevLett.103.201803 PG 4 WC Physics, Multidisciplinary SC Physics GA 520RT UT WOS:000271864600014 PM 20365977 ER PT J AU Seely, J Daniel, A Gaskell, D Arrington, J Fomin, N Solvignon, P Asaturyan, R Benmokhtar, F Boeglin, W Boillat, B Bosted, P Bruell, A Bukhari, MHS Christy, ME Clasie, B Connell, S Dalton, MM Day, D Dunne, J Dutta, D El Fassi, L Ent, R Fenker, H Filippone, BW Gao, H Hill, C Holt, RJ Horn, T Hungerford, E Jones, MK Jourdan, J Kalantarians, N Keppel, CE Kiselev, D Kotulla, M Lee, C Lung, AF Malace, S Meekins, DG Mertens, T Mkrtchyan, H Navasardyan, T Niculescu, G Niculescu, I Nomura, H Okayasu, Y Opper, AK Perdrisat, C Potterveld, DH Punjabi, V Qian, X Reimer, PE Roche, J Rodriguez, VM Rondon, O Schulte, E Segbefia, E Slifer, K Smith, GR Tadevosyan, V Tajima, S Tang, L Testa, G Trojer, R Tvaskis, V Vulcan, WF Wesselmann, FR Wood, SA Wright, J Yuan, L Zheng, X AF Seely, J. Daniel, A. Gaskell, D. Arrington, J. Fomin, N. Solvignon, P. Asaturyan, R. Benmokhtar, F. Boeglin, W. Boillat, B. Bosted, P. Bruell, A. Bukhari, M. H. S. Christy, M. E. Clasie, B. Connell, S. Dalton, M. M. Day, D. Dunne, J. Dutta, D. El Fassi, L. Ent, R. Fenker, H. Filippone, B. W. Gao, H. Hill, C. Holt, R. J. Horn, T. Hungerford, E. Jones, M. K. Jourdan, J. Kalantarians, N. Keppel, C. E. Kiselev, D. Kotulla, M. Lee, C. Lung, A. F. Malace, S. Meekins, D. G. Mertens, T. Mkrtchyan, H. Navasardyan, T. Niculescu, G. Niculescu, I. Nomura, H. Okayasu, Y. Opper, A. K. Perdrisat, C. Potterveld, D. H. Punjabi, V. Qian, X. Reimer, P. E. Roche, J. Rodriguez, V. M. Rondon, O. Schulte, E. Segbefia, E. Slifer, K. Smith, G. R. Tadevosyan, V. Tajima, S. Tang, L. Testa, G. Trojer, R. Tvaskis, V. Vulcan, W. F. Wesselmann, F. R. Wood, S. A. Wright, J. Yuan, L. Zheng, X. TI New Measurements of the European Muon Collaboration Effect in Very Light Nuclei SO PHYSICAL REVIEW LETTERS LA English DT Article ID INELASTIC ELECTRON-SCATTERING; DEPENDENCE AB New Jefferson Lab data are presented on the nuclear dependence of the inclusive cross section from (2)H, (3)He, (4)He, (9)Be and (12)C for 0.3 < x < 0.9, Q(2)approximate to 3-6 GeV(2). These data represent the first measurement of the EMC effect for (3)He at large x and a significant improvement for (4)He. The data do not support previous A-dependent or density-dependent fits to the EMC effect and suggest that the nuclear dependence of the quark distributions may depend on the local nuclear environment. C1 [Arrington, J.; Solvignon, P.; El Fassi, L.; Holt, R. J.; Potterveld, D. H.; Reimer, P. E.; Schulte, E.; Zheng, X.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Seely, J.; Clasie, B.; Gao, H.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Daniel, A.; Bukhari, M. H. S.; Hungerford, E.; Kalantarians, N.; Okayasu, Y.; Rodriguez, V. M.] Univ Houston, Houston, TX USA. [Gaskell, D.; Bosted, P.; Bruell, A.; Ent, R.; Fenker, H.; Horn, T.; Jones, M. K.; Lung, A. F.; Meekins, D. G.; Roche, J.; Smith, G. R.; Vulcan, W. F.; Wood, S. A.] Thomas Jefferson Natl Lab, Newport News, VA USA. [Fomin, N.; Connell, S.; Dalton, M. M.; Day, D.; Hill, C.; Rondon, O.; Slifer, K.; Tajima, S.; Wesselmann, F. R.; Wright, J.] Univ Virginia, Charlottesville, VA USA. [Asaturyan, R.; Mkrtchyan, H.; Navasardyan, T.; Tadevosyan, V.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Benmokhtar, F.; Horn, T.] Univ Maryland, College Pk, MD 20742 USA. [Boeglin, W.] Florida Int Univ, Miami, FL 33199 USA. [Boillat, B.; Jourdan, J.; Kiselev, D.; Kotulla, M.; Mertens, T.; Testa, G.; Trojer, R.] Univ Basel, Basel, Switzerland. [Christy, M. E.; Keppel, C. E.; Malace, S.; Segbefia, E.; Tang, L.; Tvaskis, V.; Yuan, L.] Hampton Univ, Hampton, VA 23668 USA. [Dunne, J.; Dutta, D.] Mississippi State Univ, Jackson, MS USA. [Dutta, D.; Gao, H.; Qian, X.] Duke Univ, Triangle Univ Nucl Lab, Durham, NC USA. [Filippone, B. W.] CALTECH, Kellogg Radiat Lab, Pasadena, CA 91125 USA. [Lee, C.] Univ Witwatersrand, Johannesburg, South Africa. [Niculescu, G.; Niculescu, I.] James Madison Univ, Harrisonburg, VA 22807 USA. [Nomura, H.; Okayasu, Y.] Tohoku Univ, Sendai, Miyagi 980, Japan. [Opper, A. K.] Ohio Univ, Athens, OH 45701 USA. [Perdrisat, C.] Coll William & Mary, Williamsburg, VA USA. [Punjabi, V.] Norfolk State Univ, Norfolk, VA USA. RP Arrington, J (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. EM johna@anl.gov RI Dalton, Mark/B-5380-2016; Gao, Haiyan/G-2589-2011; Arrington, John/D-1116-2012; Rondon Aramayo, Oscar/B-5880-2013; Holt, Roy/E-5803-2011; Reimer, Paul/E-2223-2013; Mertens, Thomas/E-9826-2013; Day, Donal/C-5020-2015 OI Dalton, Mark/0000-0001-9204-7559; Arrington, John/0000-0002-0702-1328; Bukhari, Masroor/0000-0003-3604-3152; Day, Donal/0000-0001-7126-8934 FU NSF; DOE [DE-AC02-06CH11357, DE-AC05-06OR23177]; South African National Research Foundation FX This work was supported in part by the NSF and DOE, including DOE Contract No. DE-AC02-06CH11357, DOE Contract No. DE-AC05-06OR23177 under which JSA, LLC operates JLab, and the South African National Research Foundation. NR 18 TC 72 Z9 72 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 13 PY 2009 VL 103 IS 20 AR 202301 DI 10.1103/PhysRevLett.103.202301 PG 5 WC Physics, Multidisciplinary SC Physics GA 520RT UT WOS:000271864600015 PM 20365978 ER PT J AU Wilkins, SB Forrest, TR Beale, TAW Bland, SR Walker, HC Mannix, D Yakhou, F Prabhakaran, D Boothroyd, AT Hill, JP Hatton, PD McMorrow, DF AF Wilkins, S. B. Forrest, T. R. Beale, T. A. W. Bland, S. R. Walker, H. C. Mannix, D. Yakhou, F. Prabhakaran, D. Boothroyd, A. T. Hill, J. P. Hatton, P. D. McMorrow, D. F. TI Nature of the Magnetic Order and Origin of Induced Ferroelectricity in TbMnO3 SO PHYSICAL REVIEW LETTERS LA English DT Article ID EXCHANGE SCATTERING; POLARIZATION AB The magnetic structures which endow TbMnO3 with its multiferroic properties have been reassessed on the basis of a comprehensive soft x-ray resonant scattering (XRS) study. The selectivity of XRS facilitated separation of the various contributions (Mn L-2 edge, Mn 3d moments; Tb M-4 edge, Tb 4f moments), while its variation with azimuth provided information on the moment direction of distinct Fourier components. When the data are combined with a detailed group theory analysis, a new picture emerges of the ferroelectric transition at 28 K. Instead of being driven by the transition from a collinear to a noncollinear magnetic structure, as has previously been supposed, it is shown to occur between two noncollinear structures. C1 [Wilkins, S. B.; Hill, J. P.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [Forrest, T. R.; Walker, H. C.; McMorrow, D. F.] UCL, London Ctr Nanotechnol, London WC1E 6BT, England. [Beale, T. A. W.; Bland, S. R.; Hatton, P. D.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Walker, H. C.; Yakhou, F.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Mannix, D.] UJF, CNRS, Inst Neel, F-38042 Grenoble, France. [Prabhakaran, D.; Boothroyd, A. T.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. RP Wilkins, SB (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RI McMorrow, Desmond/C-2655-2008; Walker, Helen/C-4201-2011; Hill, John/F-6549-2011; Hatton, Peter/J-8445-2014 OI McMorrow, Desmond/0000-0002-4947-7788; Walker, Helen/0000-0002-7859-5388; FU Office of Science, U. S. Department of Energy [DE-AC02-98CH10886]; UCL; EPSRC; Royal Society; Durham and Oxford FX The authors would like to thank S. J. Billinge, E. S. Boz. in, B. Detlefs, C. Detlefs, W. Ku, and A. Wills for many stimulating discussions. The work at Brookhaven National Laboratory is supported by the Office of Science, U. S. Department of Energy, under Contract No. DE-AC02-98CH10886. Work at UCL was supported by the EPSRC and the Royal Society and in Durham and Oxford by the EPSRC. NR 27 TC 34 Z9 35 U1 4 U2 35 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 13 PY 2009 VL 103 IS 20 AR 207602 DI 10.1103/PhysRevLett.103.207602 PG 4 WC Physics, Multidisciplinary SC Physics GA 520RT UT WOS:000271864600050 PM 20366013 ER PT J AU Gibson, JM AF Gibson, J. Murray TI Viewing the Seeds of Crystallization SO SCIENCE LA English DT Editorial Material ID MEDIUM-RANGE ORDER; FLUCTUATION MICROSCOPY C1 Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Gibson, JM (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM jmgibson@aps.anl.gov RI Gibson, Murray/E-5855-2013 OI Gibson, Murray/0000-0002-0807-6224 NR 14 TC 12 Z9 13 U1 1 U2 13 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD NOV 13 PY 2009 VL 326 IS 5955 BP 942 EP 943 DI 10.1126/science.1182817 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 518SB UT WOS:000271712300020 PM 19965499 ER PT J AU McComas, DJ Allegrini, F Bochsler, P Bzowski, M Christian, ER Crew, GB DeMajistre, R Fahr, H Fichtner, H Frisch, PC Funsten, HO Fuselier, SA Gloeckler, G Gruntman, M Heerikhuisen, J Izmodenov, V Janzen, P Knappenberger, P Krimigis, S Kucharek, H Lee, M Livadiotis, G Livi, S MacDowall, RJ Mitchell, D Mobius, E Moore, T Pogorelov, NV Reisenfeld, D Roelof, E Saul, L Schwadron, NA Valek, PW Vanderspek, R Wurz, P Zank, GP AF McComas, D. J. Allegrini, F. Bochsler, P. Bzowski, M. Christian, E. R. Crew, G. B. DeMajistre, R. Fahr, H. Fichtner, H. Frisch, P. C. Funsten, H. O. Fuselier, S. A. Gloeckler, G. Gruntman, M. Heerikhuisen, J. Izmodenov, V. Janzen, P. Knappenberger, P. Krimigis, S. Kucharek, H. Lee, M. Livadiotis, G. Livi, S. MacDowall, R. J. Mitchell, D. Moebius, E. Moore, T. Pogorelov, N. V. Reisenfeld, D. Roelof, E. Saul, L. Schwadron, N. A. Valek, P. W. Vanderspek, R. Wurz, P. Zank, G. P. TI Global Observations of the Interstellar Interaction from the Interstellar Boundary Explorer (IBEX) SO SCIENCE LA English DT Article ID WIND TERMINATION SHOCK; SOLAR-WIND; MAGNETIC-FIELD; HELIOSHEATH; VOYAGER-1 AB The Sun moves through the local interstellar medium, continuously emitting ionized, supersonic solar wind plasma and carving out a cavity in interstellar space called the heliosphere. The recently launched Interstellar Boundary Explorer (IBEX) spacecraft has completed its first all-sky maps of the interstellar interaction at the edge of the heliosphere by imaging energetic neutral atoms (ENAs) emanating from this region. We found a bright ribbon of ENA emission, unpredicted by prior models or theories, that may be ordered by the local interstellar magnetic field interacting with the heliosphere. This ribbon is superposed on globally distributed flux variations ordered by both the solar wind structure and the direction of motion through the interstellar medium. Our results indicate that the external galactic environment strongly imprints the heliosphere. C1 [McComas, D. J.; Allegrini, F.; Livadiotis, G.; Livi, S.; Valek, P. W.] SW Res Inst, San Antonio, TX 78228 USA. [McComas, D. J.; Allegrini, F.; Livi, S.; Valek, P. W.] Univ Texas San Antonio, San Antonio, TX 78249 USA. [Bochsler, P.; Saul, L.; Wurz, P.] Univ Bern, Inst Phys, CH-3012 Bern, Switzerland. [Bzowski, M.] Polish Acad Sci, Space Res Ctr, PL-00716 Warsaw, Poland. [Christian, E. R.; MacDowall, R. J.; Moore, T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Crew, G. B.; Vanderspek, R.] MIT, Cambridge, MA 02139 USA. [DeMajistre, R.; Krimigis, S.; Mitchell, D.; Roelof, E.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Fahr, H.] Univ Bonn, D-53115 Bonn, Germany. [Fichtner, H.] Ruhr Univ Bochum, D-44780 Bochum, Germany. [Frisch, P. C.] Univ Chicago, Chicago, IL 60637 USA. [Funsten, H. O.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Fuselier, S. A.] Lockheed Martin Adv Technol Ctr, Palo Alto, CA 94304 USA. [Gloeckler, G.] Univ Michigan, Ann Arbor, MI 48109 USA. [Gruntman, M.] Univ Calif Los Angeles, Los Angeles, CA 90089 USA. [Heerikhuisen, J.; Pogorelov, N. V.; Zank, G. P.] Univ Alabama, Huntsville, AL 35805 USA. [Izmodenov, V.] Moscow MV Lomonosov State Univ, Moscow 119899, Russia. [Izmodenov, V.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia. [Izmodenov, V.] Russian Acad Sci, Inst Problems Mech, Moscow 117526, Russia. [Janzen, P.; Reisenfeld, D.] Univ Montana, Missoula, MT 59812 USA. [Knappenberger, P.] Adler Planetarium, Chicago, IL 60605 USA. [Krimigis, S.] Acad Athens, Off Space Res & Technol, Athens 10679, Greece. [Kucharek, H.; Lee, M.; Moebius, E.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Schwadron, N. A.] Boston Univ, Boston, MA 02215 USA. RP McComas, DJ (reprint author), SW Res Inst, 6220 Culebra Rd, San Antonio, TX 78228 USA. EM dmccomas@swri.org RI MacDowall, Robert/D-2773-2012; Moore, Thomas/D-4675-2012; Christian, Eric/D-4974-2012; Izmodenov, Vladislav/K-6073-2012; Funsten, Herbert/A-5702-2015; Gruntman, Mike/A-5426-2008 OI Valek, Philip/0000-0002-2318-8750; Moore, Thomas/0000-0002-3150-1137; Christian, Eric/0000-0003-2134-3937; Moebius, Eberhard/0000-0002-2745-6978; Heerikhuisen, Jacob/0000-0001-7867-3633; Izmodenov, Vladislav/0000-0002-1748-0982; Funsten, Herbert/0000-0002-6817-1039; Gruntman, Mike/0000-0002-0830-010X FU NASA [NNG05EC85C] FX We thank all the men and women who made the IBEX mission possible. IBEX was primarily funded by NASA as a part of the Explorers Program ( contract NNG05EC85C); foreign investigators were supported by their respective national agencies and institutions. NR 28 TC 277 Z9 278 U1 0 U2 30 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD NOV 13 PY 2009 VL 326 IS 5955 BP 959 EP 962 DI 10.1126/science.1180906 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 518SB UT WOS:000271712300028 PM 19833923 ER PT J AU Fuselier, SA Allegrini, F Funsten, HO Ghielmetti, AG Heirtzler, D Kucharek, H Lennartsson, OW McComas, DJ Mobius, E Moore, TE Petrinec, SM Saul, LA Scheer, JA Schwadron, N Wurz, P AF Fuselier, S. A. Allegrini, F. Funsten, H. O. Ghielmetti, A. G. Heirtzler, D. Kucharek, H. Lennartsson, O. W. McComas, D. J. Moebius, E. Moore, T. E. Petrinec, S. M. Saul, L. A. Scheer, J. A. Schwadron, N. Wurz, P. TI Width and Variation of the ENA Flux Ribbon Observed by the Interstellar Boundary Explorer SO SCIENCE LA English DT Article AB The dominant feature in Interstellar Boundary Explorer ( IBEX) sky maps of heliospheric energetic neutral atom (ENA) flux is a ribbon of enhanced flux that extends over a broad range of ecliptic latitudes and longitudes. It is narrow (similar to 20 degrees average width) but long ( extending over 300 in the sky) and is observed at energies from 0.2 to 6 kilo-electron volts. We demonstrate that the flux in the ribbon is a factor of 2 to 3 times higher than that of the more diffuse, globally distributed heliospheric ENA flux. The ribbon is most pronounced at similar to 1 kilo-electron volt. The average width of the ribbon is nearly constant, independent of energy. The ribbon is likely the result of an enhancement in the combined solar wind and pickup ion populations in the heliosheath. C1 [Fuselier, S. A.; Ghielmetti, A. G.; Lennartsson, O. W.; Petrinec, S. M.] Lockheed Martin Adv Technol Ctr, Palo Alto, CA 94304 USA. [Allegrini, F.; McComas, D. J.] Univ Texas San Antonio, San Antonio, TX 78249 USA. [Allegrini, F.; McComas, D. J.] SW Res Inst, San Antonio, TX 78228 USA. [Funsten, H. O.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Heirtzler, D.; Kucharek, H.; Moebius, E.] Univ New Hampshire, Durham, NH 03824 USA. [Moore, T. E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Saul, L. A.; Scheer, J. A.; Wurz, P.] Univ Bern, Inst Phys, CH-3012 Bern, Switzerland. [Schwadron, N.] Boston Univ, Boston, MA 02215 USA. RP Fuselier, SA (reprint author), Lockheed Martin Adv Technol Ctr, Palo Alto, CA 94304 USA. EM stephen.a.fuselier@lmco.com RI Moore, Thomas/D-4675-2012; Funsten, Herbert/A-5702-2015; OI Moore, Thomas/0000-0002-3150-1137; Funsten, Herbert/0000-0002-6817-1039; Moebius, Eberhard/0000-0002-2745-6978 FU NASA through sub-contract from Southwest Research Institute FX These results from the IBEX mission are a tribute to the hard work of many scientists and engineers. Work at Lockheed Martin was funded by NASA through sub-contract from Southwest Research Institute. NR 6 TC 110 Z9 112 U1 0 U2 9 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD NOV 13 PY 2009 VL 326 IS 5955 BP 962 EP 964 DI 10.1126/science.1180981 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 518SB UT WOS:000271712300029 PM 19833916 ER PT J AU Funsten, HO Allegrini, F Crew, GB DeMajistre, R Frisch, PC Fuselier, SA Gruntman, M Janzen, P McComas, DJ Mobius, E Randol, B Reisenfeld, DB Roelof, EC Schwadron, NA AF Funsten, H. O. Allegrini, F. Crew, G. B. DeMajistre, R. Frisch, P. C. Fuselier, S. A. Gruntman, M. Janzen, P. McComas, D. J. Moebius, E. Randol, B. Reisenfeld, D. B. Roelof, E. C. Schwadron, N. A. TI Structures and Spectral Variations of the Outer Heliosphere in IBEX Energetic Neutral Atom Maps SO SCIENCE LA English DT Article ID TERMINATION SHOCK; SOLAR-WIND AB The Interstellar Boundary Explorer ( IBEX) has obtained all-sky images of energetic neutral atoms emitted from the heliosheath, located between the solar wind termination shock and the local interstellar medium (LISM). These flux maps reveal distinct nonthermal (0.2 to 6 kilo-electron volts) heliosheath proton populations with spectral signatures ordered predominantly by ecliptic latitude. The maps show a globally distributed population of termination-shock-heated protons and a superimposed ribbonlike feature that forms a circular arc in the sky centered on ecliptic coordinate (longitude lambda, latitude beta) = (221 degrees, 39 degrees), probably near the direction of the LISM magnetic field. Over the IBEX energy range, the ribbon's nonthermal ion pressure multiplied by its radial thickness is in the range of 70 to 100 picodynes per square centimeter AU ( AU, astronomical unit), which is significantly larger than the 30 to 60 picodynes per square centimeter AU of the globally distributed population. C1 [Funsten, H. O.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Allegrini, F.; McComas, D. J.; Randol, B.] SW Res Inst, San Antonio, TX 78228 USA. [Allegrini, F.; McComas, D. J.; Randol, B.] Univ Texas San Antonio, San Antonio, TX 78249 USA. [Crew, G. B.] MIT, Cambridge, MA 02139 USA. [DeMajistre, R.; Roelof, E. C.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Frisch, P. C.] Univ Chicago, Chicago, IL 60637 USA. [Fuselier, S. A.] Lockheed Martin Adv Technol ogy Ctr, Palo Alto, CA 94304 USA. [Gruntman, M.] Univ So Calif, Los Angeles, CA 90089 USA. [Janzen, P.; Reisenfeld, D. B.] Univ Montana, Missoula, MT 59812 USA. [Moebius, E.] Univ New Hampshire, Durham, NH 03824 USA. [Schwadron, N. A.] Boston Univ, Boston, MA 02215 USA. RP Funsten, HO (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM hfunsten@lanl.gov RI Funsten, Herbert/A-5702-2015; Reisenfeld, Daniel/F-7614-2015; Gruntman, Mike/A-5426-2008 OI Moebius, Eberhard/0000-0002-2745-6978; Funsten, Herbert/0000-0002-6817-1039; Gruntman, Mike/0000-0002-0830-010X FU NASA Explorer Program; U. S. Department of Energy FX We thank all the IBEX team members, who enabled the success of IBEX through their individual talents, dedication, and hard work. This work was funded by the NASA Explorer Program. Work at Los Alamos was performed under the auspices of the U. S. Department of Energy. NR 15 TC 139 Z9 141 U1 2 U2 8 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD NOV 13 PY 2009 VL 326 IS 5955 BP 964 EP 966 DI 10.1126/science.1180927 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 518SB UT WOS:000271712300030 PM 19833918 ER PT J AU Schwadron, NA Bzowski, M Crew, GB Gruntman, M Fahr, H Fichtner, H Frisch, PC Funsten, HO Fuselier, S Heerikhuisen, J Izmodenov, V Kucharek, H Lee, M Livadiotis, G McComas, DJ Moebius, E Moore, T Mukherjee, J Pogorelov, NV Prested, C Reisenfeld, D Roelof, E Zank, GP AF Schwadron, N. A. Bzowski, M. Crew, G. B. Gruntman, M. Fahr, H. Fichtner, H. Frisch, P. C. Funsten, H. O. Fuselier, S. Heerikhuisen, J. Izmodenov, V. Kucharek, H. Lee, M. Livadiotis, G. McComas, D. J. Moebius, E. Moore, T. Mukherjee, J. Pogorelov, N. V. Prested, C. Reisenfeld, D. Roelof, E. Zank, G. P. TI Comparison of Interstellar Boundary Explorer Observations with 3D Global Heliospheric Models SO SCIENCE LA English DT Article ID TERMINATION SHOCK; MAGNETIC-FIELD; HELIOSHEATH; VOYAGER-1; REGION; WIND AB Simulations of energetic neutral atom (ENA) maps predict flux magnitudes that are, in some cases, similar to those observed by the Interstellar Boundary Explorer ( IBEX) spacecraft, but they miss the ribbon. Our model of the heliosphere indicates that the local interstellar medium (LISM) magnetic field (B-LISM) is transverse to the line of sight (LOS) along the ribbon, suggesting that the ribbon may carry its imprint. The force-per-unit area on the heliopause from field line draping and the LISM ram pressure is comparable with the ribbon pressure if the LOS similar to 30 to 60 astronomical units and B-LISM similar to 2.5 microgauss. Although various models have advantages in accounting for some of the observations, no model can explain all the dominant features, which probably requires a substantial change in our understanding of the processes that shape our heliosphere. C1 [Schwadron, N. A.; Prested, C.] Boston Univ, Dept Astron, Boston, MA 02215 USA. [Bzowski, M.] Polish Acad Sci, Space Res Ctr, PL-00716 Warsaw, Poland. [Crew, G. B.] MIT, Kavli Inst, Cambridge, MA 02139 USA. [Gruntman, M.] Univ So Calif, Astron Engn Div, Los Angeles, CA 90089 USA. [Fahr, H.] Univ Bonn, Inst Astrophys & Extraterr Forsch, D-53115 Bonn, Germany. [Fichtner, H.] Ruhr Univ Bochum, Inst Theoret Phys 4, D-44780 Bochum, Germany. [Frisch, P. C.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Funsten, H. O.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Fuselier, S.] Lockheed Martin Adv Technol Ctr, Palo Alto, CA 94304 USA. [Heerikhuisen, J.; Pogorelov, N. V.; Zank, G. P.] Univ Alabama, Dept Phys, Huntsville, AL 35805 USA. [Izmodenov, V.] Moscow MV Lomonosov State Univ, Dept Aeromech & Gas Dynam, Moscow 117997, Russia. [Izmodenov, V.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia. [Izmodenov, V.] Russian Acad Sci, Inst Problems Mech, Moscow 117997, Russia. [Kucharek, H.; Lee, M.; Moebius, E.] Univ New Hampshire, Dept Phys, Ctr Space Sci, Durham, NH 03824 USA. [Livadiotis, G.; McComas, D. J.; Mukherjee, J.] SW Res Inst, Dept Space Sci & Engn, San Antonio, TX 78228 USA. [McComas, D. J.] Univ Texas San Antonio, Dept Phys, San Antonio, TX 78249 USA. [Moore, T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Reisenfeld, D.] Univ Montana, Dept Phys, Missoula, MT 59812 USA. [Roelof, E.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. RP Schwadron, NA (reprint author), Boston Univ, Dept Astron, 725 Commonwealth Ave, Boston, MA 02215 USA. EM nathanas@bu.edu RI Moore, Thomas/D-4675-2012; Gruntman, Mike/A-5426-2008; Izmodenov, Vladislav/K-6073-2012; Funsten, Herbert/A-5702-2015; Reisenfeld, Daniel/F-7614-2015 OI Moore, Thomas/0000-0002-3150-1137; Gruntman, Mike/0000-0002-0830-010X; Moebius, Eberhard/0000-0002-2745-6978; Heerikhuisen, Jacob/0000-0001-7867-3633; Izmodenov, Vladislav/0000-0002-1748-0982; Funsten, Herbert/0000-0002-6817-1039; FU IBEX program FX We thank the many dedicated people who have made IBEX a success. Special thanks to K. Goodrich, J. Siegel, K. Maynard, and M. Schwadron for their help. This work was primarily supported by the IBEX program. NR 18 TC 147 Z9 149 U1 0 U2 9 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD NOV 13 PY 2009 VL 326 IS 5955 BP 966 EP 968 DI 10.1126/science.1180986 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 518SB UT WOS:000271712300031 PM 19833915 ER PT J AU Mobius, E Bochsler, P Bzowski, M Crew, GB Funsten, HO Fuselier, SA Ghielmetti, A Heirtzler, D Izmodenov, VV Kubiak, M Kucharek, H Lee, MA Leonard, T McComas, DJ Petersen, L Saul, L Scheer, JA Schwadron, N Witte, M Wurz, P AF Moebius, E. Bochsler, P. Bzowski, M. Crew, G. B. Funsten, H. O. Fuselier, S. A. Ghielmetti, A. Heirtzler, D. Izmodenov, V. V. Kubiak, M. Kucharek, H. Lee, M. A. Leonard, T. McComas, D. J. Petersen, L. Saul, L. Scheer, J. A. Schwadron, N. Witte, M. Wurz, P. TI Direct Observations of Interstellar H, He, and O by the Interstellar Boundary Explorer SO SCIENCE LA English DT Article ID TERMINATION SHOCK; NEUTRAL GAS; SOLAR-WIND; PICKUP ION; HYDROGEN; PARAMETERS; HELIUM; ORIGIN AB Neutral gas of the local interstellar medium flows through the inner solar system while being deflected by solar gravity and depleted by ionization. The dominating feature in the energetic neutral atom Interstellar Boundary Explorer ( IBEX) all-sky maps at low energies is the hydrogen, helium, and oxygen interstellar gas flow. The He and O flow peaked around 8 February 2009 in accordance with gravitational deflection, whereas H dominated after 26 March 2009, consistent with approximate balance of gravitational attraction by solar radiation pressure. The flow distribu