FN Thomson Reuters Web of Science™
VR 1.0
PT J
AU Johnson, TC
Versteeg, RJ
Huang, H
Routh, PS
AF Johnson, Timothy C.
Versteeg, Roelof J.
Huang, Hai
Routh, Partha S.
TI Data-domain correlation approach for joint hydrogeologic inversion of
time-lapse hydrogeologic and geophysical data
SO GEOPHYSICS
LA English
DT Article
ID DATA INCORPORATING TOPOGRAPHY; ERT
AB Inverse estimations of hydrogeologic properties often are highly uncertain because of the expense of collecting hydrogeologic data and the subsequent lack of information. Geophysical data potentially can help fill this information gap because geophysical methods can survey large areas remotely and relatively inexpensively. However, geophysical data are difficult to incorporate into hydrogeologic parameter estimations primarily because of a lack of knowledge concerning the petrophysical relationships between hydrogeologic and geophysical parameters. A method can be used that allows time-lapse geophysical data to be incorporated directly into a hydrogeologic parameter estimation when a strong correlation exists between changes in geophysical and hydrogeologic properties. This approach bypasses the need for an explicit petrophysical transform by formulating the geophysical part of the hydrogeologic inversion in terms of a data-domain correlation operator. A synthetic electrical resistivity monitoring application is used to estimate the hydraulic conductivity distribution. Including time-lapse resistivity data to supplement sparse hydrologic data appears to improve greatly the resolution of hydraulic conductivity in this case. More generally, the formulation and results suggest that geophysical monitoring data can be incorporated effectively into a hydrogeologic parameter estimation using a data-domain correlation operator, assuming a strong correlation exists between changes in hydrogeologic and geophysical properties.
C1 [Johnson, Timothy C.; Versteeg, Roelof J.; Huang, Hai] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
[Routh, Partha S.] Conoco Phillips, Seism Technol Dev, Houston, TX USA.
RP Johnson, TC (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA.
EM timothy.johnson@inl.gov; roelof.versteeg@inl.gov; hai.huang@inl.gov;
partha.s.routh@conocophillips.com
FU Idaho National Laboratory [C.B.10.00.GL.03]; Environmental Security
Technology Certification Program (ESTCP) [ER-0717]; U. S. Department of
Energy's Office of Sciences Environmental Remediation Sciences Program
(ERSP) [DE-AC05-76RL01830, DE-AC07-05ID14517]
FX We acknowledge and express our gratitude for the anonymous reviewers of
this work, one of whom identified and allowed us to correct an important
deficiency in the correlation sensitivity formulation. This work was
supported through Idaho National Laboratory directed research and
development funding under grant C.B.10.00.GL.03, through the
Environmental Security Technology Certification Program (ESTCP) award
ER-0717 (Optimized Enhanced Bioremediation through 4D Geophysical
Monitoring and Autonomous Data Collection, Processing, and Analysis),
and through the Hanford 300 Area Integrated Field Research Challenge
supported by the U. S. Department of Energy's Office of Sciences
Environmental Remediation Sciences Program (ERSP) under award
DE-AC05-76RL01830. The computations presented in this study were
conducted on facilities provided by the Idaho National Laboratory High
Performance Computing Center. Idaho National Laboratory is operated by
Battelle Energy Alliance, LLC, under Contract No. DE-AC07-05ID14517 with
the U. S. Department of Energy.
NR 23
TC 9
Z9 9
U1 0
U2 4
PU SOC EXPLORATION GEOPHYSICISTS
PI TULSA
PA 8801 S YALE ST, TULSA, OK 74137 USA
SN 0016-8033
EI 1942-2156
J9 GEOPHYSICS
JI Geophysics
PD NOV-DEC
PY 2009
VL 74
IS 6
BP F127
EP F140
DI 10.1190/1.3237087
PG 14
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 536IJ
UT WOS:000273037800011
ER
PT J
AU Chrysochoou, M
Moon, DH
Fakra, S
Marcus, M
Dermatas, D
Christodoulatos, C
AF Chrysochoou, M.
Moon, D. H.
Fakra, S.
Marcus, M.
Dermatas, D.
Christodoulatos, C.
TI USE OF MICRO X-RAY ABSORPTION SPECTROSCOPY AND DIFFRACTION TO DELINEATE
Cr(VI) SPECIATION IN COPR
SO GLOBAL NEST JOURNAL
LA English
DT Article; Proceedings Paper
CT 9th International Conference on Protection and Restoration of the
Environment
CY JUN 30-JUL 03, 2008
CL Kefalonia, GREECE
DE chromium; chromite ore processing residue; X-ray Absorption
spectroscopy; speciation
ID ORE PROCESSING RESIDUE; ETTRINGITE; WASTES
AB The speciation of Cr(VI) in Cromite ore Processing Residue was investigated by means of bulk XRD, and a combination of micro-XRF, - XAS and -XRD at the Advanced Light Source (ALS), Berkeley, CA, U.S.A.. Bulk XRD yielded one group of phases that contained explicitly Cr(VI) in their structure, Calcium Aluminum Chromium Oxide Hydrates, accounting for 60% of the total Cr(VI). Micro-analyses at ALS yielded complimentary information, confirming that hydrogarnets and hydrotalcites, two mineral groups that can host Cr(VI) in their structure by substitution, were indeed Cr(VI) sinks. Chromatite (CaCrO(4)) was also identified by micro-XRD, which was not possible with bulk methods due to its low content. The acquisition of micro-XRF elemental maps enabled not only the identification of Cr(VI)-binding phases, but also the understanding of their location within the matrix. This information is invaluable when designing Cr(VI) treatment, to optimize release and availability for reduction.
C1 [Chrysochoou, M.] Univ Connecticut, Dept Civil & Environm Engn, Storrs, CT 06269 USA.
[Moon, D. H.; Dermatas, D.; Christodoulatos, C.] Stevens Inst Technol, Hoboken, NJ 07030 USA.
[Fakra, S.; Marcus, M.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
RP Chrysochoou, M (reprint author), Univ Connecticut, Dept Civil & Environm Engn, Storrs, CT 06269 USA.
EM mchrysoc@engru.conn.edu
NR 11
TC 7
Z9 7
U1 2
U2 20
PU GLOBAL NETWORK ENVIRONMENTAL SCIENCE & TECHNOLOGY
PI ATHENS
PA 30 VOULGAROKTONOU STR, ATHENS, GR 114 72, GREECE
SN 1790-7632
J9 GLOBAL NEST J
JI Glob. Nest. J.
PD NOV
PY 2009
VL 11
IS 3
SI SI
BP 318
EP 324
PG 7
WC Environmental Sciences
SC Environmental Sciences & Ecology
GA 544YN
UT WOS:000273697600009
ER
PT J
AU Hightower, M
AF Hightower, Michael
TI Energy Security - Addressing the Water Footprint
SO GROUND WATER
LA English
DT Editorial Material
C1 Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Hightower, M (reprint author), Sandia Natl Labs, POB 5800,MS-0755, Albuquerque, NM 87185 USA.
EM mmhight@sandia.gov
NR 4
TC 2
Z9 2
U1 0
U2 11
PU WILEY-BLACKWELL PUBLISHING, INC
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0017-467X
J9 GROUND WATER
JI Ground Water
PD NOV-DEC
PY 2009
VL 47
IS 6
BP 765
EP 766
PG 2
WC Geosciences, Multidisciplinary; Water Resources
SC Geology; Water Resources
GA 508BD
UT WOS:000270900900010
PM 19737313
ER
PT J
AU James, SC
Doherty, JE
Eddebbarh, AA
AF James, Scott C.
Doherty, John E.
Eddebbarh, Al-Aziz
TI Practical Postcalibration Uncertainty Analysis: Yucca Mountain, Nevada
SO GROUND WATER
LA English
DT Article
ID GROUNDWATER MODEL CALIBRATION; INVERSE PROBLEM; FLOW
AB The values of parameters in a groundwater flow model govern the precision of predictions of future system behavior. Predictive precision, thus, typically depends on an ability to infer values of system properties from historical measurements through calibration. When such data are scarce, or when their information content with respect to parameters that are most relevant to predictions of interest is weak, predictive uncertainty may be high, even if the model is "calibrated." Recent advances help recognize this condition, quantitatively evaluate predictive uncertainty, and suggest a path toward improved predictive accuracy by identifying sources of predictive uncertainty and by determining what observations will most effectively reduce this uncertainty. We demonstrate linear and nonlinear predictive error/uncertainty analyses as applied to a groundwater flow model of Yucca Mountain, Nevada, the United States' proposed site for disposal of high-level radioactive waste. Linear and nonlinear uncertainty analyses are readily implemented as an adjunct to model calibration with medium to high parameterization density. Linear analysis yields contributions made by each parameter to a prediction's uncertainty and the worth of different observations, both existing and yet-to-be-gathered, toward reducing this uncertainty. Nonlinear analysis provides more accurate characterization of the uncertainty of model predictions while yielding their (approximate) probability distribution functions. This article applies the above methods to a prediction of specific discharge and confirms the uncertainty bounds on specific discharge supplied in the Yucca Mountain Project License Application.
C1 [James, Scott C.] Sandia Natl Labs, Livermore, CA 94551 USA.
[Doherty, John E.] Watermark Numer Comp, Corinda, Qld 4075, Australia.
[Eddebbarh, Al-Aziz] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP James, SC (reprint author), Sandia Natl Labs, POB 969, Livermore, CA 94551 USA.
EM scjames@sandia.gov; johndo-herty@ozemail.com.au; aeddebba@lanl.gov
OI James, Scott/0000-0001-7955-0491
NR 26
TC 18
Z9 18
U1 0
U2 8
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0017-467X
EI 1745-6584
J9 GROUND WATER
JI Ground Water
PD NOV-DEC
PY 2009
VL 47
IS 6
BP 851
EP 869
DI 10.1111/j.1745-6584.2009.00626.x
PG 19
WC Geosciences, Multidisciplinary; Water Resources
SC Geology; Water Resources
GA 508BD
UT WOS:000270900900022
PM 19744249
ER
PT J
AU Morgan, WF
Sowa, MB
AF Morgan, William F.
Sowa, Marianne B.
TI NON-TARGETED EFFECTS OF IONIZING RADIATION: IMPLICATIONS FOR RISK
ASSESSMENT AND THE RADIATION DOSE RESPONSE PROFILE
SO HEALTH PHYSICS
LA English
DT Article
DE radiation dose; radiation, low-level; risk analysis; National Council on
Radiation Protection and Measurements
ID INDUCED GENOMIC INSTABILITY; INFLAMMATORY-TYPE RESPONSES; ALPHA-PARTICLE
IRRADIATION; HIGH-LET RADIATION; CHROMOSOMAL INSTABILITY; IN-VIVO;
BYSTANDER RESPONSES; NONIRRADIATED CELLS; EXPOSURE; CARCINOGENESIS
AB Radiation risks at low doses remain a hotly debated topic. Recent experimental advances in our understanding of effects occurring in the progeny of irradiated cells, and/or the non-irradiated neighbors of irradiated cells (i.e., non-targeted effects associated with exposure to ionizing radiation), have influenced this debate. The goal of this document is to summarize the current status of this debate and speculate on the potential impact of non-targeted effects on radiation risk assessment and the radiation dose response profile. Health Phys. 97(5):426-432; 2009
C1 [Morgan, William F.; Sowa, Marianne B.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99354 USA.
RP Morgan, WF (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999,MSIN P7-56, Richland, WA 99354 USA.
EM wfmorgan@pnl.gov
FU Battelle Memorial Institute, Pacific Northwest Division [DE-AC05-76RLO
1830]; U.S. Department of Energy (DOE); Office of Biological and
Environmental Research (OBER) Low Dose Science Program
FX This research was supported by Battelle Memorial Institute, Pacific
Northwest Division, under Contract No. DE-AC05-76RLO 1830 with the U.S.
Department of Energy (DOE), Office of Biological and Environmental
Research (OBER) Low Dose Science Program. The United States Government
retains and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains a non-exclusive,
paid-up, irrevocable, worldwide license to publish or reproduce the
published form of this manuscript, or allow others to do so, for United
States Government purposes.
NR 49
TC 35
Z9 37
U1 0
U2 7
PU LIPPINCOTT WILLIAMS & WILKINS
PI PHILADELPHIA
PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA
SN 0017-9078
EI 1538-5159
J9 HEALTH PHYS
JI Health Phys.
PD NOV
PY 2009
VL 97
IS 5
BP 426
EP 432
PG 7
WC Environmental Sciences; Public, Environmental & Occupational Health;
Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical
Imaging
SC Environmental Sciences & Ecology; Public, Environmental & Occupational
Health; Nuclear Science & Technology; Radiology, Nuclear Medicine &
Medical Imaging
GA 506UI
UT WOS:000270801500007
PM 19820452
ER
PT J
AU Barcellos-Hoff, MH
Nguyen, DH
AF Barcellos-Hoff, Mary Helen
Nguyen, David H.
TI RADIATION CARCINOGENESIS IN CONTEXT: HOW DO IRRADIATED TISSUES BECOME
TUMORS?
SO HEALTH PHYSICS
LA English
DT Review
DE radiation, ionizing; carcinogenesis; cancer; National Council on
Radiation Protection and Measurements
ID GROWTH-FACTOR-BETA; INDUCED GENOMIC INSTABILITY; MAMMARY
EPITHELIAL-CELLS; DOUBLE-STRAND BREAKS; BONE-MARROW-CELLS; TGF-BETA;
IONIZING-RADIATION; TRANSFORMING GROWTH-FACTOR-BETA-1; DNA-DAMAGE;
INDIRECT INDUCTION
AB It is clear from experimental studies that genotype is an important determinant of cancer susceptibility in general, and for radiation carcinogenesis specifically. It has become increasingly clear that genotype influences not only the ability to cope with DNA damage but also influences the cooperation of other tissues, like the vasculature and immune system, necessary for the establishment of cancer. Our experimental data and that of others suggest that the carcinogenic action of ionizing radiation (IR) can also be considered a two-compartment problem: while IR can alter genomic sequence as a result of DNA damage, it can also induce signals that alter multicellular interactions and phenotypes that underpin carcinogenesis. Rather than being accessory or secondary to genetic damage, we propose that such non-targeted radiation effects create the critical context that promotes cancer development. This review focuses on experimental studies that clearly define molecular mechanisms by which cell interactions contribute to cancer in different organs, and addresses how non-targeted radiation effects may similarly act though the microenvironment. The definition of non-targeted radiation effects and their dose dependence could modify the current paradigms for radiation risk assessment since radiation non-targeted effects, unlike DNA damage, are amenable to intervention. The implications of this perspective in terms of reducing cancer risk after exposure are discussed. Health Phys. 97(5):446-457; 2009
C1 [Barcellos-Hoff, Mary Helen] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94705 USA.
[Nguyen, David H.] Univ Calif Berkeley, Grad Program Mol Endocrinol, Berkeley, CA 94720 USA.
RP Barcellos-Hoff, MH (reprint author), NYU, Langone Med Ctr, Dept Radiat Oncol, 550 1St Ave, New York, NY 10016 USA.
EM MHBarceIlos-Hoff@nyumc.org
FU NASA; Office of Biological and Environmental Research; U.S. Department
of Energy [AC03 76SF00098]; National Institute of Environmental Health
Sciences [U01 ES012801]; National Institutes of Health (NIH); National
Cancer Institute, NIH
FX The authors wish to acknowledge funding from NASA Specialized Center for
Research in Radiation Health Effects, the Low Dose Radiation Program of
the Office of Biological and Environmental Research, U.S. Department of
Energy DE AC03 76SF00098, and the Bay Area Breast Cancer and the
Environment Research Center grant number U01 ES012801 from the National
Institute of Environmental Health Sciences, National Institutes of
Health (NIH) and the National Cancer Institute, NIH.
NR 116
TC 28
Z9 33
U1 0
U2 5
PU LIPPINCOTT WILLIAMS & WILKINS
PI PHILADELPHIA
PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA
SN 0017-9078
EI 1538-5159
J9 HEALTH PHYS
JI Health Phys.
PD NOV
PY 2009
VL 97
IS 5
BP 446
EP 457
PG 12
WC Environmental Sciences; Public, Environmental & Occupational Health;
Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical
Imaging
SC Environmental Sciences & Ecology; Public, Environmental & Occupational
Health; Nuclear Science & Technology; Radiology, Nuclear Medicine &
Medical Imaging
GA 506UI
UT WOS:000270801500009
PM 19820454
ER
PT J
AU Kato, TA
Wilson, PF
Nagasaw, H
Peng, YL
Weil, MM
Little, JB
Bedford, JS
AF Kato, Takamitsu A.
Wilson, Paul F.
Nagasaw, Hatsumi
Peng, Yuanlin
Weil, Michael M.
Little, John B.
Bedford, Joel S.
TI VARIATIONS IN RADIOSENSITIVITY AMONG INDIVIDUALS: A POTENTIAL IMPACT ON
RISK ASSESSMENT?
SO HEALTH PHYSICS
LA English
DT Article
DE radiation protection; risk assessment; environmental assessment;
National Council on Radiation Protection and Measurements
ID RADIATION-INDUCED LYMPHOMAS; DOSE-RATE; HEREDITARY RETINOBLASTOMA;
GENETIC PREDISPOSITION; UNAFFECTED PARENTS; GAMMA-IRRADIATION;
BREAST-CANCER; X-IRRADIATION; DNA-REPAIR; MICE
AB To have an impact on risk assessment for purposes of radiation protection recommendations, significantly broad variations in carcinogenic radiosensitivity would have to exist in significant proportions in the human population. Even if we knew all the genes where mutations would have major effects, individual genome sequencing does not seem useful, since we do not know all these genes, nor can we be certain of the phenotypic effect of polymorphisms discovered. Further, sequencing would not reveal epigenetic changes in gene expression. Another approach to develop phenotypic biomarkers for cells or tissues for which variations in radiation response may reflect the variations in carcinogenic sensitivity. To be useful, experimental evidence for such a correlation would be crucial, and it is also evident that correlations may be tissue or tumor specific. Some cellular markers are discussed that have shown promise in this regard. They include chromosome aberration induction and DNA repair assays that are sufficiently sensitive to measure after modest or low doses or dose rates. To this end we summarize here some of these assays and review the results of a number of experiments from our laboratory that show clear differences in DNA repair capacity reflected by gamma-H2AX foci formation in cells from a high proportion (perhaps 113) of apparently normal individuals. A low dose-rate assay was used to amplify such differences. Another promising assay combines G(2) chromosomal radiosensitivity with the above gamma-H2AX foci on mitotic chromosomes. There are other potentially useful assays as well. Health Phys. 97(5):470-480; 2009
C1 [Kato, Takamitsu A.; Wilson, Paul F.; Nagasaw, Hatsumi; Peng, Yuanlin; Weil, Michael M.; Bedford, Joel S.] Colorado State Univ, Dept Environm & Radiol Hlth Sci, Ft Collins, CO 80523 USA.
[Kato, Takamitsu A.] Natl Inst Radiol Sci, Inage Ku, Chiba 260, Japan.
[Wilson, Paul F.] Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Livermore, CA 94551 USA.
[Little, John B.] Harvard Univ, Sch Publ Hlth, Ctr Radiat Sci & Environm Hlth, Boston, MA 02115 USA.
RP Bedford, JS (reprint author), Colorado State Univ, Dept Environm & Radiol Hlth Sci, Ft Collins, CO 80523 USA.
EM jbedford@colostate.edu
RI Kato, Takamitsu/D-7969-2015
FU U.S. DOE Low Dose Radiation Research Program [DE-FG02-07ER64350];
National Aeronautics and Space Administration [NNX07AP85G]
FX This work was supported in part by grant DE-FG02-07ER64350 from the U.S.
DOE Low Dose Radiation Research Program and grant NNX07AP85G from the
National Aeronautics and Space Administration.
NR 21
TC 14
Z9 16
U1 0
U2 4
PU LIPPINCOTT WILLIAMS & WILKINS
PI PHILADELPHIA
PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA
SN 0017-9078
EI 1538-5159
J9 HEALTH PHYS
JI Health Phys.
PD NOV
PY 2009
VL 97
IS 5
BP 470
EP 480
PG 11
WC Environmental Sciences; Public, Environmental & Occupational Health;
Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical
Imaging
SC Environmental Sciences & Ecology; Public, Environmental & Occupational
Health; Nuclear Science & Technology; Radiology, Nuclear Medicine &
Medical Imaging
GA 506UI
UT WOS:000270801500011
PM 19820456
ER
PT J
AU Barnett, JM
Cullinan, VI
Barnett, DS
Trang-Le, TGT
Bliss, M
Greenwood, LR
Ballinger, MY
AF Barnett, J. M.
Cullinan, V. I.
Barnett, D. S.
Trang-Le, T. G. T.
Bliss, M.
Greenwood, L. R.
Ballinger, M. Y.
TI Results of a Self-Absorption Study on the Versapor 3000 47-mm Filters
for Radioactive Particulate Air Stack Sampling
SO HEALTH PHYSICS
LA English
DT Article
DE operational topics; air sampling; correction factors; radioactivity,
environmental
ID ALPHA
AB Since the mid-1980's the Pacific Northwest National Laboratory (PNNL) has used a value of 0.85 as a correction factor for the self absorption of activity for particulate radioactive air samples collected from building exhaust for environmental monitoring. More recently, an effort was made to evaluate the current particulate radioactive air sample filters (Versapor (R) 3000, 47-mm diameter) used at PNNL for self absorption effects. There were two methods used to characterize tire samples. Sixty samples were selected frost the archive for acid digestion to compare the radioactivity measured by direct gas-flow proportional counting of filters to the results obtained after acid digestion of the filter and counting again by gas-flow proportional detection. Thirty different sample filters were selected for visible light microscopy to evaluate filter loading and particulate characteristics. Mass-loading effects were also considered. Large error is associated with the sample filter analysis comparison and subsequently with the estimation of the absorption factor resulting in an inadequate method to estimate losses from self-absorption in the sample filter. The mass loading on the sample filter as determined after digestion and drying was similar to 0.08 mg cm(-2); however, this value may not represent the total flier mass loading given that there may be undetermined losses associated with tire digestion process. While it is difficult to determine how much material is imbedded in the filter, observations front the microscopy analysis indicate that the vast majority of the particles remain on the top of the filter. In comparing the results obtained, the continued use of 0.85 as a conservative correction factor is recommended. Health Phys. 97(Supplement3): S161-S168; 2009
C1 [Barnett, J. M.; Barnett, D. S.; Trang-Le, T. G. T.; Bliss, M.; Greenwood, L. R.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Cullinan, V. I.] Battelle Marine Sci Lab, Sequim, WA 98382 USA.
[Ballinger, M. Y.] Battelle Seattle Res Ctr, Seattle, WA 98109 USA.
RP Barnett, JM (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA.
EM matthew.barnett@pnl.gov
RI Bliss, Mary/G-2240-2012; Greenwood, Lawrence/H-9539-2016
OI Bliss, Mary/0000-0002-7565-4813; Greenwood, Lawrence/0000-0001-6563-0650
FU U.S. Department of Energy [DE-ACOS-76RL07830]
FX This work was conducted at the Pacific Northwest National Laboratory
which is operated for the U.S. Department of Energy by Battelle under
Contract DE-ACOS-76RL07830.
NR 8
TC 0
Z9 0
U1 0
U2 1
PU LIPPINCOTT WILLIAMS & WILKINS
PI PHILADELPHIA
PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA
SN 0017-9078
EI 1538-5159
J9 HEALTH PHYS
JI Health Phys.
PD NOV
PY 2009
VL 97
IS 5
SU S
BP S161
EP S168
PG 8
WC Environmental Sciences; Public, Environmental & Occupational Health;
Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical
Imaging
SC Environmental Sciences & Ecology; Public, Environmental & Occupational
Health; Nuclear Science & Technology; Radiology, Nuclear Medicine &
Medical Imaging
GA 506IX
UT WOS:000270769600003
PM 19820471
ER
PT J
AU Crepeau, JC
Siahpush, A
Spotten, B
AF Crepeau, John C.
Siahpush, Ali
Spotten, Blaine
TI On the Stefan problem with volumetric energy generation
SO HEAT AND MASS TRANSFER
LA English
DT Article
ID INTERNAL HEAT-GENERATION; PHASE-CHANGE; CONVECTION-DIFFUSION; HORIZONTAL
LAYERS; SOLIDIFICATION
AB This paper presents results of solid-liquid phase change, driven by volumetric energy generation (VEG), in a vertical cylinder. We show excellent agreement between a quasi-static, approximate analytical solution valid for Stefan numbers less than one, and a computational model solved using the computational fluid dynamics code FLUENTA (R). A computational study also shows the effect that the VEG has on both the mushy zone thickness and convection in the melt during phase change.
C1 [Crepeau, John C.; Spotten, Blaine] Univ Idaho, Dept Mech Engn, Moscow, ID 83844 USA.
[Siahpush, Ali] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
RP Crepeau, JC (reprint author), Univ Idaho, Dept Mech Engn, POB 440902, Moscow, ID 83844 USA.
EM crepeau@uidaho.edu; ali.siahpush@inl.gov
RI Crepeau, John/F-2599-2016
OI Crepeau, John/0000-0001-7277-1347
NR 24
TC 8
Z9 8
U1 0
U2 3
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0947-7411
J9 HEAT MASS TRANSFER
JI Heat Mass Transf.
PD NOV
PY 2009
VL 46
IS 1
BP 119
EP 128
DI 10.1007/s00231-009-0550-5
PG 10
WC Thermodynamics; Mechanics
SC Thermodynamics; Mechanics
GA 515WA
UT WOS:000271502400012
ER
PT J
AU Rodenbeck, CT
Knudson, RT
Sandoval, CE
Peterson, KA
Pankonin, JM
Eye, R
Allen, D
Brehm, G
Binney, R
Smith, F
Dimsdle, JW
AF Rodenbeck, Christopher T.
Knudson, Richard T.
Sandoval, Charles E.
Peterson, Kenneth A.
Pankonin, Jeffrey M.
Eye, Robert
Allen, Donald
Brehm, Gailon
Binney, Richard
Smith, Frank
Dimsdle, Jeffrey W.
TI 50-W LTCC Transmitter Utilizing 28-V GaAs With Integrated High-Speed
Pulse Modulation
SO IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS
LA English
DT Article
DE Monolithic microwave integrated circuits (MMIC) transmitters; multichip
modules; pulse modulation
AB This letter presents an S-band 50-W low-temperature cofired ceramic (LTCC) transmitter module. The module is based on a gallium arsenide (GaAs) chipset that operates over the 2-3 GHz range and includes a 28-V single-chip power amplifier with integrated high-speed drain modulator. The transmitter has rise/fall times < 7 nsec, linear frequency tuning, and excellent thermal performance.
C1 [Rodenbeck, Christopher T.; Knudson, Richard T.; Sandoval, Charles E.; Peterson, Kenneth A.; Pankonin, Jeffrey M.] Sandia Natl Labs, Albuquerque, NM 87123 USA.
[Eye, Robert; Allen, Donald; Brehm, Gailon] TriQuint Semicond, Dallas, TX 75080 USA.
[Binney, Richard; Smith, Frank; Dimsdle, Jeffrey W.] Honeywell Fed Mfg & Technol, Kansas City, MO 64131 USA.
RP Rodenbeck, CT (reprint author), Sandia Natl Labs, Albuquerque, NM 87123 USA.
EM chris.rodenbeck@ieee.org
FU United States Department of Energy's National Nuclear Security
Administration [DE-AC0494AL85000]
FX This work was supported by the Sandia (a multiprogram laboratory
operated by Sandia Corporation, a Lockheed Martin Company, for the
United States Department of Energy's National Nuclear Security
Administration) under Contract DE-AC0494AL85000.
NR 11
TC 3
Z9 3
U1 0
U2 2
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA
SN 1531-1309
J9 IEEE MICROW WIREL CO
JI IEEE Microw. Wirel. Compon. Lett.
PD NOV
PY 2009
VL 19
IS 11
BP 746
EP 748
DI 10.1109/LMWC.2009.2032025
PG 3
WC Engineering, Electrical & Electronic
SC Engineering
GA 515OO
UT WOS:000271481900024
ER
PT J
AU Piwko, R
Camm, E
Ellis, A
Muljadi, E
Zavadil, R
Walling, R
O'Malley, M
Irwin, G
Saylors, S
AF Piwko, Richard
Camm, Ernst
Ellis, Abraham
Muljadi, Eduard
Zavadil, Robert
Walling, Reigh
O'Malley, Mark
Irwin, Garth
Saylors, Steven
TI A Whirl of Activity
SO IEEE POWER & ENERGY MAGAZINE
LA English
DT Article
C1 [Piwko, Richard] GE Energy Schenectady, New York, NY USA.
[Muljadi, Eduard] Natl Renewable Energy Lab, Golden, CO USA.
[Walling, Reigh] GE Energy, Atlanta, GA USA.
[O'Malley, Mark] Univ Coll Dublin, Dublin, Ireland.
RP Piwko, R (reprint author), GE Energy Schenectady, New York, NY USA.
NR 5
TC 3
Z9 4
U1 0
U2 1
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA
SN 1540-7977
J9 IEEE POWER ENERGY M
JI IEEE Power Energy Mag.
PD NOV-DEC
PY 2009
VL 7
IS 6
BP 26
EP 35
DI 10.1109/MPE.2009.934269
PG 10
WC Engineering, Electrical & Electronic
SC Engineering
GA 512HP
UT WOS:000271237200004
ER
PT J
AU Milligan, M
Porter, K
DeMeo, E
Denholm, P
Holttinen, H
Kirby, B
Miller, N
Mills, A
O'Malley, M
Schuerger, M
Soder, L
AF Milligan, Michael
Porter, Kevin
DeMeo, Edgar
Denholm, Paul
Holttinen, Hannele
Kirby, Brendan
Miller, Nicholas
Mills, Andrew
O'Malley, Mark
Schuerger, Matthew
Soder, Lennart
TI Wind Power Myths Debunked
SO IEEE POWER & ENERGY MAGAZINE
LA English
DT Article
C1 [Milligan, Michael; Denholm, Paul; Kirby, Brendan] NREL, Golden, CO USA.
[Porter, Kevin] Exeter Associates Inc, Columbia, MD USA.
[DeMeo, Edgar] Renewable Energy Consulting Serv, Palo Alto, CA USA.
[Miller, Nicholas] Gen Elect Schenectady, New York, NY USA.
[Mills, Andrew] Lawrence Berkeley Natl Lab, Berkeley, CA USA.
[Schuerger, Matthew] Energy Syst Consulting Serv LLC, St Paul, MN USA.
[Soder, Lennart] Royal Inst Technol, Stockholm, Sweden.
[O'Malley, Mark] Univ Coll Dublin, Sch Elect Elect & Mech Engn, Dublin, Ireland.
RP Milligan, M (reprint author), NREL, Golden, CO USA.
RI Mills, Andrew/B-3469-2016
OI Mills, Andrew/0000-0002-9065-0458
NR 7
TC 37
Z9 41
U1 1
U2 6
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1540-7977
J9 IEEE POWER ENERGY M
JI IEEE Power Energy Mag.
PD NOV-DEC
PY 2009
VL 7
IS 6
BP 89
EP 99
DI 10.1109/MPE.2009.934268
PG 11
WC Engineering, Electrical & Electronic
SC Engineering
GA 512HP
UT WOS:000271237200010
ER
PT J
AU Duran, FA
Conrad, SH
Conrad, GN
Duggan, DP
Held, EB
AF Duran, Felicia A.
Conrad, Stephen H.
Conrad, Gregory N.
Duggan, David P.
Held, E. Bruce
TI Building a System for Insider Security
SO IEEE SECURITY & PRIVACY
LA English
DT Article
C1 [Duran, Felicia A.; Conrad, Stephen H.; Conrad, Gregory N.; Duggan, David P.; Held, E. Bruce] Sandia Natl Labs, Livermore, CA 94550 USA.
RP Duran, FA (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA.
EM faduran@sandia.gov; shconra@sandia.gov; gnconra@sandia.gov;
dduggan@sandia.gov; ebheld@sandia.gov
NR 14
TC 6
Z9 6
U1 0
U2 0
PU IEEE COMPUTER SOC
PI LOS ALAMITOS
PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA
SN 1540-7993
EI 1558-4046
J9 IEEE SECUR PRIV
JI IEEE Secur. Priv.
PD NOV-DEC
PY 2009
VL 7
IS 6
BP 30
EP 38
DI 10.1109/MSP.2009.111
PG 9
WC Computer Science, Information Systems; Computer Science, Software
Engineering
SC Computer Science
GA 529JV
UT WOS:000272513200006
ER
PT J
AU Overly, TG
Park, G
Farinholt, KM
Farrar, CR
AF Overly, Timothy G.
Park, Gyuhae
Farinholt, Kevin M.
Farrar, Charles R.
TI Piezoelectric Active-Sensor Diagnostics and Validation Using
Instantaneous Baseline Data
SO IEEE SENSORS JOURNAL
LA English
DT Article
DE structural health monitoring; Active-sensing; piezoelectric transducers;
sensor validation
ID IMPEDANCE; IDENTIFICATION
C1 [Overly, Timothy G.; Park, Gyuhae; Farinholt, Kevin M.; Farrar, Charles R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Overly, TG (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
EM toverly@lanl.gov; gpark@lanl.gov; farinholt@lanl.gov; farrar@lanl.gov
RI Farrar, Charles/C-6954-2012;
OI Farrar, Charles/0000-0001-6533-6996
NR 19
TC 20
Z9 20
U1 0
U2 6
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA
SN 1530-437X
J9 IEEE SENS J
JI IEEE Sens. J.
PD NOV
PY 2009
VL 9
IS 11
BP 1414
EP 1421
DI 10.1109/JSEN.2009.2018351
PG 8
WC Engineering, Electrical & Electronic; Instruments & Instrumentation;
Physics, Applied
SC Engineering; Instruments & Instrumentation; Physics
GA 498NC
UT WOS:000270146700001
ER
PT J
AU Sheiretov, Y
Grundy, D
Zilberstein, V
Goldfine, N
Maley, S
AF Sheiretov, Yanko
Grundy, Dave
Zilberstein, Vladimir
Goldfine, Neil
Maley, Susan
TI MWM-Array Sensors for In Situ Monitoring of High-Temperature Components
in Power Plants
SO IEEE SENSORS JOURNAL
LA English
DT Article
DE Condition monitoring; high-temperature; meandering winding magnetometer
(MWM); MWM-array sensors; power plant components
AB Utilization of America's substantial coal reserves for energy production has become a national priority. Advanced coal-fired power plants offer an environmentally friendly means to achieve that goal. These power plants, such as ultrasupercritical power plants, will provide high thermal efficiency along with greatly reduced emissions of CO and other pollutants. Life cycle costs for the advanced coal-fired plants can be reduced by enhanced observability in support of condition-based maintenance. The enhanced observability can be achieved by using networks of condition-monitoring sensors that would provide component-level material condition information and through-wall temperature monitoring. This would reduce uncertainties in knowledge of material condition, at the level of individual components, and improve capability to predict remaining life of critical components. One approach being developed under the U. S. Department of Energy Small Business Innovation Research Program is to develop and implement high-temperature versions of the meandering winding magnetometer (HT-MWM) for temperatures up to 1000 degrees C. These patented sensors, coupled with multivariate inverse methods, would provide superior performance for in situ material condition monitoring (material degradation, flaw detection, stress relaxation, and/or creep monitoring) and through-wall temperature measurement. Networks of HT-MWMs will generate material condition information to be used by adaptive life-management algorithms for remaining life prediction and decision support.
C1 [Sheiretov, Yanko; Grundy, Dave; Zilberstein, Vladimir; Goldfine, Neil] JENTEK Sensors Inc, Waltham, MA 02453 USA.
[Goldfine, Neil] MIT, Electromagnet & Elect Syst Lab, Cambridge, MA 02139 USA.
[Maley, Susan] US DOE, Washington, DC 20585 USA.
RP Sheiretov, Y (reprint author), JENTEK Sensors Inc, Waltham, MA 02453 USA.
EM jentek@shore.net; susan.maley@netl.doe.gov
FU U.S. Department of Energy; JENTEK Independent (I) R D
FX This work was supported in part by the U.S. Department of Energy and in
part by the JENTEK Independent (I) R& D funding.
NR 15
TC 9
Z9 15
U1 1
U2 7
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA
SN 1530-437X
J9 IEEE SENS J
JI IEEE Sens. J.
PD NOV
PY 2009
VL 9
IS 11
BP 1527
EP 1536
DI 10.1109/JSEN.2009.2019335
PG 10
WC Engineering, Electrical & Electronic; Instruments & Instrumentation;
Physics, Applied
SC Engineering; Instruments & Instrumentation; Physics
GA 503PB
UT WOS:000270548800004
ER
PT J
AU Killingsworth, NJ
Aceves, SM
Flowers, DL
Espinosa-Loza, F
Krstic, M
AF Killingsworth, Nick J.
Aceves, Salvador M.
Flowers, Daniel L.
Espinosa-Loza, Francisco
Krstic, Miroslav
TI HCCI Engine Combustion-Timing Control: Optimizing Gains and Fuel
Consumption Via Extremum Seeking
SO IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY
LA English
DT Article
DE Extremum seeking (ES); homogenous-charge-compression-ignition (HCCI)
engines; proportional-integral derivative (PID) tuning
ID DISCRETE-TIME; IGNITION; OPTIMIZATION; SYSTEMS
AB Homogenous-charge-compression-ignition (HCCI) engines have the benefit of high efficiency with low emissions of NO and particulates. These benefits are due to the autoignition process of the dilute mixture of fuel and air during compression. However, because there is no direct-ignition trigger, control of ignition is inherently more difficult than in standard internal combustion engines. This difficulty necessitates that a feedback controller be used to keep the engine at a desired (efficient) setpoint in the face of disturbances. Because of the nonlinear autoignition process, the sensitivity of ignition changes with the operating point. Thus, gain scheduling is required to cover the entire operating range of the engine. Controller tuning can therefore be a time-intensive process. With the goal of reducing the time to tune the controller, we use extremum seeking (ES) to tune the parameters of various forms of combustion-timing controllers. In addition, in this paper, we demonstrate how ES can be used for the determination of an optimal combustion-timing setpoint on an experimental HCCI engine. The use of ES has the benefit of achieving both optimal setpoint (for maximizing the engine efficiency) and controller-parameter tuning tasks quickly.
C1 [Killingsworth, Nick J.; Aceves, Salvador M.; Flowers, Daniel L.; Espinosa-Loza, Francisco] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Krstic, Miroslav] Univ Calif San Diego, Cymer Ctr Control Syst & Dynam, La Jolla, CA 92093 USA.
[Krstic, Miroslav] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA.
RP Killingsworth, NJ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
EM killingsworth2@llnl.gov; saceves@llnl.gov; flowers4@llnl.gov;
espinosaloza1@llnl.gov; krstic@ucsd.edu
RI aceves, salvador/G-9052-2011
OI aceves, salvador/0000-0001-5687-7256
FU University of California Energy Institute; U.S. Department of Energy by
Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; National
Science Foundation; Ford Motor Company
FX This work was supported in part by the University of California Energy
Institute, in part by the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344, in part
by the National Science Foundation, and in part by Ford Motor Company.
Recommended by Associate Editor Y. Jin.
NR 30
TC 32
Z9 32
U1 0
U2 8
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA
SN 1063-6536
J9 IEEE T CONTR SYST T
JI IEEE Trans. Control Syst. Technol.
PD NOV
PY 2009
VL 17
IS 6
BP 1350
EP 1361
DI 10.1109/TCST.2008.2008097
PG 12
WC Automation & Control Systems; Engineering, Electrical & Electronic
SC Automation & Control Systems; Engineering
GA 511HQ
UT WOS:000271155100011
ER
PT J
AU Ahmed, S
AF Ahmed, Shahid
TI Finite-Difference Time-Domain Analysis of Electromagnetic Modes Inside
Printed Coupled Lines and Quantification of Crosstalk
SO IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY
LA English
DT Article
DE Cross correlation; singular value decomposition (SVD); transverse
electromagnetic (TEM); transverse magnetic (TM)
ID SINGULAR-VALUE DECOMPOSITION; WAVE EMP SIMULATOR; MODAL-ANALYSIS;
LEAKAGE
AB Detailed analysis of mode structures inside coupled microstrip lines and their correlation with crosstalk between traces has been performed. The use of finite-difference time-domain and singular value decomposition methods for modal identification followed by cross correlation for crosstalk prediction is demonstrated in this paper. The combination of these methods is robust, versatile, and ideal for pulsed applications in an inhomogeneous, anisotropic multilayer substrate with complex 3-D structures. Moreover, all possible modes are extracted in a single analysis. This novel approach provides a quantitative measurement of crosstalk by establishing correlation between modes evolving inside the source line and the field waveforms coupled with the victim line. The effects of line topology, material properties, and pulse characteristics are examined. At the near end, transverse electromagnetic mode of the source line dictates coupling; however, as the pulse advances, the higher order transverse magnetic mode dominates and exhibits significant contribution to the evolution of the waveform coupled with the victim line at the far end, which is confirmed by cross correlation. This paper has physical significance in devising systems for suppressing unwanted modes responsible for crosstalk and radiation leakage due to fast pulses.
C1 [Ahmed, Shahid] IIT, Chicago, IL 60616 USA.
[Ahmed, Shahid] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Ahmed, Shahid] Muons Inc, Batavia, IL 60510 USA.
RP Ahmed, S (reprint author), IIT, Chicago, IL 60616 USA.
EM emp786shahid@gmail.com
NR 9
TC 1
Z9 1
U1 3
U2 5
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA
SN 0018-9375
J9 IEEE T ELECTROMAGN C
JI IEEE Trans. Electromagn. Compat.
PD NOV
PY 2009
VL 51
IS 4
BP 1026
EP 1033
DI 10.1109/TEMC.2009.2032070
PG 8
WC Engineering, Electrical & Electronic; Telecommunications
SC Engineering; Telecommunications
GA 521VC
UT WOS:000271951600018
ER
PT J
AU Holland, SE
Kolbe, WF
Bebek, CJ
AF Holland, Stephen E.
Kolbe, William F.
Bebek, Christopher J.
TI Device Design for a 12.3-Megapixel, Fully Depleted, Back-Illuminated,
High-Voltage Compatible Charge-Coupled Device
SO IEEE TRANSACTIONS ON ELECTRON DEVICES
LA English
DT Article
DE Charge-coupled device (CCD); fully depleted; high voltage;
high-resistivity substrate; static induction transistor (SIT)
ID AVALANCHE BREAKDOWN; DARK ENERGY; SILICON; THICK; CCDS; DIFFUSION;
DIODES
AB A 12.3-megapixel charge-coupled device (CCD) that can be operated at high substrate-bias voltages has been developed in support of a proposal to study dark energy. The pixel size is 10.5 mu m, and the format is 3512 rows by 3508 columns. The CCD is nominally 200 mu m thick and is fabricated on high-resistivity n-type silicon that allows for fully depleted operation with the application of a substrate-bias voltage. The CCD is required to have high quantum efficiency (QE) at near-infrared wavelengths, low noise and dark current, and an rms spatial resolution of less than 4 mu m. In order to optimize the spatial resolution and QE, requirements that have conflicting dependences on the substrate thickness, it is necessary to operate the CCD at large substrate-bias voltages. In this paper, we describe the features of the CCD, summarize the performance, and discuss in detail the device-design techniques used to realize 200-mu m-thick CCDs that can be operated at substrate-bias voltages in excess of 100 V.
C1 [Holland, Stephen E.; Kolbe, William F.; Bebek, Christopher J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Holland, SE (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
EM seholland@lbl.gov
RI Holland, Stephen/H-7890-2013
FU Office of Science, Office of High Energy Physics, U. S. Department of
Energy [DE-AC02-05CH11231]
FX Manuscript received January 6, 2009; revised June 8, 2009. Current
version published October 21, 2009. This work was supported by the
Director, Office of Science, Office of High Energy Physics, U. S.
Department of Energy, under Contract DE-AC02-05CH11231. The review of
this paper was arranged by Editor N. Teranishi.
NR 28
TC 15
Z9 15
U1 1
U2 6
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA
SN 0018-9383
J9 IEEE T ELECTRON DEV
JI IEEE Trans. Electron Devices
PD NOV
PY 2009
VL 56
IS 11
BP 2612
EP 2622
DI 10.1109/TED.2009.2030631
PG 11
WC Engineering, Electrical & Electronic; Physics, Applied
SC Engineering; Physics
GA 509LO
UT WOS:000271019500030
ER
PT J
AU Ozdemir, E
Ozdemir, S
Tolbert, LM
AF Ozdemir, Engin
Ozdemir, Sule
Tolbert, Leon M.
TI Fundamental-Frequency-Modulated Six-Level Diode-Clamped Multilevel
Inverter for Three-Phase Stand-Alone Photovoltaic System
SO IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS
LA English
DT Article
DE Fundamental switching; harmonic elimination; multilevel inverter;
photovoltaic (PV) system
AB This paper presents a fundamental-frequencymodulated diode-clamped multilevel inverter (DCMLI) scheme for a three-phase stand-alone photovoltaic (PV) system. The system consists of five series-connected PV modules, a six-level DCMLI generating fundamental-modulation staircase threephase output voltages, and a three-phase induction motor as the load. In order to validate the proposed concept, simulation studies and experimental measurements using a small-scale laboratory prototype are also presented. The results show the feasibility of the fundamental frequency switching application in three-phase stand-alone PV power systems.
C1 [Ozdemir, Engin; Ozdemir, Sule] Kocaeli Univ, Fac Tech Educ, TR-41380 Kocaeli, Turkey.
[Tolbert, Leon M.] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA.
[Tolbert, Leon M.] Oak Ridge Natl Lab, Knoxville, TN 37932 USA.
RP Ozdemir, E (reprint author), Kocaeli Univ, Fac Tech Educ, TR-41380 Kocaeli, Turkey.
EM eozdemir@kocaeli.edu.tr; sozaslan@kocaeli.edu.tr; tolbert@utk.edu
OI Ozdemir, Engin/0000-0003-0882-332X; Tolbert, Leon/0000-0002-7285-609X
FU TUBITAK [2219]
FX The work of E. Ozdemir was supported by TUBITAK 2219 under a research
grant.
NR 30
TC 75
Z9 75
U1 1
U2 7
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA
SN 0278-0046
J9 IEEE T IND ELECTRON
JI IEEE Trans. Ind. Electron.
PD NOV
PY 2009
VL 56
IS 11
BP 4407
EP 4415
DI 10.1109/TIE.2008.928096
PG 9
WC Automation & Control Systems; Engineering, Electrical & Electronic;
Instruments & Instrumentation
SC Automation & Control Systems; Engineering; Instruments & Instrumentation
GA 505TL
UT WOS:000270720100012
ER
PT J
AU Yard, JT
Devetak, I
AF Yard, Jon T.
Devetak, Igor
TI Optimal Quantum Source Coding With Quantum Side Information at the
Encoder and Decoder
SO IEEE TRANSACTIONS ON INFORMATION THEORY
LA English
DT Article
DE Quantum information; side information; source coding
ID CLASSICAL-QUANTUM; ENTANGLEMENT; CHANNELS; CAPACITY
AB Consider many instances of an arbitrary quadripartite pure state of four quantum systems ABCD. Alice holds the AC part of each state, Bob holds B, while R represents all other parties correlated with ABC. Alice is required to redistribute the C systems to Bob while asymptotically preserving the overall purity. We prove that this is possible using Q qubits of communication and E ebits of shared entanglement between Alice and Bob, provided that Q >= 1/2 I(C; D|B) and Q + E >= H (C|B), proving the optimality of the Luo-Devetak outer bound. The optimal qubit rate provides the first known operational interpretation of quantum conditional mutual information. We also show how our protocol leads to a fully operational proof of strong subaddivity and uncover a general organizing principle, in analogy to thermodynamics, that underlies the optimal rates.
C1 [Yard, Jon T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Devetak, Igor] Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA.
RP Yard, JT (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
FU National Science Foundation (NSF) [PHY-0456720, CCF-0524811,
CCF-0545845]; CNLS; U.S. Department of Energy
FX The work of J. T. Yard was supported by the National Science Foundation
(NSF) under Grant PHY-0456720 and by the CNLS, the Quantum Initiative
and the LDRD program of the U.S. Department of Energy. The work of I.
Devetak was supported in part by the National Science Foundation (NSF)
under Grants CCF-0524811 and CCF-0545845 (CAREER).
NR 31
TC 31
Z9 31
U1 0
U2 1
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA
SN 0018-9448
J9 IEEE T INFORM THEORY
JI IEEE Trans. Inf. Theory
PD NOV
PY 2009
VL 55
IS 11
BP 5339
EP 5351
DI 10.1109/TIT.2009.2030494
PG 13
WC Computer Science, Information Systems; Engineering, Electrical &
Electronic
SC Computer Science; Engineering
GA 509LQ
UT WOS:000271019700039
ER
PT J
AU Santos, E
Lins, L
Ahrens, JP
Freire, J
Silva, CT
AF Santos, Emanuele
Lins, Lauro
Ahrens, James P.
Freire, Juliana
Silva, Claudio T.
TI VisMashup: Streamlining the Creation of Custom Visualization
Applications
SO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
LA English
DT Article; Proceedings Paper
CT IEEE Information Visualization Conference/IEEE Visualization Conference
CY OCT 11, 2009
CL Atlantic City, NJ
SP IEEE, IEEE Comp Soc, IEEE vgtc, Natl Informat Assurance Res Lab, Kitware, NVAC, NVIDIA, VisMaster, IBM Res, HP, Microsoft Res, Natl Lib Med, NSI, CYVIZ, Appl Vis Secure Decis, SCI, Morgan & Claypool Publ, Palgrave Macmillan, A K Peters Ltd
DE Scientific Visualization; Dataflow; Visualization Systems
AB Visualization is essential for understanding the increasing volumes of digital data. However, the process required to create insightful visualizations is involved and time consuming. Although several visualization tools are available, including tools with sophisticated visual interfaces, they are out of reach for users who have little or no knowledge of visualization techniques and/or who do not have programming expertise. In this paper, we propose VISMASHUP, a new framework for streamlining the creation of customized visualization applications. Because these applications can be customized for very specific tasks, they can hide much of the complexity in a visualization specification and make it easier for users to explore visualizations by manipulating a small set of parameters. We describe the framework and how it supports the various tasks a designer needs to carry out to develop an application, from mining and exploring a set of visualization specifications (pipelines), to the creation of simplified views of the pipelines, and the automatic generation of the application and its interface. We also describe the implementation of the system and demonstrate its use in two real application scenarios.
C1 [Santos, Emanuele; Lins, Lauro; Freire, Juliana; Silva, Claudio T.] Univ Utah, Sci Comp & Imaging SCI Inst, Salt Lake City, UT 84112 USA.
[Ahrens, James P.] Los Alamos Natl Lab, Los Alamos, NM USA.
RP Santos, E (reprint author), Univ Utah, Sci Comp & Imaging SCI Inst, Salt Lake City, UT 84112 USA.
EM emanuele@sci.utah.edu; lauro@sci.utah.edu; ahrens@lanl.gov;
juliana@sci.utah.edu; csilva@sci.utah.edu
NR 36
TC 20
Z9 20
U1 0
U2 5
PU IEEE COMPUTER SOC
PI LOS ALAMITOS
PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA
SN 1077-2626
EI 1941-0506
J9 IEEE T VIS COMPUT GR
JI IEEE Trans. Vis. Comput. Graph.
PD NOV-DEC
PY 2009
VL 15
IS 6
BP 1539
EP 1546
PG 8
WC Computer Science, Software Engineering
SC Computer Science
GA 506MM
UT WOS:000270778900087
PM 19834231
ER
PT J
AU Chouyyok, W
Yantasee, W
Shin, Y
Grudzien, RM
Fryxell, GE
AF Chouyyok, Wilaiwan
Yantasee, Wassana
Shin, Yongsoon
Grudzien, Rafal M.
Fryxell, Glen E.
TI Transition metal ion capture using functional mesoporous carbon made
with 1,10-phenanthroline
SO INORGANIC CHEMISTRY COMMUNICATIONS
LA English
DT Article
DE Mesoporous carbon; Nanoporous; Sorbent; Ion exchange; Anion exchange;
Metal ion chelation; Natural waters; Water purification; Dialysis; Metal
poisoning
ID NANOSTRUCTURED ELECTROCHEMICAL SENSORS; VOLTAMMETRIC ANALYSIS;
NATURAL-WATERS; HEAVY-METALS; LEAD PB; SILICA; ELECTRODES; URINE;
NANOPARTICLES; MONOLAYERS
AB Functional mesoporous carbon has been built using 1,10-phenanthroline as the fundamental building block, resulting in a nanoporous, high surface area sorbent capable of selectively binding transition metal ions. This material had a specific surface area of 870 m(2)/g, an average pore size of about 30 A, and contained as much as 8.2 wt% N. Under acidic conditions, where the 1,10-phenanthroline ligand is protonated, this material was found to be an effective anion exchange material for transition metal anions like PdCl(4)(2-) and H(2)VO(4)(1-). 1,10-Phenanthroline functionalized mesoporous carbon ("Phen-FMC") was found to have a high affinity for Cu(II), even down to a pH of 1. At pHs above 5, Phen-FMC was found to bind a variety of transition metal cations (e.g. Co(II), Ni(II), Zn(II), etc.) from filtered ground water, river water and seawater. Phen-FMC displayed rapid sorption kinetics with Co(II) in filtered river water, reaching equilibrium in less than an hour, and easily lowering the [Co(II)] to sub-ppb levels. Phen-FMC was found to be more effective for transition metal ion capture than ion-exchange resin or activated carbon. (c) 2009 Elsevier B.V. All rights reserved.
C1 [Chouyyok, Wilaiwan; Yantasee, Wassana; Shin, Yongsoon; Grudzien, Rafal M.; Fryxell, Glen E.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Fryxell, GE (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA.
EM glen.fryxell@pnl.gov
FU United States Dept. of Energy [DE AC06-76RLO 1830]; National Institute
of Allergy and Infectious Diseases (NIAID) [R01 AI074064]; National
Institute of Environmental Health Sciences (NIEHS) [R21 ES015620]
FX This work was performed at Pacific Northwest National Laboratory, which
is operated for the United States Dept. of Energy by Battelle Memorial
Institute under contract DE AC06-76RLO 1830. This research was supported
by the US Dept. of Energy, Office of Basic Energy Sciences, Division of
Materials and Engineering, the Laboratory Directed Research and
Development Program, National Institute of Allergy and Infectious
Diseases (NIAID), Grant# R01 AI074064, and National Institute of
Environmental Health Sciences (NIEHS), Grant# R21 ES015620. A portion of
the research was performed using EMSL, a national scientific user
facility sponsored by the DOE's Office of Biological and Environmental
Research and located at PNNL.
NR 38
TC 3
Z9 3
U1 1
U2 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1387-7003
J9 INORG CHEM COMMUN
JI Inorg. Chem. Commun.
PD NOV
PY 2009
VL 12
IS 11
BP 1099
EP 1103
DI 10.1016/j.inoche.2009.08.031
PG 5
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA 521LI
UT WOS:000271922500005
PM 23762013
ER
PT J
AU Lewis, JI
AF Lewis, Joanna I.
TI Climate change and security: examining China's challenges in a warming
world
SO INTERNATIONAL AFFAIRS
LA English
DT Article
AB The environment is increasingly affected by global climate change. While the causes of climate change are generated across the globe, the impacts of climate change will be highly variable at the local level. An increased scientific understanding of the potential impacts that climate change may have within China has raised new concern among China's leaders. Given that China's domestic realities inform its international policy choices, understanding how climate change may affect its population and natural resources is critical to global climate stabilization efforts. This article examines how the impacts of climate change on China, and China's response, will drive security challenges domestically, as well as in the greater Asian region and around the world. It shows that the impact of climate change on China will be significant and may have sizable adverse economic implications, particularly on vulnerable east coast economic centers. Water scarcity is a problem that already challenges China's leadership and one that will be exacerbated under projected climate impacts. In addition, the country faces the risk of international retaliation should it fail to undertake serious greenhouse gas mitigation actions. Yet China is not without options, and is already well poised to become a leader in the low-carbon technology revolution.
C1 [Lewis, Joanna I.] Georgetown Univ, Sch Foreign Serv, Washington, DC 20057 USA.
[Lewis, Joanna I.] US China Cooperat Energy & Climate, Asia Soc Initiat, Beijing, Peoples R China.
[Lewis, Joanna I.] China Sustainable Energy Programme, Beijing, Peoples R China.
[Lewis, Joanna I.] Univ Calif Berkeley, China Energy Grp, Lawrence Berkeley Lab, US Dept Energy, Berkeley, CA 94720 USA.
RP Lewis, JI (reprint author), Georgetown Univ, Sch Foreign Serv, Washington, DC 20057 USA.
RI Brooks, Katya/J-4975-2014
NR 37
TC 15
Z9 15
U1 3
U2 12
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0020-5850
EI 1468-2346
J9 INT AFF
JI Int. Aff.
PD NOV
PY 2009
VL 85
IS 6
BP 1195
EP +
PG 21
WC International Relations
SC International Relations
GA 514ST
UT WOS:000271416600007
ER
PT J
AU Croft, M
Shukla, V
Jisrawi, NM
Zhong, Z
Sadangi, RK
Holtz, RL
Pao, PS
Horvath, K
Sadananda, K
Ignatov, A
Skaritka, J
Tsakalakos, T
AF Croft, M.
Shukla, V.
Jisrawi, N. M.
Zhong, Z.
Sadangi, R. K.
Holtz, R. L.
Pao, P. S.
Horvath, K.
Sadananda, K.
Ignatov, A.
Skaritka, J.
Tsakalakos, T.
TI Mapping and load response of overload strain fields: Synchrotron X-ray
measurements
SO INTERNATIONAL JOURNAL OF FATIGUE
LA English
DT Article; Proceedings Paper
CT 7th International Conference on Fatigue Damage in Structural Materials
CY SEP 14-19, 2008
CL Hyannis, MA
DE Fatigue; Strain; X-ray; Synchrotron; Overload
ID FATIGUE-CRACK GROWTH; FULL-PROFILE ANALYSIS; DIFFRACTION DATA;
PROPAGATION
AB High energy synchrotron X-ray diffraction measurements have been performed to provide quantitative microscopic guidance for modeling of fatigue crack growth. Specifically we report local strain mapping, along with in situ loading strain response, results on 4140 steel fatigue specimens exhibiting the crack growth retardation "overload effect". Detailed, 2D, epsilon(yy)-strain field mapping shows that a single overload (OL) cycle creates a compressive strain field extending millimeters above and below the crack plane. The OL strain field structures are shown to persist after the crack tip has grown well beyond the OL position. The specimen exhibiting the maximal crack growth rate retardation following overload exhibits a tensile residual strain region at the crack tip. Strain field results, on in situ tensile loaded specimens, show a striking critical threshold load. F(c), phenomenon in their strain response. At loads below F(c) the strain response is dominated by a rapid suppression of the compressive OL feature with modest response at the crack tip. At loads above F(c) the strain response at the OL position terminates and the response at the crack tip becomes large. This threshold load response behavior is shown to exhibit lower F(c) values, and dramatically enhanced rates of strain change with load as the crack tip propagates farther beyond the OL position. The OL strain feature behind the crack tip also is shown to be suppressed by removing the opposing crack faces via an electron discharge cut passing through the crack tip. Finally unique 2D strain field mapping (imaging) results, through the depth of the specimen, of the fatigue crack front and the OL feature in the wake are also presented. (C) 2009 Elsevier Ltd. All rights reserved.
C1 [Croft, M.; Horvath, K.] Rutgers State Univ, Dept Phys, Piscataway, NJ 08854 USA.
[Croft, M.; Zhong, Z.; Skaritka, J.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA.
[Shukla, V.; Jisrawi, N. M.; Sadangi, R. K.; Ignatov, A.; Tsakalakos, T.] Rutgers State Univ, Dept Mat Sci & Engn, Piscataway, NJ 08854 USA.
[Jisrawi, N. M.] Univ Sharjah, Dept Basic Sci, Sharjah, U Arab Emirates.
[Holtz, R. L.; Pao, P. S.] USN, Res Lab, Washington, DC 20375 USA.
[Sadananda, K.] Tech Data Anal Inc, Falls Church, VA 22046 USA.
RP Croft, M (reprint author), Rutgers State Univ, Dept Phys, Piscataway, NJ 08854 USA.
EM croft@physics.rutgers.edu
NR 19
TC 15
Z9 15
U1 1
U2 7
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0142-1123
J9 INT J FATIGUE
JI Int. J. Fatigue
PD NOV-DEC
PY 2009
VL 31
IS 11-12
BP 1669
EP 1677
DI 10.1016/j.ijfatigue.2009.01.020
PG 9
WC Engineering, Mechanical; Materials Science, Multidisciplinary
SC Engineering; Materials Science
GA 500RP
UT WOS:000270322400007
ER
PT J
AU Dongarra, J
Beckman, P
Aerts, P
Cappello, F
Lippert, T
Matsuoka, S
Messina, P
Moore, T
Stevens, R
Trefethen, A
Valero, M
AF Dongarra, Jack
Beckman, Pete
Aerts, Patrick
Cappello, Frank
Lippert, Thomas
Matsuoka, Satoshi
Messina, Paul
Moore, Terry
Stevens, Rick
Trefethen, Anne
Valero, Mateo
TI THE INTERNATIONAL EXASCALE SOFTWARE PROJECT: A CALL TO COOPERATIVE
ACTION BY THE GLOBAL HIGH-PERFORMANCE COMMUNITY
SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS
LA English
DT Article
DE exascale; software; international; applications; scientific computing
AB Over the last 20 years, the open-source community has provided more and more software on which the world's high-performance computing systems depend for performance and productivity. The community has invested millions of dollars and years of effort to build key components. Although the investments in these separate software elements have been tremendously valuable, a great deal of productivity has also been lost because of the lack of planning, coordination, and key integration of technologies necessary to make them work together smoothly and efficiently, both within individual petascale systems and between different systems. A repository gatekeeper and an email discussion list can coordinate open-source development within a single project, but there is no global mechanism working across the community to identify critical holes in the overall software environment, spot opportunities for beneficial integration, or specify requirements for more careful coordination. It seems clear that this completely uncoordinated development model will not provide the software needed to support the unprecedented parallelism required for peta/exascale computation on millions of cores, or the flexibility required to exploit new hardware models and features, such as transactional memory, speculative execution, and GPUs. We believe the community must work together to prepare for the challenges of exascale computing, ultimately combing their efforts in a coordinated International Exascale Software Project.
C1 [Dongarra, Jack; Moore, Terry] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA.
[Beckman, Pete; Messina, Paul] Argonne Natl Lab, Argonne Leadership Comp Facil, Argonne, IL 60439 USA.
[Cappello, Frank] INRIA, Rech Informat Lab, Sophia Antipolis, France.
[Lippert, Thomas] Julich Supercomp Ctr, Julich, Germany.
[Matsuoka, Satoshi] Tokyo Inst Technol, Tokyo, Japan.
[Stevens, Rick] Argonne Natl Lab, Comp Environm & Life Sci Div, Argonne, IL 60439 USA.
[Trefethen, Anne] Univ Oxford, Oxford, England.
[Valero, Mateo] Tech Univ Catalonia, Catalonia, Spain.
RP Dongarra, J (reprint author), Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA.
EM DONGARRA@EECS.UTK.EDU
RI Dongarra, Jack/E-3987-2014; Valero, Mateo/L-5709-2014
OI Valero, Mateo/0000-0003-2917-2482
NR 12
TC 34
Z9 34
U1 2
U2 7
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 1094-3420
J9 INT J HIGH PERFORM C
JI Int. J. High Perform. Comput. Appl.
PD NOV
PY 2009
VL 23
IS 4
BP 309
EP 322
DI 10.1177/1094342009347714
PG 14
WC Computer Science, Hardware & Architecture; Computer Science,
Interdisciplinary Applications; Computer Science, Theory & Methods
SC Computer Science
GA 509AO
UT WOS:000270983500001
ER
PT J
AU Lusk, E
AF Lusk, Ewing
TI SLOUCHING TOWARDS EXASCALE
SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS
LA English
DT Article
DE programming models; exascale computing; OpenMP; MPI; hybrid programming
AB One question before the high-performance computing community is "How will application developers write code for exascale machines?" At this point it looks like they might be riding a rough beast indeed. This paper is a brief assessment of where we stand now with respect to writing programs for our largest supercomputers and what we should do next. MPI is likely to remain a critical part of the programming infrastructure as we move towards exascale, but more is needed, in particular a robust, portable, and effective standard for parallel programming within a single address space, perhaps for heterogeneous processors. Formal methods provide the only truly scalable approach to developing correct code in this complex programming environment.
C1 Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA.
RP Lusk, E (reprint author), Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA.
EM LUSK@MCS.ANL.GOV
NR 0
TC 0
Z9 0
U1 0
U2 1
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 1094-3420
J9 INT J HIGH PERFORM C
JI Int. J. High Perform. Comput. Appl.
PD NOV
PY 2009
VL 23
IS 4
BP 337
EP 339
DI 10.1177/1094342009347493
PG 3
WC Computer Science, Hardware & Architecture; Computer Science,
Interdisciplinary Applications; Computer Science, Theory & Methods
SC Computer Science
GA 509AO
UT WOS:000270983500006
ER
PT J
AU Maccabe, A
Falter, H
Kramer, W
AF Maccabe, Arthur
Falter, Hugo
Kramer, William
TI RESOURCE MANAGEMENT
SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS
LA English
DT Article
DE scalable applications; resource constrained applications; programming
models; exascale; resource management
AB Application scalability is directly related to the ability of the application developer to effectively use the resources provided by a computing system. As we start to address the development of exascale platforms, we must engage in a dialog to define the terms related to resource management. Approaches to resource management can be categorized in two dimensions: static/dynamic and explicit/implicit. The static/dynamic dimension refers to when resource management decisions are made: prior to program execution or during program execution. The implicit/explicit dimension refers to the object that implements the decision making: the tools that implement the programming environment or the application developer. The development of applications that can scale to the resources provided by an exascale system will require tools that allow programmers to move easily and seamlessly between these dimensions as they express resource management decisions.
C1 [Maccabe, Arthur] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN USA.
[Falter, Hugo] Partec Cluster Competence Ctr, San Jose, CA USA.
[Kramer, William] Lawrence Berkeley Natl Lab, NERSC, Berkeley, CA USA.
RP Maccabe, A (reprint author), Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN USA.
EM MACCABEAB@ORNL.GOV
NR 0
TC 1
Z9 1
U1 0
U2 0
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 1094-3420
J9 INT J HIGH PERFORM C
JI Int. J. High Perform. Comput. Appl.
PD NOV
PY 2009
VL 23
IS 4
BP 347
EP 349
DI 10.1177/1094342009347498
PG 3
WC Computer Science, Hardware & Architecture; Computer Science,
Interdisciplinary Applications; Computer Science, Theory & Methods
SC Computer Science
GA 509AO
UT WOS:000270983500009
ER
PT J
AU Seager, M
Gorda, B
AF Seager, Mark
Gorda, Brent
TI THE CASE FOR A HIERARCHICAL SYSTEM MODEL FOR LINUX CLUSTERS
SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS
LA English
DT Article
C1 [Seager, Mark; Gorda, Brent] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Seager, M (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
EM SEAGER1@LLNL.GOV; BGORDA@LLNL.GOV
NR 0
TC 0
Z9 0
U1 0
U2 0
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 1094-3420
J9 INT J HIGH PERFORM C
JI Int. J. High Perform. Comput. Appl.
PD NOV
PY 2009
VL 23
IS 4
BP 350
EP 354
DI 10.1177/1094342009347499
PG 5
WC Computer Science, Hardware & Architecture; Computer Science,
Interdisciplinary Applications; Computer Science, Theory & Methods
SC Computer Science
GA 509AO
UT WOS:000270983500010
ER
PT J
AU Cappello, F
Geist, A
Gropp, B
Kale, L
Kramer, B
Snir, M
AF Cappello, Franck
Geist, Al
Gropp, Bill
Kale, Laxmikant
Kramer, Bill
Snir, Marc
TI TOWARD EXASCALE RESILIENCE
SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS
LA English
DT Article
DE exascale; challenge; resilience; fault tolerance; high-performance
computing
ID FAULT-TOLERANCE; SYSTEMS; PERFORMANCE; ROLLBACK
AB Over the past few years resilience has became a major issue for high-performance computing (HPC) systems, in particular in the perspective of large petascale systems and future exascale systems. These systems will typically gather from half a million to several millions of central processing unit (CPU) cores running up to a billion threads. From the current knowledge and observations of existing large systems, it is anticipated that exascale systems will experience various kind of faults many times per day. It is also anticipated that the current approach for resilience, which relies on automatic or application level checkpoint/restart, will not work because the time for checkpointing and restarting will exceed the mean time to failure of a full system. This set of projections leaves the community of fault tolerance for HPC systems with a difficult challenge: finding new approaches, which are possibly radically disruptive, to run applications until their normal termination, despite the essentially unstable nature of exascale systems. Yet, the community has only five to six years to solve the problem. This white paper synthesizes the motivations, observations and research issues considered as determinant of several complimentary experts of HPC in applications, programming models, distributed systems and system management.
C1 [Cappello, Franck] INRIA, Rech Informat Lab, Sophia Antipolis, France.
[Geist, Al] Oak Ridge Natl Lab, Oak Ridge, TN USA.
[Gropp, Bill; Kale, Laxmikant; Snir, Marc] Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA.
RP Cappello, F (reprint author), INRIA, Rech Informat Lab, Sophia Antipolis, France.
EM CAPPELLO@ILLINOIS.EDU
OI Gropp, William/0000-0003-2905-3029; Snir, Marc/0000-0002-3504-2468
NR 35
TC 96
Z9 96
U1 2
U2 10
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 1094-3420
J9 INT J HIGH PERFORM C
JI Int. J. High Perform. Comput. Appl.
PD NOV
PY 2009
VL 23
IS 4
BP 374
EP 388
DI 10.1177/1094342009347767
PG 15
WC Computer Science, Hardware & Architecture; Computer Science,
Interdisciplinary Applications; Computer Science, Theory & Methods
SC Computer Science
GA 509AO
UT WOS:000270983500016
ER
PT J
AU Kramer, W
Skinner, D
AF Kramer, William
Skinner, David
TI AN EXASCALE APPROACH TO SOFTWARE AND HARDWARE DESIGN
SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS
LA English
DT Article
DE software design; operating systems; performance measurement; resiliency;
I/O
AB For the past 10-15 years, horizontal layers of software and hardware design and development have been the de facto standard of creating high-performance computing (HPC) software. The horizontal design approach leads to the development of discrete components in the software stack and independent hardware components-all developed with different methods, requirements and quality dominated by plug-and-play componentization that is focused on horizontal functionality and portability. The horizontal software paradigm will break down at the exascale due to the system scale and complexity. The vertical approach needed for the exascale should include resilience (reliability and fault tolerance); performance; programmability; computational models; I/O; consistency and verification; resource management; and power management/total cost of ownership. To make the exascale an effective reality, instead of thinking of integration as the final step in defining and developing an exascale system, it will have to be the first step.
C1 [Kramer, William; Skinner, David] Lawrence Berkeley Natl Lab, NERSC, Berkeley, CA USA.
RP Kramer, W (reprint author), Lawrence Berkeley Natl Lab, NERSC, Berkeley, CA USA.
EM WKRAMER@NCSA.UIUC.EDU
NR 0
TC 1
Z9 1
U1 0
U2 0
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 1094-3420
J9 INT J HIGH PERFORM C
JI Int. J. High Perform. Comput. Appl.
PD NOV
PY 2009
VL 23
IS 4
BP 389
EP 391
DI 10.1177/1094342009347768
PG 3
WC Computer Science, Hardware & Architecture; Computer Science,
Interdisciplinary Applications; Computer Science, Theory & Methods
SC Computer Science
GA 509AO
UT WOS:000270983500017
ER
PT J
AU Kramer, W
Skinner, D
AF Kramer, William
Skinner, David
TI CONSISTENT APPLICATION PERFORMANCE AT THE EXASCALE
SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS
LA English
DT Article
DE system design; operating systems; performance measurement; usability;
resource management
AB We examine the future of application performance consistency on exascale parallel computing systems. By performance consistency we mean the regularity of wall clock times to complete a fixed amount of application progress. Exascale systems will have dramatically increased complexity along with their capability. Contributors to inconsistency include architectural choices, software functions and subtle interactions, and inconsistency will lead to lost potential. The challenge is how to maintain consistency at the exascale. In order for exascale systems to exhibit the consistency that is required to make the applications and systems productive, a new understanding of the causes and solutions to inconsistency is required, along with new ways of measuring the impact that design, implementation and operational choices have on consistency.
C1 [Kramer, William; Skinner, David] Lawrence Berkeley Natl Lab, High Performance Comp Dept, NERSC, Berkeley, CA 94720 USA.
RP Kramer, W (reprint author), Lawrence Berkeley Natl Lab, High Performance Comp Dept, NERSC, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
NR 9
TC 0
Z9 0
U1 0
U2 0
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 1094-3420
J9 INT J HIGH PERFORM C
JI Int. J. High Perform. Comput. Appl.
PD NOV
PY 2009
VL 23
IS 4
BP 392
EP 394
DI 10.1177/1094342009347700
PG 3
WC Computer Science, Hardware & Architecture; Computer Science,
Interdisciplinary Applications; Computer Science, Theory & Methods
SC Computer Science
GA 509AO
UT WOS:000270983500018
ER
PT J
AU Seager, M
Gorda, B
AF Seager, Mark
Gorda, Brent
TI A COLLABORATION AND COMMERCIALIZATION MODEL FOR EXASCALE SOFTWARE
RESEARCH
SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS
LA English
DT Article
DE exascale; software; research; development; commercialization
AB We propose a coordinated strategy for exascale software development that includes the incorporation of successful research and development (R&D) into development and engineering (D&E) projects and harvesting the successful D&E projects into products with vendor support (P&S). This allows the most flexible R&D agenda while at the same time providing a commercialization path. This process is described as a natural extension of current focus areas and funding agents for R&D, D&E and P&S, but adds stake holders from the next stage in the process in the upstream processes. This model allows the flexibility to encourage development and competition of ideas in the research, development and productization phases. We anticipate that multiple iterations through this process from R&D through P&S are required to achieve appropriate software for Exascale systems.
C1 [Seager, Mark; Gorda, Brent] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Seager, M (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
EM SEAGER1@LLNL.GOV; BGORDA@LLNL.GOV
NR 0
TC 1
Z9 1
U1 1
U2 6
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 1094-3420
J9 INT J HIGH PERFORM C
JI Int. J. High Perform. Comput. Appl.
PD NOV
PY 2009
VL 23
IS 4
BP 395
EP 397
DI 10.1177/1094342009347701
PG 3
WC Computer Science, Hardware & Architecture; Computer Science,
Interdisciplinary Applications; Computer Science, Theory & Methods
SC Computer Science
GA 509AO
UT WOS:000270983500019
ER
PT J
AU Geist, A
Dosanjh, S
AF Geist, Al
Dosanjh, Sudip
TI IESP EXASCALE CHALLENGE: CO-DESIGN OF ARCHITECTURES AND ALGORITHMS
SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS
LA English
DT Article
DE exascale; architectures; algorithms; co-design; high-performance
computing
AB There is a large gap between the peak performance of supercomputers and the actual performance realized by today's algorithms. This architecture-algorithm performance gap will get even wider with the increase in computing power being driven by a rapid escalation in the number of cores incorporated into a single chip rather than increases in the clock rate. In order to improve the effectiveness of peta and exascale systems we need to have a paradigm shift where architectures and algorithms are co-designed.
C1 [Geist, Al] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Dosanjh, Sudip] Sandia Natl Labs, Albuquerque, NM 87123 USA.
RP Geist, A (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA.
EM GST@ORNL.GOV
NR 0
TC 6
Z9 6
U1 0
U2 3
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 1094-3420
J9 INT J HIGH PERFORM C
JI Int. J. High Perform. Comput. Appl.
PD NOV
PY 2009
VL 23
IS 4
BP 401
EP 402
DI 10.1177/1094342009347766
PG 2
WC Computer Science, Hardware & Architecture; Computer Science,
Interdisciplinary Applications; Computer Science, Theory & Methods
SC Computer Science
GA 509AO
UT WOS:000270983500021
ER
PT J
AU Geist, A
Lucas, R
AF Geist, Al
Lucas, Robert
TI MAJOR COMPUTER SCIENCE CHALLENGES AT EXASCALE
SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS
LA English
DT Article
DE exascale; scale and complexity of systems; complexity of applications;
data challenges; new applications; software sustainability
AB Exascale systems will provide an unprecedented opportunity for science, one that will make it possible to use computation not only as a critical tool along with theory and experiment in understanding the behavior of the fundamental components of nature, but also for critical advances for the nation's energy needs and security. To create exascale systems and software that will enable the US Department of Energy ( DOE) to meet the science goals critical to the nation's energy, ecological sustainability, and global security, we must focus on major architecture, software, algorithm, and data challenges, and build on newly emerging programming environments. Only with this new infrastructure will applications be able to scale up to the required levels of parallelism and integrate technologies into complex coupled systems for real-world multidisciplinary modeling and simulation. Achieving this goal will likely involve a shift from current static approaches for application development and execution to a combination of new software tools, algorithms, and dynamically adaptive methods.
C1 [Geist, Al] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Lucas, Robert] Univ So Calif, Inst Informat Sci, Computat Sci Div, Marina Del Rey, CA 90292 USA.
RP Geist, A (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
EM GST@ORNL.GOV; RFLUCAS@ISI.EDU
NR 10
TC 10
Z9 10
U1 0
U2 6
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 1094-3420
J9 INT J HIGH PERFORM C
JI Int. J. High Perform. Comput. Appl.
PD NOV
PY 2009
VL 23
IS 4
BP 427
EP 436
DI 10.1177/1094342009347445
PG 10
WC Computer Science, Hardware & Architecture; Computer Science,
Interdisciplinary Applications; Computer Science, Theory & Methods
SC Computer Science
GA 509AO
UT WOS:000270983500028
ER
PT J
AU Heroux, MA
AF Heroux, Michael A.
TI SOFTWARE CHALLENGES FOR EXTREME SCALE COMPUTING: GOING FROM PETASCALE TO
EXASCALE SYSTEMS
SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS
LA English
DT Article
DE exascale computing; parallel programming models; advanced modeling and
simulation; fault resilient applications; software engineering for
computational science and engineering
AB Preparing applications for a transition from petascale to exascale systems will require a very large investment in several areas of software research and development. The introduction of manycore nodes, the abundance of parallelism, an increase in system faults (including soft errors) and a complicated, multi-component software environment are some of the most challenging issues we face. In this paper we address four topics we believe to be the most the challenging issues and therefore the greatest opportunities for making effective next-generation scalable applications. First and foremost is the need to transform existing applications to run on manycore platforms and properly design new applications. This is particularly challenging in the absence of a standard, portable manycore programming environment, but we can make progress in this direction while manycore programming models are developed. Second is promoting advanced modeling and simulation capabilities such as embedded optimization and uncertainty quantification that lead to higher quality results and orders of magnitude more parallelism. Third is progress toward fault resilience in applications, a critical need as system reliability degrades. Fourth and finally is a qualitative improvement in software design, including the social aspects, as exascale software systems will be increasingly multi-team and multi-faceted efforts.
C1 Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Heroux, MA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM MAHEROU@SANDIA.GOV
OI Heroux, Michael/0000-0002-5893-0273
NR 0
TC 5
Z9 6
U1 0
U2 6
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 1094-3420
J9 INT J HIGH PERFORM C
JI Int. J. High Perform. Comput. Appl.
PD NOV
PY 2009
VL 23
IS 4
BP 437
EP 439
DI 10.1177/1094342009347711
PG 3
WC Computer Science, Hardware & Architecture; Computer Science,
Interdisciplinary Applications; Computer Science, Theory & Methods
SC Computer Science
GA 509AO
UT WOS:000270983500029
ER
PT J
AU Levine, J
Savina, MR
Stephan, T
Dauphas, N
Davis, AM
Knight, KB
Pellin, MJ
AF Levine, Jonathan
Savina, Michael R.
Stephan, Thomas
Dauphas, Nicolas
Davis, Andrew M.
Knight, Kim B.
Pellin, Michael J.
TI Resonance ionization mass spectrometry for precise measurements of
isotope ratios
SO INTERNATIONAL JOURNAL OF MASS SPECTROMETRY
LA English
DT Article
DE Resonance ionization mass spectrometry; Power broadening; Precision;
Chromium isotopes; Presolar grains
ID ASYMPTOTIC GIANT BRANCH; SILICON-CARBIDE GRAINS; PRESOLAR SIC GRAINS;
ONE-ATOM DETECTION; S-PROCESS; STELLAR NUCLEOSYNTHESIS;
SURFACE-ANALYSIS; NOBLE-GASES; METEORITES; ZIRCONIUM
AB Resonance ionization mass spectrometry offers extremely high sensitivity and elemental selectivity in microanalysis, but the isotopic precision attainable by this technique has been limited. Measured isotope ratios are sensitive to small fluctuations in the pointing, pulse timing, and wavelength of the resonance lasers. We show that, by minimizing these fluctuations using feedback controls and by power-broadening the optical transitions, we are able to measure chromium isotope ratios with statistics-limited precision better than 1%. Small additional improvements in reproducibility come from careful shaping of the electric field in the region where atoms are photoionized and from minimizing pulse-to-pulse variations in the time-of-flight mass spectrometer through which the photoions travel. The increased reproducibility of isotopic measurements on standard materials has enabled us to detect anomalous chromium isotopic abundances in presolar Sic grains extracted from primitive meteorites. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Levine, Jonathan; Savina, Michael R.; Stephan, Thomas; Dauphas, Nicolas; Davis, Andrew M.; Knight, Kim B.; Pellin, Michael J.] Chicago Ctr Cosmochem, Chicago, IL USA.
[Levine, Jonathan; Stephan, Thomas; Dauphas, Nicolas; Davis, Andrew M.; Knight, Kim B.] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA.
[Levine, Jonathan] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Savina, Michael R.; Pellin, Michael J.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Dauphas, Nicolas; Davis, Andrew M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Knight, Kim B.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Levine, J (reprint author), Colgate Univ, Dept Phys & Astron, Hamilton, NY 13346 USA.
EM jlevine@colgate.edu
RI Pellin, Michael/B-5897-2008; Dauphas, Nicolas/E-4568-2011;
OI Pellin, Michael/0000-0002-8149-9768; Davis, Andrew/0000-0001-7955-6236
FU NASA [NNG06-GF19G, NNG09-AG39G, NNX07-AL94G, W-19895, W-10091]; US
Department of Energy, Office of Basic Energy Sciences [DEAC02-06CH11357]
FX We are grateful for the assistance of R.S. Lewis in preparing the sample
mount, and also to C.E. Tripa, I.V. Veryovkin, and A. Zinovev. We wish
to thank R. Santra, W. Happer, and D. Budker for useful discussions. Our
work is supported by NASA through grants NNG06-GF19G, NNG09-AG39G, and
NNX07-AL94G and work orders W-19895 and W-10091, and by the US
Department of Energy, Office of Basic Energy Sciences under contract
DEAC02-06CH11357.
NR 41
TC 23
Z9 24
U1 0
U2 17
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1387-3806
J9 INT J MASS SPECTROM
JI Int. J. Mass Spectrom.
PD NOV-DEC
PY 2009
VL 288
IS 1-3
BP 36
EP 43
DI 10.1016/j.ijms.2009.07.013
PG 8
WC Physics, Atomic, Molecular & Chemical; Spectroscopy
SC Physics; Spectroscopy
GA 523XO
UT WOS:000272108600005
ER
PT J
AU Drouart, A
Nolen, JA
Savajols, H
AF Drouart, A.
Nolen, J. A.
Savajols, H.
TI SUPER SEPARATOR SPECTROMETER FOR THE LINAG HEAVY ION BEAMS
SO INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS
LA English
DT Article; Proceedings Paper
CT Franco-Japanese Symposium on New Paradigms in Nuclear Physics
CY SEP 29-OCT 01, 2008
CL Inst Henri Poincare, Paris, FRANCE
SP CNRS, IN2P3, RIKEN Nishina Ctr, IPN Orsay, GANIL
HO Inst Henri Poincare
ID FACILITY
AB The Super Separator Spectrometer (S(3)) will receive the very high intensity heavy ion beams from the LINAG accelerator of SPIRAL2. Its privileged fields of physics are the delayed study of rare nuclei and secondary reactions with exotic nuclei. The project is presently in a phase of conceptual design. It includes a rotating target to sustain the high energy deposit, a two stages separator (momentum achromat) and spectrometer (mass spectrometer). Various detection set-ups are foreseen, especially a delayed alpha, gamma, and electron spectroscopy array and a gas catcher coupled to a low energy branch. We present here the current status of the project and its main features.
C1 [Drouart, A.] CEA Saclay, Irfu SPhN, F-91191 Gif Sur Yvette, France.
[Nolen, J. A.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Savajols, H.] GANIL, F-14000 Caen, France.
RP Drouart, A (reprint author), CEA Saclay, Irfu SPhN, F-91191 Gif Sur Yvette, France.
EM antoine.drouart@cea.fr; nolen@anl.gov; savajols@ganil.fr
NR 7
TC 5
Z9 5
U1 0
U2 2
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE
SN 0218-3013
J9 INT J MOD PHYS E
JI Int. J. Mod. Phys. E-Nucl. Phys.
PD NOV
PY 2009
VL 18
IS 10
BP 2160
EP 2168
DI 10.1142/S0218301309014482
PG 9
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA 531UU
UT WOS:000272695700049
ER
PT J
AU Cordill, MJ
Lund, MS
Parker, J
Leighton, C
Nair, AK
Farkas, D
Moody, NR
Gerberich, WW
AF Cordill, M. J.
Lund, M. S.
Parker, J.
Leighton, C.
Nair, A. K.
Farkas, D.
Moody, N. R.
Gerberich, W. W.
TI The Nano-Jackhammer effect in probing near-surface mechanical properties
SO INTERNATIONAL JOURNAL OF PLASTICITY
LA English
DT Article
DE Cyclic loading; Mechanical testing; Dislocations; Dynamic fracture;
Numerical algorithms
ID STRAIN GRADIENT PLASTICITY; TAYLOR DISLOCATION MODEL;
MOLECULAR-DYNAMICS; YIELD STRENGTH; INCIPIENT PLASTICITY; MISFIT
DISLOCATIONS; CONVENTIONAL THEORY; ACTIVATION VOLUME; RATE SENSITIVITY;
INDENTATION
AB Because of its ease of implementation and insensitivity to indenter drift, dynamic indentation techniques have been frequently used to measure mechanical properties of bulk and thin film materials as a function of indenter displacement. However, the actual effect of the oscillating tip on the material response has not been examined. Recently, it has been shown that the oscillation used with dynamic indentation techniques alters the measured hardness value of ductile metallic materials, especially at depths less than 200 nm. The alteration in the hardness is due to the added energy associated with the oscillation which assists dislocation nucleation. Atomistic simulations on nickel thin films agree with experiments that more dislocations are nucleated during dynamic indents than with quasi-static indents. Through the analysis of quasi-static and dynamic indents made into nickel single crystals and thin films, a theory to describe this phenomenon is presented. This is coined the Nano-jackhammer effect, a combination of dislocation nucleation and strain rate sensitivity caused by indentation with a superimposed dynamic oscillation. (C) 2009 Elsevier Ltd. All rights reserved.
C1 [Cordill, M. J.] Austrian Acad Sci, Erich Schmid Inst Mat Sci, A-8700 Leoben, Austria.
[Cordill, M. J.; Lund, M. S.; Parker, J.; Leighton, C.; Gerberich, W. W.] Univ Minnesota, Dept Chem & Mat Sci, Minneapolis, MN 55455 USA.
[Nair, A. K.; Farkas, D.] Virginia Tech, Blacksburg, VA 24061 USA.
[Moody, N. R.] Sandia Natl Labs, Livermore, CA 94550 USA.
RP Cordill, MJ (reprint author), Austrian Acad Sci, Erich Schmid Inst Mat Sci, JahnStr 12, A-8700 Leoben, Austria.
EM megan.cordill@oeaw.ac.at
RI Nair, Arun/F-8843-2010;
OI Cordill, Megan/0000-0003-1142-8312; Nair, Arun/0000-0003-2144-5335
FU NSF [CMS 03224361]; United States Department of Energy Office of Science
[DE-AC04-94AL8500]
FX We would like to thank J. Houston of Sandia National Laboratories,
Albuquerque, New Mexico, for his thorough reading of the manuscript and,
particularly, for his original insightful understanding and suggestion
of the Nano-jackhammer effect. Film deposition at the University of
Minnesota was supported by the NSF MRSEC. The simulations were performed
using Virginia Tech's supercomputer system X and the code LAMMPS,
provided by S. Plimpton, Sandia National Laboratory. Research support
through NSF Grant CMS 03224361 and the United States Department of
Energy Office of Science Grant DE-AC04-94AL8500 are gratefully
acknowledged.
NR 46
TC 14
Z9 14
U1 2
U2 13
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0749-6419
J9 INT J PLASTICITY
JI Int. J. Plast.
PD NOV
PY 2009
VL 25
IS 11
BP 2045
EP 2058
DI 10.1016/j.ijplas.2008.12.015
PG 14
WC Engineering, Mechanical; Materials Science, Multidisciplinary; Mechanics
SC Engineering; Materials Science; Mechanics
GA 514OU
UT WOS:000271405100002
ER
PT J
AU Barabash, RI
Ice, GE
Kumar, M
Ilavsky, J
Belak, J
AF Barabash, R. I.
Ice, G. E.
Kumar, M.
Ilavsky, J.
Belak, J.
TI Polychromatic microdiffraction analysis of defect self-organization in
shock deformed single crystals
SO INTERNATIONAL JOURNAL OF PLASTICITY
LA English
DT Article
DE Dynamic fracture; Voids and inclusions; Nondestructive evaluation;
Stress relaxation; Shock waves
ID DEFORMATION; COMPRESSION; PLASTICITY; DISLOCATIONS; BOUNDARIES;
ANISOTROPY; RESOLUTION; FRACTURE; METALS; COPPER
AB A spatially resolved X-ray diffraction method - with a submicron 3D resolution together with SEM and OIM analysis are applied to understand the arrangements of voids, geometrically necessary dislocations and strain gradient distributions in samples of Al (123) and Cu (001) single crystals shocked to incipient spallation fracture. We describe how geometrically necessary dislocations and the effective strain gradient alter white beam Laue patterns of the shocked materials. Several distinct structural zones are observed at different depths under the impact surface. The density of geometrically necessary dislocations (GNDs) is extremely high near the impact and back surface of the shock recovered crystals. The spall region is characterized by a large density of mesoscale voids and GNDs. The spall region is separated from the impact and back surfaces by compressed regions with high total dislocation density but lower GNDs density. Self-organization of shear bands is observed in the shock recovered Cu single crystal. (C) 2009 Elsevier Ltd. All rights reserved.
C1 [Barabash, R. I.; Ice, G. E.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
[Barabash, R. I.] Univ Tennessee, Mat Sci & Engn Dept, Knoxville, TN 37996 USA.
[Kumar, M.; Belak, J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
[Ilavsky, J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RP Barabash, RI (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA.
EM barabashr@ornal.gov
RI Ilavsky, Jan/D-4521-2013; USAXS, APS/D-4198-2013
OI Ilavsky, Jan/0000-0003-1982-8900;
FU U.S. Department of Energy [DE-AC05-00OR22725]; Lawrence Livermore
National Laboratory [W-7405-Eng-48]
FX The authors have benefited enormously from discussions with Hector
Lorenzana and Justin Wark. Research sponsored by the Division of
Materials Sciences and Technology, Office of Basic Energy Sciences, U.S.
Department of Energy, under Contract DE-AC05-00OR22725 with UT-Battelle,
LLC; at Lawrence Livermore National Laboratory research is sponsored
under the Contract W-7405-Eng-48.
NR 36
TC 16
Z9 16
U1 1
U2 10
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0749-6419
EI 1879-2154
J9 INT J PLASTICITY
JI Int. J. Plast.
PD NOV
PY 2009
VL 25
IS 11
BP 2081
EP 2093
DI 10.1016/j.ijplas.2009.01.002
PG 13
WC Engineering, Mechanical; Materials Science, Multidisciplinary; Mechanics
SC Engineering; Materials Science; Mechanics
GA 514OU
UT WOS:000271405100004
ER
PT J
AU Wagner, ID
Ahmed, S
Zhao, WD
Zhang, CL
Romanek, CS
Rohde, M
Wiegel, J
AF Wagner, Isaac D.
Ahmed, Sibtain
Zhao, Weidong
Zhang, Chuanlun L.
Romanek, Christopher S.
Rohde, Manfred
Wiegel, Juergen
TI Caldanaerovirga acetigignens gen. nov., sp nov., an anaerobic
xylanolytic, alkalithermophilic bacterium isolated from Trego Hot
Spring, Nevada, USA
SO INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY
LA English
DT Article
ID BIOMASS; WEIGHT
AB An anaerobic thermophilic bacterium, designated strain JW/SA-NV4(T), was isolated from a xylan-supplemented enrichment culture from Trego hot spring located within the Black Rock Desert (NV, USA). Cells were generally straight or slightly bent rod-shaped, 0.4-0.8 mu m in width and 3-6 mu m in length during exponential growth. Cells from stationary phase were variable in size and shape, showing curved or bent morphology. Motility was not seen and flagella were not observed in electron micrographs. Sporulation was not observed. Strain JW/SA-NV4T stained Gram-negative but is phylogenetically Gram-type positive. Growth occurred at pH(25) (degrees C) 6.8-8.8, with optimum growth at PH 8.4; no growth occurred at PH 9.0 or above or at 6.5 or below. With glucose or xylose as the carbon source, strain JW/SA-NV4(T) grew at 44-74 degrees C; no growth occurred at 76 degrees C or above or at 42 degrees C or below. However, the optimum temperature was 62 and 66 degrees C when grown on glucose and xylose, respectively. The shortest doubling time observed with glucose was approximately 4 h, and with xylose approximately 3.4 h. Strain JW/SA-NV4(T) tolerated an atmosphere containing UP to 0-1% O(2); no growth occurred at a gas atmosphere of 0.2% O(2). Chemo-organotrophic growth occurred with xylose, glucose, mannose, xylan, pyruvate, fructose, ribose, Casamino acids, mannitol, tryptone, peptone, cellobiose and yeast extract. When grown in mineral media containing 1 g yeast extract I(-1) as an electron donor, thiosulfate and sulfur were reduced to sulfide. The G + C content of the DNA was 38.6 mol% (HPLC). 16S rRNA gene sequence analysis placed strain JW/SA-NV4(T) within the order Thermoanaerobacterales and within the Thermoanaerobacterales Incertae Sedis Family III, specifically between taxa classified within the genera Thermosediminibacter and Thermovenabulum. The closest phylogenetic neighbours were Thermosediminibacter oceani JW/IW-1228P(T) (94.2% 16S rRNA gene sequence similarity) and Thermosediminibacter litoriperuensis JW/YJL-1230-7/2(T) (94.0%) (Lee, Y.-J., Wagner, I. D., Brice, M. E., Kevbrin, V. V., Mills, G. L., Romanek, C. S. & Wiegel, J. (2005). Extremophiles 9, 375-383]. Based on physiological and genotypic characteristics, strain JW/SA-NV4(T) (=DSM 18802(T) =ATCC BAA-1454(T)) is proposed to represent the type strain of a novel species in a novel genus, Caldanaerovirga acetigignens gen. nov., sp. nov.
C1 [Wagner, Isaac D.; Wiegel, Juergen] Univ Georgia, Dept Microbiol, Athens, GA 30602 USA.
[Ahmed, Sibtain] Univ Agr Faisalabad, Dept Chem & Biochem, Faisalabad 38040, Pakistan.
[Ahmed, Sibtain] Univ Vet & Anim Sci, Dept Physiol & Biochem, Lahore 54000, Pakistan.
[Zhao, Weidong; Zhang, Chuanlun L.] Univ Georgia, Dept Marine Sci, Athens, GA 30602 USA.
[Zhao, Weidong; Zhang, Chuanlun L.; Romanek, Christopher S.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA.
[Romanek, Christopher S.] Univ Georgia, Dept Geol, Athens, GA 30602 USA.
[Rohde, Manfred] GBF Gesell Biotechnol Forsch GmbH, D-38124 Braunschweig, Germany.
RP Wiegel, J (reprint author), Univ Georgia, Dept Microbiol, Athens, GA 30602 USA.
EM jwiegel@uga.edu
OI Wiegel, Juergen/0000-0002-6343-6464
FU National Science Foundation [MCB 0348180]; United States Department of
States (USDOS); Higher Education Commission, Government of Pakistan
FX Funding for this research was provided by the National Science
Foundation MIP Program to JW/CLZ/CSR (MCB 0348180), as well as a grant
from United States Department of States (USDOS) and Higher Education
Commission, Government of Pakistan. We thank P. Schumann at DSMZ for
assistance with the cell wall analysis, W. B. Whitman for his help with
the DNA G+C content determination, and G. Mills and N. Garvin for
assistance with lipid analysis.
NR 29
TC 4
Z9 4
U1 0
U2 5
PU SOC GENERAL MICROBIOLOGY
PI READING
PA MARLBOROUGH HOUSE, BASINGSTOKE RD, SPENCERS WOODS, READING RG7 1AG,
BERKS, ENGLAND
SN 1466-5026
J9 INT J SYST EVOL MICR
JI Int. J. Syst. Evol. Microbiol.
PD NOV
PY 2009
VL 59
BP 2685
EP 2691
DI 10.1099/ijs.0.005207-0
PG 7
WC Microbiology
SC Microbiology
GA 526MV
UT WOS:000272295000008
PM 19625440
ER
PT J
AU Lee, YJ
Romanek, CS
Wiegel, J
AF Lee, Yong-Jin
Romanek, Christopher S.
Wiegel, Juergen
TI Desulfosporosinus youngiae sp nov., a spore-forming, sulfate-reducing
bacterium isolated from a constructed wetland treating acid mine
drainage
SO INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY
LA English
DT Article
ID GEN. NOV.; PHYLOGENETIC ANALYSIS; COMB. NOV; AURIPIGMENTUM; RESPIRATION;
SEDIMENTS; ARSENATE; WATER
AB Strain JW/YJL-B18(T), a spore-forming, sulfate-reducing bacterium, was isolated from constructed wetland sediment. Cells were curved rods, 0.7-1.2 mu m in diameter and 3-7 mu m long. Despite being phylogenetically a member of the Gram-type-positive phylum Firmicutes, cells stained Gram-negative at all growth phases. Strain JW/YJL-B18(T) grew at 8-39 degrees C, with an optimum at 32-35 degrees C and no growth at 4 degrees C or below or at 42 degrees C or above. The pH(25 degrees C) range for growth was 5.7-8.2, with an optimum at pH(25 degrees C) 7.0-7.3, and no growth was detected at or below pH 5.2 or at or above pH 8.4. The salinity range for growth was 0-3% (NaCl/KCl 9:1). Strain JW/YJL-B18(T) utilized as carbon and energy sources beef extract, yeast extract, formate, succinate, lactate, pyruvate, ethanol and toluene. Fumarate, sulfate, sulfite and thiosulfate were reduced in the presence of lactate. Arsenate (V) was not used as an electron acceptor. Strain JW/YJL-B18(T) showed no indication of growth under autotrophic conditions. The predominant cellular fatty acids were C(16:1) and C(16:0). The genomic DNA G+C content was 36.6 mol% (HPLC). 16S rRNA gene sequence analysis indicated that strain JW/YJL-B18(T) fell into the genus Desulfosporosinus, with Desulfosporosinus auripigmenti OREX-4(T) as its closest neighbour with a validly published name (97.9% similarity). Based on molecular genetic evidence and physiological and biochemical characters including differences in the DNA G+C content, we propose to place strain JW/YJL-B18(T) (=DSM 17734(T) =ATCC BAA-1261(T)) as the type strain of a novel species, Desulfosporosinus youngiae sp. nov.
C1 [Lee, Yong-Jin; Wiegel, Juergen] Univ Georgia, Dept Microbiol, Athens, GA 30602 USA.
[Romanek, Christopher S.] Univ Georgia, Dept Geol, Athens, GA 30602 USA.
[Lee, Yong-Jin; Romanek, Christopher S.] Savannah River Ecol Lab, Aiken, SC 29802 USA.
RP Wiegel, J (reprint author), Univ Georgia, Dept Microbiol, Athens, GA 30602 USA.
EM jwiegel@uga.edu
OI Wiegel, Juergen/0000-0002-6343-6464
FU United States Department of Energy and the University of Georgia
[DE-FC09-96SR18546]
FX This research was partially supported by Financial Assistance Award
Number DE-FC09-96SR18546 between the United States Department of Energy
and the University of Georgia as a part of the US DOE National Water
Research Center. We thank Robert C. Thomas for providing samples for
this experiment, Gary L. Mills for lipid analysis and Jean P. Euzeby for
his help with the nomenclature.
NR 24
TC 16
Z9 16
U1 0
U2 6
PU SOC GENERAL MICROBIOLOGY
PI READING
PA MARLBOROUGH HOUSE, BASINGSTOKE RD, SPENCERS WOODS, READING RG7 1AG,
BERKS, ENGLAND
SN 1466-5026
J9 INT J SYST EVOL MICR
JI Int. J. Syst. Evol. Microbiol.
PD NOV
PY 2009
VL 59
BP 2743
EP 2746
DI 10.1099/ijs.0.007336-0
PG 4
WC Microbiology
SC Microbiology
GA 526MV
UT WOS:000272295000019
PM 19625426
ER
PT J
AU Konopka, A
AF Konopka, Allan
TI What is microbial community ecology?
SO ISME JOURNAL
LA English
DT Article
DE microbial community; functional redundancy; microbial interactions;
emergent properties
ID IN-SITU HYBRIDIZATION; BACTERIAL COMMUNITIES; RIBOSOMAL-RNA; DIVERSITY;
EVOLUTION; BIODIVERSITY; ECOSYSTEMS; DYNAMICS; COMPLEXITY; MODEL
AB The activities of complex communities of microbes affect biogeochemical transformations in natural, managed and engineered ecosystems. Meaningfully defining what constitutes a community of interacting microbial populations is not trivial, but is important for rigorous progress in the field. Important elements of research in microbial community ecology include the analysis of functional pathways for nutrient resource and energy flows, mechanistic understanding of interactions between microbial populations and their environment, and the emergent properties of the complex community. Some emergent properties mirror those analyzed by community ecologists who study plants and animals: biological diversity, functional redundancy and system stability. However, because microbes possess mechanisms for the horizontal transfer of genetic information, the metagenome may also be considered as a community property. The ISME Journal (2009) 3, 1223-1230; doi: 10.1038/ismej.2009.88; published online 6 August 2009
C1 Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA.
RP Konopka, A (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999,MSIN P7-50, Richland, WA 99352 USA.
EM allan.konopka@pnl.gov
FU Laboratory Directed Research and Development Program at Pacific
Northwest National Laboratory; Battelle for the U.S. Department of
Energy [DE-AC05-76RL01830]
FX This work was conducted in part under the Laboratory Directed Research
and Development Program at Pacific Northwest National Laboratory, a
multiprogram national laboratory operated by Battelle for the U.S.
Department of Energy under Contract DE-AC05-76RL01830.
NR 71
TC 93
Z9 96
U1 10
U2 91
PU NATURE PUBLISHING GROUP
PI NEW YORK
PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA
SN 1751-7362
J9 ISME J
JI ISME J.
PD NOV
PY 2009
VL 3
IS 11
BP 1223
EP 1230
DI 10.1038/ismej.2009.88
PG 8
WC Ecology; Microbiology
SC Environmental Sciences & Ecology; Microbiology
GA 519PG
UT WOS:000271778700001
PM 19657372
ER
PT J
AU Adams, DP
Rodriguez, MA
McDonald, JP
Bai, MM
Jones, E
Brewer, L
Moore, JJ
AF Adams, D. P.
Rodriguez, M. A.
McDonald, J. P.
Bai, M. M.
Jones, E., Jr.
Brewer, L.
Moore, J. J.
TI Reactive Ni/Ti nanolaminates
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID SELF-PROPAGATING REACTIONS; HIGH-TEMPERATURE SYNTHESIS;
THERMAL-EXPLOSION MODE; COMBUSTION SYNTHESIS; MULTILAYER FOILS; POROUS
NITI; MECHANISM; ALLOYS; CRYSTALLIZATION; PRESSURE
AB Nickel/titanium nanolaminates fabricated by sputter deposition exhibited rapid, high-temperature synthesis. When heated locally, self-sustained reactions were produced in freestanding Ni/Ti) multilayer foils characterized by average propagation speeds between similar to 0.1 and 1.4 m/s. The speed of a propagating reaction front was affected by total foil thickness and bilayer thickness (layer periodicity). In contrast to previous work with compacted Ni-Ti powders, no preheating of Ni/Ti foils was required to maintain self-propagating reactions. High-temperature synthesis was also stimulated by rapid global heating demonstrating low ignition temperatures (T-Ig) similar to 300-400 degrees C for nanolaminates. Ignition temperature was influenced by bilayer thickness with more coarse laminate designs exhibiting increased T-Ig, Foils reacted in a vacuum apparatus developed either as single-phase B2 cubic NiTi (austenite) or as a mixed-phase structure that was composed of monoclinic B19' NiTi (martensite), hexagonal NiTi2, and B2 NiTi. Single-phase, cubic B2 NiTi generally formed when the initial bilayer thickness was made small. (C) 2009 American Institute of Physics. [doi:10.1063/1.3253591]
C1 [Adams, D. P.; Rodriguez, M. A.; McDonald, J. P.; Bai, M. M.; Jones, E., Jr.; Brewer, L.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Adams, D. P.; Bai, M. M.; Moore, J. J.] Colorado Sch Mines, Golden, CO 80401 USA.
RP Adams, DP (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
FU United States Department of Energy's National Nuclear Security
Administration [DE-AC04-94AL85000]
FX The authors appreciate the efforts of T. Covert and D. Wackerbarth for
analysis. D.A. would like to thank R. Knepper for a thorough review of
this manuscript. Funding was provided by the Laboratory Directed
Research and Development program at Sandia National Laboratories. Sandia
is a multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Co., for the United States Department of Energy's National
Nuclear Security Administration under Contract No. DE-AC04-94AL85000.
NR 47
TC 20
Z9 20
U1 0
U2 12
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0021-8979
EI 1089-7550
J9 J APPL PHYS
JI J. Appl. Phys.
PD NOV 1
PY 2009
VL 106
IS 9
AR 093505
DI 10.1063/1.3253591
PG 8
WC Physics, Applied
SC Physics
GA 529YP
UT WOS:000272555700021
ER
PT J
AU Bi, ZX
Lee, JH
Yang, H
Jia, QX
MacManus-Driscoll, JL
Wang, HY
AF Bi, Zhenxing
Lee, Joon Hwan
Yang, Hao
Jia, Quanxi
MacManus-Driscoll, Judith L.
Wang, Haiyan
TI Tunable lattice strain in vertically aligned nanocomposite
(BiFeO3)(x):(Sm2O3)(1-x) thin films
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID NANOSTRUCTURES; GROWTH
AB Unique epitaxial two-phase vertically aligned nanocomposite (VAN) (BiFeO3)(x)center dot(Sm2O3)(1-x) thin films were deposited on SrTiO3(001) substrates by pulsed laser deposition. The VAN thin films exhibit a highly ordered vertical columnar structure with high epitaxial quality. We demonstrate that the strains of the two phases in both out-of-plane and in-plane directions call be tuned by the deposition parameters during growth, eg, deposition frequency and film composition of the nanocomposite The strain tunability is found to be directly related to the systematic variation in the column widths in the nanocomposite The dielectric property Measurement shows that increasing vertical strain control will lead to a systematic dielectric loss reduction in the VAN thin films. This study suggests a promising avenue in achieving tunable strain in functional oxide thin films by using VAN structures. (C) 2009 American Institute of Physics. [doi:10.1063/1.3257175]
C1 [Bi, Zhenxing; Lee, Joon Hwan; Wang, Haiyan] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA.
[Yang, Hao; Jia, Quanxi] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[MacManus-Driscoll, Judith L.] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England.
RP Wang, HY (reprint author), Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA.
RI Jia, Q. X./C-5194-2008; Wang, Haiyan/P-3550-2014
OI Wang, Haiyan/0000-0002-7397-1209
FU National Science Foundation [DMR-0709831]; U.S. Department of Energy
FX This work is supported by the National Science Foundation (Grant No.
DMR-0709831 under Ceramic Program) The work at Los Alamos was supported
as a Los Alamos National Laboratory Directed Research and Development
Project and the Center for Integrated Nanotechnologies under the U.S.
Department of Energy.
NR 22
TC 21
Z9 21
U1 5
U2 35
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
EI 1089-7550
J9 J APPL PHYS
JI J. Appl. Phys.
PD NOV 1
PY 2009
VL 106
IS 9
AR 094309
DI 10.1063/1.3257175
PG 5
WC Physics, Applied
SC Physics
GA 529YP
UT WOS:000272555700087
ER
PT J
AU Bourne, NK
Gray, GT
Millett, JCF
AF Bourne, N. K.
Gray, G. T., III
Millett, J. C. F.
TI On the shock response of cubic metals
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Review
ID SHEAR-STRENGTH MEASUREMENTS; DISLOCATION CELL-SIZE; LATERAL STRESS;
POLYCRYSTALLINE NI3AL; MECHANICAL RESPONSE; PULSE DURATION; PEAK
PRESSURE; LOADED NICKEL; DEFORMATION; TANTALUM
AB The response of four Cubic metals to shock loading is reviewed in order to understand the effects of microstructure on continuum response. Experiments are described that link defect generation and storage mechanisms at the mesoscale to observations in the bulk. Four materials were reviewed: these were fcc nickel, the ordered fcc intermetallic Ni(3)Al, the bcc metal tantalum, and two alloys based on the intermetallic phase TiAl. Ti-46.5Al-2Cr-2Nb and Ti-48Al-2Cr-2Nb-1B. The experiments described are in two groups: first. equation of state and shear strength measurements using Manganin stress gauges and, second, postshock microstructural examinations and measurement of changes in mechanical properties. The behaviors described are linked through file description of time dependent plasticity mechanisms to the final states achieved. Recovered targets displayed dislocation microstructures Illustrating processes active during the shock-loading process Reloading of previously shock-prestrained samples illustrated shock strengthening for the fcc metals Ni and Ni(3)Al while showing 110 Such effect for bcc Ta and for the intermetallic TiAl This difference in effective shock hardening has been related, on the one hand, to the fact that bee metals have fewer available slip systems that can operate than fcc crystals and to the observation that the lower symmetry materials (Ta and TiAl) both possess high Peierls stress and thus have higher resistances to defect motion in the lattice Under shock-loading conditions. These behaviors, compared between these four materials. illustrate the role of defect generation. transport, storage, and interaction in determining the response of materials to shock prestraining. [doi-10.1063/1.3218758]
C1 [Bourne, N. K.; Millett, J. C. F.] AWE Aldermaston, Reading RG7 4PR, Berks, England.
[Gray, G. T., III] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Bourne, NK (reprint author), AWE Aldermaston, Reading RG7 4PR, Berks, England.
FU UK government; EPSRC; DSTL; AWE; U.S. Department of Energy
[DE-AC52-06NA25396]; Joint DoD/DOE Munitions Technology Development
Program
FX N K.B. acknowledges the work Of students who have worked on these issues
and the funding bodies within UK government who have have supported this
work including EPSRC, DSTL. AWE. and QQ. G.T.G. acknowledges support of
Los Alamos National Laboratory that is operated by LANS, LLC. for the
National Nuclear Security Administration of the U.S. Department of
Energy under Contract No. DE-AC52-06NA25396 and the Joint DoD/DOE
Munitions Technology Development Program
NR 99
TC 22
Z9 24
U1 2
U2 35
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD NOV 1
PY 2009
VL 106
IS 9
AR 091301
DI 10.1063/1.3218758
PG 14
WC Physics, Applied
SC Physics
GA 529YP
UT WOS:000272555700001
ER
PT J
AU Buongiorno, J
Venerus, DC
Prabhat, N
McKrell, T
Townsend, J
Christianson, R
Tolmachev, YV
Keblinski, P
Hu, LW
Alvarado, JL
Bang, IC
Bishnoi, SW
Bonetti, M
Botz, F
Cecere, A
Chang, Y
Chen, G
Chen, HS
Chung, SJ
Chyu, MK
Das, SK
Di Paola, R
Ding, YL
Dubois, F
Dzido, G
Eapen, J
Escher, W
Funfschilling, D
Galand, Q
Gao, JW
Gharagozloo, PE
Goodson, KE
Gutierrez, JG
Hong, HP
Horton, M
Hwang, KS
Iorio, CS
Jang, SP
Jarzebski, AB
Jiang, YR
Jin, LW
Kabelac, S
Kamath, A
Kedzierski, MA
Kieng, LG
Kim, C
Kim, JH
Kim, S
Lee, SH
Leong, KC
Manna, I
Michel, B
Ni, R
Patel, HE
Philip, J
Poulikakos, D
Reynaud, C
Savino, R
Singh, PK
Song, PX
Sundararajan, T
Timofeeva, E
Tritcak, T
Turanov, AN
Van Vaerenbergh, S
Wen, DS
Witharana, S
Yang, C
Yeh, WH
Zhao, XZ
Zhou, SQ
AF Buongiorno, Jacopo
Venerus, David C.
Prabhat, Naveen
McKrell, Thomas
Townsend, Jessica
Christianson, Rebecca
Tolmachev, Yuriy V.
Keblinski, Pawel
Hu, Lin-wen
Alvarado, Jorge L.
Bang, In Cheol
Bishnoi, Sandra W.
Bonetti, Marco
Botz, Frank
Cecere, Anselmo
Chang, Yun
Chen, Gany
Chen, Haisheng
Chung, Sung Jae
Chyu, Minking K.
Das, Sarit K.
Di Paola, Roberto
Ding, Yulong
Dubois, Frank
Dzido, Grzegorz
Eapen, Jacob
Escher, Werner
Funfschilling, Denis
Galand, Quentin
Gao, Jinwei
Gharagozloo, Patricia E.
Goodson, Kenneth E.
Gutierrez, Jorge Gustavo
Hong, Haiping
Horton, Mark
Hwang, Kyo Sik
Iorio, Carlo S.
Jang, Seok Pil
Jarzebski, Andrzej B.
Jiang, Yiran
Jin, Liwen
Kabelac, Stephan
Kamath, Aravind
Kedzierski, Mark A.
Kieng, Lim Geok
Kim, Chongyoup
Kim, Ji-Hyun
Kim, Seokwon
Lee, Seung Hyun
Leong, Kai Choong
Manna, Indranil
Michel, Bruno
Ni, Rui
Patel, Hrishikesh E.
Philip, John
Poulikakos, Dimos
Reynaud, Cecile
Savino, Raffaele
Singh, Pawan K.
Song, Pengxiang
Sundararajan, Thirumalachari
Timofeeva, Elena
Tritcak, Todd
Turanov, Aleksandr N.
Van Vaerenbergh, Stefan
Wen, Dongsheng
Witharana, Sanjeeva
Yang, Chun
Yeh, Wei-Hsun
Zhao, Xiao-Zheng
Zhou, Sheng-Qi
TI A benchmark study on the thermal conductivity of nanofluids
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID HEAT-TRANSFER CHARACTERISTICS; SUSPENSIONS; NANOPARTICLES; MODEL;
PARTICLES; LIQUID; VOLUME; FLOW
AB This article reports or, the international Nanofluid Property Benchmark Exercise, or INPBE. in which the thermal conductivity of identical samples of colloidally stable dispersions of nanoparticles or "nanofluids", was measured by over 30 organizations worldwide, using, a variety of experimental approaches, including the transient hot wire method, steady-state methods, and optical methods. The nanofluids tested in the exercise were comprised of aqueous and nonaqueous basefluids, metal and metal oxide particles, near-spherical and elongated particles, at low and high particle concentrations. The data analysis reveals that the data from most organizations lie within a relatively narrow band (+/- 10% or less) about the sample average with only few outliers. The thermal conductivity of the nanofluids was found to increase with particle concentration and aspect ratio. as expected from classical theory. There are (small) systematic differences in the absolute values of the nanofluid thermal conductivity among the various experimental approaches; however. such differences tend to disappear when the data are normalized to the Measured thermal conductivity of the basefluid. The effective medium theory developed for dispersed particles by Maxwell in 1881 and recently generalized by Nan et al. [J. Appl. Phys. 81, 6692 (1997)], was found to be in good agreement with the experimental data, suggesting that no anomalous enhancement of thermal conductivity was achieved in the nanofluids tested in this exercise. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3245330]
C1 [Buongiorno, Jacopo; Prabhat, Naveen; McKrell, Thomas; Hu, Lin-wen; Chen, Gany; Gao, Jinwei] MIT, Cambridge, MA 02139 USA.
[Venerus, David C.; Bishnoi, Sandra W.; Jiang, Yiran; Yeh, Wei-Hsun] IIT, Chicago, IL USA.
[Townsend, Jessica; Christianson, Rebecca] Olin Coll Engn, Needham, MA 02492 USA.
[Tolmachev, Yuriy V.; Turanov, Aleksandr N.] Kent State Univ, Kent, OH 44242 USA.
[Keblinski, Pawel] Rensselaer Polytech Inst, Mat Res Ctr, Troy, NY 12180 USA.
[Alvarado, Jorge L.; Kamath, Aravind] Texas A&M Univ, College Stn, TX 77843 USA.
[Bang, In Cheol; Kim, Ji-Hyun] Ulsan Natl Inst Sci & Technol, Sch Energy Engn, Ulsan Metropolitan City, South Korea.
[Bang, In Cheol] Tokyo Inst Technol, Meguro Ku, Tokyo 1528550, Japan.
[Bonetti, Marco; Reynaud, Cecile] CEA, IRAMIS, F-91191 Gif Sur Yvette, France.
[Botz, Frank; Tritcak, Todd] METSS Corp, Westerville, OH 43082 USA.
[Cecere, Anselmo; Di Paola, Roberto; Savino, Raffaele] Univ Naples Federico II, Dept Aerosp Engn, I-80125 Naples, Italy.
[Chang, Yun] SASOL N Amer, Westlake, LA 70669 USA.
[Chen, Haisheng; Ding, Yulong; Witharana, Sanjeeva] Univ Leeds, Leeds LS2 9JT, W Yorkshire, England.
[Chung, Sung Jae; Chyu, Minking K.] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA.
[Das, Sarit K.; Patel, Hrishikesh E.; Singh, Pawan K.; Sundararajan, Thirumalachari] Indian Inst Technol, Dept Mech Engn, Madras 600036, Tamil Nadu, India.
[Dubois, Frank; Galand, Quentin; Iorio, Carlo S.; Van Vaerenbergh, Stefan] Univ Libre Brussels, B-1050 Brussels, Belgium.
[Dzido, Grzegorz; Jarzebski, Andrzej B.] Silesian Tech Univ, Dept Chem & Proc Engn, PL-44100 Gliwice, Poland.
[Eapen, Jacob] N Carolina State Univ, Dept Nucl Engn, Raleigh, NC 27695 USA.
[Escher, Werner; Michel, Bruno] IBM Res GmbH, Zurich Res Lab, CH-8803 Ruschlikon, Switzerland.
[Escher, Werner; Poulikakos, Dimos] ETH, Dept Mech & Proc Engn, Lab Thermodynam Emerging Technol, CH-8092 Zurich, Switzerland.
[Funfschilling, Denis; Ni, Rui; Zhao, Xiao-Zheng; Zhou, Sheng-Qi] Chinese Univ Hong Kong, Dept Phys, Ctr Sci, Shatin, Hong Kong, Peoples R China.
[Gharagozloo, Patricia E.; Goodson, Kenneth E.] Stanford Univ, Stanford, CA 94305 USA.
[Gutierrez, Jorge Gustavo] Univ Puerto Rico, Dept Mech Engn, Mayaguez, PR 00681 USA.
[Hong, Haiping; Horton, Mark] S Dakota Sch Mines & Technol, Rapid City, SD 57701 USA.
[Hwang, Kyo Sik; Jang, Seok Pil; Lee, Seung Hyun] Koria Aerosp Univ, Sch Aerosp & Mech Engn, Goyang City 412791, Gyeonggi Do, South Korea.
[Jin, Liwen; Leong, Kai Choong; Yang, Chun] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore 639798, Singapore.
[Kabelac, Stephan] Univ Hamburg, Inst Thermodynam, D-22039 Hamburg, Germany.
[Kedzierski, Mark A.] NIST, Gaithersburg, MD 20899 USA.
[Kieng, Lim Geok] DSO Natl Labs, Singapore 118230, Singapore.
[Kim, Chongyoup; Kim, Seokwon] Korea Univ, Seoul 136713, South Korea.
[Manna, Indranil] Indian Inst Technol, Dept Met & Mat Engn, Kharagpur 721302, W Bengal, India.
[Philip, John] Indira Gandhi Ctr Atom Res, Met & Mat Grp, SMARTS, NDED, Kalpakkam 603102, Tamil Nadu, India.
[Song, Pengxiang; Wen, Dongsheng] Queen Mary Univ London, Sch Engn & Mat Sci, London E1 4NS, England.
[Timofeeva, Elena] Argonne Natl Lab, Argonne, IL 60439 USA.
RP Buongiorno, J (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
RI Timofeeva, Elena/E-6391-2010; Gao, Jinwei/D-4824-2009; iorio, carlo
saverio /H-1598-2012; Chen, Gang/J-1325-2014; Gao, Jinwei/J-5732-2014;
poulikakos, dimos/O-2853-2014; REYNAUD, Cecile/J-9969-2014; Kim,
Chongyoup/I-8576-2015; philip, john/F-2602-2013; Dzido,
Grzegorz/J-5372-2016; Van Vaerenbergh, Stefan/J-8655-2013; Bang, In
Cheol/F-5703-2010; Chen, Haisheng/B-3349-2009; Kim, Ji Hyun/F-5704-2010;
Wen, Dongsheng/A-5307-2010; Eapen, Jacob/A-2777-2011; Song,
Pengxiang/B-3485-2011; Ni, Rui/E-5430-2012; Yang, Chun /A-7467-2008;
Goodson, Kenneth/C-3545-2011; Bishnoi, Sandra/F-2762-2011; Leong, Kai
Choong/A-3823-2011; witharana, sanjeeva/A-1068-2012
OI Alvarado, Jorge/0000-0002-4059-6588; Tolmachev,
Yuriy/0000-0001-6705-6058; Jin, Liwen/0000-0002-4927-0111; Timofeeva,
Elena V./0000-0001-7839-2727; Gao, Jinwei/0000-0002-4545-1126; Chen,
Gang/0000-0002-3968-8530; Gao, Jinwei/0000-0002-4545-1126; poulikakos,
dimos/0000-0001-5733-6478; Kim, Chongyoup/0000-0002-3936-0893; philip,
john/0000-0001-6293-8131; Dzido, Grzegorz/0000-0002-0732-6607; Van
Vaerenbergh, Stefan/0000-0002-6614-0458; Savino,
Raffaele/0000-0001-5893-7769; witharana, sanjeeva/0000-0001-9230-1537;
Kim, Ji Hyun/0000-0002-3984-0686; Wen, Dongsheng/0000-0003-3492-7982;
Eapen, Jacob/0000-0001-6796-4013; Yang, Chun /0000-0003-1191-7642;
NR 73
TC 415
Z9 417
U1 20
U2 165
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
EI 1089-7550
J9 J APPL PHYS
JI J. Appl. Phys.
PD NOV 1
PY 2009
VL 106
IS 9
AR 094312
DI 10.1063/1.3245330
PG 14
WC Physics, Applied
SC Physics
GA 529YP
UT WOS:000272555700090
ER
PT J
AU Kim, JB
Lu, YH
Cho, MH
Lee, YP
Rhee, JY
Lee, JH
Ho, KM
AF Kim, J. B.
Lu, Y. H.
Cho, M. H.
Lee, Y. P.
Rhee, J. Y.
Lee, J. -H.
Ho, K. -M.
TI Diffracted magneto-optical Kerr effect of a Ni magnetic grating
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID MAGNETOPHOTONIC CRYSTALS; GYROTROPIC GRATINGS; PHOTONIC CRYSTALS; FILMS
AB We report the results of a joint experimental and theoretical investigation focused on the magneto-optical (MO) properties of one-dimensional magnetic grating structure made of Ni It was found that the longitudinal Ken, rotation of the second-order diffracted beam is nearly three times larger than that of the zeroth-order beam. The calculational results further confirmed the experimental ones. and almost perfectly reproduced the measured hysteresis loops of the longitudinal MO Kerr rotation. elucidating the origin of the enhanced MO rotation (C) 2009 American Institute of Physics. [doi: 10.1063/1.3247972]
C1 [Kim, J. B.; Lu, Y. H.; Cho, M. H.; Lee, Y. P.] Hanyang Univ, Dept Phys, Seoul 133791, South Korea.
[Kim, J. B.; Lu, Y. H.; Cho, M. H.; Lee, Y. P.] Hanyang Univ, Quantum Photon Sci Res Ctr, Seoul 133791, South Korea.
[Rhee, J. Y.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea.
[Lee, J. -H.; Ho, K. -M.] Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA.
RP Lee, YP (reprint author), Hanyang Univ, Dept Phys, Seoul 133791, South Korea.
EM rheejy@skku.edu
RI Rhee, Joo/D-2987-2011
FU NRF through the Quantum Photonic Science Research Center, Seoul, Korea;
MEST, Korea [KRF-2008-005-J00703]
FX This work was Supported by the NRF through the Quantum Photonic Science
Research Center, Seoul, Korea. and MEST, Korea. This work was also
supported by the Korean Research Foundation grant funded by the Korean
Government (MEST) (Grant No KRF-2008-005-J00703.)
NR 25
TC 5
Z9 5
U1 1
U2 10
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD NOV 1
PY 2009
VL 106
IS 9
AR 093103
DI 10.1063/1.3247972
PG 3
WC Physics, Applied
SC Physics
GA 529YP
UT WOS:000272555700004
ER
PT J
AU Nguyen, DN
Ashworth, SR
Willis, JO
AF Nguyen, Doan N.
Ashworth, Stephen R.
Willis, Jeffrey O.
TI Experimental and finite-element method studies of the effects of
ferromagnetic substrate on the total ac loss in a rolling-assisted
biaxially textured substrate YBa2Cu3O7 tape exposed to a parallel ac
magnetic field
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID NI-ALLOY SUBSTRATE; COATED CONDUCTORS; TRANSPORT CURRENT; CARRYING AC;
SUPERCONDUCTORS
AB This paper presents a study of the total ac loss characteristics of a rolling-assisted biaxially textured Substrate (RABiTS) YBa2Cu3O7 (YBCO). sample exposed to a parallel ac magnetic field The results have shown that, for a given applied magnetic field and transport current, a RABiTS YBCO tape can generate very different magnitudes of ac loss, depending on whether the transport current and applied field have the same phase or opposite phase The results of this Study are very important for the optimization of the design of a RABiTS YBCO cable because they can suggest an appropriate arrangement of RABiTS tapes in a cable to minimize the cable ac loss. In this study, both experimental and finite-element method simulation approaches were employed. A modeling model that takes the magnetic field dependent permeability and ferromagnetic loss of the substrate into account reproduced well the experimental data for both self-field and total ac losses. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3255998]
C1 [Nguyen, Doan N.; Ashworth, Stephen R.; Willis, Jeffrey O.] Los Alamos Natl Lab, Superconduct Technol Ctr, Los Alamos, NM 87545 USA.
RP Nguyen, DN (reprint author), Los Alamos Natl Lab, Superconduct Technol Ctr, POB 1663, Los Alamos, NM 87545 USA.
EM doan@lanl.gov
RI Nguyen, Doan/F-3148-2010
FU U.S. DOE Office of Electricity Delivery and Energy Reliability
FX This work is supported by the U.S. DOE Office of Electricity Delivery
and Energy Reliability. American Superconductor Corporation is
acknowledged for providing the high performance YBCO samples.
NR 23
TC 6
Z9 6
U1 0
U2 3
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD NOV 1
PY 2009
VL 106
IS 9
AR 093913
DI 10.1063/1.3255998
PG 7
WC Physics, Applied
SC Physics
GA 529YP
UT WOS:000272555700067
ER
PT J
AU Yang, H
Wang, H
Maiorov, B
Lee, J
Talbayev, D
Hinton, MJ
Feldmann, DM
MacManus-Driscoll, JL
Taylor, AJ
Civale, L
Lemberger, TR
Jia, QX
AF Yang, H.
Wang, H.
Maiorov, B.
Lee, J.
Talbayev, D.
Hinton, M. J.
Feldmann, D. M.
MacManus-Driscoll, J. L.
Taylor, A. J.
Civale, L.
Lemberger, T. R.
Jia, Q. X.
TI Self-assembled multilayers and enhanced superconductivity in
(YBa2Cu3O7-x)(0.5): (BaZrO3)(0.5) nanocomposite films
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID THIN-FILMS; DISPERSIONS
AB Nanocomposite (YBa2Cu3O7-x)(0) (5): (BaZrO3)(0 5) thin films were fabricated oil (00 1) oriented SrTiO3 Substrates by pulsed laser deposition using a single uniformly mixed target. Both x-ray diffraction and transmission electron microscopy revealed remarkable, spontaneous formation of YBa2Cu3O7-x (YBCO) and BaZrO3 (BZO) multilayers. The high integrity and continuity of the multilayer made it possible to achieve a critical temperature of 88 K, given that the BaZrO3 fraction in the films is 50 mol %. The unique self-assembled microstructure led to a surprising field dependent critical current density along the ab plane. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3257238]
C1 [Yang, H.] Soochow Univ, Sch Phys Sci & Technol, Jiangsu Key Lab Thin Films, Suzhou 215006, Peoples R China.
[Yang, H.; Maiorov, B.; Talbayev, D.; Feldmann, D. M.; Taylor, A. J.; Civale, L.; Jia, Q. X.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA.
[Wang, H.; Lee, J.] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA.
[Hinton, M. J.; Lemberger, T. R.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA.
[MacManus-Driscoll, J. L.] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England.
RP Yang, H (reprint author), Soochow Univ, Sch Phys Sci & Technol, Jiangsu Key Lab Thin Films, Suzhou 215006, Peoples R China.
RI Talbayev, Diyar/C-5525-2009; Jia, Q. X./C-5194-2008; Wang,
Haiyan/P-3550-2014
OI Talbayev, Diyar/0000-0003-3537-1656; Wang, Haiyan/0000-0002-7397-1209
FU U.S. Department of Energy [DE-FG02-08ER46533]
FX We gratefully acknowledge the support of the U.S. Department of Energy
through the LANL/LDRD program and the Center for Integrated
Nanotechnologies, and the Grant No. DE-FG02-08ER46533 (M.J.H. and
T.R.L.) at OSU.
NR 18
TC 11
Z9 11
U1 1
U2 17
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD NOV 1
PY 2009
VL 106
IS 9
AR 093914
DI 10.1063/1.3257238
PG 4
WC Physics, Applied
SC Physics
GA 529YP
UT WOS:000272555700068
ER
PT J
AU Adan-Bayewitz, D
Karasik, A
Smilansky, U
Asaro, F
Giauque, RD
Lavidor, R
AF Adan-Bayewitz, D.
Karasik, A.
Smilansky, U.
Asaro, F.
Giauque, R. D.
Lavidor, R.
TI Differentiation of ceramic chemical element composition and vessel
morphology at a pottery production center in Roman Galilee
SO JOURNAL OF ARCHAEOLOGICAL SCIENCE
LA English
DT Article
DE Pottery production; Intrasite differentiation; Chemical element
composition; Vessel morphology; Roman period; Kefar Hananya
ID NEUTRON-ACTIVATION ANALYSIS; TESTING ASSUMPTIONS; STANDARDIZATION;
ETHNOARCHAEOLOGY; SPECIALIZATION; TECHNOLOGY; PROVENANCE
AB Cooking pots and bowls from two production locations ca. 200 m from each other at the rural settlement of Kefar Hananya in Roman Galilee were compared employing chemical element composition and vessel-shape analyses. Splits of each pulverized sample, all of which were taken from ceramic wasters, were analyzed by both instrumental neutron activation and high-precision X-ray fluorescence analyses, and computerized vessel-shape analysis was employed for morphological analysis of the same vessel forms from each location. Several statistical techniques (bivariate plots, principal component analysis, cluster analysis and discriminant analysis) were used for analyzing the resultant data. It was found that both the cooking pots and bowls made at each location could be distinguished by employing either chemical composition or morphological analysis. The implications of this work, with regard to investigating both production and consumption sites, and for pottery provenance studies, are discussed. The findings suggest that these analytical techniques can be useful as an aid for chronological differentiations of archaeological pottery. (c) 2009 Elsevier Ltd. All rights reserved.
C1 [Adan-Bayewitz, D.; Asaro, F.; Giauque, R. D.] Ernest Orlando Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA USA.
[Adan-Bayewitz, D.; Lavidor, R.] Bar Ilan Univ, Martin Szusz Dept Land Israel Studies & Archaeol, IL-52900 Ramat Gan, Israel.
[Karasik, A.; Smilansky, U.] Weizmann Inst Sci, Dept Phys Complex Syst, IL-76100 Rehovot, Israel.
[Karasik, A.] Hebrew Univ Jerusalem, Inst Archaeol, IL-91905 Jerusalem, Israel.
RP Adan-Bayewitz, D (reprint author), Ernest Orlando Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA USA.
EM dbayewitz@lbl.gov
FU U.S. Department of Energy [DEAC03-76F00098]; National Science Foundation
[BCS 0002682]; Israel Science Foundation [168/06]
FX We are appreciative of the assistance of the reactor staff of the
Missouri University Research Reactor at Columbia, Missouri, in providing
neutron irradiations. We thank Y. Rinott, Hebrew University, for his
counsel on the statistical evaluation of the chemical compositional
data, and D.E. Arnold for his comments on an earlier draft of this
paper. N. Akiva, T. Almog, and D. Oropeza helped with the preparation of
Kefar Hananya samples for chemical composition analysis. We appreciate
the efforts of M.D. Levine, N. Padgett, S. Lauer, and M. Kislev in
facilitating the work. The work described in this paper was supported by
the Director, Office of Energy Research, Office of Basic Energy
Sciences, Chemical Sciences Division of the U.S. Department of Energy
under contract no. DEAC03-76F00098, and by National Science Foundation
Grant BCS 0002682 and Israel Science Foundation Grant 168/06.
NR 56
TC 8
Z9 8
U1 1
U2 12
PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
PI LONDON
PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND
SN 0305-4403
J9 J ARCHAEOL SCI
JI J. Archaeol. Sci.
PD NOV
PY 2009
VL 36
IS 11
BP 2517
EP 2530
DI 10.1016/j.jas.2009.07.004
PG 14
WC Anthropology; Archaeology; Geosciences, Multidisciplinary
SC Anthropology; Archaeology; Geology
GA 513OS
UT WOS:000271333000005
ER
PT J
AU Sun, K
Stander, N
Jhun, CS
Zhang, ZH
Suzuki, T
Wang, GY
Saeed, M
Wallace, AW
Tseng, EE
Baker, AJ
Saloner, D
Einstein, DR
Ratcliffe, MB
Guccione, JM
AF Sun, Kay
Stander, Nielen
Jhun, Choon-Sik
Zhang, Zhihong
Suzuki, Takamaro
Wang, Guan-Ying
Saeed, Maythem
Wallace, Arthur W.
Tseng, Elaine E.
Baker, Anthony J.
Saloner, David
Einstein, Daniel R.
Ratcliffe, Mark B.
Guccione, Julius M.
TI A Computationally Efficient Formal Optimization of Regional Myocardial
Contractility in a Sheep With Left Ventricular Aneurysm
SO JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME
LA English
DT Article
DE tagged magnetic resonance imaging; finite element modeling; numerical
optimization; cardiac mechanics
ID ELEMENT STRESS-ANALYSIS; CANINE LEFT-VENTRICLE; TAGGED MR-IMAGES;
UNCONSTRAINED MINIMIZATION; 3-DIMENSIONAL STRAIN; DYNAMIC METHOD; WALL
STRESS; HEART; MODEL; ARCHITECTURE
AB A noninvasive method for estimating regional myocardial contractility in vivo would be of great value in the design and evaluation of new surgical and medical strategies to treat and/or prevent infarction-induced heart failure. As a first step toward developing such a method, an explicit finite element (FE) model-based formal optimization of regional myocardial contractility in a sheep with left ventricular (LV) aneurysm was performed using tagged magnetic resonance (MR) images and cardiac catheterization pressures. From the tagged MR images, three-dimensional (3D) myocardial strains, LV volumes, and geometry for the animal-specific 3D FE model of the LV were calculated, while the LV pressures provided physiological loading conditions. Active material parameters (T(max_B) and T(max_R)) in the noninfarcted myocardium adjacent to the aneurysm (border-zone) and in the myocardium remote from the aneurysm were estimated by minimizing the errors between FE model-predicted and measured systolic strains and LV volumes using the successive response surface method for optimization. The significant depression in optimized T(max_B) relative to T(max_R) was confirmed by direct ex vivo force measurements from skinned fiber preparations. The optimized values of T(max_B) and T(max_R) were not overly sensitive to the passive material parameters specified. The computation time of less than 5 h associated with our proposed method for estimating regional myocardial contractility in vivo makes it a potentially very useful clinical tool. [DOI: 10.1115/1.3148464]
C1 [Sun, Kay; Jhun, Choon-Sik; Zhang, Zhihong; Suzuki, Takamaro; Tseng, Elaine E.; Ratcliffe, Mark B.; Guccione, Julius M.] Univ Calif San Francisco, Dept Surg, San Francisco, CA 94143 USA.
[Sun, Kay; Jhun, Choon-Sik; Zhang, Zhihong; Suzuki, Takamaro; Wang, Guan-Ying; Wallace, Arthur W.; Tseng, Elaine E.; Baker, Anthony J.; Saloner, David; Ratcliffe, Mark B.; Guccione, Julius M.] Dept Vet Affairs Med Ctr, San Francisco, CA USA.
[Stander, Nielen] Livermore Software Technol Corp, Livermore, CA USA.
[Wang, Guan-Ying; Saeed, Maythem; Baker, Anthony J.; Saloner, David] Univ Calif San Francisco, Dept Radiol, San Francisco, CA 94143 USA.
[Wallace, Arthur W.] Univ Calif San Francisco, Dept Anesthesia, San Francisco, CA 94143 USA.
[Einstein, Daniel R.] Pacific NW Natl Lab, Olympia, WA USA.
RP Guccione, JM (reprint author), Univ Calif San Francisco, Dept Surg, San Francisco, CA 94143 USA.
EM guccionej@surgery.ucsf.edu
FU NIH [R01-HL-77921]
FX The authors acknowledge financial support from the NIH under Grant No.
R01-HL-77921.
NR 44
TC 37
Z9 37
U1 0
U2 2
PU ASME-AMER SOC MECHANICAL ENG
PI NEW YORK
PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA
SN 0148-0731
J9 J BIOMECH ENG-T ASME
JI J. Biomech. Eng.-Trans. ASME
PD NOV
PY 2009
VL 131
IS 11
AR 111001
DI 10.1115/1.3148464
PG 10
WC Biophysics; Engineering, Biomedical
SC Biophysics; Engineering
GA 539ZK
UT WOS:000273298900001
PM 20016753
ER
PT J
AU Wataha, JC
Hobbs, DT
Lockwood, PE
Davis, RR
Elvington, MC
Lewis, JB
Messer, RLW
AF Wataha, John C.
Hobbs, David T.
Lockwood, Petra E.
Davis, Ryan R.
Elvington, Mark C.
Lewis, Jill B.
Messer, Regina L. W.
TI Peroxotitanates for Biodelivery of Metals
SO JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS
LA English
DT Article
DE drug delivery; heavy metals; cytotoxicity; mitochondrial activity;
monocyte
ID MRI CONTRAST AGENTS; MONOSODIUM TITANATE; ACTINIDE SEPARATIONS; PLATINUM
COMPLEXES; MERCURY; STRONTIUM; PALLADIUM; CYTOTOXICITY; METABOLISM;
TOXICOLOGY
AB Metal-based drugs are largely undeveloped in pharmacology. One limiting factor is the systemic toxicity of metal-based compounds. A solid-phase, sequestratable delivery agent for local delivery of metals could reduce systemic toxicity, facilitating new drug development in this nascent area. Amorphous peroxotitanates (APT) are ion-exchange materials with high affinity for several heavy metal ions and have been proposed to deliver or sequester metal ions in biological contexts. In the current study, we tested a hypothesis that APTs are able to deliver metals or metal compounds to cells. We exposed fibroblasts (L929) or monocytes (THP1) to metal-APT materials for 72 h in vitro and then measured cellular mitochondrial activity (SDH-MTT method) to assess the biological impact of the metal-APT materials versus metals or APT alone. APT alone did not significantly affect cellular mitochondrial activity, but all metal-APT materials suppressed the mitochondrial activity of fibroblasts (by 30-65% of controls). The concentration of metal-APT materials required to suppress cellular mitochondrial activity was below that required for metals alone, suggesting that simple extracellular release of the metals from the metal-APT materials was not the primary mechanism of mitochondrial suppression. In contrast to fibroblasts, no metal-APT material had a measurable effect on THPI monocyte mitochondrial activity, despite potent suppression by metals alone. This latter result suggested that "biodelivery" by metal-APT materials may be cell type-specific. Therefore, it appears that APTs are plausible solid-phase delivery agents of metals or metal compounds to some types of cells for potential therapeutic effect. (C) 2009 Wiley Periodicals, Inc.* J Biomed Mater Res Part B: Appl Biornater 91B: 489-496, 2009
C1 [Wataha, John C.] Univ Washington, Dept Restorat Dent, Seattle, WA 98026 USA.
[Hobbs, David T.; Elvington, Mark C.] Savannah River Natl Lab, Aiken, SC 29801 USA.
[Lockwood, Petra E.; Davis, Ryan R.; Lewis, Jill B.; Messer, Regina L. W.] Med Coll Georgia, Sch Dent, Dept Oral Biol, Augusta, GA 30912 USA.
RP Wataha, JC (reprint author), Univ Washington, Dept Restorat Dent, Seattle, WA 98026 USA.
EM jwataha@u.washington.edu
NR 29
TC 6
Z9 6
U1 0
U2 1
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1552-4973
EI 1552-4981
J9 J BIOMED MATER RES B
JI J. Biomed. Mater. Res. Part B
PD NOV
PY 2009
VL 91B
IS 2
BP 489
EP 496
DI 10.1002/jbm.b.31402
PG 8
WC Engineering, Biomedical; Materials Science, Biomaterials
SC Engineering; Materials Science
GA 507QE
UT WOS:000270868600001
PM 19701912
ER
PT J
AU Kane, SR
Ashby, PD
Pruitt, LA
AF Kane, Sheryl R.
Ashby, Paul D.
Pruitt, Lisa A.
TI ATR-FTIR as a Thickness Measurement Technique for Hydrated
Polymer-on-Polymer Coatings
SO JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS
LA English
DT Article
DE AFM; FTIR; hip prosthesis; surface analysis; surface modification
ID ATOMIC-FORCE MICROSCOPY; WEAR DEBRIS; THIN-FILMS; SURFACE; POLYETHYLENE;
ELLIPSOMETRY; DEPOSITION; CAST; XPS
AB Hydrated polymer coatings on polymer substrates are common for many biomedical applications, such as tissue engineering constructs; contact lenses, and catheters. The thickness of the coatings can affect the mechanical behavior of the systems and the cellular response, but measuring the coating thickness can be quite challenging using conventional methods. We propose a new method, that is, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) to determine the relative thickness, combined with atomic force microscopy to calibrate the ATR-FTIR measurements. This technique was successfully employed to determine the hydrated thickness of a series of crosslinked tetraglyme coatings on ultrahigh molecular weight polyethylene substrates intended to reduce wear of acetabular cups in total hip replacements. The hydrated coatings ranged from 30 to 200 nm thick and were accurately measured despite the relatively high root-mean-square (RMS) roughness of the substrates, 20-35 nm (peak-to-peak roughness 55-100 nm). The calibrated ATR-FTIR technique is a promising new method for measuring the thickness of many other polymer-on-polymer and hydrated coatings. (C) 2009 Wiley Periodicals, Inc. J Biomed Miller Res Part B: Appl Biomater 9 B: 613-620, 2009
C1 [Kane, Sheryl R.; Pruitt, Lisa A.] UC San Francisco, Joint Grad Grp Bioengn, Berkeley, CA 94720 USA.
[Ashby, Paul D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Pruitt, Lisa A.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA.
RP Pruitt, LA (reprint author), UC San Francisco, Joint Grad Grp Bioengn, Berkeley, CA 94720 USA.
EM lpruitt@me.berkeley.edu
FU NSF [0505272]; U.S. Department of Energy [DEAC02-05C 111231]; NIH
[EB-002027]; UCSF Graduate Student Research Award; AAUW; NSF Graduate
Research Fellowship
FX Contract grant sponsor: NIH Contract grain number: EB-002027 Contract
grant sponsors: UCSF Graduate Student Research Award and AAUW, NSF
Graduate Research Fellowship (to S.K.)
NR 27
TC 23
Z9 24
U1 3
U2 17
PU WILEY-LISS
PI HOBOKEN
PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA
SN 1552-4973
J9 J BIOMED MATER RES B
JI J. Biomed. Mater. Res. Part B
PD NOV
PY 2009
VL 91B
IS 2
BP 613
EP 620
DI 10.1002/jbm.b.31436
PG 8
WC Engineering, Biomedical; Materials Science, Biomaterials
SC Engineering; Materials Science
GA 507QE
UT WOS:000270868600015
PM 19582857
ER
PT J
AU Chan, JW
Lieu, DK
AF Chan, James W.
Lieu, Deborah K.
TI Label-free biochemical characterization of stem cells using vibrational
spectroscopy
SO JOURNAL OF BIOPHOTONICS
LA English
DT Review
DE Raman spectroscopy; infrared spectroscopy; embryonic stem cells;
mesenchymal stem cells; adult stem cells
ID SYNCHROTRON INFRARED MICROSPECTROSCOPY; CONFOCAL RAMAN
MICROSPECTROSCOPY; INDIVIDUAL LIVING CELLS; IN-VITRO; BIOMEDICAL
APPLICATIONS; CELLULAR-COMPONENTS; FT-IR; DIFFERENTIATION; CHALLENGES;
TISSUE
AB Raman and infrared (IR) spectroscopy are two complementary vibrational spectroscopic techniques that have experienced a tremendous growth in their use in biological and biomedical research. This is, in large part, due to their unique capability of providing label-free intrinsic chemical information of living biological samples at tissue, cellular, or sub-cellular resolutions. This article reviews recent developments in applying these techniques for the characterization of stem cells. A discussion of the potential for these methods to address some of the major challenges in stem cell research is presented, as well as the technological and scientific advancements that are needed to progress the knowledge in the field.
[GRAPHICS]
.
Raman signatures of embryonic stem cells, their derived cardiomocytes and mature fetal cardiomyocytes possess unique spectral markers that enable their group discrimination when analyzed by PCA LDA. (C) 2009 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
C1 [Chan, James W.] Univ Calif Davis, NSF Ctr Biophoton Sci & Technol, Sacramento, CA 95817 USA.
[Chan, James W.] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA.
[Lieu, Deborah K.] Univ Calif Davis, Dept Cell Biol & Human Anat, Davis, CA 95616 USA.
[Lieu, Deborah K.] Univ Calif Davis, Stem Cell Program, Sacramento, CA 95817 USA.
RP Chan, JW (reprint author), Univ Calif Davis, NSF Ctr Biophoton Sci & Technol, 2700 Stockton Blvd Suite 1400, Sacramento, CA 95817 USA.
EM chan19@llnl.gov
RI Chan, James/J-3829-2014
FU National Science Foundation; [PHY 0120999]
FX This work has been supported by funding from the National Science
Foundation. The Center for Biophotonics, an NSF Science and Technology
Center, is managed by the University of California, Davis, under
Cooperative Agreement No. PHY 0120999.
NR 50
TC 56
Z9 56
U1 2
U2 30
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY
SN 1864-063X
J9 J BIOPHOTONICS
JI J. Biophotonics
PD NOV
PY 2009
VL 2
IS 11
BP 656
EP 668
DI 10.1002/jbio.200910041
PG 13
WC Biochemical Research Methods; Biophysics; Optics
SC Biochemistry & Molecular Biology; Biophysics; Optics
GA 524EN
UT WOS:000272126700010
PM 19653219
ER
PT J
AU Nogales, E
Ramey, VH
AF Nogales, Eva
Ramey, Vincent H.
TI Structure-function insights into the yeast Dam1 kinetochore complex
SO JOURNAL OF CELL SCIENCE
LA English
DT Article
DE Mitosis; Microtubules; Spindle checkpoint
ID SPINDLE ASSEMBLY CHECKPOINT; MICROTUBULE DEPOLYMERIZATION; RING COMPLEX;
DASH COMPLEX; MOLECULAR ARCHITECTURE; DUO1P/DAM1P COMPLEX; MECHANISMS;
INTERFACE; INTEGRITY; MOVEMENT
AB Faithful segregation of genetic material during cell division requires the dynamic but robust attachment of chromosomes to spindle microtubules during all stages of mitosis. This regulated attachment occurs at kinetochores, which are complex protein organelles that are essential for cell survival and genome integrity. In budding yeast, in which a single microtubule attaches per kinetochore, a heterodecamer known as the Dam1 complex (or DASH complex) is required for proper chromosome segregation. Recent years have seen a burst of structural and biophysical data concerning this interesting complex, which has caught the attention of the mitosis research field. In vitro, the Dam1 complex interacts directly with tubulin and self-assembles into ring structures around the microtubule surface. The ring is capable of tracking with depolymerizing ends, and a model has been proposed whereby the circular geometry of the oligomeric Dam1 complex allows it to couple the depolymerization of microtubules to processive chromosome movement in the absence of any additional energy source. Although it is attractive and simple, several important aspects of this model remain controversial. Additionally, the generality of the Dam1 mechanism has been questioned owing to the fact that there are no obvious Dam1 homologs beyond fungi. In this Commentary, we discuss recent structure-function studies of this intriguing complex.
C1 [Nogales, Eva] Univ Calif Berkeley, Howard Hughes Med Inst, Dept Mol & Cell Biol, Berkeley, CA 94720 USA.
[Nogales, Eva; Ramey, Vincent H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA.
[Ramey, Vincent H.] Univ Calif Berkeley, Biophys Grad Program, Berkeley, CA 94720 USA.
RP Nogales, E (reprint author), Univ Calif Berkeley, Howard Hughes Med Inst, Dept Mol & Cell Biol, Berkeley, CA 94720 USA.
EM enogales@lbl.gov
FU US National Institutes of Health; National Institutes of Health
FX We thank Greg Alushin for critical reading of the manuscript. This work
was supported by training grants from the US National Institutes of
Health, by a grant from the National Institute of General Medical
Sciences of the US National Institutes of Health and by a Biomedicine
chair from the BBVA Foundation to E.N. E.N. is a Howard Hughes Medical
Institute Investigator. Deposited in PMC for release after 6 months.
NR 45
TC 17
Z9 18
U1 1
U2 3
PU COMPANY OF BIOLOGISTS LTD
PI CAMBRIDGE
PA BIDDER BUILDING CAMBRIDGE COMMERCIAL PARK COWLEY RD, CAMBRIDGE CB4 4DL,
CAMBS, ENGLAND
SN 0021-9533
J9 J CELL SCI
JI J. Cell Sci.
PD NOV 1
PY 2009
VL 122
IS 21
BP 3831
EP 3836
DI 10.1242/jcs.004689
PG 6
WC Cell Biology
SC Cell Biology
GA 515MK
UT WOS:000271475600002
PM 19889968
ER
PT J
AU Carrano, CJ
Wang, XP
Poola, B
Powell, CB
Richmond, MG
AF Carrano, Carl J.
Wang, Xiaoping
Poola, Bhaskar
Powell, Cynthia B.
Richmond, Michael G.
TI alpha-Diimine Ligand Coordination and C-H Bond Activation in the
Reaction of Os-3(CO)(10)(MeCN)(2) with 6-R-2,2'-Bipyridine (where R =
Et, Ph): X-ray Diffraction Structures of the Ortho-Metalated Hydride
Clusters HOs3(CO)(9)(N2C10H6-6-R)
SO JOURNAL OF CHEMICAL CRYSTALLOGRAPHY
LA English
DT Article
DE alpha-Diimine ligand; Triosmium clusters; Cyclometalation; Ortho
metalation; Ligand substitution
ID ORGANIC-SYNTHESIS; HETEROCYCLES; CRYSTAL; FUNCTIONALIZATION;
RUTHENIUM(II); CONVERSION; COMPLEXES; PYRIDINES; NITROGEN
AB The reactivity of the labile cluster Os-3(CO)(10)(MeCN)(2) (1) with the monofunctionalized heterocyclic ligands 6-R-2,2'-bipyridine (where R = Et, Ph) has been investigated. The alkyl-substituted heterocycle 6-Et-2,2'-bipyridine reacts with 1 in refluxing CH2Cl2 to give an isomeric mixture of HOs3(CO)(9)(N2C12H11) due to cyclometalation of the side-chain ethyl group (2) and ortho metalation of the unsubstituted bipyridine ring (3). The solid-state structure of the latter cluster, HOs3(CO)(9)(N2C10H6-6-Et) (3), has unequivocally established the site of the C-H bond activation in the product. Treatment of 1 with the aryl-substituted ligand 6-Ph-2,2'-bipyridine proceeds similarly with ortho metalation at the ancillary phenyl group and the C-6' ortho site of the unsubstituted bipyridine ring, as verified by H-1 NMR spectroscopy. The X-ray diffraction structure of the thermodynamically more stable bipyridine-metalated cluster HOs3(CO)(9)(N2C10H6-6-Ph) (5) has been determined. The course of these reactions is discussed with respect to our recent study involving the reaction of cluster 1 with the ligand 6-Me-2,2'-bipyridine.
C1 [Carrano, Carl J.] San Diego State Univ, Dept Chem & Biochem, San Diego, CA 92182 USA.
[Wang, Xiaoping] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA.
[Poola, Bhaskar; Richmond, Michael G.] Univ N Texas, Dept Chem, Denton, TX 76203 USA.
[Powell, Cynthia B.] Abilene Christian Univ, Dept Chem, Abilene, TX 79699 USA.
RP Wang, XP (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA.
EM carrano@sciences.sdsu.edu; wangx@ornl.gov
RI Wang, Xiaoping/E-8050-2012; G, Neela/H-3016-2014
OI Wang, Xiaoping/0000-0001-7143-8112;
FU NSF; Robert A. Welch Foundation [B-1093-MGR]; NSF-MRI [CHE-0320848]
FX Financial support from the NSF (CJC) and Robert A. Welch Foundation
(Grant B-1093-MGR) is greatly appreciated. The NSF-MRI program grant
CHE-0320848 is gratefully acknowledged for support of the X-ray
diffraction facilities at San Diego State University. We also
acknowledge the expert assistance of Dr. Yongxuan Su and his recording
the mass spectrum for cluster 5.
NR 30
TC 1
Z9 1
U1 0
U2 3
PU SPRINGER/PLENUM PUBLISHERS
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1074-1542
J9 J CHEM CRYSTALLOGR
JI J. Chem. Crystallogr.
PD NOV
PY 2009
VL 39
IS 11
BP 820
EP 826
DI 10.1007/s10870-009-9574-4
PG 7
WC Crystallography; Spectroscopy
SC Crystallography; Spectroscopy
GA 495RO
UT WOS:000269912900008
ER
PT J
AU Pan, H
Gu, BH
Zhang, ZY
AF Pan, Hui
Gu, Baohua
Zhang, Zhenyu
TI Phase-Dependent Photocatalytic Ability of TiO2: A First-Principles Study
SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION
LA English
DT Article
ID TITANIUM-DIOXIDE; ANATASE TIO2; BAND-GAP; BROOKITE; PRINCIPLES; SYSTEMS;
FILMS
AB The electronic properties of defected TiO2 were investigated using the first-principles calculations based on density functional theory and generalized gradient approximation. Three typical defects, oxygen vacancy, titanium interstitial, and titanium vacancy, were considered in three TiO2 polymorphs, anatase, rutile, and brookite, respectively. Our calculations demonstrated that the defect band is formed by removing an oxygen atom from or inserting an interstitial Ti atom into the TiO2 lattice, which is responsible for the improvement of photocatalytic ability due to the enhanced visible-light absorption. Our calculations further revealed that the defect formation energy increases as following brockite, anatase, and rutile, indicating that defects are easy to be created in brookite TiO2. The relatively high defect density and wide defect band contribute to the better photocatalytic performance of brookite TiO2 in visible light.
C1 [Pan, Hui] Oak Ridge Natl Lab, Div Environm Sci, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
RP Pan, H (reprint author), Oak Ridge Natl Lab, Div Environm Sci, Div Mat Sci & Technol, POB 2008, Oak Ridge, TN 37831 USA.
EM panh@ihpc.a-star.edu.sg
RI Gu, Baohua/B-9511-2012; Pan, Hui/A-2702-2009
OI Gu, Baohua/0000-0002-7299-2956; Pan, Hui/0000-0002-6515-4970
FU Office of Basic Energy Sciences, Division of Materials Sciences and
Engineering [DE-AC05-00OR22725]
FX This work was sponsored by the Office of Basic Energy Sciences, Division
of Materials Sciences and Engineering and Laboratory Directed Research
and Development (LDRD) Program of Oak Ridge National Laboratory (ORNL),
which is managed by UT-Battelle LLC for the U.S. Department of Energy
under contract No. DE-AC05-00OR22725. The DFT calculations were
performed at the Computational Center of Science (CCS) of ORNL.
NR 23
TC 28
Z9 28
U1 1
U2 24
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1549-9618
J9 J CHEM THEORY COMPUT
JI J. Chem. Theory Comput.
PD NOV
PY 2009
VL 5
IS 11
BP 3074
EP 3078
DI 10.1021/ct9002724
PG 5
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 516DS
UT WOS:000271522500017
PM 26609986
ER
PT J
AU Love, E
Rider, WJ
Scovazzi, G
AF Love, E.
Rider, W. J.
Scovazzi, G.
TI Stability analysis of a predictor/multi-corrector method for
staggered-grid Lagrangian shock hydrodynamics
SO JOURNAL OF COMPUTATIONAL PHYSICS
LA English
DT Article
DE von Neumann stability analysis; Predictor/multi-corrector algorithm;
Mid-point time integrator; Lagrangian shock hydrodynamics; Staggered
formulation
ID ARTIFICIAL VISCOSITY; FLUID-FLOW; COMPUTATIONS
AB This article presents the complete von Neumann stability analysis of a predictor/multi-corrector scheme derived from an implicit mid-point time integrator often used in shock hydrodynamics computations in combination with staggered spatial discretizations. It is shown that only even iterates of the method yield stable computations, while the odd iterates are, in the most general case, unconditionally unstable. These findings are confirmed by, and illustrated with, a number of numerical computations. Dispersion error analysis is also presented. (C) 2009 Elsevier Inc. All rights reserved.
C1 [Love, E.; Rider, W. J.; Scovazzi, G.] Sandia Natl Labs, Computat Shock & Multiphys Dept 1431, Albuquerque, NM 87185 USA.
RP Scovazzi, G (reprint author), Sandia Natl Labs, Computat Shock & Multiphys Dept 1431, POB 5800,MS 1319, Albuquerque, NM 87185 USA.
EM gscovaz@sandia.gov
FU DOE NNSA; Computer Science Research Institute at Sandia National
Laboratories; United States Department of Energy [DEAC04-94-AL85000]
FX This research was partially funded by the DOE NNSA Advanced Scientific
Computing Program and the Computer Science Research Institute at Sandia
National Laboratories. Sandia is a multiprogram laboratory operated by
Sandia Corporation, a Lockheed Martin Company. for the United States
Department of Energy under Contract DEAC04-94-AL85000.
NR 23
TC 2
Z9 3
U1 1
U2 4
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0021-9991
J9 J COMPUT PHYS
JI J. Comput. Phys.
PD NOV 1
PY 2009
VL 228
IS 20
BP 7543
EP 7564
DI 10.1016/j.jcp.2009.06.042
PG 22
WC Computer Science, Interdisciplinary Applications; Physics, Mathematical
SC Computer Science; Physics
GA 500PR
UT WOS:000270316100003
ER
PT J
AU Ferraro, NM
Jardin, SC
AF Ferraro, N. M.
Jardin, S. C.
TI Calculations of two-fluid magnetohydrodynamic axisymmetric steady-states
SO JOURNAL OF COMPUTATIONAL PHYSICS
LA English
DT Article
DE Magnetohydrodynamics; Equilibria; Simulation
ID TOROIDAL SYSTEMS; FINITE-ELEMENT; PLASMA; MHD; EQUILIBRIA; TOKAMAK;
DIFFUSION; TRANSPORT; FLOW; DIMENSIONS
AB M3D-C(1) is an implicit, high-order finite element code for the solution of the time-dependent nonlinear two-fluid magnetohydrodynamic equations [S.C. Jardin, J. Breslau, N. Ferraro, A high-order implicit finite element method for integrating the two-fluid magnetohydrodynamic equations in two dimensions, J. Comp. Phys. 226 (2) (2007) 2146-2174]. This code has now been extended to allow computations in toroidal geometry. Improvements to the spatial integration and time-stepping algorithms are discussed. Steady-states of a resistive two-fluid model, self-consistently including flows, anisotropic viscosity (including gyroviscosity) and heat flux, are calculated for diverted plasmas in geometries typical of the National Spherical Torus Experiment (NSTX) [M. Ono et al., Exploration of spherical torus physics in the NSTX device, Nucl. Fusion 40 (3Y) (2000) 557-561]. These states are found by time-integrating the dynamical equations until the steady-state is reached, and are therefore stationary or statistically steady on both magnetohydrodynamic and transport time-scales. Resistively driven cross-surface flows are found to be in close agreement with Pfirsch-Schlilter theory. Poloidally varying toroidal flows are in agreement with comparable calculations [A.Y. Aydemir, Shear flows at the tokamak edge and their interaction with edge-localized modes, Phys. Plasmas 14]. New effects on core toroidal rotation due to gyroviscosity and a local particle source are observed. (C) 2009 Elsevier Inc. All rights reserved.
C1 [Ferraro, N. M.; Jardin, S. C.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
RP Ferraro, NM (reprint author), Gen Atom, La Jolla, CA 92186 USA.
EM ferraro@fusion.gat.com
RI Jardin, Stephen/E-9392-2010;
OI Ferraro, Nathaniel/0000-0002-6348-7827
FU US Department of Energy [DE-AC02-09CH11466]; SciDAC Center for Extended
Magnetohydrodynamic Modeling (CEMM)
FX We would like to acknowledge the significant and important contributions
of A. Bauer, X. Luo, and the RPI SCOREC team to this project for the
development of the meshing software used by M3D-C1, and of
specialized interfaces to that software. We also thank J. Ramos for
informative discussions regarding the gyroviscosity. This work was
supported by the US Department of Energy under Contract
DE-AC02-09CH11466 and by the SciDAC Center for Extended
Magnetohydrodynamic Modeling (CEMM).
NR 36
TC 31
Z9 31
U1 1
U2 16
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0021-9991
J9 J COMPUT PHYS
JI J. Comput. Phys.
PD NOV 1
PY 2009
VL 228
IS 20
BP 7742
EP 7770
DI 10.1016/j.jcp.2009.07.015
PG 29
WC Computer Science, Interdisciplinary Applications; Physics, Mathematical
SC Computer Science; Physics
GA 500PR
UT WOS:000270316100013
ER
PT J
AU Frantziskonis, G
Muralidharan, K
Deymier, P
Simunovic, S
Nukala, P
Pannala, S
AF Frantziskonis, G.
Muralidharan, K.
Deymier, P.
Simunovic, S.
Nukala, P.
Pannala, S.
TI Time-parallel multiscale/multiphysics framework
SO JOURNAL OF COMPUTATIONAL PHYSICS
LA English
DT Article
DE Parallel-in-time; Wavelet-based multiscaling
ID OSCILLATORY DIFFERENTIAL-EQUATIONS; CLASSICAL MOLECULAR-DYNAMICS;
CHEMICAL-REACTIONS; PARAREAL; HOMOGENIZATION; DISCRETIZATION;
INTEGRATORS; SCALES; PDES
AB We introduce the time-parallel compound wavelet matrix method (tpCWM) for modeling the temporal evolution of multiscale and multiphysics systems. The method couples time parallel (TP) and CWM methods operating at different spatial and temporal scales. We demonstrate the efficiency of our approach on two examples: a chemical reaction kinetic system and a non-linear predator-prey system. Our results indicate that the tpCWM technique is capable of accelerating time-to-solution by 2-3-orders of magnitude and is amenable to efficient parallel implementation. (C) 2009 Elsevier Inc. All rights reserved.
C1 [Frantziskonis, G.; Muralidharan, K.; Deymier, P.] Univ Arizona, Tucson, AZ 85721 USA.
[Simunovic, S.; Nukala, P.; Pannala, S.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA.
RP Frantziskonis, G (reprint author), Univ Arizona, Tucson, AZ 85721 USA.
EM frantzis@email.arizona.edu
RI Pannala, Sreekanth/F-9507-2010
FU Mathematical, Information, and Computational Sciences Division; Office
of Advanced Scientific Computing Research, US Department of Energy; Oak
Ridge National Laboratory [De-AC05-00OR22725]
FX This research is sponsored by the Mathematical, Information, and
Computational Sciences Division, Office of Advanced Scientific Computing
Research, US Department of Energy. The work was partly performed at the
Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC
under Contract No. De-AC05-00OR22725. The authors thank Dr. Stuart Daw
at Oak Ridge National Laboratory, Sudib Mishra at University of Arizona,
and Drs. Rodney Fox and Z. Gao at Iowa State University for helpful
discussions and feedback on the manuscript.
NR 37
TC 12
Z9 12
U1 1
U2 8
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0021-9991
J9 J COMPUT PHYS
JI J. Comput. Phys.
PD NOV
PY 2009
VL 228
IS 21
BP 8085
EP 8092
DI 10.1016/j.jcp.2009.07.035
PG 8
WC Computer Science, Interdisciplinary Applications; Physics, Mathematical
SC Computer Science; Physics
GA 541CD
UT WOS:000273389500011
ER
PT J
AU Allen, MS
Sumali, H
Penegor, PC
AF Allen, Matthew S.
Sumali, Hartono
Penegor, Peter C.
TI DMCMN: Experimental/Analytical Evaluation of the Effect of Tip Mass on
Atomic Force Microscope Cantilever Calibration
SO JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE
ASME
LA English
DT Article
DE atomic force microscopy; beams (structures); calibration; cantilevers;
displacement measurement; elastic constants; error analysis; Q-factor;
scanning electron microscopy
ID OPTICAL SPOT SIZE; SPRING CONSTANTS; THERMAL NOISE; VIBRATION; BEAMS
AB Quantitative studies of material properties and interfaces using the atomic force microscope (AFM) have important applications in engineering, biotechnology, and chemistry. Contrary to what the name suggests, the AFM actually measures the displacement of a microscale probe, so one must determine the stiffness of the probe to find the force exerted on a sample. Numerous methods have been proposed for determining the spring constant of AFM cantilever probes, yet most neglect the mass of the probe tip. This work explores the effect of the tip mass on AFM calibration using the method of Sader (1995, "Method for the Calibration of Atomic Force Microscope Cantilevers," Rev. Sci. Instrum., 66, pp. 3789) and extends that method to account for a massive, rigid tip. One can use this modified method to estimate the spring constant of a cantilever from the measured natural frequency and Q-factor for any mode of the probe. This may be helpful when the fundamental mode is difficult to measure or to check for inaccuracies in the calibration obtained with the fundamental mode. The error analysis presented here shows that if the tip is not considered, then the error in the static stiffness is roughly of the same order as the ratio of the tip's mass to the cantilever beam's. The area density of the AFM probe is also misestimated if the tip mass is not accounted for, although the trends are different. The model presented here can be used to identify the mass of a probe tip from measurements of the natural frequencies of the probe. These concepts are applied to six low spring-constant, contact-mode AFM cantilevers, and the results suggest that some of the probes are well modeled by an Euler-Bernoulli beam with a constant cross section and a rigid tip, while others are not. One probe is examined in detail, using scanning electron microscopy to quantify the size of the tip and the thickness uniformity of the probe, and laser Doppler vibrometry is used to measure the first four mode shapes. The results suggest that this probe's thickness is significantly nonuniform, so the models upon which dynamic calibration is based may not be appropriate for this probe.
C1 [Allen, Matthew S.] Univ Wisconsin, Madison, WI 53706 USA.
[Sumali, Hartono] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Penegor, Peter C.] Univ Wisconsin Madison, Brookfield, WI 53005 USA.
RP Allen, MS (reprint author), Univ Wisconsin, 535 ERB,1500 Engn Dr, Madison, WI 53706 USA.
EM msallen@engr.wisc.edu; hsumali@sandia.gov; penegor@gmail.com
RI Allen, Matthew/H-4068-2011
FU U.S. Department of Energy [DE-AC04-94-AL85000]
FX Part of this work was conducted at Sandia National Laboratories. Sandia
is a multiprogram laboratory operated under Sandia Corporation, a
Lockheed Martin Co., for the U.S. Department of Energy under Contract
No. DE-AC04-94-AL85000. The authors also wish to acknowledge Hendrik
Frentrup for his efforts acquiring and processing the thermal spectra
used here.
NR 38
TC 9
Z9 9
U1 0
U2 5
PU ASME-AMER SOC MECHANICAL ENG
PI NEW YORK
PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA
SN 0022-0434
J9 J DYN SYST-T ASME
JI J. Dyn. Syst. Meas. Control-Trans. ASME
PD NOV
PY 2009
VL 131
IS 6
AR 064501
DI 10.1115/1.4000160
PG 10
WC Automation & Control Systems; Instruments & Instrumentation
SC Automation & Control Systems; Instruments & Instrumentation
GA 517VK
UT WOS:000271646800015
ER
PT J
AU Kastengren, AL
Powell, CF
Im, KS
Wang, YJ
Wang, J
AF Kastengren, A. L.
Powell, C. F.
Im, K. -S.
Wang, Y. -J.
Wang, J.
TI Measurement of Biodiesel Blend and Conventional Diesel Spray Structure
Using X-Ray Radiography
SO JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE
ASME
LA English
DT Article; Proceedings Paper
CT ASME Internal Combustion Engine Division Sprint Technical Conference
CY APR 27-30, 2008
CL Chicago, IL
SP ASME, Internal Combust Engine Div
DE biofuel; nozzles; radiography; sprays; X-rays
ID COMBUSTION; FUELS
AB The near-nozzle structure of several nonevaporating biodiesel-blend sprays has been studied using X-ray radiography. Radiography allows quantitative measurements of the fuel distribution in sprays to be made with high temporal and spatial resolution. Measurements have been made at different values of injection pressure, ambient density, and with two different nozzle geometries to understand the influences of these parameters on the spray structure of the biodiesel blend. These measurements have been compared with corresponding measurements of Viscor, a diesel calibration fluid, to demonstrate the fuel effects on the spray structure. Generally, the biodiesel-blend spray has a similar structure to the spray of Viscor. For the nonhydroground nozzle used in this study, the biodiesel-blend spray has a slightly slower penetration into the ambient gas than the Viscor spray. The cone angle of the biodiesel-blend spray is generally smaller than that of the Viscor spray, indicating that the biodiesel-blend spray is denser than the Viscor spray. For the hydroground nozzle, both fuels produce sprays with initially wide cone angles that transition to narrow sprays during the steady-state portion of the injection event. These variations in cone angle with time occur later for the biodiesel-blend spray than for the Viscor spray, indicating that the dynamics of the injector needle as it opens are somewhat different for the two fuels.
C1 [Kastengren, A. L.; Powell, C. F.] Argonne Natl Lab, Ctr Transportat Res, Argonne, IL 60439 USA.
[Im, K. -S.; Wang, Y. -J.; Wang, J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RP Kastengren, AL (reprint author), Argonne Natl Lab, Ctr Transportat Res, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM akastengren@anl.gov
RI wang, yujie/C-2582-2015
NR 26
TC 5
Z9 5
U1 0
U2 6
PU ASME-AMER SOC MECHANICAL ENG
PI NEW YORK
PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA
SN 0742-4795
J9 J ENG GAS TURB POWER
JI J. Eng. Gas. Turbines Power-Trans. ASME
PD NOV
PY 2009
VL 131
IS 6
AR 062802
DI 10.1115/1.3094023
PG 7
WC Engineering, Mechanical
SC Engineering
GA 472WI
UT WOS:000268163100012
ER
PT J
AU Rubin, J
Leiby, PN
Greene, DL
AF Rubin, Jonathan
Leiby, Paul N.
Greene, David L.
TI Tradable fuel economy credits: Competition and oligopoly
SO JOURNAL OF ENVIRONMENTAL ECONOMICS AND MANAGEMENT
LA English
DT Article
DE GHG; Credits; Cost-benefit; Socioeconomic; Energy conservation
ID MARKET POWER; STANDARDS; CONSEQUENCES; EFFICIENCY; RIGHTS
AB Corporate average fuel economy (CAFE) regulations specify minimum standards for fuel efficiency that vehicle manufacturers must meet independently. We design a system of tradeable fuel economy credits that allows trading across vehicle classes and manufacturers with and without considering market power in the credit market. We perform numerical simulations to measure the potential cost savings from moving from the current CAFE system to one with stricter standards, but that allows vehicle manufacturers various levels of increased flexibility. We find that the ability for each manufacturer to average credits between its cars and trucks provides a large percentage of the potential savings. As expected, the greatest savings come from the greatest flexibility in the credit system. Market power lowers the potential cost savings to the industry as a whole, but only modestly. Loss in efficiency from market power does not eliminate the gains from credit trading. (C) 2009 Elsevier Inc. All rights reserved.
C1 [Rubin, Jonathan] Univ Maine, Margaret Chase Smith Policy Ctr, Orono, ME 04469 USA.
[Rubin, Jonathan] Univ Maine, Sch Econ, Orono, ME 04469 USA.
[Leiby, Paul N.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA.
[Greene, David L.] Oak Ridge Natl Lab, Natl Transportat Res Ctr, Knoxville, TN 37932 USA.
RP Rubin, J (reprint author), Univ Maine, Margaret Chase Smith Policy Ctr, 5715 Coburn Hall, Orono, ME 04469 USA.
EM jonathan.rubin@umit.maine.edu; LeibyPN@ornl.gov; dlgreene@ornl.gov
NR 28
TC 6
Z9 6
U1 0
U2 9
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0095-0696
J9 J ENVIRON ECON MANAG
JI J.Environ.Econ.Manage.
PD NOV
PY 2009
VL 58
IS 3
BP 315
EP 328
DI 10.1016/j.jeem.2009.05.002
PG 14
WC Business; Economics; Environmental Studies
SC Business & Economics; Environmental Sciences & Ecology
GA 527KF
UT WOS:000272365300006
ER
PT J
AU Burger, S
Riciputi, LR
AF Buerger, S.
Riciputi, L. R.
TI A rapid isotope ratio analysis protocol for nuclear solid materials
using nano-second laser-ablation time-of-flight ICP-MS
SO JOURNAL OF ENVIRONMENTAL RADIOACTIVITY
LA English
DT Article
DE Nano-second laser-ablation; Time-of-flight ICP-MS; Solid samples; Rapid
isotope screening; Isotope ratio analysis; Nuclear forensic analysis;
Nuclear safeguard analysis
ID PLASMA-MASS SPECTROMETRY; ELEMENTAL RESPONSE VARIATIONS; FORENSIC
ANALYSIS; ENVIRONMENTAL-SAMPLES; URANIUM MATRICES; UV-FEMTOSECOND;
PLUTONIUM; IMPURITIES; SAFEGUARDS; PRECISION
AB The analysis of the isotopic composition of nuclear or non-nuclear solid materials is performed in a variety of fields, e.g., for quality, assurance in the production of nuclear fuels, as signatures in forensics, nuclear safeguards, and non-proliferation control, in material characterization, geology, and archeology. We have investigated the capability of laser ablation (New Wave Research, 213 nm) coupled to time-of-flight (TOF) ICP-MS (GBC OptiMass 8000) as a rapid analytical protocol for multi-isotope screening of nuclear and non-nuclear solid samples. This includes natural and non-natural isotopic compositions for elements including Cu. Zr, Mo, Cd, In, Ba, Ta, W, Re, Pt, Pb, and U, in pure metals, alloys, and glasses. Without correcting for mass bias (mass fractionation), an overall precision and accuracy of about 4% (1 sigma) can be achieved by minimizing the deposited laser power and thus fractionation (mass removal based on thermal properties). The precision and accuracy in combination with literally no or minimized sample preparation enables a rapid isotope screening of solid samples that is of particular interest to support nuclear forensic and safeguard analysis. (c) 2009 Elsevier Ltd. All rights reserved.
C1 [Buerger, S.] New Brunswick Lab, Dept Energy, Argonne, IL 60439 USA.
[Buerger, S.; Riciputi, L. R.] Oak Ridge Natl Lab, Transuranium Res Inst, Div Chem Sci, Chem & Isotope Mass Spectrometry Grp, Oak Ridge, TN 37831 USA.
[Riciputi, L. R.] Los Alamos Natl Lab, Nucl & Radiochem Grp, Los Alamos, NM 87545 USA.
RP Burger, S (reprint author), New Brunswick Lab, Dept Energy, 9800 S Cass Ave,Bldg 350, Argonne, IL 60439 USA.
EM stefan.buerger@ch.doe.gov
FU National Nuclear Security Administration (NNSA); U.S. Department of
Energy [DE-AC05-000R22725]; Oak Ridge National Laboratory; UT-Battelle,
LLC; U.S. Government [DE-AC05-000R22725]
FX We like to thank the two reviewers for their helpful comments. Research
sponsored by the Office of Nonproliferation and International Security
(NA-24), National Nuclear Security Administration (NNSA), U.S.
Department of Energy, under contract DE-AC05-000R22725 with Oak Ridge
National Laboratory, managed and operated by UT-Battelle, LLC. The
submitted manuscript was authored by a contractor of the U.S. Government
under contract No. DE-AC05-000R22725. Accordingly, the U.S. Government
retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or allow others to do so, for U.S.
Government purposes.
NR 64
TC 6
Z9 6
U1 4
U2 22
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0265-931X
J9 J ENVIRON RADIOACTIV
JI J. Environ. Radioact.
PD NOV
PY 2009
VL 100
IS 11
BP 970
EP 976
DI 10.1016/j.jenvrad.2009.07.009
PG 7
WC Environmental Sciences
SC Environmental Sciences & Ecology
GA 504OR
UT WOS:000270627000007
PM 19716213
ER
PT J
AU Garabrant, DH
Aylward, LL
Berent, S
Chen, QX
Timchalk, C
Burns, CJ
Hays, SM
Albers, JW
AF Garabrant, David H.
Aylward, Lesa L.
Berent, Stanley
Chen, Qixuan
Timchalk, Charles
Burns, Carol J.
Hays, Sean M.
Albers, James W.
TI Cholinesterase inhibition in chlorpyrifos workers: Characterization of
biomarkers of exposure and response in relation to urinary TCPy
SO JOURNAL OF EXPOSURE SCIENCE AND ENVIRONMENTAL EPIDEMIOLOGY
LA English
DT Article
DE cholinesterase inhibition; chlorpyrifos; urinary
3;5;6-trichloro-2-pyridinol; dose-response assessment
ID ORGANOPHOSPHATE PESTICIDE EXPOSURE; PHARMACODYNAMIC PBPK/PD MODEL;
OCCUPATIONAL-EXPOSURE; INSECTICIDE CHLORPYRIFOS; PROSPECTIVE COHORT;
NERVOUS-SYSTEM; 3,5,6-TRICHLORO-2-PYRIDINOL; PHARMACOKINETICS;
METABOLITES; POPULATION
AB The objective of this study was to evaluate the quantitative relation between measured red blood cell acetylcholinesterase (RBC AChE) and plasma butyrylcholinesterase (BuChE) activities with exposure to chlorpyrifos (CPF) as assessed by measurement of urinary 3,5,6-trichloro-2-pyridinol (TCPy) in a study group of workers occupationally exposed in the manufacture of CPF and a referent group of chemical manufacturing workers. Measures of plasma BuChE and RBC AChE activity and urinary TCPy concentration collected over a year-long study (1999-2000) in CPF-exposed workers (n = 53) and referents (n = 60) were analyzed using linear mixed models to characterize exposure-response relationships. Intraindividual variability in cholinesterase measures was compared between CPF-exposed workers and referents. Urinary TCPy concentrations in CPF workers were substantially elevated compared to referents, with median and 95th percentile concentrations during typical employment conditions 10-fold and more than 30-fold higher, respectively, than corresponding measures in the referents. Intraindividual variability in cholinesterase activities was substantial, with 17% of unexposed referents experiencing one or more plasma BuChE measures more than 20% below baseline over a year of repeated, periodic measurements. RBC AChE activity, an early biomarker of effect, was unrelated to urinary TCPy concentration over the entire range of exposure, up to 1000 mu g TCPy/g creatinine (Cr). Plasma BuChE activity, a non-adverse biomarker of exposure, was negatively related to urinary TCPy concentrations above approximately 110 mu g TCPy/g Cr. No-effect levels for inhibition of plasma BuChE and RBC AChE corresponding to absorbed doses of CPF of approximately 5 and greater than 50 mu g/kg/day, respectively, were identified. These findings are consistent with previous no-effect level determinations for ChE inhibition in humans and suggest that general population CPF exposure levels are substantially below the identified no-effect levels. The dose-response relationships observed in this study are consistent with predictions from the previously published physiologically based pharmacokinetic/pharmacodynamic model for CPF. Intraindividual variability in measured cholinesterase activities in referents was substantial, suggesting that ongoing monitoring programs may have a substantial rate of false positives. Journal of Exposure Science and Environmental Epidemiology (2009) 19, 634-642; doi:10.1038/jes.2008.51; published online 20 August 2008
C1 [Aylward, Lesa L.] Summit Toxicol LLP, Falls Church, VA 22044 USA.
[Garabrant, David H.] Univ Michigan, Sch Publ Hlth, Risk Sci Ctr, Ann Arbor, MI 48109 USA.
[Garabrant, David H.] Univ Michigan, Sch Publ Hlth, Dept Environm Hlth Sci, Ann Arbor, MI 48109 USA.
[Berent, Stanley] Univ Michigan, Sch Med, Dept Psychiat, Ann Arbor, MI USA.
[Chen, Qixuan] Univ Michigan, Sch Publ Hlth, Dept Biostat, Ann Arbor, MI 48109 USA.
[Timchalk, Charles] Battelle Pacific NW Div, Richland, WA USA.
[Burns, Carol J.] Dow Chem Co USA, Midland, MI 48674 USA.
[Hays, Sean M.] Summit Toxicol LLP, Lyons, CO USA.
[Albers, James W.] Univ Michigan, Sch Med, Dept Neurol, Ann Arbor, MI USA.
RP Aylward, LL (reprint author), Summit Toxicol LLP, 6343 Carolyn Dr, Falls Church, VA 22044 USA.
EM laylward@summittoxicology.com
RI Chen, Qixuan/G-6547-2012; Aylward, Lesa/F-7418-2012
OI Aylward, Lesa/0000-0003-3191-8175
FU Dow Agrosciences; Indianapolis; Indiana; The Dow Chemical Company; Dow
Chemical Company Foundation; Centers for Disease Control and Prevention
(CDC) [R01 OH003629, R01 OH008173]
FX Research support: This study was financially supported by Dow
Agrosciences, Indianapolis, Indiana, with additional support from The
Dow Chemical Company and Dow Chemical Company Foundation, which included
a SPHERE ( Supporting Public Health and Environmental Research Efforts)
Award. Model simulations were supported by grants R01 OH003629 and R01
OH008173 from the Centers for Disease Control and Prevention (CDC). The
contents of this article are solely the responsibility of the authors
and have not been subject to review by CDC and therefore do not
necessarily represent the official view of CDC, and no official
endorsement should be inferred.
NR 34
TC 33
Z9 33
U1 0
U2 11
PU NATURE PUBLISHING GROUP
PI NEW YORK
PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA
SN 1559-0631
J9 J EXPO SCI ENV EPID
JI J. Expo. Sci. Environ. Epidemiol.
PD NOV
PY 2009
VL 19
IS 7
BP 634
EP 642
DI 10.1038/jes.2008.51
PG 9
WC Environmental Sciences; Public, Environmental & Occupational Health;
Toxicology
SC Environmental Sciences & Ecology; Public, Environmental & Occupational
Health; Toxicology
GA 508SA
UT WOS:000270953500002
PM 18716607
ER
PT J
AU Bobet, A
Fakhimi, A
Johnson, S
Morris, J
Tonon, F
Yeung, MR
AF Bobet, A.
Fakhimi, A.
Johnson, S.
Morris, J.
Tonon, F.
Yeung, M. Ronald
TI Numerical Models in Discontinuous Media: Review of Advances for Rock
Mechanics Applications
SO JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING
LA English
DT Review
ID DEFORMATION ANALYSIS DDA; SMOOTHED PARTICLE HYDRODYNAMICS; DISCRETE
ELEMENT SIMULATION; CONTACT DETECTION ALGORITHM; QUASI-BRITTLE
MATERIALS; STABILITY ANALYSIS; POLYHEDRAL BLOCKS; SLOPE-STABILITY;
FRACTURE; FAILURE
AB The paper presents a description of the methods used to model rock as discontinuous media. The objective of the work is to bring to the geomechanics community recent advances in numerical modeling in the field of rock mechanics. The following methods are included: (1) the distinct element method; (2) the discontinuous deformation analysis method; and (3) the bonded particle method. A brief description of the fundamental algorithms that apply to each method is included, as well as a simple case to illustrate their use.
C1 [Bobet, A.] Purdue Univ, Sch Civil Engn, W Lafayette, IN 47907 USA.
[Fakhimi, A.] New Mexico Inst Min & Technol, Dept Mineral Engn, Socorro, NM USA.
[Fakhimi, A.] Tarbiat Modares Univ, Dept Civil Engn, Tehran 87801, Iran.
[Johnson, S.] Lawrence Livermore Natl Lab, Computat Phys Grp, Livermore, CA 94551 USA.
[Morris, J.] Lawrence Livermore Natl Lab, Computat Phys Grp, Livermore, CA 94451 USA.
[Tonon, F.] Univ Texas Austin, Dept Civil Engn, Austin, TX 78712 USA.
[Yeung, M. Ronald] Calif State Polytech Univ Pomona, Dept Civil Engn, Pomona, CA 91768 USA.
RP Bobet, A (reprint author), Purdue Univ, Sch Civil Engn, W Lafayette, IN 47907 USA.
EM bobet@purdue.edu; hamed@nmt.edu; johnson346@llnl.gov; morris50@llnl.gov;
tonon@mail.utexas.edu; mryeung@csupomona.edu
RI Tonon, Fulvio/G-6128-2015
OI Tonon, Fulvio/0000-0002-3211-3320
NR 167
TC 41
Z9 44
U1 8
U2 51
PU ASCE-AMER SOC CIVIL ENGINEERS
PI RESTON
PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA
SN 1090-0241
J9 J GEOTECH GEOENVIRON
JI J. Geotech. Geoenviron. Eng.
PD NOV
PY 2009
VL 135
IS 11
BP 1547
EP 1561
DI 10.1061/(ASCE)GT.1943-5606.0000133
PG 15
WC Engineering, Geological; Geosciences, Multidisciplinary
SC Engineering; Geology
GA 508FB
UT WOS:000270913200001
ER
PT J
AU Accardi, A
Hobbs, T
Melnitchouk, W
AF Accardi, A.
Hobbs, T.
Melnitchouk, W.
TI Hadron mass corrections in semi-inclusive deep inelastic scattering
SO JOURNAL OF HIGH ENERGY PHYSICS
LA English
DT Article
DE Deep Inelastic Scattering; Parton Model; QCD
ID TARGET; FRAGMENTATION; MULTIPLICITY; DUALITY; PIONS; SUM
AB We derive mass corrections for semi-inclusive deep inelastic scattering of leptons from nucleons using a collinear factorization framework which incorporates the initial state mass of the target nucleon and the final state mass of the produced hadron. The formalism is constructed specifically to ensure that physical kinematic thresholds for the semi-inclusive process are explicitly respected. A systematic study of the kinematic dependencies of the mass corrections to semi-inclusive cross sections reveals that these are even larger than for inclusive structure functions, especially at very small and very large hadron momentum fractions. The hadron mass corrections compete with the experimental uncertainties at kinematics typical of current facilities, and will be important to efforts at extracting parton distributions or fragmentation functions from semi-inclusive processes at intermediate energies.
C1 [Accardi, A.] Hampton Univ, Hampton, VA 23668 USA.
[Accardi, A.; Hobbs, T.; Melnitchouk, W.] Jefferson Lab, Newport News, VA 23606 USA.
RP Accardi, A (reprint author), Hampton Univ, Hampton, VA 23668 USA.
EM accardi@jlab.org; thobbs@jlab.org; wmelnitc@jlab.org
FU DOE [DE-AC05-06OR23177]; NSF [0653508]
FX We thank S. Albino, A. Bacchetta, R. Sassot and M. Schlegel for helpful
discussions and communications. This work was supported by the DOE
contract No. DE-AC05-06OR23177, under which Jefferson Science
Associates, LLC operates Jefferson Lab, and NSF award No. 0653508.
NR 33
TC 7
Z9 7
U1 0
U2 0
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1029-8479
J9 J HIGH ENERGY PHYS
JI J. High Energy Phys.
PD NOV
PY 2009
IS 11
AR 084
DI 10.1088/1126-6708/2009/11/084
PG 19
WC Physics, Particles & Fields
SC Physics
GA 536AA
UT WOS:000273012100084
ER
PT J
AU Accardi, A
Bacchetta, A
Melnitchouk, W
Schlegel, M
AF Accardi, Alberto
Bacchetta, Alessandro
Melnitchouk, W.
Schlegel, Marc
TI What can break the Wandzura-Wilczek relation?
SO JOURNAL OF HIGH ENERGY PHYSICS
LA English
DT Article
DE Deep Inelastic Scattering; Parton Model; QCD
ID DEEP-INELASTIC SCATTERING; MOMENTUM DEPENDENT DISTRIBUTION; POLARIZED
STRUCTURE FUNCTIONS; LORENTZ-INVARIANCE RELATIONS; TRANSVERSE-SPIN
ASYMMETRIES; TARGET MASS CORRECTIONS; DRELL-YAN PROCESS; PARTON
DISTRIBUTIONS; SUM-RULES; FRAGMENTATION FUNCTIONS
AB We analyze the breaking of the Wandzura-Wilczek relation for the g(2) structure function, emphasizing its connection with transverse momentum dependent parton distribution functions. We find that the relation is broken by two distinct twist-3 terms, and clarify how these can be separated in measurements of double-spin asymmetries in semi-inclusive deep inelastic scattering. Through a quantitative analysis of available g(2) data we also show that the breaking of the Wandzura-Wilczek relation can be as large as 15-40% of the size of g(2).
C1 [Accardi, Alberto; Bacchetta, Alessandro; Melnitchouk, W.; Schlegel, Marc] Jefferson Lab, Div Theory, Newport News, VA 23606 USA.
[Accardi, Alberto] Hampton Univ, Dept Phys, Hampton, VA 23668 USA.
[Bacchetta, Alessandro] Univ Pavia, Dipartimento Fis Nucl & Teor, I-27100 Pavia, Italy.
RP Accardi, A (reprint author), Jefferson Lab, Div Theory, 12000 Jefferson Ave, Newport News, VA 23606 USA.
EM accardi@jlab.org; alessandro.bacchetta@jlab.org; wmelnitc@jlab.org;
marc.schlegel@jlab.org
RI Bacchetta, Alessandro/F-3199-2012
OI Bacchetta, Alessandro/0000-0002-8824-8355
FU DOE [DE-AC05-06OR23177]; NSF [0653508]
FX We are grateful to M. Burkardt and A. Metz for helpful discussions. This
work was supported by the DOE contract No. DE-AC05-06OR23177, under
which Jefferson Science Associates, LLC operates Jefferson Lab, and NSF
award No. 0653508.
NR 80
TC 26
Z9 26
U1 0
U2 0
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1029-8479
J9 J HIGH ENERGY PHYS
JI J. High Energy Phys.
PD NOV
PY 2009
IS 11
AR 093
DI 10.1088/1126-6708/2009/11/093
PG 24
WC Physics, Particles & Fields
SC Physics
GA 536AA
UT WOS:000273012100093
ER
PT J
AU Airapetian, A
Akopov, N
Akopov, Z
Aschenauer, EC
Augustyniak, W
Avakian, R
Avetissian, A
Avetisyan, E
Ball, B
Belostotski, S
Blok, HP
Borissov, A
Bowles, J
Bryzgalov, V
Burns, J
Capitani, GP
Cisbani, E
Ciullo, G
Contalbrigo, M
Dalpiaz, PF
Deconinck, W
De Leo, R
De Nardo, L
De Sanctis, E
Diefenthaler, M
Di Nezza, P
Duren, M
Ehrenfried, M
Elbakian, G
Ellinghaus, F
Fabbri, R
Fantoni, A
Felawka, L
Frullani, S
Gabbert, D
Gapienko, G
Gapienko, V
Garibaldi, F
Gavrilov, G
Gharibyan, V
Giordano, F
Gliske, S
Hadjidakis, C
Hartig, M
Hasch, D
Hill, G
Hillenbrand, A
Hoek, M
Holler, Y
Hristova, I
Imazu, Y
Ivanilov, A
Jackson, HE
Jo, HS
Joosten, S
Kaiser, R
Karyan, G
Keri, T
Kinney, E
Kisselev, A
Kobayashi, N
Korotkov, V
Kozlov, V
Kravchenko, P
Lagamba, L
Lamb, R
Lapikas, L
Lehmann, I
Lenisa, P
Ruiz, AL
Lorenzon, W
Lu, XG
Lu, XR
Ma, BQ
Mahon, D
Makins, NCR
Manaenkov, SI
Mao, Y
Marianski, B
de la Ossa, AM
Marukyan, H
Miller, CA
Miyachi, Y
Movsisyan, A
Muccifora, V
Murray, M
Mussgiller, A
Nappi, E
Naryshkin, Y
Nass, A
Negodaev, M
Nowak, WD
Pappalardo, LL
Perez-Benito, R
Pickert, N
Raithel, M
Reimer, PE
Reolon, AR
Riedl, C
Rith, K
Rosner, G
Rostomyan, A
Rubin, J
Ryckbosch, D
Salomatin, Y
Sanftl, F
Schafer, A
Schnell, G
Schuler, KP
Seitz, B
Shibata, TA
Shutov, V
Stancari, M
Statera, M
Steffens, E
Steijger, JJM
Stenzel, H
Stewart, J
Stinzing, F
Terkulov, A
Trzcinski, A
Tytgat, M
Van Haarlem, Y
Van Hulse, C
Veretennikov, D
Vikhrov, V
Vilardi, I
Vogel, C
Wang, S
Yaschenko, S
Ye, Z
Yen, S
Yu, W
Zeiler, D
Zihlmann, B
Zupranski, P
AF Airapetian, A.
Akopov, N.
Akopov, Z.
Aschenauer, E. C.
Augustyniak, W.
Avakian, R.
Avetissian, A.
Avetisyan, E.
Ball, B.
Belostotski, S.
Blok, H. P.
Borissov, A.
Bowles, J.
Bryzgalov, V.
Burns, J.
Capitani, G. P.
Cisbani, E.
Ciullo, G.
Contalbrigo, M.
Dalpiaz, P. F.
Deconinck, W.
De Leo, R.
De Nardo, L.
De Sanctis, E.
Diefenthaler, M.
Di Nezza, P.
Dueren, M.
Ehrenfried, M.
Elbakian, G.
Ellinghaus, F.
Fabbri, R.
Fantoni, A.
Felawka, L.
Frullani, S.
Gabbert, D.
Gapienko, G.
Gapienko, V.
Garibaldi, F.
Gavrilov, G.
Gharibyan, V.
Giordano, F.
Gliske, S.
Hadjidakis, C.
Hartig, M.
Hasch, D.
Hill, G.
Hillenbrand, A.
Hoek, M.
Holler, Y.
Hristova, I.
Imazu, Y.
Ivanilov, A.
Jackson, H. E.
Jo, H. S.
Joosten, S.
Kaiser, R.
Karyan, G.
Keri, T.
Kinney, E.
Kisselev, A.
Kobayashi, N.
Korotkov, V.
Kozlov, V.
Kravchenko, P.
Lagamba, L.
Lamb, R.
Lapikas, L.
Lehmann, I.
Lenisa, P.
Ruiz, A. Lopez
Lorenzon, W.
Lu, X. -G.
Lu, X. -R.
Ma, B. -Q.
Mahon, D.
Makins, N. C. R.
Manaenkov, S. I.
Mao, Y.
Marianski, B.
de la Ossa, A. Martinez
Marukyan, H.
Miller, C. A.
Miyachi, Y.
Movsisyan, A.
Muccifora, V.
Murray, M.
Mussgiller, A.
Nappi, E.
Naryshkin, Y.
Nass, A.
Negodaev, M.
Nowak, W. -D.
Pappalardo, L. L.
Perez-Benito, R.
Pickert, N.
Raithel, M.
Reimer, P. E.
Reolon, A. R.
Riedl, C.
Rith, K.
Rosner, G.
Rostomyan, A.
Rubin, J.
Ryckbosch, D.
Salomatin, Y.
Sanftl, F.
Schaefer, A.
Schnell, G.
Schueler, K. P.
Seitz, B.
Shibata, T. -A.
Shutov, V.
Stancari, M.
Statera, M.
Steffens, E.
Steijger, J. J. M.
Stenzel, H.
Stewart, J.
Stinzing, F.
Terkulov, A.
Trzcinski, A.
Tytgat, M.
Van Haarlem, Y.
Van Hulse, C.
Veretennikov, D.
Vikhrov, V.
Vilardi, I.
Vogel, C.
Wang, S.
Yaschenko, S.
Ye, Z.
Yen, S.
Yu, W.
Zeiler, D.
Zihlmann, B.
Zupranski, P.
CA HERMES Collaboration
TI Separation of contributions from deeply virtual Compton scattering and
its interference with the Bethe-Heitler process in measurements on a
hydrogen target
SO JOURNAL OF HIGH ENERGY PHYSICS
LA English
DT Article
DE Lepton-Nucleon Scattering
ID PARTON DISTRIBUTIONS; NUCLEON; SPIN; ELECTROPRODUCTION; AMPLITUDE
AB Hard exclusive leptoproduction of real photons from an unpolarized proton target is studied in an effort to elucidate generalized parton distributions. The data accumulated during the years 1996-2005 with the HERMES spectrometer are analyzed to yield asymmetries with respect to the combined dependence of the cross section on beam helicity and charge, thereby revealing previously unseparated contributions from deeply virtual Compton scattering and its interference with the Bethe-Heitler process. The integrated luminosity is sufficient to show correlated dependences on two kinematic variables, and provides the most precise determination of the dependence on only the beam charge.
C1 [Aschenauer, E. C.; Jackson, H. E.; Reimer, P. E.; Stewart, J.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
[Deconinck, W.; De Leo, R.; Lagamba, L.; Nappi, E.; Vilardi, I.] Ist Nazl Fis Nucl, Sez Bari, I-70124 Bari, Italy.
[Ehrenfried, M.; Ma, B. -Q.; Mao, Y.; Wang, S.] Peking Univ, Sch Phys, Beijing 100871, Peoples R China.
[Ellinghaus, F.; Kinney, E.; de la Ossa, A. Martinez] Univ Colorado, Nucl Phys Lab, Boulder, CO 80309 USA.
[Akopov, Z.; Avetisyan, E.; Borissov, A.; Deconinck, W.; De Nardo, L.; Gavrilov, G.; Giordano, F.; Hadjidakis, C.; Hartig, M.; Holler, Y.; Mussgiller, A.; Rostomyan, A.; Schueler, K. P.; Ye, Z.; Zihlmann, B.] DESY, D-22603 Hamburg, Germany.
[Aschenauer, E. C.; Fabbri, R.; Gabbert, D.; Hartig, M.; Hillenbrand, A.; Hristova, I.; Lu, X. -G.; Negodaev, M.; Nowak, W. -D.; Riedl, C.; Schnell, G.; Stewart, J.; Yaschenko, S.] DESY, D-15738 Zeuthen, Germany.
[Lu, X. -R.; Shutov, V.] Joint Inst Nucl Res, Dubna 141980, Russia.
[Diefenthaler, M.; Mussgiller, A.; Nass, A.; Pickert, N.; Raithel, M.; Rith, K.; Steffens, E.; Stinzing, F.; Vogel, C.; Yaschenko, S.; Zeiler, D.] Univ Erlangen Nurnberg, Inst Phys, D-91058 Erlangen, Germany.
[Ciullo, G.; Contalbrigo, M.; Dalpiaz, P. F.; Giordano, F.; Lenisa, P.; Pappalardo, L. L.; Stancari, M.; Statera, M.; Van Haarlem, Y.] Univ Ferrara, Sez Ferrara, Ist Nazl Fis Nucl, I-44100 Ferrara, Italy.
[Ciullo, G.; Contalbrigo, M.; Dalpiaz, P. F.; Giordano, F.; Lenisa, P.; Pappalardo, L. L.; Stancari, M.; Statera, M.; Van Haarlem, Y.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy.
[Capitani, G. P.; De Sanctis, E.; Di Nezza, P.; Fantoni, A.; Hadjidakis, C.; Hasch, D.; Muccifora, V.; Reolon, A. R.; Vilardi, I.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[Jo, H. S.; Joosten, S.; Ruiz, A. Lopez; Ryckbosch, D.; Schnell, G.; Tytgat, M.; Van Haarlem, Y.; Van Hulse, C.; Vogel, C.] Univ Ghent, Dept Subatom & Radiat Phys, B-9000 Ghent, Belgium.
[Airapetian, A.; Dueren, M.; Ehrenfried, M.; Keri, T.; Perez-Benito, R.; Stenzel, H.; Ye, Z.; Yu, W.] Univ Giessen, Inst Phys, D-35392 Giessen, Germany.
[Bowles, J.; Burns, J.; Hill, G.; Hoek, M.; Kaiser, R.; Keri, T.; Lehmann, I.; Mahon, D.; Murray, M.; Rosner, G.; Seitz, B.; Zihlmann, B.] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland.
[Diefenthaler, M.; Joosten, S.; Lamb, R.; Makins, N. C. R.; Rubin, J.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
[Airapetian, A.; Ball, B.; Deconinck, W.; De Nardo, L.; Gliske, S.; Lorenzon, W.] Univ Michigan, Randall Lab Phys, Ann Arbor, MI 48109 USA.
[Kozlov, V.; Terkulov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia.
[Blok, H. P.; Lapikas, L.; Steijger, J. J. M.] NIKHEF H, Natl Inst Subatom Phys, NL-1009 DB Amsterdam, Netherlands.
[Belostotski, S.; Gavrilov, G.; Kisselev, A.; Kravchenko, P.; Manaenkov, S. I.; Naryshkin, Y.; Veretennikov, D.; Vikhrov, V.] Petersburg Nucl Phys Inst, Gatchina 188300, Leningrad Reg, Russia.
[Bryzgalov, V.; Gapienko, G.; Gapienko, V.; Ivanilov, A.; Korotkov, V.; Salomatin, Y.] Inst High Energy Phys, Protvino 142281, Moscow Region, Russia.
[Sanftl, F.; Schaefer, A.] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany.
[Cisbani, E.; Frullani, S.; Garibaldi, F.] Ist Super Sanita, Phys Lab, I-00161 Rome, Italy.
[Cisbani, E.; Frullani, S.; Garibaldi, F.] Ist Nazl Fis Nucl, Grp Sanita, Sez Roma 1, I-00161 Rome, Italy.
[Felawka, L.; Gavrilov, G.; Miller, C. A.; Yen, S.] TRIUMF, Vancouver, BC V6T 2A3, Canada.
[Imazu, Y.; Kobayashi, N.; Lu, X. -R.; Miyachi, Y.; Shibata, T. -A.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan.
[Blok, H. P.] Vrije Univ Amsterdam, Dept Phys, NL-1081 HV Amsterdam, Netherlands.
[Augustyniak, W.; Marianski, B.; Trzcinski, A.; Zupranski, P.] Andrzej Soltan Inst Nucl Studies, PL-00689 Warsaw, Poland.
[Akopov, N.; Avakian, R.; Avetissian, A.; Elbakian, G.; Gharibyan, V.; Karyan, G.; Marukyan, H.; Movsisyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia.
RP Airapetian, A (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA.
EM klaus.rith@desy.de
RI Cisbani, Evaristo/C-9249-2011; Deconinck, Wouter/F-4054-2012; Gavrilov,
Gennady/C-6260-2013; Reimer, Paul/E-2223-2013; Negodaev,
Mikhail/A-7026-2014; Kozlov, Valentin/M-8000-2015; Terkulov,
Adel/M-8581-2015
OI Cisbani, Evaristo/0000-0002-6774-8473;
FU FWO-Flanders and IWT, Belgium; Natural Sciences and Engineering Research
Council of Canada; National Natural Science Foundation of China;
Alexander von Humboldt Stiftung; German Bundesministerium fur Bildung
und Forschung (BMBF); Deutsche Forschungsgemeinschaft (DFG); Italian
Istituto Nazionale di Fisica Nucleare (INFN); MEXT, JSPS, and G-COE of
Japan; Dutch Foundation for Fundamenteel Onderzoek der Materie (FOM); U.
K. Engineering and Physical Sciences Research Council; Science and
Technology Facilities Council; Scottish Universities Physics Alliance;
U.S. Department of Energy (DOE); National Science Foundation (NSF);
Russian Academy of Science; Russian Federal Agency for Science and
Innovations; Ministry of Economy; Ministry of Education and Science of
Armenia; European Community- Research Infrastructure Activity
[RII3-CT-2004-506078]
FX We gratefully acknowledge the Desy management for its support and the
staff at Desy and the collaborating institutions for their significant
effort. This work was supported by the FWO-Flanders and IWT, Belgium;
the Natural Sciences and Engineering Research Council of Canada; the
National Natural Science Foundation of China; the Alexander von Humboldt
Stiftung; the German Bundesministerium fur Bildung und Forschung (BMBF);
the Deutsche Forschungsgemeinschaft (DFG); the Italian Istituto
Nazionale di Fisica Nucleare (INFN); the MEXT, JSPS, and G-COE of Japan;
the Dutch Foundation for Fundamenteel Onderzoek der Materie (FOM); the
U. K. Engineering and Physical Sciences Research Council, the Science
and Technology Facilities Council, and the Scottish Universities Physics
Alliance; the U.S. Department of Energy (DOE) and the National Science
Foundation (NSF); the Russian Academy of Science and the Russian Federal
Agency for Science and Innovations; the Ministry of Economy and the
Ministry of Education and Science of Armenia; and the European
Community- Research Infrastructure Activity under the FP6 "Structuring
the European Research Area" program (HadronPhysics, contract number
RII3-CT-2004-506078).
NR 53
TC 34
Z9 34
U1 1
U2 8
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1029-8479
J9 J HIGH ENERGY PHYS
JI J. High Energy Phys.
PD NOV
PY 2009
IS 11
AR 083
DI 10.1088/1126-6708/2009/11/083
PG 22
WC Physics, Particles & Fields
SC Physics
GA 536AA
UT WOS:000273012100083
ER
PT J
AU Avsar, E
Iancu, E
McLerran, L
Triantafyllopoulos, DN
AF Avsar, E.
Iancu, E.
McLerran, L.
Triantafyllopoulos, D. N.
TI Shockwaves and deep inelastic scattering within the gauge/gravity
duality
SO JOURNAL OF HIGH ENERGY PHYSICS
LA English
DT Article
DE Supersymmetric gauge theory; Gauge-gravity correspondence; Deep
Inelastic Scattering; Nonperturbative Effects
ID RENORMALIZATION; ADS/CFT; PLASMA; LIMIT
AB Within the gauge/gravity correspondence, we discuss the general formulation of the shockwave metric which is dual to a 'nucleus' described by the strongly-coupled N = 4 SYM theory in the limit where the number of colors N-c is arbitrarily large. We emphasize that the 'nucleus' must possess N-c(2) degrees of freedom per unit volume, so like a finite-temperature plasma, in order for a supergravity description to exist. We critically reassess previous proposals for introducing transverse inhomogeneity in the shockwave and formulate a new proposal in that sense, which involves no external source but requires the introduction of an 'infrared' cutoff which mimics confinement. This cutoff however plays no role when the shockwave is probed by a highly virtual projectile, so like in deep inelastic scattering. We consider two such projectiles, the dilaton and the R-current, and compute the respective structure functions including unitarity corrections. We find that there are no leading-twist contributions to the structure functions at high virtuality, meaning that there are no point-like constituents in the strongly coupled 'nucleus'. In the black-disk regime at low virtuality, the structure functions are suggestive of parton saturation with occupation numbers of order one. The saturation momentum Q(s) grows with the energy like Q(s)(2)similar to 1/x (with x the Bjorken variable), which is the hallmark of graviton exchanges and is also necessary for the fulfillment of the energy-momentum sum rules.
C1 [Avsar, E.; Iancu, E.] Inst Phys & Theor Saclay, F-91191 Gif Sur Yvette, France.
[McLerran, L.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
[McLerran, L.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA.
[Triantafyllopoulos, D. N.] Tech Univ Wien, Inst Theoret Phys, A-1040 Vienna, Austria.
RP Avsar, E (reprint author), Inst Phys & Theor Saclay, F-91191 Gif Sur Yvette, France.
EM Emil.Avsar@cea.fr; Edmond.Iancu@cea.fr; mclerran@bnl.gov;
dionysis@hep.itp.tuwien.ac.at
RI Triantafyllopoulos, Dionysios/J-2052-2014
OI Triantafyllopoulos, Dionysios/0000-0002-0952-4201
NR 62
TC 28
Z9 28
U1 0
U2 0
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1029-8479
J9 J HIGH ENERGY PHYS
JI J. High Energy Phys.
PD NOV
PY 2009
IS 11
AR 105
DI 10.1088/1126-6708/2009/11/105
PG 46
WC Physics, Particles & Fields
SC Physics
GA 536AA
UT WOS:000273012100105
ER
PT J
AU Bai, Y
Fox, PJ
AF Bai, Yang
Fox, Patrick J.
TI Resonant dark matter
SO JOURNAL OF HIGH ENERGY PHYSICS
LA English
DT Article
DE Beyond Standard Model; Electromagnetic Processes and Properties
ID NUCLEAR RECOIL; DAMA/LIBRA; SEARCH
AB It is usually assumed that dark matter direct detection is sensitive to a large fraction of the dark matter (DM) velocity distribution. We propose an alternative form of dark matter-nucleus scattering which only probes a narrow range of DM velocities due to the existence of a resonance, a DM-nucleus bound state, in the scattering-resonant dark matter (rDM). The scattering cross section becomes highly element dependent, has increased modulation and as a result can explain the DAMA/LIBRA results whilst not being in conflict with other direct detection experiments. We describe a simple model that realizes the dynamics of rDM, where the DM is the neutral component of a fermionic weak triplet whose charged partners differ in mass by approximately 10MeV.
C1 [Bai, Yang; Fox, Patrick J.] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA.
RP Bai, Y (reprint author), Fermilab Natl Accelerator Lab, Dept Theoret Phys, POB 500, Batavia, IL 60510 USA.
EM bai@fnal.gov; pjfox@fnal.gov
FU Fermi Research Alliance, LLC [DE-AC02-07CH11359]
FX Many thanks to Spencer Chang, Scott Dodelson, S. K. Kim, Kaixuan Ni for
interesting discussions. We thank Maxim Pospelov for stimulating
discussions and reading a draft of this paper. Fermilab is operated by
Fermi Research Alliance, LLC under contract no. DE-AC02-07CH11359 with
the United States Department of Energy.
NR 39
TC 25
Z9 25
U1 0
U2 1
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1029-8479
J9 J HIGH ENERGY PHYS
JI J. High Energy Phys.
PD NOV
PY 2009
IS 11
AR 052
DI 10.1088/1126-6708/2009/11/052
PG 20
WC Physics, Particles & Fields
SC Physics
GA 536AA
UT WOS:000273012100052
ER
PT J
AU Ibe, M
Murayama, H
Shirai, S
Yanagida, TT
AF Ibe, Masahiro
Murayama, Hitoshi
Shirai, Satoshi
Yanagida, Tsutomu T.
TI Cosmic ray spectra in Nambu-Goldstone dark matter models
SO JOURNAL OF HIGH ENERGY PHYSICS
LA English
DT Article
DE Cosmology of Theories beyond the SM; Beyond Standard Model;
Supersymmetric Standard Model
ID DYNAMICAL SUPERSYMMETRY BREAKING; POSITRON FRACTION; ABUNDANCES;
ELECTRONS; ENERGIES; AXION
AB We discuss the cosmic ray spectra in annihilating/decaying Nambu-Goldstone dark matter models. The recent observed positron/electron excesses at PAMELA and Fermi experiments are well fitted by the dark matter with a mass of 3 TeV for the annihilating model, while with a mass of 6 TeV for the decaying model. We also show that the Nambu- Goldstone dark matter models predict a distinctive gamma-ray spectrum in a certain parameter space.
C1 [Ibe, Masahiro] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA.
[Murayama, Hitoshi] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Murayama, Hitoshi] LBNL, Theoret Phys Grp, Berkeley, CA 94720 USA.
[Murayama, Hitoshi; Shirai, Satoshi; Yanagida, Tsutomu T.] Univ Tokyo, Inst Phys & Math Universe, Kashiwa, Chiba 2778568, Japan.
[Shirai, Satoshi; Yanagida, Tsutomu T.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan.
RP Ibe, M (reprint author), SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA.
EM mibe@uci.edu; hitoshi.murayama@ipmu.jp;
shirai@hep-th.phys.s.u-tokyo.ac.jp; tsutomu.tyanagida@ipmu.jp
RI Yanagida, Tsutomu/A-4394-2011; Murayama, Hitoshi/A-4286-2011
FU U.S. Department of Energy [DE-AC02-76SF00515, DE-AC03-76SF00098]; MEXT,
Japan; NSF [PHY-04-57315]; JSPS
FX The work of M. I. was supported by the U.S. Department of Energy under
contract number DE-AC02-76SF00515. The work of H. M. and T.T.Y. was
supported in part by World Premier International Research Center
Initiative (WPI Initiative), MEXT, Japan. The work of H. M. was also
supported in part by the U.S. DOE under Contract DE-AC03-76SF00098, and
in part by the NSF under grant PHY-04-57315. The work of SS is supported
in part by JSPS Research Fellowships for Young Scientists.
NR 51
TC 9
Z9 9
U1 0
U2 1
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1029-8479
J9 J HIGH ENERGY PHYS
JI J. High Energy Phys.
PD NOV
PY 2009
IS 11
AR 120
DI 10.1088/1126-6708/2009/11/120
PG 23
WC Physics, Particles & Fields
SC Physics
GA 536AA
UT WOS:000273012100120
ER
PT J
AU Skup, E
Trimpl, M
Yarema, R
Yun, JC
AF Skup, E.
Trimpl, M.
Yarema, R.
Yun, J. C.
TI Demonstration of fine pitch FCOB (Flip Chip on Board) assembly based on
solder bumps at Fermilab
SO JOURNAL OF INSTRUMENTATION
LA English
DT Article
DE Detector design and construction technologies and materials; Electronic
detector readout concepts (solid-state); Manufacturing; Large detector
systems for particle and astroparticle physics
AB Bump bonding is a superior assembly alternative compared to conventional wire bond techniques. It offers a highly reliable connection with greatly reduced parasitic properties. The Flip Chip on Board (FCOB) procedure is an especially attractive packaging method for applications requiring a large number of connections at moderate pitch. This paper reports on the successful demonstration of FCOB assembly based on solder bumps down to 250 mu m pitch using a SUSS MA8 mask aligner at Fermilab. The assembly procedure will be described, microscopic cross sections of the connections are shown, and first measurements on the contact resistance are presented.
C1 [Skup, E.; Trimpl, M.; Yarema, R.; Yun, J. C.] Fermi Natl Lab, Batavia, IL 60510 USA.
RP Trimpl, M (reprint author), Fermi Natl Lab, Batavia, IL 60510 USA.
EM trimpl@ieee.org
NR 3
TC 0
Z9 0
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 1748-0221
J9 J INSTRUM
JI J. Instrum.
PD NOV
PY 2009
VL 4
AR T11001
DI 10.1088/1748-0221/4/11/T11001
PG 8
WC Instruments & Instrumentation
SC Instruments & Instrumentation
GA 540NY
UT WOS:000273341600027
ER
PT J
AU Ozer, MM
Wang, CZ
Zhang, ZY
Weitering, HH
AF Oezer, Mustafa M.
Wang, Cai-Zhuang
Zhang, Zhenyu
Weitering, Hanno H.
TI Quantum Size Effects in the Growth, Coarsening, and Properties of
Ultra-thin Metal Films and Related Nanostructures
SO JOURNAL OF LOW TEMPERATURE PHYSICS
LA English
DT Article
DE Metal films; Metal islands; Quantum size effects; Electronic growth;
Stability; Coarsening; Superconductivity; Work function; Reactivity;
Catalysis
ID BY-LAYER GROWTH; EQUILIBRIUM SHAPE; ELECTRON-DENSITY; PB ISLANDS;
SURFACES; SUPERCONDUCTIVITY; TEMPERATURE; LEAD; INTERFACE; GE(001)
AB This review addresses the quantum mechanical nature of the formation and stability of ultrathin metal films. The competition between quantum confinement, charge spilling effects, and Friedel oscillations determines whether an atomically smooth metal film will be marginally, critically, or magically stable or totally unstable against roughening. Pb(111) films represent a special case, not only because of strong quantum oscillations in the stability of two-dimensional thin films but also because of the exceptionally fast coarsening of Pb nanoclusters. The latter appears to be due to the combined effects of size quantization and the existence of a unique mass exchange medium in the form of an unusually dense and highly dynamic wetting layer. The consequences of size quantization on the physical and chemical properties of the films are profound, some of which will be highlighted in this review.
C1 [Oezer, Mustafa M.; Zhang, Zhenyu; Weitering, Hanno H.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[Wang, Cai-Zhuang] Iowa State Univ, Dept Phys & Astron, Ames Lab USDOE, Ames, IA 50011 USA.
[Zhang, Zhenyu; Weitering, Hanno H.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
RP Ozer, MM (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
EM mozer@utk.edu
FU NSF [DMR 06-06485]; US-DOE Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering; US Department of Energy
[DE-AC05-00OR22725]; National Energy Research Supercomputing Center
(NERSC) in Berkeley; Iowa State University [DE-AC02-07CH11358]
FX We thank J. R. Thompson, Y. Jia, B. Wu, E. J. Moon, K.- M. Ho, M. C.
Tringides, J. W. Evans, M. Z. Li, and M. Hupalo for their contributions
to this work. HHW and ZYZ acknowledge financial support from NSF under
contract No. DMR 06-06485 and the US-DOE Office of Basic Energy
Sciences, Division of Materials Sciences and Engineering. Oak Ridge
National Laboratory is managed by UT-Battelle, LLC, for the US
Department of Energy under Contract No. DE-AC05-00OR22725. CZW
acknowledges support by the Director for Energy Research, Office of
Basic Energy Sciences, including a grant of computer time at the
National Energy Research Supercomputing Center (NERSC) in Berkeley. The
Ames Laboratory is operated for the U. S. Department of Energy by Iowa
State University under Contract No. DE-AC02-07CH11358.
NR 73
TC 19
Z9 19
U1 6
U2 25
PU SPRINGER/PLENUM PUBLISHERS
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0022-2291
EI 1573-7357
J9 J LOW TEMP PHYS
JI J. Low Temp. Phys.
PD NOV
PY 2009
VL 157
IS 3-4
SI SI
BP 221
EP 251
DI 10.1007/s10909-009-9905-z
PG 31
WC Physics, Applied; Physics, Condensed Matter
SC Physics
GA 501MC
UT WOS:000270385000009
ER
PT J
AU Liu, JC
Johnson, JK
AF Liu, Jinchen
Johnson, J. Karl
TI Prediction of CH4/H-2 Mixture Selectivity in Zn(tbip) from Computer
Simulations
SO JOURNAL OF LOW TEMPERATURE PHYSICS
LA English
DT Article
DE Zn(tbip); CH4/H-2 mixture; Membrane separation
ID METAL-ORGANIC FRAMEWORKS; ATOMISTIC SIMULATIONS; SILICALITE MEMBRANES;
SURFACE RESISTANCES; SEPARATIONS; DIFFUSION; TRANSPORT; ADSORPTION; CF4;
CH4
AB We have computed CH4/H-2 mixture adsorption isotherms and mixture self-diffusivities in Zn(tbip), a nanoporous metal organic material, at 298 K using grand canonical Monte Carlo and equilibrium molecular dynamics simulations. We calculated the adsorption and diffusion selectivities from our simulation results. An approximate model was used to estimate the maximum membrane selectivities. The adsorption selectivity very strongly favors CH4 over H-2, whereas the diffusion selectivity favors H-2 over CH4. We find that the adsorption selectivity dominates the mixture selectivity, giving values in the range of 6-50 CH4/H-2. This indicates that Zn(tbip) may be useful for separating CH4/H-2 mixtures.
C1 [Liu, Jinchen; Johnson, J. Karl] Univ Pittsburgh, Dept Chem Engn, Pittsburgh, PA 15260 USA.
[Liu, Jinchen; Johnson, J. Karl] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA.
RP Johnson, JK (reprint author), Univ Pittsburgh, Dept Chem Engn, Pittsburgh, PA 15260 USA.
EM jliu@puccini.che.pitt.edu; karlj@pitt.edu
RI Johnson, Karl/E-9733-2013
OI Johnson, Karl/0000-0002-3608-8003
FU RDS [DE-AC26-04NT41817]
FX This work was performed in support of the National Energy Technology
Laboratory's ongoing research in the area of carbon management under the
RDS contract DE-AC26-04NT41817.
NR 29
TC 13
Z9 13
U1 1
U2 7
PU SPRINGER/PLENUM PUBLISHERS
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0022-2291
J9 J LOW TEMP PHYS
JI J. Low Temp. Phys.
PD NOV
PY 2009
VL 157
IS 3-4
SI SI
BP 268
EP 276
DI 10.1007/s10909-009-9910-2
PG 9
WC Physics, Applied; Physics, Condensed Matter
SC Physics
GA 501MC
UT WOS:000270385000011
ER
PT J
AU Pecharsky, VK
Gschneidner, KA
Mudryk, Y
Paudyal, D
AF Pecharsky, V. K.
Gschneidner, K. A., Jr.
Mudryk, Ya.
Paudyal, Durga
TI Making the most of the magnetic and lattice entropy changes
SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS
LA English
DT Article
DE Magnetocaloric effect; Giant magnetocaloric effect; Magnetic cooling;
Isothermal magnetic entropy change; Adiabatic temperature change;
Magnetostructural transformation; Phase-separated state; Magnetic
hysteresis
ID 1ST-ORDER PHASE-TRANSITION; ROOM-TEMPERATURE APPLICATIONS; GD-5(SI2GE2);
REFRIGERATION; ALLOYS; GD-5(SIXGE1-X)(4); MNAS1-XSBX; GD5SI2GE2
AB Recent discoveries of novel materials exhibiting a magnetocaloric effect that is strongly enhanced by the magnetoelastic coupling - the so-called giant magnetocaloric effect materials - stimulated an unprecedented expansion of research related both to the fundamentals of the phenomenon and potential future applications of these materials in continuous magnetic cooling near room temperature. The subject of this work is two fold. On one hand, systems exhibiting the giant magneto caloric effect may be prone to hysteresis, and may exist in nonequilibrium, phase-separated states, thus requiring a special care when their intrinsic physical properties are of interest. On the other hand, in order to harvest most of the magnetocaloric potential of a specific compound, both the magnetic and lattice degrees of freedom of the material must be precisely controlled. (C) 2008 Elsevier B.V. All rights reserved.
C1 [Pecharsky, V. K.; Gschneidner, K. A., Jr.; Mudryk, Ya.; Paudyal, Durga] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
[Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA.
RP Pecharsky, VK (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
EM vitkp@ameslab.gov
FU Office of Basic Energy Sciences of the Office of Sciences of the US
Department of Energy [DE-AC02-07CH11358]
FX This work was supported by the Office of Basic Energy Sciences of the
Office of Sciences of the US Department of Energy under Contract no.
DE-AC02-07CH11358 with Iowa State University of Science and Technology.
NR 44
TC 39
Z9 41
U1 4
U2 36
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0304-8853
J9 J MAGN MAGN MATER
JI J. Magn. Magn. Mater.
PD NOV
PY 2009
VL 321
IS 21
BP 3541
EP 3547
DI 10.1016/j.jmmm.2008.03.013
PG 7
WC Materials Science, Multidisciplinary; Physics, Condensed Matter
SC Materials Science; Physics
GA 493FT
UT WOS:000269721100003
ER
PT J
AU Bridges, CA
Krishnamurthy, VV
Poulton, S
Paranthaman, MP
Sales, BC
Myers, C
Bobev, S
AF Bridges, C. A.
Krishnamurthy, V. V.
Poulton, S.
Paranthaman, M. P.
Sales, B. C.
Myers, C.
Bobev, S.
TI Magnetic order in CaMn2Sb2 studied via powder neutron diffraction
SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS
LA English
DT Article
DE Polar; Intermetallic; Magnetic structure; Representational analysis;
Antiferromagnet; Neutron diffraction
ID SOLID-STATE; SYMMETRY
AB This paper reports a neutron powder diffraction study of CaMn2Sb2 in the temperature range of 20-300K. Collinear long-range antiferromagnetic order of manganese ions occurs below 85 K, where a transition is observed in the dc magnetic susceptibility measured with a single crystal. Short-range magnetic order, characterized by a broad diffraction peak corresponding to a d-spacing of approximately 4 angstrom(2 theta approximate to 22 degrees), is also observed above 20K. The long-range antiferromagnetic order is indexed by the chemical unit cell, indicating a propagation vector k = (000), with a refined magnetic moment of 3.38 mu(B) at 20 K. Two possible magnetic models have been identified, which differ in spin orientation for the two manganese ions with respect to the ab plane. The model with spins oriented at a 25 +/- 2 degrees angle relative to the ab plane gives an improved fit compared to the other model in which the spins are constrained to the ab plane. Representational analysis can account for a model involving a c-axis component only by the mixing of two irreducible representations. Published by Elsevier B.V.
C1 [Bridges, C. A.; Krishnamurthy, V. V.; Paranthaman, M. P.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
[Poulton, S.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA.
[Poulton, S.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA.
[Sales, B. C.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[Myers, C.; Bobev, S.] Univ Delaware, Dept Chem, Newark, DE 19716 USA.
RP Bridges, CA (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
EM bridgesca@ornl.gov
RI Paranthaman, Mariappan/N-3866-2015
OI Paranthaman, Mariappan/0000-0003-3009-8531
FU Division of Materials Sciences and Engineering (DMSE), Office of Basic
Energy Sciences, US Department of Energy [DE-AC05-00OR22725]; Oak Ridge
National Laboratory; University of Delaware and the Petroleum Research
Fund (ACS-PRF); NSF Summer Research Program in Solid State Chemistry
FX This research was sponsored by the Division of Materials Sciences and
Engineering (DMSE), Office of Basic Energy Sciences, US Department of
Energy under Contract no. DE-AC05-00OR22725 with Oak Ridge National
Laboratory, managed by UT-Battelle, LLC. S.B. gratefully acknowledges
funding from the University of Delaware and the Petroleum Research Fund
(ACS-PRF). C.M. was financially supported by the 2007 NSF Summer
Research Program in Solid State Chemistry.
NR 21
TC 7
Z9 7
U1 1
U2 13
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0304-8853
J9 J MAGN MAGN MATER
JI J. Magn. Magn. Mater.
PD NOV
PY 2009
VL 321
IS 22
BP 3653
EP 3657
DI 10.1016/j.jmmm.2009.07.015
PG 5
WC Materials Science, Multidisciplinary; Physics, Condensed Matter
SC Materials Science; Physics
GA 493FN
UT WOS:000269720200002
ER
PT J
AU Alsmadi, AM
Alyones, S
Mielke, CH
McDonald, RD
Zapf, V
Altarawneh, MM
Lacerda, A
Chang, S
Adak, S
Kothapalli, K
Nakotte, H
AF Alsmadi, A. M.
Alyones, S.
Mielke, C. H.
McDonald, R. D.
Zapf, V.
Altarawneh, M. M.
Lacerda, A.
Chang, S.
Adak, S.
Kothapalli, K.
Nakotte, H.
TI Radio-frequency measurements of UNiX compounds (X = Al, Ga, Ge) in high
magnetic fields
SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS
LA English
DT Article
DE Uranium compounds; Complex conductivity; Metamagnetic transition
ID TUNNEL-DIODE OSCILLATOR; TRANSPORT-PROPERTIES; GIANT MAGNETORESISTANCE;
UTX COMPOUNDS; PRESSURE; TRANSITIONS; SERIES; NI; CO
AB We performed radio-frequency (RF) skin-depth measurements of antiferromagnetic UNiX compounds (X = Al, Ga, Ge) in magnetic fields up to 60 T and at tempeatures between 1.4 to similar to 60K. Magnetic fields are applied along different crystallographic directions and RF penetration-depth was measured using a tunnel-diode oscillator (DO) circuit. The sample is coupled to the inductive element of a TDO resonant tank circuit, and the shift in the resonant frequency Delta f of the circuit is measured. The UNiX compounds exhibit field-induced magnetic transitions at low temperatures, and those transitions are accompanied by a drastic change in Delta f. The results of our skin-depth measurements were compared with previously published B-T phase diagrams for these three compounds. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Alsmadi, A. M.; Alyones, S.] Hashemite Univ, Dept Phys, Zarqa 13115, Jordan.
[Mielke, C. H.; McDonald, R. D.; Zapf, V.; Altarawneh, M. M.; Lacerda, A.] Los Alamos Natl Lab, Pulsed Field Facil, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA.
[Chang, S.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA.
[Adak, S.; Kothapalli, K.; Nakotte, H.] New Mexico State Univ, Dept Phys, Las Cruces, NM 88003 USA.
RP Alsmadi, AM (reprint author), Hashemite Univ, Dept Phys, Zarqa 13115, Jordan.
EM alsmadi_abd@yahoo.com
RI Adak, Sourav /G-3080-2010; McDonald, Ross/H-3783-2013; Zapf,
Vivien/K-5645-2013; Mielke, Charles/S-6827-2016;
OI McDonald, Ross/0000-0002-0188-1087; Zapf, Vivien/0000-0002-8375-4515;
Mielke, Charles/0000-0002-2096-5411; Mcdonald, Ross/0000-0002-5819-4739
FU NSF, the US Department of Energy and the State of Florida [DMR-0804032];
NHMFL, Los Alamos
FX The work was supported by a grant from NSF(Grant no: DMR-0804032). The
NSF, the US Department of Energy and the State of Florida supported the
work at the NHMFL, Los Alamos facility. The Hashemite University
provided partial support for this work.
NR 41
TC 1
Z9 1
U1 2
U2 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0304-8853
J9 J MAGN MAGN MATER
JI J. Magn. Magn. Mater.
PD NOV
PY 2009
VL 321
IS 22
BP 3712
EP 3718
DI 10.1016/j.jmmm.2009.07.022
PG 7
WC Materials Science, Multidisciplinary; Physics, Condensed Matter
SC Materials Science; Physics
GA 493FN
UT WOS:000269720200013
ER
PT J
AU Bercoff, PG
Bertorello, HR
Saux, C
Pierella, LB
Botta, PM
Kanazawa, T
Zhang, Y
AF Bercoff, P. G.
Bertorello, H. R.
Saux, C.
Pierella, L. B.
Botta, P. M.
Kanazawa, Toshiyuki
Zhang, Ying
TI Magnetic properties of Co-impregnated zeolites
SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS
LA English
DT Article
DE Co-zeolite; Wet impregnation; Magnetic property; Cubic Co
ID SELECTIVE REDUCTION; MOLECULAR-SIEVES; NANOMAGNETISM; RELAXATION;
PARTICLES; CO-ZSM-5; COBALT
AB The structure and magnetic properties of Co-containing zeolites prepared by wet impregnation were investigated. The samples were calcined and then reduced in flowing H(2). The samples studied have large saturation magnetization due to the presence of cubic Co particles over a wide range of sizes. The zero field cooling-field cooling curves show a sharp magnetization peak with a blocking temperature around 7 K followed by an exponential decay and two other peaks - of much lower amplitude - around 160 and 280 K. The low temperature peak is analyzed considering first, at T(crit), thermal relaxation toward equilibrium over an energy barrier, with increasing viscosity S with T. Above T(crit) relaxation does not occur and viscosity abruptly goes to zero. The behavior of the smallest Co particles is unusual above the blocking temperature. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Bercoff, P. G.; Bertorello, H. R.] Univ Nacl Cordoba, FAMAF, RA-5000 Cordoba, Argentina.
[Bercoff, P. G.; Bertorello, H. R.] Consejo Nacl Invest Cient & Tecn, IFFAMAF, RA-1033 Buenos Aires, DF, Argentina.
[Saux, C.; Pierella, L. B.] UTN, Fac Reg Cordoba, CITeQ, Cordoba, Argentina.
[Botta, P. M.] Conicet UNMdP, INTEMA, Mar Del Plata, Buenos Aires, Argentina.
[Kanazawa, Toshiyuki] JEOL USA, Peabody, MA 01960 USA.
[Zhang, Ying] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
RP Bercoff, PG (reprint author), Univ Nacl Cordoba, FAMAF, RA-5000 Cordoba, Argentina.
EM bercoff@famaf.unc.edu.ar
FU Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET),
Argentina [6452, 6313/05]; Agencia Nacional de Promocion Cientifica y
Tecnologica, Argentina [12-14657]; Secretaria de Ciencia y Tecnologia,
Universidad Nacional de Cordoba, Argentina [UTN-PID 25E092]; Ministry of
Science and Education of Spain (MEC) [2004-05130-C02-01]; Department of
Energy, Office of Basic Energy Sciences [DE-AC02-07CH11358]
FX This work was partially funded by Consejo Nacional de Investigaciones
Cientificas y Tecnicas (CONICET), Argentina, PIP no. 6452 and PIP no.
6313/05; Agencia Nacional de Promocion Cientifica y Tecnologica,
Argentina, PICT no. 12-14657; Secretaria de Ciencia y Tecnologia,
Universidad Nacional de Cordoba, Argentina; UTN-PID 25E092; the Ministry
of Science and Education of Spain (MEC) under Project MAT
2004-05130-C02-01. The work at the Ames Laboratory was supported by the
Department of Energy, Office of Basic Energy Sciences, under Contract
no. DE-AC02-07CH11358. P. G. Bercoff is indebted to M. J. Kramer, from
Ames Laboratory, for his invaluable help with TEM/STEM images.
NR 23
TC 3
Z9 3
U1 1
U2 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0304-8853
J9 J MAGN MAGN MATER
JI J. Magn. Magn. Mater.
PD NOV
PY 2009
VL 321
IS 22
BP 3813
EP 3820
DI 10.1016/j.jmmm.2009.07.046
PG 8
WC Materials Science, Multidisciplinary; Physics, Condensed Matter
SC Materials Science; Physics
GA 493FN
UT WOS:000269720200030
ER
PT J
AU Musgraves, JD
Potter, BG
Boyle, TJ
AF Musgraves, J. David
Potter, Barrett G., Jr.
Boyle, Timothy J.
TI Nanostructure development in photodeposited, titania-based thin films
SO JOURNAL OF MATERIALS RESEARCH
LA English
DT Article
ID SIMULATION; ALKOXIDES
AB Ultraviolet irradiation (lambda = 248 nm) was used to photocatalyze a solution of the heteroleptic titanium alkoxide (OPY)(2)Ti(TAP)(2) [where OPy = pyridine carbinoxide and TAP = 2,4,6 tris(dimethylamino)phenoxide], leading to the deposition of a titania-based thin film only in the exposed region. The effect of water addition to the (OPY)(2)Ti(TAP)(2) pyridine solution on the properties of the final photodeposited film structure was examined by using vibrational spectroscopy and electron microscopy. Under consistent optical exposure conditions, the amount of water added altered the nanoscale porosity of the final material produced. Films deposited from a solution with a 1:1 H(2)O/Ti content exhibited surface pores similar to 100 nm in diameter, whereas a 4:1 ratio yielded 10-nm pores, and material produced from a 8:1 solution appeared fully condensed. In addition, the effect of postdeposition thermal treatments on the nanostructure and chemistry of the photodeposited films was examined.
C1 [Musgraves, J. David; Potter, Barrett G., Jr.] Univ Arizona, Arizona Mat Lab, Dept Mat Sci & Engn, Tucson, AZ 85712 USA.
[Boyle, Timothy J.] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87105 USA.
RP Potter, BG (reprint author), Univ Arizona, Arizona Mat Lab, Dept Mat Sci & Engn, Tucson, AZ 85712 USA.
EM bgpotter@mse.arizona.edu
RI Musgraves, J David/D-9260-2011
OI Musgraves, J David/0000-0003-4575-5119
FU Department of Energy, Office of Basic Energy Sciences
[DE-AC04-94AL85000]; State of Arizona TRIF Photonics Initiative
FX We acknowledge the valuable contributions of K. Simmons-Potter and Z.
Schneider of the University of Arizona. Research was supported by the
Department of Energy, Office of Basic Energy Sciences and the State of
Arizona TRIF Photonics Initiative. Sandia is a multiprogram laboratory
operated by Sandia Corporation, a Lockheed Martin Company, for the
United States Department of Energy under Contract No. DE-AC04-94AL85000.
NR 19
TC 4
Z9 4
U1 1
U2 5
PU MATERIALS RESEARCH SOC
PI WARRENDALE
PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA
SN 0884-2914
J9 J MATER RES
JI J. Mater. Res.
PD NOV
PY 2009
VL 24
IS 11
BP 3372
EP 3379
DI 10.1557/JMR.2009.0411
PG 8
WC Materials Science, Multidisciplinary
SC Materials Science
GA 513VM
UT WOS:000271352200015
ER
PT J
AU Jardiel, T
Caballero, AC
Fuentes, L
Villegas, M
AF Jardiel, T.
Caballero, A. C.
Fuentes, L.
Villegas, M.
TI Preparation and properties of Bi6Ti5WO22: a new phase in the
Bi2O3-TiO2-WO3 system
SO JOURNAL OF MATERIALS SCIENCE
LA English
DT Article
ID AURIVILLIUS PHASES; CERAMICS
AB In a recent report, the evaluation of the phase relations in the Bi2O3-TiO2-WO3 ternary system has shown the existence of a new phase with nominal composition close to Bi6Ti5WO22. In the present contribution we attempt to prepare this single phase by using a solid state route. Although XRD analyses also show traces of two minority Aurivillius-type phases in the synthesized materials, the crystal structure of the Bi6Ti5WO22 phase has been determined by Rietveld analyses revealing a complex structure similar to that of Bi-3(AlSb2)O-11 and PbHoAl3O8 related compounds. The electrical response of this new phase was characterized as well. Three peaks are observed in its dielectric response: two of them positioned around 0 A degrees C and can be assigned to this Bi6Ti5WO22 structure. The third one rises up to 665 A degrees C and confirms the presence of the Aurivillius-type phases.
C1 [Jardiel, T.; Caballero, A. C.; Villegas, M.] CSIC, Dept Electroceram, Inst Ceram & Vidrio, Madrid 28049, Spain.
[Fuentes, L.] Ctr Invest Mat Avanzados, Chihuaua, Mexico.
Stanford Synchrotron Radiat Lab, Stanford, CA USA.
RP Jardiel, T (reprint author), CSIC, Dept Electroceram, Inst Ceram & Vidrio, Kelsen 5, Madrid 28049, Spain.
EM jardiel@icv.csic.es
RI Caballero, Amador/L-9165-2014
OI Caballero, Amador/0000-0002-0571-6302
NR 18
TC 4
Z9 4
U1 0
U2 3
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0022-2461
J9 J MATER SCI
JI J. Mater. Sci.
PD NOV
PY 2009
VL 44
IS 21
BP 5824
EP 5828
DI 10.1007/s10853-009-3820-1
PG 5
WC Materials Science, Multidisciplinary
SC Materials Science
GA 496GB
UT WOS:000269956600017
ER
PT J
AU de la Venta, J
Bouzas, V
Pucci, A
Laguna-Marco, MA
Haskel, D
te Velthuis, SGE
Hoffmann, A
Lal, J
Bleuel, M
Ruggeri, G
Fernandez, CD
Garcia, MA
AF de la Venta, J.
Bouzas, V.
Pucci, A.
Laguna-Marco, M. A.
Haskel, D.
te Velthuis, S. G. E.
Hoffmann, A.
Lal, J.
Bleuel, M.
Ruggeri, G.
Fernandez, C. de Julian
Garcia, M. A.
TI X-ray Magnetic Circular Dichroism and Small Angle Neutron Scattering
Studies of Thiol Capped Gold Nanoparticles
SO JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY
LA English
DT Article
DE Gold Nanoparticles; X-ray Magnetic Circular Dichroism (XMCD); Small
Angle Neutron Scattering (SANS)
ID CLUSTERS; BEHAVIOR
AB X-ray magnetic circular dichroism (XMCD) and Small Angle Neutron Scattering (SANS) measurements were performed on thiol capped Au nanoparticles (NPs) embedded into polyethylene. An XMCD signal of 0.8 . 10(-4) was found at the Au L(3) edge of thiol capped Au NPs embedded in a polyethylene matrix for which Superconducting Quantum Interference Device (SQUID) magnetometry yielded a saturation magnetization, M(S), of 0.06 emu/g(Au). SANS measurements showed that the 3.2 nm average-diameter nanoparticles are 28% polydispersed, but no detectable SANS magnetic signal was found with the resolution and sensitivity accessible with the neutron experiment. A comparison with previous experiments carried out on Au NP(S) and multilayers, yield to different values between XMCD signals and magnetization measured by SQUID magnetometer. We discuss the origin of those differences.
C1 [de la Venta, J.; Bouzas, V.; Garcia, M. A.] Univ Complutense Madrid, Dpto Fis Mat, E-28040 Madrid, Spain.
[de la Venta, J.] Inst Magnetismo Aplicado UCM, Madrid 28230, Spain.
[Pucci, A.; Ruggeri, G.] Univ Pisa, Dept Chem & Ind Chem, I-56126 Pisa, Italy.
[Laguna-Marco, M. A.; Haskel, D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Hoffmann, A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[te Velthuis, S. G. E.; Hoffmann, A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
[Lal, J.; Bleuel, M.] Argonne Natl Lab, Intense Pulsed Neutron Source, Argonne, IL 60439 USA.
[Fernandez, C. de Julian] UdR Firenze, INSTM, Lab Magnetismo Mol, I-50019 Sesto Fiorentino, Italy.
RP de la Venta, J (reprint author), Univ Complutense Madrid, Dpto Fis Mat, E-28040 Madrid, Spain.
RI Laguna-Marco, M. A./G-8042-2011; Pucci, Andrea/E-7453-2010; Ruggeri,
Giacomo/H-6166-2012; Hoffmann, Axel/A-8152-2009; te Velthuis,
Suzanne/I-6735-2013; de Julian Fernandez, Cesar/J-5678-2013; Garcia,
Miguel Angel/N-3043-2016
OI Laguna-Marco, M. A./0000-0003-4069-0395; Pucci,
Andrea/0000-0003-1278-5004; Ruggeri, Giacomo/0000-0002-8705-1243;
Hoffmann, Axel/0000-0002-1808-2767; te Velthuis,
Suzanne/0000-0002-1023-8384; de Julian Fernandez,
Cesar/0000-0002-6671-2743; Garcia, Miguel Angel/0000-0001-9972-2182
FU EU [LSHB-CT-2006-037639]; MEC; U.S. Department of Energy, Office of
Basic Energy Sciences [DE-AC02-06CH11357]
FX A. Hernando, Pietro Gambardella, Stefano Rusponi are acknowledged for
fruitful discussion and valuable comments. E. Fernandez Pinel is
acknowledged for technical suggestions and advice. This work has been
partially supported by the EU (project "BONSAI" LSHB-CT-2006-037639). M.
A. Laguna-Marco acknowledges MEC for postdoctoral fellowship. Work at
Argonne was supported by the U.S. Department of Energy, Office of Basic
Energy Sciences, under Contract No. DE-AC02-06CH11357.
NR 22
TC 15
Z9 15
U1 0
U2 9
PU AMER SCIENTIFIC PUBLISHERS
PI STEVENSON RANCH
PA 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USA
SN 1533-4880
J9 J NANOSCI NANOTECHNO
JI J. Nanosci. Nanotechnol.
PD NOV
PY 2009
VL 9
IS 11
BP 6434
EP 6438
DI 10.1166/jnn.2009.1877
PG 5
WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials
Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 502OZ
UT WOS:000270471100026
PM 19908546
ER
PT J
AU Casella, AM
Loyalka, SK
Hanson, BD
AF Casella, Andrew M.
Loyalka, Sudarshan K.
Hanson, Brady D.
TI Computation of free-molecular flow in nuclear materials
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID THERMAL-EXPANSION; MONTE-CARLO; GRAPHITE; RELEASE; TRANSPORT; BEHAVIOR;
CARBON; GASES; TUBES
AB Generally, the transport of gases and vapors in nuclear materials is adequately described by the diffusion equation with an effective diffusion coefficient. There are instances however, in which the flow pathway can be so restrictive that the diffusion description has limitations. In general, molecular transport is governed by intermolecular forces and collisions (interactions between multiple gas/vapor molecules) and by molecule-surface interactions. However, if nano-scale pathways exist within these materials, as has been Suggested, then molecular transport can be characterized as being in the free-molecular flow regime where intermolecular interactions can be ignored and flow is determined entirely by molecule-surface collisions. Our purpose in this investigation is to focus on free-molecular transport in fine capillaries of a range of shapes and to explore the effect of geometry on this transport. We have employed Monte Carlo techniques in Our calculations, and for simple geometries we have benchmarked our results against some analytical and previously available results. We have used Mathematica (R) which has exceptional built-in symbolic and graphical capabilities, permitting easy handling of complicated geometries and good visualization of the results. Our computations provide insights into the role of geometry in molecular transport in nuclear materials with narrow pathways for flows, and also will be useful in guiding computations that include intermolecular collisions and more realistic gas-surface collision operators. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Casella, Andrew M.; Loyalka, Sudarshan K.] Univ Missouri, Nucl Sci & Engn Inst, Columbia, MO 65211 USA.
[Casella, Andrew M.; Loyalka, Sudarshan K.] Univ Missouri, Particulate Syst Res Ctr, Columbia, MO 65211 USA.
[Casella, Andrew M.; Hanson, Brady D.] Pacific NW Natl Lab, Radiochem Sci & Engn Grp, Richland, WA 99352 USA.
RP Casella, AM (reprint author), Univ Missouri, Nucl Sci & Engn Inst, Columbia, MO 65211 USA.
EM Andrew.Casella@pnl.gov; loyalkaS@missouri.edu
OI Casella, Andrew/0000-0002-4053-6593
FU US Department of Energy's Office of Nuclear Energy, Science, and
Technology; US Department of Energy NERI [DE-FC07071DI 4831]
FX This research was performed while Andrew M. Casella was under
appointment to the US Department of Energy Nuclear Engineering and
Health Physics Fellowship Program sponsored by the US Department of
Energy's Office of Nuclear Energy, Science, and Technology. Partial
support for this research has also been provided by a US Department of
Energy NERI Grant, DE-FC07071DI 4831. We also thank the reviewer of the
manuscript for several helpful comments.
NR 34
TC 4
Z9 4
U1 0
U2 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD NOV
PY 2009
VL 394
IS 2-3
BP 123
EP 130
DI 10.1016/j.jnucmat.2009.08.012
PG 8
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA 532WI
UT WOS:000272780600001
ER
PT J
AU Hu, SY
Henager, CH
AF Hu, Shenyang
Henager, Charles H., Jr.
TI Phase-field modeling of void lattice formation under irradiation
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID SELF-INTERSTITIAL ATOM; SPINODAL DECOMPOSITION; DISLOCATION LOOPS;
DEFECT CLUSTERS; METALS; ALLOYS; MOLYBDENUM; IONS; MICROSTRUCTURES;
ACCUMULATION
AB We, for the first time, propose a phase-field model to simulate the evolution of void ensembles under irradiation. The model takes into account one-dimensional migration of self-interstitial atoms (I-D SIA), vacancy diffusion, the generation and reaction between SIA and vacancies as well as the nucleation of voids. A one-dimensional random walker model (based on the theory of first-passage processes) is,applied to describe the fast 1-D SIA while the Cahn-Hilliard equation is used to describe the slow three dimensional diffusion of vacancies. The coupling of these two methods greatly improves the computational efficiency for a system with strong inhomogeneity and anisotropy of diffusion. The formation of void lattices is simulated with the resultant model. It is found that a void lattice forms when the mobility of the 1-D SIA is four orders of magnitude larger than that of the vacancy mobility. A high generation rate of interstitials during displacement cascades delays the formation of a void lattice. Published by Elsevier B.V.
C1 [Hu, Shenyang; Henager, Charles H., Jr.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Hu, SY (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA.
EM shenyang.hu@pnl.gov
RI Madruga, Santiago/D-2984-2012;
OI HU, Shenyang/0000-0002-7187-3082; Henager, Chuck/0000-0002-8600-6803
FU US Department of Energy
FX This work was supported at Pacific Northwest National Laboratory by the
US Department of Energy. PNNL is operated for the US Department of
Energy by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830.
NR 35
TC 23
Z9 25
U1 2
U2 32
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
EI 1873-4820
J9 J NUCL MATER
JI J. Nucl. Mater.
PD NOV
PY 2009
VL 394
IS 2-3
BP 155
EP 159
DI 10.1016/j.jnucmat.2009.09.002
PG 5
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA 532WI
UT WOS:000272780600006
ER
PT J
AU Perez, E
Ewh, A
Liu, J
Yuan, B
Keiser, DD
Sohn, YH
AF Perez, E.
Ewh, A.
Liu, J.
Yuan, B.
Keiser, D. D., Jr.
Sohn, Y. H.
TI Phase constituents of Al-rich U-Mo-Al alloys examined by transmission
electron microscopy
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID DISPERSION FUEL; DIFFUSION COUPLES; INTERACTION LAYER; IRRADIATION
BEHAVIOR; LOW-TEMPERATURE; URANIUM; ALUMINUM; GROWTH; SYSTEM;
INTERDIFFUSION
AB To supplement the understanding of diffusional interactions involving Al-rich region of the U-Mo-Al system, alloys with composition 85.7Al-11.44U-2.86Mo and 87.5Al-10U-2.5Mo in at.%, were examined to determine the equilibrium phase constituents at 500 degrees C. These alloys were triple arc-melted, homogenized at 500 degrees C for 200 h, and water-quenched to preserve the high temperature microstructure. X-ray diffraction, scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (XEDS). and transmission electron microscopy (TEM) with high angle annular dark field (HAADF) imaging via scanning transmission electron microscopy (STEM) were employed for the characterization. Alloy specimens for TEM/STEM were prepared using site-specific focused ion beam (FIB) in situ lift-out (INLO) technique. Despite the homogenization time and temperature, five different phases, namely fcc-Al solid solution, cubic-UAl(3), orthorhombic-UAl(4), hexagonal-U(6)Mo(4)Al(43) and diamond cubiC-UMo(2)Al(20), were observed. Based on U-Al, U-Mo and Al-Mo binary phase diagrams, previously proposed U-Mo-Al isotherms, and the solidification microstructure of these alloys, the Al-rich region of the equilibrium ternary isotherm at 500 degrees C was constructed. The fcc-Al solid solution, orthorhombic-UAl(4), and diamond cubic-UMo(2)Al(20) which were determined to be the equilibrium phases in 85.7Al-11.44U-2.86Mo and 87.5Al-10U-2.5Mo alloys. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Perez, E.; Ewh, A.; Liu, J.; Yuan, B.; Sohn, Y. H.] Univ Cent Florida, Dept Mech Mat & Aerosp Engn, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA.
[Keiser, D. D., Jr.] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
RP Sohn, YH (reprint author), Univ Cent Florida, Dept Mech Mat & Aerosp Engn, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA.
EM ysohn@mail.ucf.edu
RI Sohn, Yongho/A-8517-2010; Paz y Puente, Ashley/M-2022-2015
OI Sohn, Yongho/0000-0003-3723-4743; Paz y Puente,
Ashley/0000-0001-7108-7164
FU Idaho National Laboratory [00051953]; US Department of Energy - Battelle
Energy Alliance, LLC [DE-AC07-051D14517]; CAREER Award of National
Science Foundation [DMR-0238356]
FX This work was financially supported by Idaho National Laboratory
(Contract No. 00051953) under the operation of US Department of Energy -
Battelle Energy Alliance, LLC (DE-AC07-051D14517). Additional financial
Support from CAREER Award of National Science Foundation (DMR-0238356)
is gratefully acknowledged by the author, Yong-ho Sohn. Author. Ashley
Ewh, an undergraduate research assistant sincerely appreciates the
financial support of the Goldwater scholarship. Any opinions. findings,
and conclusions or recommendations expressed in this manuscript are
those of the authors and do not necessarily reflect the view of the
National Science Foundation.
NR 34
TC 7
Z9 7
U1 0
U2 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD NOV
PY 2009
VL 394
IS 2-3
BP 160
EP 165
DI 10.1016/j.jnucmat.2009.09.003
PG 6
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA 532WI
UT WOS:000272780600007
ER
PT J
AU McNamara, B
Scheele, R
Kozelisky, A
Edwards, M
AF McNamara, Bruce
Scheele, Randall
Kozelisky, Anne
Edwards, Matthew
TI Thermal reactions of uranium metal, UO2, U3O8, UF4, and UO2F2 with NF3
to produce UF6
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID PLASMA GLOW-DISCHARGE; NITROGEN TRIFLUORIDE; OXIDE TETRAFLUORIDE; URANYL
FLUORIDE; SHOCK-WAVES; FLUORINATION; DECOMPOSITION; FUELS;
THERMODYNAMICS; DISSOCIATION
AB This paper demonstrates that NF3 fluorinates uranium metal, UO2, UF4, UO3, U3O8, and UO2F2-2H(2)O to produce the volatile UF6 at temperatures between 100 and 550 degrees C. Thermogravim etric and differential thermal analysis reaction profiles are described that reflect changes in the uranium fluorination/oxidation state, physiochemical effects, and instances of discrete chemical speciation. Large differences in the onset temperatures for each system investigated implicate changes in mode of the NF3 gas-solid surface interaction. These studies also demonstrate that NF3 is a potential replacement fluorinating agent in the existing nuclear fuel cycle and in actinide volatility reprocessing. (C) 2009 Elsevier B.V. All rights reserved.
C1 [McNamara, Bruce; Scheele, Randall; Kozelisky, Anne; Edwards, Matthew] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP McNamara, B (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA.
EM bruce.mcnamara@pnl.gov
FU US Department of Energy [DE-AC05-76RL01830]
FX The authors gratefully acknowledge the support of the US Department of
Energy for the support to evaluate alternate technologies for the
characterization and removal of solid uranium and technetium deposits at
the Portsmouth Gaseous Diffusion Plant. Pacific Northwest National
Laboratory is operated for the US Department of Energy by Battelle under
Contract DE-AC05-76RL01830.
NR 50
TC 10
Z9 11
U1 1
U2 23
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD NOV
PY 2009
VL 394
IS 2-3
BP 166
EP 173
DI 10.1016/j.jnucmat.2009.09.004
PG 8
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA 532WI
UT WOS:000272780600008
ER
PT J
AU Mihaila, B
Stan, M
Ramirez, J
Zubelewicz, A
Cristea, P
AF Mihaila, Bogdan
Stan, Marius
Ramirez, Juan
Zubelewicz, Alek
Cristea, Petrica
TI Simulations of coupled heat transport, oxygen diffusion, and thermal
expansion in UO2 nuclear fuel elements
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID OPERATING DEFECTIVE FUEL; OXIDE FUEL; URANIUM-DIOXIDE; OXIDATION;
CONDUCTIVITY; RODS; MODEL
AB We study the coupled thermal transport, oxygen diffusion, and thermal expansion of a typical nuclear fuel element consisting of UO2+x fuel and stainless-steel cladding. Models of thermal, mechanical and chemical properties of the materials are used in a series of finite-element simulations to study the effect of the coupled phenomena on the temperature profile, oxygen distribution and radial deformation of the fuel element. The simulations include steady-state and time-dependent regimes in a variety of initial- and boundary value conditions that include sudden changes in the power density, variable oxygen content in the atmosphere, and variable temperature of the coolant. The study reveals the difference in the characteristic times associated with these phenomena and the importance of performing coupled simulations. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Mihaila, Bogdan; Stan, Marius; Zubelewicz, Alek] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Ramirez, Juan] Exponent Inc, Lisle, IL 60532 USA.
[Cristea, Petrica] Univ Bucharest, Fac Phys, Bucharest 11, MG, Romania.
RP Mihaila, B (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
EM bmihaila@lanl.gov
RI Mihaila, Bogdan/D-8795-2013
OI Mihaila, Bogdan/0000-0002-1489-8814
NR 33
TC 15
Z9 15
U1 3
U2 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD NOV
PY 2009
VL 394
IS 2-3
BP 182
EP 189
DI 10.1016/j.jnucmat.2009.09.007
PG 8
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA 532WI
UT WOS:000272780600010
ER
PT J
AU Devlin, D
Jarvinen, G
Patterson, B
Pattillo, S
Valdez, J
Liu, XY
Phillips, J
AF Devlin, Dave
Jarvinen, Gordon
Patterson, Brian
Pattillo, Steve
Valdez, James
Liu, X. -Y.
Phillips, Jonathan
TI New generation nuclear fuel structures: Dense particles in selectively
soluble matrix
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID MGO
AB We have developed a technology for dispersing sub-millimeter sized fuel particles within a bulk matrix that can be selectively dissolved. This may enable the generation of advanced nuclear fuels with easy separation of actinides and fission products. The large kinetic energy of the fission products results in most of them escaping from the sub-millimeter sized fuel particles and depositing in the matrix during burning of the fuel in the reactor. After the fuel is used and allowed to cool for a period of time, the matrix can be dissolved and the fission products removed for disposal while the fuel particles are collected by filtration for recycle. The success of such an approach would meet a major goal of the GNEP program to provide advanced recycle technology for nuclear energy production. The benefits of such an approach include (I) greatly reduced cost of the actinide/fission product separation process, (2) ease of recycle of the fuel particles, and (3) a radiation barrier to prevent theft or diversion of the recycled fuel particles during the time they are re-fabricated into new fuel. In this study we describe a method to make surrogate nuclear fuels of micrometer scale W (shell)/Mo (core) or HfO(2) particles embedded in an MgO matrix that allows easy separation of the fission products and their embedded particles. In brief, the method consists of physically mixing W-Mo or hafnia particles with an MgO precursor. Heating the mixture, in air or argon, without agitation, to a temperature is required for complete decomposition of the precursor. The resulting material was examined using chemical analysis, scanning electron microscopy, X-ray diffraction and micro X-ray computed tomography and found to consist of evenly dispersed particles in an MgO + matrix. We believe this methodology can be extended to actinides and other matrix materials. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Devlin, Dave; Patterson, Brian; Pattillo, Steve; Valdez, James; Liu, X. -Y.; Phillips, Jonathan] Los Alamos Natl Lab, MST, Los Alamos, NM 87545 USA.
[Jarvinen, Gordon] Los Alamos Natl Lab, ADSMS, Los Alamos, NM 87545 USA.
RP Phillips, J (reprint author), Los Alamos Natl Lab, MST, MS E-549, Los Alamos, NM 87545 USA.
EM jphillips@lanl.gov
RI Phillips, Jonathan/D-3760-2011;
OI Patterson, Brian/0000-0001-9244-7376
NR 9
TC 2
Z9 2
U1 1
U2 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD NOV
PY 2009
VL 394
IS 2-3
BP 190
EP 196
DI 10.1016/j.jnucmat.2009.09.008
PG 7
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA 532WI
UT WOS:000272780600011
ER
PT J
AU Wang, BN
Zhou, JF
Koschny, T
Kafesaki, M
Soukoulis, CM
AF Wang, Bingnan
Zhou, Jiangfeng
Koschny, Thomas
Kafesaki, Maria
Soukoulis, Costas M.
TI Chiral metamaterials: simulations and experiments
SO JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS
LA English
DT Article; Proceedings Paper
CT 1st International Workshop on Theoretical and Computational
Nano-Photonics
CY DEC 03-05, 2008
CL Bad Honnef, GERMANY
DE metamaterials; chirality; optical activity; negative refraction
ID NEGATIVE-REFRACTIVE-INDEX; OPTICAL METAMATERIALS; CIRCULAR-DICHROISM;
MAGNETIC RESPONSE; MEDIA; REGIME
AB Electromagnetic metamaterials are composed of periodically arranged artificial structures. They show peculiar properties, such as negative refraction and super-lensing, which are not seen in natural materials. The conventional metamaterials require both negative epsilon and negative mu to achieve negative refraction. Chiral metamaterial is a new class of metamaterials offering a simpler route to negative refraction. In this paper, we briefly review the history of metamaterials and the developments on chiral metamaterials. We study the wave propagation properties in chiral metamaterials and show that negative refraction can be realized in chiral metamaterials with a strong chirality, with neither epsilon nor mu negative required. We have developed a retrieval procedure, adopting a uniaxial bi-isotropic model to calculate the effective parameters such as n +/-, kappa, epsilon and mu of the chiral metamaterials. Our work on the design, numerical calculations and experimental measurements of chiral metamaterials is introduced. Strong chiral behaviors such as optical activity and circular dichroism are observed and negative refraction is obtained for circularly polarized waves in these chiral metamaterials. We show that 3D isotropic chiral metamaterials can eventually be realized.
C1 [Wang, Bingnan; Zhou, Jiangfeng; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
[Wang, Bingnan; Zhou, Jiangfeng; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Koschny, Thomas; Kafesaki, Maria; Soukoulis, Costas M.] FORTH, Inst Elect Struct & Laser, Iraklion 71110, Crete, Greece.
[Koschny, Thomas; Kafesaki, Maria; Soukoulis, Costas M.] Univ Crete, Dept Mat Sci & Technol, Iraklion 71110, Crete, Greece.
RP Wang, BN (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
EM soukoulis@ameslab.gov
RI Kafesaki, Maria/E-6843-2012; Soukoulis, Costas/A-5295-2008; Zhou,
Jiangfeng/D-4292-2009
OI Kafesaki, Maria/0000-0002-9524-2576; Zhou, Jiangfeng/0000-0002-6958-3342
NR 56
TC 134
Z9 134
U1 14
U2 87
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1464-4258
J9 J OPT A-PURE APPL OP
JI J. Opt. A-Pure Appl. Opt.
PD NOV
PY 2009
VL 11
IS 11
AR 114003
DI 10.1088/1464-4258/11/11/114003
PG 10
WC Optics
SC Optics
GA 506BB
UT WOS:000270746400005
ER
PT J
AU Weijer, W
Gille, ST
Vivier, F
AF Weijer, Wilbert
Gille, Sarah T.
Vivier, Frederic
TI Modal Decay in the Australia-Antarctic Basin
SO JOURNAL OF PHYSICAL OCEANOGRAPHY
LA English
DT Article
ID MULTIPLE OSCILLATORY MODES; SEA-LEVEL VARIABILITY; TOPEX/POSEIDON DATA;
OCEAN CIRCULATION; SOUTHEAST PACIFIC; ARGENTINE BASIN; RESONANCE
AB The barotropic intraseasonal variability in the Australia-Antarctic Basin (AAB) is studied in terms of the excitation and decay of topographically trapped barotropic modes. The main objective is to reconcile two widely differing estimates of the decay rate of sea surface height (SSH) anomalies in the AAB that are assumed to be related to barotropic modes. First, an empirical orthogonal function (EOF) analysis is applied to almost 15 years of altimeter data. The analysis suggests that several modes are involved in the variability of the AAB, each related to distinct areas with (almost) closed contours of potential vorticity. Second, the dominant normal modes of the AAB are determined in a barotropic shallow-water (SW) model. These stationary modes are confined by the closed contours of potential vorticity that surround the eastern AAB, and the crest of the Southeast Indian Ridge. For reasonable values of horizontal eddy viscosity and bottom friction, their decay time scale is on the order of several weeks. Third, the SW model is forced with realistic winds and integrated for several years. Projection of the modal velocity patterns onto the output fields shows that the barotropic modes are indeed excited in the model, and that they decay slowly on the frictional O(3 weeks) time scale. However, the SSH anomalies in the modal areas display rapid O(4 days) decay. Additional analysis shows that this rapid decay reflects the adjustment of unbalanced flow components through the emission of Rossby waves. Resonant excitation of the dominant free modes accounts for about 20% of the SSH variability in the forced-model run. Other mechanisms are suggested to explain the region of high SSH variability in the AAB.
C1 [Weijer, Wilbert] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Gille, Sarah T.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA.
[Vivier, Frederic] LOCEAN IPSL, Paris, France.
RP Weijer, W (reprint author), Los Alamos Natl Lab, CCS-2,MS B296, Los Alamos, NM 87545 USA.
EM wilbert@lanl.gov
RI Weijer, Wilbert/A-7909-2010; Gille, Sarah/B-3171-2012;
OI Gille, Sarah/0000-0001-9144-4368
FU NSF [0424703]; U. S. Department of Energy Office of Science (WW)
[DE-AC52-06NA25396]; National Aeronautics and Space Administration
[1224031]; CNES; CNRS
FX This research was supported by NSF through Grant 0424703, and by the
Climate Change Prediction Program of the U. S. Department of Energy
Office of Science (WW). Los Alamos National Laboratory is operated by
the Los Alamos National Security, LLC for the National Nuclear Security
Administration of the U. S. Department of Energy under Contract
DE-AC52-06NA25396. STG was supported by the National Aeronautics and
Space Administration under JPL Contract 1224031. FV gratefully
acknowledges CNES and CNRS for their support. Wind stress curl data were
provided by the Data Support Section of the Computational and
Information Systems Laboratory at the National Center for Atmospheric
Research. NCAR is supported by grants from the National Science
Foundation. The altimeter products were produced by Ssalto/Duacs and
distributed by AVISO, with support from CNES. We thank two anonymous
reviewers for constructive comments, and Dr. L.- L. Fu (JPL) for
generously making his data available to us.
NR 22
TC 8
Z9 8
U1 0
U2 5
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0022-3670
J9 J PHYS OCEANOGR
JI J. Phys. Oceanogr.
PD NOV
PY 2009
VL 39
IS 11
BP 2893
EP 2909
DI 10.1175/2009JPO4209.1
PG 17
WC Oceanography
SC Oceanography
GA 521HU
UT WOS:000271912200011
ER
PT J
AU Barbieri, R
Hall, LJ
Rychkov, VS
Strumia, A
AF Barbieri, Riccardo
Hall, Lawrence J.
Rychkov, Vyacheslav S.
Strumia, Alessandro
TI Multi-muon events at the Tevatron: a hidden sector from hadronic
collisions
SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS
LA English
DT Article
ID ENERGIES
AB We show an explicit attempt to interpret the multi-muon anomaly recently claimed by the CDF Collaboration in terms of a light scalar singlet phi which communicates with the standard quarks either through a heavy scalar or a heavy fermion exchange. Building on arXiv:0810.5730, that suggested a singlet phi with a chain decay into a final state made of four tau(tau) over bar pairs, we can simulate most of the muon properties of the selected sample of events. Some of these properties adhere rather well to the already published data; others should allow a decisive test of the proposed interpretation. Assuming that the test is positively passed, we show how the PAMELA excess can be fitted by the annihilation of a TeV dark matter particle that communicates with the Standard Model via the new light singlet(s).
C1 [Barbieri, Riccardo; Rychkov, Vyacheslav S.] Scuola Normale Super Pisa, I-56126 Pisa, Italy.
[Barbieri, Riccardo; Rychkov, Vyacheslav S.; Strumia, Alessandro] Ist Nazl Fis Nucl, I-56126 Pisa, Italy.
[Hall, Lawrence J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Hall, Lawrence J.] LBNL, Theoret Phys Grp, Berkeley, CA 94720 USA.
[Strumia, Alessandro] Univ Pisa, Dipartimento Fis, I-56100 Pisa, Italy.
RP Barbieri, R (reprint author), Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, Italy.
FU EU [MRTNCT2004- 503369]; MIUR [PRIN-2006022501]; US Department of Energy
[DE-AC02-05CH11231]; NSF [PHY-04-57315]
FX We are especially grateful to Paolo Giromini for many discussions and
invaluable clarifications about the multi-muon CDF data. We thank
Luciano Ristori and Michelangelo Mangano for discussions about the
multi-muon events, and Gennaro Corcella for discussions about Monte
Carlo generators. RB and VR are partially supported by the EU under RTN
contract MRTNCT2004- 503369 and by MIUR under the contract
PRIN-2006022501. The work of LH is supported by the US Department of
Energy under contract no DE-AC02-05CH11231 and NSF grant PHY-04-57315.
NR 13
TC 2
Z9 2
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0954-3899
J9 J PHYS G NUCL PARTIC
JI J. Phys. G-Nucl. Part. Phys.
PD NOV
PY 2009
VL 36
IS 11
AR 115008
DI 10.1088/0954-3899/36/11/115008
PG 18
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA 505TC
UT WOS:000270718000010
ER
PT J
AU Ramalho, G
Pena, MT
AF Ramalho, G.
Pena, M. T.
TI Nucleon and gamma N -> Delta lattice form factors in a constituent quark
model
SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS
LA English
DT Article
ID BARYONS
AB A covariant quark model, based both on the spectator formalism and on vector meson dominance, and previously calibrated by the physical data, is here extended to the unphysical region of the lattice data by means of one single extra adjustable parameter-the constituent quark mass in the chiral limit. We calculated the nucleon (N) and the gamma N -> Delta form factors in the universe of values for that parameter described by quenched lattice QCD. A qualitative description of the nucleon and gamma N -> Delta form factors lattice data is achieved for light pions.
C1 [Ramalho, G.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA.
[Ramalho, G.; Pena, M. T.] Ctr Fis Teor Particulas, P-1049001 Lisbon, Portugal.
[Pena, M. T.] Univ Tecn Lisboa, Dept Phys, Inst Super Tecn, P-1049001 Lisbon, Portugal.
RP Ramalho, G (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA.
RI Pena, Teresa/M-4683-2013;
OI Pena, Teresa/0000-0002-3529-2408; Ramalho, Gilberto/0000-0002-9930-659X
FU Jefferson Science Associates, LLC, US DOE [DEAC0506OR23177]; Portuguese
Fundacao para a Ciencia e Tecnologia (FCT) [SFRH/BPD/26886/2006];
European Union
FX The authors are particularly thankful to Meinulf Gockeler for supply
information about [23]. GR would like to especially thank Ross Young for
the detailed explanations of the lattice properties and the
extrapolations for the real world. GR also thanks Franz Gross, Ian
Cloet, Michael Pardon, Anthony Thomas and Ping Wang for helpful
discussions. This work was partially supported by Jefferson Science
Associates, LLC under US DOE contract no. DEAC0506OR23177. GR was
supported by the Portuguese Fundacao para a Ciencia e Tecnologia (FCT)
under grant no. SFRH/BPD/26886/2006. This work has been supported in
part by the European Union (HadronPhysics2 Project 'Study of Strongly
Interacting Matter').
NR 41
TC 30
Z9 30
U1 0
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0954-3899
J9 J PHYS G NUCL PARTIC
JI J. Phys. G-Nucl. Part. Phys.
PD NOV
PY 2009
VL 36
IS 11
AR 115011
DI 10.1088/0954-3899/36/11/115011
PG 9
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA 505TC
UT WOS:000270718000013
ER
PT J
AU Olynick, DL
Ashby, PD
Lewis, MD
Jen, T
Lu, HR
Liddle, JA
Cha, WL
AF Olynick, Deirdre L.
Ashby, Paul D.
Lewis, Mark D.
Jen, Timothy
Lu, Haoren
Liddle, J. Alexander
Cha, Weilun
TI The Link Between Nanoscale Feature Development in a Negative Resist and
the Hansen Solubility Sphere
SO JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS
LA English
DT Article
DE calixarene; chi; electron beam irradiation; electron beam lithography;
Flory-Huggins interaction parameter; hansen solubility sphere;
lithography resists; nanofabrication; nanopatterning; photoresists;
solvent-polymer interactions; swelling
ID ELECTRON-BEAM LITHOGRAPHY; PARAMETERS; ELASTICITY; POLYMERS; COLLAPSE;
SYSTEM
AB By systematically studying development of a high resolution, negative electron beam resist, hexa-methyl acetoxy calix(6)arene, we have elicited a more general understanding of the underlying development mechanisms for negative resists. Using the three dimensional Hansen solubility parameters for more than 40 solvents, we have constructed a Hansen solubility sphere (HSS). From this sphere, we have estimated the Flory Huggins interaction parameter for solvents with hexa-methyl acetoxy calix(6)arene and found a correlation between resist development contrast, nanoscale patterned feature quality, and the polymer-solvent solubility. Conducting Atomic Force Microscopy (AFM) in a liquid cell, we have measured swelling for hexamethyl acetoxy calix(6)arene in four solvents. The swelling measurements indicate that the HSS gives an indication of the Flory-Huggins interaction parameter. These measurements provide new insights into the development behavior of nanoscale features - necessary for obtaining the ultimate lithographic resolution. In addition, it demonstrates a methodology for choosing appropriate polymer-solvent combinations for nanoscience applications. (C) 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47:2091-2105, 2009
C1 [Olynick, Deirdre L.; Cha, Weilun] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA.
RP Olynick, DL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM DLOlynick@lbl.gov
RI Liddle, James/A-4867-2013
OI Liddle, James/0000-0002-2508-7910
FU U.S. Department of Energy [DE-AC02-05CH11231]
FX This work was supported by the Director, Office of Science, Office of
Basic Energy Sciences, Materials Sciences and Engineering Division, of
the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
NR 28
TC 17
Z9 17
U1 3
U2 12
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0887-6266
EI 1099-0488
J9 J POLYM SCI POL PHYS
JI J. Polym. Sci. Pt. B-Polym. Phys.
PD NOV 1
PY 2009
VL 47
IS 21
BP 2091
EP 2105
DI 10.1002/polb.21806
PG 15
WC Polymer Science
SC Polymer Science
GA 518DM
UT WOS:000271670500004
ER
PT J
AU Zhou, JY
Petritis, BO
Petritis, K
Norbeck, AD
Weitz, KK
Moore, RJ
Camp, DG
Kulkarni, RN
Smith, RD
Qian, WJ
AF Zhou, Jian-Ying
Petritis, Brianne O.
Petritis, Konstantinos
Norbeck, Angela D.
Weitz, Karl K.
Moore, Ronald J.
Camp, David G., II
Kulkarni, Rohit N.
Smith, Richard D.
Qian, Wei-Jun
TI Mouse-Specific Tandem IgY7-SuperMix Immunoaffinity Separations for
Improved LC-MS/MS Coverage of the Plasma Proteome
SO JOURNAL OF PROTEOME RESEARCH
LA English
DT Article
DE Immunoaffinity separation; LC-MS/MS; Proteomics; Mouse plasma; SuperMix
ID MASS-SPECTROMETRY; BREAST-CANCER; PROTEINS; MODEL; CHROMATOGRAPHY;
IDENTIFICATIONS; BIOMARKERS; DISCOVERY; DEPLETION; STRATEGY
AB We report on a mouse specific SuperMix immunoaffinity separation system for separating low-abundance proteins from high and moderate abundance proteins in mouse plasma. When applied in tandem with a mouse IgY7 column that removes the seven most abundant proteins in plasma, the SuperMix column captures more than 100 additional moderate abundance proteins, thus allowing significant enrichment of low-abundance proteins in the flow-through fraction. A side-by-side comparison of results obtained from 2D-LC-MS/MS analyses of flow-through samples from IgY7 and SuperMix columns revealed a nearly 2-fold improvement in the overall proteome coverage. Detection of low-abundance proteins was also enhanced, as evidenced by a more than 2-fold increase in the coverage of cytokines, growth factors, and other low-abundance proteins. Moreover, the tandem separations are automated, reproducible, and allow effective identification of protein abundance differences from LC-MS/MS analyses. Considering the overall reproducibility and increased sensitivity using the IgY7-SuperMix separation system, we anticipate broad applications of this strategy for biomarker discovery using mouse models.
C1 [Zhou, Jian-Ying; Petritis, Brianne O.; Petritis, Konstantinos; Norbeck, Angela D.; Weitz, Karl K.; Moore, Ronald J.; Camp, David G., II; Smith, Richard D.; Qian, Wei-Jun] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA.
[Zhou, Jian-Ying; Petritis, Brianne O.; Petritis, Konstantinos; Norbeck, Angela D.; Weitz, Karl K.; Moore, Ronald J.; Camp, David G., II; Smith, Richard D.; Qian, Wei-Jun] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA.
[Kulkarni, Rohit N.] Harvard Univ, Sch Med, Div Cell & Mol Biol, Joslin Diabet Ctr,Dept Med, Boston, MA 02215 USA.
RP Qian, WJ (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, POB 999,MSIN K8-98, Richland, WA 99352 USA.
RI Petritis, Konstantinos/F-2156-2010; Zhou, Jian-Ying/B-1336-2011; Qian,
Weijun/C-6167-2011; Zhou, Jian-Ying/D-1308-2012; Smith,
Richard/J-3664-2012
OI Smith, Richard/0000-0002-2381-2349
FU National Institutes of Health [R01 DK074795, RR018522]
FX Portions of this research were supported by National Institutes of
Health grants R01 DK074795 and RR018522. Experimental work was performed
in the Environmental Molecular Sciences Laboratory, a U.S. Department of
Energy (DOE) Office of Biological and Environmental Research national
scientific user facility on the Pacific Northwest National Laboratory
(PNNL) campus PNNL is multiprogram national laboratory operated by
Battelle for the DOE under Contract No DE-AC05-76RLO 1830
NR 29
TC 12
Z9 12
U1 2
U2 7
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1535-3893
J9 J PROTEOME RES
JI J. Proteome Res.
PD NOV
PY 2009
VL 8
IS 11
BP 5387
EP 5395
DI 10.1021/pr900564f
PG 9
WC Biochemical Research Methods
SC Biochemistry & Molecular Biology
GA 586XV
UT WOS:000276949600048
PM 19722698
ER
PT J
AU Martinelli, RE
Hamilton, TF
Williams, RW
Kehl, SR
AF Martinelli, R. E.
Hamilton, T. F.
Williams, R. W.
Kehl, S. R.
TI Separation of uranium and plutonium isotopes for measurement by multi
collector inductively coupled plasma mass spectroscopy
SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
LA English
DT Article
DE Isotopes; Uranium; Plutonium; Soil; Environmental; Marshall islands;
Multi collector inductively coupled plasma mass spectroscopy; Ion
exchange; Column chromatography; Radiochemistry
ID ENEWETAK ATOLL
AB Uranium (U) and plutonium (Pu) isotopes in coral soils, contaminated by nuclear weapons testing in the northern Marshall Islands, were isolated by ion-exchange chromatography and analyzed by mass spectrometry. The soil samples were spiked with (233)U and (242)Pu tracers, dissolved in minerals acids, and U and Pu isotopes isolated and purified on commercially available ion-exchange columns. The ion-exchange technique employed a TEVA(A (R)) column coupled to a UTEVA(A (R)) column. U and Pu isotope fractions were then further isolated using separate elution schemes, and the purified fractions containing U and Pu isotopes analyzed sequentially using multi-collector inductively coupled plasma mass spectrometer (MCICP-MS). High precision measurements of (234)U/(235)U, (238)U/(235)U, (236)U/(235)U, and (240)Pu/(239)Pu in soil samples were attained using the described methodology and instrumentation, and provide a basis for conducting more detailed assessments of the behavior and transfer of uranium and plutonium in the environment.
C1 [Martinelli, R. E.; Hamilton, T. F.; Kehl, S. R.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94551 USA.
[Williams, R. W.] Lawrence Livermore Natl Lab, Div Chem Sci, Livermore, CA 94551 USA.
RP Martinelli, RE (reprint author), Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, POB 808, Livermore, CA 94551 USA.
EM martinelli2@llnl.gov; hamilton18@llnl.gov; williams141@llnl.gov;
kehl1@llnl.gov
FU US Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA2734]
FX This work performed under the auspices of the US Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA2734.
NR 12
TC 7
Z9 7
U1 1
U2 13
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0236-5731
J9 J RADIOANAL NUCL CH
JI J. Radioanal. Nucl. Chem.
PD NOV
PY 2009
VL 282
IS 2
BP 343
EP 347
DI 10.1007/s10967-009-0150-3
PG 5
WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science &
Technology
SC Chemistry; Nuclear Science & Technology
GA 518ED
UT WOS:000271672300004
ER
PT J
AU Loveland, W
Baker, JD
AF Loveland, W.
Baker, J. D.
TI Target preparation for the fission TPC
SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
LA English
DT Article
DE TPC; Fission TPC; Actinide targets; Vacuum evaporation of actinide
targets
AB A project is underway to build and use a fission time projection chamber (TPC) to make high precision/accuracy measurements of neutron-induced fission cross sections to address issues in fast reactor design. A critical aspect of this program is to have thin TPC targets on thin backings with uniform deposits of the actinides. We have prepared, using vacuum deposition, 100-200 mu g/cm(2) deposits of (232)Th, (235)U and (238)U on 30-100 mu g/cm(2) C backings with a measured thickness variation of < 1.5%. To facilitate measurement of cross section ratios, we are preparing targets with an n-leaf clover design where each petal is a different nuclide.
C1 [Loveland, W.] Oregon State Univ, Corvallis, OR 97331 USA.
[Baker, J. D.] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
RP Loveland, W (reprint author), Oregon State Univ, Corvallis, OR 97331 USA.
EM lovelanw@onid.orst.edu
FU United States Department of Energy [DE-FG07-ID14887]
FX This material is based upon work supported by the United States
Department of Energy, under Award Number DE-FG07-ID14887
NR 3
TC 2
Z9 2
U1 0
U2 4
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0236-5731
J9 J RADIOANAL NUCL CH
JI J. Radioanal. Nucl. Chem.
PD NOV
PY 2009
VL 282
IS 2
BP 361
EP 363
DI 10.1007/s10967-009-0146-z
PG 3
WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science &
Technology
SC Chemistry; Nuclear Science & Technology
GA 518ED
UT WOS:000271672300007
ER
PT J
AU Fassbender, M
Bach, H
Bond, E
Nortier, FM
Vieira, D
AF Fassbender, M.
Bach, H.
Bond, E.
Nortier, F. M.
Vieira, D.
TI Preparation of thin arsenic and radioarsenic targets for neutron capture
studies
SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
LA English
DT Article
DE Targets; Arsenic; Electrodeposition; Neutron activation
AB A simple method for the electrodeposition of elemental arsenic (As) on a metal backing from aqueous solutions has been developed. The method was successfully applied to stable As ((75)As). Thin (2.5 mg cm(-2)) coherent, smooth layers of the metalloid on Ti foils (2.5 mu m thickness) were obtained. Electrodeposits served as targets for (75)As(n,gamma) (76)As neutron capture experiments at Los Alamos Neutron Science Center (LANSCE). Respective (73)As(n,gamma) (74)As experiments are planned for the near future, and (73)As targets will be prepared in a similar fashion utilizing the new electrodeposition method. The preparation of an (73)As (half-life 80.3 days) plating bath solution from proton irradiated germanium has been demonstrated. Germanium target irradiation was performed at the Los Alamos Isotope Production Facility (IPF).
C1 [Fassbender, M.; Bach, H.; Bond, E.; Nortier, F. M.; Vieira, D.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87544 USA.
RP Fassbender, M (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87544 USA.
EM mfassbender@gmail.com
OI Nortier, Francois/0000-0002-7549-8101; Bond, Evelyn/0000-0001-7335-4086
FU Laboratory Directed Research and Development (LDRD) Program; DoE Medical
Radioisotope Distribution Program
FX We thankfully acknowledge the funding support for this work by the
Laboratory Directed Research and Development (LDRD) Program and the DoE
Medical Radioisotope Distribution Program.
NR 4
TC 3
Z9 3
U1 1
U2 2
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0236-5731
J9 J RADIOANAL NUCL CH
JI J. Radioanal. Nucl. Chem.
PD NOV
PY 2009
VL 282
IS 2
BP 365
EP 368
DI 10.1007/s10967-009-0145-0
PG 4
WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science &
Technology
SC Chemistry; Nuclear Science & Technology
GA 518ED
UT WOS:000271672300008
ER
PT J
AU Friese, J
Payne, R
Greenwood, L
Soderquist, C
Garofoli, S
AF Friese, Judah
Payne, Rosara
Greenwood, Larry
Soderquist, Chuck
Garofoli, Stephanie
TI Half-life and gamma abundance ratio measurements of Sm-153
SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
LA English
DT Article
DE Sm-153; Abundance ratios for Sm-153
ID STANDARDIZATION; DECAY
AB The measurement of the decay of Sm-153 was observed by gamma spectrometry, liquid scintillation counting and gas proportional counting in an attempt to confirm the half life and gamma abundance ratios for this isotope. Recent changes in the published nuclear decay data indicate that historical literature values may be biased. The Sm-153 was made by the neutron activation of ultra-pure isotopically enriched Sm-152 to create Sm-153. The decay measurements were made over a three week period and no other isotopes were detected during this time. The gamma abundance ratio for the 103 keV gamma was measured to be (27.9%) which is 4% lower than the published data. In addition, the half life was 1.9308 days, which is 0.34% lower than the published data.
C1 [Friese, Judah; Payne, Rosara; Greenwood, Larry; Soderquist, Chuck; Garofoli, Stephanie] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Friese, J (reprint author), Pacific NW Natl Lab, 909 Battelle BLVD,POB 999, Richland, WA 99352 USA.
EM judah.friese@pnl.gov; rosara.payne@pnl.gov; larry.greenwood@pnl.gov;
chuck.soderquist@pnl.gov; stephanie.garofoli@pnl.gov
NR 9
TC 0
Z9 0
U1 0
U2 1
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0236-5731
J9 J RADIOANAL NUCL CH
JI J. Radioanal. Nucl. Chem.
PD NOV
PY 2009
VL 282
IS 2
BP 369
EP 372
DI 10.1007/s10967-009-0347-5
PG 4
WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science &
Technology
SC Chemistry; Nuclear Science & Technology
GA 518ED
UT WOS:000271672300009
ER
PT J
AU Metz, LA
Payne, RF
Friese, JI
Greenwood, LR
Kephart, JD
Pierson, BD
AF Metz, Lori A.
Payne, Rosara F.
Friese, Judah I.
Greenwood, Larry R.
Kephart, Jeremy D.
Pierson, Bruce D.
TI Experimental measurements of short-lived fission products from uranium,
neptunium, plutonium and americium
SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
LA English
DT Article
DE Fission products; Short-lived radionuclides; Research reactor
experiments; Actinide fission
ID GAMMA-RAYS; ENERGY
AB Fission yields are especially well characterized for long-lived fission products. Modeling techniques incorporate numerous assumptions and can be used to deduce information about the distribution of short-lived fission products. This work is an attempt to gather experimental (model-independent) data on short-lived fission products. Fissile isotopes of uranium, neptunium, plutonium and americium were irradiated under pulse conditions at the Washington State University 1 MW TRIGA reactor to achieve similar to 10(8) fissions. The samples were placed on an HPGe (high purity germanium) detector to initiate counting in less than 3 min post irradiation. The data was analyzed to determine which radionuclides could be quantified and compared to the published fission yield data.
C1 [Metz, Lori A.; Payne, Rosara F.; Friese, Judah I.; Greenwood, Larry R.; Kephart, Jeremy D.; Pierson, Bruce D.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Metz, LA (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999, Richland, WA 99352 USA.
EM lori.metz@pnl.gov
RI Greenwood, Lawrence/H-9539-2016
OI Greenwood, Lawrence/0000-0001-6563-0650
FU Office of Defense Nuclear Nonproliferation (DNN); US Department of
Energy [DE-AC06-76RLO 1830]
FX This work was supported by the Office of Defense Nuclear
Nonproliferation (DNN), US Department of Energy. Pacific Northwest
National Laboratory is operated by Battelle Memorial Institute for the
US Department of Energy under Contract DE-AC06-76RLO 1830.
NR 7
TC 6
Z9 6
U1 1
U2 9
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0236-5731
J9 J RADIOANAL NUCL CH
JI J. Radioanal. Nucl. Chem.
PD NOV
PY 2009
VL 282
IS 2
BP 373
EP 377
DI 10.1007/s10967-009-0225-1
PG 5
WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science &
Technology
SC Chemistry; Nuclear Science & Technology
GA 518ED
UT WOS:000271672300010
ER
PT J
AU Bond, EM
Bredeweg, TA
FitzPatrick, JR
Jandel, M
Rundberg, RS
Slemmons, AK
Vieira, DJ
AF Bond, E. M.
Bredeweg, T. A.
FitzPatrick, J. R.
Jandel, M.
Rundberg, R. S.
Slemmons, A. K.
Vieira, D. J.
TI Preparation of targets for nuclear chemistry experiments at DANCE
SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
LA English
DT Article
DE Electrodeposition; Americium; Uranium; DANCE; Molecular plating
ID CROSS-SECTION MEASUREMENTS; EXTRACTION CHROMATOGRAPHY; ORGANIC
SOLUTIONS; ACIDIC MEDIA; ELECTRODEPOSITION; AMERICIUM; N,GAMMA;
PRECONCENTRATION; SEPARATION; ISOTOPES
AB In this paper, we describe the separation chemistry and electrodepositions conducted for the preparation of (241)Am, (243)Am and (233)U targets used for cross-section measurements at DANCE. Thick, adherent deposits were prepared using molecular plating from isopropyl alcohol solutions. Improved yields and thicknesses were observed for (241)Am electrodeposition after the material was purified using TRU resin from Eichrom. Similarly, (233)U deposits were improved after purification with an anion exchange column in 9 M HBr followed by purification using UTEVA resin from Eichrom.
C1 [Bond, E. M.; Bredeweg, T. A.; Jandel, M.; Rundberg, R. S.; Vieira, D. J.] Los Alamos Natl Lab, C NR, Los Alamos, NM 87545 USA.
[Slemmons, A. K.] Los Alamos Natl Lab, C AAC, Los Alamos, NM 87545 USA.
RP Bond, EM (reprint author), Los Alamos Natl Lab, C NR, MS J-514, Los Alamos, NM 87545 USA.
EM bond@lanl.gov
OI Bond, Evelyn/0000-0001-7335-4086
FU U. S. Department of Energy at Los Alamos National Laboratory by Los
Alamos National Security; LLC [DE-AC52-07NA27344]
FX This work was performed under the auspices of the U. S. Department of
Energy at Los Alamos National Laboratory by Los Alamos National
Security, LLC under Contract No. DE-AC52-07NA27344.
NR 16
TC 4
Z9 4
U1 0
U2 8
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0236-5731
J9 J RADIOANAL NUCL CH
JI J. Radioanal. Nucl. Chem.
PD NOV
PY 2009
VL 282
IS 2
BP 379
EP 384
DI 10.1007/s10967-009-0266-5
PG 6
WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science &
Technology
SC Chemistry; Nuclear Science & Technology
GA 518ED
UT WOS:000271672300011
ER
PT J
AU Taylor, WA
Rundberg, RS
Bond, EM
Nortier, FM
Vieira, DJ
AF Taylor, Wayne A.
Rundberg, Robert S.
Bond, Evelyn M.
Nortier, Francois M.
Vieira, David J.
TI Production of a Lu-173 target for neutron capture cross section
measurements
SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
LA English
DT Article
DE Lutetium; Hafnium; Separation; Neutron cross section; Target;
Irradiation
AB Lutetium has been used as a radiochemistry detector to measure neutron fluence in NTS tests. A measure of the neutron capture cross sections on Lu-173 is needed to improve the interpretation value of the Lu radiochemistry isotopic ratios. A natural hafnium target was irradiated with protons to produce neutron poor lutetium radioisotopes. The short lived species were allowed to decay prior to chemical processing resulting in predominantly Lu-173 with a small amount of Lu-174. This material was deposited on a titanium foil for use in the neutron capture cross section measurement.
C1 [Taylor, Wayne A.; Rundberg, Robert S.; Bond, Evelyn M.; Nortier, Francois M.; Vieira, David J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Taylor, WA (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
EM wtaylor@lanl.gov; rundberg@lanl.gov; bond@lanl.gov; meiring@lanl.gov;
vieira@lanl.gov
FU US Department of Energy at Los Alamos National Laboratory; Los Alamos
National Security LLC [DE-AC52-06NA25396]
FX The authors would like to thank Los National Laboratory groups C-IIAC,
C-NR, LANSCE-NS, IPF, Lujan Center, LANSCE accelerator facility, LDRD
support, and the LANS LLC. This measurement is supported out the
stockpile stewardship program by DOE/NNSA under the auspices of the US
Department of Energy at Los Alamos National Laboratory by the Los Alamos
National Security LLC, Contract No. DE-AC52-06NA25396.
NR 2
TC 10
Z9 10
U1 0
U2 2
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0236-5731
J9 J RADIOANAL NUCL CH
JI J. Radioanal. Nucl. Chem.
PD NOV
PY 2009
VL 282
IS 2
BP 391
EP 394
DI 10.1007/s10967-009-0278-1
PG 4
WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science &
Technology
SC Chemistry; Nuclear Science & Technology
GA 518ED
UT WOS:000271672300013
ER
PT J
AU Espinosa, G
Silva, RJ
AF Espinosa, G.
Silva, R. J.
TI Industrial commercial respirator filter as indoor radon monitor
SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
LA English
DT Article
DE Indoor radon; Gamma spectrometry; (214)Bi; Respiratory filter
AB This paper presents a method for measuring indoor radon concentrations using a commercially available air-purifying respirator filter as a component of the radon monitor. The filter used was Survivair's NIOSH (National Institute for Occupational Health and Safety)-approved 100800 model. The method is based on the diffusion of radon gas into the activated carbon of the filter and the measurement of the radioactive daughters resulting from the radon decay. The photopeaks of the (214)Bi daughter gamma rays (0.609 MeV) were analyzed with a Hyper-Pure Germanium (HPGe) detector and a multichannel system. A monotonically increasing and very close to linear response relation between the integrated area under the (214)Bi photopeak and the radon concentration of the activated carbon was found. A well-defined relation held for radon levels ranging from 15 to 4,700 Bq/m(3). This procedure results in highly reproducible and reliable measurements of indoor radon levels. Interesting applications include the investigation of radiological accidents involving radon and the retrospective measuring of indoor radon concentrations by analyzing the filters of the respirators worn by personnel working during the relevant period.
C1 [Espinosa, G.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 01000, DF, Mexico.
[Silva, R. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Espinosa, G (reprint author), Univ Nacl Autonoma Mexico, Inst Fis, Apartado Postal 20-364, Mexico City 01000, DF, Mexico.
EM espinosa@fisica.unam.mx; rjsil@aol.com
FU PAPIIT-DGAPA-UNAM [1N107707]
FX This work was partially supported by PAPIIT-DGAPA-UNAM project 1N107707.
The authors wish thanks to J. I. Golzarri, J. Martinez, D. Aguilar, A.
Garcia and A. Huerta for their technical help.
NR 11
TC 1
Z9 1
U1 2
U2 2
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0236-5731
J9 J RADIOANAL NUCL CH
JI J. Radioanal. Nucl. Chem.
PD NOV
PY 2009
VL 282
IS 2
BP 405
EP 408
DI 10.1007/s10967-009-0142-3
PG 4
WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science &
Technology
SC Chemistry; Nuclear Science & Technology
GA 518ED
UT WOS:000271672300016
ER
PT J
AU Thompson, SW
Molz, FJ
Fjeld, RA
Kaplan, DI
AF Thompson, S. W.
Molz, F. J.
Fjeld, R. A.
Kaplan, D. I.
TI Plutonium velocity in Zea mays (corn) and implications for plant uptake
of Pu in the root zone
SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
LA English
DT Article
DE Plutonium; Pu; DFOB; Siderophore; Transport in plants; Retardation;
Mobility
ID SOIL MIGRATION; WATER-TABLE; TRANSPORT; LYSIMETER; RADIONUCLIDES; MODEL
AB A transport velocity of Pu complexed with the siderophore DFOB has been measured in corn to be at least 174 cm/h. Based on a calculated plant water velocity, a Pu retardation factor of 1-10 was estimated. Dominant Pu species retardation in soil is typically several orders of magnitude higher than this, implying that plants can be a vector for exceptionally rapid upward Pu mobility.
C1 [Thompson, S. W.; Molz, F. J.; Fjeld, R. A.] Clemson Univ, Dept Environm Engn & Earth Sci, Anderson, SC 29625 USA.
[Kaplan, D. I.] Savannah River Natl Lab, Aiken, SC 29808 USA.
RP Molz, FJ (reprint author), Clemson Univ, Dept Environm Engn & Earth Sci, 342 Comp Court, Anderson, SC 29625 USA.
EM SWThomp@Clemson.edu; fredi@clemson.edu
FU Office of Science (BER); U. S. Department of Energy [DE-FG02-07ER64401];
Clemson University
FX We acknowledge that this research was supported by the Office of Science
(BER), U. S. Department of Energy, through Grant No. DE-FG02-07ER64401,
and by Clemson University. We thank Ian Stocks of the Entomology, Soils,
and Plant Sciences Department at Clemson University for use of and
assistance with the microscope and dimensional software.
NR 19
TC 1
Z9 1
U1 0
U2 0
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0236-5731
J9 J RADIOANAL NUCL CH
JI J. Radioanal. Nucl. Chem.
PD NOV
PY 2009
VL 282
IS 2
BP 439
EP 442
DI 10.1007/s10967-009-0143-2
PG 4
WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science &
Technology
SC Chemistry; Nuclear Science & Technology
GA 518ED
UT WOS:000271672300022
ER
PT J
AU Hamilton, T
Dasher, D
Brown, T
Martinelli, R
Marchetti, A
Kehl, S
AF Hamilton, Terry
Dasher, Doug
Brown, Tom
Martinelli, Roger
Marchetti, Alfredo
Kehl, Steven
TI Determination of plutonium activity concentrations and Pu-240/Pu-239
atom ratios in Brown Algae (Fucus distichus) collected from Amchitka
Island, Alaska
SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
LA English
DT Article
DE Plutonium; Pu-240/Pu-239 atom ratio; Amchitka Island: Bering Sea; Brown
Algae (Fucus distichus)
ID PACIFIC-OCEAN; RADIONUCLIDES; ISOTOPES; SEDIMENTS; ALEUTIANS; LATITUDES;
SEA
AB Plutonium-239 (Pu-239) and plutonium-240 (Pu-240) activity concentrations and Pu-240/Pu-239 atom ratios are reported for Brown Algae (Fucus distichus) collected from the littoral zone of Amchitka Island (Alaska), and at a control site at Unalaska, Alaska. The average Pu-240/Pu-239 atom ratio observed in dried F. distichus collected from Amchitka Island was 0.227 +/- A 0.007 (N = 5) and compares with the expected Pu-240/Pu-239 atom ratio in integrated worldwide fallout deposition in the Northern Hemisphere of 0.1805 +/- A 0.0057. In the absence of any evidence of a local source of plutonium containing an elevated Pu-240/Pu-239 isotopic signature, the characteristically high Pu-240/Pu-239 content of F. distichus supports the view of the existence of a discernible, basin-wide non-fallout source of plutonium entering the subarctic Pacific.
C1 [Hamilton, Terry; Brown, Tom; Martinelli, Roger; Kehl, Steven] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA.
[Dasher, Doug] Alaska Dept Environm Conservat, Fairbanks, AK 99709 USA.
[Marchetti, Alfredo] Lawrence Livermore Natl Lab, Weap & Complex Integrat Directorate, Div B, Livermore, CA 94550 USA.
RP Hamilton, T (reprint author), Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, POB 808, Livermore, CA 94550 USA.
EM hamilton18@llnl.gov; doug.dasher@alaska.gov; brown92@llnl.gov;
martinelli2@llnl.gov; marchetti1@llnl.gov; kehl1@llnl.gov
FU Department of Environmental Conservation, State of Alaska [L9537];
National Nuclear Security Administration [DE-AC52-07NA27344]
FX We thank the Department of Environmental Conservation, State of Alaska
for funding support under Project L9537. The manuscript was prepared as
a contribution to the Arctic Council's Monitoring and Assessment Program
(AMAP) under the authority of the U. S. Department of Energy, Office of
International Emergency Management and Cooperation. The Lawrence
Livermore National Laboratory is operated by Lawrence Livermore National
Security, LLC, for the U. S. Department of Energy, National Nuclear
Security Administration under Contract DE-AC52-07NA27344. Dr. Gi Hoon
Hong (KORDI) provided helpful comments on the original draft manuscript.
NR 32
TC 3
Z9 3
U1 0
U2 2
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0236-5731
J9 J RADIOANAL NUCL CH
JI J. Radioanal. Nucl. Chem.
PD NOV
PY 2009
VL 282
IS 2
BP 477
EP 482
DI 10.1007/s10967-009-0221-5
PG 6
WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science &
Technology
SC Chemistry; Nuclear Science & Technology
GA 518ED
UT WOS:000271672300029
ER
PT J
AU Miller, SM
Giles, JR
Oertel, CP
AF Miller, Stanley M.
Giles, J. R.
Oertel, C. P.
TI Weighted exponential regression for characterizing radionuclide
concentrations in soil depth profiles
SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
LA English
DT Article
DE Radionuclide concentrations; Soil; Gamma-ray spectrometer; (137)Cesium
data; Alpha/rho estimation; Exponential regression analysis
AB Characterization of radionuclide concentrations in soil profiles requires accurate evaluation of the depth distribution of the concentrations as measured by gamma emissions. Recent studies of (137)Cs activity at the Idaho National Laboratory indicate that these data consistently follow exponential trends when the fraction of radioactivity below depth is plotted against depth. The slope of the exponential regression fit is defined as alpha/rho (alpha/rho), the depth profile parameter. A weighted exponential regression procedure has been developed to compute a mean alpha/rho for a group of related soil samples. Regression results from different areas or from different time periods can be used to compare representative radionuclide concentrations for the specified groupings.
C1 [Miller, Stanley M.] Univ Idaho, Dept Civil Engn, Moscow, ID 83844 USA.
[Giles, J. R.; Oertel, C. P.] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
RP Miller, SM (reprint author), Univ Idaho, Dept Civil Engn, Moscow, ID 83844 USA.
EM smmiller@uidaho.edu
FU Idaho National Laboratory [00042246]
FX This work was conducted at the University of Idaho and was funded by the
Idaho National Laboratory as Task Order No. 00039 under Contract No.
00042246. Valuable comments for the paper were provided by two anonymous
reviewers.
NR 9
TC 0
Z9 0
U1 2
U2 4
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0236-5731
J9 J RADIOANAL NUCL CH
JI J. Radioanal. Nucl. Chem.
PD NOV
PY 2009
VL 282
IS 2
BP 487
EP 491
DI 10.1007/s10967-009-0208-2
PG 5
WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science &
Technology
SC Chemistry; Nuclear Science & Technology
GA 518ED
UT WOS:000271672300031
ER
PT J
AU Martin, LR
Mincher, BJ
Schmitt, NC
AF Martin, Leigh R.
Mincher, Bruce J.
Schmitt, Nicholas C.
TI Extraction of americium(VI) by a neutral phosphonate ligand
SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
LA English
DT Article
DE Hexavalent americium; Solvent extraction
ID TRIVALENT ACTINIDES; ORGANIC-COMPOUNDS; NITRIC-ACID; LANTHANIDES;
THERMODYNAMICS; COMPLEXES
AB Recently the use of the more unusual hexavalent oxidation state of americium has been receiving increased attention for the purpose of developing an efficient Am/Cm or Am/lanthanide separation system. We have already demonstrated the feasibility of performing this separation with 30% TBP in dodecane, and are now looking at different extractants to increase Am(VI) distribution ratios. Following on from this the extraction of bismuth oxidized americium from nitric acid solutions by dibutyl butyl phosphonate has been studied. The results of this study indicate that increasing the basicity of the extractant molecule has significantly improved the extraction efficiency.
C1 [Martin, Leigh R.; Mincher, Bruce J.; Schmitt, Nicholas C.] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
RP Martin, LR (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA.
EM leigh.martin@inl.gov
RI Mincher, Bruce/C-7758-2017;
OI Martin, Leigh/0000-0001-7241-7110
FU U. S. Department of Energy, Office of Nuclear Energy, under DOE Idaho
Operations Office [DE-AC07-05ID14517]
FX Work supported by the U. S. Department of Energy, Office of Nuclear
Energy, under DOE Idaho Operations Office Contract DE-AC07-05ID14517.
NR 16
TC 12
Z9 12
U1 1
U2 13
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0236-5731
J9 J RADIOANAL NUCL CH
JI J. Radioanal. Nucl. Chem.
PD NOV
PY 2009
VL 282
IS 2
BP 523
EP 526
DI 10.1007/s10967-009-0153-0
PG 4
WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science &
Technology
SC Chemistry; Nuclear Science & Technology
GA 518ED
UT WOS:000271672300038
ER
PT J
AU Peterman, DR
Martin, LR
Klaehn, JR
Harrup, MK
Greenhalgh, MR
Luther, TA
AF Peterman, Dean R.
Martin, Leigh R.
Klaehn, John R.
Harrup, Mason K.
Greenhalgh, Mitchell R.
Luther, Thomas A.
TI Selective separation of minor actinides and lanthanides using aromatic
dithiophosphinic and phosphinic acid derivatives
SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
LA English
DT Article
DE Dithiophosphinic acid; Phosphinic acid; Americium; Actinide; Separation
factor
ID CYANEX-301 EXTRACTION; TRIVALENT ACTINIDE; COMPLEXES; CATIONS
AB A new extractant for the separation of actinide(III) and lanthanide(III) cations, bis(o-trifluoromethylphenyl) phosphinic acid (2) was synthesized. The synthetic route employed mirrors one that was employed to produce the sulfur containing analog bis(o-trifluoromethylphenyl) dithiophosphinic acid (1). Classic radiochemical methods and absorbance spectroscopy were used to study the coordination chemistry of the Am-dithiophosphinic acid and Am-phosphinic acid complexes.
C1 [Peterman, Dean R.; Martin, Leigh R.; Greenhalgh, Mitchell R.] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
[Klaehn, John R.; Harrup, Mason K.; Luther, Thomas A.] Idaho Natl Lab, Idaho Falls, ID 83514 USA.
RP Peterman, DR (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA.
EM Dean.Peterman@inl.gov
RI Martin, Leigh/P-3167-2016; Klaehn, John/C-6011-2017
OI Martin, Leigh/0000-0001-7241-7110; Klaehn, John/0000-0002-7077-4509
FU United States Department of Energy; Laboratory Directed Research and
Development (LDRD) [DE-AC07-05ID14517]
FX This work was supported by the United States Department of Energy and
the Laboratory Directed Research and Development (LDRD) program at the
Idaho National Laboratory (INL) through contract DE-AC07-05ID14517.
NR 18
TC 14
Z9 14
U1 1
U2 25
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0236-5731
J9 J RADIOANAL NUCL CH
JI J. Radioanal. Nucl. Chem.
PD NOV
PY 2009
VL 282
IS 2
BP 527
EP 531
DI 10.1007/s10967-009-0288-z
PG 5
WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science &
Technology
SC Chemistry; Nuclear Science & Technology
GA 518ED
UT WOS:000271672300039
ER
PT J
AU Myers, SC
Porterfield, DR
Tandon, L
AF Myers, S. C.
Porterfield, D. R.
Tandon, L.
TI Unique challenges with recent gamma spectroscopy measurements at Los
Alamos National Laboratory
SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
LA English
DT Article
DE Gamma ray spectroscopy; Non-destructive assay; Isotopic analyses; Monte
Carlo neutral particle; MCNP; FRAM; SNAP; Plutonium; Uranium; Natural
uranium; Neutron sources; Plutonium-Beryllium; PuBe
AB A variety of unique radioactive samples have been measured recently at Los Alamos National Laboratory (LANL) using an electrically-cooled high-purity germanium detector. In each case the purpose of the measurements included one or more of the following objectives: (1) an accurate determination of the isotopic weight fractions of different plutonium or uranium materials; (2) an accurate determination of the isotopic quantity in the absence of relevant calibration standards; and (3) a qualitative determination of various sample impurities for additional forensic information. This paper discusses how simple modifications to the PC-FRAM parameter sets enabled a better determination of the isotopic content of the following samples: (1) high-purity plutonium metal, (2) plutonium-beryllium (PuBe) neutron sources, (3) neutron-irradiated natural uranium, and (4) re-processed HEU fuel with elevated (236)U content. The isotopic quantity in a variety of samples was determined using a combination of the Spectral Nondestructive Assay Platform (SNAP (TM)) routine from Eberline Services and the Monte Carlo Neutral Particle (MCNP) code developed at LANL. The non-traditional sources that were quantified with these gamma ray modeling codes included dozens of neutron-irradiated targets of natural uranium, several plutonium-beryllium neutron sources, and three high-purity samples of plutonium metal.
C1 [Myers, S. C.; Porterfield, D. R.; Tandon, L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Myers, SC (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
EM smyers@lanl.gov; dporterfield@lanl.gov; tandon@lanl.gov
NR 7
TC 1
Z9 1
U1 0
U2 6
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0236-5731
J9 J RADIOANAL NUCL CH
JI J. Radioanal. Nucl. Chem.
PD NOV
PY 2009
VL 282
IS 2
BP 533
EP 537
DI 10.1007/s10967-009-0190-8
PG 5
WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science &
Technology
SC Chemistry; Nuclear Science & Technology
GA 518ED
UT WOS:000271672300040
ER
PT J
AU Worley, CG
AF Worley, Christopher G.
TI Analysis of nuclear materials by energy dispersive X-ray fluorescence
and spectral effects of alpha decay
SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
LA English
DT Article
DE X-ray fluorescence (XRF); EDXRF; Alpha decay
AB Energy dispersive X-ray fluorescence (EDXRF) spectra collected from alpha emitters are complicated by artifacts inherent to the alpha decay process, particularly when using portable instruments. For example, (239)Pu EDXRF spectra exhibit a prominent uranium L X-ray emission peak series due to sample alpha decay rather than source-induced X-ray fluorescence. A portable EDXRF instrument was used to collect qualitative spectra from plutonium and americium, and metal alloy identification was performed on a Pu-contaminated steel sample. Significant alpha decay-induced X-ray fluorescence peaks were observed in spectra obtained from the plutonium and americium samples due to the (235)U and (237)Np daughters, respectively. The plutonium sample was also analyzed by wavelength dispersive XRF (WDXRF) to demonstrate that alpha decay-induced X-ray emission has a negligible effect on WDXRF spectra.
C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Worley, CG (reprint author), Los Alamos Natl Lab, MS G740, Los Alamos, NM 87545 USA.
EM cworley@lanl.gov
NR 4
TC 0
Z9 0
U1 0
U2 5
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0236-5731
J9 J RADIOANAL NUCL CH
JI J. Radioanal. Nucl. Chem.
PD NOV
PY 2009
VL 282
IS 2
BP 539
EP 542
DI 10.1007/s10967-009-0259-4
PG 4
WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science &
Technology
SC Chemistry; Nuclear Science & Technology
GA 518ED
UT WOS:000271672300041
ER
PT J
AU Gonzales, ER
Peterson, DS
AF Gonzales, Edward R.
Peterson, Dominic S.
TI Rapid radiochemical sample preparation for alpha spectrometry using
polymer ligand films
SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
LA English
DT Article
DE Sample preparation; Plutonium; Americium; Alpha spectrometry;
Extraction; Bioassay
ID THIN-FILMS; PRECONCENTRATION; EXTRACTION; ACTINIDES; LIQUIDS; RA-226
AB Rapid radioanalytical methods are adversely affected by many different sample-matrix interferences, which make analyzing samples a difficult and time consuming process. A new method for preparing radioactive samples for analysis by alpha spectrometry has been demonstrated. In this technique, a selective extractive ligand is immobilized in a polymer film coated on a metal surface. This polymer ligand film is then used to extract plutonium and other radioactive analytes from solution over a short period of time. The prepared substrate is then counted directly by alpha spectroscopy in a small single detector alpha spectrometer. The method has been demonstrated for the analysis of americium and plutonium in liquid samples such as water and urine.
C1 [Gonzales, Edward R.; Peterson, Dominic S.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA.
RP Peterson, DS (reprint author), Los Alamos Natl Lab, Div Chem, Mail Stop K484, Los Alamos, NM 87545 USA.
EM DominicP@lanl.gov
OI Peterson, Dominic/0000-0001-8244-565X
FU U. S. Department of Energy [DE-AC52-06NA25396]
FX The authors thank Donivan Porterfield, Alex Plionis, and David Hobart of
Los Alamos National Laboratory for useful comments and discussions, and
Jaclyn Herrera for assistance preparing the figures. Los Alamos National
Laboratory is operated by Los Alamos National Security, LLC for the U.
S. Department of Energy under Contract number DE-AC52-06NA25396. This
publication is LAUR-09-4005.
NR 22
TC 8
Z9 8
U1 0
U2 6
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0236-5731
J9 J RADIOANAL NUCL CH
JI J. Radioanal. Nucl. Chem.
PD NOV
PY 2009
VL 282
IS 2
BP 543
EP 547
DI 10.1007/s10967-009-0218-0
PG 5
WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science &
Technology
SC Chemistry; Nuclear Science & Technology
GA 518ED
UT WOS:000271672300042
ER
PT J
AU Spencer, KJ
Tandon, L
Gallimore, D
Xu, N
Kuhn, K
Walker, L
Townsend, L
AF Spencer, Khalil J.
Tandon, Lav
Gallimore, Dave
Xu, Ning
Kuhn, Kevin
Walker, Laurie
Townsend, Lisa
TI Refinement of Pu parent-daughter isotopic and concentration analysis for
forensic (dating) purposes
SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
LA English
DT Article
DE Plutonium; Age-dating; Forensic chemistry
ID PLUTONIUM
AB Plutonium (Pu) metal samples from an interlaboratory exchange exercise and simulated swipe samples were dated using plutonium-uranium (Pu-U) and plutonium-americium (Pu-Am). Metal data were evaluated for consistency and the swipe data against its source material. Metal ages based on (239)Pu versus (235)U and (240)Pu versus (236)U agreed to within a few percent, while the (238)Pu-(234)U and (241)Pu-(241)Am measurements had larger uncertainties. Swipe ages compared favorably with the material's known history. Neptunium ((237)Np) analyses were examined in the context of the (241)Pu-(241)Am-(237)Np system to estimate whether Np can provide insights on material from which Am, Np, and U were removed.
C1 [Spencer, Khalil J.; Tandon, Lav; Gallimore, Dave; Xu, Ning; Kuhn, Kevin; Walker, Laurie; Townsend, Lisa] Los Alamos Natl Lab, Actinide Analyt Chem Grp, Los Alamos, NM 87545 USA.
RP Spencer, KJ (reprint author), Los Alamos Natl Lab, Actinide Analyt Chem Grp, Mail Stop G740,POB 1663, Los Alamos, NM 87545 USA.
EM spencerk@lanl.gov
FU Nuclear Weapons Pit Manufacturing Program; Los Alamos National Security
[DE-AC52-06NA25396]
FX The authors would like to acknowledge the technical and support staff of
the various laboratories whose work contributed to this publication.
This program is administered by LANL under the auspices of the U. S.
Dept. of Energy. The Nuclear Weapons Pit Manufacturing Program provided
financial support. LANL is operated by Los Alamos National Security,
LLC, for the U. S. Dept. of Energy under contract no. DE-AC52-06NA25396.
This publication is LA-UR09-02059.
NR 14
TC 11
Z9 11
U1 1
U2 6
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0236-5731
J9 J RADIOANAL NUCL CH
JI J. Radioanal. Nucl. Chem.
PD NOV
PY 2009
VL 282
IS 2
BP 549
EP 554
DI 10.1007/s10967-009-0287-0
PG 6
WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science &
Technology
SC Chemistry; Nuclear Science & Technology
GA 518ED
UT WOS:000271672300043
ER
PT J
AU Holland, MK
Cordaro, JV
AF Holland, Michael K.
Cordaro, Joseph V.
TI Mass measurement uncertainty for plutonium aliquots assayed by
controlled-potential coulometry
SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
LA English
DT Article
DE Coulometry; Coulometric assay; Plutonium; Mass; Buoyancy; Uncertainty;
Propagation; GUM
AB Minimizing plutonium measurement uncertainty is essential to nuclear material control and international safeguards. In 2005, the International Organization for Standardization (ISO) published ISO 12183 "Controlled-potential coulometric assay of plutonium," 2nd edition. ISO 12183:2005 recommends a target of +/- 0.01% for the mass of original sample in the aliquot because it is a critical assay variable. Mass measurements in radiological containment were evaluated and uncertainties estimated. The uncertainty estimate for the mass measurement also includes uncertainty in correcting for buoyancy effects from air acting as a fluid and from decreased pressure of heated air from the specific heat of the plutonium isotopes.
C1 [Holland, Michael K.; Cordaro, Joseph V.] Savannah River Nucl Solut LLC, Savannah River Natl Lab, Aiken, SC 29808 USA.
RP Holland, MK (reprint author), Savannah River Nucl Solut LLC, Savannah River Natl Lab, Savannah River Site,Bldg 707-F, Aiken, SC 29808 USA.
EM michael.holland@srs.gov
FU United States Department of Energy [DE-AC09-08SR22470]
FX This document was prepared under the United States Department of Energy
contract number DE-AC09-08SR22470 with the Savannah River Nuclear
Solutions, LLC.
NR 15
TC 3
Z9 3
U1 0
U2 3
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0236-5731
J9 J RADIOANAL NUCL CH
JI J. Radioanal. Nucl. Chem.
PD NOV
PY 2009
VL 282
IS 2
BP 555
EP 563
DI 10.1007/s10967-009-0173-9
PG 9
WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science &
Technology
SC Chemistry; Nuclear Science & Technology
GA 518ED
UT WOS:000271672300044
ER
PT J
AU Tandon, L
Kuhn, K
Decker, D
Porterfield, D
Laintz, K
Wong, A
Holland, M
Peterson, DS
AF Tandon, Lav
Kuhn, Kevin
Decker, Diana
Porterfield, Donivan
Laintz, Kenneth
Wong, Amy
Holland, Michael
Peterson, Dominic S.
TI Plutonium metal standards exchange program for actinide measurement
quality assurance (2001-2007)
SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
LA English
DT Article
DE Plutonium; Uranium; Neptunium; Americium; Standards exchange; Analysis;
Laboratory intercomparison
AB Plutonium metal exchange programs operated by the Rocky Flats Plant were conducted from 1956-1989 to ensure quality and to compare measurements in a plutonium metal matrix. Los Alamos National Laboratory (LANL) re-established the program in 2001 to assess the quality of analytical chemistry capabilities that support special nuclear material characterization. It is the only program of its kind for the preparation and distribution of plutonium metal reference materials with a range of impurity contents to multiple laboratories for destructive measurements of elemental concentration, isotopic abundance, and both metallic and non-metallic impurity levels. This program provides independent verification of analytical measurement capabilities for each of the seven currently participating laboratories, and allows any technical problems with analytical measurements to be identified and corrected. This paper focuses on basic program elements and presents a summary of methods and results for plutonium, uranium, neptunium, and americium, measurements.
C1 [Tandon, Lav; Kuhn, Kevin; Decker, Diana; Porterfield, Donivan; Laintz, Kenneth; Wong, Amy; Peterson, Dominic S.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA.
[Holland, Michael] WSRC, Aiken, SC 29802 USA.
RP Peterson, DS (reprint author), Los Alamos Natl Lab, Div Chem, Mailtop K484,POB 1663, Los Alamos, NM 87545 USA.
EM DominicP@lanl.gov
OI Peterson, Dominic/0000-0001-8244-565X
FU Los Alamos National Laboratory [E-AC52-06NA25396]
FX The authors would like to thank the many people that contribute to the
success of this program including Bob Putnam, Matt Johnson, and Diane
Tompins at Los Alamos National Laboratory, Usha Narayanan and Jon
Nuehoff at the New Brunswick Laboratory, Pam Thompson from the Atomic
Weapons Establishment, Jacqueline Fonnesbeck at Idaho National
Laboratory, Richard Torres at Lawrence Livermore National Laboratory,
and Delbert Bowers at Argonne National Laboratory. This program is
administered by the Los Alamos National Laboratory under the auspices of
the U. S. Department of Energy. The Nuclear Weapons Pit Manufacturing
Program Office supported this work at Los Alamos National Laboratory.
Los Alamos National Laboratory is operated by Los Alamos National
Security, LLC for the U. S. Department of Energy under Contract number
DE-AC52-06NA25396. This publication is LAUR-09-4006.
NR 17
TC 6
Z9 6
U1 0
U2 7
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0236-5731
J9 J RADIOANAL NUCL CH
JI J. Radioanal. Nucl. Chem.
PD NOV
PY 2009
VL 282
IS 2
BP 565
EP 571
DI 10.1007/s10967-009-0215-3
PG 7
WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science &
Technology
SC Chemistry; Nuclear Science & Technology
GA 518ED
UT WOS:000271672300045
ER
PT J
AU Tandon, L
Kuhn, K
Martinez, P
Banar, J
Walker, L
Hahn, T
Beddingfield, D
Porterfield, D
Myers, S
LaMont, S
Schwartz, D
Gallimore, D
Garner, S
Spencer, K
Townsend, L
Volz, H
Gritzo, R
McCabe, R
Pereyra, R
Peterson, D
Scott, M
Ruggiero, C
Decker, D
Wong, A
AF Tandon, Lav
Kuhn, Kevin
Martinez, Patrick
Banar, Joseph
Walker, Laurie
Hahn, Terry
Beddingfield, David
Porterfield, Donivan
Myers, Steven
LaMont, Stephen
Schwartz, Daniel
Gallimore, David
Garner, Scott
Spencer, Khalil
Townsend, Lisa
Volz, Heather
Gritzo, Russ
McCabe, Rodney
Pereyra, Ramiro
Peterson, Dominic
Scott, Mark
Ruggiero, Christy
Decker, Diana
Wong, Amy
TI Establishing reactor operations from uranium targets used for the
production of plutonium
SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
LA English
DT Article
DE Neutron; Irradiation; Targets; Assay; Morphology; Particle; Uranium;
Plutonium; Forensics
ID NUCLEAR-MATERIALS; FISSION-PRODUCTS; GAMMA; CODE; IRAQ
AB This paper presents results from the examination of a number of archived neutron-irradiated uranium targets used for past plutonium production testing. Three of these targets were destructively characterized using Los Alamos National Laboratory actinide analytical chemistry capabilities. A validated conduct-of-operations protocol was followed for this characterization effort. Chemical analyses included measurements for radionuclides, uranium assay, uranium isotopic abundances, trace actinides, trace metals, and non-metals. Material scientists also examined materials for morphological and microstructural properties and individual particles were examined for trace impurities. After characterization of the targets was completed, a reactor modeling effort was undertaken to corroborate target details in historical records. Time since irradiation calculations utilized both activation and fission products. The described examination of uranium targets has a tremendous impact from a safeguards verification and nuclear forensics perspective.
C1 [Tandon, Lav; Kuhn, Kevin; Martinez, Patrick; Banar, Joseph; Walker, Laurie; Hahn, Terry; Beddingfield, David; Porterfield, Donivan; Myers, Steven; LaMont, Stephen; Schwartz, Daniel; Gallimore, David; Garner, Scott; Spencer, Khalil; Townsend, Lisa; Volz, Heather; Gritzo, Russ; McCabe, Rodney; Pereyra, Ramiro; Peterson, Dominic; Scott, Mark; Ruggiero, Christy; Decker, Diana; Wong, Amy] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Kuhn, K (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
EM kkuhn@lanl.gov
OI Peterson, Dominic/0000-0001-8244-565X; McCabe, Rodney
/0000-0002-6684-7410
FU U. S. Department of Energy [NNSA-NA-22, NA-241]; Programs from Los
Alamos National Laboratory; Los Alamos National Laboratory
[DE-AC52-06NA25396]
FX U. S. Department of Energy NNSA-NA-22 and NA-241, Programs from Los
Alamos National Laboratory supported the work described. Los Alamos
National Laboratory is operated by Los Alamos National Security, LLC for
the U. S. Department of Energy under Contract number DE-AC52-06NA25396.
This publication is LAUR-09-2075. We would like to thank Cari Zocco at
Los Alamos National Laboratory for her assistance with the manuscript.
NR 24
TC 3
Z9 3
U1 2
U2 18
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0236-5731
J9 J RADIOANAL NUCL CH
JI J. Radioanal. Nucl. Chem.
PD NOV
PY 2009
VL 282
IS 2
BP 573
EP 579
DI 10.1007/s10967-009-0297-y
PG 7
WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science &
Technology
SC Chemistry; Nuclear Science & Technology
GA 518ED
UT WOS:000271672300046
ER
PT J
AU DiPrete, DP
DiPrete, CC
Kyser, EA
Malek, MA
AF DiPrete, David P.
DiPrete, Cecilia C.
Kyser, Edward A.
Malek, Mira A.
TI Rapid measurements of neptunium oxidation states using chromatographic
resins
SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
LA English
DT Article
DE Neptunium; Oxidation state; Resin chromatography
ID EXTRACTION CHROMATOGRAPHY; PRECONCENTRATION; SEPARATION; ACTINIDES
AB The Savannah River Site's (SRS) H-Canyon facility uses ceric ammonium nitrate (CAN) to separate impure neptunium (Np) from a nitric acid feed stream containing 0.5-1.0 M concentrations of iron, sodium and sulfate impurities. The material is processed using a two-pass solvent extraction purification which relies on CAN to oxidize Np to Np(VI) during the first pass prior to extraction. Spectrophotometric oxidation-state analyses normally used to validate successful oxidation to Np(VI) prior to extraction were compromised by this feed stream matrix. Therefore, a rapid chromatographic method to validate successful Np oxidation was developed using Eichrom Industries' TRU and TEVA(A (R)) resins. The method was validated and subsequently transferred to existing operations in the process analytical laboratories.
C1 [DiPrete, David P.; DiPrete, Cecilia C.; Kyser, Edward A.; Malek, Mira A.] Savannah River Natl Lab, Aiken, SC USA.
RP Kyser, EA (reprint author), Savannah River Natl Lab, Aiken, SC USA.
EM eddie.kyser@srnl.doe.gov
NR 6
TC 0
Z9 0
U1 0
U2 2
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0236-5731
J9 J RADIOANAL NUCL CH
JI J. Radioanal. Nucl. Chem.
PD NOV
PY 2009
VL 282
IS 2
BP 581
EP 584
DI 10.1007/s10967-009-0249-6
PG 4
WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science &
Technology
SC Chemistry; Nuclear Science & Technology
GA 518ED
UT WOS:000271672300047
ER
PT J
AU Oldham, WJ
Dry, DE
Mueller, AH
AF Oldham, Warren J., Jr.
Dry, Donald E.
Mueller, Alexander H.
TI Synthesis of functional monolayer surfaces for rapid radiometric
determination of plutonium
SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
LA English
DT Article
DE Alpha spectrometry; Plutonium; Functional monolayer surface; Actinide
analysis
ID SELF-ASSEMBLED MONOLAYERS; SEQUESTRATION; EXTRACTION; ACTINIDES; LIGANDS
AB Glass or silicon substrates functionalized with a monolayer of carbamoylmethylphosphonate (CMP) ligands effectively bind tetravalent actinides from optimized mineral acid solutions to enable rapid, high quality radiometric assay by alpha spectrometry. The observed alpha spectra compare favorably with the highest quality electroplated samples. The CMP-functionalized surfaces have been used to develop simplified analytical methods to determine plutonium from complex mixtures.
C1 [Oldham, Warren J., Jr.; Dry, Donald E.; Mueller, Alexander H.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA.
RP Oldham, WJ (reprint author), Los Alamos Natl Lab, Div Chem, Mail Stop J514, Los Alamos, NM 87545 USA.
EM woldham@lanl.gov
OI Oldham, Warren/0000-0002-0997-2653
FU NNSA Office of National Technical Nuclear Forensics [NA-45]; Los Alamos
National Laboratory [DE-AC52-06NA25396]
FX We thank Mr. George H. Brooks, Jr. for his encouragement in this work
and the Defense Threat Reduction Agency and the NNSA Office of National
Technical Nuclear Forensics (NA-45) for financial support. This
information has been authored by employees of the Los Alamos National
Security, LLC. (LANS), operator of the Los Alamos National Laboratory
under Contract No. DE-AC52-06NA25396 with the U. S. Department of
Energy.
NR 13
TC 6
Z9 6
U1 0
U2 3
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0236-5731
J9 J RADIOANAL NUCL CH
JI J. Radioanal. Nucl. Chem.
PD NOV
PY 2009
VL 282
IS 2
BP 585
EP 589
DI 10.1007/s10967-009-0243-z
PG 5
WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science &
Technology
SC Chemistry; Nuclear Science & Technology
GA 518ED
UT WOS:000271672300048
ER
PT J
AU Sommers, J
Cummings, D
Giglio, J
Carney, K
AF Sommers, James
Cummings, Daniel
Giglio, Jeffrey
Carney, Kevin
TI "Age" determination of irradiated materials utilizing inductively
coupled plasma mass spectrometric (ICP-MS) detection
SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
LA English
DT Article
DE Inductively coupled plasma mass spectrometry (ICP-MS); Cesium; Barium;
Gas pressurized extraction chromatography; Age dating; Sealed
radiological sources
ID HIGHLY ENRICHED URANIUM
AB A gas pressurized extraction chromatography (GPEC) system has been developed to perform elemental separations on radioactive samples to determine total and isotopic compositions of Cs and Ba from an irradiated salt sample, fuel sample and two sealed radiation sources. The GPEC system employs compressed nitrogen to move liquid through the system, compared to gravity or pumped liquids that are typically used for separations. A commercially available Sr-Resin (TM) was used to perform the separation for the above mentioned analytes. A 1% acetic acid solution was determined to be the best extractant for Ba. A flow rate of 0.1 mL/min was determined to be optimal for the separation of Ba. Complete recovery of the Cs and Ba was achieved, within the systematic uncertainties of the experiments.
C1 [Sommers, James; Cummings, Daniel; Giglio, Jeffrey; Carney, Kevin] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
RP Giglio, J (reprint author), Idaho Natl Lab, POB 1645, Idaho Falls, ID 83415 USA.
EM Jeffrey.Giglio@INL.gov
OI Giglio, Jeffrey/0000-0002-0877-927X
FU U. S. Department of Energy [W-31-109-ENG-38]
FX The authors acknowledge the U. S. Department of Energy, Nuclear Energy
Research and Development Program Under Contract No. W-31-109-ENG-38 for
funding. Lastly, the authors are grateful to Ms. Mary Adamic and Mr.
Paul Lind for the dismantling and dissolution of the 137 Cs source.
NR 6
TC 8
Z9 8
U1 0
U2 6
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0236-5731
J9 J RADIOANAL NUCL CH
JI J. Radioanal. Nucl. Chem.
PD NOV
PY 2009
VL 282
IS 2
BP 591
EP 595
DI 10.1007/s10967-009-0210-8
PG 5
WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science &
Technology
SC Chemistry; Nuclear Science & Technology
GA 518ED
UT WOS:000271672300049
ER
PT J
AU Poineau, F
Rodriguez, EE
Weck, PF
Sattelberger, AP
Forster, P
Hartmann, T
Mausolf, E
Silva, GWC
Jarvinen, GD
Cheetham, AK
Czerwinski, KR
AF Poineau, F.
Rodriguez, E. E.
Weck, P. F.
Sattelberger, A. P.
Forster, P.
Hartmann, T.
Mausolf, E.
Silva, G. W. C.
Jarvinen, G. D.
Cheetham, A. K.
Czerwinski, Kenneth R.
TI Review of technetium chemistry research conducted at the University of
Nevada Las Vegas
SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
LA English
DT Article
DE Technetium; PUREX; Separation
ID CRYSTAL; OXIDE
AB The chemistry of technetium is being explored at the University of Nevada Las Vegas. Our goal is to investigate both the applied and fundamental aspects of technetium chemistry, with a special emphasis on synthesis, separations, and materials science. The synthetic chemistry focuses on metal-metal multiple bonding, oxides and halides. Synthesis and characterizations of (n-Bu(4)N)(2)Tc(2)X(8), Tc(2)(O(2)CCH3)(4)X(2) (X = Cl, Br), TcO(2), Bi(2)Tc(2)O(7), Bi(3)TcO(8), TcBr(3) and TcBr(4) have been performed. The applied chemistry is related to the behavior of Tc in the UREX process. Separation of U/Tc has been conducted using anion exchange resin and metallic Tc waste form synthesized and characterized.
C1 [Poineau, F.; Weck, P. F.; Forster, P.; Hartmann, T.; Mausolf, E.; Silva, G. W. C.; Czerwinski, Kenneth R.] Univ Nevada, Harry Reid Ctr Environm Studies, Las Vegas, NV 89154 USA.
[Rodriguez, E. E.] Los Alamos Natl Lab, Lujan Neutron Ctr, Los Alamos, NM 87554 USA.
[Sattelberger, A. P.] Argonne Natl Lab, Energy Sci & Engn Directorate, Argonne, IL 60439 USA.
[Jarvinen, G. D.] Los Alamos Natl Lab, Seaborg Inst, Stockpile Mfg & Support Directorate, Los Alamos, NM 87545 USA.
[Cheetham, A. K.] Univ Cambridge, Cambridge CB2 3QZ, England.
RP Poineau, F (reprint author), Univ Nevada, Harry Reid Ctr Environm Studies, Las Vegas, NV 89154 USA.
EM freder29@unlv.nevada.edu
RI Lujan Center, LANL/G-4896-2012; Silva, G W Chinthaka/K-8431-2012; Silva,
Chinthaka/E-1416-2017;
OI Silva, Chinthaka/0000-0003-4637-6030; , Philippe/0000-0002-7610-2893;
Forster, Paul/0000-0003-3319-4238
FU US Department of Energy [DE-FG52-06NA26399]
FX The authors thank Mr. Tom O'Dou for outstanding health physics support.
Funding for this research was provided by the US Department of Energy,
agreement no. DE-FG52-06NA26399,
NR 21
TC 4
Z9 4
U1 0
U2 20
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0236-5731
J9 J RADIOANAL NUCL CH
JI J. Radioanal. Nucl. Chem.
PD NOV
PY 2009
VL 282
IS 2
BP 605
EP 609
DI 10.1007/s10967-009-0226-0
PG 5
WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science &
Technology
SC Chemistry; Nuclear Science & Technology
GA 518ED
UT WOS:000271672300052
ER
PT J
AU Smith, SC
Peper, SM
Douglas, M
Ziegelgruber, KL
Finn, EC
AF Smith, Steven C.
Peper, Shane M.
Douglas, Matthew
Ziegelgruber, Kate L.
Finn, Erin C.
TI Dissolution of uranium oxides under alkaline oxidizing conditions
SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
LA English
DT Article
DE Uranium dioxide; Uranium trioxide; Triuranium octaoxide; Dissolution;
Hydrogen peroxide; Kinetics; Complexation
ID OXIDATIVE DISSOLUTION; HYDROGEN-PEROXIDE; UO2; DIOXIDE; PH
AB Bench scale experiments were conducted to determine the dissolution characteristics of UO(2), U(3)O(8), and UO(3) in aqueous peroxide-containing carbonate solutions. The experimental parameters investigated included carbonate countercation (NH(4) (+), Na(+), K(+), and Rb(+)) and H(2)O(2) concentration. The carbonate countercation had a dramatic influence on the dissolution behavior of UO(2) in 1 M carbonate solutions containing 0.1 M H(2)O(2), with the most rapid dissolution occurring in (NH(4))(2)CO(3) solution. The initial dissolution rate (y) of UO(2) in 1 M (NH(4))(2)CO(3) increased linearly with peroxide concentration (x) ranging from 0.05 to 2 M according to: y = 2.41x + 1.14. The trend in initial dissolution rates for the three U oxides under study was UO(3) a parts per thousand << U(3)O(8) > UO(2).
C1 [Smith, Steven C.; Peper, Shane M.; Douglas, Matthew; Ziegelgruber, Kate L.; Finn, Erin C.] Pacific NW Natl Lab, Adv Radioanalyt Chem Grp, Phys & Chem Sci Div, Richland, WA 99352 USA.
RP Peper, SM (reprint author), Pacific NW Natl Lab, Adv Radioanalyt Chem Grp, Phys & Chem Sci Div, MSIN P7-07,POB 999, Richland, WA 99352 USA.
EM steven.smith@pnl.gov; shane.peper@pnl.gov; matthew.douglas@pnl.gov;
kate.ziegelgruber@pnl.gov; Erin.Finn@pnl.gov
OI Douglas, Matthew/0000-0001-9708-1780
FU U.S. Department of Energy (DOE)
FX The authors gratefully acknowledge the Sustainable Nuclear Power
Initiative (SNPI), a component of the Pacific Northwest National
Laboratory (PNNL) Laboratory-Directed Research & Development (LDRD)
Program, for financially supporting this research. This work was also
funded in part by the U.S. Department of Energy (DOE) Advance Fuel Cycle
Initiative (AFCI) separations campaign. PNNL is operated for the U. S.
DOE by Battelle Memorial Institute.
NR 9
TC 6
Z9 6
U1 1
U2 6
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0236-5731
J9 J RADIOANAL NUCL CH
JI J. Radioanal. Nucl. Chem.
PD NOV
PY 2009
VL 282
IS 2
BP 617
EP 621
DI 10.1007/s10967-009-0182-8
PG 5
WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science &
Technology
SC Chemistry; Nuclear Science & Technology
GA 518ED
UT WOS:000271672300054
ER
PT J
AU Devol, TA
Clements, JP
Farawila, A
O'Hara, MJ
Egorov, OB
Grate, JW
AF DeVol, Timothy A.
Clements, John P.
Farawila, Anne
O'Hara, Matthew J.
Egorov, Oleg B.
Grate, Jay W.
TI Characterization and application of SuperLig(A (R)) 620 solid phase
extraction resin for automated process monitoring of Sr-90
SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
LA English
DT Article
DE High-level waste; Sr-90; On-line; Process monitoring
ID SEQUENTIAL INJECTION; FLOW-INJECTION; SEPARATIONS; RADIONUCLIDES;
EXCHANGE
AB Characterization of SuperLig(A (R)) 620 solid phase extraction resin was performed in order to develop an automated on-line process monitor for Sr-90. The main focus was on strontium separation from barium, with the goal of developing an automated separation process for Sr-90 in high-level wastes. High-level waste contains significant Cs-137 activity, of which Ba-137m is of great concern as an interference to the quantification of strontium. In addition barium, yttrium and plutonium were studied as potential interferences to strontium uptake and detection. A number of complexants were studied in a series of batch K-d experiments, as SuperLig(A (R)) 620 was not previously known to elute strontium in typical mineral acids. The optimal separation was found using a 2 M nitric acid load solution with a strontium elution step of similar to 0.49 M ammonium citrate and a barium elution step of similar to 1.8 M ammonium citrate. Sr-90 quantification of Hanford high-level tank waste was performed on a sequential injection analysis microfluidics system coupled to a flow-cell detector. The results of the on-line procedure are compared to standard radiochemical techniques in this paper.
C1 [DeVol, Timothy A.; Clements, John P.] Clemson Univ, Environm Engn & Earth Sci Dept, Clemson, SC 29634 USA.
[Farawila, Anne; O'Hara, Matthew J.; Egorov, Oleg B.; Grate, Jay W.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Devol, TA (reprint author), Clemson Univ, Environm Engn & Earth Sci Dept, Clemson, SC 29634 USA.
EM devol@clemson.edu; john.clements@nrc.gov; anne.farawila@pnl.gov;
matthew.ohara@pnl.gov; oegorov@isoray.com; jwgrate@pnl.gov
RI O'Hara, Matthew/I-4967-2013
NR 18
TC 4
Z9 5
U1 2
U2 14
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0236-5731
J9 J RADIOANAL NUCL CH
JI J. Radioanal. Nucl. Chem.
PD NOV
PY 2009
VL 282
IS 2
BP 623
EP 628
DI 10.1007/s10967-009-0219-z
PG 6
WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science &
Technology
SC Chemistry; Nuclear Science & Technology
GA 518ED
UT WOS:000271672300055
ER
PT J
AU Dry, DE
Oldham, WJ
Bowen, SM
AF Dry, Donald E.
Oldham, Warren J., Jr.
Bowen, Scott M.
TI Determination of Sm-151 and Pm-147 using liquid scintillation tracer
methods
SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
LA English
DT Article
DE Rare earths; Sm-151; Pm-147; Liquid scintillation; Tracers
ID ENVIRONMENTAL-SAMPLES; FISSION-PRODUCTS; CHROMATOGRAPHY; SEPARATION
AB The long-lived rare earth isotopes Sm-151 (90 years, beta (max) = 76.3 keV) and Pm-147 (2.62 years, beta (max) = 224.6 keV) are low-yield fission products that generally require lengthy separation procedures to isolate and count by their beta emissions. We will describe novel liquid scintillation counting techniques using radioactive tracers to determine radiochemical yields from an environmental matrix. The recovery of Sm-151 is determined from the alpha decay (2.25 MeV) of Sm-147 in the natural Sm carrier and is in excellent agreement with the gravimetric recovery. The Pm-147 recovery is determined by the use of Pm-145 (17.7 years, EC) tracer, custom-produced at LANL using an isotopically enriched target of Sm-144. We have determined the Pm-145 recovery both from the 37.4 keV k(alpha 1) X-ray, and the electron-capture emissions by LSC. A comparison of these recovery methods is presented.
C1 [Dry, Donald E.; Oldham, Warren J., Jr.; Bowen, Scott M.] Los Alamos Natl Lab, Nucl & Radiochem CNR, Los Alamos, NM 87545 USA.
RP Dry, DE (reprint author), Los Alamos Natl Lab, Nucl & Radiochem CNR, Mail Stop J-514, Los Alamos, NM 87545 USA.
EM dry@lanl.gov; woldham@lanl.gov; sbowen@lanl.gov
FU NNSA Office of Nonproliferation Research and Development [NA-22]
FX The authors wish to thank Susan D. Pacheco who performed the Rare Earth
group separation. This information has been authored by employees of the
Los Alamos National Security, LLC. (LANS), operator of the Los Alamos
National Laboratory under Contract No. DE-AC52-06NA25396 with the U. S.
Department of Energy. We acknowledge the NNSA Office of Nonproliferation
Research and Development (NA-22) for financial support.
NR 11
TC 1
Z9 1
U1 0
U2 6
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0236-5731
J9 J RADIOANAL NUCL CH
JI J. Radioanal. Nucl. Chem.
PD NOV
PY 2009
VL 282
IS 2
BP 635
EP 640
DI 10.1007/s10967-009-0330-1
PG 6
WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science &
Technology
SC Chemistry; Nuclear Science & Technology
GA 518ED
UT WOS:000271672300057
ER
PT J
AU Mincher, BJ
Elias, G
Martin, LR
Mezyk, SP
AF Mincher, Bruce J.
Elias, Gracy
Martin, Leigh R.
Mezyk, Stephen P.
TI Radiation chemistry and the nuclear fuel cycle
SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
LA English
DT Article
DE Solvent extraction; Radiation chemistry; Free radicals; Nitration
ID PULSE-RADIOLYSIS; HYDROXYL RADICALS; NITRIC-ACID; HYDRATED ELECTRONS;
TRIBUTYL-PHOSPHATE; GAMMA-RADIOLYSIS; AQUEOUS-SOLUTION; RATE CONSTANTS;
DEGRADATION; EXTRACTION
AB A global collaboration is currently developing solvent extraction separations for the nuclear fuel cycle of the future. The goal is to recover fissionable material for recycle, mitigate proliferation concerns, and mitigate the environmental impact of nuclear waste disposal. Relying on selective metal complexing agents, the radiation stability of these solvent extraction ligands will determine the efficiency and recycle lifetime of any solvent intended for use in this high-radiation environment. This paper reviews work at the Idaho National Laboratory regarding the radiation chemistry of nuclear solvent extraction ligands, with particular emphasis on the reactions of nitrogen-centered radicals.
C1 [Mincher, Bruce J.; Elias, Gracy; Martin, Leigh R.] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
[Mezyk, Stephen P.] Calif State Univ Long Beach, Long Beach, CA 90840 USA.
RP Mincher, BJ (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA.
EM bruce.mincher@inl.gov
RI Martin, Leigh/P-3167-2016; Mincher, Bruce/C-7758-2017
OI Martin, Leigh/0000-0001-7241-7110;
FU U.S. Department of Energy, Office of Nuclear Energy, under DOE Idaho
Operations Office [DE-AC07-05ID14517]
FX Work supported by the U.S. Department of Energy, Office of Nuclear
Energy, under DOE Idaho Operations Office Contract DE-AC07-05ID14517.
NR 28
TC 9
Z9 10
U1 2
U2 21
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0236-5731
J9 J RADIOANAL NUCL CH
JI J. Radioanal. Nucl. Chem.
PD NOV
PY 2009
VL 282
IS 2
BP 645
EP 649
DI 10.1007/s10967-009-0156-x
PG 5
WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science &
Technology
SC Chemistry; Nuclear Science & Technology
GA 518ED
UT WOS:000271672300059
ER
PT J
AU Glagolenko, I
Hilton, B
Giglio, J
Cummings, D
AF Glagolenko, Irina
Hilton, Bruce
Giglio, Jeffrey
Cummings, Daniel
TI Fission yield measurements by inductively coupled plasma
mass-spectrometry
SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
LA English
DT Article
DE Cumulative neutron induced fission yields; Fission products; ICP-MS;
Mass-spectrometry
ID SPENT NUCLEAR-FUEL; REACTOR
AB Correct prediction of the fission products inventory in irradiated nuclear fuels is essential for accurate estimation of fuel burnup, establishing proper requirements for spent fuel transportation and storage, materials accountability and nuclear forensics. Such prediction is impossible without accurate knowledge of neutron induced fission yields. The uncertainty of the fission yields reported in the ENDF/B-VII.0 library is not uniform across all of the data and much of the improvement is desired for certain fissioning isotopes and fission products. We discuss our measurements of cumulative fission yields in nuclear fuels irradiated in thermal and fast reactor spectra using Inductively Coupled Plasma Mass Spectrometry.
C1 [Glagolenko, Irina; Hilton, Bruce; Giglio, Jeffrey; Cummings, Daniel] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
RP Glagolenko, I (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA.
EM irina.glagolenko@inl.gov
OI Giglio, Jeffrey/0000-0002-0877-927X
NR 20
TC 1
Z9 1
U1 1
U2 5
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0236-5731
J9 J RADIOANAL NUCL CH
JI J. Radioanal. Nucl. Chem.
PD NOV
PY 2009
VL 282
IS 2
BP 651
EP 655
DI 10.1007/s10967-009-0209-1
PG 5
WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science &
Technology
SC Chemistry; Nuclear Science & Technology
GA 518ED
UT WOS:000271672300060
ER
PT J
AU Ianakiev, KD
Goda, JM
Hill, TR
Moss, CE
Ong, JJ
Paffett, MT
Parker, RF
Swinhoe, MT
AF Ianakiev, K. D.
Goda, J. M.
Hill, T. R.
Moss, C. E.
Ong, J. J.
Paffett, M. T.
Parker, R. F.
Swinhoe, M. T.
TI Advanced technology for enrichment monitoring for gas centrifuge
enrichment plants
SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
LA English
DT Article
DE Enrichment monitoring; Gas centrifuge enrichment plants; X-ray tube;
X-ray filter; Sodium iodide detector
AB We report our developments of the next generation of uranium enrichment monitoring technology for gas centrifuge enrichment plants (GCEPs). The main challenge presented by current technology is the need for periodic replacement of the short half-life (1.27 year) (109)Cd transmission source. We report on a transmission source at the 22.1 keV K-edge of ruthenium based on an X-ray tube with a "notch" filter. As part of the design we have modeled the NaI detector passive shielding with the MCNP code. Some preliminary results from experiments and modeling will be presented.
C1 [Ianakiev, K. D.; Goda, J. M.; Hill, T. R.; Moss, C. E.; Ong, J. J.; Paffett, M. T.; Parker, R. F.; Swinhoe, M. T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Goda, JM (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
EM ianakiev@lanl.gov; jgoda@lanl.gov; tomhill@lanl.gov; cmoss@lanl.gov;
jjong@lanl.gov; mtp@lanl.gov; rfparker@lanl.gov; swinhoe@lanl.gov
OI Ianakiev, Kiril/0000-0002-5074-0715; Swinhoe, Martyn/0000-0002-7620-4654
FU U.S. Department of Energy [NA-22]
FX This work was sponsored by the U.S. Department of Energy, NA-22. We are
grateful to Jim Smith for preparing the ruthenium filters.
NR 11
TC 0
Z9 1
U1 1
U2 5
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0236-5731
J9 J RADIOANAL NUCL CH
JI J. Radioanal. Nucl. Chem.
PD NOV
PY 2009
VL 282
IS 2
BP 657
EP 661
DI 10.1007/s10967-009-0268-3
PG 5
WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science &
Technology
SC Chemistry; Nuclear Science & Technology
GA 518ED
UT WOS:000271672300061
ER
PT J
AU DiPrete, DP
DiPrete, CC
Bibler, NE
Bannochie, CJ
Hay, MS
AF DiPrete, D. P.
DiPrete, C. C.
Bibler, N. E.
Bannochie, C. J.
Hay, M. S.
TI Advances in Se-79 analyses on Savannah river site radioactive waste
matrices
SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
LA English
DT Article
DE Se-79; Radiochemical separation
ID SEPARATION; EXTRACTION
AB Waste cleanup efforts underway at the United States Department of Energy's (DOE) Savannah River Site (SRS) in South Carolina, as well as other DOE nuclear sites, have created a need to characterize Se-79 in radioactive waste inventories. Successful analysis of Se-79 in high activity waste matrices is challenging for a variety of reasons. As a result of these unique challenges, the successful quantification of Se-79 in the types of matrices present at SRS requires an extremely efficient and selective separation of Se-79 from high levels of interfering radionuclides. A robust Se-79 radiochemical separation method has been developed at the Savannah River National Laboratory (SRNL) which is routinely capable of successfully purifying Se-79 from a wide range of interfering radioactive species. In addition to dramatic improvements in the K-d, ease, and reproducibility of the analysis, the laboratory time has been reduced from several days to only 6 h.
C1 [DiPrete, D. P.; DiPrete, C. C.; Bibler, N. E.; Bannochie, C. J.; Hay, M. S.] Savannah River Nucl Solut, Savannah River Natl Lab, Aiken, SC 29808 USA.
RP DiPrete, CC (reprint author), Savannah River Nucl Solut, Savannah River Natl Lab, Aiken, SC 29808 USA.
EM david.diprete@srnl.doe.gov; c.diprete@srnl.doe.gov;
ned.bibler@srnl.doe.gov; cj.bannochie@srnl.doe.gov;
michael.hay@srnl.doe.gov
NR 4
TC 1
Z9 1
U1 0
U2 2
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0236-5731
J9 J RADIOANAL NUCL CH
JI J. Radioanal. Nucl. Chem.
PD NOV
PY 2009
VL 282
IS 2
BP 663
EP 667
DI 10.1007/s10967-009-0274-5
PG 5
WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science &
Technology
SC Chemistry; Nuclear Science & Technology
GA 518ED
UT WOS:000271672300062
ER
PT J
AU Ma, C
Yan, JQ
Dennis, KW
McCallum, RW
Tan, X
AF Ma, C.
Yan, J-Q.
Dennis, K. W.
McCallum, R. W.
Tan, X.
TI Synthesis, thermal stability and magnetic properties of the
Lu1-xLaxMn2O5 solid solution
SO JOURNAL OF SOLID STATE CHEMISTRY
LA English
DT Article
DE Multiferroic; Lu1-xLaxMn2O5; Thermal decomposition; Magnetic properties
ID MN-O SYSTEM; PHASE-EQUILIBRIA; DIFFRACTION DATA; OXYGEN-PRESSURE;
RARE-EARTH; THIN-FILM; YMN2O5; AIR; LU; HETEROSTRUCTURES
AB Polycrystal line samples of the Lu1-xLaxMn2O5 solid solution system were synthesized under moderate conditions for compositions with x up to 0.815. Due to the large difference in ionic size between Lu3+ and La3+, significant changes in lattice parameters and severe lattice strains are present in the solid solution. This in turn leads to the composition dependent thermal stability and magnetic properties. It is found that the solid Solution samples with x <= 0.487 decompose at a single well defined temperature, while those with x >= 0.634 decompose over a temperature range with the formation of intermediate phases. For the samples with x >= 0.487, the primary magnetic transition Occurs below 40 K, similar to LuMn2O5 and other individual RMn2O5 (R = Bi, Y, and rare earth) compounds. In contrast, a magnetic phase with a similar to 200 K onset transition temperature is dominant in the samples with x >= 0.634. (C) 2009 Elsevier Inc. All rights reserved.
C1 [Ma, C.; McCallum, R. W.; Tan, X.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA.
[Ma, C.; Yan, J-Q.; Dennis, K. W.; McCallum, R. W.; Tan, X.] US DOE, Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA.
RP Tan, X (reprint author), Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA.
EM xtan@iastate.edu
RI Tan, Xiaoli/C-3376-2013; Ma, Cheng/C-9120-2014
OI Tan, Xiaoli/0000-0002-4182-663X;
FU US Department of Energy by Iowa State University [DE-AC02-07CH11358]
FX Ames Laboratory is operated for the US Department of Energy by Iowa
State University under Contract No. DE-AC02-07CH11358.
NR 34
TC 2
Z9 2
U1 1
U2 9
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0022-4596
EI 1095-726X
J9 J SOLID STATE CHEM
JI J. Solid State Chem.
PD NOV
PY 2009
VL 182
IS 11
BP 3013
EP 3020
DI 10.1016/j.jssc.2009.08.015
PG 8
WC Chemistry, Inorganic & Nuclear; Chemistry, Physical
SC Chemistry
GA 518HU
UT WOS:000271682600009
ER
PT J
AU Misra, S
Mozharivskyj, Y
Tsokol, AO
Schlagel, DL
Lograsso, TA
Miller, GJ
AF Misra, Sumohan
Mozharivskyj, Yurij
Tsokol, Alexandra O.
Schlagel, Deborah L.
Lograsso, Thomas A.
Miller, Gordon J.
TI Structural, magnetic, and thermal characteristics of the phase
transitions in Gd5GaxGe4-x magnetocaloric materials
SO JOURNAL OF SOLID STATE CHEMISTRY
LA English
DT Article
DE Gadolinium-gallium-germanide; Phase transformation
ID ADIABATIC TEMPERATURE-CHANGE; CRYSTAL-STRUCTURE; ELECTRICAL-RESISTANCE;
NANOSCALE ZIPPERS; GE; GD5SI2GE2; GD-5(SIXGE1-X)(4); SYSTEM; SI;
GD-5(SI1.8GE2.2)
AB Temperature-dependent, single crystal and powder X-ray diffraction studies as well as magnetization, and heat capacity measurements were carried out on two phases of the Gd5GaxGe4-x system: for x = 0.7 and 1.0. Gd5Ga0.7Ge3.3 shows three structure types as a function of temperature: (i) from 165 K to room temperature, the orthorhombic Sm5Ge4-type structure exists; (ii) below 150 , it transforms to a orthorhombic Gd5Si4-type structure; and (iii) a monoclinic Gd5Si2Ge2-type component is observed for the intermediate temperature range of 150 K <= T <= 165 K. This is the first time that all these three structure types have been observed for the same composition. For Gd5Ga1.0Ge3.0, the room temperature phase belongs to the orthorhombic Pu5Rh4-type structure with interslab contacts between main group atoms of 2.837(4)angstrom. Upon heating above 523 K, it transforms to a Gd5Si4-type structure with this distance decreasing to 2.521(7)angstrom before decomposing above 573 K. (C) 2009 Elsevier Inc. All Fights reserved.
C1 [Misra, Sumohan; Miller, Gordon J.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA.
[Misra, Sumohan; Tsokol, Alexandra O.; Schlagel, Deborah L.; Lograsso, Thomas A.; Miller, Gordon J.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
[Mozharivskyj, Yurij] McMaster Univ, Dept Chem, Hamilton, ON L8S 4M1, Canada.
RP Miller, GJ (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA.
EM gmiller@iastate.edu
FU Iowa State University [DE-AC02-07CH11358]; Materials Sciences Division
of the Office of Basic Energy Sciences of the US Department of Energy
FX The authors thank Prof. Vitalij Pecharsky, Dr. Yaroslav Mudryk, Dr.
Niraj Singh, and Mr. Roger Rink for making the SQUID Magnetometer,
semi-adiabatic heat-pulse calorimeter, and Rigaku TTRAX diffractometer
available to LIS and for informative discussions. This work was carried
out at the Ames Laboratory, which is operated for the US Department of
Energy by Iowa State University under Contract no. DE-AC02-07CH11358.
This work was supported by the Materials Sciences Division of the Office
of Basic Energy Sciences of the US Department of Energy.
NR 37
TC 9
Z9 9
U1 0
U2 1
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0022-4596
J9 J SOLID STATE CHEM
JI J. Solid State Chem.
PD NOV
PY 2009
VL 182
IS 11
BP 3031
EP 3040
DI 10.1016/j.jssc.2009.08.016
PG 10
WC Chemistry, Inorganic & Nuclear; Chemistry, Physical
SC Chemistry
GA 518HU
UT WOS:000271682600011
ER
PT J
AU You, SJ
Li, Z
Yang, LX
Dong, C
Chen, LC
Jin, CQ
Hu, JZ
Shen, GY
Mao, HK
AF You, Shujie
Li, Zhi
Yang, Liuxiang
Dong, Cheng
Chen, Liangcheng
Jin, Changqing
Hu, Jingzhu
Shen, Guoyin
Mao, Hokwang
TI High pressure induced coordination evolution in chain compound Li2CuO2
SO JOURNAL OF SOLID STATE CHEMISTRY
LA English
DT Article
DE Li2CuO2; CuO2 chain; High pressure; Crystal structure
ID CRYSTAL-STRUCTURE; INTERCHAIN INTERACTIONS; SUPERCONDUCTIVITY;
REFINEMENT; LICUO2
AB Using diamond anvil cell technique with angle dispersive X-ray diffraction (ADXD) of synchrotron radiation and electrical conductivity measurements, we have observed that CuO2 chain compound Li2CuO2 transforms from ambient orthorhombic symmetry into a new phase at above 5.4 GPa and room temperature. The new phase was found to be of monoclinic structure with all increased oxygen coordination number of Cu2+ from four at ambient to six at high pressure that provides a structural basis of the evolution of principle physical properties. The high pressure phase of Li2CuO2 is discussed in line with the first principle calculations. (C) 2009 Elsevier Inc. All rights reserved.
C1 [You, Shujie; Li, Zhi; Yang, Liuxiang; Dong, Cheng; Chen, Liangcheng; Jin, Changqing] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China.
[Hu, Jingzhu] Brookhaven Natl Lab, Natl Synchrotron Light Source, Uptown, NY USA.
[Shen, Guoyin; Mao, Hokwang] Carnegie Inst Washington, Geophys Lab, HPCAT, Argonne, IL USA.
RP Jin, CQ (reprint author), Chinese Acad Sci, Inst Phys, POB 603, Beijing 100190, Peoples R China.
EM jin@aphy.iphy.ac.cn
RI Li, Zhi/B-5638-2013
FU COMPRES; DOE-BES [AC02-06CH11357]; DOE-NNSA; NSF; W.M. Keck Foundation
FX We thank Quanzhong Guo and other NSLS Stuff for technical Supports
during experiments on beamline X17C at NSLS. This work was financially
supported by NSF and MOST of China through the research projects. The
experiments at X17C, NSLS were partially supported by COMPRES. HPCAT is
supported by DOE-BES, DOE-NNSA, NSF, and the W.M. Keck Foundation. APS
is supported by DOE-BES, under Contract no. DE-AC02-06CH11357.
NR 31
TC 1
Z9 1
U1 3
U2 16
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0022-4596
J9 J SOLID STATE CHEM
JI J. Solid State Chem.
PD NOV
PY 2009
VL 182
IS 11
BP 3085
EP 3090
DI 10.1016/j.jssc.2009.08.019
PG 6
WC Chemistry, Inorganic & Nuclear; Chemistry, Physical
SC Chemistry
GA 518HU
UT WOS:000271682600019
ER
PT J
AU Donev, A
Alder, BJ
Garcia, AL
AF Donev, Aleksandar
Alder, Berni J.
Garcia, Alejandro L.
TI A thermodynamically consistent non-ideal stochastic hard-sphere fluid
SO JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT
LA English
DT Article
DE stochastic particle dynamics (theory); kinetic theory of gases and
liquids; molecular dynamics; rarefied gas dynamics
ID DISSIPATIVE PARTICLE DYNAMICS; LATTICE-BOLTZMANN METHOD; MONTE-CARLO
METHOD; EQUATION-OF-STATE; TRANSPORT-COEFFICIENTS; MOLECULAR-DYNAMICS;
ENSKOG EQUATION; SIMULATION; GASES; ALGORITHM
AB A grid-free variant of the direct simulation Monte Carlo (DSMC) method is proposed, named the isotropic DSMC (I-DSMC) method, that is suitable for simulating dense fluid flows at molecular scales. The I-DSMC algorithm eliminates all grid artifacts from the traditional DSMC algorithm; it is Galilean invariant and microscopically isotropic. The stochastic collision rules in I-DSMC are modified to yield a non-ideal structure factor that gives consistent compressibility, as first proposed by Donev et al (2008 Phys. Rev. Lett. 101 075902). The resulting stochastic hard-sphere dynamics (SHSD) fluid is empirically found to have the same pair correlation function as a deterministic Hamiltonian system of penetrable spheres interacting with a linear core pair potential, well described by the hypernetted chain (HNC) approximation. We apply a stochastic Enskog kinetic theory to the SHSD fluid to obtain estimates for the transport coefficients that are in excellent agreement with particle simulations over a wide range of densities and collision rates. The fluctuating hydrodynamic behavior of the SHSD fluid is verified by comparing its dynamic structure factor against theory based on the Landau-Lifshitz Navier-Stokes equations. We also study the Brownian motion of a nanoparticle suspended in an SHSD fluid and find a long-time power-law tail in its velocity autocorrelation function consistent with hydrodynamic theory and molecular dynamics calculations.
C1 [Donev, Aleksandar; Alder, Berni J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
[Donev, Aleksandar] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Computat Sci & Engn, Berkeley, CA 94720 USA.
[Garcia, Alejandro L.] San Jose State Univ, Dept Phys & Astron, San Jose, CA 95192 USA.
RP Donev, A (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA.
EM aleks.donev@gmail.com; alder1@llnl.gov; algarcia@algarcia.org
FU US Department of Energy at Lawrence Livermore National Laboratory
[DE-AC52-07NA27344 (LLNL-JRNL-415281)]
FX The work of A Donev was performed under the auspices of the US
Department of Energy at Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344 (LLNL-JRNL-415281). We thank Ard Louis for
sharing his expertise and code for solving the HNC equations for
penetrable spheres. We thank Salvatore Torquato, Frank Stillinger,
Andres Santos, and Jacek Polewczak for their assistance and advice.
NR 49
TC 6
Z9 6
U1 0
U2 7
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 1742-5468
J9 J STAT MECH-THEORY E
JI J. Stat. Mech.-Theory Exp.
PD NOV
PY 2009
AR P11008
DI 10.1088/1742-5468/2009/11/P11008
PG 25
WC Mechanics; Physics, Mathematical
SC Mechanics; Physics
GA 552CY
UT WOS:000274266100008
ER
PT J
AU Clayhold, JA
Pelleg, O
Bollinger, AT
Logvenov, G
Kerns, BM
Schroer, MD
Rench, DW
Bozovic, I
AF Clayhold, J. A.
Pelleg, O.
Bollinger, A. T.
Logvenov, G.
Kerns, B. M.
Schroer, M. D.
Rench, D. W.
Bozovic, I.
TI Statistical Characterization and Process Control for Improved Growth of
La2-xSrxCuO4 Films
SO JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM
LA English
DT Article
DE Combinatorial; Molecular beam epitaxy; Quantum phase transitions;
Electrical transport; Process control
ID QUANTUM PHASE-TRANSITIONS; MOLECULAR-BEAM EPITAXY; CUPRATE
SUPERCONDUCTORS; COMBINATORIAL SYNTHESIS; CRITICAL-POINT; THIN-FILMS;
LIBRARIES; OXIDES; OPTIMIZATION; PHYSICS
AB We have used combinatorial molecular beam epitaxy (COMBE) technique to deposit thin cuprate films with continuous spread in chemical composition, as well as nominally uniform films. We have patterned them into linear pixel arrays and measured the transport properties of each pixel. We applied detailed statistical analysis to differentiate between various possible sources of random pixel-to-pixel variations, and utilized this knowledge to considerably tighten the process parameters and significantly reduce such variations. The density and quality of data points is high enough to allow detection of quantum phase transitions induced by tuning the chemical composition.
C1 [Clayhold, J. A.; Kerns, B. M.; Schroer, M. D.; Rench, D. W.] Miami Univ, Dept Phys, Oxford, OH 45046 USA.
[Pelleg, O.; Bollinger, A. T.; Logvenov, G.; Bozovic, I.] Brookhaven Natl Lab, Upton, NY 11973 USA.
RP Clayhold, JA (reprint author), Miami Univ, Dept Phys, Oxford, OH 45046 USA.
EM clayhoja@muohio.edu
RI Schroer, Michael/D-5978-2012
OI Schroer, Michael/0000-0003-1583-3200
FU US DOE [MA-509-MACA]
FX This work has been supported by US DOE project MA-509-MACA.
NR 36
TC 2
Z9 2
U1 0
U2 5
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1557-1939
EI 1557-1947
J9 J SUPERCOND NOV MAGN
JI J. Supercond. Nov. Magn
PD NOV
PY 2009
VL 22
IS 8
BP 797
EP 804
DI 10.1007/s10948-009-0502-9
PG 8
WC Physics, Applied; Physics, Condensed Matter
SC Physics
GA 511WI
UT WOS:000271201900014
ER
PT J
AU Liu, HZ
Duffy, T
Ehm, L
Crichton, W
Aoki, K
AF Liu, Haozhe
Duffy, Tom
Ehm, Lars
Crichton, Wilson
Aoki, Katsutoshi
TI Advances and synergy of high-pressure sciences at synchrotron sources
SO JOURNAL OF SYNCHROTRON RADIATION
LA English
DT Editorial Material
C1 [Liu, Haozhe] Harbin Inst Technol, Harbin 150080, Peoples R China.
[Duffy, Tom] Princeton Univ, Princeton, NJ 08544 USA.
[Ehm, Lars] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA.
[Crichton, Wilson] European Synchrotron Radiat Facil, F-38043 Grenoble, France.
[Aoki, Katsutoshi] JAEA SPring 8, Sayo, Hyogo 6795198, Japan.
RP Liu, HZ (reprint author), Harbin Inst Technol, Harbin 150080, Peoples R China.
EM haozheliu@hotmail.com
RI Liu, Haozhe/E-6169-2011; Duffy, Thomas/C-9140-2017;
OI Duffy, Thomas/0000-0002-5357-1259; Crichton, Wilson/0000-0001-6823-5509
NR 0
TC 0
Z9 0
U1 0
U2 7
PU WILEY-BLACKWELL PUBLISHING, INC
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0909-0495
J9 J SYNCHROTRON RADIAT
JI J. Synchrot. Radiat.
PD NOV
PY 2009
VL 16
BP 697
EP 698
DI 10.1107/S0909049509041946
PG 2
WC Instruments & Instrumentation; Optics; Physics, Applied
SC Instruments & Instrumentation; Optics; Physics
GA 510LW
UT WOS:000271091000001
PM 19844001
ER
PT J
AU Gao, LL
Chen, B
Lerche, M
Alp, EE
Sturhahn, W
Zhao, JY
Yavas, H
Li, J
AF Gao, Lili
Chen, Bin
Lerche, Michael
Alp, Esen E.
Sturhahn, Wolfgang
Zhao, Jiyong
Yavas, Hasan
Li, Jie
TI Sound velocities of compressed Fe3C from simultaneous synchrotron X-ray
diffraction and nuclear resonant scattering measurements
SO JOURNAL OF SYNCHROTRON RADIATION
LA English
DT Article; Proceedings Paper
CT Workshop on Advances in High-Pressure Science Using Synchrotron X-Rays
CY OCT 04, 2008
CL Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY
HO Brookhaven Natl Lab, Natl Synchrotron Light Source
DE phonon density of state; anisotropy; impurity; Debye; APS
ID DENSITY-OF-STATES; HIGH-TEMPERATURE; HIGH-PRESSURE; RADIATION; IRON;
EQUATION; OPTICS; FE-57; GPA
AB The applications of nuclear resonant scattering in laser-heated diamond anvil cells have provided an important probe for the magnetic and vibrational properties of Fe-57-bearing materials under high pressure and high temperature. Synchrotron X-ray diffraction is one of the most powerful tools for studying phase stability and equation of state over a wide range of pressure and temperature conditions. Recently an experimental capability has been developed for simultaneous nuclear resonant scattering and X-ray diffraction measurements using synchrotron radiation. Here the application of this method to determine the sound velocities of compressed Fe3C is shown. The X-ray diffraction measurements allow detection of microscale impurities, phase transitions and chemical reactions upon compression or heating. They also provide information on sample pressure, grain size distribution and unit cell volume. By combining the Debye velocity extracted from the nuclear resonant inelastic X-ray scattering measurements and the structure, density and elasticity data from the X-ray diffraction measurements simultaneously obtained, more accurate sound velocity data can be derived. Our results on few-crystal and powder samples indicate strong anisotropy in the sound velocities of Fe3C under ambient conditions.
C1 [Gao, Lili; Chen, Bin; Yavas, Hasan; Li, Jie] Univ Illinois, Dept Geol, Urbana, IL 60801 USA.
[Gao, Lili; Lerche, Michael; Alp, Esen E.; Sturhahn, Wolfgang; Zhao, Jiyong; Yavas, Hasan] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Lerche, Michael] Carnegie Inst Washington, High Pressure Synerget Consortium, Argonne, IL 60439 USA.
RP Gao, LL (reprint author), Univ Illinois, Dept Geol, Urbana, IL 60801 USA.
EM liligao2@illinois.edu
RI Chen, Bin/A-5980-2008; Yavas, Hasan/A-7164-2014
OI Yavas, Hasan/0000-0002-8940-3556
NR 36
TC 12
Z9 12
U1 1
U2 10
PU WILEY-BLACKWELL
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0909-0495
J9 J SYNCHROTRON RADIAT
JI J. Synchrot. Radiat.
PD NOV
PY 2009
VL 16
BP 714
EP 722
DI 10.1107/S0909049509033731
PN 6
PG 9
WC Instruments & Instrumentation; Optics; Physics, Applied
SC Instruments & Instrumentation; Optics; Physics
GA 510LW
UT WOS:000271091000004
PM 19844004
ER
PT J
AU Yang, L
Yang, HC
AF Yang, Lin
Yang, Hoichang
TI Use of a hexapod in diffraction measurements of substrate-supported
crystals of organic semiconductors
SO JOURNAL OF SYNCHROTRON RADIATION
LA English
DT Article
DE X-ray diffraction; hexapod; transmission; grazing incidence
ID PENTACENE THIN-FILMS; X-RAY-DIFFRACTION; PHASE; TRANSISTORS; MOBILITY
AB Thin films of organic semiconductor prepared on substrates generally contain crystals that have one common crystal plane parallel to the substrate but random in-plane orientations. In diffraction measurements of these structures, it is often required to anchor the X-ray beam on a fixed spot on the sample, such as an optically visible crystallite or island. Here, a hexapod is used in place of a traditional multi-circle diffractometer to perform area-detector-based diffraction measurements on an actual device that contains 6,13-bis(triisopropylsilyethynyl)-pentacene (TIPS-pentacene) crystals. The hexapod allows for sample rotations about any user-defined rotation center. Two types of complex sample motions have been programmed to characterize the structure of the TIPS-pentacene crystal: an in-plane powder average has been performed at a fixed grazing-incident angle to determine the lattice parameters of the crystal; then the in-plane component of the scattering vector was continuously rotated in transmission geometry to determine the local crystal orientation.
C1 [Yang, Lin] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA.
[Yang, Hoichang] Inha Univ, Dept Adv Fiber Engn, Inchon, South Korea.
RP Yang, L (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA.
EM lyang@bnl.gov
RI Yang, Lin/D-5872-2013
OI Yang, Lin/0000-0003-1057-9194
FU US Department of Energy [DE-AC02-98CH10886]
FX Use of the National Synchrotron Light Source, Brookhaven National
Laboratory, was supported by the US Department of Energy, Office of
Science, Office of Basic Energy Sciences, under Contract No.
DE-AC02-98CH10886.
NR 13
TC 3
Z9 3
U1 1
U2 5
PU WILEY-BLACKWELL PUBLISHING, INC
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0909-0495
J9 J SYNCHROTRON RADIAT
JI J. Synchrot. Radiat.
PD NOV
PY 2009
VL 16
BP 788
EP 795
DI 10.1107/S0909049509037911
PG 8
WC Instruments & Instrumentation; Optics; Physics, Applied
SC Instruments & Instrumentation; Optics; Physics
GA 510LW
UT WOS:000271091000015
PM 19844015
ER
PT J
AU Swift, GW
Backhaus, S
AF Swift, G. W.
Backhaus, S.
TI The pulse tube and the pendulum
SO JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA
LA English
DT Article
ID INVERTED PENDULUM; ENGINE
AB An inverted pulse tube in which gravity-driven convection is suppressed by acoustic oscillations is analogous to an inverted pendulum that is stabilized by high-frequency vibration of its pivot point. Gravity acts on the gas density gradient arising from the end-to-end temperature gradient in the pulse tube, exerting a force proportional to that density gradient, tending to cause convection when the pulse tube is inverted. Meanwhile, a nonlinear effect exerts an opposing force proportional to the square of any part of the density gradient that is not parallel to the oscillation direction. Experiments show that convection is suppressed when the pulse-tube convection number N(ptc) = omega(2)a(2) root Delta T/T(avg)/[g(alpha D sin theta-L cos theta)] is greater than 1 in slender tubes, where omega is the radian frequency of the oscillations, a is their amplitude, Delta T is the end-to-end temperature difference, T(avg) is the average absolute temperature, g is the acceleration of gravity, L is the length of the pulse tube and D is its diameter, alpha is about 1.5, and the tip angle theta ranges from 90 for a horizontal tube to 180 for an inverted tube. Theory suggests that the temperature dependence should be Delta T/T(avg) instead of root Delta T/T(avg). (C) 2009 Acoustical Society of America. [DOI: 10.1121/1.3238156]
C1 [Swift, G. W.; Backhaus, S.] Los Alamos Natl Lab, Condensed Matter & Thermal Phys Grp, Los Alamos, NM 87545 USA.
RP Swift, GW (reprint author), Los Alamos Natl Lab, Condensed Matter & Thermal Phys Grp, POB 1663, Los Alamos, NM 87545 USA.
RI Backhaus, Scott/F-4285-2012;
OI Backhaus, Scott/0000-0002-0344-6791
NR 19
TC 5
Z9 5
U1 1
U2 3
PU ACOUSTICAL SOC AMER AMER INST PHYSICS
PI MELVILLE
PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA
SN 0001-4966
J9 J ACOUST SOC AM
JI J. Acoust. Soc. Am.
PD NOV
PY 2009
VL 126
IS 5
BP 2273
EP 2284
DI 10.1121/1.3238156
PG 12
WC Acoustics; Audiology & Speech-Language Pathology
SC Acoustics; Audiology & Speech-Language Pathology
GA 515XU
UT WOS:000271507000027
PM 19894809
ER
PT J
AU Vesper, S
McKinstry, C
Cox, D
Dewalt, G
AF Vesper, Stephen
McKinstry, Craig
Cox, David
Dewalt, Gary
TI Correlation between ERMI Values and Other Moisture and Mold Assessments
of Homes in the American Healthy Homes Survey
SO JOURNAL OF URBAN HEALTH-BULLETIN OF THE NEW YORK ACADEMY OF MEDICINE
LA English
DT Article
DE Mold; Moisture; MSQPCR; ERMI; Inner city; Questionnaire
ID QUANTITATIVE PCR ANALYSIS; RELATIVE MOLDINESS INDEX; ASTHMA MORBIDITY;
INNER-CITY; CHILDREN; INDOOR; CHILDHOOD; EXPOSURES; DAMPNESS; FUNGI
AB The main objective of this study was to evaluate the correlation between the Environmental Relative Moldiness Index (ERMI) values in the Department of Housing and Urban Development American Healthy Homes Survey (AHHS) homes and an alternative analysis frequently used in mold investigations, i.e., the inspector's "walk-through" assessment of visual or olfactory evidence of mold combined with occupant's answers to a questionnaire about mold odors and moisture. Homes in the highest ERMI quartile were in agreement with visual inspection and/or occupant assessment 48% of the time but failed to detect the mold in 52% of the fourth quartile homes. In about 7% of lowest ERMI quartile homes, the inspection and occupant assessments overestimated the mold problem. The ERMI analysis of dust from homes may be useful in finding hidden mold problems. An additional objective was to compare the ERMI values in inner city east-Baltimore homes, where childhood asthma is common, to the AHHS randomly selected homes.
C1 [Vesper, Stephen] US EPA, Cincinnati, OH 45268 USA.
[McKinstry, Craig] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Cox, David; Dewalt, Gary] QuanTech, Arlington, VA USA.
RP Vesper, S (reprint author), US EPA, Cincinnati, OH 45268 USA.
EM vesper.stephen@epa.gov
FU U. S. EPA Asthma Initiative
FX This research was partially supported by funding from the U. S. EPA
Asthma Initiative.
NR 26
TC 14
Z9 14
U1 2
U2 13
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1099-3460
J9 J URBAN HEALTH
JI J. Urban Health
PD NOV
PY 2009
VL 86
IS 6
BP 850
EP 860
DI 10.1007/s11524-009-9384-1
PG 11
WC Public, Environmental & Occupational Health; Medicine, General &
Internal
SC Public, Environmental & Occupational Health; General & Internal Medicine
GA 531DU
UT WOS:000272643700004
PM 19536652
ER
PT J
AU Gao, Y
Xue, JM
Zhang, DZ
Wang, ZL
Lan, CN
Yan, S
Wang, YG
Xu, FJ
Shen, B
Zhang, YW
AF Gao, Yuan
Xue, Jianming
Zhang, Dongzheng
Wang, Zilong
Lan, Chune
Yan, Sha
Wang, Yugang
Xu, Fujun
Shen, Bo
Zhang, Yanwen
TI Damage evolution in GaN under MeV heavy ion implantation
SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B
LA English
DT Article
DE annealing; atomic force microscopy; gallium compounds; III-V
semiconductors; ion beam effects; ion implantation; ion-surface impact;
point defects; wide band gap semiconductors
ID DECOMPOSITION; DEFECTS; AIN
AB Damage evaluation processes in patterned GaN implanted by 3 MeV Au(2+) ions were investigated as a function of ion fluences and annealing temperatures. Surface swelling was observed by using atomic force microscopy and the results showed that the swelling height depends on ion fluence and annealing temperature. The authors observed four-stage implantation-induced damage evolution including point-defect formation, defect clustering, amorphization/bubble formation, and eventually, decomposition. This evolution is contributed to irradiation-induced defect production and defect migration/accumulation occurred at different levels of displacement per atom. Craterlike holes were observed on the surface of GaN implanted at the ion fluence of 2x10(16) cm(-2), which is evidence of N loss, and broken bubbles formed during implantation.
C1 [Gao, Yuan; Xue, Jianming; Zhang, Dongzheng; Wang, Zilong; Lan, Chune; Yan, Sha; Wang, Yugang] Peking Univ, State Key Lab Nucl Phys & Technol, Ctr Appl Phys & Technol, Beijing 100871, Peoples R China.
[Xu, Fujun; Shen, Bo] Peking Univ, State Key Lab Artificial Microstruct & Mesoscop P, Beijing 100871, Peoples R China.
[Zhang, Yanwen] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Wang, YG (reprint author), Peking Univ, State Key Lab Nucl Phys & Technol, Ctr Appl Phys & Technol, Beijing 100871, Peoples R China.
EM ygwang@pku.edu.cn
FU Ministry of Science and Technology of China [2010CB832904]; Division of
Materials Science and Engineering, Office of Basic Energy Sciences, U.
S. Department of Energy [2010CB832904, DE-AC05-76RL01830]
FX The authors would like to thank L. P. Wen for assistance in AFM, and L.
W. Sang and D. Li for assistance in thermal annealing process. This work
was financially supported by the Ministry of Science and Technology of
China (Grant No. 2010CB832904). Y. Z. was supported by the Division of
Materials Science and Engineering, Office of Basic Energy Sciences, U.
S. Department of Energy. A portion of the research was performed at the
Environmental Molecular Sciences Laboratory (EMSL), a national
scientific user facility sponsored by the Department of Energy's Office
of Biological and Environmental Research. Pacific Northwest National
Laboratory is operated by Battelle for the U. S. Department of Energy
under Contract No. DE-AC05-76RL01830.
NR 23
TC 4
Z9 4
U1 0
U2 6
PU A V S AMER INST PHYSICS
PI MELVILLE
PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA
SN 1071-1023
J9 J VAC SCI TECHNOL B
JI J. Vac. Sci. Technol. B
PD NOV
PY 2009
VL 27
IS 6
BP 2342
EP 2346
DI 10.1116/1.3244591
PG 5
WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology;
Physics, Applied
SC Engineering; Science & Technology - Other Topics; Physics
GA 533DS
UT WOS:000272803400009
ER
PT J
AU Li, JV
Li, XN
Yan, YF
Jiang, CS
Metzger, WK
Repins, IL
Contreras, MA
Levi, DH
AF Li, Jian V.
Li, Xiaonan
Yan, Yanfa
Jiang, Chun-Sheng
Metzger, Wyatt K.
Repins, Ingrid L.
Contreras, Miguel A.
Levi, Dean H.
TI Influence of sputtering a ZnMgO window layer on the interface and bulk
properties of Cu(In,Ga)Se-2 solar cells
SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B
LA English
DT Article
DE cadmium compounds; carrier density; copper compounds; deep levels; Fermi
level; gallium compounds; II-VI semiconductors; indium compounds;
interface states; secondary ion mass spectra; semiconductor doping;
solar cells; sputtering; ternary semiconductors; zinc compounds
ID PROBE FORCE MICROSCOPY; CONDUCTION-BAND OFFSET; PHOTOLUMINESCENCE;
MGXZN1-XO; CUGASE2; DEVICES; ALLOY; FILMS; CIGS; GAP
AB The authors studied the influence of sputtering a ZnMgO window layer for Cu(In,Ga)Se-2 solar cells on bulk and interface electrical properties. Admittance spectroscopy reveals deep levels at the ZnMgO/CdS interface whose activation energy (similar to 0.4 eV) increases with reverse bias, indicating an unpinned quasi-Fermi level at the interface. The Cu(In,Ga)Se-2 carrier concentration determined by capacitance-voltage measurements decreases to 3x10(14) cm(-3), compared to 1x10(16) cm(-3) in a device with a ZnO window. Scanning Kelvin probe force microscopy verifies the increased depletion region width and indicates that the junction location is unaltered by ZnMgO. Secondary-ion mass spectroscopy shows the presence of Mg near the top and bottom surfaces of the Cu(In,Ga)Se-2 film. They hypothesize that the decrease in carrier concentration is due to compensation doping of the Cu-poor Cu(In,Ga)Se-2 by Mg. Optimizing sputtering conditions to reduce surface damage and Mg migration eliminates the interface states and restores the carrier concentration, resulting in device performance comparable to those with a ZnO window.
C1 [Li, Jian V.; Li, Xiaonan; Yan, Yanfa; Jiang, Chun-Sheng; Metzger, Wyatt K.; Repins, Ingrid L.; Contreras, Miguel A.; Levi, Dean H.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Li, JV (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.
EM jian.li@nrel.gov
RI jiang, chun-sheng/F-7839-2012; Li, Jian/B-1627-2016
FU U. S. Department of Energy [DOE-AC36-08GO28308]
FX The authors wish to thank Dr. Ana Kanevce for helping with SCAPS
simulation, and Mathew Young and Dr. Sally Asher for SIMS experiments.
This work was supported by the U. S. Department of Energy under Contract
No. DOE-AC36-08GO28308 with the National Renewable Energy Laboratory.
NR 27
TC 3
Z9 3
U1 2
U2 29
PU A V S AMER INST PHYSICS
PI MELVILLE
PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA
SN 1071-1023
J9 J VAC SCI TECHNOL B
JI J. Vac. Sci. Technol. B
PD NOV
PY 2009
VL 27
IS 6
BP 2384
EP 2389
DI 10.1116/1.3256230
PG 6
WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology;
Physics, Applied
SC Engineering; Science & Technology - Other Topics; Physics
GA 533DS
UT WOS:000272803400016
ER
PT J
AU Kabulski, A
Korakakis, D
AF Kabulski, A.
Korakakis, D.
TI Transport mechanism in aluminum nitride-metal multilayer junctions
SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B
LA English
DT Article
DE aluminium compounds; electrical conductivity; hopping conduction; III-V
semiconductors; multilayers; platinum; semiconductor thin films;
semiconductor-metal boundaries; tunnelling; wide band gap semiconductors
ID FILMS; EMISSION; ELECTRODES
AB The electrical behavior of aluminum nitride (AlN) thin film structures consisting of alternating AlN and platinum (Pt) layers has been studied. Typical single layer AlN thin films are insulating due to the wide bandgap properties of the material, but stacked AlN-Pt structures can be conductive. Conductivity studies of the structures indicate regions of semiconductor behavior as well as regions where tunneling occurs. The thickness of the AlN layers, as well as the number of AlN-Pt interfaces in the structures, is found to impact the conduction and tunneling mechanism. Fowler-Nordheim theory and plots were used to determine trends in the electrical behavior and it was found that the field enhancement factor depends on the total thickness of the AlN layers, while the conduction mechanism, tunneling, or multistep hopping between midbandgap states, depends on the number of interfaces as well.
C1 [Kabulski, A.; Korakakis, D.] W Virginia Univ, Lane Dept Comp Sci & Elect Engn, Morgantown, WV 26505 USA.
[Korakakis, D.] Natl Energy Technol Lab, Morgantown, WV 26507 USA.
RP Kabulski, A (reprint author), W Virginia Univ, Lane Dept Comp Sci & Elect Engn, Morgantown, WV 26505 USA.
EM kabulski@gmail.com
NR 15
TC 2
Z9 2
U1 0
U2 6
PU A V S AMER INST PHYSICS
PI MELVILLE
PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA
SN 1071-1023
J9 J VAC SCI TECHNOL B
JI J. Vac. Sci. Technol. B
PD NOV
PY 2009
VL 27
IS 6
BP 2404
EP 2407
DI 10.1116/1.3258658
PG 4
WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology;
Physics, Applied
SC Engineering; Science & Technology - Other Topics; Physics
GA 533DS
UT WOS:000272803400019
ER
PT J
AU Ocola, LE
AF Ocola, L. E.
TI Nanoscale geometry assisted proximity effect correction for electron
beam direct write nanolithography
SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B
LA English
DT Article
DE electron beam lithography; nanolithography; proximity effect
(lithography)
ID LITHOGRAPHY; PATTERN
AB Nanoscale geometry assisted proximity effect correction is presented for nanoscale structures and the results clearly show improvements in feature sharpness down to 20 nm structures. The design rule is simple to implement onto existing PEC software and enables implementation of PEC down to the resolution limits of electron beam lithography.
C1 Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
RP Ocola, LE (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM ocola@anl.gov
FU Department of Energy [DE-AC02-06CH11357]; U. S. Department of Energy,
Office of Basic Energy Sciences [DE-AC02-06CH11357]
FX This work was supported by the Department of Energy under Contract No.
DE-AC02-06CH11357. Use of the Center for Nanoscale Materials was
supported by the U. S. Department of Energy, Office of Basic Energy
Sciences, under Contract No. DE-AC02-06CH11357.
NR 9
TC 5
Z9 5
U1 0
U2 1
PU A V S AMER INST PHYSICS
PI MELVILLE
PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA
SN 1071-1023
J9 J VAC SCI TECHNOL B
JI J. Vac. Sci. Technol. B
PD NOV
PY 2009
VL 27
IS 6
BP 2569
EP 2571
DI 10.1116/1.3237135
PG 3
WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology;
Physics, Applied
SC Engineering; Science & Technology - Other Topics; Physics
GA 533DS
UT WOS:000272803400050
ER
PT J
AU Makarova, OV
Tang, CM
Amstutz, P
Divan, R
Imre, A
Mancini, DC
Hoffbauer, M
Williamson, T
AF Makarova, Olga V.
Tang, Cha-Mei
Amstutz, Platte
Divan, Ralu
Imre, Alexandra
Mancini, Derrick C.
Hoffbauer, Mark
Williamson, Todd
TI Fabrication of high density, high-aspect-ratio polyimide nanofilters
SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B
LA English
DT Article
DE electron beam lithography; epitaxial growth; filters; nanofabrication;
nanofiltration; polymers; porosity; porous materials
ID POROUS ALUMINA; MEMBRANES; PORES
AB A novel fabrication process produces high porosity polymer nanofilters with smooth, uniform, and straight pores with high aspect ratios. The process utilizes electron beam lithography and energetic neutral atom beam lithography and epitaxy techniques. The method has the potential to produce a new generation of high-precision, very-high-porosity, biocompatible filters with pore sizes down to 100 nm.
C1 [Makarova, Olga V.; Tang, Cha-Mei; Amstutz, Platte] Creatv MicroTech Inc, Chicago, IL 60612 USA.
[Divan, Ralu; Imre, Alexandra; Mancini, Derrick C.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Hoffbauer, Mark; Williamson, Todd] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Makarova, OV (reprint author), Creatv MicroTech Inc, 2242 W Harrison St, Chicago, IL 60612 USA.
EM olga@creatvmicrotech.com
RI Joshi-Imre, Alexandra/A-2912-2010
OI Joshi-Imre, Alexandra/0000-0002-4271-1623
FU U. S. Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-AC02-06CH11357]
FX The authors gratefully acknowledge support from the U. S. Department of
Energy, Office of Science, Office of Basic Energy Sciences, under
Contract No. DE-AC02-06CH11357 for the use of the Center for Nanoscale
Materials, Argonne National Laboratory.
NR 10
TC 5
Z9 5
U1 1
U2 7
PU A V S AMER INST PHYSICS
PI MELVILLE
PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA
SN 1071-1023
J9 J VAC SCI TECHNOL B
JI J. Vac. Sci. Technol. B
PD NOV
PY 2009
VL 27
IS 6
BP 2585
EP 2587
DI 10.1116/1.3242696
PG 3
WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology;
Physics, Applied
SC Engineering; Science & Technology - Other Topics; Physics
GA 533DS
UT WOS:000272803400053
ER
PT J
AU Chao, WL
Kim, J
Rekawa, S
Fischer, P
Anderson, E
AF Chao, Weilun
Kim, Jihoon
Rekawa, Senajith
Fischer, Peter
Anderson, Erik
TI Hydrogen silsesquioxane double patterning process for 12 nm resolution
x-ray zone plates
SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B
LA English
DT Article
DE gold; nanopatterning; organic compounds; photoresists; soft lithography;
X-ray microscopy; zone plates
ID ELECTRON-BEAM LITHOGRAPHY; MICROSCOPY; NANOMAGNETISM; TEMPERATURE;
FABRICATION; RESIST
AB Soft x-ray zone plate microscopy is a powerful nanoanalytic technique used for a wide variety of scientific and technological studies. Pushing its spatial resolution to 10 nm and below is highly desired and feasible due to the short wavelength of soft x rays. Instruments using Fresnel zone plate lenses achieve a spatial resolution approximately equal to the smallest, outermost zone width. In this work, a double patterning zone plate fabrication process is developed. based on a high resolution resist, hydrogen silsesquioxane (HSQ), to bypass the limitations of conventional single exposure fabrication to pattern density, such as finite beam size, scattering in resist, and modest intrinsic resist contrast. To fabricate HSQ structures with zone widths on the order of 10 nm on gold plating base, a surface conditioning process with (3-mercaptopropyl) trimethoxysilane, 3-MPT, is used, which forms a homogeneous hydroxylation surface on gold surface and provides good anchoring for the desired HSQ structures. Using the new HSQ double patterning process, coupled with an internally developed, subpixel alignment algorithm, the authors have successfully fabricated in-house gold zone plates of 12 nm outer zones. Promising results for 10 nm zone plates have also been obtained. With the 12 nm zone plates, they have achieved a resolution of 12 nm using the full-field soft x-ray microscope, XM-1.
C1 [Chao, Weilun; Rekawa, Senajith; Fischer, Peter; Anderson, Erik] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA.
RP Chao, WL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA.
EM weilun@berkeley.edu
RI MSD, Nanomag/F-6438-2012; Fischer, Peter/A-3020-2010
OI Fischer, Peter/0000-0002-9824-9343
FU Office of Science, Office of Basic Energy Sciences, Materials Sciences
and Engineering Division of the U. S. Department of Energy
[DE-AC02-05CH11231]; National Science Foundation [EEC-0310717]
FX The authors would like to extend gratitude to Farhad Salmassi for
fabricating the multilayer coatings, to Patrick Naulleau for the image
analysis, to Dawn Hilken for assisting the zone plate fabrication, and
to the engineering team for providing the technical support. This work
was supported by the Director, Office of Science, Office of Basic Energy
Sciences, Materials Sciences and Engineering Division of the U. S.
Department of Energy under Contract No. DE-AC02-05CH11231, and the
Engineering Research Centers Program of the National Science Foundation
under NSF Award No. EEC-0310717.
NR 26
TC 12
Z9 14
U1 1
U2 8
PU A V S AMER INST PHYSICS
PI MELVILLE
PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA
SN 1071-1023
J9 J VAC SCI TECHNOL B
JI J. Vac. Sci. Technol. B
PD NOV
PY 2009
VL 27
IS 6
BP 2606
EP 2611
DI 10.1116/1.3242694
PG 6
WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology;
Physics, Applied
SC Engineering; Science & Technology - Other Topics; Physics
GA 533DS
UT WOS:000272803400058
ER
PT J
AU Cord, B
Yang, J
Duan, HG
Joy, DC
Klingfus, J
Berggren, KK
AF Cord, Bryan
Yang, Joel
Duan, Huigao
Joy, David C.
Klingfus, Joseph
Berggren, Karl K.
TI Limiting factors in sub-10 nm scanning-electron-beam lithography
SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B
LA English
DT Article
DE electron beam lithography; nanolithography
ID THERMODYNAMICS; RESOLUTION
AB Achieving the highest possible resolution using scanning-electron-beam lithography (SEBL) has become an increasingly urgent problem in recent years, as advances in various nanotechnology applications [F. S. Bates and G. H. Fredrickson, Annu. Rev. Phys. Chem. 41, 525 (1990); Black , IBM J. Res. Dev. 51, 605 (2007); Yang , J. Chem. Phys. 116, 5892 (2002)] have driven demand for feature sizes well into the sub-10 nm domain, close to the resolution limit of the current generation of SEBL processes. In this work, the authors have used a combination of calculation, modeling, and experiment to investigate the relative effects of resist contrast, beam scattering, secondary electron generation, system spot size, and metrology limitations on SEBL process resolution. In the process of investigating all of these effects, they have also successfully yielded dense structures with a pitch of 12 nm at voltages as low as 10 keV.
C1 [Cord, Bryan; Yang, Joel; Duan, Huigao; Berggren, Karl K.] MIT, Cambridge, MA 02139 USA.
[Joy, David C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Klingfus, Joseph] Raith USA, Ronkonkoma, NY 11779 USA.
RP Cord, B (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA.
EM bcord@alum.mit.edu
RI Duan, Huigao/P-6964-2014; Yang, Joel K.W./L-7892-2016
OI Yang, Joel K.W./0000-0003-3301-1040
NR 15
TC 30
Z9 31
U1 5
U2 33
PU A V S AMER INST PHYSICS
PI MELVILLE
PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA
SN 1071-1023
J9 J VAC SCI TECHNOL B
JI J. Vac. Sci. Technol. B
PD NOV
PY 2009
VL 27
IS 6
BP 2616
EP 2621
DI 10.1116/1.3253603
PG 6
WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology;
Physics, Applied
SC Engineering; Science & Technology - Other Topics; Physics
GA 533DS
UT WOS:000272803400060
ER
PT J
AU Kim, J
Chao, WL
Griedel, B
Liang, XG
Lewis, M
Hilken, D
Olynick, D
AF Kim, Jihoon
Chao, Weilun
Griedel, Brian
Liang, Xiaogan
Lewis, Mark
Hilken, Dawn
Olynick, Deirdre
TI Understanding the base development mechanism of hydrogen silsesquioxane
SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B
LA English
DT Article
DE dissolving; ion exchange; organic compounds; reaction kinetics;
solvation; surface chemistry
ID ELECTRON-BEAM LITHOGRAPHY; X-RAY MICROSCOPY; RESIST; HSQ; RESOLUTION
AB The authors study the dissolution mechanism of hydrogen silsesquioxane in base solutions with the addition of chloride salts to elucidate the development mechanism. The reaction mechanisms are proposed based on the dissolution mechanism of quartz. Development kinetics suggests two dose-dependent development mechanisms. Considering ion sizes, both hydrated and nonhydrated, and ion exchange, they propose that a combination of a surface dominated reaction at higher doses and a matrix dominated reaction at lower doses accounts for the high development contrast with a NaOH base/NaCl salt mixture. The interplay between the hydrated and the nonhydrated ion sizes leads to higher contrast developers, such as tetramethyl ammonium hydroxide with NaCl.
C1 [Kim, Jihoon; Chao, Weilun; Hilken, Dawn] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA.
[Griedel, Brian] Weaver Austin Villeneuve & Sampson LLP, Oakland, CA 94607 USA.
RP Kim, J (reprint author), Princeton Univ, Dept Elect Engn, NanoStruct Lab, Princeton, NJ 08544 USA.
EM jnkim@princeton.edu; dlolynick@lbl.gov
FU Office of Science, Office of Basic Energy Sciences, of the U. S.
Department of Energy [DE-AC02-05CH11231]; National Science Foundation
[EEC-0310717]
FX This work was performed at the Center for X-ray Optics and Molecular
Foundry, Lawrence Berkeley National Laboratory and was partially
supported by the Office of Science, Office of Basic Energy Sciences, of
the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. J.
K. was supported by the Engineering Research Centers Program of the
National Science Foundation under NSF Award No. EEC-0310717. The authors
extend their gratitude to Farhad Salmassi for assisting AFM measurement
and to Bruce Harteneck and Scott Dhuey for pattern exposure.
NR 19
TC 10
Z9 10
U1 0
U2 6
PU A V S AMER INST PHYSICS
PI MELVILLE
PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA
SN 1071-1023
J9 J VAC SCI TECHNOL B
JI J. Vac. Sci. Technol. B
PD NOV
PY 2009
VL 27
IS 6
BP 2628
EP 2634
DI 10.1116/1.3250261
PG 7
WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology;
Physics, Applied
SC Engineering; Science & Technology - Other Topics; Physics
GA 533DS
UT WOS:000272803400062
ER
PT J
AU Maldonado, JR
Sun, Y
Tsai, R
Pease, F
Pianetta, P
AF Maldonado, Juan R.
Sun, Yun
Tsai, Roger
Pease, Fabian
Pianetta, Piero
TI Apparatus to measure electron reflection
SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B
LA English
DT Article
DE electron beam lithography; electron optics; photocathodes
AB Controlling reflection of electrons from an array of electrodes is a key feature of an electron lithography system currently under development. Here the authors describe a technique for characterizing this control. The apparatus is only 30 mm long, features simple colinear electron optics and a photocathode that emits a well-directed, monochromatic beam. The overall energy resolution is better than 1 eV.
C1 [Maldonado, Juan R.; Pease, Fabian] Stanford Univ, Stanford, CA 94305 USA.
[Sun, Yun; Pianetta, Piero] SLAC, Menlo Pk, CA USA.
[Tsai, Roger] KLA Tencor, Milpitas, CA 95035 USA.
RP Maldonado, JR (reprint author), Stanford Univ, Stanford, CA 94305 USA.
EM jrmaldonado@ieee.org
FU DARPA [N66001-07-1-2045]
FX The authors would like to thank Allen Carroll and Alan Brodie from
KLA-Tencor and David Adler for very interesting discussions. This work
was partially funded by DARPA under Grant No. N66001-07-1-2045
administered by SPAWAR. Portions of this research were carried out at
the SLAC National Accelerator Laboratory, a national user facility
operated by Stanford University on Behalf of the U. S. Department of
Energy, Office of Basic Energy Sciences.
NR 4
TC 0
Z9 0
U1 1
U2 4
PU A V S AMER INST PHYSICS
PI MELVILLE
PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA
SN 1071-1023
J9 J VAC SCI TECHNOL B
JI J. Vac. Sci. Technol. B
PD NOV
PY 2009
VL 27
IS 6
BP 2644
EP 2647
DI 10.1116/1.3242695
PG 4
WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology;
Physics, Applied
SC Engineering; Science & Technology - Other Topics; Physics
GA 533DS
UT WOS:000272803400065
ER
PT J
AU Kanouff, MP
Randall, JN
Nadesalingham, M
Kirk, WP
Wallace, RM
AF Kanouff, M. P.
Randall, J. N.
Nadesalingham, M.
Kirk, W. P.
Wallace, R. M.
TI High rate gas dosing for tip based nanofabrication processes
SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B
LA English
DT Article
DE aerodynamics; atomic force microscopy; catalysts; electric fields;
electron beams; Monte Carlo methods; nanofabrication; nanostructured
materials; scanning tunnelling microscopy
ID BEAM SOURCES; MULTICHANNEL ARRAYS; SPEED DISTRIBUTION; SURFACE SCIENCE;
CAPILLARY; ADSORPTION; DESIGN; PRESSURE; DISILANE; HYDROGEN
AB Tip based nanofabrication (TBN) processes promise unprecedented degrees of control and precision for the manufacture of nanostructured materials and devices. These processes use atomic force microscope or scanning tunneling microscope tips to create localized electric fields, electron beams, and other catalyzing conditions to control and detect the position, size, dimension, and orientation of nanostructures. Tip based approaches have deposited metals, oxides, and organic molecules to name a few. Often, a gas phase precursor is required to provide the material for the deposit. The TBN conditions for gas dosing are unique compared to other fabrication processes, e.g., chemical vapor deposition. The manufacture of precision nanostructures requires a contamination-free environment, and hence ultrahigh vacuum conditions must be maintained in the chamber. This can cause a gas jet from a doser to spread into a wide fan resulting in a small precursor flux with a broad distribution. This makes it difficult to meet the large fabrication rates desired for TBN. Ideally, gas dosing would promote rapid deposition rates while limiting the chamber pressure by creating a focused gas jet that is restricted to the intended fabrication area. Continuum gas dynamics and direct simulation Monte Carlo calculations were used to study the effect of design and operational parameters on gas doser performance. The source pressure, doser design, and operating conditions are shown to affect the flux distribution at the substrate. The calculated results are compared to experimental measurements. A novel gas doser design was identified and its performance predicted.
C1 [Kanouff, M. P.] Sandia Natl Labs, Livermore, CA 94550 USA.
[Randall, J. N.] Zyvex Labs, Richardson, TX 75081 USA.
[Nadesalingham, M.; Kirk, W. P.; Wallace, R. M.] Univ Texas Dallas, Dept Mat Sci & Engn, Richardson, TX 75081 USA.
RP Kanouff, MP (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA.
EM kanouff@sandia.gov
RI Wallace, Robert/A-5283-2008
OI Wallace, Robert/0000-0001-5566-4806
FU DARPA Micro Technology Office; Lockheed Martin Company
[DEAC04-94-AL85000]
FX This research was funded by the DARPA Micro Technology Office. Sandia is
a multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the United States Department of Energy
contract/Grant No. DEAC04-94-AL85000.
NR 23
TC 3
Z9 3
U1 0
U2 6
PU A V S AMER INST PHYSICS
PI MELVILLE
PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA
SN 1071-1023
J9 J VAC SCI TECHNOL B
JI J. Vac. Sci. Technol. B
PD NOV
PY 2009
VL 27
IS 6
BP 2769
EP 2775
DI 10.1116/1.3259955
PG 7
WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology;
Physics, Applied
SC Engineering; Science & Technology - Other Topics; Physics
GA 533DS
UT WOS:000272803400089
ER
PT J
AU Chang, ASP
Peroz, C
Liang, XG
Dhuey, S
Harteneck, B
Cabrini, S
AF Chang, Allan S. P.
Peroz, Christophe
Liang, Xiaogan
Dhuey, Scott
Harteneck, Bruce
Cabrini, Stefano
TI Nanoimprint planarization of high aspect ratio nanostructures using
inorganic and organic resist materials
SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B
LA English
DT Article
DE hydrophobicity; nanolithography; nanostructured materials; photonic
crystals; planarisation; resists; soft lithography
ID PHOTONIC CRYSTAL; FABRICATION; GLASS; SPIN; LITHOGRAPHY; DIELECTRICS;
IMPRINT
AB Planarization is often crucial to the implementation of three-dimensional devices and systems. By using a pressing process analogous to nanoimprint, the authors show that moderate to high aspect ratio (>= 3) photonic nanostructures in the form of one-dimensional and two-dimensional photonic crystals can be effectively planarized with thermally cured sol-gel or uv-curable nanoimprint resist materials. The planarization results are strongly dependent on parameters such as pressing pressure, hydrophobicity of feature surface, spin conditions for sol-gel, and dispense volume for uv-curable. High degree of planarization and complete filling of open features can be achieved through optimization of imprint parameters. Nanoimprint planarization may thus offer a simple, low cost, fast, and viable alternative planarization methodology.
C1 [Chang, Allan S. P.; Peroz, Christophe; Liang, Xiaogan; Dhuey, Scott; Harteneck, Bruce; Cabrini, Stefano] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Peroz, Christophe] Abeam Technol, Castro Valley, CA 94546 USA.
RP Chang, ASP (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
EM aspchang@lbl.gov
NR 22
TC 2
Z9 2
U1 0
U2 6
PU A V S AMER INST PHYSICS
PI MELVILLE
PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA
SN 1071-1023
J9 J VAC SCI TECHNOL B
JI J. Vac. Sci. Technol. B
PD NOV
PY 2009
VL 27
IS 6
BP 2877
EP 2881
DI 10.1116/1.3256658
PG 5
WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology;
Physics, Applied
SC Engineering; Science & Technology - Other Topics; Physics
GA 533DS
UT WOS:000272803400112
ER
PT J
AU Clifford, CH
Wiraatmadja, S
Chan, TT
Neureuther, AR
Goldberg, KA
Mochi, I
Liang, T
AF Clifford, Chris H.
Wiraatmadja, Sandy
Chan, Tina T.
Neureuther, Andrew R.
Goldberg, Kenneth A.
Mochi, Iacopo
Liang, Ted
TI Comparison of fast three-dimensional simulation and actinic inspection
for extreme ultraviolet masks with buried defects and absorber features
SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B
LA English
DT Article
DE masks; semiconductor process modelling; ultraviolet lithography
AB The printability of buried extreme ultraviolet (EUV) defects near absorber features is studied using aerial images from the actinic inspection tool (AIT) and the fast EUV mask simulation program RADICAL. This work begins by comparing the printability of isolated defects through focus predicted by RADICAL and measured by the AIT. Then, images of defects near features from both simulation and experiment are investigated for different defect sizes and positions through focus. Finally, RADICAL is used to assess the expected defect printability levels in the less in coherent conditions which are expected to be used for production. Defect printability will be investigated as a function of defect size, position, and focus for the small absorber lines critical to 22 nm imaging using a top-hat illumination condition of sigma=0.75. Here, defects as small as 0.8 nm surface height cause a critical dimension (CD) change greater than 10% at best focus when located in the worst case position. Defects as small as 2.2 nm cause a CD change greater than 10% even when located under the center of the absorber.
C1 [Clifford, Chris H.; Wiraatmadja, Sandy; Chan, Tina T.; Neureuther, Andrew R.] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA.
[Goldberg, Kenneth A.; Mochi, Iacopo] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Liang, Ted] Intel Corp, Santa Clara, CA 95054 USA.
RP Clifford, CH (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Cory Hall, Berkeley, CA 94720 USA.
EM chris@eecs.berkeley.edu
NR 7
TC 4
Z9 4
U1 0
U2 2
PU A V S AMER INST PHYSICS
PI MELVILLE
PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA
SN 1071-1023
J9 J VAC SCI TECHNOL B
JI J. Vac. Sci. Technol. B
PD NOV
PY 2009
VL 27
IS 6
BP 2888
EP 2893
DI 10.1116/1.3244624
PG 6
WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology;
Physics, Applied
SC Engineering; Science & Technology - Other Topics; Physics
GA 533DS
UT WOS:000272803400114
ER
PT J
AU Naulleau, PP
Anderson, CN
Baclea-an, LM
Denham, P
George, S
Goldberg, KA
Goldstein, M
Hoef, B
Jones, G
Koh, C
La Fontaine, B
Montgomery, W
Wallow, T
AF Naulleau, Patrick P.
Anderson, Christopher N.
Baclea-an, Lorie-Mae
Denham, Paul
George, Simi
Goldberg, Kenneth A.
Goldstein, Michael
Hoef, Brian
Jones, Gideon
Koh, Chawon
La Fontaine, Bruno
Montgomery, Warren
Wallow, Tom
TI Pushing extreme ultraviolet lithography development beyond 22 nm half
pitch
SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B
LA English
DT Article
DE masks; resists; surface roughness; ultraviolet lithography
ID LINE-EDGE ROUGHNESS; MASK-ROUGHNESS; TOOL
AB Microfield exposure tools (METs) have and continue to play a dominant role in the development of extreme ultraviolet resists and masks. One of these tools is the SEMATECH Berkeley 0.3 numerical aperture (NA) MET. Here, the authors investigate the possibilities and limitations of using the 0.3 NA MET for sub-22-nm half-pitch development. They consider mask resolution limitations and present a method unique to the centrally obscured MET, allowing mask patterning resolution limitations to be overcome. The method, however, comes at the cost of increased sensitivity to mask surface roughness. They also explore projection optics resolution limits and describe various illumination schemes allowing resolution enhancement. At 0.3 NA, the 0.5k(1) factor resolution limit is 22.5 nm, meaning that conventional illumination is of limited utility for sub-22-nm development. In general, resolution enhancing illumination encompasses increased coherence. They study the effect of this increased coherence on line-edge roughness (LER), which, along with resolution, is another crucial factor in sub-22-nm resist development. Due to coherence induced LER limitations, addressing the development at 16 nm half pitch and beyond will ultimately require higher NA systems.
C1 [Naulleau, Patrick P.; Baclea-an, Lorie-Mae; Denham, Paul; George, Simi; Goldberg, Kenneth A.; Hoef, Brian; Jones, Gideon] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA.
[Anderson, Christopher N.] Univ Calif Berkeley, Appl Sci & Technol Grad Grp, Berkeley, CA 94720 USA.
[Goldstein, Michael; Koh, Chawon; Montgomery, Warren] SEMATECH, Albany, NY 12203 USA.
[La Fontaine, Bruno; Wallow, Tom] Adv Micro Devices Inc, Sunnyvale, CA 94088 USA.
RP Naulleau, PP (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA.
EM pnaulleau@lbl.gov
FU SEMATECH; DOE, Office of Science, Basic Energy Sciences
FX The authors are greatly indebted to Kevin Bradley, Rene Delano, Jeff
Gamsby, Eric Gullikson, Bob Gunion, Senajith Rekawa, Ron Tackaberry, and
Farhad Salmassi for expert engineering, technical, and fabrication
support. The authors are also grateful to Shinji Tarutani of Fujifilm
and Jim Thackeray and Katherine Spear of Rohm and Haas for resist
support. Finally, the authors acknowledge the programmatic support from
Frank Goodwin, Bryan Rice, and Stefan Wurm of SEMATECH. This work was
supported by SEMATECH and carried out at Lawrence Berkeley National
Laboratory's Advanced Light Source, which is supported by the DOE,
Office of Science, Basic Energy Sciences.
NR 13
TC 4
Z9 4
U1 0
U2 4
PU A V S AMER INST PHYSICS
PI MELVILLE
PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA
SN 1071-1023
J9 J VAC SCI TECHNOL B
JI J. Vac. Sci. Technol. B
PD NOV
PY 2009
VL 27
IS 6
BP 2911
EP 2915
DI 10.1116/1.3237092
PG 5
WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology;
Physics, Applied
SC Engineering; Science & Technology - Other Topics; Physics
GA 533DS
UT WOS:000272803400118
ER
PT J
AU Goldberg, KA
Mochi, I
Naulleau, P
Liang, T
Yan, PY
Huh, S
AF Goldberg, K. A.
Mochi, I.
Naulleau, P.
Liang, T.
Yan, P-Y
Huh, S.
TI EUV pattern defect detection sensitivity based on aerial image linewidth
measurements
SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B
LA English
DT Article
DE lithography; masks; pattern recognition
AB As the quality of EUV-wavelength mask inspection microscopes improves over time, the image properties and intensity profiles of reflected light can be evaluated in ever-greater detail. The SEMATECH Berkeley Actinic Inspection Tool (AIT) is one such microscope, featuring mask resolution values that match or exceed those available through lithographic printing in current photoresists. In order to evaluate the defect detection sensitivity of the AIT for dense line patterns on typical masks, the authors study the linewidth roughness (LWR) on two masks, as measured in the EUV images. They report the through-focus and pitch dependence of contrast, image log slope, linewidth, and LWR. The AIT currently reaches LWR 3 sigma values close to 9 nm for 175 nm half-pitch lines. This value is below 10% linewidth for nearly all lines routinely measured in the AIT. Evidence suggests that this lower level may arise from the mask's inherent pattern roughness. While the sensitivity limit of the AIT has not yet been established, it is clear that the AIT has the required sensitivity to detect defects that cause 10% linewidth changes in line sizes of 125 nm and larger.
C1 [Goldberg, K. A.; Mochi, I.; Naulleau, P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Liang, T.; Yan, P-Y] Intel Corp, Santa Clara, CA 95054 USA.
[Huh, S.] SEMATECH, Albany, NY 12203 USA.
RP Goldberg, KA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Mail Stop 2-400, Berkeley, CA 94720 USA.
EM kagoldberg@lbl.gov
FU SEMATECH [LITH-343S2]; University of California Lawrence Berkeley
National Laboratory [DE-AC02-05CH11231]
FX The authors gratefully acknowledge the support of SEMATECH and many LBNL
team members who make this research possible. The AIT's technical
support team includes Nathan Smith, Charles D. Kemp, Paul Denham, Robert
Gunion, Brian Hoef, Hanjing Han, Kenneth Woolfe, Jeffrey Gamsby, and Ron
Tackaberry. The AIT's chief engineer is Senajith Rekawa. Contributing
scientists include James Macdougall, Hakseung Han, and Bruno LaFontaine.
This work is funded by SEMATECH under Project No. LITH-343S2 and was
performed under the auspices of the U.S. Department of Energy by
University of California Lawrence Berkeley National Laboratory under
Contract No. DE-AC02-05CH11231.
NR 15
TC 15
Z9 15
U1 0
U2 0
PU A V S AMER INST PHYSICS
PI MELVILLE
PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA
SN 1071-1023
J9 J VAC SCI TECHNOL B
JI J. Vac. Sci. Technol. B
PD NOV
PY 2009
VL 27
IS 6
BP 2916
EP 2921
DI 10.1116/1.3264676
PG 6
WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology;
Physics, Applied
SC Engineering; Science & Technology - Other Topics; Physics
GA 533DS
UT WOS:000272803400119
ER
PT J
AU Miyakawaa, R
Naulleau, P
Zakhor, A
AF Miyakawaa, Ryan
Naulleau, Patrick
Zakhor, Avideh
TI Iterative procedure for in situ extreme ultraviolet optical testing with
an incoherent source
SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B
LA English
DT Article
DE aberrations; iterative methods; light coherence; lighting; optical
testing
AB The authors propose an iterative method for in situ optical testing under partially coherent illumination that relies on the rapid computation of aerial images. In this method, a known pattern is imaged with the test optics at several planes through focus. A model is created that iterates through possible aberration maps until the through-focus series of aerial images matches the experimental result. The computation time of calculating the through-focus series is significantly reduced by reduced optimized coherent sum, an adapted form of the sum of coherent systems decomposition. In this method, the Hopkins formulation is described by an operator S, which maps the space of pupil aberrations to the space of aerial images. This operator is well approximated by a truncated sum of its spectral components.
C1 [Miyakawaa, Ryan; Naulleau, Patrick] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Zakhor, Avideh] Univ Calif Berkeley, Dept Elect Engn, Berkeley, CA 94720 USA.
RP Miyakawaa, R (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
EM rhmiyakawa@lbl.gov
NR 7
TC 6
Z9 6
U1 0
U2 1
PU A V S AMER INST PHYSICS
PI MELVILLE
PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA
SN 1071-1023
J9 J VAC SCI TECHNOL B
JI J. Vac. Sci. Technol. B
PD NOV
PY 2009
VL 27
IS 6
BP 2927
EP 2930
DI 10.1116/1.3259961
PG 4
WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology;
Physics, Applied
SC Engineering; Science & Technology - Other Topics; Physics
GA 533DS
UT WOS:000272803400121
ER
PT J
AU Ho, H
Skinner, JL
AF Ho, Harvey
Skinner, Jack L.
TI Fabrication methods for creating flexible polymer substrate sensor tags
SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B
LA English
DT Article
DE electric impedance; photodiodes; polymers; surface acoustic wave
filters; surface acoustic wave sensors; wireless sensor networks
ID SAW SENSORS
AB The authors describe the design, fabrication, and testing of a passive wireless sensor platform utilizing low-cost commercial surface acoustic wave (SAW) filters and sensors. Polyimide and polyethylene terephthalate sheets are used as substrates to create a flexible sensor tag that can be applied to curved surfaces. A microfabricated antenna is integrated on the substrate in order to create a compact form factor. The sensor tags are fabricated using 315 MHz SAW filters and photodiodes and tested with the aid of a fiber-coupled tungsten lamp. Microwave energy transmitted from a network analyzer is used to interrogate the sensor tag. Due to an electrical impedance mismatch at the SAW filter and sensor, energy is reflected at the sensor load and reradiated from the integrated antenna. By selecting sensors that change electrical impedance based on environmental conditions, the sensor state can be inferred through measurement of the reflected energy profile. Testing has shown that a calibrated system utilizing this type of sensor tag can detect distinct light levels wireless and passively. The authors also demonstrate simultaneous operation of two tags with different center passbands that detects light. Ranging tests show that the sensor tags can operate at a distance of at least 3.6 m.
C1 [Ho, Harvey; Skinner, Jack L.] Sandia Natl Labs, Livermore, CA 94551 USA.
RP Ho, H (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA.
EM jlskinn@sandia.gov
FU U. S. Department of Energy [DEAC04-94AL85000]
FX The work performed by Sandia National Laboratories is under the auspices
of the U. S. Department of Energy, Contract No. DEAC04-94AL85000.
NR 10
TC 2
Z9 2
U1 2
U2 6
PU A V S AMER INST PHYSICS
PI MELVILLE
PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA
SN 1071-1023
J9 J VAC SCI TECHNOL B
JI J. Vac. Sci. Technol. B
PD NOV
PY 2009
VL 27
IS 6
BP 3104
EP 3108
DI 10.1116/1.3258142
PG 5
WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology;
Physics, Applied
SC Engineering; Science & Technology - Other Topics; Physics
GA 533DS
UT WOS:000272803400157
ER
PT J
AU Moldovan, N
Divan, R
Zeng, HJ
Carlisle, JA
AF Moldovan, Nicolaie
Divan, Ralu
Zeng, Hongjun
Carlisle, John A.
TI Nanofabrication of sharp diamond tips by e-beam lithography and
inductively coupled plasma reactive ion etching
SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B
LA English
DT Article
DE atomic force microscopy; diamond; electron beam lithography;
nanofabrication; plasma materials processing; sputter etching
ID DIP-PEN NANOLITHOGRAPHY; ULTRANANOCRYSTALLINE DIAMOND; MEMS
APPLICATIONS; CVD DIAMOND; THIN-FILMS; FABRICATION; PROBES; O-2;
MICROSCOPY; DEPOSITION
AB Ultrasharp diamond tips make excellent atomic force microscopy probes, field emitters, and abrasive articles due to diamond's outstanding physical properties, i.e., hardness, low friction coefficient, low work function, and toughness. Sharp diamond tips are currently fabricated as individual tips or arrays by three principal methods: (1) focused ion beam milling and gluing onto a cantilever of individual diamond tips, (2) coating silicon tips with diamond films, or (3) molding diamond into grooves etched in a sacrificial substrate, bonding the sacrificial substrate to another substrate or electrodepositing of a handling chip, followed by dissolution of the sacrificial substrate. The first method is tedious and serial in nature but does produce very sharp tips, the second method results in tips whose radius is limited by the thickness of the diamond coating, while the third method involves a costly bonding and release process and difficulties in thoroughly filling the high aspect ratio apex of molding grooves with diamond at the nanoscale. To overcome the difficulties with these existing methods, this article reports on the feasibility of the fabrication of sharp diamond tips by direct etching of ultrananocrystalline diamond (UNCD (R)) as a starting and structural material. The UNCD is reactive ion etched using a cap-precursor-mask scheme. An optimized etching recipe demonstrates the formation of ultrasharp diamond tips (similar to 10 nm tip radius) with etch rates of 650 nm/min.
C1 [Moldovan, Nicolaie; Zeng, Hongjun; Carlisle, John A.] Adv Diamond Technol Inc, Romeoville, IL 60446 USA.
[Divan, Ralu] Argonne Natl Lab, Argonne, IL 60439 USA.
RP Moldovan, N (reprint author), Adv Diamond Technol Inc, Romeoville, IL 60446 USA.
EM moldovan@thindiamond.com
FU U. S. Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-AC02-06CH11357]
FX The authors acknowledge the use of the Center for Nanoscale Materials,
Argonne National Laboratory, supported by the U. S. Department of
Energy, Office of Science, Office of Basic Energy Sciences, under
Contract No. DE-AC02-06CH11357.
NR 23
TC 13
Z9 13
U1 3
U2 13
PU A V S AMER INST PHYSICS
PI MELVILLE
PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA
SN 1071-1023
J9 J VAC SCI TECHNOL B
JI J. Vac. Sci. Technol. B
PD NOV
PY 2009
VL 27
IS 6
BP 3125
EP 3131
DI 10.1116/1.3263174
PG 7
WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology;
Physics, Applied
SC Engineering; Science & Technology - Other Topics; Physics
GA 533DS
UT WOS:000272803400161
ER
PT J
AU Babin, S
Peroz, C
Bugrov, A
Goltsov, A
Ivonin, I
Yankov, V
Dhuey, S
Cabrini, S
Kley, EB
Schmidt, H
AF Babin, S.
Peroz, C.
Bugrov, A.
Goltsov, A.
Ivonin, I.
Yankov, V.
Dhuey, S.
Cabrini, S.
Kley, E. -B.
Schmidt, H.
TI Fabrication of novel digital optical spectrometer on chip
SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B
LA English
DT Article
DE holography; visible spectrometers
ID GRATINGS
AB A novel type of digital optical spectrometer on chip is proposed and first results of their fabrication and characterization are reported. The devices are based on computer-designed digital planar holograms which involves millions of lines specifically located and oriented in order to direct the output light into the designed focal points according to the wavelength. Spectrometers were fabricated on silicon dioxide and hafnium dioxide planar waveguides using electron beam lithography and dry etching. The optical performances of the first devices with up to 1000 channels for a central wavelength of 660 nm are reported.
C1 [Babin, S.; Peroz, C.] aBeam Technol, Castro Valley, CA 94546 USA.
[Bugrov, A.; Goltsov, A.; Ivonin, I.; Yankov, V.] Nanoopt Devices, Washington Township, NJ 07676 USA.
[Dhuey, S.; Cabrini, S.] Lawrence Berkeley Natl Lab, Berkeley, CA 94702 USA.
[Kley, E. -B.; Schmidt, H.] Univ Jena, Inst Appl Phys, D-07745 Jena, Germany.
RP Peroz, C (reprint author), aBeam Technol, 5286 Dunnigan Ct, Castro Valley, CA 94546 USA.
EM cp@abeamtech.com
NR 6
TC 8
Z9 8
U1 0
U2 8
PU A V S AMER INST PHYSICS
PI MELVILLE
PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA
SN 1071-1023
J9 J VAC SCI TECHNOL B
JI J. Vac. Sci. Technol. B
PD NOV
PY 2009
VL 27
IS 6
BP 3187
EP 3191
DI 10.1116/1.3237114
PG 5
WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology;
Physics, Applied
SC Engineering; Science & Technology - Other Topics; Physics
GA 533DS
UT WOS:000272803400173
ER
PT J
AU Barber, SK
Soldate, P
Anderson, EH
Cambie, R
McKinney, WR
Takacs, PZ
Voronov, DL
Yashchuk, VV
AF Barber, Samuel K.
Soldate, Paul
Anderson, Erik H.
Cambie, Rossana
McKinney, Wayne R.
Takacs, Peter Z.
Voronov, Dmytro L.
Yashchuk, Valeriy V.
TI Development of pseudorandom binary arrays for calibration of surface
profile metrology tools
SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B
LA English
DT Article
DE calibration; diffraction gratings; light interferometry; optical
transfer function; surface structure; X-ray optics
ID UNIFORMLY REDUNDANT ARRAYS
AB Optical metrology tools, especially for short wavelengths (extreme ultraviolet and x-ray), must cover a wide range of spatial frequencies from the very low, which affects figure, to the important mid-spatial frequencies and the high spatial frequency range, which produces undesirable scattering. A major difficulty in using surface profilometers arises due to the unknown point-spread function (PSF) of the instruments [G. D. Boreman, Modulation Transfer Function in Optical and Electro-Optical Systems (SPIE, Bellingham, WA, 2001)] that is responsible for distortion of the measured surface profile. Generally, the distortion due to the PSF is difficult to account for because the PSF is a complex function that comes to the measurement via the convolution operation, while the measured profile is described with a real function. Accounting for instrumental PSF becomes significantly simpler if the result of measurement of a profile is presented in the spatial frequency domain as a power spectral density (PSD) distribution [J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, Englewood, CO, 2005)]. For example, measured PSD distributions provide a closed set of data necessary for three-dimensional calculations of scattering of light by the optical surfaces [E. L. Church , Opt. Eng. (Bellingham) 18, 125 (1979); J. C. Stover, Optical Scattering, 2nd ed. (SPIE Optical Engineering Press, Bellingham, WA, 1995)]. The distortion of the surface PSD distribution due to the PSF can be modeled with the modulation transfer function (MTF), which is defined over the spatial frequency bandwidth of the instrument. The measured PSD distribution can be presented as a product of the squared MTF and the ideal PSD distribution inherent for the system under test. Therefore, the instrumental MTF can be evaluated by comparing a measured PSD distribution of a known test surface with the corresponding ideal numerically simulated PSD. The square root of the ratio of the measured and simulated PSD distributions gives the MTF of the instrument. The applicability of the MTF concept to phase map measurements with optical interferometric microscopes needs to be experimentally verified as the optical tool and algorithms may introduce nonlinear artifacts into the process. In previous work [V. V. Yashchuk , Proc. SPIE 6704, 670408 (2007); Valeriy V. Yashchuk , Opt. Eng. (Bellingham) 47, 073602 (2008)] the instrumental MTF of a surface profiler was precisely measured using reference test surfaces based on binary pseudorandom (BPR) gratings. Here, the authors present results of fabricating and using two-dimensional (2D) BPR arrays that allow for a direct 2D calibration of the instrumental MTF. BPR sequences are widely used in engineering and communication applications such as global position systems and wireless communication protocols. The ideal BPR pattern has a flat "white noise" response over the entire range of spatial frequencies of interest. The BPR array used here is based on the uniformly redundant array (URA) prescription[E. E. Fenimore and T. M. Cannon, Appl. Opt. 17, 337 (1978)] initially used for x-ray and gamma ray astronomy applications. The URA's superior imaging capability originates from the fact that its cyclical autocorrelation function very closely approximates a delta function, which produces a flat PSD. Three different size BPR array patterns were fabricated by electron beam lithography and induction coupled plasma etching of silicon. The basic size units were 200, 400, and 600 nm.
Two different etch processes were used, CF(4)/A and HBr, which resulted in undercut and vertical sidewall profiles, respectively. The 2D BPR arrays were used as standard test surfaces for MTF calibration of the MicroMap (TM)-570 interferometric microscope using all available objectives. The MicroMap (TM)-570 interferometric microscope uses incoherent illumination from a tungsten filament source and common path modulated phase shifting interference to produce a set of interferograms detected on a change coupled device. Mathematical algorithms applied to the datasets yield the surface phase map. The HBr etched two-dimensional BPR arrays have proven to be a very effective calibration standard making possible direct calibration corrections without the need of additional calculation considerations, while departures from the ideal vertical sidewall require an additional correction term for the CF(4)/Ar etched samples [Samuel K. Barber , Abstract to Optics and Photonics 2009: Optical Engineering and Applications Symposium, San Diego, CA, 2-6 August 2009]. Initial surface roughness of low cost "prime" wafers limits low magnification calibration but should not be a limitation if better polished samples are used.
C1 [Barber, Samuel K.; Anderson, Erik H.; Cambie, Rossana; McKinney, Wayne R.; Voronov, Dmytro L.; Yashchuk, Valeriy V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Soldate, Paul] Rensselaer Polytech Inst, Troy, NY 12180 USA.
[Takacs, Peter Z.] Brookhaven Natl Lab, Upton, NY 11973 USA.
RP Barber, SK (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
EM ehanderson@lbl.gov
RI McKinney, Wayne/F-2027-2014
OI McKinney, Wayne/0000-0003-2586-3139
FU Office of Science, Office of Basic Energy Sciences, Material Science
Division, of the U. S. Department of Energy [DE-AC02-05CH11231,
DE-AC02-98CH10886]
FX The authors are grateful to Howard Padmore for useful discussions and
Dawn Hilken for nanofabrication. The Advanced Light Source is supported
by the Director, Office of Science, Office of Basic Energy Sciences,
Material Science Division, of the U. S. Department of Energy under
Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory,
and Contract No. DE-AC02-98CH10886 at Brookhaven National Laboratory.
NR 5
TC 14
Z9 14
U1 0
U2 6
PU A V S AMER INST PHYSICS
PI MELVILLE
PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA
SN 1071-1023
J9 J VAC SCI TECHNOL B
JI J. Vac. Sci. Technol. B
PD NOV
PY 2009
VL 27
IS 6
BP 3213
EP 3219
DI 10.1116/1.3245997
PG 7
WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology;
Physics, Applied
SC Engineering; Science & Technology - Other Topics; Physics
GA 533DS
UT WOS:000272803400178
ER
PT J
AU Peroz, C
Babin, S
Machin, M
Anderson, E
Cabrini, S
Dhuey, S
Harteneck, B
AF Peroz, C.
Babin, S.
Machin, M.
Anderson, E.
Cabrini, S.
Dhuey, S.
Harteneck, B.
TI Automatic measurement of electron beam size by beam metrology technique
using 20 nm test pattern
SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B
LA English
DT Article
DE electron beam lithography; nanolithography; nanopatterning; proximity
effect (lithography); scanning electron microscopy
ID LITHOGRAPHY; RESOLUTION
AB A robust operator independent measurement of electron beam sizes in two coordinates is demonstrated by using beam metrology (BEAMETR) technique. This method involves software associated with a specially designed pattern sample. The fabrication of this sample was done using 100 keV electron beam lithography and lift-off of metal. A proximity correction was applied to improve pattern quality. The minimum feature size of the fabricated BEAMETR patterns was 20 nm; this allowed for the measuring of beam size down to 2 nm. Beam size and shape measurements were done using three scanning electron microscopes; their operating conditions (voltage, aperture, and astigmatism) were varied. Repeatability and test pattern dependence were also studied, which demonstrated a good consistency of the results.
C1 [Peroz, C.; Babin, S.; Machin, M.] ABeam Technol Inc, Castro Valley, CA 94546 USA.
[Anderson, E.; Cabrini, S.; Dhuey, S.; Harteneck, B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94702 USA.
RP Peroz, C (reprint author), ABeam Technol Inc, 5286 Dunnigan Ct, Castro Valley, CA 94546 USA.
EM cp@abeamtech.com
FU Office of Science, Office of Basic Energy Sciences of the U. S.
Department of Energy [DE-AC02-05CH11231]
FX The Work at the Molecular Foundry was supported by the Office of
Science, Office of Basic Energy Sciences of the U. S. Department of
Energy under Contract No. DE-AC02-05CH11231.
NR 8
TC 2
Z9 2
U1 1
U2 2
PU A V S AMER INST PHYSICS
PI MELVILLE
PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA
SN 1071-1023
J9 J VAC SCI TECHNOL B
JI J. Vac. Sci. Technol. B
PD NOV
PY 2009
VL 27
IS 6
BP 3220
EP 3225
DI 10.1116/1.3258652
PG 6
WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology;
Physics, Applied
SC Engineering; Science & Technology - Other Topics; Physics
GA 533DS
UT WOS:000272803400179
ER
PT J
AU Hofmann, T
Dobisz, E
Ocko, BM
AF Hofmann, T.
Dobisz, E.
Ocko, B. M.
TI Grazing incident small angle x-ray scattering: A metrology to probe
nanopatterned surfaces
SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B
LA English
DT Article
DE elemental semiconductors; nanolithography; nanopatterning; silicon;
surface morphology; X-ray scattering
ID INCIDENCE DIFFRACTION; APPROXIMATION
AB Grazing incident small angle x-ray scattering (GISAXS) and transmission small angle x-ray scattering studies have been carried out on periodic patterns on silicon substrates in order to determine the average morphology and arrangement of the patterned features. The GISAXS pattern exhibited rods of scattering at Bragg positions, discrete and evenly spaced, in the surface plane. The scattered intensity modulations along each rod have been compared with simulated scattering from simple geometrical patterns to obtain quantitative information on the diameter, width, height, and sidewall inclination of the pillars and gratings. The results are in good agreement with real space images obtained with SEM and demonstrate that GISAXS is a powerful technique for characterizing nanoscale arrays used in patterned media, photonics structures, and electronics structures.
C1 [Hofmann, T.; Ocko, B. M.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Dobisz, E.] Hitachi Res Ctr, San Jose, CA 95135 USA.
RP Hofmann, T (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA.
EM hofmann@bnl.gov
FU U. S. Department of Energy, Division of Materials Science
[DE-AC02-98CH10886]
FX The authors thank Lin Yang (X21) and Elaine DiMasi (X6B) from the
National Synchrotron Light Source (NSLS) for their help with the
measurements. This work was supported by the U. S. Department of Energy,
Division of Materials Science, under Contract No. DE-AC02-98CH10886.
NR 19
TC 19
Z9 19
U1 3
U2 14
PU A V S AMER INST PHYSICS
PI MELVILLE
PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA
SN 1071-1023
J9 J VAC SCI TECHNOL B
JI J. Vac. Sci. Technol. B
PD NOV
PY 2009
VL 27
IS 6
BP 3238
EP 3243
DI 10.1116/1.3253608
PG 6
WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology;
Physics, Applied
SC Engineering; Science & Technology - Other Topics; Physics
GA 533DS
UT WOS:000272803400182
ER
PT J
AU Lo, CF
Kim, HY
Kim, J
Chen, SH
Wang, SY
Chyi, JI
Chou, BY
Chen, KH
Wang, YL
Chang, CY
Pearton, SJ
Kravchenko, LI
Jang, S
Ren, F
AF Lo, C. F.
Kim, H. -Y.
Kim, J.
Chen, Shu-Han
Wang, Sheng-Yu
Chyi, Jen-Inn
Chou, B. Y.
Chen, K. H.
Wang, Y. L.
Chang, C. Y.
Pearton, S. J.
Kravchenko, L. I.
Jang, S.
Ren, F.
TI Proton irradiation effects on Sb-based heterojunction bipolar
transistors
SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B
LA English
DT Article
DE aluminium compounds; gallium arsenide; gallium compounds; heterojunction
bipolar transistors; III-V semiconductors; indium compounds; proton
effects
ID NEUTRON
AB In(0.52)Al(0.48)As/In(0.39)Ga(0.61)As(0.77)Sb(0.23)/In(0.53)Ga(0.47)As double heterojunction bipolar transistors (DHBTs) were irradiated with 5 MeV protons at fluences from 2x10(11) to 2x10(15) protons/cm(2). The radiation produced significant increases in generation-recombination leakage current in both emitter-base and base-collector junctions. The DHBTs irradiated with a dose of 2x10(11) cm(-2), which was equivalent to around 40 years of exposure in low Earth orbit, showed minimal changes in the junction ideality factor, generation-recombination leakage current, current gain, and output conductance. The InAlAs/InGaAsSb/InGaAs DHBTs appear to be well suited to space or nuclear industry applications.
C1 [Lo, C. F.; Chou, B. Y.; Chen, K. H.; Ren, F.] Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA.
[Kim, H. -Y.; Kim, J.] Korea Univ, Dept Chem & Biol Engn, Seoul 136701, South Korea.
[Chen, Shu-Han; Wang, Sheng-Yu; Chyi, Jen-Inn] Natl Cent Univ, Dept Elect Engn, Jhongli 32001, Taiwan.
[Wang, Y. L.; Chang, C. Y.; Pearton, S. J.] Univ Florida, Dept Mat Sci Engn, Gainesville, FL 32611 USA.
[Kravchenko, L. I.] Ctr Nanophase Mat Sci, Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA.
[Jang, S.] Dankook Univ, Dept Chem Engn, Yongin 448701, South Korea.
RP Lo, CF (reprint author), Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA.
EM ren@che.ufl.edu
RI Kim, Jihyun/F-6940-2013; Kravchenko, Ivan/K-3022-2015; Chyi,
Jen-Inn/A-1799-2016
OI Kravchenko, Ivan/0000-0003-4999-5822;
FU Center for Nanophase Materials Sciences; Scientific User Facilities
Division, Office of Basic Energy Sciences, U. S. Department of Energy
FX The work at Oak Ridge National Laboratory was supported by the Center
for Nanophase Materials Sciences, sponsored by the Scientific User
Facilities Division, Office of Basic Energy Sciences, U. S. Department
of Energy.
NR 10
TC 0
Z9 0
U1 1
U2 7
PU A V S AMER INST PHYSICS
PI MELVILLE
PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA
SN 1071-1023
J9 J VAC SCI TECHNOL B
JI J. Vac. Sci. Technol. B
PD NOV
PY 2009
VL 27
IS 6
BP L33
EP L37
DI 10.1116/1.3246405
PG 5
WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology;
Physics, Applied
SC Engineering; Science & Technology - Other Topics; Physics
GA 533DS
UT WOS:000272803400001
ER
PT J
AU Wilson, WC
Hindson, BJ
O'Hearn, ES
Hall, S
Tellgren-Roth, C
Torres, C
Naraghi-Arani, P
Mecham, JO
Lenhoff, RJ
AF Wilson, William C.
Hindson, Benjamin J.
O'Hearn, Emily S.
Hall, Sara
Tellgren-Roth, Christian
Torres, Clinton
Naraghi-Arani, Pejman
Mecham, James O.
Lenhoff, Raymond J.
TI A multiplex real-time reverse transcription polymerase chain reaction
assay for detection and differentiation of Bluetongue virus and
Epizootic hemorrhagic disease virus serogroups
SO JOURNAL OF VETERINARY DIAGNOSTIC INVESTIGATION
LA English
DT Article
DE Bluetongue virus; Epizootic hemorrhagic disease virus; real-time reverse
transcription polymerase chain reaction
ID WHITE-TAILED DEER; FOOT-AND-MOUTH; RT-PCR ASSAY; UNITED-STATES; SEQUENCE
ALIGNMENT; VACCINE STRAINS; HIGH-THROUGHPUT; INSECT CELLS; PROTEIN;
SEROTYPES
AB Bluetongue virus (BTV) causes disease in domestic and wild ruminants and results in significant economic loss. The closely related Epizootic hemorrhagic disease virus (EHDV) has been associated with bluetongue-like disease in cattle. Although U.S. EHDV strains have not been experimentally proven to cause disease in cattle, there is serologic evidence of infection in cattle. Therefore, rapid diagnosis and differentiation of BTV and EHDV is required. The genetic sequence information and bioinformatic analysis necessary to design a real-time reverse transcription polymerase chain reaction (RT-PCR) assay for the early detection of indigenous and exotic BTV and EHDV is described. This sequence data foundation focused on 2 conserved target genes: one that is highly expressed in infected mammalian cells, and the other is highly expressed in infected insect cells. The analysis of all BTV and EHDV prototype strains indicated that a complex primer design was necessary for both a virus group-comprehensive and virus group-specific gene amplification diagnostic test. This information has been used as the basis for the development of a rapid multiplex BTV-EHDV real-time RT-PCR that detects all known serotypes of both viruses and distinguishes between BTV and EHDV serogroups. The sensitivity of this rapid, single-tube, real-time RT-PCR assay is sufficient for diagnostic application, without the contamination problems associated with standard gel-based RT-PCR, especially nested RT-PCR tests.
C1 [Wilson, William C.; O'Hearn, Emily S.; Mecham, James O.] ARS, USDA, Arthropod Borne Anim Dis Res Lab, Laramie, WY 82071 USA.
[Hindson, Benjamin J.; Hall, Sara; Torres, Clinton; Naraghi-Arani, Pejman; Lenhoff, Raymond J.] Lawrence Livermore Natl Lab, Livermore, CA USA.
[Tellgren-Roth, Christian] Univ Wyoming, Ctr Rural Hlth Res & Educ, Laramie, WY 82071 USA.
RP Wilson, WC (reprint author), ARS, USDA, Arthropod Borne Anim Dis Res Lab, Dept 3354,1000 E Univ Ave, Laramie, WY 82071 USA.
EM william.wilson@ars.usda.gov
FU USDA-ARS [5410-32000-015-00D, 5410-32000-018-00D]; NIH, National Center
for Research Resources [P20 RR016474]
FX The authors thank Donna Johnson and Dr. Eileen Ostlund from APHIS-NVSL
(Ames, IA) for providing RNA from exotic strains of BTV and EHDV
necessary to complete this study and Ambion Inc. for technical advice.
The authors thank Dr. Barbara Drolet, USDA, ARS, for reviewing an
earlier version of this manuscript. This project was funded by USDA-ARS
projects 5410-32000-015-00D and 5410-32000-018-00D. Bioinformatic
analysis was supported by NIH Grant P20 RR016474 from the INBRE Program
of the National Center for Research Resources. The contents of this
publication are solely the responsibility of the authors and do not
necessarily represent the official views of NIH or the USDA.
NR 46
TC 21
Z9 21
U1 0
U2 11
PU AMER ASSOC VETERINARY LABORATORY DIAGNOSTICIANS INC
PI TURLOCK
PA PO BOX 1522, TURLOCK, CA 95381 USA
SN 1040-6387
J9 J VET DIAGN INVEST
JI J. Vet. Diagn. Invest.
PD NOV
PY 2009
VL 21
IS 6
BP 760
EP 770
PG 11
WC Veterinary Sciences
SC Veterinary Sciences
GA 519SU
UT WOS:000271789100002
PM 19901276
ER
PT J
AU Lagory, KE
Walston, LJ
Goulet, C
Van Lonkhuyzen, RA
Najjar, S
Andrews, C
AF Lagory, Kirk E.
Walston, Leroy J.
Goulet, Celine
Van Lonkhuyzen, Robert A.
Najjar, Stephen
Andrews, Christian
TI An Examination of Scale-Dependent Resource Use by Eastern Hognose Snakes
in Southcentral New Hampshire
SO JOURNAL OF WILDLIFE MANAGEMENT
LA English
DT Article
DE eastern hognose snake; habitat selection; Heterodon platirhinos; home
range; management; New Hampshire; spatial scale
ID HABITAT SELECTION; HOME-RANGE; HETERODON-PLATIRHINOS; FRAGMENTATION;
MOVEMENT
AB The decline of many snake populations is attributable to habitat loss, and knowledge of habitat use is critical to their conservation. Resource characteristics (e.g., relative availability of different habitat types, soils, and slopes) within a landscape are scale-dependent and may not be equal across multiple spatial scales. Thus, it is important to identify the relevant spatial scales at which resource selection occurs. We conducted a radiotelemetry study of eastern hognose snake (Heterodon platirhinos) home range size and resource use at different hierarchical spatial scales. We present the results for 8 snakes radiotracked during a 2-year study at New Boston Air Force Station (NBAFS) in southern New Hampshire, USA, where the species is listed by the state as endangered. Mean home range size (minimum convex polygon) at NBAFS (51.7 +/- 14.7 ha) was similar to that reported in other parts of the species' range. Radiotracked snakes exhibited different patterns of resource use at different spatial scales. At the landscape scale (selection of locations within the landscape), snakes overutilized old-field and forest edge habitats and underutilized forested habitats and wetlands relative to availability. At this scale, snakes also overutilized areas containing sandy loam soils and areas with lower slope (mean slope = 5.2% at snake locations vs. 6.7% at random locations). We failed to detect some of these patterns of resource use at the home range scale (i.e., within the home range). Our ability to detect resource selection by the snakes only at the landscape scale is likely the result of greater heterogeneity in macrohabitat features at the broader landscape scale. From a management perspective, future studies of habitat selection for rare species should include measurement of available habitat at spatial scales larger than the home range. We suggest that the maintenance of open early successional habitats as a component of forested landscapes will be critical for the persistence of eastern hognose snake populations in the northeastern United States. (JOURNAL OF WILDLIFE MANAGEMENT 73(8): 1387-1393; 2009)
C1 [Lagory, Kirk E.; Walston, Leroy J.; Van Lonkhuyzen, Robert A.; Andrews, Christian] Argonne Natl Lab, Div Environm Sci, Argonne, IL 60439 USA.
[Goulet, Celine] Univ New Hampshire, Dept Nat Resources, Durham, NH 03824 USA.
RP Lagory, KE (reprint author), Argonne Natl Lab, Div Environm Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM lagory@anl.gov
FU United States Department of Defense; United States Air Force, through
the United States Department of Energy [DE-AC02-06CH11357]
FX We thank the natural resources staff of the NBAFS for logistical and
field support. We also thank 2 anonymous reviewers for helpful comments
on earlier drafts of this manuscript. This work was supported under a
military interdepartmental purchase request from the United States
Department of Defense, United States Air Force, through the United
States Department of Energy contract DE-AC02-06CH11357.
NR 40
TC 6
Z9 6
U1 3
U2 26
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0022-541X
EI 1937-2817
J9 J WILDLIFE MANAGE
JI J. Wildl. Manage.
PD NOV
PY 2009
VL 73
IS 8
BP 1387
EP 1393
DI 10.2193/2008-422
PG 7
WC Ecology; Zoology
SC Environmental Sciences & Ecology; Zoology
GA 515AC
UT WOS:000271437400017
ER
PT J
AU Davidson, MW
AF Davidson, Michael W.
TI Alexander Jablonski, PhD Fluorescence Spectroscopy
SO LABMEDICINE
LA English
DT Editorial Material
C1 [Davidson, Michael W.] Univ Florida, Florida State Univ, Opt Microscopy Div, Natl High Magnet Field Lab, Gainesville, FL 32611 USA.
[Davidson, Michael W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Davidson, MW (reprint author), Univ Florida, Florida State Univ, Opt Microscopy Div, Natl High Magnet Field Lab, Gainesville, FL 32611 USA.
NR 0
TC 0
Z9 0
U1 0
U2 2
PU AMER SOC CLINICAL PATHOLOGY
PI CHICAGO
PA 2100 W HARRISON ST, CHICAGO, IL 60612 USA
SN 0007-5027
J9 LABMEDICINE
JI Labmedicine
PD NOV
PY 2009
VL 40
IS 11
BP 694
EP 695
DI 10.1309/LMYH007ZKFVXFFRC
PG 2
WC Medical Laboratory Technology
SC Medical Laboratory Technology
GA 513GG
UT WOS:000271310000015
ER
PT J
AU Ice, GE
Pang, JWL
AF Ice, Gene E.
Pang, Judy W. L.
TI Tutorial on x-ray microLaue diffraction
SO MATERIALS CHARACTERIZATION
LA English
DT Review
DE X-ray; Microbeam; Laue; Diffraction; Deformation; Grain growth; Fracture
ID AUSTENITIC STAINLESS-STEEL; SYNCHROTRON-RADIATION; STRUCTURAL
MICROSCOPY; AL INTERCONNECTIONS; PLASTIC-DEFORMATION; CRYSTAL
PLASTICITY; MICRODIFFRACTION; DISLOCATIONS; BEAM; MICROPLASTICITY
AB MicroLaue diffraction combines the oldest x-ray diffraction method-Laue diffraction-with the most modem x-ray sources, optics and detectors. The combination can resolve complex materials into single-crystal-like submicron volumes. This unique ability to nondestructively map crystal structure at and below a sample surface, with high spatial and strain resolution can address long-standing fundamental issues in materials science. For example, the three-dimensional evolution of mesoscale structure and the self organization of defects can be observed nondestructively to understand the origins of inhomogeneous grain growth, deformation and fracture. (C) 2009 Elsevier Inc. All rights reserved.
C1 [Ice, Gene E.; Pang, Judy W. L.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
RP Ice, GE (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
EM IceGE@ornl.gov
FU Division of Materials Science and Engineering, office of Basic Energy
Science, U.S. Department of Energy
FX This research is supported by the Division of Materials Science and
Engineering, office of Basic Energy Science, U.S. Department of Energy.
Research is in part on beamline 34-ID-E which is funded by the Office of
Basic Energy Science, U.S. Department of Energy.
NR 56
TC 30
Z9 30
U1 4
U2 22
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 1044-5803
J9 MATER CHARACT
JI Mater. Charact.
PD NOV
PY 2009
VL 60
IS 11
BP 1191
EP 1201
DI 10.1016/j.matchar.2009.07.006
PG 11
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering; Materials Science, Characterization & Testing
SC Materials Science; Metallurgy & Metallurgical Engineering
GA 510XS
UT WOS:000271128100001
ER
PT J
AU Tiley, J
Srinivasan, R
Banerjee, R
Viswanathan, GB
Toby, B
Fraser, HL
AF Tiley, J.
Srinivasan, R.
Banerjee, R.
Viswanathan, G. B.
Toby, B.
Fraser, H. L.
TI Application of X-ray and neutron diffraction to determine lattice
parameters and precipitate volume fractions in low misfit nickel base
superalloys
SO MATERIALS SCIENCE AND TECHNOLOGY
LA English
DT Article
DE X-ray diffraction; Neutron diffraction; Nickel base superalloys; Lattice
parameter
ID SINGLE-CRYSTAL SUPERALLOY; THERMAL-EXPANSION; GAMMA'-PHASE; SC16;
RELAXATION; STRESS; DT
AB Synchrotron X-ray diffraction and neutron diffraction techniques are employed to characterise the lattice parameters and volume fraction of gamma and gamma' phases in a high strength nickel base superalloy. Samples of Rene88DT were solutionised at 1150 degrees C and cooled under three different rates to provide fine and coarse gamma' size distributions. Samples were aged at 760 degrees C to precipitate tertiary gamma' and coarsen secondary precipitates. Lattice parameter misfit and coefficient of thermal expansion parameters were also determined. Results indicate significant microstructure changes within the samples during the initial 25 h of aging.
C1 [Banerjee, R.] Univ N Texas, Ctr Adv Res & Technol, Denton, TX 76203 USA.
[Banerjee, R.] Univ N Texas, Dept Mat Sci & Engn, Denton, TX 76203 USA.
[Tiley, J.] USAF, Res Lab, Met Branch, AFRL RXLMD, Wright Patterson AFB, OH 45309 USA.
[Srinivasan, R.; Viswanathan, G. B.; Fraser, H. L.] Ohio State Univ, Ctr Accelerated Maturat Mat, Columbus, OH 43210 USA.
[Srinivasan, R.; Viswanathan, G. B.; Fraser, H. L.] Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43210 USA.
[Toby, B.] Argonne Natl Lab, Argonne, IL 60439 USA.
RP Banerjee, R (reprint author), Univ N Texas, Ctr Adv Res & Technol, Denton, TX 76203 USA.
EM rajarshi.banerjee@unt.edu
RI Toby, Brian/F-3176-2013
OI Toby, Brian/0000-0001-8793-8285
FU Centre for the Accelerated Maturation of Materials (CAMM) at the Ohio
State University; Centre for Advanced Research and Technology (CART) at
the University of North Texas
FX The present work was conducted as part of the joint research of the
Alloy Development Group of the Air Force Research Laboratory's Materials
and Manufacturing Directorate, The Ohio State University Materials
Science and Engineering Department, and the Materials Department at the
University of North Texas. The support and facilities from the Centre
for the Accelerated Maturation of Materials (CAMM) at the Ohio State
University and the Centre for Advanced Research and Technology (CART) at
the University of North Texas are gratefully acknowledged.
NR 34
TC 7
Z9 7
U1 0
U2 12
PU TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND
SN 0267-0836
EI 1743-2847
J9 MATER SCI TECH-LOND
JI Mater. Sci. Technol.
PD NOV
PY 2009
VL 25
IS 11
BP 1369
EP 1374
DI 10.1179/174328409X399010
PG 6
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA 523CM
UT WOS:000272049300015
ER
PT J
AU Zinkle, SJ
Busby, JT
AF Zinkle, Steven J.
Busby, Jeremy T.
TI Structural materials for fission & fusion energy
SO MATERIALS TODAY
LA English
DT Review
ID RESEARCH-AND-DEVELOPMENT; STRESS-CORROSION CRACKING; LOW-ACTIVATION
MATERIALS; MARTENSITIC STEELS; FERRITIC STEELS; FERRITIC/MARTENSITIC
STEELS; IRRADIATION EMBRITTLEMENT; MATERIALS CHALLENGES; MATERIALS
TECHNOLOGY; BREEDING BLANKET
AB Structural materials represent the key for containment of nuclear fuel and fission products as well as reliable and thermodynamically efficient production of electrical energy from nuclear reactors. Similarly, high-performance structural materials will be critical for the future success of proposed fusion energy reactors, which will subject the structures to unprecedented fluxes of high-energy neutrons along with intense thermomechanical stresses. Advanced materials can enable improved reactor performance via increased safety margins and design flexibility, in particular by providing increased strength, thermal creep resistance and superior corrosion and neutron radiation damage resistance. In many cases, a key strategy for designing high-performance radiation-resistant materials is based on the introduction of a high, uniform density of nanoscale particles that simultaneously provide good high temperature strength and neutron radiation damage resistance.
C1 [Zinkle, Steven J.; Busby, Jeremy T.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
RP Zinkle, SJ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008, Oak Ridge, TN 37831 USA.
EM zinklesj@ornl.gov
OI Zinkle, Steven/0000-0003-2890-6915
FU Light Water Reactor Sustainability Research and Development program,
Office of Nuclear Energy; Office of Fusion Energy Sciences, U.S.
Department of Energy
FX This work was sponsored in part by the Light Water Reactor
Sustainability Research and Development program, Office of Nuclear
Energy and by the Office of Fusion Energy Sciences, U.S. Department of
Energy.
NR 94
TC 213
Z9 218
U1 39
U2 241
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 1369-7021
EI 1873-4103
J9 MATER TODAY
JI Mater. Today
PD NOV
PY 2009
VL 12
IS 11
BP 12
EP 19
PG 8
WC Materials Science, Multidisciplinary
SC Materials Science
GA 543VT
UT WOS:000273608000011
ER
PT J
AU Stan, M
AF Stan, Marius
TI Discovery and design of nuclear fuels
SO MATERIALS TODAY
LA English
DT Review
ID ADVANCED STRUCTURAL-MATERIALS; MONTE-CARLO SIMULATIONS; IRRADIATED UO2
FUEL; URANIUM-DIOXIDE; OXYGEN DIFFUSION; MOLECULAR-DYNAMICS;
THERMOPHYSICAL PROPERTIES; THERMAL-CONDUCTIVITY; RADIATION-DAMAGE;
HIGH-TEMPERATURE
AB To facilitate the discovery and design of innovative nuclear fuels, multi-scale models and simulations are used to predict irradiation effects on properties such as thermal conductivity, oxygen diffusivity, and thermal expansion. The multi-scale approach is illustrated using results on ceramic fuels, with a focus on predictions of point defect concentration, stoichiometry, and phase stability. The high performance computer simulations include coupled heat transport, diffusion, and thermal expansion, and gas bubble formation and evolution in a fuel element consisting of UO2 fuel and metallic cladding. The second part of the paper is dedicated to a discussion of an international strategy for developing advanced, innovative nuclear fuels. Four initiatives are proposed to accelerate the discovery and design of new materials: (a) Create Institutes for Materials Discovery and Design, (b) Create an International Knowledgebase for experimental data, models (mathematical expressions), and simulations (codes), (c) Improve education and (d) Set up international collaborations.
C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Stan, M (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
EM mastan@lanl.gov
FU U.S.A. Department of Energy via the Advanced Fuel Cycle Initiative
(AFCI); Global Nuclear Energy Partnership (GNEP); Nuclear Energy
Advanced Models and Simulations (NEAMS) Programs
FX This work was occasionally supported by the U.S.A. Department of Energy
via the Advanced Fuel Cycle Initiative (AFCI), the Global Nuclear Energy
Partnership (GNEP), and the Nuclear Energy Advanced Models and
Simulations (NEAMS) Programs.
NR 95
TC 17
Z9 17
U1 4
U2 53
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 1369-7021
EI 1873-4103
J9 MATER TODAY
JI Mater. Today
PD NOV
PY 2009
VL 12
IS 11
BP 20
EP 28
PG 9
WC Materials Science, Multidisciplinary
SC Materials Science
GA 543VT
UT WOS:000273608000012
ER
PT J
AU Song, B
Connelly, K
Korellis, J
Lu, WY
Antoun, BR
AF Song, Bo
Connelly, Kevin
Korellis, John
Lu, Wei-Yang
Antoun, Bonnie R.
TI Improved Kolsky-bar design for mechanical characterization of materials
at high strain rates
SO MEASUREMENT SCIENCE AND TECHNOLOGY
LA English
DT Article; Proceedings Paper
CT 6th International Symposium on Measurement Techniques for Multiphase
Flows
CY DEC 15-17, 2008
CL Okinawa, JAPAN
DE Kolsky bar (split-Hopkinson pressure bar, SHPB); dynamic
characterization; alignment; stress-strain curve
ID HOPKINSON PRESSURE BAR
AB A Kolsky apparatus with numerous modifications has been designed for mechanical characterization of materials at high strain rates. These modifications include employing a highly precise optical table, pillow blocks with Frelon (R)-coated linear bearings as bar supports and a laser system for better precision bar alignment, etc. In addition, the striker bars were coated with Teflon (R) to minimize the friction with the gun barrel after removal of the conventional plastic sabots. This new design significantly simplifies the alignment process, improving the final alignment and calibration in the bar system; both are critical for validity and accuracy of the resulting data. An example of a dynamic experiment on a 6061 aluminum specimen by using this newly designed Kolsky bar is also presented.
C1 [Song, Bo; Connelly, Kevin; Korellis, John; Lu, Wei-Yang; Antoun, Bonnie R.] Sandia Natl Labs, Livermore, CA 94551 USA.
RP Song, B (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA.
EM bsong@sandia.gov
RI Song, Bo/D-3945-2011
NR 7
TC 3
Z9 3
U1 2
U2 16
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0957-0233
EI 1361-6501
J9 MEAS SCI TECHNOL
JI Meas. Sci. Technol.
PD NOV
PY 2009
VL 20
IS 11
AR 115701
DI 10.1088/0957-0233/20/11/115701
PG 8
WC Engineering, Multidisciplinary; Instruments & Instrumentation
SC Engineering; Instruments & Instrumentation
GA 509CB
UT WOS:000270988800033
ER
PT J
AU Waters, KM
Tan, RM
Opresko, LK
Quesenberry, RD
Bandyopadhyay, S
Chrisler, WB
Weber, TJ
AF Waters, Katrina M.
Tan, Ruimin
Opresko, Lee K.
Quesenberry, Ryan D.
Bandyopadhyay, Somnath
Chrisler, William B.
Weber, Thomas J.
TI Cellular Dichotomy Between Anchorage-Independent Growth Responses to
bFGF and TPA Reflects Molecular Switch in Commitment to Carcinogenesis
SO MOLECULAR CARCINOGENESIS
LA English
DT Article
DE anchorage-independent growth; reversible; hepatic leukemia factor
ID JB6 CELLS; NEOPLASTIC TRANSFORMATION; MURINE MELANOCYTES; H-RAS;
FIBROBLAST; EXPRESSION; GENE; RADIATION; SKIN; CANCER
AB We have investigated gene expression patterns underlying reversible and irreversible anchorage-independent growth (AIG) phenotypes to identify more sensitive markers of cell transformation for studies directed at interrogating carcinogenesis responses. In JB6 mouse epidermal cells, basic fibroblast growth factor (bFGF) induces an unusually efficient and reversible AIG response, relative to 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced AIG which is irreversible. The reversible and irreversible AIG phenotypes are characterized by largely nonoverlapping global gene expression profiles. However, a subset of clifferentially expressed genes were identified as common to reversible and irreversible AIG phenotypes, including genes regulated in a reciprocal fashion. Hepatic leukemia factor (HLF) and D-site albumin promoter-binding protein (DBP) were increased in both bFGF and TPA soft agar colonies and selected for functional validation. Ectopic expression of human HLF and DBP in JB6 cells resulted in a marked increase in TPA- and bFGF-regulated AIG responses. HLF and DBP expression were increased in soft agar colonies arising from JB6 cells exposed to gamma radiation and in a human basal cell carcinoma tumor tissue, relative to paired nontumor tissue. Subsequent biological network analysis suggests that many of the differentially expressed genes that are common to bFGF- and TPA-dependent AIG are regulated by c-Myc, SP-1, and HNF-4 transcription factors. Collectively, we have identified a potential molecular switch that mediates the transition from reversible to irreversible AIG. (C) 2009 Wiley-Liss, Inc.
C1 [Waters, Katrina M.; Bandyopadhyay, Somnath; Weber, Thomas J.] Pacific NW Natl Lab, Computat Biol Grp, Richland, WA 99354 USA.
[Waters, Katrina M.; Bandyopadhyay, Somnath] Pacific NW Natl Lab, Bioinformat Grp, Richland, WA 99354 USA.
RP Weber, TJ (reprint author), Pacific NW Natl Lab, Computat Biol Grp, 790 6th St,P7-56, Richland, WA 99354 USA.
FU U.S. Department of Energy (DOE) [DE-AC05-76RL0 1830]
FX The authors thank Dr. Thomas Squier and Dr. William Morgan for their
advice in the development of this manuscript. This research was
Supported by a grant from the U.S. Department of Energy (DOE) Office of
Biological and Evironmental Research (OBER) to T.J.W. This manuscript
has been authored by Battelle Memorial Institute, Pacific Northwest
Division, under Contract No. DE-AC05-76RL0 1830 with the U.S. Department
of Energy. The United States Government retains and the publisher, by
accepting the article for publication, acknowledges that the United
States Government retains a nonexclusive, paid-LIP, irrevocable,
world-wide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for United States Government
purposes.
NR 42
TC 8
Z9 8
U1 0
U2 1
PU WILEY-LISS
PI HOBOKEN
PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA
SN 0899-1987
J9 MOL CARCINOGEN
JI Mol. Carcinog.
PD NOV
PY 2009
VL 48
IS 11
BP 1059
EP 1069
DI 10.1002/mc.20558
PG 11
WC Biochemistry & Molecular Biology; Oncology
SC Biochemistry & Molecular Biology; Oncology
GA 515DJ
UT WOS:000271446600010
PM 19526458
ER
PT J
AU Lance, SL
Tuberville, TD
Dueck, L
Holz-Schietinger, C
Trosclair, PL
Elsey, RM
Glenn, TC
AF Lance, S. L.
Tuberville, T. D.
Dueck, L.
Holz-Schietinger, C.
Trosclair, P. L., III
Elsey, R. M.
Glenn, T. C.
TI Multiyear multiple paternity and mate fidelity in the American
alligator, Alligator mississippiensis
SO MOLECULAR ECOLOGY
LA English
DT Article
DE alligator; mate fidelity; mating systems; microsatellites; multiple
paternity
ID EXTRA-PAIR PATERNITY; SNAKE THAMNOPHIS-SIRTALIS; SEXUAL SELECTION;
FEMALE CHOICE; GARTER SNAKE; MICROSATELLITE MARKERS; COMPUTER-PROGRAM;
MATING PATTERNS; PAINTED TURTLES; SPERM STORAGE
AB We examined multiple paternity during eight breeding events within a 10-year period (1995-2005) for a total of 114 wild American alligator nests in Rockefeller Wildlife Refuge in south-west Louisiana. Our goals included examining (i) within population variation in multiple paternity among years, (ii) variation in multiple paternity in individual females and (iii) the potential for mate fidelity. To accomplish this, in the current study, eggs were sampled from 92 nests over 6 years and analysed along with 22 nests from a previous 2-year study. Genotypes at five microsatellite loci were generated for 1802 alligator hatchlings. Multiple paternity was found in 51% of clutches and paternal contributions to these clutches were highly skewed. Rates of multiple paternity varied widely among years and were consistently higher in the current study than previously reported for the same population. Larger females have larger clutches, but are not more likely to have multiply sired nests. However, small females are unlikely to have clutches with more than two sires. For 10 females, nests from multiple years were examined. Seven (70%) of these females exhibited long-term mate fidelity, with one female mating with the same male in 1997, 2002 and 2005. Five females exhibiting partial mate fidelity (71%) had at least one multiple paternity nest and thus mated with the same male, but not exclusively. These patterns of mate fidelity suggest a potential role for mate choice in alligators.
C1 [Lance, S. L.; Tuberville, T. D.; Dueck, L.; Holz-Schietinger, C.; Glenn, T. C.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA.
[Trosclair, P. L., III; Elsey, R. M.] Louisiana Dept Wildlife & Fisheries, Grand Chenier, LA 70643 USA.
[Glenn, T. C.] Univ Georgia, Dept Environm Hlth Sci, Athens, GA 30602 USA.
[Glenn, T. C.] Univ Georgia, Georgia Genom Facil, Athens, GA 30602 USA.
RP Lance, SL (reprint author), Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA.
EM lance@srel.edu
RI Glenn, Travis/A-2390-2008; Lance, Stacey/K-9203-2013
OI Lance, Stacey/0000-0003-2686-1733
FU National Science Foundation [DBI-0453493]; Savannah River Ecology
Laboratory; Louisiana Department of Wildlife Fisheries [604119
513-400145]; Savannah River Ecology Laboratory [DE-FC09-96SR18-546];
University of Georgia [DE-FC09-07SR22506]; U.S. Department of Energy
FX We thank Dwayne LeJeune, Jeb Linscombe, and George Melancon of the
Louisiana Department of Wildlife and Fisheries for assistance with
capture of female alligators. We also thank Lisa Davis, Denise
Strickland, Dean Croshaw, Cris Hagen, Anna McKee, Jessica Osborne, Mandy
Schable, Amanda Subaluski and Olga Tsyusko for help in sampling, DNA
extractions and genotyping individuals and David Scott for help with
statistics and figure preparation. William Amos and three anonymous
reviewers substantially improved the manuscript. Support for Celeste
Holz-Schietinger was provided by the National Science Foundation Grant
No. DBI-0453493 and the Savannah River Ecology Laboratory. Additional
support was provided by Louisiana Department of Wildlife & Fisheries
contract CFMS No. 604119 513-400145, and the Savannah River Ecology
Laboratory under Financial Assistance Award DE-FC09-96SR18-546 to
DE-FC09-07SR22506 between the University of Georgia and the U.S.
Department of Energy.
NR 68
TC 22
Z9 24
U1 2
U2 19
PU WILEY-BLACKWELL
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0962-1083
J9 MOL ECOL
JI Mol. Ecol.
PD NOV
PY 2009
VL 18
IS 21
BP 4508
EP 4520
DI 10.1111/j.1365-294X.2009.04373.x
PG 13
WC Biochemistry & Molecular Biology; Ecology; Evolutionary Biology
SC Biochemistry & Molecular Biology; Environmental Sciences & Ecology;
Evolutionary Biology
GA 507CX
UT WOS:000270829700016
PM 19804377
ER
PT J
AU Peters, MB
Ovenden, JR
Broderick, D
Lance, SL
Hagen, C
Glenn, TC
AF Peters, Maureen B.
Ovenden, Jennifer R.
Broderick, Damien
Lance, Stacey L.
Hagen, Cris
Glenn, Travis C.
TI Fifteen microsatellite loci for the jungle perch, Kuhlia rupestris
SO MOLECULAR ECOLOGY RESOURCES
LA English
DT Article
DE Jungle perch; Kuhlia rupestris; microsatellite; population genetics
ID SOFTWARE
AB We developed and optimized 15 polymorphic microsatellite loci in the jungle perch, Kuhlia rupestris. Loci were screened in a single population (n = 24) from Fraser Island, Queensland, Australia. Number of alleles per locus ranged from 3 to 19 and observed heterozygosity from 0.25 to 1. No significant linkage disequilibrium was detected between any pair of loci. Genotype proportions for these loci in the population sampled were in Hardy-Weinberg equilibrium.
C1 [Peters, Maureen B.; Lance, Stacey L.; Hagen, Cris] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA.
[Glenn, Travis C.] Univ Georgia, Dept Environm Hlth Sci, Athens, GA 30602 USA.
[Ovenden, Jennifer R.; Broderick, Damien] Queensland Dept Primary Ind & Fisheries, Mol Fisheries Lab, St Lucia, Qld 4067, Australia.
RP Peters, MB (reprint author), Washington Univ, Sch Med, Dept Anat & Neurobiol, 660 S Euclid Ave, St Louis, MO 63110 USA.
EM maureenbea@gmail.com
RI broderick, damien/E-9999-2010; Ovenden, Jennifer/A-3717-2010; Glenn,
Travis/A-2390-2008; Lance, Stacey/K-9203-2013
OI Lance, Stacey/0000-0003-2686-1733
FU U.S. Department of Energy [DE-FC09-07SR22506]; Queensland Government of
Australia through the Department of Primary Industries and Fisheries
FX This work was supported in part by the U.S. Department of Energy,
through Financial Assistance Award No. DE-FC09-07SR22506 to the
University of Georgia Research Foundation and in part by the Queensland
Government of Australia through the Department of Primary Industries and
Fisheries. We thank Mark McLennan, Keith Chilcott, Angela Henderson,
Michael Hutchison and John Russell for providing tissue samples and
Raewyn Street for assistance in the laboratory.
NR 13
TC 5
Z9 5
U1 1
U2 6
PU WILEY-BLACKWELL PUBLISHING, INC
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 1755-098X
J9 MOL ECOL RESOUR
JI Mol. Ecol. Resour.
PD NOV
PY 2009
VL 9
IS 6
BP 1467
EP 1469
DI 10.1111/j.1755-0998.2009.02735.x
PG 3
WC Biochemistry & Molecular Biology; Ecology; Evolutionary Biology
SC Biochemistry & Molecular Biology; Environmental Sciences & Ecology;
Evolutionary Biology
GA 506PK
UT WOS:000270787500006
PM 21564934
ER
PT J
AU Achyuthan, KE
Adams, PD
Simmons, BA
Singh, AK
AF Achyuthan, Komandoor Elayavalli
Adams, Paul David
Simmons, Blake Alexander
Singh, Anup Kumar
TI Spectroscopic Analyses of the Biofuels-Critical Phytochemical Coniferyl
Alcohol and Its Enzyme-Catalyzed Oxidation Products
SO MOLECULES
LA English
DT Article
DE coniferyl alcohol; absorption spectroscopy; high-throughput screening;
monolignols; biofuels
ID TUMEFACIENS BETA-GLUCOSIDASE; TRAMETES-VERSICOLOR; PHENOLIC-COMPOUNDS;
LACCASE; LIGNIN; PEROXIDASE; LIGNIFICATION; OXIDASE; EUGENOL; STRAIN
AB Lignin composition (monolignol types of coniferyl, sinapyl or p-coumaryl alcohol) is causally related to biomass recalcitrance. We describe multiwavelength (220, 228, 240, 250, 260, 290, 295, 300, 310 or 320 nm) absorption spectroscopy of coniferyl alcohol and its laccase- or peroxidase-catalyzed products during real time kinetic, pseudo-kinetic and endpoint analyses, in optical turn on or turn off modes, under acidic or basic conditions. Reactions in microwell plates and 100 mu L volumes demonstrated assay miniaturization and high throughput screening capabilities. Bathochromic and hypsochromic shifts along with hyperchromicity or hypochromicity accompanied enzymatic oxidations by laccase or peroxidase. The limits of detection and quantitation of coniferyl alcohol averaged 2.4 and 7.1 mu M respectively, with linear trend lines over 3 to 4 orders of magnitude. Coniferyl alcohol oxidation was evident within 10 minutes or with 0.01 mu g/mL laccase and 2 minutes or 0.001 mu g/mL peroxidase. Detection limit improved to 1.0 mu M coniferyl alcohol with Km of 978.7 +/- 150.7 mu M when examined at 260 nm following 30 minutes oxidation with 1.0 mu g/mL laccase. Our assays utilized the intrinsic spectroscopic properties of coniferyl alcohol or its oxidation products for enabling detection, without requiring chemical synthesis or modification of the substrate or product(s). These studies facilitate lignin compositional analyses and augment pretreatment strategies for reducing biomass recalcitrance.
C1 [Achyuthan, Komandoor Elayavalli; Adams, Paul David; Simmons, Blake Alexander; Singh, Anup Kumar] Joint BioEnergy Inst, Emeryville, CA 94550 USA.
[Achyuthan, Komandoor Elayavalli] Sandia Natl Labs, Biosensors & Nanomat Dept, Albuquerque, NM 87185 USA.
[Adams, Paul David] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Simmons, Blake Alexander; Singh, Anup Kumar] Sandia Natl Labs, Livermore, CA 94550 USA.
RP Achyuthan, KE (reprint author), Joint BioEnergy Inst, Emeryville, CA 94550 USA.
EM kachyut@sandia.gov; pdadams@lbl.gov; basimmo@sandia.gov;
aksingh@sandia.gov
RI Adams, Paul/A-1977-2013;
OI Adams, Paul/0000-0001-9333-8219; Simmons, Blake/0000-0002-1332-1810
FU U.S. Department of Energy, Office of Science, Office of Biological and
Environmental Research [DE-AC02-05CH11231, DE-AC04-94AL85000]
FX The DOE's JBEI (http://www.jbei.org) is supported by the U.S. Department
of Energy, Office of Science, Office of Biological and Environmental
Research, through Contract DE-AC02-05CH11231 between Lawrence Berkeley
National Laboratory and the U. S. Department of Energy. Sandia is a
multiprogram laboratory operated by Sandia Corp., a Lockheed Martin
Company, for the United States Department of Energy under Contract
DE-AC04-94AL85000.
NR 39
TC 2
Z9 2
U1 2
U2 14
PU MOLECULAR DIVERSITY PRESERVATION INTERNATIONAL-MDPI
PI BASEL
PA KANDERERSTRASSE 25, CH-4057 BASEL, SWITZERLAND
SN 1420-3049
J9 MOLECULES
JI Molecules
PD NOV
PY 2009
VL 14
IS 11
BP 4758
EP 4778
DI 10.3390/molecules14114758
PG 21
WC Chemistry, Organic
SC Chemistry
GA 525CK
UT WOS:000272190500039
PM 19935474
ER
PT J
AU Cardamone, C
Schawinski, K
Sarzi, M
Bamford, SP
Bennert, N
Urry, CM
Lintott, C
Keel, WC
Parejko, J
Nichol, RC
Thomas, D
Andreescu, D
Murray, P
Raddick, MJ
Slosar, A
Szalay, A
VandenBerg, J
AF Cardamone, Carolin
Schawinski, Kevin
Sarzi, Marc
Bamford, Steven P.
Bennert, Nicola
Urry, C. M.
Lintott, Chris
Keel, William C.
Parejko, John
Nichol, Robert C.
Thomas, Daniel
Andreescu, Dan
Murray, Phil
Raddick, M. Jordan
Slosar, Anze
Szalay, Alex
VandenBerg, Jan
TI Galaxy Zoo Green Peas: discovery of a class of compact extremely
star-forming galaxies
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Review
DE galaxies: dwarf; galaxies: evolution; galaxies: formation; galaxies:
high-redshift; galaxies: Seyfert; galaxies: starburst
ID DIGITAL-SKY-SURVEY; LYMAN-BREAK GALAXIES; LINE SEYFERT-1 GALAXIES;
HUBBLE DEEP FIELD; ULTRAVIOLET-LUMINOUS GALAXIES; ALPHA-EMITTING
GALAXIES; ACTIVE GALACTIC NUCLEI; EARLY DATA RELEASE; BLACK-HOLE MASS;
DWARF GALAXIES
AB We investigate a class of rapidly growing emission line galaxies, known as 'Green Peas', first noted by volunteers in the Galaxy Zoo project because of their peculiar bright green colour and small size, unresolved in Sloan Digital Sky Survey imaging. Their appearance is due to very strong optical emission lines, namely [O iii] lambda 5007 A, with an unusually large equivalent width of up to similar to 1000 A. We discuss a well-defined sample of 251 colour-selected objects, most of which are strongly star forming, although there are some active galactic nuclei interlopers including eight newly discovered narrow-line Seyfert 1 galaxies. The star-forming Peas are low-mass galaxies (M similar to 108.5-1010 M(circle dot)) with high star formation rates (similar to 10 M(circle dot) yr-1), low metallicities (log[O/H] + 12 similar to 8.7) and low reddening [E(B - V) < 0.25] and they reside in low-density environments. They have some of the highest specific star formation rates (up to similar to 10-8 yr-1) seen in the local Universe, yielding doubling times for their stellar mass of hundreds of Myr. The few star-forming Peas with Hubble Space Telescope imaging appear to have several clumps of bright star-forming regions and low surface density features that may indicate recent or ongoing mergers. The Peas are similar in size, mass, luminosity and metallicity to luminous blue compact galaxies. They are also similar to high-redshift ultraviolet-luminous galaxies, e.g. Lyman-break galaxies and Ly alpha emitters, and therefore provide a local laboratory with which to study the extreme star formation processes that occur in high-redshift galaxies. Studying starbursting galaxies as a function of redshift is essential to understanding the build up of stellar mass in the Universe.
C1 [Cardamone, Carolin] Yale Univ, Dept Astron, New Haven, CT 06520 USA.
[Cardamone, Carolin; Schawinski, Kevin; Urry, C. M.] Yale Univ, Dept Phys, Yale Ctr Astron & Astrophys, New Haven, CT 06520 USA.
[Cardamone, Carolin; Schawinski, Kevin; Urry, C. M.] Yale Univ, Dept Astron, Yale Ctr Astron & Astrophys, New Haven, CT 06520 USA.
[Sarzi, Marc] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England.
[Bamford, Steven P.] Univ Nottingham, Ctr Astron & Particle Theory, Nottingham NG7 2RD, England.
[Bennert, Nicola] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
[Lintott, Chris] Univ Oxford, Dept Phys, Oxford OX1 3RH, England.
[Keel, William C.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA.
[Parejko, John] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA.
[Nichol, Robert C.; Thomas, Daniel] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 2EG, Hants, England.
[Andreescu, Dan] LinkLab, Bronx, NY 10471 USA.
[Murray, Phil] Fingerprint Digital Media, Newtownards BT23 7GY, Down, North Ireland.
[Raddick, M. Jordan; Szalay, Alex; VandenBerg, Jan] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA.
[Slosar, Anze] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA.
RP Cardamone, C (reprint author), Yale Univ, Dept Astron, POB 208121, New Haven, CT 06520 USA.
EM ccardamone@astro.yale.edu
RI Urry, Claudia/G-7381-2011; Bamford, Steven/E-8702-2010;
OI Urry, Claudia/0000-0002-0745-9792; Bamford, Steven/0000-0001-7821-7195;
Schawinski, Kevin/0000-0001-5464-0888
FU NSF [AST0407295]; STFC Science in Society Programme; Alfred P. Sloan
Foundation; National Science Foundation; US Department of Energy;
National Aeronautics and Space Administration; Japanese Monbukagakusho;
Max Planck Society; Higher Education Funding Council for England
FX The SDSS is managed by the Astrophysical Research Consortium for the
Participating Institutions. The Participating Institutions are the
American Museum of Natural History, Astrophysical Institute Potsdam,
University of Basel, University of Cambridge, Case Western Reserve
University, University of Chicago, Drexel University, Fermilab, the
Institute for Advanced Study, the Japan Participation Group, Johns
Hopkins University, the Joint Institute for Nuclear Astrophysics, the
Kavli Institute for Particle Astrophysics and Cosmology, the Korean
Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos
National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the
Max-Planck-Institute for Astrophysics (MPA), New Mexico State
University, Ohio State University, University of Pittsburgh, University
of Portsmouth, Princeton University, the United States Naval Observatory
and the University of Washington.
NR 114
TC 133
Z9 133
U1 0
U2 5
PU WILEY-BLACKWELL PUBLISHING, INC
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0035-8711
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD NOV 1
PY 2009
VL 399
IS 3
BP 1191
EP 1205
DI 10.1111/j.1365-2966.2009.15383.x
PG 15
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 508BP
UT WOS:000270902100009
ER
PT J
AU Eggleton, PP
AF Eggleton, P. P.
TI Towards multiple-star population synthesis
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE stars: general; stars: statistics
ID LINED ECLIPSING BINARIES; STELLAR EVOLUTION; CONTACT BINARIES; TIDAL
FRICTION; TRIPLE STARS; SYSTEMS; COMPONENTS; ORBITS; VELOCITIES; TESTS
AB The multiplicities of stars, and some other properties, were collected recently by Eggleton & Tokovinin, for the set of 4559 stars with Hipparcos magnitude brighter than 6.0 (4558 excluding the Sun). In this paper I give a numerical recipe for constructing, by a Monte Carlo technique, a theoretical ensemble of multiple stars that resembles the observed sample. Only multiplicities up to eight are allowed; the observed set contains only multiplicities up to seven. In addition, recipes are suggested for dealing with the selection effects and observational uncertainties that attend the determination of multiplicity. These recipes imply, for example, that to achieve the observed average multiplicity of 1.53, it would be necessary to suppose that the real population has an average multiplicity slightly over 2.0.
This numerical model may be useful for (i) comparison with the results of star and star cluster formation theory, (ii) population synthesis that does not ignore multiplicity above 2 and (iii) initial conditions for dynamical cluster simulations.
C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
RP Eggleton, PP (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94551 USA.
EM eggleton1@llnl.gov
FU U.S. Department of Energy [DE-AC52-07NA27344]
FX This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. I gratefully acknowledge the help of the Centre des
Donnees Stellaires (Strasbourg) and of the Astronomical Data System.
NR 40
TC 8
Z9 8
U1 0
U2 0
PU WILEY-BLACKWELL PUBLISHING, INC
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0035-8711
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD NOV 1
PY 2009
VL 399
IS 3
BP 1471
EP 1481
DI 10.1111/j.1365-2966.2009.15372.x
PG 11
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 508BP
UT WOS:000270902100028
ER
PT J
AU Saxena, A
Aeppli, G
AF Saxena, Avadh
Aeppli, Gabriel
TI Phase Transitions at the Nanoscale in Functional Materials
SO MRS BULLETIN
LA English
DT Article
ID SHAPE-MEMORY ALLOYS; THIN-FILMS; SUPERCONDUCTOR; FERROELECTRICITY;
INSULATOR; PEROVSKITES; MICROSCOPY; DISORDER; STATES; UPT3
AB Many properties of functional materials are quite different at the nanoscale, because at this length scale, the surface/interface energy becomes comparable to the bulk energy. Thus, the nature of various phase transitions at the nanoscale (e.g., structural, electronic, magnetic, metal-insulator) is altered. In addition, in functional materials with many coupled order parameters, quantum effects can dominate the response. We use the term nanoscale with three different context-specific connotations: it could refer to a cluster of atoms or molecules, a confined geometry as in a nanoscale grain or a superlattice, and a nanoscale region in the bulk. This field is still in its infancy, and much needs to be learned in terms of nucleation and thermodynamics at this scale. Materials of interest that we consider in this issue include, but are not limited to, ferroics (ferroelectrics, ferromagnets, ferroelastics), multiferroics (magnetoelectrics, ferrotoroidics), and complex functional materials such as those that exhibit colossal magnetoresistance and high-temperature superconductivity, including the recently discovered iron pnictide superconductors. Superconductors provide a fertile ground for quantum phase transitions.
C1 [Saxena, Avadh] Los Alamos Natl Lab, Phys Condensed Matter & Complex Syst Grp, Los Alamos, NM 87545 USA.
[Saxena, Avadh] Penn State Univ, University Pk, PA 16802 USA.
[Saxena, Avadh] Cornell Univ, Ithaca, NY 14853 USA.
[Saxena, Avadh] Univ Barcelona, Inst Nanosci & Nanotechnol, E-08007 Barcelona, Spain.
[Saxena, Avadh] Univ Arizona, Tucson, AZ USA.
[Saxena, Avadh] Natl Inst Mat Sci, Tsukuba, Ibaraki, Japan.
[Aeppli, Gabriel] LCN, London, England.
[Aeppli, Gabriel] NEC Labs, Princeton, NJ USA.
[Aeppli, Gabriel] BNC, London, England.
[Aeppli, Gabriel] Imperial Coll, Inst Bioengn, London, England.
RP Saxena, A (reprint author), Los Alamos Natl Lab, Phys Condensed Matter & Complex Syst Grp, Los Alamos, NM 87545 USA.
EM Avadh@lanl.gov; len-administrator@ucl.ac.uk
OI Ren, Xiaobing/0000-0002-4973-2486; Lloveras, Pol/0000-0003-4133-2223
FU U.S. Department of Energy
FX We are grateful to our colleagues who agreed to contribute the
informative articles contained in this issue. The nascent field of
nanoscale transitions holds great potential for new discoveries and
applications. Many of the insights and ideas contained here are a result
of stimulating discussions with a large number of materials scientists,
including R. Ahluwalia, K.H. Ahn, G.R. Barsch, A.S. Bhalla, A.R. Bishop,
W. Cao, T. Castan, R. Groger, J.E. Gubernatis, M. Jain, P. Kumar, J.C.
Lashley, P. Littlewood, R Lloveras, T. Lockman, K. Otsuka, A. Planes, M.
Porta, X. Ren, S.R. Shenoy, D. Sherrington, I Suzuki, and Y. Wang. This
work was supported, in part, by the U.S. Department of Energy.
NR 56
TC 12
Z9 12
U1 1
U2 16
PU CAMBRIDGE UNIV PRESS
PI NEW YORK
PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
SN 0883-7694
J9 MRS BULL
JI MRS Bull.
PD NOV
PY 2009
VL 34
IS 11
BP 804
EP 813
PG 10
WC Materials Science, Multidisciplinary; Physics, Applied
SC Materials Science; Physics
GA 519YD
UT WOS:000271805200015
ER
PT J
AU Brown, K
Marsden, DA
Britton, RG
Karmokar, A
Ognibene, T
Johnson, GE
Farmer, PB
Jones, DJL
AF Brown, Karen
Marsden, Debbie A.
Britton, Robert G.
Karmokar, Ankur
Ognibene, Ted
Johnson, George E.
Farmer, Peter B.
Jones, Donald J. L.
TI Dose response relationships for adducts induced by low dose
[C-14]-ethylene oxide in rats
SO MUTAGENESIS
LA English
DT Meeting Abstract
C1 [Brown, Karen; Marsden, Debbie A.; Britton, Robert G.; Karmokar, Ankur; Farmer, Peter B.; Jones, Donald J. L.] Univ Leicester, Leicester LE2 7LX, Leics, England.
[Johnson, George E.] Swansea Univ, Swansea SA2 8PP, W Glam, Wales.
[Ognibene, Ted] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
RI Marsden, Debbie/F-7259-2011
NR 0
TC 0
Z9 0
U1 0
U2 0
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0267-8357
J9 MUTAGENESIS
JI Mutagenesis
PD NOV
PY 2009
VL 24
IS 6
MA 26
BP 532
EP 532
PG 1
WC Genetics & Heredity; Toxicology
SC Genetics & Heredity; Toxicology
GA 516XD
UT WOS:000271575700035
ER
PT J
AU Karmokar, A
Marsden, DA
Jones, DJL
Britton, RG
Ognibene, TJ
Steward, WP
Gescher, AJ
Farmer, PB
Brown, K
AF Karmokar, Ankur
Marsden, Debbie A.
Jones, Donald J. L.
Britton, Robert G.
Ognibene, Ted J.
Steward, William P.
Gescher, Andreas J.
Farmer, Peter B.
Brown, Karen
TI Linolenic acid treatment increases levels of endogenous
N7-(2-hydroxyethyl)guanine in rats but is not a direct precursor of
ethylene oxide
SO MUTAGENESIS
LA English
DT Meeting Abstract
C1 [Karmokar, Ankur; Marsden, Debbie A.; Jones, Donald J. L.; Britton, Robert G.; Steward, William P.; Gescher, Andreas J.; Farmer, Peter B.; Brown, Karen] Univ Leicester, RKCSB, Leicester LE2 7LX, Leics, England.
[Ognibene, Ted J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RI Marsden, Debbie/F-7259-2011
NR 0
TC 0
Z9 0
U1 0
U2 1
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0267-8357
J9 MUTAGENESIS
JI Mutagenesis
PD NOV
PY 2009
VL 24
IS 6
MA 66
BP 546
EP 546
PG 1
WC Genetics & Heredity; Toxicology
SC Genetics & Heredity; Toxicology
GA 516XD
UT WOS:000271575700075
ER
PT J
AU Sheldon, MT
Trudeau, PE
Mokari, T
Wang, LW
Alivisatos, AP
AF Sheldon, Matthew T.
Trudeau, Paul-Emile
Mokari, Taleb
Wang, Lin-Wang
Alivisatos, A. Paul
TI Enhanced Semiconductor Nanocrystal Conductance via Solution Grown
Contacts
SO NANO LETTERS
LA English
DT Article
ID NANOWIRES; TRANSISTOR
AB We report a 100000-fold increase in the conductance of individual CdSe nanorods when they are electrically contacted via direct solution phase growth of Au tips on the nanorod ends. Ensemble UV-vis and X-ray photoelectron spectroscopies Indicate this enhancement does not result from alloying of the nanorod. Rather, low temperature tunneling and high temperature (250-400 K) thermionic emission across the junction at the Au contact reveal a 75% lower interface barrier to conduction compared to a control sample. We correlate this barrier lowering with the electronic structure at the Au-CdSe interface. Our results emphasize the Importance of a nanocrystal surface structure for robust device performance and the advantage of this contact method.
C1 [Mokari, Taleb; Alivisatos, A. Paul] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Wang, Lin-Wang] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA.
RP Alivisatos, AP (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
EM alivis@uclink4.berkeley.edu
RI MOKARI, TALEB/F-1685-2012; Sheldon, Matthew/O-4433-2014; Alivisatos ,
Paul /N-8863-2015
OI Sheldon, Matthew/0000-0002-4940-7966; Alivisatos , Paul
/0000-0001-6895-9048
FU Center of Integrated Nanomechanical Systems [0425914]; Canada's National
Science and Engineering Research Council; U.S. Department of Energy
[DE-AC02-05CH11231]
FX We thank the UC Berkeley Microfabrication Laboratory for use of their
facility. M.S. thanks the Center of Integrated Nanomechanical Systems of
a fellowship (Grant No. 0425914). P.E.T. thanks Canada's National
Science and Engineering Research Council for a fellowship. SEM work was
performed at the Imaging and Manipulation Facility of the Molecular
Foundry, Lawrence Berkeley National Laboratory, and all other work was
funded by the Helios Solar Energy Research Center. Both facilities are
supported by the Office of Science, Office of Basic Energy Sciences,
U.S. Department of Energy, under Contract No. DE-AC02-05CH11231.
NR 23
TC 71
Z9 71
U1 2
U2 35
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
J9 NANO LETT
JI Nano Lett.
PD NOV
PY 2009
VL 9
IS 11
BP 3676
EP 3682
DI 10.1021/nl902186v
PG 7
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 516TR
UT WOS:000271566400002
PM 19691346
ER
PT J
AU Shin, J
Nascimento, VB
Geneste, G
Rundgren, J
Plummer, EW
Dkhil, B
Kalinin, SV
Baddorf, AP
AF Shin, Junsoo
Nascimento, Von Braun
Geneste, Gregory
Rundgren, John
Plummer, E. Ward
Dkhil, Brahim
Kalinin, Sergei V.
Baddorf, Arthur P.
TI Atomistic Screening Mechanism of Ferroelectric Surfaces: An In Situ
Study of the Polar Phase in Ultrathin BaTiO3 Films Exposed to H2O
SO NANO LETTERS
LA English
DT Article
ID POLARIZATION
AB The polarization screening mechanism and ferroelectric phase stability of ultrathin BaTiO3 films exposed to water molecules is determined by first principles theory and in situ experiment. Surface crystallography data from electron diffraction combined with density functional theory calculations demonstrate that small water vapor exposures do not affect surface structure or polarization. Large exposures result in surface hydroxylation and rippling, formation of surface oxygen vacancies, and reversal of the polarization direction. Understanding interplay between ferroelectric phase stability, screening, and atomistic processes at surfaces is a key to control low-dimensional ferroelectricity.
C1 [Geneste, Gregory; Dkhil, Brahim] Ecole Cent Paris, CNRS, UMR 8580, F-92290 Chatenay Malabry, France.
[Shin, Junsoo] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
[Shin, Junsoo] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
[Nascimento, Von Braun; Plummer, E. Ward] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA.
[Rundgren, John] Royal Inst Technol, KTH, Dept Theoret Phys, Alba Nova Res Ctr, SE-10691 Stockholm, Sweden.
[Kalinin, Sergei V.; Baddorf, Arthur P.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
RP Dkhil, B (reprint author), Ecole Cent Paris, CNRS, UMR 8580, F-92290 Chatenay Malabry, France.
EM brahim.dkhil@ecp.fr; sergei2@ornl.gov; baddorfap@ornl.gov
RI Kim, Yu Jin/A-2433-2012; Kalinin, Sergei/I-9096-2012; Dkhil,
Brahim/O-8939-2014; Baddorf, Arthur/I-1308-2016;
OI Kalinin, Sergei/0000-0001-5354-6152; Dkhil, Brahim/0000-0001-6155-059X;
Baddorf, Arthur/0000-0001-7023-2382; Rundgren, John/0000-0002-7023-2603
FU Division of Materials Science and Engineering; Center for Nanophase
Materials Sciences; U.S. Department of Energy
FX Research was sponsored by the Division of Materials Science and
Engineering (J.S.) and at the Center for Nanophase Materials Sciences
(S.V.K. and A.P.B.) by the Scientific User Facilities Division, at Oak
Ridge National Laboratory, for the Office of Basic Energy Sciences, U.S.
Department of Energy.
NR 32
TC 46
Z9 46
U1 4
U2 46
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
J9 NANO LETT
JI Nano Lett.
PD NOV
PY 2009
VL 9
IS 11
BP 3720
EP 3725
DI 10.1021/nl901824x
PG 6
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 516TR
UT WOS:000271566400010
PM 19842701
ER
PT J
AU Yan, RX
Liang, WJ
Fan, R
Yang, PD
AF Yan, Ruoxue
Liang, Wenjie
Fan, Rong
Yang, Peidong
TI Nanofluidic Diodes Based on Nanotube Heterojunctions
SO NANO LETTERS
LA English
DT Article
ID ION-TRANSPORT; INORGANIC NANOTUBES; ENERGY-CONVERSION; MEMBRANES;
RECTIFICATION; NANOPORES; FABRICATION; TRANSISTORS; CHANNELS; CHARGE
AB The mechanism of tuning charge transport in electronic devices has recently been implemented into the nanofluidic field for the active control of ion transport in nanoscale channels/pores. Here we report the first synthesis of longitudinal heterostructured SiO(2)/Al(2)O(3) nanotubes. The ionic transport through these nanotube heterojunctions exhibits clear current rectification, a signature of ionic diode behavior. Such nanofluidic diodes could find applications in ion separation and energy conversion.
C1 [Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Yang, PD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
RI Fan, Rong/B-1613-2014
FU Office of Basic Science, Department of Energy; NSF
FX This work was supported by the Office of Basic Science, Department of
Energy. P.Y. would like to thank NSF for the A.T. Waterman Award.
NR 33
TC 79
Z9 80
U1 5
U2 44
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
J9 NANO LETT
JI Nano Lett.
PD NOV
PY 2009
VL 9
IS 11
BP 3820
EP 3825
DI 10.1021/nl9020123
PG 6
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 516TR
UT WOS:000271566400027
PM 19603791
ER
PT J
AU Romero, MJ
Morfa, AJ
Reilly, TH
van de Lagemaat, J
Al-Jassim, M
AF Romero, Manuel J.
Morfa, Anthony J.
Reilly, Thomas H., III
van de Lagemaat, Jao
Al-Jassim, Mowafak
TI Nanoscale Imaging of Exciton Transport in Organic Photovoltaic
Semiconductors by Tip-Enhanced Tunneling Luminescence
SO NANO LETTERS
LA English
DT Article
ID BULK-HETEROJUNCTION; SOLAR-CELLS; DISSOCIATION; MORPHOLOGY
AB In organic solar cells, the efficiency of the exciton transport and dissociation across donor-acceptor (D/A) interfaces is controlled by the nanoscale distribution of the donor and acceptor phases. The observation of photoluminescence quenching is often used as confirmation for efficient exciton dissociation but provides no information on the nanoscopic nature of the exciton transport. Here we demonstrate nanoscale imaging of the exciton transport in films consisting of the conjugated polymer poly(3-hexylthiophene) (P3HT, electron donor) blended with the C60 derivative 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 (PCBM, electron acceptor) by a tunneling luminescence spectroscopy based on atomic force microscopy. The excitonic luminescence is significantly enhanced when the conjugated polymer is coupled to the plasmon excitation at the tip (tip-enhanced luminescence). This effect allows one to dramatically improve the detection efficiency of the excitonic luminescence and, consequently, resolve individual domains of the conjugated polymer in which the exciton will recombine before dissociation at the D/A Interface. Under thermal annealing conditions promoting the segregation of the donor and acceptor phases, a clear increase of the luminescence is seen from polymer-rich regions, consistent with domains of dimensions much larger than the exciton diffusion length. The described scanning luminescence microscopy can thus be applied to the optimization of the blends used in solar cells.
C1 [Romero, Manuel J.; Morfa, Anthony J.; Reilly, Thomas H., III; van de Lagemaat, Jao; Al-Jassim, Mowafak] NREL, Golden, CO 80401 USA.
RP Romero, MJ (reprint author), NREL, 1617 Cole Blvd, Golden, CO 80401 USA.
EM manuel.romero@nrel.gov
RI Morfa, Anthony/D-2153-2011; van de Lagemaat, Jao/J-9431-2012
FU U.S. Department of Energy [DE-AC36-996010337, DE-AC36-08-6028308]
FX This work was funded by the Photochemistry and Radiation Research
Program of the U.S. Department of Energy, Office of Science, Basic
Energy Sciences, Division of Chemical Sciences, Geosciences and
Biosciences, under Contracts DE-AC36-996010337 and DE-AC36-08-6028308.
NR 17
TC 8
Z9 8
U1 0
U2 31
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
J9 NANO LETT
JI Nano Lett.
PD NOV
PY 2009
VL 9
IS 11
BP 3904
EP 3908
DI 10.1021/nl902105f
PG 5
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 516TR
UT WOS:000271566400041
PM 19751068
ER
PT J
AU Berthelot, J
Bouhelier, A
Huang, CJ
Margueritat, J
Colas-des-Francs, G
Finot, E
Weeber, JC
Dereux, A
Kostcheev, S
El Ahrach, HI
Baudrion, AL
Plain, J
Bachelot, R
Royer, P
Wiederrecht, GP
AF Berthelot, Johann
Bouhelier, Alexandre
Huang, Caijin
Margueritat, Jeremie
Colas-des-Francs, Gerard
Finot, Eric
Weeber, Jean-Claude
Dereux, Alain
Kostcheev, Sergei
El Ahrach, Hicham Ibn
Baudrion, Anne-Laure
Plain, Jerome
Bachelot, Renaud
Royer, Pascal
Wiederrecht, Gary P.
TI Tuning of an Optical Dimer Nanoantenna by Electrically Controlling Its
Load Impedance
SO NANO LETTERS
LA English
DT Article
ID LIQUID-CRYSTALS; FREEDERICKSZ TRANSITION; METAL NANOPARTICLES; PLASMON
RESONANCES; LIGHT-SCATTERING; EMISSION; ANTENNA; PAIRS; NANOCIRCUIT
AB Optical antennas are elementary units used to direct optical radiation to the nanoscale. Here we demonstrate an active control over individual antenna performances by an external electrical trigger. We find that by an in-plane command of an anisotropic load medium, the electromagnetic interaction between individual elements constituting an optical antenna can be controlled, resulting in a strong polarization and tuning response. An active command of the antenna is a prerequisite for directing light wave through the utilization of such a device.
C1 [Berthelot, Johann; Bouhelier, Alexandre; Huang, Caijin; Margueritat, Jeremie; Colas-des-Francs, Gerard; Finot, Eric; Weeber, Jean-Claude; Dereux, Alain] Univ Bourgogne, CNRS, UMR 5209, Inst Carnot Bourgogne, Dijon, France.
[Kostcheev, Sergei; El Ahrach, Hicham Ibn; Baudrion, Anne-Laure; Plain, Jerome; Bachelot, Renaud; Royer, Pascal] Univ Technol Troyes, Lab Nanotechnol & Instrumentat Opt, Inst Charles Delauney, Troyes, France.
[Wiederrecht, Gary P.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
RP Bouhelier, A (reprint author), Univ Bourgogne, CNRS, UMR 5209, Inst Carnot Bourgogne, 9 Ave Alain Savary, Dijon, France.
EM alexandre.bouhelier@u-bourgogne.fr
RI Plain, Jerome/A-2888-2009; Colas des Francs, Gerard/C-9400-2009;
Bouhelier, Alexandre/A-1960-2010; Berthelot, Johann/G-4206-2011;
Jeremie, Margueritat/I-1167-2012; Ibn El Ahrach, Hicham/M-3442-2014;
Bachelot, Renaud/M-6888-2015; Dereux, Alain/K-8754-2016
OI Colas des Francs, Gerard/0000-0002-5097-7317; Berthelot,
Johann/0000-0002-7087-7364; Jeremie, Margueritat/0000-0003-2075-1875;
Dereux, Alain/0000-0002-9009-114X
FU Agence Nationale de la Recherche (ANR) [PNANO 07-51]; BLANC
[07-2-188654]; Regional Council of Burgundy; U.S. Department of Energy
[DE-AC02-06CH11357]
FX The authors thank the Agence Nationale de la Recherche (ANR), under
Grants Antares (PNANO 07-51) and Photohybrid (BLANC 07-2-188654) as well
as the Regional Council of Burgundy (program FABER) for funding. C.H.
acknowledges a stipend froth the People's Republic of China. G.P.W.
acknowledges support from the U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences, under Contract No.
DE-AC02-06CH11357.
NR 44
TC 52
Z9 53
U1 5
U2 43
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
J9 NANO LETT
JI Nano Lett.
PD NOV
PY 2009
VL 9
IS 11
BP 3914
EP 3921
DI 10.1021/nl902126z
PG 8
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 516TR
UT WOS:000271566400043
PM 19754071
ER
PT J
AU Hervier, A
Renzas, JR
Park, JY
Somorjai, GA
AF Hervier, Antoine
Renzas, J. Russell
Park, Jeong Y.
Somorjai, Gabor A.
TI Hydrogen Oxidation-Driven Hot Electron Flow Detected by Catalytic
Nanodiodes
SO NANO LETTERS
LA English
DT Article
ID PT(111) SURFACE; SCHOTTKY DIODES; OXYGEN REACTION; ENERGY-TRANSFER;
WATER FORMATION; METAL-SURFACES; PLATINUM; DEUTERIUM; EXCITATION;
MECHANISM
AB Hydrogen oxidation on platinum is shown to be a surface catalytic chemical reaction that generates a steady state flux of hot (>1 eV) conduction electrons. These hot electrons are detected as a steady-state chemicurrent across Pt/TiO2 Schottky diodes whose Pt surface is exposed to hydrogen and oxygen. Kinetic studies establish that the chemicurrent is proportional to turnover frequency for temperatures ranging from 298 to 373 K for P-H2 between 1 and 8 Torr and P-O2 at 760 Torr. Both chemicurrent and turnover frequency exhibit a first order dependence on P-H2.
C1 [Park, Jeong Y.; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA.
[Hervier, Antoine; Renzas, J. Russell; Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Park, Jeong Y.; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Park, JY (reprint author), Korea Adv Inst Sci & Technol, Grad Sch EEWS, Taejon 305701, South Korea.
EM jypark@lbl.gov; somorjai@berkeley.edu
RI Park, Jeong Young/A-2999-2008
FU U.S. Department of Energy [DE-AC02-05CH11231]
FX The authors acknowledge Martin Head-Gordon and Sergey Maximoff for
insightful comments. This work has been supported by the Director,
Office of Science, Office of Basic Energy Sciences, Division of Chemical
Sciences, Geological and Biosciences and Division of Materials Sciences
and Engineering of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231.
NR 36
TC 60
Z9 60
U1 1
U2 16
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
EI 1530-6992
J9 NANO LETT
JI Nano Lett.
PD NOV
PY 2009
VL 9
IS 11
BP 3930
EP 3933
DI 10.1021/nl9023275
PG 4
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 516TR
UT WOS:000271566400045
PM 19731919
ER
PT J
AU Quek, SY
Choi, HJ
Louie, SG
Neaton, JB
AF Quek, Su Ying
Choi, Hyoung Joon
Louie, Steven G.
Neaton, J. B.
TI Length Dependence of Conductance in Aromatic Single-Molecule Junctions
SO NANO LETTERS
LA English
DT Article
ID ELECTRON-TRANSPORT; WIRES; RESISTANCE; OLIGOMERS; CHAINS
AB Using a scattering-state approach incorporating self-energy corrections to the junction level alignment, the conductance G of oligophenyldiamine-Au junctions is calculated and elucidated. In agreement with experiment, we find G decays exponentially with the number of phenyls with decay constant beta = 1.7. A straightforward, parameter-free self-energy correction, including electronic exchange and correlations beyond density functional theory (DFT), is found to be essential for understanding the measured values of both G and beta. Importantly, our results confirm quantitatively the picture of off-resonant tunneling in these systems and show that exchange and correlation effects absent from standard DFT calculations contribute significantly to beta.
C1 [Quek, Su Ying; Louie, Steven G.; Neaton, J. B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Louie, Steven G.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Choi, Hyoung Joon] Yonsei Univ, Dept Phys, Seoul 120749, South Korea.
[Choi, Hyoung Joon] Yonsei Univ, IPAP, Seoul 120749, South Korea.
RP Neaton, JB (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
EM jbneaton@lbl.gov
RI Quek, Su Ying/I-2934-2014; Choi, Hyoung Joon/N-8933-2015; Neaton,
Jeffrey/F-8578-2015
OI Choi, Hyoung Joon/0000-0001-8565-8597; Neaton,
Jeffrey/0000-0001-7585-6135
FU U.S. Department of Energy [DE-AC02-05CH11231]; NERSC [KSC2008-S02-0004];
KRF [KRF-2007-314-C00075]; KOSEF [R012007-000-20922-0]
FX We thank L. Venkataraman for providing us with numbers for the standard
deviation in the conductance peak positions. Portions of this work were
performed at the Molecular Foundry, Lawrence Berkeley National
Laboratory, and were supported by the Office of Science, Office of Basic
Energy Sciences, of the U.S. Department of Energy. This work was
supported in part by the Director, Office of Science, Office of Basic
Energy Sciences, Division of Materials Sciences and Engineering
Division, U.S. Department of Energy under Contract No.
DE-AC02-05CH11231, and by computational resources from NERSC and the
KISTI Supercomputing Center (KSC2008-S02-0004). H.J.C. acknowledges
support from the KRF (KRF-2007-314-C00075) and the KOSEF (Grant No.
R012007-000-20922-0).
NR 33
TC 92
Z9 92
U1 2
U2 23
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
J9 NANO LETT
JI Nano Lett.
PD NOV
PY 2009
VL 9
IS 11
BP 3949
EP 3953
DI 10.1021/nl9021336
PG 5
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 516TR
UT WOS:000271566400049
PM 19751067
ER
PT J
AU Fan, ZY
Ruebusch, DJ
Rathore, AA
Kapadia, R
Ergen, O
Leu, PW
Javey, A
AF Fan, Zhiyong
Ruebusch, Daniel J.
Rathore, Asghar A.
Kapadia, Rehan
Ergen, Onur
Leu, Paul W.
Javey, Ali
TI Challenges and Prospects of Nanopillar-Based Solar Cells
SO NANO RESEARCH
LA English
DT Review
DE Nanopillar-based photovoltaics; solar cells; nanowires (NWs)
ID SURFACE RECOMBINATION VELOCITY; NANOCRYSTALLINE TIO2 FILMS;
NANOSTRUCTURED ZNO ELECTRODES; CORE-SHELL; NANOWIRE HETEROSTRUCTURES;
PHOTOVOLTAIC APPLICATIONS; SILICON NANOWIRE; HIGH-EFFICIENCY; NANOROD
ARRAYS; BACK-REACTION
AB Materials and device architecture innovations are essential for further enhancing the performance of solar cells while potentially enabling their large-scale integration as a viable source of alternative energy. In this regard, tremendous research has been devoted in recent years with continuous progress in the field. In this article, we review the recent advancements in nanopillar-based photovoltaics while discussing the future challenges and prospects. Nanopillar arrays provide unique advantages over thin films in the areas of optical properties and carrier collection, arising from their three-dimensional geometry. The choice of the material system, however, is essential in order to gain the advantage of the large surface/interface area associated with nanopillars with the constraints different from those of the thin film devices.
C1 [Fan, Zhiyong; Ruebusch, Daniel J.; Rathore, Asghar A.; Kapadia, Rehan; Ergen, Onur; Leu, Paul W.; Javey, Ali] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA.
[Fan, Zhiyong; Ruebusch, Daniel J.; Rathore, Asghar A.; Kapadia, Rehan; Ergen, Onur; Leu, Paul W.; Javey, Ali] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA.
[Fan, Zhiyong; Ruebusch, Daniel J.; Rathore, Asghar A.; Kapadia, Rehan; Ergen, Onur; Leu, Paul W.; Javey, Ali] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Javey, A (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA.
EM ajavey@eecs.berkeley.edu
RI Fan, Zhiyong/C-4970-2012; Kapadia, Rehan/B-4100-2013; Leu,
Paul/B-9989-2008; Javey, Ali/B-4818-2013;
OI Kapadia, Rehan/0000-0002-7611-0551; Leu, Paul/0000-0002-1599-7144; Fan,
Zhiyong/0000-0002-5397-0129
NR 91
TC 137
Z9 138
U1 2
U2 91
PU TSINGHUA UNIV PRESS
PI BEIJING
PA TSINGHUA UNIV, RM A703, XUEYAN BLDG, BEIJING, 10084, PEOPLES R CHINA
SN 1998-0124
J9 NANO RES
JI Nano Res.
PD NOV
PY 2009
VL 2
IS 11
BP 829
EP 843
DI 10.1007/s12274-009-9091-y
PG 15
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary; Physics, Applied
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 548DN
UT WOS:000273939900001
ER
PT J
AU Wang, RM
Zhang, HZ
Farle, M
Kisielowski, C
AF Wang, Rongming
Zhang, Hongzhou
Farle, Michael
Kisielowski, Christian
TI Structural stability of icosahedral FePt nanoparticles
SO NANOSCALE
LA English
DT Article
ID SMALL PARTICLES
AB The structural stability of FePt nanoparticles of about 5-6 nm diameter was investigated by dynamic high resolution transmission electron microscopy. The FePt icosahedral were very stable under an electron beam flux of similar to 20 A/cm(2) at 300 kV. Surface sputtering was suppressed due to the large sputtering threshold energy of a Pt-rich shell. Under a flux of similar to 50 A/cm(2). the trapping potential well of the FePt particle on the supporting carbon film was lowered by the magnetic interaction between the electron beam and the particle, which leads to rotational and translational motions of the particle. A large dose of electrons (similar to 200 A/cm(2)) initiated melting and recrystallization of the FePt particle. The structure of the FePt nanoparticle, a Pt enriched shell around an Fe/Pt magnetic core, is believed to be responsible for its dynamic behaviour under different beam conditions.
C1 [Wang, Rongming; Zhang, Hongzhou] Beijing Univ Aeronaut & Astronaut, Dept Phys, Key Lab Micronano Measurement Manipulat & Phys, Beijing 100191, Peoples R China.
[Wang, Rongming; Kisielowski, Christian] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA.
[Zhang, Hongzhou] Univ Dublin Trinity Coll, Dept Phys, Dublin 2, Ireland.
[Zhang, Hongzhou] Univ Dublin Trinity Coll, CRANN, Dublin 2, Ireland.
[Farle, Michael] Univ Duisburg Essen, Inst Phys, D-47048 Duisburg, Germany.
RP Wang, RM (reprint author), Beijing Univ Aeronaut & Astronaut, Dept Phys, Key Lab Micronano Measurement Manipulat & Phys, Beijing 100191, Peoples R China.
EM rmwang@buaa.edu.cn
RI Zhang, Hongzhou/B-6883-2009; Wang, Rongming/B-2163-2010;
OI Zhang, Hongzhou/0000-0002-1188-7810; Wang, Rongming/0000-0003-4075-6956;
Farle, Michael/0000-0002-1864-3261
FU Berkeley Scholar Program; National Natural Science Foundation of China
[50671003]; Program for New Century Excellent Talents in University
[NCET-06-0175]; Office of Science, Office of Basic Energy Science, of
the U. S. Department of Energy [DE-AC02-05CH11231]; Deutsche
Forschungsgemeinschaft [SFB 445]
FX This work was supported by the Berkeley Scholar Program, the National
Natural Science Foundation of China (No. 50671003), the Program for New
Century Excellent Talents in University (NCET-06-0175), the Director,
Office of Science, Office of Basic Energy Science, of the U. S.
Department of Energy under contract No. DE-AC02-05CH11231, and the
Deutsche Forschungsgemeinschaft SFB 445.
NR 13
TC 31
Z9 31
U1 3
U2 27
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 2040-3364
J9 NANOSCALE
JI Nanoscale
PD NOV
PY 2009
VL 1
IS 2
BP 276
EP 279
DI 10.1039/b9nr00096h
PG 4
WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials
Science, Multidisciplinary; Physics, Applied
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 563VU
UT WOS:000275164100013
PM 20644850
ER
PT J
AU Groves, JT
AF Groves, Jay T.
TI The physical chemistry of membrane curvature
SO NATURE CHEMICAL BIOLOGY
LA English
DT News Item
ID ORGANIZATION; LOCALIZATION; DOMAINS
C1 [Groves, Jay T.] Univ Calif Berkeley, Howard Hughes Med Inst, Dept Chem, Berkeley, CA 94720 USA.
[Groves, Jay T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
[Groves, Jay T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Groves, JT (reprint author), Univ Calif Berkeley, Howard Hughes Med Inst, Dept Chem, Berkeley, CA 94720 USA.
EM jtgroves@lbl.gov
NR 11
TC 4
Z9 4
U1 0
U2 17
PU NATURE PUBLISHING GROUP
PI NEW YORK
PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA
SN 1552-4450
J9 NAT CHEM BIOL
JI Nat. Chem. Biol.
PD NOV
PY 2009
VL 5
IS 11
BP 783
EP 784
DI 10.1038/nchembio.247
PG 3
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 508FQ
UT WOS:000270915000005
PM 19841625
ER
PT J
AU Wang, YF
Xu, HF
Merino, E
Konishi, H
AF Wang, Yifeng
Xu, Huifang
Merino, Enrique
Konishi, Hiromi
TI Generation of banded iron formations by internal dynamics and leaching
of oceanic crust
SO NATURE GEOSCIENCE
LA English
DT Article
ID DEPOSITION; KINETICS; HISTORY; ORIGIN; MODEL
AB The chemical signatures and mineralogy of banded iron formations have the potential to provide information about the ocean environment on early Earth(1-7). Their formation requires iron- and silicon-rich fluids, but the mechanisms by which the alternating layers of Si- and Fe-rich rock formed remain controversial(8-11). Here we use thermodynamic calculations to show that Fe- and Si- rich fluids can be generated by hydrothermal leaching of low-Al oceanic crustal rocks such as komatiites. We find that positive feedbacks occur among the chemical reactions when hydrothermal fluids mix with ambient sea water. These feedbacks lead to alternating precipitation of Fe and Si minerals, owing to the formation of complexes between Fe(II) and silicic acid. We suggest that the small-scale (<1 cm) banding was produced by internal dynamics of the geochemical system, rather than any external forcing. As the Archaean eon progressed, the oceanic crust produced was rich in Al-12. When Al-rich crust undergoes hydrothermal alteration, Fe is locked in Al-Fe silicate minerals. This results in iron-depleted hydrothermal fluids, and thus prevents the deposition of Fe- rich minerals. We therefore conclude that the widespread cessation of banded iron formation deposition 1.7 billion years ago reflects the changing composition of the oceanic crust.
C1 [Wang, Yifeng] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Xu, Huifang; Konishi, Hiromi] Univ Wisconsin, Dept Geol & Geophys, Madison, WI 53706 USA.
[Xu, Huifang; Konishi, Hiromi] Univ Wisconsin, NASA, Astrobiol Inst, Madison, WI 53706 USA.
[Merino, Enrique] Indiana Univ, Dept Geol Sci, Bloomington, IN 47405 USA.
RP Wang, YF (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM ywang@sandia.gov
FU United States Department of Energy's National Nuclear Security
Administration [DE-AC04-94AL85000]; DOE Sandia LDRD Program; NASA
Astrobiology Institute [N07-5489]; NSF [EAR-0810150]
FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a
Lockheed Martin company for the United States Department of Energy's
National Nuclear Security Administration under contract
DE-AC04-94AL85000. This work is partly supported by DOE Sandia LDRD
Program and NASA Astrobiology Institute under grant N07-5489 and NSF
(EAR-0810150). The authors thank C. Jove-Colonand C.Bryan of Sandia
National Laboratories, C. Klein of University of New Mexico, K. C.
Condie of New Mexico Institute of Technology and P.Brown, E.Roden, C.
Johnson and J.Valley of the University of Wiscons in for their comments
on an early draft of this paper and M. Diman for the artwork of Fig.1.
H.X. also thanks D.F. Blake of NASA Ames Research Center, D.Ojakangas of
the University of Minnesota-Duluth, P.Fralick of Lakehead University,
P.Pufahl of Acadia University and Alumni Geology Field Experience Fund
of the Department of Geology and Geophysics of University of Wiscons in
for their help with a field trip and C. Klein of University of New
Mexico for donating his BIF collection.
NR 29
TC 29
Z9 35
U1 3
U2 30
PU NATURE PUBLISHING GROUP
PI NEW YORK
PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA
SN 1752-0894
J9 NAT GEOSCI
JI Nat. Geosci.
PD NOV
PY 2009
VL 2
IS 11
BP 781
EP 784
DI 10.1038/NGEO652
PG 4
WC Geosciences, Multidisciplinary
SC Geology
GA 514IU
UT WOS:000271388500021
ER
PT J
AU May, SJ
Ryan, PJ
Robertson, JL
Kim, JW
Santos, TS
Karapetrova, E
Zarestky, JL
Zhai, X
te Velthuis, SGE
Eckstein, JN
Bader, SD
Bhattacharya, A
AF May, S. J.
Ryan, P. J.
Robertson, J. L.
Kim, J. -W.
Santos, T. S.
Karapetrova, E.
Zarestky, J. L.
Zhai, X.
te Velthuis, S. G. E.
Eckstein, J. N.
Bader, S. D.
Bhattacharya, A.
TI Enhanced ordering temperatures in antiferromagnetic manganite
superlattices
SO NATURE MATERIALS
LA English
DT Article
ID GROWTH; FILMS
AB The disorder inherent to doping by cation substitution in the complex oxides can have profound effects on collective-ordered states. Here, we demonstrate that cation-site ordering achieved through digital-synthesis techniques can dramatically enhance the antiferromagnetic ordering temperatures of manganite films. Cation-ordered (LaMnO3)(m)/(SrMnO3)(2m) superlattices show ;eel temperatures (T-N) that are the highest of any La1-xSrxMnO3 compound, similar to 70 K greater than compositionally equivalent randomly doped La1/3Sr2/3MnO3. The antiferromagnetic order is A-type, consisting of in-plane double-exchange-mediated ferromagnetic sheets coupled antiferromagnetically along the out-of-plane direction. Through synchrotron X-ray scattering, we have discovered an in-plane structural modulation that reduces the charge itinerancy and hence the ordering temperature within the ferromagnetic sheets, thereby limiting T-N. This modulation is mitigated and driven to long wavelengths by cation ordering, enabling the higher T-N values of the superlattices. These results provide insight into how cation-site ordering can enhance cooperative behaviour in oxides through subtle structural phenomena.
C1 [May, S. J.; te Velthuis, S. G. E.; Bader, S. D.; Bhattacharya, A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Ryan, P. J.] Ames Lab, MUCAT, Ames, IA 50010 USA.
[Robertson, J. L.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA.
[Kim, J. -W.; Karapetrova, E.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Santos, T. S.; Bader, S. D.; Bhattacharya, A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
[Zarestky, J. L.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
[Zarestky, J. L.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Zhai, X.; Eckstein, J. N.] Univ Illinois, Dept Phys, Urbana, IL 60801 USA.
RP Bhattacharya, A (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM anand@anl.gov
RI May, Steven/D-8563-2011; Bhattacharya, Anand/G-1645-2011; Bader,
Samuel/A-2995-2013; te Velthuis, Suzanne/I-6735-2013
OI May, Steven/0000-0002-8097-1549; Bhattacharya,
Anand/0000-0002-6839-6860; te Velthuis, Suzanne/0000-0002-1023-8384
FU US Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-AC02-06CH11357]
FX We are grateful to M. Fitzsimmons for discussions. Work at Argonne,
including use of the Advanced Photon Source and the Center for Nanoscale
Materials, was supported by the US Department of Energy, Office of
Science, Office of Basic Energy Sciences, under contract No
DE-AC02-06CH11357. Work at Oak Ridge National Laboratory's High Flux
Isotope Reactor was sponsored by the Scientific User Facilities
Division, Office of Basic Energy Sciences, US Department of Energy.
NR 36
TC 91
Z9 93
U1 3
U2 73
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1476-1122
EI 1476-4660
J9 NAT MATER
JI Nat. Mater.
PD NOV
PY 2009
VL 8
IS 11
BP 892
EP 897
DI 10.1038/NMAT2557
PG 6
WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics,
Applied; Physics, Condensed Matter
SC Chemistry; Materials Science; Physics
GA 509WR
UT WOS:000271050500019
PM 19838186
ER
PT J
AU Cao, J
Ertekin, E
Srinivasan, V
Fan, W
Huang, S
Zheng, H
Yim, JWL
Khanal, DR
Ogletree, DF
Grossmanan, JC
Wu, J
AF Cao, J.
Ertekin, E.
Srinivasan, V.
Fan, W.
Huang, S.
Zheng, H.
Yim, J. W. L.
Khanal, D. R.
Ogletree, D. F.
Grossmanan, J. C.
Wu, J.
TI Strain engineering and one-dimensional organization of metal-insulator
domains in single-crystal vanadium dioxide beams
SO NATURE NANOTECHNOLOGY
LA English
DT Article
ID PHASE-SEPARATION; THIN-FILMS; VO2; TRANSITION; TEMPERATURE; NANOBEAMS;
FERROELECTRICITY; HETEROSTRUCTURES; MANGANITES; OXIDES
AB Correlated electron materials can undergo a variety of phase transitions, including superconductivity, the metal-insulator transition and colossal magnetoresistance(1). Moreover, multiple physical phases or domains with dimensions of nanometres to micrometres can coexist in these materials at temperatures where a pure phase is expected(2). Making use of the properties of correlated electron materials in device applications will require the ability to control domain structures and phase transitions in these materials. Lattice strain has been shown to cause the coexistence of metallic and insulating phases in the Mott insulator VO(2). Here, we show that we can nucleate and manipulate ordered arrays of metallic and insulating domains along single-crystal beams Of VO(2) by continuously tuning the strain over a wide range of values. The Mott transition between a low-temperature insulating phase and a high-temperature metallic phase usually occurs at 341 K in VO(2), but the active control of strain allows us to reduce this transition temperature to room temperature. In addition to device applications, the ability to control the phase structure of VO(2) with strain could lead to a deeper understanding of the correlated electron materials in general.
C1 [Cao, J.; Fan, W.; Huang, S.; Yim, J. W. L.; Khanal, D. R.; Wu, J.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
[Cao, J.; Zheng, H.; Yim, J. W. L.; Khanal, D. R.; Ogletree, D. F.; Wu, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Ertekin, E.; Grossmanan, J. C.; Wu, J.] Univ Calif Berkeley, Berkeley Nanosci & Nanoengn Inst, Berkeley, CA 94720 USA.
[Fan, W.] Univ Sci & Technol China, Dept Thermal Sci & Energy Engn, Hefei 230026, Peoples R China.
[Zheng, H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA.
RP Wu, J (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
EM wuj@berkeley.edu
RI Cao, Jinbo/C-7537-2009; Wu, Junqiao/G-7840-2011; Ertekin,
Elif/D-6764-2013; Ogletree, D Frank/D-9833-2016
OI Wu, Junqiao/0000-0002-1498-0148; Ogletree, D Frank/0000-0002-8159-0182
FU National Science Foundation [EEC-0425914]; Laboratory Directed Research
and Development Program of Lawrence Berkeley National Laboratory (LBNL);
Department of Energy [DE-AC02-OSCH11231]; Center Research Program on
Materials, Structures and Devices (FCRP/MSD)
FX This work was supported in part by the National Science Foundation
(grant no. EEC-0425914) and in part by the Laboratory Directed Research
and Development Program of Lawrence Berkeley National Laboratory (LBNL;
Department of Energy contract no. DE-AC02-OSCH11231). Portions of this
work were performed at the Molecular Foundry and the National Centre for
Electron Microscopy, both at LBNL. J.C.G. and E.E. acknowledge funding
by the Focus Center Research Program on Materials, Structures and
Devices (FCRP/MSD).
NR 34
TC 256
Z9 257
U1 25
U2 212
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1748-3387
J9 NAT NANOTECHNOL
JI Nat. Nanotechnol.
PD NOV
PY 2009
VL 4
IS 11
BP 732
EP 737
DI 10.1038/NNANO.2009.266
PG 6
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
SC Science & Technology - Other Topics; Materials Science
GA 528AW
UT WOS:000272413500014
PM 19893528
ER
PT J
AU Peng, HS
Sun, XM
Cai, FJ
Chen, XL
Zhu, YC
Liao, GP
Chen, DY
Li, QW
Lu, YF
Zhu, YT
Jia, QX
AF Peng, Huisheng
Sun, Xuemei
Cai, Fangjing
Chen, Xuli
Zhu, Yinchao
Liao, Guipan
Chen, Daoyong
Li, Qingwen
Lu, Yunfeng
Zhu, Yuntian
Jia, Quanxi
TI Electrochromatic carbon nanotube/polydiacetylene nanocomposite fibres
SO NATURE NANOTECHNOLOGY
LA English
DT Article
ID POLYDIACETYLENE/SILICA NANOCOMPOSITES; NANOTUBE FIBERS; CONDUCTIVITY;
BEHAVIOR; POLYMER; GROWTH
AB Chromatic materials such as polydiacetylene change colour in response to a wide variety of environmental stimuli, including changes in temperature, pH and chemical or mechanical stress, and have been extensively explored as sensing devices(1-4). Here, we report the facile synthesis of carbon nanotube/polydiacetylene nanocomposite fibres that rapidly and reversibly respond to electrical current, with the resulting colour change being readily observable with the naked eye. These composite fibres also chromatically respond to a broad spectrum of other stimulations. For example, they exhibit rapid and reversible stress-induced chromatism with negligible elongation. These electrochromatic nanocomposite fibres could have various applications in sensing.
C1 [Peng, Huisheng; Sun, Xuemei; Cai, Fangjing; Chen, Xuli; Zhu, Yinchao; Liao, Guipan; Chen, Daoyong] Fudan Univ, Key Lab Mol Engn Polymers, Adv Mat Lab, Minist Educ, Shanghai 200438, Peoples R China.
[Peng, Huisheng; Sun, Xuemei; Cai, Fangjing; Chen, Xuli; Zhu, Yinchao; Liao, Guipan; Chen, Daoyong] Fudan Univ, Key Lab Mol Engn Polymers, Dept Macromol Sci, Minist Educ, Shanghai 200438, Peoples R China.
[Li, Qingwen] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Suzhou 215125, Jiangsu, Peoples R China.
[Lu, Yunfeng] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA.
[Zhu, Yuntian] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA.
[Jia, Quanxi] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA.
RP Peng, HS (reprint author), Fudan Univ, Key Lab Mol Engn Polymers, Adv Mat Lab, Minist Educ, Shanghai 200438, Peoples R China.
EM penghs@fudan.edu.cn
RI Zhu, Yuntian/B-3021-2008; Jia, Q. X./C-5194-2008; Peng,
Huisheng/G-8867-2011
OI Zhu, Yuntian/0000-0002-5961-7422;
FU Shanghai Pujiang Program [09PJ1401100]; Fudan University; US Department
of Energy (Los Alamos National Laboratory Directed Research and
Development Project)
FX This work was supported by the Shanghai Pujiang Program (09PJ1401100)
and start-up fund at Fudan University. and partly supported by the US
Department of Energy (Los Alamos National Laboratory Directed Research
and Development Project). The authors thank M. Jain, J.O. Willis and
D.E. Peterson for help with the conductivity measurements and for their
critical reading of the manuscript.
NR 26
TC 179
Z9 184
U1 20
U2 214
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1748-3387
J9 NAT NANOTECHNOL
JI Nat. Nanotechnol.
PD NOV
PY 2009
VL 4
IS 11
BP 738
EP 741
DI 10.1038/NNANO.2009.264
PG 4
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
SC Science & Technology - Other Topics; Materials Science
GA 528AW
UT WOS:000272413500015
PM 19893530
ER
PT J
AU Chu, CW
AF Chu, C. W.
TI HIGH-TEMPERATURE SUPERCONDUCTIVITY Alive and kicking
SO NATURE PHYSICS
LA English
DT News Item
ID STATE
C1 [Chu, C. W.] Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA.
[Chu, C. W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Chu, CW (reprint author), Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA.
EM cwchu@uh.edu
NR 9
TC 28
Z9 31
U1 4
U2 24
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1745-2473
J9 NAT PHYS
JI Nat. Phys.
PD NOV
PY 2009
VL 5
IS 11
BP 787
EP 789
DI 10.1038/nphys1449
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 521BZ
UT WOS:000271895500009
ER
PT J
AU Lee, J
Allan, MP
Wang, MA
Farrell, J
Grigera, SA
Baumberger, F
Davis, JC
Mackenzie, AP
AF Lee, Jinho
Allan, M. P.
Wang, M. A.
Farrell, J.
Grigera, S. A.
Baumberger, F.
Davis, J. C.
Mackenzie, A. P.
TI Heavy d-electron quasiparticle interference and real-space electronic
structure of Sr3Ru2O7
SO NATURE PHYSICS
LA English
DT Article
ID LIQUID-CRYSTAL PHASES; BI2SR2CACU2O8+DELTA; SUPERCONDUCTIVITY;
INSTABILITY; SURFACE; MODEL
AB The intriguing idea that strongly interacting electrons can generate spatially inhomogeneous electronic liquid-crystalline phases is over a decade old(1-5), but these systems still represent an unexplored frontier of condensed-matter physics. One reason is that visualization of the many-body quantum states generated by the strong interactions, and of the resulting electronic phases, has not been achieved. Soft condensed-matter physics was transformed by microscopies that enabled imaging of real-space structures and patterns. A candidate technique for obtaining equivalent data in the purely electronic systems is spectroscopic imaging scanning tunnelling microscopy (SI-STM). The core challenge is to detect the tenuous but 'heavy' momentum (k)-space components of the many-body electronic state simultaneously with its real-space constituents. Sr3Ru2O7 provides a particularly exciting opportunity to address these issues. It possesses a very strongly renormalized 'heavy' d-electron Fermi liquid(6,7) and exhibits a field-induced transition to an electronic liquid-crystalline phase(8,9). Finally, as a layered compound, it can be cleaved to present an excellent surface for SI-STM.
C1 [Lee, Jinho; Allan, M. P.; Farrell, J.; Grigera, S. A.; Baumberger, F.; Davis, J. C.; Mackenzie, A. P.] Univ St Andrews, Sch Phys & Astron, Scottish Univ Phys Alliance, St Andrews KY16 9SS, Fife, Scotland.
[Lee, Jinho; Allan, M. P.; Wang, M. A.; Davis, J. C.] Cornell Univ, Dept Phys, LASSP, Ithaca, NY 14853 USA.
[Lee, Jinho; Davis, J. C.] Brookhaven Natl Lab, CMP&MS Dept, Upton, NY 11973 USA.
[Grigera, S. A.] UNLP, Inst Fis Liquidos & Sistemas Biol, RA-1900 La Plata, Argentina.
RP Mackenzie, AP (reprint author), Univ St Andrews, Sch Phys & Astron, Scottish Univ Phys Alliance, St Andrews KY16 9SS, Fife, Scotland.
EM apm9@st-andrews.ac.uk
RI Baumberger, Felix/A-5170-2008; grigera, santiago/A-4932-2010; Allan,
Milan/D-7763-2012; Mackenzie, Andrew/K-6742-2015
OI Baumberger, Felix/0000-0001-7104-7541; Allan, Milan/0000-0002-5437-1945;
FU NSF [DMR-0520404]; UK EPSRC; Royal Society; Leverhulme Trust
FX We acknowledge and thank E. Fradkin, T. Hanaguri, C. A. Hooley, E.-A.
Kim, S. A. Kivelson, Y. Kohsaka, M. J. Lawler, A. J. Millis, S. Raghu,
T. M. Rice, S. Sachdev, K. M. Shen, H. Takagi, A. Tamai and F.-C. Zhang
for helpful discussions and communications. These studies are carried
out with support from NSF DMR-0520404 to the Cornell Center for
Materials Research, from Brookhaven National Laboratory and from the UK
EPSRC, Royal Society and Leverhulme Trust.
NR 30
TC 35
Z9 35
U1 2
U2 32
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1745-2473
J9 NAT PHYS
JI Nat. Phys.
PD NOV
PY 2009
VL 5
IS 11
BP 800
EP 804
DI 10.1038/NPHYS1397
PG 5
WC Physics, Multidisciplinary
SC Physics
GA 521BZ
UT WOS:000271895500012
ER
PT J
AU Wang, HW
Noland, C
Siridechadilok, B
Taylor, DW
Ma, EB
Felderer, K
Doudna, JA
Nogales, E
AF Wang, Hong-Wei
Noland, Cameron
Siridechadilok, Bunpote
Taylor, David W.
Ma, Enbo
Felderer, Karin
Doudna, Jennifer A.
Nogales, Eva
TI Structural insights into RNA processing by the human RISC-loading
complex
SO NATURE STRUCTURAL & MOLECULAR BIOLOGY
LA English
DT Article
ID ARGONAUTE SILENCING COMPLEX; A-AEOLICUS ARGONAUTE; CRYSTAL-STRUCTURE;
INTERFERING RNA; GUIDE-STRAND; HUMAN DICER; SIRNA; CLEAVAGE; TRBP;
RECOGNITION
AB Targeted gene silencing by RNA interference (RNAi) requires loading of a short guide RNA (small interfering RNA (siRNA) or microRNA (miRNA)) onto an Argonaute protein to form the functional center of an RNA-induced silencing complex (RISC). In humans, Argonaute2 (AGO2) assembles with the guide RNA-generating enzyme Dicer and the RNA-binding protein TRBP to form a RISC-loading complex (RLC), which is necessary for efficient transfer of nascent siRNAs and miRNAs from Dicer to AGO2. Here, using single-particle EM analysis, we show that human Dicer has an L-shaped structure. The RLC Dicer's N-terminal DExH/D domain, located in a short 'base branch', interacts with TRBP, whereas its C-terminal catalytic domains in the main body are proximal to AGO2. A model generated by docking the available atomic structures of Dicer and Argonaute homologs into the RLC reconstruction suggests a mechanism for siRNA transfer from Dicer to AGO2.
C1 [Noland, Cameron; Siridechadilok, Bunpote; Felderer, Karin; Doudna, Jennifer A.; Nogales, Eva] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA.
[Wang, Hong-Wei; Nogales, Eva] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA USA.
[Wang, Hong-Wei; Taylor, David W.] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT USA.
[Siridechadilok, Bunpote] Natl Ctr Genet Engn & Biotechnol, Pathum Thani, Thailand.
[Ma, Enbo; Felderer, Karin; Doudna, Jennifer A.; Nogales, Eva] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA.
[Doudna, Jennifer A.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA USA.
[Doudna, Jennifer A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
RP Doudna, JA (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA.
EM hongwei.wang@yale.edu; doudna@berkeley.edu; ENogales@lbl.gov
OI Taylor, David/0000-0002-6198-1194
FU US National Institutes of Health; Human Frontier Science Program
FX We thank I. MacRae at the Scripps Institute for the purified Dicer and
uncross-linked RLC samples used in the initial stages of this work, P.
Gabriel for help with particle picking, M. Jinek and S. Chakravarthy for
help with sample preparation, members of the Nogales and Doudna
laboratories for valuable insights and technical support, A. Fischer for
tissue culture assistance and the Keck MacroLab and the Unger and
Baserga laboratories at Yale University for the use of their resources.
This work was supported in part by grants from the US National
Institutes of Health (J.A.D.) and the Human Frontier Science Program
(E.N.). J.A.D. and E.N. are Howard Hughes Medical Institute
investigators.
NR 34
TC 122
Z9 126
U1 2
U2 20
PU NATURE PUBLISHING GROUP
PI NEW YORK
PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA
SN 1545-9985
J9 NAT STRUCT MOL BIOL
JI Nat. Struct. Mol. Biol.
PD NOV
PY 2009
VL 16
IS 11
BP 1148
EP U4
DI 10.1038/nsmb.1673
PG 7
WC Biochemistry & Molecular Biology; Biophysics; Cell Biology
SC Biochemistry & Molecular Biology; Biophysics; Cell Biology
GA 515LM
UT WOS:000271472300009
PM 19820710
ER
PT J
AU Ribeiro, ALB
AF Ribeiro, A. L. B.
TI Probing clustering features around Cl 0024+17
SO NEW ASTRONOMY
LA English
DT Article
DE Astrophysics; Galaxy clusters
ID FIELD SPECTROSCOPIC SURVEY; DARK-MATTER STRUCTURE; GALAXIES CL-0024+17;
LENSING CLUSTER; ADVANCED CAMERA; POINT PATTERNS; REDSHIFT
AB I present a spatial analysis of the galaxy distribution around the cluster Cl 0024+17. The basic aim is to find the scales where galaxies present a significant deviation from an inhomogeneous Poisson statistical process. Using the generalization of the Ripley, Besag, and the pair correlation functions for non-stationary point patterns, I estimate these transition scales for a set of 1000 Monte Carlo realizations of the Cl 0024+17 field, corrected for completeness up to the outskirts. The results point out the presence of at least two physical scales in this field at 31.4 '' and 112.9 ''. The second one is statistically consistent with the dark matter ring radius (similar to 75 '') previously identified by Jee [Jee. M.J., 2007. ApJ 661, 728]. However, morphology and anisotropy tests point out that a clump at similar to 120 '' NW from the cluster center could be the responsible for the second transition scale. These results do not indicate the existence of a galaxy counterpart of the dark matter ring, but the methodology developed to study the galaxy field as a spatial point pattern provides a good statistical evaluation of the physical scales around the cluster. I briefly discuss the usefulness of this approach to probe features in galaxy distribution and N-body dark matter simulation data. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Ribeiro, A. L. B.] Univ Estadual Santa Cruz, Lab Astrofis Teor & Observac, Dept Ciencias Exatas & Tecnol, BR-45650000 Ilheus, BA, Brazil.
[Ribeiro, A. L. B.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA.
RP Ribeiro, ALB (reprint author), Univ Estadual Santa Cruz, Lab Astrofis Teor & Observac, Dept Ciencias Exatas & Tecnol, BR-45650000 Ilheus, BA, Brazil.
EM albr@uesc.br
RI 7, INCT/H-6207-2013; Astrofisica, Inct/H-9455-2013
FU CNPq [201322/2007-2]
FX I thank the referee for very useful suggestions. I am grateful to A.C.
Schilling and B. Carvalho for helpful statistical discussions. I also
thank the support of CNPq, under Grant 201322/2007-2. Finally, I thank
the Fermilab for the hospitality.
NR 27
TC 0
Z9 0
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1384-1076
J9 NEW ASTRON
JI New Astron.
PD NOV
PY 2009
VL 14
IS 8
BP 666
EP 673
DI 10.1016/j.newast.2009.04.001
PG 8
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 466AN
UT WOS:000267632700004
ER
PT J
AU Abriola, D
Bostan, M
Erturk, S
Fadil, M
Galan, M
Juutinen, S
Kibedi, T
Kondev, F
Luca, A
Negret, A
Nica, N
Pfeiffer, B
Singh, B
Sonzogni, A
Timar, J
Tuli, J
Venkova, T
Zuber, K
AF Abriola, Daniel
Bostan, Melih
Erturk, Sefa
Fadil, Manssour
Galan, Monica
Juutinen, Sakari
Kibedi, Tibor
Kondev, Filip
Luca, Aurelian
Negret, Alexandru
Nica, Ninel
Pfeiffer, Bernd
Singh, Balraj
Sonzogni, Alejandro
Timar, Janos
Tuli, Jagdish
Venkova, Tsanka
Zuber, Kazimierz
TI Nuclear Data Sheets for A=84
SO NUCLEAR DATA SHEETS
LA English
DT Review
ID HIGH-SPIN STATES; DELAYED-NEUTRON PRECURSORS; RELATIVISTIC MEAN-FIELD;
GAMMA-RAY SPECTROSCOPY; LIVED FISSION-PRODUCTS; ANGULAR-CORRELATION
MEASUREMENTS; RESOLUTION LASER SPECTROSCOPY; INTERACTING BOSON MODEL;
T-Z=1/2 SERIES NUCLEI; FORBIDDEN BETA-DECAYS
AB The evaluated spectroscopic data are presented for 12 known nuclides of mass 84 (Ga, Ge, As, Se, Br, Kr, Rb, Sr, Y, Zr, Nb, Mo). Except for the stable nuelides Sr-84 and Kr-84, extensive new data are available for all the other nuclides since the 1997 evaluation by J.K. Tuli (1997Tu02) of A=84 nuclides. Many precise Penning-trap mass measurements since AME-2003 for A=84 nuclides (2009Re03,2008Ha23,2008We10,2007Ke09,2006Ka48, 2006De36,2006Ri15) have resulted in improved Q values and separation energies. However, many deficiencies still remain. Some examples are given below. Excited-state data for Ga-84 and As-84 are nonexistent, and those for Ge-84 are scarce, The radioactive decay Schemes of Ga-84, Ge-84, Se-84, Y-84 (39.5 min), Y-84 (4.6 s), Zr-84 and Nb-84 suffer from incompleteness and that for Mo-84 decay is not known at all. The energy ordering of the two activities (39.5 min and and 4.6 8) of Y-84 is not well established, although, high-spin with tentative spin-parity of (6+) is adopted here as the ground State of Y-84 based on weak arguments. From a conference report published in 2000, it is clear that extensive experiments were done to investigate decays of Zr-84 and Y-84, but details of these studies never appeared in literature and none were made available to the evaluators when requested from original authors.
This evaluation was carried out as part of ENSDF workshop for Nuclear Structure and Decay Data Evaluators, organized and hosted by the "Horia Hulubei" National Institute for Physics and Nuclear Engineering, Bucharest, Romania during March 30, 2009 - April 3, 2009. Names of the evaluators principally responsible for evaluation of individual nuelides are given under the respective Adopted data sets.
C1 [Abriola, Daniel] IAEA, Vienna, Austria.
[Bostan, Melih] Istanbul U, Istanbul, Turkey.
[Erturk, Sefa] Nigde U, Nigde, Turkey.
[Fadil, Manssour] GANIL, Caen, France.
[Galan, Monica] CIEMAT, Madrid, Spain.
[Juutinen, Sakari] U Jyvaskyla, Jyvaskyla, Finland.
[Kibedi, Tibor] Australian Natl Univ, Canberra, ACT, Australia.
[Kondev, Filip] ANL, Argonne, IL USA.
[Luca, Aurelian; Negret, Alexandru] IFIN HH, Bucharest, Romania.
[Nica, Ninel] Texas A&M, College Stn, TX USA.
[Pfeiffer, Bernd] GSI Darmstadt, Darmstadt, Germany.
[Singh, Balraj] McMaster, Hamilton, ON, Canada.
[Sonzogni, Alejandro; Tuli, Jagdish] NNDC, BNL, Upton, NY USA.
[Timar, Janos] ATOMKI, Debrecen, Hungary.
[Venkova, Tsanka] INRNE, Sofia, Bulgaria.
[Zuber, Kazimierz] IFJ PAN, Krakow, Poland.
RP Abriola, D (reprint author), IAEA, Vienna, Austria.
RI Luca, Aurelian/A-3645-2011; Kibedi, Tibor/E-8282-2010
OI Kibedi, Tibor/0000-0002-9205-7500
FU Office of Science of the DOE, USA [DE-AC02-06CH11357, 98CH10886]
FX The authors thank Nicolae Victor Zamfir (IFIN-HH) and Dimiter Balabanski
(Sofia, Bulgaria) for facilitating the workshop at IFIN-HH, and Dorel
Bucureseu (IFIN-HH) for consultations on matters related to A=84.
Coordination for this collaborative effort was provided by Balraj Singh
(McMaster). Work at the US centers and McMaster was supported by the
Office of Science of the DOE, USA, under contract # DE-AC02-06CH11357
and -98CH10886.
NR 315
TC 12
Z9 12
U1 1
U2 12
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0090-3752
EI 1095-9904
J9 NUCL DATA SHEETS
JI Nucl. Data Sheets
PD NOV
PY 2009
VL 110
IS 11
BP 2815
EP +
DI 10.1016/j.nds.2009.10.002
PG 128
WC Physics, Nuclear
SC Physics
GA 523QE
UT WOS:000272088600002
ER
PT J
AU Symochko, DM
Browne, E
Tuli, JK
AF Symochko, D. M.
Browne, E.
Tuli, J. K.
TI Nuclear Data Sheets for A=119
SO NUCLEAR DATA SHEETS
LA English
DT Review
ID BOSON-FERMION MODEL; PROTON-HOLE STATES; EVEN TIN ISOTOPES; HIGH-SPIN
STATES; INTERNAL-CONVERSION COEFFICIENT; NONCOLLECTIVE OBLATE STATES;
NEUTRON-DEFICIENT ISOTOPES; ISOBARIC ANALOGUE STATES; NEGATIVE-PARITY
STATES; ATOMIC MASS EVALUATION
AB The evaluators present in this publication spectroscopic data and level schemes from radioactive decay and nuclear reaction studies for all isobars with mass number A=119.
C1 [Symochko, D. M.] Natl Acad Sci Ukraine, Inst Elect Phys, Uzhgorod, Ukraine.
[Tuli, J. K.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA.
RP Symochko, DM (reprint author), Natl Acad Sci Ukraine, Inst Elect Phys, Uzhgorod, Ukraine.
FU Office of Nuclear Physics, Office of Science, US Department of Energy
[DE-AC02-98CH10946]
FX Research sponsored by Office of Nuclear Physics, Office of Science, US
Department of Energy, under contract DE-AC02-98CH10946.
NR 245
TC 15
Z9 15
U1 0
U2 1
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0090-3752
J9 NUCL DATA SHEETS
JI Nucl. Data Sheets
PD NOV
PY 2009
VL 110
IS 11
BP 2945
EP +
DI 10.1016/j.nds.2009.10.003
PG 160
WC Physics, Nuclear
SC Physics
GA 523QE
UT WOS:000272088600003
ER
PT J
AU Lomperski, S
Farmer, MT
AF Lomperski, S.
Farmer, M. T.
TI Corium crust strength measurements
SO NUCLEAR ENGINEERING AND DESIGN
LA English
DT Article
ID WATER; COOLABILITY; BEHAVIOR
AB Corium strength is of interest in the context of a severe reactor accident in which molten core material melts through the reactor vessel and collects on the containment basemat. Some accident management strategies involve pouring water over the melt to solidify it and halt corium/concrete interactions. The effectiveness of this method could be influenced by the strength of the corium crust at the interface between the melt and coolant. A strong, coherent crust anchored to the containment walls could allow the yet-molten corium to fall away from the crust as it erodes the basemat, thereby thermally decoupling the melt from the coolant and sharply reducing the cooling rate. This paper presents a diverse collection of measurements of the mechanical strength of corium. The data is based on load tests of corium samples in three different contexts: (1) small blocks cut from the debris of the large-scale MACE experiments, (2) 30 cm-diameter, 75 kg ingots produced by SSWICS quench tests, and (3) high temperature crusts loaded during large-scale corium/concrete interaction (CCI) tests. In every case the corium consisted of varying proportions of UO(2), ZrO(2), and the constituents of concrete to represent a LWR melt at different stages of a molten core/concrete interaction. The collection of data was used to assess the strength and stability of an anchored, plant-scale crust. The results indicate that such a crust is likely to be too weak to support itself above the melt. It is therefore improbable that an anchored crust configuration could persist and the melt become thermally decoupled from the water layer to restrict cooling and prolong an attack of the reactor cavity concrete. Published by Elsevier B.V.
C1 [Lomperski, S.; Farmer, M. T.] Argonne Natl Lab, Argonne, IL 60439 USA.
RP Lomperski, S (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM lomperski@anl.gov; farmer@anl.gov
FU Nuclear Energy Agency, Organization for Economic Cooperation and
Development (NEA/OECD)
FX The authors are grateful for the financial support of the countries
participating in the joint cooperative MCCI Project run under the
auspices of the Nuclear Energy Agency, Organization for Economic
Cooperation and Development (NEA/OECD).
NR 29
TC 3
Z9 3
U1 0
U2 2
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0029-5493
J9 NUCL ENG DES
JI Nucl. Eng. Des.
PD NOV
PY 2009
VL 239
IS 11
BP 2551
EP 2561
DI 10.1016/j.nucengdes.2009.06.013
PG 11
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA 513YW
UT WOS:000271361100037
ER
PT J
AU Biener, J
Ho, DD
Wild, C
Woerner, E
Biener, MM
El-dasher, BS
Hicks, DG
Eggert, JH
Celliers, PM
Collins, GW
Teslich, NE
Kozioziemski, BJ
Haan, SW
Hamza, AV
AF Biener, J.
Ho, D. D.
Wild, C.
Woerner, E.
Biener, M. M.
El-dasher, B. S.
Hicks, D. G.
Eggert, J. H.
Celliers, P. M.
Collins, G. W.
Teslich, N. E., Jr.
Kozioziemski, B. J.
Haan, S. W.
Hamza, A. V.
TI Diamond spheres for inertial confinement fusion
SO NUCLEAR FUSION
LA English
DT Article
ID NATIONAL-IGNITION-FACILITY; PHYSICS BASIS; TARGETS; NUCLEATION; GROWTH;
ENERGY; NIF; SIMULATIONS; DESIGN; CARBON
AB The National Ignition Facility (NIF) will allow scientists to prove the feasibility of inertial confinement fusion (ICF). The success of ICF experiments at NIF will critically depend on the availability of robust targets. Guided by computer simulations, we generated a new target design that takes advantage of the extreme atomic density of synthetic diamond, and developed a process that allows us to produce large quantities of these ultrahigh precision diamond targets via a low-cost batch process. Computer simulations were used to assess the performance and the robustness of these diamond targets. The results demonstrate that diamond has the potential to outperform other target materials in terms of energy efficiency and implosion stability, thus making successful ignition more likely.
C1 [Biener, J.; Ho, D. D.; Biener, M. M.; El-dasher, B. S.; Hicks, D. G.; Eggert, J. H.; Celliers, P. M.; Collins, G. W.; Teslich, N. E., Jr.; Kozioziemski, B. J.; Haan, S. W.; Hamza, A. V.] Lawrence Livermore Natl Lab, Nanoscale Synth & Characterizat Lab, Livermore, CA 94550 USA.
[Wild, C.; Woerner, E.] Fraunhofer Inst Appl Solid State Phys, D-79108 Freiburg, Germany.
RP Biener, J (reprint author), Lawrence Livermore Natl Lab, Nanoscale Synth & Characterizat Lab, Livermore, CA 94550 USA.
EM biener2@llnl.gov
RI Collins, Gilbert/G-1009-2011; Hicks, Damien/B-5042-2015
OI Hicks, Damien/0000-0001-8322-9983
FU US Department of Energy [DE-AC52-07NA27344]
FX This work was performed under the auspices of the US Department of
Energy by the Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344.
NR 30
TC 30
Z9 30
U1 5
U2 19
PU INT ATOMIC ENERGY AGENCY
PI VIENNA
PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA
SN 0029-5515
J9 NUCL FUSION
JI Nucl. Fusion
PD NOV
PY 2009
VL 49
IS 11
AR 112001
DI 10.1088/0029-5515/49/11/112001
PG 5
WC Physics, Fluids & Plasmas
SC Physics
GA 523MK
UT WOS:000272077800001
ER
PT J
AU DeMange, P
Marian, J
Caro, M
Caro, A
AF DeMange, P.
Marian, J.
Caro, M.
Caro, A.
TI Thermo-mechanical and neutron lifetime modelling and design of Be
pebbles in the neutron multiplier for the LIFE engine
SO NUCLEAR FUSION
LA English
DT Article
ID IRRADIATED BERYLLIUM; FUSION-REACTOR; BLANKET; CREEP; TEMPERATURE;
PARTICLES; STRESSES; TRITIUM; ENERGY; DAMAGE
AB Concept designs for the laser inertial fusion/fission energy (LIFE) engine include a neutron multiplication blanket containing Be pebbles flowing in a molten salt coolant. These pebbles must be designed to withstand the extreme irradiation and temperature conditions in the blanket to enable a reliable and cost-effective operation of LIFE. In this work, we develop design criteria for spherical Be pebbles on the basis of their thermo-mechanical behaviour under continued neutron exposure. We consider the effects of high fluence and fast fluxes on the elastic, thermal and mechanical properties of nuclear-grade Be. Our results suggest a maximum pebble diameter of 30 mm to avoid tensile failure, coated with an anti-corrosive, high-strength metallic shell to avoid failure by pebble contact. Moreover, we find that the operation temperature must always be kept above 450 degrees C to enable creep to relax the stresses induced by swelling. Under these circumstances, we estimate the pebble lifetime to be at least 16 months if uncoated, and up to six years when coated. We identify the sources of uncertainty on the properties used and discuss the advantages of new intermetallic beryllides and their use in LIFE's neutron multiplier. To establish Be-pebble lifetimes with improved confidence, reliable experiments to measure irradiation creep must be performed.
C1 [DeMange, P.; Marian, J.; Caro, M.; Caro, A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP DeMange, P (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94550 USA.
FU US Department of Energy [DE-AC52-07NA27344]
FX Helpful discussions with R.W. Moir, J.C. Farmer and R. Abbott are
acknowledged. The authors thank K. Kramer and J. Latkowski for providing
the neutronics calculations. This work was performed under the auspices
of the US Department of Energy by the Lawrence Livermore National
Laboratory under contract DE-AC52-07NA27344.
NR 52
TC 0
Z9 1
U1 0
U2 4
PU INT ATOMIC ENERGY AGENCY
PI VIENNA
PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA
SN 0029-5515
J9 NUCL FUSION
JI Nucl. Fusion
PD NOV
PY 2009
VL 49
IS 11
AR 115013
DI 10.1088/0029-5515/49/11/115013
PG 10
WC Physics, Fluids & Plasmas
SC Physics
GA 523MK
UT WOS:000272077800014
ER
PT J
AU Gohil, P
Jernigan, TC
Scoville, JT
Strait, EJ
AF Gohil, P.
Jernigan, T. C.
Scoville, J. T.
Strait, E. J.
TI The H-mode power threshold in hydrogen plasmas in DIII-D
SO NUCLEAR FUSION
LA English
DT Article
ID TRANSITION THRESHOLD; DIVERTOR GEOMETRY; D TOKAMAK; JET; DATABASE
AB In DIII-D, experiments have been performed in hydrogen plasmas to determine the requirement for hydrogen operation in ITER. The H-mode threshold power has been determined to increase with input torque for both hydrogen and deuterium plasmas with the H-mode power threshold for hydrogen plasmas being greater by approximately a factor of 2 at zero torque than in comparable deuterium plasmas. The threshold power for hydrogen discharges with full counter-current beam injection is roughly the same as the threshold power for deuterium discharges with co-current beam injection. The plasma geometry also influences the power threshold through the vertical distance between the X-point and the divertor surface.
C1 [Gohil, P.; Scoville, J. T.; Strait, E. J.] Gen Atom Co, San Diego, CA 92186 USA.
[Jernigan, T. C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RP Gohil, P (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA.
FU US Department of Energy [DE-FC02-04ER54698, DE-AC05-00OR22725]
FX This work was supported by the US Department of Energy under
DE-FC02-04ER54698 and DE-AC05-00OR22725.
NR 18
TC 19
Z9 19
U1 2
U2 6
PU INT ATOMIC ENERGY AGENCY
PI VIENNA
PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA
SN 0029-5515
J9 NUCL FUSION
JI Nucl. Fusion
PD NOV
PY 2009
VL 49
IS 11
AR 115004
DI 10.1088/0029-5515/49/11/115004
PG 6
WC Physics, Fluids & Plasmas
SC Physics
GA 523MK
UT WOS:000272077800005
ER
PT J
AU Groth, M
Boedo, JA
Brooks, NH
Isler, RC
Leonard, AW
Porter, GD
Watkins, JG
West, WP
Bray, BD
Fenstermacher, ME
Groebner, RJ
Moyer, RA
Rudakov, DL
Yu, JH
Zeng, L
AF Groth, M.
Boedo, J. A.
Brooks, N. H.
Isler, R. C.
Leonard, A. W.
Porter, G. D.
Watkins, J. G.
West, W. P.
Bray, B. D.
Fenstermacher, M. E.
Groebner, R. J.
Moyer, R. A.
Rudakov, D. L.
Yu, J. H.
Zeng, L.
TI Effect of cross-field drifts on flows in the main scrape-off-layer of
DIII-D L-mode plasmas
SO NUCLEAR FUSION
LA English
DT Article
ID RADIAL ELECTRIC-FIELD; D DIVERTOR; EDGE PLASMA; SOL FLOWS; TOKAMAK;
TRANSPORT; CODE; JET; DENSITY; PROBE
AB The flow velocities of deuterons and low charge-state carbon ions have been measured simultaneously in the main scrape-off-layer (SOL) in low-density plasmas in DIII-D, and the dependences of these flow fields on the direction of the cross-field drifts (E x B and B x del B) have been investigated. These measurements were taken poloidally localized in the SOL region vertically opposite the divertor X-point. The carbon ion flows do not necessarily match those of the deuterons either in the direction with respect to the magnetic field lines or in magnitude, suggesting that physics effects apart from entrainment play a significant role in the impurity response. In configurations with the ion B x del B drift towards the divertor X-point, the parallel-B deuteron velocities at the plasma crown are high (-20 to -30 km s(-1) in the direction of the high field side (HFS) divertor), while they are nearly zero in configurations with the opposite B x del B drift direction. The flow direction of singly and doubly charged carbon ions is independent of the ion B x del B drift direction, and the ions flow at approximately -5 to -10 km s(-1) towards the HFS divertor. Simulations with the UEDGE code have been carried out to better understand the underlying physics processes. Inclusion of cross-field drifts in the simulations produced divertor solutions for density and temperature that agree significantly better with measured divertor parameters. These simulations do not, however, reproduce the measured flow fields at the crown for the configuration with the ion B x del B drift towards the divertor X-point. The UEDGE code has also been used to understand the influence of pumping at the HFS divertor plate, and a poloidal dependence in the radial transport coefficient.
C1 [Groth, M.; Porter, G. D.; Fenstermacher, M. E.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
[Boedo, J. A.; Moyer, R. A.; Rudakov, D. L.; Yu, J. H.] Univ Calif San Diego, La Jolla, CA 92093 USA.
[Brooks, N. H.; Leonard, A. W.; West, W. P.; Bray, B. D.; Groebner, R. J.] Gen Atom Co, San Diego, CA 92186 USA.
[Isler, R. C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Watkins, J. G.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Zeng, L.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA.
RP Groth, M (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA.
RI Groth, Mathias/G-2227-2013;
OI Isler, Ralph/0000-0002-5368-7200
FU US Department of Energy [DE-AC52-07NA27344, DE-FG0207ER54917,
DE-FC02-04ER54698, DE-AC05-00OR22725, DE-AC04-94AL85000,
DE-FG02-08ER54984]
FX This work performed under the auspices of the US Department of Energy by
the Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344, DE-FG0207ER54917, DE-FC02-04ER54698,
DE-AC05-00OR22725, DE-AC04-94AL85000 and DE-FG02-08ER54984.
NR 55
TC 8
Z9 8
U1 1
U2 6
PU INT ATOMIC ENERGY AGENCY
PI VIENNA
PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA
SN 0029-5515
J9 NUCL FUSION
JI Nucl. Fusion
PD NOV
PY 2009
VL 49
IS 11
AR 115002
DI 10.1088/0029-5515/49/11/115002
PG 14
WC Physics, Fluids & Plasmas
SC Physics
GA 523MK
UT WOS:000272077800003
ER
PT J
AU Humphreys, DA
Casper, TA
Eidietis, N
Ferrara, M
Gates, DA
Hutchinson, IH
Jackson, GL
Kolemen, E
Leuer, JA
Lister, J
LoDestro, LL
Meyer, WH
Pearlstein, LD
Portone, A
Sartori, F
Walker, ML
Welander, AS
Wolfe, SM
AF Humphreys, D. A.
Casper, T. A.
Eidietis, N.
Ferrara, M.
Gates, D. A.
Hutchinson, I. H.
Jackson, G. L.
Kolemen, E.
Leuer, J. A.
Lister, J.
LoDestro, L. L.
Meyer, W. H.
Pearlstein, L. D.
Portone, A.
Sartori, F.
Walker, M. L.
Welander, A. S.
Wolfe, S. M.
TI Experimental vertical stability studies for ITER performance and design
guidance
SO NUCLEAR FUSION
LA English
DT Article
ID OPERATION
AB Operating experimental devices have provided key inputs to the design process for ITER axisymmetric control. In particular, experiments have quantified controllability and robustness requirements in the presence of realistic noise and disturbance environments, which are difficult or impossible to characterize with modelling and simulation alone. This kind of information is particularly critical for ITER vertical control, which poses the highest demands on poloidal field system performance, since the consequences of loss of vertical control can be severe. This work describes results of multi-machine studies performed under a joint ITPA experiment (MDC-13) on fundamental vertical control performance and controllability limits. We present experimental results from Alcator C-Mod, DIII-D, NSTX, TCV and JET, along with analysis of these data to provide vertical control performance guidance to ITER. Useful metrics to quantify this control performance include the stability margin and maximum controllable vertical displacement. Theoretical analysis of the maximum controllable vertical displacement suggests effective approaches to improving performance in terms of this metric, with implications for ITER design modifications. Typical levels of noise in the vertical position measurement and several common disturbances which can challenge the vertical control loop are assessed and analysed.
C1 [Humphreys, D. A.; Eidietis, N.; Jackson, G. L.; Leuer, J. A.; Walker, M. L.; Welander, A. S.] Gen Atom Co, San Diego, CA 92186 USA.
[Casper, T. A.; LoDestro, L. L.; Meyer, W. H.; Pearlstein, L. D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Ferrara, M.; Hutchinson, I. H.; Wolfe, S. M.] MIT, Cambridge, MA 02139 USA.
[Gates, D. A.; Kolemen, E.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
[Lister, J.] Ecole Polytech Fed Lausanne, CRPP Lausanne, CH-1015 Lausanne, Switzerland.
[Portone, A.] Fus Energy, Barcelona, Spain.
[Sartori, F.] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon, Oxon, England.
RP Humphreys, DA (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA.
EM dave.humphreys@gat.com
RI Hutchinson, Ian/D-1136-2009;
OI Hutchinson, Ian/0000-0003-4276-6576; sartori,
Filippo/0000-0002-3451-3467; Walker, Michael/0000-0002-4341-994X
FU US Department of Energy [DE-FC02-04ER54698, DE-AC52-07NA27344,
DE-FG02-04ER54235]
FX This work was supported by the US Department of Energy under
DE-FC02-04ER54698, DE-AC52-07NA27344 and DE-FG02-04ER54235. This report
was prepared as an account of work by or for the ITER Organization. The
Members of the Organization are the People's Republic of China, the
European Atomic Energy Community, the Republic of India, Japan, the
Republic of Korea, the Russian Federation and the United States of
America. The views and opinions expressed herein do not necessarily
reflect those of the Members or any agency thereof.
NR 13
TC 41
Z9 41
U1 0
U2 7
PU INT ATOMIC ENERGY AGENCY
PI VIENNA
PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA
SN 0029-5515
J9 NUCL FUSION
JI Nucl. Fusion
PD NOV
PY 2009
VL 49
IS 11
AR 115003
DI 10.1088/0029-5515/49/11/115003
PG 10
WC Physics, Fluids & Plasmas
SC Physics
GA 523MK
UT WOS:000272077800004
ER
PT J
AU Jackson, GL
Casper, TA
Luce, TC
Humphreys, DA
Ferron, JR
Hyatt, AW
Leuer, JA
Petrie, TW
Turco, F
West, WP
AF Jackson, G. L.
Casper, T. A.
Luce, T. C.
Humphreys, D. A.
Ferron, J. R.
Hyatt, A. W.
Leuer, J. A.
Petrie, T. W.
Turco, F.
West, W. P.
TI Simulating ITER plasma startup and rampdown scenarios in the DIII-D
tokamak
SO NUCLEAR FUSION
LA English
DT Article
ID CONSUMPTION; OPERATION
AB DIII-D experiments have investigated ITER startup scenarios, including an initial phase where the plasma was limited on low field side poloidal bumper limiters. In addition, l(i) feedback control has been tested with the goal of producing discharges in ITER within the capabilities of the poloidal field coil set and favourable to the intended mode of operations in the subsequent constant current (flattop) phase. These discharges have been modelled using the Corsica free boundary equilibrium code. High performance hybrid scenario discharges (beta(N) = 2.8, H(98, y2) = 1.4) and ITER H-mode baseline discharges (beta(N) > 1.6, H(98, y2) = 1-1.2) have been obtained experimentally in an ITER similar shape after the ITER-relevant startup. Studies have been initiated to develop a reliable scenario for exiting the burn phase and ramping down the plasma current in ITER without disruptions.
C1 [Jackson, G. L.; Luce, T. C.; Humphreys, D. A.; Ferron, J. R.; Hyatt, A. W.; Petrie, T. W.; West, W. P.] Gen Atom Co, San Diego, CA 92186 USA.
[Casper, T. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Turco, F.] Oak Ridge Inst Sci Educ, Oak Ridge, TN USA.
RP Jackson, GL (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA.
EM jackson@fusion.gat.com
FU US Department of Energy [DE-FC02-04ER54698, DE-AC52-07NA27344,
DE-AC05-06OR23100]
FX This work supported by the US Department of Energy under
DE-FC02-04ER54698, DE-AC52-07NA27344 and DE-AC05-06OR23100. This report
was prepared as an account of work by or for the ITER organization. The
members of the organization are the People's Republic of China, the
European Atomic Energy Community, the Republic of India, Japan, the
Republic of Korea, the Russian Federation and the United States of
America. The views and opinions expressed herein do not necessarily
reflect those of the members or any agency thereof.
NR 16
TC 15
Z9 15
U1 0
U2 4
PU INT ATOMIC ENERGY AGENCY
PI VIENNA
PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA
SN 0029-5515
J9 NUCL FUSION
JI Nucl. Fusion
PD NOV
PY 2009
VL 49
IS 11
AR 115027
DI 10.1088/0029-5515/49/11/115027
PG 7
WC Physics, Fluids & Plasmas
SC Physics
GA 523MK
UT WOS:000272077800028
ER
PT J
AU McKee, GR
Gohil, P
Schlossberg, DJ
Boedo, JA
Burrell, KH
Degrassie, JS
Groebner, RJ
Moyer, RA
Petty, CC
Rhodes, TL
Schmitz, L
Shafer, MW
Solomon, WM
Umansky, M
Wang, G
White, AE
Xu, X
AF McKee, G. R.
Gohil, P.
Schlossberg, D. J.
Boedo, J. A.
Burrell, K. H.
deGrassie, J. S.
Groebner, R. J.
Moyer, R. A.
Petty, C. C.
Rhodes, T. L.
Schmitz, L.
Shafer, M. W.
Solomon, W. M.
Umansky, M.
Wang, G.
White, A. E.
Xu, X.
TI Dependence of the L- to H-mode power threshold on toroidal rotation and
the link to edge turbulence dynamics
SO NUCLEAR FUSION
LA English
DT Article
ID GEODESIC ACOUSTIC MODE; BEAM EMISSION-SPECTROSCOPY; DIII-D TOKAMAK;
ZONAL FLOWS; VELOCITY SHEAR; FLUCTUATION MEASUREMENTS; TRANSITION;
TRANSPORT; CONFINEMENT; PLASMA
AB The injected power required to induce a transition from L-mode to H-mode plasmas is found to depend strongly on the injected neutral beam torque and consequent plasma toroidal rotation. Edge turbulence and flows, measured near the outboard midplane of the plasma (0.85 < r/a < 1.0) on DIII-D with the high-sensitivity 2D beam emission spectroscopy (BES) system, likewise vary with rotation and suggest a causative connection. The L-H power threshold in plasmas with the ion del B drift directed away from the X-point decreases from 4-6 MW with co-current beam injection, to 2-3 MW near zero net injected torque and to <2 MW with counter-injection in the discharges examined. Plasmas with the ion del B drift directed towards the X-point exhibit a qualitatively similar though less pronounced power threshold dependence on rotation. 2D edge turbulence measurements with BES show an increasing poloidal flow shear as the L-H transition is approached in all conditions. As toroidal rotation is varied from co-current to balanced in L-mode plasmas, the edge turbulence changes from a uni-modal character to a bi-modal structure, with the appearance of a low-frequency (f = 10-50 kHz) mode propagating in the electron diamagnetic direction, similar to what is observed as the ion del B drift is directed towards the X-point in co-rotating plasmas. At low rotation, the poloidal turbulence flow near the edge reverses prior to the L-H transition, generating a significant poloidal flow shear that exceeds the measured turbulence decorrelation rate. This increased poloidal turbulence velocity shear appears to facilitate the L-H transition. No such reversal is observed in high rotation plasmas. The high-frequency poloidal turbulence velocity spectrum exhibits a transition from a geodesic acoustic mode zonal flow to a higher-power, lower frequency zero-mean-frequency zonal flow as rotation varies from co-current to balanced during a torque scan at constant injected neutral beam power, perhaps also facilitating the L-H transition. This reduced power threshold at lower toroidal rotation may benefit inherently low-rotation plasmas such as ITER.
C1 [McKee, G. R.; Schlossberg, D. J.; Shafer, M. W.] Univ Wisconsin, Madison, WI 53706 USA.
[Gohil, P.; Burrell, K. H.; deGrassie, J. S.; Groebner, R. J.; Petty, C. C.] Gen Atom Co, San Diego, CA 92186 USA.
[Boedo, J. A.; Moyer, R. A.] Univ Calif San Diego, La Jolla, CA 92093 USA.
[Rhodes, T. L.; Schmitz, L.; Wang, G.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA.
[Solomon, W. M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
[Umansky, M.; Xu, X.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
[White, A. E.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA.
RP McKee, GR (reprint author), Univ Wisconsin, 1500 Engn Dr, Madison, WI 53706 USA.
RI White, Anne/B-8990-2011;
OI Solomon, Wayne/0000-0002-0902-9876; Shafer, Morgan/0000-0001-9808-6305
FU US Department of Energy [DE-FG02-89ER53296, DE-FC02-04ER54698,
DE-FG02-04ER54758, DE-FG03-01ER54615, DE-AC0276CH03073,
DE-AC52-07NA27344]
FX This work was supported by the US Department of Energy under
DE-FG02-89ER53296, DE-FC02-04ER54698, DE-FG02-04ER54758,
DE-FG03-01ER54615, DE-AC0276CH03073 and DE-AC52-07NA27344.
NR 47
TC 42
Z9 44
U1 0
U2 13
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0029-5515
EI 1741-4326
J9 NUCL FUSION
JI Nucl. Fusion
PD NOV
PY 2009
VL 49
IS 11
AR 115016
DI 10.1088/0029-5515/49/11/115016
PG 10
WC Physics, Fluids & Plasmas
SC Physics
GA 523MK
UT WOS:000272077800017
ER
PT J
AU Na, YS
Kessel, CE
Park, JM
Yi, S
Becoulet, A
Sips, ACC
Kim, JY
AF Na, Yong-Su
Kessel, C. E.
Park, J. M.
Yi, Sumin
Becoulet, A.
Sips, A. C. C.
Kim, J. Y.
TI Simulations of KSTAR high performance steady state operation scenarios
SO NUCLEAR FUSION
LA English
DT Article
ID GENERAL AXISYMMETRICAL EQUILIBRIA; BOOTSTRAP CURRENT; H-MODE; TRANSPORT;
TOKAMAKS; ROTATION; PARTICLE; PLASMAS; REGIME; HEAT
AB We report the results of predictive modelling of high performance steady state operation scenarios in KSTAR. Firstly, the capabilities of steady state operation are investigated with time-dependent simulations using a free-boundary plasma equilibrium evolution code coupled with transport calculations. Secondly, the reproducibility of high performance steady state operation scenarios developed in the DIII-D tokamak, of similar size to that of KSTAR, is investigated using the experimental data taken from DIII-D. Finally, the capability of ITER-relevant steady state operation is investigated in KSTAR. It is found that KSTAR is able to establish high performance steady state operation scenarios; beta(N) above 3, H-98(y, 2) up to 2.0, f(BS) up to 0.76 and f(NI) equals 1.0. In this work, a realistic density profile is newly introduced for predictive simulations by employing the scaling law of a density peaking factor. The influence of the current ramp-up scenario and the transport model is discussed with respect to the fusion performance and non-inductive current drive fraction in the transport simulations. As observed in the experiments, both the heating and the plasma current waveforms in the current ramp-up phase produce a strong effect on the q-profile, the fusion performance and also on the non-inductive current drive fraction in the current flattop phase. A criterion in terms of q(min) is found to establish ITER-relevant steady state operation scenarios. This will provide a guideline for designing the current ramp-up phase in KSTAR. It is observed that the transport model also affects the predictive values of fusion performance as well as the non-inductive current drive fraction. The Weiland transport model predicts the highest fusion performance as well as non-inductive current drive fraction in KSTAR. In contrast, the GLF23 model exhibits the lowest ones. ITER-relevant advanced scenarios cannot be obtained with the GLF23 model in the conditions given in this work. Finally, ideal MHD stability is investigated for the ITER-relevant advanced scenarios in KSTAR. The methods and results presented in this paper are expected to contribute to improving the ITER and beyond ITER predictive simulations.
C1 [Na, Yong-Su] Seoul Natl Univ, Dept Nucl Engn, Seoul 151744, South Korea.
[Na, Yong-Su; Yi, Sumin; Kim, J. Y.] Natl Fus Res Inst, Taejon 305333, South Korea.
[Kessel, C. E.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
[Park, J. M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Becoulet, A.] EURATOM, CEA, DSM DRFC, Ctr Cadarache, F-13108 St Paul Les Durance, France.
[Sips, A. C. C.] Max Planck Inst Plasma Phys, EURATOM Assoc, D-85748 Garching, Germany.
RP Na, YS (reprint author), Seoul Natl Univ, Dept Nucl Engn, 599 Gwanangno, Seoul 151744, South Korea.
EM ysna@snu.ac.kr
FU Korea Science and Engineering Foundation (KOSEF); National RD Program;
National Research Foundation of Korea (NRF); Ministry of Education,
Science and Technology & Ministry of Knowledge Economy
[R11-2008-072-01002-0, 2009-0082633]
FX The authors would like to express their deep gratitude to Professor C.
K. Choi (Purdue University) for fruitful discussions. This work was
supported by the Korea Science and Engineering Foundation (KOSEF) and
the National R&D Program through the National Research Foundation of
Korea (NRF) grant funded by the Ministry of Education, Science and
Technology & Ministry of Knowledge Economy (Nos. R11-2008-072-01002-0
and 2009-0082633).
NR 30
TC 11
Z9 11
U1 0
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0029-5515
EI 1741-4326
J9 NUCL FUSION
JI Nucl. Fusion
PD NOV
PY 2009
VL 49
IS 11
AR 115018
DI 10.1088/0029-5515/49/11/115018
PG 10
WC Physics, Fluids & Plasmas
SC Physics
GA 523MK
UT WOS:000272077800019
ER
PT J
AU Reimerdes, H
Garofalo, AM
Strait, EJ
Buttery, RJ
Chu, MS
In, Y
Jackson, GL
La Haye, RJ
Lanctot, MJ
Liu, YQ
Okabayashi, M
Park, JK
Schaffer, MJ
Solomon, WM
AF Reimerdes, H.
Garofalo, A. M.
Strait, E. J.
Buttery, R. J.
Chu, M. S.
In, Y.
Jackson, G. L.
La Haye, R. J.
Lanctot, M. J.
Liu, Y. Q.
Okabayashi, M.
Park, J. -K.
Schaffer, M. J.
Solomon, W. M.
TI Effect of resonant and non-resonant magnetic braking on error field
tolerance in high beta plasmas
SO NUCLEAR FUSION
LA English
DT Article
ID TOROIDAL-MOMENTUM DISSIPATION; RESISTIVE WALL MODES; DIII-D PLASMAS;
TOKAMAKS; STABILIZATION; ROTATION; INSTABILITY; STABILITY
AB Tokamak plasmas become less tolerant to externally applied non-axisymmetric magnetic 'error' fields as beta increases, due to a resonant interaction of the non-axisymmetric field with a stable n = 1 kink mode. Similar to observations in low beta plasmas, the limit to tolerable n = 1 magnetic field errors in neutral beam injection heated H-mode plasmas is seen as a bifurcation in the torque balance, which is followed by error field-driven locked modes and severe confinement degradation or a disruption. The error field tolerance is, therefore, largely determined by the braking torque resulting from the non-axisymmetric magnetic field. DIII-D experiments distinguish between a resonant-like torque, which decreases with increasing rotation, and a non-resonant-like torque, which increases with increasing rotation. While only resonant braking leads to a rotation collapse, modelling shows that non-resonant components can lower the tolerance to resonant components. The strong reduction of the error field tolerance with increasing beta, which has already been observed in early high beta experiments in DIII-D (La Haye et al 1992 Nucl. Fusion 32 2119), is linked to an increasing resonant field amplification resulting from a stable kink mode (Boozer 2001 Phys. Rev. Lett. 86 5059). The amplification of externally applied n = 1 fields is measured with magnetic pick-up coils at normalized beta values as low as 1 and seen to increase with beta. The rate at which the amplification increases with beta becomes larger above the no-wall ideal MHD stability limit, where kinetic effects stabilize the resistive wall mode. The extent of the beta dependence and its importance for low torque scenarios was not previously appreciated, and was not included in the empirical scaling of the error field tolerance for ITER, which focused on the lowest density phase of a discharge prior to H-mode access (Buttery et al 1999 Nucl. Fusion 39 1827, 1999 ITER Physics Basis Nucl. Fusion 39 2137). However, the measurable increase in the plasma response with beta can be exploited for 'dynamic' correction (i.e. with slow magnetic feedback) of the amplified error field.
C1 [Reimerdes, H.; Lanctot, M. J.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA.
[Garofalo, A. M.; Strait, E. J.; Chu, M. S.; Jackson, G. L.; La Haye, R. J.; Schaffer, M. J.] Gen Atom Co, San Diego, CA 92186 USA.
[Buttery, R. J.; Liu, Y. Q.] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
[In, Y.] FAR TECH Inc, San Diego, CA 92121 USA.
[Okabayashi, M.; Park, J. -K.; Solomon, W. M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
RP Reimerdes, H (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA.
EM reimerdes@fusion.gat.com
RI Lanctot, Matthew J/O-4979-2016;
OI Lanctot, Matthew J/0000-0002-7396-3372; Solomon,
Wayne/0000-0002-0902-9876
FU US Department of Energy [DE-FG02-89ER53297, DE-FC02-04ER54698,
DE-AC02-76CH03073]
FX This work was supported by the US Department of Energy under
DE-FG02-89ER53297, DE-FC02-04ER54698 and DE-AC02-76CH03073. The authors
would like to thank Professor A. H. Boozer and Drs K. H. Burrell, A. J.
Cole and S. A. Sabbagh for insightful discussions.
NR 35
TC 52
Z9 52
U1 0
U2 7
PU INT ATOMIC ENERGY AGENCY
PI VIENNA
PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA
SN 0029-5515
J9 NUCL FUSION
JI Nucl. Fusion
PD NOV
PY 2009
VL 49
IS 11
AR 115001
DI 10.1088/0029-5515/49/11/115001
PG 11
WC Physics, Fluids & Plasmas
SC Physics
GA 523MK
UT WOS:000272077800002
ER
PT J
AU Wampler, WR
Doerner, RP
AF Wampler, W. R.
Doerner, R. P.
TI The influence of displacement damage on deuterium retention in tungsten
exposed to plasma
SO NUCLEAR FUSION
LA English
DT Article
ID FACING MATERIALS; HIGH FLUENCES; HELIUM-IONS; HIGH-FLUX; HYDROGEN;
IRRADIATION; RELEASE; BEHAVIOR; TANTALUM; METALS
AB Trapping of tritium at lattice damage from fusion neutron irradiation is expected to increase the tritium inventory in tungsten components in ITER. The magnitude of this increase depends on the concentration of traps that are produced, and on the depth to which the increased tritium retention extends into the material. Experiments to address these issues are described, in which displacement damage by ion irradiation was used as a surrogate for neutron damage. Irradiated samples were exposed to high flux deuterium plasma to simulate divertor conditions. The resulting deuterium content was measured by nuclear reaction analysis. Measurements were done at various damage levels up to those expected from the end-of-life neutron fluence in ITER. These experiments determine the number of traps produced by displacement damage and the rate at which they are filled during exposure to plasma. The role of defect annealing was explored through plasma exposures at various temperatures. In addition to trapping at damage, near-surface retention from internal precipitation was observed at lower temperatures. Addition of 5% helium to the deuterium plasma greatly reduced D retention by precipitation by localizing it closer to the surface. Results from these experiments indicate that the contribution to tritium inventory in ITER from trapping at neutron damage should be small.
C1 [Wampler, W. R.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Doerner, R. P.] Univ Calif San Diego, La Jolla, CA 92093 USA.
RP Wampler, WR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM wrwampl@sandia.gov
FU United States Department of Energy's National Nuclear Security
Administration [DE-AC04-94AL85000]
FX Sandia is a multi-program laboratory operated by the Lockheed Martin
Company, for the United States Department of Energy's National Nuclear
Security Administration under contract DE-AC04-94AL85000. The vacuum
plasma sprayed tungsten samples were provided by G.-N. Luo of the
Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), Hefei,
China. Thermal desorption measurements of deuterium in vacuum plasma
sprayed tungsten were done by Karl Umstadter at the University of
California San Diego.
NR 32
TC 75
Z9 75
U1 6
U2 38
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0029-5515
EI 1741-4326
J9 NUCL FUSION
JI Nucl. Fusion
PD NOV
PY 2009
VL 49
IS 11
AR 115023
DI 10.1088/0029-5515/49/11/115023
PG 9
WC Physics, Fluids & Plasmas
SC Physics
GA 523MK
UT WOS:000272077800024
ER
PT J
AU Wilson, JR
Parker, R
Bitter, M
Bonoli, PT
Fiore, C
Harvey, RW
Hill, K
Hubbard, AE
Hughes, JW
Ince-Cushman, A
Kessel, C
Ko, JS
Meneghini, O
Phillips, CK
Porkolab, M
Rice, J
Schmidt, AE
Scott, S
Shiraiwa, S
Valeo, E
Wallace, G
Wright, JC
AF Wilson, J. R.
Parker, R.
Bitter, M.
Bonoli, P. T.
Fiore, C.
Harvey, R. W.
Hill, K.
Hubbard, A. E.
Hughes, J. W.
Ince-Cushman, A.
Kessel, C.
Ko, J. S.
Meneghini, O.
Phillips, C. K.
Porkolab, M.
Rice, J.
Schmidt, A. E.
Scott, S.
Shiraiwa, S.
Valeo, E.
Wallace, G.
Wright, J. C.
CA Alcator C-Mod Team
TI Lower hybrid heating and current drive on the Alcator C-Mod tokamak
SO NUCLEAR FUSION
LA English
DT Article
ID CONFINEMENT; ELECTRONS
AB On the Alcator C-Mod tokamak, lower hybrid current drive (LHCD) is being used to modify the current profile with the aim of obtaining advanced tokamak (AT) performance in plasmas with parameters similar to those that would be required on ITER. To date, power levels in excess of 1 MW at a frequency of 4.6 GHz have been coupled into a variety of plasmas. Experiments have established that LHCD on C-Mod behaves globally as predicted by theory. Bulk current drive efficiencies, n(20)I(lh)R/P(lh) similar to 0.25, inferred from magnetics and MSE are in line with theory. Quantitative comparisons between local measurements, MSE, ECE and hard x-ray bremsstrahlung, and theory/simulation using the GENRAY, TORIC-LH CQL3D and TSC-LSC codes have been performed. These comparisons have demonstrated the off-axis localization of the current drive, its magnitude and location dependence on the launched n(parallel to) spectrum, and the use of LHCD during the current ramp to save volt-seconds and delay the peaking of the current profile. Broadening of the x-ray emission profile during ICRF heating indicates that the current drive location can be controlled by the electron temperature, as expected. In addition, an alteration in the plasma toroidal rotation profile during LHCD has been observed with a significant rotation in the counter-current direction. Notably, the rotation is accompanied by peaking of the density and temperature profiles on a current diffusion time scale inside of the half radius where the LH absorption is taking place.
C1 [Wilson, J. R.; Bitter, M.; Hill, K.; Kessel, C.; Phillips, C. K.; Scott, S.; Valeo, E.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
[Parker, R.; Bonoli, P. T.; Fiore, C.; Hubbard, A. E.; Hughes, J. W.; Ince-Cushman, A.; Ko, J. S.; Meneghini, O.; Porkolab, M.; Rice, J.; Schmidt, A. E.; Shiraiwa, S.; Wallace, G.; Wright, J. C.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA.
[Harvey, R. W.] CompX, Del Mar, CA 92014 USA.
RP Wilson, JR (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
EM jrwilson@pppl.gov
FU USDOE [DE-FC02-99ER54512, DE-AC02-76CH03073]
FX This work was performed under USDOE Contract numbers DE-FC02-99ER54512
and DE-AC02-76CH03073.
NR 19
TC 19
Z9 19
U1 2
U2 11
PU INT ATOMIC ENERGY AGENCY
PI VIENNA
PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA
SN 0029-5515
J9 NUCL FUSION
JI Nucl. Fusion
PD NOV
PY 2009
VL 49
IS 11
AR 115015
DI 10.1088/0029-5515/49/11/115015
PG 8
WC Physics, Fluids & Plasmas
SC Physics
GA 523MK
UT WOS:000272077800016
ER
PT J
AU Alexander, G
Barley, J
Batygin, Y
Berridge, S
Bharadwaj, V
Bower, G
Bugg, W
Decker, FJ
Dollan, R
Efremenko, Y
Flottmann, K
Gharibyan, V
Hast, C
Iverson, R
Kolanoski, H
Kovermann, JW
Laihem, K
Lohse, T
McDonald, KT
Mikhailichenko, AA
Moortgat-Pick, GA
Pahl, P
Pitthan, R
Poschl, R
Reinherz-Aronis, E
Riemann, S
Schalicke, A
Schuler, KP
Schweizer, T
Scott, D
Sheppard, JC
Stahl, A
Szalata, Z
Walz, DR
Weidemann, A
AF Alexander, G.
Barley, J.
Batygin, Y.
Berridge, S.
Bharadwaj, V.
Bower, G.
Bugg, W.
Decker, F-J.
Dollan, R.
Efremenko, Y.
Floettmann, K.
Gharibyan, V.
Hast, C.
Iverson, R.
Kolanoski, H.
Kovermann, J. W.
Laihem, K.
Lohse, T.
McDonald, K. T.
Mikhailichenko, A. A.
Moortgat-Pick, G. A.
Pahl, P.
Pitthan, R.
Poeschl, R.
Reinherz-Aronis, E.
Riemann, S.
Schaelicke, A.
Schueler, K. P.
Schweizer, T.
Scott, D.
Sheppard, J. C.
Stahl, A.
Szalata, Z.
Walz, D. R.
Weidemann, A.
TI Undulator-based production of polarized positrons
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Undulator; Positron; Polarization
ID CIRCULAR POLARIZATION; LONGITUDINAL POLARIZATION; LINEAR COLLIDERS; MUON
DECAY; GAMMA-RAYS; BREMSSTRAHLUNG; ELECTRON; TRANSMISSION; PARTICLES;
HELICITY
AB Full exploitation of the physics potential of a future International Linear Collider will require the use of polarized electron and positron beams. Experiment E166 at the Stanford Linear Accelerator Center (SLAC) has demonstrated a scheme in which an electron beam passes through a helical undulator to generate photons (whose first-harmonic spectrum extended to 7.9MeV) with circular polarization, which are then converted in a thin target to generate longitudinally polarized positrons and electrons. The experiment was carried out with a 1-m-long, 400-period, pulsed helical undulator in the Final Focus Test Beam (FFTB) operated at 46.6 GeV. Measurements of the positron polarization have been performed at five positron energies from 4.5 to 7.5 MeV. In addition, the electron polarization has been determined at 6.7 MeV, and the effect of operating the undulator with a ferrofluid was also investigated. To compare the measurements with expectations, detailed simulations were made with an upgraded version of GEANT4 that includes the dominant polarization-dependent interactions of electrons, positrons. and photons with matter. The measurements agree with calculations, corresponding to 80% polarization for positrons near 6 MeV and 90% for electrons near 7 MeV. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Laihem, K.; Riemann, S.; Schaelicke, A.] DESY, D-15738 Zeuthen, Germany.
[Stahl, A.] Rhein Westfal TH Aachen, D-52056 Aachen, Germany.
[Dollan, R.; Kolanoski, H.; Lohse, T.; Schweizer, T.] Humboldt Univ, D-12489 Berlin, Germany.
STFC Daresbury Lab, Warrington WA5 0HB, Cheshire, England.
Cockcroft Inst, Warrington WA5 0HB, Cheshire, England.
[Moortgat-Pick, G. A.] Univ Durham, Durham DH1 3LE, England.
[Floettmann, K.; Gharibyan, V.; Pahl, P.; Poeschl, R.; Schueler, K. P.] DESY, D-22607 Hamburg, Germany.
[Barley, J.; Mikhailichenko, A. A.] Cornell Univ, Ithaca, NY 14853 USA.
[Berridge, S.; Bugg, W.; Efremenko, Y.] Univ Tennessee, Knoxville, TN 37996 USA.
[Batygin, Y.; Bharadwaj, V.; Bower, G.; Decker, F-J.; Hast, C.; Iverson, R.; Pitthan, R.; Sheppard, J. C.; Szalata, Z.; Walz, D. R.; Weidemann, A.] SLAC, Menlo Pk, CA 94025 USA.
[McDonald, K. T.] Princeton Univ, Princeton, NJ 08544 USA.
[Alexander, G.; Reinherz-Aronis, E.] Tel Aviv Univ, IL-69978 Tel Aviv, Israel.
[Gharibyan, V.] YerPhl, Yerevan 375036, Armenia.
RP Schalicke, A (reprint author), DESY, D-15738 Zeuthen, Germany.
EM andreas.schaelicke@desy.de
RI Stahl, Achim/E-8846-2011
OI Stahl, Achim/0000-0002-8369-7506
FU DOE [DE-AC03-76SF00515, DE-FG05-91ER40627, DE-FG02-91ER40671,
DE-FG02-03ER41283, DE-FG02-04ER41353]; NSF (USA) [PHY-0202078]; European
Commission (Germany) [RIDS-011899]; STFC (United Kingdom); ISF (Israel)
[342/05]; SLAC
FX The authors gratefully acknowledge the general support of the DESY
research division and the particular contributions of Y. Holler and A.
Petrov at DESY/Hamburg and M. Jablonski from Humboldt University; and
the support and efforts of the entire SLAC staff, and in particular the
assistance of S. Anderson, A. Baker, L. Bentson, B. Brugnoletti, F.
Gaudreault, H. Imfeld, J. Minister, M. Racine, R. Rogers, N. Spencer, K.
Traeger, and H. Vincke.
NR 65
TC 8
Z9 8
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD NOV 1
PY 2009
VL 610
IS 2
BP 451
EP 487
DI 10.1016/j.nima.2009.07.091
PG 37
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 539GC
UT WOS:000273240800001
ER
PT J
AU Robinson, SM
Kiff, SD
Ashbaker, ED
Flumerfelt, E
Salvitti, M
AF Robinson, S. M.
Kiff, S. D.
Ashbaker, E. D.
Flumerfelt, E.
Salvitti, M.
TI Effects of high count rate and gain shift on isotope-identification
algorithms
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Radiation detection; Gamma-ray spectroscopy; Gain shift; NaI; Dead time;
Pulse pileup; Isotope identification
ID GAMMA-RAY; SYSTEM; TEMPERATURE
AB Spectroscopic gamma-ray detectors are used for many research, industrial, and homeland-security applications. Thallium-doped sodium iodide (NaI(Tl)) scintillation crystals coupled to photomultiplier tubes provide medium resolution spectral data about the surrounding environment. NaI(Tl)-based detectors, paired with spectral identification algorithms, are often effective for identifying gamma-ray sources by isotope. However, intrinsic limitations for NaI(Tl) systems exist, including gain shifts and spectral marring (e.g., loss of resolution and count-rate saturation) at high count rates. These effects are hardware-dependent and have strong effects on the radioisotopic identification capability of NaI(Tl)-based systems. In this work, the effects of high count rate on the response of isotope-identification algorithms are explored. It is shown that a small gain shift of a few tens of keV is sufficient to disturb identification. The onset of this and other spectral effects is estimated for NaI(Tl) crystals, and a mechanism for mitigating these effects by estimating and correcting for them is implemented and evaluated. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Robinson, S. M.; Kiff, S. D.; Ashbaker, E. D.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Flumerfelt, E.] Univ Tennessee, Knoxville, TN 37996 USA.
[Salvitti, M.] Juniata Coll, Huntingdon, PA 16652 USA.
RP Robinson, SM (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999, Richland, WA 99352 USA.
EM sean.robinson@pnl.gov
FU United States Department of Homeland Security; United States Department
of Energy by Battelle [DE-AC05-76RLO 1830]
FX This work was supported by the United States Department of Homeland
Security. Pacific Northwest National Laboratory is operated for the
United States Department of Energy by Battelle under contract
DE-AC05-76RLO 1830.
NR 17
TC 0
Z9 0
U1 1
U2 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD NOV 1
PY 2009
VL 610
IS 2
BP 509
EP 514
DI 10.1016/j.nima.2009.08.063
PG 6
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 539GC
UT WOS:000273240800004
ER
PT J
AU Siciliano, ER
Ely, JH
Kouzes, RT
Schweppe, JE
Strachan, DM
Yokuda, ST
AF Siciliano, E. R.
Ely, J. H.
Kouzes, R. T.
Schweppe, J. E.
Strachan, D. M.
Yokuda, S. T.
TI Energy calibration of gamma spectra in plastic scintillators using
Compton kinematics (vol 594, pg 232, 2008)
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Correction
C1 [Siciliano, E. R.; Ely, J. H.; Kouzes, R. T.; Schweppe, J. E.; Strachan, D. M.; Yokuda, S. T.] Pacific NW Natl Lab, Natl Secur Div, Richland, WA 99352 USA.
RP Kouzes, RT (reprint author), Pacific NW Natl Lab, Natl Secur Div, 1005 Country Court, Richland, WA 99352 USA.
EM rkouzes@pnl.gov
NR 1
TC 0
Z9 0
U1 0
U2 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD NOV 1
PY 2009
VL 610
IS 2
BP 627
EP 627
DI 10.1016/j.nima.2009.09.001
PG 1
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 539GC
UT WOS:000273240800018
ER
PT J
AU Lee, HY
Gorres, J
Becker, HW
Stech, E
Strandberg, E
Wiescher, A
AF Lee, H. Y.
Goerres, J.
Becker, H. -W.
Stech, E.
Strandberg, E.
Wiescher, A.
TI Production and characterization of oxygen-reduced implanted Ne-21
targets
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM
INTERACTIONS WITH MATERIALS AND ATOMS
LA English
DT Article
DE Implanted target; Ne isotopes; Thick target yield; Deuteron-Induced
gamma-ray Emission
ID RESONANCE STRENGTHS; EXCITED STATES; PROTON CAPTURE; NUCLEI; SI-28;
NA-22
AB Implanted neon targets were produced for nuclear astrophysics experiments at the Ruhr-Universitat Bochum, and their characteristics were studied at the University of Notre Dame. The Ne ions were implanted sequentially at two different energies to create a more uniform depth distribution. The targets were stable under high beam loads. To reduce the amount of oxygen contamination on the target's surface, a procedure of chemical cleaning and thermal outgassing of targets was developed. The impact of this treatment on implanted Ne targets was investigated and found to reduce the oxygen amount by a factor of 4. The depth profile of the implanted Ne atoms was studied via narrow (p,gamma) resonances while the oxygen contamination was monitored using the Deuteron-Induced gamma-ray Emission (DIGE) method. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Lee, H. Y.; Goerres, J.; Stech, E.; Strandberg, E.; Wiescher, A.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
[Lee, H. Y.; Goerres, J.; Stech, E.; Strandberg, E.; Wiescher, A.] Univ Notre Dame, Joint Inst Nucl Phys, Notre Dame, IN 46556 USA.
[Becker, H. -W.] Ruhr Univ Bochum, DTL, Inst Expt Phys 3, D-40781 Bochum, Germany.
RP Lee, HY (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM hylee@anl.gov
FU National Science Foundation NSF [0434844]; Joint Institute for Nuclear
Astrophysics [JINA PHY02-16783]
FX The authors would like to thank M. Couder, A. Couture, S. Falahat, L.
Lamm, P.J. LeBlanc, J. Lingle, B. Mulder, S. O'Brien, and A. Palumbo for
the assistances during the experiment. This work was supported by the
National Science Foundation NSF - Grant 0434844 and the Joint Institute
for Nuclear Astrophysics JINA PHY02-16783.
NR 33
TC 1
Z9 1
U1 1
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-583X
EI 1872-9584
J9 NUCL INSTRUM METH B
JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms
PD NOV
PY 2009
VL 267
IS 21-22
BP 3539
EP 3544
DI 10.1016/j.nimb.2009.08.019
PG 6
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Atomic, Molecular & Chemical; Physics, Nuclear
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 524EA
UT WOS:000272125400009
ER
PT J
AU Young, G
Sorensen, S
AF Young, Glenn
Sorensen, Soren
TI Preface
SO NUCLEAR PHYSICS A
LA English
DT Editorial Material
C1 [Young, Glenn] Oak Ridge Natl Lab, Oak Ridge, TN USA.
[Sorensen, Soren] Univ Tennessee, Knoxville, TN 37996 USA.
RP Young, G (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN USA.
NR 0
TC 0
Z9 0
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD NOV 1
PY 2009
VL 830
BP VII
EP VIII
DI 10.1016/j.nuclphysa.2009.10.161
PG 2
WC Physics, Nuclear
SC Physics
GA 532QA
UT WOS:000272763300001
ER
PT J
AU Petreczky, P
AF Petreczky, Peter
TI Lattice QCD at finite temperature : present status
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus
Collisions (Quark Matter 2009)
CY MAR 30-APR 04, 2009
CL Knoxville, TN
ID SU(2) GAUGE-THEORY; MONTE-CARLO; THERMODYNAMICS; ENERGY; PLASMA
AB I review recent progress in finite temperature lattice calculations, including calculations of Equation of State, fluctuations of conserved charges and spatial correlation functions. I compare lattice results with the predictions of hadron resonance gas model, resummed perturbation theory and 3-dimensional effective field theory. Comparison of the lattice results for certain ratios with the prediction of AdS/CFT correspondence is also discussed.
C1 [Petreczky, Peter] RIKEN, BNL, Upton, NY 11973 USA.
[Petreczky, Peter] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
[Petreczky, Peter] CAS, Kavli Inst Theoret Phys China, Beijing 100190, Peoples R China.
RP Petreczky, P (reprint author), RIKEN, BNL, Upton, NY 11973 USA.
NR 46
TC 26
Z9 26
U1 0
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD NOV 1
PY 2009
VL 830
BP 11C
EP 18C
DI 10.1016/j.nuclphysa.2009.10.086
PG 8
WC Physics, Nuclear
SC Physics
GA 532QA
UT WOS:000272763300003
ER
PT J
AU Leitch, M
AF Leitch, Michael
CA PHENIX Collaboration
TI Highlights from PHENIX-I: Initial State and Early Times
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus
Collisions (Quark Matter 2009)
CY MAR 30-APR 04, 2009
CL Knoxville, TN
ID DIMUON PRODUCTION; COLLISIONS; J/PSI
AB We will review the latest physics developments from PHENIX concentrating on cold nuclear matter effects, the initial state for heavy-ion collisions, and probes of the earliest stages of the hot-dense medium created in those collisions. Recent physics results from p + p and d + Au collisions; and from direct photons, quarkonia and low-mass vector mesons in A+A collisions will be highlighted. Insights from these measurements into the characteristics of the initial state and about the earliest times in heavy-ion collisions will be discussed.
C1 [Leitch, Michael] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Leitch, M (reprint author), Los Alamos Natl Lab, P-25 MS H-846, Los Alamos, NM 87545 USA.
NR 17
TC 5
Z9 5
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD NOV 1
PY 2009
VL 830
BP 27C
EP 34C
DI 10.1016/j.nuclphysa.2009.09.009
PG 8
WC Physics, Nuclear
SC Physics
GA 532QA
UT WOS:000272763300005
ER
PT J
AU Videbaek, F
AF Videbaek, F.
CA BRAHMS Collaboration
TI Overview and Recent Results from BRAHMS
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus
Collisions (Quark Matter 2009)
CY MAR 30-APR 04, 2009
CL Knoxville, TN
ID COLLISIONS
AB The BRAHMS experiment was designed to measure and characterize in particular the properties of rapidity dependence of particle production in heavy ion collisions. The data-taking is now over, results of several years of analysis have been published and demonstrates several important features of the rapidity dependence, not envisioned from the start of the RHIC program. The bulk properties of the system formed at high rapidity resemble that of systems at lower energies at mid-rapidity when referenced via the baryo-chemical potential. New physics in AA are essentially observed at mid-rapidity including the demonstration that high-p(T) suppression is a final state effect. Another key result is that in d+A collisions at forward rapidities where the very low-x region of the nucleus was probed, a strong suppression of pion production was observed consistent with the picture of gluon saturation. The latest results examines the centrality and rapidity dependence of nuclear stopping, the particle production of pions, collective expansion vs. rapidity, and the baryon enhancement at intermediate values Of p(T).
C1 [Videbaek, F.; BRAHMS Collaboration] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
RP Videbaek, F (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
NR 18
TC 8
Z9 8
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD NOV 1
PY 2009
VL 830
BP 43C
EP 50C
DI 10.1016/j.nuclphysa.2009.09.011
PG 8
WC Physics, Nuclear
SC Physics
GA 532QA
UT WOS:000272763300007
ER
PT J
AU Vale, CM
AF Vale, Carla M.
CA PHENIX Collaboration
TI Highlights from PHENIX II - Exploring the QCD medium
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus
Collisions (Quark Matter 2009)
CY MAR 30-APR 04, 2009
CL Knoxville, TN
AB Much of the present experimental effort at RHIC is now directed towards understanding the properties of the hot and dense colored medium created in A+A collisions. Recent results from PHENIX on the dynamical evolution of the medium and its response to high momentum probes are presented, and their impact on our overall understanding of heavy-ion collisions is discussed.
C1 [Vale, Carla M.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
RP Vale, CM (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
NR 9
TC 1
Z9 1
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD NOV 1
PY 2009
VL 830
BP 66C
EP 73C
DI 10.1016/j.nuclphysa.2009.09.013
PG 8
WC Physics, Nuclear
SC Physics
GA 532QA
UT WOS:000272763300010
ER
PT J
AU Sickles, AM
AF Sickles, Anne M.
TI Jet-Medium Interactions with Identified Particles
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus
Collisions (Quark Matter 2009)
CY MAR 30-APR 04, 2009
CL Knoxville, TN
AB Identified particles have long been of great interest at RHIC in large part because of the baryon/meson differences observed at intermediate p(T) and the implications for hadronization via quark coalescence. With recent high statistics data identified particles are also now central to understanding the details of the jet-medium interactions and energy loss and hadron formation at intermediate and high p(T). In particular, high p(T) identified particle spectra along with two-particle correlations triggered with direct photons, neutral pions or electrons from heavy flavor decay with hadrons can provide information about how medium modifications to jet fragmentation depend on parton type. I will review recent results with identified particles both in heavy ion systems and the reference measurements in p+p collisions.
C1 Brookhaven Natl Lab, Upton, NY 11973 USA.
RP Sickles, AM (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA.
EM anne@bnl.gov
NR 39
TC 3
Z9 3
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD NOV 1
PY 2009
VL 830
BP 131C
EP 138C
DI 10.1016/j.nuclphysa.2009.09.015
PG 8
WC Physics, Nuclear
SC Physics
GA 532QA
UT WOS:000272763300018
ER
PT J
AU Salur, S
AF Salur, Sevil
TI Full Jet Reconstruction in Heavy Ion Collisions
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus
Collisions (Quark Matter 2009)
CY MAR 30-APR 04, 2009
CL Knoxville, TN
ID HADRON-COLLISIONS; CROSS-SECTIONS; PARTON SHOWER; ALGORITHM;
ANNIHILATION
AB Full jet reconstruction has traditionally been thought to be difficult in heavy ion events due to large multiplicity backgrounds. The search for new physics in high luminosity p+p collisions at the LHC similarly requires the precise measurement of jets over large backgrounds caused by pile up; this has motivated the development of a new generation of jet reconstruction algorithms which are also applicable in the heavy ion environment. We review the latest results on jet-medium interactions as seen in A+A collisions at RHIC, focusing on the new techniques for full jet reconstruction.
C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Salur, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd MS-70R0319, Berkeley, CA 94720 USA.
NR 52
TC 13
Z9 13
U1 0
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD NOV 1
PY 2009
VL 830
BP 139C
EP 146C
DI 10.1016/j.nuclphysa.2009.09.016
PG 8
WC Physics, Nuclear
SC Physics
GA 532QA
UT WOS:000272763300019
ER
PT J
AU Shi, SS
AF Shi, Shusu
CA STAR Collaboration
TI Event anisotropy v(2) at STAR
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus
Collisions (Quark Matter 2009)
CY MAR 30-APR 04, 2009
CL Knoxville, TN
AB Collective flow reflects the dynamical evolution in high-energy heavy ion collisions. In particular, the elliptic flow reflects early collision dynamics [1]. We present a systematic analysis of elliptic flow (v(2)) for identified particles measured in Au + Au and Cu + Cu collisions at root s(NN) = 200 GeV. Number of quark scaling is tested in the intermediate p(T) region and in the smaller system (Cu + Cu). The Cu + Cu collisions results are compared with those from ideal hydrodynamic model calculations.
C1 [Shi, Shusu] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA.
[Shi, Shusu] Huazhong Normal Univ, Inst Particle Phys, Wuhan 430079, Hubei, Peoples R China.
[Shi, Shusu] Huazhong Normal Univ, Minist Educ, Key Lab Quark & Lepton Phys, Wuhan 430079, Hubei, Peoples R China.
RP Shi, SS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
NR 20
TC 17
Z9 17
U1 0
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD NOV 1
PY 2009
VL 830
BP 187C
EP 190C
DI 10.1016/j.nuclphysa.2009.10.093
PG 4
WC Physics, Nuclear
SC Physics
GA 532QA
UT WOS:000272763300029
ER
PT J
AU Kitazawa, M
Karsch, F
AF Kitazawa, Masakiyo
Karsch, Frithjof
TI Spectral Properties of Quarks at Finite Temperature in Lattice QCD
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus
Collisions (Quark Matter 2009)
CY MAR 30-APR 04, 2009
CL Knoxville, TN
ID EXCITATIONS
AB We analyze the quark spectral function above and below the critical temperature for deconfinement and at finite momentum in quenched lattice QCD. It is found that the temporal quark correlation function in the deconfined phase near the critical temperature is well reproduced by a two-pole ansatz for the spectral function. The bare quark mass and momentum dependences of the spectral function are analyzed with this ansatz. In the chiral limit we find that even near the critical temperature the quark spectral function has two collective modes corresponding to the normal and plasmino excitations in the high temperature (T) limit. The pole mass of these modes at zero momentum, which should be identified to be the thermal mass of the quark, is approximately proportional to T in a rather wide range of T in the deconfined phase.
C1 [Kitazawa, Masakiyo] Osaka Univ, Dept Phys, Osaka 5600043, Japan.
[Karsch, Frithjof] Brookhaven Natl Lab, Upton, NY 11973 USA.
RP Kitazawa, M (reprint author), Osaka Univ, Dept Phys, Osaka 5600043, Japan.
NR 9
TC 2
Z9 2
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD NOV 1
PY 2009
VL 830
BP 223C
EP 226C
DI 10.1016/j.nuclphysa.2009.09.024
PG 4
WC Physics, Nuclear
SC Physics
GA 532QA
UT WOS:000272763300038
ER
PT J
AU Maezawa, Y
Aoki, S
Ejiri, S
Hatsuda, T
Ishii, N
Kanaya, K
Ohno, H
Umeda, T
AF Maezawa, Y.
Aoki, S.
Ejiri, S.
Hatsuda, T.
Ishii, N.
Kanaya, K.
Ohno, H.
Umeda, T.
CA WHOT-QCD Collaboration
TI Free energies of heavy quarks in full-QCD lattice simulations with
Wilson-type quark action
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus
Collisions (Quark Matter 2009)
CY MAR 30-APR 04, 2009
CL Knoxville, TN
AB The free energy between a static quark and an antiquark is studied by using the color-singlet Polyakov-line correlation at finite temperature in lattice QCD with 2+1 flavors of improved Wilson quarks. From the simulations on 32(3) X 12, 10, 8, 6, 4 lattices in the high temperature phase, based on the fixed scale approach, we find that, the heavy-quark free energies at short distance converge to the heavy-quark potential evaluated from the Wilson loop at zero temperature, in accordance with the expected insensitivity of short distance physics to the temperature. At long distance, the heavy-quark free energies approach to twice the single-quark free energies, implying that the interaction between heavy quarks is screened. The Debye screening mass obtained from the long range behavior of the free energy is compared with the results of thermal perturbation theory.
C1 [Maezawa, Y.] RIKEN, Nishina Accelerator Res Ctr, Enyo Radiat Lab, Wako, Saitama 3510198, Japan.
[Aoki, S.; Kanaya, K.; Ohno, H.] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan.
[Aoki, S.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA.
[Ejiri, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
[Hatsuda, T.; Ishii, N.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan.
[Umeda, T.] Hiroshima Univ, Grad Sch Educ, Hiroshima 7398524, Japan.
RP Maezawa, Y (reprint author), RIKEN, Nishina Accelerator Res Ctr, Enyo Radiat Lab, 2-1 Hirosawa, Wako, Saitama 3510198, Japan.
RI Hatsuda, Tetsuo/C-2901-2013
NR 8
TC 4
Z9 4
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD NOV 1
PY 2009
VL 830
BP 247C
EP 250C
DI 10.1016/j.nuclphysa.2009.10.021
PG 4
WC Physics, Nuclear
SC Physics
GA 532QA
UT WOS:000272763300044
ER
PT J
AU Ploskon, M
AF Ploskon, Mateusz
CA STAR Collaboration
TI Inclusive cross section and correlations of fully reconstructed jets in
root s(NN)=200 GeV Au + Au and p plus p collisions
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus
Collisions (Quark Matter 2009)
CY MAR 30-APR 04, 2009
CL Knoxville, TN
ID HADRON-COLLISIONS
AB We present an experimental study of full jet reconstruction in the high multiplicity environment of heavy ion collisions, utilizing root s(NN) = 200 GeV p + p and central Au + Au data measured by STAR. Inclusive differential jet production cross sections and ratios are reported, as well as high-p(T) hadron-jet coincidences.
C1 [Ploskon, Mateusz; STAR Collaboration] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Ploskon, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
NR 12
TC 34
Z9 34
U1 0
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD NOV 1
PY 2009
VL 830
BP 255C
EP 258C
DI 10.1016/j.nuclphysa.2009.10.095
PG 4
WC Physics, Nuclear
SC Physics
GA 532QA
UT WOS:000272763300046
ER
PT J
AU Zhang, BW
AF Zhang, Ben-Wei
TI Jet Observables of Parton Energy Loss in High-Energy Nuclear Collisions
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus
Collisions (Quark Matter 2009)
CY MAR 30-APR 04, 2009
CL Knoxville, TN
AB While strong attenuation of single particle production and particle correlations has provided convincing evidence for large parton energy loss in the QGP, its application to jet tomography has inherent limitations due to the inclusive nature of the measurements. Generalization of this suppression to full jet observables leads to an unbiased, more differential and thus powerful approach to determining the characteristics of the hot QCD medium created in high-energy nuclear collisions. In this article we report on recent theoretical progress in calculating jet shapes and the related jet cross sections in the presence of QGP-induced parton energy loss. (i) A theoretical model of intra-jet energy flow in heavy-ion collisions is discussed. (ii) Realistic numerical simulations demonstrate the nuclear modification factor R(AA)(p(T)) evolves continuously with the jet cone size R(max) or the acceptance cut omega(min) - a novel feature of jet quenching. The anticipated broadening of jets is subtle and most readily manifested in the periphery of the cone for smaller cone radii.
C1 [Zhang, Ben-Wei] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Zhang, Ben-Wei] Hua Zhong Normal Univ, Key Lab Quark & Lepton Phys, Minist Educ, Wuhan, Peoples R China.
RP Zhang, BW (reprint author), Los Alamos Natl Lab, Div Theoret, MS B238, Los Alamos, NM 87545 USA.
NR 11
TC 1
Z9 1
U1 0
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD NOV 1
PY 2009
VL 830
BP 259C
EP 262C
DI 10.1016/j.nuclphysa.2009.10.022
PG 4
WC Physics, Nuclear
SC Physics
GA 532QA
UT WOS:000272763300047
ER
PT J
AU Ollitrault, JY
Poskanzer, AM
Voloshin, SA
AF Ollitrault, Jean-Yves
Poskanzer, Arthur M.
Voloshin, Sergei A.
TI Effect of flow fluctuations and nonflow on elliptic flow methods
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus
Collisions (Quark Matter 2009)
CY MAR 30-APR 04, 2009
CL Knoxville, TN
AB We discuss how the different estimates of elliptic flow are influenced by flow fluctuations and nonflow effects. It is explained why the event-plane method yields estimates between the two-particle correlation methods and the multiparticle correlation methods. It is argued that nonflow effects and fluctuations cannot be disentangled without other assumptions. However, we provide equations where, with reasonable assumptions about fluctuations and nonflow, all measured values of elliptic flow converge to a unique mean v(2,PP) elliptic flow in the participant plane. Thus, the 20% spread in observed elliptic flow measurements from different analysis methods is no longer mysterious.
C1 [Ollitrault, Jean-Yves] CNRS, URA2306, CEA, Inst Phys Theor Saclay, F-91191 Gif Sur Yvette, France.
Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
Wayne State Univ, Detroit, MI 48201 USA.
RP Ollitrault, JY (reprint author), CNRS, URA2306, CEA, Inst Phys Theor Saclay, F-91191 Gif Sur Yvette, France.
RI Ollitrault, Jean-Yves/B-3709-2010; Voloshin, Sergei/I-4122-2013
OI Ollitrault, Jean-Yves/0000-0001-6037-7975;
NR 13
TC 3
Z9 3
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD NOV 1
PY 2009
VL 830
BP 279C
EP 282C
DI 10.1016/j.nuclphysa.2009.09.026
PG 4
WC Physics, Nuclear
SC Physics
GA 532QA
UT WOS:000272763300052
ER
PT J
AU Marquet, C
Beuf, G
Xiao, BW
AF Marquet, C.
Beuf, G.
Xiao, B. -W.
TI Energy loss and thermalization of heavy quarks in a strongly-coupled
plasma
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus
Collisions (Quark Matter 2009)
CY MAR 30-APR 04, 2009
CL Knoxville, TN
AB Using the AdS/CFT correspondence, we compute the medium-induced energy loss of a decelerating heavy quark moving through a strongly-coupled supersymmetric Yang Mills plasma. In the regime where the deceleration is small, a perturbative calculation is possible and we obtain the first two corrections to the energy-loss rate of a heavy quark with constant velocity. The thermalization of the heavy quark is also discussed.
C1 [Marquet, C.; Beuf, G.] CEA Saclay, Inst Phys Theor, F-91191 Gif Sur Yvette, France.
[Xiao, B. -W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA.
RP Marquet, C (reprint author), CEA Saclay, Inst Phys Theor, F-91191 Gif Sur Yvette, France.
RI Beuf, Guillaume/B-3186-2017
OI Beuf, Guillaume/0000-0002-5894-7657
NR 11
TC 0
Z9 0
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD NOV 1
PY 2009
VL 830
BP 307C
EP 310C
DI 10.1016/j.nuclphysa.2009.09.030
PG 4
WC Physics, Nuclear
SC Physics
GA 532QA
UT WOS:000272763300059
ER
PT J
AU Dumitru, A
AF Dumitru, Adrian
TI Quarkonium in a viscous QGP
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus
Collisions (Quark Matter 2009)
CY MAR 30-APR 04, 2009
CL Knoxville, TN
ID FINITE-TEMPERATURE; BOUND-STATES; FIELD-THEORIES; POLYAKOV LOOP; WILSON
LOOPS; QUARKS; PLASMA; QCD
AB I discuss viscosity corrections to thermal effects on the static QCD potential within hard-thermal loop resummed perturbation theory and for a strongly coupled, large-N(c) conformal field theory dual to five-dimensional Gauss-Bonnet gravity. I also present model predictions for quarkonium binding energies in the deconfined phase and for suppression of R(AA)((sic) -> e(+)e(-)).
C1 [Dumitru, Adrian] CUNY Bernard M Baruch Coll, Dept Nat Sci, New York, NY 10010 USA.
[Dumitru, Adrian] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA.
RP Dumitru, A (reprint author), CUNY Bernard M Baruch Coll, Dept Nat Sci, 17 Lexington Ave,A-506, New York, NY 10010 USA.
NR 33
TC 0
Z9 0
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD NOV 1
PY 2009
VL 830
BP 323C
EP 326C
DI 10.1016/j.nuclphysa.2009.09.032
PG 4
WC Physics, Nuclear
SC Physics
GA 532QA
UT WOS:000272763300063
ER
PT J
AU Kikola, D
AF Kikola, Daniel
CA STAR Collaboration
TI J/psi production in Au plus Au and Cu plus Cu collisions at root
s(NN)=200 GeV at STAR
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus
Collisions (Quark Matter 2009)
CY MAR 30-APR 04, 2009
CL Knoxville, TN
ID SUPPRESSION; NUCLEON
AB J/psi production is considered to be a sensitive probe of the properties of quark gluon plasma created in nucleus+nucleus collisions at RHIC. In this article, the recent analysis of m-id-rapidity (|y| < 1) J/psi production via the dielectron decay channel in Au+Au (year 2007) and Cu+Cu (year 2005) collisions at root s(NN) = 200 GeV at STAR is reported. It is compared to STAR p+p results in order to study the nuclear modification factor as a function of transverse momentum and centrality. The results are compared to previously published data and available theoretical models.
C1 [Kikola, Daniel] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Kikola, Daniel] Warsaw Univ Technol, Fac Phys, Warsaw, Poland.
RP Kikola, D (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
NR 14
TC 1
Z9 1
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
EI 1873-1554
J9 NUCL PHYS A
JI Nucl. Phys. A
PD NOV 1
PY 2009
VL 830
BP 327C
EP 330C
DI 10.1016/j.nuclphysa.2009.10.028
PG 4
WC Physics, Nuclear
SC Physics
GA 532QA
UT WOS:000272763300064
ER
PT J
AU Qu, Z
Liu, YP
Xu, N
Zhuang, PF
AF Qu, Zhen
Liu, Yunpeng
Xu, Nu
Zhuang, Pengfei
TI J/psi production at mid and forward rapidity at RHIC
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus
Collisions (Quark Matter 2009)
CY MAR 30-APR 04, 2009
CL Knoxville, TN
DE J/psi production; regeneration; heavy ion collisions; quark-gluon plasma
ID TRANSVERSE-MOMENTUM DEPENDENCE; SHORT-DISTANCE ANALYSIS; HEAVY-QUARK
SYSTEMS; NUCLEAR COLLISIONS; SUPPRESSION; SPS
AB We calculate the rapidity dependence of J/psi nuclear modification factor and averaged transverse momentum square in heavy ion collisions at RHIC in a 3-dimensional transport approach with regeneration mechanism.
C1 [Qu, Zhen; Liu, Yunpeng; Zhuang, Pengfei] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China.
[Xu, Nu] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA.
RP Qu, Z (reprint author), Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China.
NR 22
TC 5
Z9 6
U1 0
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
EI 1873-1554
J9 NUCL PHYS A
JI Nucl. Phys. A
PD NOV 1
PY 2009
VL 830
BP 335C
EP 338C
DI 10.1016/j.nuclphysa.2009.10.100
PG 4
WC Physics, Nuclear
SC Physics
GA 532QA
UT WOS:000272763300066
ER
PT J
AU Dunlop, JC
AF Dunlop, J. C.
TI Open Heavy Flavor Production in Heavy Ion Collisions
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus
Collisions (Quark Matter 2009)
CY MAR 30-APR 04, 2009
CL Knoxville, TN
ID QCD MATTER; TOMOGRAPHY
AB The interaction of heavy partons, charm and beauty, with the matter created in heavy ion collisions has been of great interest in recent years. Heavy partons were predicted to interact less strongly with the matter than light partons. In apparent contrast to these predictions, unexpectedly strong suppression of non-photonic electrons from heavy flavor decays has been seen. However, significant experimental uncertainties remain, both in the measurements themselves and in the separation of the contribution from charm and beauty, which have complicated the interpretation of these results. The current experimental situation is critically reviewed and prospects for making these measurements more easily interpretable discussed.
C1 Brookhaven Natl Lab, Upton, NY 11973 USA.
RP Dunlop, JC (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA.
NR 21
TC 4
Z9 4
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD NOV 1
PY 2009
VL 830
BP 419C
EP 426C
DI 10.1016/j.nuclphysa.2009.09.036
PG 8
WC Physics, Nuclear
SC Physics
GA 532QA
UT WOS:000272763300077
ER
PT J
AU Zhang, HZ
Owens, JF
Wang, EK
Wang, XN
AF Zhang, Hanzhong
Owens, J. F.
Wang, Enke
Wang, Xin-Nian
TI Gamma-Jet Tomography of Quark-Gluon Plasma in High-Energy Nuclear
Collisions
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus
Collisions (Quark Matter 2009)
CY MAR 30-APR 04, 2009
CL Knoxville, TN
ID DIRECT PHOTON PRODUCTION
AB Within the next-to-leading order (NLO) perturbative QCD (pQCD) parton model, suppression of away-side hadron spectra associated with a high p(T) photon due to parton energy loss is shown to provide a complete tomographic picture of the dense matter formed in high-energy heavy-ion collisions at RHIC. Dictated by the shape of the gamma-triggered jet spectrum in NLO pQCD, hadron spectra at large z(T) = p(T)(h)/p(T)(gamma) (greater than or similar to) 1 are more susceptible to parton energy loss and therefore are dominated by surface emission of gamma -triggered jets, whereas small z(T) hadrons mainly come from fragmentation of jets with reduced energy from volume emission. These lead to different centrality dependence of the hadron suppression in different regions Of z(T).
C1 [Zhang, Hanzhong; Wang, Enke] Huazhong Normal Univ, Inst Particle Phys, Wuhan 430079, Hubei, Peoples R China.
[Zhang, Hanzhong; Wang, Enke] Huazhong Normal Univ, Minist Educ, Key Lab Quark & Lepton Phys, Wuhan, Peoples R China.
[Owens, J. F.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA.
[Wang, Xin-Nian] Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA.
RP Zhang, HZ (reprint author), Huazhong Normal Univ, Inst Particle Phys, Wuhan 430079, Hubei, Peoples R China.
OI Wang, Xin-Nian/0000-0002-9734-9967
NR 14
TC 4
Z9 4
U1 0
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD NOV 1
PY 2009
VL 830
BP 443C
EP 446C
DI 10.1016/j.nuclphysa.2009.10.037
PG 4
WC Physics, Nuclear
SC Physics
GA 532QA
UT WOS:000272763300080
ER
PT J
AU Molnar, D
Huovinen, P
AF Molnar, Denes
Huovinen, Pasi
TI Applicability of viscous hydrodynamics at RHIC
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus
Collisions (Quark Matter 2009)
CY MAR 30-APR 04, 2009
CL Knoxville, TN
AB In an earlier work[1] we established that causal Israel-Stewart viscous hydrodynamics is only accurate in RHIC applications at very low shear viscosities 4 pi eta(s)/s less than or similar to 1.5 - 2. We show here that the region of applicability is significantly reduced if bulk viscosity plays a role in the dynamics.
C1 [Molnar, Denes; Huovinen, Pasi] Purdue Univ, Dept Phys, W Lafayette, IN 47906 USA.
[Molnar, Denes] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA.
[Huovinen, Pasi] Goethe Univ Frankfurt, Inst Theoret Phys, D-6000 Frankfurt, Germany.
RP Molnar, D (reprint author), Purdue Univ, Dept Phys, 525 Northwestern Ave, W Lafayette, IN 47906 USA.
NR 14
TC 9
Z9 9
U1 1
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
EI 1873-1554
J9 NUCL PHYS A
JI Nucl. Phys. A
PD NOV 1
PY 2009
VL 830
BP 475C
EP 478C
DI 10.1016/j.nuclphysa.2009.10.104
PG 4
WC Physics, Nuclear
SC Physics
GA 532QA
UT WOS:000272763300088
ER
PT J
AU Koch, V
AF Koch, Volker
TI Elliptic Flow at Large Viscosity
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus
Collisions (Quark Matter 2009)
CY MAR 30-APR 04, 2009
CL Knoxville, TN
AB In this contribution we present an alternative scenario for the large elliptic flow observed in relativistic heavy ion collisions. Motivated by recent results from Lattice QCD on flavor off-diagonal susceptibilities we argue that the matter right above T(c) can be described by single-particle dynamics in a repulsive single-particle potential, which in turn gives rise to elliptic flow. These ideas can be tested experimentally by measuring elliptic flow of heavy quarks, preferably via the measurement of J/Psi elliptic flow.
C1 Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA.
RP Koch, V (reprint author), Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA.
NR 14
TC 8
Z9 8
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD NOV 1
PY 2009
VL 830
BP 479C
EP 482C
DI 10.1016/j.nuclphysa.2009.10.042
PG 4
WC Physics, Nuclear
SC Physics
GA 532QA
UT WOS:000272763300089
ER
PT J
AU Baker, MD
AF Baker, Mark D.
CA ATLAS Collaboration
TI Direct gamma and gamma-jet measurement capability of ATLAS for Pb plus
Pb collisions
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus
Collisions (Quark Matter 2009)
CY MAR 30-APR 04, 2009
CL Knoxville, TN
AB The ATLAS detector at the LHC is capable of efficiently separating photons and neutral hadrons based on their shower shapes over a wide range in eta, phi, and E(T), either in addition to or instead of isolation cuts. This provides ATLAS with a unique strength for direct photon and gamma-jet physics as well as access to the unique capability to measure non-isolated photons from fragmentation or from the medium. We present a first look at the ATLAS direct photon measurement capabilities in Pb+Pb and, for reference, p+p collisions at root s(NN) = 5.5 TeV over the region vertical bar eta vertical bar < 2.4.
C1 [Baker, Mark D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
RP Baker, MD (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
NR 3
TC 4
Z9 4
U1 0
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD NOV 1
PY 2009
VL 830
BP 499C
EP 502C
DI 10.1016/j.nuclphysa.2009.09.040
PG 4
WC Physics, Nuclear
SC Physics
GA 532QA
UT WOS:000272763300094
ER
PT J
AU Fries, RJ
Kunihiro, T
Muller, B
Ohnishi, A
Schafer, A
AF Fries, R. J.
Kunihiro, T.
Mueller, B.
Ohnishi, A.
Schaefer, A.
TI From 0 to 5000 in 2 x 10(-24) seconds: Entropy production in
relativistic heavy-ion collisions
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus
Collisions (Quark Matter 2009)
CY MAR 30-APR 04, 2009
CL Knoxville, TN
ID LATTICE; FIELDS; BANG
AB We review what is known about the contributions to the final entropy from the different stages of a relativistic nuclear collision, including recent results on the decoherence entropy and the entropy produced during the hydrodynamic phase by viscous effects. We then present a general framework, based on the Husimi distribution function, for the calculation of entropy growth in quantum field theories, which is applicable to the earliest ("glasma") phase of the collision during which most of the entropy is generated. The entropy calculated from the Husimi distribution exhibits linear growth when the quantum field contains unstable modes and is asymptotically equal to the Kolmogorov-Sinai (KS) entropy. We outline how the approach can be used to investigate the problem of entropy production in a relativistic heavy-ion reaction from first principles.
C1 [Fries, R. J.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA.
[Fries, R. J.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA.
[Kunihiro, T.] Kyoto Univ, Dept Phys, Sakyo Ku, Kyoto 6068502, Japan.
[Mueller, B.] Duke Univ, Dept Phys, Durham, NC 27708 USA.
[Ohnishi, A.] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan.
[Schaefer, A.] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany.
RP Fries, RJ (reprint author), Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA.
RI Ohnishi, Akira/F-7403-2011
OI Ohnishi, Akira/0000-0003-1513-0468
NR 26
TC 9
Z9 9
U1 1
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD NOV 1
PY 2009
VL 830
BP 519C
EP 522C
DI 10.1016/j.nuclphysa.2009.09.041
PG 4
WC Physics, Nuclear
SC Physics
GA 532QA
UT WOS:000272763300099
ER
PT J
AU Kharzeev, DE
AF Kharzeev, Dmitri E.
TI Chern-Simons current and local parity violation in hot QCD matter
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus
Collisions (Quark Matter 2009)
CY MAR 30-APR 04, 2009
CL Knoxville, TN
ID ELECTRODYNAMICS
AB Non-Abelian gauge theories "live" in a space-time with non-trivial topology that can be characterized by an odd-dimensional Chern-Simons form. In QCD, Chern-Simons form is induced by the chiral anomaly and the presence of topological solutions; it opens a possibility for the breaking of P and CP invariances in strong interactions ("the strong CP problem"). While there is apparently no global P and CP violation in QCD, here I argue that topological fluctuations in hot quark-gluon matter can become directly observable in the presence of a very intense external magnetic field by inducing local P- and CP- odd effects. These phenomena can be described by using the Maxwell-Chern-Simons electrodynamics as an effective theory. Local P and CP violation in hot QCD matter can be observed in experiment through the "chiral magnetic effect" - the separation of electric charge along the axis of magnetic field that is created by the colliding relativistic ions. There is a recent evidence for the electric charge separation relative to the reaction plane of heavy ion collisions from the STAR Collaboration at RHIC.
C1 [Kharzeev, Dmitri E.] Brookhaven Natl Lab, Dept Phys, Nucl Theory Grp, Upton, NY 11973 USA.
[Kharzeev, Dmitri E.] Yale Univ, Dept Phys, New Haven, CT 06520 USA.
RP Kharzeev, DE (reprint author), Brookhaven Natl Lab, Dept Phys, Nucl Theory Grp, Upton, NY 11973 USA.
NR 18
TC 20
Z9 20
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD NOV 1
PY 2009
VL 830
BP 543C
EP 546C
DI 10.1016/j.nuclphysa.2009.10.049
PG 4
WC Physics, Nuclear
SC Physics
GA 532QA
UT WOS:000272763300105
ER
PT J
AU Kang, ZB
Qiu, JW
Vogelsang, W
AF Kang, Zhong-Bo
Qiu, Jian-Wei
Vogelsang, Werner
TI Low-mass dilepton production in pp and AA collisions
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus
Collisions (Quark Matter 2009)
CY MAR 30-APR 04, 2009
CL Knoxville, TN
ID FRAGMENTATION; PHOTONS; MATTER
AB We adopt a factorized QCD formalism to describe the transverse momentum distribution of low-mass lepton pairs produced in pp collisions, when the pair transverse momentum Q(T) >> Q, with the pair's invariant mass Q as low as Q similar to Lambda(QCD). We extend this formalism to dilepton production in AA collisions by including the nuclear-dependent power correction due to parton multiple scattering.
C1 [Kang, Zhong-Bo; Qiu, Jian-Wei] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Vogelsang, Werner] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
RP Kang, ZB (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
RI Kang, Zhongbo/P-3645-2014
NR 16
TC 3
Z9 3
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD NOV 1
PY 2009
VL 830
BP 571C
EP 574C
DI 10.1016/j.nuclphysa.2009.10.051
PG 4
WC Physics, Nuclear
SC Physics
GA 532QA
UT WOS:000272763300112
ER
PT J
AU Gelis, F
Lappi, T
Venugopalan, R
AF Gelis, Francois
Lappi, Tuomas
Venugopalan, Raju
TI Long range rapidity correlations and the ridge in A plus A collisions
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus
Collisions (Quark Matter 2009)
CY MAR 30-APR 04, 2009
CL Knoxville, TN
ID STRONG EXTERNAL SOURCES; HIGH-ENERGY SCATTERING; HEAVY-ION COLLISIONS
AB We discuss results for n-gluon correlations that form the basis of the Glasma flux tube picture of early times in heavy ion collisions. Our formalism is valid to all orders in perturbation theory at leading logarithmic accuracy in x and includes both QCD bremsstrahlung and the many body screening and recombination effects that are important at large parton densities. Long range rapidity correlations, as seen in the near-side ridge in heavy ion collisions, are a chronometer of these early time strong color field dynamics. They also contain information on how radial flow develops in heavy ion collisions.
C1 [Gelis, Francois; Lappi, Tuomas] CEA DSM Saclay, Inst Phys Theor, F-91191 Gif Sur Yvette, France.
[Lappi, Tuomas] Univ Jyvaskyla, Dept Phys, Jyvaskyla 40014, Finland.
[Venugopalan, Raju] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
RP Gelis, F (reprint author), CEA DSM Saclay, Inst Phys Theor, Bat 774, F-91191 Gif Sur Yvette, France.
NR 28
TC 6
Z9 6
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD NOV 1
PY 2009
VL 830
BP 591C
EP 594C
DI 10.1016/j.nuclphysa.2009.10.053
PG 4
WC Physics, Nuclear
SC Physics
GA 532QA
UT WOS:000272763300117
ER
PT J
AU Ferroni, L
Koch, V
AF Ferroni, L.
Koch, V.
TI Study of the crossover transition of a gas of extended hadrons
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus
Collisions (Quark Matter 2009)
CY MAR 30-APR 04, 2009
CL Knoxville, TN
AB We formulate a simple model for a gas of extended hadrons at zero chemical potential by taking inspiration from the compressible bag model. We show that a crossover transition qualitatively similar to lattice QCD can be reproduced by such a system by including some appropriate additional dynamics. Under certain conditions, at high temperature, the system consists of a finite number of infinitely extended bags, which occupy the entire space. In this situation the system behaves as an ideal gas of quarks and gluons.
C1 [Ferroni, L.; Koch, V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA.
RP Ferroni, L (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
NR 4
TC 0
Z9 0
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD NOV 1
PY 2009
VL 830
BP 629C
EP 630C
DI 10.1016/j.nuclphysa.2009.10.060
PG 2
WC Physics, Nuclear
SC Physics
GA 532QA
UT WOS:000272763300130
ER
PT J
AU Tang, AH
AF Tang, Aihong
TI Footprints of the (Nearly) Perfect Liquid
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus
Collisions (Quark Matter 2009)
CY MAR 30-APR 04, 2009
CL Knoxville, TN
ID HEAVY-ION COLLISIONS; ELLIPTIC FLOW
AB In relativistic heavy-ion collisions, the system has gone through a series of evolution, almost at every stage of its evolution it leaves behind footprints in flow observable. Those footprints contain valuable information of the bulk property of the (nearly) perfect liquid. By examing footprints of the nearly perfect liquid, we address a few important issues, including the ideal hydrodynamic limit, estimation of eta/s, testing the Number of Constituent Quark scaling at low energy, in small system, at large transverse momentum, and in forward region. Future prospect of flow study is discussed.
C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
RP Tang, AH (reprint author), Brookhaven Natl Lab, Dept Phys, POB 5000, Upton, NY 11973 USA.
EM aihong@bnl.gov
NR 28
TC 2
Z9 2
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD NOV 1
PY 2009
VL 830
BP 673C
EP 680C
DI 10.1016/j.nuclphysa.2009.10.061
PG 8
WC Physics, Nuclear
SC Physics
GA 532QA
UT WOS:000272763300138
ER
PT J
AU Fries, RJ
Liu, W
AF Fries, Rainer J.
Liu, Wei
TI High-P-T Physics with Identified Particles
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus
Collisions (Quark Matter 2009)
CY MAR 30-APR 04, 2009
CL Knoxville, TN
ID QUARK-GLUON PLASMA; RADIATIVE ENERGY-LOSS; CONVERSIONS; COLLISIONS;
HADRONS
AB The suppression of high-P-T particles in heavy ion collisions was one of the key discoveries at the Relativistic Heavy Ion Collider. This is usually parameterized by the average rate of momentum-transfer squared to this particle, (q) over cap. Here we argue that measurements of identified particles at high P-T, can lead to complementary information about the medium. The leading particle of a jet can change its identity through interactions with the medium. Tracing such flavor conversions could allow us to constrain the mean free path. Here we review the basic concepts of flavor conversions and discuss applications to particle ratios and elliptic flow. We make a prediction that strangeness is enhanced at high P-T at RHIC energies while its elliptic flow is suppressed.
C1 [Fries, Rainer J.; Liu, Wei] Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA.
[Fries, Rainer J.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA.
RP Fries, RJ (reprint author), Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA.
NR 31
TC 0
Z9 0
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD NOV 1
PY 2009
VL 830
BP 693C
EP 696C
DI 10.1016/j.nuclphysa.2009.09.057
PG 4
WC Physics, Nuclear
SC Physics
GA 532QA
UT WOS:000272763300142
ER
PT J
AU Xu, YC
AF Xu, Yichun
CA STAR Collaboration
TI Measurements of neutral and charged kaon production at high p(T) up to
15 GeV/c at STAR
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus
Collisions (Quark Matter 2009)
CY MAR 30-APR 04, 2009
CL Knoxville, TN
ID TRANSVERSE-MOMENTUM; D+AU COLLISIONS; HADRON SPECTRA; P+P; AU+AU
AB We report an extension of charged kaon transverse momentum (p(T)) spectra at mid-rapidity (|y| < 0.5) up to 15 GeV/c, neutral kaon p(T) spectra up to 12 GeV/c using events triggered by the Barrel Electro-Magnetic Calorimeter (BEMC) from p+p collisions at root s(NN) = 200 GeV The K-+/-/pi(+/-) and K-0/pi(+/-) at high p(T) are compared in p+p and Au+Au collisions, and nuclear modification factor (R-AA)for pion, kaon, proton and rho are discussed. The R-AA for kaon in central collisions are consistent with theory calculation having jet conversion in a plasma of quarks and gluons.
C1 [Xu, Yichun] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China.
Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
RP Xu, YC (reprint author), Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China.
EM xuyichun@mail.ustc.edu.cn
NR 16
TC 5
Z9 6
U1 0
U2 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD NOV 1
PY 2009
VL 830
BP 701C
EP 704C
DI 10.1016/j.nuclphysa.2009.09.059
PG 4
WC Physics, Nuclear
SC Physics
GA 532QA
UT WOS:000272763300144
ER
PT J
AU McLerran, L
AF McLerran, Larry
TI Quarkyonic Matter and the Revised Phase Diagram of QCD
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus
Collisions (Quark Matter 2009)
CY MAR 30-APR 04, 2009
CL Knoxville, TN
ID LARGE N-C; FINITE-DENSITY; QUARKS; MODEL
AB At high baryon number density, it has been proposed that a new phase of QCD matter controls the physics. This matter is confining but can have densities much larger than Lambda(3)(QCD) Its existence is argued from large N-c approximations, and model computations. It is approximately chirally symmetric.
C1 [McLerran, Larry] RIKEN, Brookhaven Ctr, Upton, NY 11973 USA.
[McLerran, Larry] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
RP McLerran, L (reprint author), RIKEN, Brookhaven Ctr, Upton, NY 11973 USA.
NR 23
TC 5
Z9 5
U1 0
U2 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD NOV 1
PY 2009
VL 830
BP 709C
EP 712C
DI 10.1016/j.nuclphysa.2009.10.063
PG 4
WC Physics, Nuclear
SC Physics
GA 532QA
UT WOS:000272763300146
ER
PT J
AU Ejiri, S
AF Ejiri, Shinji
TI Critical point in finite density lattice QCD by canonical approach
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus
Collisions (Quark Matter 2009)
CY MAR 30-APR 04, 2009
CL Knoxville, TN
AB We propose a method to find the QCD critical point at finite density calculating the canonical partition function Z(C)(T, N) by Monte-Carlo simulations of lattice QCD, and analyze data obtained by a simulation with two-flavor p4-improved staggered quarks with pion mass m(pi) approximate to 770MeV. It is found that the shape of an effective potential changes gradually as the temperature decreases and a first order phase transition appears in the low temperature and high density region. This result strongly Suggests the existence of the critical point in the (T, mu(q)) phase diagram.
C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
RP Ejiri, S (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
NR 10
TC 0
Z9 0
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD NOV 1
PY 2009
VL 830
BP 717C
EP 720C
DI 10.1016/j.nuclphysa.2009.09.060
PG 4
WC Physics, Nuclear
SC Physics
GA 532QA
UT WOS:000272763300148
ER
PT J
AU Soltz, RA
AF Soltz, R. A.
CA HotQCD Collaboration
TI The HotQCD Equation of State
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus
Collisions (Quark Matter 2009)
CY MAR 30-APR 04, 2009
CL Knoxville, TN
AB We present results from recent calculations of the QCD equation of state by the HotQCD Collaboration and review the implications for hydrodynamic modeling. The equation of state of QCD at zero baryon density was calculated on a lattice of dimensions 32(3) x 8 with m(l) = 0.1 m(s) (corresponding to a pion mass of similar to 220 MeV) using two improved staggered fermion actions, p4 and asqtad. Calculations were performed along lines of constant physics using more than 100M cpu-hours on BG/L supercomputers at LLNL, NYBlue, and SDSC. We present parameterizations of the equation of state suitable for input into hydrodynamics models of heavy ion collisions.
C1 [Soltz, R. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Soltz, RA (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA.
NR 6
TC 0
Z9 0
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD NOV 1
PY 2009
VL 830
BP 725C
EP 728C
DI 10.1016/j.nuclphysa.2009.09.061
PG 4
WC Physics, Nuclear
SC Physics
GA 532QA
UT WOS:000272763300150
ER
PT J
AU Kanaya, K
Umeda, T
Aoki, S
Ejiri, S
Hatsuda, T
Ishii, N
Maezawa, Y
Ohno, H
AF Kanaya, K.
Umeda, T.
Aoki, S.
Ejiri, S.
Hatsuda, T.
Ishii, N.
Maezawa, Y.
Ohno, H.
CA WHOT-QCD Collaboration
TI Fixed scale approach to the equation of state on the lattice
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus
Collisions (Quark Matter 2009)
CY MAR 30-APR 04, 2009
CL Knoxville, TN
AB We propose a fixed scale approach to calculate the equation of state (EOS) in lattice QCD. In this approach, the temperature T is varied by N(t) at fixed lattice spacings. This enables us to reduce T = 0 simulations which are required to provide basic data in finite temperature studies but are quite expensive in the conventional fixed-N(t) approach. Since the conventional integral method to obtain the pressure is inapplicable at fixed scale, we introduce a new method, "T-integration method", to calculate pressure non-perturbatively. We test the fixed scale approach armed with the T-integral method in quenched QCD on isotropic and anisotropic lattices. Our method is found to be powerful to obtain reliable results for the equation of state, especially at intermediate and low temperatures. Reduction of the computational cost of T = 0 simulations is indispensable to study EOS in QCD with dynamical quarks. The status of our study in N(f) = 2 + 1 QCD with improved Wilson quarks is also reported.
C1 [Kanaya, K.; Aoki, S.; Ohno, H.] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan.
[Umeda, T.] Hiroshima Univ, Grad Sch Educ, Hiroshima 7398524, Japan.
[Aoki, S.] Brookhaven Natl Lab, RIKEN Res Ctr, Upton, NY 11973 USA.
[Ejiri, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
[Hatsuda, T.; Ishii, N.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan.
[Maezawa, Y.] RIKEN, Nishina Accelerator Res Ctr, Enyo Radiat Lab, Wako, Saitama 3510198, Japan.
RP Kanaya, K (reprint author), Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan.
RI Hatsuda, Tetsuo/C-2901-2013
NR 5
TC 1
Z9 1
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD NOV 1
PY 2009
VL 830
BP 801C
EP 804C
DI 10.1016/j.nuclphysa.2009.10.004
PG 4
WC Physics, Nuclear
SC Physics
GA 532QA
UT WOS:000272763300169
ER
PT J
AU Aoki, Y
Borsanyi, S
Durr, S
Fodor, Z
Katz, SD
Krieg, S
Szabo, KK
AF Aoki, Y.
Borsanyi, S.
Durr, S.
Fodor, Z.
Katz, S. D.
Krieg, S.
Szabo, K. K.
TI QCD transition temperature: approaching the continuum on the lattice
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus
Collisions (Quark Matter 2009)
CY MAR 30-APR 04, 2009
CL Knoxville, TN
AB In order to clarify the source of the discrepancy between our previous transition temperature determination [Phys. Lett. B 643, 46 (2006)] and that of the Bielefeld-Brookhaven-Columbia-Riken collaboration we improved our calculations by taking even smaller lattice spacings (N(t) = 12 and N(t) = 16 at one point) and by using physical quark masses also for the T=0 quantities. In addition to the kaon decay constant used for scale setting we determine four quantities (masses of the Omega baryon, K*(892) and phi(1020) mesons and the pion decay constant) which are found to agree with experiment. This implies that -independently of which of these quantities is used to set the overall scale- the same results are obtained within a few percent. At finite temperature we use finer lattices down to a less than or similar to 0.1 fm. Our new results confirm completely our previous findings. We compare the results with those of the 'hotQCD' collaboration.
C1 [Aoki, Y.] Brookhaven Natl Lab, RIKEN Res Ctr, Upton, NY 11973 USA.
[Borsanyi, S.; Fodor, Z.; Katz, S. D.; Krieg, S.; Szabo, K. K.] Berg Univ Wuppertal, D-42119 Wuppertal, Germany.
[Durr, S.; Fodor, Z.] Forschungszentrum Julich, D-52425 Julich, Germany.
[Durr, S.] DESY, NIC, D-15738 Zeuthen, Germany.
[Fodor, Z.; Katz, S. D.] Eotvos Lorand Univ, Inst Theoret Phys, H-1117 Budapest, Hungary.
[Krieg, S.] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA.
RP Aoki, Y (reprint author), Brookhaven Natl Lab, RIKEN Res Ctr, Upton, NY 11973 USA.
RI Katz, Sandor/A-4154-2011;
OI Krieg, Stefan/0000-0002-8417-9823
NR 11
TC 3
Z9 3
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD NOV 1
PY 2009
VL 830
BP 805C
EP 808C
DI 10.1016/j.nuclphysa.2009.10.141
PG 4
WC Physics, Nuclear
SC Physics
GA 532QA
UT WOS:000272763300170
ER
PT J
AU Glenn, A
AF Glenn, Andrew
CA PHENIX Collaboration
TI Recent HBT results in Au plus Au and p plus p collisions from PHENIX
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus
Collisions (Quark Matter 2009)
CY MAR 30-APR 04, 2009
CL Knoxville, TN
AB We present Hanbury-Brown Twiss measurements from the PHENIX experiment at RHIC for final results for charged kaon pairs from root s(NN) = 200 GeV Au+Au collisions and preliminary results for charged pion pairs from root s = 200 GeV p+p collisions. We find that for kaon pairs from Au+Au, each traditional 3D Gaussian radius shows approximately the same linear increase as a function of N(part)(1/3). An imaging analysis reveals a significant non-Gaussian tail for r greater than or similar to 10 fm. The presence of a tail for kaon pairs demonstrates that similar non-Gaussian tails observed in earlier pion measurements cannot be fully explained by decays of long-lived resonances. The preliminary analysis of pions from root s = 200 GeV p+p minimum biased collisions show correlations which are well suited to traditional 3D HBT radii extraction via the Bowler-Sinyukov method, and we present R(out), R(side), and R(long) as a function of mean transverse pair mass.
C1 [Glenn, Andrew] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
RP Glenn, A (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94551 USA.
NR 7
TC 0
Z9 0
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD NOV 1
PY 2009
VL 830
BP 833C
EP 836C
DI 10.1016/j.nuclphysa.2009.10.126
PG 4
WC Physics, Nuclear
SC Physics
GA 532QA
UT WOS:000272763300177
ER
PT J
AU Fachini, P
AF Fachini, Patricia
CA STAR Collaboration
TI rho(0) Production in Cu plus Cu Collisions at root s(NN)=200 and 62.4
GeV in STAR
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus
Collisions (Quark Matter 2009)
CY MAR 30-APR 04, 2009
CL Knoxville, TN
AB The results on rho(770)(0) production in Cu+Cu collisions at root s(NN) = 200 and 62.4 GeV in STAR are presented. The rho(0) is measured via its hadronic decay channel and used as a sensitive tool to examine the collision dynamics in the hadronic medium.
C1 [Fachini, Patricia] Brookhaven Natl Lab, Upton, NY 11973 USA.
RP Fachini, P (reprint author), Brookhaven Natl Lab, Bldg 510A, Upton, NY 11973 USA.
NR 12
TC 4
Z9 4
U1 0
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD NOV 1
PY 2009
VL 830
BP 837C
EP 840C
DI 10.1016/j.nuclphysa.2009.10.007
PG 4
WC Physics, Nuclear
SC Physics
GA 532QA
UT WOS:000272763300178
ER
PT J
AU Sharma, R
AF Sharma, Rishi
TI Light Cone wavefunction approach to open heavy flavor dynamics in the
QGP
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus
Collisions (Quark Matter 2009)
CY MAR 30-APR 04, 2009
CL Knoxville, TN
AB We elucidate the role of time scales that determine heavy quark dynamics in the QGP. Quark-antiquark potentials extracted from the lattice are used to demonstrate the existence of open heavy flavor bound-state solutions in the vicinity of the critical temperature, and their light cone wavefunctions are obtained. We use these wavefunctions to calculate the in-medium modification of the heavy quark distribution and decay probabilities. For the case of high p(T) D or B mesons traversing the QGP, we combine the new meson formation and dissociation mechanism with the traditional parton-level charm and beauty quark quenching to obtain predictions for the heavy meson and non-photonic electron suppression in Cu+Cu and Pb+Pb collisions at RHIC and the LHC, respectively.
C1 Los Alamos Natl Lab, Div Theoret, Grp T2, Los Alamos, NM 87545 USA.
RP Sharma, R (reprint author), Los Alamos Natl Lab, Div Theoret, Grp T2, Los Alamos, NM 87545 USA.
NR 17
TC 0
Z9 0
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
EI 1873-1554
J9 NUCL PHYS A
JI Nucl. Phys. A
PD NOV 1
PY 2009
VL 830
BP 857C
EP 860C
DI 10.1016/j.nuclphysa.2009.10.127
PG 4
WC Physics, Nuclear
SC Physics
GA 532QA
UT WOS:000272763300183
ER
PT J
AU Klein, SR
AF Klein, Spencer R.
TI Muon Production in Relativistic Cosmic-Ray Interactions
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus
Collisions (Quark Matter 2009)
CY MAR 30-APR 04, 2009
CL Knoxville, TN
AB Cosmic-rays with energies up to 3 x 10(20) eV have been observed. The nuclear composition of these cosmic rays is unknown but if the incident nuclei are protons then the corresponding center of mass energy is root s(nn) = 700 TeV. High energy muons can be used to probe the composition of these incident nuclei. The energy spectra of high-energy (> 1 TeV) cosmic ray induced muons have been measured with deep underground or under-ice detectors. These muons come from pion and kaon decays and from charm production in the atmosphere.
Terrestrial experiments are most sensitive to far-forward muons so the production rates are sensitive to high-x partons in the incident nucleus and low-x partons in the nitrogen/oxygen targets. Muon measurements can complement the central-particle data collected at colliders. This paper will review muon production data and discuss some non-perturbative (soft) models that have been used to interpret the data. I will show measurements of TeV muon transverse momentum (p(T)) spectra in cosmic-ray air showers from MACRO, and describe how the IceCube neutrino observatory and the proposed Km3Net detector will extend these measurements to a higher p(T) region where perturbative QCD should apply. With a 1 km(2) surface area, the full IceCube detector should observe hundreds of muons/year with p(T) in the pQCD regime.
C1 [Klein, Spencer R.] LBNL, Div Nucl Sci, Berkeley, CA 94720 USA.
[Klein, Spencer R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
RP Klein, SR (reprint author), LBNL, Div Nucl Sci, Berkeley, CA 94720 USA.
NR 11
TC 5
Z9 5
U1 0
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD NOV 1
PY 2009
VL 830
BP 869C
EP 872C
DI 10.1016/j.nuclphysa.2009.10.128
PG 4
WC Physics, Nuclear
SC Physics
GA 532QA
UT WOS:000272763300186
ER
PT J
AU Teaney, D
AF Teaney, Derek
TI A Summary of Bulk Dynamics from Quark Matter 2009
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus
Collisions (Quark Matter 2009)
CY MAR 30-APR 04, 2009
CL Knoxville, TN
ID ELLIPTIC FLOW; ECCENTRICITY FLUCTUATIONS; SPS
AB I review the recent progress in measuring elliptic flow in heavy ion collisions. These measurements show clearly how hydrodynamics starts to develop as the system size is increased from peripheral to central collisions. During this transition, the momentum range described by hydrodynamics increases as the system progresses from a kinetic to a hydrodynamic regime. Many of the systematic deviations from ideal hydrodynamics are reproduced effortlessly once the shear viscosity is included. In order to extract the shear viscosity from the data, kinetic theory can be used to determine which aspects of the elliptic flow reflect the details of the microscopic interactions, and which aspects reflect the underlying transport coefficients. I also review the identified hadron elliptic flow and the predictions of hydrodynamics for the LHC.
C1 [Teaney, Derek] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
[Teaney, Derek] Brookhaven Natl Lab, Dept Phys, RIKEN BNL Res Ctr, Upton, NY 11973 USA.
RP Teaney, D (reprint author), SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
NR 28
TC 2
Z9 2
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD NOV 1
PY 2009
VL 830
BP 891C
EP 898C
DI 10.1016/j.nuclphysa.2009.10.131
PG 8
WC Physics, Nuclear
SC Physics
GA 532QA
UT WOS:000272763300189
ER
PT J
AU Pisarski, RD
AF Pisarski, Robert D.
TI Towards a theory of the semi-Quark Gluon Plasma
SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS
LA English
DT Proceedings Paper
CT 47th International- Winter-Schladming-School of the Theoretical Physic
on Fundamental Challenges of QCD
CY FEB 28-MAR 07, 2009
CL Schladming, AUSTRIA
SP Australian Fed Minist Sci & Res, Karl-Franzenus Univ Graz, Province Styria, Town Schladming
ID T-HOOFT LOOP; HOT GAUGE-THEORIES; NUCLEUS-NUCLEUS COLLISIONS;
FINITE-TEMPERATURE QCD; YANG-MILLS THEORY; FREE-ENERGY;
PHASE-TRANSITION; QUANTUM CHROMODYNAMICS; INTERFACE TENSION; POLYAKOV
LOOP
AB I give a general overview of the theory of thle Quark-Gluon Plasma (QC:P) about the temperature for deconfinement, where the theory is only partially deconfined. I review three topics relevant to study of such a "semi"-QGP. The first is the semi-classical computation of the spatial 't Hooft loop. This is equivalent to computing the interface tension between two Z(N) domains, and indicates how the confined phase is approached from high temperature. The second topic is effective matrix models of Polyakov loops. The last topic is the computation of hard thermal loops in the presence of a spatial 't Hooft loop, as a way of probing the real time properties of tale semi-QGP.
C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
RP Pisarski, RD (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
NR 222
TC 1
Z9 1
U1 0
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0920-5632
J9 NUCL PHYS B-PROC SUP
JI Nucl. Phys. B-Proc. Suppl.
PD NOV
PY 2009
VL 195
BP 157
EP 198
DI 10.1016/j.nuclphysbps.2009.10.015
PG 42
WC Physics, Particles & Fields
SC Physics
GA 536NP
UT WOS:000273051400007
ER
PT J
AU Pisarski, RD
AF Pisarski, Robert D.
TI Why Cold, Dense Quark Matter could be "Quarkyonic"
SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS
LA English
DT Proceedings Paper
CT 47th International- Winter-Schladming-School of the Theoretical Physic
on Fundamental Challenges of QCD
CY FEB 28-MAR 07, 2009
CL Schladming, AUSTRIA
SP Australian Fed Minist Sci & Res, Karl-Franzenus Univ Graz, Province Styria, Town Schladming
ID LARGE-N-C; CHIRAL-SYMMETRY-BREAKING; GAUGE VECTOR-MESONS; FINITE BARYON
DENSITY; GROUND-STATE ENERGY; QCD PHASE-DIAGRAM; YANG-MILLS THEORY;
QUANTUM CHROMODYNAMICS; SKYRME MODEL; HIGH-TEMPERATURE
AB I give a pedagogical review of how cold, dense quark matter call be viewed as "Quarkyonic", at least when the number of colors is large (and the number of flavors, small). This provides a different way of viewing the excitation spectrum of dense quarks. while the free energy is, up to power law corrections; close to that of free quarks, the excitation spectrum is very different, dominated by confined, collective excitations near the Fermi surface.
C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
RP Pisarski, RD (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
NR 200
TC 0
Z9 0
U1 0
U2 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0920-5632
EI 1873-3832
J9 NUCL PHYS B-PROC SUP
JI Nucl. Phys. B-Proc. Suppl.
PD NOV
PY 2009
VL 195
BP 199
EP 216
DI 10.1016/j.nuclphysbps.2009.10.016
PG 18
WC Physics, Particles & Fields
SC Physics
GA 536NP
UT WOS:000273051400008
ER
PT J
AU McLerran, L
AF McLerran, Larry
TI The Phase Diagram of QCD and Some Issues of Large N(c)
SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS
LA English
DT Proceedings Paper
CT 47th Internationa- Winter-Schladming-School of the Theoretical Physic on
Fundamental Challenges of QCD
CY FEB 28-MAR 07, 2009
CL Schladming, AUSTRIA
SP Austraian Fed Minist Sci & Res, Karl-Franzenus Univ Graz, Province Styria, Town Schladming
ID COLOR GLASS CONDENSATE; GLUON DISTRIBUTION-FUNCTIONS;
TRANSVERSE-MOMENTUM; NUCLEAR COLLISIONS; SKYRME MODEL; DENSITY; MATTER;
EVOLUTION; QUARK
AB The large N(c) limit provides a good phenomenology of meson spectra and interactions. I discuss some problems with applying the large N(c) approximation to the description of baryons, and point out a. number of apparent paradoxes and phenomenological difficulties
C1 [McLerran, Larry] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
[McLerran, Larry] Brookhaven Natl Lab, Riken Brookhaven Ctr, Upton, NY 11973 USA.
RP McLerran, L (reprint author), Brookhaven Natl Lab, Dept Phys, POB 5000, Upton, NY 11973 USA.
NR 27
TC 1
Z9 2
U1 0
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0920-5632
J9 NUCL PHYS B-PROC SUP
JI Nucl. Phys. B-Proc. Suppl.
PD NOV
PY 2009
VL 195
BP 275
EP 280
DI 10.1016/j.nuclphysbps.2009.10.020
PG 6
WC Physics, Particles & Fields
SC Physics
GA 536NP
UT WOS:000273051400012
ER
PT J
AU Aoki, S
AF Aoki, Sinya
TI From Quarks to Nuclei: Challenges of Lattice QCD
SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS
LA English
DT Proceedings Paper
CT 47th International- Winter-Schladming-School of the Theoretical Physic
on Fundamental Challenges of QCD
CY FEB 28-MAR 07, 2009
CL Schladming, AUSTRIA
SP Australian Fed Minist Sci & Res, Karl-Franzenus Univ Graz, Province Styria, Town Schladming
ID CHIRAL LAGRANGIANS; FORCES
AB I discuss challenges of lattice QCD, "From Quarks to Nuclei", which connect QCD with nuclear physics.
C1 [Aoki, Sinya] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan.
[Aoki, Sinya] Brookhaven Natl Lab, Riken BNL Res Ctr, Upton, NY 11973 USA.
RP Aoki, S (reprint author), Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan.
NR 21
TC 1
Z9 1
U1 0
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0920-5632
EI 1873-3832
J9 NUCL PHYS B-PROC SUP
JI Nucl. Phys. B-Proc. Suppl.
PD NOV
PY 2009
VL 195
BP 281
EP 287
DI 10.1016/j.nuclphysbps.2009.10.021
PG 7
WC Physics, Particles & Fields
SC Physics
GA 536NP
UT WOS:000273051400013
ER
PT J
AU Hutchinson, JD
Bess, JD
AF Hutchinson, Jesson D.
Bess, John D.
TI Subcritical Noise Measurements with a Nickel-Reflected Plutonium Sphere
SO NUCLEAR SCIENCE AND ENGINEERING
LA English
DT Article
ID NUCLEAR-DATA LIBRARY
AB Subcritical measurements were conducted with an a-phase plutonium sphere reflected by nickel hemishells using the (252)Cf source-driven noise analysis method to provide criticality safety benchmark data. Measured configurations included a bare plutonium sphere as well as the plutonium sphere reflected by the following nickel thicknesses: 1.27, 2.54, 3.81, 5.08, and 7.62 cm. A certain ratio of spectral quantities was measured for each configuration, which varies linearly with the k(eff) of the system under small perturbations. In addition, two types of Monte Carlo calculations were employed: a modified version of MCNP to calculate the ratio of spectral quantities and a KCODE calculation. From the measured and computed quantities, the effective multiplication factor of each configuration can be approximated. The inferred k(eff) for all six configurations compared well with computed values. A comprehensive uncertainty analysis was then performed that includes uncertainties in the geometry and materials present in the system in addition to the uncertainties in the method and nuclear data.
C1 [Hutchinson, Jesson D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Bess, John D.] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
RP Hutchinson, JD (reprint author), Los Alamos Natl Lab, MS B228, Los Alamos, NM 87545 USA.
EM jesson@lanl.gov
OI Bess, John/0000-0002-4936-9103
FU U.S. Department of Energy [DE-AC07-05ID14517]
FX their help. This manuscript has been authored by Battelle Energy
Alliance, LLC, under contract DE-AC07-05ID14517 with the U.S. Department
of Energy.
NR 18
TC 1
Z9 1
U1 0
U2 0
PU AMER NUCLEAR SOC
PI LA GRANGE PK
PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA
SN 0029-5639
J9 NUCL SCI ENG
JI Nucl. Sci. Eng.
PD NOV
PY 2009
VL 163
IS 3
BP 285
EP 290
PG 6
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA 552TC
UT WOS:000274315500006
ER
PT J
AU Kelsey, CT
Prinja, AK
AF Kelsey, Charles T.
Prinja, Anil K.
TI COUPLED MULTIGROUP PROTON/NEUTRON CROSS SECTIONS FOR DETERMINISTIC
TRANSPORT
SO NUCLEAR TECHNOLOGY
LA English
DT Article; Proceedings Paper
CT 11th International Conference on Radiation Shielding / 15th Topical
Meeting of the Radiation-Protection-and-Shielding-Division of the
American-Nuclear-Society
CY APR 13-18, 2008
CL Pine Mountain, GA
SP Amer Nucl Soc, Radiat Protect & Shielding Div
DE multigroup cross sections; proton/neutron transport; space radiation
ID INTRANUCLEAR-CASCADE CALCULATION
AB The limited availability of coupled multigroup proton/neutron cross-section libraries has hampered the use of deterministic transport methods for solving shielding problems involving energetic proton sources. Libraries are developed from evaluated nuclear data for low-energy transport and the physics models of MCNPX for intermediate-energy transport. They allow deterministic solutions of orbiting spacecraft shielding problems. Evaluated cross sections for protons and neutrons are available for many nuclides up to 150 MeV. NJOY99 is used to produce coupled multigroup proton/neutron cross sections from these. For higher energies, MCNPX is run in its cross-section calculation mode where the XSEX3 program is used to tally double-differential cross sections. The XSEX3 program was modified to discretize the cross sections in energy and output Legendre expansions for angular dependence. The NJOY99 and modified XSEX3 output are combined to produce cross-section libraries for energies up to 400 MeV. The libraries are used to solve trapped proton flux shielding problems using the discrete ordinates transport code Attila. High-order Legendre expansions (P-39) are required to accurately describe the highly anisotropic scattering. Attila applies the extended transport correction allowing accurate three-dimensional solutions at much lower degrees. Particle flux solutions for orbiting spacecraft shielding problems obtained with Attila and MCNPX compare favorably. Coupled multigroup proton/neutron cross-section libraries, for use with deterministic transport codes, can be prepared using NJOY99 and MCNPX. Our results using the Attila code demonstrate that multigroup deterministic methods are computationally efficient alternatives to Monte Carlo simulation.
C1 [Kelsey, Charles T.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA.
[Prinja, Anil K.] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA.
RP Kelsey, CT (reprint author), Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, POB 1663,MS H805, Los Alamos, NM 87545 USA.
EM ckelsey@lanl.gov
NR 17
TC 0
Z9 0
U1 0
U2 1
PU AMER NUCLEAR SOC
PI LA GRANGE PK
PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA
SN 0029-5450
EI 1943-7471
J9 NUCL TECHNOL
JI Nucl. Technol.
PD NOV
PY 2009
VL 168
IS 2
SI SI
BP 257
EP 263
PG 7
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA 513KD
UT WOS:000271320300002
ER
PT J
AU Sublet, JC
Cullen, DE
MacFarlane, RE
AF Sublet, J-Ch.
Cullen, D. E.
MacFarlane, R. E.
TI HOW ACCURATELY CAN WE CALCULATE FAST NEUTRONS SLOWING DOWN IN WATER?
SO NUCLEAR TECHNOLOGY
LA English
DT Article; Proceedings Paper
CT 11th International Conference on Radiation Shielding / 15th Topical
Meeting of the Radiation-Protection-and-Shielding-Division of the
American-Nuclear-Society
CY APR 13-18, 2008
CL Pine Mountain, GA
SP Amer Nucl Soc, Radiat Protect & Shielding Div
DE Monte Carlo; slowing down; thermal scattering
AB The results produced by a variety of currently available pointwise Monte Carlo neutron transport codes for the relatively simple problem of modeling a fast source of neutrons slowing down and thermalizing in water are compared. Initial comparisons showed rather large differences in the calculated flux: up to 80% differences. By working together to improve the results, iterations were done by (a) ensuring that all codes were using the same data, (b) improving the models used by the codes, and (c) correcting errors in the codes-no code is perfect. Even after a number of iterations, we still found differences, demonstrating that our Monte Carlo and supporting codes are far from perfect. In particular, we found that the often overlooked nuclear data-processing codes can be the weakest link in our systems of codes. The results presented here represent today's state of the art in the sense that all of the Monte Carlo codes are modern, widely available, and used codes. They all can use the most up-to-date nuclear data, and the results are recent; these are the results that current users of these codes should expect to obtain from them. As such, the accuracy and limitations of the codes presented here should serve as guidelines to code users in interpreting their results for similar problems. Results for the improved thermal scattering model now available, using advanced versions of NJOY-99.259, TRIPOLI-4.5, and MCNPX-2.6.f Beta, are presented. For comparisons among experimentally measured water cross sections and the unique JEFF-3.1 and ENDF/B-VII thermal scattering law, S(alpha, beta) data are exemplified.
C1 [Sublet, J-Ch.] Commissariat Energie Atom DEN, F-13108 Cadarache, St Paul Lez Dur, France.
[Cullen, D. E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[MacFarlane, R. E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Sublet, JC (reprint author), Commissariat Energie Atom DEN, F-13108 Cadarache, St Paul Lez Dur, France.
EM jean-christophe.sublet@cea.fr
NR 2
TC 0
Z9 0
U1 1
U2 1
PU AMER NUCLEAR SOC
PI LA GRANGE PK
PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA
SN 0029-5450
EI 1943-7471
J9 NUCL TECHNOL
JI Nucl. Technol.
PD NOV
PY 2009
VL 168
IS 2
SI SI
BP 293
EP 297
PG 5
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA 513KD
UT WOS:000271320300008
ER
PT J
AU Veinot, KG
Bogard, JS
AF Veinot, K. G.
Bogard, J. S.
TI ANISOTROPY FACTORS FOR A Cf-252 SOURCE
SO NUCLEAR TECHNOLOGY
LA English
DT Article; Proceedings Paper
CT 11th International Conference on Radiation Shielding / 15th Topical
Meeting of the Radiation-Protection-and-Shielding-Division of the
American-Nuclear-Society
CY APR 13-18, 2008
CL Pine Mountain, GA
SP Amer Nucl Soc, Radiat Protect & Shielding Div
DE neutron source; anisotropy; dose equivalent
AB A new Cf-252 source has been procured for use at the Dosimetry Applications and Research facility at the Oak Ridge National Laboratory (ORNL). This source was encapsulated by the Californium Facility at ORNL; however, the encapsulation differs from previous designs designated as SR-Cf-100. The new encapsulation, designated SR-Cf-3000, has a similar cylindrical radius to the previous generation but is 1.6 cm longer. Since the encapsulation geometries differ, the amount of internal scattering of neutrons will also differ, leading to changes in anisotropy factors between the two designs. Additionally, the different encapsulations will affect the absorbed dose and dose equivalent delivered per neutron emitted by the source since both the quantity and energy distribution of the emitted neutrons will vary with irradiation angle. This work presents the fluence anisotropy factors for the SR-Cf-3000 series encapsulation as well as absorbed dose and dose equivalent values calculated for various angles of irradiation. The fluence anisotropy factors were found to range from a maximum of 1.037 to a minimum of 0.641 for irradiation angles perpendicular and parallel to the source axis, respectively. Anisotropy in absorbed dose varied from a maximum of 1.033 to a minimum of 0.676 while anisotropy of dose equivalent varied from 1.035 to 0.657. Anisotropy in the region most commonly used was found to be +3.2% for absorbed dose and +3.3% for dose equivalent, and these effects should be included when performing dosimeter irradiations.
C1 [Bogard, J. S.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RP Veinot, KG (reprint author), Y-12 Natl Secur Complex,POB 2009, Oak Ridge, TN 37831 USA.
EM veinotkg@y12.doe.gov
NR 9
TC 0
Z9 0
U1 0
U2 0
PU AMER NUCLEAR SOC
PI LA GRANGE PK
PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA
SN 0029-5450
EI 1943-7471
J9 NUCL TECHNOL
JI Nucl. Technol.
PD NOV
PY 2009
VL 168
IS 2
SI SI
BP 364
EP 368
PG 5
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA 513KD
UT WOS:000271320300021
ER
PT J
AU Khater, H
Brereton, S
Singh, M
AF Khater, Hesham
Brereton, Sandra
Singh, Mike
TI SHIELDING ANALYSIS FOR X-RAY SOURCES GENERATED IN TARGET CHAMBER OF THE
NATIONAL IGNITION FACILITY
SO NUCLEAR TECHNOLOGY
LA English
DT Article; Proceedings Paper
CT 11th International Conference on Radiation Shielding / 15th Topical
Meeting of the Radiation-Protection-and-Shielding-Division of the
American-Nuclear-Society
CY APR 13-18, 2008
CL Pine Mountain, GA
SP Amer Nucl Soc, Radiat Protect & Shielding Div
DE National Ignition Facility; inertial confinement fusion; X-ray hazard
AB Prompt doses from X-rays generated as result of laser beam interaction with target material are calculated at different locations inside the National Ignition Facility. The maximum dose outside a target chamber diagnostic port is similar to 10 mSv for a shot utilizing the 192 laser beams and 1.8 MJ of laser energy. The dose during a single bundle shot (eight laser beams) drops to similar to 0.4 mSv. Doses calculated outside the target bay (TB) doors and inside the switchyards (SYs) [except for the 5.33-m (17-ft 6-in.) floor level] range from a few microsieverts to similar to 110 mu Sv for 192 beams and scale down proportionally with a smaller number of beams. At the 5.33-m (17-ft 6-in.) floor level, two diagnostic ports are directly facing two of the TB doors, and the maximum doses outside the doors are 0.5 and 0.16 mSv, respectively. Shielding each of the two TB doors with 6.35-mm-thick Pb (1/4-in.) reduces the dose by a factor of 50. One or two bundle shots (8 to 16 laser beams) present a small hazard to personnel in the SYs.
C1 [Khater, Hesham; Brereton, Sandra; Singh, Mike] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Khater, H (reprint author), Lawrence Livermore Natl Lab, POB 808,L-462, Livermore, CA 94550 USA.
EM khater1@llnl.gov
NR 6
TC 1
Z9 1
U1 2
U2 2
PU AMER NUCLEAR SOC
PI LA GRANGE PK
PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA
SN 0029-5450
EI 1943-7471
J9 NUCL TECHNOL
JI Nucl. Technol.
PD NOV
PY 2009
VL 168
IS 2
SI SI
BP 381
EP 386
PG 6
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA 513KD
UT WOS:000271320300024
ER
PT J
AU Titarenko, Y
Batyaev, V
Titarenko, A
Butko, M
Pavlov, K
Florya, S
Tikhonov, R
Boyko, P
Kovalenko, A
Sobolevsky, N
Anashin, V
Mashnik, S
Gudowski, W
Mokhov, N
Rakhno, I
AF Titarenko, Yury
Batyaev, Viacheslav
Titarenko, Alexey
Butko, Michael
Pavlov, Kirill
Florya, Sergey
Tikhonov, Roman
Boyko, Pavel
Kovalenko, Alexey
Sobolevsky, Nikolai
Anashin, Vasily
Mashnik, Stepan
Gudowski, Waclaw
Mokhov, Nikolai
Rakhno, Igor
TI BEAM DUMP AND LOCAL SHIELDING LAYOUT AROUND THE ITEP RADIATION TEST
FACILITY
SO NUCLEAR TECHNOLOGY
LA English
DT Article; Proceedings Paper
CT 11th International Conference on Radiation Shielding / 15th Topical
Meeting of the Radiation-Protection-and-Shielding-Division of the
American-Nuclear-Society
CY APR 13-18, 2008
CL Pine Mountain, GA
SP Amer Nucl Soc, Radiat Protect & Shielding Div
DE radiation shielding; dose simulation; single-event upsets
AB The Radiation Test Facility (RTF) is under construction at the Institute for Theoretical and Experimental Physics to control the electronics under irradiation of particles that imitate cosmic rays (protons, carbon, aluminum, iron, tin, bismuth, and uranium). For the norms of radiation safety of personnel and users of the RTF to be observed, a local shielding and beam dump must be designed. Simulations of the dose rates around the designed shielding and beam dump are carried out in the present work.
C1 [Titarenko, Yury; Batyaev, Viacheslav; Titarenko, Alexey; Butko, Michael; Pavlov, Kirill; Florya, Sergey; Tikhonov, Roman; Boyko, Pavel; Kovalenko, Alexey] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Sobolevsky, Nikolai] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia.
[Anashin, Vasily] Inst Space Device Engn, Moscow 111250, Russia.
[Mashnik, Stepan] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Gudowski, Waclaw] Royal Inst Technol, S-10691 Stockholm, Sweden.
[Mokhov, Nikolai; Rakhno, Igor] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
RP Titarenko, Y (reprint author), Inst Theoret & Expt Phys, Moscow 117259, Russia.
EM vfb@itep.ru
NR 4
TC 0
Z9 0
U1 0
U2 0
PU AMER NUCLEAR SOC
PI LA GRANGE PK
PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA
SN 0029-5450
EI 1943-7471
J9 NUCL TECHNOL
JI Nucl. Technol.
PD NOV
PY 2009
VL 168
IS 2
SI SI
BP 472
EP 476
PG 5
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA 513KD
UT WOS:000271320300038
ER
PT J
AU Nakashima, H
Sakamoto, Y
Iwamoto, Y
Matsuda, N
Kasugai, Y
Nakane, Y
Masukawa, F
Mokhov, NV
Leveling, AF
Boehnlein, DJ
Vaziri, K
Sanami, T
Matsumura, H
Hagiwara, M
Iwase, H
Kinoshita, N
Hirayama, H
Oishi, K
Nakamura, T
Arakawa, H
Shigyo, N
Ishibashi, K
Yashima, H
Nakao, N
Niita, K
AF Nakashima, H.
Sakamoto, Y.
Iwamoto, Y.
Matsuda, N.
Kasugai, Y.
Nakane, Y.
Masukawa, F.
Mokhov, N. V.
Leveling, A. F.
Boehnlein, D. J.
Vaziri, K.
Sanami, T.
Matsumura, H.
Hagiwara, M.
Iwase, H.
Kinoshita, N.
Hirayama, H.
Oishi, K.
Nakamura, T.
Arakawa, H.
Shigyo, N.
Ishibashi, K.
Yashima, H.
Nakao, N.
Niita, K.
TI EXPERIMENTAL STUDIES OF SHIELDING AND IRRADIATION EFFECTS AT HIGH-ENERGY
ACCELERATOR FACILITIES
SO NUCLEAR TECHNOLOGY
LA English
DT Article; Proceedings Paper
CT 11th International Conference on Radiation Shielding / 15th Topical
Meeting of the Radiation-Protection-and-Shielding-Division of the
American-Nuclear-Society
CY APR 13-18, 2008
CL Pine Mountain, GA
SP Amer Nucl Soc, Radiat Protect & Shielding Div
DE high-energy; shielding; experiment
ID 68-MEV PROTONS; CONCRETE; TRANSMISSION; 43-MEV; IRON
AB Experimental studies of shielding and radiation effects are carried out at Fermi National Accelerator Laboratory (FNAL) under collaboration between FNAL and Japan, aiming at benchmarking simulation codes and studying irradiation effects for the upgrade and design of new high-energy accelerator facilities. The purposes of this collaboration are (a) acquisition of shielding data in a proton beam energy region above 100 GeV, (b) further evaluation of predictive accuracy of the PHITS and MARS codes, (c) modification of physics models and data in these codes if needed, (d) characterization of radiation fields for studies of radiation effects, and (e) development of a code module for an improved description of radiation effects.
The first campaign of the experiment was carried out at the Pbar target station and NuMI experimental station at FNAL, which use irradiation of targets with 120-GeV protons for antiproton and neutrino production, respectively. The generated secondary particles passing through steel, concrete, and rock were measured by activation methods as well as by other detectors such as a scintillator with a veto counter, phoswich detector, and a Bonner ball counter on trial. Preliminary experimental and calculated results are presented.
C1 [Nakashima, H.; Sakamoto, Y.; Iwamoto, Y.; Matsuda, N.; Kasugai, Y.; Nakane, Y.; Masukawa, F.] Japan Atom Energy Agcy, Naka, Ibaraki 3191195, Japan.
[Mokhov, N. V.; Leveling, A. F.; Boehnlein, D. J.; Vaziri, K.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Sanami, T.; Matsumura, H.; Hagiwara, M.; Iwase, H.; Kinoshita, N.; Hirayama, H.] High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan.
[Oishi, K.] Shimizu Corp, Koto Ku, Tokyo 1358530, Japan.
[Nakamura, T.] Tohoku Univ, Aoba Ku, Sendai, Miyagi 9808578, Japan.
[Arakawa, H.; Shigyo, N.; Ishibashi, K.] Kyushu Univ, Nishi Ku, Fukuoka 8190395, Japan.
[Yashima, H.] Kyoto Univ, Inst Res Reactor, Osaka 5900494, Japan.
[Niita, K.] Res Org Informat Sci & Technol, Naka, Ibaraki 3191106, Japan.
RP Nakashima, H (reprint author), Japan Atom Energy Agcy, Shirane Shirakata 2-4, Naka, Ibaraki 3191195, Japan.
EM nakashima.hiroshi@jaea.go.jp
RI Iwamoto, Yosuke/G-5959-2012;
OI Sanami, Toshiya/0000-0003-2255-8008
NR 11
TC 7
Z9 7
U1 0
U2 1
PU AMER NUCLEAR SOC
PI LA GRANGE PK
PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA
SN 0029-5450
EI 1943-7471
J9 NUCL TECHNOL
JI Nucl. Technol.
PD NOV
PY 2009
VL 168
IS 2
SI SI
BP 482
EP 486
PG 5
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA 513KD
UT WOS:000271320300040
ER
PT J
AU Muhrer, G
Wilson, M
Kelsey, C
Pitcher, E
AF Muhrer, G.
Wilson, M.
Kelsey, Ch.
Pitcher, E.
TI DESIGN OF THE SHIELDING OF THE MATERIALS TEST STATION
SO NUCLEAR TECHNOLOGY
LA English
DT Article; Proceedings Paper
CT 11th International Conference on Radiation Shielding / 15th Topical
Meeting of the Radiation-Protection-and-Shielding-Division of the
American-Nuclear-Society
CY APR 13-18, 2008
CL Pine Mountain, GA
SP Amer Nucl Soc, Radiat Protect & Shielding Div
DE shielding; spallation source; activation script
AB The Materials Test Station (MTS) is a project by the Advanced Fuel Cycle Initiative to build a facility that allows for irradiating nuclear fuel and material samples to acquire the necessary knowledge to close the nuclear fuel cycle and thereby reduce the amount and the toxicity of the nuclear waste. This facility is proposed to be located in Area A of the Los Alamos Neutron Science Center at the Los Alamos National Laboratory. The MTS is proposed to be a spallation target facility operated up to 2 MW (2.5 mA at 800 MeV). To safely operate a facility of this size, a large amount of shielding needs to be put into place. In this paper we will discuss the shielding design proposed for the MTS.
C1 [Muhrer, G.; Wilson, M.; Kelsey, Ch.; Pitcher, E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Muhrer, G (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
EM muhrer@lanl.gov
RI Lujan Center, LANL/G-4896-2012
NR 10
TC 1
Z9 1
U1 1
U2 1
PU AMER NUCLEAR SOC
PI LA GRANGE PK
PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA
SN 0029-5450
EI 1943-7471
J9 NUCL TECHNOL
JI Nucl. Technol.
PD NOV
PY 2009
VL 168
IS 2
SI SI
BP 497
EP 501
PG 5
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA 513KD
UT WOS:000271320300043
ER
PT J
AU Muhrer, G
Wilson, M
Kelsey, C
Pitcher, E
Gallmeier, F
Wohlmuther, M
AF Muhrer, G.
Wilson, M.
Kelsey, Ch.
Pitcher, E.
Gallmeier, F.
Wohlmuther, M.
TI SHIELD DESIGN OF THE MATERIALS TEST STATION'S CAMERA ROOM
SO NUCLEAR TECHNOLOGY
LA English
DT Article; Proceedings Paper
CT 11th International Conference on Radiation Shielding / 15th Topical
Meeting of the Radiation-Protection-and-Shielding-Division of the
American-Nuclear-Society
CY APR 13-18, 2008
CL Pine Mountain, GA
SP Amer Nucl Soc, Radiat Protect & Shielding Div
DE shielding; spallation source; activation script
AB The Materials Test Station (MTS) is a project funded by the Advanced Fuel Cycle Initiative with the goal to build a facility that allows large-scale irradiation for potential future nuclear fuel and material samples to obtain the knowledge and understanding of the nuclear processes necessary to close the nuclear fuel cycle and thereby reduce the amount and the toxicity of the nuclear waste. The MTS is proposed to be built in Area A of the Los Alamos Neutron Science Center and operated at up to 2 MW (2.5 mA at 800 MeV). As part of this operation, a so-called camera room will need to be installed upstream of the target cell. Because of the uniqueness of this functionality, the camera room requires a special shielding design, which will be discussed in this paper.
C1 [Muhrer, G.; Wilson, M.; Kelsey, Ch.; Pitcher, E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Gallmeier, F.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA.
[Wohlmuther, M.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland.
RP Muhrer, G (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
EM muhrer@lanl.gov
RI Lujan Center, LANL/G-4896-2012
NR 6
TC 1
Z9 1
U1 1
U2 2
PU AMER NUCLEAR SOC
PI LA GRANGE PK
PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA
SN 0029-5450
EI 1943-7471
J9 NUCL TECHNOL
JI Nucl. Technol.
PD NOV
PY 2009
VL 168
IS 2
SI SI
BP 502
EP 507
PG 6
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA 513KD
UT WOS:000271320300044
ER
PT J
AU Sanchez, JRR
Garcia, J
Perry, RT
AF Ramirez Sanchez, Jose Ramon
Garcia, John
Perry, R. T.
TI CONSIDERATIONS ON REPLACING LEAD WITH STEEL IN GLOVE BOX CONFIGURATIONS
SO NUCLEAR TECHNOLOGY
LA English
DT Article; Proceedings Paper
CT 11th International Conference on Radiation Shielding / 15th Topical
Meeting of the Radiation-Protection-and-Shielding-Division of the
American-Nuclear-Society
CY APR 13-18, 2008
CL Pine Mountain, GA
SP Amer Nucl Soc, Radiat Protect & Shielding Div
DE plutonium; shielding; gamma dose
AB For environmental reasons, it was proposed to remove the lead shielding in the front panel of a glove box and replace it with another material. This technical note shows that steel could be used. Also, the thickness of steel required to maintain acceptable doses to an operator is determined. Computer modeling and analysis show that 3.175 cm (1 1/4 in.) of steel is required to maintain the same dose to the operator from gamma radiation as 0.635 cm (1/4 in.) of lead. However, it was demonstrated that source placement and geometry play a large role in the operator's dose independent of the structural material because of streaming through ports and windows. Because of streaming, the dose received through the metal in the front panel was not the dominant source of radiation to the operator. It was found that 1.5875 cm (5/8 in.) of steel could be used in the panel.
C1 [Ramirez Sanchez, Jose Ramon] Univ Autonoma Estado Mexico, ININ, Toluca, Mexico.
[Ramirez Sanchez, Jose Ramon] Univ Autonoma Estado Mexico, Fac Ciencias, Toluca, Mexico.
[Garcia, John; Perry, R. T.] Los Alamos Natl Lab, Radiat Protect Div, Los Alamos, NM 87545 USA.
RP Sanchez, JRR (reprint author), Univ Autonoma Estado Mexico, ININ, Toluca, Mexico.
EM rtperry@lanl.gov
NR 6
TC 0
Z9 0
U1 0
U2 0
PU AMER NUCLEAR SOC
PI LA GRANGE PK
PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA
SN 0029-5450
EI 1943-7471
J9 NUCL TECHNOL
JI Nucl. Technol.
PD NOV
PY 2009
VL 168
IS 2
SI SI
BP 524
EP 527
PG 4
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA 513KD
UT WOS:000271320300048
ER
PT J
AU Meyer, F
Overbeek, R
Rodriguez, A
AF Meyer, Folker
Overbeek, Ross
Rodriguez, Alex
TI FIGfams: yet another set of protein families
SO NUCLEIC ACIDS RESEARCH
LA English
DT Article
ID ORTHOLOG GROUPS; SCOP DATABASE; RAST SERVER; GENOMES; RESOURCE;
ANNOTATION; CLASSIFICATION; ORTHOMCL; TIGRFAMS; TOOLS
AB We present FIGfams, a new collection of over 100 000 protein families that are the product of manual curation and close strain comparison. Using the Subsystem approach the manual curation is carried out, ensuring a previously unattained degree of throughput and consistency. FIGfams are based on over 950 000 manually annotated proteins and across many hundred Bacteria and Archaea. Associated with each FIGfam is a two-tiered, rapid, accurate decision procedure to determine family membership for new proteins. FIGfams are freely available under an open source license. These can be downloaded at ftp://ftp.theseed.org/FIGfams/. The web site for FIGfams is http://www.theseed.org/wiki/FIGfams/.
C1 [Meyer, Folker] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA.
[Meyer, Folker; Rodriguez, Alex] Univ Chicago, Argonne Natl Lab, Computat Inst, Chicago, IL 60637 USA.
[Overbeek, Ross] Fellowship Interpretat Genomes, Burr Ridge, IL 60527 USA.
RP Meyer, F (reprint author), Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM folker@anl.gov
OI Meyer, Folker/0000-0003-1112-2284
FU National Institute of Allergy and Infectious Diseases; National
Institutes of Health, Department of Health and Human Services
[HHSN266200400042C]; US Department of Energy [DE-AC02-06CH11357]
FX Part of this project has been funded with federal funds from the
National Institute of Allergy and Infectious Diseases, National
Institutes of Health, Department of Health and Human Services, under
Contract No. HHSN266200400042C. Argonne National Laboratory's work was
supported under US Department of Energy contract DE-AC02-06CH11357.
Funding for open access charge: US Department of Energy contract
DE-AC0206CH11357.
NR 28
TC 60
Z9 62
U1 1
U2 4
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0305-1048
J9 NUCLEIC ACIDS RES
JI Nucleic Acids Res.
PD NOV
PY 2009
VL 37
IS 20
BP 6643
EP 6654
DI 10.1093/nar/gkp698
PG 12
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 520DJ
UT WOS:000271819900001
PM 19762480
ER
PT J
AU Qian, SN
Arena, D
Dvorak, J
Qian, K
AF Qian, Shinan
Arena, Dario
Dvorak, Joseph
Qian, Kun
TI Dynamic monitoring of grating angle at the National Synchrotron Light
Source
SO OPTICAL ENGINEERING
LA English
DT Article
DE monochromator; grating; optical test; synchrotron radiation
ID PENCIL BEAM INTERFEROMETER; LONG TRACE PROFILER; RADIATION
AB We present a dynamic monitoring method and monitoring system of grating angle, referred to as the Precise Angle Monitor (PAM), at U4B, a soft x-ray spherical grating monochromator (SGM) beam line at the National Synchrotron Light Source (NSLS). In an SGM, a photon energy scan is accomplished by rotating the grating angle precisely. After several decades of service, the monochromator at U4B developed instabilities that severely impacted the experimental program. Over several hours, either the spectral shape experienced distortions or the spectral peak shifted. In order to directly monitor the grating motion during scans, the optical head of a portable long trace profiler (PTLTP) was installed on U4B as the PAM. We find that the grating rotational motion is not ideal: (1) the scan steps are not smooth and there are high-frequency step angle errors; (2) there is also a low-frequency angle error; and (3) an unstable thermal expansion produces extra rotational error. Measurements of dynamic monitoring are presented, including grating rotation repeatability and thermal instability. The results illustrate the utility of dynamic monitoring of monochromator motion during actual operation. (C) 2009 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3265548]
C1 [Qian, Shinan] Brookhaven Natl Lab, Instrumentat Div, Upton, NY 11973 USA.
[Arena, Dario; Dvorak, Joseph; Qian, Kun] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA.
RP Qian, SN (reprint author), Brookhaven Natl Lab, Instrumentat Div, Upton, NY 11973 USA.
EM qian@bnl.gov
FU U.S. Department of Energy [DE-AC02-98CH10886]
FX The authors would like to thank Vivian Stojanoff, of NSLS for her
support. This manuscript has been authored by Brookhaven Science
Associates, LLC, under Contract No. DE-AC02-98CH10886 with the U.S.
Department of Energy. The U.S. Government retains, and the publisher, by
accepting the article for publication, acknowledges, a worldwide license
to publish or reproduce the published form of this manuscript, or allow
others to do so, for U.S. Government purposes. This research was
sponsored by the U.S. Department of Energy.
NR 7
TC 2
Z9 2
U1 0
U2 3
PU SPIE-SOC PHOTOPTICAL INSTRUMENTATION ENGINEERS
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA
SN 0091-3286
J9 OPT ENG
JI Opt. Eng.
PD NOV
PY 2009
VL 48
IS 11
AR 113603
DI 10.1117/1.3265548
PG 8
WC Optics
SC Optics
GA 538UW
UT WOS:000273210600007
ER
PT J
AU Rice, KL
Taha, TM
Chowdhury, AM
Awwal, AAS
Woodard, DL
AF Rice, Kenneth L.
Taha, Tarek M.
Chowdhury, Arshad M.
Awwal, Abdul A. S.
Woodard, Damon L.
TI Design and acceleration of phase-only filter-based optical pattern
recognition for fingerprint identification
SO OPTICAL ENGINEERING
LA English
DT Article
DE fingerprint identification; image correlation; field programmable gate
array (FPGA) acceleration; phase-only filter
ID JOINT TRANSFORM CORRELATION; CLASSIFICATION; SYSTEM
AB We present the use of phase-only filter-based correlation for fingerprint pattern identification. The main advantage of this approach is that it is distortion tolerant and can be realized in optical or electronic parallel hardware. Given that real-world fingerprints are almost never perfect, distortion tolerance can prove to be very important for this application. Our results indicate that the algorithm can identify prints with 58% of the data missing on average. With large fingerprint databases, identification can be a computationally challenging task. The high parallelism in the phase-only correlation filter makes it ideally suited to field programmable gate array (FPGA)-based hardware acceleration. We examine the FPGA-based acceleration of the fingerprint algorithm. On a Xilinx Virtex II Pro FPGA, we achieve speedups of about 47 times over an optimized C implementation of the algorithm on a 2.2-GHz AMD Opteron processor. Our FPGA implementation is optimized to allow efficient processing of large databases. (C) 2009 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3265549]
C1 [Rice, Kenneth L.; Woodard, Damon L.] Clemson Univ, Sch Comp, Clemson, SC 29634 USA.
[Taha, Tarek M.] Univ Dayton, Dayton, OH 45469 USA.
[Chowdhury, Arshad M.] Georgia Inst Technol, Dept Elect & Comp Engn, Atlanta, GA 30332 USA.
[Awwal, Abdul A. S.] Lawrence Livermore Natl Lab, Natl Ignit Facil, Livermore, CA 94551 USA.
[Chowdhury, Arshad M.; Awwal, Abdul A. S.] Wright State Univ, Dayton, OH 45435 USA.
RP Rice, KL (reprint author), Clemson Univ, Sch Comp, Riggs Hall, Clemson, SC 29634 USA.
EM ttaha@ieee.org
FU NSF CAREER; U.S. Air Force; DOD High Performance Computing Modernization
Program
FX Kenneth L. Rice and Tarek M. Taha were supported by an NSF CAREER Award
and grants from the U.S. Air Force. This work was also supported in part
by a grant of computer time from the DOD High Performance Computing
Modernization Program at the Naval Research Laboratory.
NR 32
TC 2
Z9 2
U1 0
U2 0
PU SPIE-SOC PHOTOPTICAL INSTRUMENTATION ENGINEERS
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA
SN 0091-3286
J9 OPT ENG
JI Opt. Eng.
PD NOV
PY 2009
VL 48
IS 11
AR 117206
DI 10.1117/1.3265549
PG 11
WC Optics
SC Optics
GA 538UW
UT WOS:000273210600031
ER
PT J
AU Lee, CH
Bihari, B
Filler, R
Mandal, BK
AF Lee, Chi Hang
Bihari, Bipin
Filler, Robert
Mandal, Braja K.
TI New azobenzene non-linear optical materials for eye and sensor
protection
SO OPTICAL MATERIALS
LA English
DT Article
DE Optical anisotropy; Non-linear transmission; Azobenzene materials; Laser
blocking devices
ID AZO-DYE; FILMS; FULLERENES; ABSORPTION; ANISOTROPY; MECHANISM; BEHAVIOR
AB The synthesis and properties of poly(methylmethacrylate) films containing new azobenzene materials with potential applications in eye and sensor protection devices are reported. These films offer both improved wavelength coverage and optically-induced anisotropy compared to a commercially available azo dye, disperse red-1. Films with added diethyl phthalate plasticizer exhibit enhanced optical characteristics, as evidenced by the relatively faster response time in a pump-probe experiment. Plasticized polymer films showed good mechanical, thermal and optical stability. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Lee, Chi Hang; Filler, Robert; Mandal, Braja K.] IIT, Dept Biol Chem & Phys Sci, Chicago, IL 60616 USA.
[Bihari, Bipin] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA.
[Filler, Robert] TechDrive Inc, Chicago, IL 60616 USA.
RP Mandal, BK (reprint author), IIT, Dept Biol Chem & Phys Sci, Chicago, IL 60616 USA.
EM mandal@iit.edu
FU U.S. Army RDE-COM Natick Laboratory, MA [W911QY-05-C-0018]
FX We gratefully acknowledge the support from U.S. Army RDE-COM Natick
Laboratory, MA (#W911QY-05-C-0018).
NR 19
TC 8
Z9 8
U1 1
U2 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0925-3467
J9 OPT MATER
JI Opt. Mater.
PD NOV
PY 2009
VL 32
IS 1
BP 147
EP 153
DI 10.1016/j.optmat.2009.07.001
PG 7
WC Materials Science, Multidisciplinary; Optics
SC Materials Science; Optics
GA 520ZM
UT WOS:000271888500027
ER
PT J
AU Kvashnina, KO
Butorin, SM
Modin, A
Werme, L
Nordgren, J
Guo, JH
Berger, R
AF Kvashnina, K. O.
Butorin, S. M.
Modin, A.
Werme, L.
Nordgren, J.
Guo, J. -H.
Berger, R.
TI Electronic structure of complex copper systems probed by resonant
inelastic X-ray scattering at Cu L-3 edge
SO PHYSICA B-CONDENSED MATTER
LA English
DT Article
DE RIXS; Copper systems; X-ray absorption; X-ray emission
ID ABSORPTION-SPECTROSCOPY; EMISSION-SPECTROSCOPY; SPECTRA;
SUPERCONDUCTIVITY; EXCITATIONS; SATELLITES; DEPENDENCE; CORROSION;
MINERALS; STATES
AB We have used X-ray absorption (XA) and resonant inelastic X-ray scattering (RIXS) spectroscopies to study a series of copper compounds, namely Cu2O, CuO, Cu(OH)(2), CuCl2, Cu2S, CuSO4, malachite (Cu-2(CO3)(2)(OH)(2)) and atacamite (CuCl2 center dot 3Cu(OH)(2)). Cu 2p XA spectra provide information about oxidation states. Divalent copper gives a single narrow line due to excitations into the empty 3d state, whereas monovalent copper gives a broad band at higher energy due to transitions to 4s states. Chemical shifts of the main line in the Cu2+ XA spectra of different compounds are observed but in some cases they are too small to make a clear distinction between the species. It is shown that RIXS at the Cu 2p edge has a great potential to distinguish between the species due to large differences in spectral shapes for the same energy of the incident photon beam. First evidence for the possibility of detecting chemical composition of copper compounds is presented and discussed in details. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Kvashnina, K. O.; Butorin, S. M.; Modin, A.; Werme, L.; Nordgren, J.] Uppsala Univ, Dept Phys, SE-75121 Uppsala, Sweden.
[Werme, L.] Svensk Karnbranslehantering AB SKB, Stockholm, Sweden.
[Guo, J. -H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Berger, R.] Uppsala Univ, Dept Chem Mat, SE-75121 Uppsala, Sweden.
RP Kvashnina, KO (reprint author), Uppsala Univ, Dept Phys, POB 530, SE-75121 Uppsala, Sweden.
EM kristina.kvashnina@esrf.fr
RI Kvashnina, Kristina/O-2374-2016
OI Kvashnina, Kristina/0000-0003-4447-4542
FU U.S. Department of Energy at Lawrence Berkeley National Laboratory
[DE-AC02-05CH11231]
FX We thank Mikael Ottosson for making the copper oxide samples available.
This work was supported by the Swedish Nuclear Fuel and Waste Management
Co. (SKB), by the Swedish Research Council and Gbran Gustafsson
Foundation for Research in Natural Sciences and Medicine. The ALS work
was supported by the Director, Office of Science, Office of Basic Energy
Sciences, and Biosciences of the U.S. Department of Energy at Lawrence
Berkeley National Laboratory under Contract no. DE-AC02-05CH11231.
NR 28
TC 5
Z9 5
U1 0
U2 17
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0921-4526
J9 PHYSICA B
JI Physica B
PD NOV 1
PY 2009
VL 404
IS 20
BP 3559
EP 3566
DI 10.1016/j.physb.2009.05.058
PG 8
WC Physics, Condensed Matter
SC Physics
GA 517GY
UT WOS:000271602500044
ER
PT J
AU Chopdekar, RV
Wong, FJ
Takamura, Y
Arenholz, E
Suzuki, Y
AF Chopdekar, Rajesh V.
Wong, Franklin J.
Takamura, Yayoi
Arenholz, Elke
Suzuki, Yuri
TI Growth and characterization of superconducting spinel oxide LiTi2O4 thin
films
SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS
LA English
DT Article
DE LiTi2O4; Epitaxial thin films
ID X-RAY-ABSORPTION; ADVANCED LIGHT-SOURCE; O TERNARY-SYSTEM;
MAGNETIC-PROPERTIES; LI1&XTI2-XO4; TEMPERATURE; LITHIUM; SUSCEPTIBILITY;
SUBSTITUTION; LI-1-XTI2O4
AB Epitaxial films of LiTi2O4 on single crystalline substrates of MgAl2O4, MgO, and SrTiO3 provide model systems to systematically explore the effects of lattice strain and microstructural disorder on the superconducting state. Lattice strain that affects bandwidth gives rise to variations in the superconducting and normal state properties. Microstructural disorder, such as antiphase boundaries that give rise to Ti network disorder, reduces the critical temperature, and Ti network disorder combined with Mg interdiffusion lead to a much more dramatic effect on the superconducting state. Surface sensitive X-ray absorption spectroscopy has identified Ti to retain site symmetry and average valence of the bulk material regardless of film thickness. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Chopdekar, Rajesh V.; Wong, Franklin J.; Suzuki, Yuri] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
[Chopdekar, Rajesh V.] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA.
[Takamura, Yayoi] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA.
[Arenholz, Elke] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA.
RP Chopdekar, RV (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, 210 Hearst Mem Min Bldg, Berkeley, CA 94720 USA.
EM rvc2@cornell.edu
RI Chopdekar, Rajesh/D-2067-2009
OI Chopdekar, Rajesh/0000-0001-6727-6501
FU Office of Naval Research [N00014-06-1-0452]; National Science Foundation
[0604277]; Director, Office of Science, Office of Basic Energy Sciences,
of the US Department of Energy [DE-AC0-205CH11231]
FX The authors thank Prof. A. Stacy (UC Berkeley, Chemistry) for the use of
her 0 - 20 diffractometer and K.M. Yu (Lawrence Berkeley Lab, Materials
Science Division) for taking RBS spectra. RVC would like to thank J.S.
Bettinger and B.B. Nelson-Cheeseman for assistance in collecting XA
spectra, and Y. Matsushita, I.R. Fisher and M.R. Beasley (Stanford
Univ., Applied Physics) for fruitful discussion. FJW would like to thank
Cheng-Yu Song (National Center for Electron Microscopy, Lawrence
Berkeley National Laboratory) for technical assistance. This research
was supported by the Office of Naval Research (N00014-06-1-0452) and the
National Science Foundation (0604277). The Advanced Light Source is
supported by the Director, Office of Science, Office of Basic Energy
Sciences, of the US Department of Energy under Contract No.
DE-AC0-205CH11231.
NR 42
TC 8
Z9 8
U1 1
U2 40
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0921-4534
J9 PHYSICA C
JI Physica C
PD NOV 1
PY 2009
VL 469
IS 21
BP 1885
EP 1891
DI 10.1016/j.physc.2009.05.009
PG 7
WC Physics, Applied
SC Physics
GA 504LR
UT WOS:000270618800001
ER
PT J
AU Guo, XL
Xu, FY
Wang, L
Green, MA
Pan, H
Wu, H
Liu, XK
Chen, AB
AF Guo, X. L.
Xu, F. Y.
Wang, L.
Green, M. A.
Pan, H.
Wu, H.
Liu, X. K.
Chen, A. B.
TI Over voltage in the multi-sectioned superconducting solenoid during
quenching
SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS
LA English
DT Article
DE Superconducting magnets; Over voltage; Quench simulation; Quench
protection
AB Accurate analysis of over voltage in the superconducting solenoid during a quench is one of the basis for quench protection system design. Classical quench simulation methods can only give rough estimation of the over voltage within a magnet coil. In this paper, for multi-sectioned superconducting solenoid, based on the classical assumption of ellipsoidal normal zone, three-dimension temperature results are mapped to one-dimension along the wire, the temperature distribution along the wire and the resistances of each turn are obtained. The coil is treated as circuit comprised of turn resistances, turn self and mutual inductances. The turn resistive voltage, turn inductive voltage, and turn resultant voltage along the wire are calculated. As a result, the maximum internal voltages, the layer-to-layer voltages and the turn-to-turn voltages are better estimated. Utilizing this method, the over voltage in a small solenoid and a large solenoid during quenching have been studied. The result shows that this method can well improve the over voltage estimate, especially when the coil is larger. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Guo, X. L.; Xu, F. Y.; Wang, L.; Pan, H.; Wu, H.; Liu, X. K.; Chen, A. B.] Harbin Inst Technol, Inst Cryogen & Superconduct Technol, Harbin 150001, Peoples R China.
[Green, M. A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Guo, XL (reprint author), Harbin Inst Technol, Inst Cryogen & Superconduct Technol, Harbin 150001, Peoples R China.
EM guoxinglong@hit.edu.cn
NR 16
TC 4
Z9 4
U1 0
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0921-4534
J9 PHYSICA C
JI Physica C
PD NOV 1
PY 2009
VL 469
IS 21
BP 1930
EP 1934
DI 10.1016/j.physc.2009.06.011
PG 5
WC Physics, Applied
SC Physics
GA 504LR
UT WOS:000270618800010
ER
PT J
AU Jena, H
Rao, CV
Eddy, FP
Dooley, J
Rambabu, B
AF Jena, H.
Rao, Ch. Venkateswara
Eddy, Fannie Posey
Dooley, Jonathan
Rambabu, B.
TI Structural and proton transport studies on nanocrystalline
[Ca-10(PO4)(6)(OH)(2)] (HAp), HAp-Nafion (R) composite, and natural
human bone
SO PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE
LA English
DT Article
ID SONOCHEMICAL SYNTHESIS; CALCIUM PHOSPHATES; HYDROXYAPATITE POWDERS;
LOW-TEMPERATURE; GEL TECHNIQUE; NANOPARTICLES; CONDUCTIVITY; CARBONATE;
NMR
AB Nanocrystalline hydroxyapatite, Ca-10(PO4)(6)(OH)(2) (HAp) is synthesized from hydroxide gels at room temperature using sonochemical technique. The as-synthesized material is characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), Fourier transform infrared (FT-IR), and solid-state (H-1 and P-31) NMR techniques. Hexagonal structure with space group P6(3)/m is evident from powder XRD. Microscopic analysis with SAED indicates the nanocrystalline nature of the compound. Average particle size of 30 nm with excellent phase purity in good stoichiometric ratios of HAp is observed. The prevalence of protons as hydroxyls in apatitic structure of HAp is evident from FTIR and solid-state NMR. The microstructure and proton conducting properties of the synthesized material are compared with the natural human bone powder having similar constituents. The sonochemically prepared HAp, and HAp-Nafion (R) composite exhibited excellent AC conductivities similar to 10(-5) S cm(-1) at 650 degrees C and similar to 10(-5) S cm(-1) at 160 degrees C, respectively, may find application as an electrolyte for low temperature solid oxide fuel cells (LT-SOFCs) and high temperature polymer electrolyte fuel cells (HT-PEFCs) applications. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
C1 [Jena, H.; Rao, Ch. Venkateswara; Dooley, Jonathan; Rambabu, B.] Southern Univ, Dept Phys, Solid State Ion & Surface Sci Lab, Baton Rouge, LA 70813 USA.
[Jena, H.; Rao, Ch. Venkateswara; Dooley, Jonathan; Rambabu, B.] A&M Coll, Baton Rouge, LA 70813 USA.
[Eddy, Fannie Posey] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Rambabu, B (reprint author), Southern Univ, Dept Phys, Solid State Ion & Surface Sci Lab, Baton Rouge, LA 70813 USA.
EM rambabu@cox.net
OI JENA, HRUDANANDA/0000-0001-7872-2108
FU US-DOD [W911NF-08-1-0415]; US-DOE [ACQ-4-33623]
FX BRB acknowledges US-DOD and US-DOE for their support to enhance fuel
cell work in the solid state ionics laboratory through grants
W911NF-08-1-0415 and ACQ-4-33623. The NREL-MURA scholars (Ms. India
Snowden, Ms. Charlotte Patterson, and Mr. Jonathan Dooley) thank Fanny
Eddy Posey for introducing them to renewable energy research.
NR 37
TC 5
Z9 5
U1 0
U2 12
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 1862-6300
J9 PHYS STATUS SOLIDI A
JI Phys. Status Solidi A-Appl. Mat.
PD NOV
PY 2009
VL 206
IS 11
BP 2536
EP 2541
DI 10.1002/pssa.200824429
PG 6
WC Materials Science, Multidisciplinary; Physics, Applied; Physics,
Condensed Matter
SC Materials Science; Physics
GA 529KM
UT WOS:000272515500005
ER
PT J
AU Auzinsh, M
Budker, D
Rochester, SM
AF Auzinsh, M.
Budker, D.
Rochester, S. M.
TI Light-induced polarization effects in atoms with partially resolved
hyperfine structure and applications to absorption, fluorescence, and
nonlinear magneto-optical rotation
SO PHYSICAL REVIEW A
LA English
DT Article
DE atom-photon collisions; excited states; Faraday effect; fluorescence;
ground states; hyperfine structure; optical pumping; optical rotation;
polarisation; potassium; rubidium; self-induced transparency
ID NOUVEAUX EFFETS PREVUS; POMPAGE OPTIQUE; THEORIE QUANTIQUE;
MAGNETIC-FIELD; RESONANCE; ORIENTATION; INVERSION; MOLECULES; LASER;
CYCLE
AB The creation and detection of atomic polarization is examined theoretically through the study of basic optical-pumping mechanisms and absorption and fluorescence measurements and the dependence of these processes on the size of ground- and excited-state hyperfine splittings is determined. The consequences of this dependence are studied in more detail for the case of nonlinear magneto-optical rotation in the Faraday geometry (an effect requiring the creation and detection of rank-two polarization in the ground state) with alkali-metal atoms. Analytic formulas for the optical rotation signal under various experimental conditions are presented.
C1 [Auzinsh, M.] Univ Latvia, Dept Phys, LV-1586 Riga, Latvia.
[Auzinsh, M.] Univ Latvia, Ctr Laser, LV-1586 Riga, Latvia.
[Budker, D.; Rochester, S. M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Budker, D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA.
RP Auzinsh, M (reprint author), Univ Latvia, Dept Phys, 19 Rainis Blvd, LV-1586 Riga, Latvia.
EM marcis.auzins@lu.lv; budker@berkeley.edu; simonr@berkeley.edu
RI Budker, Dmitry/F-7580-2016
OI Budker, Dmitry/0000-0002-7356-4814
NR 38
TC 13
Z9 13
U1 2
U2 10
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9926
EI 2469-9934
J9 PHYS REV A
JI Phys. Rev. A
PD NOV
PY 2009
VL 80
IS 5
AR 053406
DI 10.1103/PhysRevA.80.053406
PG 22
WC Optics; Physics, Atomic, Molecular & Chemical
SC Optics; Physics
GA 526RH
UT WOS:000272310000101
ER
PT J
AU Cherepkov, NA
Semenov, SK
Schoffler, MS
Titze, J
Petridis, N
Jahnke, T
Cole, K
Schmidt, LPH
Czasch, A
Akoury, D
Jagutzki, O
Williams, JB
Cocke, CL
Osipov, T
Lee, S
Prior, MH
Belkacem, A
Landers, AL
Schmidt-Bocking, H
Weber, T
Dorner, R
AF Cherepkov, N. A.
Semenov, S. K.
Schoeffler, M. S.
Titze, J.
Petridis, N.
Jahnke, T.
Cole, K.
Schmidt, L. Ph. H.
Czasch, A.
Akoury, D.
Jagutzki, O.
Williams, J. B.
Cocke, C. L.
Osipov, T.
Lee, S.
Prior, M. H.
Belkacem, A.
Landers, A. L.
Schmidt-Boecking, H.
Weber, Th.
Doerner, R.
TI Separation of Auger transitions into different repulsive states after
K-shell photoionization of N-2 molecules
SO PHYSICAL REVIEW A
LA English
DT Article
DE Auger effect; inner-shell ionisation; molecule-photon collisions;
nitrogen; photoionisation
ID VIBRATIONALLY RESOLVED PHOTOIONIZATION; ANGULAR-DISTRIBUTIONS; MOMENTUM
SPECTROSCOPY; DIATOMIC-MOLECULES; RECOIL-ION; CO; DYNAMICS; SPECTRUM;
N-2(2&); RATES
AB The Auger transitions to different repulsive doubly charged molecular ion states are separated by measuring the angular resolved photoelectrons and Auger electrons in coincidence in the molecular fixed frame. The separation is achieved by comparing the experimental Auger-electron angular distributions at different kinetic-energy release values with theoretical curves calculated for different final dicationic states.
C1 [Cherepkov, N. A.; Semenov, S. K.] State Univ Aerosp Instrumentat, St Petersburg 190000, Russia.
[Cherepkov, N. A.; Schoeffler, M. S.; Titze, J.; Petridis, N.; Jahnke, T.; Cole, K.; Schmidt, L. Ph. H.; Czasch, A.; Akoury, D.; Jagutzki, O.; Schmidt-Boecking, H.; Doerner, R.] Goethe Univ Frankfurt, Inst Kernphys, D-60438 Frankfurt, Germany.
[Akoury, D.; Osipov, T.; Lee, S.; Prior, M. H.; Belkacem, A.; Weber, Th.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Williams, J. B.; Landers, A. L.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA.
[Cocke, C. L.] Kansas State Univ, Dept Phys, Manhattan, KS 66506 USA.
RP Cherepkov, NA (reprint author), State Univ Aerosp Instrumentat, St Petersburg 190000, Russia.
RI Doerner, Reinhard/A-5340-2008; Landers, Allen/C-1213-2013; Weber,
Thorsten/K-2586-2013; Schoeffler, Markus/B-6261-2008
OI Doerner, Reinhard/0000-0002-3728-4268; Weber,
Thorsten/0000-0003-3756-2704; Schoeffler, Markus/0000-0001-9214-6848
FU Deutsche Forschungsgemeinschaft; U.S. DOE [DE-AC03-76SF00098,
DE-FG02-07ER46357]; RFBR [09-03-00781-a]
FX We acknowledge outstanding support by the staff of the Advanced Lights
Source in particular by Hendrik Bluhm and Tolek Tyliszczak. The work was
supported by the Deutsche Forschungsgemeinschaft and by the office of
Basic Energy Sciences, Division of Chemical Sciences of the U.S. DOE
under Contracts No. DE-AC03-76SF00098 and No. DE-FG02-07ER46357. N.A.C.
acknowledges the financial support of Deutsche Forschungsgemeinschaft
and the hospitality of the Goethe University in Frankfurt am Main.
N.A.C. and S. K. S. acknowledge the financial support of RFBR (Grant No.
09-03-00781-a).
NR 26
TC 14
Z9 14
U1 3
U2 8
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD NOV
PY 2009
VL 80
IS 5
AR 051404
DI 10.1103/PhysRevA.80.051404
PG 4
WC Optics; Physics, Atomic, Molecular & Chemical
SC Optics; Physics
GA 526RH
UT WOS:000272310000012
ER
PT J
AU Pindzola, MS
Ludlow, JA
Robicheaux, F
Colgan, J
Fontes, CJ
AF Pindzola, M. S.
Ludlow, J. A.
Robicheaux, F.
Colgan, J.
Fontes, C. J.
TI Fully relativistic time-dependent close-coupling method for
electron-impact ionization of atomic ions
SO PHYSICAL REVIEW A
LA English
DT Article
DE atom-electron collisions; Dirac equation; eigenvalues and
eigenfunctions; electron impact ionisation; neon; positive ions;
spin-orbit interactions; wave functions
AB A fully relativistic time-dependent close-coupling method is developed based on Dirac's covariant formulation of quantum mechanics. The expansion of a one-electron wave function in spin-orbit eigenfunctions yields the well-known coupled Dirac equations in two radial wave functions, while the expansion of a two-electron wave function in coupled spin-orbit eigenfunctions yields close-coupled Dirac equations in four radial wave functions. The time-dependent Dirac equations are solved directly using numerical methods that avoid the Fermi doubling pathology. Test calculations are carried out using the one-electron coupled equations for j=1/2 elastic potential scattering from Ne9+ at 2.00 keV and using the two-electron close-coupled equations for J=0,1 ionization of Ne9+ at 4.15 keV.
C1 [Pindzola, M. S.; Ludlow, J. A.; Robicheaux, F.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA.
[Colgan, J.; Fontes, C. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Pindzola, MS (reprint author), Auburn Univ, Dept Phys, Auburn, AL 36849 USA.
RI Robicheaux, Francis/F-4343-2014;
OI Robicheaux, Francis/0000-0002-8054-6040; Colgan,
James/0000-0003-1045-3858
FU U. S. Department of Energy
FX This work was supported in part by grants from the U. S. Department of
Energy. Computational work was carried out at the National Energy
Research Scientific Computing Center in Oakland, California.
NR 14
TC 4
Z9 4
U1 1
U2 4
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
EI 1094-1622
J9 PHYS REV A
JI Phys. Rev. A
PD NOV
PY 2009
VL 80
IS 5
AR 052706
DI 10.1103/PhysRevA.80.052706
PG 6
WC Optics; Physics, Atomic, Molecular & Chemical
SC Optics; Physics
GA 526RH
UT WOS:000272310000087
ER
PT J
AU Podpaly, Y
Clementson, J
Beiersdorfer, P
Williamson, J
Brown, GV
Gu, MF
AF Podpaly, Y.
Clementson, J.
Beiersdorfer, P.
Williamson, J.
Brown, G. V.
Gu, M. F.
TI Spectroscopy of 2s(1/2)-2p(3/2) transitions in W65+ through W71+
SO PHYSICAL REVIEW A
LA English
DT Article
DE particle traps; quantum electrodynamics; spectral line shift; tungsten;
X-ray spectra
ID BEAM ION-TRAP; CHARGED TUNGSTEN IONS; X-RAY; LAMB SHIFT; TOKAMAK
PLASMAS; SPECTROMETER; EBIT; DIAGNOSTICS; SPECTRA; EUV
AB A high-resolution flat-crystal spectrometer was used on the SuperEBIT electron beam ion trap to measure the energies of the 2s(1/2)-2p(3/2) transitions in lithiumlike through fluorinelike tungsten. These transitions are strongly affected by energy shifts due to quantum electrodynamics (QED). SuperEBIT was run at an electron energy of 103.2 +/- 0.5 keV and an electron beam current of 150 mA to generate the respective charge states; hydrogenlike aluminum and neonlike krypton were used as calibration elements. The spectra were analyzed with and the results compared to calculations based on the flexible atomic code. Good agreement was found. The measurements yielded line positions with a precision of 1-2 eV, which test QED calculations to 5%-10%.
C1 [Podpaly, Y.; Clementson, J.; Beiersdorfer, P.; Williamson, J.; Brown, G. V.; Gu, M. F.] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA.
[Podpaly, Y.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA.
RP Podpaly, Y (reprint author), Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA.
NR 32
TC 37
Z9 38
U1 0
U2 10
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD NOV
PY 2009
VL 80
IS 5
AR 052504
DI 10.1103/PhysRevA.80.052504
PG 5
WC Optics; Physics, Atomic, Molecular & Chemical
SC Optics; Physics
GA 526RH
UT WOS:000272310000074
ER
PT J
AU Trimble, WL
Sulai, IA
Ahmad, I
Bailey, K
Graner, B
Greene, JP
Holt, RJ
Korsch, W
Lu, ZT
Mueller, P
O'Connor, TP
AF Trimble, W. L.
Sulai, I. A.
Ahmad, I.
Bailey, K.
Graner, B.
Greene, J. P.
Holt, R. J.
Korsch, W.
Lu, Z. -T.
Mueller, P.
O'Connor, T. P.
TI Lifetime of the 7s6d D-1(2) atomic state of radium
SO PHYSICAL REVIEW A
LA English
DT Article
DE atom-photon collisions; excited states; fluorescence; laser cooling;
magneto-optical effects; radiation pressure; radiative lifetimes; radium
AB The lifetime of the 7s6d D-1(2) state of atomic radium is determined to be 385(45) mu s using cold Ra-226 atoms prepared in a magneto-optical trap. The D-1(2) state is populated from the decay of the P-1(1) state which is excited by a pulse of 483 nm light. The decay of the D-1(2) state is observed by detecting delayed fluorescence at 714 nm from the last step in the decay sequence P-1(1)-D-1(2)-P-3(1)-S-1(0). The measured lifetime is compared to a number of theoretical calculations. An improved value of the 7s7p P-1(1) level of 20 715.598(6) cm(-1) is obtained.
C1 [Trimble, W. L.; Sulai, I. A.; Ahmad, I.; Bailey, K.; Graner, B.; Greene, J. P.; Holt, R. J.; Lu, Z. -T.; Mueller, P.; O'Connor, T. P.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
[Sulai, I. A.; Lu, Z. -T.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA.
[Sulai, I. A.; Graner, B.; Lu, Z. -T.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Korsch, W.] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA.
RP Trimble, WL (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
RI Mueller, Peter/E-4408-2011; Holt, Roy/E-5803-2011;
OI Mueller, Peter/0000-0002-8544-8191; Trimble, William
L./0000-0001-7029-2676; Sulai, Ibrahim/0000-0003-4631-7006
NR 10
TC 5
Z9 5
U1 0
U2 3
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD NOV
PY 2009
VL 80
IS 5
AR 054501
DI 10.1103/PhysRevA.80.054501
PG 3
WC Optics; Physics, Atomic, Molecular & Chemical
SC Optics; Physics
GA 526RH
UT WOS:000272310000181
ER
PT J
AU Varma, HR
Ciappina, MF
Rohringer, N
Santra, R
AF Varma, Hari R.
Ciappina, Marcelo F.
Rohringer, Nina
Santra, Robin
TI Above-threshold ionization in the x-ray regime
SO PHYSICAL REVIEW A
LA English
DT Article
DE atom-photon collisions; Compton effect; hydrogen neutral atoms;
photoionisation; quantum electrodynamics; two-photon processes
ID FREE-ELECTRON LASER; MULTIPHOTON-IONIZATION; ATOMIC-HYDROGEN; 2-PHOTON
IONIZATION; RADIATION; PULSES; ABSORPTION; COHERENCE; HELIUM; FIELD
AB Two-photon above-threshold ionization processes in the x-ray regime are studied using atomic hydrogen as a model system. Within the minimal-coupling formalism of nonrelativistic quantum electrodynamics, two distinct interactions-A center dot p in second order and A(2) in first order-contribute to the two-photon absorption amplitude. The relative importance of these two interactions is assessed. It is found that above a photon energy of 6.8 keV, the contribution from A(2) to the total two-photon absorption cross section dominates. In this high-energy regime, above-threshold ionization is a nonsequential purely nondipole process. Rate equations are employed to calculate the probabilities of ionization by Compton scattering, one-photon absorption, and two-photon absorption.
C1 [Varma, Hari R.; Santra, Robin] Argonne Natl Lab, Argonne, IL 60439 USA.
[Ciappina, Marcelo F.] Inst High Performance Comp, Singapore 138682, Singapore.
[Rohringer, Nina] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
[Santra, Robin] Univ Chicago, Dept Phys, Chicago, IL 60637 USA.
RP Varma, HR (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
RI Ciappina, Marcelo/E-5071-2011; Rohringer, Nina/B-8030-2012; Santra,
Robin/E-8332-2014; Rohringer, Nina/N-3238-2014;
OI Santra, Robin/0000-0002-1442-9815; Rohringer, Nina/0000-0001-7905-3567;
Ciappina, Marcelo/0000-0002-1123-6460
FU Office of Basic Energy Sciences, Office of Science, U. S. Department of
Energy [DE-AC02-06CH11357, DE-AC52-07NA27344]; Visitor Program of the
Max Planck Institute for the Physics of Complex Systems
FX H. V. and R. S. were supported by the Office of Basic Energy Sciences,
Office of Science, U. S. Department of Energy, under Contract No.
DE-AC02-06CH11357. M. F. C. acknowledges the Visitor Program of the Max
Planck Institute for the Physics of Complex Systems. Part of this work
was performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract No.
DE-AC52-07NA27344.
NR 52
TC 14
Z9 14
U1 1
U2 19
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD NOV
PY 2009
VL 80
IS 5
AR 053424
DI 10.1103/PhysRevA.80.053424
PG 6
WC Optics; Physics, Atomic, Molecular & Chemical
SC Optics; Physics
GA 526RH
UT WOS:000272310000119
ER
PT J
AU Zhang, WX
Cappellaro, P
Antler, N
Pepper, B
Cory, DG
Dobrovitski, VV
Ramanathan, C
Viola, L
AF Zhang, Wenxian
Cappellaro, Paola
Antler, Natania
Pepper, Brian
Cory, David G.
Dobrovitski, Viatcheslav V.
Ramanathan, Chandrasekhar
Viola, Lorenza
TI NMR multiple quantum coherences in quasi-one-dimensional spin systems:
Comparison with ideal spin-chain dynamics
SO PHYSICAL REVIEW A
LA English
DT Article
DE calcium compounds; nuclear magnetic resonance; numerical analysis;
quantum wires; spin dynamics; spin Hamiltonians; spin systems
ID NUCLEAR-MAGNETIC-RESONANCE; LINE-SHAPE; SOLIDS; DIAMOND; TEMPERATURE;
TRANSITIONS; EXCITATION; QUBITS
AB The F-19 spins in a crystal of fluorapatite have often been used to experimentally approximate a one-dimensional spin system. Under suitable multipulse control, the nuclear-spin dynamics may be modeled to first approximation by a double-quantum one-dimensional Hamiltonian, which is analytically solvable for nearest-neighbor couplings. Here, we use solid-state nuclear magnetic resonance techniques to investigate the multiple quantum coherence dynamics of fluorapatite, with an emphasis on understanding the region of validity for such a simplified picture. Using experimental, numerical, and analytical methods, we explore the effects of long-range intrachain couplings, cross-chain couplings, as well as couplings to a spin environment, all of which tend to damp the oscillations of the multiple quantum coherence signal at sufficiently long times. Our analysis characterizes the extent to which fluorapatite can faithfully simulate a one-dimensional quantum wire.
C1 [Zhang, Wenxian; Viola, Lorenza] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA.
[Zhang, Wenxian] Fudan Univ, Dep Opt Sci & Engn, Shanghai 200433, Peoples R China.
[Cappellaro, Paola] Harvard Smithsonian Ctr Astrophys, ITAMP, Cambridge, MA 02138 USA.
[Cappellaro, Paola; Cory, David G.; Ramanathan, Chandrasekhar] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA.
[Antler, Natania; Pepper, Brian] MIT, Dept Phys, Cambridge, MA 02139 USA.
[Dobrovitski, Viatcheslav V.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA.
RP Zhang, WX (reprint author), Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA.
EM lorenza.viola@dartmouth.edu
RI Zhang, Wenxian/A-4274-2010; Cappellaro, Paola/B-1413-2010; Ramanathan,
Chandrasekhar/C-5207-2008
OI Cappellaro, Paola/0000-0003-3207-594X; Ramanathan,
Chandrasekhar/0000-0002-7457-3608
NR 58
TC 21
Z9 21
U1 0
U2 9
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9926
EI 2469-9934
J9 PHYS REV A
JI Phys. Rev. A
PD NOV
PY 2009
VL 80
IS 5
AR 052323
DI 10.1103/PhysRevA.80.052323
PG 13
WC Optics; Physics, Atomic, Molecular & Chemical
SC Optics; Physics
GA 526RH
UT WOS:000272310000058
ER
PT J
AU Akrap, A
Tu, JJ
Li, LJ
Cao, GH
Xu, ZA
Homes, CC
AF Akrap, A.
Tu, J. J.
Li, L. J.
Cao, G. H.
Xu, Z. A.
Homes, C. C.
TI Infrared phonon anomaly in BaFe2As2
SO PHYSICAL REVIEW B
LA English
DT Article
DE barium compounds; iron compounds; magnetic transitions; optical
conductivity; phonons; solid-state phase transformations; vibrational
modes
ID SUPERCONDUCTIVITY; SYSTEMS
AB The detailed optical properties of BaFe2As2 have been determined over a wide frequency range above and below the structural and magnetic transition at T-N similar or equal to 138 K. A prominent in-plane infrared-active mode is observed at 253 cm(-1) (31.4 meV) at 295 K. The frequency of this vibration shifts discontinuously at T-N; for T < T-N the frequency of this mode displays almost no temperature dependence, yet it nearly doubles in intensity. This anomalous behavior appears to be a consequence of orbital ordering in the Fe-As layers.
C1 [Akrap, A.; Homes, C. C.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA.
[Tu, J. J.] CUNY City Coll, Dept Phys, New York, NY 10031 USA.
[Li, L. J.; Cao, G. H.; Xu, Z. A.] Zhejiang Univ, Dept Phys, Hangzhou 310027, Peoples R China.
RP Akrap, A (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA.
EM homes@bnl.gov
RI Cao, Guanghan/C-4753-2008; Akrap, Ana/G-1409-2013
OI Akrap, Ana/0000-0003-4493-5273
FU National Science Foundation of China; National Basic Research Program of
China [2006CB601003, 2007CB925001]; Ministry of Education of China
[IRT0754]; Office of Science, U.S. Department of Energy (DOE)
[DE-AC02-98CH10886]
FX We would like to acknowledge useful discussions with W. Ku, C.-C. Lee,
M. Strongin, and W.-G. Yin. This work was supported by the National
Science Foundation of China, the National Basic Research Program of
China (Grants No. 2006CB601003 and No. 2007CB925001) and the PCSIRT
project of the Ministry of Education of China (Grant No. IRT0754). Work
at BNL was supported by the Office of Science, U.S. Department of Energy
(DOE) under Contract No. DE-AC02-98CH10886.
NR 37
TC 62
Z9 62
U1 0
U2 6
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD NOV
PY 2009
VL 80
IS 18
AR 180502
DI 10.1103/PhysRevB.80.180502
PG 4
WC Physics, Condensed Matter
SC Physics
GA 526RO
UT WOS:000272310900027
ER
PT J
AU Averill, FW
Morris, JR
Cooper, VR
AF Averill, Frank W.
Morris, James R.
Cooper, Valentino R.
TI Calculated properties of fully hydrogenated single layers of BN, BC2N,
and graphene: Graphane and its BN-containing analogues
SO PHYSICAL REVIEW B
LA English
DT Article
DE adsorption; binding energy; chemisorption; energy gap; graphene;
hydrogen; organic compounds
ID BORON-NITRIDE NANOTUBES; ELECTRON-GAS; STORAGE; FUNCTIONALIZATION;
PSEUDOPOTENTIALS; CAPACITY; CARBONS; ENERGY
AB Carbon is an attractive material for hydrogen adsorption due to its light weight, variety of structures, and ability to both physisorb and chemisorb hydrogen. Recently, fully hydrogenated graphene layers ("graphane") have been predicted to exist [J. O. Sofo , Phys. Rev. B 75, 15340 (2007)], and experimentally observed [D. C. Elias , Science 323, 610 (2009)]. In this work, we examine analogs of graphane, in particular BNH2 and BC2NH4. Unlike graphene, these materials have a band gap without hydrogenation. Our results indicate that the hydrogenation product of BN is metastable: the fully hydrogenated compound BNH2 is higher in energy than hexagonal BN sheets plus H-2 molecules, in sharp contrast with graphane. We find that BC2NH4 is energetically very close to hexagonal BC2N+2H(2) molecules. Furthermore, our examination of the relative binding strengths of rows of symmetry related hydrogen atoms on BC2NH4 shows that this compound is marginally higher in energy than BC2NH2 plus an H-2 molecule, with the hydrogen atoms in BC2NH2 absorbed on the carbon sites. These remaining hydrogen atoms are not as strongly bound as in graphane, indicating that the average hydrogen chemisorption energy is controllable by changing the carbon content in the B-C-N layer.
C1 [Averill, Frank W.; Morris, James R.; Cooper, Valentino R.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[Averill, Frank W.; Morris, James R.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
RP Averill, FW (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
RI Cooper, Valentino /A-2070-2012; Morris, J/I-4452-2012
OI Cooper, Valentino /0000-0001-6714-4410; Morris, J/0000-0002-8464-9047
NR 51
TC 30
Z9 30
U1 5
U2 43
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD NOV
PY 2009
VL 80
IS 19
AR 195411
DI 10.1103/PhysRevB.80.195411
PG 8
WC Physics, Condensed Matter
SC Physics
GA 526RP
UT WOS:000272311000097
ER
PT J
AU Batista, CD
AF Batista, C. D.
TI Canted spiral: An exact ground state of XXZ zigzag spin ladders
SO PHYSICAL REVIEW B
LA English
DT Article
DE ferromagnetism; ground states; Heisenberg model; invariance; spontaneous
symmetry breaking; SU(2) theory
ID SYSTEMS; SYMMETRY; LATTICE; CHAIN
AB We derive the exact ground states for a one-dimensional family of S=1/2 XXZ Hamiltonians on the zigzag ladder. These states exhibit true long-range spiral order that spontaneously breaks the U(1) invariance of the Hamiltonian. Besides breaking a continuous symmetry in d=1, this spiral ordering has a ferromagnetic component along the symmetry axis that can take any value between zero and full saturation. In this sense, our canted spiral solutions are a generalization of the SU(2) Heisenberg ferromagnet to nonzero ordering wave vectors of the transverse spin components. We extend this result to the d=2 anisotropic triangular lattice.
C1 [Batista, C. D.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RP Batista, CD (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RI Batista, Cristian/J-8008-2016
NR 22
TC 5
Z9 5
U1 0
U2 3
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV
PY 2009
VL 80
IS 18
AR 180406
DI 10.1103/PhysRevB.80.180406
PG 4
WC Physics, Condensed Matter
SC Physics
GA 526RO
UT WOS:000272310900011
ER
PT J
AU Chen, LM
Ristivojevic, Z
Nattermann, T
AF Chen, Leiming
Ristivojevic, Zoran
Nattermann, Thomas
TI Transport in a Luttinger liquid with dissipation: Two impurities
SO PHYSICAL REVIEW B
LA English
DT Article
DE electrical conductivity; impurities; Luttinger liquid
ID DIMENSIONAL ELECTRON-GAS; QUANTUM
AB We consider theoretically the transport in a one-channel spinless Luttinger liquid with two strong impurities in the presence of dissipation. As a difference with respect to the dissipation free case, where the two impurities fully transmit electrons at resonance points, the dissipation prevents complete transmission in the present situation. A rich crossover diagram for the conductance as a function of applied voltage, temperature, dissipation strength, Luttinger liquid parameter K, and the deviation from the resonance condition is obtained. For weak dissipation and 1/2 < K < 1, the conduction shows a nonmonotonic increase as a function of temperature or voltage. For strong dissipation the conduction increases monotonically but is exponentially small.
C1 [Chen, Leiming; Ristivojevic, Zoran; Nattermann, Thomas] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany.
[Chen, Leiming] China Univ Min & Technol, Coll Sci, Xuzhou 221116, Peoples R China.
[Ristivojevic, Zoran] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
RP Chen, LM (reprint author), Univ Cologne, Inst Theoret Phys, Zulpicher Str 77, D-50937 Cologne, Germany.
RI Chen, Leiming/F-9052-2011
NR 14
TC 0
Z9 0
U1 0
U2 3
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV
PY 2009
VL 80
IS 19
AR 195102
DI 10.1103/PhysRevB.80.195102
PG 11
WC Physics, Condensed Matter
SC Physics
GA 526RP
UT WOS:000272311000034
ER
PT J
AU Chernyshov, AS
Mudryk, Y
Paudyal, D
Pecharsky, VK
Gschneidner, KA
Schlagel, DL
Lograsso, TA
AF Chernyshov, A. S.
Mudryk, Ya.
Paudyal, D.
Pecharsky, V. K.
Gschneidner, K. A., Jr.
Schlagel, D. L.
Lograsso, T. A.
TI Magnetostructural transition in Gd5Sb0.5Ge3.5
SO PHYSICAL REVIEW B
LA English
DT Article
DE ab initio calculations; antimony alloys; crystal symmetry; exchange
interactions (electron); ferromagnetic materials; gadolinium alloys;
germanium alloys; ground states; magnetic susceptibility; magnetic
transitions; magnetisation; solid-state phase transformations; specific
heat; X-ray diffraction
ID GIANT MAGNETORESISTANCE; MAGNETIC REFRIGERATION; PHASE-TRANSFORMATION;
GD-5(SIXGE1-X)(4); GE; GD-5(SI2GE2); COMPOUND; DYNAMICS; SYSTEMS; ALLOYS
AB Magnetic and crystallographic properties of Gd5Sb0.5Ge3.5 were investigated using dc magnetization, ac magnetic susceptibility, and heat capacity of an oriented single crystal, combined with temperature and magnetic field dependent x-ray powder diffraction. The compound undergoes an unusual magnetostructural transition at 40 K and a nonmagnetic second-order transition around 63 K. The detailed crystallographic study of Gd5Sb0.5Ge3.5 shows that contrary to the R-5(SixGe1-x)(4) systems (R is a rare-earth metal), the structural transition occurs without shear displacements of the (2)(infinity)[R5T4] slabs (T=Si, Ge, and Sb), and a substantial volume change (-0.5%) does not lead to a change in crystallographic symmetry. The first-principles electronic structure calculations show higher interslab than intraslab ferromagnetic exchange interaction indicating that Sm5Ge4 type of structure supports a ferromagnetic ground state in Gd5Sb0.5Ge3.5.
C1 [Chernyshov, A. S.; Mudryk, Ya.; Paudyal, D.; Pecharsky, V. K.; Gschneidner, K. A., Jr.; Schlagel, D. L.; Lograsso, T. A.] Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA.
[Chernyshov, A. S.; Paudyal, D.; Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA.
RP Pecharsky, VK (reprint author), Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA.
EM vitkp@ameslab.gov
FU Iowa State University of Science and Technology; U. S. Department of
Energy [DE- AC02- 07CH11358]
FX The Ames Laboratory is operated by Iowa State University of Science and
Technology for the U. S. Department of Energy under Contract No. DE-
AC02- 07CH11358. Work at Ames Laboratory is supported by the Office of
Basic Energy Sciences, Materials Sciences Division of the Office of
Science.
NR 50
TC 8
Z9 8
U1 1
U2 7
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9950
EI 2469-9969
J9 PHYS REV B
JI Phys. Rev. B
PD NOV
PY 2009
VL 80
IS 18
AR 184416
DI 10.1103/PhysRevB.80.184416
PG 9
WC Physics, Condensed Matter
SC Physics
GA 526RO
UT WOS:000272310900074
ER
PT J
AU Clem, JR
AF Clem, John R.
TI Field and current distributions and ac losses in superconducting strips
SO PHYSICAL REVIEW B
LA English
DT Article
DE critical current density (superconductivity); eddy current losses;
magnetic flux; superconducting thin films; type II superconductors
ID TRANSPORT CURRENTS; CONDUCTORS; FILMS
AB In this paper I discuss analytic and numerical calculations of the magnetic-field and sheet-current distributions in superconducting strips of width 2a and arbitrary thickness 2b at the center when the cross-section is an ellipse, a rectangle, and a shape intermediate between these limits. Using critical-state theory, I use several methods to determine the functional dependence of the ac transport-current losses upon F=I/I(c), where I is the peak alternating current and I(c) is the critical current, and I discuss how this dependence can be affected by the cross-sectional shape, aspect ratio, and a flux-density-dependent critical current density J(c)(B).
C1 [Clem, John R.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
[Clem, John R.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
RP Clem, JR (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
NR 13
TC 10
Z9 11
U1 1
U2 4
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV
PY 2009
VL 80
IS 18
AR 184517
DI 10.1103/PhysRevB.80.184517
PG 12
WC Physics, Condensed Matter
SC Physics
GA 526RO
UT WOS:000272310900105
ER
PT J
AU Delaire, O
May, AF
McGuire, MA
Porter, WD
Lucas, MS
Stone, MB
Abernathy, DL
Ravi, VA
Firdosy, SA
Snyder, GJ
AF Delaire, O.
May, A. F.
McGuire, M. A.
Porter, W. D.
Lucas, M. S.
Stone, M. B.
Abernathy, D. L.
Ravi, V. A.
Firdosy, S. A.
Snyder, G. J.
TI Phonon density of states and heat capacity of La3-xTe4
SO PHYSICAL REVIEW B
LA English
DT Article
DE band structure; bonds (chemical); Debye temperature; lanthanum alloys;
neutron diffraction; phonons; specific heat; tellurium alloys; vacancies
(crystal)
ID THERMOELECTRIC-MATERIALS; CHALCOGENIDES; TH3P4
AB The phonon density of states (DOS) of La3-xTe4 compounds (x=0.0,0.18,0.32) was measured at 300, 520, and 780 K, using inelastic neutron scattering. A significant stiffening of the phonon DOS and a large broadening of features were observed upon introduction of vacancies on La sites (increasing x). Heat-capacity measurements were performed at temperatures 1.85 < T < 1200 K and were analyzed to quantify the contributions of phonons and electrons. The Debye temperature and the electronic coefficient of heat capacity determined from these measurements are consistent with the neutron-scattering results, and with previously reported first-principles calculations. Our results indicate that La vacancies in La3-xTe4 strongly scatter phonons and this source of scattering appears to be independent of temperature. The stiffening of the phonon DOS induced by the introduction of vacancies is explained in terms of the electronic structure and the change in bonding character. The temperature dependence of the phonon DOS is captured satisfactorily by the quasiharmonic approximation.
C1 [Delaire, O.; Lucas, M. S.; Stone, M. B.; Abernathy, D. L.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA.
[May, A. F.; Snyder, G. J.] CALTECH, Pasadena, CA 91125 USA.
[McGuire, M. A.; Porter, W. D.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[Ravi, V. A.; Firdosy, S. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Ravi, V. A.] Calif State Polytech Univ Pomona, Dept Chem & Mat Engn, Pomona, CA 91768 USA.
RP Delaire, O (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA.
RI McGuire, Michael/B-5453-2009; May, Andrew/E-5897-2011; BL18,
ARCS/A-3000-2012; Snyder, G. Jeffrey/E-4453-2011; Stone,
Matthew/G-3275-2011; Abernathy, Douglas/A-3038-2012; Snyder,
G/I-2263-2015
OI McGuire, Michael/0000-0003-1762-9406; May, Andrew/0000-0003-0777-8539;
Snyder, G. Jeffrey/0000-0003-1414-8682; Stone,
Matthew/0000-0001-7884-9715; Abernathy, Douglas/0000-0002-3533-003X;
FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.
S. DOE. High-temperature; U. S. Department of Energy, Office of Energy
Efficiency and Renewable Energy; NSF [DMR- 0520547.]
FX We thank David Singh for providing us with the numerical data for the
electronic DOS of La3Te4 published in Ref. 27, and for helpful
discussions. We thank Rebecca A. Mills for help with the neutron-
scattering furnace. This work was partially supported by the Division of
Materials Science and Engineering, Basic Energy Sciences, U. S. DOE.
Work performed at the California Institute of Technology was done with
the assistance of the Jet Propulsion Laboratory, under a contract with
the National Aeronautics and Space Administration. The Research at Oak
Ridge National Laboratory's Spallation Neutron Source was sponsored by
the Scientific User Facilities Division, Office of Basic Energy
Sciences, U. S. DOE. High-temperature calorimetry measurements were
conducted at Oak Ridge National Laboratory's High Temperature Materials
Laboratory, sponsored by the U. S. Department of Energy, Office of
Energy Efficiency and Renewable Energy, Vehicle Technologies Program.
This work benefitted from DANSE software developed under NSF under Award
No. DMR- 0520547.
NR 35
TC 39
Z9 39
U1 4
U2 38
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9950
EI 2469-9969
J9 PHYS REV B
JI Phys. Rev. B
PD NOV
PY 2009
VL 80
IS 18
AR 184302
DI 10.1103/PhysRevB.80.184302
PG 9
WC Physics, Condensed Matter
SC Physics
GA 526RO
UT WOS:000272310900058
ER
PT J
AU Du, MH
AF Du, Mao-Hua
TI First-principles study of back-contact effects on CdTe thin-film solar
cells
SO PHYSICAL REVIEW B
LA English
DT Article
ID STABILITY
AB Forming a chemically stable low-resistance back contact for CdTe thin-film solar cells is critically important to the cell performance. This paper reports theoretical study of the effects of the back-contact material, Sb(2)Te(3), on the performance of the CdTe solar cells. First-principles calculations show that Sb impurities in p-type CdTe are donors and can diffuse with low diffusion barrier. There properties are clearly detrimental to the solar-cell performance. The Sb segregation into the grain boundaries may be required to explain the good efficiencies for the CdTe solar cells with Sb(2)Te(3) back contacts.
C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
RP Du, MH (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
RI Du, Mao-Hua/B-2108-2010
OI Du, Mao-Hua/0000-0001-8796-167X
FU U.S. DOE ORNL LDRD program
FX This work was supported by the U.S. DOE ORNL LDRD program.
NR 25
TC 6
Z9 6
U1 2
U2 11
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV
PY 2009
VL 80
IS 20
AR 205322
DI 10.1103/PhysRevB.80.205322
PG 4
WC Physics, Condensed Matter
SC Physics
GA 526RS
UT WOS:000272311400080
ER
PT J
AU Godwal, BK
Petruska, EA
Speziale, S
Yan, J
Clark, SM
Kruger, MB
Jeanloz, R
AF Godwal, B. K.
Petruska, E. A.
Speziale, S.
Yan, J.
Clark, S. M.
Kruger, M. B.
Jeanloz, R.
TI High-pressure Raman and x-ray diffraction studies on LaB6
SO PHYSICAL REVIEW B
LA English
DT Article
DE elastic moduli; high-pressure effects; lanthanum compounds; Raman
spectra; ultrasonics; vibrational modes; X-ray diffraction
ID NONHYDROSTATIC COMPRESSION; LATTICE-DYNAMICS; METALLIC LAB6;
TEMPERATURE; STATE; GOLD; HEXABORIDES; CALIBRATION; SCATTERING; EQUATION
AB X-ray diffraction measurements and Raman spectroscopy at room temperature document the equation of state and the frequency shifts for E-g, T-2g, and A(1g) vibrational modes of polycrystalline LaB6 under pressure. The data exhibit smooth pressure dependencies, yielding a zero-pressure isothermal bulk modulus K-0T=164(+/- 2) GPa in good accord with independent ultrasonic measurements, and show no evidence of structural or electronic phase transitions up to at least 25 GPa.
C1 [Godwal, B. K.; Clark, S. M.; Jeanloz, R.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA.
[Petruska, E. A.; Kruger, M. B.] Univ Missouri, Dept Phys, Kansas City, MO 64110 USA.
[Speziale, S.] Deutsch GeoForschungszentrum, D-14473 Potsdam, Germany.
[Yan, J.; Clark, S. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Jeanloz, R.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA.
RP Godwal, BK (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA.
RI Clark, Simon/B-2041-2013
OI Clark, Simon/0000-0002-7488-3438
FU U.S. Department of Energy [DE-AC02-05CH11231]; NSF [DMR-0605493, EAR
06-49658]
FX We thank Martin Kunz and Sander Caldwell as well as the ALS staff for
support on beamline 12.2.2. The Advanced Light Source is supported by
the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This
research was partially supported by NSF Contract No. DMR-0605493 to
COMPRES under NSF Cooperative Agreement No. EAR 06-49658, and by other
grants from the NSF and DOE.
NR 30
TC 9
Z9 9
U1 2
U2 14
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV
PY 2009
VL 80
IS 17
AR 172104
DI 10.1103/PhysRevB.80.172104
PG 4
WC Physics, Condensed Matter
SC Physics
GA 526RL
UT WOS:000272310400004
ER
PT J
AU Hardy, F
Meingast, C
Taufour, V
Flouquet, J
von Lohneysen, H
Fisher, RA
Phillips, NE
Huxley, A
Lashley, JC
AF Hardy, F.
Meingast, C.
Taufour, V.
Flouquet, J.
v. Loehneysen, H.
Fisher, R. A.
Phillips, N. E.
Huxley, A.
Lashley, J. C.
TI Two magnetic Gruumlneisen parameters in the ferromagnetic superconductor
UGe2
SO PHYSICAL REVIEW B
LA English
DT Article
DE critical points; ferromagnetic materials; Gruneisen coefficient;
magnetic superconductors; magnetisation; proximity effect
(superconductivity); specific heat; superconducting transitions; thermal
expansion; uranium compounds
ID COLLECTIVE ELECTRON FERROMAGNETISM; PRESSURE-INDUCED SUPERCONDUCTIVITY;
UNCONVENTIONAL SUPERCONDUCTIVITY; FERMI-SURFACE; FLUCTUATIONS;
COEXISTENCE; GE-73-NQR; HEAT
AB We report ambient-pressure magnetization, heat capacity, and thermal-expansion measurements of the ferromagnetic superconductor UGe2 in high magnetic fields. An analysis of the magnetic heat capacity derived from both magnetization and specific-heat data shows that UGe2 is well described in the framework of the molecular-field theory. Our heat-capacity and thermal-expansion results reveal a clear crossover regime, a feature that illustrates the proximity to the quantum critical end point of a first-order boundary between two different ferromagnetic phases. Furthermore, we show that the ferromagnetic contribution to these thermodynamic quantities can be split into two terms with distinct Gruumlneisen parameters.
C1 [Hardy, F.; Meingast, C.; v. Loehneysen, H.] Forschungszentrum Karlsruhe, Inst Festkorperphys, D-76021 Karlsruhe, Germany.
[Hardy, F.; v. Loehneysen, H.] Univ Karlsruhe, Inst Phys, D-76128 Karlsruhe, Germany.
[Taufour, V.; Flouquet, J.] CEA Grenoble, INAC SPSMS, F-38054 Grenoble, France.
[Fisher, R. A.; Phillips, N. E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Phillips, N. E.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Huxley, A.] Univ Edinburgh, Scottish Univ Phys Alliance, Sch Phys, Edinburgh EH9 3JZ, Midlothian, Scotland.
[Lashley, J. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Hardy, F (reprint author), Forschungszentrum Karlsruhe, Inst Festkorperphys, D-76021 Karlsruhe, Germany.
EM frederic.hardy@ifp.fzk.de
FU Helmholtz-Gemeinschaft [VH-VI-127]; Deutsche Forschungsgemeinschaft [FOR
960]; U. S. Department of Energy [DE-AC02-05CH11231]
FX This work was supported by the Helmholtz-Gemeinschaft (Virtual Institute
of Research on Quantum Phase Transitions Project No. VH-VI-127) and the
Deutsche Forschungsgemeinschaft under Grant No. FOR 960. Work at LBNL
was supported by the Director, Office of Science, Office of Basic Energy
Sciences, of the U. S. Department of Energy under Contract No.
DE-AC02-05CH11231.
NR 33
TC 12
Z9 12
U1 1
U2 17
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV
PY 2009
VL 80
IS 17
AR 174521
DI 10.1103/PhysRevB.80.174521
PG 7
WC Physics, Condensed Matter
SC Physics
GA 526RL
UT WOS:000272310400092
ER
PT J
AU Homes, CC
AF Homes, C. C.
TI Scaling of the superfluid density in strongly underdoped YBa2Cu3O6+y:
Evidence for a Josephson phase
SO PHYSICAL REVIEW B
LA English
DT Article
DE barium compounds; electrical conductivity; high-temperature
superconductors; Josephson effect; superconducting transition
temperature; superfluidity; yttrium compounds
ID HIGH-TEMPERATURE SUPERCONDUCTORS; T-C SUPERCONDUCTORS;
PENETRATION-DEPTH; COOPER PAIRS; BI2SR2CACU2O8+DELTA; PSEUDOGAP; FILMS;
INSULATOR; CUPRATE; OXIDES
AB Recent measurements on extremely underdoped YBa2Cu3O6+y [Phys. Rev. Lett. 99, 237003 (2007)] have allowed the critical temperature T-c, superfluid density rho(s0)equivalent to rho(s)(T < T-c), and dc conductivity sigma(dc)(T greater than or similar to T-c) to be determined for a series of electronic dopings for T-c similar or equal to 3-17 K. The general scaling relation rho(s0)/8 similar or equal to 4.4 sigma T-dc(c) is observed, extending the validity of both the ab-plane and c-axis scaling an order of magnitude and creating a region of overlap. This suggests that strongly underdoped materials may constitute a Josephson phase; as the electronic doping is increased a more uniform superconducting state emerges.
C1 Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA.
RP Homes, CC (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA.
EM homes@bnl.gov
FU Office of Science, U. S. Department of Energy (DOE) [DE-AC02-98CH10886]
FX The author is deeply indebted to D. M. Broun, W. A. Huttema, and P. J.
Turner for providing their microwave results on extremely underdoped
YBa2Cu3O6.333 and to Ruixing Liang, W.
N. Hardy, and D. A. Bonn regarding aspects of materials synthesis. The
author would also like to acknowledge useful discussions with A. Akrap,
A. V. Chubukov, G. L. Carr, Y. Imry, T. R. Lemberger, P. Littlewood, J.
Rameau, M. Strongin, D. B. Tanner, and A. M. Tsvelik. Work in Canada was
supported by the Natural Sciences and Engineering Research Council of
Canada and the Canadian Institute for Advanced Research. Work at BNL was
supported by the Office of Science, U. S. Department of Energy (DOE)
under Contract No. DE-AC02-98CH10886.
NR 38
TC 8
Z9 8
U1 0
U2 0
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9950
EI 2469-9969
J9 PHYS REV B
JI Phys. Rev. B
PD NOV
PY 2009
VL 80
IS 18
AR 180509
DI 10.1103/PhysRevB.80.180509
PG 4
WC Physics, Condensed Matter
SC Physics
GA 526RO
UT WOS:000272310900034
ER
PT J
AU Hopkins, PE
Serrano, JR
AF Hopkins, Patrick E.
Serrano, Justin R.
TI Phonon localization and thermal rectification in asymmetric harmonic
chains using a nonequilibrium Green's function formalism
SO PHYSICAL REVIEW B
LA English
DT Article
ID SIMULATION; TRANSPORT
AB Thermal transport across one-dimensional atomic chains is studied using a harmonic nonequilibrium Green's function formalism in the ballistic phonon transport regime. Introducing a mass impurity in the chain and mass loading in the thermal contacts leads to interference of phonon waves, which can be manipulated by varying the magnitude of the loading. This shows that thermal rectification is tunable in a completely harmonic system.
C1 [Hopkins, Patrick E.; Serrano, Justin R.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Hopkins, PE (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM pehopki@sandia.gov
FU United States Department of Energy's National Nuclear Security
Administration [DE-AC04-94AL85000]
FX P. E. H. is grateful for support from the LDRD program office through
Sandia National Laboratories. The authors would like to thank Chris
Dames at U. C. Riverside for insightful discussions on thermal
rectification. Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed-Martin Co., for the United States Department of
Energy's National Nuclear Security Administration under Contract No.
DE-AC04-94AL85000.
NR 19
TC 21
Z9 21
U1 2
U2 14
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV
PY 2009
VL 80
IS 20
AR 201408
DI 10.1103/PhysRevB.80.201408
PG 4
WC Physics, Condensed Matter
SC Physics
GA 526RS
UT WOS:000272311400028
ER
PT J
AU Jiang, C
Lin, ZJ
Zhao, YS
AF Jiang, Chao
Lin, Zhijun
Zhao, Yusheng
TI Superhard diamondlike BC5: A first-principles investigation
SO PHYSICAL REVIEW B
LA English
DT Article
DE ab initio calculations; boron compounds; crystal structure; density
functional theory; total energy; X-ray diffraction
ID GENERALIZED GRADIENT APPROXIMATION; STABILITY; SOLIDS; BORON
AB We perform first-principles density-functional calculations to identify the possible crystal structure of a superhard diamondlike BC5 phase, which was recently synthesized under high-pressure and high-temperature conditions. Interestingly, we find only a small total-energy difference between the energetically most favorable ordered configuration and the fully disordered state of BC5 modeled using a 54-atom special quasirandom structure, indicating a weak ordering tendency. It is thus likely that the BC5 phase synthesized under experimental conditions is disordered in nature. Such a conclusion is further corroborated by the fact that the disordered BC5 structure displays volume-per-atom, bulk modulus and its pressure derivative, and simulated x-ray diffraction spectrum in good agreements with experiments.
C1 [Jiang, Chao] Los Alamos Natl Lab, Struct Property Relat Grp MST 8, Los Alamos, NM 87545 USA.
[Lin, Zhijun; Zhao, Yusheng] Los Alamos Natl Lab, LANSCE Lujan Neutron Scattering Ctr, Los Alamos, NM 87545 USA.
RP Jiang, C (reprint author), Los Alamos Natl Lab, Struct Property Relat Grp MST 8, POB 1663, Los Alamos, NM 87545 USA.
EM chao@lanl.gov; zlin@lanl.gov; yzhao@lanl.gov
RI Jiang, Chao/A-2546-2011; Lujan Center, LANL/G-4896-2012; Lin,
Zhijun/A-5543-2010; Jiang, Chao/D-1957-2017
OI Jiang, Chao/0000-0003-0610-6327
FU LANL; DOE [DEAC52-06NA25396]
FX All calculations are performed using the parallel computing facilities
at Los Alamos National Laboratory (LANL). This research is supported by
LANL, which is operated by Los Alamos National Security LLC under DOE
under Contract No. DEAC52-06NA25396.
NR 35
TC 21
Z9 22
U1 4
U2 13
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV
PY 2009
VL 80
IS 18
AR 184101
DI 10.1103/PhysRevB.80.184101
PG 6
WC Physics, Condensed Matter
SC Physics
GA 526RO
UT WOS:000272310900036
ER
PT J
AU Karapetrov, G
Milosevic, MV
Iavarone, M
Fedor, J
Belkin, A
Novosad, V
Peeters, FM
AF Karapetrov, G.
Milosevic, M. V.
Iavarone, M.
Fedor, J.
Belkin, A.
Novosad, V.
Peeters, F. M.
TI Transverse instabilities of multiple vortex chains in magnetically
coupled NbSe2/permalloy superconductor/ferromagnet bilayers
SO PHYSICAL REVIEW B
LA English
DT Article
DE electromagnetic induction; ferromagnetic materials; flux-line lattice;
Ginzburg-Landau theory; magnetic flux; niobium compounds; Permalloy;
scanning tunnelling microscopy
ID DOMAIN STRUCTURE; SUPERCONDUCTIVITY; HETEROSTRUCTURES; HYBRIDS; FILMS
AB Using scanning tunneling microscopy and Ginzburg-Landau simulations, we explore vortex configurations in magnetically coupled NbSe2/permalloy superconductor/ferromagnet bilayer. The permalloy film with stripe domain structure induces periodic local magnetic induction in the superconductor, creating a series of pinning-antipinning channels for externally added magnetic flux quanta. Such laterally confined Abrikosov vortices form quasi-one-dimensional arrays (chains). The transitions between multichain states occur through propagation of kinks at the intermediate fields. At high fields we show that the system becomes nonlinear due to a change in both the number of vortices and the confining potential. The longitudinal instabilities of the resulting vortex structures lead to vortices "levitating" in the antipinning channels.
C1 [Karapetrov, G.; Iavarone, M.; Fedor, J.; Belkin, A.; Novosad, V.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Milosevic, M. V.; Peeters, F. M.] Univ Antwerp, Dept Fys, B-2020 Antwerp, Belgium.
[Fedor, J.] Slovak Acad Sci, Inst Elect Engn, Bratislava 84104, Slovakia.
[Belkin, A.] IIT, Div Phys, Chicago, IL 60616 USA.
RP Karapetrov, G (reprint author), Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
EM goran@anl.gov
RI Milosevic, Milorad/H-9393-2012; Novosad, Valentyn/C-2018-2014; CMT,
UAntwerpen Group/A-5523-2016; Novosad, V /J-4843-2015; Karapetrov,
Goran/C-2840-2008
OI Karapetrov, Goran/0000-0003-1113-0137
FU Center for Nanoscale Materials; Electron Microscopy Center at Argonne
National Laboratory; U.S. Department of Energy Office of Science
laboratory [DE-AC02-06CH11357]; Flemish Science Foundation [FWO-Vl];
Belgian Science Policy; JSPS/ESF-NES; ESF-AQDJJ network; Vlaanderen-USA
bilateral program
FX This work as well as the use of the Center for Nanoscale Materials and
the Electron Microscopy Center at Argonne National Laboratory was
supported by UChicago Argonne, LLC, Operator of Argonne National
Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of
Science laboratory, is operated under Contract No. DE-AC02-06CH11357. M.
V. M. and F. M. P. acknowledge support from the Flemish Science
Foundation (FWO-Vl), the Belgian Science Policy, the JSPS/ESF-NES
program, the ESF-AQDJJ network, and the Vlaanderen-USA bilateral
program.
NR 31
TC 32
Z9 32
U1 0
U2 12
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV
PY 2009
VL 80
IS 18
AR 180506
DI 10.1103/PhysRevB.80.180506
PG 4
WC Physics, Condensed Matter
SC Physics
GA 526RO
UT WOS:000272310900031
ER
PT J
AU Lee, JS
Vescovo, E
Kao, CC
Beaujour, JM
Kent, AD
Jang, H
Kim, JY
Park, JH
Shim, JH
AF Lee, J. -S.
Vescovo, E.
Kao, C. -C.
Beaujour, J. -M.
Kent, A. D.
Jang, H.
Kim, J. -Y.
Park, J. -H.
Shim, J. H.
TI Role of the nonmagnetic layer in determining the Landeacute g-factor in
a spin-transfer system
SO PHYSICAL REVIEW B
LA English
DT Article
DE charge transfer states; cobalt; copper; electronic structure;
ferromagnetic materials; ferromagnetic resonance; g-factor; interface
magnetism; Landau levels; magnetic circular dichroism; magnetic moments;
magnetic structure; magnetic thin films; metallic thin films; nickel;
palladium; reflectivity; spin systems; valence bands
ID CIRCULAR-DICHROISM; THERMAL AGITATION; MAGNETIZATION; DRIVEN; CONDUCTORS
AB The microscopic origin of the Landeacute g-factor in two ferromagnetic/nonmagnetic (FM/NM) bilayer systems-Co/Cu and Ni/Pd-has been investigated using x-ray magnetic circular dichroism, resonant magnetic reflectivity, and band calculations. The FM/NM bilayer represents the building block of any complete spin-transfer structure (FM1/NM/FM2). The valence electronic structure is profoundly altered over a finite length across the FM/NM interface. A considerable charge transfer takes place from the NM to the FM material. This results in an enhancement of the orbital-to-spin magnetic moment ratio in the FM layer and an induced magnetic polarization in the NM layer. Both effects turn out to be crucial for a correct understanding of the g-factor in spin-transfer systems.
C1 [Lee, J. -S.; Vescovo, E.; Kao, C. -C.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA.
[Beaujour, J. -M.; Kent, A. D.] NYU, Dept Phys, New York, NY 10003 USA.
[Jang, H.; Kim, J. -Y.; Park, J. -H.] Pohang Univ Sci & Technol, Dept Phys & PAL, Pohang 790784, South Korea.
[Shim, J. H.] Pohang Univ Sci & Technol, Dept Chem, Pohang 790784, South Korea.
RP Lee, JS (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA.
RI Shim, Ji Hoon/F-5375-2013
NR 25
TC 6
Z9 6
U1 1
U2 3
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV
PY 2009
VL 80
IS 18
AR 180403
DI 10.1103/PhysRevB.80.180403
PG 4
WC Physics, Condensed Matter
SC Physics
GA 526RO
UT WOS:000272310900008
ER
PT J
AU Li, M
Wang, CZ
Hao, SG
Kramer, MJ
Ho, KM
AF Li, Maozhi
Wang, C. Z.
Hao, S. G.
Kramer, M. J.
Ho, K. M.
TI Structural heterogeneity and medium-range order in ZrxCu100-x metallic
glasses
SO PHYSICAL REVIEW B
LA English
DT Article
DE copper alloys; glass structure; metallic glasses; molecular dynamics
method; X-ray diffraction; zirconium alloys
ID TOTAL-ENERGY CALCULATIONS; MOLECULAR-DYNAMICS; ATOMIC PACKING; LIQUIDS;
MODEL; TRANSITION; GEOMETRY; ALLOYS
AB Realistic three-dimensional atomistic structures of ZrxCu100-x (x=35,50) bulk metallic glasses are constructed using a combination of x-ray diffraction experiment and computational modeling. A cluster correlation method is developed to analyze the medium-range order in amorphous systems. We show that the glass systems consist of a stringlike backbone network formed by icosahedral clusters and a liquidlike structure filling in the remaining space. These findings are consistent with those obtained from our independent classical molecular-dynamics studies with embedded-atom method potential for ZrCu system. Such a heterogeneous structure provides a fundamental structural perspective of dynamical heterogeneity and glass formation.
C1 [Li, Maozhi] Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China.
[Li, Maozhi; Wang, C. Z.; Hao, S. G.; Kramer, M. J.; Ho, K. M.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA.
RP Li, M (reprint author), Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China.
EM wangcz@ameslab.gov
RI Hao, Shaogang/E-3527-2010; 石, 源/D-5929-2012; ruc, phy/E-4170-2012
NR 39
TC 104
Z9 105
U1 9
U2 55
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9950
EI 2469-9969
J9 PHYS REV B
JI Phys. Rev. B
PD NOV
PY 2009
VL 80
IS 18
AR 184201
DI 10.1103/PhysRevB.80.184201
PG 7
WC Physics, Condensed Matter
SC Physics
GA 526RO
UT WOS:000272310900051
ER
PT J
AU Mascaraque, A
Aballe, L
Marco, JF
Mentes, TO
El Gabaly, F
Klein, C
Schmid, AK
McCarty, KF
Locatelli, A
de la Figuera, J
AF Mascaraque, A.
Aballe, L.
Marco, J. F.
Mentes, T. O.
El Gabaly, F.
Klein, C.
Schmid, A. K.
McCarty, K. F.
Locatelli, A.
de la Figuera, J.
TI Measuring the magnetization of three monolayer thick Co islands and
films by x-ray dichroism
SO PHYSICAL REVIEW B
LA English
DT Article
DE cobalt; magnetic circular dichroism; magnetic domains; magnetic moments;
magnetic thin films; magnetisation; nanostructured materials; ruthenium;
spin dynamics; X-ray absorption spectra; X-ray photoelectron spectra
ID CO/RU STRAINED SUPERLATTICES; CIRCULAR-DICHROISM; ANISOTROPY; GROWTH
AB Co islands and films are characterized by x-ray magnetic circular dichroism photoemission electron microscopy. The spatial resolution capabilities of the technique together with atomic growth control permit obtaining perfectly flat triangular islands with a given thickness (3 ML), very close to an abrupt spin-reorientation transition. The magnetic domain configurations are found to depend on island size: while small islands can be magnetized in a single-domain state, larger islands show more complex patterns. Furthermore, the magnetization pattern of the larger islands presents a common chirality. By means of dichroic spectromicroscopy at the Co L absorption edges, an experimental estimate of the ratio of the spin and orbital magnetic moment for three monolayer thick films is obtained.
C1 [Mascaraque, A.] Univ Complutense Madrid, Dept Fis Mat, E-28040 Madrid, Spain.
[Aballe, L.; Mentes, T. O.; Locatelli, A.] Elettra Sincrotrone SCpA, Trieste, Italy.
[Marco, J. F.; de la Figuera, J.] CSIC, Inst Quim Fis Rocasolano, Dept Sistemas Baja Dimensionalidad Superficies &, E-28006 Madrid, Spain.
[El Gabaly, F.; McCarty, K. F.] Sandia Natl Labs, Dept Mat Phys, Livermore, CA 94550 USA.
[Klein, C.; Schmid, A. K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA.
[de la Figuera, J.] Univ Autonoma Madrid, Ctr Microanal Mat, E-28049 Madrid, Spain.
RP Mascaraque, A (reprint author), Univ Complutense Madrid, Dept Fis Mat, E-28040 Madrid, Spain.
RI de la Figuera, Juan/E-7046-2010; McCarty, Kevin/F-9368-2012; Mascaraque,
Arantzazu/D-9504-2012; Marco, Jose/N-3176-2014;
OI de la Figuera, Juan/0000-0002-7014-4777; McCarty,
Kevin/0000-0002-8601-079X; Mascaraque, Arantzazu/0000-0002-2614-2862;
Marco, Jose/0000-0002-5147-1449; Mentes, Tevfik
Onur/0000-0003-0413-9272; Locatelli, Andrea/0000-0002-8072-7343
FU U.S. Department of Energy [DE-AC04-94AL85000, DE-AC02-05CH11231];
Spanish Ministry of Education and Science [MAT2006-13149-C02-02];
Comunidad Autonoma de Madrid; CSIC [CCG07-CSIC-MAT-2030,
S-0505/MAT/0194]
FX This research was partly supported by the U.S. Department of Energy
under Contracts No. DE-AC04-94AL85000 and No. DE-AC02-05CH11231, by the
Spanish Ministry of Education and Science under Project No.
MAT2006-13149-C02-02, and by the Comunidad Autonoma de Madrid and the
CSIC under Projects No. CCG07-CSIC-MAT-2030 and No. S-0505/MAT/0194.
NR 29
TC 1
Z9 1
U1 0
U2 12
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV
PY 2009
VL 80
IS 17
AR 172401
DI 10.1103/PhysRevB.80.172401
PG 4
WC Physics, Condensed Matter
SC Physics
GA 526RL
UT WOS:000272310400008
ER
PT J
AU Masuda, T
Kakurai, K
Zheludev, A
AF Masuda, T.
Kakurai, K.
Zheludev, A.
TI Spin dimers in the quantum ferrimagnet Cu2Fe2Ge4O13 under staggered and
random magnetic fields
SO PHYSICAL REVIEW B
LA English
DT Article
DE copper compounds; ferrimagnetic materials; iron compounds; magnetic
structure; neutron diffraction; spin systems; triplet state; Zeeman
effect
ID BOSE-EINSTEIN CONDENSATION; TRANSITION; HELIUM
AB We study S=1/2 dimer excitation in a coupled chain and dimer compound Cu2Fe2Ge4O13 by inelastic neutron-scattering technique. The Zeeman split of the dimer triplet by a staggered field is observed at low temperature. With the increase in temperature, the effect of a random field is detected by a drastic broadening of the triplet excitation. Basic dynamics of dimer in the staggered and random fields are experimentally identified in Cu2Fe2Ge4O13.
C1 [Masuda, T.] Yokohama City Univ, Dept Nanosyst Sci, Kanagawa 2360027, Japan.
[Zheludev, A.] Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA.
[Kakurai, K.] JAEA, Quantum Beam Sci Div, Ibaraki 3191195, Japan.
[Zheludev, A.] ETH, Inst Solid State Phys, CH-8093 Zurich, Switzerland.
[Zheludev, A.] ETH, Neutron Scattering Lab, CH-5232 Villigen, Switzerland.
[Zheludev, A.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland.
RP Masuda, T (reprint author), Yokohama City Univ, Dept Nanosyst Sci, Kanagawa 2360027, Japan.
EM tmasuda@yokohama-cu.ac.jp
FU Yamada Science Foundation; Asahi glass foundation; Ministry of
Education, Culture, Sports, Science and Technology of Japan [19740215,
19052004]
FX M. Matsumoto is greatly appreciated for fruitful discussion. This work
was partly supported by Yamada Science Foundation, Asahi glass
foundation, and Grant-in-Aid for Scientific Research (Grants No.
19740215 and No. 19052004) of Ministry of Education, Culture, Sports,
Science and Technology of Japan.
NR 22
TC 5
Z9 5
U1 1
U2 7
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV
PY 2009
VL 80
IS 18
AR 180412
DI 10.1103/PhysRevB.80.180412
PG 4
WC Physics, Condensed Matter
SC Physics
GA 526RO
UT WOS:000272310900017
ER
PT J
AU Mlinar, V
Zunger, A
AF Mlinar, Vladan
Zunger, Alex
TI Internal electronic structure and fine structure of multiexcitons in
semiconductor quantum dots
SO PHYSICAL REVIEW B
LA English
DT Article
ID EXCITONIC ARTIFICIAL ATOMS; NANOSTRUCTURES; ENERGY
AB We perform a detailed theoretical study of the characteristic internal electronic structure of various multiexcitons (N(h),N(e)), where N(h) is number of holes and N(e) is the number of electrons in the self-assembled semiconductor quantum dots (QDs). For each of the leading (N(h),N(e)) excitonic complexes we start from the single-particle configuration (e.g., a specific occupation pattern of S and P electron and hole levels by a few carriers) and then show the many-particle multiplet levels for the initial state of emission (N(h),N(e)) and the final state of emission (N(h)-1, N(e)-1). We denote which states are dark and which are bright; the order and multiplicity, the leading single-particle character of each multiplet state, and the fine-structure splittings. These are of general utility. We also show explicit numerical values for distances between various transitions for four specific QDs. Here the presented information is important and potentially useful for a few reasons: (i) the information serves as a guide for spectroscopic interpretation; (ii) the information reveals non-Aufbau cases, where the dot does not have Aufbau occupation of carriers' levels; (iii) the information shows which transitions are sensitive to random-alloy fluctuations (if the dot is alloyed) and importance of this effect. We show that because of such alloy information, distances between peaks cannot be used to gauge structural information.
C1 [Mlinar, Vladan; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Mlinar, V (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.
EM alex.zunger@nrel.gov
RI Zunger, Alex/A-6733-2013
FU U.S. Department of Energy, Office of Science, under NREL
[DE-AC36-08GO28308]
FX This work was funded by the U.S. Department of Energy, Office of
Science, under NREL Contract No. DE-AC36-08GO28308. We thank Patanjali
Kambhampati for comments on the paper.
NR 33
TC 20
Z9 20
U1 0
U2 12
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV
PY 2009
VL 80
IS 20
AR 205311
DI 10.1103/PhysRevB.80.205311
PG 15
WC Physics, Condensed Matter
SC Physics
GA 526RS
UT WOS:000272311400069
ER
PT J
AU Nukala, PKVV
Maier, TA
Summers, MS
Alvarez, G
Schulthess, TC
AF Nukala, Phani K. V. V.
Maier, Thomas A.
Summers, Michael S.
Alvarez, Gonzalo
Schulthess, Thomas C.
TI Fast update algorithm for the quantum Monte Carlo simulation of the
Hubbard model
SO PHYSICAL REVIEW B
LA English
DT Article
DE Green's function methods; Hubbard model; Monte Carlo methods; strongly
correlated electron systems
ID MEAN-FIELD THEORY; FERMION SYSTEMS
AB This paper presents an efficient algorithm for computing the transition probability in auxiliary field quantum Monte Carlo simulations of strongly correlated electron systems using a Hubbard model. This algorithm is based on a low rank updating of the underlying linear algebra problem, and results in significant computational savings. The computational complexity of computing the transition probability and Green's function update reduces to O(k(2)) during the kth step, where k is the number of accepted spin flips, and results in an algorithm that is faster than the competing delayed update algorithm. Moreover, this algorithm is orders of magnitude faster than traditional algorithms that use naive updating of the Green's function matrix.
C1 [Nukala, Phani K. V. V.; Maier, Thomas A.; Summers, Michael S.; Alvarez, Gonzalo; Schulthess, Thomas C.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA.
[Schulthess, Thomas C.] ETH, Inst Theoret Phys, CH-8093 Zurich, Switzerland.
RP Nukala, PKVV (reprint author), Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA.
RI Maier, Thomas/F-6759-2012
OI Maier, Thomas/0000-0002-1424-9996
NR 15
TC 8
Z9 8
U1 0
U2 7
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV
PY 2009
VL 80
IS 19
AR 195111
DI 10.1103/PhysRevB.80.195111
PG 8
WC Physics, Condensed Matter
SC Physics
GA 526RP
UT WOS:000272311000043
ER
PT J
AU Plucinski, L
Zhao, Y
Schneider, CM
Sinkovic, B
Vescovo, E
AF Plucinski, L.
Zhao, Yuan
Schneider, C. M.
Sinkovic, B.
Vescovo, E.
TI Surface electronic structure of ferromagnetic Fe(001)
SO PHYSICAL REVIEW B
LA English
DT Article
DE Brillouin zones; density functional theory; Fermi level; ferromagnetic
materials; iron; localised states; magnetic epitaxial layers; metallic
epitaxial layers; photoelectron spectra; resonant states; surface
states; tunnelling magnetoresistance
ID ROOM-TEMPERATURE; FE(100); STATES; FE; SPECTROSCOPY; POLARIZATION; MGO;
MAGNETORESISTANCE; ADSORPTION; JUNCTIONS
AB A thorough investigation of the surface electronic structure of ferromagnetic Fe(100) films, epitaxially grown on single-crystal W(100), has been conducted using spin- and angle-resolved photoemission combined with state-of-the-art density-functional theory slab computations. The dispersion of the surface emission close to the Fermi level has been assessed quantitatively. The experimental results are in a good agreement with the calculations and, in particular, the presence of a minority surface state with d(xz+yz) character along the Gamma X high-symmetry direction is unambiguously established. Additionally, the calculations predict the existence of a different unoccupied surface state localized at Gamma. The existence of the related minority interface resonance near the Fermi edge and outside of the surface-Brillouin-zone center Gamma is believed to control the tunneling magnetoresistance in Fe/MgO/Fe(001) for very thin MgO spacers thus our results serve as indirect confirmation to these predictions.
C1 [Plucinski, L.; Zhao, Yuan; Sinkovic, B.] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA.
[Plucinski, L.; Schneider, C. M.] KFA Julich GmbH, Forschungszentrum, Inst Festkorperforsch IFF 9, D-52425 Julich, Germany.
[Vescovo, E.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA.
RP Plucinski, L (reprint author), Univ Connecticut, Dept Phys, Storrs, CT 06269 USA.
EM l.plucinski@fz-juelich.de
RI Plucinski, Lukasz/J-4987-2013; Schneider, Claus/H-7453-2012
OI Plucinski, Lukasz/0000-0002-6865-7274; Schneider,
Claus/0000-0002-3920-6255
FU NSF [ECS-0300235]; U.S. Department of Energy, Office of Science, Office
of Basic Energy Sciences [DE-AC02-98CH10886]
FX We would like to thank the NSLS staff for the technical support during
the experiments. Special thanks to James Ablett for carefully reading
the manuscript. This work was supported by NSF under Grant No.
ECS-0300235. The National Synchrotron Light Source, Brookhaven National
Laboratory, is funded by the U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences, under Contract No.
DE-AC02-98CH10886.
NR 30
TC 9
Z9 9
U1 1
U2 19
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9950
EI 2469-9969
J9 PHYS REV B
JI Phys. Rev. B
PD NOV
PY 2009
VL 80
IS 18
AR 184430
DI 10.1103/PhysRevB.80.184430
PG 6
WC Physics, Condensed Matter
SC Physics
GA 526RO
UT WOS:000272310900088
ER
PT J
AU Prozorov, R
Tanatar, MA
Ni, N
Kreyssig, A
Nandi, S
Bud'ko, SL
Goldman, AI
Canfield, PC
AF Prozorov, R.
Tanatar, M. A.
Ni, N.
Kreyssig, A.
Nandi, S.
Bud'ko, S. L.
Goldman, A. I.
Canfield, P. C.
TI Intrinsic pinning on structural domains in underdoped single crystals of
Ba(Fe1-xCox)(2)As-2
SO PHYSICAL REVIEW B
LA English
DT Article
DE barium compounds; cobalt compounds; critical current density
(superconductivity); doping; flux pinning; iron compounds; magnetic
anisotropy; magnetic domain walls; phase diagrams; superconducting
critical field; superconducting materials; superconducting transition
temperature; X-ray diffraction
ID SUPERCONDUCTIVITY; VORTICES
AB Critical current density was studied in single crystals of Ba(Fe1-xCox)(2)As-2 for the values of x spanning the entire doping phase diagram. A noticeable enhancement was found for slightly underdoped crystals with the peak at x=0.058. Using a combination of polarized-light imaging, x-ray diffraction and magnetic measurements we associate this behavior with the intrinsic pinning on structural domains in the orthorhombic phase. Domain walls extend throughout the sample thickness in the direction of vortices and act as extended pinning centers. With the increasing x domain structure becomes more intertwined and fine due to a decrease in the orthorhombic distortion. This results in the energy landscape with mazelike spatial modulations favorable for pinning. This finding shows that iron-based pnictide superconductors, characterized by high values of the transition temperature, high upper critical fields, and low anisotropy may intrinsically have relatively high critical current densities.
C1 [Prozorov, R.; Tanatar, M. A.; Ni, N.; Kreyssig, A.; Nandi, S.; Bud'ko, S. L.; Goldman, A. I.; Canfield, P. C.] Ames Lab, Ames, IA 50011 USA.
[Prozorov, R.; Ni, N.; Bud'ko, S. L.; Goldman, A. I.; Canfield, P. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
RP Prozorov, R (reprint author), Ames Lab, Ames, IA 50011 USA.
EM prozorov@ameslab.gov
RI Prozorov, Ruslan/A-2487-2008; Canfield, Paul/H-2698-2014
OI Prozorov, Ruslan/0000-0002-8088-6096;
FU Department of Energy- Basic Energy Sciences [DE- AC02- 07CH11358]; U. S.
DOE [DE- AC02- 06CH11357]
FX We thank C. Martin and V. G. Kogan for discussions. Work at the Ames
Laboratory and at the MUCAT sector was supported by the Department of
Energy- Basic Energy Sciences under Contract No. DE- AC02- 07CH11358.
Use of the Advanced Photon Source was supported by U. S. DOE under
Contract No. DE- AC02- 06CH11357. R. P. acknowledges support from Alfred
P. Sloan Foundation.
NR 28
TC 69
Z9 69
U1 0
U2 14
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD NOV
PY 2009
VL 80
IS 17
AR 174517
DI 10.1103/PhysRevB.80.174517
PG 5
WC Physics, Condensed Matter
SC Physics
GA 526RL
UT WOS:000272310400088
ER
PT J
AU Quijano, R
de Coss, R
Singh, DJ
AF Quijano, Ramiro
de Coss, Romeo
Singh, David J.
TI Electronic structure and energetics of the tetragonal distortion for
TiH2, ZrH2, and HfH2: A first-principles study
SO PHYSICAL REVIEW B
LA English
DT Article
DE ab initio calculations; Brillouin zones; crystal symmetry; electronic
density of states; Fermi level; hafnium compounds; spin-orbit
interactions; titanium compounds; zirconium compounds
ID BISTABLE CRYSTAL-STRUCTURE; ZIRCONIUM HYDRIDE; BAND-STRUCTURE; TITANIUM;
DIHYDRIDES; PHASE; EMBRITTLEMENT; SINGULARITY; INSTABILITY; STABILITY
AB The electronic structure and energetics of the tetragonal distortion for the fluorite-type dihydrides TiH2, ZrH2, and HfH2 are studied by means of highly accurate first-principles total-energy calculations. For HfH2, in addition to the calculations using the scalar relativistic (SR) approximation, calculations including the spin-orbit coupling have also been performed. The results show that TiH2, ZrH2, and HfH2 in the cubic phase are unstable against tetragonal strain. For the three systems, the total energy shows two minima as a function of the c/a ratio with the lowest-energy minimum at c/a < 1 in agreement with the experimental observations. The band structure of TiH2, ZrH2, and HfH2 (SR) around the Fermi level shows two common features along the two major symmetry directions of the Brillouin zone, Gamma-L and Gamma-K, a nearly flat doubly degenerate band, and a van Hove singularity, respectively. In cubic HfH2 the spin-orbit coupling lifts the degeneracy of the partially filled bands in the Gamma-L path, while the van Hove singularity in the Gamma-K path remains unchanged. The density of states of the three systems in the cubic phase shows a sharp peak at the Fermi level. We found that the tetragonal distortion produces a strong reduction in the density of states at the Fermi level resulting mainly from the splitting of the doubly-degenerate bands in the Gamma-L direction and the shift of the van Hove singularity to above the Fermi level. The validity of the Jahn-Teller model in explaining the tetragonal distortion in this group of dihydrides is discussed.
C1 [Quijano, Ramiro; de Coss, Romeo] IPN, Ctr Invest & Estudios Avanzados, Dept Fis Aplicada, Unidad Merida, Merida 97310, Yucatan, Mexico.
[Singh, David J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
RP Quijano, R (reprint author), IPN, Ctr Invest & Estudios Avanzados, Dept Fis Aplicada, Unidad Merida, AP 73 Cordemex, Merida 97310, Yucatan, Mexico.
RI Singh, David/I-2416-2012; CinvesNano-Merida,
CinvesNano-Merida/C-5672-2013
FU CONACYT-Mexico [25794-J]; Department of Energy, Division of Materials
Sciences and Engineering
FX The authors would like to thank Gerko Oskam, Edgar Martinez-Guerra, and
Omar de la Pena for a critical reading of the manuscript. One of the
authors (RQ) gratefully acknowledges Consejo Nacional de Ciencia y
Tecnolog a (CONACYT, Mexico) and CINVESTAV. This research was partially
supported by CONACYT-Mexico under Grant No. 25794-J. Work at ORNL was
supported by the Department of Energy, Division of Materials Sciences
and Engineering.
NR 42
TC 24
Z9 24
U1 2
U2 28
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD NOV
PY 2009
VL 80
IS 18
AR 184103
DI 10.1103/PhysRevB.80.184103
PG 8
WC Physics, Condensed Matter
SC Physics
GA 526RO
UT WOS:000272310900038
ER
PT J
AU Rameau, JD
Yang, HB
Gu, GD
Johnson, PD
AF Rameau, J. D.
Yang, H. -B.
Gu, G. D.
Johnson, P. D.
TI Coupling of low-energy electrons in the optimally doped
Bi2Sr2CaCu2O8+delta superconductor to an optical phonon mode
SO PHYSICAL REVIEW B
LA English
DT Article
DE bismuth compounds; calcium compounds; Fermi level; high-temperature
superconductors; phonons; photoemission; strontium compounds
ID COPPER-OXIDE SUPERCONDUCTORS; RAMAN-SCATTERING
AB Laser-based photoemission with photons of energy 6 eV is used to examine the fine details of the very low-energy electron dispersion and associated dynamics in the nodal region of optimally doped Bi2212. A "kink" in the dispersion in the immediate vicinity of the Fermi energy is associated with scattering from an optical phonon previously identified in Raman studies. The identification of this phonon as the appropriate mode is confirmed by comparing the scattering rates observed experimentally with the results of calculated scattering rates based on the properties of the phonon mode.
C1 [Rameau, J. D.; Yang, H. -B.; Gu, G. D.; Johnson, P. D.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA.
RP Rameau, JD (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA.
RI Gu, Genda/D-5410-2013
OI Gu, Genda/0000-0002-9886-3255
FU Department of Energy [DE-AC02-98CH10886]
FX The authors would like to acknowledge useful discussions with Chris
Homes, Phil Allen, and Tony Valla. The research work described in this
paper was supported by the Department of Energy under Contract No.
DE-AC02-98CH10886.
NR 24
TC 13
Z9 13
U1 0
U2 11
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV
PY 2009
VL 80
IS 18
AR 184513
DI 10.1103/PhysRevB.80.184513
PG 7
WC Physics, Condensed Matter
SC Physics
GA 526RO
UT WOS:000272310900101
ER
PT J
AU Ristivojevic, Z
AF Ristivojevic, Zoran
TI Superconducting film with randomly magnetized dots: A realization of the
two-dimensional XY model with random phase shifts
SO PHYSICAL REVIEW B
LA English
DT Article
DE flux pinning; magnetisation; superconducting thin films; X-Y model
ID KOSTERLITZ-THOULESS TRANSITION; JOSEPHSON-JUNCTION ARRAYS; DISORDER;
GLASS; SYSTEMS; FIELD
AB We consider a thin superconducting film with randomly magnetized dots on top of it. The dots produce a disordered pinning potential for vortices in the film. We show that for dots with permanent and random magnetization normal or parallel to the film surface, our system is an experimental realization of the two-dimensional XY model with random phase shifts. The low-temperature superconducting phase, that exists without magnetic dots, survives in the presence of magnetic dots for sufficiently small disorder.
C1 [Ristivojevic, Zoran] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany.
[Ristivojevic, Zoran] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
RP Ristivojevic, Z (reprint author), Univ Cologne, Inst Theoret Phys, Zulpicher Str 77, D-50937 Cologne, Germany.
FU DFG [NA222/5-2, SFB 608]
FX This work is financially supported by the DFG under the Grant No.
NA222/5-2 and through SFB 608. The author thanks T. Nattermann and V.
Pokrovsky for discussions and A. Petkovic for reading the manuscript and
helpful suggestions.
NR 41
TC 2
Z9 2
U1 0
U2 1
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV
PY 2009
VL 80
IS 17
AR 174528
DI 10.1103/PhysRevB.80.174528
PG 5
WC Physics, Condensed Matter
SC Physics
GA 526RL
UT WOS:000272310400099
ER
PT J
AU Sheehy, DE
Schmalian, J
AF Sheehy, Daniel E.
Schmalian, Joerg
TI Optical transparency of graphene as determined by the fine-structure
constant
SO PHYSICAL REVIEW B
LA English
DT Article
DE fine structure; graphene; optical conductivity; transparency
ID FERMI-LIQUID BEHAVIOR
AB The observed 97.7% optical transparency of graphene has been linked to the value 1/137 of the fine structure constant, by using results for noninteracting Dirac fermions. The agreement in three significant figures requires an explanation for the apparent unimportance of the Coulomb interaction. Using arguments based on Ward identities, the leading corrections to the optical conductivity due to the Coulomb interactions are correctly computed (resolving a theoretical dispute) and shown to amount to only 1%-2%, corresponding to 0.03%-0.04% in the transparency.
C1 [Sheehy, Daniel E.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA.
[Schmalian, Joerg] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Schmalian, Joerg] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
RP Sheehy, DE (reprint author), Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA.
RI Schmalian, Joerg/H-2313-2011
FU Ames Laboratory [DE-AC02-07CH11358]; Louisiana Board of Regents [LEQSF
(2008-11)-RD-A-10]
FX We gratefully acknowledge useful discussions with I. Vekhter, as well as
the Aspen Center for Physics where part of this work was carried out.
This research was supported by the Ames Laboratory, operated for the
U.S. Department of Energy by Iowa State University under Contract No.
DE-AC02-07CH11358, and by the Louisiana Board of Regents, under Grant
No. LEQSF (2008-11)-RD-A-10.
NR 22
TC 54
Z9 54
U1 2
U2 15
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV
PY 2009
VL 80
IS 19
AR 193411
DI 10.1103/PhysRevB.80.193411
PG 4
WC Physics, Condensed Matter
SC Physics
GA 526RP
UT WOS:000272311000030
ER
PT J
AU Stanek, CR
Jiang, C
Uberuaga, BP
Sickafus, KE
Cleave, AR
Grimes, RW
AF Stanek, C. R.
Jiang, C.
Uberuaga, B. P.
Sickafus, K. E.
Cleave, A. R.
Grimes, R. W.
TI Predicted structure and stability of A(4)B(3)O(12) delta-phase
compositions
SO PHYSICAL REVIEW B
LA English
DT Article
DE crystal structure; density functional theory; holmium compounds; Monte
Carlo methods; scandium compounds; thermal stability; thermodynamics
ID INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET;
CRYSTAL-STRUCTURE; X-RAY; PYROCHLORE STRUCTURE; NEUTRON-DIFFRACTION;
SEMICONDUCTOR TRANSITION; RADIATION TOLERANCE; SOLID-SOLUTIONS
AB A combination of atomistic simulation techniques has been employed to predict ordered structures for a series of A(4)B(3)O(12) delta-phase compounds, where A is a 3+ cation ranging in size from Sc3+ to Ho3+ and B is a 4+ cation ranging from Ti4+ to Zr4+. Experimentally, a fully ordered cation structure has yet to be resolved for any of these compounds. Monte Carlo energy-minimization calculations using short-range pair potentials identified three low-energy arrangements of A(3+) and B4+ cations. The details of these three structures were analyzed with the layer motif method. To quantitatively determine the delta-phase structure of each composition, the three configurations were reevaluated with density-functional theory. We also used special quasirandom structures to compare the ordered low-energy configurations to cation disorder. For all compositions considered, we find that at least one of the three ordered structures is lower in energy than the disordered structure, suggesting the thermodynamic stability of an ordered phase. Of the three ordered structures identified by this approach, one has not been identified previously in the literature for any composition. In addition, we discuss the stability of delta-phase compounds with respect to other "ABO(4-x)" fluorite-derivative compositions and predict the structure of compositions for which none has been reported.
C1 [Stanek, C. R.; Jiang, C.; Uberuaga, B. P.; Sickafus, K. E.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA.
[Cleave, A. R.; Grimes, R. W.] Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2BP, England.
RP Stanek, CR (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA.
EM stanek@lanl.gov
RI Jiang, Chao/A-2546-2011; Jiang, Chao/D-1957-2017
OI Jiang, Chao/0000-0003-0610-6327
FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of
Materials Science and Engineering [DE-AC52-06NA25396]
FX This work was sponsored by the U.S. Department of Energy, Office of
Basic Energy Sciences, Division of Materials Science and Engineering,
and carried out in part for the UKERC materials programme. Los Alamos
National Laboratory, an affirmative action/equal opportunity employer,
is operated by Los Alamos National Security, LLC, for the National
Nuclear Security Administration of the U. S. Department of Energy under
Contract No. DE-AC52-06NA25396.
NR 127
TC 18
Z9 18
U1 3
U2 23
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV
PY 2009
VL 80
IS 17
AR 174101
DI 10.1103/PhysRevB.80.174101
PG 11
WC Physics, Condensed Matter
SC Physics
GA 526RL
UT WOS:000272310400019
ER
PT J
AU Takamura, Y
Yang, F
Kemik, N
Arenholz, E
Biegalski, MD
Christen, HM
AF Takamura, Y.
Yang, F.
Kemik, N.
Arenholz, E.
Biegalski, M. D.
Christen, H. M.
TI Competing interactions in ferromagnetic/antiferromagnetic perovskite
superlattices
SO PHYSICAL REVIEW B
LA English
DT Article
DE antiferromagnetic materials; exchange interactions (electron);
ferromagnetic materials; galvanomagnetic effects; lanthanum compounds;
magnetic circular dichroism; magnetic multilayers; magnetisation;
strontium compounds; superlattices
ID X-RAY-ABSORPTION; COLOSSAL MAGNETORESISTANCE; MAGNETIC-PROPERTIES;
THIN-FILMS; INTERFACES; EXCHANGE; OXIDES; HETEROINTERFACE; TRANSITION
AB Soft x-ray magnetic dichroism, magnetization, and magnetotransport measurements demonstrate that the competition between different magnetic interactions (exchange coupling, electronic reconstruction, and long-range interactions) in La(0.7)Sr(0.3)FeO(3)(LSFO)/La(0.7)Sr(0.3)MnO(3)(LSMO) perovskite oxide superlattices leads to unexpected functional properties. The antiferromagnetic order parameter in LSFO and ferromagnetic order parameter in LSMO show a dissimilar dependence on sublayer thickness and temperature, illustrating the high degree of tunability in these artificially layered materials.
C1 [Takamura, Y.; Yang, F.; Kemik, N.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA.
[Arenholz, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Biegalski, M. D.; Christen, H. M.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
RP Takamura, Y (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA.
RI Christen, Hans/H-6551-2013
OI Christen, Hans/0000-0001-8187-7469
NR 37
TC 28
Z9 28
U1 2
U2 37
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV
PY 2009
VL 80
IS 18
AR 180417
DI 10.1103/PhysRevB.80.180417
PG 4
WC Physics, Condensed Matter
SC Physics
GA 526RO
UT WOS:000272310900022
ER
PT J
AU Tempere, J
Casteels, W
Oberthaler, MK
Knoop, S
Timmermans, E
Devreese, JT
AF Tempere, J.
Casteels, W.
Oberthaler, M. K.
Knoop, S.
Timmermans, E.
Devreese, J. T.
TI Feynman path-integral treatment of the BEC-impurity polaron
SO PHYSICAL REVIEW B
LA English
DT Article
DE Bose-Einstein condensation; effective mass; free energy; phonons;
polarons
ID SLOW ELECTRONS; LIQUID-HELIUM; ABSORPTION; MOBILITY; CRYSTAL; SURFACE;
ENERGY; STATE; FILMS
AB The description of an impurity atom in a Bose-Einstein condensate can be cast in the form of Froumlhlich's polaron Hamiltonian, where the Bogoliubov excitations play the role of the phonons. An expression for the corresponding polaronic coupling strength is derived, relating the coupling strength to the scattering lengths, the trap size and the number of Bose condensed atoms. This allows to identify several approaches to reach the strong-coupling limit for the quantum gas polarons, whereas this limit was hitherto experimentally inaccessible in solids. We apply Feynman's path-integral method to calculate for all coupling strengths the polaronic shift in the free energy and the increase in the effective mass. The effect of temperature on these quantities is included in the description. We find similarities to the acoustic polaron results and indications of a transition between free polarons and self-trapped polarons. The prospects, based on the current theory, of investigating the polaron physics with ultracold gases are discussed for lithium atoms in a sodium condensate.
C1 [Tempere, J.; Casteels, W.; Devreese, J. T.] Univ Antwerp, TFVS, B-2020 Antwerp, Belgium.
[Tempere, J.] Harvard Univ, Lyman Lab Phys, Cambridge, MA 02138 USA.
[Oberthaler, M. K.; Knoop, S.] Univ Heidelberg, Kirchhoff Inst Phys, D-69120 Heidelberg, Germany.
[Timmermans, E.] Los Alamos Natl Lab, Theoret Div T4, Los Alamos, NM 87545 USA.
RP Tempere, J (reprint author), Univ Antwerp, TFVS, Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
RI Tempere, Jacques/D-9199-2012; Knoop, Steven/N-6919-2013
OI Knoop, Steven/0000-0002-5090-6295
NR 36
TC 71
Z9 72
U1 0
U2 21
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV
PY 2009
VL 80
IS 18
AR 184504
DI 10.1103/PhysRevB.80.184504
PG 8
WC Physics, Condensed Matter
SC Physics
GA 526RO
UT WOS:000272310900092
ER
PT J
AU Weck, G
Eggert, J
Loubeyre, P
Desbiens, N
Bourasseau, E
Maillet, JB
Mezouar, M
Hanfland, M
AF Weck, G.
Eggert, J.
Loubeyre, P.
Desbiens, N.
Bourasseau, E.
Maillet, J. -B.
Mezouar, M.
Hanfland, M.
TI Phase diagrams and isotopic effects of normal and deuterated water
studied via x-ray diffraction up to 4.5 GPa and 500 K
SO PHYSICAL REVIEW B
LA English
DT Article
DE heavy water; high-pressure effects; isotope shifts; liquid structure;
phase diagrams; X-ray diffraction
ID LIQUID WATER; PRESSURE; EQUATION; CALIBRATION; SCATTERING; DENSITY;
STATE
AB We present synchrotron x-ray measurements in a diamond anvil cell of the molecular structure factor of H(2)O and D(2)O fluids up to 4.5 GPa and 500 K. We observe large changes in the structure factor and a dramatic increase in the oxygen coordination number over a 2 GPa pressure range. A P-T diagram of the nearest-neighbor oxygen coordination number, n(OO), is disclosed. Also, a counterintuitive isotopic shift of the variation of n(OO) with pressure is observed.
C1 [Weck, G.; Loubeyre, P.; Desbiens, N.; Bourasseau, E.; Maillet, J. -B.] DIF, DAM, CEA, F-91297 Arpajon, France.
[Eggert, J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
[Mezouar, M.; Hanfland, M.] European Synchrotron Radiat Facil, F-38043 Grenoble, France.
RP Weck, G (reprint author), DIF, DAM, CEA, F-91297 Arpajon, France.
RI Desbiens, Nicolas/B-9568-2009
NR 24
TC 31
Z9 31
U1 0
U2 18
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV
PY 2009
VL 80
IS 18
AR 180202
DI 10.1103/PhysRevB.80.180202
PG 4
WC Physics, Condensed Matter
SC Physics
GA 526RO
UT WOS:000272310900003
ER
PT J
AU Witte, C
Findlay, SD
Oxley, MP
Rehr, JJ
Allen, LJ
AF Witte, C.
Findlay, S. D.
Oxley, M. P.
Rehr, J. J.
Allen, L. J.
TI Theory of dynamical scattering in near-edge electron energy loss
spectroscopy
SO PHYSICAL REVIEW B
LA English
DT Article
DE electron collisions; electron energy loss spectra; nickel compounds;
scanning-transmission electron microscopy
ID INNER-SHELL IONIZATION; ANISOTROPIC MATERIALS; INELASTIC-SCATTERING;
K-SHELL; ORIENTATION DEPENDENCE; DIPOLE APPROXIMATION; FINE-STRUCTURE;
REAL-SPACE; PROBE CONVERGENCE; LOSS SPECTRA
AB Beyond chemical information, the fine structure of an absorption edge gives bonding and electronic information. We provide a synthesis of fine structure and dynamical scattering theory, allowing the exploration of the effects of dynamical scattering on the measured fine structure. We discuss the effects of experimental geometry in the context of site-specific near-edge spectroscopy of NiAl2O4 and find that large detectors serve to localize the inelastic signal and may be preferable to the small off-axis detectors currently used. We then explore the possibility of measuring changes in fine structure within a unit cell using scanning transmission electron microscopy. We demonstrate that, in principle, it is possible to measure a subtle change in the fine structure of the O K edge in SrTiO3 as the probe is scanned across the unit cell. We explore the best experimental conditions to achieve this and find that large probe-forming and detector apertures help to localize the signal to the atomic sites.
C1 [Witte, C.; Allen, L. J.] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia.
[Findlay, S. D.] Univ Tokyo, Inst Engn Innovat, Sch Engn, Tokyo 1138656, Japan.
[Oxley, M. P.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37325 USA.
[Oxley, M. P.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[Rehr, J. J.] Univ Washington, Dept Phys, Seattle, WA 98195 USA.
RP Witte, C (reprint author), Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia.
RI Findlay, Scott/C-9764-2013
OI Findlay, Scott/0000-0003-4862-4827
FU Japan Society for the Promotion of Science (JSPS); Office of Basic
Energy Sciences, Division of Materials Sciences and Engineering, U. S.
Department of Energ [DE-AC05-00OR22725]; Oak Ridge National Laboratory
FX The authors would like to thank Z. Levine, K. Jorissen, and A. Sorini
for helpful discussions from their independent explorations of
generalizing the FEFF code for the calculation of MDFFs. L.J.A.
acknowledges support from the Australian Research Council. S. D. F. is
supported by the Japan Society for the Promotion of Science (JSPS). This
research was sponsored by the Office of Basic Energy Sciences, Division
of Materials Sciences and Engineering, U. S. Department of Energy, under
Contract No. DE-AC05-00OR22725 with Oak Ridge National Laboratory,
managed and operated by UT-Battelle, LLC.
NR 80
TC 9
Z9 9
U1 1
U2 10
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV
PY 2009
VL 80
IS 18
AR 184108
DI 10.1103/PhysRevB.80.184108
PG 15
WC Physics, Condensed Matter
SC Physics
GA 526RO
UT WOS:000272310900043
ER
PT J
AU Wu, YZ
Won, C
Wu, J
Xu, Y
Wang, S
Xia, K
Rotenberg, E
Qiu, ZQ
AF Wu, Y. Z.
Won, C.
Wu, J.
Xu, Y.
Wang, S.
Xia, Ke
Rotenberg, E.
Qiu, Z. Q.
TI Effect of inserting Ni and Co layers on the quantum well states of a
thin Cu film grown on Co/Cu(001)
SO PHYSICAL REVIEW B
LA English
DT Article
ID SHORT-PERIOD OSCILLATIONS; SPIN POLARIZATION; PHOTOEMISSION; CO(100);
INTERFERENCE; SANDWICHES; OVERLAYERS; SUBSTRATE; SYSTEM
AB The effect of Ni and Co inserting layers on the quantum well (QW) states of a Cu film grown on Co/Cu(001) is systematically investigated using angle-resolved photoemission spectroscopy. For electron energy E-E-F < -0.5 eV, we find that both Ni and Co inserting layers behave similarly to serve as a potential-energy barrier to divide the Cu film into two Cu QWs. For energy near the Fermi energy, the Ni and Co inserting layers have different effects on the Cu QW states while the Co thin layer still perturbs the Cu QW states, the Ni inserting layer behaves as if it were a Cu layer, especially at the Fermi energy, even up to 10 ML thickness. Such different effects of the Ni and Co inserting layers are attributed to their different electronic band matching with the Cu energy band. The first-principles calculation confirms that the electron reflectivity near the Fermi level is indeed very different at the Cu/Ni and Cu/Co interfaces, supporting the experimental results.
C1 [Wu, Y. Z.] Fudan Univ, Dept Phys, Appl Surface Phys State Key Lab, Shanghai 200433, Peoples R China.
[Wu, Y. Z.] Fudan Univ, Adv Mat Lab, Shanghai 200433, Peoples R China.
[Won, C.] Kyung Hee Univ, Dept Phys, Seoul 130701, South Korea.
[Wu, J.; Qiu, Z. Q.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Xu, Y.; Wang, S.; Xia, Ke] Chinese Acad Sci, Inst Phys, State Key Lab Surface Phys, Beijing 100080, Peoples R China.
[Rotenberg, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA.
RP Wu, YZ (reprint author), Fudan Univ, Dept Phys, Appl Surface Phys State Key Lab, Shanghai 200433, Peoples R China.
RI Rotenberg, Eli/B-3700-2009; wu, YiZheng/O-1547-2013; Wu,
yizheng/P-2395-2014; Qiu, Zi Qiang/O-4421-2016
OI Rotenberg, Eli/0000-0002-3979-8844; Wu, yizheng/0000-0002-9289-1271;
Qiu, Zi Qiang/0000-0003-0680-0714
FU National Science Foundation [DMR-0803305]; U. S. Department of Energy
[DE-AC03-76SF00098]; NSFC; MOST of China [2006CB921303, 2009CB929203,
2008GR0860]; SHEDF; STCSM; Fok Ying Tong education foundation; KICOS
FX This work was supported by the National Science Foundation under Grant
No. DMR-0803305, U. S. Department of Energy under Grant No.
DE-AC03-76SF00098, NSFC and MOST of China (Grants No. 2006CB921303, No.
2009CB929203, and No. 2008GR0860), SHEDF, STCSM, and Fok Ying Tong
education foundation, and KICOS through Global Research Laboratory
project.
NR 44
TC 2
Z9 2
U1 0
U2 6
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV
PY 2009
VL 80
IS 20
AR 205426
DI 10.1103/PhysRevB.80.205426
PG 7
WC Physics, Condensed Matter
SC Physics
GA 526RS
UT WOS:000272311400112
ER
PT J
AU Yang, A
Steger, M
Sekiguchi, T
Karaiskaj, D
Thewalt, MLW
Cardona, M
Itoh, KM
Riemann, H
Abrosimov, NV
Churbanov, MF
Gusev, AV
Bulanov, AD
Kovalev, ID
Kaliteevskii, AK
Godisov, ON
Becker, P
Pohl, HJ
Ager, JW
Haller, EE
AF Yang, A.
Steger, M.
Sekiguchi, T.
Karaiskaj, D.
Thewalt, M. L. W.
Cardona, M.
Itoh, K. M.
Riemann, H.
Abrosimov, N. V.
Churbanov, M. F.
Gusev, A. V.
Bulanov, A. D.
Kovalev, I. D.
Kaliteevskii, A. K.
Godisov, O. N.
Becker, P.
Pohl, H. -J.
Ager, J. W., III
Haller, E. E.
TI Single-frequency laser spectroscopy of the boron bound exciton in Si-28
SO PHYSICAL REVIEW B
LA English
DT Article
DE boron; elemental semiconductors; excitons; photoluminescence; silicon;
spectral line breadth
ID ULTRAHIGH-RESOLUTION PHOTOLUMINESCENCE; SILICON; SEMICONDUCTORS; PHONON;
TRANSITIONS; DONORS
AB While the first comparison of shallow bound exciton photoluminescence between natural Si and highly enriched Si-28 dramatically demonstrated the importance of inhomogeneous isotope broadening, the transitions in Si-28 were in fact too narrow to be resolved with the then available instrumental resolution of 0.014 cm(-1). We report results for the boron bound exciton transition in highly enriched Si-28 using a novel apparatus for photoluminescence excitation spectroscopy based on a tuneable single-frequency laser source with sub-MHz resolution. Twenty well-resolved doublets, exhibiting a B-10-B-11 isotope splitting, are observed in the new spectra for Si-28 with isotopic enrichment >99.99%. Linewidths as narrow as 0.0012 cm(-1) (150 neV) full width at half maximum are observed for the most highly enriched sample.
C1 [Yang, A.; Steger, M.; Sekiguchi, T.; Karaiskaj, D.; Thewalt, M. L. W.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada.
[Cardona, M.] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany.
[Itoh, K. M.] Keio Univ, Yokohama, Kanagawa 2238522, Japan.
[Itoh, K. M.] CREST JST, Yokohama, Kanagawa 2238522, Japan.
[Riemann, H.; Abrosimov, N. V.] Inst Crystal Growth IKZ, D-12489 Berlin, Germany.
[Churbanov, M. F.; Gusev, A. V.; Bulanov, A. D.; Kovalev, I. D.] RAS, IChHPS, Nizhnii Novgorod 603000, Russia.
[Kaliteevskii, A. K.; Godisov, O. N.] Sci & Tech Ctr Centrotech, St Petersburg 198096, Russia.
[Becker, P.] Phys Tekn Bundestanstalt Braunschweig, D-38116 Braunschweig, Germany.
[Pohl, H. -J.] VITCON Projectconsult GmbH, D-07743 Jena, Germany.
[Ager, J. W., III; Haller, E. E.] Univ Calif Berkeley, Berkeley, CA 94720 USA.
[Ager, J. W., III; Haller, E. E.] LBNL, Berkeley, CA 94720 USA.
RP Yang, A (reprint author), Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada.
RI Itoh, Kohei/C-5738-2014
FU Natural Sciences and Engineering Research Council of Canada (NSERC)
FX This work was supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC).
NR 18
TC 1
Z9 1
U1 1
U2 18
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV
PY 2009
VL 80
IS 19
AR 195203
DI 10.1103/PhysRevB.80.195203
PG 6
WC Physics, Condensed Matter
SC Physics
GA 526RP
UT WOS:000272311000054
ER
PT J
AU Yi, M
Lu, DH
Analytis, JG
Chu, JH
Mo, SK
He, RH
Hashimoto, M
Moore, RG
Mazin, II
Singh, DJ
Hussain, Z
Fisher, IR
Shen, ZX
AF Yi, M.
Lu, D. H.
Analytis, J. G.
Chu, J-H.
Mo, S-K.
He, R-H.
Hashimoto, M.
Moore, R. G.
Mazin, I. I.
Singh, D. J.
Hussain, Z.
Fisher, I. R.
Shen, Z-X.
TI Unconventional electronic reconstruction in undoped (Ba,Sr)Fe2As2 across
the spin density wave transition
SO PHYSICAL REVIEW B
LA English
DT Article
DE band structure; barium compounds; density functional theory;
high-temperature superconductors; iron compounds; magnetic moments;
photoelectron spectra; spin density waves; strontium compounds
ID IRON-PNICTIDES; ORDER
AB Through a systematic high-resolution angle-resolved photoemission study of the iron pnictide compounds (Ba,Sr)Fe2As2, we show that the electronic structures of these compounds are significantly reconstructed across the spin density wave transition, which cannot be described by a simple folding scenario of conventional density wave ordering. Moreover, we find that LDA calculations with an incorporated suppressed magnetic moment of 0.5 mu(B) can match well the details in the reconstructed electronic structure, suggesting that the nature of magnetism in the pnictides is more itinerant than local, while the origin of suppressed magnetic moment remains an important issue for future investigations.
C1 [Yi, M.; Analytis, J. G.; Chu, J-H.; He, R-H.; Fisher, I. R.; Shen, Z-X.] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA.
[Yi, M.; Analytis, J. G.; Chu, J-H.; He, R-H.; Fisher, I. R.; Shen, Z-X.] Stanford Univ, Dept Phys, Geballe Lab Adv Mat, Stanford, CA 94305 USA.
[Yi, M.; Analytis, J. G.; Chu, J-H.; He, R-H.; Fisher, I. R.; Shen, Z-X.] Stanford Univ, Dept Appl Phys, Geballe Lab Adv Mat, Stanford, CA 94305 USA.
[Lu, D. H.; Moore, R. G.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA.
[Mo, S-K.; Hashimoto, M.; Hussain, Z.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Mazin, I. I.] USN, Res Lab, Ctr Computat Mat Sci, Washington, DC 20375 USA.
[Singh, D. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
RP Yi, M (reprint author), SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA.
EM zxshen@stanford.edu
RI He, Ruihua/A-6975-2010; Yi, Ming/E-3145-2010; Singh, David/I-2416-2012;
Mo, Sung-Kwan/F-3489-2013
OI Mo, Sung-Kwan/0000-0003-0711-8514
FU DOE Office of Basic Energy Science, Division of Materials Science and
Engineering [DE-AC02-76SF00515]; NSF
FX We thank E. Cappelluti, T. P. Devereaux, W. S. Lee, B. Moritz, H. Yao,
and Y. Yin for helpful discussions. ARPES experiments were performed at
the Stanford Synchrotron Radiation Lightsource and the Advanced Light
Source, which are both operated by the Office of Basic Energy Science,
U. S. Department of Energy. The Stanford work is supported by DOE Office
of Basic Energy Science, Division of Materials Science and Engineering,
under Contract No. DE-AC02-76SF00515. Work at ORNL was supported by the
DOE, Division of Materials Sciences and Engineering. M. Y. thanks the
NSF Graduate Research Fellowship Program for financial support.
NR 58
TC 94
Z9 94
U1 1
U2 21
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV
PY 2009
VL 80
IS 17
AR 174510
DI 10.1103/PhysRevB.80.174510
PG 10
WC Physics, Condensed Matter
SC Physics
GA 526RL
UT WOS:000272310400081
ER
PT J
AU Yin, WG
Ku, W
AF Yin, Wei-Guo
Ku, Wei
TI Flavor-twisted boundary condition for simulations of quantum many-body
systems
SO PHYSICAL REVIEW B
LA English
DT Article
ID HEISENBERG-ANTIFERROMAGNET; EXACT DIAGONALIZATION; SQUARE LATTICE;
STATE; MODEL
AB We present an approximative simulation method for quantum many-body systems based on coarse graining the space of the momentum transferred between interacting particles, which leads to effective Hamiltonians of reduced size with the flavor-twisted boundary condition. A rapid, accurate, and fast convergent computation of the ground-state energy is demonstrated on the spin-1/2 quantum antiferromagnet of any dimension by employing only two sites. The method is expected to be useful for future simulations and quick estimates on other strongly correlated systems.
C1 [Yin, Wei-Guo; Ku, Wei] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA.
RP Yin, WG (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA.
EM wyin@bnl.gov
RI Yin, Weiguo/A-9671-2014
OI Yin, Weiguo/0000-0002-4965-5329
FU U. S. Department of Energy [DE-AC02-98CH10886]; State of New York
FX This research utilized resources at the New York Center for
Computational Sciences at Stony Brook University/Brookhaven National
Laboratory which is supported by the U. S. Department of Energy under
Contract No. DE-AC02-98CH10886 and by the State of New York. We are
grateful to P. D. Johnson and T. Valla for collaborations that
stimulated the work.
NR 17
TC 0
Z9 0
U1 1
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV
PY 2009
VL 80
IS 18
AR 180402
DI 10.1103/PhysRevB.80.180402
PG 4
WC Physics, Condensed Matter
SC Physics
GA 526RO
UT WOS:000272310900007
ER
PT J
AU Zentgraf, T
Zhang, S
Oulton, RF
Zhang, X
AF Zentgraf, Thomas
Zhang, Shuang
Oulton, Rupert F.
Zhang, Xiang
TI Ultranarrow coupling-induced transparency bands in hybrid plasmonic
systems
SO PHYSICAL REVIEW B
LA English
DT Article
DE gold; integrated optics; nanowires; optical resonators; optical
waveguides; self-induced transparency; surface plasmon resonance
ID METAMATERIALS; HYBRIDIZATION; GRATINGS
AB Plasmons in nanoscale structures represent an exciting new route toward efficient manipulation of photons, especially at subwavelength scales. Of particular interest are the hybridized plasmonic systems, in which the interaction among the plasmonic elements can be utilized to tailor the optical responses. Here we demonstrate a hybridized plasmonic-waveguide system exhibiting behavior similar to that of the electromagnetically induced transparency; namely, an ultranarrow transmission line width arising from a coupling-induced cancellation of the plasmonic resonance.
C1 [Zentgraf, Thomas; Zhang, Shuang; Oulton, Rupert F.; Zhang, Xiang] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr, Berkeley, CA 94720 USA.
[Zentgraf, Thomas] Univ Stuttgart, Inst Phys 4, D-70550 Stuttgart, Germany.
[Zhang, Xiang] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Zentgraf, T (reprint author), Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr, 3112 Etcheverry Hall, Berkeley, CA 94720 USA.
RI Zhang, Xiang/F-6905-2011; zhang, shuang/G-5224-2011; Zentgraf,
Thomas/G-8848-2013
OI Zentgraf, Thomas/0000-0002-8662-1101
FU U. S. Department of Energy [DE-AC02-05CH11231]; Alexander von Humboldt
Foundation; Landesstiftung Baden-Wurttemberg
FX We thank Guy Bartal and Atsushi Ishikawa for stimulating discussion and
acknowledge financial support from the U. S. Department of Energy under
Contract No. DE-AC02-05CH11231. T. Z. thanks the Alexander von Humboldt
Foundation and the Landesstiftung Baden-Wurttemberg for their support.
NR 21
TC 89
Z9 90
U1 6
U2 33
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9950
EI 2469-9969
J9 PHYS REV B
JI Phys. Rev. B
PD NOV
PY 2009
VL 80
IS 19
AR 195415
DI 10.1103/PhysRevB.80.195415
PG 6
WC Physics, Condensed Matter
SC Physics
GA 526RP
UT WOS:000272311000101
ER
PT J
AU Zhang, FX
Wang, JW
Lang, M
Zhang, JM
Ewing, RC
Boatner, LA
AF Zhang, F. X.
Wang, J. W.
Lang, M.
Zhang, J. M.
Ewing, R. C.
Boatner, L. A.
TI High-pressure phase transitions of ScPO4 and YPO4
SO PHYSICAL REVIEW B
LA English
DT Article
DE density functional theory; elastic moduli; high-pressure solid-state
phase transformations; scandium compounds; X-ray diffraction; yttrium
compounds
ID GENERALIZED GRADIENT APPROXIMATION; NUCLEAR-WASTE FORMS;
RAMAN-SPECTROSCOPY; ZIRCON ZRSIO4; TRANSFORMATIONS; ORTHOPHOSPHATES;
SCINTILLATORS; PHOSPHATES; CHEMISTRY; CRYSTALS
AB ScPO4 and YPO4 with the tetragonal zircon-structure were studied at room temperature and pressures up to similar to 50 GPa. Pressure-induced phase transitions to the sheelite structure occur at 30 GPa for ScPO4 and 16.3 GPa for YPO4, respectively. In addition to the scheelite-type high-pressure phase, an intermediate phase with the monoclinic monazite-type structure formed during the phase transition process of YPO4. The high-pressure phases of ScPO4 and YPO4 are not quenchable on pressure release. The pressure dependence of the total energy of the different phases was calculated using density-functional method, and the results confirm the experimentally observed phase relations under pressure. Structural parameters and compressibility of each phase were determined by refinement of the x-ray diffraction patterns. The high-pressure phase of ScPO4 has a very large bulk modulus [376(8) GPa].
C1 [Zhang, F. X.; Wang, J. W.; Lang, M.; Zhang, J. M.; Ewing, R. C.] Univ Michigan, Dept Geol Sci, Ann Arbor, MI 48109 USA.
[Boatner, L. A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[Boatner, L. A.] Oak Ridge Natl Lab, Ctr Radiat Detect Mat & Syst, Oak Ridge, TN 37831 USA.
RP Zhang, FX (reprint author), Univ Michigan, Dept Geol Sci, Ann Arbor, MI 48109 USA.
EM rodewing@umich.edu
RI Lang, Maik/F-9939-2012; Wang, Jianwei/B-2345-2008; Zhang,
Jiaming/H-5591-2012; Boatner, Lynn/I-6428-2013; Zhang,
Fuxiang/P-7365-2015
OI Boatner, Lynn/0000-0002-0235-7594; Zhang, Fuxiang/0000-0003-1298-9795
FU Office of Basic Energy Sciences of the U. S. Department of Energy
[DE-FG02-97ER45656, DE-AC05-00OR22725, DE-AC02-10886,
DE-AC02-06CH11357]; NSF COMPRES [EAR01-35554]; National Institutes of
Health/National Institute of General Medical Sciences [DMR-0225180]; W.
M. Keck Foundation
FX This work was supported by the Office of Basic Energy Sciences of the U.
S. Department of Energy, through Grant No. DE-FG02-97ER45656. Research
at ORNL is sponsored by the Division of Materials Science and
Engineering, Office of Basic Energy Sciences, US DOE, under Contract No.
DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and
operated by UT-Battelle, LLC. The use of the beam line at X17C and U2
station of NSLS is supported by NSF COMPRES under Contract No.
EAR01-35554 and by US-DOE Contract No. DE-AC02-10886. The use of the
synchrotron in the B2 station of CHESS at Cornell University is
financially supported by the National Science Foundation and the
National Institutes of Health/National Institute of General Medical
Sciences under NSF Grant No. DMR-0225180. The synchrotron experiments
performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne
National Laboratory is supported by DOE-BES, DOE-NNSA, NSF, and the W.
M. Keck Foundation. APS is supported by DOE-BES under Contract No.
DE-AC02-06CH11357.
NR 37
TC 31
Z9 32
U1 2
U2 28
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9950
EI 2469-9969
J9 PHYS REV B
JI Phys. Rev. B
PD NOV
PY 2009
VL 80
IS 18
AR 184114
DI 10.1103/PhysRevB.80.184114
PG 7
WC Physics, Condensed Matter
SC Physics
GA 526RO
UT WOS:000272310900049
ER
PT J
AU Zhang, J
Wang, CZ
Ho, KM
AF Zhang, Jian
Wang, Cai-Zhuang
Ho, Kai-Ming
TI Finding the low-energy structures of Si[001] symmetric tilted grain
boundaries with a genetic algorithm
SO PHYSICAL REVIEW B
LA English
DT Article
DE crystal symmetry; dislocations; elemental semiconductors; silicon;
surface structure; tight-binding calculations; tilt boundaries
ID SILICON; SEMICONDUCTORS; OPTIMIZATION; SEGREGATION; DIAMOND
AB We developed a global structure optimization method, genetic algorithm, for a fast and efficient prediction of grain-boundary structures. Using this method we predicted the most stable structures and a number of low-energy metastable structures for Si[001] symmetric tilted grain boundaries with various tilted angles. We show that most of the grain-boundary structures can be described by the structural unit model with the units being the dislocation cores and perfect-crystal fragments. The energies of the grain-boundary structures obtained from the genetic algorithm optimization are evaluated by tight-binding calculations using the environment-dependent Si tight-binding potential developed previously and found to be in very good agreement with the first-principles calculation results.
C1 [Zhang, Jian] US DOE, Ames Lab, Ames, IA 50011 USA.
Iowa State Univ, Dept Phys, Ames, IA 50011 USA.
RP Zhang, J (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA.
FU U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358];
National Energy Research Supercomputing Center (NERSC) in Berkeley
FX Ames Laboratory is operated for the U.S. Department of Energy by Iowa
State University under Contract No. DE-AC02-07CH11358. This work was
supported by the Director for Energy Research, Office of Basic Energy
Sciences, including a grant of computer time at the National Energy
Research Supercomputing Center (NERSC) in Berkeley. We are grateful to
F. C. Chuang for his help in the development and understanding of the
genetic algorithm. Min Ji is thanked for the discussion on the
grain-boundary structures.
NR 22
TC 20
Z9 20
U1 0
U2 6
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV
PY 2009
VL 80
IS 17
AR 174102
DI 10.1103/PhysRevB.80.174102
PG 6
WC Physics, Condensed Matter
SC Physics
GA 526RL
UT WOS:000272310400020
ER
PT J
AU Zou, M
Pecharsky, VK
Gschneidner, KA
Mudryk, Y
Schlagel, DL
Lograsso, TA
AF Zou, M.
Pecharsky, V. K.
Gschneidner, K. A., Jr.
Mudryk, Ya.
Schlagel, D. L.
Lograsso, T. A.
TI Electrical resistivity and magnetoresistance of single-crystal
Tb5Si2.2Ge1.8
SO PHYSICAL REVIEW B
LA English
DT Article
DE colossal magnetoresistance; magnetic anisotropy; silicon compounds;
solid-state phase transformations; terbium compounds
ID GIANT MAGNETORESISTANCE; POSITIVE MAGNETORESISTANCE; COLOSSAL
MAGNETORESISTANCE; MAGNETOCALORIC COMPOUND; LOW-TEMPERATURES;
MAGNETIC-FIELD; TRANSITION; RESISTANCE; MANGANITES; BEHAVIOR
AB A positive colossal magnetoresistance (CMR) of 160% has been observed in Tb5Si2.2Ge1.8 with the magnetic field applied parallel to the a axis. When the magnetic field is applied parallel to the b and c axes, the magnetoresistance (MR) is less than 8% and 5%, respectively. The CMR effect originates from intrinsic crystallographic phase coexistence. The anisotropy of the MR effect is due to a unique geometric arrangement of the interphase boundaries and large magnetocrystalline anisotropy of the compound.
C1 [Zou, M.; Pecharsky, V. K.; Gschneidner, K. A., Jr.; Mudryk, Ya.; Schlagel, D. L.; Lograsso, T. A.] Iowa State Univ, US Dept Energy, Ames Lab, Ames, IA 50011 USA.
[Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA.
RP Zou, M (reprint author), Iowa State Univ, US Dept Energy, Ames Lab, Ames, IA 50011 USA.
EM zoumin@iastate.edu
FU Iowa State University [DE-AC02-07CH11358]; Office of Basic Energy
Sciences, Materials Sciences Division of the U. S. Department of Energy
FX The Ames Laboratory is operated for the U. S. Department of Energy by
Iowa State University under Contract No. DE-AC02-07CH11358. This work
was supported by the Office of Basic Energy Sciences, Materials Sciences
Division of the U. S. Department of Energy.
NR 41
TC 7
Z9 7
U1 0
U2 3
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9950
EI 2469-9969
J9 PHYS REV B
JI Phys. Rev. B
PD NOV
PY 2009
VL 80
IS 17
AR 174411
DI 10.1103/PhysRevB.80.174411
PG 7
WC Physics, Condensed Matter
SC Physics
GA 526RL
UT WOS:000272310400055
ER
PT J
AU Zou, M
Sampaio, JA
Pecharsky, VK
Gschneidner, KA
AF Zou, M.
Sampaio, J. A.
Pecharsky, V. K.
Gschneidner, K. A., Jr.
TI Spontaneous generation of voltage in the magnetocaloric compound
La(Fe0.88Si0.12)(13) and comparison to SmMn2Ge2
SO PHYSICAL REVIEW B
LA English
DT Article
DE iron compounds; lanthanum compounds; magnetic transitions;
magnetocaloric effects; manganese compounds; samarium compounds
ID TRANSFORMATION; GD5SI2GE2
AB Relationships among spontaneous generation of voltage (SGV), magnetocaloric effect, temperature induced first-order magnetic phase transformation, and its thermal effect have been studied based on experimental results of La(Fe0.88Si0.12)(13) and SmMn2Ge2 compounds. Remarkable differences in magnetocaloric effects and temperature-induced unit-cell volume changes during their first-order magnetic phase transformations lead to dramatic differences in their SGV effects. Both temperature and magnetic field trigger SGV in La(Fe0.88Si0.12)(13) compound, but no SGV has been observed in SmMn2Ge2. Our results clarify that it is not the first-order crystallographic or magnetic phase transformation per se, but the strong thermal effects, i.e., latent heat and magnetocaloric effect that play the key role in the SGV mechanism.
C1 [Zou, M.; Sampaio, J. A.; Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA.
[Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA.
RP Zou, M (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA.
EM zoumin@iastate.edu
RI Sampaio, Juraci/D-9707-2012
OI Sampaio, Juraci/0000-0002-8403-6718
FU U.S. Department of Energy, Office of Basic Energy Sciences
[DE-AC02-07CH11358]
FX The authors thank Paul C. Canfield for providing
SmMn2Ge2 samples. This work was supported by the
U.S. Department of Energy, Office of Basic Energy Sciences. The Ames
Laboratory is operated for the U.S. DOE by Iowa State University under
Contract No. DE-AC02-07CH11358.
NR 14
TC 11
Z9 11
U1 3
U2 8
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV
PY 2009
VL 80
IS 17
AR 172403
DI 10.1103/PhysRevB.80.172403
PG 4
WC Physics, Condensed Matter
SC Physics
GA 526RL
UT WOS:000272310400010
ER
PT J
AU Afanasiev, S
Aidala, C
Ajitanand, NN
Akiba, Y
Alexander, J
Al-Jamel, A
Aoki, K
Aphecetche, L
Armendariz, R
Aronson, SH
Averbeck, R
Awes, TC
Azmoun, B
Babintsev, V
Baldisseri, A
Barish, KN
Barnes, PD
Bassalleck, B
Bathe, S
Batsouli, S
Baublis, V
Bauer, F
Bazilevsky, A
Belikov, S
Bennett, R
Berdnikov, Y
Bjorndal, MT
Boissevain, JG
Borel, H
Boyle, K
Brooks, ML
Brown, DS
Bucher, D
Buesching, H
Bumazhnov, V
Bunce, G
Burward-Hoy, JM
Butsyk, S
Campbell, S
Chai, JS
Chernichenko, S
Chiba, J
Chi, CY
Chiu, M
Choi, IJ
Chujo, T
Cianciolo, V
Cleven, CR
Cobigo, Y
Cole, BA
Comets, MP
Constantin, P
Csanad, M
Csorgo, T
Dahms, T
Das, K
David, G
Delagrange, H
Denisov, A
d'Enterria, D
Deshpande, A
Desmond, EJ
Dietzsch, O
Dion, A
Drachenberg, JL
Drapier, O
Drees, A
Dubey, AK
Durum, A
Dzhordzhadze, V
Efremenko, YV
Egdemir, J
Enokizono, A
En'yo, H
Espagnon, B
Esumi, S
Fields, DE
Fleuret, F
Fokin, SL
Forestier, B
Fraenkel, Z
Frantz, JE
Franz, A
Frawley, AD
Fukao, Y
Fung, SY
Gadrat, S
Gastineau, F
Germain, M
Glenn, A
Gonin, M
Gosset, J
Goto, Y
de Cassagnac, RG
Grau, N
Greene, SV
Perdekamp, MG
Gunji, T
Gustafsson, HA
Hachiya, T
Henni, AH
Haggerty, JS
Hagiwara, MN
Hamagaki, H
Harada, H
Hartouni, EP
Haruna, K
Harvey, M
Haslum, E
Hasuko, K
Hayano, R
Heffner, M
Hemmick, TK
Heuser, JM
He, X
Hiejima, H
Hill, JC
Hobbs, R
Holmes, M
Holzmann, W
Homma, K
Hong, B
Horaguchi, T
Hur, MG
Ichihara, T
Imai, K
Inaba, M
Isenhower, D
Isenhower, L
Ishihara, M
Isobe, T
Issah, M
Isupov, A
Jacak, BV
Jia, J
Jin, J
Jinnouchi, O
Johnson, BM
Joo, KS
Jouan, D
Kajihara, F
Kametani, S
Kamihara, N
Kaneta, M
Kang, JH
Kawagishi, T
Kazantsev, AV
Kelly, S
Khanzadeev, A
Kim, DJ
Kim, E
Kim, YS
Kinney, E
Kiss, A
Kistenev, E
Kiyomichi, A
Klein-Boesing, C
Kochenda, L
Kochetkov, V
Komkov, B
Konno, M
Kotchetkov, D
Kozlov, A
Kroon, PJ
Kunde, GJ
Kurihara, N
Kurita, K
Kweon, MJ
Kwon, Y
Kyle, GS
Lacey, R
Lajoie, JG
Lebedev, A
Le Bornec, Y
Leckey, S
Lee, DM
Lee, MK
Leitch, MJ
Leite, MAL
Lim, H
Litvinenko, A
Liu, MX
Li, XH
Maguire, CF
Makdisi, YI
Malakhov, A
Malik, MD
Manko, VI
Masui, H
Matathias, F
McCain, MC
McGaughey, PL
Miake, Y
Miller, TE
Milov, A
Mioduszewski, S
Mishra, GC
Mitchell, JT
Morrison, DP
Moss, JM
Moukhanova, TV
Mukhopadhyay, D
Murata, J
Nagamiya, S
Nagata, Y
Nagle, JL
Naglis, M
Nakamura, T
Newby, J
Nguyen, M
Norman, BE
Nyanin, AS
Nystrand, J
O'Brien, E
Ogilvie, CA
Ohnishi, H
Ojha, ID
Okada, H
Okada, K
Omiwade, OO
Oskarsson, A
Otterlund, I
Ozawa, K
Pal, D
Palounek, APT
Pantuev, V
Papavassiliou, V
Park, J
Park, WJ
Pate, SF
Pei, H
Peng, JC
Pereira, H
Peresedov, V
Peressounko, DY
Pinkenburg, C
Pisani, RP
Purschke, ML
Purwar, AK
Qu, H
Rak, J
Ravinovich, I
Read, KF
Reuter, M
Reygers, K
Riabov, V
Riabov, Y
Roche, G
Romana, A
Rosati, M
Rosendahl, SSE
Rosnet, P
Rukoyatkin, P
Rykov, VL
Ryu, SS
Sahlmueller, B
Saito, N
Sakaguchi, T
Sakai, S
Samsonov, V
Sato, HD
Sato, S
Sawada, S
Semenov, V
Seto, R
Sharma, D
Shea, TK
Shein, I
Shibata, TA
Shigaki, K
Shimomura, M
Shohjoh, T
Shoji, K
Sickles, A
Silva, CL
Silvermyr, D
Sim, KS
Singh, CP
Singh, V
Skutnik, S
Smith, WC
Soldatov, A
Soltz, RA
Sondheim, WE
Sorensen, SP
Sourikova, IV
Staley, F
Stankus, PW
Stenlund, E
Stepanov, M
Ster, A
Stoll, SP
Sugitate, T
Suire, C
Sullivan, JP
Sziklai, J
Tabaru, T
Takagi, S
Takagui, EM
Taketani, A
Tanaka, KH
Tanaka, Y
Tanida, K
Tannenbaum, MJ
Taranenko, A
Tarjan, P
Thomas, TL
Togawa, M
Tojo, J
Torii, H
Towell, RS
Tram, VN
Tserruya, I
Tsuchimoto, Y
Tuli, SK
Tydesjo, H
Tyurin, N
Vale, C
Valle, H
van Hecke, HW
Velkovska, J
Vertesi, R
Vinogradov, AA
Vznuzdaev, E
Wagner, M
Wang, XR
Watanabe, Y
Wessels, J
White, SN
Willis, N
Winter, D
Woody, CL
Wysocki, M
Xie, W
Yanovich, A
Yokkaichi, S
Young, GR
Younus, I
Yushmanov, IE
Zajc, WA
Zaudtke, O
Zhang, C
Zimanyi, J
Zolin, L
AF Afanasiev, S.
Aidala, C.
Ajitanand, N. N.
Akiba, Y.
Alexander, J.
Al-Jamel, A.
Aoki, K.
Aphecetche, L.
Armendariz, R.
Aronson, S. H.
Averbeck, R.
Awes, T. C.
Azmoun, B.
Babintsev, V.
Baldisseri, A.
Barish, K. N.
Barnes, P. D.
Bassalleck, B.
Bathe, S.
Batsouli, S.
Baublis, V.
Bauer, F.
Bazilevsky, A.
Belikov, S.
Bennett, R.
Berdnikov, Y.
Bjorndal, M. T.
Boissevain, J. G.
Borel, H.
Boyle, K.
Brooks, M. L.
Brown, D. S.
Bucher, D.
Buesching, H.
Bumazhnov, V.
Bunce, G.
Burward-Hoy, J. M.
Butsyk, S.
Campbell, S.
Chai, J. -S.
Chernichenko, S.
Chiba, J.
Chi, C. Y.
Chiu, M.
Choi, I. J.
Chujo, T.
Cianciolo, V.
Cleven, C. R.
Cobigo, Y.
Cole, B. A.
Comets, M. P.
Constantin, P.
Csanad, M.
Csorgo, T.
Dahms, T.
Das, K.
David, G.
Delagrange, H.
Denisov, A.
d'Enterria, D.
Deshpande, A.
Desmond, E. J.
Dietzsch, O.
Dion, A.
Drachenberg, J. L.
Drapier, O.
Drees, A.
Dubey, A. K.
Durum, A.
Dzhordzhadze, V.
Efremenko, Y. V.
Egdemir, J.
Enokizono, A.
En'yo, H.
Espagnon, B.
Esumi, S.
Fields, D. E.
Fleuret, F.
Fokin, S. L.
Forestier, B.
Fraenkel, Z.
Frantz, J. E.
Franz, A.
Frawley, A. D.
Fukao, Y.
Fung, S. -Y.
Gadrat, S.
Gastineau, F.
Germain, M.
Glenn, A.
Gonin, M.
Gosset, J.
Goto, Y.
de Cassagnac, R. Granier
Grau, N.
Greene, S. V.
Perdekamp, M. Grosse
Gunji, T.
Gustafsson, H. A.
Hachiya, T.
Henni, A. Hadj
Haggerty, J. S.
Hagiwara, M. N.
Hamagaki, H.
Harada, H.
Hartouni, E. P.
Haruna, K.
Harvey, M.
Haslum, E.
Hasuko, K.
Hayano, R.
Heffner, M.
Hemmick, T. K.
Heuser, J. M.
He, X.
Hiejima, H.
Hill, J. C.
Hobbs, R.
Holmes, M.
Holzmann, W.
Homma, K.
Hong, B.
Horaguchi, T.
Hur, M. G.
Ichihara, T.
Imai, K.
Inaba, M.
Isenhower, D.
Isenhower, L.
Ishihara, M.
Isobe, T.
Issah, M.
Isupov, A.
Jacak, B. V.
Jia, J.
Jin, J.
Jinnouchi, O.
Johnson, B. M.
Joo, K. S.
Jouan, D.
Kajihara, F.
Kametani, S.
Kamihara, N.
Kaneta, M.
Kang, J. H.
Kawagishi, T.
Kazantsev, A. V.
Kelly, S.
Khanzadeev, A.
Kim, D. J.
Kim, E.
Kim, Y. -S.
Kinney, E.
Kiss, A.
Kistenev, E.
Kiyomichi, A.
Klein-Boesing, C.
Kochenda, L.
Kochetkov, V.
Komkov, B.
Konno, M.
Kotchetkov, D.
Kozlov, A.
Kroon, P. J.
Kunde, G. J.
Kurihara, N.
Kurita, K.
Kweon, M. J.
Kwon, Y.
Kyle, G. S.
Lacey, R.
Lajoie, J. G.
Lebedev, A.
Le Bornec, Y.
Leckey, S.
Lee, D. M.
Lee, M. K.
Leitch, M. J.
Leite, M. A. L.
Lim, H.
Litvinenko, A.
Liu, M. X.
Li, X. H.
Maguire, C. F.
Makdisi, Y. I.
Malakhov, A.
Malik, M. D.
Manko, V. I.
Masui, H.
Matathias, F.
McCain, M. C.
McGaughey, P. L.
Miake, Y.
Miller, T. E.
Milov, A.
Mioduszewski, S.
Mishra, G. C.
Mitchell, J. T.
Morrison, D. P.
Moss, J. M.
Moukhanova, T. V.
Mukhopadhyay, D.
Murata, J.
Nagamiya, S.
Nagata, Y.
Nagle, J. L.
Naglis, M.
Nakamura, T.
Newby, J.
Nguyen, M.
Norman, B. E.
Nyanin, A. S.
Nystrand, J.
O'Brien, E.
Ogilvie, C. A.
Ohnishi, H.
Ojha, I. D.
Okada, H.
Okada, K.
Omiwade, O. O.
Oskarsson, A.
Otterlund, I.
Ozawa, K.
Pal, D.
Palounek, A. P. T.
Pantuev, V.
Papavassiliou, V.
Park, J.
Park, W. J.
Pate, S. F.
Pei, H.
Peng, J. -C.
Pereira, H.
Peresedov, V.
Peressounko, D. Yu.
Pinkenburg, C.
Pisani, R. P.
Purschke, M. L.
Purwar, A. K.
Qu, H.
Rak, J.
Ravinovich, I.
Read, K. F.
Reuter, M.
Reygers, K.
Riabov, V.
Riabov, Y.
Roche, G.
Romana, A.
Rosati, M.
Rosendahl, S. S. E.
Rosnet, P.
Rukoyatkin, P.
Rykov, V. L.
Ryu, S. S.
Sahlmueller, B.
Saito, N.
Sakaguchi, T.
Sakai, S.
Samsonov, V.
Sato, H. D.
Sato, S.
Sawada, S.
Semenov, V.
Seto, R.
Sharma, D.
Shea, T. K.
Shein, I.
Shibata, T. -A.
Shigaki, K.
Shimomura, M.
Shohjoh, T.
Shoji, K.
Sickles, A.
Silva, C. L.
Silvermyr, D.
Sim, K. S.
Singh, C. P.
Singh, V.
Skutnik, S.
Smith, W. C.
Soldatov, A.
Soltz, R. A.
Sondheim, W. E.
Sorensen, S. P.
Sourikova, I. V.
Staley, F.
Stankus, P. W.
Stenlund, E.
Stepanov, M.
Ster, A.
Stoll, S. P.
Sugitate, T.
Suire, C.
Sullivan, J. P.
Sziklai, J.
Tabaru, T.
Takagi, S.
Takagui, E. M.
Taketani, A.
Tanaka, K. H.
Tanaka, Y.
Tanida, K.
Tannenbaum, M. J.
Taranenko, A.
Tarjan, P.
Thomas, T. L.
Togawa, M.
Tojo, J.
Torii, H.
Towell, R. S.
Tram, V. -N.
Tserruya, I.
Tsuchimoto, Y.
Tuli, S. K.
Tydesjo, H.
Tyurin, N.
Vale, C.
Valle, H.
van Hecke, H. W.
Velkovska, J.
Vertesi, R.
Vinogradov, A. A.
Vznuzdaev, E.
Wagner, M.
Wang, X. R.
Watanabe, Y.
Wessels, J.
White, S. N.
Willis, N.
Winter, D.
Woody, C. L.
Wysocki, M.
Xie, W.
Yanovich, A.
Yokkaichi, S.
Young, G. R.
Younus, I.
Yushmanov, I. E.
Zajc, W. A.
Zaudtke, O.
Zhang, C.
Zimanyi, J.
Zolin, L.
CA PHENIX Collaboration
TI High-p(T) pi(0) production with respect to the reaction plane in Au plus
Au collisions at s(NN)=200 GeV
SO PHYSICAL REVIEW C
LA English
DT Article
ID HEAVY-ION COLLISIONS; NUCLEUS-NUCLEUS COLLISIONS; QUARK-GLUON PLASMA;
COLLABORATION; PERSPECTIVE; MATTER
AB Measurements of the azimuthal anisotropy of high-p(T) neutral pion (pi(0)) production in Au+Au collisions at s(NN)=200 GeV by the PHENIX experiment are presented. The data included in this article were collected during the 2004 Relativistic Heavy Ion Collider running period and represent approximately an order of magnitude increase in the number of analyzed events relative to previously published results. Azimuthal angle distributions of pi(0) mesons detected in the PHENIX electromagnetic calorimeters are measured relative to the reaction plane determined event-by-event using the forward and backward beam-beam counters. Amplitudes of the second Fourier component (v(2)) of the angular distributions are presented as a function of pi(0) transverse momentum (p(T)) for different bins in collision centrality. Measured reaction plane dependent pi(0) yields are used to determine the azimuthal dependence of the pi(0) suppression as a function of p(T), R-AA(Delta phi,p(T)). A jet-quenching motivated geometric analysis is presented that attempts to simultaneously describe the centrality dependence and reaction plane angle dependence of the pi(0) suppression in terms of the path lengths of hypothetical parent partons in the medium. This set of results allows for a detailed examination of the influence of geometry in the collision region and of the interplay between collective flow and jet-quenching effects along the azimuthal axis.
C1 [Afanasiev, S.; Isupov, A.; Litvinenko, A.; Malakhov, A.; Peresedov, V.; Rukoyatkin, P.; Zolin, L.] Joint Inst Nucl Res, RU-141980 Dubna, Moscow Region, Russia.
[Singh, C. P.; Singh, V.; Tuli, S. K.] Banaras Hindu Univ, Dept Phys, Varanasi 221005, Uttar Pradesh, India.
[Aronson, S. H.; Azmoun, B.; Bazilevsky, A.; Belikov, S.; Buesching, H.; Bunce, G.; David, G.; Desmond, E. J.; Franz, A.; Haggerty, J. S.; Harvey, M.; Johnson, B. M.; Kistenev, E.; Kroon, P. J.; Makdisi, Y. I.; Mioduszewski, S.; Mitchell, J. T.; Morrison, D. P.; O'Brien, E.; Pinkenburg, C.; Pisani, R. P.; Purschke, M. L.; Sato, S.; Shea, T. K.; Sourikova, I. V.; Stoll, S. P.; Tannenbaum, M. J.; White, S. N.; Woody, C. L.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Barish, K. N.; Bathe, S.; Bauer, F.; Fung, S. -Y.; Kotchetkov, D.; Li, X. H.; Seto, R.; Xie, W.] Univ Calif Riverside, Riverside, CA 92521 USA.
[Gunji, T.; Hamagaki, H.; Hayano, R.; Isobe, T.; Kajihara, F.; Kametani, S.; Kurihara, N.; Ozawa, K.; Sakaguchi, T.] Univ Tokyo, Grad Sch Sci, Ctr Nucl Study, Bunkyo Ku, Tokyo 1130033, Japan.
[Kelly, S.; Kinney, E.; Nagle, J. L.; Wysocki, M.] Univ Colorado, Boulder, CO 80309 USA.
[Aidala, C.; Batsouli, S.; Bjorndal, M. T.; Chi, C. Y.; Chiu, M.; Cole, B. A.; d'Enterria, D.; Frantz, J. E.; Jia, J.; Jin, J.; Winter, D.; Zajc, W. A.; Zhang, C.] Columbia Univ, New York, NY 10027 USA.
[Baldisseri, A.; Borel, H.; Cobigo, Y.; Gosset, J.; Pereira, H.; Staley, F.] CEA Saclay, F-91191 Gif Sur Yvette, France.
[Tarjan, P.; Vertesi, R.] Univ Debrecen, H-4010 Debrecen, Hungary.
[Csanad, M.; Kiss, A.] Eotvos Lorand Univ, ELTE, H-1117 Budapest, Hungary.
[Das, K.; Frawley, A. D.] Florida State Univ, Tallahassee, FL 32306 USA.
[Cleven, C. R.; He, X.; Mishra, G. C.; Qu, H.] Georgia State Univ, Atlanta, GA 30303 USA.
[Enokizono, A.; Hachiya, T.; Harada, H.; Haruna, K.; Homma, K.; Nakamura, T.; Shigaki, K.; Sugitate, T.; Tsuchimoto, Y.] Hiroshima Univ, Higashihiroshima 7398526, Japan.
[Babintsev, V.; Bumazhnov, V.; Chernichenko, S.; Denisov, A.; Durum, A.; Kochetkov, V.; Semenov, V.; Shein, I.; Soldatov, A.; Tyurin, N.; Yanovich, A.] IHEP Protvino, State Res Ctr Russian Federat, RU-142281 Protvino, Russia.
[Perdekamp, M. Grosse; Hiejima, H.; McCain, M. C.; Peng, J. -C.] Univ Illinois, Urbana, IL 61801 USA.
[Belikov, S.; Constantin, P.; Grau, N.; Hill, J. C.; Lajoie, J. G.; Lebedev, A.; Ogilvie, C. A.; Pei, H.; Rak, J.; Rosati, M.; Skutnik, S.; Vale, C.] Iowa State Univ, Ames, IA 50011 USA.
[Chai, J. -S.; Hur, M. G.; Kim, Y. -S.] KAERI, Cyclotron Applicat Lab, Seoul, South Korea.
[Chiba, J.; Nagamiya, S.; Sato, S.; Sawada, S.; Tanaka, K. H.] High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan.
[Csorgo, T.; Ster, A.; Sziklai, J.; Zimanyi, J.] KFKI Res Inst Particle & Nucl Phys, H-1525 Budapest 114, Hungary.
[Hong, B.; Kweon, M. J.; Park, W. J.; Sim, K. S.] Korea Univ, Seoul 136701, South Korea.
[Fokin, S. L.; Kazantsev, A. V.; Manko, V. I.; Moukhanova, T. V.; Nyanin, A. S.; Peressounko, D. Yu.; Vinogradov, A. A.; Yushmanov, I. E.] Russian Res Ctr, Kurchatov Inst, Moscow, Russia.
[Aoki, K.; Fukao, Y.; Imai, K.; Okada, H.; Saito, N.; Sato, H. D.; Shoji, K.; Togawa, M.; Wagner, M.] Kyoto Univ, Kyoto 6068502, Japan.
[Drapier, O.; Fleuret, F.; Gonin, M.; de Cassagnac, R. Granier; Romana, A.; Tram, V. -N.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France.
[Hartouni, E. P.; Heffner, M.; Newby, J.; Soltz, R. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Barnes, P. D.; Boissevain, J. G.; Brooks, M. L.; Burward-Hoy, J. M.; Kunde, G. J.; Lee, D. M.; Leitch, M. J.; Liu, M. X.; McGaughey, P. L.; Moss, J. M.; Norman, B. E.; Palounek, A. P. T.; Sondheim, W. E.; Sullivan, J. P.; van Hecke, H. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Forestier, B.; Gadrat, S.; Roche, G.; Rosnet, P.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, F-63177 Aubiere, France.
[Gustafsson, H. A.; Haslum, E.; Nystrand, J.; Oskarsson, A.; Otterlund, I.; Rosendahl, S. S. E.; Stenlund, E.; Tydesjo, H.] Lund Univ, Dept Phys, SE-22100 Lund, Sweden.
[Bucher, D.; Klein-Boesing, C.; Reygers, K.; Sahlmueller, B.; Wessels, J.; Zaudtke, O.] Univ Munster, Inst Kernphys, D-48149 Munster, Germany.
[Joo, K. S.] Myongji Univ, Yongin 449728, Kyonggido, South Korea.
[Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan.
[Bassalleck, B.; Fields, D. E.; Hobbs, R.; Malik, M. D.; Thomas, T. L.; Younus, I.] Univ New Mexico, Albuquerque, NM 87131 USA.
[Al-Jamel, A.; Armendariz, R.; Brown, D. S.; Kyle, G. S.; Papavassiliou, V.; Pate, S. F.; Stepanov, M.; Wang, X. R.] New Mexico State Univ, Las Cruces, NM 88003 USA.
[Awes, T. C.; Cianciolo, V.; Efremenko, Y. V.; Read, K. F.; Silvermyr, D.; Stankus, P. W.; Young, G. R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Comets, M. P.; Espagnon, B.; Jouan, D.; Le Bornec, Y.; Suire, C.; Willis, N.] Univ Paris 11, IPN Orsay, CNRS, IN2P3, F-91406 Orsay, France.
[Baublis, V.; Khanzadeev, A.; Kochenda, L.; Komkov, B.; Riabov, V.; Riabov, Y.; Samsonov, V.; Vznuzdaev, E.] Petersburg Nucl Phys Inst, RU-188300 Gatchina, Leningrad Reg, Russia.
[Akiba, Y.; Aoki, K.; En'yo, H.; Fukao, Y.; Goto, Y.; Hachiya, T.; Hasuko, K.; Heuser, J. M.; Horaguchi, T.; Ichihara, T.; Imai, K.; Ishihara, M.; Kajihara, F.; Kamihara, N.; Kiyomichi, A.; Kurita, K.; Murata, J.; Ohnishi, H.; Okada, H.; Rykov, V. L.; Saito, N.; Sato, H. D.; Shibata, T. -A.; Shoji, K.; Taketani, A.; Tanida, K.; Togawa, M.; Tojo, J.; Torii, H.; Tsuchimoto, Y.; Wagner, M.; Watanabe, Y.; Yokkaichi, S.] RIKEN, Nishina Ctr Accelerator Based Sci, Wako, Saitama 3510198, Japan.
[Akiba, Y.; Bunce, G.; Deshpande, A.; En'yo, H.; Fields, D. E.; Goto, Y.; Perdekamp, M. Grosse; Ichihara, T.; Jinnouchi, O.; Kaneta, M.; Okada, K.; Saito, N.; Tabaru, T.; Taketani, A.; Tanida, K.; Watanabe, Y.; Xie, W.; Yokkaichi, S.] Brookhaven Natl Lab, RIKEN, Res Ctr, Upton, NY 11973 USA.
[Kurita, K.; Murata, J.] Rikkyo Univ, Dept Phys, Toshima Ku, Tokyo 1718501, Japan.
[Berdnikov, Y.] St Petersburg State Polytech Univ, St Petersburg, Russia.
[Dietzsch, O.; Leite, M. A. L.; Silva, C. L.; Takagui, E. M.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
[Kim, E.; Lim, H.; Park, J.] Seoul Natl Univ, Syst Elect Lab, Seoul, South Korea.
[Ajitanand, N. N.; Alexander, J.; Holzmann, W.; Issah, M.; Lacey, R.; Taranenko, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.
[Averbeck, R.; Bennett, R.; Boyle, K.; Butsyk, S.; Campbell, S.; Dahms, T.; Deshpande, A.; Dion, A.; Drees, A.; Egdemir, J.; Hemmick, T. K.; Jacak, B. V.; Leckey, S.; Matathias, F.; Milov, A.; Nguyen, M.; Pantuev, V.; Purwar, A. K.; Reuter, M.; Sickles, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
[Aphecetche, L.; Delagrange, H.; Gastineau, F.; Germain, M.; Henni, A. Hadj] Univ Nantes, SUBATECH, Ecole Mines Nantes, CNRS,IN2P3, Nantes, France.
[Dzhordzhadze, V.; Glenn, A.; Read, K. F.; Sorensen, S. P.] Univ Tennessee, Knoxville, TN 37996 USA.
[Horaguchi, T.; Kamihara, N.; Shibata, T. -A.] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan.
[Esumi, S.; Inaba, M.; Kawagishi, T.; Konno, M.; Masui, H.; Miake, Y.; Nagata, Y.; Sakai, S.; Sato, S.; Shimomura, M.; Shohjoh, T.; Takagi, S.] Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 305, Japan.
[Chujo, T.; Greene, S. V.; Holmes, M.; Maguire, C. F.; Miller, T. E.; Mukhopadhyay, D.; Ojha, I. D.; Pal, D.; Valle, H.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA.
[Kametani, S.; Sakaguchi, T.] Waseda Univ, Adv Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1620044, Japan.
[Dubey, A. K.; Fraenkel, Z.; Kozlov, A.; Naglis, M.; Ravinovich, I.; Sharma, D.; Tserruya, I.] Weizmann Inst Sci, IL-76100 Rehovot, Israel.
[Choi, I. J.; Kang, J. H.; Kim, D. J.; Kwon, Y.; Lee, M. K.; Ryu, S. S.] Yonsei Univ, IPAP, Seoul 120749, South Korea.
[Drachenberg, J. L.; Hagiwara, M. N.; Isenhower, D.; Isenhower, L.; Omiwade, O. O.; Smith, W. C.; Towell, R. S.] Abilene Christian Univ, Abilene, TX 79699 USA.
[Aidala, C.; Batsouli, S.; Bjorndal, M. T.; Chi, C. Y.; Chiu, M.; Cole, B. A.; d'Enterria, D.; Frantz, J. E.; Jia, J.; Jin, J.; Winter, D.; Zajc, W. A.; Zhang, C.] Nevis Labs, Irvington, NY 10533 USA.
[Csorgo, T.; Ster, A.; Sziklai, J.; Zimanyi, J.] Hungarian Acad Sci, MTA KFKI RMKI, H-1525 Budapest, Hungary.
RP Afanasiev, S (reprint author), Joint Inst Nucl Res, RU-141980 Dubna, Moscow Region, Russia.
RI Taketani, Atsushi/E-1803-2017; Semenov, Vitaliy/E-9584-2017; seto,
richard/G-8467-2011; Csanad, Mate/D-5960-2012; Csorgo,
Tamas/I-4183-2012; YANG, BOGEUM/I-8251-2012; Dahms, Torsten/A-8453-2015;
En'yo, Hideto/B-2440-2015; Hayano, Ryugo/F-7889-2012; HAMAGAKI,
HIDEKI/G-4899-2014; Durum, Artur/C-3027-2014; Sorensen, Soren
/K-1195-2016; Yokkaichi, Satoshi/C-6215-2017;
OI Taketani, Atsushi/0000-0002-4776-2315; Dahms,
Torsten/0000-0003-4274-5476; Hayano, Ryugo/0000-0002-1214-7806;
Sorensen, Soren /0000-0002-5595-5643; Sullivan, John/0000-0002-9067-1531
NR 52
TC 42
Z9 42
U1 5
U2 9
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
EI 1089-490X
J9 PHYS REV C
JI Phys. Rev. C
PD NOV
PY 2009
VL 80
IS 5
AR 054907
DI 10.1103/PhysRevC.80.054907
PG 29
WC Physics, Nuclear
SC Physics
GA 526SG
UT WOS:000272313000059
ER
PT J
AU Aznauryan, IG
Burkert, VD
Biselli, AS
Egiyan, H
Joo, K
Kim, W
Park, K
Smith, LC
Ungaro, M
Adhikari, KP
Anghinolfi, M
Avakian, H
Ball, J
Battaglieri, M
Batourine, V
Bedlinskiy, I
Bellis, M
Bookwalter, C
Branford, D
Briscoe, WJ
Brooks, WK
Careccia, SL
Carman, DS
Cole, PL
Collins, P
Crede, V
D'Angelo, A
Daniel, A
De Vita, R
De Sanctis, E
Deur, A
Dey, B
Dhamija, S
Dickson, R
Djalali, C
Doughty, D
Dupre, R
El Alaoui, A
Elouadrhiri, L
Eugenio, P
Fedotov, G
Fegan, S
Forest, TA
Gabrielyan, MY
Gilfoyle, GP
Giovanetti, KL
Girod, FX
Goetz, JT
Gohn, W
Golovatch, E
Gothe, RW
Guidal, M
Guo, L
Hafidi, K
Hakobyan, H
Hanretty, C
Hassall, N
Heddle, D
Hicks, K
Holtrop, M
Hyde, CE
Ilieva, Y
Ireland, DG
Ishkhanov, BS
Isupov, EL
Jawalkar, SS
Jo, HS
Johnstone, JR
Keller, D
Khandaker, M
Khetarpal, P
Klein, A
Klein, FJ
Kramer, LH
Kubarovsky, V
Kuhn, SE
Kuleshov, SV
Kuznetsov, V
Livingston, K
Lu, HY
Mayer, M
McAndrew, J
McCracken, ME
McKinnon, B
Meyer, CA
Mineeva, T
Mirazita, M
Mokeev, V
Moreno, B
Moriya, K
Morrison, B
Moutarde, H
Munevar, E
Nadel-Turonski, P
Nasseripour, R
Nepali, CS
Niccolai, S
Niculescu, G
Niculescu, I
Niroula, MR
Osipenko, M
Ostrovidov, AI
Park, S
Pasyuk, E
Pereira, SA
Pisano, S
Pogorelko, O
Pozdniakov, S
Price, JW
Procureur, S
Prok, Y
Protopopescu, D
Raue, BA
Ricco, G
Ripani, M
Ritchie, BG
Rosner, G
Rossi, P
Sabatie, F
Saini, MS
Salamanca, J
Schumacher, RA
Seraydaryan, H
Shvedunov, NV
Sober, DI
Sokhan, D
Stepanyan, SS
Stoler, P
Strakovsky, II
Strauch, S
Suleiman, R
Taiuti, M
Tedeschi, DJ
Tkachenko, S
Vineyard, MF
Watts, DP
Weinstein, LB
Weygand, DP
Williams, M
Wood, MH
Zana, L
Zhang, J
Zhao, B
AF Aznauryan, I. G.
Burkert, V. D.
Biselli, A. S.
Egiyan, H.
Joo, K.
Kim, W.
Park, K.
Smith, L. C.
Ungaro, M.
Adhikari, K. P.
Anghinolfi, M.
Avakian, H.
Ball, J.
Battaglieri, M.
Batourine, V.
Bedlinskiy, I.
Bellis, M.
Bookwalter, C.
Branford, D.
Briscoe, W. J.
Brooks, W. K.
Careccia, S. L.
Carman, D. S.
Cole, P. L.
Collins, P.
Crede, V.
D'Angelo, A.
Daniel, A.
De Vita, R.
De Sanctis, E.
Deur, A.
Dey, B.
Dhamija, S.
Dickson, R.
Djalali, C.
Doughty, D.
Dupre, R.
El Alaoui, A.
Elouadrhiri, L.
Eugenio, P.
Fedotov, G.
Fegan, S.
Forest, T. A.
Gabrielyan, M. Y.
Gilfoyle, G. P.
Giovanetti, K. L.
Girod, F. X.
Goetz, J. T.
Gohn, W.
Golovatch, E.
Gothe, R. W.
Guidal, M.
Guo, L.
Hafidi, K.
Hakobyan, H.
Hanretty, C.
Hassall, N.
Heddle, D.
Hicks, K.
Holtrop, M.
Hyde, C. E.
Ilieva, Y.
Ireland, D. G.
Ishkhanov, B. S.
Isupov, E. L.
Jawalkar, S. S.
Jo, H. S.
Johnstone, J. R.
Keller, D.
Khandaker, M.
Khetarpal, P.
Klein, A.
Klein, F. J.
Kramer, L. H.
Kubarovsky, V.
Kuhn, S. E.
Kuleshov, S. V.
Kuznetsov, V.
Livingston, K.
Lu, H. Y.
Mayer, M.
McAndrew, J.
McCracken, M. E.
McKinnon, B.
Meyer, C. A.
Mineeva, T.
Mirazita, M.
Mokeev, V.
Moreno, B.
Moriya, K.
Morrison, B.
Moutarde, H.
Munevar, E.
Nadel-Turonski, P.
Nasseripour, R.
Nepali, C. S.
Niccolai, S.
Niculescu, G.
Niculescu, I.
Niroula, M. R.
Osipenko, M.
Ostrovidov, A. I.
Park, S.
Pasyuk, E.
Pereira, S. Anefalos
Pisano, S.
Pogorelko, O.
Pozdniakov, S.
Price, J. W.
Procureur, S.
Prok, Y.
Protopopescu, D.
Raue, B. A.
Ricco, G.
Ripani, M.
Ritchie, B. G.
Rosner, G.
Rossi, P.
Sabatie, F.
Saini, M. S.
Salamanca, J.
Schumacher, R. A.
Seraydaryan, H.
Shvedunov, N. V.
Sober, D. I.
Sokhan, D.
Stepanyan, S. S.
Stoler, P.
Strakovsky, I. I.
Strauch, S.
Suleiman, R.
Taiuti, M.
Tedeschi, D. J.
Tkachenko, S.
Vineyard, M. F.
Watts, D. P.
Weinstein, L. B.
Weygand, D. P.
Williams, M.
Wood, M. H.
Zana, L.
Zhang, J.
Zhao, B.
CA CLAS Collaboration
TI Electroexcitation of nucleon resonances from CLAS data on single pion
electroproduction
SO PHYSICAL REVIEW C
LA English
DT Review
ID TRANSITION FORM-FACTORS; RELATIVISTIC QUARK-MODEL; LIGHT-FRONT DYNAMICS;
GAMMA-ASTERISK; NEUTRAL PIONS; HIGH-ENERGIES; REGION; PHOTOPRODUCTION;
Q2; MESONS
AB We present results on the electroexcitation of the low mass resonances Delta(1232)P-33, N(1440)P-11, N(1520)D-13, and N(1535)S-11 in a wide range of Q(2). The results were obtained in the comprehensive analysis of data from the Continuous Electron Beam Accelerator Facility (CEBAF) large acceptance spectrometer (CLAS) detector at the Thomas Jefferson National Accelerator Facility (JLab) on differential cross sections, longitudinally polarized beam asymmetries, and longitudinal target and beam-target asymmetries for pi electroproduction off the proton. The data were analyzed using two conceptually different approaches-fixed-t dispersion relations and a unitary isobar model-allowing us to draw conclusions on the model sensitivity of the obtained electrocoupling amplitudes. The amplitudes for the Delta(1232)P-33 show the importance of a meson-cloud contribution to quantitatively explain the magnetic dipole strength, as well as the electric and scalar quadrupole transitions. They do not show any tendency of approaching the pQCD regime for Q(2)<= 6 GeV2. For the Roper resonance, N(1440)P-11, the data provide strong evidence that this state is a predominantly radial excitation of a three-quark (3q) ground state. Measured in pion electroproduction, the transverse helicity amplitude for the N(1535)S-11 allowed us to obtain the branching ratios of this state to the pi N and eta N channels via comparison with the results extracted from eta electroproduction. The extensive CLAS data also enabled the extraction of the gamma(*)p -> N(1520)D-13 and N(1535)S-11 longitudinal helicity amplitudes with good precision. For the N(1535)S-11, these results became a challenge for quark models and may be indicative of large meson-cloud contributions or of representations of this state that differ from a 3q excitation. The transverse amplitudes for the N(1520)D-13 clearly show the rapid changeover from helicity-3/2 dominance at the real photon point to helicity-1/2 dominance at Q(2)>1 GeV2, confirming a long-standing prediction of the constituent quark model.
C1 [Aznauryan, I. G.; Burkert, V. D.; Egiyan, H.; Park, K.; Ungaro, M.; Avakian, H.; Batourine, V.; Brooks, W. K.; Carman, D. S.; Deur, A.; Doughty, D.; Elouadrhiri, L.; Girod, F. X.; Guo, L.; Heddle, D.; Johnstone, J. R.; Kramer, L. H.; Kubarovsky, V.; Mokeev, V.; Raue, B. A.; Weygand, D. P.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA.
[Aznauryan, I. G.; Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia.
[Biselli, A. S.] Fairfield Univ, Fairfield, CT 06824 USA.
[Egiyan, H.; Holtrop, M.; Protopopescu, D.; Zana, L.] Univ New Hampshire, Durham, NH 03824 USA.
[Joo, K.; Ungaro, M.; Gohn, W.; Mineeva, T.; Zhao, B.] Univ Connecticut, Storrs, CT 06269 USA.
[Joo, K.; Smith, L. C.; Prok, Y.] Univ Virginia, Charlottesville, VA 22901 USA.
[Kim, W.; Park, K.; Kuznetsov, V.; Stepanyan, S. S.] Kyungpook Natl Univ, Taegu 702701, South Korea.
[Ungaro, M.; Khetarpal, P.; Stoler, P.] Rensselaer Polytech Inst, Troy, NY 12180 USA.
[Adhikari, K. P.; Careccia, S. L.; Forest, T. A.; Hyde, C. E.; Klein, A.; Kuhn, S. E.; Mayer, M.; Nepali, C. S.; Niroula, M. R.; Seraydaryan, H.; Tkachenko, S.; Weinstein, L. B.; Zhang, J.] Old Dominion Univ, Norfolk, VA 23529 USA.
[Anghinolfi, M.; Battaglieri, M.; De Vita, R.; Osipenko, M.; Ricco, G.; Ripani, M.; Taiuti, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy.
[Ball, J.; Girod, F. X.; Moutarde, H.; Procureur, S.; Sabatie, F.] CEA, Ctr Saclay, Irfu Serv Phys Nucl, F-91191 Gif Sur Yvette, France.
[Bedlinskiy, I.; Kuleshov, S. V.; Pogorelko, O.; Pozdniakov, S.] Inst Theoret & Expt Phys, RU-117259 Moscow, Russia.
[Bellis, M.; Dey, B.; Dickson, R.; McCracken, M. E.; Meyer, C. A.; Moriya, K.; Schumacher, R. A.; Williams, M.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA.
[Bookwalter, C.; Crede, V.; Eugenio, P.; Hanretty, C.; Ostrovidov, A. I.; Park, S.; Saini, M. S.] Florida State Univ, Tallahassee, FL 32306 USA.
[Dupre, R.; Hafidi, K.] Argonne Natl Lab, Argonne, IL 60441 USA.
[Collins, P.; Morrison, B.; Pasyuk, E.; Ritchie, B. G.] Arizona State Univ, Tempe, AZ 85287 USA.
[Goetz, J. T.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA.
[Price, J. W.] Calif State Univ Dominguez Hills, Carson, CA 90747 USA.
[Wood, M. H.] Canisius Coll, Buffalo, NY 14208 USA.
[Klein, F. J.; Nadel-Turonski, P.; Sober, D. I.] Catholic Univ Amer, Washington, DC 20064 USA.
[Doughty, D.; Heddle, D.] Christopher Newport Univ, Newport News, VA 23606 USA.
[Gilfoyle, G. P.] Univ Richmond, Richmond, VA 23173 USA.
[Branford, D.; McAndrew, J.; Sokhan, D.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland.
[Dhamija, S.; Gabrielyan, M. Y.; Kramer, L. H.; Nasseripour, R.; Raue, B. A.] Florida Int Univ, Miami, FL 33199 USA.
[Briscoe, W. J.; Ilieva, Y.; Munevar, E.; Niccolai, S.; Strakovsky, I. I.; Strauch, S.] George Washington Univ, Washington, DC 20052 USA.
[Fegan, S.; Hassall, N.; Ireland, D. G.; Johnstone, J. R.; Livingston, K.; McKinnon, B.; Protopopescu, D.; Rosner, G.; Watts, D. P.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland.
[Cole, P. L.; Forest, T. A.; Salamanca, J.] Idaho State Univ, Pocatello, ID 83209 USA.
[De Sanctis, E.; Mirazita, M.; Pereira, S. Anefalos; Rossi, P.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[D'Angelo, A.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy.
[El Alaoui, A.; Guidal, M.; Jo, H. S.; Moreno, B.; Niccolai, S.; Pisano, S.] Inst Phys Nucl, F-91406 Orsay, France.
[Giovanetti, K. L.; Niculescu, G.; Niculescu, I.] James Madison Univ, Harrisonburg, VA 22807 USA.
[Suleiman, R.] MIT, Cambridge, MA 02139 USA.
[Khandaker, M.] Norfolk State Univ, Norfolk, VA 23504 USA.
[Daniel, A.; Hicks, K.; Keller, D.] Ohio Univ, Athens, OH 45701 USA.
[Fedotov, G.; Golovatch, E.; Ishkhanov, B. S.; Isupov, E. L.; Mokeev, V.; Shvedunov, N. V.] Skobeltsyn Nucl Phys Inst, RU-119899 Moscow, Russia.
[Djalali, C.; Gothe, R. W.; Ilieva, Y.; Lu, H. Y.; Nasseripour, R.; Ostrovidov, A. I.; Strauch, S.; Tedeschi, D. J.] Univ S Carolina, Columbia, SC 29208 USA.
[Vineyard, M. F.] Union Coll, Schenectady, NY 12308 USA.
[Brooks, W. K.; Hakobyan, H.; Kuleshov, S. V.] Univ Tecn Federico Santa Maria, Valparaiso, Chile.
[Jawalkar, S. S.] Coll William & Mary, Williamsburg, VA 23187 USA.
RP Aznauryan, IG (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA.
RI D'Angelo, Annalisa/A-2439-2012; Meyer, Curtis/L-3488-2014; Ireland,
David/E-8618-2010; Lu, Haiyun/B-4083-2012; Protopopescu,
Dan/D-5645-2012; Zana, Lorenzo/H-3032-2012; Isupov, Evgeny/J-2976-2012;
Ishkhanov, Boris/E-1431-2012; Zhao, Bo/J-6819-2012; Brooks,
William/C-8636-2013; Kuleshov, Sergey/D-9940-2013; Schumacher,
Reinhard/K-6455-2013; El Alaoui, Ahmed/B-4638-2015; Sabatie,
Franck/K-9066-2015; Osipenko, Mikhail/N-8292-2015;
OI D'Angelo, Annalisa/0000-0003-3050-4907; Meyer,
Curtis/0000-0001-7599-3973; Ireland, David/0000-0001-7713-7011; Zhao,
Bo/0000-0003-3171-5335; Brooks, William/0000-0001-6161-3570; Kuleshov,
Sergey/0000-0002-3065-326X; Schumacher, Reinhard/0000-0002-3860-1827;
Sabatie, Franck/0000-0001-7031-3975; Osipenko,
Mikhail/0000-0001-9618-3013; Hyde, Charles/0000-0001-7282-8120; Mayer,
Michael/0000-0001-7600-0873; Bellis, Matthew/0000-0002-6353-6043
FU US Department of Energy [AC05-060R23177]; National Science Foundation;
Korea Research Foundation; French Commissariat a l'Energie Atomique;
CNRS/IN2P3; Italian Istituto Nazionale di Fisica Nucleare; Moscow State
University; UK Science and Technology Facilities Research Council (STFC)
FX This work was supported in part by the US Department of Energy and the
National Science Foundation, the Korea Research Foundation, the French
Commissariat a l'Energie Atomique and CNRS/IN2P3, the Italian Istituto
Nazionale di Fisica Nucleare, the Skobeltsyn Institute of Nuclear
Physics and Physics Department at Moscow State University, and the UK
Science and Technology Facilities Research Council (STFC). Jefferson
Science Associates, LLC, operates Jefferson Lab under US DOE Contract
No. DE-AC05-060R23177.
NR 104
TC 122
Z9 122
U1 0
U2 10
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD NOV
PY 2009
VL 80
IS 5
AR 055203
DI 10.1103/PhysRevC.80.055203
PG 22
WC Physics, Nuclear
SC Physics
GA 526SG
UT WOS:000272313000072
ER
PT J
AU Batchelder, JC
Wood, JL
Garrett, PE
Green, KL
Rykaczewski, KP
Bilheux, JC
Bingham, CR
Carter, HK
Fong, D
Grzywacz, R
Hamilton, JH
Hartley, DJ
Hwang, JK
Krolas, W
Kulp, WD
Larochelle, Y
Piechaczek, A
Ramayya, AV
Spejewski, EH
Stracener, DW
Tantawy, MN
Winger, JA
Zganjar, EF
AF Batchelder, J. C.
Wood, J. L.
Garrett, P. E.
Green, K. L.
Rykaczewski, K. P.
Bilheux, J. -C.
Bingham, C. R.
Carter, H. K.
Fong, D.
Grzywacz, R.
Hamilton, J. H.
Hartley, D. J.
Hwang, J. K.
Krolas, W.
Kulp, W. D.
Larochelle, Y.
Piechaczek, A.
Ramayya, A. V.
Spejewski, E. H.
Stracener, D. W.
Tantawy, M. N.
Winger, J. A.
Zganjar, E. F.
TI Collective and noncollective states in Cd-116 studied via the beta
decays of Ag-116(m1,m2,gs)
SO PHYSICAL REVIEW C
LA English
DT Article
ID OCTUPOLE STATES; AG ISOTOPES; NUCLEI; SPECTROSCOPY; EXCITATIONS;
SCATTERING; MODEL; TE; PD
AB We have reinvestigated the beta decay of the three isomers of Ag-116 at the Holifield Radioactive Ion Beam Facility (HRIBF). Through the use of half-life information, we have been able to construct individual decay schemes for each isomer and correct what was a puzzling inconsistency with the published data, namely the beta feeding of 2(+) states by a 5(+) isomer. Our results indicate that the feeding of these levels arises from a 3(+) isomer in Ag-116. A total of 271 gamma-ray transitions (159 new) were assigned to 148 levels (94 new) from the beta decay of Ag-116(m1,m2,gs). Significant deviations are observed from IBM-2 calculations for the decay of the 0(+) and 2(+) members of the previously assigned three-phonon quintuplet. Candidate states for the quadrupole-octupole quintuplet states and pi g(9/2)-pi p(1/2), pi g(9/2)-pi p(3/2), nu h(11/2)-nu s(1/2), nu h(11/2)-nu d(3/2), and nu h(11/2)-nu d(5/2) broken-pair states are assigned.
C1 [Batchelder, J. C.; Carter, H. K.; Spejewski, E. H.] Oak Ridge Associated Univ, UNIRIB, Oak Ridge, TN 37831 USA.
[Wood, J. L.; Kulp, W. D.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA.
[Garrett, P. E.; Green, K. L.] Univ Guelph, Guelph, ON N1G 3W1, Canada.
[Rykaczewski, K. P.; Bilheux, J. -C.; Bingham, C. R.; Stracener, D. W.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37931 USA.
[Bingham, C. R.; Grzywacz, R.; Hartley, D. J.; Larochelle, Y.; Tantawy, M. N.] Univ Tennessee, Knoxville, TN 37996 USA.
[Fong, D.; Hamilton, J. H.; Hwang, J. K.; Krolas, W.; Ramayya, A. V.] Vanderbilt Univ, Nashville, TN 37235 USA.
[Hartley, D. J.] USN Acad, Dept Phys, Annapolis, MD 21402 USA.
[Krolas, W.] Joint Inst Heavy Ion Phys, Oak Ridge, TN 37831 USA.
[Krolas, W.] H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland.
[Piechaczek, A.; Zganjar, E. F.] Louisiana State Univ, Baton Rouge, LA 70803 USA.
[Winger, J. A.] Mississippi State Univ, Mississippi State, MS 39762 USA.
RP Batchelder, JC (reprint author), Oak Ridge Associated Univ, UNIRIB, Oak Ridge, TN 37831 USA.
RI Krolas, Wojciech/N-9391-2013; Bilheux, Jean/A-2823-2016
OI Bilheux, Jean/0000-0003-2172-6487
FU US Department of Energy [DE-AC05-76OR00033, DOE-AC05-00OR22725,
DE-FG02-96ER40958, DE-FG02-96ER41006, DE-FG05-88ER40407,
DE-FG02-96ER40983, DE-FG02-96ER40978, W-7405-ENG-48]; Joint Institute
for Heavy Ion Physics; Natural Sciences and Engineering Research Council
(Canada)
FX This work has been supported by the US Department of Energy under
Contracts DE-AC05-76OR00033 (UNIRIB), DOE-AC05-00OR22725 (ORNL),
DE-FG02-96ER40958 (Georgia Institute of Technology), DE-FG02-96ER41006
(Mississippi State University), DE-FG05-88ER40407 (Vanderbilt
University), DE-FG02-96ER40983 (University of Tennessee),
DE-FG02-96ER40978 (Louisiana State University), and W-7405-ENG-48 (LLNL)
and the Joint Institute for Heavy Ion Physics. Work also supported in
part by the Natural Sciences and Engineering Research Council (Canada).
NR 53
TC 20
Z9 20
U1 1
U2 3
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD NOV
PY 2009
VL 80
IS 5
AR 054318
DI 10.1103/PhysRevC.80.054318
PG 28
WC Physics, Nuclear
SC Physics
GA 526SG
UT WOS:000272313000032
ER
PT J
AU Berant, Z
Oster, E
Casperson, RJ
Wolf, A
Werner, V
Heinz, A
Casten, RF
Gurdal, G
McCutchan, EA
Brenner, DS
Terry, JR
Winkler, R
Williams, E
Qian, J
Schmidt, A
Smith, MK
Ahn, T
Beausang, CW
Regan, PH
Ross, T
Bunce, M
Darakchieva, B
Meyer, DA
LeBlanc, J
Dudziak, K
Bauer, C
Henning, G
AF Berant, Z.
Oster, E.
Casperson, R. J.
Wolf, A.
Werner, V.
Heinz, A.
Casten, R. F.
Gurdal, G.
McCutchan, E. A.
Brenner, D. S.
Terry, J. R.
Winkler, R.
Williams, E.
Qian, J.
Schmidt, A.
Smith, M. K.
Ahn, T.
Beausang, C. W.
Regan, P. H.
Ross, T.
Bunce, M.
Darakchieva, B.
Meyer, D. A.
LeBlanc, J.
Dudziak, K.
Bauer, C.
Henning, G.
TI g factor of the 2(1)(+) state of Hf-172
SO PHYSICAL REVIEW C
LA English
DT Article
ID INTERACTING BOSON MODEL; NUCLEI; PROTON
AB The g factor of the 2(1)(+) state of Hf-172 was measured using the perturbed angular correlation technique in a static external magnetic field. The result, g(2(1)(+))=0.25(5), is discussed in relation to the systematics of the previously reported g factors in the Hf isotopes and compared with the predictions of several models. An interesting outcome of the analysis presented in this paper is the agreement between the calculated g factors within the interacting boson approximation (IBA) and the results of a large-scale shell model calculation. This agreement supports the emphasis in the IBA on the valence space. The undershooting of the empirical g factors near midshell in both models suggests that they underestimate the role of the saturation of collectivity, which is explicitly incorporated into a phenomenological model that agrees better with the data.
C1 [Berant, Z.; Casperson, R. J.; Wolf, A.; Werner, V.; Heinz, A.; Casten, R. F.; Brenner, D. S.; Terry, J. R.; Winkler, R.; Williams, E.; Qian, J.; Schmidt, A.; Smith, M. K.; Ahn, T.; Bunce, M.; Henning, G.] Yale Univ, Wright Nucl Struct Lab, New Haven, CT 06520 USA.
[Berant, Z.; Oster, E.; Wolf, A.] Nucl Res Ctr Negev, IL-84190 Beer Sheva, Israel.
[Gurdal, G.] Rutgers State Univ, New Brunswick, NJ 08903 USA.
[McCutchan, E. A.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
[Brenner, D. S.] Clark Univ, Dept Chem, Worcester, MA 01610 USA.
[Beausang, C. W.; Ross, T.] Univ Richmond, Dept Phys, Richmond, VA 23173 USA.
[Regan, P. H.; Ross, T.; Bunce, M.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England.
[Darakchieva, B.; Meyer, D. A.; LeBlanc, J.; Dudziak, K.] Rhodes Coll, Dept Phys, Memphis, TN 38112 USA.
[Bauer, C.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany.
[Henning, G.] ENS CACHAN, Cachan, France.
RP Berant, Z (reprint author), Yale Univ, Wright Nucl Struct Lab, New Haven, CT 06520 USA.
RI Qian, Jing/F-9639-2010; Heinz, Andreas/E-3191-2014; Williams,
Elizabeth/D-3442-2014; Ahn, Tan/C-9158-2016; Werner, Volker/C-1181-2017
OI Ahn, Tan/0000-0003-2249-7399; Werner, Volker/0000-0003-4001-0150
FU US DOE [DE-FG02-91ER40609, DE-AC02-06CH11357, DE-FG02-88ER-40417]; US
NSF [PHY-0245018]; Yale Flint Fund; STFC(UK); YUUP [DPT2006K-120470]
FX The authors are indebted to the staff of the Wright Nuclear Structure
Laboratory for the skillful operation of the tandem accelerator and
especially to Mr. Walter R. Garnett, Jr., for extensive technical
support. A. W. and P. H. R. acknowledge the hospitality of theWNSL
during the experiment. This work was supported by the US DOE under Grant
Nos. DE-FG02-91ER40609, DE-AC02-06CH11357, and DE-FG02-88ER-40417; the
US NSF under Grant No. PHY-0245018; the Yale Flint Fund; and the
STFC(UK) and YUUP under Project No. DPT2006K-120470.
NR 16
TC 3
Z9 3
U1 0
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD NOV
PY 2009
VL 80
IS 5
AR 057303
DI 10.1103/PhysRevC.80.057303
PG 4
WC Physics, Nuclear
SC Physics
GA 526SG
UT WOS:000272313000089
ER
PT J
AU Bhattacharya, M
Goodman, CD
Garcia, A
AF Bhattacharya, M.
Goodman, C. D.
Garcia, A.
TI Weak-interaction strength from charge-exchange reactions versus beta
decay in the A=40 isoquintet
SO PHYSICAL REVIEW C
LA English
DT Article
ID CROSS-SECTIONS; TENSOR FORCE; AR-40; TI-40; EFFICIENCY; DETECTOR
AB We report a measurement of the Gamow-Teller (GT) strength distribution for (40)Ar ->(40)K using the 0(degrees)(p,n) reaction. The measurement extends observed GT strength distribution in the A=40 system up to an excitation energy of similar to 8 MeV. In comparing our results with those from the beta decay of the isospin mirror nucleus (40)Ti, we find that, within the excitation energy region probed by the beta-decay experiment, we observe a total GT strength that is in fair agreement with the beta-decay measurement. However, we find that the relative strength of the two strongest transitions differs by a factor of similar to 1.8 in comparing our results from (p,n) reactions with the beta decay of (40)Ti. Using our results we present the neutrino-capture cross section for (40)Ar.
C1 [Bhattacharya, M.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Bhattacharya, M.; Goodman, C. D.] Indiana Univ, Cyclotron Facil, Bloomington, IN 47408 USA.
[Garcia, A.] Univ Washington, Dept Phys, Seattle, WA 98195 USA.
RP Bhattacharya, M (reprint author), Siemens Med Solut, Mol Imaging Sci & Technol, 2501 N Barrington Rd, Hoffman Estates, IL 60192 USA.
EM Manojeet.Bhattacharya@siemens.com
FU NSF; DOE
FX We thank B. D. Anderson for lending us the gas cell, M. Palarczyk for
help with data taking, and G. F. Bertsch for fruitful discussions. This
work was supported by the NSF and the DOE.
NR 18
TC 13
Z9 13
U1 0
U2 3
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD NOV
PY 2009
VL 80
IS 5
AR 055501
DI 10.1103/PhysRevC.80.055501
PG 6
WC Physics, Nuclear
SC Physics
GA 526SG
UT WOS:000272313000080
ER
PT J
AU Esbensen, H
Reifarth, R
AF Esbensen, H.
Reifarth, R.
TI Coulomb dissociation of C-15 and radiative neutron capture on C-14 (vol
80, 024608, 2009)
SO PHYSICAL REVIEW C
LA English
DT Correction
C1 [Esbensen, H.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
[Reifarth, R.] GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany.
[Reifarth, R.] Goethe Univ Frankfurt, D-60438 Frankfurt, Germany.
RP Esbensen, H (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
NR 5
TC 1
Z9 1
U1 0
U2 0
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD NOV
PY 2009
VL 80
IS 5
AR 059904
DI 10.1103/PhysRevC.80.059904
PG 2
WC Physics, Nuclear
SC Physics
GA 526SG
UT WOS:000272313000097
ER
PT J
AU Filip, P
Lednicky, R
Masui, H
Xu, N
AF Filip, Peter
Lednicky, Richard
Masui, Hiroshi
Xu, Nu
TI Initial eccentricity in deformed Au-197+Au-197 and U-238+U-238
collisions at s(NN)=200 GeV at the BNL Relativistic Heavy Ion Collider
SO PHYSICAL REVIEW C
LA English
DT Article
ID HIGH-ENERGY; NUCLEAR COLLISIONS; ELLIPTIC FLOW; DISTRIBUTIONS;
MULTIPLICITY; STATE
AB Initial eccentricity and eccentricity fluctuations of the interaction volume created in relativistic collisions of deformed Au-197 and U-238 nuclei are studied using optical and Monte Carlo (MC) Glauber simulations. It is found that the nonsphericity noticeably influences the average eccentricity in central collisions, and eccentricity fluctuations are enhanced from deformation. Quantitative results are obtained for Au+Au and U+U collisions at energy s(NN)=200 GeV.
C1 [Filip, Peter] Slovak Acad Sci, Inst Phys, Bratislava 84511, Slovakia.
[Lednicky, Richard] Joint Inst Nucl Res, RU-141980 Dubna, Russia.
[Masui, Hiroshi; Xu, Nu] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94705 USA.
RP Filip, P (reprint author), Slovak Acad Sci, Inst Phys, Bratislava 84511, Slovakia.
EM Peter.Filip@savba.sk
RI Lednicky, Richard/K-4164-2013
FU US Department of Energy [DE-AC03-76SF00098]; Slovak Grant Agency
[2-7116-29]; JINR Dubna
FX The authors are grateful to Art Poskanzer for his comments. This work
was supported by the US Department of Energy under Contract No.
DE-AC03-76SF00098, Slovak Grant Agency for Sciences VEGA under Grant No.
2-7116-29, and JINR Dubna.
NR 29
TC 19
Z9 19
U1 0
U2 0
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD NOV
PY 2009
VL 80
IS 5
AR 054903
DI 10.1103/PhysRevC.80.054903
PG 5
WC Physics, Nuclear
SC Physics
GA 526SG
UT WOS:000272313000055
ER
PT J
AU Gellanki, J
Ragnarsson, I
Rudolph, D
Svensson, CE
Andersson, LL
Andreoiu, C
Baktash, C
Carpenter, MP
Charity, RJ
Chiara, CJ
Eberth, J
Ekman, J
Fahlander, C
Haslip, DS
Johansson, EK
LaFosse, DR
Paul, SD
Pechenaya, OL
Reviol, W
du Rietz, R
Sarantites, DG
Seweryniak, D
Sobotka, LG
Thomas, HG
Torres, DA
Waddington, JC
Wilson, JN
Yu, CH
Zhu, S
AF Gellanki, J.
Ragnarsson, I.
Rudolph, D.
Svensson, C. E.
Andersson, L. -L.
Andreoiu, C.
Baktash, C.
Carpenter, M. P.
Charity, R. J.
Chiara, C. J.
Eberth, J.
Ekman, J.
Fahlander, C.
Haslip, D. S.
Johansson, E. K.
LaFosse, D. R.
Paul, S. D.
Pechenaya, O. L.
Reviol, W.
du Rietz, R.
Sarantites, D. G.
Seweryniak, D.
Sobotka, L. G.
Thomas, H. G.
Torres, D. A.
Waddington, J. C.
Wilson, J. N.
Yu, C. H.
Zhu, S.
TI Characterization of superdeformed bands in Zn-62
SO PHYSICAL REVIEW C
LA English
DT Article
ID GAMMA-RAY SPECTROSCOPY; 60 MASS REGION; ROTATIONAL BANDS; RESPONSE
CHARACTERISTICS; SMOOTH TERMINATION; CHANNEL-SELECTION; HIGH-SPIN;
GAMMASPHERE; COLLECTIVITY; DECAY
AB Combined data from four fusion-evaporation reaction experiments were utilized to investigate deformed and superdeformed structures in Zn-62(30)32. Combination of the Gammasphere gamma-ray spectrometer and ancillary particle detection systems allowed for the connection of rotational bands to well-known, low-lying excited states in Zn-62, as well as spectroscopy of discrete high-spin states reaching excitation energies of E-x=42.5 MeV. Four well- or superdeformed bands in Zn-62 are characterized and described by means of cranked Nilsson-Strutinsky calculations.
C1 [Gellanki, J.; Rudolph, D.; Andersson, L. -L.; Andreoiu, C.; Ekman, J.; Fahlander, C.; Johansson, E. K.; du Rietz, R.; Torres, D. A.] Lund Univ, Dept Phys, S-22100 Lund, Sweden.
[Ragnarsson, I.] Lund Univ, Div Math Phys, LTH, S-22100 Lund, Sweden.
[Svensson, C. E.; Andreoiu, C.; Haslip, D. S.; Waddington, J. C.] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada.
[Baktash, C.; Paul, S. D.; Yu, C. H.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA.
[Carpenter, M. P.; Seweryniak, D.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
[Charity, R. J.; Chiara, C. J.; LaFosse, D. R.; Pechenaya, O. L.; Reviol, W.; Sarantites, D. G.; Sobotka, L. G.; Wilson, J. N.] Washington Univ, Dept Chem, St Louis, MO 63130 USA.
[Eberth, J.; Thomas, H. G.] Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany.
[Torres, D. A.] Univ Nacl Colombia, Dept Fis, Bogota, Colombia.
RP Gellanki, J (reprint author), Lund Univ, Dept Phys, S-22100 Lund, Sweden.
EM gellanki.jnaneswari@nuclear.lu.se
RI Rudolph, Dirk/D-4259-2009; Ekman, Jorgen/C-1385-2013; du Rietz,
Rickard/I-3794-2013; Carpenter, Michael/E-4287-2015
OI Rudolph, Dirk/0000-0003-1199-3055; du Rietz,
Rickard/0000-0002-9884-9058; Carpenter, Michael/0000-0002-3237-5734
NR 34
TC 8
Z9 8
U1 0
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD NOV
PY 2009
VL 80
IS 5
AR 051304
DI 10.1103/PhysRevC.80.051304
PG 5
WC Physics, Nuclear
SC Physics
GA 526SG
UT WOS:000272313000005
ER
PT J
AU Ilyushkin, SV
Winger, JA
Gross, CJ
Rykaczewski, KP
Batchelder, JC
Cartegni, L
Darby, IG
Goodin, C
Grzywacz, R
Hamilton, JH
Korgul, A
Krolas, W
Liddick, SN
Mazzocchi, C
Padgett, S
Piechaczek, A
Rajabali, MM
Shapira, D
Zganjar, EF
AF Ilyushkin, S. V.
Winger, J. A.
Gross, C. J.
Rykaczewski, K. P.
Batchelder, J. C.
Cartegni, L.
Darby, I. G.
Goodin, C.
Grzywacz, R.
Hamilton, J. H.
Korgul, A.
Krolas, W.
Liddick, S. N.
Mazzocchi, C.
Padgett, S.
Piechaczek, A.
Rajabali, M. M.
Shapira, D.
Zganjar, E. F.
TI beta decay of the pi f(5/2) ground state of Cu-77 studied with 225 MeV
and 0.2 MeV purified radioactive beams
SO PHYSICAL REVIEW C
LA English
DT Article
ID NEUTRON-RICH ZN; NUCLEI; SPECTROSCOPY
AB Isobarically purified beams of Cu-77 with energies of 225 and 0.2 MeV were used at the Holifield Radioactive Ion Beam Facility of Oak Ridge National Laboratory to study beta decay into states in Zn-77. Data taken at 225 MeV allowed the determination of absolute branching ratios relative to the decay of Cu-77 for this beta decay as well as its daughters. From these we obtained a refined beta-delayed neutron emission probability of 30.3(22)% and a probability that the decay proceeds through Zn-77(g) of 49.1(26)%. A total of 64 gamma rays were placed in a level scheme for Zn-77 containing 35 excited states including one state above the neutron separation energy, whereas two gamma rays were observed for the beta n branch to states in Zn-76. The growth and decay curves of some prominent gamma rays indicate a single beta-decaying state with a half-life of 480(9) ms. The decay pattern for Cu-77, with observed feeding of 8(3)% to 7/2(+) Zn-77(g) and 6(3)% to 1/2(-) Zn-77(m), in contrast to the large feeding observed for decay of pi p(3/2) Cu-73(g) to 1/2(-) Zn-73(g), strongly suggests a pi f(5/2) ground state for the studied Cu-77 activity.
C1 [Ilyushkin, S. V.; Winger, J. A.] Mississippi State Univ, Dept Phys & Astron, Mississippi State, MS 39762 USA.
[Gross, C. J.; Rykaczewski, K. P.; Grzywacz, R.; Shapira, D.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA.
[Batchelder, J. C.; Liddick, S. N.] Oak Ridge Associated Univ, UNIRIB, Oak Ridge, TN 37831 USA.
[Cartegni, L.; Darby, I. G.; Grzywacz, R.; Korgul, A.; Liddick, S. N.; Mazzocchi, C.; Padgett, S.; Rajabali, M. M.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
[Darby, I. G.] Katholieke Univ Leuven, Inst Kern Stralingsfys, B-3001 Louvain, Belgium.
[Goodin, C.; Hamilton, J. H.; Korgul, A.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA.
[Korgul, A.] Warsaw Univ, Inst Expt Phys, PL-00681 Warsaw, Poland.
[Korgul, A.; Krolas, W.] Joint Inst Heavy Ion React, Oak Ridge, TN 37831 USA.
[Krolas, W.] Polish Acad Sci, Inst Nucl Phys, PL-31342 Krakow, Poland.
[Mazzocchi, C.] Univ Milan, I-20133 Milan, Italy.
[Mazzocchi, C.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy.
[Piechaczek, A.; Zganjar, E. F.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA.
RP Ilyushkin, SV (reprint author), Mississippi State Univ, Dept Phys & Astron, Mississippi State, MS 39762 USA.
EM svi1@msstate.edu
RI Krolas, Wojciech/N-9391-2013
FU US Department of Energy [DE-AC05-00OR22725, DE-FG02-96ER41006,
DE-FG02-96ER40983, DE-AC05-06OR23100, DE-FG02-96ER40978,
DE-FG05-88ER40407]; National Nuclear Security Administration
[DEFC03-03NA00143]; Polish Ministry of Science and Higher Education [N
N202 1033 33]; Foundation for Polish Science
FX We wish to acknowledge the Holifield Radioactive Ion Beam Facility
(HRIBF) and staff for their help and the excellent quality of the
neutron-rich beams. In addition, the engineering staff at the HRIBF
deserves our thanks for their help in constructing the Low-energy
Radioactive Ion Beam Spectroscopy Station beam line. Oak Ridge National
Laboratory is managed by UT-Battelle, LLC, for the US Department of
Energy under Contract No. DE-AC05-00OR22725. Additionally, this work was
supported by US Department of Energy Grant Nos. DE-FG02-96ER41006,
DE-FG02-96ER40983, DE-AC05-06OR23100, DE-FG02-96ER40978, and
DE-FG05-88ER40407; National Nuclear Security Administration Grant No.
DEFC03-03NA00143; Polish Ministry of Science and Higher Education Grant
No. N N202 1033 33; and the Foundation for Polish Science.
NR 23
TC 27
Z9 27
U1 0
U2 3
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD NOV
PY 2009
VL 80
IS 5
AR 054304
DI 10.1103/PhysRevC.80.054304
PG 10
WC Physics, Nuclear
SC Physics
GA 526SG
UT WOS:000272313000018
ER
PT J
AU Jeschonnek, S
Van Orden, JW
AF Jeschonnek, Sabine
Van Orden, J. W.
TI Target polarization for H-2(e,e(')p)n at GeV energies
SO PHYSICAL REVIEW C
LA English
DT Article
ID ELECTRON-SCATTERING; DEUTERON; NUCLEI; ELECTRODISINTEGRATION;
TRANSPARENCY; OBSERVABLES; EQUATIONS; SYSTEMS; A(E
AB We perform a fully relativistic calculation of the H-2(e,e(')p)n reaction in the impulse approximation employing the Gross equation to describe the deuteron ground state, and we use the SAID parametrization of the full NN scattering amplitude to describe the final state interactions (FSIs). The formalism for treating target polarization with arbitrary polarization axes is discussed, and general properties of some asymmetries are derived from it. We show results for momentum distributions and angular distributions of various asymmetries that can only be accessed with polarized targets.
C1 [Jeschonnek, Sabine] Ohio State Univ, Dept Phys, Lima, OH 45804 USA.
[Van Orden, J. W.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA.
[Van Orden, J. W.] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA.
RP Jeschonnek, S (reprint author), Ohio State Univ, Dept Phys, Lima, OH 45804 USA.
OI Jeschonnek, Sabine/0000-0002-8603-7589
FU US Department of Energy [DE-AC05-84ER40150]; National Science Foundation
[PHY-0653312]
FX We thank Sebastian Kuhn for his insightful comments on an earlier
version of this paper. We thank Michael Kohl for providing us with
information on the Bates experiments. This work was supported in part by
funds provided by the US Department of Energy through a cooperative
research agreement under Contract No. DE-AC05-84ER40150 and by the
National Science Foundation under Grant No. PHY-0653312.
NR 42
TC 17
Z9 17
U1 0
U2 0
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD NOV
PY 2009
VL 80
IS 5
AR 054001
DI 10.1103/PhysRevC.80.054001
PG 15
WC Physics, Nuclear
SC Physics
GA 526SG
UT WOS:000272313000013
ER
PT J
AU Lotay, G
Woods, PJ
Seweryniak, D
Carpenter, MP
Janssens, RVF
Zhu, S
AF Lotay, G.
Woods, P. J.
Seweryniak, D.
Carpenter, M. P.
Janssens, R. V. F.
Zhu, S.
TI gamma-ray spectroscopy study of states in Si-27 relevant for the
Al-26(m)(p,gamma)Si-27 reaction in novae and supernovae
SO PHYSICAL REVIEW C
LA English
DT Article
ID PROTON THRESHOLD STATES; PRESOLAR GRAINS; AL-26; EMISSION
AB The heavy-ion, fusion-evaporation reaction C-12(O-16,n) was used to identify gamma-decay transitions from excited states in Si-27 above the proton threshold. The precise level energy measurements, J(pi) assignments, and lifetime measurements of astrophysically important Al-26(m)+p resonances have allowed an evaluation of the Al-26(m)(p,gamma)Si-27 reaction rate. An l(p)=0 resonance has been newly identified at a center-of-mass energy in the Al-26(m)+p system of 146.3(3) keV and is expected to dominate the rate for low stellar temperatures. In addition, an l(p)=1 resonance has been identified at 378.3(30) keV and is likely to dominate the rate at high astrophysical temperatures, such as those found in oxygen-neon novae and core-collapse supernovae.
C1 [Lotay, G.; Woods, P. J.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland.
[Seweryniak, D.; Carpenter, M. P.; Janssens, R. V. F.; Zhu, S.] Argonne Natl Lab, Argonne, IL 60439 USA.
RP Lotay, G (reprint author), Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland.
RI Carpenter, Michael/E-4287-2015
OI Carpenter, Michael/0000-0002-3237-5734
FU US Department of Energy [DE-AC0206CH11357]; Science and Technologies
Facilities Council
FX The work was supported by the US Department of Energy, Office of Nuclear
Physics, under Contract No. DE-AC0206CH11357. UK personnel were
supported by the Science and Technologies Facilities Council.
NR 34
TC 8
Z9 8
U1 0
U2 0
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD NOV
PY 2009
VL 80
IS 5
AR 055802
DI 10.1103/PhysRevC.80.055802
PG 9
WC Physics, Nuclear
SC Physics
GA 526SG
UT WOS:000272313000082
ER
PT J
AU Mekterovic, D
Supek, I
Abaev, V
Bekrenev, V
Bircher, C
Briscoe, WJ
Cadman, RV
Clajus, M
Comfort, JR
Craig, K
Grosnick, D
Isenhover, D
Jerkins, M
Joy, M
Knecht, N
Koetke, DD
Kozlenko, N
Kulbardis, A
Kruglov, S
Lolos, G
Lopatin, I
Manley, DM
Manweiler, R
Marusic, A
McDonald, S
Nefkens, BMK
Olmsted, J
Papandreou, Z
Peaslee, D
Peterson, J
Phaisangittisakul, N
Prakhov, SN
Price, JW
Ramirez, A
Sadler, ME
Shafi, A
Spinka, H
Stanislaus, S
Starostin, A
Staudenmaier, HM
Strakovsky, I
Tippens, WB
Watson, S
AF Mekterovic, D.
Supek, I.
Abaev, V.
Bekrenev, V.
Bircher, C.
Briscoe, W. J.
Cadman, R. V.
Clajus, M.
Comfort, J. R.
Craig, K.
Grosnick, D.
Isenhover, D.
Jerkins, M.
Joy, M.
Knecht, N.
Koetke, D. D.
Kozlenko, N.
Kulbardis, A.
Kruglov, S.
Lolos, G.
Lopatin, I.
Manley, D. M.
Manweiler, R.
Marusic, A.
McDonald, S.
Nefkens, B. M. K.
Olmsted, J.
Papandreou, Z.
Peaslee, D.
Peterson, J.
Phaisangittisakul, N.
Prakhov, S. N.
Price, J. W.
Ramirez, A.
Sadler, M. E.
Shafi, A.
Spinka, H.
Stanislaus, S.
Starostin, A.
Staudenmaier, H. M.
Strakovsky, I.
Tippens, W. B.
Watson, S.
CA Crystal Ball Collaboration
TI Differential cross sections of the charge-exchange reaction pi(-)p
->pi(0)n in the momentum range from 103 to 178 MeV/c
SO PHYSICAL REVIEW C
LA English
DT Article
ID ISOSPIN VIOLATION; DELTA-RESONANCE; SCATTERING; BREAKING; PROTON
AB Measured values of the differential cross sections for pion-nucleon charge exchange, pi(-)p ->pi(0)n, are presented for pi(-) momenta of 103,112,120,130,139,152, and 178 MeV/c. Complete angular distributions were obtained by using the Crystal Ball detector at the Alternating Gradient Synchrotron at Brookhaven National Laboratory. Statistical uncertainties of the differential cross sections vary from 3 to 6% in the backward angle region and from 6 to about 20% in the forward region with the exception of the two most forward angles. The systematic uncertainties are estimated to be about 3% for all momenta.
C1 [Mekterovic, D.; Supek, I.] Rudjer Boskovic Inst, Zagreb 10000, Croatia.
[Abaev, V.; Bekrenev, V.; Kozlenko, N.; Kulbardis, A.; Kruglov, S.; Lopatin, I.] Petersburg Nucl Phys Inst, RU-188350 Gatchina, Russia.
[Bircher, C.; Isenhover, D.; Jerkins, M.; Joy, M.; Sadler, M. E.; Watson, S.] Abilene Christian Univ, Abilene, TX 79699 USA.
[Briscoe, W. J.; Shafi, A.; Strakovsky, I.] George Washington Univ, Washington, DC 20052 USA.
[Cadman, R. V.; Spinka, H.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Clajus, M.; Marusic, A.; McDonald, S.; Nefkens, B. M. K.; Phaisangittisakul, N.; Prakhov, S. N.; Price, J. W.; Starostin, A.; Tippens, W. B.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA.
[Comfort, J. R.; Craig, K.; Ramirez, A.] Arizona State Univ, Tempe, AZ 85287 USA.
[Grosnick, D.; Koetke, D. D.; Manweiler, R.; Stanislaus, S.] Valparaiso Univ, Valparaiso, IN 46383 USA.
[Knecht, N.; Lolos, G.; Papandreou, Z.] Univ Regina, Regina, SK S4S OA2, Canada.
[Manley, D. M.; Olmsted, J.] Kent State Univ, Kent, OH 44242 USA.
[Peaslee, D.] Univ Maryland, College Pk, MD 20742 USA.
[Peterson, J.] Univ Colorado, Boulder, CO 80309 USA.
[Staudenmaier, H. M.] Univ Karlsruhe, D-76128 Karlsruhe, Germany.
RP Mekterovic, D (reprint author), Rudjer Boskovic Inst, POB 1016, Zagreb 10000, Croatia.
EM dmekter@irb.hr
RI Marusic, Ana/E-7683-2013
OI Marusic, Ana/0000-0001-6272-0917
FU US DOE; NSF; Croatian MZOS; Russian Foundation for Basic Research; NSERC
of Canada
FX This work was supported in part by the US DOE and NSF, by the Croatian
MZOS, by the Russian Foundation for Basic Research, and by NSERC of
Canada. The assistance of BNL and AGS with the setup is greatly
appreciated.
NR 18
TC 2
Z9 2
U1 0
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD NOV
PY 2009
VL 80
IS 5
AR 055207
DI 10.1103/PhysRevC.80.055207
PG 12
WC Physics, Nuclear
SC Physics
GA 526SG
UT WOS:000272313000076
ER
PT J
AU Rodriguez-Gallardo, M
Arias, JM
Gomez-Camacho, J
Moro, AM
Thompson, IJ
Tostevin, JA
AF Rodriguez-Gallardo, M.
Arias, J. M.
Gomez-Camacho, J.
Moro, A. M.
Thompson, I. J.
Tostevin, J. A.
TI Four-body continuum-discretized coupled-channels calculations
SO PHYSICAL REVIEW C
LA English
DT Article
ID COULOMB BARRIER; SCATTERING; BREAKUP; STATES; HALOS; HE-6
AB The development of a continuum-bin scheme of discretization for three-body projectiles is necessary for studies of reactions of Borromean nuclei such as (6)He within the continuum-discretized coupled-channels approach. Such a procedure, for constructing bin states on selected continuum energy intervals, is formulated and applied for the first time to reactions of a three-body projectile. The continuum representation uses the eigenchannel expansion of the three-body S matrix. The method is applied to the challenging case of the (6)He+(208)Pb reaction at 22 MeV, where an accurate treatment of both the Coulomb and the nuclear interactions with the target is necessary.
C1 [Rodriguez-Gallardo, M.] CSIC, Inst Estructura Mat, E-28006 Madrid, Spain.
[Rodriguez-Gallardo, M.; Arias, J. M.; Gomez-Camacho, J.; Moro, A. M.] Univ Seville, Dept Fis Atom Mol & Nucl, E-41080 Seville, Spain.
[Rodriguez-Gallardo, M.] Univ Lisbon, Ctr Fis Nucl, P-1649003 Lisbon, Portugal.
[Gomez-Camacho, J.] Ctr Nacl Aceleradores, E-41092 Seville, Spain.
[Thompson, I. J.] Lawrence Livermore Natl Lab, Phys Sci Directorate, Livermore, CA 94551 USA.
[Tostevin, J. A.] Univ Surrey, Fac Engn & Phys Sci, Dept Phys, Guildford GU2 7XH, Surrey, England.
RP Rodriguez-Gallardo, M (reprint author), CSIC, Inst Estructura Mat, Serrano 123, E-28006 Madrid, Spain.
RI Arias, Jose M./G-8988-2011; Rodriguez-Gallardo, Manuela/B-4413-2014;
Gomez-Camacho, Joaquin/L-5625-2014; Moro, Antonio/E-6538-2010
OI Arias, Jose M./0000-0001-7363-4328; Rodriguez-Gallardo,
Manuela/0000-0002-2831-8315; Gomez-Camacho, Joaquin/0000-0003-0925-5037;
Moro, Antonio/0000-0002-0012-8894
FU FCT [POCTI/ISFL/2/275]; DGICYT [FIS 2008-04189, FPA 2006-13807-C02-01];
Spanish Consolider-Ingenio 2010 Programme CPAN [CSD2007-00042]; US
Department of Energy at Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]; UK Science and Technology Facilities Council
[EP/D003628]; Junta de Andalucia
FX We are grateful to F. M. Nunes and R. C. Johnson for useful discussions
and suggestions. This work was supported in part by the FCT under Grant
No. POCTI/ISFL/2/275 and in part by the DGICYT under Project Nos. FIS
2008-04189 and FPA 2006-13807-C02-01 and the Spanish Consolider-Ingenio
2010 Programme CPAN No. CSD2007-00042. Part of this work was performed
under the auspices of the US Department of Energy at Lawrence Livermore
National Laboratory under Contract No. DE-AC52-07NA27344. J.A.T.
acknowledges the support of the UK Science and Technology Facilities
Council under Grant No. EP/D003628. A. M. M. acknowledges a research
grant from the Junta de Andalucia.
NR 27
TC 56
Z9 56
U1 0
U2 4
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD NOV
PY 2009
VL 80
IS 5
AR 051601
DI 10.1103/PhysRevC.80.051601
PG 5
WC Physics, Nuclear
SC Physics
GA 526SG
UT WOS:000272313000007
ER
PT J
AU Sharma, R
Vitev, I
Zhang, BW
AF Sharma, Rishi
Vitev, Ivan
Zhang, Ben-Wei
TI Light-cone wave function approach to open heavy flavor dynamics in QCD
matter
SO PHYSICAL REVIEW C
LA English
DT Article
ID ION COLLISIONS; ENERGY-LOSS; MESONS; FRAGMENTATION; DECAY
AB We calculate the lowest-order charm and beauty parton distribution functions in and fragmentation functions into D and B mesons using the operator definitions of factorized perturbative quantum chromodynamics (QCD). In the vacuum, we find the leading corrections that arise from the structure of the final-state hadrons. Quark-antiquark potentials extracted from the lattice are employed to demonstrate the existence of open heavy flavor bound-state solutions in the quark-gluon plasma in the vicinity of the critical temperature. We provide first results for the in-medium modification of the heavy-quark distribution and decay probabilities in a comoving plasma. In an improved perturbative QCD description of heavy-flavor dynamics in the thermal medium, we combine D- and B-meson formation and dissociation with parton-level charm and beauty quark quenching to obtain predictions for the heavy-meson and nonphotonic-electron suppression in Cu+Cu and Pb+Pb collisions at the Relativistic Heavy Ion Collider and the Large Hadron Collider, respectively.
C1 [Sharma, Rishi; Vitev, Ivan; Zhang, Ben-Wei] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Zhang, Ben-Wei] Huazhong Normal Univ, Minist Educ, Key Lab Quark & Lepton Phys, Wuhan, Peoples R China.
RP Sharma, R (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA.
EM rishi@lanl.gov; ivitev@lanl.gov; bzhang@lanl.gov
NR 48
TC 131
Z9 131
U1 0
U2 0
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9985
EI 2469-9993
J9 PHYS REV C
JI Phys. Rev. C
PD NOV
PY 2009
VL 80
IS 5
AR 054902
DI 10.1103/PhysRevC.80.054902
PG 17
WC Physics, Nuclear
SC Physics
GA 526SG
UT WOS:000272313000054
ER
PT J
AU Tsukiyama, K
Hjorth-Jensen, M
Hagen, G
AF Tsukiyama, K.
Hjorth-Jensen, M.
Hagen, G.
TI Gamow shell-model calculations of drip-line oxygen isotopes
SO PHYSICAL REVIEW C
LA English
DT Article
AB We employ the Gamow shell model (GSM) to describe low-lying states of the oxygen isotopes O-24 and O-25. The many-body Schroumldinger equation is solved starting from a two-body Hamiltonian defined by a renormalized low-momentum nucleon-nucleon (NN) interaction and a spherical Berggren basis. The Berggren basis treats bound, resonant, and continuum states on an equal footing and is therefore an appropriate representation of loosely bound and unbound nuclear states near threshold. We show that the inclusion of continuum effects has a significant effect on the low-lying 1(+) and 2(+) excited states in O-24. On the other hand, we find that a correct description of binding energy systematics of the ground states is driven by the proper treatment and inclusion of many-body correlation effects. This is supported by the fact that we get O-25 unstable with respect to O-24 in both oscillator and Berggren representations starting from a O-22 core. Furthermore, we show that the structure of these loosely bound or unbound isotopes is strongly influenced by the S-1(0) component of the NN interaction. This has important consequences for our understanding of nuclear stability.
C1 [Tsukiyama, K.] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo, Japan.
[Hjorth-Jensen, M.] Univ Oslo, Dept Phys, N-0316 Oslo, Norway.
[Hjorth-Jensen, M.] Univ Oslo, Ctr Math Applicat, N-0316 Oslo, Norway.
[Hagen, G.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA.
RP Tsukiyama, K (reprint author), Univ Tokyo, Dept Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo, Japan.
RI Hjorth-Jensen, Morten/B-1417-2008; Hagen, Gaute/I-6146-2012
OI Hagen, Gaute/0000-0001-6019-1687
FU JSPS; EFES [20244022]; Research Council of Norway [NN2977K]; US
Department of Energy [DE-AC05-00OR22725]
FX We thank Prof. Takaharu Otsuka for valuable comments. K. T. thanks JSPS
for financial support. This work has been supported in part by the JSPS
core-to-core program, EFES, by a grant-in-aid for Scientific Research
(A) 20244022, and by the Research Council of Norway (Supercomputing
Grant NN2977K). Oak Ridge National Laboratory is managed by UT-Battelle,
LLC, for the US Department of Energy under Contract No.
DE-AC05-00OR22725.
NR 31
TC 20
Z9 20
U1 0
U2 4
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9985
EI 2469-9993
J9 PHYS REV C
JI Phys. Rev. C
PD NOV
PY 2009
VL 80
IS 5
AR 051301
DI 10.1103/PhysRevC.80.051301
PG 5
WC Physics, Nuclear
SC Physics
GA 526SG
UT WOS:000272313000002
ER
PT J
AU Wong, CY
AF Wong, Cheuk-Yin
TI Wigner function of produced particles in string fragmentation
SO PHYSICAL REVIEW C
LA English
DT Review
ID NUCLEUS-NUCLEUS COLLISIONS; MASSIVE SCHWINGER MODEL; GLUON
DISTRIBUTION-FUNCTIONS; MONTE-CARLO PROGRAM; DUAL-PARTON MODEL; 2
DIMENSIONS; JET FRAGMENTATION; HADRON-NUCLEUS; MULTIPARTICLE PRODUCTION;
HIGH-ENERGIES
AB I show that quantum chromodynamics in four dimensions (QCD4) with transverse confinement can be approximately compactified into QCD2 with a transverse quark mass m(T) that is obtained by solving a set of coupled transverse eigenvalue equations. In the limits of a strong coupling and a large number of flavors, QCD2 further admits Schwinger QED2-type bosonized solutions. I therefore examine phenomenologically the space-time dynamics of particles produced in string fragmentation by studying the Wigner function of bosons produced in Schwinger QED2, which mimics many features of string fragmentation in quantum chromodynamics. I find that particles with momenta in different regions of the rapidity plateau are produced at the initial moment of string fragmentation as a quark pulls away from an antiquark at high energies, in contrast to classical depictions of string fragmentation with longitudinal space-momentum-time ordering.
C1 Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA.
RP Wong, CY (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA.
EM wongc@ornl.gov
OI Wong, Cheuk-Yin/0000-0001-8223-0659
FU US Department of Energy [DE-AC05-00OR22725]
FX The author thanks Professors H. W. Crater and Che-Ming Ko for helpful
discussions. This research was supported in part by the Division of
Nuclear Physics, US Department of Energy, under Contract No.
DE-AC05-00OR22725, managed by UT-Battelle, LLC.
NR 123
TC 8
Z9 8
U1 0
U2 1
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9985
EI 2469-9993
J9 PHYS REV C
JI Phys. Rev. C
PD NOV
PY 2009
VL 80
IS 5
AR 054917
DI 10.1103/PhysRevC.80.054917
PG 18
WC Physics, Nuclear
SC Physics
GA 526SG
UT WOS:000272313000069
ER
PT J
AU Younes, W
Gogny, D
AF Younes, W.
Gogny, D.
TI Microscopic calculation of Pu-240 scission with a finite-range effective
force
SO PHYSICAL REVIEW C
LA English
DT Article
ID GENERATOR-COORDINATE METHOD; D-1 EFFECTIVE INTERACTION;
DENSITY-DEPENDENT FORCES; GROUND-STATE; FISSION-BARRIERS; GOGNY FORCE;
PAIRING CORRELATIONS; NUCLEI; ISOTOPES; SHAPES
AB Hartree-Fock-Bogoliubov calculations of hot fission in Pu-240 have been performed with a newly implemented code that uses the D1S finite-range effective interaction. The hot-scission line is identified in the quadrupole-octupole-moment coordinate space. Fission-fragment shapes are extracted from the calculations. A benchmark calculation for Th-226 is obtained and compared with results in the literature. In addition, technical aspects of the use of HFB calculations for fission studies are examined in detail. In particular, the identification of scission configurations, the sensitivity of near-scission calculations to the choice of collective coordinates in the HFB iterations, and the formalism for the adjustment of collective-variable constraints are discussed. The power of the constraint-adjustment algorithm is illustrated with calculations near the critical scission configurations with up to seven simultaneous constraints.
C1 [Younes, W.; Gogny, D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
RP Younes, W (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
NR 45
TC 39
Z9 39
U1 0
U2 4
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD NOV
PY 2009
VL 80
IS 5
AR 054313
DI 10.1103/PhysRevC.80.054313
PG 15
WC Physics, Nuclear
SC Physics
GA 526SG
UT WOS:000272313000027
ER
PT J
AU Abazov, VM
Abbott, B
Abolins, M
Acharya, BS
Adams, M
Adams, T
Aguilo, E
Ahsan, M
Alexeev, GD
Alkhazov, G
Alton, A
Alverson, G
Alves, GA
Ancu, LS
Andeen, T
Anzelc, MS
Aoki, M
Arnoud, Y
Arov, M
Arthaud, M
Askew, A
Asman, B
Atramentov, O
Avila, C
BackusMayes, J
Badaud, F
Bagby, L
Baldin, B
Bandurin, DV
Banerjee, S
Barberis, E
Barfuss, AF
Bargassa, P
Baringer, P
Barreto, J
Bartlett, JF
Bassler, U
Bauer, D
Beale, S
Bean, A
Begalli, M
Begel, M
Belanger-Champagne, C
Bellantoni, L
Bellavance, A
Benitez, JA
Beri, SB
Bernardi, G
Bernhard, R
Bertram, I
Besancon, M
Beuselinck, R
Bezzubov, VA
Bhat, PC
Bhatnagar, V
Blazey, G
Blessing, S
Bloom, K
Boehnlein, A
Boline, D
Bolton, TA
Boos, EE
Borissov, G
Bose, T
Brandt, A
Brandt, O
Brock, R
Brooijmans, G
Bross, A
Brown, D
Bu, XB
Buchholz, D
Buehler, M
Buescher, V
Bunichev, V
Burdin, S
Burnett, TH
Buszello, CP
Calfayan, P
Calpas, B
Calvet, S
Cammin, J
Carrasco-Lizarraga, MA
Carrera, E
Carvalho, W
Casey, BCK
Castilla-Valdez, H
Chakrabarti, S
Chakraborty, D
Chan, KM
Chandra, A
Cheu, E
Cho, DK
Choi, S
Choudhary, B
Christoudias, T
Cihangir, S
Claes, D
Clutter, J
Cooke, M
Cooper, WE
Corcoran, M
Couderc, F
Cousinou, MC
Crepe-Renaudin, S
Cuplov, V
Cutts, D
Cwiok, M
Das, A
Davies, G
De, K
de Jong, SJ
De La Cruz-Burelo, E
DeVaughan, K
Deliot, F
Demarteau, M
Demina, R
Denisov, D
Denisov, SP
Desai, S
Diehl, HT
Diesburg, M
Dominguez, A
Dorland, T
Dubey, A
Dudko, LV
Duflot, L
Duggan, D
Duperrin, A
Dutt, S
Dyshkant, A
Eads, M
Edmunds, D
Ellison, J
Elvira, VD
Enari, Y
Eno, S
Ermolov, P
Escalier, M
Evans, H
Evdokimov, A
Evdokimov, VN
Facini, G
Ferapontov, AV
Ferbel, T
Fiedler, F
Filthaut, F
Fisher, W
Fisk, HE
Fortner, M
Fox, H
Fu, S
Fuess, S
Gadfort, T
Galea, CF
Garcia-Bellido, A
Gavrilov, V
Gay, P
Geist, W
Geng, W
Gerber, CE
Gershtein, Y
Gillberg, D
Ginther, G
Gomez, B
Goussiou, A
Grannis, PD
Greder, S
Greenlee, H
Greenwood, ZD
Gregores, EM
Grenier, G
Gris, P
Grivaz, JF
Grohsjean, A
Grunendahl, S
Grunewald, MW
Guo, F
Guo, J
Gutierrez, G
Gutierrez, P
Haas, A
Hadley, NJ
Haefner, P
Hagopian, S
Haley, J
Hall, I
Hall, RE
Han, L
Harder, K
Harel, A
Hauptman, JM
Hays, J
Hebbeker, T
Hedin, D
Hegeman, JG
Heinson, AP
Heintz, U
Hensel, C
Heredia-De La Cruz, I
Herner, K
Hesketh, G
Hildreth, MD
Hirosky, R
Hoang, T
Hobbs, JD
Hoeneisen, B
Hohlfeld, M
Hossain, S
Houben, P
Hu, Y
Hubacek, Z
Huske, N
Hynek, V
Iashvili, I
Illingworth, R
Ito, AS
Jabeen, S
Jaffre, M
Jain, S
Jakobs, K
Jamin, D
Jarvis, C
Jesik, R
Johns, K
Johnson, C
Johnson, M
Johnston, D
Jonckheere, A
Jonsson, P
Juste, A
Kajfasz, E
Karmanov, D
Kasper, PA
Katsanos, I
Kaushik, V
Kehoe, R
Kermiche, S
Khalatyan, N
Khanov, A
Kharchilava, A
Kharzheev, YN
Khatidze, D
Kim, TJ
Kirby, MH
Kirsch, M
Klima, B
Kohli, JM
Konrath, JP
Kozelov, AV
Kraus, J
Kuhl, T
Kumar, A
Kupco, A
Kurca, T
Kuzmin, VA
Kvita, J
Lacroix, F
Lam, D
Lammers, S
Landsberg, G
Lebrun, P
Lee, WM
Leflat, A
Lellouch, J
Li, J
Li, L
Li, QZ
Lietti, SM
Lim, JK
Lincoln, D
Linnemann, J
Lipaev, VV
Lipton, R
Liu, Y
Liu, Z
Lobodenko, A
Lokajicek, M
Love, P
Lubatti, HJ
Luna-Garcia, R
Lyon, AL
Maciel, AKA
Mackin, D
Mattig, P
Magerkurth, A
Mal, PK
Malbouisson, HB
Malik, S
Malyshev, VL
Maravin, Y
Martin, B
McCarthy, R
McGivern, CL
Meijer, MM
Melnitchouk, A
Mendoza, L
Menezes, D
Mercadante, PG
Merkin, M
Merritt, KW
Meyer, A
Meyer, J
Mitrevski, J
Mommsen, RK
Mondal, NK
Moore, RW
Moulik, T
Muanza, GS
Mulhearn, M
Mundal, O
Mundim, L
Nagy, E
Naimuddin, M
Narain, M
Neal, HA
Negret, JP
Neustroev, P
Nilsen, H
Nogima, H
Novaes, SF
Nunnemann, T
Obrant, G
Ochando, C
Onoprienko, D
Orduna, J
Oshima, N
Osman, N
Osta, J
Otec, R
Garzon, GJOY
Owen, M
Padilla, M
Padley, P
Pangilinan, M
Parashar, N
Park, SJ
Park, SK
Parsons, J
Partridge, R
Parua, N
Patwa, A
Pawloski, G
Penning, B
Perfilov, M
Peters, K
Peters, Y
Petroff, P
Piegaia, R
Piper, J
Pleier, MA
Podesta-Lerma, PLM
Podstavkov, VM
Pogorelov, Y
Pol, ME
Polozov, P
Popov, AV
Potter, C
da Silva, WLP
Protopopescu, S
Qian, J
Quadt, A
Quinn, B
Rakitine, A
Rangel, MS
Ranjan, K
Ratoff, PN
Renkel, P
Rich, P
Rijssenbeek, M
Ripp-Baudot, I
Rizatdinova, F
Robinson, S
Rodrigues, RF
Rominsky, M
Royon, C
Rubinov, P
Ruchti, R
Safronov, G
Sajot, G
Sanchez-Hernandez, A
Sanders, MP
Sanghi, B
Savage, G
Sawyer, L
Scanlon, T
Schaile, D
Schamberger, RD
Scheglov, Y
Schellman, H
Schliephake, T
Schlobohm, S
Schwanenberger, C
Schwienhorst, R
Sekaric, J
Severini, H
Shabalina, E
Shamim, M
Shary, V
Shchukin, AA
Shivpuri, RK
Siccardi, V
Simak, V
Sirotenko, V
Skubic, P
Slattery, P
Smirnov, D
Snow, GR
Snow, J
Snyder, S
Soldner-Rembold, S
Sonnenschein, L
Sopczak, A
Sosebee, M
Soustruznik, K
Spurlock, B
Stark, J
Stolin, V
Stoyanova, DA
Strandberg, J
Strandberg, S
Strang, MA
Strauss, E
Strauss, M
Strohmer, R
Strom, D
Stutte, L
Sumowidagdo, S
Svoisky, P
Takahashi, M
Tanasijczuk, A
Taylor, W
Tiller, B
Tissandier, F
Titov, M
Tokmenin, VV
Torchiani, I
Tsybychev, D
Tuchming, B
Tully, C
Tuts, PM
Unalan, R
Uvarov, L
Uvarov, S
Uzunyan, S
Vachon, B
van den Berg, PJ
Van Kooten, R
van Leeuwen, WM
Varelas, N
Varnes, EW
Vasilyev, IA
Verdier, P
Vertogradov, LS
Verzocchi, M
Vilanova, D
Vint, P
Vokac, P
Voutilainen, M
Wagner, R
Wahl, HD
Wang, MHLS
Warchol, J
Watts, G
Wayne, M
Weber, G
Weber, M
Welty-Rieger, L
Wenger, A
Wetstein, M
White, A
Wicke, D
Williams, MRJ
Wilson, GW
Wimpenny, SJ
Wobisch, M
Wood, DR
Wyatt, TR
Xie, Y
Xu, C
Yacoob, S
Yamada, R
Yang, WC
Yasuda, T
Yatsunenko, YA
Ye, Z
Yin, H
Yip, K
Yoo, HD
Youn, SW
Yu, J
Zeitnitz, C
Zelitch, S
Zhao, T
Zhou, B
Zhu, J
Zielinski, M
Zieminska, D
Zivkovic, L
Zutshi, V
Zverev, EG
AF Abazov, V. M.
Abbott, B.
Abolins, M.
Acharya, B. S.
Adams, M.
Adams, T.
Aguilo, E.
Ahsan, M.
Alexeev, G. D.
Alkhazov, G.
Alton, A.
Alverson, G.
Alves, G. A.
Ancu, L. S.
Andeen, T.
Anzelc, M. S.
Aoki, M.
Arnoud, Y.
Arov, M.
Arthaud, M.
Askew, A.
Asman, B.
Atramentov, O.
Avila, C.
BackusMayes, J.
Badaud, F.
Bagby, L.
Baldin, B.
Bandurin, D. V.
Banerjee, S.
Barberis, E.
Barfuss, A. -F
Bargassa, P.
Baringer, P.
Barreto, J.
Bartlett, J. F.
Bassler, U.
Bauer, D.
Beale, S.
Bean, A.
Begalli, M.
Begel, M.
Belanger-Champagne, C.
Bellantoni, L.
Bellavance, A.
Benitez, J. A.
Beri, S. B.
Bernardi, G.
Bernhard, R.
Bertram, I.
Besancon, M.
Beuselinck, R.
Bezzubov, V. A.
Bhat, P. C.
Bhatnagar, V.
Blazey, G.
Blessing, S.
Bloom, K.
Boehnlein, A.
Boline, D.
Bolton, T. A.
Boos, E. E.
Borissov, G.
Bose, T.
Brandt, A.
Brandt, O.
Brock, R.
Brooijmans, G.
Bross, A.
Brown, D.
Bu, X. B.
Buchholz, D.
Buehler, M.
Buescher, V.
Bunichev, V.
Burdin, S.
Burnett, T. H.
Buszello, C. P.
Calfayan, P.
Calpas, B.
Calvet, S.
Cammin, J.
Carrasco-Lizarraga, M. A.
Carrera, E.
Carvalho, W.
Casey, B. C. K.
Castilla-Valdez, H.
Chakrabarti, S.
Chakraborty, D.
Chan, K. M.
Chandra, A.
Cheu, E.
Cho, D. K.
Choi, S.
Choudhary, B.
Christoudias, T.
Cihangir, S.
Claes, D.
Clutter, J.
Cooke, M.
Cooper, W. E.
Corcoran, M.
Couderc, F.
Cousinou, M. -C.
Crepe-Renaudin, S.
Cuplov, V.
Cutts, D.
Cwiok, M.
Das, A.
Davies, G.
De, K.
de Jong, S. J.
De La Cruz-Burelo, E.
DeVaughan, K.
Deliot, F.
Demarteau, M.
Demina, R.
Denisov, D.
Denisov, S. P.
Desai, S.
Diehl, H. T.
Diesburg, M.
Dominguez, A.
Dorland, T.
Dubey, A.
Dudko, L. V.
Duflot, L.
Duggan, D.
Duperrin, A.
Dutt, S.
Dyshkant, A.
Eads, M.
Edmunds, D.
Ellison, J.
Elvira, V. D.
Enari, Y.
Eno, S.
Ermolov, P.
Escalier, M.
Evans, H.
Evdokimov, A.
Evdokimov, V. N.
Facini, G.
Ferapontov, A. V.
Ferbel, T.
Fiedler, F.
Filthaut, F.
Fisher, W.
Fisk, H. E.
Fortner, M.
Fox, H.
Fu, S.
Fuess, S.
Gadfort, T.
Galea, C. F.
Garcia-Bellido, A.
Gavrilov, V.
Gay, P.
Geist, W.
Geng, W.
Gerber, C. E.
Gershtein, Y.
Gillberg, D.
Ginther, G.
Gomez, B.
Goussiou, A.
Grannis, P. D.
Greder, S.
Greenlee, H.
Greenwood, Z. D.
Gregores, E. M.
Grenier, G.
Gris, Ph.
Grivaz, J. -F
Grohsjean, A.
Gruenendahl, S.
Gruenewald, M. W.
Guo, F.
Guo, J.
Gutierrez, G.
Gutierrez, P.
Haas, A.
Hadley, N. J.
Haefner, P.
Hagopian, S.
Haley, J.
Hall, I.
Hall, R. E.
Han, L.
Harder, K.
Harel, A.
Hauptman, J. M.
Hays, J.
Hebbeker, T.
Hedin, D.
Hegeman, J. G.
Heinson, A. P.
Heintz, U.
Hensel, C.
Heredia-De La Cruz, I.
Herner, K.
Hesketh, G.
Hildreth, M. D.
Hirosky, R.
Hoang, T.
Hobbs, J. D.
Hoeneisen, B.
Hohlfeld, M.
Hossain, S.
Houben, P.
Hu, Y.
Hubacek, Z.
Huske, N.
Hynek, V.
Iashvili, I.
Illingworth, R.
Ito, A. S.
Jabeen, S.
Jaffre, M.
Jain, S.
Jakobs, K.
Jamin, D.
Jarvis, C.
Jesik, R.
Johns, K.
Johnson, C.
Johnson, M.
Johnston, D.
Jonckheere, A.
Jonsson, P.
Juste, A.
Kajfasz, E.
Karmanov, D.
Kasper, P. A.
Katsanos, I.
Kaushik, V.
Kehoe, R.
Kermiche, S.
Khalatyan, N.
Khanov, A.
Kharchilava, A.
Kharzheev, Y. N.
Khatidze, D.
Kim, T. J.
Kirby, M. H.
Kirsch, M.
Klima, B.
Kohli, J. M.
Konrath, J. -P.
Kozelov, A. V.
Kraus, J.
Kuhl, T.
Kumar, A.
Kupco, A.
Kurca, T.
Kuzmin, V. A.
Kvita, J.
Lacroix, F.
Lam, D.
Lammers, S.
Landsberg, G.
Lebrun, P.
Lee, W. M.
Leflat, A.
Lellouch, J.
Li, J.
Li, L.
Li, Q. Z.
Lietti, S. M.
Lim, J. K.
Lincoln, D.
Linnemann, J.
Lipaev, V. V.
Lipton, R.
Liu, Y.
Liu, Z.
Lobodenko, A.
Lokajicek, M.
Love, P.
Lubatti, H. J.
Luna-Garcia, R.
Lyon, A. L.
Maciel, A. K. A.
Mackin, D.
Maettig, P.
Magerkurth, A.
Mal, P. K.
Malbouisson, H. B.
Malik, S.
Malyshev, V. L.
Maravin, Y.
Martin, B.
McCarthy, R.
McGivern, C. L.
Meijer, M. M.
Melnitchouk, A.
Mendoza, L.
Menezes, D.
Mercadante, P. G.
Merkin, M.
Merritt, K. W.
Meyer, A.
Meyer, J.
Mitrevski, J.
Mommsen, R. K.
Mondal, N. K.
Moore, R. W.
Moulik, T.
Muanza, G. S.
Mulhearn, M.
Mundal, O.
Mundim, L.
Nagy, E.
Naimuddin, M.
Narain, M.
Neal, H. A.
Negret, J. P.
Neustroev, P.
Nilsen, H.
Nogima, H.
Novaes, S. F.
Nunnemann, T.
Obrant, G.
Ochando, C.
Onoprienko, D.
Orduna, J.
Oshima, N.
Osman, N.
Osta, J.
Otec, R.
Otero y Garzon, G. J.
Owen, M.
Padilla, M.
Padley, P.
Pangilinan, M.
Parashar, N.
Park, S. -J.
Park, S. K.
Parsons, J.
Partridge, R.
Parua, N.
Patwa, A.
Pawloski, G.
Penning, B.
Perfilov, M.
Peters, K.
Peters, Y.
Petroff, P.
Piegaia, R.
Piper, J.
Pleier, M. -A.
Podesta-Lerma, P. L. M.
Podstavkov, V. M.
Pogorelov, Y.
Pol, M. -E.
Polozov, P.
Popov, A. V.
Potter, C.
Prado da Silva, W. L.
Protopopescu, S.
Qian, J.
Quadt, A.
Quinn, B.
Rakitine, A.
Rangel, M. S.
Ranjan, K.
Ratoff, P. N.
Renkel, P.
Rich, P.
Rijssenbeek, M.
Ripp-Baudot, I.
Rizatdinova, F.
Robinson, S.
Rodrigues, R. F.
Rominsky, M.
Royon, C.
Rubinov, P.
Ruchti, R.
Safronov, G.
Sajot, G.
Sanchez-Hernandez, A.
Sanders, M. P.
Sanghi, B.
Savage, G.
Sawyer, L.
Scanlon, T.
Schaile, D.
Schamberger, R. D.
Scheglov, Y.
Schellman, H.
Schliephake, T.
Schlobohm, S.
Schwanenberger, C.
Schwienhorst, R.
Sekaric, J.
Severini, H.
Shabalina, E.
Shamim, M.
Shary, V.
Shchukin, A. A.
Shivpuri, R. K.
Siccardi, V.
Simak, V.
Sirotenko, V.
Skubic, P.
Slattery, P.
Smirnov, D.
Snow, G. R.
Snow, J.
Snyder, S.
Soeldner-Rembold, S.
Sonnenschein, L.
Sopczak, A.
Sosebee, M.
Soustruznik, K.
Spurlock, B.
Stark, J.
Stolin, V.
Stoyanova, D. A.
Strandberg, J.
Strandberg, S.
Strang, M. A.
Strauss, E.
Strauss, M.
Stroehmer, R.
Strom, D.
Stutte, L.
Sumowidagdo, S.
Svoisky, P.
Takahashi, M.
Tanasijczuk, A.
Taylor, W.
Tiller, B.
Tissandier, F.
Titov, M.
Tokmenin, V. V.
Torchiani, I.
Tsybychev, D.
Tuchming, B.
Tully, C.
Tuts, P. M.
Unalan, R.
Uvarov, L.
Uvarov, S.
Uzunyan, S.
Vachon, B.
van den Berg, P. J.
Van Kooten, R.
van Leeuwen, W. M.
Varelas, N.
Varnes, E. W.
Vasilyev, I. A.
Verdier, P.
Vertogradov, L. S.
Verzocchi, M.
Vilanova, D.
Vint, P.
Vokac, P.
Voutilainen, M.
Wagner, R.
Wahl, H. D.
Wang, M. H. L. S.
Warchol, J.
Watts, G.
Wayne, M.
Weber, G.
Weber, M.
Welty-Rieger, L.
Wenger, A.
Wetstein, M.
White, A.
Wicke, D.
Williams, M. R. J.
Wilson, G. W.
Wimpenny, S. J.
Wobisch, M.
Wood, D. R.
Wyatt, T. R.
Xie, Y.
Xu, C.
Yacoob, S.
Yamada, R.
Yang, W. -C.
Yasuda, T.
Yatsunenko, Y. A.
Ye, Z.
Yin, H.
Yip, K.
Yoo, H. D.
Youn, S. W.
Yu, J.
Zeitnitz, C.
Zelitch, S.
Zhao, T.
Zhou, B.
Zhu, J.
Zielinski, M.
Zieminska, D.
Zivkovic, L.
Zutshi, V.
Zverev, E. G.
CA D0 Collaboration
TI Measurement of the top quark mass in final states with two leptons
SO PHYSICAL REVIEW D
LA English
DT Article
ID TOPCOLOR-ASSISTED TECHNICOLOR; ELECTROWEAK PRECISION OBSERVABLES;
LIKELIHOOD METHOD; MISSING MOMENTUM; DILEPTON EVENTS; COLLISIONS; MODEL;
RECONSTRUCTION; DETECTOR; PHYSICS
AB We present measurements of the top quark mass (m(t)) in tt candidate events with two final state leptons using 1 fb(-1) of data collected by the D0 experiment. Our data sample is selected by requiring two fully identified leptons or by relaxing one lepton requirement to an isolated track if at least one jet is tagged as a b jet. The top quark mass is extracted after reconstructing the event kinematics under the tt hypothesis using two methods. In the first method, we integrate over expected neutrino rapidity distributions, and in the second we calculate a weight for the possible top quark masses based on the observed particle momenta and the known parton distribution functions. We analyze 83 candidate events in the data and obtain m(t)=176.2 +/- 4.8(stat)+/- 2.1(sys) GeV and m(t)=173.2 +/- 4.9(stat)+/- 2.0(sys) GeV for the two methods, respectively. Accounting for correlations between the two methods, we combine the measurements to obtain m(t)=174.7 +/- 4.4(stat)+/- 2.0(sys) GeV.
C1 [Abazov, V. M.; Alexeev, G. D.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia.
[Alves, G. A.; Barreto, J.; Maciel, A. K. A.; Pol, M. -E.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil.
[Begalli, M.; Carvalho, W.; Malbouisson, H. B.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Rodrigues, R. F.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil.
[Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil.
[Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil.
[Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada.
[Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China.
[Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia.
[Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic.
[Hubacek, Z.; Hynek, V.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic.
[Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic.
[Hoeneisen, B.] Univ San Francisco, Quito, Ecuador.
[Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont, France.
[Arnoud, Y.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, Inst Natl Polytech Grenoble, LPSC,IN2P3, Grenoble, France.
[Barfuss, A. -F; Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Escalier, M.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France.
[Calvet, S.; Duflot, L.; Grivaz, J. -F; Jaffre, M.; Ochando, C.; Petroff, P.; Rangel, M. S.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France.
[Bernardi, G.; Huske, N.; Lellouch, J.; Sanders, M. P.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France.
[Arthaud, M.; Bassler, U.; Besancon, M.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, SPP, Saclay, France.
[Brown, D.; Geist, W.; Greder, S.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France.
[Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France.
[Hebbeker, T.; Kirsch, M.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany.
[Brandt, O.; Buescher, V.; Hohlfeld, M.; Mundal, O.; Pleier, M. -A.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany.
[Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany.
[Hensel, C.; Meyer, J.; Park, S. -J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, D-3400 Gottingen, Germany.
[Fiedler, F.; Kuhl, T.; Weber, G.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany.
[Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany.
[Maettig, P.; Schliephake, T.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany.
[Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India.
[Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India.
[Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland.
[Kim, T. J.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea.
[Choi, S.] Sungkyunkwan Univ, Suwon, South Korea.
[Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico.
[Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] FOM, Inst NIKHEF, NL-1098 SJ Amsterdam, Netherlands.
[Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands.
[Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia.
[Cheu, E.; Das, A.; Johns, K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA.
[Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA.
[Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA.
[Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Merritt, K. W.; Naimuddin, M.; Oshima, N.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Weber, M.; Yamada, R.; Yasuda, T.; Ye, Z.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Adams, M.; Gerber, C. E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA.
[Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA.
[Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA.
[Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA.
[Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA.
[Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA.
[Baringer, P.; Bean, A.; Clutter, J.; McGivern, C. L.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA.
[Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Cuplov, V.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.] Kansas State Univ, Manhattan, KS 66506 USA.
[Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA.
[Alverson, G.; Barberis, E.; Facini, G.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA.
[Alton, A.; Herner, K.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.; Voutilainen, M.] Univ Nebraska, Lincoln, NE 68588 USA.
[Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA.
[Cammin, J.; Demina, R.; Garcia-Bellido, A.; Harel, A.; Slattery, P.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA.
[Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA.
[Begel, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA.
[Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA.
[Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA.
[Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA.
[Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA.
[Bargassa, P.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA.
[Buehler, M.; Hirosky, R.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA.
[BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Mal, P. K.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA.
[Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada.
[Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada.
[Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada.
[Bernardi, G.; Huske, N.; Lellouch, J.; Sanders, M. P.] Univ Paris 07, CNRS, IN2P3, LPNHE, Paris, France.
[Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France.
[Choudhary, B.; Dubey, A.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India.
[Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands.
[Boos, E. E.; Bunichev, V.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia.
[Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia.
[Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden.
[Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden.
[Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster, England.
[Bauer, D.; Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Robinson, S.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England.
[Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester, Lancs, England.
[Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Carrera, E.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Hoang, T.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA.
[Evans, H.; Lammers, S.; Parua, N.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA.
[Eno, S.; Ferbel, T.; Hadley, N. J.; Jarvis, C.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA.
[Boline, D.; Bose, T.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA.
[Abolins, M.; Benitez, J. A.; Brock, R.; Edmunds, D.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA.
[Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA.
[Haley, J.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA.
[Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Khatidze, D.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA.
[Snow, J.] Langston Univ, Langston, OK 73050 USA.
RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia.
RI Bargassa, Pedrame/O-2417-2016; Li, Liang/O-1107-2015; Juste,
Aurelio/I-2531-2015; Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013;
Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Deliot,
Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek,
Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov,
Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae
Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Gutierrez, Phillip/C-1161-2011;
Mundim, Luiz/A-1291-2012; bu, xuebing/D-1121-2012; Leflat,
Alexander/D-7284-2012; Yip, Kin/D-6860-2013; Dudko, Lev/D-7127-2012;
Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; Merkin,
Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mercadante,
Pedro/K-1918-2012;
OI Haas, Andrew/0000-0002-4832-0455; Williams, Mark/0000-0001-5448-4213;
Weber, Michele/0000-0002-2770-9031; Grohsjean,
Alexander/0000-0003-0748-8494; Melnychuk, Oleksandr/0000-0002-2089-8685;
Bassler, Ursula/0000-0002-9041-3057; Filthaut,
Frank/0000-0003-3338-2247; grannis, paul/0000-0003-4692-2142; Qian,
Jianming/0000-0003-4813-8167; Evans, Harold/0000-0003-2183-3127; Malik,
Sudhir/0000-0002-6356-2655; Blazey, Gerald/0000-0002-7435-5758; Wahl,
Horst/0000-0002-1345-0401; Gershtein, Yuri/0000-0002-4871-5449; Weber,
Gernot/0000-0003-4199-1640; Bean, Alice/0000-0001-5967-8674; Bargassa,
Pedrame/0000-0001-8612-3332; Carrera, Edgar/0000-0002-0857-8507;
Landsberg, Greg/0000-0002-4184-9380; Li, Liang/0000-0001-6411-6107;
Heredia De La Cruz, Ivan/0000-0002-8133-6467; Sawyer,
Lee/0000-0001-8295-0605; Hedin, David/0000-0001-9984-215X; Juste,
Aurelio/0000-0002-1558-3291; Begel, Michael/0000-0002-1634-4399; de
Jong, Sijbrand/0000-0002-3120-3367; Blessing, Susan/0000-0002-4455-7279;
Duperrin, Arnaud/0000-0002-5789-9825; Hoeneisen,
Bruce/0000-0002-6059-4256; Beuselinck, Raymond/0000-0003-2613-7446;
Heinson, Ann/0000-0003-4209-6146; De, Kaushik/0000-0002-5647-4489; Ancu,
Lucian Stefan/0000-0001-5068-6723; Sharyy,
Viatcheslav/0000-0002-7161-2616; Christoudias,
Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Guo,
Jun/0000-0001-8125-9433; Mundim, Luiz/0000-0001-9964-7805; Yip,
Kin/0000-0002-8576-4311; Dudko, Lev/0000-0002-4462-3192; Novaes,
Sergio/0000-0003-0471-8549; Bertram, Iain/0000-0003-4073-4941;
Belanger-Champagne, Camille/0000-0003-2368-2617
FU DOE and NSF (U. S.); CEA and CNRS/IN2P3 (France); FASI, Rosatom, and
RFBR (Russia); CNPq, FAPERJ, FAPESP, and FUNDUNESP (Brazil); DAE and DST
(India); Colciencias (Colombia); CONACyT (Mexico); KRF, and KOSEF
(Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC
(United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI,
NSERC, and WestGrid Project (Canada); BMBF and DFG (Germany); SFI
(Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China);
Alexander von Humboldt Foundation (Germany)
FX We thank the staffs at Fermilab and collaborating institutions, and
acknowledge support from the DOE and NSF (U. S.); CEA and CNRS/IN2P3
(France); FASI, Rosatom, and RFBR (Russia); CNPq, FAPERJ, FAPESP, and
FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT
(Mexico); KRF, and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM
(The Netherlands); STFC (United Kingdom); MSMT and GACR (Czech
Republic); CRC Program, CFI, NSERC, and WestGrid Project (Canada); BMBF
and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden);
CAS and CNSF (China); and the Alexander von Humboldt Foundation
(Germany).
NR 48
TC 20
Z9 20
U1 0
U2 11
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
EI 1550-2368
J9 PHYS REV D
JI Phys. Rev. D
PD NOV
PY 2009
VL 80
IS 9
AR 092006
DI 10.1103/PhysRevD.80.092006
PG 20
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 526SH
UT WOS:000272313100012
ER
PT J
AU Ahn, EJ
Engel, R
Gaisser, TK
Lipari, P
Stanev, T
AF Ahn, Eun-Joo
Engel, Ralph
Gaisser, Thomas K.
Lipari, Paolo
Stanev, Todor
TI Cosmic ray interaction event generator SIBYLL 2.1
SO PHYSICAL REVIEW D
LA English
DT Article
ID DUAL-PARTON MODEL; PARTICLE MULTIPLICITY DISTRIBUTIONS; TOTAL
CROSS-SECTIONS; GEV/C BEAM MOMENTUM; SMALL-X PHYSICS; HIGH-ENERGY;
CHARGED-PARTICLES; PSEUDORAPIDITY DISTRIBUTIONS; DIFFRACTION
DISSOCIATION; INCLUSIVE PRODUCTION
AB The cosmic ray interaction event generator Sibyll is widely used in extensive air shower simulations. We describe in detail the properties of Sibyll 2.1 and the differences with the original version 1.7. The major structural improvements are the possibility to have multiple soft interactions, introduction of new parton density functions, and an improved treatment of diffraction. Sibyll 2.1 gives better agreement with fixed target and collider data, especially for the inelastic cross sections and multiplicities of secondary particles. Shortcomings and suggestions for future improvements are also discussed.
C1 [Ahn, Eun-Joo] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA.
[Ahn, Eun-Joo; Gaisser, Thomas K.; Stanev, Todor] Univ Delaware, Bartol Res Inst, Dept Phys & Astron, Newark, DE 19716 USA.
[Engel, Ralph] Forschungszentrum Karlsruhe, Inst Kernphys, D-76021 Karlsruhe, Germany.
[Lipari, Paolo] Univ Rome 1, Dipartimento Fis, Ist Nazl Fis Nucl, Sez Roma La Sapienza, I-00185 Rome, Italy.
RP Ahn, EJ (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA.
NR 62
TC 196
Z9 196
U1 1
U2 1
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
J9 PHYS REV D
JI Phys. Rev. D
PD NOV
PY 2009
VL 80
IS 9
AR 094003
DI 10.1103/PhysRevD.80.094003
PG 17
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 526SH
UT WOS:000272313100023
ER
PT J
AU Aubert, B
Karyotakis, Y
Lees, JP
Poireau, V
Prencipe, E
Prudent, X
Tisserand, V
Tico, JG
Grauges, E
Martinelli, M
Palano, A
Pappagallo, M
Eigen, G
Stugu, B
Sun, L
Battaglia, M
Brown, DN
Kerth, LT
Kolomensky, YG
Lynch, G
Osipenkov, IL
Tackmann, K
Tanabe, T
Hawkes, CM
Soni, N
Watson, AT
Koch, H
Schroeder, T
Asgeirsson, DJ
Fulsom, BG
Hearty, C
Mattison, TS
McKenna, JA
Barrett, M
Khan, A
Randle-Conde, A
Blinov, VE
Bukin, AD
Buzykaev, AR
Druzhinin, VP
Golubev, VB
Onuchin, AP
Serednyakov, SI
Skovpen, YI
Solodov, EP
Todyshev, KY
Bondioli, M
Curry, S
Eschrich, I
Kirkby, D
Lankford, AJ
Lund, P
Mandelkern, M
Martin, EC
Stoker, DP
Atmacan, H
Gary, JW
Liu, F
Long, O
Vitug, GM
Yasin, Z
Sharma, V
Campagnari, C
Hong, TM
Kovalskyi, D
Mazur, MA
Richman, JD
Beck, TW
Eisner, AM
Heusch, CA
Kroseberg, J
Lockman, WS
Martinez, AJ
Schalk, T
Schumm, BA
Seiden, A
Wang, L
Winstrom, LO
Cheng, CH
Doll, DA
Echenard, B
Fang, F
Hitlin, DG
Narsky, I
Ongmongkolkul, P
Piatenko, T
Porter, FC
Andreassen, R
Mancinelli, G
Meadows, BT
Mishra, K
Sokoloff, MD
Bloom, PC
Ford, WT
Gaz, A
Hirschauer, JF
Nagel, M
Nauenberg, U
Smith, JG
Wagner, SR
Ayad, R
Toki, WH
Wilson, RJ
Feltresi, E
Hauke, A
Jasper, H
Karbach, TM
Merkel, J
Petzold, A
Spaan, B
Wacker, K
Kobel, MJ
Nogowski, R
Schubert, KR
Schwierz, R
Volk, A
Bernard, D
Latour, E
Verderi, M
Clark, PJ
Playfer, S
Watson, JE
Andreotti, M
Bettoni, D
Bozzi, C
Calabrese, R
Cecchi, A
Cibinetto, G
Fioravanti, E
Franchini, P
Luppi, E
Munerato, M
Negrini, M
Petrella, A
Piemontese, L
Santoro, V
Baldini-Ferroli, R
Calcaterra, A
de Sangro, R
Finocchiaro, G
Pacetti, S
Patteri, P
Peruzzi, IM
Piccolo, M
Rama, M
Zallo, A
Contri, R
Guido, E
Lo Vetere, M
Monge, MR
Passaggio, S
Patrignani, C
Robutti, E
Tosi, S
Chaisanguanthum, KS
Morii, M
Adametz, A
Marks, J
Schenk, S
Uwer, U
Bernlochner, FU
Klose, V
Lacker, HM
Bard, DJ
Dauncey, PD
Tibbetts, M
Behera, PK
Charles, MJ
Mallik, U
Cochran, J
Crawley, HB
Dong, L
Eyges, V
Meyer, WT
Prell, S
Rosenberg, EI
Rubin, AE
Gao, YY
Gritsan, AV
Guo, ZJ
Arnaud, N
Bequilleux, J
D'Orazio, A
Davier, M
Derkach, D
da Costa, JF
Grosdidier, G
Le Diberder, F
Lepeltier, V
Lutz, AM
Malaescu, B
Pruvot, S
Roudeau, P
Schune, MH
Serrano, J
Sordini, V
Stocchi, A
Wormser, G
Lange, DJ
Wright, DM
Bingham, I
Burke, JP
Chavez, CA
Fry, JR
Gabathuler, E
Gamet, R
Hutchcroft, DE
Payne, DJ
Touramanis, C
Bevan, AJ
Clarke, CK
Di Lodovico, F
Sacco, R
Sigamani, M
Cowan, G
Paramesvaran, S
Wren, AC
Brown, DN
Davis, CL
Denig, AG
Fritsch, M
Gradl, W
Hafner, A
Alwyn, KE
Bailey, D
Barlow, RJ
Jackson, G
Lafferty, GD
West, TJ
Yi, JI
Anderson, J
Chen, C
Jawahery, A
Roberts, DA
Simi, G
Tuggle, JM
Dallapiccola, C
Salvati, E
Cowan, R
Dujmic, D
Fisher, PH
Henderson, SW
Sciolla, G
Spitznagel, M
Yamamoto, RK
Zhao, M
Patel, PM
Robertson, SH
Schram, M
Biassoni, P
Gandini, P
Lazzaro, A
Lombardo, V
Palombo, F
Stracka, S
Bauer, JM
Cremaldi, L
Godang, R
Kroeger, R
Sonnek, P
Summers, DJ
Zhao, HW
Simard, M
Taras, P
Nicholson, H
De Nardo, G
Lista, L
Monorchio, D
Onorato, G
Sciacca, C
Raven, G
Snoek, HL
Jessop, CP
Knoepfel, KJ
LoSecco, JM
Wang, WF
Corwin, LA
Honscheid, K
Kagan, H
Kass, R
Morris, JP
Rahimi, AM
Regensburger, JJ
Sekula, SJ
Wong, QK
Blount, NL
Brau, J
Frey, R
Igonkina, O
Kolb, JA
Lu, M
Rahmat, R
Sinev, NB
Strom, D
Strube, J
Torrence, E
Castelli, G
Gagliardi, N
Margoni, M
Morandin, M
Posocco, M
Rotondo, M
Simonetto, F
Stroili, R
Voci, C
Sanchez, PD
Ben-Haim, E
Bonneaud, GR
Briand, H
Chauveau, J
Hamon, O
Leruste, P
Marchiori, G
Ocariz, J
Perez, A
Prendki, J
Sitt, S
Gladney, L
Biasini, M
Manoni, E
Angelini, C
Batignani, G
Bettarini, S
Calderini, G
Carpinelli, M
Cervelli, A
Forti, F
Giorgi, MA
Lusiani, A
Morganti, M
Neri, N
Paoloni, E
Rizzo, G
Walsh, JJ
Pegna, DL
Lu, C
Olsen, J
Smith, AJS
Telnov, AV
Anulli, F
Baracchini, E
Cavoto, G
Faccini, R
Ferrarotto, F
Ferroni, F
Gaspero, M
Jackson, PD
Gioi, LL
Mazzoni, MA
Morganti, S
Piredda, G
Renga, F
Voena, C
Ebert, M
Hartmann, T
Schroder, H
Waldi, R
Adye, T
Franek, B
Olaiya, EO
Wilson, FF
Emery, S
Esteve, L
de Monchenault, GH
Kozanecki, W
Vasseur, G
Yeche, C
Zito, M
Allen, MT
Aston, D
Bartoldus, R
Benitez, JF
Cenci, R
Coleman, JP
Convery, MR
Dingfelder, JC
Dorfan, J
Dubois-Felsmann, GP
Dunwoodie, W
Field, RC
Sevilla, MF
Gabareen, AM
Graham, MT
Grenier, P
Hast, C
Innes, WR
Kaminski, J
Kelsey, MH
Kim, H
Kim, P
Kocian, ML
Leith, DWGS
Li, S
Lindquist, B
Luitz, S
Luth, V
Lynch, HL
MacFarlane, DB
Marsiske, H
Messner, R
Muller, DR
Neal, H
Nelson, S
O'Grady, CP
Ofte, I
Perl, M
Ratcliff, BN
Roodman, A
Salnikov, AA
Schindler, RH
Schwiening, J
Snyder, A
Su, D
Sullivan, MK
Suzuki, K
Swain, SK
Thompson, JM
Va'vra, J
Wagner, AP
Weaver, M
West, CA
Wisniewski, WJ
Wittgen, M
Wright, DH
Wulsin, HW
Yarritu, AK
Young, CC
Ziegler, V
Chen, XR
Liu, H
Park, W
Purohit, MV
White, RM
Wilson, JR
Burchat, PR
Edwards, AJ
Miyashita, TS
Ahmed, S
Alam, MS
Ernst, JA
Pan, B
Saeed, MA
Zain, SB
Soffer, A
Spanier, SM
Wogsland, BJ
Eckmann, R
Ritchie, JL
Ruland, AM
Schilling, CJ
Schwitters, RF
Wray, BC
Drummond, BW
Izen, JM
Lou, XC
Bianchi, F
Gamba, D
Pelliccioni, M
Bomben, M
Bosisio, L
Cartaro, C
Della Ricca, G
Lanceri, L
Vitale, L
Azzolini, V
Lopez-March, N
Martinez-Vidal, F
Milanes, DA
Oyanguren, A
Albert, J
Banerjee, S
Bhuyan, B
Choi, HHF
Hamano, K
King, GJ
Kowalewski, R
Lewczuk, MJ
Nugent, IM
Roney, JM
Sobie, RJ
Gershon, TJ
Harrison, PF
Ilic, J
Latham, TE
Mohanty, GB
Puccio, EMT
Band, HR
Chen, X
Dasu, S
Flood, KT
Pan, Y
Prepost, R
Vuosalo, CO
Wu, SL
AF Aubert, B.
Karyotakis, Y.
Lees, J. P.
Poireau, V.
Prencipe, E.
Prudent, X.
Tisserand, V.
Tico, J. Garra
Grauges, E.
Martinelli, M.
Palano, A.
Pappagallo, M.
Eigen, G.
Stugu, B.
Sun, L.
Battaglia, M.
Brown, D. N.
Kerth, L. T.
Kolomensky, Yu. G.
Lynch, G.
Osipenkov, I. L.
Tackmann, K.
Tanabe, T.
Hawkes, C. M.
Soni, N.
Watson, A. T.
Koch, H.
Schroeder, T.
Asgeirsson, D. J.
Fulsom, B. G.
Hearty, C.
Mattison, T. S.
McKenna, J. A.
Barrett, M.
Khan, A.
Randle-Conde, A.
Blinov, V. E.
Bukin, A. D.
Buzykaev, A. R.
Druzhinin, V. P.
Golubev, V. B.
Onuchin, A. P.
Serednyakov, S. I.
Skovpen, Yu. I.
Solodov, E. P.
Todyshev, K. Yu.
Bondioli, M.
Curry, S.
Eschrich, I.
Kirkby, D.
Lankford, A. J.
Lund, P.
Mandelkern, M.
Martin, E. C.
Stoker, D. P.
Atmacan, H.
Gary, J. W.
Liu, F.
Long, O.
Vitug, G. M.
Yasin, Z.
Sharma, V.
Campagnari, C.
Hong, T. M.
Kovalskyi, D.
Mazur, M. A.
Richman, J. D.
Beck, T. W.
Eisner, A. M.
Heusch, C. A.
Kroseberg, J.
Lockman, W. S.
Martinez, A. J.
Schalk, T.
Schumm, B. A.
Seiden, A.
Wang, L.
Winstrom, L. O.
Cheng, C. H.
Doll, D. A.
Echenard, B.
Fang, F.
Hitlin, D. G.
Narsky, I.
Ongmongkolkul, P.
Piatenko, T.
Porter, F. C.
Andreassen, R.
Mancinelli, G.
Meadows, B. T.
Mishra, K.
Sokoloff, M. D.
Bloom, P. C.
Ford, W. T.
Gaz, A.
Hirschauer, J. F.
Nagel, M.
Nauenberg, U.
Smith, J. G.
Wagner, S. R.
Ayad, R.
Toki, W. H.
Wilson, R. J.
Feltresi, E.
Hauke, A.
Jasper, H.
Karbach, T. M.
Merkel, J.
Petzold, A.
Spaan, B.
Wacker, K.
Kobel, M. J.
Nogowski, R.
Schubert, K. R.
Schwierz, R.
Volk, A.
Bernard, D.
Latour, E.
Verderi, M.
Clark, P. J.
Playfer, S.
Watson, J. E.
Andreotti, M.
Bettoni, D.
Bozzi, C.
Calabrese, R.
Cecchi, A.
Cibinetto, G.
Fioravanti, E.
Franchini, P.
Luppi, E.
Munerato, M.
Negrini, M.
Petrella, A.
Piemontese, L.
Santoro, V.
Baldini-Ferroli, R.
Calcaterra, A.
de Sangro, R.
Finocchiaro, G.
Pacetti, S.
Patteri, P.
Peruzzi, I. M.
Piccolo, M.
Rama, M.
Zallo, A.
Contri, R.
Guido, E.
Lo Vetere, M.
Monge, M. R.
Passaggio, S.
Patrignani, C.
Robutti, E.
Tosi, S.
Chaisanguanthum, K. S.
Morii, M.
Adametz, A.
Marks, J.
Schenk, S.
Uwer, U.
Bernlochner, F. U.
Klose, V.
Lacker, H. M.
Bard, D. J.
Dauncey, P. D.
Tibbetts, M.
Behera, P. K.
Charles, M. J.
Mallik, U.
Cochran, J.
Crawley, H. B.
Dong, L.
Eyges, V.
Meyer, W. T.
Prell, S.
Rosenberg, E. I.
Rubin, A. E.
Gao, Y. Y.
Gritsan, A. V.
Guo, Z. J.
Arnaud, N.
Bequilleux, J.
D'Orazio, A.
Davier, M.
Derkach, D.
da Costa, J. Firmino
Grosdidier, G.
Le Diberder, F.
Lepeltier, V.
Lutz, A. M.
Malaescu, B.
Pruvot, S.
Roudeau, P.
Schune, M. H.
Serrano, J.
Sordini, V.
Stocchi, A.
Wormser, G.
Lange, D. J.
Wright, D. M.
Bingham, I.
Burke, J. P.
Chavez, C. A.
Fry, J. R.
Gabathuler, E.
Gamet, R.
Hutchcroft, D. E.
Payne, D. J.
Touramanis, C.
Bevan, A. J.
Clarke, C. K.
Di Lodovico, F.
Sacco, R.
Sigamani, M.
Cowan, G.
Paramesvaran, S.
Wren, A. C.
Brown, D. N.
Davis, C. L.
Denig, A. G.
Fritsch, M.
Gradl, W.
Hafner, A.
Alwyn, K. E.
Bailey, D.
Barlow, R. J.
Jackson, G.
Lafferty, G. D.
West, T. J.
Yi, J. I.
Anderson, J.
Chen, C.
Jawahery, A.
Roberts, D. A.
Simi, G.
Tuggle, J. M.
Dallapiccola, C.
Salvati, E.
Cowan, R.
Dujmic, D.
Fisher, P. H.
Henderson, S. W.
Sciolla, G.
Spitznagel, M.
Yamamoto, R. K.
Zhao, M.
Patel, P. M.
Robertson, S. H.
Schram, M.
Biassoni, P.
Gandini, P.
Lazzaro, A.
Lombardo, V.
Palombo, F.
Stracka, S.
Bauer, J. M.
Cremaldi, L.
Godang, R.
Kroeger, R.
Sonnek, P.
Summers, D. J.
Zhao, H. W.
Simard, M.
Taras, P.
Nicholson, H.
De Nardo, G.
Lista, L.
Monorchio, D.
Onorato, G.
Sciacca, C.
Raven, G.
Snoek, H. L.
Jessop, C. P.
Knoepfel, K. J.
LoSecco, J. M.
Wang, W. F.
Corwin, L. A.
Honscheid, K.
Kagan, H.
Kass, R.
Morris, J. P.
Rahimi, A. M.
Regensburger, J. J.
Sekula, S. J.
Wong, Q. K.
Blount, N. L.
Brau, J.
Frey, R.
Igonkina, O.
Kolb, J. A.
Lu, M.
Rahmat, R.
Sinev, N. B.
Strom, D.
Strube, J.
Torrence, E.
Castelli, G.
Gagliardi, N.
Margoni, M.
Morandin, M.
Posocco, M.
Rotondo, M.
Simonetto, F.
Stroili, R.
Voci, C.
Sanchez, P. del Amo
Ben-Haim, E.
Bonneaud, G. R.
Briand, H.
Chauveau, J.
Hamon, O.
Leruste, Ph.
Marchiori, G.
Ocariz, J.
Perez, A.
Prendki, J.
Sitt, S.
Gladney, L.
Biasini, M.
Manoni, E.
Angelini, C.
Batignani, G.
Bettarini, S.
Calderini, G.
Carpinelli, M.
Cervelli, A.
Forti, F.
Giorgi, M. A.
Lusiani, A.
Morganti, M.
Neri, N.
Paoloni, E.
Rizzo, G.
Walsh, J. J.
Pegna, D. Lopes
Lu, C.
Olsen, J.
Smith, A. J. S.
Telnov, A. V.
Anulli, F.
Baracchini, E.
Cavoto, G.
Faccini, R.
Ferrarotto, F.
Ferroni, F.
Gaspero, M.
Jackson, P. D.
Gioi, L. Li
Mazzoni, M. A.
Morganti, S.
Piredda, G.
Renga, F.
Voena, C.
Ebert, M.
Hartmann, T.
Schroeder, H.
Waldi, R.
Adye, T.
Franek, B.
Olaiya, E. O.
Wilson, F. F.
Emery, S.
Esteve, L.
de Monchenault, G. Hamel
Kozanecki, W.
Vasseur, G.
Yeche, Ch.
Zito, M.
Allen, M. T.
Aston, D.
Bartoldus, R.
Benitez, J. F.
Cenci, R.
Coleman, J. P.
Convery, M. R.
Dingfelder, J. C.
Dorfan, J.
Dubois-Felsmann, G. P.
Dunwoodie, W.
Field, R. C.
Sevilla, M. Franco
Gabareen, A. M.
Graham, M. T.
Grenier, P.
Hast, C.
Innes, W. R.
Kaminski, J.
Kelsey, M. H.
Kim, H.
Kim, P.
Kocian, M. L.
Leith, D. W. G. S.
Li, S.
Lindquist, B.
Luitz, S.
Luth, V.
Lynch, H. L.
MacFarlane, D. B.
Marsiske, H.
Messner, R.
Muller, D. R.
Neal, H.
Nelson, S.
O'Grady, C. P.
Ofte, I.
Perl, M.
Ratcliff, B. N.
Roodman, A.
Salnikov, A. A.
Schindler, R. H.
Schwiening, J.
Snyder, A.
Su, D.
Sullivan, M. K.
Suzuki, K.
Swain, S. K.
Thompson, J. M.
Va'vra, J.
Wagner, A. P.
Weaver, M.
West, C. A.
Wisniewski, W. J.
Wittgen, M.
Wright, D. H.
Wulsin, H. W.
Yarritu, A. K.
Young, C. C.
Ziegler, V.
Chen, X. R.
Liu, H.
Park, W.
Purohit, M. V.
White, R. M.
Wilson, J. R.
Burchat, P. R.
Edwards, A. J.
Miyashita, T. S.
Ahmed, S.
Alam, M. S.
Ernst, J. A.
Pan, B.
Saeed, M. A.
Zain, S. B.
Soffer, A.
Spanier, S. M.
Wogsland, B. J.
Eckmann, R.
Ritchie, J. L.
Ruland, A. M.
Schilling, C. J.
Schwitters, R. F.
Wray, B. C.
Drummond, B. W.
Izen, J. M.
Lou, X. C.
Bianchi, F.
Gamba, D.
Pelliccioni, M.
Bomben, M.
Bosisio, L.
Cartaro, C.
Della Ricca, G.
Lanceri, L.
Vitale, L.
Azzolini, V.
Lopez-March, N.
Martinez-Vidal, F.
Milanes, D. A.
Oyanguren, A.
Albert, J.
Banerjee, Sw.
Bhuyan, B.
Choi, H. H. F.
Hamano, K.
King, G. J.
Kowalewski, R.
Lewczuk, M. J.
Nugent, I. M.
Roney, J. M.
Sobie, R. J.
Gershon, T. J.
Harrison, P. F.
Ilic, J.
Latham, T. E.
Mohanty, G. B.
Puccio, E. M. T.
Band, H. R.
Chen, X.
Dasu, S.
Flood, K. T.
Pan, Y.
Prepost, R.
Vuosalo, C. O.
Wu, S. L.
CA BaBar Collaboration
TI Observation and polarization measurement of B-0 ->
a(1)(1260)(+)a(1)(1260)(-) decay
SO PHYSICAL REVIEW D
LA English
DT Article
ID TRANSITIONS; SEARCH
AB We present measurements of the branching fraction B and longitudinal polarization fraction f(L) for B-0 -> a(1)(1260)(+)a(1)(1260)(-) decays, with a(1)(1260)(+/-)->pi(-)pi(+)pi(+/-). The data sample, collected with the BABAR detector at the SLAC National Accelerator Laboratory, represents 465x10(6) produced BB pairs. We measure B(B-0 -> a(1)(1260)(+)a(1)(1260)(-))x[B(a(1)(1260)(+)->pi(-)pi(+)pi(+))](2)= (11.8 +/- 2.6 +/- 1.6)x10(-6) and f(L)=0.31 +/- 0.22 +/- 0.10, where the first uncertainty is statistical and the second systematic. The decay mode is measured with a significance of 5.0 standard deviations including systematic uncertainties.
C1 [Aubert, B.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France.
[Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain.
[Martinelli, M.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy.
[Martinelli, M.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy.
[Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway.
[Battaglia, M.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England.
[Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany.
[Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada.
[Barrett, M.; Khan, A.; Randle-Conde, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England.
[Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia.
[Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA.
[Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.] Univ Calif Riverside, Riverside, CA 92521 USA.
[Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA.
[Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA.
[Beck, T. W.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA.
[Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Ongmongkolkul, P.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA.
[Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA.
[Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.] Univ Colorado, Boulder, CO 80309 USA.
[Wagner, S. R.; Ayad, R.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA.
[Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany.
[Kobel, M. J.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany.
[Bernard, D.; Latour, E.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France.
[Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland.
[Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy.
[Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy.
[Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy.
[Contri, R.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy.
[Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA.
[Bernlochner, F. U.; Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany.
[Bard, D. J.; Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England.
[Behera, P. K.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA.
[Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA.
[Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA.
[Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France.
[Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France.
[Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England.
[Bevan, A. J.; Clarke, C. K.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England.
[Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England.
[Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA.
[Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany.
[Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England.
[Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA.
[Dallapiccola, C.; Salvati, E.] Univ Massachusetts, Amherst, MA 01003 USA.
[Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Sciolla, G.; Spitznagel, M.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA.
[Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada.
[Biassoni, P.; Gandini, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy.
[Biassoni, P.; Gandini, P.; Lazzaro, A.; Palombo, F.; Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy.
[Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA.
[Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada.
[Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA.
[De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy.
[De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy.
[Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands.
[Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA.
[Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA.
[Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA.
[Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy.
[Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy.
[Sanchez, P. del Amo; Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.; Calderini, G.] Univ Paris 07, Univ Paris 06, CNRS, Lab Phys Nucl & Hautes Energies,IN2P3, F-75252 Paris, France.
[Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA.
[Biasini, M.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy.
[Peruzzi, I. M.; Biasini, M.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy.
[Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy.
[Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy.
[Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy.
[Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA.
[Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy.
[Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
[Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany.
[Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England.
[Emery, S.; Esteve, L.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France.
[Allen, M. T.; Aston, D.; Bartoldus, R.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Sevilla, M. Franco; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.] SLAC, Natl Accelerator Lab, Stanford, CA 94309 USA.
[Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA.
[Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA.
[Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA.
[Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel.
[Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA.
[Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.; Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Austin, Austin, TX 78712 USA.
[Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA.
[Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy.
[Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy.
[Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy.
[Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy.
[Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, IFIC, CSIC, E-46071 Valencia, Spain.
Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy.
RP Aubert, B (reprint author), Univ Savoie, LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France.
RI Rizzo, Giuliana/A-8516-2015; dong, liaoyuan/A-5093-2015; Calabrese,
Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky,
Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani,
Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin,
Mauro/A-3308-2016; Stracka, Simone/M-3931-2015; Di Lodovico,
Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra,
Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Negrini,
Matteo/C-8906-2014; Patrignani, Claudia/C-5223-2009; Monge, Maria
Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi,
Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Neri, Nicola/G-3991-2012;
Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro,
Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Della Ricca,
Giuseppe/B-6826-2013
OI Strube, Jan/0000-0001-7470-9301; Chen, Chunhui /0000-0003-1589-9955;
Bellis, Matthew/0000-0002-6353-6043; Pacetti,
Simone/0000-0002-6385-3508; Rizzo, Giuliana/0000-0003-1788-2866;
Carpinelli, Massimo/0000-0002-8205-930X; Sciacca,
Crisostomo/0000-0002-8412-4072; Adye, Tim/0000-0003-0627-5059; Lafferty,
George/0000-0003-0658-4919; Faccini, Riccardo/0000-0003-2613-5141;
Martinelli, Maurizio/0000-0003-4792-9178; Cavoto,
Gianluca/0000-0003-2161-918X; Wilson, Robert/0000-0002-8184-4103;
Lanceri, Livio/0000-0001-8220-3095; Ebert, Marcus/0000-0002-3014-1512;
Paoloni, Eugenio/0000-0001-5969-8712; Corwin, Luke/0000-0001-7143-3821;
Bettarini, Stefano/0000-0001-7742-2998; Cibinetto,
Gianluigi/0000-0002-3491-6231; dong, liaoyuan/0000-0002-4773-5050;
Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal,
F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere,
Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288;
Lusiani, Alberto/0000-0002-6876-3288; Morandin,
Mauro/0000-0003-4708-4240; Stracka, Simone/0000-0003-0013-4714; Di
Lodovico, Francesca/0000-0003-3952-2175; Pappagallo,
Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826;
Frey, Raymond/0000-0003-0341-2636; Hamel de Monchenault,
Gautier/0000-0002-3872-3592; Negrini, Matteo/0000-0003-0101-6963;
Patrignani, Claudia/0000-0002-5882-1747; Monge, Maria
Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300;
Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900;
Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965;
Rotondo, Marcello/0000-0001-5704-6163; de Sangro,
Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255;
Della Ricca, Giuseppe/0000-0003-2831-6982
FU DOE and NSF (USA); NSERC (Canada); CEA and CNRS-IN2P3 (France); BMBF and
DFG (Germany); INFN (Italy); FOM (The Netherlands); NFR (Norway); MES
(Russia); MEC (Spain); STFC (United Kingdom); Marie Curie EIF (European
Union); A. P. Sloan Foundation
FX We are grateful for the excellent luminosity and machine conditions
provided by our PEP-II colleagues, and for the substantial dedicated
effort from the computing organizations that support BABAR. The
collaborating institutions wish to thank SLAC for its support and kind
hospitality. This work is supported by DOE and NSF (USA), NSERC
(Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN
(Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain),
and STFC (United Kingdom). Individuals have received support from the
Marie Curie EIF (European Union) and the A. P. Sloan Foundation.
NR 35
TC 4
Z9 5
U1 0
U2 5
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
J9 PHYS REV D
JI Phys. Rev. D
PD NOV
PY 2009
VL 80
IS 9
AR 092007
DI 10.1103/PhysRevD.80.092007
PG 8
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 526SH
UT WOS:000272313100013
ER
PT J
AU Aubert, B
Karyotakis, Y
Lees, JP
Poireau, V
Prencipe, E
Prudent, X
Tisserand, V
Tico, JG
Grauges, E
Martinelli, M
Palano, A
Pappagallo, M
Eigen, G
Stugu, B
Sun, L
Battaglia, M
Brown, DN
Kerth, LT
Kolomensky, YG
Lynch, G
Osipenkov, IL
Tackmann, K
Tanabe, T
Hawkes, CM
Soni, N
Watson, AT
Koch, H
Schroeder, T
Asgeirsson, DJ
Fulsom, BG
Hearty, C
Mattison, TS
McKenna, JA
Barrett, M
Khan, A
Randle-Conde, A
Blinov, VE
Bukin, AD
Buzykaev, AR
Druzhinin, VP
Golubev, VB
Onuchin, AP
Serednyakov, SI
Skovpen, YI
Solodov, EP
Todyshev, KY
Bondioli, M
Curry, S
Eschrich, I
Kirkby, D
Lankford, AJ
Lund, P
Mandelkern, M
Martin, EC
Stoker, DP
Atmacan, H
Gary, JW
Liu, F
Long, O
Vitug, GM
Yasin, Z
Sharma, V
Campagnari, C
Hong, TM
Kovalskyi, D
Mazur, MA
Richman, JD
Beck, TW
Eisner, AM
Heusch, CA
Kroseberg, J
Lockman, WS
Martinez, AJ
Schalk, T
Schumm, BA
Seiden, A
Wang, L
Winstrom, LO
Cheng, CH
Doll, DA
Echenard, B
Fang, F
Hitlin, DG
Narsky, I
Ongmongkolku, P
Piatenko, T
Porter, FC
Andreassen, R
Mancinelli, G
Meadows, BT
Mishra, K
Sokoloff, MD
Bloom, PC
Ford, WT
Gaz, A
Hirschauer, JF
Nagel, M
Nauenberg, U
Smith, JG
Wagner, SR
Ayad, R
Toki, WH
Wilson, RJ
Feltresi, E
Hauke, A
Jasper, H
Karbach, TM
Merkel, J
Petzold, A
Spaan, B
Wacker, K
Kobel, MJ
Nogowski, R
Schubert, KR
Schwierz, R
Bernard, D
Latour, E
Verderi, M
Clark, PJ
Playfer, S
Watson, JE
Andreotti, M
Bettoni, D
Bozzi, C
Calabrese, R
Cecchi, A
Cibinetto, G
Fioravanti, E
Franchini, P
Luppi, E
Munerato, M
Negrini, M
Petrella, A
Piemontese, L
Santoro, V
Baldini-Ferroli, R
Calcaterra, A
de Sangro, R
Finocchiaro, G
Pacetti, S
Patteri, P
Peruzzi, IM
Piccolo, M
Rama, M
Zallo, A
Contri, R
Guido, E
Lo Vetere, M
Monge, MR
Passaggio, S
Patrignani, C
Robutti, E
Tosi, S
Chaisanguanthum, KS
Morii, M
Adametz, A
Marks, J
Schenk, S
Uwer, U
Bernlochner, FU
Klose, V
Lacker, HM
Lueck, T
Volk, A
Bard, DJ
Dauncey, PD
Tibbetts, M
Behera, PK
Charles, MJ
Mallik, U
Cochran, J
Crawley, HB
Dong, L
Eyges, V
Meyer, WT
Prell, S
Rosenberg, EI
Rubin, AE
Gao, YY
Gritsan, AV
Guo, ZJ
Arnaud, N
Bequilleux, J
D'Orazio, A
Davier, M
Derkach, D
da Costa, JF
Grosdidier, G
Le Diberder, F
Lepeltier, V
Lutz, AM
Malaescu, B
Pruvot, S
Roudeau, P
Schune, MH
Serrano, J
Sordini, V
Stocchi, A
Wormser, G
Lange, DJ
Wright, DM
Bingham, I
Burke, JP
Chavez, CA
Fry, JR
Gabathuler, E
Gamet, R
Hutchcroft, DE
Payne, DJ
Touramanis, C
Bevan, AJ
Clarke, CK
Di Lodovico, F
Sacco, R
Sigamani, M
Cowan, G
Paramesvaran, S
Wren, AC
Brown, DN
Davis, CL
Denig, AG
Fritsch, M
Gradl, W
Hafner, A
Alwyn, KE
Bailey, D
Barlow, RJ
Jackson, G
Lafferty, GD
West, TJ
Yi, JI
Anderson, J
Chen, C
Jawahery, A
Roberts, DA
Simi, G
Tuggle, JM
Dallapiccola, C
Salvati, E
Cowan, R
Dujmic, D
Fisher, PH
Henderson, SW
Sciolla, G
Spitznagel, M
Yamamoto, RK
Zhao, M
Patel, PM
Robertson, SH
Schram, M
Biassoni, P
Lazzaro, A
Lombardo, V
Palombo, F
Stracka, S
Cremaldi, L
Godang, R
Kroeger, R
Sonnek, P
Summers, DJ
Zhao, HW
Simard, M
Taras, P
Nicholson, H
De Nardo, G
Lista, L
Monorchio, D
Onorato, G
Sciacca, C
Raven, G
Snoek, HL
Jessop, CP
Knoepfel, KJ
LoSecco, JM
Wang, WF
Corwin, LA
Honscheid, K
Kagan, H
Kass, R
Morris, JP
Rahimi, AM
Sekula, SJ
Wong, QK
Blount, NL
Brau, J
Frey, R
Igonkina, O
Kolb, JA
Lu, M
Rahmat, R
Sinev, NB
Strom, D
Strube, J
Torrence, E
Castelli, G
Gagliardi, N
Margoni, M
Morandin, M
Posocco, M
Rotondo, M
Simonetto, F
Stroili, R
Voci, C
Sanchez, PD
Ben-Haim, E
Bonneaud, GR
Briand, H
Chauveau, J
Hamon, O
Leruste, P
Marchiori, G
Ocariz, J
Perez, A
Prendki, J
Sitt, S
Gladney, L
Biasini, M
Manoni, E
Angelini, C
Batignani, G
Bettarini, S
Calderini, G
Carpinelli, M
Cervelli, A
Forti, F
Giorgi, MA
Lusiani, A
Morganti, M
Neri, N
Paoloni, E
Rizzo, G
Walsh, JJ
Pegna, DL
Lu, C
Olsen, J
Smith, AJS
Telnov, AV
Anulli, F
Baracchini, E
Cavoto, G
Faccini, R
Ferrarotto, F
Ferroni, F
Gaspero, M
Jackson, PD
Gioi, LL
Mazzoni, MA
Morganti, S
Piredda, G
Renga, F
Voena, C
Ebert, M
Hartmann, T
Schroder, H
Waldi, R
Adye, T
Franek, B
Olaiya, EO
Wilson, FF
Emery, S
Esteve, L
de Monchenault, GH
Kozanecki, W
Vasseur, G
Yeche, C
Zito, M
Allen, MT
Aston, D
Bartoldus, R
Benitez, JF
Cenci, R
Coleman, JP
Convery, MR
Dingfelder, JC
Dorfan, J
Dubois-Felsmann, GP
Dunwoodie, W
Field, RC
Sevilla, MF
Gabareen, AM
Graham, MT
Grenier, P
Hast, C
Innes, WR
Kaminski, J
Kelsey, MH
Kim, H
Kim, P
Kocian, ML
Leith, DWGS
Li, S
Lindquist, B
Luitz, S
Luth, V
Lynch, HL
MacFarlane, DB
Marsiske, H
Messner, R
Muller, DR
Neal, H
Nelson, S
O'Grady, CP
Ofte, I
Perl, M
Ratcliff, BN
Roodman, A
Salnikov, AA
Schindler, RH
Schwiening, J
Snyder, A
Su, D
Sullivan, MK
Suzuki, K
Swain, SK
Thompson, JM
Va'vra, J
Wagner, AP
Weaver, M
West, CA
Wisniewski, WJ
Wittgen, M
Wright, DH
Wulsin, HW
Yarritu, AK
Young, CC
Ziegler, V
Chen, XR
Liu, H
Park, W
Purohit, MV
White, RM
Wilson, JR
Bellis, M
Burchat, PR
Edwards, AJ
Miyashita, TS
Ahmed, S
Alam, MS
Ernst, JA
Pan, B
Saeed, MA
Zain, SB
Soffer, A
Spanier, SM
Wogsland, BJ
Eckmann, R
Ritchie, JL
Ruland, AM
Schilling, CJ
Schwitters, RF
Wray, BC
Drummond, BW
Izen, JM
Lou, XC
Bianchi, F
Gamba, D
Pelliccioni, M
Bomben, M
Bosisio, L
Cartaro, C
Della Ricca, G
Lanceri, L
Vitale, L
Azzolini, V
Lopez-March, N
Martinez-Vidal, F
Milanes, DA
Oyanguren, A
Albert, J
Banerjee, S
Bhuyan, B
Choi, HHF
Hamano, K
King, GJ
Kowalewski, R
Lewczuk, MJ
Nugent, IM
Roney, JM
Sobie, RJ
Gershon, TJ
Harrison, PF
Ilic, J
Latham, TE
Mohanty, GB
Puccio, EMT
Band, HR
Chen, X
Dasu, S
Flood, KT
Pan, Y
Prepost, R
Vuosalo, CO
Wu, SL
AF Aubert, B.
Karyotakis, Y.
Lees, J. P.
Poireau, V.
Prencipe, E.
Prudent, X.
Tisserand, V.
Tico, J. Garra
Grauges, E.
Martinelli, M.
Palano, A.
Pappagallo, M.
Eigen, G.
Stugu, B.
Sun, L.
Battaglia, M.
Brown, D. N.
Kerth, L. T.
Kolomensky, Yu. G.
Lynch, G.
Osipenkov, I. L.
Tackmann, K.
Tanabe, T.
Hawkes, C. M.
Soni, N.
Watson, A. T.
Koch, H.
Schroeder, T.
Asgeirsson, D. J.
Fulsom, B. G.
Hearty, C.
Mattison, T. S.
McKenna, J. A.
Barrett, M.
Khan, A.
Randle-Conde, A.
Blinov, V. E.
Bukin, A. D.
Buzykaev, A. R.
Druzhinin, V. P.
Golubev, V. B.
Onuchin, A. P.
Serednyakov, S. I.
Skovpen, Yu. I.
Solodov, E. P.
Todyshev, K. Yu.
Bondioli, M.
Curry, S.
Eschrich, I.
Kirkby, D.
Lankford, A. J.
Lund, P.
Mandelkern, M.
Martin, E. C.
Stoker, D. P.
Atmacan, H.
Gary, J. W.
Liu, F.
Long, O.
Vitug, G. M.
Yasin, Z.
Sharma, V.
Campagnari, C.
Hong, T. M.
Kovalskyi, D.
Mazur, M. A.
Richman, J. D.
Beck, T. W.
Eisner, A. M.
Heusch, C. A.
Kroseberg, J.
Lockman, W. S.
Martinez, A. J.
Schalk, T.
Schumm, B. A.
Seiden, A.
Wang, L.
Winstrom, L. O.
Cheng, C. H.
Doll, D. A.
Echenard, B.
Fang, F.
Hitlin, D. G.
Narsky, I.
Ongmongkolku, P.
Piatenko, T.
Porter, F. C.
Andreassen, R.
Mancinelli, G.
Meadows, B. T.
Mishra, K.
Sokoloff, M. D.
Bloom, P. C.
Ford, W. T.
Gaz, A.
Hirschauer, J. F.
Nagel, M.
Nauenberg, U.
Smith, J. G.
Wagner, S. R.
Ayad, R.
Toki, W. H.
Wilson, R. J.
Feltresi, E.
Hauke, A.
Jasper, H.
Karbach, T. M.
Merkel, J.
Petzold, A.
Spaan, B.
Wacker, K.
Kobel, M. J.
Nogowski, R.
Schubert, K. R.
Schwierz, R.
Bernard, D.
Latour, E.
Verderi, M.
Clark, P. J.
Playfer, S.
Watson, J. E.
Andreotti, M.
Bettoni, D.
Bozzi, C.
Calabrese, R.
Cecchi, A.
Cibinetto, G.
Fioravanti, E.
Franchini, P.
Luppi, E.
Munerato, M.
Negrini, M.
Petrella, A.
Piemontese, L.
Santoro, V.
Baldini-Ferroli, R.
Calcaterra, A.
de Sangro, R.
Finocchiaro, G.
Pacetti, S.
Patteri, P.
Peruzzi, I. M.
Piccolo, M.
Rama, M.
Zallo, A.
Contri, R.
Guido, E.
Lo Vetere, M.
Monge, M. R.
Passaggio, S.
Patrignani, C.
Robutti, E.
Tosi, S.
Chaisanguanthum, K. S.
Morii, M.
Adametz, A.
Marks, J.
Schenk, S.
Uwer, U.
Bernlochner, F. U.
Klose, V.
Lacker, H. M.
Lueck, T.
Volk, A.
Bard, D. J.
Dauncey, P. D.
Tibbetts, M.
Behera, P. K.
Charles, M. J.
Mallik, U.
Cochran, J.
Crawley, H. B.
Dong, L.
Eyges, V.
Meyer, W. T.
Prell, S.
Rosenberg, E. I.
Rubin, A. E.
Gao, Y. Y.
Gritsan, A. V.
Guo, Z. J.
Arnaud, N.
Bequilleux, J.
D'Orazio, A.
Davier, M.
Derkach, D.
da Costa, J. Firmino
Grosdidier, G.
Le Diberder, F.
Lepeltier, V.
Lutz, A. M.
Malaescu, B.
Pruvot, S.
Roudeau, P.
Schune, M. H.
Serrano, J.
Sordini, V.
Stocchi, A.
Wormser, G.
Lange, D. J.
Wright, D. M.
Bingham, I.
Burke, J. P.
Chavez, C. A.
Fry, J. R.
Gabathuler, E.
Gamet, R.
Hutchcroft, D. E.
Payne, D. J.
Touramanis, C.
Bevan, A. J.
Clarke, C. K.
Di Lodovico, F.
Sacco, R.
Sigamani, M.
Cowan, G.
Paramesvaran, S.
Wren, A. C.
Brown, D. N.
Davis, C. L.
Denig, A. G.
Fritsch, M.
Gradl, W.
Hafner, A.
Alwyn, K. E.
Bailey, D.
Barlow, R. J.
Jackson, G.
Lafferty, G. D.
West, T. J.
Yi, J. I.
Anderson, J.
Chen, C.
Jawahery, A.
Roberts, D. A.
Simi, G.
Tuggle, J. M.
Dallapiccola, C.
Salvati, E.
Cowan, R.
Dujmic, D.
Fisher, P. H.
Henderson, S. W.
Sciolla, G.
Spitznagel, M.
Yamamoto, R. K.
Zhao, M.
Patel, P. M.
Robertson, S. H.
Schram, M.
Biassoni, P.
Lazzaro, A.
Lombardo, V.
Palombo, F.
Stracka, S.
Cremaldi, L.
Godang, R.
Kroeger, R.
Sonnek, P.
Summers, D. J.
Zhao, H. W.
Simard, M.
Taras, P.
Nicholson, H.
De Nardo, G.
Lista, L.
Monorchio, D.
Onorato, G.
Sciacca, C.
Raven, G.
Snoek, H. L.
Jessop, C. P.
Knoepfel, K. J.
LoSecco, J. M.
Wang, W. F.
Corwin, L. A.
Honscheid, K.
Kagan, H.
Kass, R.
Morris, J. P.
Rahimi, A. M.
Sekula, S. J.
Wong, Q. K.
Blount, N. L.
Brau, J.
Frey, R.
Igonkina, O.
Kolb, J. A.
Lu, M.
Rahmat, R.
Sinev, N. B.
Strom, D.
Strube, J.
Torrence, E.
Castelli, G.
Gagliardi, N.
Margoni, M.
Morandin, M.
Posocco, M.
Rotondo, M.
Simonetto, F.
Stroili, R.
Voci, C.
Sanchez, P. del Amo
Ben-Haim, E.
Bonneaud, G. R.
Briand, H.
Chauveau, J.
Hamon, O.
Leruste, Ph.
Marchiori, G.
Ocariz, J.
Perez, A.
Prendki, J.
Sitt, S.
Gladney, L.
Biasini, M.
Manoni, E.
Angelini, C.
Batignani, G.
Bettarini, S.
Calderini, G.
Carpinelli, M.
Cervelli, A.
Forti, F.
Giorgi, M. A.
Lusiani, A.
Morganti, M.
Neri, N.
Paoloni, E.
Rizzo, G.
Walsh, J. J.
Pegna, D. Lopes
Lu, C.
Olsen, J.
Smith, A. J. S.
Telnov, A. V.
Anulli, F.
Baracchini, E.
Cavoto, G.
Faccini, R.
Ferrarotto, F.
Ferroni, F.
Gaspero, M.
Jackson, P. D.
Gioi, L. Li
Mazzoni, M. A.
Morganti, S.
Piredda, G.
Renga, F.
Voena, C.
Ebert, M.
Hartmann, T.
Schroeder, H.
Waldi, R.
Adye, T.
Franek, B.
Olaiya, E. O.
Wilson, F. F.
Emery, S.
Esteve, L.
de Monchenault, G. Hamel
Kozanecki, W.
Vasseur, G.
Yeche, Ch.
Zito, M.
Allen, M. T.
Aston, D.
Bartoldus, R.
Benitez, J. F.
Cenci, R.
Coleman, J. P.
Convery, M. R.
Dingfelder, J. C.
Dorfan, J.
Dubois-Felsmann, G. P.
Dunwoodie, W.
Field, R. C.
Sevilla, M. Franco
Gabareen, A. M.
Graham, M. T.
Grenier, P.
Hast, C.
Innes, W. R.
Kaminski, J.
Kelsey, M. H.
Kim, H.
Kim, P.
Kocian, M. L.
Leith, D. W. G. S.
Li, S.
Lindquist, B.
Luitz, S.
Luth, V.
Lynch, H. L.
MacFarlane, D. B.
Marsiske, H.
Messner, R.
Muller, D. R.
Neal, H.
Nelson, S.
O'Grady, C. P.
Ofte, I.
Perl, M.
Ratcliff, B. N.
Roodman, A.
Salnikov, A. A.
Schindler, R. H.
Schwiening, J.
Snyder, A.
Su, D.
Sullivan, M. K.
Suzuki, K.
Swain, S. K.
Thompson, J. M.
Va'vra, J.
Wagner, A. P.
Weaver, M.
West, C. A.
Wisniewski, W. J.
Wittgen, M.
Wright, D. H.
Wulsin, H. W.
Yarritu, A. K.
Young, C. C.
Ziegler, V.
Chen, X. R.
Liu, H.
Park, W.
Purohit, M. V.
White, R. M.
Wilson, J. R.
Bellis, M.
Burchat, P. R.
Edwards, A. J.
Miyashita, T. S.
Ahmed, S.
Alam, M. S.
Ernst, J. A.
Pan, B.
Saeed, M. A.
Zain, S. B.
Soffer, A.
Spanier, S. M.
Wogsland, B. J.
Eckmann, R.
Ritchie, J. L.
Ruland, A. M.
Schilling, C. J.
Schwitters, R. F.
Wray, B. C.
Drummond, B. W.
Izen, J. M.
Lou, X. C.
Bianchi, F.
Gamba, D.
Pelliccioni, M.
Bomben, M.
Bosisio, L.
Cartaro, C.
Della Ricca, G.
Lanceri, L.
Vitale, L.
Azzolini, V.
Lopez-March, N.
Martinez-Vidal, F.
Milanes, D. A.
Oyanguren, A.
Albert, J.
Banerjee, Sw.
Bhuyan, B.
Choi, H. H. F.
Hamano, K.
King, G. J.
Kowalewski, R.
Lewczuk, M. J.
Nugent, I. M.
Roney, J. M.
Sobie, R. J.
Gershon, T. J.
Harrison, P. F.
Ilic, J.
Latham, T. E.
Mohanty, G. B.
Puccio, E. M. T.
Band, H. R.
Chen, X.
Dasu, S.
Flood, K. T.
Pan, Y.
Prepost, R.
Vuosalo, C. O.
Wu, S. L.
TI Measurements of the tau mass and the mass difference of the tau(+) and
tau(-) at BABAR
SO PHYSICAL REVIEW D
LA English
DT Article
ID RADIATIVE-CORRECTIONS; DECAY; DETECTOR; LEPTONS
AB We present the result from a precision measurement of the mass of the tau lepton, M-tau, based on 423 fb(-1) of data recorded at the Upsilon(4S) resonance with the BABAR detector. Using a pseudomass endpoint method, we determine the mass to be 1776.68 +/- 0.12(stat)+/- 0.41(syst) MeV. We also measure the mass difference between the tau(+) and tau(-), and obtain (M-tau(+)-M-tau(-))/M-AVG(tau)=(-3.4 +/- 1.3(stat)+/- 0.3(syst))x10(-4), where M-AVG(tau) is the average value of M-tau(+) and M-tau(-).
C1 [Aubert, B.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, CNRS, IN2P3, LAPP, F-74941 Annecy Le Vieux, France.
[Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain.
[Martinelli, M.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy.
[Martinelli, M.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy.
[Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway.
[Battaglia, M.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England.
[Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany.
[Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada.
[Barrett, M.; Khan, A.; Randle-Conde, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England.
[Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia.
[Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA.
[Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.] Univ Calif Riverside, Riverside, CA 92521 USA.
[Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA.
[Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA.
[Beck, T. W.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA.
[Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Ongmongkolku, P.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA.
[Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA.
[Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA.
[Ayad, R.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA.
[Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany.
[Kobel, M. J.; Nogowski, R.; Schubert, K. R.; Schwierz, R.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany.
[Bernard, D.; Latour, E.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France.
[Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland.
[Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy.
[Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy.
[Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy.
[Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy.
[Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA.
[Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany.
[Bernlochner, F. U.; Klose, V.; Lacker, H. M.; Lueck, T.; Volk, A.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany.
[Bard, D. J.; Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England.
[Behera, P. K.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA.
[Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA.
[Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA.
[Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France.
[Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci, F-91898 Orsay, France.
[Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England.
[Bevan, A. J.; Clarke, C. K.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England.
[Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England.
[Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA.
[Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany.
[Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England.
[Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA.
[Dallapiccola, C.; Salvati, E.] Univ Massachusetts, Amherst, MA 01003 USA.
[Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Sciolla, G.; Spitznagel, M.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA.
[Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada.
[Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy.
[Biassoni, P.; Lazzaro, A.; Palombo, F.; Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy.
[Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA.
[Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada.
[Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA.
[De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy.
[De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy.
[Raven, G.; Snoek, H. L.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 AB Amsterdam, Netherlands.
[Wang, L.; Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA.
[Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA.
[Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA.
[Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy.
[Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy.
[Sanchez, P. del Amo; Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.; Calderini, G.] Univ Paris 07, CNRS, Univ Paris 06, Lab Phys Nucl & Hautes Energies,IN2P3, F-75252 Paris, France.
[Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA.
[Biasini, M.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy.
[Peruzzi, I. M.; Biasini, M.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy.
[Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy.
[Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy.
[Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy.
[Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA.
[Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy.
[Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
[Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany.
[Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England.
[Emery, S.; Esteve, L.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France.
[Allen, M. T.; Aston, D.; Bartoldus, R.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Sevilla, M. Franco; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA.
[Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA.
[Bellis, M.; Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA.
[Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA.
[Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel.
[Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA.
[Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA.
[Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA.
[Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy.
[Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy.
[Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy.
[Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy.
[Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain.
[Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada.
[Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England.
[Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA.
[Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy.
RP Aubert, B (reprint author), Univ Savoie, CNRS, IN2P3, LAPP, F-74941 Annecy Le Vieux, France.
RI Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White,
Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Neri,
Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo,
Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad
Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Patrignani,
Claudia/C-5223-2009; Monge, Maria Roberta/G-9127-2012; Martinez Vidal,
F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere,
Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani,
Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Stracka,
Simone/M-3931-2015; Della Ricca, Giuseppe/B-6826-2013; Di Lodovico,
Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra,
Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016;
OI Corwin, Luke/0000-0001-7143-3821; Lanceri, Livio/0000-0001-8220-3095;
Ebert, Marcus/0000-0002-3014-1512; Hamel de Monchenault,
Gautier/0000-0002-3872-3592; Carpinelli, Massimo/0000-0002-8205-930X;
Sciacca, Crisostomo/0000-0002-8412-4072; Adye, Tim/0000-0003-0627-5059;
Lafferty, George/0000-0003-0658-4919; Martinelli,
Maurizio/0000-0003-4792-9178; Oyanguren, Arantza/0000-0002-8240-7300;
Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900;
Calabrese, Roberto/0000-0002-1354-5400; Neri,
Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965;
Rotondo, Marcello/0000-0001-5704-6163; de Sangro,
Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255;
Negrini, Matteo/0000-0003-0101-6963; Patrignani,
Claudia/0000-0002-5882-1747; Monge, Maria Roberta/0000-0003-1633-3195;
Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky,
Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480;
Lusiani, Alberto/0000-0002-6876-3288; Lusiani,
Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240;
Stracka, Simone/0000-0003-0013-4714; Della Ricca,
Giuseppe/0000-0003-2831-6982; Di Lodovico,
Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602;
Calcaterra, Alessandro/0000-0003-2670-4826; Frey,
Raymond/0000-0003-0341-2636; Wilson, Robert/0000-0002-8184-4103; Strube,
Jan/0000-0001-7470-9301; Chen, Chunhui /0000-0003-1589-9955; Bellis,
Matthew/0000-0002-6353-6043
FU US Department of Energy; National Science Foundation; Natural Sciences
and Engineering Research Council (Canada); Commissariat a l'Energie
Atomique and Institut National de Physique Nucleaire et de Physique des
Particules (France); Bundesministerium fur Bildung; Forschung and
Deutsche Forschungs-gemeinschaft (Germany); Istituto Nazionale di Fisica
Nucleare (Italy); Foundation for Fundamental Research on Matter (The
Netherlands); Research Council of Norway; Russian Federation; Ministerio
de Educacion y Ciencia (Spain); Science and Technology Facilities
Council (United Kingdom); Marie-Curie IEF program (European Union); A.
P. Sloan Foundation
FX We are grateful for the extraordinary contributions of our PEP-II
colleagues in achieving the excellent luminosity and machine conditions
that have made this work possible. The success of this project also
relies critically on the expertise and dedication of the computing
organ-izations that support BABAR. The collaborating institutions wish
to thank SLAC for its support and the kind hospitality extended to them.
This work is supported by the US Department of Energy and National
Science Foundation, the Natural Sciences and Engineering Research
Council (Canada), the Commissariat a l'Energie Atomique and Institut
National de Physique Nucleaire et de Physique des Particules (France),
the Bundesministerium fur Bildung und Forschung and Deutsche
Forschungs-gemeinschaft (Germany), the Istituto Nazionale di Fisica
Nucleare (Italy), the Foundation for Fundamental Research on Matter (The
Netherlands), the Research Council of Norway, the Ministry of Education
and Science of the Russian Federation, Ministerio de Educacion y Ciencia
(Spain), and the Science and Technology Facilities Council (United
Kingdom). Individuals have received support from the Marie-Curie IEF
program (European Union) and the A. P. Sloan Foundation.
NR 25
TC 19
Z9 19
U1 0
U2 6
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2470-0010
EI 2470-0029
J9 PHYS REV D
JI Phys. Rev. D
PD NOV
PY 2009
VL 80
IS 9
AR 092005
DI 10.1103/PhysRevD.80.092005
PG 13
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 526SH
UT WOS:000272313100011
ER
PT J
AU Aubert, B
Karyotakis, Y
Lees, JP
Poireau, V
Prencipe, E
Prudent, X
Tisserand, V
Tico, JG
Grauges, E
Martinelli, M
Palano, A
Pappagallo, M
Eigen, G
Stugu, B
Sun, L
Battaglia, M
Brown, DN
Kerth, LT
Kolomensky, YG
Lynch, G
Osipenkov, IL
Tackmann, K
Tanabe, T
Hawkes, CM
Soni, N
Watson, AT
Koch, H
Schroeder, T
Asgeirsson, DJ
Fulsom, BG
Hearty, C
Mattison, TS
McKenna, JA
Barrett, M
Khan, A
Randle-Conde, A
Blinov, VE
Bukin, AD
Buzykaev, AR
Druzhinin, VP
Golubev, VB
Onuchin, AP
Serednyakov, SI
Skovpen, YI
Solodov, EP
Todyshev, KY
Bondioli, M
Curry, S
Eschrich, I
Kirkby, D
Lankford, AJ
Lund, P
Mandelkern, M
Martin, EC
Stoker, DP
Atmacan, H
Gary, JW
Liu, F
Long, O
Vitug, GM
Yasin, Z
Sharma, V
Campagnari, C
Hong, TM
Kovalskyi, D
Mazur, MA
Richman, JD
Beck, TW
Eisner, AM
Heusch, CA
Kroseberg, J
Lockman, WS
Martinez, AJ
Schalk, T
Schumm, BA
Seiden, A
Wang, L
Winstrom, LO
Cheng, CH
Doll, DA
Echenard, B
Fang, F
Hitlin, DG
Narsky, I
Ongmongkolkul, P
Piatenko, T
Porter, FC
Andreassen, R
Mancinelli, G
Meadows, BT
Mishra, K
Sokoloff, MD
Bloom, PC
Ford, WT
Gaz, A
Hirschauer, JF
Nagel, M
Nauenberg, U
Smith, JG
Wagner, SR
Ayad, R
Toki, WH
Wilson, RJ
Feltresi, E
Hauke, A
Jasper, H
Karbach, TM
Merkel, J
Petzold, A
Spaan, B
Wacker, K
Kobel, MJ
Nogowski, R
Schubert, KR
Schwierz, R
Bernard, D
Latour, E
Verderi, M
Clark, PJ
Playfer, S
Watson, JE
Andreotti, M
Bettoni, D
Bozzi, C
Calabrese, R
Cecchi, A
Cibinetto, G
Fioravanti, E
Franchini, P
Luppi, E
Munerato, M
Negrini, M
Petrella, A
Piemontese, L
Santoro, V
Baldini-Ferroli, R
Calcaterra, A
de Sangro, R
Finocchiaro, G
Pacetti, S
Patteri, P
Peruzzi, IM
Piccolo, M
Rama, M
Zallo, A
Contri, R
Guido, E
Lo Vetere, M
Monge, MR
Passaggio, S
Patrignani, C
Robutti, E
Tosi, S
Chaisanguanthum, KS
Morii, M
Adametz, A
Marks, J
Schenk, S
Uwer, U
Bernlochner, FU
Klose, V
Lacker, HM
Lueck, T
Volk, A
Bard, DJ
Dauncey, PD
Tibbetts, M
Behera, PK
Charles, MJ
Mallik, U
Cochran, J
Crawley, HB
Dong, L
Eyges, V
Meyer, WT
Prell, S
Rosenberg, EI
Rubin, AE
Gao, YY
Gritsan, AV
Guo, ZJ
Arnaud, N
Bequilleux, J
D'Orazio, A
Davier, M
Derkach, D
da Costa, JF
Grosdidier, G
Le Diberder, F
Lepeltier, V
Lutz, AM
Malaescu, B
Pruvot, S
Roudeau, P
Schune, MH
Serrano, J
Sordini, V
Stocchi, A
Wormser, G
Lange, DJ
Wright, DM
Bingham, I
Burke, JP
Chavez, CA
Fry, JR
Gabathuler, E
Gamet, R
Hutchcroft, DE
Payne, DJ
Touramanis, C
Bevan, AJ
Clarke, CK
Di Lodovico, F
Sacco, R
Sigamani, M
Cowan, G
Paramesvaran, S
Wren, AC
Brown, DN
Davis, CL
Denig, AG
Fritsch, M
Gradl, W
Hafner, A
Alwyn, KE
Bailey, D
Barlow, RJ
Jackson, G
Lafferty, GD
West, TJ
Yi, JI
Anderson, J
Chen, C
Jawahery, A
Roberts, DA
Simi, G
Tuggle, JM
Dallapiccola, C
Salvati, E
Cowan, R
Dujmic, D
Fisher, PH
Henderson, SW
Sciolla, G
Spitznagel, M
Yamamoto, RK
Zhao, M
Patel, PM
Robertson, SH
Schram, M
Biassoni, P
Lazzaro, A
Lombardo, V
Palombo, F
Stracka, S
Cremaldi, L
Godang, R
Kroeger, R
Sonnek, P
Summers, DJ
Zhao, HW
Simard, M
Taras, P
Nicholson, H
De Nardo, G
Lista, L
Monorchio, D
Onorato, G
Sciacca, C
Raven, G
Snoek, HL
Jessop, CP
Knoepfel, KJ
LoSecco, JM
Wang, WF
Benelli, G
Corwin, LA
Honscheid, K
Kagan, H
Kass, R
Morris, JP
Rahimi, AM
Sekula, SJ
Wong, QK
Blount, NL
Brau, J
Frey, R
Igonkina, O
Kolb, JA
Lu, M
Rahmat, R
Sinev, NB
Strom, D
Strube, J
Torrence, E
Castelli, G
Gagliardi, N
Margoni, M
Morandin, M
Posocco, M
Rotondo, M
Simonetto, F
Stroili, R
Voci, C
Sanchez, PD
Ben-Haim, E
Bonneaud, GR
Briand, H
Chauveau, J
Hamon, O
Leruste, P
Marchiori, G
Ocariz, J
Perez, A
Prendki, J
Sitt, S
Gladney, L
Biasini, M
Manoni, E
Angelini, C
Batignani, G
Bettarini, S
Calderini, G
Carpinelli, M
Cervelli, A
Forti, F
Giorgi, MA
Lusiani, A
Morganti, M
Neri, N
Paoloni, E
Rizzo, G
Walsh, JJ
Pegna, DL
Lu, C
Olsen, J
Smith, AJS
Telnov, AV
Anulli, F
Baracchini, E
Cavoto, G
Faccini, R
Ferrarotto, F
Ferroni, F
Gaspero, M
Jackson, PD
Li Gioi, L
Mazzoni, MA
Morganti, S
Piredda, G
Renga, F
Voena, C
Ebert, M
Hartmann, T
Schroumlder, H
Waldi, R
Adye, T
Franek, B
Olaiya, EO
Wilson, FF
Emery, S
Esteve, L
de Monchenault, GH
Kozanecki, W
Vasseur, G
Yeche, C
Zito, M
Allen, MT
Aston, D
Bartoldus, R
Benitez, JF
Cenci, R
Coleman, JP
Convery, MR
Dingfelder, JC
Dorfan, J
Dubois-Felsmann, GP
Dunwoodie, W
Field, RC
Franco Sevilla, M
Gabareen, AM
Graham, MT
Grenier, P
Hast, C
Innes, WR
Kaminski, J
Kelsey, MH
Kim, H
Kim, P
Kocian, ML
Leith, DWGS
Li, S
Lindquist, B
Luitz, S
Luth, V
Lynch, HL
MacFarlane, DB
Marsiske, H
Messner, R
Muller, DR
Neal, H
Nelson, S
O'Grady, CP
Ofte, I
Perl, M
Ratcliff, BN
Roodman, A
Salnikov, AA
Schindler, RH
Schwiening, J
Snyder, A
Su, D
Sullivan, MK
Suzuki, K
Swain, SK
Thompson, JM
Va'vra, J
Wagner, AP
Weaver, M
West, CA
Wisniewski, WJ
Wittgen, M
Wright, DH
Wulsin, HW
Yarritu, AK
Young, CC
Ziegler, V
Chen, XR
Liu, H
Park, W
Purohit, MV
White, RM
Wilson, JR
Bellis, M
Burchat, PR
Edwards, AJ
Miyashita, TS
Ahmed, S
Alam, MS
Ernst, JA
Pan, B
Saeed, MA
Zain, SB
Soffer, A
Spanier, SM
Wogsland, BJ
Eckmann, R
Ritchie, JL
Ruland, AM
Schilling, CJ
Schwitters, RF
Wray, BC
Drummond, BW
Izen, JM
Lou, XC
Bianchi, F
Gamba, D
Pelliccioni, M
Bomben, M
Bosisio, L
Cartaro, C
Della Ricca, G
Lanceri, L
Vitale, L
Azzolini, V
Lopez-March, N
Martinez-Vidal, F
Milanes, DA
Oyanguren, A
Albert, J
Banerjee, S
Bhuyan, B
Choi, HHF
Hamano, K
King, GJ
Kowalewski, R
Lewczuk, MJ
Nugent, IM
Roney, JM
Sobie, RJ
Gershon, TJ
Harrison, PF
Ilic, J
Latham, TE
Mohanty, GB
Puccio, EMT
Band, HR
Chen, X
Dasu, S
Flood, KT
Pan, Y
Prepost, R
Vuosalo, CO
Wu, SL
AF Aubert, B.
Karyotakis, Y.
Lees, J. P.
Poireau, V.
Prencipe, E.
Prudent, X.
Tisserand, V.
Garra Tico, J.
Grauges, E.
Martinelli, M.
Palano, A.
Pappagallo, M.
Eigen, G.
Stugu, B.
Sun, L.
Battaglia, M.
Brown, D. N.
Kerth, L. T.
Kolomensky, Yu. G.
Lynch, G.
Osipenkov, I. L.
Tackmann, K.
Tanabe, T.
Hawkes, C. M.
Soni, N.
Watson, A. T.
Koch, H.
Schroeder, T.
Asgeirsson, D. J.
Fulsom, B. G.
Hearty, C.
Mattison, T. S.
McKenna, J. A.
Barrett, M.
Khan, A.
Randle-Conde, A.
Blinov, V. E.
Bukin, A. D.
Buzykaev, A. R.
Druzhinin, V. P.
Golubev, V. B.
Onuchin, A. P.
Serednyakov, S. I.
Skovpen, Yu. I.
Solodov, E. P.
Todyshev, K. Yu.
Bondioli, M.
Curry, S.
Eschrich, I.
Kirkby, D.
Lankford, A. J.
Lund, P.
Mandelkern, M.
Martin, E. C.
Stoker, D. P.
Atmacan, H.
Gary, J. W.
Liu, F.
Long, O.
Vitug, G. M.
Yasin, Z.
Sharma, V.
Campagnari, C.
Hong, T. M.
Kovalskyi, D.
Mazur, M. A.
Richman, J. D.
Beck, T. W.
Eisner, A. M.
Heusch, C. A.
Kroseberg, J.
Lockman, W. S.
Martinez, A. J.
Schalk, T.
Schumm, B. A.
Seiden, A.
Wang, L.
Winstrom, L. O.
Cheng, C. H.
Doll, D. A.
Echenard, B.
Fang, F.
Hitlin, D. G.
Narsky, I.
Ongmongkolkul, P.
Piatenko, T.
Porter, F. C.
Andreassen, R.
Mancinelli, G.
Meadows, B. T.
Mishra, K.
Sokoloff, M. D.
Bloom, P. C.
Ford, W. T.
Gaz, A.
Hirschauer, J. F.
Nagel, M.
Nauenberg, U.
Smith, J. G.
Wagner, S. R.
Ayad, R.
Toki, W. H.
Wilson, R. J.
Feltresi, E.
Hauke, A.
Jasper, H.
Karbach, T. M.
Merkel, J.
Petzold, A.
Spaan, B.
Wacker, K.
Kobel, M. J.
Nogowski, R.
Schubert, K. R.
Schwierz, R.
Bernard, D.
Latour, E.
Verderi, M.
Clark, P. J.
Playfer, S.
Watson, J. E.
Andreotti, M.
Bettoni, D.
Bozzi, C.
Calabrese, R.
Cecchi, A.
Cibinetto, G.
Fioravanti, E.
Franchini, P.
Luppi, E.
Munerato, M.
Negrini, M.
Petrella, A.
Piemontese, L.
Santoro, V.
Baldini-Ferroli, R.
Calcaterra, A.
de Sangro, R.
Finocchiaro, G.
Pacetti, S.
Patteri, P.
Peruzzi, I. M.
Piccolo, M.
Rama, M.
Zallo, A.
Contri, R.
Guido, E.
Lo Vetere, M.
Monge, M. R.
Passaggio, S.
Patrignani, C.
Robutti, E.
Tosi, S.
Chaisanguanthum, K. S.
Morii, M.
Adametz, A.
Marks, J.
Schenk, S.
Uwer, U.
Bernlochner, F. U.
Klose, V.
Lacker, H. M.
Lueck, T.
Volk, A.
Bard, D. J.
Dauncey, P. D.
Tibbetts, M.
Behera, P. K.
Charles, M. J.
Mallik, U.
Cochran, J.
Crawley, H. B.
Dong, L.
Eyges, V.
Meyer, W. T.
Prell, S.
Rosenberg, E. I.
Rubin, A. E.
Gao, Y. Y.
Gritsan, A. V.
Guo, Z. J.
Arnaud, N.
Bequilleux, J.
D'Orazio, A.
Davier, M.
Derkach, D.
da Costa, J. Firmino
Grosdidier, G.
Le Diberder, F.
Lepeltier, V.
Lutz, A. M.
Malaescu, B.
Pruvot, S.
Roudeau, P.
Schune, M. H.
Serrano, J.
Sordini, V.
Stocchi, A.
Wormser, G.
Lange, D. J.
Wright, D. M.
Bingham, I.
Burke, J. P.
Chavez, C. A.
Fry, J. R.
Gabathuler, E.
Gamet, R.
Hutchcroft, D. E.
Payne, D. J.
Touramanis, C.
Bevan, A. J.
Clarke, C. K.
Di Lodovico, F.
Sacco, R.
Sigamani, M.
Cowan, G.
Paramesvaran, S.
Wren, A. C.
Brown, D. N.
Davis, C. L.
Denig, A. G.
Fritsch, M.
Gradl, W.
Hafner, A.
Alwyn, K. E.
Bailey, D.
Barlow, R. J.
Jackson, G.
Lafferty, G. D.
West, T. J.
Yi, J. I.
Anderson, J.
Chen, C.
Jawahery, A.
Roberts, D. A.
Simi, G.
Tuggle, J. M.
Dallapiccola, C.
Salvati, E.
Cowan, R.
Dujmic, D.
Fisher, P. H.
Henderson, S. W.
Sciolla, G.
Spitznagel, M.
Yamamoto, R. K.
Zhao, M.
Patel, P. M.
Robertson, S. H.
Schram, M.
Biassoni, P.
Lazzaro, A.
Lombardo, V.
Palombo, F.
Stracka, S.
Cremaldi, L.
Godang, R.
Kroeger, R.
Sonnek, P.
Summers, D. J.
Zhao, H. W.
Simard, M.
Taras, P.
Nicholson, H.
De Nardo, G.
Lista, L.
Monorchio, D.
Onorato, G.
Sciacca, C.
Raven, G.
Snoek, H. L.
Jessop, C. P.
Knoepfel, K. J.
LoSecco, J. M.
Wang, W. F.
Benelli, G.
Corwin, L. A.
Honscheid, K.
Kagan, H.
Kass, R.
Morris, J. P.
Rahimi, A. M.
Sekula, S. J.
Wong, Q. K.
Blount, N. L.
Brau, J.
Frey, R.
Igonkina, O.
Kolb, J. A.
Lu, M.
Rahmat, R.
Sinev, N. B.
Strom, D.
Strube, J.
Torrence, E.
Castelli, G.
Gagliardi, N.
Margoni, M.
Morandin, M.
Posocco, M.
Rotondo, M.
Simonetto, F.
Stroili, R.
Voci, C.
Sanchez, P. del Amo
Ben-Haim, E.
Bonneaud, G. R.
Briand, H.
Chauveau, J.
Hamon, O.
Leruste, Ph.
Marchiori, G.
Ocariz, J.
Perez, A.
Prendki, J.
Sitt, S.
Gladney, L.
Biasini, M.
Manoni, E.
Angelini, C.
Batignani, G.
Bettarini, S.
Calderini, G.
Carpinelli, M.
Cervelli, A.
Forti, F.
Giorgi, M. A.
Lusiani, A.
Morganti, M.
Neri, N.
Paoloni, E.
Rizzo, G.
Walsh, J. J.
Pegna, D. Lopes
Lu, C.
Olsen, J.
Smith, A. J. S.
Telnov, A. V.
Anulli, F.
Baracchini, E.
Cavoto, G.
Faccini, R.
Ferrarotto, F.
Ferroni, F.
Gaspero, M.
Jackson, P. D.
Li Gioi, L.
Mazzoni, M. A.
Morganti, S.
Piredda, G.
Renga, F.
Voena, C.
Ebert, M.
Hartmann, T.
Schroumlder, H.
Waldi, R.
Adye, T.
Franek, B.
Olaiya, E. O.
Wilson, F. F.
Emery, S.
Esteve, L.
de Monchenault, G. Hamel
Kozanecki, W.
Vasseur, G.
Yeche, Ch.
Zito, M.
Allen, M. T.
Aston, D.
Bartoldus, R.
Benitez, J. F.
Cenci, R.
Coleman, J. P.
Convery, M. R.
Dingfelder, J. C.
Dorfan, J.
Dubois-Felsmann, G. P.
Dunwoodie, W.
Field, R. C.
Franco Sevilla, M.
Gabareen, A. M.
Graham, M. T.
Grenier, P.
Hast, C.
Innes, W. R.
Kaminski, J.
Kelsey, M. H.
Kim, H.
Kim, P.
Kocian, M. L.
Leith, D. W. G. S.
Li, S.
Lindquist, B.
Luitz, S.
Luth, V.
Lynch, H. L.
MacFarlane, D. B.
Marsiske, H.
Messner, R.
Muller, D. R.
Neal, H.
Nelson, S.
O'Grady, C. P.
Ofte, I.
Perl, M.
Ratcliff, B. N.
Roodman, A.
Salnikov, A. A.
Schindler, R. H.
Schwiening, J.
Snyder, A.
Su, D.
Sullivan, M. K.
Suzuki, K.
Swain, S. K.
Thompson, J. M.
Va'vra, J.
Wagner, A. P.
Weaver, M.
West, C. A.
Wisniewski, W. J.
Wittgen, M.
Wright, D. H.
Wulsin, H. W.
Yarritu, A. K.
Young, C. C.
Ziegler, V.
Chen, X. R.
Liu, H.
Park, W.
Purohit, M. V.
White, R. M.
Wilson, J. R.
Bellis, M.
Burchat, P. R.
Edwards, A. J.
Miyashita, T. S.
Ahmed, S.
Alam, M. S.
Ernst, J. A.
Pan, B.
Saeed, M. A.
Zain, S. B.
Soffer, A.
Spanier, S. M.
Wogsland, B. J.
Eckmann, R.
Ritchie, J. L.
Ruland, A. M.
Schilling, C. J.
Schwitters, R. F.
Wray, B. C.
Drummond, B. W.
Izen, J. M.
Lou, X. C.
Bianchi, F.
Gamba, D.
Pelliccioni, M.
Bomben, M.
Bosisio, L.
Cartaro, C.
Della Ricca, G.
Lanceri, L.
Vitale, L.
Azzolini, V.
Lopez-March, N.
Martinez-Vidal, F.
Milanes, D. A.
Oyanguren, A.
Albert, J.
Banerjee, Sw.
Bhuyan, B.
Choi, H. H. F.
Hamano, K.
King, G. J.
Kowalewski, R.
Lewczuk, M. J.
Nugent, I. M.
Roney, J. M.
Sobie, R. J.
Gershon, T. J.
Harrison, P. F.
Ilic, J.
Latham, T. E.
Mohanty, G. B.
Puccio, E. M. T.
Band, H. R.
Chen, X.
Dasu, S.
Flood, K. T.
Pan, Y.
Prepost, R.
Vuosalo, C. O.
Wu, S. L.
TI Measurement of CP violation observables and parameters for the decays
B-+/--> DK*+/-
SO PHYSICAL REVIEW D
LA English
DT Article
ID WEAK PHASE; GAMMA; PHYSICS
AB We study the decay B--> DK*- using a sample of 379x10(6) Upsilon(4S)-> BB events collected with the BABAR detector at the PEP-II B factory. We perform a Gronau-London-Wyler analysis where the D meson decays into either a CP-even (CP+) eigenstate (K+K-, pi(+)pi(-)), CP-odd (CP-) eigenstate (K-S(0)pi(0), K-S(0)phi, K-S(0)omega) or a non-CP state (K-pi(+)). We also analyze D meson decays into K+pi(-) from a Cabibbo-favored D-0 decay or doubly suppressed D-0 decay [Atwood-Dunietz-Soni (ADS) analysis]. We measure observables that are sensitive to the Cabibbo-Kobayashi-Maskawa angle gamma: the partial-rate charge asymmetries A(CP +/-), the ratios R-CP +/- of the B-decay branching fractions in CP +/- and non-CP decay, the ratio R-ADS of the charge-averaged branching fractions, and the charge asymmetry A(ADS) of the ADS decays: A(CP+)=0.09 +/- 0.13 +/- 0.06, A(CP-)=-0.23 +/- 0.21 +/- 0.07, RCP+=2.17 +/- 0.35 +/- 0.09, RCP-=1.03 +/- 0.27 +/- 0.13, R-ADS=0.066 +/- 0.031 +/- 0.010, and A(ADS)=-0.34 +/- 0.43 +/- 0.16, where the first uncertainty is statistical and the second is systematic. Combining all the measurements and using a frequentist approach yields the magnitude of the ratio between the Cabibbo-suppressed and favored amplitudes, r(B)=0.31 with a one (two) sigma confidence level interval of [0.24, 0.38] ([0.17, 0.43]). The value r(B)=0 is excluded at the 3.3 sigma level. A similar analysis excludes values of gamma in the intervals [0, 7]degrees, [55, 111]degrees, and [175, 180]degrees ([85, 99]degrees) at the one (two) sigma confidence level.
C1 [Aubert, B.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, CNRS, LAPP, IN2P3, F-74941 Annecy Le Vieux, France.
[Garra Tico, J.; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain.
[Martinelli, M.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy.
[Martinelli, M.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy.
[Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway.
[Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany.
[Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada.
[Barrett, M.; Khan, A.; Randle-Conde, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England.
[Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Institute of Nuclear Phys, Novosibirsk 630090, Russia.
[Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA.
[Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.] Univ Calif Riverside, Riverside, CA 92521 USA.
[Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA.
[Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA.
[Beck, T. W.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA.
[Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Ongmongkolkul, P.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA.
[Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA.
[Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA.
[Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany.
[Kobel, M. J.; Nogowski, R.; Schubert, K. R.; Schwierz, R.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany.
[Bernard, D.; Latour, E.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France.
[Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland.
[Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy.
[Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy.
[Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy.
[Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy.
[Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA.
[Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany.
[Bernlochner, F. U.; Klose, V.; Lacker, H. M.; Lueck, T.; Volk, A.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany.
[Behera, P. K.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA.
[Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA.
[Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA.
[Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France.
[Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England.
[Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England.
[Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA.
[Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany.
[Dallapiccola, C.; Salvati, E.] Univ Massachusetts, Amherst, MA 01003 USA.
[Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Sciolla, G.; Spitznagel, M.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA.
[Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada.
[Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy.
[Biassoni, P.; Lazzaro, A.; Palombo, F.; Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy.
[Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada.
[De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy.
[De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy.
[Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA.
[Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA.
[Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA.
[Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy.
[Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy.
[Sanchez, P. del Amo; Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.; Calderini, G.] Univ Paris 07, Univ Paris 06, CNRS, Lab Phys Nucl & Hautes Energies,IN2P3, F-75252 Paris, France.
[Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA.
[Biasini, M.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy.
[Peruzzi, I. M.; Biasini, M.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy.
[Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy.
[Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy.
[Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy.
[Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Li Gioi, L.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, I-00185 Rome, Italy.
[Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
[Ebert, M.; Hartmann, T.; Schroumlder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany.
[Emery, S.; Esteve, L.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, Irfu, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France.
[Allen, M. T.; Aston, D.; Bartoldus, R.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Franco Sevilla, M.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA.
[Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA.
[Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA.
[Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA.
[Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA.
[Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA.
[Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy.
[Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy.
[Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy.
[Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy.
[Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain.
[Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada.
[Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England.
[Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA.
[Battaglia, M.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England.
[Ayad, R.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA.
[Bard, D. J.; Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England.
[Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France.
[Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Bevan, A. J.; Clarke, C. K.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England.
[Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England.
[Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA.
[Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA.
[Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA.
[Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands.
[Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA.
[Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England.
[Bellis, M.; Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA.
[Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel.
[Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy.
RP Aubert, B (reprint author), Univ Savoie, CNRS, LAPP, IN2P3, F-74941 Annecy Le Vieux, France.
RI Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere,
Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin,
Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Stracka,
Simone/M-3931-2015; Della Ricca, Giuseppe/B-6826-2013; Di Lodovico,
Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra,
Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; dong,
liaoyuan/A-5093-2015; Rizzo, Giuliana/A-8516-2015; Saeed, Mohammad
Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Patrignani,
Claudia/C-5223-2009; Monge, Maria Roberta/G-9127-2012; Oyanguren,
Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White,
Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Neri,
Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo,
Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012
OI Paoloni, Eugenio/0000-0001-5969-8712; Corwin, Luke/0000-0001-7143-3821;
Bettarini, Stefano/0000-0001-7742-2998; Lanceri,
Livio/0000-0001-8220-3095; Ebert, Marcus/0000-0002-3014-1512; Cibinetto,
Gianluigi/0000-0002-3491-6231; Hamel de Monchenault,
Gautier/0000-0002-3872-3592; Martinez Vidal, F*/0000-0001-6841-6035;
Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere,
Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288;
Morandin, Mauro/0000-0003-4708-4240; Lusiani,
Alberto/0000-0002-6876-3288; Stracka, Simone/0000-0003-0013-4714; Della
Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico,
Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602;
Calcaterra, Alessandro/0000-0003-2670-4826; Frey,
Raymond/0000-0003-0341-2636; Strube, Jan/0000-0001-7470-9301; Chen,
Chunhui /0000-0003-1589-9955; Bellis, Matthew/0000-0002-6353-6043; dong,
liaoyuan/0000-0002-4773-5050; Pacetti, Simone/0000-0002-6385-3508;
Rizzo, Giuliana/0000-0003-1788-2866; Carpinelli,
Massimo/0000-0002-8205-930X; Sciacca, Crisostomo/0000-0002-8412-4072;
Adye, Tim/0000-0003-0627-5059; Lafferty, George/0000-0003-0658-4919;
Faccini, Riccardo/0000-0003-2613-5141; Martinelli,
Maurizio/0000-0003-4792-9178; Cavoto, Gianluca/0000-0003-2161-918X;
Wilson, Robert/0000-0002-8184-4103; Saeed, Mohammad
Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963;
Patrignani, Claudia/0000-0002-5882-1747; Monge, Maria
Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300;
Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900;
Calabrese, Roberto/0000-0002-1354-5400; Neri,
Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965;
Rotondo, Marcello/0000-0001-5704-6163; de Sangro,
Riccardo/0000-0002-3808-5455
FU US Department of Energy; National Science Foundation; Natural Sciences
and Engineering Research Council (Canada); Commissariat a l'Energie
Atomique; Institut National de Physique Nucleaire et de Physique des
Particules (France); Bundesministerium fur Bildung; Forschung and
Deutsche Forschungsgemeinschaft (Germany); Istituto Nazionale di Fisica
Nucleare (Italy); Foundation for Fundamental Research on Matter (The
Netherlands); Research Council of Norway; Ministry of Education and
Science of the Russian Federation; Ministerio de Educacion y Ciencia
(Spain); Science and Technology Facilities Council (United Kingdom);
Marie-Curie IEF program (European Union); A. P. Sloan Foundation
FX We are grateful for the extraordinary contributions of our PEP-II
colleagues in achieving the excellent luminos-ity and machine conditions
that have made this work possible. The success of this project also
relies critically on the expertise and dedication of the computing
organizations that support BABAR. The collaborating institutions wish to
thank SLAC for its support and the kind hospitality extended to them.
This work is supported by the US Department of Energy and National
Science Foundation, the Natural Sciences and Engineering Research
Council (Canada), the Commissariat a l'Energie Atomique and Institut
National de Physique Nucleaire et de Physique des Particules (France),
the Bundesministerium fur Bildung und Forschung and Deutsche
Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica
Nucleare (Italy), the Foundation for Fundamental Research on Matter (The
Netherlands), the Research Council of Norway, the Ministry of Education
and Science of the Russian Federation, Ministerio de Educacion y Ciencia
(Spain), and the Science and Technology Facilities Council (United
Kingdom). Individuals have received support from the Marie-Curie IEF
program (European Union) and the A. P. Sloan Foundation.
NR 32
TC 37
Z9 37
U1 0
U2 5
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2470-0010
EI 2470-0029
J9 PHYS REV D
JI Phys. Rev. D
PD NOV
PY 2009
VL 80
IS 9
AR 092001
DI 10.1103/PhysRevD.80.092001
PG 14
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 526SH
UT WOS:000272313100007
ER
PT J
AU Aubert, B
Karyotakis, Y
Lees, JP
Poireau, V
Prencipe, E
Prudent, X
Tisserand, V
Tico, JG
Grauges, E
Martinelli, M
Palano, A
Pappagallo, M
Eigen, G
Stugu, B
Sun, L
Battaglia, M
Brown, DN
Hooberman, B
Kerth, LT
Kolomensky, YG
Lynch, G
Osipenkov, IL
Tackmann, K
Tanabe, T
Hawkes, CM
Soni, N
Watson, AT
Koch, H
Schroeder, T
Asgeirsson, DJ
Hearty, C
Mattison, TS
McKenna, JA
Barrett, M
Khan, A
Randle-Conde, A
Blinov, VE
Bukin, AD
Buzykaev, AR
Druzhinin, VP
Golubev, VB
Onuchin, AP
Serednyakov, SI
Skovpen, YI
Solodov, EP
Todyshev, KY
Bondioli, M
Curry, S
Eschrich, I
Kirkby, D
Lankford, AJ
Lund, P
Mandelkern, M
Martin, EC
Stoker, DP
Atmacan, H
Gary, JW
Liu, F
Long, O
Vitug, GM
Yasin, Z
Sharma, V
Campagnari, C
Hong, TM
Kovalskyi, D
Mazur, MA
Richman, JD
Beck, TW
Eisner, AM
Heusch, CA
Kroseberg, J
Lockman, WS
Martinez, AJ
Schalk, T
Schumm, BA
Seiden, A
Wang, L
Winstrom, LO
Cheng, CH
Doll, DA
Echenard, B
Fang, F
Hitlin, DG
Narsky, I
Ongmongkolkul, P
Piatenko, T
Porter, FC
Andreassen, R
Mancinelli, G
Meadows, BT
Mishra, K
Sokoloff, MD
Bloom, PC
Ford, WT
Gaz, A
Hirschauer, JF
Nagel, M
Nauenberg, U
Smith, JG
Wagner, SR
Ayad, R
Toki, WH
Wilson, RJ
Feltresi, E
Hauke, A
Jasper, H
Karbach, TM
Merkel, J
Petzold, A
Spaan, B
Wacker, K
Kobel, MJ
Nogowski, R
Schubert, KR
Schwierz, R
Bernard, D
Latour, E
Verderi, M
Clark, PJ
Playfer, S
Watson, JE
Andreotti, M
Bettoni, D
Bozzi, C
Calabrese, R
Cecchi, A
Cibinetto, G
Fioravanti, E
Franchini, P
Luppi, E
Munerato, M
Negrini, M
Petrella, A
Piemontese, L
Santoro, V
Baldini-Ferroli, R
Calcaterra, A
de Sangro, R
Finocchiaro, G
Pacetti, S
Patteri, P
Peruzzi, IM
Piccolo, M
Rama, M
Zallo, A
Contri, R
Guido, E
Lo Vetere, M
Monge, MR
Passaggio, S
Patrignani, C
Robutti, E
Tosi, S
Chaisanguanthum, KS
Morii, M
Adametz, A
Marks, J
Schenk, S
Uwer, U
Bernlochner, FU
Klose, V
Lacker, HM
Lueck, T
Volk, A
Bard, DJ
Dauncey, PD
Tibbetts, M
Behera, PK
Charles, MJ
Mallik, U
Cochran, J
Crawley, HB
Dong, L
Eyges, V
Meyer, WT
Prell, S
Rosenberg, EI
Rubin, AE
Gao, YY
Gritsan, AV
Guo, ZJ
Arnaud, N
Bequilleux, J
D'Orazio, A
Davier, M
Derkach, D
da Costa, JF
Grosdidier, G
Le Diberder, F
Lepeltier, V
Lutz, AM
Malaescu, B
Pruvot, S
Roudeau, P
Schune, MH
Serrano, J
Sordini, V
Stocchi, A
Wormser, G
Lange, DJ
Wright, DM
Bingham, I
Burke, JP
Chavez, CA
Fry, JR
Gabathuler, E
Gamet, R
Hutchcroft, DE
Payne, DJ
Touramanis, C
Bevan, AJ
Clarke, CK
Di Lodovico, F
Sacco, R
Sigamani, M
Cowan, G
Paramesvaran, S
Wren, AC
Brown, DN
Davis, CL
Denig, AG
Fritsch, M
Gradl, W
Hafner, A
Alwyn, KE
Bailey, D
Barlow, RJ
Jackson, G
Lafferty, GD
West, TJ
Yi, JI
Anderson, J
Chen, C
Jawahery, A
Roberts, DA
Simi, G
Tuggle, JM
Dallapiccola, C
Salvati, E
Cowan, R
Dujmic, D
Fisher, PH
Henderson, SW
Sciolla, G
Spitznagel, M
Yamamoto, RK
Zhao, M
Patel, PM
Robertson, SH
Schram, M
Biassoni, P
Lazzaro, A
Lombardo, V
Palombo, F
Stracka, S
Cremaldi, L
Godang, R
Kroeger, R
Sonnek, P
Summers, DJ
Zhao, HW
Simard, M
Taras, P
Nicholson, H
De Nardo, G
Lista, L
Monorchio, D
Onorato, G
Sciacca, C
Raven, G
Snoek, HL
Jessop, CP
Knoepfel, KJ
LoSecco, JM
Wang, WF
Corwin, LA
Honscheid, K
Kagan, H
Kass, R
Morris, JP
Rahimi, AM
Sekula, SJ
Wong, QK
Blount, NL
Brau, J
Frey, R
Igonkina, O
Kolb, JA
Lu, M
Rahmat, R
Sinev, NB
Strom, D
Strube, J
Torrence, E
Castelli, G
Gagliardi, N
Margoni, M
Morandin, M
Posocco, M
Rotondo, M
Simonetto, F
Stroili, R
Voci, C
Sanchez, PD
Ben-Haim, E
Bonneaud, GR
Briand, H
Chauveau, J
Hamon, O
Leruste, P
Marchiori, G
Ocariz, J
Perez, A
P