FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Johnson, TC Versteeg, RJ Huang, H Routh, PS AF Johnson, Timothy C. Versteeg, Roelof J. Huang, Hai Routh, Partha S. TI Data-domain correlation approach for joint hydrogeologic inversion of time-lapse hydrogeologic and geophysical data SO GEOPHYSICS LA English DT Article ID DATA INCORPORATING TOPOGRAPHY; ERT AB Inverse estimations of hydrogeologic properties often are highly uncertain because of the expense of collecting hydrogeologic data and the subsequent lack of information. Geophysical data potentially can help fill this information gap because geophysical methods can survey large areas remotely and relatively inexpensively. However, geophysical data are difficult to incorporate into hydrogeologic parameter estimations primarily because of a lack of knowledge concerning the petrophysical relationships between hydrogeologic and geophysical parameters. A method can be used that allows time-lapse geophysical data to be incorporated directly into a hydrogeologic parameter estimation when a strong correlation exists between changes in geophysical and hydrogeologic properties. This approach bypasses the need for an explicit petrophysical transform by formulating the geophysical part of the hydrogeologic inversion in terms of a data-domain correlation operator. A synthetic electrical resistivity monitoring application is used to estimate the hydraulic conductivity distribution. Including time-lapse resistivity data to supplement sparse hydrologic data appears to improve greatly the resolution of hydraulic conductivity in this case. More generally, the formulation and results suggest that geophysical monitoring data can be incorporated effectively into a hydrogeologic parameter estimation using a data-domain correlation operator, assuming a strong correlation exists between changes in hydrogeologic and geophysical properties. C1 [Johnson, Timothy C.; Versteeg, Roelof J.; Huang, Hai] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Routh, Partha S.] Conoco Phillips, Seism Technol Dev, Houston, TX USA. RP Johnson, TC (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM timothy.johnson@inl.gov; roelof.versteeg@inl.gov; hai.huang@inl.gov; partha.s.routh@conocophillips.com FU Idaho National Laboratory [C.B.10.00.GL.03]; Environmental Security Technology Certification Program (ESTCP) [ER-0717]; U. S. Department of Energy's Office of Sciences Environmental Remediation Sciences Program (ERSP) [DE-AC05-76RL01830, DE-AC07-05ID14517] FX We acknowledge and express our gratitude for the anonymous reviewers of this work, one of whom identified and allowed us to correct an important deficiency in the correlation sensitivity formulation. This work was supported through Idaho National Laboratory directed research and development funding under grant C.B.10.00.GL.03, through the Environmental Security Technology Certification Program (ESTCP) award ER-0717 (Optimized Enhanced Bioremediation through 4D Geophysical Monitoring and Autonomous Data Collection, Processing, and Analysis), and through the Hanford 300 Area Integrated Field Research Challenge supported by the U. S. Department of Energy's Office of Sciences Environmental Remediation Sciences Program (ERSP) under award DE-AC05-76RL01830. The computations presented in this study were conducted on facilities provided by the Idaho National Laboratory High Performance Computing Center. Idaho National Laboratory is operated by Battelle Energy Alliance, LLC, under Contract No. DE-AC07-05ID14517 with the U. S. Department of Energy. NR 23 TC 9 Z9 9 U1 0 U2 4 PU SOC EXPLORATION GEOPHYSICISTS PI TULSA PA 8801 S YALE ST, TULSA, OK 74137 USA SN 0016-8033 EI 1942-2156 J9 GEOPHYSICS JI Geophysics PD NOV-DEC PY 2009 VL 74 IS 6 BP F127 EP F140 DI 10.1190/1.3237087 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 536IJ UT WOS:000273037800011 ER PT J AU Chrysochoou, M Moon, DH Fakra, S Marcus, M Dermatas, D Christodoulatos, C AF Chrysochoou, M. Moon, D. H. Fakra, S. Marcus, M. Dermatas, D. Christodoulatos, C. TI USE OF MICRO X-RAY ABSORPTION SPECTROSCOPY AND DIFFRACTION TO DELINEATE Cr(VI) SPECIATION IN COPR SO GLOBAL NEST JOURNAL LA English DT Article; Proceedings Paper CT 9th International Conference on Protection and Restoration of the Environment CY JUN 30-JUL 03, 2008 CL Kefalonia, GREECE DE chromium; chromite ore processing residue; X-ray Absorption spectroscopy; speciation ID ORE PROCESSING RESIDUE; ETTRINGITE; WASTES AB The speciation of Cr(VI) in Cromite ore Processing Residue was investigated by means of bulk XRD, and a combination of micro-XRF, - XAS and -XRD at the Advanced Light Source (ALS), Berkeley, CA, U.S.A.. Bulk XRD yielded one group of phases that contained explicitly Cr(VI) in their structure, Calcium Aluminum Chromium Oxide Hydrates, accounting for 60% of the total Cr(VI). Micro-analyses at ALS yielded complimentary information, confirming that hydrogarnets and hydrotalcites, two mineral groups that can host Cr(VI) in their structure by substitution, were indeed Cr(VI) sinks. Chromatite (CaCrO(4)) was also identified by micro-XRD, which was not possible with bulk methods due to its low content. The acquisition of micro-XRF elemental maps enabled not only the identification of Cr(VI)-binding phases, but also the understanding of their location within the matrix. This information is invaluable when designing Cr(VI) treatment, to optimize release and availability for reduction. C1 [Chrysochoou, M.] Univ Connecticut, Dept Civil & Environm Engn, Storrs, CT 06269 USA. [Moon, D. H.; Dermatas, D.; Christodoulatos, C.] Stevens Inst Technol, Hoboken, NJ 07030 USA. [Fakra, S.; Marcus, M.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Chrysochoou, M (reprint author), Univ Connecticut, Dept Civil & Environm Engn, Storrs, CT 06269 USA. EM mchrysoc@engru.conn.edu NR 11 TC 7 Z9 7 U1 2 U2 20 PU GLOBAL NETWORK ENVIRONMENTAL SCIENCE & TECHNOLOGY PI ATHENS PA 30 VOULGAROKTONOU STR, ATHENS, GR 114 72, GREECE SN 1790-7632 J9 GLOBAL NEST J JI Glob. Nest. J. PD NOV PY 2009 VL 11 IS 3 SI SI BP 318 EP 324 PG 7 WC Environmental Sciences SC Environmental Sciences & Ecology GA 544YN UT WOS:000273697600009 ER PT J AU Hightower, M AF Hightower, Michael TI Energy Security - Addressing the Water Footprint SO GROUND WATER LA English DT Editorial Material C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Hightower, M (reprint author), Sandia Natl Labs, POB 5800,MS-0755, Albuquerque, NM 87185 USA. EM mmhight@sandia.gov NR 4 TC 2 Z9 2 U1 0 U2 11 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0017-467X J9 GROUND WATER JI Ground Water PD NOV-DEC PY 2009 VL 47 IS 6 BP 765 EP 766 PG 2 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA 508BD UT WOS:000270900900010 PM 19737313 ER PT J AU James, SC Doherty, JE Eddebbarh, AA AF James, Scott C. Doherty, John E. Eddebbarh, Al-Aziz TI Practical Postcalibration Uncertainty Analysis: Yucca Mountain, Nevada SO GROUND WATER LA English DT Article ID GROUNDWATER MODEL CALIBRATION; INVERSE PROBLEM; FLOW AB The values of parameters in a groundwater flow model govern the precision of predictions of future system behavior. Predictive precision, thus, typically depends on an ability to infer values of system properties from historical measurements through calibration. When such data are scarce, or when their information content with respect to parameters that are most relevant to predictions of interest is weak, predictive uncertainty may be high, even if the model is "calibrated." Recent advances help recognize this condition, quantitatively evaluate predictive uncertainty, and suggest a path toward improved predictive accuracy by identifying sources of predictive uncertainty and by determining what observations will most effectively reduce this uncertainty. We demonstrate linear and nonlinear predictive error/uncertainty analyses as applied to a groundwater flow model of Yucca Mountain, Nevada, the United States' proposed site for disposal of high-level radioactive waste. Linear and nonlinear uncertainty analyses are readily implemented as an adjunct to model calibration with medium to high parameterization density. Linear analysis yields contributions made by each parameter to a prediction's uncertainty and the worth of different observations, both existing and yet-to-be-gathered, toward reducing this uncertainty. Nonlinear analysis provides more accurate characterization of the uncertainty of model predictions while yielding their (approximate) probability distribution functions. This article applies the above methods to a prediction of specific discharge and confirms the uncertainty bounds on specific discharge supplied in the Yucca Mountain Project License Application. C1 [James, Scott C.] Sandia Natl Labs, Livermore, CA 94551 USA. [Doherty, John E.] Watermark Numer Comp, Corinda, Qld 4075, Australia. [Eddebbarh, Al-Aziz] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP James, SC (reprint author), Sandia Natl Labs, POB 969, Livermore, CA 94551 USA. EM scjames@sandia.gov; johndo-herty@ozemail.com.au; aeddebba@lanl.gov OI James, Scott/0000-0001-7955-0491 NR 26 TC 18 Z9 18 U1 0 U2 8 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0017-467X EI 1745-6584 J9 GROUND WATER JI Ground Water PD NOV-DEC PY 2009 VL 47 IS 6 BP 851 EP 869 DI 10.1111/j.1745-6584.2009.00626.x PG 19 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA 508BD UT WOS:000270900900022 PM 19744249 ER PT J AU Morgan, WF Sowa, MB AF Morgan, William F. Sowa, Marianne B. TI NON-TARGETED EFFECTS OF IONIZING RADIATION: IMPLICATIONS FOR RISK ASSESSMENT AND THE RADIATION DOSE RESPONSE PROFILE SO HEALTH PHYSICS LA English DT Article DE radiation dose; radiation, low-level; risk analysis; National Council on Radiation Protection and Measurements ID INDUCED GENOMIC INSTABILITY; INFLAMMATORY-TYPE RESPONSES; ALPHA-PARTICLE IRRADIATION; HIGH-LET RADIATION; CHROMOSOMAL INSTABILITY; IN-VIVO; BYSTANDER RESPONSES; NONIRRADIATED CELLS; EXPOSURE; CARCINOGENESIS AB Radiation risks at low doses remain a hotly debated topic. Recent experimental advances in our understanding of effects occurring in the progeny of irradiated cells, and/or the non-irradiated neighbors of irradiated cells (i.e., non-targeted effects associated with exposure to ionizing radiation), have influenced this debate. The goal of this document is to summarize the current status of this debate and speculate on the potential impact of non-targeted effects on radiation risk assessment and the radiation dose response profile. Health Phys. 97(5):426-432; 2009 C1 [Morgan, William F.; Sowa, Marianne B.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99354 USA. RP Morgan, WF (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999,MSIN P7-56, Richland, WA 99354 USA. EM wfmorgan@pnl.gov FU Battelle Memorial Institute, Pacific Northwest Division [DE-AC05-76RLO 1830]; U.S. Department of Energy (DOE); Office of Biological and Environmental Research (OBER) Low Dose Science Program FX This research was supported by Battelle Memorial Institute, Pacific Northwest Division, under Contract No. DE-AC05-76RLO 1830 with the U.S. Department of Energy (DOE), Office of Biological and Environmental Research (OBER) Low Dose Science Program. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 49 TC 35 Z9 37 U1 0 U2 7 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD NOV PY 2009 VL 97 IS 5 BP 426 EP 432 PG 7 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 506UI UT WOS:000270801500007 PM 19820452 ER PT J AU Barcellos-Hoff, MH Nguyen, DH AF Barcellos-Hoff, Mary Helen Nguyen, David H. TI RADIATION CARCINOGENESIS IN CONTEXT: HOW DO IRRADIATED TISSUES BECOME TUMORS? SO HEALTH PHYSICS LA English DT Review DE radiation, ionizing; carcinogenesis; cancer; National Council on Radiation Protection and Measurements ID GROWTH-FACTOR-BETA; INDUCED GENOMIC INSTABILITY; MAMMARY EPITHELIAL-CELLS; DOUBLE-STRAND BREAKS; BONE-MARROW-CELLS; TGF-BETA; IONIZING-RADIATION; TRANSFORMING GROWTH-FACTOR-BETA-1; DNA-DAMAGE; INDIRECT INDUCTION AB It is clear from experimental studies that genotype is an important determinant of cancer susceptibility in general, and for radiation carcinogenesis specifically. It has become increasingly clear that genotype influences not only the ability to cope with DNA damage but also influences the cooperation of other tissues, like the vasculature and immune system, necessary for the establishment of cancer. Our experimental data and that of others suggest that the carcinogenic action of ionizing radiation (IR) can also be considered a two-compartment problem: while IR can alter genomic sequence as a result of DNA damage, it can also induce signals that alter multicellular interactions and phenotypes that underpin carcinogenesis. Rather than being accessory or secondary to genetic damage, we propose that such non-targeted radiation effects create the critical context that promotes cancer development. This review focuses on experimental studies that clearly define molecular mechanisms by which cell interactions contribute to cancer in different organs, and addresses how non-targeted radiation effects may similarly act though the microenvironment. The definition of non-targeted radiation effects and their dose dependence could modify the current paradigms for radiation risk assessment since radiation non-targeted effects, unlike DNA damage, are amenable to intervention. The implications of this perspective in terms of reducing cancer risk after exposure are discussed. Health Phys. 97(5):446-457; 2009 C1 [Barcellos-Hoff, Mary Helen] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94705 USA. [Nguyen, David H.] Univ Calif Berkeley, Grad Program Mol Endocrinol, Berkeley, CA 94720 USA. RP Barcellos-Hoff, MH (reprint author), NYU, Langone Med Ctr, Dept Radiat Oncol, 550 1St Ave, New York, NY 10016 USA. EM MHBarceIlos-Hoff@nyumc.org FU NASA; Office of Biological and Environmental Research; U.S. Department of Energy [AC03 76SF00098]; National Institute of Environmental Health Sciences [U01 ES012801]; National Institutes of Health (NIH); National Cancer Institute, NIH FX The authors wish to acknowledge funding from NASA Specialized Center for Research in Radiation Health Effects, the Low Dose Radiation Program of the Office of Biological and Environmental Research, U.S. Department of Energy DE AC03 76SF00098, and the Bay Area Breast Cancer and the Environment Research Center grant number U01 ES012801 from the National Institute of Environmental Health Sciences, National Institutes of Health (NIH) and the National Cancer Institute, NIH. NR 116 TC 28 Z9 33 U1 0 U2 5 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD NOV PY 2009 VL 97 IS 5 BP 446 EP 457 PG 12 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 506UI UT WOS:000270801500009 PM 19820454 ER PT J AU Kato, TA Wilson, PF Nagasaw, H Peng, YL Weil, MM Little, JB Bedford, JS AF Kato, Takamitsu A. Wilson, Paul F. Nagasaw, Hatsumi Peng, Yuanlin Weil, Michael M. Little, John B. Bedford, Joel S. TI VARIATIONS IN RADIOSENSITIVITY AMONG INDIVIDUALS: A POTENTIAL IMPACT ON RISK ASSESSMENT? SO HEALTH PHYSICS LA English DT Article DE radiation protection; risk assessment; environmental assessment; National Council on Radiation Protection and Measurements ID RADIATION-INDUCED LYMPHOMAS; DOSE-RATE; HEREDITARY RETINOBLASTOMA; GENETIC PREDISPOSITION; UNAFFECTED PARENTS; GAMMA-IRRADIATION; BREAST-CANCER; X-IRRADIATION; DNA-REPAIR; MICE AB To have an impact on risk assessment for purposes of radiation protection recommendations, significantly broad variations in carcinogenic radiosensitivity would have to exist in significant proportions in the human population. Even if we knew all the genes where mutations would have major effects, individual genome sequencing does not seem useful, since we do not know all these genes, nor can we be certain of the phenotypic effect of polymorphisms discovered. Further, sequencing would not reveal epigenetic changes in gene expression. Another approach to develop phenotypic biomarkers for cells or tissues for which variations in radiation response may reflect the variations in carcinogenic sensitivity. To be useful, experimental evidence for such a correlation would be crucial, and it is also evident that correlations may be tissue or tumor specific. Some cellular markers are discussed that have shown promise in this regard. They include chromosome aberration induction and DNA repair assays that are sufficiently sensitive to measure after modest or low doses or dose rates. To this end we summarize here some of these assays and review the results of a number of experiments from our laboratory that show clear differences in DNA repair capacity reflected by gamma-H2AX foci formation in cells from a high proportion (perhaps 113) of apparently normal individuals. A low dose-rate assay was used to amplify such differences. Another promising assay combines G(2) chromosomal radiosensitivity with the above gamma-H2AX foci on mitotic chromosomes. There are other potentially useful assays as well. Health Phys. 97(5):470-480; 2009 C1 [Kato, Takamitsu A.; Wilson, Paul F.; Nagasaw, Hatsumi; Peng, Yuanlin; Weil, Michael M.; Bedford, Joel S.] Colorado State Univ, Dept Environm & Radiol Hlth Sci, Ft Collins, CO 80523 USA. [Kato, Takamitsu A.] Natl Inst Radiol Sci, Inage Ku, Chiba 260, Japan. [Wilson, Paul F.] Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Livermore, CA 94551 USA. [Little, John B.] Harvard Univ, Sch Publ Hlth, Ctr Radiat Sci & Environm Hlth, Boston, MA 02115 USA. RP Bedford, JS (reprint author), Colorado State Univ, Dept Environm & Radiol Hlth Sci, Ft Collins, CO 80523 USA. EM jbedford@colostate.edu RI Kato, Takamitsu/D-7969-2015 FU U.S. DOE Low Dose Radiation Research Program [DE-FG02-07ER64350]; National Aeronautics and Space Administration [NNX07AP85G] FX This work was supported in part by grant DE-FG02-07ER64350 from the U.S. DOE Low Dose Radiation Research Program and grant NNX07AP85G from the National Aeronautics and Space Administration. NR 21 TC 14 Z9 16 U1 0 U2 4 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD NOV PY 2009 VL 97 IS 5 BP 470 EP 480 PG 11 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 506UI UT WOS:000270801500011 PM 19820456 ER PT J AU Barnett, JM Cullinan, VI Barnett, DS Trang-Le, TGT Bliss, M Greenwood, LR Ballinger, MY AF Barnett, J. M. Cullinan, V. I. Barnett, D. S. Trang-Le, T. G. T. Bliss, M. Greenwood, L. R. Ballinger, M. Y. TI Results of a Self-Absorption Study on the Versapor 3000 47-mm Filters for Radioactive Particulate Air Stack Sampling SO HEALTH PHYSICS LA English DT Article DE operational topics; air sampling; correction factors; radioactivity, environmental ID ALPHA AB Since the mid-1980's the Pacific Northwest National Laboratory (PNNL) has used a value of 0.85 as a correction factor for the self absorption of activity for particulate radioactive air samples collected from building exhaust for environmental monitoring. More recently, an effort was made to evaluate the current particulate radioactive air sample filters (Versapor (R) 3000, 47-mm diameter) used at PNNL for self absorption effects. There were two methods used to characterize tire samples. Sixty samples were selected frost the archive for acid digestion to compare the radioactivity measured by direct gas-flow proportional counting of filters to the results obtained after acid digestion of the filter and counting again by gas-flow proportional detection. Thirty different sample filters were selected for visible light microscopy to evaluate filter loading and particulate characteristics. Mass-loading effects were also considered. Large error is associated with the sample filter analysis comparison and subsequently with the estimation of the absorption factor resulting in an inadequate method to estimate losses from self-absorption in the sample filter. The mass loading on the sample filter as determined after digestion and drying was similar to 0.08 mg cm(-2); however, this value may not represent the total flier mass loading given that there may be undetermined losses associated with tire digestion process. While it is difficult to determine how much material is imbedded in the filter, observations front the microscopy analysis indicate that the vast majority of the particles remain on the top of the filter. In comparing the results obtained, the continued use of 0.85 as a conservative correction factor is recommended. Health Phys. 97(Supplement3): S161-S168; 2009 C1 [Barnett, J. M.; Barnett, D. S.; Trang-Le, T. G. T.; Bliss, M.; Greenwood, L. R.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Cullinan, V. I.] Battelle Marine Sci Lab, Sequim, WA 98382 USA. [Ballinger, M. Y.] Battelle Seattle Res Ctr, Seattle, WA 98109 USA. RP Barnett, JM (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM matthew.barnett@pnl.gov RI Bliss, Mary/G-2240-2012; Greenwood, Lawrence/H-9539-2016 OI Bliss, Mary/0000-0002-7565-4813; Greenwood, Lawrence/0000-0001-6563-0650 FU U.S. Department of Energy [DE-ACOS-76RL07830] FX This work was conducted at the Pacific Northwest National Laboratory which is operated for the U.S. Department of Energy by Battelle under Contract DE-ACOS-76RL07830. NR 8 TC 0 Z9 0 U1 0 U2 1 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD NOV PY 2009 VL 97 IS 5 SU S BP S161 EP S168 PG 8 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 506IX UT WOS:000270769600003 PM 19820471 ER PT J AU Crepeau, JC Siahpush, A Spotten, B AF Crepeau, John C. Siahpush, Ali Spotten, Blaine TI On the Stefan problem with volumetric energy generation SO HEAT AND MASS TRANSFER LA English DT Article ID INTERNAL HEAT-GENERATION; PHASE-CHANGE; CONVECTION-DIFFUSION; HORIZONTAL LAYERS; SOLIDIFICATION AB This paper presents results of solid-liquid phase change, driven by volumetric energy generation (VEG), in a vertical cylinder. We show excellent agreement between a quasi-static, approximate analytical solution valid for Stefan numbers less than one, and a computational model solved using the computational fluid dynamics code FLUENTA (R). A computational study also shows the effect that the VEG has on both the mushy zone thickness and convection in the melt during phase change. C1 [Crepeau, John C.; Spotten, Blaine] Univ Idaho, Dept Mech Engn, Moscow, ID 83844 USA. [Siahpush, Ali] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Crepeau, JC (reprint author), Univ Idaho, Dept Mech Engn, POB 440902, Moscow, ID 83844 USA. EM crepeau@uidaho.edu; ali.siahpush@inl.gov RI Crepeau, John/F-2599-2016 OI Crepeau, John/0000-0001-7277-1347 NR 24 TC 8 Z9 8 U1 0 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0947-7411 J9 HEAT MASS TRANSFER JI Heat Mass Transf. PD NOV PY 2009 VL 46 IS 1 BP 119 EP 128 DI 10.1007/s00231-009-0550-5 PG 10 WC Thermodynamics; Mechanics SC Thermodynamics; Mechanics GA 515WA UT WOS:000271502400012 ER PT J AU Rodenbeck, CT Knudson, RT Sandoval, CE Peterson, KA Pankonin, JM Eye, R Allen, D Brehm, G Binney, R Smith, F Dimsdle, JW AF Rodenbeck, Christopher T. Knudson, Richard T. Sandoval, Charles E. Peterson, Kenneth A. Pankonin, Jeffrey M. Eye, Robert Allen, Donald Brehm, Gailon Binney, Richard Smith, Frank Dimsdle, Jeffrey W. TI 50-W LTCC Transmitter Utilizing 28-V GaAs With Integrated High-Speed Pulse Modulation SO IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS LA English DT Article DE Monolithic microwave integrated circuits (MMIC) transmitters; multichip modules; pulse modulation AB This letter presents an S-band 50-W low-temperature cofired ceramic (LTCC) transmitter module. The module is based on a gallium arsenide (GaAs) chipset that operates over the 2-3 GHz range and includes a 28-V single-chip power amplifier with integrated high-speed drain modulator. The transmitter has rise/fall times < 7 nsec, linear frequency tuning, and excellent thermal performance. C1 [Rodenbeck, Christopher T.; Knudson, Richard T.; Sandoval, Charles E.; Peterson, Kenneth A.; Pankonin, Jeffrey M.] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Eye, Robert; Allen, Donald; Brehm, Gailon] TriQuint Semicond, Dallas, TX 75080 USA. [Binney, Richard; Smith, Frank; Dimsdle, Jeffrey W.] Honeywell Fed Mfg & Technol, Kansas City, MO 64131 USA. RP Rodenbeck, CT (reprint author), Sandia Natl Labs, Albuquerque, NM 87123 USA. EM chris.rodenbeck@ieee.org FU United States Department of Energy's National Nuclear Security Administration [DE-AC0494AL85000] FX This work was supported by the Sandia (a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration) under Contract DE-AC0494AL85000. NR 11 TC 3 Z9 3 U1 0 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 1531-1309 J9 IEEE MICROW WIREL CO JI IEEE Microw. Wirel. Compon. Lett. PD NOV PY 2009 VL 19 IS 11 BP 746 EP 748 DI 10.1109/LMWC.2009.2032025 PG 3 WC Engineering, Electrical & Electronic SC Engineering GA 515OO UT WOS:000271481900024 ER PT J AU Piwko, R Camm, E Ellis, A Muljadi, E Zavadil, R Walling, R O'Malley, M Irwin, G Saylors, S AF Piwko, Richard Camm, Ernst Ellis, Abraham Muljadi, Eduard Zavadil, Robert Walling, Reigh O'Malley, Mark Irwin, Garth Saylors, Steven TI A Whirl of Activity SO IEEE POWER & ENERGY MAGAZINE LA English DT Article C1 [Piwko, Richard] GE Energy Schenectady, New York, NY USA. [Muljadi, Eduard] Natl Renewable Energy Lab, Golden, CO USA. [Walling, Reigh] GE Energy, Atlanta, GA USA. [O'Malley, Mark] Univ Coll Dublin, Dublin, Ireland. RP Piwko, R (reprint author), GE Energy Schenectady, New York, NY USA. NR 5 TC 3 Z9 4 U1 0 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 1540-7977 J9 IEEE POWER ENERGY M JI IEEE Power Energy Mag. PD NOV-DEC PY 2009 VL 7 IS 6 BP 26 EP 35 DI 10.1109/MPE.2009.934269 PG 10 WC Engineering, Electrical & Electronic SC Engineering GA 512HP UT WOS:000271237200004 ER PT J AU Milligan, M Porter, K DeMeo, E Denholm, P Holttinen, H Kirby, B Miller, N Mills, A O'Malley, M Schuerger, M Soder, L AF Milligan, Michael Porter, Kevin DeMeo, Edgar Denholm, Paul Holttinen, Hannele Kirby, Brendan Miller, Nicholas Mills, Andrew O'Malley, Mark Schuerger, Matthew Soder, Lennart TI Wind Power Myths Debunked SO IEEE POWER & ENERGY MAGAZINE LA English DT Article C1 [Milligan, Michael; Denholm, Paul; Kirby, Brendan] NREL, Golden, CO USA. [Porter, Kevin] Exeter Associates Inc, Columbia, MD USA. [DeMeo, Edgar] Renewable Energy Consulting Serv, Palo Alto, CA USA. [Miller, Nicholas] Gen Elect Schenectady, New York, NY USA. [Mills, Andrew] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Schuerger, Matthew] Energy Syst Consulting Serv LLC, St Paul, MN USA. [Soder, Lennart] Royal Inst Technol, Stockholm, Sweden. [O'Malley, Mark] Univ Coll Dublin, Sch Elect Elect & Mech Engn, Dublin, Ireland. RP Milligan, M (reprint author), NREL, Golden, CO USA. RI Mills, Andrew/B-3469-2016 OI Mills, Andrew/0000-0002-9065-0458 NR 7 TC 37 Z9 41 U1 1 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1540-7977 J9 IEEE POWER ENERGY M JI IEEE Power Energy Mag. PD NOV-DEC PY 2009 VL 7 IS 6 BP 89 EP 99 DI 10.1109/MPE.2009.934268 PG 11 WC Engineering, Electrical & Electronic SC Engineering GA 512HP UT WOS:000271237200010 ER PT J AU Duran, FA Conrad, SH Conrad, GN Duggan, DP Held, EB AF Duran, Felicia A. Conrad, Stephen H. Conrad, Gregory N. Duggan, David P. Held, E. Bruce TI Building a System for Insider Security SO IEEE SECURITY & PRIVACY LA English DT Article C1 [Duran, Felicia A.; Conrad, Stephen H.; Conrad, Gregory N.; Duggan, David P.; Held, E. Bruce] Sandia Natl Labs, Livermore, CA 94550 USA. RP Duran, FA (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM faduran@sandia.gov; shconra@sandia.gov; gnconra@sandia.gov; dduggan@sandia.gov; ebheld@sandia.gov NR 14 TC 6 Z9 6 U1 0 U2 0 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1540-7993 EI 1558-4046 J9 IEEE SECUR PRIV JI IEEE Secur. Priv. PD NOV-DEC PY 2009 VL 7 IS 6 BP 30 EP 38 DI 10.1109/MSP.2009.111 PG 9 WC Computer Science, Information Systems; Computer Science, Software Engineering SC Computer Science GA 529JV UT WOS:000272513200006 ER PT J AU Overly, TG Park, G Farinholt, KM Farrar, CR AF Overly, Timothy G. Park, Gyuhae Farinholt, Kevin M. Farrar, Charles R. TI Piezoelectric Active-Sensor Diagnostics and Validation Using Instantaneous Baseline Data SO IEEE SENSORS JOURNAL LA English DT Article DE structural health monitoring; Active-sensing; piezoelectric transducers; sensor validation ID IMPEDANCE; IDENTIFICATION C1 [Overly, Timothy G.; Park, Gyuhae; Farinholt, Kevin M.; Farrar, Charles R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Overly, TG (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM toverly@lanl.gov; gpark@lanl.gov; farinholt@lanl.gov; farrar@lanl.gov RI Farrar, Charles/C-6954-2012; OI Farrar, Charles/0000-0001-6533-6996 NR 19 TC 20 Z9 20 U1 0 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 1530-437X J9 IEEE SENS J JI IEEE Sens. J. PD NOV PY 2009 VL 9 IS 11 BP 1414 EP 1421 DI 10.1109/JSEN.2009.2018351 PG 8 WC Engineering, Electrical & Electronic; Instruments & Instrumentation; Physics, Applied SC Engineering; Instruments & Instrumentation; Physics GA 498NC UT WOS:000270146700001 ER PT J AU Sheiretov, Y Grundy, D Zilberstein, V Goldfine, N Maley, S AF Sheiretov, Yanko Grundy, Dave Zilberstein, Vladimir Goldfine, Neil Maley, Susan TI MWM-Array Sensors for In Situ Monitoring of High-Temperature Components in Power Plants SO IEEE SENSORS JOURNAL LA English DT Article DE Condition monitoring; high-temperature; meandering winding magnetometer (MWM); MWM-array sensors; power plant components AB Utilization of America's substantial coal reserves for energy production has become a national priority. Advanced coal-fired power plants offer an environmentally friendly means to achieve that goal. These power plants, such as ultrasupercritical power plants, will provide high thermal efficiency along with greatly reduced emissions of CO and other pollutants. Life cycle costs for the advanced coal-fired plants can be reduced by enhanced observability in support of condition-based maintenance. The enhanced observability can be achieved by using networks of condition-monitoring sensors that would provide component-level material condition information and through-wall temperature monitoring. This would reduce uncertainties in knowledge of material condition, at the level of individual components, and improve capability to predict remaining life of critical components. One approach being developed under the U. S. Department of Energy Small Business Innovation Research Program is to develop and implement high-temperature versions of the meandering winding magnetometer (HT-MWM) for temperatures up to 1000 degrees C. These patented sensors, coupled with multivariate inverse methods, would provide superior performance for in situ material condition monitoring (material degradation, flaw detection, stress relaxation, and/or creep monitoring) and through-wall temperature measurement. Networks of HT-MWMs will generate material condition information to be used by adaptive life-management algorithms for remaining life prediction and decision support. C1 [Sheiretov, Yanko; Grundy, Dave; Zilberstein, Vladimir; Goldfine, Neil] JENTEK Sensors Inc, Waltham, MA 02453 USA. [Goldfine, Neil] MIT, Electromagnet & Elect Syst Lab, Cambridge, MA 02139 USA. [Maley, Susan] US DOE, Washington, DC 20585 USA. RP Sheiretov, Y (reprint author), JENTEK Sensors Inc, Waltham, MA 02453 USA. EM jentek@shore.net; susan.maley@netl.doe.gov FU U.S. Department of Energy; JENTEK Independent (I) R D FX This work was supported in part by the U.S. Department of Energy and in part by the JENTEK Independent (I) R& D funding. NR 15 TC 9 Z9 15 U1 1 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 1530-437X J9 IEEE SENS J JI IEEE Sens. J. PD NOV PY 2009 VL 9 IS 11 BP 1527 EP 1536 DI 10.1109/JSEN.2009.2019335 PG 10 WC Engineering, Electrical & Electronic; Instruments & Instrumentation; Physics, Applied SC Engineering; Instruments & Instrumentation; Physics GA 503PB UT WOS:000270548800004 ER PT J AU Killingsworth, NJ Aceves, SM Flowers, DL Espinosa-Loza, F Krstic, M AF Killingsworth, Nick J. Aceves, Salvador M. Flowers, Daniel L. Espinosa-Loza, Francisco Krstic, Miroslav TI HCCI Engine Combustion-Timing Control: Optimizing Gains and Fuel Consumption Via Extremum Seeking SO IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY LA English DT Article DE Extremum seeking (ES); homogenous-charge-compression-ignition (HCCI) engines; proportional-integral derivative (PID) tuning ID DISCRETE-TIME; IGNITION; OPTIMIZATION; SYSTEMS AB Homogenous-charge-compression-ignition (HCCI) engines have the benefit of high efficiency with low emissions of NO and particulates. These benefits are due to the autoignition process of the dilute mixture of fuel and air during compression. However, because there is no direct-ignition trigger, control of ignition is inherently more difficult than in standard internal combustion engines. This difficulty necessitates that a feedback controller be used to keep the engine at a desired (efficient) setpoint in the face of disturbances. Because of the nonlinear autoignition process, the sensitivity of ignition changes with the operating point. Thus, gain scheduling is required to cover the entire operating range of the engine. Controller tuning can therefore be a time-intensive process. With the goal of reducing the time to tune the controller, we use extremum seeking (ES) to tune the parameters of various forms of combustion-timing controllers. In addition, in this paper, we demonstrate how ES can be used for the determination of an optimal combustion-timing setpoint on an experimental HCCI engine. The use of ES has the benefit of achieving both optimal setpoint (for maximizing the engine efficiency) and controller-parameter tuning tasks quickly. C1 [Killingsworth, Nick J.; Aceves, Salvador M.; Flowers, Daniel L.; Espinosa-Loza, Francisco] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Krstic, Miroslav] Univ Calif San Diego, Cymer Ctr Control Syst & Dynam, La Jolla, CA 92093 USA. [Krstic, Miroslav] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. RP Killingsworth, NJ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM killingsworth2@llnl.gov; saceves@llnl.gov; flowers4@llnl.gov; espinosaloza1@llnl.gov; krstic@ucsd.edu RI aceves, salvador/G-9052-2011 OI aceves, salvador/0000-0001-5687-7256 FU University of California Energy Institute; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; National Science Foundation; Ford Motor Company FX This work was supported in part by the University of California Energy Institute, in part by the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, in part by the National Science Foundation, and in part by Ford Motor Company. Recommended by Associate Editor Y. Jin. NR 30 TC 32 Z9 32 U1 0 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 1063-6536 J9 IEEE T CONTR SYST T JI IEEE Trans. Control Syst. Technol. PD NOV PY 2009 VL 17 IS 6 BP 1350 EP 1361 DI 10.1109/TCST.2008.2008097 PG 12 WC Automation & Control Systems; Engineering, Electrical & Electronic SC Automation & Control Systems; Engineering GA 511HQ UT WOS:000271155100011 ER PT J AU Ahmed, S AF Ahmed, Shahid TI Finite-Difference Time-Domain Analysis of Electromagnetic Modes Inside Printed Coupled Lines and Quantification of Crosstalk SO IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY LA English DT Article DE Cross correlation; singular value decomposition (SVD); transverse electromagnetic (TEM); transverse magnetic (TM) ID SINGULAR-VALUE DECOMPOSITION; WAVE EMP SIMULATOR; MODAL-ANALYSIS; LEAKAGE AB Detailed analysis of mode structures inside coupled microstrip lines and their correlation with crosstalk between traces has been performed. The use of finite-difference time-domain and singular value decomposition methods for modal identification followed by cross correlation for crosstalk prediction is demonstrated in this paper. The combination of these methods is robust, versatile, and ideal for pulsed applications in an inhomogeneous, anisotropic multilayer substrate with complex 3-D structures. Moreover, all possible modes are extracted in a single analysis. This novel approach provides a quantitative measurement of crosstalk by establishing correlation between modes evolving inside the source line and the field waveforms coupled with the victim line. The effects of line topology, material properties, and pulse characteristics are examined. At the near end, transverse electromagnetic mode of the source line dictates coupling; however, as the pulse advances, the higher order transverse magnetic mode dominates and exhibits significant contribution to the evolution of the waveform coupled with the victim line at the far end, which is confirmed by cross correlation. This paper has physical significance in devising systems for suppressing unwanted modes responsible for crosstalk and radiation leakage due to fast pulses. C1 [Ahmed, Shahid] IIT, Chicago, IL 60616 USA. [Ahmed, Shahid] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Ahmed, Shahid] Muons Inc, Batavia, IL 60510 USA. RP Ahmed, S (reprint author), IIT, Chicago, IL 60616 USA. EM emp786shahid@gmail.com NR 9 TC 1 Z9 1 U1 3 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0018-9375 J9 IEEE T ELECTROMAGN C JI IEEE Trans. Electromagn. Compat. PD NOV PY 2009 VL 51 IS 4 BP 1026 EP 1033 DI 10.1109/TEMC.2009.2032070 PG 8 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 521VC UT WOS:000271951600018 ER PT J AU Holland, SE Kolbe, WF Bebek, CJ AF Holland, Stephen E. Kolbe, William F. Bebek, Christopher J. TI Device Design for a 12.3-Megapixel, Fully Depleted, Back-Illuminated, High-Voltage Compatible Charge-Coupled Device SO IEEE TRANSACTIONS ON ELECTRON DEVICES LA English DT Article DE Charge-coupled device (CCD); fully depleted; high voltage; high-resistivity substrate; static induction transistor (SIT) ID AVALANCHE BREAKDOWN; DARK ENERGY; SILICON; THICK; CCDS; DIFFUSION; DIODES AB A 12.3-megapixel charge-coupled device (CCD) that can be operated at high substrate-bias voltages has been developed in support of a proposal to study dark energy. The pixel size is 10.5 mu m, and the format is 3512 rows by 3508 columns. The CCD is nominally 200 mu m thick and is fabricated on high-resistivity n-type silicon that allows for fully depleted operation with the application of a substrate-bias voltage. The CCD is required to have high quantum efficiency (QE) at near-infrared wavelengths, low noise and dark current, and an rms spatial resolution of less than 4 mu m. In order to optimize the spatial resolution and QE, requirements that have conflicting dependences on the substrate thickness, it is necessary to operate the CCD at large substrate-bias voltages. In this paper, we describe the features of the CCD, summarize the performance, and discuss in detail the device-design techniques used to realize 200-mu m-thick CCDs that can be operated at substrate-bias voltages in excess of 100 V. C1 [Holland, Stephen E.; Kolbe, William F.; Bebek, Christopher J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Holland, SE (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM seholland@lbl.gov RI Holland, Stephen/H-7890-2013 FU Office of Science, Office of High Energy Physics, U. S. Department of Energy [DE-AC02-05CH11231] FX Manuscript received January 6, 2009; revised June 8, 2009. Current version published October 21, 2009. This work was supported by the Director, Office of Science, Office of High Energy Physics, U. S. Department of Energy, under Contract DE-AC02-05CH11231. The review of this paper was arranged by Editor N. Teranishi. NR 28 TC 15 Z9 15 U1 1 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0018-9383 J9 IEEE T ELECTRON DEV JI IEEE Trans. Electron Devices PD NOV PY 2009 VL 56 IS 11 BP 2612 EP 2622 DI 10.1109/TED.2009.2030631 PG 11 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 509LO UT WOS:000271019500030 ER PT J AU Ozdemir, E Ozdemir, S Tolbert, LM AF Ozdemir, Engin Ozdemir, Sule Tolbert, Leon M. TI Fundamental-Frequency-Modulated Six-Level Diode-Clamped Multilevel Inverter for Three-Phase Stand-Alone Photovoltaic System SO IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS LA English DT Article DE Fundamental switching; harmonic elimination; multilevel inverter; photovoltaic (PV) system AB This paper presents a fundamental-frequencymodulated diode-clamped multilevel inverter (DCMLI) scheme for a three-phase stand-alone photovoltaic (PV) system. The system consists of five series-connected PV modules, a six-level DCMLI generating fundamental-modulation staircase threephase output voltages, and a three-phase induction motor as the load. In order to validate the proposed concept, simulation studies and experimental measurements using a small-scale laboratory prototype are also presented. The results show the feasibility of the fundamental frequency switching application in three-phase stand-alone PV power systems. C1 [Ozdemir, Engin; Ozdemir, Sule] Kocaeli Univ, Fac Tech Educ, TR-41380 Kocaeli, Turkey. [Tolbert, Leon M.] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. [Tolbert, Leon M.] Oak Ridge Natl Lab, Knoxville, TN 37932 USA. RP Ozdemir, E (reprint author), Kocaeli Univ, Fac Tech Educ, TR-41380 Kocaeli, Turkey. EM eozdemir@kocaeli.edu.tr; sozaslan@kocaeli.edu.tr; tolbert@utk.edu OI Ozdemir, Engin/0000-0003-0882-332X; Tolbert, Leon/0000-0002-7285-609X FU TUBITAK [2219] FX The work of E. Ozdemir was supported by TUBITAK 2219 under a research grant. NR 30 TC 75 Z9 75 U1 1 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0278-0046 J9 IEEE T IND ELECTRON JI IEEE Trans. Ind. Electron. PD NOV PY 2009 VL 56 IS 11 BP 4407 EP 4415 DI 10.1109/TIE.2008.928096 PG 9 WC Automation & Control Systems; Engineering, Electrical & Electronic; Instruments & Instrumentation SC Automation & Control Systems; Engineering; Instruments & Instrumentation GA 505TL UT WOS:000270720100012 ER PT J AU Yard, JT Devetak, I AF Yard, Jon T. Devetak, Igor TI Optimal Quantum Source Coding With Quantum Side Information at the Encoder and Decoder SO IEEE TRANSACTIONS ON INFORMATION THEORY LA English DT Article DE Quantum information; side information; source coding ID CLASSICAL-QUANTUM; ENTANGLEMENT; CHANNELS; CAPACITY AB Consider many instances of an arbitrary quadripartite pure state of four quantum systems ABCD. Alice holds the AC part of each state, Bob holds B, while R represents all other parties correlated with ABC. Alice is required to redistribute the C systems to Bob while asymptotically preserving the overall purity. We prove that this is possible using Q qubits of communication and E ebits of shared entanglement between Alice and Bob, provided that Q >= 1/2 I(C; D|B) and Q + E >= H (C|B), proving the optimality of the Luo-Devetak outer bound. The optimal qubit rate provides the first known operational interpretation of quantum conditional mutual information. We also show how our protocol leads to a fully operational proof of strong subaddivity and uncover a general organizing principle, in analogy to thermodynamics, that underlies the optimal rates. C1 [Yard, Jon T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Devetak, Igor] Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA. RP Yard, JT (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. FU National Science Foundation (NSF) [PHY-0456720, CCF-0524811, CCF-0545845]; CNLS; U.S. Department of Energy FX The work of J. T. Yard was supported by the National Science Foundation (NSF) under Grant PHY-0456720 and by the CNLS, the Quantum Initiative and the LDRD program of the U.S. Department of Energy. The work of I. Devetak was supported in part by the National Science Foundation (NSF) under Grants CCF-0524811 and CCF-0545845 (CAREER). NR 31 TC 31 Z9 31 U1 0 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0018-9448 J9 IEEE T INFORM THEORY JI IEEE Trans. Inf. Theory PD NOV PY 2009 VL 55 IS 11 BP 5339 EP 5351 DI 10.1109/TIT.2009.2030494 PG 13 WC Computer Science, Information Systems; Engineering, Electrical & Electronic SC Computer Science; Engineering GA 509LQ UT WOS:000271019700039 ER PT J AU Santos, E Lins, L Ahrens, JP Freire, J Silva, CT AF Santos, Emanuele Lins, Lauro Ahrens, James P. Freire, Juliana Silva, Claudio T. TI VisMashup: Streamlining the Creation of Custom Visualization Applications SO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS LA English DT Article; Proceedings Paper CT IEEE Information Visualization Conference/IEEE Visualization Conference CY OCT 11, 2009 CL Atlantic City, NJ SP IEEE, IEEE Comp Soc, IEEE vgtc, Natl Informat Assurance Res Lab, Kitware, NVAC, NVIDIA, VisMaster, IBM Res, HP, Microsoft Res, Natl Lib Med, NSI, CYVIZ, Appl Vis Secure Decis, SCI, Morgan & Claypool Publ, Palgrave Macmillan, A K Peters Ltd DE Scientific Visualization; Dataflow; Visualization Systems AB Visualization is essential for understanding the increasing volumes of digital data. However, the process required to create insightful visualizations is involved and time consuming. Although several visualization tools are available, including tools with sophisticated visual interfaces, they are out of reach for users who have little or no knowledge of visualization techniques and/or who do not have programming expertise. In this paper, we propose VISMASHUP, a new framework for streamlining the creation of customized visualization applications. Because these applications can be customized for very specific tasks, they can hide much of the complexity in a visualization specification and make it easier for users to explore visualizations by manipulating a small set of parameters. We describe the framework and how it supports the various tasks a designer needs to carry out to develop an application, from mining and exploring a set of visualization specifications (pipelines), to the creation of simplified views of the pipelines, and the automatic generation of the application and its interface. We also describe the implementation of the system and demonstrate its use in two real application scenarios. C1 [Santos, Emanuele; Lins, Lauro; Freire, Juliana; Silva, Claudio T.] Univ Utah, Sci Comp & Imaging SCI Inst, Salt Lake City, UT 84112 USA. [Ahrens, James P.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Santos, E (reprint author), Univ Utah, Sci Comp & Imaging SCI Inst, Salt Lake City, UT 84112 USA. EM emanuele@sci.utah.edu; lauro@sci.utah.edu; ahrens@lanl.gov; juliana@sci.utah.edu; csilva@sci.utah.edu NR 36 TC 20 Z9 20 U1 0 U2 5 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1077-2626 EI 1941-0506 J9 IEEE T VIS COMPUT GR JI IEEE Trans. Vis. Comput. Graph. PD NOV-DEC PY 2009 VL 15 IS 6 BP 1539 EP 1546 PG 8 WC Computer Science, Software Engineering SC Computer Science GA 506MM UT WOS:000270778900087 PM 19834231 ER PT J AU Chouyyok, W Yantasee, W Shin, Y Grudzien, RM Fryxell, GE AF Chouyyok, Wilaiwan Yantasee, Wassana Shin, Yongsoon Grudzien, Rafal M. Fryxell, Glen E. TI Transition metal ion capture using functional mesoporous carbon made with 1,10-phenanthroline SO INORGANIC CHEMISTRY COMMUNICATIONS LA English DT Article DE Mesoporous carbon; Nanoporous; Sorbent; Ion exchange; Anion exchange; Metal ion chelation; Natural waters; Water purification; Dialysis; Metal poisoning ID NANOSTRUCTURED ELECTROCHEMICAL SENSORS; VOLTAMMETRIC ANALYSIS; NATURAL-WATERS; HEAVY-METALS; LEAD PB; SILICA; ELECTRODES; URINE; NANOPARTICLES; MONOLAYERS AB Functional mesoporous carbon has been built using 1,10-phenanthroline as the fundamental building block, resulting in a nanoporous, high surface area sorbent capable of selectively binding transition metal ions. This material had a specific surface area of 870 m(2)/g, an average pore size of about 30 A, and contained as much as 8.2 wt% N. Under acidic conditions, where the 1,10-phenanthroline ligand is protonated, this material was found to be an effective anion exchange material for transition metal anions like PdCl(4)(2-) and H(2)VO(4)(1-). 1,10-Phenanthroline functionalized mesoporous carbon ("Phen-FMC") was found to have a high affinity for Cu(II), even down to a pH of 1. At pHs above 5, Phen-FMC was found to bind a variety of transition metal cations (e.g. Co(II), Ni(II), Zn(II), etc.) from filtered ground water, river water and seawater. Phen-FMC displayed rapid sorption kinetics with Co(II) in filtered river water, reaching equilibrium in less than an hour, and easily lowering the [Co(II)] to sub-ppb levels. Phen-FMC was found to be more effective for transition metal ion capture than ion-exchange resin or activated carbon. (c) 2009 Elsevier B.V. All rights reserved. C1 [Chouyyok, Wilaiwan; Yantasee, Wassana; Shin, Yongsoon; Grudzien, Rafal M.; Fryxell, Glen E.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Fryxell, GE (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM glen.fryxell@pnl.gov FU United States Dept. of Energy [DE AC06-76RLO 1830]; National Institute of Allergy and Infectious Diseases (NIAID) [R01 AI074064]; National Institute of Environmental Health Sciences (NIEHS) [R21 ES015620] FX This work was performed at Pacific Northwest National Laboratory, which is operated for the United States Dept. of Energy by Battelle Memorial Institute under contract DE AC06-76RLO 1830. This research was supported by the US Dept. of Energy, Office of Basic Energy Sciences, Division of Materials and Engineering, the Laboratory Directed Research and Development Program, National Institute of Allergy and Infectious Diseases (NIAID), Grant# R01 AI074064, and National Institute of Environmental Health Sciences (NIEHS), Grant# R21 ES015620. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at PNNL. NR 38 TC 3 Z9 3 U1 1 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-7003 J9 INORG CHEM COMMUN JI Inorg. Chem. Commun. PD NOV PY 2009 VL 12 IS 11 BP 1099 EP 1103 DI 10.1016/j.inoche.2009.08.031 PG 5 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 521LI UT WOS:000271922500005 PM 23762013 ER PT J AU Lewis, JI AF Lewis, Joanna I. TI Climate change and security: examining China's challenges in a warming world SO INTERNATIONAL AFFAIRS LA English DT Article AB The environment is increasingly affected by global climate change. While the causes of climate change are generated across the globe, the impacts of climate change will be highly variable at the local level. An increased scientific understanding of the potential impacts that climate change may have within China has raised new concern among China's leaders. Given that China's domestic realities inform its international policy choices, understanding how climate change may affect its population and natural resources is critical to global climate stabilization efforts. This article examines how the impacts of climate change on China, and China's response, will drive security challenges domestically, as well as in the greater Asian region and around the world. It shows that the impact of climate change on China will be significant and may have sizable adverse economic implications, particularly on vulnerable east coast economic centers. Water scarcity is a problem that already challenges China's leadership and one that will be exacerbated under projected climate impacts. In addition, the country faces the risk of international retaliation should it fail to undertake serious greenhouse gas mitigation actions. Yet China is not without options, and is already well poised to become a leader in the low-carbon technology revolution. C1 [Lewis, Joanna I.] Georgetown Univ, Sch Foreign Serv, Washington, DC 20057 USA. [Lewis, Joanna I.] US China Cooperat Energy & Climate, Asia Soc Initiat, Beijing, Peoples R China. [Lewis, Joanna I.] China Sustainable Energy Programme, Beijing, Peoples R China. [Lewis, Joanna I.] Univ Calif Berkeley, China Energy Grp, Lawrence Berkeley Lab, US Dept Energy, Berkeley, CA 94720 USA. RP Lewis, JI (reprint author), Georgetown Univ, Sch Foreign Serv, Washington, DC 20057 USA. RI Brooks, Katya/J-4975-2014 NR 37 TC 15 Z9 15 U1 3 U2 12 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0020-5850 EI 1468-2346 J9 INT AFF JI Int. Aff. PD NOV PY 2009 VL 85 IS 6 BP 1195 EP + PG 21 WC International Relations SC International Relations GA 514ST UT WOS:000271416600007 ER PT J AU Croft, M Shukla, V Jisrawi, NM Zhong, Z Sadangi, RK Holtz, RL Pao, PS Horvath, K Sadananda, K Ignatov, A Skaritka, J Tsakalakos, T AF Croft, M. Shukla, V. Jisrawi, N. M. Zhong, Z. Sadangi, R. K. Holtz, R. L. Pao, P. S. Horvath, K. Sadananda, K. Ignatov, A. Skaritka, J. Tsakalakos, T. TI Mapping and load response of overload strain fields: Synchrotron X-ray measurements SO INTERNATIONAL JOURNAL OF FATIGUE LA English DT Article; Proceedings Paper CT 7th International Conference on Fatigue Damage in Structural Materials CY SEP 14-19, 2008 CL Hyannis, MA DE Fatigue; Strain; X-ray; Synchrotron; Overload ID FATIGUE-CRACK GROWTH; FULL-PROFILE ANALYSIS; DIFFRACTION DATA; PROPAGATION AB High energy synchrotron X-ray diffraction measurements have been performed to provide quantitative microscopic guidance for modeling of fatigue crack growth. Specifically we report local strain mapping, along with in situ loading strain response, results on 4140 steel fatigue specimens exhibiting the crack growth retardation "overload effect". Detailed, 2D, epsilon(yy)-strain field mapping shows that a single overload (OL) cycle creates a compressive strain field extending millimeters above and below the crack plane. The OL strain field structures are shown to persist after the crack tip has grown well beyond the OL position. The specimen exhibiting the maximal crack growth rate retardation following overload exhibits a tensile residual strain region at the crack tip. Strain field results, on in situ tensile loaded specimens, show a striking critical threshold load. F(c), phenomenon in their strain response. At loads below F(c) the strain response is dominated by a rapid suppression of the compressive OL feature with modest response at the crack tip. At loads above F(c) the strain response at the OL position terminates and the response at the crack tip becomes large. This threshold load response behavior is shown to exhibit lower F(c) values, and dramatically enhanced rates of strain change with load as the crack tip propagates farther beyond the OL position. The OL strain feature behind the crack tip also is shown to be suppressed by removing the opposing crack faces via an electron discharge cut passing through the crack tip. Finally unique 2D strain field mapping (imaging) results, through the depth of the specimen, of the fatigue crack front and the OL feature in the wake are also presented. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Croft, M.; Horvath, K.] Rutgers State Univ, Dept Phys, Piscataway, NJ 08854 USA. [Croft, M.; Zhong, Z.; Skaritka, J.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Shukla, V.; Jisrawi, N. M.; Sadangi, R. K.; Ignatov, A.; Tsakalakos, T.] Rutgers State Univ, Dept Mat Sci & Engn, Piscataway, NJ 08854 USA. [Jisrawi, N. M.] Univ Sharjah, Dept Basic Sci, Sharjah, U Arab Emirates. [Holtz, R. L.; Pao, P. S.] USN, Res Lab, Washington, DC 20375 USA. [Sadananda, K.] Tech Data Anal Inc, Falls Church, VA 22046 USA. RP Croft, M (reprint author), Rutgers State Univ, Dept Phys, Piscataway, NJ 08854 USA. EM croft@physics.rutgers.edu NR 19 TC 15 Z9 15 U1 1 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0142-1123 J9 INT J FATIGUE JI Int. J. Fatigue PD NOV-DEC PY 2009 VL 31 IS 11-12 BP 1669 EP 1677 DI 10.1016/j.ijfatigue.2009.01.020 PG 9 WC Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 500RP UT WOS:000270322400007 ER PT J AU Dongarra, J Beckman, P Aerts, P Cappello, F Lippert, T Matsuoka, S Messina, P Moore, T Stevens, R Trefethen, A Valero, M AF Dongarra, Jack Beckman, Pete Aerts, Patrick Cappello, Frank Lippert, Thomas Matsuoka, Satoshi Messina, Paul Moore, Terry Stevens, Rick Trefethen, Anne Valero, Mateo TI THE INTERNATIONAL EXASCALE SOFTWARE PROJECT: A CALL TO COOPERATIVE ACTION BY THE GLOBAL HIGH-PERFORMANCE COMMUNITY SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS LA English DT Article DE exascale; software; international; applications; scientific computing AB Over the last 20 years, the open-source community has provided more and more software on which the world's high-performance computing systems depend for performance and productivity. The community has invested millions of dollars and years of effort to build key components. Although the investments in these separate software elements have been tremendously valuable, a great deal of productivity has also been lost because of the lack of planning, coordination, and key integration of technologies necessary to make them work together smoothly and efficiently, both within individual petascale systems and between different systems. A repository gatekeeper and an email discussion list can coordinate open-source development within a single project, but there is no global mechanism working across the community to identify critical holes in the overall software environment, spot opportunities for beneficial integration, or specify requirements for more careful coordination. It seems clear that this completely uncoordinated development model will not provide the software needed to support the unprecedented parallelism required for peta/exascale computation on millions of cores, or the flexibility required to exploit new hardware models and features, such as transactional memory, speculative execution, and GPUs. We believe the community must work together to prepare for the challenges of exascale computing, ultimately combing their efforts in a coordinated International Exascale Software Project. C1 [Dongarra, Jack; Moore, Terry] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. [Beckman, Pete; Messina, Paul] Argonne Natl Lab, Argonne Leadership Comp Facil, Argonne, IL 60439 USA. [Cappello, Frank] INRIA, Rech Informat Lab, Sophia Antipolis, France. [Lippert, Thomas] Julich Supercomp Ctr, Julich, Germany. [Matsuoka, Satoshi] Tokyo Inst Technol, Tokyo, Japan. [Stevens, Rick] Argonne Natl Lab, Comp Environm & Life Sci Div, Argonne, IL 60439 USA. [Trefethen, Anne] Univ Oxford, Oxford, England. [Valero, Mateo] Tech Univ Catalonia, Catalonia, Spain. RP Dongarra, J (reprint author), Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. EM DONGARRA@EECS.UTK.EDU RI Dongarra, Jack/E-3987-2014; Valero, Mateo/L-5709-2014 OI Valero, Mateo/0000-0003-2917-2482 NR 12 TC 34 Z9 34 U1 2 U2 7 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1094-3420 J9 INT J HIGH PERFORM C JI Int. J. High Perform. Comput. Appl. PD NOV PY 2009 VL 23 IS 4 BP 309 EP 322 DI 10.1177/1094342009347714 PG 14 WC Computer Science, Hardware & Architecture; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA 509AO UT WOS:000270983500001 ER PT J AU Lusk, E AF Lusk, Ewing TI SLOUCHING TOWARDS EXASCALE SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS LA English DT Article DE programming models; exascale computing; OpenMP; MPI; hybrid programming AB One question before the high-performance computing community is "How will application developers write code for exascale machines?" At this point it looks like they might be riding a rough beast indeed. This paper is a brief assessment of where we stand now with respect to writing programs for our largest supercomputers and what we should do next. MPI is likely to remain a critical part of the programming infrastructure as we move towards exascale, but more is needed, in particular a robust, portable, and effective standard for parallel programming within a single address space, perhaps for heterogeneous processors. Formal methods provide the only truly scalable approach to developing correct code in this complex programming environment. C1 Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Lusk, E (reprint author), Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. EM LUSK@MCS.ANL.GOV NR 0 TC 0 Z9 0 U1 0 U2 1 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1094-3420 J9 INT J HIGH PERFORM C JI Int. J. High Perform. Comput. Appl. PD NOV PY 2009 VL 23 IS 4 BP 337 EP 339 DI 10.1177/1094342009347493 PG 3 WC Computer Science, Hardware & Architecture; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA 509AO UT WOS:000270983500006 ER PT J AU Maccabe, A Falter, H Kramer, W AF Maccabe, Arthur Falter, Hugo Kramer, William TI RESOURCE MANAGEMENT SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS LA English DT Article DE scalable applications; resource constrained applications; programming models; exascale; resource management AB Application scalability is directly related to the ability of the application developer to effectively use the resources provided by a computing system. As we start to address the development of exascale platforms, we must engage in a dialog to define the terms related to resource management. Approaches to resource management can be categorized in two dimensions: static/dynamic and explicit/implicit. The static/dynamic dimension refers to when resource management decisions are made: prior to program execution or during program execution. The implicit/explicit dimension refers to the object that implements the decision making: the tools that implement the programming environment or the application developer. The development of applications that can scale to the resources provided by an exascale system will require tools that allow programmers to move easily and seamlessly between these dimensions as they express resource management decisions. C1 [Maccabe, Arthur] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN USA. [Falter, Hugo] Partec Cluster Competence Ctr, San Jose, CA USA. [Kramer, William] Lawrence Berkeley Natl Lab, NERSC, Berkeley, CA USA. RP Maccabe, A (reprint author), Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN USA. EM MACCABEAB@ORNL.GOV NR 0 TC 1 Z9 1 U1 0 U2 0 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1094-3420 J9 INT J HIGH PERFORM C JI Int. J. High Perform. Comput. Appl. PD NOV PY 2009 VL 23 IS 4 BP 347 EP 349 DI 10.1177/1094342009347498 PG 3 WC Computer Science, Hardware & Architecture; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA 509AO UT WOS:000270983500009 ER PT J AU Seager, M Gorda, B AF Seager, Mark Gorda, Brent TI THE CASE FOR A HIERARCHICAL SYSTEM MODEL FOR LINUX CLUSTERS SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS LA English DT Article C1 [Seager, Mark; Gorda, Brent] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Seager, M (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM SEAGER1@LLNL.GOV; BGORDA@LLNL.GOV NR 0 TC 0 Z9 0 U1 0 U2 0 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1094-3420 J9 INT J HIGH PERFORM C JI Int. J. High Perform. Comput. Appl. PD NOV PY 2009 VL 23 IS 4 BP 350 EP 354 DI 10.1177/1094342009347499 PG 5 WC Computer Science, Hardware & Architecture; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA 509AO UT WOS:000270983500010 ER PT J AU Cappello, F Geist, A Gropp, B Kale, L Kramer, B Snir, M AF Cappello, Franck Geist, Al Gropp, Bill Kale, Laxmikant Kramer, Bill Snir, Marc TI TOWARD EXASCALE RESILIENCE SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS LA English DT Article DE exascale; challenge; resilience; fault tolerance; high-performance computing ID FAULT-TOLERANCE; SYSTEMS; PERFORMANCE; ROLLBACK AB Over the past few years resilience has became a major issue for high-performance computing (HPC) systems, in particular in the perspective of large petascale systems and future exascale systems. These systems will typically gather from half a million to several millions of central processing unit (CPU) cores running up to a billion threads. From the current knowledge and observations of existing large systems, it is anticipated that exascale systems will experience various kind of faults many times per day. It is also anticipated that the current approach for resilience, which relies on automatic or application level checkpoint/restart, will not work because the time for checkpointing and restarting will exceed the mean time to failure of a full system. This set of projections leaves the community of fault tolerance for HPC systems with a difficult challenge: finding new approaches, which are possibly radically disruptive, to run applications until their normal termination, despite the essentially unstable nature of exascale systems. Yet, the community has only five to six years to solve the problem. This white paper synthesizes the motivations, observations and research issues considered as determinant of several complimentary experts of HPC in applications, programming models, distributed systems and system management. C1 [Cappello, Franck] INRIA, Rech Informat Lab, Sophia Antipolis, France. [Geist, Al] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Gropp, Bill; Kale, Laxmikant; Snir, Marc] Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA. RP Cappello, F (reprint author), INRIA, Rech Informat Lab, Sophia Antipolis, France. EM CAPPELLO@ILLINOIS.EDU OI Gropp, William/0000-0003-2905-3029; Snir, Marc/0000-0002-3504-2468 NR 35 TC 96 Z9 96 U1 2 U2 10 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1094-3420 J9 INT J HIGH PERFORM C JI Int. J. High Perform. Comput. Appl. PD NOV PY 2009 VL 23 IS 4 BP 374 EP 388 DI 10.1177/1094342009347767 PG 15 WC Computer Science, Hardware & Architecture; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA 509AO UT WOS:000270983500016 ER PT J AU Kramer, W Skinner, D AF Kramer, William Skinner, David TI AN EXASCALE APPROACH TO SOFTWARE AND HARDWARE DESIGN SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS LA English DT Article DE software design; operating systems; performance measurement; resiliency; I/O AB For the past 10-15 years, horizontal layers of software and hardware design and development have been the de facto standard of creating high-performance computing (HPC) software. The horizontal design approach leads to the development of discrete components in the software stack and independent hardware components-all developed with different methods, requirements and quality dominated by plug-and-play componentization that is focused on horizontal functionality and portability. The horizontal software paradigm will break down at the exascale due to the system scale and complexity. The vertical approach needed for the exascale should include resilience (reliability and fault tolerance); performance; programmability; computational models; I/O; consistency and verification; resource management; and power management/total cost of ownership. To make the exascale an effective reality, instead of thinking of integration as the final step in defining and developing an exascale system, it will have to be the first step. C1 [Kramer, William; Skinner, David] Lawrence Berkeley Natl Lab, NERSC, Berkeley, CA USA. RP Kramer, W (reprint author), Lawrence Berkeley Natl Lab, NERSC, Berkeley, CA USA. EM WKRAMER@NCSA.UIUC.EDU NR 0 TC 1 Z9 1 U1 0 U2 0 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1094-3420 J9 INT J HIGH PERFORM C JI Int. J. High Perform. Comput. Appl. PD NOV PY 2009 VL 23 IS 4 BP 389 EP 391 DI 10.1177/1094342009347768 PG 3 WC Computer Science, Hardware & Architecture; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA 509AO UT WOS:000270983500017 ER PT J AU Kramer, W Skinner, D AF Kramer, William Skinner, David TI CONSISTENT APPLICATION PERFORMANCE AT THE EXASCALE SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS LA English DT Article DE system design; operating systems; performance measurement; usability; resource management AB We examine the future of application performance consistency on exascale parallel computing systems. By performance consistency we mean the regularity of wall clock times to complete a fixed amount of application progress. Exascale systems will have dramatically increased complexity along with their capability. Contributors to inconsistency include architectural choices, software functions and subtle interactions, and inconsistency will lead to lost potential. The challenge is how to maintain consistency at the exascale. In order for exascale systems to exhibit the consistency that is required to make the applications and systems productive, a new understanding of the causes and solutions to inconsistency is required, along with new ways of measuring the impact that design, implementation and operational choices have on consistency. C1 [Kramer, William; Skinner, David] Lawrence Berkeley Natl Lab, High Performance Comp Dept, NERSC, Berkeley, CA 94720 USA. RP Kramer, W (reprint author), Lawrence Berkeley Natl Lab, High Performance Comp Dept, NERSC, 1 Cyclotron Rd, Berkeley, CA 94720 USA. NR 9 TC 0 Z9 0 U1 0 U2 0 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1094-3420 J9 INT J HIGH PERFORM C JI Int. J. High Perform. Comput. Appl. PD NOV PY 2009 VL 23 IS 4 BP 392 EP 394 DI 10.1177/1094342009347700 PG 3 WC Computer Science, Hardware & Architecture; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA 509AO UT WOS:000270983500018 ER PT J AU Seager, M Gorda, B AF Seager, Mark Gorda, Brent TI A COLLABORATION AND COMMERCIALIZATION MODEL FOR EXASCALE SOFTWARE RESEARCH SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS LA English DT Article DE exascale; software; research; development; commercialization AB We propose a coordinated strategy for exascale software development that includes the incorporation of successful research and development (R&D) into development and engineering (D&E) projects and harvesting the successful D&E projects into products with vendor support (P&S). This allows the most flexible R&D agenda while at the same time providing a commercialization path. This process is described as a natural extension of current focus areas and funding agents for R&D, D&E and P&S, but adds stake holders from the next stage in the process in the upstream processes. This model allows the flexibility to encourage development and competition of ideas in the research, development and productization phases. We anticipate that multiple iterations through this process from R&D through P&S are required to achieve appropriate software for Exascale systems. C1 [Seager, Mark; Gorda, Brent] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Seager, M (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM SEAGER1@LLNL.GOV; BGORDA@LLNL.GOV NR 0 TC 1 Z9 1 U1 1 U2 6 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1094-3420 J9 INT J HIGH PERFORM C JI Int. J. High Perform. Comput. Appl. PD NOV PY 2009 VL 23 IS 4 BP 395 EP 397 DI 10.1177/1094342009347701 PG 3 WC Computer Science, Hardware & Architecture; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA 509AO UT WOS:000270983500019 ER PT J AU Geist, A Dosanjh, S AF Geist, Al Dosanjh, Sudip TI IESP EXASCALE CHALLENGE: CO-DESIGN OF ARCHITECTURES AND ALGORITHMS SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS LA English DT Article DE exascale; architectures; algorithms; co-design; high-performance computing AB There is a large gap between the peak performance of supercomputers and the actual performance realized by today's algorithms. This architecture-algorithm performance gap will get even wider with the increase in computing power being driven by a rapid escalation in the number of cores incorporated into a single chip rather than increases in the clock rate. In order to improve the effectiveness of peta and exascale systems we need to have a paradigm shift where architectures and algorithms are co-designed. C1 [Geist, Al] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Dosanjh, Sudip] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Geist, A (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM GST@ORNL.GOV NR 0 TC 6 Z9 6 U1 0 U2 3 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1094-3420 J9 INT J HIGH PERFORM C JI Int. J. High Perform. Comput. Appl. PD NOV PY 2009 VL 23 IS 4 BP 401 EP 402 DI 10.1177/1094342009347766 PG 2 WC Computer Science, Hardware & Architecture; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA 509AO UT WOS:000270983500021 ER PT J AU Geist, A Lucas, R AF Geist, Al Lucas, Robert TI MAJOR COMPUTER SCIENCE CHALLENGES AT EXASCALE SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS LA English DT Article DE exascale; scale and complexity of systems; complexity of applications; data challenges; new applications; software sustainability AB Exascale systems will provide an unprecedented opportunity for science, one that will make it possible to use computation not only as a critical tool along with theory and experiment in understanding the behavior of the fundamental components of nature, but also for critical advances for the nation's energy needs and security. To create exascale systems and software that will enable the US Department of Energy ( DOE) to meet the science goals critical to the nation's energy, ecological sustainability, and global security, we must focus on major architecture, software, algorithm, and data challenges, and build on newly emerging programming environments. Only with this new infrastructure will applications be able to scale up to the required levels of parallelism and integrate technologies into complex coupled systems for real-world multidisciplinary modeling and simulation. Achieving this goal will likely involve a shift from current static approaches for application development and execution to a combination of new software tools, algorithms, and dynamically adaptive methods. C1 [Geist, Al] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Lucas, Robert] Univ So Calif, Inst Informat Sci, Computat Sci Div, Marina Del Rey, CA 90292 USA. RP Geist, A (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM GST@ORNL.GOV; RFLUCAS@ISI.EDU NR 10 TC 10 Z9 10 U1 0 U2 6 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1094-3420 J9 INT J HIGH PERFORM C JI Int. J. High Perform. Comput. Appl. PD NOV PY 2009 VL 23 IS 4 BP 427 EP 436 DI 10.1177/1094342009347445 PG 10 WC Computer Science, Hardware & Architecture; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA 509AO UT WOS:000270983500028 ER PT J AU Heroux, MA AF Heroux, Michael A. TI SOFTWARE CHALLENGES FOR EXTREME SCALE COMPUTING: GOING FROM PETASCALE TO EXASCALE SYSTEMS SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS LA English DT Article DE exascale computing; parallel programming models; advanced modeling and simulation; fault resilient applications; software engineering for computational science and engineering AB Preparing applications for a transition from petascale to exascale systems will require a very large investment in several areas of software research and development. The introduction of manycore nodes, the abundance of parallelism, an increase in system faults (including soft errors) and a complicated, multi-component software environment are some of the most challenging issues we face. In this paper we address four topics we believe to be the most the challenging issues and therefore the greatest opportunities for making effective next-generation scalable applications. First and foremost is the need to transform existing applications to run on manycore platforms and properly design new applications. This is particularly challenging in the absence of a standard, portable manycore programming environment, but we can make progress in this direction while manycore programming models are developed. Second is promoting advanced modeling and simulation capabilities such as embedded optimization and uncertainty quantification that lead to higher quality results and orders of magnitude more parallelism. Third is progress toward fault resilience in applications, a critical need as system reliability degrades. Fourth and finally is a qualitative improvement in software design, including the social aspects, as exascale software systems will be increasingly multi-team and multi-faceted efforts. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Heroux, MA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM MAHEROU@SANDIA.GOV OI Heroux, Michael/0000-0002-5893-0273 NR 0 TC 5 Z9 6 U1 0 U2 6 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1094-3420 J9 INT J HIGH PERFORM C JI Int. J. High Perform. Comput. Appl. PD NOV PY 2009 VL 23 IS 4 BP 437 EP 439 DI 10.1177/1094342009347711 PG 3 WC Computer Science, Hardware & Architecture; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA 509AO UT WOS:000270983500029 ER PT J AU Levine, J Savina, MR Stephan, T Dauphas, N Davis, AM Knight, KB Pellin, MJ AF Levine, Jonathan Savina, Michael R. Stephan, Thomas Dauphas, Nicolas Davis, Andrew M. Knight, Kim B. Pellin, Michael J. TI Resonance ionization mass spectrometry for precise measurements of isotope ratios SO INTERNATIONAL JOURNAL OF MASS SPECTROMETRY LA English DT Article DE Resonance ionization mass spectrometry; Power broadening; Precision; Chromium isotopes; Presolar grains ID ASYMPTOTIC GIANT BRANCH; SILICON-CARBIDE GRAINS; PRESOLAR SIC GRAINS; ONE-ATOM DETECTION; S-PROCESS; STELLAR NUCLEOSYNTHESIS; SURFACE-ANALYSIS; NOBLE-GASES; METEORITES; ZIRCONIUM AB Resonance ionization mass spectrometry offers extremely high sensitivity and elemental selectivity in microanalysis, but the isotopic precision attainable by this technique has been limited. Measured isotope ratios are sensitive to small fluctuations in the pointing, pulse timing, and wavelength of the resonance lasers. We show that, by minimizing these fluctuations using feedback controls and by power-broadening the optical transitions, we are able to measure chromium isotope ratios with statistics-limited precision better than 1%. Small additional improvements in reproducibility come from careful shaping of the electric field in the region where atoms are photoionized and from minimizing pulse-to-pulse variations in the time-of-flight mass spectrometer through which the photoions travel. The increased reproducibility of isotopic measurements on standard materials has enabled us to detect anomalous chromium isotopic abundances in presolar Sic grains extracted from primitive meteorites. (C) 2009 Elsevier B.V. All rights reserved. C1 [Levine, Jonathan; Savina, Michael R.; Stephan, Thomas; Dauphas, Nicolas; Davis, Andrew M.; Knight, Kim B.; Pellin, Michael J.] Chicago Ctr Cosmochem, Chicago, IL USA. [Levine, Jonathan; Stephan, Thomas; Dauphas, Nicolas; Davis, Andrew M.; Knight, Kim B.] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. [Levine, Jonathan] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Savina, Michael R.; Pellin, Michael J.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Dauphas, Nicolas; Davis, Andrew M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Knight, Kim B.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Levine, J (reprint author), Colgate Univ, Dept Phys & Astron, Hamilton, NY 13346 USA. EM jlevine@colgate.edu RI Pellin, Michael/B-5897-2008; Dauphas, Nicolas/E-4568-2011; OI Pellin, Michael/0000-0002-8149-9768; Davis, Andrew/0000-0001-7955-6236 FU NASA [NNG06-GF19G, NNG09-AG39G, NNX07-AL94G, W-19895, W-10091]; US Department of Energy, Office of Basic Energy Sciences [DEAC02-06CH11357] FX We are grateful for the assistance of R.S. Lewis in preparing the sample mount, and also to C.E. Tripa, I.V. Veryovkin, and A. Zinovev. We wish to thank R. Santra, W. Happer, and D. Budker for useful discussions. Our work is supported by NASA through grants NNG06-GF19G, NNG09-AG39G, and NNX07-AL94G and work orders W-19895 and W-10091, and by the US Department of Energy, Office of Basic Energy Sciences under contract DEAC02-06CH11357. NR 41 TC 23 Z9 24 U1 0 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-3806 J9 INT J MASS SPECTROM JI Int. J. Mass Spectrom. PD NOV-DEC PY 2009 VL 288 IS 1-3 BP 36 EP 43 DI 10.1016/j.ijms.2009.07.013 PG 8 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 523XO UT WOS:000272108600005 ER PT J AU Drouart, A Nolen, JA Savajols, H AF Drouart, A. Nolen, J. A. Savajols, H. TI SUPER SEPARATOR SPECTROMETER FOR THE LINAG HEAVY ION BEAMS SO INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS LA English DT Article; Proceedings Paper CT Franco-Japanese Symposium on New Paradigms in Nuclear Physics CY SEP 29-OCT 01, 2008 CL Inst Henri Poincare, Paris, FRANCE SP CNRS, IN2P3, RIKEN Nishina Ctr, IPN Orsay, GANIL HO Inst Henri Poincare ID FACILITY AB The Super Separator Spectrometer (S(3)) will receive the very high intensity heavy ion beams from the LINAG accelerator of SPIRAL2. Its privileged fields of physics are the delayed study of rare nuclei and secondary reactions with exotic nuclei. The project is presently in a phase of conceptual design. It includes a rotating target to sustain the high energy deposit, a two stages separator (momentum achromat) and spectrometer (mass spectrometer). Various detection set-ups are foreseen, especially a delayed alpha, gamma, and electron spectroscopy array and a gas catcher coupled to a low energy branch. We present here the current status of the project and its main features. C1 [Drouart, A.] CEA Saclay, Irfu SPhN, F-91191 Gif Sur Yvette, France. [Nolen, J. A.] Argonne Natl Lab, Argonne, IL 60439 USA. [Savajols, H.] GANIL, F-14000 Caen, France. RP Drouart, A (reprint author), CEA Saclay, Irfu SPhN, F-91191 Gif Sur Yvette, France. EM antoine.drouart@cea.fr; nolen@anl.gov; savajols@ganil.fr NR 7 TC 5 Z9 5 U1 0 U2 2 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-3013 J9 INT J MOD PHYS E JI Int. J. Mod. Phys. E-Nucl. Phys. PD NOV PY 2009 VL 18 IS 10 BP 2160 EP 2168 DI 10.1142/S0218301309014482 PG 9 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 531UU UT WOS:000272695700049 ER PT J AU Cordill, MJ Lund, MS Parker, J Leighton, C Nair, AK Farkas, D Moody, NR Gerberich, WW AF Cordill, M. J. Lund, M. S. Parker, J. Leighton, C. Nair, A. K. Farkas, D. Moody, N. R. Gerberich, W. W. TI The Nano-Jackhammer effect in probing near-surface mechanical properties SO INTERNATIONAL JOURNAL OF PLASTICITY LA English DT Article DE Cyclic loading; Mechanical testing; Dislocations; Dynamic fracture; Numerical algorithms ID STRAIN GRADIENT PLASTICITY; TAYLOR DISLOCATION MODEL; MOLECULAR-DYNAMICS; YIELD STRENGTH; INCIPIENT PLASTICITY; MISFIT DISLOCATIONS; CONVENTIONAL THEORY; ACTIVATION VOLUME; RATE SENSITIVITY; INDENTATION AB Because of its ease of implementation and insensitivity to indenter drift, dynamic indentation techniques have been frequently used to measure mechanical properties of bulk and thin film materials as a function of indenter displacement. However, the actual effect of the oscillating tip on the material response has not been examined. Recently, it has been shown that the oscillation used with dynamic indentation techniques alters the measured hardness value of ductile metallic materials, especially at depths less than 200 nm. The alteration in the hardness is due to the added energy associated with the oscillation which assists dislocation nucleation. Atomistic simulations on nickel thin films agree with experiments that more dislocations are nucleated during dynamic indents than with quasi-static indents. Through the analysis of quasi-static and dynamic indents made into nickel single crystals and thin films, a theory to describe this phenomenon is presented. This is coined the Nano-jackhammer effect, a combination of dislocation nucleation and strain rate sensitivity caused by indentation with a superimposed dynamic oscillation. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Cordill, M. J.] Austrian Acad Sci, Erich Schmid Inst Mat Sci, A-8700 Leoben, Austria. [Cordill, M. J.; Lund, M. S.; Parker, J.; Leighton, C.; Gerberich, W. W.] Univ Minnesota, Dept Chem & Mat Sci, Minneapolis, MN 55455 USA. [Nair, A. K.; Farkas, D.] Virginia Tech, Blacksburg, VA 24061 USA. [Moody, N. R.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Cordill, MJ (reprint author), Austrian Acad Sci, Erich Schmid Inst Mat Sci, JahnStr 12, A-8700 Leoben, Austria. EM megan.cordill@oeaw.ac.at RI Nair, Arun/F-8843-2010; OI Cordill, Megan/0000-0003-1142-8312; Nair, Arun/0000-0003-2144-5335 FU NSF [CMS 03224361]; United States Department of Energy Office of Science [DE-AC04-94AL8500] FX We would like to thank J. Houston of Sandia National Laboratories, Albuquerque, New Mexico, for his thorough reading of the manuscript and, particularly, for his original insightful understanding and suggestion of the Nano-jackhammer effect. Film deposition at the University of Minnesota was supported by the NSF MRSEC. The simulations were performed using Virginia Tech's supercomputer system X and the code LAMMPS, provided by S. Plimpton, Sandia National Laboratory. Research support through NSF Grant CMS 03224361 and the United States Department of Energy Office of Science Grant DE-AC04-94AL8500 are gratefully acknowledged. NR 46 TC 14 Z9 14 U1 2 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0749-6419 J9 INT J PLASTICITY JI Int. J. Plast. PD NOV PY 2009 VL 25 IS 11 BP 2045 EP 2058 DI 10.1016/j.ijplas.2008.12.015 PG 14 WC Engineering, Mechanical; Materials Science, Multidisciplinary; Mechanics SC Engineering; Materials Science; Mechanics GA 514OU UT WOS:000271405100002 ER PT J AU Barabash, RI Ice, GE Kumar, M Ilavsky, J Belak, J AF Barabash, R. I. Ice, G. E. Kumar, M. Ilavsky, J. Belak, J. TI Polychromatic microdiffraction analysis of defect self-organization in shock deformed single crystals SO INTERNATIONAL JOURNAL OF PLASTICITY LA English DT Article DE Dynamic fracture; Voids and inclusions; Nondestructive evaluation; Stress relaxation; Shock waves ID DEFORMATION; COMPRESSION; PLASTICITY; DISLOCATIONS; BOUNDARIES; ANISOTROPY; RESOLUTION; FRACTURE; METALS; COPPER AB A spatially resolved X-ray diffraction method - with a submicron 3D resolution together with SEM and OIM analysis are applied to understand the arrangements of voids, geometrically necessary dislocations and strain gradient distributions in samples of Al (123) and Cu (001) single crystals shocked to incipient spallation fracture. We describe how geometrically necessary dislocations and the effective strain gradient alter white beam Laue patterns of the shocked materials. Several distinct structural zones are observed at different depths under the impact surface. The density of geometrically necessary dislocations (GNDs) is extremely high near the impact and back surface of the shock recovered crystals. The spall region is characterized by a large density of mesoscale voids and GNDs. The spall region is separated from the impact and back surfaces by compressed regions with high total dislocation density but lower GNDs density. Self-organization of shear bands is observed in the shock recovered Cu single crystal. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Barabash, R. I.; Ice, G. E.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Barabash, R. I.] Univ Tennessee, Mat Sci & Engn Dept, Knoxville, TN 37996 USA. [Kumar, M.; Belak, J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Ilavsky, J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Barabash, RI (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM barabashr@ornal.gov RI Ilavsky, Jan/D-4521-2013; USAXS, APS/D-4198-2013 OI Ilavsky, Jan/0000-0003-1982-8900; FU U.S. Department of Energy [DE-AC05-00OR22725]; Lawrence Livermore National Laboratory [W-7405-Eng-48] FX The authors have benefited enormously from discussions with Hector Lorenzana and Justin Wark. Research sponsored by the Division of Materials Sciences and Technology, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract DE-AC05-00OR22725 with UT-Battelle, LLC; at Lawrence Livermore National Laboratory research is sponsored under the Contract W-7405-Eng-48. NR 36 TC 16 Z9 16 U1 1 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0749-6419 EI 1879-2154 J9 INT J PLASTICITY JI Int. J. Plast. PD NOV PY 2009 VL 25 IS 11 BP 2081 EP 2093 DI 10.1016/j.ijplas.2009.01.002 PG 13 WC Engineering, Mechanical; Materials Science, Multidisciplinary; Mechanics SC Engineering; Materials Science; Mechanics GA 514OU UT WOS:000271405100004 ER PT J AU Wagner, ID Ahmed, S Zhao, WD Zhang, CL Romanek, CS Rohde, M Wiegel, J AF Wagner, Isaac D. Ahmed, Sibtain Zhao, Weidong Zhang, Chuanlun L. Romanek, Christopher S. Rohde, Manfred Wiegel, Juergen TI Caldanaerovirga acetigignens gen. nov., sp nov., an anaerobic xylanolytic, alkalithermophilic bacterium isolated from Trego Hot Spring, Nevada, USA SO INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY LA English DT Article ID BIOMASS; WEIGHT AB An anaerobic thermophilic bacterium, designated strain JW/SA-NV4(T), was isolated from a xylan-supplemented enrichment culture from Trego hot spring located within the Black Rock Desert (NV, USA). Cells were generally straight or slightly bent rod-shaped, 0.4-0.8 mu m in width and 3-6 mu m in length during exponential growth. Cells from stationary phase were variable in size and shape, showing curved or bent morphology. Motility was not seen and flagella were not observed in electron micrographs. Sporulation was not observed. Strain JW/SA-NV4T stained Gram-negative but is phylogenetically Gram-type positive. Growth occurred at pH(25) (degrees C) 6.8-8.8, with optimum growth at PH 8.4; no growth occurred at PH 9.0 or above or at 6.5 or below. With glucose or xylose as the carbon source, strain JW/SA-NV4(T) grew at 44-74 degrees C; no growth occurred at 76 degrees C or above or at 42 degrees C or below. However, the optimum temperature was 62 and 66 degrees C when grown on glucose and xylose, respectively. The shortest doubling time observed with glucose was approximately 4 h, and with xylose approximately 3.4 h. Strain JW/SA-NV4(T) tolerated an atmosphere containing UP to 0-1% O(2); no growth occurred at a gas atmosphere of 0.2% O(2). Chemo-organotrophic growth occurred with xylose, glucose, mannose, xylan, pyruvate, fructose, ribose, Casamino acids, mannitol, tryptone, peptone, cellobiose and yeast extract. When grown in mineral media containing 1 g yeast extract I(-1) as an electron donor, thiosulfate and sulfur were reduced to sulfide. The G + C content of the DNA was 38.6 mol% (HPLC). 16S rRNA gene sequence analysis placed strain JW/SA-NV4(T) within the order Thermoanaerobacterales and within the Thermoanaerobacterales Incertae Sedis Family III, specifically between taxa classified within the genera Thermosediminibacter and Thermovenabulum. The closest phylogenetic neighbours were Thermosediminibacter oceani JW/IW-1228P(T) (94.2% 16S rRNA gene sequence similarity) and Thermosediminibacter litoriperuensis JW/YJL-1230-7/2(T) (94.0%) (Lee, Y.-J., Wagner, I. D., Brice, M. E., Kevbrin, V. V., Mills, G. L., Romanek, C. S. & Wiegel, J. (2005). Extremophiles 9, 375-383]. Based on physiological and genotypic characteristics, strain JW/SA-NV4(T) (=DSM 18802(T) =ATCC BAA-1454(T)) is proposed to represent the type strain of a novel species in a novel genus, Caldanaerovirga acetigignens gen. nov., sp. nov. C1 [Wagner, Isaac D.; Wiegel, Juergen] Univ Georgia, Dept Microbiol, Athens, GA 30602 USA. [Ahmed, Sibtain] Univ Agr Faisalabad, Dept Chem & Biochem, Faisalabad 38040, Pakistan. [Ahmed, Sibtain] Univ Vet & Anim Sci, Dept Physiol & Biochem, Lahore 54000, Pakistan. [Zhao, Weidong; Zhang, Chuanlun L.] Univ Georgia, Dept Marine Sci, Athens, GA 30602 USA. [Zhao, Weidong; Zhang, Chuanlun L.; Romanek, Christopher S.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Romanek, Christopher S.] Univ Georgia, Dept Geol, Athens, GA 30602 USA. [Rohde, Manfred] GBF Gesell Biotechnol Forsch GmbH, D-38124 Braunschweig, Germany. RP Wiegel, J (reprint author), Univ Georgia, Dept Microbiol, Athens, GA 30602 USA. EM jwiegel@uga.edu OI Wiegel, Juergen/0000-0002-6343-6464 FU National Science Foundation [MCB 0348180]; United States Department of States (USDOS); Higher Education Commission, Government of Pakistan FX Funding for this research was provided by the National Science Foundation MIP Program to JW/CLZ/CSR (MCB 0348180), as well as a grant from United States Department of States (USDOS) and Higher Education Commission, Government of Pakistan. We thank P. Schumann at DSMZ for assistance with the cell wall analysis, W. B. Whitman for his help with the DNA G+C content determination, and G. Mills and N. Garvin for assistance with lipid analysis. NR 29 TC 4 Z9 4 U1 0 U2 5 PU SOC GENERAL MICROBIOLOGY PI READING PA MARLBOROUGH HOUSE, BASINGSTOKE RD, SPENCERS WOODS, READING RG7 1AG, BERKS, ENGLAND SN 1466-5026 J9 INT J SYST EVOL MICR JI Int. J. Syst. Evol. Microbiol. PD NOV PY 2009 VL 59 BP 2685 EP 2691 DI 10.1099/ijs.0.005207-0 PG 7 WC Microbiology SC Microbiology GA 526MV UT WOS:000272295000008 PM 19625440 ER PT J AU Lee, YJ Romanek, CS Wiegel, J AF Lee, Yong-Jin Romanek, Christopher S. Wiegel, Juergen TI Desulfosporosinus youngiae sp nov., a spore-forming, sulfate-reducing bacterium isolated from a constructed wetland treating acid mine drainage SO INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY LA English DT Article ID GEN. NOV.; PHYLOGENETIC ANALYSIS; COMB. NOV; AURIPIGMENTUM; RESPIRATION; SEDIMENTS; ARSENATE; WATER AB Strain JW/YJL-B18(T), a spore-forming, sulfate-reducing bacterium, was isolated from constructed wetland sediment. Cells were curved rods, 0.7-1.2 mu m in diameter and 3-7 mu m long. Despite being phylogenetically a member of the Gram-type-positive phylum Firmicutes, cells stained Gram-negative at all growth phases. Strain JW/YJL-B18(T) grew at 8-39 degrees C, with an optimum at 32-35 degrees C and no growth at 4 degrees C or below or at 42 degrees C or above. The pH(25 degrees C) range for growth was 5.7-8.2, with an optimum at pH(25 degrees C) 7.0-7.3, and no growth was detected at or below pH 5.2 or at or above pH 8.4. The salinity range for growth was 0-3% (NaCl/KCl 9:1). Strain JW/YJL-B18(T) utilized as carbon and energy sources beef extract, yeast extract, formate, succinate, lactate, pyruvate, ethanol and toluene. Fumarate, sulfate, sulfite and thiosulfate were reduced in the presence of lactate. Arsenate (V) was not used as an electron acceptor. Strain JW/YJL-B18(T) showed no indication of growth under autotrophic conditions. The predominant cellular fatty acids were C(16:1) and C(16:0). The genomic DNA G+C content was 36.6 mol% (HPLC). 16S rRNA gene sequence analysis indicated that strain JW/YJL-B18(T) fell into the genus Desulfosporosinus, with Desulfosporosinus auripigmenti OREX-4(T) as its closest neighbour with a validly published name (97.9% similarity). Based on molecular genetic evidence and physiological and biochemical characters including differences in the DNA G+C content, we propose to place strain JW/YJL-B18(T) (=DSM 17734(T) =ATCC BAA-1261(T)) as the type strain of a novel species, Desulfosporosinus youngiae sp. nov. C1 [Lee, Yong-Jin; Wiegel, Juergen] Univ Georgia, Dept Microbiol, Athens, GA 30602 USA. [Romanek, Christopher S.] Univ Georgia, Dept Geol, Athens, GA 30602 USA. [Lee, Yong-Jin; Romanek, Christopher S.] Savannah River Ecol Lab, Aiken, SC 29802 USA. RP Wiegel, J (reprint author), Univ Georgia, Dept Microbiol, Athens, GA 30602 USA. EM jwiegel@uga.edu OI Wiegel, Juergen/0000-0002-6343-6464 FU United States Department of Energy and the University of Georgia [DE-FC09-96SR18546] FX This research was partially supported by Financial Assistance Award Number DE-FC09-96SR18546 between the United States Department of Energy and the University of Georgia as a part of the US DOE National Water Research Center. We thank Robert C. Thomas for providing samples for this experiment, Gary L. Mills for lipid analysis and Jean P. Euzeby for his help with the nomenclature. NR 24 TC 16 Z9 16 U1 0 U2 6 PU SOC GENERAL MICROBIOLOGY PI READING PA MARLBOROUGH HOUSE, BASINGSTOKE RD, SPENCERS WOODS, READING RG7 1AG, BERKS, ENGLAND SN 1466-5026 J9 INT J SYST EVOL MICR JI Int. J. Syst. Evol. Microbiol. PD NOV PY 2009 VL 59 BP 2743 EP 2746 DI 10.1099/ijs.0.007336-0 PG 4 WC Microbiology SC Microbiology GA 526MV UT WOS:000272295000019 PM 19625426 ER PT J AU Konopka, A AF Konopka, Allan TI What is microbial community ecology? SO ISME JOURNAL LA English DT Article DE microbial community; functional redundancy; microbial interactions; emergent properties ID IN-SITU HYBRIDIZATION; BACTERIAL COMMUNITIES; RIBOSOMAL-RNA; DIVERSITY; EVOLUTION; BIODIVERSITY; ECOSYSTEMS; DYNAMICS; COMPLEXITY; MODEL AB The activities of complex communities of microbes affect biogeochemical transformations in natural, managed and engineered ecosystems. Meaningfully defining what constitutes a community of interacting microbial populations is not trivial, but is important for rigorous progress in the field. Important elements of research in microbial community ecology include the analysis of functional pathways for nutrient resource and energy flows, mechanistic understanding of interactions between microbial populations and their environment, and the emergent properties of the complex community. Some emergent properties mirror those analyzed by community ecologists who study plants and animals: biological diversity, functional redundancy and system stability. However, because microbes possess mechanisms for the horizontal transfer of genetic information, the metagenome may also be considered as a community property. The ISME Journal (2009) 3, 1223-1230; doi: 10.1038/ismej.2009.88; published online 6 August 2009 C1 Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Konopka, A (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999,MSIN P7-50, Richland, WA 99352 USA. EM allan.konopka@pnl.gov FU Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory; Battelle for the U.S. Department of Energy [DE-AC05-76RL01830] FX This work was conducted in part under the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory, a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830. NR 71 TC 93 Z9 96 U1 10 U2 91 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1751-7362 J9 ISME J JI ISME J. PD NOV PY 2009 VL 3 IS 11 BP 1223 EP 1230 DI 10.1038/ismej.2009.88 PG 8 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA 519PG UT WOS:000271778700001 PM 19657372 ER PT J AU Adams, DP Rodriguez, MA McDonald, JP Bai, MM Jones, E Brewer, L Moore, JJ AF Adams, D. P. Rodriguez, M. A. McDonald, J. P. Bai, M. M. Jones, E., Jr. Brewer, L. Moore, J. J. TI Reactive Ni/Ti nanolaminates SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SELF-PROPAGATING REACTIONS; HIGH-TEMPERATURE SYNTHESIS; THERMAL-EXPLOSION MODE; COMBUSTION SYNTHESIS; MULTILAYER FOILS; POROUS NITI; MECHANISM; ALLOYS; CRYSTALLIZATION; PRESSURE AB Nickel/titanium nanolaminates fabricated by sputter deposition exhibited rapid, high-temperature synthesis. When heated locally, self-sustained reactions were produced in freestanding Ni/Ti) multilayer foils characterized by average propagation speeds between similar to 0.1 and 1.4 m/s. The speed of a propagating reaction front was affected by total foil thickness and bilayer thickness (layer periodicity). In contrast to previous work with compacted Ni-Ti powders, no preheating of Ni/Ti foils was required to maintain self-propagating reactions. High-temperature synthesis was also stimulated by rapid global heating demonstrating low ignition temperatures (T-Ig) similar to 300-400 degrees C for nanolaminates. Ignition temperature was influenced by bilayer thickness with more coarse laminate designs exhibiting increased T-Ig, Foils reacted in a vacuum apparatus developed either as single-phase B2 cubic NiTi (austenite) or as a mixed-phase structure that was composed of monoclinic B19' NiTi (martensite), hexagonal NiTi2, and B2 NiTi. Single-phase, cubic B2 NiTi generally formed when the initial bilayer thickness was made small. (C) 2009 American Institute of Physics. [doi:10.1063/1.3253591] C1 [Adams, D. P.; Rodriguez, M. A.; McDonald, J. P.; Bai, M. M.; Jones, E., Jr.; Brewer, L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Adams, D. P.; Bai, M. M.; Moore, J. J.] Colorado Sch Mines, Golden, CO 80401 USA. RP Adams, DP (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors appreciate the efforts of T. Covert and D. Wackerbarth for analysis. D.A. would like to thank R. Knepper for a thorough review of this manuscript. Funding was provided by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 47 TC 20 Z9 20 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 1 PY 2009 VL 106 IS 9 AR 093505 DI 10.1063/1.3253591 PG 8 WC Physics, Applied SC Physics GA 529YP UT WOS:000272555700021 ER PT J AU Bi, ZX Lee, JH Yang, H Jia, QX MacManus-Driscoll, JL Wang, HY AF Bi, Zhenxing Lee, Joon Hwan Yang, Hao Jia, Quanxi MacManus-Driscoll, Judith L. Wang, Haiyan TI Tunable lattice strain in vertically aligned nanocomposite (BiFeO3)(x):(Sm2O3)(1-x) thin films SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID NANOSTRUCTURES; GROWTH AB Unique epitaxial two-phase vertically aligned nanocomposite (VAN) (BiFeO3)(x)center dot(Sm2O3)(1-x) thin films were deposited on SrTiO3(001) substrates by pulsed laser deposition. The VAN thin films exhibit a highly ordered vertical columnar structure with high epitaxial quality. We demonstrate that the strains of the two phases in both out-of-plane and in-plane directions call be tuned by the deposition parameters during growth, eg, deposition frequency and film composition of the nanocomposite The strain tunability is found to be directly related to the systematic variation in the column widths in the nanocomposite The dielectric property Measurement shows that increasing vertical strain control will lead to a systematic dielectric loss reduction in the VAN thin films. This study suggests a promising avenue in achieving tunable strain in functional oxide thin films by using VAN structures. (C) 2009 American Institute of Physics. [doi:10.1063/1.3257175] C1 [Bi, Zhenxing; Lee, Joon Hwan; Wang, Haiyan] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. [Yang, Hao; Jia, Quanxi] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [MacManus-Driscoll, Judith L.] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England. RP Wang, HY (reprint author), Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. RI Jia, Q. X./C-5194-2008; Wang, Haiyan/P-3550-2014 OI Wang, Haiyan/0000-0002-7397-1209 FU National Science Foundation [DMR-0709831]; U.S. Department of Energy FX This work is supported by the National Science Foundation (Grant No. DMR-0709831 under Ceramic Program) The work at Los Alamos was supported as a Los Alamos National Laboratory Directed Research and Development Project and the Center for Integrated Nanotechnologies under the U.S. Department of Energy. NR 22 TC 21 Z9 21 U1 5 U2 35 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 1 PY 2009 VL 106 IS 9 AR 094309 DI 10.1063/1.3257175 PG 5 WC Physics, Applied SC Physics GA 529YP UT WOS:000272555700087 ER PT J AU Bourne, NK Gray, GT Millett, JCF AF Bourne, N. K. Gray, G. T., III Millett, J. C. F. TI On the shock response of cubic metals SO JOURNAL OF APPLIED PHYSICS LA English DT Review ID SHEAR-STRENGTH MEASUREMENTS; DISLOCATION CELL-SIZE; LATERAL STRESS; POLYCRYSTALLINE NI3AL; MECHANICAL RESPONSE; PULSE DURATION; PEAK PRESSURE; LOADED NICKEL; DEFORMATION; TANTALUM AB The response of four Cubic metals to shock loading is reviewed in order to understand the effects of microstructure on continuum response. Experiments are described that link defect generation and storage mechanisms at the mesoscale to observations in the bulk. Four materials were reviewed: these were fcc nickel, the ordered fcc intermetallic Ni(3)Al, the bcc metal tantalum, and two alloys based on the intermetallic phase TiAl. Ti-46.5Al-2Cr-2Nb and Ti-48Al-2Cr-2Nb-1B. The experiments described are in two groups: first. equation of state and shear strength measurements using Manganin stress gauges and, second, postshock microstructural examinations and measurement of changes in mechanical properties. The behaviors described are linked through file description of time dependent plasticity mechanisms to the final states achieved. Recovered targets displayed dislocation microstructures Illustrating processes active during the shock-loading process Reloading of previously shock-prestrained samples illustrated shock strengthening for the fcc metals Ni and Ni(3)Al while showing 110 Such effect for bcc Ta and for the intermetallic TiAl This difference in effective shock hardening has been related, on the one hand, to the fact that bee metals have fewer available slip systems that can operate than fcc crystals and to the observation that the lower symmetry materials (Ta and TiAl) both possess high Peierls stress and thus have higher resistances to defect motion in the lattice Under shock-loading conditions. These behaviors, compared between these four materials. illustrate the role of defect generation. transport, storage, and interaction in determining the response of materials to shock prestraining. [doi-10.1063/1.3218758] C1 [Bourne, N. K.; Millett, J. C. F.] AWE Aldermaston, Reading RG7 4PR, Berks, England. [Gray, G. T., III] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Bourne, NK (reprint author), AWE Aldermaston, Reading RG7 4PR, Berks, England. FU UK government; EPSRC; DSTL; AWE; U.S. Department of Energy [DE-AC52-06NA25396]; Joint DoD/DOE Munitions Technology Development Program FX N K.B. acknowledges the work Of students who have worked on these issues and the funding bodies within UK government who have have supported this work including EPSRC, DSTL. AWE. and QQ. G.T.G. acknowledges support of Los Alamos National Laboratory that is operated by LANS, LLC. for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396 and the Joint DoD/DOE Munitions Technology Development Program NR 99 TC 22 Z9 24 U1 2 U2 35 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 1 PY 2009 VL 106 IS 9 AR 091301 DI 10.1063/1.3218758 PG 14 WC Physics, Applied SC Physics GA 529YP UT WOS:000272555700001 ER PT J AU Buongiorno, J Venerus, DC Prabhat, N McKrell, T Townsend, J Christianson, R Tolmachev, YV Keblinski, P Hu, LW Alvarado, JL Bang, IC Bishnoi, SW Bonetti, M Botz, F Cecere, A Chang, Y Chen, G Chen, HS Chung, SJ Chyu, MK Das, SK Di Paola, R Ding, YL Dubois, F Dzido, G Eapen, J Escher, W Funfschilling, D Galand, Q Gao, JW Gharagozloo, PE Goodson, KE Gutierrez, JG Hong, HP Horton, M Hwang, KS Iorio, CS Jang, SP Jarzebski, AB Jiang, YR Jin, LW Kabelac, S Kamath, A Kedzierski, MA Kieng, LG Kim, C Kim, JH Kim, S Lee, SH Leong, KC Manna, I Michel, B Ni, R Patel, HE Philip, J Poulikakos, D Reynaud, C Savino, R Singh, PK Song, PX Sundararajan, T Timofeeva, E Tritcak, T Turanov, AN Van Vaerenbergh, S Wen, DS Witharana, S Yang, C Yeh, WH Zhao, XZ Zhou, SQ AF Buongiorno, Jacopo Venerus, David C. Prabhat, Naveen McKrell, Thomas Townsend, Jessica Christianson, Rebecca Tolmachev, Yuriy V. Keblinski, Pawel Hu, Lin-wen Alvarado, Jorge L. Bang, In Cheol Bishnoi, Sandra W. Bonetti, Marco Botz, Frank Cecere, Anselmo Chang, Yun Chen, Gany Chen, Haisheng Chung, Sung Jae Chyu, Minking K. Das, Sarit K. Di Paola, Roberto Ding, Yulong Dubois, Frank Dzido, Grzegorz Eapen, Jacob Escher, Werner Funfschilling, Denis Galand, Quentin Gao, Jinwei Gharagozloo, Patricia E. Goodson, Kenneth E. Gutierrez, Jorge Gustavo Hong, Haiping Horton, Mark Hwang, Kyo Sik Iorio, Carlo S. Jang, Seok Pil Jarzebski, Andrzej B. Jiang, Yiran Jin, Liwen Kabelac, Stephan Kamath, Aravind Kedzierski, Mark A. Kieng, Lim Geok Kim, Chongyoup Kim, Ji-Hyun Kim, Seokwon Lee, Seung Hyun Leong, Kai Choong Manna, Indranil Michel, Bruno Ni, Rui Patel, Hrishikesh E. Philip, John Poulikakos, Dimos Reynaud, Cecile Savino, Raffaele Singh, Pawan K. Song, Pengxiang Sundararajan, Thirumalachari Timofeeva, Elena Tritcak, Todd Turanov, Aleksandr N. Van Vaerenbergh, Stefan Wen, Dongsheng Witharana, Sanjeeva Yang, Chun Yeh, Wei-Hsun Zhao, Xiao-Zheng Zhou, Sheng-Qi TI A benchmark study on the thermal conductivity of nanofluids SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID HEAT-TRANSFER CHARACTERISTICS; SUSPENSIONS; NANOPARTICLES; MODEL; PARTICLES; LIQUID; VOLUME; FLOW AB This article reports or, the international Nanofluid Property Benchmark Exercise, or INPBE. in which the thermal conductivity of identical samples of colloidally stable dispersions of nanoparticles or "nanofluids", was measured by over 30 organizations worldwide, using, a variety of experimental approaches, including the transient hot wire method, steady-state methods, and optical methods. The nanofluids tested in the exercise were comprised of aqueous and nonaqueous basefluids, metal and metal oxide particles, near-spherical and elongated particles, at low and high particle concentrations. The data analysis reveals that the data from most organizations lie within a relatively narrow band (+/- 10% or less) about the sample average with only few outliers. The thermal conductivity of the nanofluids was found to increase with particle concentration and aspect ratio. as expected from classical theory. There are (small) systematic differences in the absolute values of the nanofluid thermal conductivity among the various experimental approaches; however. such differences tend to disappear when the data are normalized to the Measured thermal conductivity of the basefluid. The effective medium theory developed for dispersed particles by Maxwell in 1881 and recently generalized by Nan et al. [J. Appl. Phys. 81, 6692 (1997)], was found to be in good agreement with the experimental data, suggesting that no anomalous enhancement of thermal conductivity was achieved in the nanofluids tested in this exercise. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3245330] C1 [Buongiorno, Jacopo; Prabhat, Naveen; McKrell, Thomas; Hu, Lin-wen; Chen, Gany; Gao, Jinwei] MIT, Cambridge, MA 02139 USA. [Venerus, David C.; Bishnoi, Sandra W.; Jiang, Yiran; Yeh, Wei-Hsun] IIT, Chicago, IL USA. [Townsend, Jessica; Christianson, Rebecca] Olin Coll Engn, Needham, MA 02492 USA. [Tolmachev, Yuriy V.; Turanov, Aleksandr N.] Kent State Univ, Kent, OH 44242 USA. [Keblinski, Pawel] Rensselaer Polytech Inst, Mat Res Ctr, Troy, NY 12180 USA. [Alvarado, Jorge L.; Kamath, Aravind] Texas A&M Univ, College Stn, TX 77843 USA. [Bang, In Cheol; Kim, Ji-Hyun] Ulsan Natl Inst Sci & Technol, Sch Energy Engn, Ulsan Metropolitan City, South Korea. [Bang, In Cheol] Tokyo Inst Technol, Meguro Ku, Tokyo 1528550, Japan. [Bonetti, Marco; Reynaud, Cecile] CEA, IRAMIS, F-91191 Gif Sur Yvette, France. [Botz, Frank; Tritcak, Todd] METSS Corp, Westerville, OH 43082 USA. [Cecere, Anselmo; Di Paola, Roberto; Savino, Raffaele] Univ Naples Federico II, Dept Aerosp Engn, I-80125 Naples, Italy. [Chang, Yun] SASOL N Amer, Westlake, LA 70669 USA. [Chen, Haisheng; Ding, Yulong; Witharana, Sanjeeva] Univ Leeds, Leeds LS2 9JT, W Yorkshire, England. [Chung, Sung Jae; Chyu, Minking K.] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA. [Das, Sarit K.; Patel, Hrishikesh E.; Singh, Pawan K.; Sundararajan, Thirumalachari] Indian Inst Technol, Dept Mech Engn, Madras 600036, Tamil Nadu, India. [Dubois, Frank; Galand, Quentin; Iorio, Carlo S.; Van Vaerenbergh, Stefan] Univ Libre Brussels, B-1050 Brussels, Belgium. [Dzido, Grzegorz; Jarzebski, Andrzej B.] Silesian Tech Univ, Dept Chem & Proc Engn, PL-44100 Gliwice, Poland. [Eapen, Jacob] N Carolina State Univ, Dept Nucl Engn, Raleigh, NC 27695 USA. [Escher, Werner; Michel, Bruno] IBM Res GmbH, Zurich Res Lab, CH-8803 Ruschlikon, Switzerland. [Escher, Werner; Poulikakos, Dimos] ETH, Dept Mech & Proc Engn, Lab Thermodynam Emerging Technol, CH-8092 Zurich, Switzerland. [Funfschilling, Denis; Ni, Rui; Zhao, Xiao-Zheng; Zhou, Sheng-Qi] Chinese Univ Hong Kong, Dept Phys, Ctr Sci, Shatin, Hong Kong, Peoples R China. [Gharagozloo, Patricia E.; Goodson, Kenneth E.] Stanford Univ, Stanford, CA 94305 USA. [Gutierrez, Jorge Gustavo] Univ Puerto Rico, Dept Mech Engn, Mayaguez, PR 00681 USA. [Hong, Haiping; Horton, Mark] S Dakota Sch Mines & Technol, Rapid City, SD 57701 USA. [Hwang, Kyo Sik; Jang, Seok Pil; Lee, Seung Hyun] Koria Aerosp Univ, Sch Aerosp & Mech Engn, Goyang City 412791, Gyeonggi Do, South Korea. [Jin, Liwen; Leong, Kai Choong; Yang, Chun] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore 639798, Singapore. [Kabelac, Stephan] Univ Hamburg, Inst Thermodynam, D-22039 Hamburg, Germany. [Kedzierski, Mark A.] NIST, Gaithersburg, MD 20899 USA. [Kieng, Lim Geok] DSO Natl Labs, Singapore 118230, Singapore. [Kim, Chongyoup; Kim, Seokwon] Korea Univ, Seoul 136713, South Korea. [Manna, Indranil] Indian Inst Technol, Dept Met & Mat Engn, Kharagpur 721302, W Bengal, India. [Philip, John] Indira Gandhi Ctr Atom Res, Met & Mat Grp, SMARTS, NDED, Kalpakkam 603102, Tamil Nadu, India. [Song, Pengxiang; Wen, Dongsheng] Queen Mary Univ London, Sch Engn & Mat Sci, London E1 4NS, England. [Timofeeva, Elena] Argonne Natl Lab, Argonne, IL 60439 USA. RP Buongiorno, J (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RI Timofeeva, Elena/E-6391-2010; Gao, Jinwei/D-4824-2009; iorio, carlo saverio /H-1598-2012; Chen, Gang/J-1325-2014; Gao, Jinwei/J-5732-2014; poulikakos, dimos/O-2853-2014; REYNAUD, Cecile/J-9969-2014; Kim, Chongyoup/I-8576-2015; philip, john/F-2602-2013; Dzido, Grzegorz/J-5372-2016; Van Vaerenbergh, Stefan/J-8655-2013; Bang, In Cheol/F-5703-2010; Chen, Haisheng/B-3349-2009; Kim, Ji Hyun/F-5704-2010; Wen, Dongsheng/A-5307-2010; Eapen, Jacob/A-2777-2011; Song, Pengxiang/B-3485-2011; Ni, Rui/E-5430-2012; Yang, Chun /A-7467-2008; Goodson, Kenneth/C-3545-2011; Bishnoi, Sandra/F-2762-2011; Leong, Kai Choong/A-3823-2011; witharana, sanjeeva/A-1068-2012 OI Alvarado, Jorge/0000-0002-4059-6588; Tolmachev, Yuriy/0000-0001-6705-6058; Jin, Liwen/0000-0002-4927-0111; Timofeeva, Elena V./0000-0001-7839-2727; Gao, Jinwei/0000-0002-4545-1126; Chen, Gang/0000-0002-3968-8530; Gao, Jinwei/0000-0002-4545-1126; poulikakos, dimos/0000-0001-5733-6478; Kim, Chongyoup/0000-0002-3936-0893; philip, john/0000-0001-6293-8131; Dzido, Grzegorz/0000-0002-0732-6607; Van Vaerenbergh, Stefan/0000-0002-6614-0458; Savino, Raffaele/0000-0001-5893-7769; witharana, sanjeeva/0000-0001-9230-1537; Kim, Ji Hyun/0000-0002-3984-0686; Wen, Dongsheng/0000-0003-3492-7982; Eapen, Jacob/0000-0001-6796-4013; Yang, Chun /0000-0003-1191-7642; NR 73 TC 415 Z9 417 U1 20 U2 165 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 1 PY 2009 VL 106 IS 9 AR 094312 DI 10.1063/1.3245330 PG 14 WC Physics, Applied SC Physics GA 529YP UT WOS:000272555700090 ER PT J AU Kim, JB Lu, YH Cho, MH Lee, YP Rhee, JY Lee, JH Ho, KM AF Kim, J. B. Lu, Y. H. Cho, M. H. Lee, Y. P. Rhee, J. Y. Lee, J. -H. Ho, K. -M. TI Diffracted magneto-optical Kerr effect of a Ni magnetic grating SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MAGNETOPHOTONIC CRYSTALS; GYROTROPIC GRATINGS; PHOTONIC CRYSTALS; FILMS AB We report the results of a joint experimental and theoretical investigation focused on the magneto-optical (MO) properties of one-dimensional magnetic grating structure made of Ni It was found that the longitudinal Ken, rotation of the second-order diffracted beam is nearly three times larger than that of the zeroth-order beam. The calculational results further confirmed the experimental ones. and almost perfectly reproduced the measured hysteresis loops of the longitudinal MO Kerr rotation. elucidating the origin of the enhanced MO rotation (C) 2009 American Institute of Physics. [doi: 10.1063/1.3247972] C1 [Kim, J. B.; Lu, Y. H.; Cho, M. H.; Lee, Y. P.] Hanyang Univ, Dept Phys, Seoul 133791, South Korea. [Kim, J. B.; Lu, Y. H.; Cho, M. H.; Lee, Y. P.] Hanyang Univ, Quantum Photon Sci Res Ctr, Seoul 133791, South Korea. [Rhee, J. Y.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Lee, J. -H.; Ho, K. -M.] Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. RP Lee, YP (reprint author), Hanyang Univ, Dept Phys, Seoul 133791, South Korea. EM rheejy@skku.edu RI Rhee, Joo/D-2987-2011 FU NRF through the Quantum Photonic Science Research Center, Seoul, Korea; MEST, Korea [KRF-2008-005-J00703] FX This work was Supported by the NRF through the Quantum Photonic Science Research Center, Seoul, Korea. and MEST, Korea. This work was also supported by the Korean Research Foundation grant funded by the Korean Government (MEST) (Grant No KRF-2008-005-J00703.) NR 25 TC 5 Z9 5 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 1 PY 2009 VL 106 IS 9 AR 093103 DI 10.1063/1.3247972 PG 3 WC Physics, Applied SC Physics GA 529YP UT WOS:000272555700004 ER PT J AU Nguyen, DN Ashworth, SR Willis, JO AF Nguyen, Doan N. Ashworth, Stephen R. Willis, Jeffrey O. TI Experimental and finite-element method studies of the effects of ferromagnetic substrate on the total ac loss in a rolling-assisted biaxially textured substrate YBa2Cu3O7 tape exposed to a parallel ac magnetic field SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID NI-ALLOY SUBSTRATE; COATED CONDUCTORS; TRANSPORT CURRENT; CARRYING AC; SUPERCONDUCTORS AB This paper presents a study of the total ac loss characteristics of a rolling-assisted biaxially textured Substrate (RABiTS) YBa2Cu3O7 (YBCO). sample exposed to a parallel ac magnetic field The results have shown that, for a given applied magnetic field and transport current, a RABiTS YBCO tape can generate very different magnitudes of ac loss, depending on whether the transport current and applied field have the same phase or opposite phase The results of this Study are very important for the optimization of the design of a RABiTS YBCO cable because they can suggest an appropriate arrangement of RABiTS tapes in a cable to minimize the cable ac loss. In this study, both experimental and finite-element method simulation approaches were employed. A modeling model that takes the magnetic field dependent permeability and ferromagnetic loss of the substrate into account reproduced well the experimental data for both self-field and total ac losses. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3255998] C1 [Nguyen, Doan N.; Ashworth, Stephen R.; Willis, Jeffrey O.] Los Alamos Natl Lab, Superconduct Technol Ctr, Los Alamos, NM 87545 USA. RP Nguyen, DN (reprint author), Los Alamos Natl Lab, Superconduct Technol Ctr, POB 1663, Los Alamos, NM 87545 USA. EM doan@lanl.gov RI Nguyen, Doan/F-3148-2010 FU U.S. DOE Office of Electricity Delivery and Energy Reliability FX This work is supported by the U.S. DOE Office of Electricity Delivery and Energy Reliability. American Superconductor Corporation is acknowledged for providing the high performance YBCO samples. NR 23 TC 6 Z9 6 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 1 PY 2009 VL 106 IS 9 AR 093913 DI 10.1063/1.3255998 PG 7 WC Physics, Applied SC Physics GA 529YP UT WOS:000272555700067 ER PT J AU Yang, H Wang, H Maiorov, B Lee, J Talbayev, D Hinton, MJ Feldmann, DM MacManus-Driscoll, JL Taylor, AJ Civale, L Lemberger, TR Jia, QX AF Yang, H. Wang, H. Maiorov, B. Lee, J. Talbayev, D. Hinton, M. J. Feldmann, D. M. MacManus-Driscoll, J. L. Taylor, A. J. Civale, L. Lemberger, T. R. Jia, Q. X. TI Self-assembled multilayers and enhanced superconductivity in (YBa2Cu3O7-x)(0.5): (BaZrO3)(0.5) nanocomposite films SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID THIN-FILMS; DISPERSIONS AB Nanocomposite (YBa2Cu3O7-x)(0) (5): (BaZrO3)(0 5) thin films were fabricated oil (00 1) oriented SrTiO3 Substrates by pulsed laser deposition using a single uniformly mixed target. Both x-ray diffraction and transmission electron microscopy revealed remarkable, spontaneous formation of YBa2Cu3O7-x (YBCO) and BaZrO3 (BZO) multilayers. The high integrity and continuity of the multilayer made it possible to achieve a critical temperature of 88 K, given that the BaZrO3 fraction in the films is 50 mol %. The unique self-assembled microstructure led to a surprising field dependent critical current density along the ab plane. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3257238] C1 [Yang, H.] Soochow Univ, Sch Phys Sci & Technol, Jiangsu Key Lab Thin Films, Suzhou 215006, Peoples R China. [Yang, H.; Maiorov, B.; Talbayev, D.; Feldmann, D. M.; Taylor, A. J.; Civale, L.; Jia, Q. X.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Wang, H.; Lee, J.] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. [Hinton, M. J.; Lemberger, T. R.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [MacManus-Driscoll, J. L.] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England. RP Yang, H (reprint author), Soochow Univ, Sch Phys Sci & Technol, Jiangsu Key Lab Thin Films, Suzhou 215006, Peoples R China. RI Talbayev, Diyar/C-5525-2009; Jia, Q. X./C-5194-2008; Wang, Haiyan/P-3550-2014 OI Talbayev, Diyar/0000-0003-3537-1656; Wang, Haiyan/0000-0002-7397-1209 FU U.S. Department of Energy [DE-FG02-08ER46533] FX We gratefully acknowledge the support of the U.S. Department of Energy through the LANL/LDRD program and the Center for Integrated Nanotechnologies, and the Grant No. DE-FG02-08ER46533 (M.J.H. and T.R.L.) at OSU. NR 18 TC 11 Z9 11 U1 1 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 1 PY 2009 VL 106 IS 9 AR 093914 DI 10.1063/1.3257238 PG 4 WC Physics, Applied SC Physics GA 529YP UT WOS:000272555700068 ER PT J AU Adan-Bayewitz, D Karasik, A Smilansky, U Asaro, F Giauque, RD Lavidor, R AF Adan-Bayewitz, D. Karasik, A. Smilansky, U. Asaro, F. Giauque, R. D. Lavidor, R. TI Differentiation of ceramic chemical element composition and vessel morphology at a pottery production center in Roman Galilee SO JOURNAL OF ARCHAEOLOGICAL SCIENCE LA English DT Article DE Pottery production; Intrasite differentiation; Chemical element composition; Vessel morphology; Roman period; Kefar Hananya ID NEUTRON-ACTIVATION ANALYSIS; TESTING ASSUMPTIONS; STANDARDIZATION; ETHNOARCHAEOLOGY; SPECIALIZATION; TECHNOLOGY; PROVENANCE AB Cooking pots and bowls from two production locations ca. 200 m from each other at the rural settlement of Kefar Hananya in Roman Galilee were compared employing chemical element composition and vessel-shape analyses. Splits of each pulverized sample, all of which were taken from ceramic wasters, were analyzed by both instrumental neutron activation and high-precision X-ray fluorescence analyses, and computerized vessel-shape analysis was employed for morphological analysis of the same vessel forms from each location. Several statistical techniques (bivariate plots, principal component analysis, cluster analysis and discriminant analysis) were used for analyzing the resultant data. It was found that both the cooking pots and bowls made at each location could be distinguished by employing either chemical composition or morphological analysis. The implications of this work, with regard to investigating both production and consumption sites, and for pottery provenance studies, are discussed. The findings suggest that these analytical techniques can be useful as an aid for chronological differentiations of archaeological pottery. (c) 2009 Elsevier Ltd. All rights reserved. C1 [Adan-Bayewitz, D.; Asaro, F.; Giauque, R. D.] Ernest Orlando Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA USA. [Adan-Bayewitz, D.; Lavidor, R.] Bar Ilan Univ, Martin Szusz Dept Land Israel Studies & Archaeol, IL-52900 Ramat Gan, Israel. [Karasik, A.; Smilansky, U.] Weizmann Inst Sci, Dept Phys Complex Syst, IL-76100 Rehovot, Israel. [Karasik, A.] Hebrew Univ Jerusalem, Inst Archaeol, IL-91905 Jerusalem, Israel. RP Adan-Bayewitz, D (reprint author), Ernest Orlando Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA USA. EM dbayewitz@lbl.gov FU U.S. Department of Energy [DEAC03-76F00098]; National Science Foundation [BCS 0002682]; Israel Science Foundation [168/06] FX We are appreciative of the assistance of the reactor staff of the Missouri University Research Reactor at Columbia, Missouri, in providing neutron irradiations. We thank Y. Rinott, Hebrew University, for his counsel on the statistical evaluation of the chemical compositional data, and D.E. Arnold for his comments on an earlier draft of this paper. N. Akiva, T. Almog, and D. Oropeza helped with the preparation of Kefar Hananya samples for chemical composition analysis. We appreciate the efforts of M.D. Levine, N. Padgett, S. Lauer, and M. Kislev in facilitating the work. The work described in this paper was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under contract no. DEAC03-76F00098, and by National Science Foundation Grant BCS 0002682 and Israel Science Foundation Grant 168/06. NR 56 TC 8 Z9 8 U1 1 U2 12 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0305-4403 J9 J ARCHAEOL SCI JI J. Archaeol. Sci. PD NOV PY 2009 VL 36 IS 11 BP 2517 EP 2530 DI 10.1016/j.jas.2009.07.004 PG 14 WC Anthropology; Archaeology; Geosciences, Multidisciplinary SC Anthropology; Archaeology; Geology GA 513OS UT WOS:000271333000005 ER PT J AU Sun, K Stander, N Jhun, CS Zhang, ZH Suzuki, T Wang, GY Saeed, M Wallace, AW Tseng, EE Baker, AJ Saloner, D Einstein, DR Ratcliffe, MB Guccione, JM AF Sun, Kay Stander, Nielen Jhun, Choon-Sik Zhang, Zhihong Suzuki, Takamaro Wang, Guan-Ying Saeed, Maythem Wallace, Arthur W. Tseng, Elaine E. Baker, Anthony J. Saloner, David Einstein, Daniel R. Ratcliffe, Mark B. Guccione, Julius M. TI A Computationally Efficient Formal Optimization of Regional Myocardial Contractility in a Sheep With Left Ventricular Aneurysm SO JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME LA English DT Article DE tagged magnetic resonance imaging; finite element modeling; numerical optimization; cardiac mechanics ID ELEMENT STRESS-ANALYSIS; CANINE LEFT-VENTRICLE; TAGGED MR-IMAGES; UNCONSTRAINED MINIMIZATION; 3-DIMENSIONAL STRAIN; DYNAMIC METHOD; WALL STRESS; HEART; MODEL; ARCHITECTURE AB A noninvasive method for estimating regional myocardial contractility in vivo would be of great value in the design and evaluation of new surgical and medical strategies to treat and/or prevent infarction-induced heart failure. As a first step toward developing such a method, an explicit finite element (FE) model-based formal optimization of regional myocardial contractility in a sheep with left ventricular (LV) aneurysm was performed using tagged magnetic resonance (MR) images and cardiac catheterization pressures. From the tagged MR images, three-dimensional (3D) myocardial strains, LV volumes, and geometry for the animal-specific 3D FE model of the LV were calculated, while the LV pressures provided physiological loading conditions. Active material parameters (T(max_B) and T(max_R)) in the noninfarcted myocardium adjacent to the aneurysm (border-zone) and in the myocardium remote from the aneurysm were estimated by minimizing the errors between FE model-predicted and measured systolic strains and LV volumes using the successive response surface method for optimization. The significant depression in optimized T(max_B) relative to T(max_R) was confirmed by direct ex vivo force measurements from skinned fiber preparations. The optimized values of T(max_B) and T(max_R) were not overly sensitive to the passive material parameters specified. The computation time of less than 5 h associated with our proposed method for estimating regional myocardial contractility in vivo makes it a potentially very useful clinical tool. [DOI: 10.1115/1.3148464] C1 [Sun, Kay; Jhun, Choon-Sik; Zhang, Zhihong; Suzuki, Takamaro; Tseng, Elaine E.; Ratcliffe, Mark B.; Guccione, Julius M.] Univ Calif San Francisco, Dept Surg, San Francisco, CA 94143 USA. [Sun, Kay; Jhun, Choon-Sik; Zhang, Zhihong; Suzuki, Takamaro; Wang, Guan-Ying; Wallace, Arthur W.; Tseng, Elaine E.; Baker, Anthony J.; Saloner, David; Ratcliffe, Mark B.; Guccione, Julius M.] Dept Vet Affairs Med Ctr, San Francisco, CA USA. [Stander, Nielen] Livermore Software Technol Corp, Livermore, CA USA. [Wang, Guan-Ying; Saeed, Maythem; Baker, Anthony J.; Saloner, David] Univ Calif San Francisco, Dept Radiol, San Francisco, CA 94143 USA. [Wallace, Arthur W.] Univ Calif San Francisco, Dept Anesthesia, San Francisco, CA 94143 USA. [Einstein, Daniel R.] Pacific NW Natl Lab, Olympia, WA USA. RP Guccione, JM (reprint author), Univ Calif San Francisco, Dept Surg, San Francisco, CA 94143 USA. EM guccionej@surgery.ucsf.edu FU NIH [R01-HL-77921] FX The authors acknowledge financial support from the NIH under Grant No. R01-HL-77921. NR 44 TC 37 Z9 37 U1 0 U2 2 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0148-0731 J9 J BIOMECH ENG-T ASME JI J. Biomech. Eng.-Trans. ASME PD NOV PY 2009 VL 131 IS 11 AR 111001 DI 10.1115/1.3148464 PG 10 WC Biophysics; Engineering, Biomedical SC Biophysics; Engineering GA 539ZK UT WOS:000273298900001 PM 20016753 ER PT J AU Wataha, JC Hobbs, DT Lockwood, PE Davis, RR Elvington, MC Lewis, JB Messer, RLW AF Wataha, John C. Hobbs, David T. Lockwood, Petra E. Davis, Ryan R. Elvington, Mark C. Lewis, Jill B. Messer, Regina L. W. TI Peroxotitanates for Biodelivery of Metals SO JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS LA English DT Article DE drug delivery; heavy metals; cytotoxicity; mitochondrial activity; monocyte ID MRI CONTRAST AGENTS; MONOSODIUM TITANATE; ACTINIDE SEPARATIONS; PLATINUM COMPLEXES; MERCURY; STRONTIUM; PALLADIUM; CYTOTOXICITY; METABOLISM; TOXICOLOGY AB Metal-based drugs are largely undeveloped in pharmacology. One limiting factor is the systemic toxicity of metal-based compounds. A solid-phase, sequestratable delivery agent for local delivery of metals could reduce systemic toxicity, facilitating new drug development in this nascent area. Amorphous peroxotitanates (APT) are ion-exchange materials with high affinity for several heavy metal ions and have been proposed to deliver or sequester metal ions in biological contexts. In the current study, we tested a hypothesis that APTs are able to deliver metals or metal compounds to cells. We exposed fibroblasts (L929) or monocytes (THP1) to metal-APT materials for 72 h in vitro and then measured cellular mitochondrial activity (SDH-MTT method) to assess the biological impact of the metal-APT materials versus metals or APT alone. APT alone did not significantly affect cellular mitochondrial activity, but all metal-APT materials suppressed the mitochondrial activity of fibroblasts (by 30-65% of controls). The concentration of metal-APT materials required to suppress cellular mitochondrial activity was below that required for metals alone, suggesting that simple extracellular release of the metals from the metal-APT materials was not the primary mechanism of mitochondrial suppression. In contrast to fibroblasts, no metal-APT material had a measurable effect on THPI monocyte mitochondrial activity, despite potent suppression by metals alone. This latter result suggested that "biodelivery" by metal-APT materials may be cell type-specific. Therefore, it appears that APTs are plausible solid-phase delivery agents of metals or metal compounds to some types of cells for potential therapeutic effect. (C) 2009 Wiley Periodicals, Inc.* J Biomed Mater Res Part B: Appl Biornater 91B: 489-496, 2009 C1 [Wataha, John C.] Univ Washington, Dept Restorat Dent, Seattle, WA 98026 USA. [Hobbs, David T.; Elvington, Mark C.] Savannah River Natl Lab, Aiken, SC 29801 USA. [Lockwood, Petra E.; Davis, Ryan R.; Lewis, Jill B.; Messer, Regina L. W.] Med Coll Georgia, Sch Dent, Dept Oral Biol, Augusta, GA 30912 USA. RP Wataha, JC (reprint author), Univ Washington, Dept Restorat Dent, Seattle, WA 98026 USA. EM jwataha@u.washington.edu NR 29 TC 6 Z9 6 U1 0 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1552-4973 EI 1552-4981 J9 J BIOMED MATER RES B JI J. Biomed. Mater. Res. Part B PD NOV PY 2009 VL 91B IS 2 BP 489 EP 496 DI 10.1002/jbm.b.31402 PG 8 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA 507QE UT WOS:000270868600001 PM 19701912 ER PT J AU Kane, SR Ashby, PD Pruitt, LA AF Kane, Sheryl R. Ashby, Paul D. Pruitt, Lisa A. TI ATR-FTIR as a Thickness Measurement Technique for Hydrated Polymer-on-Polymer Coatings SO JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS LA English DT Article DE AFM; FTIR; hip prosthesis; surface analysis; surface modification ID ATOMIC-FORCE MICROSCOPY; WEAR DEBRIS; THIN-FILMS; SURFACE; POLYETHYLENE; ELLIPSOMETRY; DEPOSITION; CAST; XPS AB Hydrated polymer coatings on polymer substrates are common for many biomedical applications, such as tissue engineering constructs; contact lenses, and catheters. The thickness of the coatings can affect the mechanical behavior of the systems and the cellular response, but measuring the coating thickness can be quite challenging using conventional methods. We propose a new method, that is, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) to determine the relative thickness, combined with atomic force microscopy to calibrate the ATR-FTIR measurements. This technique was successfully employed to determine the hydrated thickness of a series of crosslinked tetraglyme coatings on ultrahigh molecular weight polyethylene substrates intended to reduce wear of acetabular cups in total hip replacements. The hydrated coatings ranged from 30 to 200 nm thick and were accurately measured despite the relatively high root-mean-square (RMS) roughness of the substrates, 20-35 nm (peak-to-peak roughness 55-100 nm). The calibrated ATR-FTIR technique is a promising new method for measuring the thickness of many other polymer-on-polymer and hydrated coatings. (C) 2009 Wiley Periodicals, Inc. J Biomed Miller Res Part B: Appl Biomater 9 B: 613-620, 2009 C1 [Kane, Sheryl R.; Pruitt, Lisa A.] UC San Francisco, Joint Grad Grp Bioengn, Berkeley, CA 94720 USA. [Ashby, Paul D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Pruitt, Lisa A.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. RP Pruitt, LA (reprint author), UC San Francisco, Joint Grad Grp Bioengn, Berkeley, CA 94720 USA. EM lpruitt@me.berkeley.edu FU NSF [0505272]; U.S. Department of Energy [DEAC02-05C 111231]; NIH [EB-002027]; UCSF Graduate Student Research Award; AAUW; NSF Graduate Research Fellowship FX Contract grant sponsor: NIH Contract grain number: EB-002027 Contract grant sponsors: UCSF Graduate Student Research Award and AAUW, NSF Graduate Research Fellowship (to S.K.) NR 27 TC 23 Z9 24 U1 3 U2 17 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 1552-4973 J9 J BIOMED MATER RES B JI J. Biomed. Mater. Res. Part B PD NOV PY 2009 VL 91B IS 2 BP 613 EP 620 DI 10.1002/jbm.b.31436 PG 8 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA 507QE UT WOS:000270868600015 PM 19582857 ER PT J AU Chan, JW Lieu, DK AF Chan, James W. Lieu, Deborah K. TI Label-free biochemical characterization of stem cells using vibrational spectroscopy SO JOURNAL OF BIOPHOTONICS LA English DT Review DE Raman spectroscopy; infrared spectroscopy; embryonic stem cells; mesenchymal stem cells; adult stem cells ID SYNCHROTRON INFRARED MICROSPECTROSCOPY; CONFOCAL RAMAN MICROSPECTROSCOPY; INDIVIDUAL LIVING CELLS; IN-VITRO; BIOMEDICAL APPLICATIONS; CELLULAR-COMPONENTS; FT-IR; DIFFERENTIATION; CHALLENGES; TISSUE AB Raman and infrared (IR) spectroscopy are two complementary vibrational spectroscopic techniques that have experienced a tremendous growth in their use in biological and biomedical research. This is, in large part, due to their unique capability of providing label-free intrinsic chemical information of living biological samples at tissue, cellular, or sub-cellular resolutions. This article reviews recent developments in applying these techniques for the characterization of stem cells. A discussion of the potential for these methods to address some of the major challenges in stem cell research is presented, as well as the technological and scientific advancements that are needed to progress the knowledge in the field. [GRAPHICS] . Raman signatures of embryonic stem cells, their derived cardiomocytes and mature fetal cardiomyocytes possess unique spectral markers that enable their group discrimination when analyzed by PCA LDA. (C) 2009 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Chan, James W.] Univ Calif Davis, NSF Ctr Biophoton Sci & Technol, Sacramento, CA 95817 USA. [Chan, James W.] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA. [Lieu, Deborah K.] Univ Calif Davis, Dept Cell Biol & Human Anat, Davis, CA 95616 USA. [Lieu, Deborah K.] Univ Calif Davis, Stem Cell Program, Sacramento, CA 95817 USA. RP Chan, JW (reprint author), Univ Calif Davis, NSF Ctr Biophoton Sci & Technol, 2700 Stockton Blvd Suite 1400, Sacramento, CA 95817 USA. EM chan19@llnl.gov RI Chan, James/J-3829-2014 FU National Science Foundation; [PHY 0120999] FX This work has been supported by funding from the National Science Foundation. The Center for Biophotonics, an NSF Science and Technology Center, is managed by the University of California, Davis, under Cooperative Agreement No. PHY 0120999. NR 50 TC 56 Z9 56 U1 2 U2 30 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1864-063X J9 J BIOPHOTONICS JI J. Biophotonics PD NOV PY 2009 VL 2 IS 11 BP 656 EP 668 DI 10.1002/jbio.200910041 PG 13 WC Biochemical Research Methods; Biophysics; Optics SC Biochemistry & Molecular Biology; Biophysics; Optics GA 524EN UT WOS:000272126700010 PM 19653219 ER PT J AU Nogales, E Ramey, VH AF Nogales, Eva Ramey, Vincent H. TI Structure-function insights into the yeast Dam1 kinetochore complex SO JOURNAL OF CELL SCIENCE LA English DT Article DE Mitosis; Microtubules; Spindle checkpoint ID SPINDLE ASSEMBLY CHECKPOINT; MICROTUBULE DEPOLYMERIZATION; RING COMPLEX; DASH COMPLEX; MOLECULAR ARCHITECTURE; DUO1P/DAM1P COMPLEX; MECHANISMS; INTERFACE; INTEGRITY; MOVEMENT AB Faithful segregation of genetic material during cell division requires the dynamic but robust attachment of chromosomes to spindle microtubules during all stages of mitosis. This regulated attachment occurs at kinetochores, which are complex protein organelles that are essential for cell survival and genome integrity. In budding yeast, in which a single microtubule attaches per kinetochore, a heterodecamer known as the Dam1 complex (or DASH complex) is required for proper chromosome segregation. Recent years have seen a burst of structural and biophysical data concerning this interesting complex, which has caught the attention of the mitosis research field. In vitro, the Dam1 complex interacts directly with tubulin and self-assembles into ring structures around the microtubule surface. The ring is capable of tracking with depolymerizing ends, and a model has been proposed whereby the circular geometry of the oligomeric Dam1 complex allows it to couple the depolymerization of microtubules to processive chromosome movement in the absence of any additional energy source. Although it is attractive and simple, several important aspects of this model remain controversial. Additionally, the generality of the Dam1 mechanism has been questioned owing to the fact that there are no obvious Dam1 homologs beyond fungi. In this Commentary, we discuss recent structure-function studies of this intriguing complex. C1 [Nogales, Eva] Univ Calif Berkeley, Howard Hughes Med Inst, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Nogales, Eva; Ramey, Vincent H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Ramey, Vincent H.] Univ Calif Berkeley, Biophys Grad Program, Berkeley, CA 94720 USA. RP Nogales, E (reprint author), Univ Calif Berkeley, Howard Hughes Med Inst, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. EM enogales@lbl.gov FU US National Institutes of Health; National Institutes of Health FX We thank Greg Alushin for critical reading of the manuscript. This work was supported by training grants from the US National Institutes of Health, by a grant from the National Institute of General Medical Sciences of the US National Institutes of Health and by a Biomedicine chair from the BBVA Foundation to E.N. E.N. is a Howard Hughes Medical Institute Investigator. Deposited in PMC for release after 6 months. NR 45 TC 17 Z9 18 U1 1 U2 3 PU COMPANY OF BIOLOGISTS LTD PI CAMBRIDGE PA BIDDER BUILDING CAMBRIDGE COMMERCIAL PARK COWLEY RD, CAMBRIDGE CB4 4DL, CAMBS, ENGLAND SN 0021-9533 J9 J CELL SCI JI J. Cell Sci. PD NOV 1 PY 2009 VL 122 IS 21 BP 3831 EP 3836 DI 10.1242/jcs.004689 PG 6 WC Cell Biology SC Cell Biology GA 515MK UT WOS:000271475600002 PM 19889968 ER PT J AU Carrano, CJ Wang, XP Poola, B Powell, CB Richmond, MG AF Carrano, Carl J. Wang, Xiaoping Poola, Bhaskar Powell, Cynthia B. Richmond, Michael G. TI alpha-Diimine Ligand Coordination and C-H Bond Activation in the Reaction of Os-3(CO)(10)(MeCN)(2) with 6-R-2,2'-Bipyridine (where R = Et, Ph): X-ray Diffraction Structures of the Ortho-Metalated Hydride Clusters HOs3(CO)(9)(N2C10H6-6-R) SO JOURNAL OF CHEMICAL CRYSTALLOGRAPHY LA English DT Article DE alpha-Diimine ligand; Triosmium clusters; Cyclometalation; Ortho metalation; Ligand substitution ID ORGANIC-SYNTHESIS; HETEROCYCLES; CRYSTAL; FUNCTIONALIZATION; RUTHENIUM(II); CONVERSION; COMPLEXES; PYRIDINES; NITROGEN AB The reactivity of the labile cluster Os-3(CO)(10)(MeCN)(2) (1) with the monofunctionalized heterocyclic ligands 6-R-2,2'-bipyridine (where R = Et, Ph) has been investigated. The alkyl-substituted heterocycle 6-Et-2,2'-bipyridine reacts with 1 in refluxing CH2Cl2 to give an isomeric mixture of HOs3(CO)(9)(N2C12H11) due to cyclometalation of the side-chain ethyl group (2) and ortho metalation of the unsubstituted bipyridine ring (3). The solid-state structure of the latter cluster, HOs3(CO)(9)(N2C10H6-6-Et) (3), has unequivocally established the site of the C-H bond activation in the product. Treatment of 1 with the aryl-substituted ligand 6-Ph-2,2'-bipyridine proceeds similarly with ortho metalation at the ancillary phenyl group and the C-6' ortho site of the unsubstituted bipyridine ring, as verified by H-1 NMR spectroscopy. The X-ray diffraction structure of the thermodynamically more stable bipyridine-metalated cluster HOs3(CO)(9)(N2C10H6-6-Ph) (5) has been determined. The course of these reactions is discussed with respect to our recent study involving the reaction of cluster 1 with the ligand 6-Me-2,2'-bipyridine. C1 [Carrano, Carl J.] San Diego State Univ, Dept Chem & Biochem, San Diego, CA 92182 USA. [Wang, Xiaoping] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Poola, Bhaskar; Richmond, Michael G.] Univ N Texas, Dept Chem, Denton, TX 76203 USA. [Powell, Cynthia B.] Abilene Christian Univ, Dept Chem, Abilene, TX 79699 USA. RP Wang, XP (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. EM carrano@sciences.sdsu.edu; wangx@ornl.gov RI Wang, Xiaoping/E-8050-2012; G, Neela/H-3016-2014 OI Wang, Xiaoping/0000-0001-7143-8112; FU NSF; Robert A. Welch Foundation [B-1093-MGR]; NSF-MRI [CHE-0320848] FX Financial support from the NSF (CJC) and Robert A. Welch Foundation (Grant B-1093-MGR) is greatly appreciated. The NSF-MRI program grant CHE-0320848 is gratefully acknowledged for support of the X-ray diffraction facilities at San Diego State University. We also acknowledge the expert assistance of Dr. Yongxuan Su and his recording the mass spectrum for cluster 5. NR 30 TC 1 Z9 1 U1 0 U2 3 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1074-1542 J9 J CHEM CRYSTALLOGR JI J. Chem. Crystallogr. PD NOV PY 2009 VL 39 IS 11 BP 820 EP 826 DI 10.1007/s10870-009-9574-4 PG 7 WC Crystallography; Spectroscopy SC Crystallography; Spectroscopy GA 495RO UT WOS:000269912900008 ER PT J AU Pan, H Gu, BH Zhang, ZY AF Pan, Hui Gu, Baohua Zhang, Zhenyu TI Phase-Dependent Photocatalytic Ability of TiO2: A First-Principles Study SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID TITANIUM-DIOXIDE; ANATASE TIO2; BAND-GAP; BROOKITE; PRINCIPLES; SYSTEMS; FILMS AB The electronic properties of defected TiO2 were investigated using the first-principles calculations based on density functional theory and generalized gradient approximation. Three typical defects, oxygen vacancy, titanium interstitial, and titanium vacancy, were considered in three TiO2 polymorphs, anatase, rutile, and brookite, respectively. Our calculations demonstrated that the defect band is formed by removing an oxygen atom from or inserting an interstitial Ti atom into the TiO2 lattice, which is responsible for the improvement of photocatalytic ability due to the enhanced visible-light absorption. Our calculations further revealed that the defect formation energy increases as following brockite, anatase, and rutile, indicating that defects are easy to be created in brookite TiO2. The relatively high defect density and wide defect band contribute to the better photocatalytic performance of brookite TiO2 in visible light. C1 [Pan, Hui] Oak Ridge Natl Lab, Div Environm Sci, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Pan, H (reprint author), Oak Ridge Natl Lab, Div Environm Sci, Div Mat Sci & Technol, POB 2008, Oak Ridge, TN 37831 USA. EM panh@ihpc.a-star.edu.sg RI Gu, Baohua/B-9511-2012; Pan, Hui/A-2702-2009 OI Gu, Baohua/0000-0002-7299-2956; Pan, Hui/0000-0002-6515-4970 FU Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC05-00OR22725] FX This work was sponsored by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering and Laboratory Directed Research and Development (LDRD) Program of Oak Ridge National Laboratory (ORNL), which is managed by UT-Battelle LLC for the U.S. Department of Energy under contract No. DE-AC05-00OR22725. The DFT calculations were performed at the Computational Center of Science (CCS) of ORNL. NR 23 TC 28 Z9 28 U1 1 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD NOV PY 2009 VL 5 IS 11 BP 3074 EP 3078 DI 10.1021/ct9002724 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 516DS UT WOS:000271522500017 PM 26609986 ER PT J AU Love, E Rider, WJ Scovazzi, G AF Love, E. Rider, W. J. Scovazzi, G. TI Stability analysis of a predictor/multi-corrector method for staggered-grid Lagrangian shock hydrodynamics SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE von Neumann stability analysis; Predictor/multi-corrector algorithm; Mid-point time integrator; Lagrangian shock hydrodynamics; Staggered formulation ID ARTIFICIAL VISCOSITY; FLUID-FLOW; COMPUTATIONS AB This article presents the complete von Neumann stability analysis of a predictor/multi-corrector scheme derived from an implicit mid-point time integrator often used in shock hydrodynamics computations in combination with staggered spatial discretizations. It is shown that only even iterates of the method yield stable computations, while the odd iterates are, in the most general case, unconditionally unstable. These findings are confirmed by, and illustrated with, a number of numerical computations. Dispersion error analysis is also presented. (C) 2009 Elsevier Inc. All rights reserved. C1 [Love, E.; Rider, W. J.; Scovazzi, G.] Sandia Natl Labs, Computat Shock & Multiphys Dept 1431, Albuquerque, NM 87185 USA. RP Scovazzi, G (reprint author), Sandia Natl Labs, Computat Shock & Multiphys Dept 1431, POB 5800,MS 1319, Albuquerque, NM 87185 USA. EM gscovaz@sandia.gov FU DOE NNSA; Computer Science Research Institute at Sandia National Laboratories; United States Department of Energy [DEAC04-94-AL85000] FX This research was partially funded by the DOE NNSA Advanced Scientific Computing Program and the Computer Science Research Institute at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company. for the United States Department of Energy under Contract DEAC04-94-AL85000. NR 23 TC 2 Z9 3 U1 1 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD NOV 1 PY 2009 VL 228 IS 20 BP 7543 EP 7564 DI 10.1016/j.jcp.2009.06.042 PG 22 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 500PR UT WOS:000270316100003 ER PT J AU Ferraro, NM Jardin, SC AF Ferraro, N. M. Jardin, S. C. TI Calculations of two-fluid magnetohydrodynamic axisymmetric steady-states SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Magnetohydrodynamics; Equilibria; Simulation ID TOROIDAL SYSTEMS; FINITE-ELEMENT; PLASMA; MHD; EQUILIBRIA; TOKAMAK; DIFFUSION; TRANSPORT; FLOW; DIMENSIONS AB M3D-C(1) is an implicit, high-order finite element code for the solution of the time-dependent nonlinear two-fluid magnetohydrodynamic equations [S.C. Jardin, J. Breslau, N. Ferraro, A high-order implicit finite element method for integrating the two-fluid magnetohydrodynamic equations in two dimensions, J. Comp. Phys. 226 (2) (2007) 2146-2174]. This code has now been extended to allow computations in toroidal geometry. Improvements to the spatial integration and time-stepping algorithms are discussed. Steady-states of a resistive two-fluid model, self-consistently including flows, anisotropic viscosity (including gyroviscosity) and heat flux, are calculated for diverted plasmas in geometries typical of the National Spherical Torus Experiment (NSTX) [M. Ono et al., Exploration of spherical torus physics in the NSTX device, Nucl. Fusion 40 (3Y) (2000) 557-561]. These states are found by time-integrating the dynamical equations until the steady-state is reached, and are therefore stationary or statistically steady on both magnetohydrodynamic and transport time-scales. Resistively driven cross-surface flows are found to be in close agreement with Pfirsch-Schlilter theory. Poloidally varying toroidal flows are in agreement with comparable calculations [A.Y. Aydemir, Shear flows at the tokamak edge and their interaction with edge-localized modes, Phys. Plasmas 14]. New effects on core toroidal rotation due to gyroviscosity and a local particle source are observed. (C) 2009 Elsevier Inc. All rights reserved. C1 [Ferraro, N. M.; Jardin, S. C.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Ferraro, NM (reprint author), Gen Atom, La Jolla, CA 92186 USA. EM ferraro@fusion.gat.com RI Jardin, Stephen/E-9392-2010; OI Ferraro, Nathaniel/0000-0002-6348-7827 FU US Department of Energy [DE-AC02-09CH11466]; SciDAC Center for Extended Magnetohydrodynamic Modeling (CEMM) FX We would like to acknowledge the significant and important contributions of A. Bauer, X. Luo, and the RPI SCOREC team to this project for the development of the meshing software used by M3D-C1, and of specialized interfaces to that software. We also thank J. Ramos for informative discussions regarding the gyroviscosity. This work was supported by the US Department of Energy under Contract DE-AC02-09CH11466 and by the SciDAC Center for Extended Magnetohydrodynamic Modeling (CEMM). NR 36 TC 31 Z9 31 U1 1 U2 16 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD NOV 1 PY 2009 VL 228 IS 20 BP 7742 EP 7770 DI 10.1016/j.jcp.2009.07.015 PG 29 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 500PR UT WOS:000270316100013 ER PT J AU Frantziskonis, G Muralidharan, K Deymier, P Simunovic, S Nukala, P Pannala, S AF Frantziskonis, G. Muralidharan, K. Deymier, P. Simunovic, S. Nukala, P. Pannala, S. TI Time-parallel multiscale/multiphysics framework SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Parallel-in-time; Wavelet-based multiscaling ID OSCILLATORY DIFFERENTIAL-EQUATIONS; CLASSICAL MOLECULAR-DYNAMICS; CHEMICAL-REACTIONS; PARAREAL; HOMOGENIZATION; DISCRETIZATION; INTEGRATORS; SCALES; PDES AB We introduce the time-parallel compound wavelet matrix method (tpCWM) for modeling the temporal evolution of multiscale and multiphysics systems. The method couples time parallel (TP) and CWM methods operating at different spatial and temporal scales. We demonstrate the efficiency of our approach on two examples: a chemical reaction kinetic system and a non-linear predator-prey system. Our results indicate that the tpCWM technique is capable of accelerating time-to-solution by 2-3-orders of magnitude and is amenable to efficient parallel implementation. (C) 2009 Elsevier Inc. All rights reserved. C1 [Frantziskonis, G.; Muralidharan, K.; Deymier, P.] Univ Arizona, Tucson, AZ 85721 USA. [Simunovic, S.; Nukala, P.; Pannala, S.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Frantziskonis, G (reprint author), Univ Arizona, Tucson, AZ 85721 USA. EM frantzis@email.arizona.edu RI Pannala, Sreekanth/F-9507-2010 FU Mathematical, Information, and Computational Sciences Division; Office of Advanced Scientific Computing Research, US Department of Energy; Oak Ridge National Laboratory [De-AC05-00OR22725] FX This research is sponsored by the Mathematical, Information, and Computational Sciences Division, Office of Advanced Scientific Computing Research, US Department of Energy. The work was partly performed at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC under Contract No. De-AC05-00OR22725. The authors thank Dr. Stuart Daw at Oak Ridge National Laboratory, Sudib Mishra at University of Arizona, and Drs. Rodney Fox and Z. Gao at Iowa State University for helpful discussions and feedback on the manuscript. NR 37 TC 12 Z9 12 U1 1 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD NOV PY 2009 VL 228 IS 21 BP 8085 EP 8092 DI 10.1016/j.jcp.2009.07.035 PG 8 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 541CD UT WOS:000273389500011 ER PT J AU Allen, MS Sumali, H Penegor, PC AF Allen, Matthew S. Sumali, Hartono Penegor, Peter C. TI DMCMN: Experimental/Analytical Evaluation of the Effect of Tip Mass on Atomic Force Microscope Cantilever Calibration SO JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME LA English DT Article DE atomic force microscopy; beams (structures); calibration; cantilevers; displacement measurement; elastic constants; error analysis; Q-factor; scanning electron microscopy ID OPTICAL SPOT SIZE; SPRING CONSTANTS; THERMAL NOISE; VIBRATION; BEAMS AB Quantitative studies of material properties and interfaces using the atomic force microscope (AFM) have important applications in engineering, biotechnology, and chemistry. Contrary to what the name suggests, the AFM actually measures the displacement of a microscale probe, so one must determine the stiffness of the probe to find the force exerted on a sample. Numerous methods have been proposed for determining the spring constant of AFM cantilever probes, yet most neglect the mass of the probe tip. This work explores the effect of the tip mass on AFM calibration using the method of Sader (1995, "Method for the Calibration of Atomic Force Microscope Cantilevers," Rev. Sci. Instrum., 66, pp. 3789) and extends that method to account for a massive, rigid tip. One can use this modified method to estimate the spring constant of a cantilever from the measured natural frequency and Q-factor for any mode of the probe. This may be helpful when the fundamental mode is difficult to measure or to check for inaccuracies in the calibration obtained with the fundamental mode. The error analysis presented here shows that if the tip is not considered, then the error in the static stiffness is roughly of the same order as the ratio of the tip's mass to the cantilever beam's. The area density of the AFM probe is also misestimated if the tip mass is not accounted for, although the trends are different. The model presented here can be used to identify the mass of a probe tip from measurements of the natural frequencies of the probe. These concepts are applied to six low spring-constant, contact-mode AFM cantilevers, and the results suggest that some of the probes are well modeled by an Euler-Bernoulli beam with a constant cross section and a rigid tip, while others are not. One probe is examined in detail, using scanning electron microscopy to quantify the size of the tip and the thickness uniformity of the probe, and laser Doppler vibrometry is used to measure the first four mode shapes. The results suggest that this probe's thickness is significantly nonuniform, so the models upon which dynamic calibration is based may not be appropriate for this probe. C1 [Allen, Matthew S.] Univ Wisconsin, Madison, WI 53706 USA. [Sumali, Hartono] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Penegor, Peter C.] Univ Wisconsin Madison, Brookfield, WI 53005 USA. RP Allen, MS (reprint author), Univ Wisconsin, 535 ERB,1500 Engn Dr, Madison, WI 53706 USA. EM msallen@engr.wisc.edu; hsumali@sandia.gov; penegor@gmail.com RI Allen, Matthew/H-4068-2011 FU U.S. Department of Energy [DE-AC04-94-AL85000] FX Part of this work was conducted at Sandia National Laboratories. Sandia is a multiprogram laboratory operated under Sandia Corporation, a Lockheed Martin Co., for the U.S. Department of Energy under Contract No. DE-AC04-94-AL85000. The authors also wish to acknowledge Hendrik Frentrup for his efforts acquiring and processing the thermal spectra used here. NR 38 TC 9 Z9 9 U1 0 U2 5 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0022-0434 J9 J DYN SYST-T ASME JI J. Dyn. Syst. Meas. Control-Trans. ASME PD NOV PY 2009 VL 131 IS 6 AR 064501 DI 10.1115/1.4000160 PG 10 WC Automation & Control Systems; Instruments & Instrumentation SC Automation & Control Systems; Instruments & Instrumentation GA 517VK UT WOS:000271646800015 ER PT J AU Kastengren, AL Powell, CF Im, KS Wang, YJ Wang, J AF Kastengren, A. L. Powell, C. F. Im, K. -S. Wang, Y. -J. Wang, J. TI Measurement of Biodiesel Blend and Conventional Diesel Spray Structure Using X-Ray Radiography SO JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME LA English DT Article; Proceedings Paper CT ASME Internal Combustion Engine Division Sprint Technical Conference CY APR 27-30, 2008 CL Chicago, IL SP ASME, Internal Combust Engine Div DE biofuel; nozzles; radiography; sprays; X-rays ID COMBUSTION; FUELS AB The near-nozzle structure of several nonevaporating biodiesel-blend sprays has been studied using X-ray radiography. Radiography allows quantitative measurements of the fuel distribution in sprays to be made with high temporal and spatial resolution. Measurements have been made at different values of injection pressure, ambient density, and with two different nozzle geometries to understand the influences of these parameters on the spray structure of the biodiesel blend. These measurements have been compared with corresponding measurements of Viscor, a diesel calibration fluid, to demonstrate the fuel effects on the spray structure. Generally, the biodiesel-blend spray has a similar structure to the spray of Viscor. For the nonhydroground nozzle used in this study, the biodiesel-blend spray has a slightly slower penetration into the ambient gas than the Viscor spray. The cone angle of the biodiesel-blend spray is generally smaller than that of the Viscor spray, indicating that the biodiesel-blend spray is denser than the Viscor spray. For the hydroground nozzle, both fuels produce sprays with initially wide cone angles that transition to narrow sprays during the steady-state portion of the injection event. These variations in cone angle with time occur later for the biodiesel-blend spray than for the Viscor spray, indicating that the dynamics of the injector needle as it opens are somewhat different for the two fuels. C1 [Kastengren, A. L.; Powell, C. F.] Argonne Natl Lab, Ctr Transportat Res, Argonne, IL 60439 USA. [Im, K. -S.; Wang, Y. -J.; Wang, J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Kastengren, AL (reprint author), Argonne Natl Lab, Ctr Transportat Res, 9700 S Cass Ave, Argonne, IL 60439 USA. EM akastengren@anl.gov RI wang, yujie/C-2582-2015 NR 26 TC 5 Z9 5 U1 0 U2 6 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0742-4795 J9 J ENG GAS TURB POWER JI J. Eng. Gas. Turbines Power-Trans. ASME PD NOV PY 2009 VL 131 IS 6 AR 062802 DI 10.1115/1.3094023 PG 7 WC Engineering, Mechanical SC Engineering GA 472WI UT WOS:000268163100012 ER PT J AU Rubin, J Leiby, PN Greene, DL AF Rubin, Jonathan Leiby, Paul N. Greene, David L. TI Tradable fuel economy credits: Competition and oligopoly SO JOURNAL OF ENVIRONMENTAL ECONOMICS AND MANAGEMENT LA English DT Article DE GHG; Credits; Cost-benefit; Socioeconomic; Energy conservation ID MARKET POWER; STANDARDS; CONSEQUENCES; EFFICIENCY; RIGHTS AB Corporate average fuel economy (CAFE) regulations specify minimum standards for fuel efficiency that vehicle manufacturers must meet independently. We design a system of tradeable fuel economy credits that allows trading across vehicle classes and manufacturers with and without considering market power in the credit market. We perform numerical simulations to measure the potential cost savings from moving from the current CAFE system to one with stricter standards, but that allows vehicle manufacturers various levels of increased flexibility. We find that the ability for each manufacturer to average credits between its cars and trucks provides a large percentage of the potential savings. As expected, the greatest savings come from the greatest flexibility in the credit system. Market power lowers the potential cost savings to the industry as a whole, but only modestly. Loss in efficiency from market power does not eliminate the gains from credit trading. (C) 2009 Elsevier Inc. All rights reserved. C1 [Rubin, Jonathan] Univ Maine, Margaret Chase Smith Policy Ctr, Orono, ME 04469 USA. [Rubin, Jonathan] Univ Maine, Sch Econ, Orono, ME 04469 USA. [Leiby, Paul N.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Greene, David L.] Oak Ridge Natl Lab, Natl Transportat Res Ctr, Knoxville, TN 37932 USA. RP Rubin, J (reprint author), Univ Maine, Margaret Chase Smith Policy Ctr, 5715 Coburn Hall, Orono, ME 04469 USA. EM jonathan.rubin@umit.maine.edu; LeibyPN@ornl.gov; dlgreene@ornl.gov NR 28 TC 6 Z9 6 U1 0 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0095-0696 J9 J ENVIRON ECON MANAG JI J.Environ.Econ.Manage. PD NOV PY 2009 VL 58 IS 3 BP 315 EP 328 DI 10.1016/j.jeem.2009.05.002 PG 14 WC Business; Economics; Environmental Studies SC Business & Economics; Environmental Sciences & Ecology GA 527KF UT WOS:000272365300006 ER PT J AU Burger, S Riciputi, LR AF Buerger, S. Riciputi, L. R. TI A rapid isotope ratio analysis protocol for nuclear solid materials using nano-second laser-ablation time-of-flight ICP-MS SO JOURNAL OF ENVIRONMENTAL RADIOACTIVITY LA English DT Article DE Nano-second laser-ablation; Time-of-flight ICP-MS; Solid samples; Rapid isotope screening; Isotope ratio analysis; Nuclear forensic analysis; Nuclear safeguard analysis ID PLASMA-MASS SPECTROMETRY; ELEMENTAL RESPONSE VARIATIONS; FORENSIC ANALYSIS; ENVIRONMENTAL-SAMPLES; URANIUM MATRICES; UV-FEMTOSECOND; PLUTONIUM; IMPURITIES; SAFEGUARDS; PRECISION AB The analysis of the isotopic composition of nuclear or non-nuclear solid materials is performed in a variety of fields, e.g., for quality, assurance in the production of nuclear fuels, as signatures in forensics, nuclear safeguards, and non-proliferation control, in material characterization, geology, and archeology. We have investigated the capability of laser ablation (New Wave Research, 213 nm) coupled to time-of-flight (TOF) ICP-MS (GBC OptiMass 8000) as a rapid analytical protocol for multi-isotope screening of nuclear and non-nuclear solid samples. This includes natural and non-natural isotopic compositions for elements including Cu. Zr, Mo, Cd, In, Ba, Ta, W, Re, Pt, Pb, and U, in pure metals, alloys, and glasses. Without correcting for mass bias (mass fractionation), an overall precision and accuracy of about 4% (1 sigma) can be achieved by minimizing the deposited laser power and thus fractionation (mass removal based on thermal properties). The precision and accuracy in combination with literally no or minimized sample preparation enables a rapid isotope screening of solid samples that is of particular interest to support nuclear forensic and safeguard analysis. (c) 2009 Elsevier Ltd. All rights reserved. C1 [Buerger, S.] New Brunswick Lab, Dept Energy, Argonne, IL 60439 USA. [Buerger, S.; Riciputi, L. R.] Oak Ridge Natl Lab, Transuranium Res Inst, Div Chem Sci, Chem & Isotope Mass Spectrometry Grp, Oak Ridge, TN 37831 USA. [Riciputi, L. R.] Los Alamos Natl Lab, Nucl & Radiochem Grp, Los Alamos, NM 87545 USA. RP Burger, S (reprint author), New Brunswick Lab, Dept Energy, 9800 S Cass Ave,Bldg 350, Argonne, IL 60439 USA. EM stefan.buerger@ch.doe.gov FU National Nuclear Security Administration (NNSA); U.S. Department of Energy [DE-AC05-000R22725]; Oak Ridge National Laboratory; UT-Battelle, LLC; U.S. Government [DE-AC05-000R22725] FX We like to thank the two reviewers for their helpful comments. Research sponsored by the Office of Nonproliferation and International Security (NA-24), National Nuclear Security Administration (NNSA), U.S. Department of Energy, under contract DE-AC05-000R22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. The submitted manuscript was authored by a contractor of the U.S. Government under contract No. DE-AC05-000R22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. NR 64 TC 6 Z9 6 U1 4 U2 22 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0265-931X J9 J ENVIRON RADIOACTIV JI J. Environ. Radioact. PD NOV PY 2009 VL 100 IS 11 BP 970 EP 976 DI 10.1016/j.jenvrad.2009.07.009 PG 7 WC Environmental Sciences SC Environmental Sciences & Ecology GA 504OR UT WOS:000270627000007 PM 19716213 ER PT J AU Garabrant, DH Aylward, LL Berent, S Chen, QX Timchalk, C Burns, CJ Hays, SM Albers, JW AF Garabrant, David H. Aylward, Lesa L. Berent, Stanley Chen, Qixuan Timchalk, Charles Burns, Carol J. Hays, Sean M. Albers, James W. TI Cholinesterase inhibition in chlorpyrifos workers: Characterization of biomarkers of exposure and response in relation to urinary TCPy SO JOURNAL OF EXPOSURE SCIENCE AND ENVIRONMENTAL EPIDEMIOLOGY LA English DT Article DE cholinesterase inhibition; chlorpyrifos; urinary 3;5;6-trichloro-2-pyridinol; dose-response assessment ID ORGANOPHOSPHATE PESTICIDE EXPOSURE; PHARMACODYNAMIC PBPK/PD MODEL; OCCUPATIONAL-EXPOSURE; INSECTICIDE CHLORPYRIFOS; PROSPECTIVE COHORT; NERVOUS-SYSTEM; 3,5,6-TRICHLORO-2-PYRIDINOL; PHARMACOKINETICS; METABOLITES; POPULATION AB The objective of this study was to evaluate the quantitative relation between measured red blood cell acetylcholinesterase (RBC AChE) and plasma butyrylcholinesterase (BuChE) activities with exposure to chlorpyrifos (CPF) as assessed by measurement of urinary 3,5,6-trichloro-2-pyridinol (TCPy) in a study group of workers occupationally exposed in the manufacture of CPF and a referent group of chemical manufacturing workers. Measures of plasma BuChE and RBC AChE activity and urinary TCPy concentration collected over a year-long study (1999-2000) in CPF-exposed workers (n = 53) and referents (n = 60) were analyzed using linear mixed models to characterize exposure-response relationships. Intraindividual variability in cholinesterase measures was compared between CPF-exposed workers and referents. Urinary TCPy concentrations in CPF workers were substantially elevated compared to referents, with median and 95th percentile concentrations during typical employment conditions 10-fold and more than 30-fold higher, respectively, than corresponding measures in the referents. Intraindividual variability in cholinesterase activities was substantial, with 17% of unexposed referents experiencing one or more plasma BuChE measures more than 20% below baseline over a year of repeated, periodic measurements. RBC AChE activity, an early biomarker of effect, was unrelated to urinary TCPy concentration over the entire range of exposure, up to 1000 mu g TCPy/g creatinine (Cr). Plasma BuChE activity, a non-adverse biomarker of exposure, was negatively related to urinary TCPy concentrations above approximately 110 mu g TCPy/g Cr. No-effect levels for inhibition of plasma BuChE and RBC AChE corresponding to absorbed doses of CPF of approximately 5 and greater than 50 mu g/kg/day, respectively, were identified. These findings are consistent with previous no-effect level determinations for ChE inhibition in humans and suggest that general population CPF exposure levels are substantially below the identified no-effect levels. The dose-response relationships observed in this study are consistent with predictions from the previously published physiologically based pharmacokinetic/pharmacodynamic model for CPF. Intraindividual variability in measured cholinesterase activities in referents was substantial, suggesting that ongoing monitoring programs may have a substantial rate of false positives. Journal of Exposure Science and Environmental Epidemiology (2009) 19, 634-642; doi:10.1038/jes.2008.51; published online 20 August 2008 C1 [Aylward, Lesa L.] Summit Toxicol LLP, Falls Church, VA 22044 USA. [Garabrant, David H.] Univ Michigan, Sch Publ Hlth, Risk Sci Ctr, Ann Arbor, MI 48109 USA. [Garabrant, David H.] Univ Michigan, Sch Publ Hlth, Dept Environm Hlth Sci, Ann Arbor, MI 48109 USA. [Berent, Stanley] Univ Michigan, Sch Med, Dept Psychiat, Ann Arbor, MI USA. [Chen, Qixuan] Univ Michigan, Sch Publ Hlth, Dept Biostat, Ann Arbor, MI 48109 USA. [Timchalk, Charles] Battelle Pacific NW Div, Richland, WA USA. [Burns, Carol J.] Dow Chem Co USA, Midland, MI 48674 USA. [Hays, Sean M.] Summit Toxicol LLP, Lyons, CO USA. [Albers, James W.] Univ Michigan, Sch Med, Dept Neurol, Ann Arbor, MI USA. RP Aylward, LL (reprint author), Summit Toxicol LLP, 6343 Carolyn Dr, Falls Church, VA 22044 USA. EM laylward@summittoxicology.com RI Chen, Qixuan/G-6547-2012; Aylward, Lesa/F-7418-2012 OI Aylward, Lesa/0000-0003-3191-8175 FU Dow Agrosciences; Indianapolis; Indiana; The Dow Chemical Company; Dow Chemical Company Foundation; Centers for Disease Control and Prevention (CDC) [R01 OH003629, R01 OH008173] FX Research support: This study was financially supported by Dow Agrosciences, Indianapolis, Indiana, with additional support from The Dow Chemical Company and Dow Chemical Company Foundation, which included a SPHERE ( Supporting Public Health and Environmental Research Efforts) Award. Model simulations were supported by grants R01 OH003629 and R01 OH008173 from the Centers for Disease Control and Prevention (CDC). The contents of this article are solely the responsibility of the authors and have not been subject to review by CDC and therefore do not necessarily represent the official view of CDC, and no official endorsement should be inferred. NR 34 TC 33 Z9 33 U1 0 U2 11 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1559-0631 J9 J EXPO SCI ENV EPID JI J. Expo. Sci. Environ. Epidemiol. PD NOV PY 2009 VL 19 IS 7 BP 634 EP 642 DI 10.1038/jes.2008.51 PG 9 WC Environmental Sciences; Public, Environmental & Occupational Health; Toxicology SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Toxicology GA 508SA UT WOS:000270953500002 PM 18716607 ER PT J AU Bobet, A Fakhimi, A Johnson, S Morris, J Tonon, F Yeung, MR AF Bobet, A. Fakhimi, A. Johnson, S. Morris, J. Tonon, F. Yeung, M. Ronald TI Numerical Models in Discontinuous Media: Review of Advances for Rock Mechanics Applications SO JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING LA English DT Review ID DEFORMATION ANALYSIS DDA; SMOOTHED PARTICLE HYDRODYNAMICS; DISCRETE ELEMENT SIMULATION; CONTACT DETECTION ALGORITHM; QUASI-BRITTLE MATERIALS; STABILITY ANALYSIS; POLYHEDRAL BLOCKS; SLOPE-STABILITY; FRACTURE; FAILURE AB The paper presents a description of the methods used to model rock as discontinuous media. The objective of the work is to bring to the geomechanics community recent advances in numerical modeling in the field of rock mechanics. The following methods are included: (1) the distinct element method; (2) the discontinuous deformation analysis method; and (3) the bonded particle method. A brief description of the fundamental algorithms that apply to each method is included, as well as a simple case to illustrate their use. C1 [Bobet, A.] Purdue Univ, Sch Civil Engn, W Lafayette, IN 47907 USA. [Fakhimi, A.] New Mexico Inst Min & Technol, Dept Mineral Engn, Socorro, NM USA. [Fakhimi, A.] Tarbiat Modares Univ, Dept Civil Engn, Tehran 87801, Iran. [Johnson, S.] Lawrence Livermore Natl Lab, Computat Phys Grp, Livermore, CA 94551 USA. [Morris, J.] Lawrence Livermore Natl Lab, Computat Phys Grp, Livermore, CA 94451 USA. [Tonon, F.] Univ Texas Austin, Dept Civil Engn, Austin, TX 78712 USA. [Yeung, M. Ronald] Calif State Polytech Univ Pomona, Dept Civil Engn, Pomona, CA 91768 USA. RP Bobet, A (reprint author), Purdue Univ, Sch Civil Engn, W Lafayette, IN 47907 USA. EM bobet@purdue.edu; hamed@nmt.edu; johnson346@llnl.gov; morris50@llnl.gov; tonon@mail.utexas.edu; mryeung@csupomona.edu RI Tonon, Fulvio/G-6128-2015 OI Tonon, Fulvio/0000-0002-3211-3320 NR 167 TC 41 Z9 44 U1 8 U2 51 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 1090-0241 J9 J GEOTECH GEOENVIRON JI J. Geotech. Geoenviron. Eng. PD NOV PY 2009 VL 135 IS 11 BP 1547 EP 1561 DI 10.1061/(ASCE)GT.1943-5606.0000133 PG 15 WC Engineering, Geological; Geosciences, Multidisciplinary SC Engineering; Geology GA 508FB UT WOS:000270913200001 ER PT J AU Accardi, A Hobbs, T Melnitchouk, W AF Accardi, A. Hobbs, T. Melnitchouk, W. TI Hadron mass corrections in semi-inclusive deep inelastic scattering SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Deep Inelastic Scattering; Parton Model; QCD ID TARGET; FRAGMENTATION; MULTIPLICITY; DUALITY; PIONS; SUM AB We derive mass corrections for semi-inclusive deep inelastic scattering of leptons from nucleons using a collinear factorization framework which incorporates the initial state mass of the target nucleon and the final state mass of the produced hadron. The formalism is constructed specifically to ensure that physical kinematic thresholds for the semi-inclusive process are explicitly respected. A systematic study of the kinematic dependencies of the mass corrections to semi-inclusive cross sections reveals that these are even larger than for inclusive structure functions, especially at very small and very large hadron momentum fractions. The hadron mass corrections compete with the experimental uncertainties at kinematics typical of current facilities, and will be important to efforts at extracting parton distributions or fragmentation functions from semi-inclusive processes at intermediate energies. C1 [Accardi, A.] Hampton Univ, Hampton, VA 23668 USA. [Accardi, A.; Hobbs, T.; Melnitchouk, W.] Jefferson Lab, Newport News, VA 23606 USA. RP Accardi, A (reprint author), Hampton Univ, Hampton, VA 23668 USA. EM accardi@jlab.org; thobbs@jlab.org; wmelnitc@jlab.org FU DOE [DE-AC05-06OR23177]; NSF [0653508] FX We thank S. Albino, A. Bacchetta, R. Sassot and M. Schlegel for helpful discussions and communications. This work was supported by the DOE contract No. DE-AC05-06OR23177, under which Jefferson Science Associates, LLC operates Jefferson Lab, and NSF award No. 0653508. NR 33 TC 7 Z9 7 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD NOV PY 2009 IS 11 AR 084 DI 10.1088/1126-6708/2009/11/084 PG 19 WC Physics, Particles & Fields SC Physics GA 536AA UT WOS:000273012100084 ER PT J AU Accardi, A Bacchetta, A Melnitchouk, W Schlegel, M AF Accardi, Alberto Bacchetta, Alessandro Melnitchouk, W. Schlegel, Marc TI What can break the Wandzura-Wilczek relation? SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Deep Inelastic Scattering; Parton Model; QCD ID DEEP-INELASTIC SCATTERING; MOMENTUM DEPENDENT DISTRIBUTION; POLARIZED STRUCTURE FUNCTIONS; LORENTZ-INVARIANCE RELATIONS; TRANSVERSE-SPIN ASYMMETRIES; TARGET MASS CORRECTIONS; DRELL-YAN PROCESS; PARTON DISTRIBUTIONS; SUM-RULES; FRAGMENTATION FUNCTIONS AB We analyze the breaking of the Wandzura-Wilczek relation for the g(2) structure function, emphasizing its connection with transverse momentum dependent parton distribution functions. We find that the relation is broken by two distinct twist-3 terms, and clarify how these can be separated in measurements of double-spin asymmetries in semi-inclusive deep inelastic scattering. Through a quantitative analysis of available g(2) data we also show that the breaking of the Wandzura-Wilczek relation can be as large as 15-40% of the size of g(2). C1 [Accardi, Alberto; Bacchetta, Alessandro; Melnitchouk, W.; Schlegel, Marc] Jefferson Lab, Div Theory, Newport News, VA 23606 USA. [Accardi, Alberto] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [Bacchetta, Alessandro] Univ Pavia, Dipartimento Fis Nucl & Teor, I-27100 Pavia, Italy. RP Accardi, A (reprint author), Jefferson Lab, Div Theory, 12000 Jefferson Ave, Newport News, VA 23606 USA. EM accardi@jlab.org; alessandro.bacchetta@jlab.org; wmelnitc@jlab.org; marc.schlegel@jlab.org RI Bacchetta, Alessandro/F-3199-2012 OI Bacchetta, Alessandro/0000-0002-8824-8355 FU DOE [DE-AC05-06OR23177]; NSF [0653508] FX We are grateful to M. Burkardt and A. Metz for helpful discussions. This work was supported by the DOE contract No. DE-AC05-06OR23177, under which Jefferson Science Associates, LLC operates Jefferson Lab, and NSF award No. 0653508. NR 80 TC 26 Z9 26 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD NOV PY 2009 IS 11 AR 093 DI 10.1088/1126-6708/2009/11/093 PG 24 WC Physics, Particles & Fields SC Physics GA 536AA UT WOS:000273012100093 ER PT J AU Airapetian, A Akopov, N Akopov, Z Aschenauer, EC Augustyniak, W Avakian, R Avetissian, A Avetisyan, E Ball, B Belostotski, S Blok, HP Borissov, A Bowles, J Bryzgalov, V Burns, J Capitani, GP Cisbani, E Ciullo, G Contalbrigo, M Dalpiaz, PF Deconinck, W De Leo, R De Nardo, L De Sanctis, E Diefenthaler, M Di Nezza, P Duren, M Ehrenfried, M Elbakian, G Ellinghaus, F Fabbri, R Fantoni, A Felawka, L Frullani, S Gabbert, D Gapienko, G Gapienko, V Garibaldi, F Gavrilov, G Gharibyan, V Giordano, F Gliske, S Hadjidakis, C Hartig, M Hasch, D Hill, G Hillenbrand, A Hoek, M Holler, Y Hristova, I Imazu, Y Ivanilov, A Jackson, HE Jo, HS Joosten, S Kaiser, R Karyan, G Keri, T Kinney, E Kisselev, A Kobayashi, N Korotkov, V Kozlov, V Kravchenko, P Lagamba, L Lamb, R Lapikas, L Lehmann, I Lenisa, P Ruiz, AL Lorenzon, W Lu, XG Lu, XR Ma, BQ Mahon, D Makins, NCR Manaenkov, SI Mao, Y Marianski, B de la Ossa, AM Marukyan, H Miller, CA Miyachi, Y Movsisyan, A Muccifora, V Murray, M Mussgiller, A Nappi, E Naryshkin, Y Nass, A Negodaev, M Nowak, WD Pappalardo, LL Perez-Benito, R Pickert, N Raithel, M Reimer, PE Reolon, AR Riedl, C Rith, K Rosner, G Rostomyan, A Rubin, J Ryckbosch, D Salomatin, Y Sanftl, F Schafer, A Schnell, G Schuler, KP Seitz, B Shibata, TA Shutov, V Stancari, M Statera, M Steffens, E Steijger, JJM Stenzel, H Stewart, J Stinzing, F Terkulov, A Trzcinski, A Tytgat, M Van Haarlem, Y Van Hulse, C Veretennikov, D Vikhrov, V Vilardi, I Vogel, C Wang, S Yaschenko, S Ye, Z Yen, S Yu, W Zeiler, D Zihlmann, B Zupranski, P AF Airapetian, A. Akopov, N. Akopov, Z. Aschenauer, E. C. Augustyniak, W. Avakian, R. Avetissian, A. Avetisyan, E. Ball, B. Belostotski, S. Blok, H. P. Borissov, A. Bowles, J. Bryzgalov, V. Burns, J. Capitani, G. P. Cisbani, E. Ciullo, G. Contalbrigo, M. Dalpiaz, P. F. Deconinck, W. De Leo, R. De Nardo, L. De Sanctis, E. Diefenthaler, M. Di Nezza, P. Dueren, M. Ehrenfried, M. Elbakian, G. Ellinghaus, F. Fabbri, R. Fantoni, A. Felawka, L. Frullani, S. Gabbert, D. Gapienko, G. Gapienko, V. Garibaldi, F. Gavrilov, G. Gharibyan, V. Giordano, F. Gliske, S. Hadjidakis, C. Hartig, M. Hasch, D. Hill, G. Hillenbrand, A. Hoek, M. Holler, Y. Hristova, I. Imazu, Y. Ivanilov, A. Jackson, H. E. Jo, H. S. Joosten, S. Kaiser, R. Karyan, G. Keri, T. Kinney, E. Kisselev, A. Kobayashi, N. Korotkov, V. Kozlov, V. Kravchenko, P. Lagamba, L. Lamb, R. Lapikas, L. Lehmann, I. Lenisa, P. Ruiz, A. Lopez Lorenzon, W. Lu, X. -G. Lu, X. -R. Ma, B. -Q. Mahon, D. Makins, N. C. R. Manaenkov, S. I. Mao, Y. Marianski, B. de la Ossa, A. Martinez Marukyan, H. Miller, C. A. Miyachi, Y. Movsisyan, A. Muccifora, V. Murray, M. Mussgiller, A. Nappi, E. Naryshkin, Y. Nass, A. Negodaev, M. Nowak, W. -D. Pappalardo, L. L. Perez-Benito, R. Pickert, N. Raithel, M. Reimer, P. E. Reolon, A. R. Riedl, C. Rith, K. Rosner, G. Rostomyan, A. Rubin, J. Ryckbosch, D. Salomatin, Y. Sanftl, F. Schaefer, A. Schnell, G. Schueler, K. P. Seitz, B. Shibata, T. -A. Shutov, V. Stancari, M. Statera, M. Steffens, E. Steijger, J. J. M. Stenzel, H. Stewart, J. Stinzing, F. Terkulov, A. Trzcinski, A. Tytgat, M. Van Haarlem, Y. Van Hulse, C. Veretennikov, D. Vikhrov, V. Vilardi, I. Vogel, C. Wang, S. Yaschenko, S. Ye, Z. Yen, S. Yu, W. Zeiler, D. Zihlmann, B. Zupranski, P. CA HERMES Collaboration TI Separation of contributions from deeply virtual Compton scattering and its interference with the Bethe-Heitler process in measurements on a hydrogen target SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Lepton-Nucleon Scattering ID PARTON DISTRIBUTIONS; NUCLEON; SPIN; ELECTROPRODUCTION; AMPLITUDE AB Hard exclusive leptoproduction of real photons from an unpolarized proton target is studied in an effort to elucidate generalized parton distributions. The data accumulated during the years 1996-2005 with the HERMES spectrometer are analyzed to yield asymmetries with respect to the combined dependence of the cross section on beam helicity and charge, thereby revealing previously unseparated contributions from deeply virtual Compton scattering and its interference with the Bethe-Heitler process. The integrated luminosity is sufficient to show correlated dependences on two kinematic variables, and provides the most precise determination of the dependence on only the beam charge. C1 [Aschenauer, E. C.; Jackson, H. E.; Reimer, P. E.; Stewart, J.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Deconinck, W.; De Leo, R.; Lagamba, L.; Nappi, E.; Vilardi, I.] Ist Nazl Fis Nucl, Sez Bari, I-70124 Bari, Italy. [Ehrenfried, M.; Ma, B. -Q.; Mao, Y.; Wang, S.] Peking Univ, Sch Phys, Beijing 100871, Peoples R China. [Ellinghaus, F.; Kinney, E.; de la Ossa, A. Martinez] Univ Colorado, Nucl Phys Lab, Boulder, CO 80309 USA. [Akopov, Z.; Avetisyan, E.; Borissov, A.; Deconinck, W.; De Nardo, L.; Gavrilov, G.; Giordano, F.; Hadjidakis, C.; Hartig, M.; Holler, Y.; Mussgiller, A.; Rostomyan, A.; Schueler, K. P.; Ye, Z.; Zihlmann, B.] DESY, D-22603 Hamburg, Germany. [Aschenauer, E. C.; Fabbri, R.; Gabbert, D.; Hartig, M.; Hillenbrand, A.; Hristova, I.; Lu, X. -G.; Negodaev, M.; Nowak, W. -D.; Riedl, C.; Schnell, G.; Stewart, J.; Yaschenko, S.] DESY, D-15738 Zeuthen, Germany. [Lu, X. -R.; Shutov, V.] Joint Inst Nucl Res, Dubna 141980, Russia. [Diefenthaler, M.; Mussgiller, A.; Nass, A.; Pickert, N.; Raithel, M.; Rith, K.; Steffens, E.; Stinzing, F.; Vogel, C.; Yaschenko, S.; Zeiler, D.] Univ Erlangen Nurnberg, Inst Phys, D-91058 Erlangen, Germany. [Ciullo, G.; Contalbrigo, M.; Dalpiaz, P. F.; Giordano, F.; Lenisa, P.; Pappalardo, L. L.; Stancari, M.; Statera, M.; Van Haarlem, Y.] Univ Ferrara, Sez Ferrara, Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. [Ciullo, G.; Contalbrigo, M.; Dalpiaz, P. F.; Giordano, F.; Lenisa, P.; Pappalardo, L. L.; Stancari, M.; Statera, M.; Van Haarlem, Y.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Capitani, G. P.; De Sanctis, E.; Di Nezza, P.; Fantoni, A.; Hadjidakis, C.; Hasch, D.; Muccifora, V.; Reolon, A. R.; Vilardi, I.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Jo, H. S.; Joosten, S.; Ruiz, A. Lopez; Ryckbosch, D.; Schnell, G.; Tytgat, M.; Van Haarlem, Y.; Van Hulse, C.; Vogel, C.] Univ Ghent, Dept Subatom & Radiat Phys, B-9000 Ghent, Belgium. [Airapetian, A.; Dueren, M.; Ehrenfried, M.; Keri, T.; Perez-Benito, R.; Stenzel, H.; Ye, Z.; Yu, W.] Univ Giessen, Inst Phys, D-35392 Giessen, Germany. [Bowles, J.; Burns, J.; Hill, G.; Hoek, M.; Kaiser, R.; Keri, T.; Lehmann, I.; Mahon, D.; Murray, M.; Rosner, G.; Seitz, B.; Zihlmann, B.] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. [Diefenthaler, M.; Joosten, S.; Lamb, R.; Makins, N. C. R.; Rubin, J.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Airapetian, A.; Ball, B.; Deconinck, W.; De Nardo, L.; Gliske, S.; Lorenzon, W.] Univ Michigan, Randall Lab Phys, Ann Arbor, MI 48109 USA. [Kozlov, V.; Terkulov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Blok, H. P.; Lapikas, L.; Steijger, J. J. M.] NIKHEF H, Natl Inst Subatom Phys, NL-1009 DB Amsterdam, Netherlands. [Belostotski, S.; Gavrilov, G.; Kisselev, A.; Kravchenko, P.; Manaenkov, S. I.; Naryshkin, Y.; Veretennikov, D.; Vikhrov, V.] Petersburg Nucl Phys Inst, Gatchina 188300, Leningrad Reg, Russia. [Bryzgalov, V.; Gapienko, G.; Gapienko, V.; Ivanilov, A.; Korotkov, V.; Salomatin, Y.] Inst High Energy Phys, Protvino 142281, Moscow Region, Russia. [Sanftl, F.; Schaefer, A.] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany. [Cisbani, E.; Frullani, S.; Garibaldi, F.] Ist Super Sanita, Phys Lab, I-00161 Rome, Italy. [Cisbani, E.; Frullani, S.; Garibaldi, F.] Ist Nazl Fis Nucl, Grp Sanita, Sez Roma 1, I-00161 Rome, Italy. [Felawka, L.; Gavrilov, G.; Miller, C. A.; Yen, S.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Imazu, Y.; Kobayashi, N.; Lu, X. -R.; Miyachi, Y.; Shibata, T. -A.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Blok, H. P.] Vrije Univ Amsterdam, Dept Phys, NL-1081 HV Amsterdam, Netherlands. [Augustyniak, W.; Marianski, B.; Trzcinski, A.; Zupranski, P.] Andrzej Soltan Inst Nucl Studies, PL-00689 Warsaw, Poland. [Akopov, N.; Avakian, R.; Avetissian, A.; Elbakian, G.; Gharibyan, V.; Karyan, G.; Marukyan, H.; Movsisyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. RP Airapetian, A (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM klaus.rith@desy.de RI Cisbani, Evaristo/C-9249-2011; Deconinck, Wouter/F-4054-2012; Gavrilov, Gennady/C-6260-2013; Reimer, Paul/E-2223-2013; Negodaev, Mikhail/A-7026-2014; Kozlov, Valentin/M-8000-2015; Terkulov, Adel/M-8581-2015 OI Cisbani, Evaristo/0000-0002-6774-8473; FU FWO-Flanders and IWT, Belgium; Natural Sciences and Engineering Research Council of Canada; National Natural Science Foundation of China; Alexander von Humboldt Stiftung; German Bundesministerium fur Bildung und Forschung (BMBF); Deutsche Forschungsgemeinschaft (DFG); Italian Istituto Nazionale di Fisica Nucleare (INFN); MEXT, JSPS, and G-COE of Japan; Dutch Foundation for Fundamenteel Onderzoek der Materie (FOM); U. K. Engineering and Physical Sciences Research Council; Science and Technology Facilities Council; Scottish Universities Physics Alliance; U.S. Department of Energy (DOE); National Science Foundation (NSF); Russian Academy of Science; Russian Federal Agency for Science and Innovations; Ministry of Economy; Ministry of Education and Science of Armenia; European Community- Research Infrastructure Activity [RII3-CT-2004-506078] FX We gratefully acknowledge the Desy management for its support and the staff at Desy and the collaborating institutions for their significant effort. This work was supported by the FWO-Flanders and IWT, Belgium; the Natural Sciences and Engineering Research Council of Canada; the National Natural Science Foundation of China; the Alexander von Humboldt Stiftung; the German Bundesministerium fur Bildung und Forschung (BMBF); the Deutsche Forschungsgemeinschaft (DFG); the Italian Istituto Nazionale di Fisica Nucleare (INFN); the MEXT, JSPS, and G-COE of Japan; the Dutch Foundation for Fundamenteel Onderzoek der Materie (FOM); the U. K. Engineering and Physical Sciences Research Council, the Science and Technology Facilities Council, and the Scottish Universities Physics Alliance; the U.S. Department of Energy (DOE) and the National Science Foundation (NSF); the Russian Academy of Science and the Russian Federal Agency for Science and Innovations; the Ministry of Economy and the Ministry of Education and Science of Armenia; and the European Community- Research Infrastructure Activity under the FP6 "Structuring the European Research Area" program (HadronPhysics, contract number RII3-CT-2004-506078). NR 53 TC 34 Z9 34 U1 1 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD NOV PY 2009 IS 11 AR 083 DI 10.1088/1126-6708/2009/11/083 PG 22 WC Physics, Particles & Fields SC Physics GA 536AA UT WOS:000273012100083 ER PT J AU Avsar, E Iancu, E McLerran, L Triantafyllopoulos, DN AF Avsar, E. Iancu, E. McLerran, L. Triantafyllopoulos, D. N. TI Shockwaves and deep inelastic scattering within the gauge/gravity duality SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Supersymmetric gauge theory; Gauge-gravity correspondence; Deep Inelastic Scattering; Nonperturbative Effects ID RENORMALIZATION; ADS/CFT; PLASMA; LIMIT AB Within the gauge/gravity correspondence, we discuss the general formulation of the shockwave metric which is dual to a 'nucleus' described by the strongly-coupled N = 4 SYM theory in the limit where the number of colors N-c is arbitrarily large. We emphasize that the 'nucleus' must possess N-c(2) degrees of freedom per unit volume, so like a finite-temperature plasma, in order for a supergravity description to exist. We critically reassess previous proposals for introducing transverse inhomogeneity in the shockwave and formulate a new proposal in that sense, which involves no external source but requires the introduction of an 'infrared' cutoff which mimics confinement. This cutoff however plays no role when the shockwave is probed by a highly virtual projectile, so like in deep inelastic scattering. We consider two such projectiles, the dilaton and the R-current, and compute the respective structure functions including unitarity corrections. We find that there are no leading-twist contributions to the structure functions at high virtuality, meaning that there are no point-like constituents in the strongly coupled 'nucleus'. In the black-disk regime at low virtuality, the structure functions are suggestive of parton saturation with occupation numbers of order one. The saturation momentum Q(s) grows with the energy like Q(s)(2)similar to 1/x (with x the Bjorken variable), which is the hallmark of graviton exchanges and is also necessary for the fulfillment of the energy-momentum sum rules. C1 [Avsar, E.; Iancu, E.] Inst Phys & Theor Saclay, F-91191 Gif Sur Yvette, France. [McLerran, L.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [McLerran, L.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Triantafyllopoulos, D. N.] Tech Univ Wien, Inst Theoret Phys, A-1040 Vienna, Austria. RP Avsar, E (reprint author), Inst Phys & Theor Saclay, F-91191 Gif Sur Yvette, France. EM Emil.Avsar@cea.fr; Edmond.Iancu@cea.fr; mclerran@bnl.gov; dionysis@hep.itp.tuwien.ac.at RI Triantafyllopoulos, Dionysios/J-2052-2014 OI Triantafyllopoulos, Dionysios/0000-0002-0952-4201 NR 62 TC 28 Z9 28 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD NOV PY 2009 IS 11 AR 105 DI 10.1088/1126-6708/2009/11/105 PG 46 WC Physics, Particles & Fields SC Physics GA 536AA UT WOS:000273012100105 ER PT J AU Bai, Y Fox, PJ AF Bai, Yang Fox, Patrick J. TI Resonant dark matter SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Beyond Standard Model; Electromagnetic Processes and Properties ID NUCLEAR RECOIL; DAMA/LIBRA; SEARCH AB It is usually assumed that dark matter direct detection is sensitive to a large fraction of the dark matter (DM) velocity distribution. We propose an alternative form of dark matter-nucleus scattering which only probes a narrow range of DM velocities due to the existence of a resonance, a DM-nucleus bound state, in the scattering-resonant dark matter (rDM). The scattering cross section becomes highly element dependent, has increased modulation and as a result can explain the DAMA/LIBRA results whilst not being in conflict with other direct detection experiments. We describe a simple model that realizes the dynamics of rDM, where the DM is the neutral component of a fermionic weak triplet whose charged partners differ in mass by approximately 10MeV. C1 [Bai, Yang; Fox, Patrick J.] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. RP Bai, Y (reprint author), Fermilab Natl Accelerator Lab, Dept Theoret Phys, POB 500, Batavia, IL 60510 USA. EM bai@fnal.gov; pjfox@fnal.gov FU Fermi Research Alliance, LLC [DE-AC02-07CH11359] FX Many thanks to Spencer Chang, Scott Dodelson, S. K. Kim, Kaixuan Ni for interesting discussions. We thank Maxim Pospelov for stimulating discussions and reading a draft of this paper. Fermilab is operated by Fermi Research Alliance, LLC under contract no. DE-AC02-07CH11359 with the United States Department of Energy. NR 39 TC 25 Z9 25 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD NOV PY 2009 IS 11 AR 052 DI 10.1088/1126-6708/2009/11/052 PG 20 WC Physics, Particles & Fields SC Physics GA 536AA UT WOS:000273012100052 ER PT J AU Ibe, M Murayama, H Shirai, S Yanagida, TT AF Ibe, Masahiro Murayama, Hitoshi Shirai, Satoshi Yanagida, Tsutomu T. TI Cosmic ray spectra in Nambu-Goldstone dark matter models SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Cosmology of Theories beyond the SM; Beyond Standard Model; Supersymmetric Standard Model ID DYNAMICAL SUPERSYMMETRY BREAKING; POSITRON FRACTION; ABUNDANCES; ELECTRONS; ENERGIES; AXION AB We discuss the cosmic ray spectra in annihilating/decaying Nambu-Goldstone dark matter models. The recent observed positron/electron excesses at PAMELA and Fermi experiments are well fitted by the dark matter with a mass of 3 TeV for the annihilating model, while with a mass of 6 TeV for the decaying model. We also show that the Nambu- Goldstone dark matter models predict a distinctive gamma-ray spectrum in a certain parameter space. C1 [Ibe, Masahiro] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Murayama, Hitoshi] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Murayama, Hitoshi] LBNL, Theoret Phys Grp, Berkeley, CA 94720 USA. [Murayama, Hitoshi; Shirai, Satoshi; Yanagida, Tsutomu T.] Univ Tokyo, Inst Phys & Math Universe, Kashiwa, Chiba 2778568, Japan. [Shirai, Satoshi; Yanagida, Tsutomu T.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. RP Ibe, M (reprint author), SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. EM mibe@uci.edu; hitoshi.murayama@ipmu.jp; shirai@hep-th.phys.s.u-tokyo.ac.jp; tsutomu.tyanagida@ipmu.jp RI Yanagida, Tsutomu/A-4394-2011; Murayama, Hitoshi/A-4286-2011 FU U.S. Department of Energy [DE-AC02-76SF00515, DE-AC03-76SF00098]; MEXT, Japan; NSF [PHY-04-57315]; JSPS FX The work of M. I. was supported by the U.S. Department of Energy under contract number DE-AC02-76SF00515. The work of H. M. and T.T.Y. was supported in part by World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan. The work of H. M. was also supported in part by the U.S. DOE under Contract DE-AC03-76SF00098, and in part by the NSF under grant PHY-04-57315. The work of SS is supported in part by JSPS Research Fellowships for Young Scientists. NR 51 TC 9 Z9 9 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD NOV PY 2009 IS 11 AR 120 DI 10.1088/1126-6708/2009/11/120 PG 23 WC Physics, Particles & Fields SC Physics GA 536AA UT WOS:000273012100120 ER PT J AU Skup, E Trimpl, M Yarema, R Yun, JC AF Skup, E. Trimpl, M. Yarema, R. Yun, J. C. TI Demonstration of fine pitch FCOB (Flip Chip on Board) assembly based on solder bumps at Fermilab SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Detector design and construction technologies and materials; Electronic detector readout concepts (solid-state); Manufacturing; Large detector systems for particle and astroparticle physics AB Bump bonding is a superior assembly alternative compared to conventional wire bond techniques. It offers a highly reliable connection with greatly reduced parasitic properties. The Flip Chip on Board (FCOB) procedure is an especially attractive packaging method for applications requiring a large number of connections at moderate pitch. This paper reports on the successful demonstration of FCOB assembly based on solder bumps down to 250 mu m pitch using a SUSS MA8 mask aligner at Fermilab. The assembly procedure will be described, microscopic cross sections of the connections are shown, and first measurements on the contact resistance are presented. C1 [Skup, E.; Trimpl, M.; Yarema, R.; Yun, J. C.] Fermi Natl Lab, Batavia, IL 60510 USA. RP Trimpl, M (reprint author), Fermi Natl Lab, Batavia, IL 60510 USA. EM trimpl@ieee.org NR 3 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD NOV PY 2009 VL 4 AR T11001 DI 10.1088/1748-0221/4/11/T11001 PG 8 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 540NY UT WOS:000273341600027 ER PT J AU Ozer, MM Wang, CZ Zhang, ZY Weitering, HH AF Oezer, Mustafa M. Wang, Cai-Zhuang Zhang, Zhenyu Weitering, Hanno H. TI Quantum Size Effects in the Growth, Coarsening, and Properties of Ultra-thin Metal Films and Related Nanostructures SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE Metal films; Metal islands; Quantum size effects; Electronic growth; Stability; Coarsening; Superconductivity; Work function; Reactivity; Catalysis ID BY-LAYER GROWTH; EQUILIBRIUM SHAPE; ELECTRON-DENSITY; PB ISLANDS; SURFACES; SUPERCONDUCTIVITY; TEMPERATURE; LEAD; INTERFACE; GE(001) AB This review addresses the quantum mechanical nature of the formation and stability of ultrathin metal films. The competition between quantum confinement, charge spilling effects, and Friedel oscillations determines whether an atomically smooth metal film will be marginally, critically, or magically stable or totally unstable against roughening. Pb(111) films represent a special case, not only because of strong quantum oscillations in the stability of two-dimensional thin films but also because of the exceptionally fast coarsening of Pb nanoclusters. The latter appears to be due to the combined effects of size quantization and the existence of a unique mass exchange medium in the form of an unusually dense and highly dynamic wetting layer. The consequences of size quantization on the physical and chemical properties of the films are profound, some of which will be highlighted in this review. C1 [Oezer, Mustafa M.; Zhang, Zhenyu; Weitering, Hanno H.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Wang, Cai-Zhuang] Iowa State Univ, Dept Phys & Astron, Ames Lab USDOE, Ames, IA 50011 USA. [Zhang, Zhenyu; Weitering, Hanno H.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Ozer, MM (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM mozer@utk.edu FU NSF [DMR 06-06485]; US-DOE Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; US Department of Energy [DE-AC05-00OR22725]; National Energy Research Supercomputing Center (NERSC) in Berkeley; Iowa State University [DE-AC02-07CH11358] FX We thank J. R. Thompson, Y. Jia, B. Wu, E. J. Moon, K.- M. Ho, M. C. Tringides, J. W. Evans, M. Z. Li, and M. Hupalo for their contributions to this work. HHW and ZYZ acknowledge financial support from NSF under contract No. DMR 06-06485 and the US-DOE Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the US Department of Energy under Contract No. DE-AC05-00OR22725. CZW acknowledges support by the Director for Energy Research, Office of Basic Energy Sciences, including a grant of computer time at the National Energy Research Supercomputing Center (NERSC) in Berkeley. The Ames Laboratory is operated for the U. S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. NR 73 TC 19 Z9 19 U1 6 U2 25 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 EI 1573-7357 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD NOV PY 2009 VL 157 IS 3-4 SI SI BP 221 EP 251 DI 10.1007/s10909-009-9905-z PG 31 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 501MC UT WOS:000270385000009 ER PT J AU Liu, JC Johnson, JK AF Liu, Jinchen Johnson, J. Karl TI Prediction of CH4/H-2 Mixture Selectivity in Zn(tbip) from Computer Simulations SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE Zn(tbip); CH4/H-2 mixture; Membrane separation ID METAL-ORGANIC FRAMEWORKS; ATOMISTIC SIMULATIONS; SILICALITE MEMBRANES; SURFACE RESISTANCES; SEPARATIONS; DIFFUSION; TRANSPORT; ADSORPTION; CF4; CH4 AB We have computed CH4/H-2 mixture adsorption isotherms and mixture self-diffusivities in Zn(tbip), a nanoporous metal organic material, at 298 K using grand canonical Monte Carlo and equilibrium molecular dynamics simulations. We calculated the adsorption and diffusion selectivities from our simulation results. An approximate model was used to estimate the maximum membrane selectivities. The adsorption selectivity very strongly favors CH4 over H-2, whereas the diffusion selectivity favors H-2 over CH4. We find that the adsorption selectivity dominates the mixture selectivity, giving values in the range of 6-50 CH4/H-2. This indicates that Zn(tbip) may be useful for separating CH4/H-2 mixtures. C1 [Liu, Jinchen; Johnson, J. Karl] Univ Pittsburgh, Dept Chem Engn, Pittsburgh, PA 15260 USA. [Liu, Jinchen; Johnson, J. Karl] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Johnson, JK (reprint author), Univ Pittsburgh, Dept Chem Engn, Pittsburgh, PA 15260 USA. EM jliu@puccini.che.pitt.edu; karlj@pitt.edu RI Johnson, Karl/E-9733-2013 OI Johnson, Karl/0000-0002-3608-8003 FU RDS [DE-AC26-04NT41817] FX This work was performed in support of the National Energy Technology Laboratory's ongoing research in the area of carbon management under the RDS contract DE-AC26-04NT41817. NR 29 TC 13 Z9 13 U1 1 U2 7 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD NOV PY 2009 VL 157 IS 3-4 SI SI BP 268 EP 276 DI 10.1007/s10909-009-9910-2 PG 9 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 501MC UT WOS:000270385000011 ER PT J AU Pecharsky, VK Gschneidner, KA Mudryk, Y Paudyal, D AF Pecharsky, V. K. Gschneidner, K. A., Jr. Mudryk, Ya. Paudyal, Durga TI Making the most of the magnetic and lattice entropy changes SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS LA English DT Article DE Magnetocaloric effect; Giant magnetocaloric effect; Magnetic cooling; Isothermal magnetic entropy change; Adiabatic temperature change; Magnetostructural transformation; Phase-separated state; Magnetic hysteresis ID 1ST-ORDER PHASE-TRANSITION; ROOM-TEMPERATURE APPLICATIONS; GD-5(SI2GE2); REFRIGERATION; ALLOYS; GD-5(SIXGE1-X)(4); MNAS1-XSBX; GD5SI2GE2 AB Recent discoveries of novel materials exhibiting a magnetocaloric effect that is strongly enhanced by the magnetoelastic coupling - the so-called giant magnetocaloric effect materials - stimulated an unprecedented expansion of research related both to the fundamentals of the phenomenon and potential future applications of these materials in continuous magnetic cooling near room temperature. The subject of this work is two fold. On one hand, systems exhibiting the giant magneto caloric effect may be prone to hysteresis, and may exist in nonequilibrium, phase-separated states, thus requiring a special care when their intrinsic physical properties are of interest. On the other hand, in order to harvest most of the magnetocaloric potential of a specific compound, both the magnetic and lattice degrees of freedom of the material must be precisely controlled. (C) 2008 Elsevier B.V. All rights reserved. C1 [Pecharsky, V. K.; Gschneidner, K. A., Jr.; Mudryk, Ya.; Paudyal, Durga] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Pecharsky, VK (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM vitkp@ameslab.gov FU Office of Basic Energy Sciences of the Office of Sciences of the US Department of Energy [DE-AC02-07CH11358] FX This work was supported by the Office of Basic Energy Sciences of the Office of Sciences of the US Department of Energy under Contract no. DE-AC02-07CH11358 with Iowa State University of Science and Technology. NR 44 TC 39 Z9 41 U1 4 U2 36 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-8853 J9 J MAGN MAGN MATER JI J. Magn. Magn. Mater. PD NOV PY 2009 VL 321 IS 21 BP 3541 EP 3547 DI 10.1016/j.jmmm.2008.03.013 PG 7 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA 493FT UT WOS:000269721100003 ER PT J AU Bridges, CA Krishnamurthy, VV Poulton, S Paranthaman, MP Sales, BC Myers, C Bobev, S AF Bridges, C. A. Krishnamurthy, V. V. Poulton, S. Paranthaman, M. P. Sales, B. C. Myers, C. Bobev, S. TI Magnetic order in CaMn2Sb2 studied via powder neutron diffraction SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS LA English DT Article DE Polar; Intermetallic; Magnetic structure; Representational analysis; Antiferromagnet; Neutron diffraction ID SOLID-STATE; SYMMETRY AB This paper reports a neutron powder diffraction study of CaMn2Sb2 in the temperature range of 20-300K. Collinear long-range antiferromagnetic order of manganese ions occurs below 85 K, where a transition is observed in the dc magnetic susceptibility measured with a single crystal. Short-range magnetic order, characterized by a broad diffraction peak corresponding to a d-spacing of approximately 4 angstrom(2 theta approximate to 22 degrees), is also observed above 20K. The long-range antiferromagnetic order is indexed by the chemical unit cell, indicating a propagation vector k = (000), with a refined magnetic moment of 3.38 mu(B) at 20 K. Two possible magnetic models have been identified, which differ in spin orientation for the two manganese ions with respect to the ab plane. The model with spins oriented at a 25 +/- 2 degrees angle relative to the ab plane gives an improved fit compared to the other model in which the spins are constrained to the ab plane. Representational analysis can account for a model involving a c-axis component only by the mixing of two irreducible representations. Published by Elsevier B.V. C1 [Bridges, C. A.; Krishnamurthy, V. V.; Paranthaman, M. P.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Poulton, S.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Poulton, S.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Sales, B. C.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Myers, C.; Bobev, S.] Univ Delaware, Dept Chem, Newark, DE 19716 USA. RP Bridges, CA (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM bridgesca@ornl.gov RI Paranthaman, Mariappan/N-3866-2015 OI Paranthaman, Mariappan/0000-0003-3009-8531 FU Division of Materials Sciences and Engineering (DMSE), Office of Basic Energy Sciences, US Department of Energy [DE-AC05-00OR22725]; Oak Ridge National Laboratory; University of Delaware and the Petroleum Research Fund (ACS-PRF); NSF Summer Research Program in Solid State Chemistry FX This research was sponsored by the Division of Materials Sciences and Engineering (DMSE), Office of Basic Energy Sciences, US Department of Energy under Contract no. DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed by UT-Battelle, LLC. S.B. gratefully acknowledges funding from the University of Delaware and the Petroleum Research Fund (ACS-PRF). C.M. was financially supported by the 2007 NSF Summer Research Program in Solid State Chemistry. NR 21 TC 7 Z9 7 U1 1 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-8853 J9 J MAGN MAGN MATER JI J. Magn. Magn. Mater. PD NOV PY 2009 VL 321 IS 22 BP 3653 EP 3657 DI 10.1016/j.jmmm.2009.07.015 PG 5 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA 493FN UT WOS:000269720200002 ER PT J AU Alsmadi, AM Alyones, S Mielke, CH McDonald, RD Zapf, V Altarawneh, MM Lacerda, A Chang, S Adak, S Kothapalli, K Nakotte, H AF Alsmadi, A. M. Alyones, S. Mielke, C. H. McDonald, R. D. Zapf, V. Altarawneh, M. M. Lacerda, A. Chang, S. Adak, S. Kothapalli, K. Nakotte, H. TI Radio-frequency measurements of UNiX compounds (X = Al, Ga, Ge) in high magnetic fields SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS LA English DT Article DE Uranium compounds; Complex conductivity; Metamagnetic transition ID TUNNEL-DIODE OSCILLATOR; TRANSPORT-PROPERTIES; GIANT MAGNETORESISTANCE; UTX COMPOUNDS; PRESSURE; TRANSITIONS; SERIES; NI; CO AB We performed radio-frequency (RF) skin-depth measurements of antiferromagnetic UNiX compounds (X = Al, Ga, Ge) in magnetic fields up to 60 T and at tempeatures between 1.4 to similar to 60K. Magnetic fields are applied along different crystallographic directions and RF penetration-depth was measured using a tunnel-diode oscillator (DO) circuit. The sample is coupled to the inductive element of a TDO resonant tank circuit, and the shift in the resonant frequency Delta f of the circuit is measured. The UNiX compounds exhibit field-induced magnetic transitions at low temperatures, and those transitions are accompanied by a drastic change in Delta f. The results of our skin-depth measurements were compared with previously published B-T phase diagrams for these three compounds. (C) 2009 Elsevier B.V. All rights reserved. C1 [Alsmadi, A. M.; Alyones, S.] Hashemite Univ, Dept Phys, Zarqa 13115, Jordan. [Mielke, C. H.; McDonald, R. D.; Zapf, V.; Altarawneh, M. M.; Lacerda, A.] Los Alamos Natl Lab, Pulsed Field Facil, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Chang, S.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Adak, S.; Kothapalli, K.; Nakotte, H.] New Mexico State Univ, Dept Phys, Las Cruces, NM 88003 USA. RP Alsmadi, AM (reprint author), Hashemite Univ, Dept Phys, Zarqa 13115, Jordan. EM alsmadi_abd@yahoo.com RI Adak, Sourav /G-3080-2010; McDonald, Ross/H-3783-2013; Zapf, Vivien/K-5645-2013; Mielke, Charles/S-6827-2016; OI McDonald, Ross/0000-0002-0188-1087; Zapf, Vivien/0000-0002-8375-4515; Mielke, Charles/0000-0002-2096-5411; Mcdonald, Ross/0000-0002-5819-4739 FU NSF, the US Department of Energy and the State of Florida [DMR-0804032]; NHMFL, Los Alamos FX The work was supported by a grant from NSF(Grant no: DMR-0804032). The NSF, the US Department of Energy and the State of Florida supported the work at the NHMFL, Los Alamos facility. The Hashemite University provided partial support for this work. NR 41 TC 1 Z9 1 U1 2 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-8853 J9 J MAGN MAGN MATER JI J. Magn. Magn. Mater. PD NOV PY 2009 VL 321 IS 22 BP 3712 EP 3718 DI 10.1016/j.jmmm.2009.07.022 PG 7 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA 493FN UT WOS:000269720200013 ER PT J AU Bercoff, PG Bertorello, HR Saux, C Pierella, LB Botta, PM Kanazawa, T Zhang, Y AF Bercoff, P. G. Bertorello, H. R. Saux, C. Pierella, L. B. Botta, P. M. Kanazawa, Toshiyuki Zhang, Ying TI Magnetic properties of Co-impregnated zeolites SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS LA English DT Article DE Co-zeolite; Wet impregnation; Magnetic property; Cubic Co ID SELECTIVE REDUCTION; MOLECULAR-SIEVES; NANOMAGNETISM; RELAXATION; PARTICLES; CO-ZSM-5; COBALT AB The structure and magnetic properties of Co-containing zeolites prepared by wet impregnation were investigated. The samples were calcined and then reduced in flowing H(2). The samples studied have large saturation magnetization due to the presence of cubic Co particles over a wide range of sizes. The zero field cooling-field cooling curves show a sharp magnetization peak with a blocking temperature around 7 K followed by an exponential decay and two other peaks - of much lower amplitude - around 160 and 280 K. The low temperature peak is analyzed considering first, at T(crit), thermal relaxation toward equilibrium over an energy barrier, with increasing viscosity S with T. Above T(crit) relaxation does not occur and viscosity abruptly goes to zero. The behavior of the smallest Co particles is unusual above the blocking temperature. (C) 2009 Elsevier B.V. All rights reserved. C1 [Bercoff, P. G.; Bertorello, H. R.] Univ Nacl Cordoba, FAMAF, RA-5000 Cordoba, Argentina. [Bercoff, P. G.; Bertorello, H. R.] Consejo Nacl Invest Cient & Tecn, IFFAMAF, RA-1033 Buenos Aires, DF, Argentina. [Saux, C.; Pierella, L. B.] UTN, Fac Reg Cordoba, CITeQ, Cordoba, Argentina. [Botta, P. M.] Conicet UNMdP, INTEMA, Mar Del Plata, Buenos Aires, Argentina. [Kanazawa, Toshiyuki] JEOL USA, Peabody, MA 01960 USA. [Zhang, Ying] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Bercoff, PG (reprint author), Univ Nacl Cordoba, FAMAF, RA-5000 Cordoba, Argentina. EM bercoff@famaf.unc.edu.ar FU Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Argentina [6452, 6313/05]; Agencia Nacional de Promocion Cientifica y Tecnologica, Argentina [12-14657]; Secretaria de Ciencia y Tecnologia, Universidad Nacional de Cordoba, Argentina [UTN-PID 25E092]; Ministry of Science and Education of Spain (MEC) [2004-05130-C02-01]; Department of Energy, Office of Basic Energy Sciences [DE-AC02-07CH11358] FX This work was partially funded by Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Argentina, PIP no. 6452 and PIP no. 6313/05; Agencia Nacional de Promocion Cientifica y Tecnologica, Argentina, PICT no. 12-14657; Secretaria de Ciencia y Tecnologia, Universidad Nacional de Cordoba, Argentina; UTN-PID 25E092; the Ministry of Science and Education of Spain (MEC) under Project MAT 2004-05130-C02-01. The work at the Ames Laboratory was supported by the Department of Energy, Office of Basic Energy Sciences, under Contract no. DE-AC02-07CH11358. P. G. Bercoff is indebted to M. J. Kramer, from Ames Laboratory, for his invaluable help with TEM/STEM images. NR 23 TC 3 Z9 3 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-8853 J9 J MAGN MAGN MATER JI J. Magn. Magn. Mater. PD NOV PY 2009 VL 321 IS 22 BP 3813 EP 3820 DI 10.1016/j.jmmm.2009.07.046 PG 8 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA 493FN UT WOS:000269720200030 ER PT J AU Musgraves, JD Potter, BG Boyle, TJ AF Musgraves, J. David Potter, Barrett G., Jr. Boyle, Timothy J. TI Nanostructure development in photodeposited, titania-based thin films SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID SIMULATION; ALKOXIDES AB Ultraviolet irradiation (lambda = 248 nm) was used to photocatalyze a solution of the heteroleptic titanium alkoxide (OPY)(2)Ti(TAP)(2) [where OPy = pyridine carbinoxide and TAP = 2,4,6 tris(dimethylamino)phenoxide], leading to the deposition of a titania-based thin film only in the exposed region. The effect of water addition to the (OPY)(2)Ti(TAP)(2) pyridine solution on the properties of the final photodeposited film structure was examined by using vibrational spectroscopy and electron microscopy. Under consistent optical exposure conditions, the amount of water added altered the nanoscale porosity of the final material produced. Films deposited from a solution with a 1:1 H(2)O/Ti content exhibited surface pores similar to 100 nm in diameter, whereas a 4:1 ratio yielded 10-nm pores, and material produced from a 8:1 solution appeared fully condensed. In addition, the effect of postdeposition thermal treatments on the nanostructure and chemistry of the photodeposited films was examined. C1 [Musgraves, J. David; Potter, Barrett G., Jr.] Univ Arizona, Arizona Mat Lab, Dept Mat Sci & Engn, Tucson, AZ 85712 USA. [Boyle, Timothy J.] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87105 USA. RP Potter, BG (reprint author), Univ Arizona, Arizona Mat Lab, Dept Mat Sci & Engn, Tucson, AZ 85712 USA. EM bgpotter@mse.arizona.edu RI Musgraves, J David/D-9260-2011 OI Musgraves, J David/0000-0003-4575-5119 FU Department of Energy, Office of Basic Energy Sciences [DE-AC04-94AL85000]; State of Arizona TRIF Photonics Initiative FX We acknowledge the valuable contributions of K. Simmons-Potter and Z. Schneider of the University of Arizona. Research was supported by the Department of Energy, Office of Basic Energy Sciences and the State of Arizona TRIF Photonics Initiative. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract No. DE-AC04-94AL85000. NR 19 TC 4 Z9 4 U1 1 U2 5 PU MATERIALS RESEARCH SOC PI WARRENDALE PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD NOV PY 2009 VL 24 IS 11 BP 3372 EP 3379 DI 10.1557/JMR.2009.0411 PG 8 WC Materials Science, Multidisciplinary SC Materials Science GA 513VM UT WOS:000271352200015 ER PT J AU Jardiel, T Caballero, AC Fuentes, L Villegas, M AF Jardiel, T. Caballero, A. C. Fuentes, L. Villegas, M. TI Preparation and properties of Bi6Ti5WO22: a new phase in the Bi2O3-TiO2-WO3 system SO JOURNAL OF MATERIALS SCIENCE LA English DT Article ID AURIVILLIUS PHASES; CERAMICS AB In a recent report, the evaluation of the phase relations in the Bi2O3-TiO2-WO3 ternary system has shown the existence of a new phase with nominal composition close to Bi6Ti5WO22. In the present contribution we attempt to prepare this single phase by using a solid state route. Although XRD analyses also show traces of two minority Aurivillius-type phases in the synthesized materials, the crystal structure of the Bi6Ti5WO22 phase has been determined by Rietveld analyses revealing a complex structure similar to that of Bi-3(AlSb2)O-11 and PbHoAl3O8 related compounds. The electrical response of this new phase was characterized as well. Three peaks are observed in its dielectric response: two of them positioned around 0 A degrees C and can be assigned to this Bi6Ti5WO22 structure. The third one rises up to 665 A degrees C and confirms the presence of the Aurivillius-type phases. C1 [Jardiel, T.; Caballero, A. C.; Villegas, M.] CSIC, Dept Electroceram, Inst Ceram & Vidrio, Madrid 28049, Spain. [Fuentes, L.] Ctr Invest Mat Avanzados, Chihuaua, Mexico. Stanford Synchrotron Radiat Lab, Stanford, CA USA. RP Jardiel, T (reprint author), CSIC, Dept Electroceram, Inst Ceram & Vidrio, Kelsen 5, Madrid 28049, Spain. EM jardiel@icv.csic.es RI Caballero, Amador/L-9165-2014 OI Caballero, Amador/0000-0002-0571-6302 NR 18 TC 4 Z9 4 U1 0 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 J9 J MATER SCI JI J. Mater. Sci. PD NOV PY 2009 VL 44 IS 21 BP 5824 EP 5828 DI 10.1007/s10853-009-3820-1 PG 5 WC Materials Science, Multidisciplinary SC Materials Science GA 496GB UT WOS:000269956600017 ER PT J AU de la Venta, J Bouzas, V Pucci, A Laguna-Marco, MA Haskel, D te Velthuis, SGE Hoffmann, A Lal, J Bleuel, M Ruggeri, G Fernandez, CD Garcia, MA AF de la Venta, J. Bouzas, V. Pucci, A. Laguna-Marco, M. A. Haskel, D. te Velthuis, S. G. E. Hoffmann, A. Lal, J. Bleuel, M. Ruggeri, G. Fernandez, C. de Julian Garcia, M. A. TI X-ray Magnetic Circular Dichroism and Small Angle Neutron Scattering Studies of Thiol Capped Gold Nanoparticles SO JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY LA English DT Article DE Gold Nanoparticles; X-ray Magnetic Circular Dichroism (XMCD); Small Angle Neutron Scattering (SANS) ID CLUSTERS; BEHAVIOR AB X-ray magnetic circular dichroism (XMCD) and Small Angle Neutron Scattering (SANS) measurements were performed on thiol capped Au nanoparticles (NPs) embedded into polyethylene. An XMCD signal of 0.8 . 10(-4) was found at the Au L(3) edge of thiol capped Au NPs embedded in a polyethylene matrix for which Superconducting Quantum Interference Device (SQUID) magnetometry yielded a saturation magnetization, M(S), of 0.06 emu/g(Au). SANS measurements showed that the 3.2 nm average-diameter nanoparticles are 28% polydispersed, but no detectable SANS magnetic signal was found with the resolution and sensitivity accessible with the neutron experiment. A comparison with previous experiments carried out on Au NP(S) and multilayers, yield to different values between XMCD signals and magnetization measured by SQUID magnetometer. We discuss the origin of those differences. C1 [de la Venta, J.; Bouzas, V.; Garcia, M. A.] Univ Complutense Madrid, Dpto Fis Mat, E-28040 Madrid, Spain. [de la Venta, J.] Inst Magnetismo Aplicado UCM, Madrid 28230, Spain. [Pucci, A.; Ruggeri, G.] Univ Pisa, Dept Chem & Ind Chem, I-56126 Pisa, Italy. [Laguna-Marco, M. A.; Haskel, D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Hoffmann, A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [te Velthuis, S. G. E.; Hoffmann, A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Lal, J.; Bleuel, M.] Argonne Natl Lab, Intense Pulsed Neutron Source, Argonne, IL 60439 USA. [Fernandez, C. de Julian] UdR Firenze, INSTM, Lab Magnetismo Mol, I-50019 Sesto Fiorentino, Italy. RP de la Venta, J (reprint author), Univ Complutense Madrid, Dpto Fis Mat, E-28040 Madrid, Spain. RI Laguna-Marco, M. A./G-8042-2011; Pucci, Andrea/E-7453-2010; Ruggeri, Giacomo/H-6166-2012; Hoffmann, Axel/A-8152-2009; te Velthuis, Suzanne/I-6735-2013; de Julian Fernandez, Cesar/J-5678-2013; Garcia, Miguel Angel/N-3043-2016 OI Laguna-Marco, M. A./0000-0003-4069-0395; Pucci, Andrea/0000-0003-1278-5004; Ruggeri, Giacomo/0000-0002-8705-1243; Hoffmann, Axel/0000-0002-1808-2767; te Velthuis, Suzanne/0000-0002-1023-8384; de Julian Fernandez, Cesar/0000-0002-6671-2743; Garcia, Miguel Angel/0000-0001-9972-2182 FU EU [LSHB-CT-2006-037639]; MEC; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX A. Hernando, Pietro Gambardella, Stefano Rusponi are acknowledged for fruitful discussion and valuable comments. E. Fernandez Pinel is acknowledged for technical suggestions and advice. This work has been partially supported by the EU (project "BONSAI" LSHB-CT-2006-037639). M. A. Laguna-Marco acknowledges MEC for postdoctoral fellowship. Work at Argonne was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 22 TC 15 Z9 15 U1 0 U2 9 PU AMER SCIENTIFIC PUBLISHERS PI STEVENSON RANCH PA 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USA SN 1533-4880 J9 J NANOSCI NANOTECHNO JI J. Nanosci. Nanotechnol. PD NOV PY 2009 VL 9 IS 11 BP 6434 EP 6438 DI 10.1166/jnn.2009.1877 PG 5 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 502OZ UT WOS:000270471100026 PM 19908546 ER PT J AU Casella, AM Loyalka, SK Hanson, BD AF Casella, Andrew M. Loyalka, Sudarshan K. Hanson, Brady D. TI Computation of free-molecular flow in nuclear materials SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID THERMAL-EXPANSION; MONTE-CARLO; GRAPHITE; RELEASE; TRANSPORT; BEHAVIOR; CARBON; GASES; TUBES AB Generally, the transport of gases and vapors in nuclear materials is adequately described by the diffusion equation with an effective diffusion coefficient. There are instances however, in which the flow pathway can be so restrictive that the diffusion description has limitations. In general, molecular transport is governed by intermolecular forces and collisions (interactions between multiple gas/vapor molecules) and by molecule-surface interactions. However, if nano-scale pathways exist within these materials, as has been Suggested, then molecular transport can be characterized as being in the free-molecular flow regime where intermolecular interactions can be ignored and flow is determined entirely by molecule-surface collisions. Our purpose in this investigation is to focus on free-molecular transport in fine capillaries of a range of shapes and to explore the effect of geometry on this transport. We have employed Monte Carlo techniques in Our calculations, and for simple geometries we have benchmarked our results against some analytical and previously available results. We have used Mathematica (R) which has exceptional built-in symbolic and graphical capabilities, permitting easy handling of complicated geometries and good visualization of the results. Our computations provide insights into the role of geometry in molecular transport in nuclear materials with narrow pathways for flows, and also will be useful in guiding computations that include intermolecular collisions and more realistic gas-surface collision operators. (C) 2009 Elsevier B.V. All rights reserved. C1 [Casella, Andrew M.; Loyalka, Sudarshan K.] Univ Missouri, Nucl Sci & Engn Inst, Columbia, MO 65211 USA. [Casella, Andrew M.; Loyalka, Sudarshan K.] Univ Missouri, Particulate Syst Res Ctr, Columbia, MO 65211 USA. [Casella, Andrew M.; Hanson, Brady D.] Pacific NW Natl Lab, Radiochem Sci & Engn Grp, Richland, WA 99352 USA. RP Casella, AM (reprint author), Univ Missouri, Nucl Sci & Engn Inst, Columbia, MO 65211 USA. EM Andrew.Casella@pnl.gov; loyalkaS@missouri.edu OI Casella, Andrew/0000-0002-4053-6593 FU US Department of Energy's Office of Nuclear Energy, Science, and Technology; US Department of Energy NERI [DE-FC07071DI 4831] FX This research was performed while Andrew M. Casella was under appointment to the US Department of Energy Nuclear Engineering and Health Physics Fellowship Program sponsored by the US Department of Energy's Office of Nuclear Energy, Science, and Technology. Partial support for this research has also been provided by a US Department of Energy NERI Grant, DE-FC07071DI 4831. We also thank the reviewer of the manuscript for several helpful comments. NR 34 TC 4 Z9 4 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2009 VL 394 IS 2-3 BP 123 EP 130 DI 10.1016/j.jnucmat.2009.08.012 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 532WI UT WOS:000272780600001 ER PT J AU Hu, SY Henager, CH AF Hu, Shenyang Henager, Charles H., Jr. TI Phase-field modeling of void lattice formation under irradiation SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID SELF-INTERSTITIAL ATOM; SPINODAL DECOMPOSITION; DISLOCATION LOOPS; DEFECT CLUSTERS; METALS; ALLOYS; MOLYBDENUM; IONS; MICROSTRUCTURES; ACCUMULATION AB We, for the first time, propose a phase-field model to simulate the evolution of void ensembles under irradiation. The model takes into account one-dimensional migration of self-interstitial atoms (I-D SIA), vacancy diffusion, the generation and reaction between SIA and vacancies as well as the nucleation of voids. A one-dimensional random walker model (based on the theory of first-passage processes) is,applied to describe the fast 1-D SIA while the Cahn-Hilliard equation is used to describe the slow three dimensional diffusion of vacancies. The coupling of these two methods greatly improves the computational efficiency for a system with strong inhomogeneity and anisotropy of diffusion. The formation of void lattices is simulated with the resultant model. It is found that a void lattice forms when the mobility of the 1-D SIA is four orders of magnitude larger than that of the vacancy mobility. A high generation rate of interstitials during displacement cascades delays the formation of a void lattice. Published by Elsevier B.V. C1 [Hu, Shenyang; Henager, Charles H., Jr.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Hu, SY (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM shenyang.hu@pnl.gov RI Madruga, Santiago/D-2984-2012; OI HU, Shenyang/0000-0002-7187-3082; Henager, Chuck/0000-0002-8600-6803 FU US Department of Energy FX This work was supported at Pacific Northwest National Laboratory by the US Department of Energy. PNNL is operated for the US Department of Energy by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830. NR 35 TC 23 Z9 25 U1 2 U2 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2009 VL 394 IS 2-3 BP 155 EP 159 DI 10.1016/j.jnucmat.2009.09.002 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 532WI UT WOS:000272780600006 ER PT J AU Perez, E Ewh, A Liu, J Yuan, B Keiser, DD Sohn, YH AF Perez, E. Ewh, A. Liu, J. Yuan, B. Keiser, D. D., Jr. Sohn, Y. H. TI Phase constituents of Al-rich U-Mo-Al alloys examined by transmission electron microscopy SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID DISPERSION FUEL; DIFFUSION COUPLES; INTERACTION LAYER; IRRADIATION BEHAVIOR; LOW-TEMPERATURE; URANIUM; ALUMINUM; GROWTH; SYSTEM; INTERDIFFUSION AB To supplement the understanding of diffusional interactions involving Al-rich region of the U-Mo-Al system, alloys with composition 85.7Al-11.44U-2.86Mo and 87.5Al-10U-2.5Mo in at.%, were examined to determine the equilibrium phase constituents at 500 degrees C. These alloys were triple arc-melted, homogenized at 500 degrees C for 200 h, and water-quenched to preserve the high temperature microstructure. X-ray diffraction, scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (XEDS). and transmission electron microscopy (TEM) with high angle annular dark field (HAADF) imaging via scanning transmission electron microscopy (STEM) were employed for the characterization. Alloy specimens for TEM/STEM were prepared using site-specific focused ion beam (FIB) in situ lift-out (INLO) technique. Despite the homogenization time and temperature, five different phases, namely fcc-Al solid solution, cubic-UAl(3), orthorhombic-UAl(4), hexagonal-U(6)Mo(4)Al(43) and diamond cubiC-UMo(2)Al(20), were observed. Based on U-Al, U-Mo and Al-Mo binary phase diagrams, previously proposed U-Mo-Al isotherms, and the solidification microstructure of these alloys, the Al-rich region of the equilibrium ternary isotherm at 500 degrees C was constructed. The fcc-Al solid solution, orthorhombic-UAl(4), and diamond cubic-UMo(2)Al(20) which were determined to be the equilibrium phases in 85.7Al-11.44U-2.86Mo and 87.5Al-10U-2.5Mo alloys. (C) 2009 Elsevier B.V. All rights reserved. C1 [Perez, E.; Ewh, A.; Liu, J.; Yuan, B.; Sohn, Y. H.] Univ Cent Florida, Dept Mech Mat & Aerosp Engn, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA. [Keiser, D. D., Jr.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Sohn, YH (reprint author), Univ Cent Florida, Dept Mech Mat & Aerosp Engn, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA. EM ysohn@mail.ucf.edu RI Sohn, Yongho/A-8517-2010; Paz y Puente, Ashley/M-2022-2015 OI Sohn, Yongho/0000-0003-3723-4743; Paz y Puente, Ashley/0000-0001-7108-7164 FU Idaho National Laboratory [00051953]; US Department of Energy - Battelle Energy Alliance, LLC [DE-AC07-051D14517]; CAREER Award of National Science Foundation [DMR-0238356] FX This work was financially supported by Idaho National Laboratory (Contract No. 00051953) under the operation of US Department of Energy - Battelle Energy Alliance, LLC (DE-AC07-051D14517). Additional financial Support from CAREER Award of National Science Foundation (DMR-0238356) is gratefully acknowledged by the author, Yong-ho Sohn. Author. Ashley Ewh, an undergraduate research assistant sincerely appreciates the financial support of the Goldwater scholarship. Any opinions. findings, and conclusions or recommendations expressed in this manuscript are those of the authors and do not necessarily reflect the view of the National Science Foundation. NR 34 TC 7 Z9 7 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2009 VL 394 IS 2-3 BP 160 EP 165 DI 10.1016/j.jnucmat.2009.09.003 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 532WI UT WOS:000272780600007 ER PT J AU McNamara, B Scheele, R Kozelisky, A Edwards, M AF McNamara, Bruce Scheele, Randall Kozelisky, Anne Edwards, Matthew TI Thermal reactions of uranium metal, UO2, U3O8, UF4, and UO2F2 with NF3 to produce UF6 SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID PLASMA GLOW-DISCHARGE; NITROGEN TRIFLUORIDE; OXIDE TETRAFLUORIDE; URANYL FLUORIDE; SHOCK-WAVES; FLUORINATION; DECOMPOSITION; FUELS; THERMODYNAMICS; DISSOCIATION AB This paper demonstrates that NF3 fluorinates uranium metal, UO2, UF4, UO3, U3O8, and UO2F2-2H(2)O to produce the volatile UF6 at temperatures between 100 and 550 degrees C. Thermogravim etric and differential thermal analysis reaction profiles are described that reflect changes in the uranium fluorination/oxidation state, physiochemical effects, and instances of discrete chemical speciation. Large differences in the onset temperatures for each system investigated implicate changes in mode of the NF3 gas-solid surface interaction. These studies also demonstrate that NF3 is a potential replacement fluorinating agent in the existing nuclear fuel cycle and in actinide volatility reprocessing. (C) 2009 Elsevier B.V. All rights reserved. C1 [McNamara, Bruce; Scheele, Randall; Kozelisky, Anne; Edwards, Matthew] Pacific NW Natl Lab, Richland, WA 99352 USA. RP McNamara, B (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM bruce.mcnamara@pnl.gov FU US Department of Energy [DE-AC05-76RL01830] FX The authors gratefully acknowledge the support of the US Department of Energy for the support to evaluate alternate technologies for the characterization and removal of solid uranium and technetium deposits at the Portsmouth Gaseous Diffusion Plant. Pacific Northwest National Laboratory is operated for the US Department of Energy by Battelle under Contract DE-AC05-76RL01830. NR 50 TC 10 Z9 11 U1 1 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2009 VL 394 IS 2-3 BP 166 EP 173 DI 10.1016/j.jnucmat.2009.09.004 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 532WI UT WOS:000272780600008 ER PT J AU Mihaila, B Stan, M Ramirez, J Zubelewicz, A Cristea, P AF Mihaila, Bogdan Stan, Marius Ramirez, Juan Zubelewicz, Alek Cristea, Petrica TI Simulations of coupled heat transport, oxygen diffusion, and thermal expansion in UO2 nuclear fuel elements SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID OPERATING DEFECTIVE FUEL; OXIDE FUEL; URANIUM-DIOXIDE; OXIDATION; CONDUCTIVITY; RODS; MODEL AB We study the coupled thermal transport, oxygen diffusion, and thermal expansion of a typical nuclear fuel element consisting of UO2+x fuel and stainless-steel cladding. Models of thermal, mechanical and chemical properties of the materials are used in a series of finite-element simulations to study the effect of the coupled phenomena on the temperature profile, oxygen distribution and radial deformation of the fuel element. The simulations include steady-state and time-dependent regimes in a variety of initial- and boundary value conditions that include sudden changes in the power density, variable oxygen content in the atmosphere, and variable temperature of the coolant. The study reveals the difference in the characteristic times associated with these phenomena and the importance of performing coupled simulations. (C) 2009 Elsevier B.V. All rights reserved. C1 [Mihaila, Bogdan; Stan, Marius; Zubelewicz, Alek] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Ramirez, Juan] Exponent Inc, Lisle, IL 60532 USA. [Cristea, Petrica] Univ Bucharest, Fac Phys, Bucharest 11, MG, Romania. RP Mihaila, B (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM bmihaila@lanl.gov RI Mihaila, Bogdan/D-8795-2013 OI Mihaila, Bogdan/0000-0002-1489-8814 NR 33 TC 15 Z9 15 U1 3 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2009 VL 394 IS 2-3 BP 182 EP 189 DI 10.1016/j.jnucmat.2009.09.007 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 532WI UT WOS:000272780600010 ER PT J AU Devlin, D Jarvinen, G Patterson, B Pattillo, S Valdez, J Liu, XY Phillips, J AF Devlin, Dave Jarvinen, Gordon Patterson, Brian Pattillo, Steve Valdez, James Liu, X. -Y. Phillips, Jonathan TI New generation nuclear fuel structures: Dense particles in selectively soluble matrix SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID MGO AB We have developed a technology for dispersing sub-millimeter sized fuel particles within a bulk matrix that can be selectively dissolved. This may enable the generation of advanced nuclear fuels with easy separation of actinides and fission products. The large kinetic energy of the fission products results in most of them escaping from the sub-millimeter sized fuel particles and depositing in the matrix during burning of the fuel in the reactor. After the fuel is used and allowed to cool for a period of time, the matrix can be dissolved and the fission products removed for disposal while the fuel particles are collected by filtration for recycle. The success of such an approach would meet a major goal of the GNEP program to provide advanced recycle technology for nuclear energy production. The benefits of such an approach include (I) greatly reduced cost of the actinide/fission product separation process, (2) ease of recycle of the fuel particles, and (3) a radiation barrier to prevent theft or diversion of the recycled fuel particles during the time they are re-fabricated into new fuel. In this study we describe a method to make surrogate nuclear fuels of micrometer scale W (shell)/Mo (core) or HfO(2) particles embedded in an MgO matrix that allows easy separation of the fission products and their embedded particles. In brief, the method consists of physically mixing W-Mo or hafnia particles with an MgO precursor. Heating the mixture, in air or argon, without agitation, to a temperature is required for complete decomposition of the precursor. The resulting material was examined using chemical analysis, scanning electron microscopy, X-ray diffraction and micro X-ray computed tomography and found to consist of evenly dispersed particles in an MgO + matrix. We believe this methodology can be extended to actinides and other matrix materials. (C) 2009 Elsevier B.V. All rights reserved. C1 [Devlin, Dave; Patterson, Brian; Pattillo, Steve; Valdez, James; Liu, X. -Y.; Phillips, Jonathan] Los Alamos Natl Lab, MST, Los Alamos, NM 87545 USA. [Jarvinen, Gordon] Los Alamos Natl Lab, ADSMS, Los Alamos, NM 87545 USA. RP Phillips, J (reprint author), Los Alamos Natl Lab, MST, MS E-549, Los Alamos, NM 87545 USA. EM jphillips@lanl.gov RI Phillips, Jonathan/D-3760-2011; OI Patterson, Brian/0000-0001-9244-7376 NR 9 TC 2 Z9 2 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2009 VL 394 IS 2-3 BP 190 EP 196 DI 10.1016/j.jnucmat.2009.09.008 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 532WI UT WOS:000272780600011 ER PT J AU Wang, BN Zhou, JF Koschny, T Kafesaki, M Soukoulis, CM AF Wang, Bingnan Zhou, Jiangfeng Koschny, Thomas Kafesaki, Maria Soukoulis, Costas M. TI Chiral metamaterials: simulations and experiments SO JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS LA English DT Article; Proceedings Paper CT 1st International Workshop on Theoretical and Computational Nano-Photonics CY DEC 03-05, 2008 CL Bad Honnef, GERMANY DE metamaterials; chirality; optical activity; negative refraction ID NEGATIVE-REFRACTIVE-INDEX; OPTICAL METAMATERIALS; CIRCULAR-DICHROISM; MAGNETIC RESPONSE; MEDIA; REGIME AB Electromagnetic metamaterials are composed of periodically arranged artificial structures. They show peculiar properties, such as negative refraction and super-lensing, which are not seen in natural materials. The conventional metamaterials require both negative epsilon and negative mu to achieve negative refraction. Chiral metamaterial is a new class of metamaterials offering a simpler route to negative refraction. In this paper, we briefly review the history of metamaterials and the developments on chiral metamaterials. We study the wave propagation properties in chiral metamaterials and show that negative refraction can be realized in chiral metamaterials with a strong chirality, with neither epsilon nor mu negative required. We have developed a retrieval procedure, adopting a uniaxial bi-isotropic model to calculate the effective parameters such as n +/-, kappa, epsilon and mu of the chiral metamaterials. Our work on the design, numerical calculations and experimental measurements of chiral metamaterials is introduced. Strong chiral behaviors such as optical activity and circular dichroism are observed and negative refraction is obtained for circularly polarized waves in these chiral metamaterials. We show that 3D isotropic chiral metamaterials can eventually be realized. C1 [Wang, Bingnan; Zhou, Jiangfeng; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Wang, Bingnan; Zhou, Jiangfeng; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Koschny, Thomas; Kafesaki, Maria; Soukoulis, Costas M.] FORTH, Inst Elect Struct & Laser, Iraklion 71110, Crete, Greece. [Koschny, Thomas; Kafesaki, Maria; Soukoulis, Costas M.] Univ Crete, Dept Mat Sci & Technol, Iraklion 71110, Crete, Greece. RP Wang, BN (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM soukoulis@ameslab.gov RI Kafesaki, Maria/E-6843-2012; Soukoulis, Costas/A-5295-2008; Zhou, Jiangfeng/D-4292-2009 OI Kafesaki, Maria/0000-0002-9524-2576; Zhou, Jiangfeng/0000-0002-6958-3342 NR 56 TC 134 Z9 134 U1 14 U2 87 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1464-4258 J9 J OPT A-PURE APPL OP JI J. Opt. A-Pure Appl. Opt. PD NOV PY 2009 VL 11 IS 11 AR 114003 DI 10.1088/1464-4258/11/11/114003 PG 10 WC Optics SC Optics GA 506BB UT WOS:000270746400005 ER PT J AU Weijer, W Gille, ST Vivier, F AF Weijer, Wilbert Gille, Sarah T. Vivier, Frederic TI Modal Decay in the Australia-Antarctic Basin SO JOURNAL OF PHYSICAL OCEANOGRAPHY LA English DT Article ID MULTIPLE OSCILLATORY MODES; SEA-LEVEL VARIABILITY; TOPEX/POSEIDON DATA; OCEAN CIRCULATION; SOUTHEAST PACIFIC; ARGENTINE BASIN; RESONANCE AB The barotropic intraseasonal variability in the Australia-Antarctic Basin (AAB) is studied in terms of the excitation and decay of topographically trapped barotropic modes. The main objective is to reconcile two widely differing estimates of the decay rate of sea surface height (SSH) anomalies in the AAB that are assumed to be related to barotropic modes. First, an empirical orthogonal function (EOF) analysis is applied to almost 15 years of altimeter data. The analysis suggests that several modes are involved in the variability of the AAB, each related to distinct areas with (almost) closed contours of potential vorticity. Second, the dominant normal modes of the AAB are determined in a barotropic shallow-water (SW) model. These stationary modes are confined by the closed contours of potential vorticity that surround the eastern AAB, and the crest of the Southeast Indian Ridge. For reasonable values of horizontal eddy viscosity and bottom friction, their decay time scale is on the order of several weeks. Third, the SW model is forced with realistic winds and integrated for several years. Projection of the modal velocity patterns onto the output fields shows that the barotropic modes are indeed excited in the model, and that they decay slowly on the frictional O(3 weeks) time scale. However, the SSH anomalies in the modal areas display rapid O(4 days) decay. Additional analysis shows that this rapid decay reflects the adjustment of unbalanced flow components through the emission of Rossby waves. Resonant excitation of the dominant free modes accounts for about 20% of the SSH variability in the forced-model run. Other mechanisms are suggested to explain the region of high SSH variability in the AAB. C1 [Weijer, Wilbert] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Gille, Sarah T.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Vivier, Frederic] LOCEAN IPSL, Paris, France. RP Weijer, W (reprint author), Los Alamos Natl Lab, CCS-2,MS B296, Los Alamos, NM 87545 USA. EM wilbert@lanl.gov RI Weijer, Wilbert/A-7909-2010; Gille, Sarah/B-3171-2012; OI Gille, Sarah/0000-0001-9144-4368 FU NSF [0424703]; U. S. Department of Energy Office of Science (WW) [DE-AC52-06NA25396]; National Aeronautics and Space Administration [1224031]; CNES; CNRS FX This research was supported by NSF through Grant 0424703, and by the Climate Change Prediction Program of the U. S. Department of Energy Office of Science (WW). Los Alamos National Laboratory is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U. S. Department of Energy under Contract DE-AC52-06NA25396. STG was supported by the National Aeronautics and Space Administration under JPL Contract 1224031. FV gratefully acknowledges CNES and CNRS for their support. Wind stress curl data were provided by the Data Support Section of the Computational and Information Systems Laboratory at the National Center for Atmospheric Research. NCAR is supported by grants from the National Science Foundation. The altimeter products were produced by Ssalto/Duacs and distributed by AVISO, with support from CNES. We thank two anonymous reviewers for constructive comments, and Dr. L.- L. Fu (JPL) for generously making his data available to us. NR 22 TC 8 Z9 8 U1 0 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-3670 J9 J PHYS OCEANOGR JI J. Phys. Oceanogr. PD NOV PY 2009 VL 39 IS 11 BP 2893 EP 2909 DI 10.1175/2009JPO4209.1 PG 17 WC Oceanography SC Oceanography GA 521HU UT WOS:000271912200011 ER PT J AU Barbieri, R Hall, LJ Rychkov, VS Strumia, A AF Barbieri, Riccardo Hall, Lawrence J. Rychkov, Vyacheslav S. Strumia, Alessandro TI Multi-muon events at the Tevatron: a hidden sector from hadronic collisions SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article ID ENERGIES AB We show an explicit attempt to interpret the multi-muon anomaly recently claimed by the CDF Collaboration in terms of a light scalar singlet phi which communicates with the standard quarks either through a heavy scalar or a heavy fermion exchange. Building on arXiv:0810.5730, that suggested a singlet phi with a chain decay into a final state made of four tau(tau) over bar pairs, we can simulate most of the muon properties of the selected sample of events. Some of these properties adhere rather well to the already published data; others should allow a decisive test of the proposed interpretation. Assuming that the test is positively passed, we show how the PAMELA excess can be fitted by the annihilation of a TeV dark matter particle that communicates with the Standard Model via the new light singlet(s). C1 [Barbieri, Riccardo; Rychkov, Vyacheslav S.] Scuola Normale Super Pisa, I-56126 Pisa, Italy. [Barbieri, Riccardo; Rychkov, Vyacheslav S.; Strumia, Alessandro] Ist Nazl Fis Nucl, I-56126 Pisa, Italy. [Hall, Lawrence J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Hall, Lawrence J.] LBNL, Theoret Phys Grp, Berkeley, CA 94720 USA. [Strumia, Alessandro] Univ Pisa, Dipartimento Fis, I-56100 Pisa, Italy. RP Barbieri, R (reprint author), Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, Italy. FU EU [MRTNCT2004- 503369]; MIUR [PRIN-2006022501]; US Department of Energy [DE-AC02-05CH11231]; NSF [PHY-04-57315] FX We are especially grateful to Paolo Giromini for many discussions and invaluable clarifications about the multi-muon CDF data. We thank Luciano Ristori and Michelangelo Mangano for discussions about the multi-muon events, and Gennaro Corcella for discussions about Monte Carlo generators. RB and VR are partially supported by the EU under RTN contract MRTNCT2004- 503369 and by MIUR under the contract PRIN-2006022501. The work of LH is supported by the US Department of Energy under contract no DE-AC02-05CH11231 and NSF grant PHY-04-57315. NR 13 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD NOV PY 2009 VL 36 IS 11 AR 115008 DI 10.1088/0954-3899/36/11/115008 PG 18 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 505TC UT WOS:000270718000010 ER PT J AU Ramalho, G Pena, MT AF Ramalho, G. Pena, M. T. TI Nucleon and gamma N -> Delta lattice form factors in a constituent quark model SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article ID BARYONS AB A covariant quark model, based both on the spectator formalism and on vector meson dominance, and previously calibrated by the physical data, is here extended to the unphysical region of the lattice data by means of one single extra adjustable parameter-the constituent quark mass in the chiral limit. We calculated the nucleon (N) and the gamma N -> Delta form factors in the universe of values for that parameter described by quenched lattice QCD. A qualitative description of the nucleon and gamma N -> Delta form factors lattice data is achieved for light pions. C1 [Ramalho, G.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Ramalho, G.; Pena, M. T.] Ctr Fis Teor Particulas, P-1049001 Lisbon, Portugal. [Pena, M. T.] Univ Tecn Lisboa, Dept Phys, Inst Super Tecn, P-1049001 Lisbon, Portugal. RP Ramalho, G (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RI Pena, Teresa/M-4683-2013; OI Pena, Teresa/0000-0002-3529-2408; Ramalho, Gilberto/0000-0002-9930-659X FU Jefferson Science Associates, LLC, US DOE [DEAC0506OR23177]; Portuguese Fundacao para a Ciencia e Tecnologia (FCT) [SFRH/BPD/26886/2006]; European Union FX The authors are particularly thankful to Meinulf Gockeler for supply information about [23]. GR would like to especially thank Ross Young for the detailed explanations of the lattice properties and the extrapolations for the real world. GR also thanks Franz Gross, Ian Cloet, Michael Pardon, Anthony Thomas and Ping Wang for helpful discussions. This work was partially supported by Jefferson Science Associates, LLC under US DOE contract no. DEAC0506OR23177. GR was supported by the Portuguese Fundacao para a Ciencia e Tecnologia (FCT) under grant no. SFRH/BPD/26886/2006. This work has been supported in part by the European Union (HadronPhysics2 Project 'Study of Strongly Interacting Matter'). NR 41 TC 30 Z9 30 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD NOV PY 2009 VL 36 IS 11 AR 115011 DI 10.1088/0954-3899/36/11/115011 PG 9 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 505TC UT WOS:000270718000013 ER PT J AU Olynick, DL Ashby, PD Lewis, MD Jen, T Lu, HR Liddle, JA Cha, WL AF Olynick, Deirdre L. Ashby, Paul D. Lewis, Mark D. Jen, Timothy Lu, Haoren Liddle, J. Alexander Cha, Weilun TI The Link Between Nanoscale Feature Development in a Negative Resist and the Hansen Solubility Sphere SO JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS LA English DT Article DE calixarene; chi; electron beam irradiation; electron beam lithography; Flory-Huggins interaction parameter; hansen solubility sphere; lithography resists; nanofabrication; nanopatterning; photoresists; solvent-polymer interactions; swelling ID ELECTRON-BEAM LITHOGRAPHY; PARAMETERS; ELASTICITY; POLYMERS; COLLAPSE; SYSTEM AB By systematically studying development of a high resolution, negative electron beam resist, hexa-methyl acetoxy calix(6)arene, we have elicited a more general understanding of the underlying development mechanisms for negative resists. Using the three dimensional Hansen solubility parameters for more than 40 solvents, we have constructed a Hansen solubility sphere (HSS). From this sphere, we have estimated the Flory Huggins interaction parameter for solvents with hexa-methyl acetoxy calix(6)arene and found a correlation between resist development contrast, nanoscale patterned feature quality, and the polymer-solvent solubility. Conducting Atomic Force Microscopy (AFM) in a liquid cell, we have measured swelling for hexamethyl acetoxy calix(6)arene in four solvents. The swelling measurements indicate that the HSS gives an indication of the Flory-Huggins interaction parameter. These measurements provide new insights into the development behavior of nanoscale features - necessary for obtaining the ultimate lithographic resolution. In addition, it demonstrates a methodology for choosing appropriate polymer-solvent combinations for nanoscience applications. (C) 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47:2091-2105, 2009 C1 [Olynick, Deirdre L.; Cha, Weilun] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. RP Olynick, DL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM DLOlynick@lbl.gov RI Liddle, James/A-4867-2013 OI Liddle, James/0000-0002-2508-7910 FU U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 28 TC 17 Z9 17 U1 3 U2 12 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0887-6266 EI 1099-0488 J9 J POLYM SCI POL PHYS JI J. Polym. Sci. Pt. B-Polym. Phys. PD NOV 1 PY 2009 VL 47 IS 21 BP 2091 EP 2105 DI 10.1002/polb.21806 PG 15 WC Polymer Science SC Polymer Science GA 518DM UT WOS:000271670500004 ER PT J AU Zhou, JY Petritis, BO Petritis, K Norbeck, AD Weitz, KK Moore, RJ Camp, DG Kulkarni, RN Smith, RD Qian, WJ AF Zhou, Jian-Ying Petritis, Brianne O. Petritis, Konstantinos Norbeck, Angela D. Weitz, Karl K. Moore, Ronald J. Camp, David G., II Kulkarni, Rohit N. Smith, Richard D. Qian, Wei-Jun TI Mouse-Specific Tandem IgY7-SuperMix Immunoaffinity Separations for Improved LC-MS/MS Coverage of the Plasma Proteome SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE Immunoaffinity separation; LC-MS/MS; Proteomics; Mouse plasma; SuperMix ID MASS-SPECTROMETRY; BREAST-CANCER; PROTEINS; MODEL; CHROMATOGRAPHY; IDENTIFICATIONS; BIOMARKERS; DISCOVERY; DEPLETION; STRATEGY AB We report on a mouse specific SuperMix immunoaffinity separation system for separating low-abundance proteins from high and moderate abundance proteins in mouse plasma. When applied in tandem with a mouse IgY7 column that removes the seven most abundant proteins in plasma, the SuperMix column captures more than 100 additional moderate abundance proteins, thus allowing significant enrichment of low-abundance proteins in the flow-through fraction. A side-by-side comparison of results obtained from 2D-LC-MS/MS analyses of flow-through samples from IgY7 and SuperMix columns revealed a nearly 2-fold improvement in the overall proteome coverage. Detection of low-abundance proteins was also enhanced, as evidenced by a more than 2-fold increase in the coverage of cytokines, growth factors, and other low-abundance proteins. Moreover, the tandem separations are automated, reproducible, and allow effective identification of protein abundance differences from LC-MS/MS analyses. Considering the overall reproducibility and increased sensitivity using the IgY7-SuperMix separation system, we anticipate broad applications of this strategy for biomarker discovery using mouse models. C1 [Zhou, Jian-Ying; Petritis, Brianne O.; Petritis, Konstantinos; Norbeck, Angela D.; Weitz, Karl K.; Moore, Ronald J.; Camp, David G., II; Smith, Richard D.; Qian, Wei-Jun] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Zhou, Jian-Ying; Petritis, Brianne O.; Petritis, Konstantinos; Norbeck, Angela D.; Weitz, Karl K.; Moore, Ronald J.; Camp, David G., II; Smith, Richard D.; Qian, Wei-Jun] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Kulkarni, Rohit N.] Harvard Univ, Sch Med, Div Cell & Mol Biol, Joslin Diabet Ctr,Dept Med, Boston, MA 02215 USA. RP Qian, WJ (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, POB 999,MSIN K8-98, Richland, WA 99352 USA. RI Petritis, Konstantinos/F-2156-2010; Zhou, Jian-Ying/B-1336-2011; Qian, Weijun/C-6167-2011; Zhou, Jian-Ying/D-1308-2012; Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 FU National Institutes of Health [R01 DK074795, RR018522] FX Portions of this research were supported by National Institutes of Health grants R01 DK074795 and RR018522. Experimental work was performed in the Environmental Molecular Sciences Laboratory, a U.S. Department of Energy (DOE) Office of Biological and Environmental Research national scientific user facility on the Pacific Northwest National Laboratory (PNNL) campus PNNL is multiprogram national laboratory operated by Battelle for the DOE under Contract No DE-AC05-76RLO 1830 NR 29 TC 12 Z9 12 U1 2 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 J9 J PROTEOME RES JI J. Proteome Res. PD NOV PY 2009 VL 8 IS 11 BP 5387 EP 5395 DI 10.1021/pr900564f PG 9 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 586XV UT WOS:000276949600048 PM 19722698 ER PT J AU Martinelli, RE Hamilton, TF Williams, RW Kehl, SR AF Martinelli, R. E. Hamilton, T. F. Williams, R. W. Kehl, S. R. TI Separation of uranium and plutonium isotopes for measurement by multi collector inductively coupled plasma mass spectroscopy SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Isotopes; Uranium; Plutonium; Soil; Environmental; Marshall islands; Multi collector inductively coupled plasma mass spectroscopy; Ion exchange; Column chromatography; Radiochemistry ID ENEWETAK ATOLL AB Uranium (U) and plutonium (Pu) isotopes in coral soils, contaminated by nuclear weapons testing in the northern Marshall Islands, were isolated by ion-exchange chromatography and analyzed by mass spectrometry. The soil samples were spiked with (233)U and (242)Pu tracers, dissolved in minerals acids, and U and Pu isotopes isolated and purified on commercially available ion-exchange columns. The ion-exchange technique employed a TEVA(A (R)) column coupled to a UTEVA(A (R)) column. U and Pu isotope fractions were then further isolated using separate elution schemes, and the purified fractions containing U and Pu isotopes analyzed sequentially using multi-collector inductively coupled plasma mass spectrometer (MCICP-MS). High precision measurements of (234)U/(235)U, (238)U/(235)U, (236)U/(235)U, and (240)Pu/(239)Pu in soil samples were attained using the described methodology and instrumentation, and provide a basis for conducting more detailed assessments of the behavior and transfer of uranium and plutonium in the environment. C1 [Martinelli, R. E.; Hamilton, T. F.; Kehl, S. R.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94551 USA. [Williams, R. W.] Lawrence Livermore Natl Lab, Div Chem Sci, Livermore, CA 94551 USA. RP Martinelli, RE (reprint author), Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, POB 808, Livermore, CA 94551 USA. EM martinelli2@llnl.gov; hamilton18@llnl.gov; williams141@llnl.gov; kehl1@llnl.gov FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA2734] FX This work performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA2734. NR 12 TC 7 Z9 7 U1 1 U2 13 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD NOV PY 2009 VL 282 IS 2 BP 343 EP 347 DI 10.1007/s10967-009-0150-3 PG 5 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 518ED UT WOS:000271672300004 ER PT J AU Loveland, W Baker, JD AF Loveland, W. Baker, J. D. TI Target preparation for the fission TPC SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE TPC; Fission TPC; Actinide targets; Vacuum evaporation of actinide targets AB A project is underway to build and use a fission time projection chamber (TPC) to make high precision/accuracy measurements of neutron-induced fission cross sections to address issues in fast reactor design. A critical aspect of this program is to have thin TPC targets on thin backings with uniform deposits of the actinides. We have prepared, using vacuum deposition, 100-200 mu g/cm(2) deposits of (232)Th, (235)U and (238)U on 30-100 mu g/cm(2) C backings with a measured thickness variation of < 1.5%. To facilitate measurement of cross section ratios, we are preparing targets with an n-leaf clover design where each petal is a different nuclide. C1 [Loveland, W.] Oregon State Univ, Corvallis, OR 97331 USA. [Baker, J. D.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Loveland, W (reprint author), Oregon State Univ, Corvallis, OR 97331 USA. EM lovelanw@onid.orst.edu FU United States Department of Energy [DE-FG07-ID14887] FX This material is based upon work supported by the United States Department of Energy, under Award Number DE-FG07-ID14887 NR 3 TC 2 Z9 2 U1 0 U2 4 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD NOV PY 2009 VL 282 IS 2 BP 361 EP 363 DI 10.1007/s10967-009-0146-z PG 3 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 518ED UT WOS:000271672300007 ER PT J AU Fassbender, M Bach, H Bond, E Nortier, FM Vieira, D AF Fassbender, M. Bach, H. Bond, E. Nortier, F. M. Vieira, D. TI Preparation of thin arsenic and radioarsenic targets for neutron capture studies SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Targets; Arsenic; Electrodeposition; Neutron activation AB A simple method for the electrodeposition of elemental arsenic (As) on a metal backing from aqueous solutions has been developed. The method was successfully applied to stable As ((75)As). Thin (2.5 mg cm(-2)) coherent, smooth layers of the metalloid on Ti foils (2.5 mu m thickness) were obtained. Electrodeposits served as targets for (75)As(n,gamma) (76)As neutron capture experiments at Los Alamos Neutron Science Center (LANSCE). Respective (73)As(n,gamma) (74)As experiments are planned for the near future, and (73)As targets will be prepared in a similar fashion utilizing the new electrodeposition method. The preparation of an (73)As (half-life 80.3 days) plating bath solution from proton irradiated germanium has been demonstrated. Germanium target irradiation was performed at the Los Alamos Isotope Production Facility (IPF). C1 [Fassbender, M.; Bach, H.; Bond, E.; Nortier, F. M.; Vieira, D.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87544 USA. RP Fassbender, M (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87544 USA. EM mfassbender@gmail.com OI Nortier, Francois/0000-0002-7549-8101; Bond, Evelyn/0000-0001-7335-4086 FU Laboratory Directed Research and Development (LDRD) Program; DoE Medical Radioisotope Distribution Program FX We thankfully acknowledge the funding support for this work by the Laboratory Directed Research and Development (LDRD) Program and the DoE Medical Radioisotope Distribution Program. NR 4 TC 3 Z9 3 U1 1 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD NOV PY 2009 VL 282 IS 2 BP 365 EP 368 DI 10.1007/s10967-009-0145-0 PG 4 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 518ED UT WOS:000271672300008 ER PT J AU Friese, J Payne, R Greenwood, L Soderquist, C Garofoli, S AF Friese, Judah Payne, Rosara Greenwood, Larry Soderquist, Chuck Garofoli, Stephanie TI Half-life and gamma abundance ratio measurements of Sm-153 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Sm-153; Abundance ratios for Sm-153 ID STANDARDIZATION; DECAY AB The measurement of the decay of Sm-153 was observed by gamma spectrometry, liquid scintillation counting and gas proportional counting in an attempt to confirm the half life and gamma abundance ratios for this isotope. Recent changes in the published nuclear decay data indicate that historical literature values may be biased. The Sm-153 was made by the neutron activation of ultra-pure isotopically enriched Sm-152 to create Sm-153. The decay measurements were made over a three week period and no other isotopes were detected during this time. The gamma abundance ratio for the 103 keV gamma was measured to be (27.9%) which is 4% lower than the published data. In addition, the half life was 1.9308 days, which is 0.34% lower than the published data. C1 [Friese, Judah; Payne, Rosara; Greenwood, Larry; Soderquist, Chuck; Garofoli, Stephanie] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Friese, J (reprint author), Pacific NW Natl Lab, 909 Battelle BLVD,POB 999, Richland, WA 99352 USA. EM judah.friese@pnl.gov; rosara.payne@pnl.gov; larry.greenwood@pnl.gov; chuck.soderquist@pnl.gov; stephanie.garofoli@pnl.gov NR 9 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD NOV PY 2009 VL 282 IS 2 BP 369 EP 372 DI 10.1007/s10967-009-0347-5 PG 4 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 518ED UT WOS:000271672300009 ER PT J AU Metz, LA Payne, RF Friese, JI Greenwood, LR Kephart, JD Pierson, BD AF Metz, Lori A. Payne, Rosara F. Friese, Judah I. Greenwood, Larry R. Kephart, Jeremy D. Pierson, Bruce D. TI Experimental measurements of short-lived fission products from uranium, neptunium, plutonium and americium SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Fission products; Short-lived radionuclides; Research reactor experiments; Actinide fission ID GAMMA-RAYS; ENERGY AB Fission yields are especially well characterized for long-lived fission products. Modeling techniques incorporate numerous assumptions and can be used to deduce information about the distribution of short-lived fission products. This work is an attempt to gather experimental (model-independent) data on short-lived fission products. Fissile isotopes of uranium, neptunium, plutonium and americium were irradiated under pulse conditions at the Washington State University 1 MW TRIGA reactor to achieve similar to 10(8) fissions. The samples were placed on an HPGe (high purity germanium) detector to initiate counting in less than 3 min post irradiation. The data was analyzed to determine which radionuclides could be quantified and compared to the published fission yield data. C1 [Metz, Lori A.; Payne, Rosara F.; Friese, Judah I.; Greenwood, Larry R.; Kephart, Jeremy D.; Pierson, Bruce D.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Metz, LA (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999, Richland, WA 99352 USA. EM lori.metz@pnl.gov RI Greenwood, Lawrence/H-9539-2016 OI Greenwood, Lawrence/0000-0001-6563-0650 FU Office of Defense Nuclear Nonproliferation (DNN); US Department of Energy [DE-AC06-76RLO 1830] FX This work was supported by the Office of Defense Nuclear Nonproliferation (DNN), US Department of Energy. Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the US Department of Energy under Contract DE-AC06-76RLO 1830. NR 7 TC 6 Z9 6 U1 1 U2 9 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD NOV PY 2009 VL 282 IS 2 BP 373 EP 377 DI 10.1007/s10967-009-0225-1 PG 5 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 518ED UT WOS:000271672300010 ER PT J AU Bond, EM Bredeweg, TA FitzPatrick, JR Jandel, M Rundberg, RS Slemmons, AK Vieira, DJ AF Bond, E. M. Bredeweg, T. A. FitzPatrick, J. R. Jandel, M. Rundberg, R. S. Slemmons, A. K. Vieira, D. J. TI Preparation of targets for nuclear chemistry experiments at DANCE SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Electrodeposition; Americium; Uranium; DANCE; Molecular plating ID CROSS-SECTION MEASUREMENTS; EXTRACTION CHROMATOGRAPHY; ORGANIC SOLUTIONS; ACIDIC MEDIA; ELECTRODEPOSITION; AMERICIUM; N,GAMMA; PRECONCENTRATION; SEPARATION; ISOTOPES AB In this paper, we describe the separation chemistry and electrodepositions conducted for the preparation of (241)Am, (243)Am and (233)U targets used for cross-section measurements at DANCE. Thick, adherent deposits were prepared using molecular plating from isopropyl alcohol solutions. Improved yields and thicknesses were observed for (241)Am electrodeposition after the material was purified using TRU resin from Eichrom. Similarly, (233)U deposits were improved after purification with an anion exchange column in 9 M HBr followed by purification using UTEVA resin from Eichrom. C1 [Bond, E. M.; Bredeweg, T. A.; Jandel, M.; Rundberg, R. S.; Vieira, D. J.] Los Alamos Natl Lab, C NR, Los Alamos, NM 87545 USA. [Slemmons, A. K.] Los Alamos Natl Lab, C AAC, Los Alamos, NM 87545 USA. RP Bond, EM (reprint author), Los Alamos Natl Lab, C NR, MS J-514, Los Alamos, NM 87545 USA. EM bond@lanl.gov OI Bond, Evelyn/0000-0001-7335-4086 FU U. S. Department of Energy at Los Alamos National Laboratory by Los Alamos National Security; LLC [DE-AC52-07NA27344] FX This work was performed under the auspices of the U. S. Department of Energy at Los Alamos National Laboratory by Los Alamos National Security, LLC under Contract No. DE-AC52-07NA27344. NR 16 TC 4 Z9 4 U1 0 U2 8 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD NOV PY 2009 VL 282 IS 2 BP 379 EP 384 DI 10.1007/s10967-009-0266-5 PG 6 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 518ED UT WOS:000271672300011 ER PT J AU Taylor, WA Rundberg, RS Bond, EM Nortier, FM Vieira, DJ AF Taylor, Wayne A. Rundberg, Robert S. Bond, Evelyn M. Nortier, Francois M. Vieira, David J. TI Production of a Lu-173 target for neutron capture cross section measurements SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Lutetium; Hafnium; Separation; Neutron cross section; Target; Irradiation AB Lutetium has been used as a radiochemistry detector to measure neutron fluence in NTS tests. A measure of the neutron capture cross sections on Lu-173 is needed to improve the interpretation value of the Lu radiochemistry isotopic ratios. A natural hafnium target was irradiated with protons to produce neutron poor lutetium radioisotopes. The short lived species were allowed to decay prior to chemical processing resulting in predominantly Lu-173 with a small amount of Lu-174. This material was deposited on a titanium foil for use in the neutron capture cross section measurement. C1 [Taylor, Wayne A.; Rundberg, Robert S.; Bond, Evelyn M.; Nortier, Francois M.; Vieira, David J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Taylor, WA (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM wtaylor@lanl.gov; rundberg@lanl.gov; bond@lanl.gov; meiring@lanl.gov; vieira@lanl.gov FU US Department of Energy at Los Alamos National Laboratory; Los Alamos National Security LLC [DE-AC52-06NA25396] FX The authors would like to thank Los National Laboratory groups C-IIAC, C-NR, LANSCE-NS, IPF, Lujan Center, LANSCE accelerator facility, LDRD support, and the LANS LLC. This measurement is supported out the stockpile stewardship program by DOE/NNSA under the auspices of the US Department of Energy at Los Alamos National Laboratory by the Los Alamos National Security LLC, Contract No. DE-AC52-06NA25396. NR 2 TC 10 Z9 10 U1 0 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD NOV PY 2009 VL 282 IS 2 BP 391 EP 394 DI 10.1007/s10967-009-0278-1 PG 4 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 518ED UT WOS:000271672300013 ER PT J AU Espinosa, G Silva, RJ AF Espinosa, G. Silva, R. J. TI Industrial commercial respirator filter as indoor radon monitor SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Indoor radon; Gamma spectrometry; (214)Bi; Respiratory filter AB This paper presents a method for measuring indoor radon concentrations using a commercially available air-purifying respirator filter as a component of the radon monitor. The filter used was Survivair's NIOSH (National Institute for Occupational Health and Safety)-approved 100800 model. The method is based on the diffusion of radon gas into the activated carbon of the filter and the measurement of the radioactive daughters resulting from the radon decay. The photopeaks of the (214)Bi daughter gamma rays (0.609 MeV) were analyzed with a Hyper-Pure Germanium (HPGe) detector and a multichannel system. A monotonically increasing and very close to linear response relation between the integrated area under the (214)Bi photopeak and the radon concentration of the activated carbon was found. A well-defined relation held for radon levels ranging from 15 to 4,700 Bq/m(3). This procedure results in highly reproducible and reliable measurements of indoor radon levels. Interesting applications include the investigation of radiological accidents involving radon and the retrospective measuring of indoor radon concentrations by analyzing the filters of the respirators worn by personnel working during the relevant period. C1 [Espinosa, G.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 01000, DF, Mexico. [Silva, R. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Espinosa, G (reprint author), Univ Nacl Autonoma Mexico, Inst Fis, Apartado Postal 20-364, Mexico City 01000, DF, Mexico. EM espinosa@fisica.unam.mx; rjsil@aol.com FU PAPIIT-DGAPA-UNAM [1N107707] FX This work was partially supported by PAPIIT-DGAPA-UNAM project 1N107707. The authors wish thanks to J. I. Golzarri, J. Martinez, D. Aguilar, A. Garcia and A. Huerta for their technical help. NR 11 TC 1 Z9 1 U1 2 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD NOV PY 2009 VL 282 IS 2 BP 405 EP 408 DI 10.1007/s10967-009-0142-3 PG 4 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 518ED UT WOS:000271672300016 ER PT J AU Thompson, SW Molz, FJ Fjeld, RA Kaplan, DI AF Thompson, S. W. Molz, F. J. Fjeld, R. A. Kaplan, D. I. TI Plutonium velocity in Zea mays (corn) and implications for plant uptake of Pu in the root zone SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Plutonium; Pu; DFOB; Siderophore; Transport in plants; Retardation; Mobility ID SOIL MIGRATION; WATER-TABLE; TRANSPORT; LYSIMETER; RADIONUCLIDES; MODEL AB A transport velocity of Pu complexed with the siderophore DFOB has been measured in corn to be at least 174 cm/h. Based on a calculated plant water velocity, a Pu retardation factor of 1-10 was estimated. Dominant Pu species retardation in soil is typically several orders of magnitude higher than this, implying that plants can be a vector for exceptionally rapid upward Pu mobility. C1 [Thompson, S. W.; Molz, F. J.; Fjeld, R. A.] Clemson Univ, Dept Environm Engn & Earth Sci, Anderson, SC 29625 USA. [Kaplan, D. I.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Molz, FJ (reprint author), Clemson Univ, Dept Environm Engn & Earth Sci, 342 Comp Court, Anderson, SC 29625 USA. EM SWThomp@Clemson.edu; fredi@clemson.edu FU Office of Science (BER); U. S. Department of Energy [DE-FG02-07ER64401]; Clemson University FX We acknowledge that this research was supported by the Office of Science (BER), U. S. Department of Energy, through Grant No. DE-FG02-07ER64401, and by Clemson University. We thank Ian Stocks of the Entomology, Soils, and Plant Sciences Department at Clemson University for use of and assistance with the microscope and dimensional software. NR 19 TC 1 Z9 1 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD NOV PY 2009 VL 282 IS 2 BP 439 EP 442 DI 10.1007/s10967-009-0143-2 PG 4 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 518ED UT WOS:000271672300022 ER PT J AU Hamilton, T Dasher, D Brown, T Martinelli, R Marchetti, A Kehl, S AF Hamilton, Terry Dasher, Doug Brown, Tom Martinelli, Roger Marchetti, Alfredo Kehl, Steven TI Determination of plutonium activity concentrations and Pu-240/Pu-239 atom ratios in Brown Algae (Fucus distichus) collected from Amchitka Island, Alaska SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Plutonium; Pu-240/Pu-239 atom ratio; Amchitka Island: Bering Sea; Brown Algae (Fucus distichus) ID PACIFIC-OCEAN; RADIONUCLIDES; ISOTOPES; SEDIMENTS; ALEUTIANS; LATITUDES; SEA AB Plutonium-239 (Pu-239) and plutonium-240 (Pu-240) activity concentrations and Pu-240/Pu-239 atom ratios are reported for Brown Algae (Fucus distichus) collected from the littoral zone of Amchitka Island (Alaska), and at a control site at Unalaska, Alaska. The average Pu-240/Pu-239 atom ratio observed in dried F. distichus collected from Amchitka Island was 0.227 +/- A 0.007 (N = 5) and compares with the expected Pu-240/Pu-239 atom ratio in integrated worldwide fallout deposition in the Northern Hemisphere of 0.1805 +/- A 0.0057. In the absence of any evidence of a local source of plutonium containing an elevated Pu-240/Pu-239 isotopic signature, the characteristically high Pu-240/Pu-239 content of F. distichus supports the view of the existence of a discernible, basin-wide non-fallout source of plutonium entering the subarctic Pacific. C1 [Hamilton, Terry; Brown, Tom; Martinelli, Roger; Kehl, Steven] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. [Dasher, Doug] Alaska Dept Environm Conservat, Fairbanks, AK 99709 USA. [Marchetti, Alfredo] Lawrence Livermore Natl Lab, Weap & Complex Integrat Directorate, Div B, Livermore, CA 94550 USA. RP Hamilton, T (reprint author), Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, POB 808, Livermore, CA 94550 USA. EM hamilton18@llnl.gov; doug.dasher@alaska.gov; brown92@llnl.gov; martinelli2@llnl.gov; marchetti1@llnl.gov; kehl1@llnl.gov FU Department of Environmental Conservation, State of Alaska [L9537]; National Nuclear Security Administration [DE-AC52-07NA27344] FX We thank the Department of Environmental Conservation, State of Alaska for funding support under Project L9537. The manuscript was prepared as a contribution to the Arctic Council's Monitoring and Assessment Program (AMAP) under the authority of the U. S. Department of Energy, Office of International Emergency Management and Cooperation. The Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U. S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. Dr. Gi Hoon Hong (KORDI) provided helpful comments on the original draft manuscript. NR 32 TC 3 Z9 3 U1 0 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD NOV PY 2009 VL 282 IS 2 BP 477 EP 482 DI 10.1007/s10967-009-0221-5 PG 6 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 518ED UT WOS:000271672300029 ER PT J AU Miller, SM Giles, JR Oertel, CP AF Miller, Stanley M. Giles, J. R. Oertel, C. P. TI Weighted exponential regression for characterizing radionuclide concentrations in soil depth profiles SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Radionuclide concentrations; Soil; Gamma-ray spectrometer; (137)Cesium data; Alpha/rho estimation; Exponential regression analysis AB Characterization of radionuclide concentrations in soil profiles requires accurate evaluation of the depth distribution of the concentrations as measured by gamma emissions. Recent studies of (137)Cs activity at the Idaho National Laboratory indicate that these data consistently follow exponential trends when the fraction of radioactivity below depth is plotted against depth. The slope of the exponential regression fit is defined as alpha/rho (alpha/rho), the depth profile parameter. A weighted exponential regression procedure has been developed to compute a mean alpha/rho for a group of related soil samples. Regression results from different areas or from different time periods can be used to compare representative radionuclide concentrations for the specified groupings. C1 [Miller, Stanley M.] Univ Idaho, Dept Civil Engn, Moscow, ID 83844 USA. [Giles, J. R.; Oertel, C. P.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Miller, SM (reprint author), Univ Idaho, Dept Civil Engn, Moscow, ID 83844 USA. EM smmiller@uidaho.edu FU Idaho National Laboratory [00042246] FX This work was conducted at the University of Idaho and was funded by the Idaho National Laboratory as Task Order No. 00039 under Contract No. 00042246. Valuable comments for the paper were provided by two anonymous reviewers. NR 9 TC 0 Z9 0 U1 2 U2 4 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD NOV PY 2009 VL 282 IS 2 BP 487 EP 491 DI 10.1007/s10967-009-0208-2 PG 5 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 518ED UT WOS:000271672300031 ER PT J AU Martin, LR Mincher, BJ Schmitt, NC AF Martin, Leigh R. Mincher, Bruce J. Schmitt, Nicholas C. TI Extraction of americium(VI) by a neutral phosphonate ligand SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Hexavalent americium; Solvent extraction ID TRIVALENT ACTINIDES; ORGANIC-COMPOUNDS; NITRIC-ACID; LANTHANIDES; THERMODYNAMICS; COMPLEXES AB Recently the use of the more unusual hexavalent oxidation state of americium has been receiving increased attention for the purpose of developing an efficient Am/Cm or Am/lanthanide separation system. We have already demonstrated the feasibility of performing this separation with 30% TBP in dodecane, and are now looking at different extractants to increase Am(VI) distribution ratios. Following on from this the extraction of bismuth oxidized americium from nitric acid solutions by dibutyl butyl phosphonate has been studied. The results of this study indicate that increasing the basicity of the extractant molecule has significantly improved the extraction efficiency. C1 [Martin, Leigh R.; Mincher, Bruce J.; Schmitt, Nicholas C.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Martin, LR (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM leigh.martin@inl.gov RI Mincher, Bruce/C-7758-2017; OI Martin, Leigh/0000-0001-7241-7110 FU U. S. Department of Energy, Office of Nuclear Energy, under DOE Idaho Operations Office [DE-AC07-05ID14517] FX Work supported by the U. S. Department of Energy, Office of Nuclear Energy, under DOE Idaho Operations Office Contract DE-AC07-05ID14517. NR 16 TC 12 Z9 12 U1 1 U2 13 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD NOV PY 2009 VL 282 IS 2 BP 523 EP 526 DI 10.1007/s10967-009-0153-0 PG 4 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 518ED UT WOS:000271672300038 ER PT J AU Peterman, DR Martin, LR Klaehn, JR Harrup, MK Greenhalgh, MR Luther, TA AF Peterman, Dean R. Martin, Leigh R. Klaehn, John R. Harrup, Mason K. Greenhalgh, Mitchell R. Luther, Thomas A. TI Selective separation of minor actinides and lanthanides using aromatic dithiophosphinic and phosphinic acid derivatives SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Dithiophosphinic acid; Phosphinic acid; Americium; Actinide; Separation factor ID CYANEX-301 EXTRACTION; TRIVALENT ACTINIDE; COMPLEXES; CATIONS AB A new extractant for the separation of actinide(III) and lanthanide(III) cations, bis(o-trifluoromethylphenyl) phosphinic acid (2) was synthesized. The synthetic route employed mirrors one that was employed to produce the sulfur containing analog bis(o-trifluoromethylphenyl) dithiophosphinic acid (1). Classic radiochemical methods and absorbance spectroscopy were used to study the coordination chemistry of the Am-dithiophosphinic acid and Am-phosphinic acid complexes. C1 [Peterman, Dean R.; Martin, Leigh R.; Greenhalgh, Mitchell R.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Klaehn, John R.; Harrup, Mason K.; Luther, Thomas A.] Idaho Natl Lab, Idaho Falls, ID 83514 USA. RP Peterman, DR (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM Dean.Peterman@inl.gov RI Martin, Leigh/P-3167-2016; Klaehn, John/C-6011-2017 OI Martin, Leigh/0000-0001-7241-7110; Klaehn, John/0000-0002-7077-4509 FU United States Department of Energy; Laboratory Directed Research and Development (LDRD) [DE-AC07-05ID14517] FX This work was supported by the United States Department of Energy and the Laboratory Directed Research and Development (LDRD) program at the Idaho National Laboratory (INL) through contract DE-AC07-05ID14517. NR 18 TC 14 Z9 14 U1 1 U2 25 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD NOV PY 2009 VL 282 IS 2 BP 527 EP 531 DI 10.1007/s10967-009-0288-z PG 5 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 518ED UT WOS:000271672300039 ER PT J AU Myers, SC Porterfield, DR Tandon, L AF Myers, S. C. Porterfield, D. R. Tandon, L. TI Unique challenges with recent gamma spectroscopy measurements at Los Alamos National Laboratory SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Gamma ray spectroscopy; Non-destructive assay; Isotopic analyses; Monte Carlo neutral particle; MCNP; FRAM; SNAP; Plutonium; Uranium; Natural uranium; Neutron sources; Plutonium-Beryllium; PuBe AB A variety of unique radioactive samples have been measured recently at Los Alamos National Laboratory (LANL) using an electrically-cooled high-purity germanium detector. In each case the purpose of the measurements included one or more of the following objectives: (1) an accurate determination of the isotopic weight fractions of different plutonium or uranium materials; (2) an accurate determination of the isotopic quantity in the absence of relevant calibration standards; and (3) a qualitative determination of various sample impurities for additional forensic information. This paper discusses how simple modifications to the PC-FRAM parameter sets enabled a better determination of the isotopic content of the following samples: (1) high-purity plutonium metal, (2) plutonium-beryllium (PuBe) neutron sources, (3) neutron-irradiated natural uranium, and (4) re-processed HEU fuel with elevated (236)U content. The isotopic quantity in a variety of samples was determined using a combination of the Spectral Nondestructive Assay Platform (SNAP (TM)) routine from Eberline Services and the Monte Carlo Neutral Particle (MCNP) code developed at LANL. The non-traditional sources that were quantified with these gamma ray modeling codes included dozens of neutron-irradiated targets of natural uranium, several plutonium-beryllium neutron sources, and three high-purity samples of plutonium metal. C1 [Myers, S. C.; Porterfield, D. R.; Tandon, L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Myers, SC (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM smyers@lanl.gov; dporterfield@lanl.gov; tandon@lanl.gov NR 7 TC 1 Z9 1 U1 0 U2 6 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD NOV PY 2009 VL 282 IS 2 BP 533 EP 537 DI 10.1007/s10967-009-0190-8 PG 5 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 518ED UT WOS:000271672300040 ER PT J AU Worley, CG AF Worley, Christopher G. TI Analysis of nuclear materials by energy dispersive X-ray fluorescence and spectral effects of alpha decay SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE X-ray fluorescence (XRF); EDXRF; Alpha decay AB Energy dispersive X-ray fluorescence (EDXRF) spectra collected from alpha emitters are complicated by artifacts inherent to the alpha decay process, particularly when using portable instruments. For example, (239)Pu EDXRF spectra exhibit a prominent uranium L X-ray emission peak series due to sample alpha decay rather than source-induced X-ray fluorescence. A portable EDXRF instrument was used to collect qualitative spectra from plutonium and americium, and metal alloy identification was performed on a Pu-contaminated steel sample. Significant alpha decay-induced X-ray fluorescence peaks were observed in spectra obtained from the plutonium and americium samples due to the (235)U and (237)Np daughters, respectively. The plutonium sample was also analyzed by wavelength dispersive XRF (WDXRF) to demonstrate that alpha decay-induced X-ray emission has a negligible effect on WDXRF spectra. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Worley, CG (reprint author), Los Alamos Natl Lab, MS G740, Los Alamos, NM 87545 USA. EM cworley@lanl.gov NR 4 TC 0 Z9 0 U1 0 U2 5 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD NOV PY 2009 VL 282 IS 2 BP 539 EP 542 DI 10.1007/s10967-009-0259-4 PG 4 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 518ED UT WOS:000271672300041 ER PT J AU Gonzales, ER Peterson, DS AF Gonzales, Edward R. Peterson, Dominic S. TI Rapid radiochemical sample preparation for alpha spectrometry using polymer ligand films SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Sample preparation; Plutonium; Americium; Alpha spectrometry; Extraction; Bioassay ID THIN-FILMS; PRECONCENTRATION; EXTRACTION; ACTINIDES; LIQUIDS; RA-226 AB Rapid radioanalytical methods are adversely affected by many different sample-matrix interferences, which make analyzing samples a difficult and time consuming process. A new method for preparing radioactive samples for analysis by alpha spectrometry has been demonstrated. In this technique, a selective extractive ligand is immobilized in a polymer film coated on a metal surface. This polymer ligand film is then used to extract plutonium and other radioactive analytes from solution over a short period of time. The prepared substrate is then counted directly by alpha spectroscopy in a small single detector alpha spectrometer. The method has been demonstrated for the analysis of americium and plutonium in liquid samples such as water and urine. C1 [Gonzales, Edward R.; Peterson, Dominic S.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Peterson, DS (reprint author), Los Alamos Natl Lab, Div Chem, Mail Stop K484, Los Alamos, NM 87545 USA. EM DominicP@lanl.gov OI Peterson, Dominic/0000-0001-8244-565X FU U. S. Department of Energy [DE-AC52-06NA25396] FX The authors thank Donivan Porterfield, Alex Plionis, and David Hobart of Los Alamos National Laboratory for useful comments and discussions, and Jaclyn Herrera for assistance preparing the figures. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the U. S. Department of Energy under Contract number DE-AC52-06NA25396. This publication is LAUR-09-4005. NR 22 TC 8 Z9 8 U1 0 U2 6 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD NOV PY 2009 VL 282 IS 2 BP 543 EP 547 DI 10.1007/s10967-009-0218-0 PG 5 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 518ED UT WOS:000271672300042 ER PT J AU Spencer, KJ Tandon, L Gallimore, D Xu, N Kuhn, K Walker, L Townsend, L AF Spencer, Khalil J. Tandon, Lav Gallimore, Dave Xu, Ning Kuhn, Kevin Walker, Laurie Townsend, Lisa TI Refinement of Pu parent-daughter isotopic and concentration analysis for forensic (dating) purposes SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Plutonium; Age-dating; Forensic chemistry ID PLUTONIUM AB Plutonium (Pu) metal samples from an interlaboratory exchange exercise and simulated swipe samples were dated using plutonium-uranium (Pu-U) and plutonium-americium (Pu-Am). Metal data were evaluated for consistency and the swipe data against its source material. Metal ages based on (239)Pu versus (235)U and (240)Pu versus (236)U agreed to within a few percent, while the (238)Pu-(234)U and (241)Pu-(241)Am measurements had larger uncertainties. Swipe ages compared favorably with the material's known history. Neptunium ((237)Np) analyses were examined in the context of the (241)Pu-(241)Am-(237)Np system to estimate whether Np can provide insights on material from which Am, Np, and U were removed. C1 [Spencer, Khalil J.; Tandon, Lav; Gallimore, Dave; Xu, Ning; Kuhn, Kevin; Walker, Laurie; Townsend, Lisa] Los Alamos Natl Lab, Actinide Analyt Chem Grp, Los Alamos, NM 87545 USA. RP Spencer, KJ (reprint author), Los Alamos Natl Lab, Actinide Analyt Chem Grp, Mail Stop G740,POB 1663, Los Alamos, NM 87545 USA. EM spencerk@lanl.gov FU Nuclear Weapons Pit Manufacturing Program; Los Alamos National Security [DE-AC52-06NA25396] FX The authors would like to acknowledge the technical and support staff of the various laboratories whose work contributed to this publication. This program is administered by LANL under the auspices of the U. S. Dept. of Energy. The Nuclear Weapons Pit Manufacturing Program provided financial support. LANL is operated by Los Alamos National Security, LLC, for the U. S. Dept. of Energy under contract no. DE-AC52-06NA25396. This publication is LA-UR09-02059. NR 14 TC 11 Z9 11 U1 1 U2 6 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD NOV PY 2009 VL 282 IS 2 BP 549 EP 554 DI 10.1007/s10967-009-0287-0 PG 6 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 518ED UT WOS:000271672300043 ER PT J AU Holland, MK Cordaro, JV AF Holland, Michael K. Cordaro, Joseph V. TI Mass measurement uncertainty for plutonium aliquots assayed by controlled-potential coulometry SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Coulometry; Coulometric assay; Plutonium; Mass; Buoyancy; Uncertainty; Propagation; GUM AB Minimizing plutonium measurement uncertainty is essential to nuclear material control and international safeguards. In 2005, the International Organization for Standardization (ISO) published ISO 12183 "Controlled-potential coulometric assay of plutonium," 2nd edition. ISO 12183:2005 recommends a target of +/- 0.01% for the mass of original sample in the aliquot because it is a critical assay variable. Mass measurements in radiological containment were evaluated and uncertainties estimated. The uncertainty estimate for the mass measurement also includes uncertainty in correcting for buoyancy effects from air acting as a fluid and from decreased pressure of heated air from the specific heat of the plutonium isotopes. C1 [Holland, Michael K.; Cordaro, Joseph V.] Savannah River Nucl Solut LLC, Savannah River Natl Lab, Aiken, SC 29808 USA. RP Holland, MK (reprint author), Savannah River Nucl Solut LLC, Savannah River Natl Lab, Savannah River Site,Bldg 707-F, Aiken, SC 29808 USA. EM michael.holland@srs.gov FU United States Department of Energy [DE-AC09-08SR22470] FX This document was prepared under the United States Department of Energy contract number DE-AC09-08SR22470 with the Savannah River Nuclear Solutions, LLC. NR 15 TC 3 Z9 3 U1 0 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD NOV PY 2009 VL 282 IS 2 BP 555 EP 563 DI 10.1007/s10967-009-0173-9 PG 9 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 518ED UT WOS:000271672300044 ER PT J AU Tandon, L Kuhn, K Decker, D Porterfield, D Laintz, K Wong, A Holland, M Peterson, DS AF Tandon, Lav Kuhn, Kevin Decker, Diana Porterfield, Donivan Laintz, Kenneth Wong, Amy Holland, Michael Peterson, Dominic S. TI Plutonium metal standards exchange program for actinide measurement quality assurance (2001-2007) SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Plutonium; Uranium; Neptunium; Americium; Standards exchange; Analysis; Laboratory intercomparison AB Plutonium metal exchange programs operated by the Rocky Flats Plant were conducted from 1956-1989 to ensure quality and to compare measurements in a plutonium metal matrix. Los Alamos National Laboratory (LANL) re-established the program in 2001 to assess the quality of analytical chemistry capabilities that support special nuclear material characterization. It is the only program of its kind for the preparation and distribution of plutonium metal reference materials with a range of impurity contents to multiple laboratories for destructive measurements of elemental concentration, isotopic abundance, and both metallic and non-metallic impurity levels. This program provides independent verification of analytical measurement capabilities for each of the seven currently participating laboratories, and allows any technical problems with analytical measurements to be identified and corrected. This paper focuses on basic program elements and presents a summary of methods and results for plutonium, uranium, neptunium, and americium, measurements. C1 [Tandon, Lav; Kuhn, Kevin; Decker, Diana; Porterfield, Donivan; Laintz, Kenneth; Wong, Amy; Peterson, Dominic S.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Holland, Michael] WSRC, Aiken, SC 29802 USA. RP Peterson, DS (reprint author), Los Alamos Natl Lab, Div Chem, Mailtop K484,POB 1663, Los Alamos, NM 87545 USA. EM DominicP@lanl.gov OI Peterson, Dominic/0000-0001-8244-565X FU Los Alamos National Laboratory [E-AC52-06NA25396] FX The authors would like to thank the many people that contribute to the success of this program including Bob Putnam, Matt Johnson, and Diane Tompins at Los Alamos National Laboratory, Usha Narayanan and Jon Nuehoff at the New Brunswick Laboratory, Pam Thompson from the Atomic Weapons Establishment, Jacqueline Fonnesbeck at Idaho National Laboratory, Richard Torres at Lawrence Livermore National Laboratory, and Delbert Bowers at Argonne National Laboratory. This program is administered by the Los Alamos National Laboratory under the auspices of the U. S. Department of Energy. The Nuclear Weapons Pit Manufacturing Program Office supported this work at Los Alamos National Laboratory. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the U. S. Department of Energy under Contract number DE-AC52-06NA25396. This publication is LAUR-09-4006. NR 17 TC 6 Z9 6 U1 0 U2 7 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD NOV PY 2009 VL 282 IS 2 BP 565 EP 571 DI 10.1007/s10967-009-0215-3 PG 7 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 518ED UT WOS:000271672300045 ER PT J AU Tandon, L Kuhn, K Martinez, P Banar, J Walker, L Hahn, T Beddingfield, D Porterfield, D Myers, S LaMont, S Schwartz, D Gallimore, D Garner, S Spencer, K Townsend, L Volz, H Gritzo, R McCabe, R Pereyra, R Peterson, D Scott, M Ruggiero, C Decker, D Wong, A AF Tandon, Lav Kuhn, Kevin Martinez, Patrick Banar, Joseph Walker, Laurie Hahn, Terry Beddingfield, David Porterfield, Donivan Myers, Steven LaMont, Stephen Schwartz, Daniel Gallimore, David Garner, Scott Spencer, Khalil Townsend, Lisa Volz, Heather Gritzo, Russ McCabe, Rodney Pereyra, Ramiro Peterson, Dominic Scott, Mark Ruggiero, Christy Decker, Diana Wong, Amy TI Establishing reactor operations from uranium targets used for the production of plutonium SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Neutron; Irradiation; Targets; Assay; Morphology; Particle; Uranium; Plutonium; Forensics ID NUCLEAR-MATERIALS; FISSION-PRODUCTS; GAMMA; CODE; IRAQ AB This paper presents results from the examination of a number of archived neutron-irradiated uranium targets used for past plutonium production testing. Three of these targets were destructively characterized using Los Alamos National Laboratory actinide analytical chemistry capabilities. A validated conduct-of-operations protocol was followed for this characterization effort. Chemical analyses included measurements for radionuclides, uranium assay, uranium isotopic abundances, trace actinides, trace metals, and non-metals. Material scientists also examined materials for morphological and microstructural properties and individual particles were examined for trace impurities. After characterization of the targets was completed, a reactor modeling effort was undertaken to corroborate target details in historical records. Time since irradiation calculations utilized both activation and fission products. The described examination of uranium targets has a tremendous impact from a safeguards verification and nuclear forensics perspective. C1 [Tandon, Lav; Kuhn, Kevin; Martinez, Patrick; Banar, Joseph; Walker, Laurie; Hahn, Terry; Beddingfield, David; Porterfield, Donivan; Myers, Steven; LaMont, Stephen; Schwartz, Daniel; Gallimore, David; Garner, Scott; Spencer, Khalil; Townsend, Lisa; Volz, Heather; Gritzo, Russ; McCabe, Rodney; Pereyra, Ramiro; Peterson, Dominic; Scott, Mark; Ruggiero, Christy; Decker, Diana; Wong, Amy] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kuhn, K (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM kkuhn@lanl.gov OI Peterson, Dominic/0000-0001-8244-565X; McCabe, Rodney /0000-0002-6684-7410 FU U. S. Department of Energy [NNSA-NA-22, NA-241]; Programs from Los Alamos National Laboratory; Los Alamos National Laboratory [DE-AC52-06NA25396] FX U. S. Department of Energy NNSA-NA-22 and NA-241, Programs from Los Alamos National Laboratory supported the work described. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the U. S. Department of Energy under Contract number DE-AC52-06NA25396. This publication is LAUR-09-2075. We would like to thank Cari Zocco at Los Alamos National Laboratory for her assistance with the manuscript. NR 24 TC 3 Z9 3 U1 2 U2 18 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD NOV PY 2009 VL 282 IS 2 BP 573 EP 579 DI 10.1007/s10967-009-0297-y PG 7 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 518ED UT WOS:000271672300046 ER PT J AU DiPrete, DP DiPrete, CC Kyser, EA Malek, MA AF DiPrete, David P. DiPrete, Cecilia C. Kyser, Edward A. Malek, Mira A. TI Rapid measurements of neptunium oxidation states using chromatographic resins SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Neptunium; Oxidation state; Resin chromatography ID EXTRACTION CHROMATOGRAPHY; PRECONCENTRATION; SEPARATION; ACTINIDES AB The Savannah River Site's (SRS) H-Canyon facility uses ceric ammonium nitrate (CAN) to separate impure neptunium (Np) from a nitric acid feed stream containing 0.5-1.0 M concentrations of iron, sodium and sulfate impurities. The material is processed using a two-pass solvent extraction purification which relies on CAN to oxidize Np to Np(VI) during the first pass prior to extraction. Spectrophotometric oxidation-state analyses normally used to validate successful oxidation to Np(VI) prior to extraction were compromised by this feed stream matrix. Therefore, a rapid chromatographic method to validate successful Np oxidation was developed using Eichrom Industries' TRU and TEVA(A (R)) resins. The method was validated and subsequently transferred to existing operations in the process analytical laboratories. C1 [DiPrete, David P.; DiPrete, Cecilia C.; Kyser, Edward A.; Malek, Mira A.] Savannah River Natl Lab, Aiken, SC USA. RP Kyser, EA (reprint author), Savannah River Natl Lab, Aiken, SC USA. EM eddie.kyser@srnl.doe.gov NR 6 TC 0 Z9 0 U1 0 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD NOV PY 2009 VL 282 IS 2 BP 581 EP 584 DI 10.1007/s10967-009-0249-6 PG 4 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 518ED UT WOS:000271672300047 ER PT J AU Oldham, WJ Dry, DE Mueller, AH AF Oldham, Warren J., Jr. Dry, Donald E. Mueller, Alexander H. TI Synthesis of functional monolayer surfaces for rapid radiometric determination of plutonium SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Alpha spectrometry; Plutonium; Functional monolayer surface; Actinide analysis ID SELF-ASSEMBLED MONOLAYERS; SEQUESTRATION; EXTRACTION; ACTINIDES; LIGANDS AB Glass or silicon substrates functionalized with a monolayer of carbamoylmethylphosphonate (CMP) ligands effectively bind tetravalent actinides from optimized mineral acid solutions to enable rapid, high quality radiometric assay by alpha spectrometry. The observed alpha spectra compare favorably with the highest quality electroplated samples. The CMP-functionalized surfaces have been used to develop simplified analytical methods to determine plutonium from complex mixtures. C1 [Oldham, Warren J., Jr.; Dry, Donald E.; Mueller, Alexander H.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Oldham, WJ (reprint author), Los Alamos Natl Lab, Div Chem, Mail Stop J514, Los Alamos, NM 87545 USA. EM woldham@lanl.gov OI Oldham, Warren/0000-0002-0997-2653 FU NNSA Office of National Technical Nuclear Forensics [NA-45]; Los Alamos National Laboratory [DE-AC52-06NA25396] FX We thank Mr. George H. Brooks, Jr. for his encouragement in this work and the Defense Threat Reduction Agency and the NNSA Office of National Technical Nuclear Forensics (NA-45) for financial support. This information has been authored by employees of the Los Alamos National Security, LLC. (LANS), operator of the Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396 with the U. S. Department of Energy. NR 13 TC 6 Z9 6 U1 0 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD NOV PY 2009 VL 282 IS 2 BP 585 EP 589 DI 10.1007/s10967-009-0243-z PG 5 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 518ED UT WOS:000271672300048 ER PT J AU Sommers, J Cummings, D Giglio, J Carney, K AF Sommers, James Cummings, Daniel Giglio, Jeffrey Carney, Kevin TI "Age" determination of irradiated materials utilizing inductively coupled plasma mass spectrometric (ICP-MS) detection SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Inductively coupled plasma mass spectrometry (ICP-MS); Cesium; Barium; Gas pressurized extraction chromatography; Age dating; Sealed radiological sources ID HIGHLY ENRICHED URANIUM AB A gas pressurized extraction chromatography (GPEC) system has been developed to perform elemental separations on radioactive samples to determine total and isotopic compositions of Cs and Ba from an irradiated salt sample, fuel sample and two sealed radiation sources. The GPEC system employs compressed nitrogen to move liquid through the system, compared to gravity or pumped liquids that are typically used for separations. A commercially available Sr-Resin (TM) was used to perform the separation for the above mentioned analytes. A 1% acetic acid solution was determined to be the best extractant for Ba. A flow rate of 0.1 mL/min was determined to be optimal for the separation of Ba. Complete recovery of the Cs and Ba was achieved, within the systematic uncertainties of the experiments. C1 [Sommers, James; Cummings, Daniel; Giglio, Jeffrey; Carney, Kevin] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Giglio, J (reprint author), Idaho Natl Lab, POB 1645, Idaho Falls, ID 83415 USA. EM Jeffrey.Giglio@INL.gov OI Giglio, Jeffrey/0000-0002-0877-927X FU U. S. Department of Energy [W-31-109-ENG-38] FX The authors acknowledge the U. S. Department of Energy, Nuclear Energy Research and Development Program Under Contract No. W-31-109-ENG-38 for funding. Lastly, the authors are grateful to Ms. Mary Adamic and Mr. Paul Lind for the dismantling and dissolution of the 137 Cs source. NR 6 TC 8 Z9 8 U1 0 U2 6 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD NOV PY 2009 VL 282 IS 2 BP 591 EP 595 DI 10.1007/s10967-009-0210-8 PG 5 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 518ED UT WOS:000271672300049 ER PT J AU Poineau, F Rodriguez, EE Weck, PF Sattelberger, AP Forster, P Hartmann, T Mausolf, E Silva, GWC Jarvinen, GD Cheetham, AK Czerwinski, KR AF Poineau, F. Rodriguez, E. E. Weck, P. F. Sattelberger, A. P. Forster, P. Hartmann, T. Mausolf, E. Silva, G. W. C. Jarvinen, G. D. Cheetham, A. K. Czerwinski, Kenneth R. TI Review of technetium chemistry research conducted at the University of Nevada Las Vegas SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Technetium; PUREX; Separation ID CRYSTAL; OXIDE AB The chemistry of technetium is being explored at the University of Nevada Las Vegas. Our goal is to investigate both the applied and fundamental aspects of technetium chemistry, with a special emphasis on synthesis, separations, and materials science. The synthetic chemistry focuses on metal-metal multiple bonding, oxides and halides. Synthesis and characterizations of (n-Bu(4)N)(2)Tc(2)X(8), Tc(2)(O(2)CCH3)(4)X(2) (X = Cl, Br), TcO(2), Bi(2)Tc(2)O(7), Bi(3)TcO(8), TcBr(3) and TcBr(4) have been performed. The applied chemistry is related to the behavior of Tc in the UREX process. Separation of U/Tc has been conducted using anion exchange resin and metallic Tc waste form synthesized and characterized. C1 [Poineau, F.; Weck, P. F.; Forster, P.; Hartmann, T.; Mausolf, E.; Silva, G. W. C.; Czerwinski, Kenneth R.] Univ Nevada, Harry Reid Ctr Environm Studies, Las Vegas, NV 89154 USA. [Rodriguez, E. E.] Los Alamos Natl Lab, Lujan Neutron Ctr, Los Alamos, NM 87554 USA. [Sattelberger, A. P.] Argonne Natl Lab, Energy Sci & Engn Directorate, Argonne, IL 60439 USA. [Jarvinen, G. D.] Los Alamos Natl Lab, Seaborg Inst, Stockpile Mfg & Support Directorate, Los Alamos, NM 87545 USA. [Cheetham, A. K.] Univ Cambridge, Cambridge CB2 3QZ, England. RP Poineau, F (reprint author), Univ Nevada, Harry Reid Ctr Environm Studies, Las Vegas, NV 89154 USA. EM freder29@unlv.nevada.edu RI Lujan Center, LANL/G-4896-2012; Silva, G W Chinthaka/K-8431-2012; Silva, Chinthaka/E-1416-2017; OI Silva, Chinthaka/0000-0003-4637-6030; , Philippe/0000-0002-7610-2893; Forster, Paul/0000-0003-3319-4238 FU US Department of Energy [DE-FG52-06NA26399] FX The authors thank Mr. Tom O'Dou for outstanding health physics support. Funding for this research was provided by the US Department of Energy, agreement no. DE-FG52-06NA26399, NR 21 TC 4 Z9 4 U1 0 U2 20 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD NOV PY 2009 VL 282 IS 2 BP 605 EP 609 DI 10.1007/s10967-009-0226-0 PG 5 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 518ED UT WOS:000271672300052 ER PT J AU Smith, SC Peper, SM Douglas, M Ziegelgruber, KL Finn, EC AF Smith, Steven C. Peper, Shane M. Douglas, Matthew Ziegelgruber, Kate L. Finn, Erin C. TI Dissolution of uranium oxides under alkaline oxidizing conditions SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Uranium dioxide; Uranium trioxide; Triuranium octaoxide; Dissolution; Hydrogen peroxide; Kinetics; Complexation ID OXIDATIVE DISSOLUTION; HYDROGEN-PEROXIDE; UO2; DIOXIDE; PH AB Bench scale experiments were conducted to determine the dissolution characteristics of UO(2), U(3)O(8), and UO(3) in aqueous peroxide-containing carbonate solutions. The experimental parameters investigated included carbonate countercation (NH(4) (+), Na(+), K(+), and Rb(+)) and H(2)O(2) concentration. The carbonate countercation had a dramatic influence on the dissolution behavior of UO(2) in 1 M carbonate solutions containing 0.1 M H(2)O(2), with the most rapid dissolution occurring in (NH(4))(2)CO(3) solution. The initial dissolution rate (y) of UO(2) in 1 M (NH(4))(2)CO(3) increased linearly with peroxide concentration (x) ranging from 0.05 to 2 M according to: y = 2.41x + 1.14. The trend in initial dissolution rates for the three U oxides under study was UO(3) a parts per thousand << U(3)O(8) > UO(2). C1 [Smith, Steven C.; Peper, Shane M.; Douglas, Matthew; Ziegelgruber, Kate L.; Finn, Erin C.] Pacific NW Natl Lab, Adv Radioanalyt Chem Grp, Phys & Chem Sci Div, Richland, WA 99352 USA. RP Peper, SM (reprint author), Pacific NW Natl Lab, Adv Radioanalyt Chem Grp, Phys & Chem Sci Div, MSIN P7-07,POB 999, Richland, WA 99352 USA. EM steven.smith@pnl.gov; shane.peper@pnl.gov; matthew.douglas@pnl.gov; kate.ziegelgruber@pnl.gov; Erin.Finn@pnl.gov OI Douglas, Matthew/0000-0001-9708-1780 FU U.S. Department of Energy (DOE) FX The authors gratefully acknowledge the Sustainable Nuclear Power Initiative (SNPI), a component of the Pacific Northwest National Laboratory (PNNL) Laboratory-Directed Research & Development (LDRD) Program, for financially supporting this research. This work was also funded in part by the U.S. Department of Energy (DOE) Advance Fuel Cycle Initiative (AFCI) separations campaign. PNNL is operated for the U. S. DOE by Battelle Memorial Institute. NR 9 TC 6 Z9 6 U1 1 U2 6 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD NOV PY 2009 VL 282 IS 2 BP 617 EP 621 DI 10.1007/s10967-009-0182-8 PG 5 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 518ED UT WOS:000271672300054 ER PT J AU Devol, TA Clements, JP Farawila, A O'Hara, MJ Egorov, OB Grate, JW AF DeVol, Timothy A. Clements, John P. Farawila, Anne O'Hara, Matthew J. Egorov, Oleg B. Grate, Jay W. TI Characterization and application of SuperLig(A (R)) 620 solid phase extraction resin for automated process monitoring of Sr-90 SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE High-level waste; Sr-90; On-line; Process monitoring ID SEQUENTIAL INJECTION; FLOW-INJECTION; SEPARATIONS; RADIONUCLIDES; EXCHANGE AB Characterization of SuperLig(A (R)) 620 solid phase extraction resin was performed in order to develop an automated on-line process monitor for Sr-90. The main focus was on strontium separation from barium, with the goal of developing an automated separation process for Sr-90 in high-level wastes. High-level waste contains significant Cs-137 activity, of which Ba-137m is of great concern as an interference to the quantification of strontium. In addition barium, yttrium and plutonium were studied as potential interferences to strontium uptake and detection. A number of complexants were studied in a series of batch K-d experiments, as SuperLig(A (R)) 620 was not previously known to elute strontium in typical mineral acids. The optimal separation was found using a 2 M nitric acid load solution with a strontium elution step of similar to 0.49 M ammonium citrate and a barium elution step of similar to 1.8 M ammonium citrate. Sr-90 quantification of Hanford high-level tank waste was performed on a sequential injection analysis microfluidics system coupled to a flow-cell detector. The results of the on-line procedure are compared to standard radiochemical techniques in this paper. C1 [DeVol, Timothy A.; Clements, John P.] Clemson Univ, Environm Engn & Earth Sci Dept, Clemson, SC 29634 USA. [Farawila, Anne; O'Hara, Matthew J.; Egorov, Oleg B.; Grate, Jay W.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Devol, TA (reprint author), Clemson Univ, Environm Engn & Earth Sci Dept, Clemson, SC 29634 USA. EM devol@clemson.edu; john.clements@nrc.gov; anne.farawila@pnl.gov; matthew.ohara@pnl.gov; oegorov@isoray.com; jwgrate@pnl.gov RI O'Hara, Matthew/I-4967-2013 NR 18 TC 4 Z9 5 U1 2 U2 14 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD NOV PY 2009 VL 282 IS 2 BP 623 EP 628 DI 10.1007/s10967-009-0219-z PG 6 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 518ED UT WOS:000271672300055 ER PT J AU Dry, DE Oldham, WJ Bowen, SM AF Dry, Donald E. Oldham, Warren J., Jr. Bowen, Scott M. TI Determination of Sm-151 and Pm-147 using liquid scintillation tracer methods SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Rare earths; Sm-151; Pm-147; Liquid scintillation; Tracers ID ENVIRONMENTAL-SAMPLES; FISSION-PRODUCTS; CHROMATOGRAPHY; SEPARATION AB The long-lived rare earth isotopes Sm-151 (90 years, beta (max) = 76.3 keV) and Pm-147 (2.62 years, beta (max) = 224.6 keV) are low-yield fission products that generally require lengthy separation procedures to isolate and count by their beta emissions. We will describe novel liquid scintillation counting techniques using radioactive tracers to determine radiochemical yields from an environmental matrix. The recovery of Sm-151 is determined from the alpha decay (2.25 MeV) of Sm-147 in the natural Sm carrier and is in excellent agreement with the gravimetric recovery. The Pm-147 recovery is determined by the use of Pm-145 (17.7 years, EC) tracer, custom-produced at LANL using an isotopically enriched target of Sm-144. We have determined the Pm-145 recovery both from the 37.4 keV k(alpha 1) X-ray, and the electron-capture emissions by LSC. A comparison of these recovery methods is presented. C1 [Dry, Donald E.; Oldham, Warren J., Jr.; Bowen, Scott M.] Los Alamos Natl Lab, Nucl & Radiochem CNR, Los Alamos, NM 87545 USA. RP Dry, DE (reprint author), Los Alamos Natl Lab, Nucl & Radiochem CNR, Mail Stop J-514, Los Alamos, NM 87545 USA. EM dry@lanl.gov; woldham@lanl.gov; sbowen@lanl.gov FU NNSA Office of Nonproliferation Research and Development [NA-22] FX The authors wish to thank Susan D. Pacheco who performed the Rare Earth group separation. This information has been authored by employees of the Los Alamos National Security, LLC. (LANS), operator of the Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396 with the U. S. Department of Energy. We acknowledge the NNSA Office of Nonproliferation Research and Development (NA-22) for financial support. NR 11 TC 1 Z9 1 U1 0 U2 6 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD NOV PY 2009 VL 282 IS 2 BP 635 EP 640 DI 10.1007/s10967-009-0330-1 PG 6 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 518ED UT WOS:000271672300057 ER PT J AU Mincher, BJ Elias, G Martin, LR Mezyk, SP AF Mincher, Bruce J. Elias, Gracy Martin, Leigh R. Mezyk, Stephen P. TI Radiation chemistry and the nuclear fuel cycle SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Solvent extraction; Radiation chemistry; Free radicals; Nitration ID PULSE-RADIOLYSIS; HYDROXYL RADICALS; NITRIC-ACID; HYDRATED ELECTRONS; TRIBUTYL-PHOSPHATE; GAMMA-RADIOLYSIS; AQUEOUS-SOLUTION; RATE CONSTANTS; DEGRADATION; EXTRACTION AB A global collaboration is currently developing solvent extraction separations for the nuclear fuel cycle of the future. The goal is to recover fissionable material for recycle, mitigate proliferation concerns, and mitigate the environmental impact of nuclear waste disposal. Relying on selective metal complexing agents, the radiation stability of these solvent extraction ligands will determine the efficiency and recycle lifetime of any solvent intended for use in this high-radiation environment. This paper reviews work at the Idaho National Laboratory regarding the radiation chemistry of nuclear solvent extraction ligands, with particular emphasis on the reactions of nitrogen-centered radicals. C1 [Mincher, Bruce J.; Elias, Gracy; Martin, Leigh R.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Mezyk, Stephen P.] Calif State Univ Long Beach, Long Beach, CA 90840 USA. RP Mincher, BJ (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM bruce.mincher@inl.gov RI Martin, Leigh/P-3167-2016; Mincher, Bruce/C-7758-2017 OI Martin, Leigh/0000-0001-7241-7110; FU U.S. Department of Energy, Office of Nuclear Energy, under DOE Idaho Operations Office [DE-AC07-05ID14517] FX Work supported by the U.S. Department of Energy, Office of Nuclear Energy, under DOE Idaho Operations Office Contract DE-AC07-05ID14517. NR 28 TC 9 Z9 10 U1 2 U2 21 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD NOV PY 2009 VL 282 IS 2 BP 645 EP 649 DI 10.1007/s10967-009-0156-x PG 5 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 518ED UT WOS:000271672300059 ER PT J AU Glagolenko, I Hilton, B Giglio, J Cummings, D AF Glagolenko, Irina Hilton, Bruce Giglio, Jeffrey Cummings, Daniel TI Fission yield measurements by inductively coupled plasma mass-spectrometry SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Cumulative neutron induced fission yields; Fission products; ICP-MS; Mass-spectrometry ID SPENT NUCLEAR-FUEL; REACTOR AB Correct prediction of the fission products inventory in irradiated nuclear fuels is essential for accurate estimation of fuel burnup, establishing proper requirements for spent fuel transportation and storage, materials accountability and nuclear forensics. Such prediction is impossible without accurate knowledge of neutron induced fission yields. The uncertainty of the fission yields reported in the ENDF/B-VII.0 library is not uniform across all of the data and much of the improvement is desired for certain fissioning isotopes and fission products. We discuss our measurements of cumulative fission yields in nuclear fuels irradiated in thermal and fast reactor spectra using Inductively Coupled Plasma Mass Spectrometry. C1 [Glagolenko, Irina; Hilton, Bruce; Giglio, Jeffrey; Cummings, Daniel] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Glagolenko, I (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM irina.glagolenko@inl.gov OI Giglio, Jeffrey/0000-0002-0877-927X NR 20 TC 1 Z9 1 U1 1 U2 5 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD NOV PY 2009 VL 282 IS 2 BP 651 EP 655 DI 10.1007/s10967-009-0209-1 PG 5 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 518ED UT WOS:000271672300060 ER PT J AU Ianakiev, KD Goda, JM Hill, TR Moss, CE Ong, JJ Paffett, MT Parker, RF Swinhoe, MT AF Ianakiev, K. D. Goda, J. M. Hill, T. R. Moss, C. E. Ong, J. J. Paffett, M. T. Parker, R. F. Swinhoe, M. T. TI Advanced technology for enrichment monitoring for gas centrifuge enrichment plants SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Enrichment monitoring; Gas centrifuge enrichment plants; X-ray tube; X-ray filter; Sodium iodide detector AB We report our developments of the next generation of uranium enrichment monitoring technology for gas centrifuge enrichment plants (GCEPs). The main challenge presented by current technology is the need for periodic replacement of the short half-life (1.27 year) (109)Cd transmission source. We report on a transmission source at the 22.1 keV K-edge of ruthenium based on an X-ray tube with a "notch" filter. As part of the design we have modeled the NaI detector passive shielding with the MCNP code. Some preliminary results from experiments and modeling will be presented. C1 [Ianakiev, K. D.; Goda, J. M.; Hill, T. R.; Moss, C. E.; Ong, J. J.; Paffett, M. T.; Parker, R. F.; Swinhoe, M. T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Goda, JM (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM ianakiev@lanl.gov; jgoda@lanl.gov; tomhill@lanl.gov; cmoss@lanl.gov; jjong@lanl.gov; mtp@lanl.gov; rfparker@lanl.gov; swinhoe@lanl.gov OI Ianakiev, Kiril/0000-0002-5074-0715; Swinhoe, Martyn/0000-0002-7620-4654 FU U.S. Department of Energy [NA-22] FX This work was sponsored by the U.S. Department of Energy, NA-22. We are grateful to Jim Smith for preparing the ruthenium filters. NR 11 TC 0 Z9 1 U1 1 U2 5 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD NOV PY 2009 VL 282 IS 2 BP 657 EP 661 DI 10.1007/s10967-009-0268-3 PG 5 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 518ED UT WOS:000271672300061 ER PT J AU DiPrete, DP DiPrete, CC Bibler, NE Bannochie, CJ Hay, MS AF DiPrete, D. P. DiPrete, C. C. Bibler, N. E. Bannochie, C. J. Hay, M. S. TI Advances in Se-79 analyses on Savannah river site radioactive waste matrices SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Se-79; Radiochemical separation ID SEPARATION; EXTRACTION AB Waste cleanup efforts underway at the United States Department of Energy's (DOE) Savannah River Site (SRS) in South Carolina, as well as other DOE nuclear sites, have created a need to characterize Se-79 in radioactive waste inventories. Successful analysis of Se-79 in high activity waste matrices is challenging for a variety of reasons. As a result of these unique challenges, the successful quantification of Se-79 in the types of matrices present at SRS requires an extremely efficient and selective separation of Se-79 from high levels of interfering radionuclides. A robust Se-79 radiochemical separation method has been developed at the Savannah River National Laboratory (SRNL) which is routinely capable of successfully purifying Se-79 from a wide range of interfering radioactive species. In addition to dramatic improvements in the K-d, ease, and reproducibility of the analysis, the laboratory time has been reduced from several days to only 6 h. C1 [DiPrete, D. P.; DiPrete, C. C.; Bibler, N. E.; Bannochie, C. J.; Hay, M. S.] Savannah River Nucl Solut, Savannah River Natl Lab, Aiken, SC 29808 USA. RP DiPrete, CC (reprint author), Savannah River Nucl Solut, Savannah River Natl Lab, Aiken, SC 29808 USA. EM david.diprete@srnl.doe.gov; c.diprete@srnl.doe.gov; ned.bibler@srnl.doe.gov; cj.bannochie@srnl.doe.gov; michael.hay@srnl.doe.gov NR 4 TC 1 Z9 1 U1 0 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD NOV PY 2009 VL 282 IS 2 BP 663 EP 667 DI 10.1007/s10967-009-0274-5 PG 5 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 518ED UT WOS:000271672300062 ER PT J AU Ma, C Yan, JQ Dennis, KW McCallum, RW Tan, X AF Ma, C. Yan, J-Q. Dennis, K. W. McCallum, R. W. Tan, X. TI Synthesis, thermal stability and magnetic properties of the Lu1-xLaxMn2O5 solid solution SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Multiferroic; Lu1-xLaxMn2O5; Thermal decomposition; Magnetic properties ID MN-O SYSTEM; PHASE-EQUILIBRIA; DIFFRACTION DATA; OXYGEN-PRESSURE; RARE-EARTH; THIN-FILM; YMN2O5; AIR; LU; HETEROSTRUCTURES AB Polycrystal line samples of the Lu1-xLaxMn2O5 solid solution system were synthesized under moderate conditions for compositions with x up to 0.815. Due to the large difference in ionic size between Lu3+ and La3+, significant changes in lattice parameters and severe lattice strains are present in the solid solution. This in turn leads to the composition dependent thermal stability and magnetic properties. It is found that the solid Solution samples with x <= 0.487 decompose at a single well defined temperature, while those with x >= 0.634 decompose over a temperature range with the formation of intermediate phases. For the samples with x >= 0.487, the primary magnetic transition Occurs below 40 K, similar to LuMn2O5 and other individual RMn2O5 (R = Bi, Y, and rare earth) compounds. In contrast, a magnetic phase with a similar to 200 K onset transition temperature is dominant in the samples with x >= 0.634. (C) 2009 Elsevier Inc. All rights reserved. C1 [Ma, C.; McCallum, R. W.; Tan, X.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Ma, C.; Yan, J-Q.; Dennis, K. W.; McCallum, R. W.; Tan, X.] US DOE, Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. RP Tan, X (reprint author), Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. EM xtan@iastate.edu RI Tan, Xiaoli/C-3376-2013; Ma, Cheng/C-9120-2014 OI Tan, Xiaoli/0000-0002-4182-663X; FU US Department of Energy by Iowa State University [DE-AC02-07CH11358] FX Ames Laboratory is operated for the US Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. NR 34 TC 2 Z9 2 U1 1 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 EI 1095-726X J9 J SOLID STATE CHEM JI J. Solid State Chem. PD NOV PY 2009 VL 182 IS 11 BP 3013 EP 3020 DI 10.1016/j.jssc.2009.08.015 PG 8 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 518HU UT WOS:000271682600009 ER PT J AU Misra, S Mozharivskyj, Y Tsokol, AO Schlagel, DL Lograsso, TA Miller, GJ AF Misra, Sumohan Mozharivskyj, Yurij Tsokol, Alexandra O. Schlagel, Deborah L. Lograsso, Thomas A. Miller, Gordon J. TI Structural, magnetic, and thermal characteristics of the phase transitions in Gd5GaxGe4-x magnetocaloric materials SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Gadolinium-gallium-germanide; Phase transformation ID ADIABATIC TEMPERATURE-CHANGE; CRYSTAL-STRUCTURE; ELECTRICAL-RESISTANCE; NANOSCALE ZIPPERS; GE; GD5SI2GE2; GD-5(SIXGE1-X)(4); SYSTEM; SI; GD-5(SI1.8GE2.2) AB Temperature-dependent, single crystal and powder X-ray diffraction studies as well as magnetization, and heat capacity measurements were carried out on two phases of the Gd5GaxGe4-x system: for x = 0.7 and 1.0. Gd5Ga0.7Ge3.3 shows three structure types as a function of temperature: (i) from 165 K to room temperature, the orthorhombic Sm5Ge4-type structure exists; (ii) below 150 , it transforms to a orthorhombic Gd5Si4-type structure; and (iii) a monoclinic Gd5Si2Ge2-type component is observed for the intermediate temperature range of 150 K <= T <= 165 K. This is the first time that all these three structure types have been observed for the same composition. For Gd5Ga1.0Ge3.0, the room temperature phase belongs to the orthorhombic Pu5Rh4-type structure with interslab contacts between main group atoms of 2.837(4)angstrom. Upon heating above 523 K, it transforms to a Gd5Si4-type structure with this distance decreasing to 2.521(7)angstrom before decomposing above 573 K. (C) 2009 Elsevier Inc. All Fights reserved. C1 [Misra, Sumohan; Miller, Gordon J.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Misra, Sumohan; Tsokol, Alexandra O.; Schlagel, Deborah L.; Lograsso, Thomas A.; Miller, Gordon J.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Mozharivskyj, Yurij] McMaster Univ, Dept Chem, Hamilton, ON L8S 4M1, Canada. RP Miller, GJ (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. EM gmiller@iastate.edu FU Iowa State University [DE-AC02-07CH11358]; Materials Sciences Division of the Office of Basic Energy Sciences of the US Department of Energy FX The authors thank Prof. Vitalij Pecharsky, Dr. Yaroslav Mudryk, Dr. Niraj Singh, and Mr. Roger Rink for making the SQUID Magnetometer, semi-adiabatic heat-pulse calorimeter, and Rigaku TTRAX diffractometer available to LIS and for informative discussions. This work was carried out at the Ames Laboratory, which is operated for the US Department of Energy by Iowa State University under Contract no. DE-AC02-07CH11358. This work was supported by the Materials Sciences Division of the Office of Basic Energy Sciences of the US Department of Energy. NR 37 TC 9 Z9 9 U1 0 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 J9 J SOLID STATE CHEM JI J. Solid State Chem. PD NOV PY 2009 VL 182 IS 11 BP 3031 EP 3040 DI 10.1016/j.jssc.2009.08.016 PG 10 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 518HU UT WOS:000271682600011 ER PT J AU You, SJ Li, Z Yang, LX Dong, C Chen, LC Jin, CQ Hu, JZ Shen, GY Mao, HK AF You, Shujie Li, Zhi Yang, Liuxiang Dong, Cheng Chen, Liangcheng Jin, Changqing Hu, Jingzhu Shen, Guoyin Mao, Hokwang TI High pressure induced coordination evolution in chain compound Li2CuO2 SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Li2CuO2; CuO2 chain; High pressure; Crystal structure ID CRYSTAL-STRUCTURE; INTERCHAIN INTERACTIONS; SUPERCONDUCTIVITY; REFINEMENT; LICUO2 AB Using diamond anvil cell technique with angle dispersive X-ray diffraction (ADXD) of synchrotron radiation and electrical conductivity measurements, we have observed that CuO2 chain compound Li2CuO2 transforms from ambient orthorhombic symmetry into a new phase at above 5.4 GPa and room temperature. The new phase was found to be of monoclinic structure with all increased oxygen coordination number of Cu2+ from four at ambient to six at high pressure that provides a structural basis of the evolution of principle physical properties. The high pressure phase of Li2CuO2 is discussed in line with the first principle calculations. (C) 2009 Elsevier Inc. All rights reserved. C1 [You, Shujie; Li, Zhi; Yang, Liuxiang; Dong, Cheng; Chen, Liangcheng; Jin, Changqing] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Hu, Jingzhu] Brookhaven Natl Lab, Natl Synchrotron Light Source, Uptown, NY USA. [Shen, Guoyin; Mao, Hokwang] Carnegie Inst Washington, Geophys Lab, HPCAT, Argonne, IL USA. RP Jin, CQ (reprint author), Chinese Acad Sci, Inst Phys, POB 603, Beijing 100190, Peoples R China. EM jin@aphy.iphy.ac.cn RI Li, Zhi/B-5638-2013 FU COMPRES; DOE-BES [AC02-06CH11357]; DOE-NNSA; NSF; W.M. Keck Foundation FX We thank Quanzhong Guo and other NSLS Stuff for technical Supports during experiments on beamline X17C at NSLS. This work was financially supported by NSF and MOST of China through the research projects. The experiments at X17C, NSLS were partially supported by COMPRES. HPCAT is supported by DOE-BES, DOE-NNSA, NSF, and the W.M. Keck Foundation. APS is supported by DOE-BES, under Contract no. DE-AC02-06CH11357. NR 31 TC 1 Z9 1 U1 3 U2 16 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 J9 J SOLID STATE CHEM JI J. Solid State Chem. PD NOV PY 2009 VL 182 IS 11 BP 3085 EP 3090 DI 10.1016/j.jssc.2009.08.019 PG 6 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 518HU UT WOS:000271682600019 ER PT J AU Donev, A Alder, BJ Garcia, AL AF Donev, Aleksandar Alder, Berni J. Garcia, Alejandro L. TI A thermodynamically consistent non-ideal stochastic hard-sphere fluid SO JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT LA English DT Article DE stochastic particle dynamics (theory); kinetic theory of gases and liquids; molecular dynamics; rarefied gas dynamics ID DISSIPATIVE PARTICLE DYNAMICS; LATTICE-BOLTZMANN METHOD; MONTE-CARLO METHOD; EQUATION-OF-STATE; TRANSPORT-COEFFICIENTS; MOLECULAR-DYNAMICS; ENSKOG EQUATION; SIMULATION; GASES; ALGORITHM AB A grid-free variant of the direct simulation Monte Carlo (DSMC) method is proposed, named the isotropic DSMC (I-DSMC) method, that is suitable for simulating dense fluid flows at molecular scales. The I-DSMC algorithm eliminates all grid artifacts from the traditional DSMC algorithm; it is Galilean invariant and microscopically isotropic. The stochastic collision rules in I-DSMC are modified to yield a non-ideal structure factor that gives consistent compressibility, as first proposed by Donev et al (2008 Phys. Rev. Lett. 101 075902). The resulting stochastic hard-sphere dynamics (SHSD) fluid is empirically found to have the same pair correlation function as a deterministic Hamiltonian system of penetrable spheres interacting with a linear core pair potential, well described by the hypernetted chain (HNC) approximation. We apply a stochastic Enskog kinetic theory to the SHSD fluid to obtain estimates for the transport coefficients that are in excellent agreement with particle simulations over a wide range of densities and collision rates. The fluctuating hydrodynamic behavior of the SHSD fluid is verified by comparing its dynamic structure factor against theory based on the Landau-Lifshitz Navier-Stokes equations. We also study the Brownian motion of a nanoparticle suspended in an SHSD fluid and find a long-time power-law tail in its velocity autocorrelation function consistent with hydrodynamic theory and molecular dynamics calculations. C1 [Donev, Aleksandar; Alder, Berni J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Donev, Aleksandar] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Computat Sci & Engn, Berkeley, CA 94720 USA. [Garcia, Alejandro L.] San Jose State Univ, Dept Phys & Astron, San Jose, CA 95192 USA. RP Donev, A (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM aleks.donev@gmail.com; alder1@llnl.gov; algarcia@algarcia.org FU US Department of Energy at Lawrence Livermore National Laboratory [DE-AC52-07NA27344 (LLNL-JRNL-415281)] FX The work of A Donev was performed under the auspices of the US Department of Energy at Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-JRNL-415281). We thank Ard Louis for sharing his expertise and code for solving the HNC equations for penetrable spheres. We thank Salvatore Torquato, Frank Stillinger, Andres Santos, and Jacek Polewczak for their assistance and advice. NR 49 TC 6 Z9 6 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-5468 J9 J STAT MECH-THEORY E JI J. Stat. Mech.-Theory Exp. PD NOV PY 2009 AR P11008 DI 10.1088/1742-5468/2009/11/P11008 PG 25 WC Mechanics; Physics, Mathematical SC Mechanics; Physics GA 552CY UT WOS:000274266100008 ER PT J AU Clayhold, JA Pelleg, O Bollinger, AT Logvenov, G Kerns, BM Schroer, MD Rench, DW Bozovic, I AF Clayhold, J. A. Pelleg, O. Bollinger, A. T. Logvenov, G. Kerns, B. M. Schroer, M. D. Rench, D. W. Bozovic, I. TI Statistical Characterization and Process Control for Improved Growth of La2-xSrxCuO4 Films SO JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM LA English DT Article DE Combinatorial; Molecular beam epitaxy; Quantum phase transitions; Electrical transport; Process control ID QUANTUM PHASE-TRANSITIONS; MOLECULAR-BEAM EPITAXY; CUPRATE SUPERCONDUCTORS; COMBINATORIAL SYNTHESIS; CRITICAL-POINT; THIN-FILMS; LIBRARIES; OXIDES; OPTIMIZATION; PHYSICS AB We have used combinatorial molecular beam epitaxy (COMBE) technique to deposit thin cuprate films with continuous spread in chemical composition, as well as nominally uniform films. We have patterned them into linear pixel arrays and measured the transport properties of each pixel. We applied detailed statistical analysis to differentiate between various possible sources of random pixel-to-pixel variations, and utilized this knowledge to considerably tighten the process parameters and significantly reduce such variations. The density and quality of data points is high enough to allow detection of quantum phase transitions induced by tuning the chemical composition. C1 [Clayhold, J. A.; Kerns, B. M.; Schroer, M. D.; Rench, D. W.] Miami Univ, Dept Phys, Oxford, OH 45046 USA. [Pelleg, O.; Bollinger, A. T.; Logvenov, G.; Bozovic, I.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Clayhold, JA (reprint author), Miami Univ, Dept Phys, Oxford, OH 45046 USA. EM clayhoja@muohio.edu RI Schroer, Michael/D-5978-2012 OI Schroer, Michael/0000-0003-1583-3200 FU US DOE [MA-509-MACA] FX This work has been supported by US DOE project MA-509-MACA. NR 36 TC 2 Z9 2 U1 0 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1557-1939 EI 1557-1947 J9 J SUPERCOND NOV MAGN JI J. Supercond. Nov. Magn PD NOV PY 2009 VL 22 IS 8 BP 797 EP 804 DI 10.1007/s10948-009-0502-9 PG 8 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 511WI UT WOS:000271201900014 ER PT J AU Liu, HZ Duffy, T Ehm, L Crichton, W Aoki, K AF Liu, Haozhe Duffy, Tom Ehm, Lars Crichton, Wilson Aoki, Katsutoshi TI Advances and synergy of high-pressure sciences at synchrotron sources SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Editorial Material C1 [Liu, Haozhe] Harbin Inst Technol, Harbin 150080, Peoples R China. [Duffy, Tom] Princeton Univ, Princeton, NJ 08544 USA. [Ehm, Lars] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Crichton, Wilson] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Aoki, Katsutoshi] JAEA SPring 8, Sayo, Hyogo 6795198, Japan. RP Liu, HZ (reprint author), Harbin Inst Technol, Harbin 150080, Peoples R China. EM haozheliu@hotmail.com RI Liu, Haozhe/E-6169-2011; Duffy, Thomas/C-9140-2017; OI Duffy, Thomas/0000-0002-5357-1259; Crichton, Wilson/0000-0001-6823-5509 NR 0 TC 0 Z9 0 U1 0 U2 7 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD NOV PY 2009 VL 16 BP 697 EP 698 DI 10.1107/S0909049509041946 PG 2 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 510LW UT WOS:000271091000001 PM 19844001 ER PT J AU Gao, LL Chen, B Lerche, M Alp, EE Sturhahn, W Zhao, JY Yavas, H Li, J AF Gao, Lili Chen, Bin Lerche, Michael Alp, Esen E. Sturhahn, Wolfgang Zhao, Jiyong Yavas, Hasan Li, Jie TI Sound velocities of compressed Fe3C from simultaneous synchrotron X-ray diffraction and nuclear resonant scattering measurements SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article; Proceedings Paper CT Workshop on Advances in High-Pressure Science Using Synchrotron X-Rays CY OCT 04, 2008 CL Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY HO Brookhaven Natl Lab, Natl Synchrotron Light Source DE phonon density of state; anisotropy; impurity; Debye; APS ID DENSITY-OF-STATES; HIGH-TEMPERATURE; HIGH-PRESSURE; RADIATION; IRON; EQUATION; OPTICS; FE-57; GPA AB The applications of nuclear resonant scattering in laser-heated diamond anvil cells have provided an important probe for the magnetic and vibrational properties of Fe-57-bearing materials under high pressure and high temperature. Synchrotron X-ray diffraction is one of the most powerful tools for studying phase stability and equation of state over a wide range of pressure and temperature conditions. Recently an experimental capability has been developed for simultaneous nuclear resonant scattering and X-ray diffraction measurements using synchrotron radiation. Here the application of this method to determine the sound velocities of compressed Fe3C is shown. The X-ray diffraction measurements allow detection of microscale impurities, phase transitions and chemical reactions upon compression or heating. They also provide information on sample pressure, grain size distribution and unit cell volume. By combining the Debye velocity extracted from the nuclear resonant inelastic X-ray scattering measurements and the structure, density and elasticity data from the X-ray diffraction measurements simultaneously obtained, more accurate sound velocity data can be derived. Our results on few-crystal and powder samples indicate strong anisotropy in the sound velocities of Fe3C under ambient conditions. C1 [Gao, Lili; Chen, Bin; Yavas, Hasan; Li, Jie] Univ Illinois, Dept Geol, Urbana, IL 60801 USA. [Gao, Lili; Lerche, Michael; Alp, Esen E.; Sturhahn, Wolfgang; Zhao, Jiyong; Yavas, Hasan] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Lerche, Michael] Carnegie Inst Washington, High Pressure Synerget Consortium, Argonne, IL 60439 USA. RP Gao, LL (reprint author), Univ Illinois, Dept Geol, Urbana, IL 60801 USA. EM liligao2@illinois.edu RI Chen, Bin/A-5980-2008; Yavas, Hasan/A-7164-2014 OI Yavas, Hasan/0000-0002-8940-3556 NR 36 TC 12 Z9 12 U1 1 U2 10 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD NOV PY 2009 VL 16 BP 714 EP 722 DI 10.1107/S0909049509033731 PN 6 PG 9 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 510LW UT WOS:000271091000004 PM 19844004 ER PT J AU Yang, L Yang, HC AF Yang, Lin Yang, Hoichang TI Use of a hexapod in diffraction measurements of substrate-supported crystals of organic semiconductors SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE X-ray diffraction; hexapod; transmission; grazing incidence ID PENTACENE THIN-FILMS; X-RAY-DIFFRACTION; PHASE; TRANSISTORS; MOBILITY AB Thin films of organic semiconductor prepared on substrates generally contain crystals that have one common crystal plane parallel to the substrate but random in-plane orientations. In diffraction measurements of these structures, it is often required to anchor the X-ray beam on a fixed spot on the sample, such as an optically visible crystallite or island. Here, a hexapod is used in place of a traditional multi-circle diffractometer to perform area-detector-based diffraction measurements on an actual device that contains 6,13-bis(triisopropylsilyethynyl)-pentacene (TIPS-pentacene) crystals. The hexapod allows for sample rotations about any user-defined rotation center. Two types of complex sample motions have been programmed to characterize the structure of the TIPS-pentacene crystal: an in-plane powder average has been performed at a fixed grazing-incident angle to determine the lattice parameters of the crystal; then the in-plane component of the scattering vector was continuously rotated in transmission geometry to determine the local crystal orientation. C1 [Yang, Lin] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Yang, Hoichang] Inha Univ, Dept Adv Fiber Engn, Inchon, South Korea. RP Yang, L (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. EM lyang@bnl.gov RI Yang, Lin/D-5872-2013 OI Yang, Lin/0000-0003-1057-9194 FU US Department of Energy [DE-AC02-98CH10886] FX Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 13 TC 3 Z9 3 U1 1 U2 5 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD NOV PY 2009 VL 16 BP 788 EP 795 DI 10.1107/S0909049509037911 PG 8 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 510LW UT WOS:000271091000015 PM 19844015 ER PT J AU Swift, GW Backhaus, S AF Swift, G. W. Backhaus, S. TI The pulse tube and the pendulum SO JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA LA English DT Article ID INVERTED PENDULUM; ENGINE AB An inverted pulse tube in which gravity-driven convection is suppressed by acoustic oscillations is analogous to an inverted pendulum that is stabilized by high-frequency vibration of its pivot point. Gravity acts on the gas density gradient arising from the end-to-end temperature gradient in the pulse tube, exerting a force proportional to that density gradient, tending to cause convection when the pulse tube is inverted. Meanwhile, a nonlinear effect exerts an opposing force proportional to the square of any part of the density gradient that is not parallel to the oscillation direction. Experiments show that convection is suppressed when the pulse-tube convection number N(ptc) = omega(2)a(2) root Delta T/T(avg)/[g(alpha D sin theta-L cos theta)] is greater than 1 in slender tubes, where omega is the radian frequency of the oscillations, a is their amplitude, Delta T is the end-to-end temperature difference, T(avg) is the average absolute temperature, g is the acceleration of gravity, L is the length of the pulse tube and D is its diameter, alpha is about 1.5, and the tip angle theta ranges from 90 for a horizontal tube to 180 for an inverted tube. Theory suggests that the temperature dependence should be Delta T/T(avg) instead of root Delta T/T(avg). (C) 2009 Acoustical Society of America. [DOI: 10.1121/1.3238156] C1 [Swift, G. W.; Backhaus, S.] Los Alamos Natl Lab, Condensed Matter & Thermal Phys Grp, Los Alamos, NM 87545 USA. RP Swift, GW (reprint author), Los Alamos Natl Lab, Condensed Matter & Thermal Phys Grp, POB 1663, Los Alamos, NM 87545 USA. RI Backhaus, Scott/F-4285-2012; OI Backhaus, Scott/0000-0002-0344-6791 NR 19 TC 5 Z9 5 U1 1 U2 3 PU ACOUSTICAL SOC AMER AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0001-4966 J9 J ACOUST SOC AM JI J. Acoust. Soc. Am. PD NOV PY 2009 VL 126 IS 5 BP 2273 EP 2284 DI 10.1121/1.3238156 PG 12 WC Acoustics; Audiology & Speech-Language Pathology SC Acoustics; Audiology & Speech-Language Pathology GA 515XU UT WOS:000271507000027 PM 19894809 ER PT J AU Vesper, S McKinstry, C Cox, D Dewalt, G AF Vesper, Stephen McKinstry, Craig Cox, David Dewalt, Gary TI Correlation between ERMI Values and Other Moisture and Mold Assessments of Homes in the American Healthy Homes Survey SO JOURNAL OF URBAN HEALTH-BULLETIN OF THE NEW YORK ACADEMY OF MEDICINE LA English DT Article DE Mold; Moisture; MSQPCR; ERMI; Inner city; Questionnaire ID QUANTITATIVE PCR ANALYSIS; RELATIVE MOLDINESS INDEX; ASTHMA MORBIDITY; INNER-CITY; CHILDREN; INDOOR; CHILDHOOD; EXPOSURES; DAMPNESS; FUNGI AB The main objective of this study was to evaluate the correlation between the Environmental Relative Moldiness Index (ERMI) values in the Department of Housing and Urban Development American Healthy Homes Survey (AHHS) homes and an alternative analysis frequently used in mold investigations, i.e., the inspector's "walk-through" assessment of visual or olfactory evidence of mold combined with occupant's answers to a questionnaire about mold odors and moisture. Homes in the highest ERMI quartile were in agreement with visual inspection and/or occupant assessment 48% of the time but failed to detect the mold in 52% of the fourth quartile homes. In about 7% of lowest ERMI quartile homes, the inspection and occupant assessments overestimated the mold problem. The ERMI analysis of dust from homes may be useful in finding hidden mold problems. An additional objective was to compare the ERMI values in inner city east-Baltimore homes, where childhood asthma is common, to the AHHS randomly selected homes. C1 [Vesper, Stephen] US EPA, Cincinnati, OH 45268 USA. [McKinstry, Craig] Pacific NW Natl Lab, Richland, WA 99352 USA. [Cox, David; Dewalt, Gary] QuanTech, Arlington, VA USA. RP Vesper, S (reprint author), US EPA, Cincinnati, OH 45268 USA. EM vesper.stephen@epa.gov FU U. S. EPA Asthma Initiative FX This research was partially supported by funding from the U. S. EPA Asthma Initiative. NR 26 TC 14 Z9 14 U1 2 U2 13 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1099-3460 J9 J URBAN HEALTH JI J. Urban Health PD NOV PY 2009 VL 86 IS 6 BP 850 EP 860 DI 10.1007/s11524-009-9384-1 PG 11 WC Public, Environmental & Occupational Health; Medicine, General & Internal SC Public, Environmental & Occupational Health; General & Internal Medicine GA 531DU UT WOS:000272643700004 PM 19536652 ER PT J AU Gao, Y Xue, JM Zhang, DZ Wang, ZL Lan, CN Yan, S Wang, YG Xu, FJ Shen, B Zhang, YW AF Gao, Yuan Xue, Jianming Zhang, Dongzheng Wang, Zilong Lan, Chune Yan, Sha Wang, Yugang Xu, Fujun Shen, Bo Zhang, Yanwen TI Damage evolution in GaN under MeV heavy ion implantation SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article DE annealing; atomic force microscopy; gallium compounds; III-V semiconductors; ion beam effects; ion implantation; ion-surface impact; point defects; wide band gap semiconductors ID DECOMPOSITION; DEFECTS; AIN AB Damage evaluation processes in patterned GaN implanted by 3 MeV Au(2+) ions were investigated as a function of ion fluences and annealing temperatures. Surface swelling was observed by using atomic force microscopy and the results showed that the swelling height depends on ion fluence and annealing temperature. The authors observed four-stage implantation-induced damage evolution including point-defect formation, defect clustering, amorphization/bubble formation, and eventually, decomposition. This evolution is contributed to irradiation-induced defect production and defect migration/accumulation occurred at different levels of displacement per atom. Craterlike holes were observed on the surface of GaN implanted at the ion fluence of 2x10(16) cm(-2), which is evidence of N loss, and broken bubbles formed during implantation. C1 [Gao, Yuan; Xue, Jianming; Zhang, Dongzheng; Wang, Zilong; Lan, Chune; Yan, Sha; Wang, Yugang] Peking Univ, State Key Lab Nucl Phys & Technol, Ctr Appl Phys & Technol, Beijing 100871, Peoples R China. [Xu, Fujun; Shen, Bo] Peking Univ, State Key Lab Artificial Microstruct & Mesoscop P, Beijing 100871, Peoples R China. [Zhang, Yanwen] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Wang, YG (reprint author), Peking Univ, State Key Lab Nucl Phys & Technol, Ctr Appl Phys & Technol, Beijing 100871, Peoples R China. EM ygwang@pku.edu.cn FU Ministry of Science and Technology of China [2010CB832904]; Division of Materials Science and Engineering, Office of Basic Energy Sciences, U. S. Department of Energy [2010CB832904, DE-AC05-76RL01830] FX The authors would like to thank L. P. Wen for assistance in AFM, and L. W. Sang and D. Li for assistance in thermal annealing process. This work was financially supported by the Ministry of Science and Technology of China (Grant No. 2010CB832904). Y. Z. was supported by the Division of Materials Science and Engineering, Office of Basic Energy Sciences, U. S. Department of Energy. A portion of the research was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research. Pacific Northwest National Laboratory is operated by Battelle for the U. S. Department of Energy under Contract No. DE-AC05-76RL01830. NR 23 TC 4 Z9 4 U1 0 U2 6 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2009 VL 27 IS 6 BP 2342 EP 2346 DI 10.1116/1.3244591 PG 5 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 533DS UT WOS:000272803400009 ER PT J AU Li, JV Li, XN Yan, YF Jiang, CS Metzger, WK Repins, IL Contreras, MA Levi, DH AF Li, Jian V. Li, Xiaonan Yan, Yanfa Jiang, Chun-Sheng Metzger, Wyatt K. Repins, Ingrid L. Contreras, Miguel A. Levi, Dean H. TI Influence of sputtering a ZnMgO window layer on the interface and bulk properties of Cu(In,Ga)Se-2 solar cells SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article DE cadmium compounds; carrier density; copper compounds; deep levels; Fermi level; gallium compounds; II-VI semiconductors; indium compounds; interface states; secondary ion mass spectra; semiconductor doping; solar cells; sputtering; ternary semiconductors; zinc compounds ID PROBE FORCE MICROSCOPY; CONDUCTION-BAND OFFSET; PHOTOLUMINESCENCE; MGXZN1-XO; CUGASE2; DEVICES; ALLOY; FILMS; CIGS; GAP AB The authors studied the influence of sputtering a ZnMgO window layer for Cu(In,Ga)Se-2 solar cells on bulk and interface electrical properties. Admittance spectroscopy reveals deep levels at the ZnMgO/CdS interface whose activation energy (similar to 0.4 eV) increases with reverse bias, indicating an unpinned quasi-Fermi level at the interface. The Cu(In,Ga)Se-2 carrier concentration determined by capacitance-voltage measurements decreases to 3x10(14) cm(-3), compared to 1x10(16) cm(-3) in a device with a ZnO window. Scanning Kelvin probe force microscopy verifies the increased depletion region width and indicates that the junction location is unaltered by ZnMgO. Secondary-ion mass spectroscopy shows the presence of Mg near the top and bottom surfaces of the Cu(In,Ga)Se-2 film. They hypothesize that the decrease in carrier concentration is due to compensation doping of the Cu-poor Cu(In,Ga)Se-2 by Mg. Optimizing sputtering conditions to reduce surface damage and Mg migration eliminates the interface states and restores the carrier concentration, resulting in device performance comparable to those with a ZnO window. C1 [Li, Jian V.; Li, Xiaonan; Yan, Yanfa; Jiang, Chun-Sheng; Metzger, Wyatt K.; Repins, Ingrid L.; Contreras, Miguel A.; Levi, Dean H.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Li, JV (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM jian.li@nrel.gov RI jiang, chun-sheng/F-7839-2012; Li, Jian/B-1627-2016 FU U. S. Department of Energy [DOE-AC36-08GO28308] FX The authors wish to thank Dr. Ana Kanevce for helping with SCAPS simulation, and Mathew Young and Dr. Sally Asher for SIMS experiments. This work was supported by the U. S. Department of Energy under Contract No. DOE-AC36-08GO28308 with the National Renewable Energy Laboratory. NR 27 TC 3 Z9 3 U1 2 U2 29 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2009 VL 27 IS 6 BP 2384 EP 2389 DI 10.1116/1.3256230 PG 6 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 533DS UT WOS:000272803400016 ER PT J AU Kabulski, A Korakakis, D AF Kabulski, A. Korakakis, D. TI Transport mechanism in aluminum nitride-metal multilayer junctions SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article DE aluminium compounds; electrical conductivity; hopping conduction; III-V semiconductors; multilayers; platinum; semiconductor thin films; semiconductor-metal boundaries; tunnelling; wide band gap semiconductors ID FILMS; EMISSION; ELECTRODES AB The electrical behavior of aluminum nitride (AlN) thin film structures consisting of alternating AlN and platinum (Pt) layers has been studied. Typical single layer AlN thin films are insulating due to the wide bandgap properties of the material, but stacked AlN-Pt structures can be conductive. Conductivity studies of the structures indicate regions of semiconductor behavior as well as regions where tunneling occurs. The thickness of the AlN layers, as well as the number of AlN-Pt interfaces in the structures, is found to impact the conduction and tunneling mechanism. Fowler-Nordheim theory and plots were used to determine trends in the electrical behavior and it was found that the field enhancement factor depends on the total thickness of the AlN layers, while the conduction mechanism, tunneling, or multistep hopping between midbandgap states, depends on the number of interfaces as well. C1 [Kabulski, A.; Korakakis, D.] W Virginia Univ, Lane Dept Comp Sci & Elect Engn, Morgantown, WV 26505 USA. [Korakakis, D.] Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Kabulski, A (reprint author), W Virginia Univ, Lane Dept Comp Sci & Elect Engn, Morgantown, WV 26505 USA. EM kabulski@gmail.com NR 15 TC 2 Z9 2 U1 0 U2 6 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2009 VL 27 IS 6 BP 2404 EP 2407 DI 10.1116/1.3258658 PG 4 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 533DS UT WOS:000272803400019 ER PT J AU Ocola, LE AF Ocola, L. E. TI Nanoscale geometry assisted proximity effect correction for electron beam direct write nanolithography SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article DE electron beam lithography; nanolithography; proximity effect (lithography) ID LITHOGRAPHY; PATTERN AB Nanoscale geometry assisted proximity effect correction is presented for nanoscale structures and the results clearly show improvements in feature sharpness down to 20 nm structures. The design rule is simple to implement onto existing PEC software and enables implementation of PEC down to the resolution limits of electron beam lithography. C1 Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Ocola, LE (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ocola@anl.gov FU Department of Energy [DE-AC02-06CH11357]; U. S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the Department of Energy under Contract No. DE-AC02-06CH11357. Use of the Center for Nanoscale Materials was supported by the U. S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 9 TC 5 Z9 5 U1 0 U2 1 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2009 VL 27 IS 6 BP 2569 EP 2571 DI 10.1116/1.3237135 PG 3 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 533DS UT WOS:000272803400050 ER PT J AU Makarova, OV Tang, CM Amstutz, P Divan, R Imre, A Mancini, DC Hoffbauer, M Williamson, T AF Makarova, Olga V. Tang, Cha-Mei Amstutz, Platte Divan, Ralu Imre, Alexandra Mancini, Derrick C. Hoffbauer, Mark Williamson, Todd TI Fabrication of high density, high-aspect-ratio polyimide nanofilters SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article DE electron beam lithography; epitaxial growth; filters; nanofabrication; nanofiltration; polymers; porosity; porous materials ID POROUS ALUMINA; MEMBRANES; PORES AB A novel fabrication process produces high porosity polymer nanofilters with smooth, uniform, and straight pores with high aspect ratios. The process utilizes electron beam lithography and energetic neutral atom beam lithography and epitaxy techniques. The method has the potential to produce a new generation of high-precision, very-high-porosity, biocompatible filters with pore sizes down to 100 nm. C1 [Makarova, Olga V.; Tang, Cha-Mei; Amstutz, Platte] Creatv MicroTech Inc, Chicago, IL 60612 USA. [Divan, Ralu; Imre, Alexandra; Mancini, Derrick C.] Argonne Natl Lab, Argonne, IL 60439 USA. [Hoffbauer, Mark; Williamson, Todd] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Makarova, OV (reprint author), Creatv MicroTech Inc, 2242 W Harrison St, Chicago, IL 60612 USA. EM olga@creatvmicrotech.com RI Joshi-Imre, Alexandra/A-2912-2010 OI Joshi-Imre, Alexandra/0000-0002-4271-1623 FU U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors gratefully acknowledge support from the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357 for the use of the Center for Nanoscale Materials, Argonne National Laboratory. NR 10 TC 5 Z9 5 U1 1 U2 7 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2009 VL 27 IS 6 BP 2585 EP 2587 DI 10.1116/1.3242696 PG 3 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 533DS UT WOS:000272803400053 ER PT J AU Chao, WL Kim, J Rekawa, S Fischer, P Anderson, E AF Chao, Weilun Kim, Jihoon Rekawa, Senajith Fischer, Peter Anderson, Erik TI Hydrogen silsesquioxane double patterning process for 12 nm resolution x-ray zone plates SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article DE gold; nanopatterning; organic compounds; photoresists; soft lithography; X-ray microscopy; zone plates ID ELECTRON-BEAM LITHOGRAPHY; MICROSCOPY; NANOMAGNETISM; TEMPERATURE; FABRICATION; RESIST AB Soft x-ray zone plate microscopy is a powerful nanoanalytic technique used for a wide variety of scientific and technological studies. Pushing its spatial resolution to 10 nm and below is highly desired and feasible due to the short wavelength of soft x rays. Instruments using Fresnel zone plate lenses achieve a spatial resolution approximately equal to the smallest, outermost zone width. In this work, a double patterning zone plate fabrication process is developed. based on a high resolution resist, hydrogen silsesquioxane (HSQ), to bypass the limitations of conventional single exposure fabrication to pattern density, such as finite beam size, scattering in resist, and modest intrinsic resist contrast. To fabricate HSQ structures with zone widths on the order of 10 nm on gold plating base, a surface conditioning process with (3-mercaptopropyl) trimethoxysilane, 3-MPT, is used, which forms a homogeneous hydroxylation surface on gold surface and provides good anchoring for the desired HSQ structures. Using the new HSQ double patterning process, coupled with an internally developed, subpixel alignment algorithm, the authors have successfully fabricated in-house gold zone plates of 12 nm outer zones. Promising results for 10 nm zone plates have also been obtained. With the 12 nm zone plates, they have achieved a resolution of 12 nm using the full-field soft x-ray microscope, XM-1. C1 [Chao, Weilun; Rekawa, Senajith; Fischer, Peter; Anderson, Erik] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. RP Chao, WL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. EM weilun@berkeley.edu RI MSD, Nanomag/F-6438-2012; Fischer, Peter/A-3020-2010 OI Fischer, Peter/0000-0002-9824-9343 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U. S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation [EEC-0310717] FX The authors would like to extend gratitude to Farhad Salmassi for fabricating the multilayer coatings, to Patrick Naulleau for the image analysis, to Dawn Hilken for assisting the zone plate fabrication, and to the engineering team for providing the technical support. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231, and the Engineering Research Centers Program of the National Science Foundation under NSF Award No. EEC-0310717. NR 26 TC 12 Z9 14 U1 1 U2 8 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2009 VL 27 IS 6 BP 2606 EP 2611 DI 10.1116/1.3242694 PG 6 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 533DS UT WOS:000272803400058 ER PT J AU Cord, B Yang, J Duan, HG Joy, DC Klingfus, J Berggren, KK AF Cord, Bryan Yang, Joel Duan, Huigao Joy, David C. Klingfus, Joseph Berggren, Karl K. TI Limiting factors in sub-10 nm scanning-electron-beam lithography SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article DE electron beam lithography; nanolithography ID THERMODYNAMICS; RESOLUTION AB Achieving the highest possible resolution using scanning-electron-beam lithography (SEBL) has become an increasingly urgent problem in recent years, as advances in various nanotechnology applications [F. S. Bates and G. H. Fredrickson, Annu. Rev. Phys. Chem. 41, 525 (1990); Black , IBM J. Res. Dev. 51, 605 (2007); Yang , J. Chem. Phys. 116, 5892 (2002)] have driven demand for feature sizes well into the sub-10 nm domain, close to the resolution limit of the current generation of SEBL processes. In this work, the authors have used a combination of calculation, modeling, and experiment to investigate the relative effects of resist contrast, beam scattering, secondary electron generation, system spot size, and metrology limitations on SEBL process resolution. In the process of investigating all of these effects, they have also successfully yielded dense structures with a pitch of 12 nm at voltages as low as 10 keV. C1 [Cord, Bryan; Yang, Joel; Duan, Huigao; Berggren, Karl K.] MIT, Cambridge, MA 02139 USA. [Joy, David C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Klingfus, Joseph] Raith USA, Ronkonkoma, NY 11779 USA. RP Cord, B (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM bcord@alum.mit.edu RI Duan, Huigao/P-6964-2014; Yang, Joel K.W./L-7892-2016 OI Yang, Joel K.W./0000-0003-3301-1040 NR 15 TC 30 Z9 31 U1 5 U2 33 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2009 VL 27 IS 6 BP 2616 EP 2621 DI 10.1116/1.3253603 PG 6 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 533DS UT WOS:000272803400060 ER PT J AU Kim, J Chao, WL Griedel, B Liang, XG Lewis, M Hilken, D Olynick, D AF Kim, Jihoon Chao, Weilun Griedel, Brian Liang, Xiaogan Lewis, Mark Hilken, Dawn Olynick, Deirdre TI Understanding the base development mechanism of hydrogen silsesquioxane SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article DE dissolving; ion exchange; organic compounds; reaction kinetics; solvation; surface chemistry ID ELECTRON-BEAM LITHOGRAPHY; X-RAY MICROSCOPY; RESIST; HSQ; RESOLUTION AB The authors study the dissolution mechanism of hydrogen silsesquioxane in base solutions with the addition of chloride salts to elucidate the development mechanism. The reaction mechanisms are proposed based on the dissolution mechanism of quartz. Development kinetics suggests two dose-dependent development mechanisms. Considering ion sizes, both hydrated and nonhydrated, and ion exchange, they propose that a combination of a surface dominated reaction at higher doses and a matrix dominated reaction at lower doses accounts for the high development contrast with a NaOH base/NaCl salt mixture. The interplay between the hydrated and the nonhydrated ion sizes leads to higher contrast developers, such as tetramethyl ammonium hydroxide with NaCl. C1 [Kim, Jihoon; Chao, Weilun; Hilken, Dawn] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. [Griedel, Brian] Weaver Austin Villeneuve & Sampson LLP, Oakland, CA 94607 USA. RP Kim, J (reprint author), Princeton Univ, Dept Elect Engn, NanoStruct Lab, Princeton, NJ 08544 USA. EM jnkim@princeton.edu; dlolynick@lbl.gov FU Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation [EEC-0310717] FX This work was performed at the Center for X-ray Optics and Molecular Foundry, Lawrence Berkeley National Laboratory and was partially supported by the Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. J. K. was supported by the Engineering Research Centers Program of the National Science Foundation under NSF Award No. EEC-0310717. The authors extend their gratitude to Farhad Salmassi for assisting AFM measurement and to Bruce Harteneck and Scott Dhuey for pattern exposure. NR 19 TC 10 Z9 10 U1 0 U2 6 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2009 VL 27 IS 6 BP 2628 EP 2634 DI 10.1116/1.3250261 PG 7 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 533DS UT WOS:000272803400062 ER PT J AU Maldonado, JR Sun, Y Tsai, R Pease, F Pianetta, P AF Maldonado, Juan R. Sun, Yun Tsai, Roger Pease, Fabian Pianetta, Piero TI Apparatus to measure electron reflection SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article DE electron beam lithography; electron optics; photocathodes AB Controlling reflection of electrons from an array of electrodes is a key feature of an electron lithography system currently under development. Here the authors describe a technique for characterizing this control. The apparatus is only 30 mm long, features simple colinear electron optics and a photocathode that emits a well-directed, monochromatic beam. The overall energy resolution is better than 1 eV. C1 [Maldonado, Juan R.; Pease, Fabian] Stanford Univ, Stanford, CA 94305 USA. [Sun, Yun; Pianetta, Piero] SLAC, Menlo Pk, CA USA. [Tsai, Roger] KLA Tencor, Milpitas, CA 95035 USA. RP Maldonado, JR (reprint author), Stanford Univ, Stanford, CA 94305 USA. EM jrmaldonado@ieee.org FU DARPA [N66001-07-1-2045] FX The authors would like to thank Allen Carroll and Alan Brodie from KLA-Tencor and David Adler for very interesting discussions. This work was partially funded by DARPA under Grant No. N66001-07-1-2045 administered by SPAWAR. Portions of this research were carried out at the SLAC National Accelerator Laboratory, a national user facility operated by Stanford University on Behalf of the U. S. Department of Energy, Office of Basic Energy Sciences. NR 4 TC 0 Z9 0 U1 1 U2 4 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2009 VL 27 IS 6 BP 2644 EP 2647 DI 10.1116/1.3242695 PG 4 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 533DS UT WOS:000272803400065 ER PT J AU Kanouff, MP Randall, JN Nadesalingham, M Kirk, WP Wallace, RM AF Kanouff, M. P. Randall, J. N. Nadesalingham, M. Kirk, W. P. Wallace, R. M. TI High rate gas dosing for tip based nanofabrication processes SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article DE aerodynamics; atomic force microscopy; catalysts; electric fields; electron beams; Monte Carlo methods; nanofabrication; nanostructured materials; scanning tunnelling microscopy ID BEAM SOURCES; MULTICHANNEL ARRAYS; SPEED DISTRIBUTION; SURFACE SCIENCE; CAPILLARY; ADSORPTION; DESIGN; PRESSURE; DISILANE; HYDROGEN AB Tip based nanofabrication (TBN) processes promise unprecedented degrees of control and precision for the manufacture of nanostructured materials and devices. These processes use atomic force microscope or scanning tunneling microscope tips to create localized electric fields, electron beams, and other catalyzing conditions to control and detect the position, size, dimension, and orientation of nanostructures. Tip based approaches have deposited metals, oxides, and organic molecules to name a few. Often, a gas phase precursor is required to provide the material for the deposit. The TBN conditions for gas dosing are unique compared to other fabrication processes, e.g., chemical vapor deposition. The manufacture of precision nanostructures requires a contamination-free environment, and hence ultrahigh vacuum conditions must be maintained in the chamber. This can cause a gas jet from a doser to spread into a wide fan resulting in a small precursor flux with a broad distribution. This makes it difficult to meet the large fabrication rates desired for TBN. Ideally, gas dosing would promote rapid deposition rates while limiting the chamber pressure by creating a focused gas jet that is restricted to the intended fabrication area. Continuum gas dynamics and direct simulation Monte Carlo calculations were used to study the effect of design and operational parameters on gas doser performance. The source pressure, doser design, and operating conditions are shown to affect the flux distribution at the substrate. The calculated results are compared to experimental measurements. A novel gas doser design was identified and its performance predicted. C1 [Kanouff, M. P.] Sandia Natl Labs, Livermore, CA 94550 USA. [Randall, J. N.] Zyvex Labs, Richardson, TX 75081 USA. [Nadesalingham, M.; Kirk, W. P.; Wallace, R. M.] Univ Texas Dallas, Dept Mat Sci & Engn, Richardson, TX 75081 USA. RP Kanouff, MP (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM kanouff@sandia.gov RI Wallace, Robert/A-5283-2008 OI Wallace, Robert/0000-0001-5566-4806 FU DARPA Micro Technology Office; Lockheed Martin Company [DEAC04-94-AL85000] FX This research was funded by the DARPA Micro Technology Office. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy contract/Grant No. DEAC04-94-AL85000. NR 23 TC 3 Z9 3 U1 0 U2 6 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2009 VL 27 IS 6 BP 2769 EP 2775 DI 10.1116/1.3259955 PG 7 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 533DS UT WOS:000272803400089 ER PT J AU Chang, ASP Peroz, C Liang, XG Dhuey, S Harteneck, B Cabrini, S AF Chang, Allan S. P. Peroz, Christophe Liang, Xiaogan Dhuey, Scott Harteneck, Bruce Cabrini, Stefano TI Nanoimprint planarization of high aspect ratio nanostructures using inorganic and organic resist materials SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article DE hydrophobicity; nanolithography; nanostructured materials; photonic crystals; planarisation; resists; soft lithography ID PHOTONIC CRYSTAL; FABRICATION; GLASS; SPIN; LITHOGRAPHY; DIELECTRICS; IMPRINT AB Planarization is often crucial to the implementation of three-dimensional devices and systems. By using a pressing process analogous to nanoimprint, the authors show that moderate to high aspect ratio (>= 3) photonic nanostructures in the form of one-dimensional and two-dimensional photonic crystals can be effectively planarized with thermally cured sol-gel or uv-curable nanoimprint resist materials. The planarization results are strongly dependent on parameters such as pressing pressure, hydrophobicity of feature surface, spin conditions for sol-gel, and dispense volume for uv-curable. High degree of planarization and complete filling of open features can be achieved through optimization of imprint parameters. Nanoimprint planarization may thus offer a simple, low cost, fast, and viable alternative planarization methodology. C1 [Chang, Allan S. P.; Peroz, Christophe; Liang, Xiaogan; Dhuey, Scott; Harteneck, Bruce; Cabrini, Stefano] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Peroz, Christophe] Abeam Technol, Castro Valley, CA 94546 USA. RP Chang, ASP (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM aspchang@lbl.gov NR 22 TC 2 Z9 2 U1 0 U2 6 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2009 VL 27 IS 6 BP 2877 EP 2881 DI 10.1116/1.3256658 PG 5 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 533DS UT WOS:000272803400112 ER PT J AU Clifford, CH Wiraatmadja, S Chan, TT Neureuther, AR Goldberg, KA Mochi, I Liang, T AF Clifford, Chris H. Wiraatmadja, Sandy Chan, Tina T. Neureuther, Andrew R. Goldberg, Kenneth A. Mochi, Iacopo Liang, Ted TI Comparison of fast three-dimensional simulation and actinic inspection for extreme ultraviolet masks with buried defects and absorber features SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article DE masks; semiconductor process modelling; ultraviolet lithography AB The printability of buried extreme ultraviolet (EUV) defects near absorber features is studied using aerial images from the actinic inspection tool (AIT) and the fast EUV mask simulation program RADICAL. This work begins by comparing the printability of isolated defects through focus predicted by RADICAL and measured by the AIT. Then, images of defects near features from both simulation and experiment are investigated for different defect sizes and positions through focus. Finally, RADICAL is used to assess the expected defect printability levels in the less in coherent conditions which are expected to be used for production. Defect printability will be investigated as a function of defect size, position, and focus for the small absorber lines critical to 22 nm imaging using a top-hat illumination condition of sigma=0.75. Here, defects as small as 0.8 nm surface height cause a critical dimension (CD) change greater than 10% at best focus when located in the worst case position. Defects as small as 2.2 nm cause a CD change greater than 10% even when located under the center of the absorber. C1 [Clifford, Chris H.; Wiraatmadja, Sandy; Chan, Tina T.; Neureuther, Andrew R.] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Goldberg, Kenneth A.; Mochi, Iacopo] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Liang, Ted] Intel Corp, Santa Clara, CA 95054 USA. RP Clifford, CH (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Cory Hall, Berkeley, CA 94720 USA. EM chris@eecs.berkeley.edu NR 7 TC 4 Z9 4 U1 0 U2 2 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2009 VL 27 IS 6 BP 2888 EP 2893 DI 10.1116/1.3244624 PG 6 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 533DS UT WOS:000272803400114 ER PT J AU Naulleau, PP Anderson, CN Baclea-an, LM Denham, P George, S Goldberg, KA Goldstein, M Hoef, B Jones, G Koh, C La Fontaine, B Montgomery, W Wallow, T AF Naulleau, Patrick P. Anderson, Christopher N. Baclea-an, Lorie-Mae Denham, Paul George, Simi Goldberg, Kenneth A. Goldstein, Michael Hoef, Brian Jones, Gideon Koh, Chawon La Fontaine, Bruno Montgomery, Warren Wallow, Tom TI Pushing extreme ultraviolet lithography development beyond 22 nm half pitch SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article DE masks; resists; surface roughness; ultraviolet lithography ID LINE-EDGE ROUGHNESS; MASK-ROUGHNESS; TOOL AB Microfield exposure tools (METs) have and continue to play a dominant role in the development of extreme ultraviolet resists and masks. One of these tools is the SEMATECH Berkeley 0.3 numerical aperture (NA) MET. Here, the authors investigate the possibilities and limitations of using the 0.3 NA MET for sub-22-nm half-pitch development. They consider mask resolution limitations and present a method unique to the centrally obscured MET, allowing mask patterning resolution limitations to be overcome. The method, however, comes at the cost of increased sensitivity to mask surface roughness. They also explore projection optics resolution limits and describe various illumination schemes allowing resolution enhancement. At 0.3 NA, the 0.5k(1) factor resolution limit is 22.5 nm, meaning that conventional illumination is of limited utility for sub-22-nm development. In general, resolution enhancing illumination encompasses increased coherence. They study the effect of this increased coherence on line-edge roughness (LER), which, along with resolution, is another crucial factor in sub-22-nm resist development. Due to coherence induced LER limitations, addressing the development at 16 nm half pitch and beyond will ultimately require higher NA systems. C1 [Naulleau, Patrick P.; Baclea-an, Lorie-Mae; Denham, Paul; George, Simi; Goldberg, Kenneth A.; Hoef, Brian; Jones, Gideon] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. [Anderson, Christopher N.] Univ Calif Berkeley, Appl Sci & Technol Grad Grp, Berkeley, CA 94720 USA. [Goldstein, Michael; Koh, Chawon; Montgomery, Warren] SEMATECH, Albany, NY 12203 USA. [La Fontaine, Bruno; Wallow, Tom] Adv Micro Devices Inc, Sunnyvale, CA 94088 USA. RP Naulleau, PP (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. EM pnaulleau@lbl.gov FU SEMATECH; DOE, Office of Science, Basic Energy Sciences FX The authors are greatly indebted to Kevin Bradley, Rene Delano, Jeff Gamsby, Eric Gullikson, Bob Gunion, Senajith Rekawa, Ron Tackaberry, and Farhad Salmassi for expert engineering, technical, and fabrication support. The authors are also grateful to Shinji Tarutani of Fujifilm and Jim Thackeray and Katherine Spear of Rohm and Haas for resist support. Finally, the authors acknowledge the programmatic support from Frank Goodwin, Bryan Rice, and Stefan Wurm of SEMATECH. This work was supported by SEMATECH and carried out at Lawrence Berkeley National Laboratory's Advanced Light Source, which is supported by the DOE, Office of Science, Basic Energy Sciences. NR 13 TC 4 Z9 4 U1 0 U2 4 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2009 VL 27 IS 6 BP 2911 EP 2915 DI 10.1116/1.3237092 PG 5 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 533DS UT WOS:000272803400118 ER PT J AU Goldberg, KA Mochi, I Naulleau, P Liang, T Yan, PY Huh, S AF Goldberg, K. A. Mochi, I. Naulleau, P. Liang, T. Yan, P-Y Huh, S. TI EUV pattern defect detection sensitivity based on aerial image linewidth measurements SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article DE lithography; masks; pattern recognition AB As the quality of EUV-wavelength mask inspection microscopes improves over time, the image properties and intensity profiles of reflected light can be evaluated in ever-greater detail. The SEMATECH Berkeley Actinic Inspection Tool (AIT) is one such microscope, featuring mask resolution values that match or exceed those available through lithographic printing in current photoresists. In order to evaluate the defect detection sensitivity of the AIT for dense line patterns on typical masks, the authors study the linewidth roughness (LWR) on two masks, as measured in the EUV images. They report the through-focus and pitch dependence of contrast, image log slope, linewidth, and LWR. The AIT currently reaches LWR 3 sigma values close to 9 nm for 175 nm half-pitch lines. This value is below 10% linewidth for nearly all lines routinely measured in the AIT. Evidence suggests that this lower level may arise from the mask's inherent pattern roughness. While the sensitivity limit of the AIT has not yet been established, it is clear that the AIT has the required sensitivity to detect defects that cause 10% linewidth changes in line sizes of 125 nm and larger. C1 [Goldberg, K. A.; Mochi, I.; Naulleau, P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Liang, T.; Yan, P-Y] Intel Corp, Santa Clara, CA 95054 USA. [Huh, S.] SEMATECH, Albany, NY 12203 USA. RP Goldberg, KA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Mail Stop 2-400, Berkeley, CA 94720 USA. EM kagoldberg@lbl.gov FU SEMATECH [LITH-343S2]; University of California Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX The authors gratefully acknowledge the support of SEMATECH and many LBNL team members who make this research possible. The AIT's technical support team includes Nathan Smith, Charles D. Kemp, Paul Denham, Robert Gunion, Brian Hoef, Hanjing Han, Kenneth Woolfe, Jeffrey Gamsby, and Ron Tackaberry. The AIT's chief engineer is Senajith Rekawa. Contributing scientists include James Macdougall, Hakseung Han, and Bruno LaFontaine. This work is funded by SEMATECH under Project No. LITH-343S2 and was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231. NR 15 TC 15 Z9 15 U1 0 U2 0 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2009 VL 27 IS 6 BP 2916 EP 2921 DI 10.1116/1.3264676 PG 6 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 533DS UT WOS:000272803400119 ER PT J AU Miyakawaa, R Naulleau, P Zakhor, A AF Miyakawaa, Ryan Naulleau, Patrick Zakhor, Avideh TI Iterative procedure for in situ extreme ultraviolet optical testing with an incoherent source SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article DE aberrations; iterative methods; light coherence; lighting; optical testing AB The authors propose an iterative method for in situ optical testing under partially coherent illumination that relies on the rapid computation of aerial images. In this method, a known pattern is imaged with the test optics at several planes through focus. A model is created that iterates through possible aberration maps until the through-focus series of aerial images matches the experimental result. The computation time of calculating the through-focus series is significantly reduced by reduced optimized coherent sum, an adapted form of the sum of coherent systems decomposition. In this method, the Hopkins formulation is described by an operator S, which maps the space of pupil aberrations to the space of aerial images. This operator is well approximated by a truncated sum of its spectral components. C1 [Miyakawaa, Ryan; Naulleau, Patrick] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Zakhor, Avideh] Univ Calif Berkeley, Dept Elect Engn, Berkeley, CA 94720 USA. RP Miyakawaa, R (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM rhmiyakawa@lbl.gov NR 7 TC 6 Z9 6 U1 0 U2 1 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2009 VL 27 IS 6 BP 2927 EP 2930 DI 10.1116/1.3259961 PG 4 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 533DS UT WOS:000272803400121 ER PT J AU Ho, H Skinner, JL AF Ho, Harvey Skinner, Jack L. TI Fabrication methods for creating flexible polymer substrate sensor tags SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article DE electric impedance; photodiodes; polymers; surface acoustic wave filters; surface acoustic wave sensors; wireless sensor networks ID SAW SENSORS AB The authors describe the design, fabrication, and testing of a passive wireless sensor platform utilizing low-cost commercial surface acoustic wave (SAW) filters and sensors. Polyimide and polyethylene terephthalate sheets are used as substrates to create a flexible sensor tag that can be applied to curved surfaces. A microfabricated antenna is integrated on the substrate in order to create a compact form factor. The sensor tags are fabricated using 315 MHz SAW filters and photodiodes and tested with the aid of a fiber-coupled tungsten lamp. Microwave energy transmitted from a network analyzer is used to interrogate the sensor tag. Due to an electrical impedance mismatch at the SAW filter and sensor, energy is reflected at the sensor load and reradiated from the integrated antenna. By selecting sensors that change electrical impedance based on environmental conditions, the sensor state can be inferred through measurement of the reflected energy profile. Testing has shown that a calibrated system utilizing this type of sensor tag can detect distinct light levels wireless and passively. The authors also demonstrate simultaneous operation of two tags with different center passbands that detects light. Ranging tests show that the sensor tags can operate at a distance of at least 3.6 m. C1 [Ho, Harvey; Skinner, Jack L.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Ho, H (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM jlskinn@sandia.gov FU U. S. Department of Energy [DEAC04-94AL85000] FX The work performed by Sandia National Laboratories is under the auspices of the U. S. Department of Energy, Contract No. DEAC04-94AL85000. NR 10 TC 2 Z9 2 U1 2 U2 6 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2009 VL 27 IS 6 BP 3104 EP 3108 DI 10.1116/1.3258142 PG 5 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 533DS UT WOS:000272803400157 ER PT J AU Moldovan, N Divan, R Zeng, HJ Carlisle, JA AF Moldovan, Nicolaie Divan, Ralu Zeng, Hongjun Carlisle, John A. TI Nanofabrication of sharp diamond tips by e-beam lithography and inductively coupled plasma reactive ion etching SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article DE atomic force microscopy; diamond; electron beam lithography; nanofabrication; plasma materials processing; sputter etching ID DIP-PEN NANOLITHOGRAPHY; ULTRANANOCRYSTALLINE DIAMOND; MEMS APPLICATIONS; CVD DIAMOND; THIN-FILMS; FABRICATION; PROBES; O-2; MICROSCOPY; DEPOSITION AB Ultrasharp diamond tips make excellent atomic force microscopy probes, field emitters, and abrasive articles due to diamond's outstanding physical properties, i.e., hardness, low friction coefficient, low work function, and toughness. Sharp diamond tips are currently fabricated as individual tips or arrays by three principal methods: (1) focused ion beam milling and gluing onto a cantilever of individual diamond tips, (2) coating silicon tips with diamond films, or (3) molding diamond into grooves etched in a sacrificial substrate, bonding the sacrificial substrate to another substrate or electrodepositing of a handling chip, followed by dissolution of the sacrificial substrate. The first method is tedious and serial in nature but does produce very sharp tips, the second method results in tips whose radius is limited by the thickness of the diamond coating, while the third method involves a costly bonding and release process and difficulties in thoroughly filling the high aspect ratio apex of molding grooves with diamond at the nanoscale. To overcome the difficulties with these existing methods, this article reports on the feasibility of the fabrication of sharp diamond tips by direct etching of ultrananocrystalline diamond (UNCD (R)) as a starting and structural material. The UNCD is reactive ion etched using a cap-precursor-mask scheme. An optimized etching recipe demonstrates the formation of ultrasharp diamond tips (similar to 10 nm tip radius) with etch rates of 650 nm/min. C1 [Moldovan, Nicolaie; Zeng, Hongjun; Carlisle, John A.] Adv Diamond Technol Inc, Romeoville, IL 60446 USA. [Divan, Ralu] Argonne Natl Lab, Argonne, IL 60439 USA. RP Moldovan, N (reprint author), Adv Diamond Technol Inc, Romeoville, IL 60446 USA. EM moldovan@thindiamond.com FU U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors acknowledge the use of the Center for Nanoscale Materials, Argonne National Laboratory, supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 23 TC 13 Z9 13 U1 3 U2 13 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2009 VL 27 IS 6 BP 3125 EP 3131 DI 10.1116/1.3263174 PG 7 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 533DS UT WOS:000272803400161 ER PT J AU Babin, S Peroz, C Bugrov, A Goltsov, A Ivonin, I Yankov, V Dhuey, S Cabrini, S Kley, EB Schmidt, H AF Babin, S. Peroz, C. Bugrov, A. Goltsov, A. Ivonin, I. Yankov, V. Dhuey, S. Cabrini, S. Kley, E. -B. Schmidt, H. TI Fabrication of novel digital optical spectrometer on chip SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article DE holography; visible spectrometers ID GRATINGS AB A novel type of digital optical spectrometer on chip is proposed and first results of their fabrication and characterization are reported. The devices are based on computer-designed digital planar holograms which involves millions of lines specifically located and oriented in order to direct the output light into the designed focal points according to the wavelength. Spectrometers were fabricated on silicon dioxide and hafnium dioxide planar waveguides using electron beam lithography and dry etching. The optical performances of the first devices with up to 1000 channels for a central wavelength of 660 nm are reported. C1 [Babin, S.; Peroz, C.] aBeam Technol, Castro Valley, CA 94546 USA. [Bugrov, A.; Goltsov, A.; Ivonin, I.; Yankov, V.] Nanoopt Devices, Washington Township, NJ 07676 USA. [Dhuey, S.; Cabrini, S.] Lawrence Berkeley Natl Lab, Berkeley, CA 94702 USA. [Kley, E. -B.; Schmidt, H.] Univ Jena, Inst Appl Phys, D-07745 Jena, Germany. RP Peroz, C (reprint author), aBeam Technol, 5286 Dunnigan Ct, Castro Valley, CA 94546 USA. EM cp@abeamtech.com NR 6 TC 8 Z9 8 U1 0 U2 8 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2009 VL 27 IS 6 BP 3187 EP 3191 DI 10.1116/1.3237114 PG 5 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 533DS UT WOS:000272803400173 ER PT J AU Barber, SK Soldate, P Anderson, EH Cambie, R McKinney, WR Takacs, PZ Voronov, DL Yashchuk, VV AF Barber, Samuel K. Soldate, Paul Anderson, Erik H. Cambie, Rossana McKinney, Wayne R. Takacs, Peter Z. Voronov, Dmytro L. Yashchuk, Valeriy V. TI Development of pseudorandom binary arrays for calibration of surface profile metrology tools SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article DE calibration; diffraction gratings; light interferometry; optical transfer function; surface structure; X-ray optics ID UNIFORMLY REDUNDANT ARRAYS AB Optical metrology tools, especially for short wavelengths (extreme ultraviolet and x-ray), must cover a wide range of spatial frequencies from the very low, which affects figure, to the important mid-spatial frequencies and the high spatial frequency range, which produces undesirable scattering. A major difficulty in using surface profilometers arises due to the unknown point-spread function (PSF) of the instruments [G. D. Boreman, Modulation Transfer Function in Optical and Electro-Optical Systems (SPIE, Bellingham, WA, 2001)] that is responsible for distortion of the measured surface profile. Generally, the distortion due to the PSF is difficult to account for because the PSF is a complex function that comes to the measurement via the convolution operation, while the measured profile is described with a real function. Accounting for instrumental PSF becomes significantly simpler if the result of measurement of a profile is presented in the spatial frequency domain as a power spectral density (PSD) distribution [J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, Englewood, CO, 2005)]. For example, measured PSD distributions provide a closed set of data necessary for three-dimensional calculations of scattering of light by the optical surfaces [E. L. Church , Opt. Eng. (Bellingham) 18, 125 (1979); J. C. Stover, Optical Scattering, 2nd ed. (SPIE Optical Engineering Press, Bellingham, WA, 1995)]. The distortion of the surface PSD distribution due to the PSF can be modeled with the modulation transfer function (MTF), which is defined over the spatial frequency bandwidth of the instrument. The measured PSD distribution can be presented as a product of the squared MTF and the ideal PSD distribution inherent for the system under test. Therefore, the instrumental MTF can be evaluated by comparing a measured PSD distribution of a known test surface with the corresponding ideal numerically simulated PSD. The square root of the ratio of the measured and simulated PSD distributions gives the MTF of the instrument. The applicability of the MTF concept to phase map measurements with optical interferometric microscopes needs to be experimentally verified as the optical tool and algorithms may introduce nonlinear artifacts into the process. In previous work [V. V. Yashchuk , Proc. SPIE 6704, 670408 (2007); Valeriy V. Yashchuk , Opt. Eng. (Bellingham) 47, 073602 (2008)] the instrumental MTF of a surface profiler was precisely measured using reference test surfaces based on binary pseudorandom (BPR) gratings. Here, the authors present results of fabricating and using two-dimensional (2D) BPR arrays that allow for a direct 2D calibration of the instrumental MTF. BPR sequences are widely used in engineering and communication applications such as global position systems and wireless communication protocols. The ideal BPR pattern has a flat "white noise" response over the entire range of spatial frequencies of interest. The BPR array used here is based on the uniformly redundant array (URA) prescription[E. E. Fenimore and T. M. Cannon, Appl. Opt. 17, 337 (1978)] initially used for x-ray and gamma ray astronomy applications. The URA's superior imaging capability originates from the fact that its cyclical autocorrelation function very closely approximates a delta function, which produces a flat PSD. Three different size BPR array patterns were fabricated by electron beam lithography and induction coupled plasma etching of silicon. The basic size units were 200, 400, and 600 nm. Two different etch processes were used, CF(4)/A and HBr, which resulted in undercut and vertical sidewall profiles, respectively. The 2D BPR arrays were used as standard test surfaces for MTF calibration of the MicroMap (TM)-570 interferometric microscope using all available objectives. The MicroMap (TM)-570 interferometric microscope uses incoherent illumination from a tungsten filament source and common path modulated phase shifting interference to produce a set of interferograms detected on a change coupled device. Mathematical algorithms applied to the datasets yield the surface phase map. The HBr etched two-dimensional BPR arrays have proven to be a very effective calibration standard making possible direct calibration corrections without the need of additional calculation considerations, while departures from the ideal vertical sidewall require an additional correction term for the CF(4)/Ar etched samples [Samuel K. Barber , Abstract to Optics and Photonics 2009: Optical Engineering and Applications Symposium, San Diego, CA, 2-6 August 2009]. Initial surface roughness of low cost "prime" wafers limits low magnification calibration but should not be a limitation if better polished samples are used. C1 [Barber, Samuel K.; Anderson, Erik H.; Cambie, Rossana; McKinney, Wayne R.; Voronov, Dmytro L.; Yashchuk, Valeriy V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Soldate, Paul] Rensselaer Polytech Inst, Troy, NY 12180 USA. [Takacs, Peter Z.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Barber, SK (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM ehanderson@lbl.gov RI McKinney, Wayne/F-2027-2014 OI McKinney, Wayne/0000-0003-2586-3139 FU Office of Science, Office of Basic Energy Sciences, Material Science Division, of the U. S. Department of Energy [DE-AC02-05CH11231, DE-AC02-98CH10886] FX The authors are grateful to Howard Padmore for useful discussions and Dawn Hilken for nanofabrication. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, Material Science Division, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory, and Contract No. DE-AC02-98CH10886 at Brookhaven National Laboratory. NR 5 TC 14 Z9 14 U1 0 U2 6 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2009 VL 27 IS 6 BP 3213 EP 3219 DI 10.1116/1.3245997 PG 7 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 533DS UT WOS:000272803400178 ER PT J AU Peroz, C Babin, S Machin, M Anderson, E Cabrini, S Dhuey, S Harteneck, B AF Peroz, C. Babin, S. Machin, M. Anderson, E. Cabrini, S. Dhuey, S. Harteneck, B. TI Automatic measurement of electron beam size by beam metrology technique using 20 nm test pattern SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article DE electron beam lithography; nanolithography; nanopatterning; proximity effect (lithography); scanning electron microscopy ID LITHOGRAPHY; RESOLUTION AB A robust operator independent measurement of electron beam sizes in two coordinates is demonstrated by using beam metrology (BEAMETR) technique. This method involves software associated with a specially designed pattern sample. The fabrication of this sample was done using 100 keV electron beam lithography and lift-off of metal. A proximity correction was applied to improve pattern quality. The minimum feature size of the fabricated BEAMETR patterns was 20 nm; this allowed for the measuring of beam size down to 2 nm. Beam size and shape measurements were done using three scanning electron microscopes; their operating conditions (voltage, aperture, and astigmatism) were varied. Repeatability and test pattern dependence were also studied, which demonstrated a good consistency of the results. C1 [Peroz, C.; Babin, S.; Machin, M.] ABeam Technol Inc, Castro Valley, CA 94546 USA. [Anderson, E.; Cabrini, S.; Dhuey, S.; Harteneck, B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94702 USA. RP Peroz, C (reprint author), ABeam Technol Inc, 5286 Dunnigan Ct, Castro Valley, CA 94546 USA. EM cp@abeamtech.com FU Office of Science, Office of Basic Energy Sciences of the U. S. Department of Energy [DE-AC02-05CH11231] FX The Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 8 TC 2 Z9 2 U1 1 U2 2 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2009 VL 27 IS 6 BP 3220 EP 3225 DI 10.1116/1.3258652 PG 6 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 533DS UT WOS:000272803400179 ER PT J AU Hofmann, T Dobisz, E Ocko, BM AF Hofmann, T. Dobisz, E. Ocko, B. M. TI Grazing incident small angle x-ray scattering: A metrology to probe nanopatterned surfaces SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article DE elemental semiconductors; nanolithography; nanopatterning; silicon; surface morphology; X-ray scattering ID INCIDENCE DIFFRACTION; APPROXIMATION AB Grazing incident small angle x-ray scattering (GISAXS) and transmission small angle x-ray scattering studies have been carried out on periodic patterns on silicon substrates in order to determine the average morphology and arrangement of the patterned features. The GISAXS pattern exhibited rods of scattering at Bragg positions, discrete and evenly spaced, in the surface plane. The scattered intensity modulations along each rod have been compared with simulated scattering from simple geometrical patterns to obtain quantitative information on the diameter, width, height, and sidewall inclination of the pillars and gratings. The results are in good agreement with real space images obtained with SEM and demonstrate that GISAXS is a powerful technique for characterizing nanoscale arrays used in patterned media, photonics structures, and electronics structures. C1 [Hofmann, T.; Ocko, B. M.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Dobisz, E.] Hitachi Res Ctr, San Jose, CA 95135 USA. RP Hofmann, T (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM hofmann@bnl.gov FU U. S. Department of Energy, Division of Materials Science [DE-AC02-98CH10886] FX The authors thank Lin Yang (X21) and Elaine DiMasi (X6B) from the National Synchrotron Light Source (NSLS) for their help with the measurements. This work was supported by the U. S. Department of Energy, Division of Materials Science, under Contract No. DE-AC02-98CH10886. NR 19 TC 19 Z9 19 U1 3 U2 14 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2009 VL 27 IS 6 BP 3238 EP 3243 DI 10.1116/1.3253608 PG 6 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 533DS UT WOS:000272803400182 ER PT J AU Lo, CF Kim, HY Kim, J Chen, SH Wang, SY Chyi, JI Chou, BY Chen, KH Wang, YL Chang, CY Pearton, SJ Kravchenko, LI Jang, S Ren, F AF Lo, C. F. Kim, H. -Y. Kim, J. Chen, Shu-Han Wang, Sheng-Yu Chyi, Jen-Inn Chou, B. Y. Chen, K. H. Wang, Y. L. Chang, C. Y. Pearton, S. J. Kravchenko, L. I. Jang, S. Ren, F. TI Proton irradiation effects on Sb-based heterojunction bipolar transistors SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article DE aluminium compounds; gallium arsenide; gallium compounds; heterojunction bipolar transistors; III-V semiconductors; indium compounds; proton effects ID NEUTRON AB In(0.52)Al(0.48)As/In(0.39)Ga(0.61)As(0.77)Sb(0.23)/In(0.53)Ga(0.47)As double heterojunction bipolar transistors (DHBTs) were irradiated with 5 MeV protons at fluences from 2x10(11) to 2x10(15) protons/cm(2). The radiation produced significant increases in generation-recombination leakage current in both emitter-base and base-collector junctions. The DHBTs irradiated with a dose of 2x10(11) cm(-2), which was equivalent to around 40 years of exposure in low Earth orbit, showed minimal changes in the junction ideality factor, generation-recombination leakage current, current gain, and output conductance. The InAlAs/InGaAsSb/InGaAs DHBTs appear to be well suited to space or nuclear industry applications. C1 [Lo, C. F.; Chou, B. Y.; Chen, K. H.; Ren, F.] Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA. [Kim, H. -Y.; Kim, J.] Korea Univ, Dept Chem & Biol Engn, Seoul 136701, South Korea. [Chen, Shu-Han; Wang, Sheng-Yu; Chyi, Jen-Inn] Natl Cent Univ, Dept Elect Engn, Jhongli 32001, Taiwan. [Wang, Y. L.; Chang, C. Y.; Pearton, S. J.] Univ Florida, Dept Mat Sci Engn, Gainesville, FL 32611 USA. [Kravchenko, L. I.] Ctr Nanophase Mat Sci, Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. [Jang, S.] Dankook Univ, Dept Chem Engn, Yongin 448701, South Korea. RP Lo, CF (reprint author), Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA. EM ren@che.ufl.edu RI Kim, Jihyun/F-6940-2013; Kravchenko, Ivan/K-3022-2015; Chyi, Jen-Inn/A-1799-2016 OI Kravchenko, Ivan/0000-0003-4999-5822; FU Center for Nanophase Materials Sciences; Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy FX The work at Oak Ridge National Laboratory was supported by the Center for Nanophase Materials Sciences, sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy. NR 10 TC 0 Z9 0 U1 1 U2 7 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2009 VL 27 IS 6 BP L33 EP L37 DI 10.1116/1.3246405 PG 5 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 533DS UT WOS:000272803400001 ER PT J AU Wilson, WC Hindson, BJ O'Hearn, ES Hall, S Tellgren-Roth, C Torres, C Naraghi-Arani, P Mecham, JO Lenhoff, RJ AF Wilson, William C. Hindson, Benjamin J. O'Hearn, Emily S. Hall, Sara Tellgren-Roth, Christian Torres, Clinton Naraghi-Arani, Pejman Mecham, James O. Lenhoff, Raymond J. TI A multiplex real-time reverse transcription polymerase chain reaction assay for detection and differentiation of Bluetongue virus and Epizootic hemorrhagic disease virus serogroups SO JOURNAL OF VETERINARY DIAGNOSTIC INVESTIGATION LA English DT Article DE Bluetongue virus; Epizootic hemorrhagic disease virus; real-time reverse transcription polymerase chain reaction ID WHITE-TAILED DEER; FOOT-AND-MOUTH; RT-PCR ASSAY; UNITED-STATES; SEQUENCE ALIGNMENT; VACCINE STRAINS; HIGH-THROUGHPUT; INSECT CELLS; PROTEIN; SEROTYPES AB Bluetongue virus (BTV) causes disease in domestic and wild ruminants and results in significant economic loss. The closely related Epizootic hemorrhagic disease virus (EHDV) has been associated with bluetongue-like disease in cattle. Although U.S. EHDV strains have not been experimentally proven to cause disease in cattle, there is serologic evidence of infection in cattle. Therefore, rapid diagnosis and differentiation of BTV and EHDV is required. The genetic sequence information and bioinformatic analysis necessary to design a real-time reverse transcription polymerase chain reaction (RT-PCR) assay for the early detection of indigenous and exotic BTV and EHDV is described. This sequence data foundation focused on 2 conserved target genes: one that is highly expressed in infected mammalian cells, and the other is highly expressed in infected insect cells. The analysis of all BTV and EHDV prototype strains indicated that a complex primer design was necessary for both a virus group-comprehensive and virus group-specific gene amplification diagnostic test. This information has been used as the basis for the development of a rapid multiplex BTV-EHDV real-time RT-PCR that detects all known serotypes of both viruses and distinguishes between BTV and EHDV serogroups. The sensitivity of this rapid, single-tube, real-time RT-PCR assay is sufficient for diagnostic application, without the contamination problems associated with standard gel-based RT-PCR, especially nested RT-PCR tests. C1 [Wilson, William C.; O'Hearn, Emily S.; Mecham, James O.] ARS, USDA, Arthropod Borne Anim Dis Res Lab, Laramie, WY 82071 USA. [Hindson, Benjamin J.; Hall, Sara; Torres, Clinton; Naraghi-Arani, Pejman; Lenhoff, Raymond J.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Tellgren-Roth, Christian] Univ Wyoming, Ctr Rural Hlth Res & Educ, Laramie, WY 82071 USA. RP Wilson, WC (reprint author), ARS, USDA, Arthropod Borne Anim Dis Res Lab, Dept 3354,1000 E Univ Ave, Laramie, WY 82071 USA. EM william.wilson@ars.usda.gov FU USDA-ARS [5410-32000-015-00D, 5410-32000-018-00D]; NIH, National Center for Research Resources [P20 RR016474] FX The authors thank Donna Johnson and Dr. Eileen Ostlund from APHIS-NVSL (Ames, IA) for providing RNA from exotic strains of BTV and EHDV necessary to complete this study and Ambion Inc. for technical advice. The authors thank Dr. Barbara Drolet, USDA, ARS, for reviewing an earlier version of this manuscript. This project was funded by USDA-ARS projects 5410-32000-015-00D and 5410-32000-018-00D. Bioinformatic analysis was supported by NIH Grant P20 RR016474 from the INBRE Program of the National Center for Research Resources. The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of NIH or the USDA. NR 46 TC 21 Z9 21 U1 0 U2 11 PU AMER ASSOC VETERINARY LABORATORY DIAGNOSTICIANS INC PI TURLOCK PA PO BOX 1522, TURLOCK, CA 95381 USA SN 1040-6387 J9 J VET DIAGN INVEST JI J. Vet. Diagn. Invest. PD NOV PY 2009 VL 21 IS 6 BP 760 EP 770 PG 11 WC Veterinary Sciences SC Veterinary Sciences GA 519SU UT WOS:000271789100002 PM 19901276 ER PT J AU Lagory, KE Walston, LJ Goulet, C Van Lonkhuyzen, RA Najjar, S Andrews, C AF Lagory, Kirk E. Walston, Leroy J. Goulet, Celine Van Lonkhuyzen, Robert A. Najjar, Stephen Andrews, Christian TI An Examination of Scale-Dependent Resource Use by Eastern Hognose Snakes in Southcentral New Hampshire SO JOURNAL OF WILDLIFE MANAGEMENT LA English DT Article DE eastern hognose snake; habitat selection; Heterodon platirhinos; home range; management; New Hampshire; spatial scale ID HABITAT SELECTION; HOME-RANGE; HETERODON-PLATIRHINOS; FRAGMENTATION; MOVEMENT AB The decline of many snake populations is attributable to habitat loss, and knowledge of habitat use is critical to their conservation. Resource characteristics (e.g., relative availability of different habitat types, soils, and slopes) within a landscape are scale-dependent and may not be equal across multiple spatial scales. Thus, it is important to identify the relevant spatial scales at which resource selection occurs. We conducted a radiotelemetry study of eastern hognose snake (Heterodon platirhinos) home range size and resource use at different hierarchical spatial scales. We present the results for 8 snakes radiotracked during a 2-year study at New Boston Air Force Station (NBAFS) in southern New Hampshire, USA, where the species is listed by the state as endangered. Mean home range size (minimum convex polygon) at NBAFS (51.7 +/- 14.7 ha) was similar to that reported in other parts of the species' range. Radiotracked snakes exhibited different patterns of resource use at different spatial scales. At the landscape scale (selection of locations within the landscape), snakes overutilized old-field and forest edge habitats and underutilized forested habitats and wetlands relative to availability. At this scale, snakes also overutilized areas containing sandy loam soils and areas with lower slope (mean slope = 5.2% at snake locations vs. 6.7% at random locations). We failed to detect some of these patterns of resource use at the home range scale (i.e., within the home range). Our ability to detect resource selection by the snakes only at the landscape scale is likely the result of greater heterogeneity in macrohabitat features at the broader landscape scale. From a management perspective, future studies of habitat selection for rare species should include measurement of available habitat at spatial scales larger than the home range. We suggest that the maintenance of open early successional habitats as a component of forested landscapes will be critical for the persistence of eastern hognose snake populations in the northeastern United States. (JOURNAL OF WILDLIFE MANAGEMENT 73(8): 1387-1393; 2009) C1 [Lagory, Kirk E.; Walston, Leroy J.; Van Lonkhuyzen, Robert A.; Andrews, Christian] Argonne Natl Lab, Div Environm Sci, Argonne, IL 60439 USA. [Goulet, Celine] Univ New Hampshire, Dept Nat Resources, Durham, NH 03824 USA. RP Lagory, KE (reprint author), Argonne Natl Lab, Div Environm Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM lagory@anl.gov FU United States Department of Defense; United States Air Force, through the United States Department of Energy [DE-AC02-06CH11357] FX We thank the natural resources staff of the NBAFS for logistical and field support. We also thank 2 anonymous reviewers for helpful comments on earlier drafts of this manuscript. This work was supported under a military interdepartmental purchase request from the United States Department of Defense, United States Air Force, through the United States Department of Energy contract DE-AC02-06CH11357. NR 40 TC 6 Z9 6 U1 3 U2 26 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0022-541X EI 1937-2817 J9 J WILDLIFE MANAGE JI J. Wildl. Manage. PD NOV PY 2009 VL 73 IS 8 BP 1387 EP 1393 DI 10.2193/2008-422 PG 7 WC Ecology; Zoology SC Environmental Sciences & Ecology; Zoology GA 515AC UT WOS:000271437400017 ER PT J AU Davidson, MW AF Davidson, Michael W. TI Alexander Jablonski, PhD Fluorescence Spectroscopy SO LABMEDICINE LA English DT Editorial Material C1 [Davidson, Michael W.] Univ Florida, Florida State Univ, Opt Microscopy Div, Natl High Magnet Field Lab, Gainesville, FL 32611 USA. [Davidson, Michael W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Davidson, MW (reprint author), Univ Florida, Florida State Univ, Opt Microscopy Div, Natl High Magnet Field Lab, Gainesville, FL 32611 USA. NR 0 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC CLINICAL PATHOLOGY PI CHICAGO PA 2100 W HARRISON ST, CHICAGO, IL 60612 USA SN 0007-5027 J9 LABMEDICINE JI Labmedicine PD NOV PY 2009 VL 40 IS 11 BP 694 EP 695 DI 10.1309/LMYH007ZKFVXFFRC PG 2 WC Medical Laboratory Technology SC Medical Laboratory Technology GA 513GG UT WOS:000271310000015 ER PT J AU Ice, GE Pang, JWL AF Ice, Gene E. Pang, Judy W. L. TI Tutorial on x-ray microLaue diffraction SO MATERIALS CHARACTERIZATION LA English DT Review DE X-ray; Microbeam; Laue; Diffraction; Deformation; Grain growth; Fracture ID AUSTENITIC STAINLESS-STEEL; SYNCHROTRON-RADIATION; STRUCTURAL MICROSCOPY; AL INTERCONNECTIONS; PLASTIC-DEFORMATION; CRYSTAL PLASTICITY; MICRODIFFRACTION; DISLOCATIONS; BEAM; MICROPLASTICITY AB MicroLaue diffraction combines the oldest x-ray diffraction method-Laue diffraction-with the most modem x-ray sources, optics and detectors. The combination can resolve complex materials into single-crystal-like submicron volumes. This unique ability to nondestructively map crystal structure at and below a sample surface, with high spatial and strain resolution can address long-standing fundamental issues in materials science. For example, the three-dimensional evolution of mesoscale structure and the self organization of defects can be observed nondestructively to understand the origins of inhomogeneous grain growth, deformation and fracture. (C) 2009 Elsevier Inc. All rights reserved. C1 [Ice, Gene E.; Pang, Judy W. L.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Ice, GE (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM IceGE@ornl.gov FU Division of Materials Science and Engineering, office of Basic Energy Science, U.S. Department of Energy FX This research is supported by the Division of Materials Science and Engineering, office of Basic Energy Science, U.S. Department of Energy. Research is in part on beamline 34-ID-E which is funded by the Office of Basic Energy Science, U.S. Department of Energy. NR 56 TC 30 Z9 30 U1 4 U2 22 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1044-5803 J9 MATER CHARACT JI Mater. Charact. PD NOV PY 2009 VL 60 IS 11 BP 1191 EP 1201 DI 10.1016/j.matchar.2009.07.006 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Materials Science, Characterization & Testing SC Materials Science; Metallurgy & Metallurgical Engineering GA 510XS UT WOS:000271128100001 ER PT J AU Tiley, J Srinivasan, R Banerjee, R Viswanathan, GB Toby, B Fraser, HL AF Tiley, J. Srinivasan, R. Banerjee, R. Viswanathan, G. B. Toby, B. Fraser, H. L. TI Application of X-ray and neutron diffraction to determine lattice parameters and precipitate volume fractions in low misfit nickel base superalloys SO MATERIALS SCIENCE AND TECHNOLOGY LA English DT Article DE X-ray diffraction; Neutron diffraction; Nickel base superalloys; Lattice parameter ID SINGLE-CRYSTAL SUPERALLOY; THERMAL-EXPANSION; GAMMA'-PHASE; SC16; RELAXATION; STRESS; DT AB Synchrotron X-ray diffraction and neutron diffraction techniques are employed to characterise the lattice parameters and volume fraction of gamma and gamma' phases in a high strength nickel base superalloy. Samples of Rene88DT were solutionised at 1150 degrees C and cooled under three different rates to provide fine and coarse gamma' size distributions. Samples were aged at 760 degrees C to precipitate tertiary gamma' and coarsen secondary precipitates. Lattice parameter misfit and coefficient of thermal expansion parameters were also determined. Results indicate significant microstructure changes within the samples during the initial 25 h of aging. C1 [Banerjee, R.] Univ N Texas, Ctr Adv Res & Technol, Denton, TX 76203 USA. [Banerjee, R.] Univ N Texas, Dept Mat Sci & Engn, Denton, TX 76203 USA. [Tiley, J.] USAF, Res Lab, Met Branch, AFRL RXLMD, Wright Patterson AFB, OH 45309 USA. [Srinivasan, R.; Viswanathan, G. B.; Fraser, H. L.] Ohio State Univ, Ctr Accelerated Maturat Mat, Columbus, OH 43210 USA. [Srinivasan, R.; Viswanathan, G. B.; Fraser, H. L.] Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43210 USA. [Toby, B.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Banerjee, R (reprint author), Univ N Texas, Ctr Adv Res & Technol, Denton, TX 76203 USA. EM rajarshi.banerjee@unt.edu RI Toby, Brian/F-3176-2013 OI Toby, Brian/0000-0001-8793-8285 FU Centre for the Accelerated Maturation of Materials (CAMM) at the Ohio State University; Centre for Advanced Research and Technology (CART) at the University of North Texas FX The present work was conducted as part of the joint research of the Alloy Development Group of the Air Force Research Laboratory's Materials and Manufacturing Directorate, The Ohio State University Materials Science and Engineering Department, and the Materials Department at the University of North Texas. The support and facilities from the Centre for the Accelerated Maturation of Materials (CAMM) at the Ohio State University and the Centre for Advanced Research and Technology (CART) at the University of North Texas are gratefully acknowledged. NR 34 TC 7 Z9 7 U1 0 U2 12 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 0267-0836 EI 1743-2847 J9 MATER SCI TECH-LOND JI Mater. Sci. Technol. PD NOV PY 2009 VL 25 IS 11 BP 1369 EP 1374 DI 10.1179/174328409X399010 PG 6 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 523CM UT WOS:000272049300015 ER PT J AU Zinkle, SJ Busby, JT AF Zinkle, Steven J. Busby, Jeremy T. TI Structural materials for fission & fusion energy SO MATERIALS TODAY LA English DT Review ID RESEARCH-AND-DEVELOPMENT; STRESS-CORROSION CRACKING; LOW-ACTIVATION MATERIALS; MARTENSITIC STEELS; FERRITIC STEELS; FERRITIC/MARTENSITIC STEELS; IRRADIATION EMBRITTLEMENT; MATERIALS CHALLENGES; MATERIALS TECHNOLOGY; BREEDING BLANKET AB Structural materials represent the key for containment of nuclear fuel and fission products as well as reliable and thermodynamically efficient production of electrical energy from nuclear reactors. Similarly, high-performance structural materials will be critical for the future success of proposed fusion energy reactors, which will subject the structures to unprecedented fluxes of high-energy neutrons along with intense thermomechanical stresses. Advanced materials can enable improved reactor performance via increased safety margins and design flexibility, in particular by providing increased strength, thermal creep resistance and superior corrosion and neutron radiation damage resistance. In many cases, a key strategy for designing high-performance radiation-resistant materials is based on the introduction of a high, uniform density of nanoscale particles that simultaneously provide good high temperature strength and neutron radiation damage resistance. C1 [Zinkle, Steven J.; Busby, Jeremy T.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Zinkle, SJ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008, Oak Ridge, TN 37831 USA. EM zinklesj@ornl.gov OI Zinkle, Steven/0000-0003-2890-6915 FU Light Water Reactor Sustainability Research and Development program, Office of Nuclear Energy; Office of Fusion Energy Sciences, U.S. Department of Energy FX This work was sponsored in part by the Light Water Reactor Sustainability Research and Development program, Office of Nuclear Energy and by the Office of Fusion Energy Sciences, U.S. Department of Energy. NR 94 TC 213 Z9 218 U1 39 U2 241 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1369-7021 EI 1873-4103 J9 MATER TODAY JI Mater. Today PD NOV PY 2009 VL 12 IS 11 BP 12 EP 19 PG 8 WC Materials Science, Multidisciplinary SC Materials Science GA 543VT UT WOS:000273608000011 ER PT J AU Stan, M AF Stan, Marius TI Discovery and design of nuclear fuels SO MATERIALS TODAY LA English DT Review ID ADVANCED STRUCTURAL-MATERIALS; MONTE-CARLO SIMULATIONS; IRRADIATED UO2 FUEL; URANIUM-DIOXIDE; OXYGEN DIFFUSION; MOLECULAR-DYNAMICS; THERMOPHYSICAL PROPERTIES; THERMAL-CONDUCTIVITY; RADIATION-DAMAGE; HIGH-TEMPERATURE AB To facilitate the discovery and design of innovative nuclear fuels, multi-scale models and simulations are used to predict irradiation effects on properties such as thermal conductivity, oxygen diffusivity, and thermal expansion. The multi-scale approach is illustrated using results on ceramic fuels, with a focus on predictions of point defect concentration, stoichiometry, and phase stability. The high performance computer simulations include coupled heat transport, diffusion, and thermal expansion, and gas bubble formation and evolution in a fuel element consisting of UO2 fuel and metallic cladding. The second part of the paper is dedicated to a discussion of an international strategy for developing advanced, innovative nuclear fuels. Four initiatives are proposed to accelerate the discovery and design of new materials: (a) Create Institutes for Materials Discovery and Design, (b) Create an International Knowledgebase for experimental data, models (mathematical expressions), and simulations (codes), (c) Improve education and (d) Set up international collaborations. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Stan, M (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM mastan@lanl.gov FU U.S.A. Department of Energy via the Advanced Fuel Cycle Initiative (AFCI); Global Nuclear Energy Partnership (GNEP); Nuclear Energy Advanced Models and Simulations (NEAMS) Programs FX This work was occasionally supported by the U.S.A. Department of Energy via the Advanced Fuel Cycle Initiative (AFCI), the Global Nuclear Energy Partnership (GNEP), and the Nuclear Energy Advanced Models and Simulations (NEAMS) Programs. NR 95 TC 17 Z9 17 U1 4 U2 53 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1369-7021 EI 1873-4103 J9 MATER TODAY JI Mater. Today PD NOV PY 2009 VL 12 IS 11 BP 20 EP 28 PG 9 WC Materials Science, Multidisciplinary SC Materials Science GA 543VT UT WOS:000273608000012 ER PT J AU Song, B Connelly, K Korellis, J Lu, WY Antoun, BR AF Song, Bo Connelly, Kevin Korellis, John Lu, Wei-Yang Antoun, Bonnie R. TI Improved Kolsky-bar design for mechanical characterization of materials at high strain rates SO MEASUREMENT SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 6th International Symposium on Measurement Techniques for Multiphase Flows CY DEC 15-17, 2008 CL Okinawa, JAPAN DE Kolsky bar (split-Hopkinson pressure bar, SHPB); dynamic characterization; alignment; stress-strain curve ID HOPKINSON PRESSURE BAR AB A Kolsky apparatus with numerous modifications has been designed for mechanical characterization of materials at high strain rates. These modifications include employing a highly precise optical table, pillow blocks with Frelon (R)-coated linear bearings as bar supports and a laser system for better precision bar alignment, etc. In addition, the striker bars were coated with Teflon (R) to minimize the friction with the gun barrel after removal of the conventional plastic sabots. This new design significantly simplifies the alignment process, improving the final alignment and calibration in the bar system; both are critical for validity and accuracy of the resulting data. An example of a dynamic experiment on a 6061 aluminum specimen by using this newly designed Kolsky bar is also presented. C1 [Song, Bo; Connelly, Kevin; Korellis, John; Lu, Wei-Yang; Antoun, Bonnie R.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Song, B (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM bsong@sandia.gov RI Song, Bo/D-3945-2011 NR 7 TC 3 Z9 3 U1 2 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-0233 EI 1361-6501 J9 MEAS SCI TECHNOL JI Meas. Sci. Technol. PD NOV PY 2009 VL 20 IS 11 AR 115701 DI 10.1088/0957-0233/20/11/115701 PG 8 WC Engineering, Multidisciplinary; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 509CB UT WOS:000270988800033 ER PT J AU Waters, KM Tan, RM Opresko, LK Quesenberry, RD Bandyopadhyay, S Chrisler, WB Weber, TJ AF Waters, Katrina M. Tan, Ruimin Opresko, Lee K. Quesenberry, Ryan D. Bandyopadhyay, Somnath Chrisler, William B. Weber, Thomas J. TI Cellular Dichotomy Between Anchorage-Independent Growth Responses to bFGF and TPA Reflects Molecular Switch in Commitment to Carcinogenesis SO MOLECULAR CARCINOGENESIS LA English DT Article DE anchorage-independent growth; reversible; hepatic leukemia factor ID JB6 CELLS; NEOPLASTIC TRANSFORMATION; MURINE MELANOCYTES; H-RAS; FIBROBLAST; EXPRESSION; GENE; RADIATION; SKIN; CANCER AB We have investigated gene expression patterns underlying reversible and irreversible anchorage-independent growth (AIG) phenotypes to identify more sensitive markers of cell transformation for studies directed at interrogating carcinogenesis responses. In JB6 mouse epidermal cells, basic fibroblast growth factor (bFGF) induces an unusually efficient and reversible AIG response, relative to 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced AIG which is irreversible. The reversible and irreversible AIG phenotypes are characterized by largely nonoverlapping global gene expression profiles. However, a subset of clifferentially expressed genes were identified as common to reversible and irreversible AIG phenotypes, including genes regulated in a reciprocal fashion. Hepatic leukemia factor (HLF) and D-site albumin promoter-binding protein (DBP) were increased in both bFGF and TPA soft agar colonies and selected for functional validation. Ectopic expression of human HLF and DBP in JB6 cells resulted in a marked increase in TPA- and bFGF-regulated AIG responses. HLF and DBP expression were increased in soft agar colonies arising from JB6 cells exposed to gamma radiation and in a human basal cell carcinoma tumor tissue, relative to paired nontumor tissue. Subsequent biological network analysis suggests that many of the differentially expressed genes that are common to bFGF- and TPA-dependent AIG are regulated by c-Myc, SP-1, and HNF-4 transcription factors. Collectively, we have identified a potential molecular switch that mediates the transition from reversible to irreversible AIG. (C) 2009 Wiley-Liss, Inc. C1 [Waters, Katrina M.; Bandyopadhyay, Somnath; Weber, Thomas J.] Pacific NW Natl Lab, Computat Biol Grp, Richland, WA 99354 USA. [Waters, Katrina M.; Bandyopadhyay, Somnath] Pacific NW Natl Lab, Bioinformat Grp, Richland, WA 99354 USA. RP Weber, TJ (reprint author), Pacific NW Natl Lab, Computat Biol Grp, 790 6th St,P7-56, Richland, WA 99354 USA. FU U.S. Department of Energy (DOE) [DE-AC05-76RL0 1830] FX The authors thank Dr. Thomas Squier and Dr. William Morgan for their advice in the development of this manuscript. This research was Supported by a grant from the U.S. Department of Energy (DOE) Office of Biological and Evironmental Research (OBER) to T.J.W. This manuscript has been authored by Battelle Memorial Institute, Pacific Northwest Division, under Contract No. DE-AC05-76RL0 1830 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-LIP, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 42 TC 8 Z9 8 U1 0 U2 1 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0899-1987 J9 MOL CARCINOGEN JI Mol. Carcinog. PD NOV PY 2009 VL 48 IS 11 BP 1059 EP 1069 DI 10.1002/mc.20558 PG 11 WC Biochemistry & Molecular Biology; Oncology SC Biochemistry & Molecular Biology; Oncology GA 515DJ UT WOS:000271446600010 PM 19526458 ER PT J AU Lance, SL Tuberville, TD Dueck, L Holz-Schietinger, C Trosclair, PL Elsey, RM Glenn, TC AF Lance, S. L. Tuberville, T. D. Dueck, L. Holz-Schietinger, C. Trosclair, P. L., III Elsey, R. M. Glenn, T. C. TI Multiyear multiple paternity and mate fidelity in the American alligator, Alligator mississippiensis SO MOLECULAR ECOLOGY LA English DT Article DE alligator; mate fidelity; mating systems; microsatellites; multiple paternity ID EXTRA-PAIR PATERNITY; SNAKE THAMNOPHIS-SIRTALIS; SEXUAL SELECTION; FEMALE CHOICE; GARTER SNAKE; MICROSATELLITE MARKERS; COMPUTER-PROGRAM; MATING PATTERNS; PAINTED TURTLES; SPERM STORAGE AB We examined multiple paternity during eight breeding events within a 10-year period (1995-2005) for a total of 114 wild American alligator nests in Rockefeller Wildlife Refuge in south-west Louisiana. Our goals included examining (i) within population variation in multiple paternity among years, (ii) variation in multiple paternity in individual females and (iii) the potential for mate fidelity. To accomplish this, in the current study, eggs were sampled from 92 nests over 6 years and analysed along with 22 nests from a previous 2-year study. Genotypes at five microsatellite loci were generated for 1802 alligator hatchlings. Multiple paternity was found in 51% of clutches and paternal contributions to these clutches were highly skewed. Rates of multiple paternity varied widely among years and were consistently higher in the current study than previously reported for the same population. Larger females have larger clutches, but are not more likely to have multiply sired nests. However, small females are unlikely to have clutches with more than two sires. For 10 females, nests from multiple years were examined. Seven (70%) of these females exhibited long-term mate fidelity, with one female mating with the same male in 1997, 2002 and 2005. Five females exhibiting partial mate fidelity (71%) had at least one multiple paternity nest and thus mated with the same male, but not exclusively. These patterns of mate fidelity suggest a potential role for mate choice in alligators. C1 [Lance, S. L.; Tuberville, T. D.; Dueck, L.; Holz-Schietinger, C.; Glenn, T. C.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Trosclair, P. L., III; Elsey, R. M.] Louisiana Dept Wildlife & Fisheries, Grand Chenier, LA 70643 USA. [Glenn, T. C.] Univ Georgia, Dept Environm Hlth Sci, Athens, GA 30602 USA. [Glenn, T. C.] Univ Georgia, Georgia Genom Facil, Athens, GA 30602 USA. RP Lance, SL (reprint author), Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. EM lance@srel.edu RI Glenn, Travis/A-2390-2008; Lance, Stacey/K-9203-2013 OI Lance, Stacey/0000-0003-2686-1733 FU National Science Foundation [DBI-0453493]; Savannah River Ecology Laboratory; Louisiana Department of Wildlife Fisheries [604119 513-400145]; Savannah River Ecology Laboratory [DE-FC09-96SR18-546]; University of Georgia [DE-FC09-07SR22506]; U.S. Department of Energy FX We thank Dwayne LeJeune, Jeb Linscombe, and George Melancon of the Louisiana Department of Wildlife and Fisheries for assistance with capture of female alligators. We also thank Lisa Davis, Denise Strickland, Dean Croshaw, Cris Hagen, Anna McKee, Jessica Osborne, Mandy Schable, Amanda Subaluski and Olga Tsyusko for help in sampling, DNA extractions and genotyping individuals and David Scott for help with statistics and figure preparation. William Amos and three anonymous reviewers substantially improved the manuscript. Support for Celeste Holz-Schietinger was provided by the National Science Foundation Grant No. DBI-0453493 and the Savannah River Ecology Laboratory. Additional support was provided by Louisiana Department of Wildlife & Fisheries contract CFMS No. 604119 513-400145, and the Savannah River Ecology Laboratory under Financial Assistance Award DE-FC09-96SR18-546 to DE-FC09-07SR22506 between the University of Georgia and the U.S. Department of Energy. NR 68 TC 22 Z9 24 U1 2 U2 19 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0962-1083 J9 MOL ECOL JI Mol. Ecol. PD NOV PY 2009 VL 18 IS 21 BP 4508 EP 4520 DI 10.1111/j.1365-294X.2009.04373.x PG 13 WC Biochemistry & Molecular Biology; Ecology; Evolutionary Biology SC Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology GA 507CX UT WOS:000270829700016 PM 19804377 ER PT J AU Peters, MB Ovenden, JR Broderick, D Lance, SL Hagen, C Glenn, TC AF Peters, Maureen B. Ovenden, Jennifer R. Broderick, Damien Lance, Stacey L. Hagen, Cris Glenn, Travis C. TI Fifteen microsatellite loci for the jungle perch, Kuhlia rupestris SO MOLECULAR ECOLOGY RESOURCES LA English DT Article DE Jungle perch; Kuhlia rupestris; microsatellite; population genetics ID SOFTWARE AB We developed and optimized 15 polymorphic microsatellite loci in the jungle perch, Kuhlia rupestris. Loci were screened in a single population (n = 24) from Fraser Island, Queensland, Australia. Number of alleles per locus ranged from 3 to 19 and observed heterozygosity from 0.25 to 1. No significant linkage disequilibrium was detected between any pair of loci. Genotype proportions for these loci in the population sampled were in Hardy-Weinberg equilibrium. C1 [Peters, Maureen B.; Lance, Stacey L.; Hagen, Cris] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Glenn, Travis C.] Univ Georgia, Dept Environm Hlth Sci, Athens, GA 30602 USA. [Ovenden, Jennifer R.; Broderick, Damien] Queensland Dept Primary Ind & Fisheries, Mol Fisheries Lab, St Lucia, Qld 4067, Australia. RP Peters, MB (reprint author), Washington Univ, Sch Med, Dept Anat & Neurobiol, 660 S Euclid Ave, St Louis, MO 63110 USA. EM maureenbea@gmail.com RI broderick, damien/E-9999-2010; Ovenden, Jennifer/A-3717-2010; Glenn, Travis/A-2390-2008; Lance, Stacey/K-9203-2013 OI Lance, Stacey/0000-0003-2686-1733 FU U.S. Department of Energy [DE-FC09-07SR22506]; Queensland Government of Australia through the Department of Primary Industries and Fisheries FX This work was supported in part by the U.S. Department of Energy, through Financial Assistance Award No. DE-FC09-07SR22506 to the University of Georgia Research Foundation and in part by the Queensland Government of Australia through the Department of Primary Industries and Fisheries. We thank Mark McLennan, Keith Chilcott, Angela Henderson, Michael Hutchison and John Russell for providing tissue samples and Raewyn Street for assistance in the laboratory. NR 13 TC 5 Z9 5 U1 1 U2 6 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1755-098X J9 MOL ECOL RESOUR JI Mol. Ecol. Resour. PD NOV PY 2009 VL 9 IS 6 BP 1467 EP 1469 DI 10.1111/j.1755-0998.2009.02735.x PG 3 WC Biochemistry & Molecular Biology; Ecology; Evolutionary Biology SC Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology GA 506PK UT WOS:000270787500006 PM 21564934 ER PT J AU Achyuthan, KE Adams, PD Simmons, BA Singh, AK AF Achyuthan, Komandoor Elayavalli Adams, Paul David Simmons, Blake Alexander Singh, Anup Kumar TI Spectroscopic Analyses of the Biofuels-Critical Phytochemical Coniferyl Alcohol and Its Enzyme-Catalyzed Oxidation Products SO MOLECULES LA English DT Article DE coniferyl alcohol; absorption spectroscopy; high-throughput screening; monolignols; biofuels ID TUMEFACIENS BETA-GLUCOSIDASE; TRAMETES-VERSICOLOR; PHENOLIC-COMPOUNDS; LACCASE; LIGNIN; PEROXIDASE; LIGNIFICATION; OXIDASE; EUGENOL; STRAIN AB Lignin composition (monolignol types of coniferyl, sinapyl or p-coumaryl alcohol) is causally related to biomass recalcitrance. We describe multiwavelength (220, 228, 240, 250, 260, 290, 295, 300, 310 or 320 nm) absorption spectroscopy of coniferyl alcohol and its laccase- or peroxidase-catalyzed products during real time kinetic, pseudo-kinetic and endpoint analyses, in optical turn on or turn off modes, under acidic or basic conditions. Reactions in microwell plates and 100 mu L volumes demonstrated assay miniaturization and high throughput screening capabilities. Bathochromic and hypsochromic shifts along with hyperchromicity or hypochromicity accompanied enzymatic oxidations by laccase or peroxidase. The limits of detection and quantitation of coniferyl alcohol averaged 2.4 and 7.1 mu M respectively, with linear trend lines over 3 to 4 orders of magnitude. Coniferyl alcohol oxidation was evident within 10 minutes or with 0.01 mu g/mL laccase and 2 minutes or 0.001 mu g/mL peroxidase. Detection limit improved to 1.0 mu M coniferyl alcohol with Km of 978.7 +/- 150.7 mu M when examined at 260 nm following 30 minutes oxidation with 1.0 mu g/mL laccase. Our assays utilized the intrinsic spectroscopic properties of coniferyl alcohol or its oxidation products for enabling detection, without requiring chemical synthesis or modification of the substrate or product(s). These studies facilitate lignin compositional analyses and augment pretreatment strategies for reducing biomass recalcitrance. C1 [Achyuthan, Komandoor Elayavalli; Adams, Paul David; Simmons, Blake Alexander; Singh, Anup Kumar] Joint BioEnergy Inst, Emeryville, CA 94550 USA. [Achyuthan, Komandoor Elayavalli] Sandia Natl Labs, Biosensors & Nanomat Dept, Albuquerque, NM 87185 USA. [Adams, Paul David] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Simmons, Blake Alexander; Singh, Anup Kumar] Sandia Natl Labs, Livermore, CA 94550 USA. RP Achyuthan, KE (reprint author), Joint BioEnergy Inst, Emeryville, CA 94550 USA. EM kachyut@sandia.gov; pdadams@lbl.gov; basimmo@sandia.gov; aksingh@sandia.gov RI Adams, Paul/A-1977-2013; OI Adams, Paul/0000-0001-9333-8219; Simmons, Blake/0000-0002-1332-1810 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231, DE-AC04-94AL85000] FX The DOE's JBEI (http://www.jbei.org) is supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through Contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U. S. Department of Energy. Sandia is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000. NR 39 TC 2 Z9 2 U1 2 U2 14 PU MOLECULAR DIVERSITY PRESERVATION INTERNATIONAL-MDPI PI BASEL PA KANDERERSTRASSE 25, CH-4057 BASEL, SWITZERLAND SN 1420-3049 J9 MOLECULES JI Molecules PD NOV PY 2009 VL 14 IS 11 BP 4758 EP 4778 DI 10.3390/molecules14114758 PG 21 WC Chemistry, Organic SC Chemistry GA 525CK UT WOS:000272190500039 PM 19935474 ER PT J AU Cardamone, C Schawinski, K Sarzi, M Bamford, SP Bennert, N Urry, CM Lintott, C Keel, WC Parejko, J Nichol, RC Thomas, D Andreescu, D Murray, P Raddick, MJ Slosar, A Szalay, A VandenBerg, J AF Cardamone, Carolin Schawinski, Kevin Sarzi, Marc Bamford, Steven P. Bennert, Nicola Urry, C. M. Lintott, Chris Keel, William C. Parejko, John Nichol, Robert C. Thomas, Daniel Andreescu, Dan Murray, Phil Raddick, M. Jordan Slosar, Anze Szalay, Alex VandenBerg, Jan TI Galaxy Zoo Green Peas: discovery of a class of compact extremely star-forming galaxies SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Review DE galaxies: dwarf; galaxies: evolution; galaxies: formation; galaxies: high-redshift; galaxies: Seyfert; galaxies: starburst ID DIGITAL-SKY-SURVEY; LYMAN-BREAK GALAXIES; LINE SEYFERT-1 GALAXIES; HUBBLE DEEP FIELD; ULTRAVIOLET-LUMINOUS GALAXIES; ALPHA-EMITTING GALAXIES; ACTIVE GALACTIC NUCLEI; EARLY DATA RELEASE; BLACK-HOLE MASS; DWARF GALAXIES AB We investigate a class of rapidly growing emission line galaxies, known as 'Green Peas', first noted by volunteers in the Galaxy Zoo project because of their peculiar bright green colour and small size, unresolved in Sloan Digital Sky Survey imaging. Their appearance is due to very strong optical emission lines, namely [O iii] lambda 5007 A, with an unusually large equivalent width of up to similar to 1000 A. We discuss a well-defined sample of 251 colour-selected objects, most of which are strongly star forming, although there are some active galactic nuclei interlopers including eight newly discovered narrow-line Seyfert 1 galaxies. The star-forming Peas are low-mass galaxies (M similar to 108.5-1010 M(circle dot)) with high star formation rates (similar to 10 M(circle dot) yr-1), low metallicities (log[O/H] + 12 similar to 8.7) and low reddening [E(B - V) < 0.25] and they reside in low-density environments. They have some of the highest specific star formation rates (up to similar to 10-8 yr-1) seen in the local Universe, yielding doubling times for their stellar mass of hundreds of Myr. The few star-forming Peas with Hubble Space Telescope imaging appear to have several clumps of bright star-forming regions and low surface density features that may indicate recent or ongoing mergers. The Peas are similar in size, mass, luminosity and metallicity to luminous blue compact galaxies. They are also similar to high-redshift ultraviolet-luminous galaxies, e.g. Lyman-break galaxies and Ly alpha emitters, and therefore provide a local laboratory with which to study the extreme star formation processes that occur in high-redshift galaxies. Studying starbursting galaxies as a function of redshift is essential to understanding the build up of stellar mass in the Universe. C1 [Cardamone, Carolin] Yale Univ, Dept Astron, New Haven, CT 06520 USA. [Cardamone, Carolin; Schawinski, Kevin; Urry, C. M.] Yale Univ, Dept Phys, Yale Ctr Astron & Astrophys, New Haven, CT 06520 USA. [Cardamone, Carolin; Schawinski, Kevin; Urry, C. M.] Yale Univ, Dept Astron, Yale Ctr Astron & Astrophys, New Haven, CT 06520 USA. [Sarzi, Marc] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Bamford, Steven P.] Univ Nottingham, Ctr Astron & Particle Theory, Nottingham NG7 2RD, England. [Bennert, Nicola] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Lintott, Chris] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Keel, William C.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Parejko, John] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Nichol, Robert C.; Thomas, Daniel] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 2EG, Hants, England. [Andreescu, Dan] LinkLab, Bronx, NY 10471 USA. [Murray, Phil] Fingerprint Digital Media, Newtownards BT23 7GY, Down, North Ireland. [Raddick, M. Jordan; Szalay, Alex; VandenBerg, Jan] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Slosar, Anze] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. RP Cardamone, C (reprint author), Yale Univ, Dept Astron, POB 208121, New Haven, CT 06520 USA. EM ccardamone@astro.yale.edu RI Urry, Claudia/G-7381-2011; Bamford, Steven/E-8702-2010; OI Urry, Claudia/0000-0002-0745-9792; Bamford, Steven/0000-0001-7821-7195; Schawinski, Kevin/0000-0001-5464-0888 FU NSF [AST0407295]; STFC Science in Society Programme; Alfred P. Sloan Foundation; National Science Foundation; US Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England FX The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory and the University of Washington. NR 114 TC 133 Z9 133 U1 0 U2 5 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV 1 PY 2009 VL 399 IS 3 BP 1191 EP 1205 DI 10.1111/j.1365-2966.2009.15383.x PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 508BP UT WOS:000270902100009 ER PT J AU Eggleton, PP AF Eggleton, P. P. TI Towards multiple-star population synthesis SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: general; stars: statistics ID LINED ECLIPSING BINARIES; STELLAR EVOLUTION; CONTACT BINARIES; TIDAL FRICTION; TRIPLE STARS; SYSTEMS; COMPONENTS; ORBITS; VELOCITIES; TESTS AB The multiplicities of stars, and some other properties, were collected recently by Eggleton & Tokovinin, for the set of 4559 stars with Hipparcos magnitude brighter than 6.0 (4558 excluding the Sun). In this paper I give a numerical recipe for constructing, by a Monte Carlo technique, a theoretical ensemble of multiple stars that resembles the observed sample. Only multiplicities up to eight are allowed; the observed set contains only multiplicities up to seven. In addition, recipes are suggested for dealing with the selection effects and observational uncertainties that attend the determination of multiplicity. These recipes imply, for example, that to achieve the observed average multiplicity of 1.53, it would be necessary to suppose that the real population has an average multiplicity slightly over 2.0. This numerical model may be useful for (i) comparison with the results of star and star cluster formation theory, (ii) population synthesis that does not ignore multiplicity above 2 and (iii) initial conditions for dynamical cluster simulations. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Eggleton, PP (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94551 USA. EM eggleton1@llnl.gov FU U.S. Department of Energy [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. I gratefully acknowledge the help of the Centre des Donnees Stellaires (Strasbourg) and of the Astronomical Data System. NR 40 TC 8 Z9 8 U1 0 U2 0 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV 1 PY 2009 VL 399 IS 3 BP 1471 EP 1481 DI 10.1111/j.1365-2966.2009.15372.x PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 508BP UT WOS:000270902100028 ER PT J AU Saxena, A Aeppli, G AF Saxena, Avadh Aeppli, Gabriel TI Phase Transitions at the Nanoscale in Functional Materials SO MRS BULLETIN LA English DT Article ID SHAPE-MEMORY ALLOYS; THIN-FILMS; SUPERCONDUCTOR; FERROELECTRICITY; INSULATOR; PEROVSKITES; MICROSCOPY; DISORDER; STATES; UPT3 AB Many properties of functional materials are quite different at the nanoscale, because at this length scale, the surface/interface energy becomes comparable to the bulk energy. Thus, the nature of various phase transitions at the nanoscale (e.g., structural, electronic, magnetic, metal-insulator) is altered. In addition, in functional materials with many coupled order parameters, quantum effects can dominate the response. We use the term nanoscale with three different context-specific connotations: it could refer to a cluster of atoms or molecules, a confined geometry as in a nanoscale grain or a superlattice, and a nanoscale region in the bulk. This field is still in its infancy, and much needs to be learned in terms of nucleation and thermodynamics at this scale. Materials of interest that we consider in this issue include, but are not limited to, ferroics (ferroelectrics, ferromagnets, ferroelastics), multiferroics (magnetoelectrics, ferrotoroidics), and complex functional materials such as those that exhibit colossal magnetoresistance and high-temperature superconductivity, including the recently discovered iron pnictide superconductors. Superconductors provide a fertile ground for quantum phase transitions. C1 [Saxena, Avadh] Los Alamos Natl Lab, Phys Condensed Matter & Complex Syst Grp, Los Alamos, NM 87545 USA. [Saxena, Avadh] Penn State Univ, University Pk, PA 16802 USA. [Saxena, Avadh] Cornell Univ, Ithaca, NY 14853 USA. [Saxena, Avadh] Univ Barcelona, Inst Nanosci & Nanotechnol, E-08007 Barcelona, Spain. [Saxena, Avadh] Univ Arizona, Tucson, AZ USA. [Saxena, Avadh] Natl Inst Mat Sci, Tsukuba, Ibaraki, Japan. [Aeppli, Gabriel] LCN, London, England. [Aeppli, Gabriel] NEC Labs, Princeton, NJ USA. [Aeppli, Gabriel] BNC, London, England. [Aeppli, Gabriel] Imperial Coll, Inst Bioengn, London, England. RP Saxena, A (reprint author), Los Alamos Natl Lab, Phys Condensed Matter & Complex Syst Grp, Los Alamos, NM 87545 USA. EM Avadh@lanl.gov; len-administrator@ucl.ac.uk OI Ren, Xiaobing/0000-0002-4973-2486; Lloveras, Pol/0000-0003-4133-2223 FU U.S. Department of Energy FX We are grateful to our colleagues who agreed to contribute the informative articles contained in this issue. The nascent field of nanoscale transitions holds great potential for new discoveries and applications. Many of the insights and ideas contained here are a result of stimulating discussions with a large number of materials scientists, including R. Ahluwalia, K.H. Ahn, G.R. Barsch, A.S. Bhalla, A.R. Bishop, W. Cao, T. Castan, R. Groger, J.E. Gubernatis, M. Jain, P. Kumar, J.C. Lashley, P. Littlewood, R Lloveras, T. Lockman, K. Otsuka, A. Planes, M. Porta, X. Ren, S.R. Shenoy, D. Sherrington, I Suzuki, and Y. Wang. This work was supported, in part, by the U.S. Department of Energy. NR 56 TC 12 Z9 12 U1 1 U2 16 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0883-7694 J9 MRS BULL JI MRS Bull. PD NOV PY 2009 VL 34 IS 11 BP 804 EP 813 PG 10 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 519YD UT WOS:000271805200015 ER PT J AU Brown, K Marsden, DA Britton, RG Karmokar, A Ognibene, T Johnson, GE Farmer, PB Jones, DJL AF Brown, Karen Marsden, Debbie A. Britton, Robert G. Karmokar, Ankur Ognibene, Ted Johnson, George E. Farmer, Peter B. Jones, Donald J. L. TI Dose response relationships for adducts induced by low dose [C-14]-ethylene oxide in rats SO MUTAGENESIS LA English DT Meeting Abstract C1 [Brown, Karen; Marsden, Debbie A.; Britton, Robert G.; Karmokar, Ankur; Farmer, Peter B.; Jones, Donald J. L.] Univ Leicester, Leicester LE2 7LX, Leics, England. [Johnson, George E.] Swansea Univ, Swansea SA2 8PP, W Glam, Wales. [Ognibene, Ted] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RI Marsden, Debbie/F-7259-2011 NR 0 TC 0 Z9 0 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0267-8357 J9 MUTAGENESIS JI Mutagenesis PD NOV PY 2009 VL 24 IS 6 MA 26 BP 532 EP 532 PG 1 WC Genetics & Heredity; Toxicology SC Genetics & Heredity; Toxicology GA 516XD UT WOS:000271575700035 ER PT J AU Karmokar, A Marsden, DA Jones, DJL Britton, RG Ognibene, TJ Steward, WP Gescher, AJ Farmer, PB Brown, K AF Karmokar, Ankur Marsden, Debbie A. Jones, Donald J. L. Britton, Robert G. Ognibene, Ted J. Steward, William P. Gescher, Andreas J. Farmer, Peter B. Brown, Karen TI Linolenic acid treatment increases levels of endogenous N7-(2-hydroxyethyl)guanine in rats but is not a direct precursor of ethylene oxide SO MUTAGENESIS LA English DT Meeting Abstract C1 [Karmokar, Ankur; Marsden, Debbie A.; Jones, Donald J. L.; Britton, Robert G.; Steward, William P.; Gescher, Andreas J.; Farmer, Peter B.; Brown, Karen] Univ Leicester, RKCSB, Leicester LE2 7LX, Leics, England. [Ognibene, Ted J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RI Marsden, Debbie/F-7259-2011 NR 0 TC 0 Z9 0 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0267-8357 J9 MUTAGENESIS JI Mutagenesis PD NOV PY 2009 VL 24 IS 6 MA 66 BP 546 EP 546 PG 1 WC Genetics & Heredity; Toxicology SC Genetics & Heredity; Toxicology GA 516XD UT WOS:000271575700075 ER PT J AU Sheldon, MT Trudeau, PE Mokari, T Wang, LW Alivisatos, AP AF Sheldon, Matthew T. Trudeau, Paul-Emile Mokari, Taleb Wang, Lin-Wang Alivisatos, A. Paul TI Enhanced Semiconductor Nanocrystal Conductance via Solution Grown Contacts SO NANO LETTERS LA English DT Article ID NANOWIRES; TRANSISTOR AB We report a 100000-fold increase in the conductance of individual CdSe nanorods when they are electrically contacted via direct solution phase growth of Au tips on the nanorod ends. Ensemble UV-vis and X-ray photoelectron spectroscopies Indicate this enhancement does not result from alloying of the nanorod. Rather, low temperature tunneling and high temperature (250-400 K) thermionic emission across the junction at the Au contact reveal a 75% lower interface barrier to conduction compared to a control sample. We correlate this barrier lowering with the electronic structure at the Au-CdSe interface. Our results emphasize the Importance of a nanocrystal surface structure for robust device performance and the advantage of this contact method. C1 [Mokari, Taleb; Alivisatos, A. Paul] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Wang, Lin-Wang] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Alivisatos, AP (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM alivis@uclink4.berkeley.edu RI MOKARI, TALEB/F-1685-2012; Sheldon, Matthew/O-4433-2014; Alivisatos , Paul /N-8863-2015 OI Sheldon, Matthew/0000-0002-4940-7966; Alivisatos , Paul /0000-0001-6895-9048 FU Center of Integrated Nanomechanical Systems [0425914]; Canada's National Science and Engineering Research Council; U.S. Department of Energy [DE-AC02-05CH11231] FX We thank the UC Berkeley Microfabrication Laboratory for use of their facility. M.S. thanks the Center of Integrated Nanomechanical Systems of a fellowship (Grant No. 0425914). P.E.T. thanks Canada's National Science and Engineering Research Council for a fellowship. SEM work was performed at the Imaging and Manipulation Facility of the Molecular Foundry, Lawrence Berkeley National Laboratory, and all other work was funded by the Helios Solar Energy Research Center. Both facilities are supported by the Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. NR 23 TC 71 Z9 71 U1 2 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD NOV PY 2009 VL 9 IS 11 BP 3676 EP 3682 DI 10.1021/nl902186v PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 516TR UT WOS:000271566400002 PM 19691346 ER PT J AU Shin, J Nascimento, VB Geneste, G Rundgren, J Plummer, EW Dkhil, B Kalinin, SV Baddorf, AP AF Shin, Junsoo Nascimento, Von Braun Geneste, Gregory Rundgren, John Plummer, E. Ward Dkhil, Brahim Kalinin, Sergei V. Baddorf, Arthur P. TI Atomistic Screening Mechanism of Ferroelectric Surfaces: An In Situ Study of the Polar Phase in Ultrathin BaTiO3 Films Exposed to H2O SO NANO LETTERS LA English DT Article ID POLARIZATION AB The polarization screening mechanism and ferroelectric phase stability of ultrathin BaTiO3 films exposed to water molecules is determined by first principles theory and in situ experiment. Surface crystallography data from electron diffraction combined with density functional theory calculations demonstrate that small water vapor exposures do not affect surface structure or polarization. Large exposures result in surface hydroxylation and rippling, formation of surface oxygen vacancies, and reversal of the polarization direction. Understanding interplay between ferroelectric phase stability, screening, and atomistic processes at surfaces is a key to control low-dimensional ferroelectricity. C1 [Geneste, Gregory; Dkhil, Brahim] Ecole Cent Paris, CNRS, UMR 8580, F-92290 Chatenay Malabry, France. [Shin, Junsoo] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Shin, Junsoo] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Nascimento, Von Braun; Plummer, E. Ward] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Rundgren, John] Royal Inst Technol, KTH, Dept Theoret Phys, Alba Nova Res Ctr, SE-10691 Stockholm, Sweden. [Kalinin, Sergei V.; Baddorf, Arthur P.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Dkhil, B (reprint author), Ecole Cent Paris, CNRS, UMR 8580, F-92290 Chatenay Malabry, France. EM brahim.dkhil@ecp.fr; sergei2@ornl.gov; baddorfap@ornl.gov RI Kim, Yu Jin/A-2433-2012; Kalinin, Sergei/I-9096-2012; Dkhil, Brahim/O-8939-2014; Baddorf, Arthur/I-1308-2016; OI Kalinin, Sergei/0000-0001-5354-6152; Dkhil, Brahim/0000-0001-6155-059X; Baddorf, Arthur/0000-0001-7023-2382; Rundgren, John/0000-0002-7023-2603 FU Division of Materials Science and Engineering; Center for Nanophase Materials Sciences; U.S. Department of Energy FX Research was sponsored by the Division of Materials Science and Engineering (J.S.) and at the Center for Nanophase Materials Sciences (S.V.K. and A.P.B.) by the Scientific User Facilities Division, at Oak Ridge National Laboratory, for the Office of Basic Energy Sciences, U.S. Department of Energy. NR 32 TC 46 Z9 46 U1 4 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD NOV PY 2009 VL 9 IS 11 BP 3720 EP 3725 DI 10.1021/nl901824x PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 516TR UT WOS:000271566400010 PM 19842701 ER PT J AU Yan, RX Liang, WJ Fan, R Yang, PD AF Yan, Ruoxue Liang, Wenjie Fan, Rong Yang, Peidong TI Nanofluidic Diodes Based on Nanotube Heterojunctions SO NANO LETTERS LA English DT Article ID ION-TRANSPORT; INORGANIC NANOTUBES; ENERGY-CONVERSION; MEMBRANES; RECTIFICATION; NANOPORES; FABRICATION; TRANSISTORS; CHANNELS; CHARGE AB The mechanism of tuning charge transport in electronic devices has recently been implemented into the nanofluidic field for the active control of ion transport in nanoscale channels/pores. Here we report the first synthesis of longitudinal heterostructured SiO(2)/Al(2)O(3) nanotubes. The ionic transport through these nanotube heterojunctions exhibits clear current rectification, a signature of ionic diode behavior. Such nanofluidic diodes could find applications in ion separation and energy conversion. C1 [Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Yang, PD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RI Fan, Rong/B-1613-2014 FU Office of Basic Science, Department of Energy; NSF FX This work was supported by the Office of Basic Science, Department of Energy. P.Y. would like to thank NSF for the A.T. Waterman Award. NR 33 TC 79 Z9 80 U1 5 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD NOV PY 2009 VL 9 IS 11 BP 3820 EP 3825 DI 10.1021/nl9020123 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 516TR UT WOS:000271566400027 PM 19603791 ER PT J AU Romero, MJ Morfa, AJ Reilly, TH van de Lagemaat, J Al-Jassim, M AF Romero, Manuel J. Morfa, Anthony J. Reilly, Thomas H., III van de Lagemaat, Jao Al-Jassim, Mowafak TI Nanoscale Imaging of Exciton Transport in Organic Photovoltaic Semiconductors by Tip-Enhanced Tunneling Luminescence SO NANO LETTERS LA English DT Article ID BULK-HETEROJUNCTION; SOLAR-CELLS; DISSOCIATION; MORPHOLOGY AB In organic solar cells, the efficiency of the exciton transport and dissociation across donor-acceptor (D/A) interfaces is controlled by the nanoscale distribution of the donor and acceptor phases. The observation of photoluminescence quenching is often used as confirmation for efficient exciton dissociation but provides no information on the nanoscopic nature of the exciton transport. Here we demonstrate nanoscale imaging of the exciton transport in films consisting of the conjugated polymer poly(3-hexylthiophene) (P3HT, electron donor) blended with the C60 derivative 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 (PCBM, electron acceptor) by a tunneling luminescence spectroscopy based on atomic force microscopy. The excitonic luminescence is significantly enhanced when the conjugated polymer is coupled to the plasmon excitation at the tip (tip-enhanced luminescence). This effect allows one to dramatically improve the detection efficiency of the excitonic luminescence and, consequently, resolve individual domains of the conjugated polymer in which the exciton will recombine before dissociation at the D/A Interface. Under thermal annealing conditions promoting the segregation of the donor and acceptor phases, a clear increase of the luminescence is seen from polymer-rich regions, consistent with domains of dimensions much larger than the exciton diffusion length. The described scanning luminescence microscopy can thus be applied to the optimization of the blends used in solar cells. C1 [Romero, Manuel J.; Morfa, Anthony J.; Reilly, Thomas H., III; van de Lagemaat, Jao; Al-Jassim, Mowafak] NREL, Golden, CO 80401 USA. RP Romero, MJ (reprint author), NREL, 1617 Cole Blvd, Golden, CO 80401 USA. EM manuel.romero@nrel.gov RI Morfa, Anthony/D-2153-2011; van de Lagemaat, Jao/J-9431-2012 FU U.S. Department of Energy [DE-AC36-996010337, DE-AC36-08-6028308] FX This work was funded by the Photochemistry and Radiation Research Program of the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, under Contracts DE-AC36-996010337 and DE-AC36-08-6028308. NR 17 TC 8 Z9 8 U1 0 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD NOV PY 2009 VL 9 IS 11 BP 3904 EP 3908 DI 10.1021/nl902105f PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 516TR UT WOS:000271566400041 PM 19751068 ER PT J AU Berthelot, J Bouhelier, A Huang, CJ Margueritat, J Colas-des-Francs, G Finot, E Weeber, JC Dereux, A Kostcheev, S El Ahrach, HI Baudrion, AL Plain, J Bachelot, R Royer, P Wiederrecht, GP AF Berthelot, Johann Bouhelier, Alexandre Huang, Caijin Margueritat, Jeremie Colas-des-Francs, Gerard Finot, Eric Weeber, Jean-Claude Dereux, Alain Kostcheev, Sergei El Ahrach, Hicham Ibn Baudrion, Anne-Laure Plain, Jerome Bachelot, Renaud Royer, Pascal Wiederrecht, Gary P. TI Tuning of an Optical Dimer Nanoantenna by Electrically Controlling Its Load Impedance SO NANO LETTERS LA English DT Article ID LIQUID-CRYSTALS; FREEDERICKSZ TRANSITION; METAL NANOPARTICLES; PLASMON RESONANCES; LIGHT-SCATTERING; EMISSION; ANTENNA; PAIRS; NANOCIRCUIT AB Optical antennas are elementary units used to direct optical radiation to the nanoscale. Here we demonstrate an active control over individual antenna performances by an external electrical trigger. We find that by an in-plane command of an anisotropic load medium, the electromagnetic interaction between individual elements constituting an optical antenna can be controlled, resulting in a strong polarization and tuning response. An active command of the antenna is a prerequisite for directing light wave through the utilization of such a device. C1 [Berthelot, Johann; Bouhelier, Alexandre; Huang, Caijin; Margueritat, Jeremie; Colas-des-Francs, Gerard; Finot, Eric; Weeber, Jean-Claude; Dereux, Alain] Univ Bourgogne, CNRS, UMR 5209, Inst Carnot Bourgogne, Dijon, France. [Kostcheev, Sergei; El Ahrach, Hicham Ibn; Baudrion, Anne-Laure; Plain, Jerome; Bachelot, Renaud; Royer, Pascal] Univ Technol Troyes, Lab Nanotechnol & Instrumentat Opt, Inst Charles Delauney, Troyes, France. [Wiederrecht, Gary P.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Bouhelier, A (reprint author), Univ Bourgogne, CNRS, UMR 5209, Inst Carnot Bourgogne, 9 Ave Alain Savary, Dijon, France. EM alexandre.bouhelier@u-bourgogne.fr RI Plain, Jerome/A-2888-2009; Colas des Francs, Gerard/C-9400-2009; Bouhelier, Alexandre/A-1960-2010; Berthelot, Johann/G-4206-2011; Jeremie, Margueritat/I-1167-2012; Ibn El Ahrach, Hicham/M-3442-2014; Bachelot, Renaud/M-6888-2015; Dereux, Alain/K-8754-2016 OI Colas des Francs, Gerard/0000-0002-5097-7317; Berthelot, Johann/0000-0002-7087-7364; Jeremie, Margueritat/0000-0003-2075-1875; Dereux, Alain/0000-0002-9009-114X FU Agence Nationale de la Recherche (ANR) [PNANO 07-51]; BLANC [07-2-188654]; Regional Council of Burgundy; U.S. Department of Energy [DE-AC02-06CH11357] FX The authors thank the Agence Nationale de la Recherche (ANR), under Grants Antares (PNANO 07-51) and Photohybrid (BLANC 07-2-188654) as well as the Regional Council of Burgundy (program FABER) for funding. C.H. acknowledges a stipend froth the People's Republic of China. G.P.W. acknowledges support from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 44 TC 52 Z9 53 U1 5 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD NOV PY 2009 VL 9 IS 11 BP 3914 EP 3921 DI 10.1021/nl902126z PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 516TR UT WOS:000271566400043 PM 19754071 ER PT J AU Hervier, A Renzas, JR Park, JY Somorjai, GA AF Hervier, Antoine Renzas, J. Russell Park, Jeong Y. Somorjai, Gabor A. TI Hydrogen Oxidation-Driven Hot Electron Flow Detected by Catalytic Nanodiodes SO NANO LETTERS LA English DT Article ID PT(111) SURFACE; SCHOTTKY DIODES; OXYGEN REACTION; ENERGY-TRANSFER; WATER FORMATION; METAL-SURFACES; PLATINUM; DEUTERIUM; EXCITATION; MECHANISM AB Hydrogen oxidation on platinum is shown to be a surface catalytic chemical reaction that generates a steady state flux of hot (>1 eV) conduction electrons. These hot electrons are detected as a steady-state chemicurrent across Pt/TiO2 Schottky diodes whose Pt surface is exposed to hydrogen and oxygen. Kinetic studies establish that the chemicurrent is proportional to turnover frequency for temperatures ranging from 298 to 373 K for P-H2 between 1 and 8 Torr and P-O2 at 760 Torr. Both chemicurrent and turnover frequency exhibit a first order dependence on P-H2. C1 [Park, Jeong Y.; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Hervier, Antoine; Renzas, J. Russell; Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Park, Jeong Y.; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Park, JY (reprint author), Korea Adv Inst Sci & Technol, Grad Sch EEWS, Taejon 305701, South Korea. EM jypark@lbl.gov; somorjai@berkeley.edu RI Park, Jeong Young/A-2999-2008 FU U.S. Department of Energy [DE-AC02-05CH11231] FX The authors acknowledge Martin Head-Gordon and Sergey Maximoff for insightful comments. This work has been supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geological and Biosciences and Division of Materials Sciences and Engineering of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 36 TC 60 Z9 60 U1 1 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD NOV PY 2009 VL 9 IS 11 BP 3930 EP 3933 DI 10.1021/nl9023275 PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 516TR UT WOS:000271566400045 PM 19731919 ER PT J AU Quek, SY Choi, HJ Louie, SG Neaton, JB AF Quek, Su Ying Choi, Hyoung Joon Louie, Steven G. Neaton, J. B. TI Length Dependence of Conductance in Aromatic Single-Molecule Junctions SO NANO LETTERS LA English DT Article ID ELECTRON-TRANSPORT; WIRES; RESISTANCE; OLIGOMERS; CHAINS AB Using a scattering-state approach incorporating self-energy corrections to the junction level alignment, the conductance G of oligophenyldiamine-Au junctions is calculated and elucidated. In agreement with experiment, we find G decays exponentially with the number of phenyls with decay constant beta = 1.7. A straightforward, parameter-free self-energy correction, including electronic exchange and correlations beyond density functional theory (DFT), is found to be essential for understanding the measured values of both G and beta. Importantly, our results confirm quantitatively the picture of off-resonant tunneling in these systems and show that exchange and correlation effects absent from standard DFT calculations contribute significantly to beta. C1 [Quek, Su Ying; Louie, Steven G.; Neaton, J. B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Louie, Steven G.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Choi, Hyoung Joon] Yonsei Univ, Dept Phys, Seoul 120749, South Korea. [Choi, Hyoung Joon] Yonsei Univ, IPAP, Seoul 120749, South Korea. RP Neaton, JB (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM jbneaton@lbl.gov RI Quek, Su Ying/I-2934-2014; Choi, Hyoung Joon/N-8933-2015; Neaton, Jeffrey/F-8578-2015 OI Choi, Hyoung Joon/0000-0001-8565-8597; Neaton, Jeffrey/0000-0001-7585-6135 FU U.S. Department of Energy [DE-AC02-05CH11231]; NERSC [KSC2008-S02-0004]; KRF [KRF-2007-314-C00075]; KOSEF [R012007-000-20922-0] FX We thank L. Venkataraman for providing us with numbers for the standard deviation in the conductance peak positions. Portions of this work were performed at the Molecular Foundry, Lawrence Berkeley National Laboratory, and were supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy. This work was supported in part by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering Division, U.S. Department of Energy under Contract No. DE-AC02-05CH11231, and by computational resources from NERSC and the KISTI Supercomputing Center (KSC2008-S02-0004). H.J.C. acknowledges support from the KRF (KRF-2007-314-C00075) and the KOSEF (Grant No. R012007-000-20922-0). NR 33 TC 92 Z9 92 U1 2 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD NOV PY 2009 VL 9 IS 11 BP 3949 EP 3953 DI 10.1021/nl9021336 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 516TR UT WOS:000271566400049 PM 19751067 ER PT J AU Fan, ZY Ruebusch, DJ Rathore, AA Kapadia, R Ergen, O Leu, PW Javey, A AF Fan, Zhiyong Ruebusch, Daniel J. Rathore, Asghar A. Kapadia, Rehan Ergen, Onur Leu, Paul W. Javey, Ali TI Challenges and Prospects of Nanopillar-Based Solar Cells SO NANO RESEARCH LA English DT Review DE Nanopillar-based photovoltaics; solar cells; nanowires (NWs) ID SURFACE RECOMBINATION VELOCITY; NANOCRYSTALLINE TIO2 FILMS; NANOSTRUCTURED ZNO ELECTRODES; CORE-SHELL; NANOWIRE HETEROSTRUCTURES; PHOTOVOLTAIC APPLICATIONS; SILICON NANOWIRE; HIGH-EFFICIENCY; NANOROD ARRAYS; BACK-REACTION AB Materials and device architecture innovations are essential for further enhancing the performance of solar cells while potentially enabling their large-scale integration as a viable source of alternative energy. In this regard, tremendous research has been devoted in recent years with continuous progress in the field. In this article, we review the recent advancements in nanopillar-based photovoltaics while discussing the future challenges and prospects. Nanopillar arrays provide unique advantages over thin films in the areas of optical properties and carrier collection, arising from their three-dimensional geometry. The choice of the material system, however, is essential in order to gain the advantage of the large surface/interface area associated with nanopillars with the constraints different from those of the thin film devices. C1 [Fan, Zhiyong; Ruebusch, Daniel J.; Rathore, Asghar A.; Kapadia, Rehan; Ergen, Onur; Leu, Paul W.; Javey, Ali] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Fan, Zhiyong; Ruebusch, Daniel J.; Rathore, Asghar A.; Kapadia, Rehan; Ergen, Onur; Leu, Paul W.; Javey, Ali] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA. [Fan, Zhiyong; Ruebusch, Daniel J.; Rathore, Asghar A.; Kapadia, Rehan; Ergen, Onur; Leu, Paul W.; Javey, Ali] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Javey, A (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. EM ajavey@eecs.berkeley.edu RI Fan, Zhiyong/C-4970-2012; Kapadia, Rehan/B-4100-2013; Leu, Paul/B-9989-2008; Javey, Ali/B-4818-2013; OI Kapadia, Rehan/0000-0002-7611-0551; Leu, Paul/0000-0002-1599-7144; Fan, Zhiyong/0000-0002-5397-0129 NR 91 TC 137 Z9 138 U1 2 U2 91 PU TSINGHUA UNIV PRESS PI BEIJING PA TSINGHUA UNIV, RM A703, XUEYAN BLDG, BEIJING, 10084, PEOPLES R CHINA SN 1998-0124 J9 NANO RES JI Nano Res. PD NOV PY 2009 VL 2 IS 11 BP 829 EP 843 DI 10.1007/s12274-009-9091-y PG 15 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 548DN UT WOS:000273939900001 ER PT J AU Wang, RM Zhang, HZ Farle, M Kisielowski, C AF Wang, Rongming Zhang, Hongzhou Farle, Michael Kisielowski, Christian TI Structural stability of icosahedral FePt nanoparticles SO NANOSCALE LA English DT Article ID SMALL PARTICLES AB The structural stability of FePt nanoparticles of about 5-6 nm diameter was investigated by dynamic high resolution transmission electron microscopy. The FePt icosahedral were very stable under an electron beam flux of similar to 20 A/cm(2) at 300 kV. Surface sputtering was suppressed due to the large sputtering threshold energy of a Pt-rich shell. Under a flux of similar to 50 A/cm(2). the trapping potential well of the FePt particle on the supporting carbon film was lowered by the magnetic interaction between the electron beam and the particle, which leads to rotational and translational motions of the particle. A large dose of electrons (similar to 200 A/cm(2)) initiated melting and recrystallization of the FePt particle. The structure of the FePt nanoparticle, a Pt enriched shell around an Fe/Pt magnetic core, is believed to be responsible for its dynamic behaviour under different beam conditions. C1 [Wang, Rongming; Zhang, Hongzhou] Beijing Univ Aeronaut & Astronaut, Dept Phys, Key Lab Micronano Measurement Manipulat & Phys, Beijing 100191, Peoples R China. [Wang, Rongming; Kisielowski, Christian] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Zhang, Hongzhou] Univ Dublin Trinity Coll, Dept Phys, Dublin 2, Ireland. [Zhang, Hongzhou] Univ Dublin Trinity Coll, CRANN, Dublin 2, Ireland. [Farle, Michael] Univ Duisburg Essen, Inst Phys, D-47048 Duisburg, Germany. RP Wang, RM (reprint author), Beijing Univ Aeronaut & Astronaut, Dept Phys, Key Lab Micronano Measurement Manipulat & Phys, Beijing 100191, Peoples R China. EM rmwang@buaa.edu.cn RI Zhang, Hongzhou/B-6883-2009; Wang, Rongming/B-2163-2010; OI Zhang, Hongzhou/0000-0002-1188-7810; Wang, Rongming/0000-0003-4075-6956; Farle, Michael/0000-0002-1864-3261 FU Berkeley Scholar Program; National Natural Science Foundation of China [50671003]; Program for New Century Excellent Talents in University [NCET-06-0175]; Office of Science, Office of Basic Energy Science, of the U. S. Department of Energy [DE-AC02-05CH11231]; Deutsche Forschungsgemeinschaft [SFB 445] FX This work was supported by the Berkeley Scholar Program, the National Natural Science Foundation of China (No. 50671003), the Program for New Century Excellent Talents in University (NCET-06-0175), the Director, Office of Science, Office of Basic Energy Science, of the U. S. Department of Energy under contract No. DE-AC02-05CH11231, and the Deutsche Forschungsgemeinschaft SFB 445. NR 13 TC 31 Z9 31 U1 3 U2 27 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2040-3364 J9 NANOSCALE JI Nanoscale PD NOV PY 2009 VL 1 IS 2 BP 276 EP 279 DI 10.1039/b9nr00096h PG 4 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 563VU UT WOS:000275164100013 PM 20644850 ER PT J AU Groves, JT AF Groves, Jay T. TI The physical chemistry of membrane curvature SO NATURE CHEMICAL BIOLOGY LA English DT News Item ID ORGANIZATION; LOCALIZATION; DOMAINS C1 [Groves, Jay T.] Univ Calif Berkeley, Howard Hughes Med Inst, Dept Chem, Berkeley, CA 94720 USA. [Groves, Jay T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Groves, Jay T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Groves, JT (reprint author), Univ Calif Berkeley, Howard Hughes Med Inst, Dept Chem, Berkeley, CA 94720 USA. EM jtgroves@lbl.gov NR 11 TC 4 Z9 4 U1 0 U2 17 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1552-4450 J9 NAT CHEM BIOL JI Nat. Chem. Biol. PD NOV PY 2009 VL 5 IS 11 BP 783 EP 784 DI 10.1038/nchembio.247 PG 3 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 508FQ UT WOS:000270915000005 PM 19841625 ER PT J AU Wang, YF Xu, HF Merino, E Konishi, H AF Wang, Yifeng Xu, Huifang Merino, Enrique Konishi, Hiromi TI Generation of banded iron formations by internal dynamics and leaching of oceanic crust SO NATURE GEOSCIENCE LA English DT Article ID DEPOSITION; KINETICS; HISTORY; ORIGIN; MODEL AB The chemical signatures and mineralogy of banded iron formations have the potential to provide information about the ocean environment on early Earth(1-7). Their formation requires iron- and silicon-rich fluids, but the mechanisms by which the alternating layers of Si- and Fe-rich rock formed remain controversial(8-11). Here we use thermodynamic calculations to show that Fe- and Si- rich fluids can be generated by hydrothermal leaching of low-Al oceanic crustal rocks such as komatiites. We find that positive feedbacks occur among the chemical reactions when hydrothermal fluids mix with ambient sea water. These feedbacks lead to alternating precipitation of Fe and Si minerals, owing to the formation of complexes between Fe(II) and silicic acid. We suggest that the small-scale (<1 cm) banding was produced by internal dynamics of the geochemical system, rather than any external forcing. As the Archaean eon progressed, the oceanic crust produced was rich in Al-12. When Al-rich crust undergoes hydrothermal alteration, Fe is locked in Al-Fe silicate minerals. This results in iron-depleted hydrothermal fluids, and thus prevents the deposition of Fe- rich minerals. We therefore conclude that the widespread cessation of banded iron formation deposition 1.7 billion years ago reflects the changing composition of the oceanic crust. C1 [Wang, Yifeng] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Xu, Huifang; Konishi, Hiromi] Univ Wisconsin, Dept Geol & Geophys, Madison, WI 53706 USA. [Xu, Huifang; Konishi, Hiromi] Univ Wisconsin, NASA, Astrobiol Inst, Madison, WI 53706 USA. [Merino, Enrique] Indiana Univ, Dept Geol Sci, Bloomington, IN 47405 USA. RP Wang, YF (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM ywang@sandia.gov FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; DOE Sandia LDRD Program; NASA Astrobiology Institute [N07-5489]; NSF [EAR-0810150] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This work is partly supported by DOE Sandia LDRD Program and NASA Astrobiology Institute under grant N07-5489 and NSF (EAR-0810150). The authors thank C. Jove-Colonand C.Bryan of Sandia National Laboratories, C. Klein of University of New Mexico, K. C. Condie of New Mexico Institute of Technology and P.Brown, E.Roden, C. Johnson and J.Valley of the University of Wiscons in for their comments on an early draft of this paper and M. Diman for the artwork of Fig.1. H.X. also thanks D.F. Blake of NASA Ames Research Center, D.Ojakangas of the University of Minnesota-Duluth, P.Fralick of Lakehead University, P.Pufahl of Acadia University and Alumni Geology Field Experience Fund of the Department of Geology and Geophysics of University of Wiscons in for their help with a field trip and C. Klein of University of New Mexico for donating his BIF collection. NR 29 TC 29 Z9 35 U1 3 U2 30 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 J9 NAT GEOSCI JI Nat. Geosci. PD NOV PY 2009 VL 2 IS 11 BP 781 EP 784 DI 10.1038/NGEO652 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 514IU UT WOS:000271388500021 ER PT J AU May, SJ Ryan, PJ Robertson, JL Kim, JW Santos, TS Karapetrova, E Zarestky, JL Zhai, X te Velthuis, SGE Eckstein, JN Bader, SD Bhattacharya, A AF May, S. J. Ryan, P. J. Robertson, J. L. Kim, J. -W. Santos, T. S. Karapetrova, E. Zarestky, J. L. Zhai, X. te Velthuis, S. G. E. Eckstein, J. N. Bader, S. D. Bhattacharya, A. TI Enhanced ordering temperatures in antiferromagnetic manganite superlattices SO NATURE MATERIALS LA English DT Article ID GROWTH; FILMS AB The disorder inherent to doping by cation substitution in the complex oxides can have profound effects on collective-ordered states. Here, we demonstrate that cation-site ordering achieved through digital-synthesis techniques can dramatically enhance the antiferromagnetic ordering temperatures of manganite films. Cation-ordered (LaMnO3)(m)/(SrMnO3)(2m) superlattices show ;eel temperatures (T-N) that are the highest of any La1-xSrxMnO3 compound, similar to 70 K greater than compositionally equivalent randomly doped La1/3Sr2/3MnO3. The antiferromagnetic order is A-type, consisting of in-plane double-exchange-mediated ferromagnetic sheets coupled antiferromagnetically along the out-of-plane direction. Through synchrotron X-ray scattering, we have discovered an in-plane structural modulation that reduces the charge itinerancy and hence the ordering temperature within the ferromagnetic sheets, thereby limiting T-N. This modulation is mitigated and driven to long wavelengths by cation ordering, enabling the higher T-N values of the superlattices. These results provide insight into how cation-site ordering can enhance cooperative behaviour in oxides through subtle structural phenomena. C1 [May, S. J.; te Velthuis, S. G. E.; Bader, S. D.; Bhattacharya, A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Ryan, P. J.] Ames Lab, MUCAT, Ames, IA 50010 USA. [Robertson, J. L.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Kim, J. -W.; Karapetrova, E.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Santos, T. S.; Bader, S. D.; Bhattacharya, A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Zarestky, J. L.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Zarestky, J. L.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Zhai, X.; Eckstein, J. N.] Univ Illinois, Dept Phys, Urbana, IL 60801 USA. RP Bhattacharya, A (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM anand@anl.gov RI May, Steven/D-8563-2011; Bhattacharya, Anand/G-1645-2011; Bader, Samuel/A-2995-2013; te Velthuis, Suzanne/I-6735-2013 OI May, Steven/0000-0002-8097-1549; Bhattacharya, Anand/0000-0002-6839-6860; te Velthuis, Suzanne/0000-0002-1023-8384 FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We are grateful to M. Fitzsimmons for discussions. Work at Argonne, including use of the Advanced Photon Source and the Center for Nanoscale Materials, was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract No DE-AC02-06CH11357. Work at Oak Ridge National Laboratory's High Flux Isotope Reactor was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. NR 36 TC 91 Z9 93 U1 3 U2 73 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 EI 1476-4660 J9 NAT MATER JI Nat. Mater. PD NOV PY 2009 VL 8 IS 11 BP 892 EP 897 DI 10.1038/NMAT2557 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 509WR UT WOS:000271050500019 PM 19838186 ER PT J AU Cao, J Ertekin, E Srinivasan, V Fan, W Huang, S Zheng, H Yim, JWL Khanal, DR Ogletree, DF Grossmanan, JC Wu, J AF Cao, J. Ertekin, E. Srinivasan, V. Fan, W. Huang, S. Zheng, H. Yim, J. W. L. Khanal, D. R. Ogletree, D. F. Grossmanan, J. C. Wu, J. TI Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams SO NATURE NANOTECHNOLOGY LA English DT Article ID PHASE-SEPARATION; THIN-FILMS; VO2; TRANSITION; TEMPERATURE; NANOBEAMS; FERROELECTRICITY; HETEROSTRUCTURES; MANGANITES; OXIDES AB Correlated electron materials can undergo a variety of phase transitions, including superconductivity, the metal-insulator transition and colossal magnetoresistance(1). Moreover, multiple physical phases or domains with dimensions of nanometres to micrometres can coexist in these materials at temperatures where a pure phase is expected(2). Making use of the properties of correlated electron materials in device applications will require the ability to control domain structures and phase transitions in these materials. Lattice strain has been shown to cause the coexistence of metallic and insulating phases in the Mott insulator VO(2). Here, we show that we can nucleate and manipulate ordered arrays of metallic and insulating domains along single-crystal beams Of VO(2) by continuously tuning the strain over a wide range of values. The Mott transition between a low-temperature insulating phase and a high-temperature metallic phase usually occurs at 341 K in VO(2), but the active control of strain allows us to reduce this transition temperature to room temperature. In addition to device applications, the ability to control the phase structure of VO(2) with strain could lead to a deeper understanding of the correlated electron materials in general. C1 [Cao, J.; Fan, W.; Huang, S.; Yim, J. W. L.; Khanal, D. R.; Wu, J.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Cao, J.; Zheng, H.; Yim, J. W. L.; Khanal, D. R.; Ogletree, D. F.; Wu, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Ertekin, E.; Grossmanan, J. C.; Wu, J.] Univ Calif Berkeley, Berkeley Nanosci & Nanoengn Inst, Berkeley, CA 94720 USA. [Fan, W.] Univ Sci & Technol China, Dept Thermal Sci & Energy Engn, Hefei 230026, Peoples R China. [Zheng, H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Wu, J (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM wuj@berkeley.edu RI Cao, Jinbo/C-7537-2009; Wu, Junqiao/G-7840-2011; Ertekin, Elif/D-6764-2013; Ogletree, D Frank/D-9833-2016 OI Wu, Junqiao/0000-0002-1498-0148; Ogletree, D Frank/0000-0002-8159-0182 FU National Science Foundation [EEC-0425914]; Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory (LBNL); Department of Energy [DE-AC02-OSCH11231]; Center Research Program on Materials, Structures and Devices (FCRP/MSD) FX This work was supported in part by the National Science Foundation (grant no. EEC-0425914) and in part by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory (LBNL; Department of Energy contract no. DE-AC02-OSCH11231). Portions of this work were performed at the Molecular Foundry and the National Centre for Electron Microscopy, both at LBNL. J.C.G. and E.E. acknowledge funding by the Focus Center Research Program on Materials, Structures and Devices (FCRP/MSD). NR 34 TC 256 Z9 257 U1 25 U2 212 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD NOV PY 2009 VL 4 IS 11 BP 732 EP 737 DI 10.1038/NNANO.2009.266 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 528AW UT WOS:000272413500014 PM 19893528 ER PT J AU Peng, HS Sun, XM Cai, FJ Chen, XL Zhu, YC Liao, GP Chen, DY Li, QW Lu, YF Zhu, YT Jia, QX AF Peng, Huisheng Sun, Xuemei Cai, Fangjing Chen, Xuli Zhu, Yinchao Liao, Guipan Chen, Daoyong Li, Qingwen Lu, Yunfeng Zhu, Yuntian Jia, Quanxi TI Electrochromatic carbon nanotube/polydiacetylene nanocomposite fibres SO NATURE NANOTECHNOLOGY LA English DT Article ID POLYDIACETYLENE/SILICA NANOCOMPOSITES; NANOTUBE FIBERS; CONDUCTIVITY; BEHAVIOR; POLYMER; GROWTH AB Chromatic materials such as polydiacetylene change colour in response to a wide variety of environmental stimuli, including changes in temperature, pH and chemical or mechanical stress, and have been extensively explored as sensing devices(1-4). Here, we report the facile synthesis of carbon nanotube/polydiacetylene nanocomposite fibres that rapidly and reversibly respond to electrical current, with the resulting colour change being readily observable with the naked eye. These composite fibres also chromatically respond to a broad spectrum of other stimulations. For example, they exhibit rapid and reversible stress-induced chromatism with negligible elongation. These electrochromatic nanocomposite fibres could have various applications in sensing. C1 [Peng, Huisheng; Sun, Xuemei; Cai, Fangjing; Chen, Xuli; Zhu, Yinchao; Liao, Guipan; Chen, Daoyong] Fudan Univ, Key Lab Mol Engn Polymers, Adv Mat Lab, Minist Educ, Shanghai 200438, Peoples R China. [Peng, Huisheng; Sun, Xuemei; Cai, Fangjing; Chen, Xuli; Zhu, Yinchao; Liao, Guipan; Chen, Daoyong] Fudan Univ, Key Lab Mol Engn Polymers, Dept Macromol Sci, Minist Educ, Shanghai 200438, Peoples R China. [Li, Qingwen] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Suzhou 215125, Jiangsu, Peoples R China. [Lu, Yunfeng] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA. [Zhu, Yuntian] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. [Jia, Quanxi] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. RP Peng, HS (reprint author), Fudan Univ, Key Lab Mol Engn Polymers, Adv Mat Lab, Minist Educ, Shanghai 200438, Peoples R China. EM penghs@fudan.edu.cn RI Zhu, Yuntian/B-3021-2008; Jia, Q. X./C-5194-2008; Peng, Huisheng/G-8867-2011 OI Zhu, Yuntian/0000-0002-5961-7422; FU Shanghai Pujiang Program [09PJ1401100]; Fudan University; US Department of Energy (Los Alamos National Laboratory Directed Research and Development Project) FX This work was supported by the Shanghai Pujiang Program (09PJ1401100) and start-up fund at Fudan University. and partly supported by the US Department of Energy (Los Alamos National Laboratory Directed Research and Development Project). The authors thank M. Jain, J.O. Willis and D.E. Peterson for help with the conductivity measurements and for their critical reading of the manuscript. NR 26 TC 179 Z9 184 U1 20 U2 214 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD NOV PY 2009 VL 4 IS 11 BP 738 EP 741 DI 10.1038/NNANO.2009.264 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 528AW UT WOS:000272413500015 PM 19893530 ER PT J AU Chu, CW AF Chu, C. W. TI HIGH-TEMPERATURE SUPERCONDUCTIVITY Alive and kicking SO NATURE PHYSICS LA English DT News Item ID STATE C1 [Chu, C. W.] Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA. [Chu, C. W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Chu, CW (reprint author), Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA. EM cwchu@uh.edu NR 9 TC 28 Z9 31 U1 4 U2 24 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 J9 NAT PHYS JI Nat. Phys. PD NOV PY 2009 VL 5 IS 11 BP 787 EP 789 DI 10.1038/nphys1449 PG 4 WC Physics, Multidisciplinary SC Physics GA 521BZ UT WOS:000271895500009 ER PT J AU Lee, J Allan, MP Wang, MA Farrell, J Grigera, SA Baumberger, F Davis, JC Mackenzie, AP AF Lee, Jinho Allan, M. P. Wang, M. A. Farrell, J. Grigera, S. A. Baumberger, F. Davis, J. C. Mackenzie, A. P. TI Heavy d-electron quasiparticle interference and real-space electronic structure of Sr3Ru2O7 SO NATURE PHYSICS LA English DT Article ID LIQUID-CRYSTAL PHASES; BI2SR2CACU2O8+DELTA; SUPERCONDUCTIVITY; INSTABILITY; SURFACE; MODEL AB The intriguing idea that strongly interacting electrons can generate spatially inhomogeneous electronic liquid-crystalline phases is over a decade old(1-5), but these systems still represent an unexplored frontier of condensed-matter physics. One reason is that visualization of the many-body quantum states generated by the strong interactions, and of the resulting electronic phases, has not been achieved. Soft condensed-matter physics was transformed by microscopies that enabled imaging of real-space structures and patterns. A candidate technique for obtaining equivalent data in the purely electronic systems is spectroscopic imaging scanning tunnelling microscopy (SI-STM). The core challenge is to detect the tenuous but 'heavy' momentum (k)-space components of the many-body electronic state simultaneously with its real-space constituents. Sr3Ru2O7 provides a particularly exciting opportunity to address these issues. It possesses a very strongly renormalized 'heavy' d-electron Fermi liquid(6,7) and exhibits a field-induced transition to an electronic liquid-crystalline phase(8,9). Finally, as a layered compound, it can be cleaved to present an excellent surface for SI-STM. C1 [Lee, Jinho; Allan, M. P.; Farrell, J.; Grigera, S. A.; Baumberger, F.; Davis, J. C.; Mackenzie, A. P.] Univ St Andrews, Sch Phys & Astron, Scottish Univ Phys Alliance, St Andrews KY16 9SS, Fife, Scotland. [Lee, Jinho; Allan, M. P.; Wang, M. A.; Davis, J. C.] Cornell Univ, Dept Phys, LASSP, Ithaca, NY 14853 USA. [Lee, Jinho; Davis, J. C.] Brookhaven Natl Lab, CMP&MS Dept, Upton, NY 11973 USA. [Grigera, S. A.] UNLP, Inst Fis Liquidos & Sistemas Biol, RA-1900 La Plata, Argentina. RP Mackenzie, AP (reprint author), Univ St Andrews, Sch Phys & Astron, Scottish Univ Phys Alliance, St Andrews KY16 9SS, Fife, Scotland. EM apm9@st-andrews.ac.uk RI Baumberger, Felix/A-5170-2008; grigera, santiago/A-4932-2010; Allan, Milan/D-7763-2012; Mackenzie, Andrew/K-6742-2015 OI Baumberger, Felix/0000-0001-7104-7541; Allan, Milan/0000-0002-5437-1945; FU NSF [DMR-0520404]; UK EPSRC; Royal Society; Leverhulme Trust FX We acknowledge and thank E. Fradkin, T. Hanaguri, C. A. Hooley, E.-A. Kim, S. A. Kivelson, Y. Kohsaka, M. J. Lawler, A. J. Millis, S. Raghu, T. M. Rice, S. Sachdev, K. M. Shen, H. Takagi, A. Tamai and F.-C. Zhang for helpful discussions and communications. These studies are carried out with support from NSF DMR-0520404 to the Cornell Center for Materials Research, from Brookhaven National Laboratory and from the UK EPSRC, Royal Society and Leverhulme Trust. NR 30 TC 35 Z9 35 U1 2 U2 32 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 J9 NAT PHYS JI Nat. Phys. PD NOV PY 2009 VL 5 IS 11 BP 800 EP 804 DI 10.1038/NPHYS1397 PG 5 WC Physics, Multidisciplinary SC Physics GA 521BZ UT WOS:000271895500012 ER PT J AU Wang, HW Noland, C Siridechadilok, B Taylor, DW Ma, EB Felderer, K Doudna, JA Nogales, E AF Wang, Hong-Wei Noland, Cameron Siridechadilok, Bunpote Taylor, David W. Ma, Enbo Felderer, Karin Doudna, Jennifer A. Nogales, Eva TI Structural insights into RNA processing by the human RISC-loading complex SO NATURE STRUCTURAL & MOLECULAR BIOLOGY LA English DT Article ID ARGONAUTE SILENCING COMPLEX; A-AEOLICUS ARGONAUTE; CRYSTAL-STRUCTURE; INTERFERING RNA; GUIDE-STRAND; HUMAN DICER; SIRNA; CLEAVAGE; TRBP; RECOGNITION AB Targeted gene silencing by RNA interference (RNAi) requires loading of a short guide RNA (small interfering RNA (siRNA) or microRNA (miRNA)) onto an Argonaute protein to form the functional center of an RNA-induced silencing complex (RISC). In humans, Argonaute2 (AGO2) assembles with the guide RNA-generating enzyme Dicer and the RNA-binding protein TRBP to form a RISC-loading complex (RLC), which is necessary for efficient transfer of nascent siRNAs and miRNAs from Dicer to AGO2. Here, using single-particle EM analysis, we show that human Dicer has an L-shaped structure. The RLC Dicer's N-terminal DExH/D domain, located in a short 'base branch', interacts with TRBP, whereas its C-terminal catalytic domains in the main body are proximal to AGO2. A model generated by docking the available atomic structures of Dicer and Argonaute homologs into the RLC reconstruction suggests a mechanism for siRNA transfer from Dicer to AGO2. C1 [Noland, Cameron; Siridechadilok, Bunpote; Felderer, Karin; Doudna, Jennifer A.; Nogales, Eva] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Wang, Hong-Wei; Nogales, Eva] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA USA. [Wang, Hong-Wei; Taylor, David W.] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT USA. [Siridechadilok, Bunpote] Natl Ctr Genet Engn & Biotechnol, Pathum Thani, Thailand. [Ma, Enbo; Felderer, Karin; Doudna, Jennifer A.; Nogales, Eva] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Doudna, JA (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM hongwei.wang@yale.edu; doudna@berkeley.edu; ENogales@lbl.gov OI Taylor, David/0000-0002-6198-1194 FU US National Institutes of Health; Human Frontier Science Program FX We thank I. MacRae at the Scripps Institute for the purified Dicer and uncross-linked RLC samples used in the initial stages of this work, P. Gabriel for help with particle picking, M. Jinek and S. Chakravarthy for help with sample preparation, members of the Nogales and Doudna laboratories for valuable insights and technical support, A. Fischer for tissue culture assistance and the Keck MacroLab and the Unger and Baserga laboratories at Yale University for the use of their resources. This work was supported in part by grants from the US National Institutes of Health (J.A.D.) and the Human Frontier Science Program (E.N.). J.A.D. and E.N. are Howard Hughes Medical Institute investigators. NR 34 TC 122 Z9 126 U1 2 U2 20 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1545-9985 J9 NAT STRUCT MOL BIOL JI Nat. Struct. Mol. Biol. PD NOV PY 2009 VL 16 IS 11 BP 1148 EP U4 DI 10.1038/nsmb.1673 PG 7 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 515LM UT WOS:000271472300009 PM 19820710 ER PT J AU Ribeiro, ALB AF Ribeiro, A. L. B. TI Probing clustering features around Cl 0024+17 SO NEW ASTRONOMY LA English DT Article DE Astrophysics; Galaxy clusters ID FIELD SPECTROSCOPIC SURVEY; DARK-MATTER STRUCTURE; GALAXIES CL-0024+17; LENSING CLUSTER; ADVANCED CAMERA; POINT PATTERNS; REDSHIFT AB I present a spatial analysis of the galaxy distribution around the cluster Cl 0024+17. The basic aim is to find the scales where galaxies present a significant deviation from an inhomogeneous Poisson statistical process. Using the generalization of the Ripley, Besag, and the pair correlation functions for non-stationary point patterns, I estimate these transition scales for a set of 1000 Monte Carlo realizations of the Cl 0024+17 field, corrected for completeness up to the outskirts. The results point out the presence of at least two physical scales in this field at 31.4 '' and 112.9 ''. The second one is statistically consistent with the dark matter ring radius (similar to 75 '') previously identified by Jee [Jee. M.J., 2007. ApJ 661, 728]. However, morphology and anisotropy tests point out that a clump at similar to 120 '' NW from the cluster center could be the responsible for the second transition scale. These results do not indicate the existence of a galaxy counterpart of the dark matter ring, but the methodology developed to study the galaxy field as a spatial point pattern provides a good statistical evaluation of the physical scales around the cluster. I briefly discuss the usefulness of this approach to probe features in galaxy distribution and N-body dark matter simulation data. (C) 2009 Elsevier B.V. All rights reserved. C1 [Ribeiro, A. L. B.] Univ Estadual Santa Cruz, Lab Astrofis Teor & Observac, Dept Ciencias Exatas & Tecnol, BR-45650000 Ilheus, BA, Brazil. [Ribeiro, A. L. B.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. RP Ribeiro, ALB (reprint author), Univ Estadual Santa Cruz, Lab Astrofis Teor & Observac, Dept Ciencias Exatas & Tecnol, BR-45650000 Ilheus, BA, Brazil. EM albr@uesc.br RI 7, INCT/H-6207-2013; Astrofisica, Inct/H-9455-2013 FU CNPq [201322/2007-2] FX I thank the referee for very useful suggestions. I am grateful to A.C. Schilling and B. Carvalho for helpful statistical discussions. I also thank the support of CNPq, under Grant 201322/2007-2. Finally, I thank the Fermilab for the hospitality. NR 27 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1384-1076 J9 NEW ASTRON JI New Astron. PD NOV PY 2009 VL 14 IS 8 BP 666 EP 673 DI 10.1016/j.newast.2009.04.001 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 466AN UT WOS:000267632700004 ER PT J AU Abriola, D Bostan, M Erturk, S Fadil, M Galan, M Juutinen, S Kibedi, T Kondev, F Luca, A Negret, A Nica, N Pfeiffer, B Singh, B Sonzogni, A Timar, J Tuli, J Venkova, T Zuber, K AF Abriola, Daniel Bostan, Melih Erturk, Sefa Fadil, Manssour Galan, Monica Juutinen, Sakari Kibedi, Tibor Kondev, Filip Luca, Aurelian Negret, Alexandru Nica, Ninel Pfeiffer, Bernd Singh, Balraj Sonzogni, Alejandro Timar, Janos Tuli, Jagdish Venkova, Tsanka Zuber, Kazimierz TI Nuclear Data Sheets for A=84 SO NUCLEAR DATA SHEETS LA English DT Review ID HIGH-SPIN STATES; DELAYED-NEUTRON PRECURSORS; RELATIVISTIC MEAN-FIELD; GAMMA-RAY SPECTROSCOPY; LIVED FISSION-PRODUCTS; ANGULAR-CORRELATION MEASUREMENTS; RESOLUTION LASER SPECTROSCOPY; INTERACTING BOSON MODEL; T-Z=1/2 SERIES NUCLEI; FORBIDDEN BETA-DECAYS AB The evaluated spectroscopic data are presented for 12 known nuclides of mass 84 (Ga, Ge, As, Se, Br, Kr, Rb, Sr, Y, Zr, Nb, Mo). Except for the stable nuelides Sr-84 and Kr-84, extensive new data are available for all the other nuclides since the 1997 evaluation by J.K. Tuli (1997Tu02) of A=84 nuclides. Many precise Penning-trap mass measurements since AME-2003 for A=84 nuclides (2009Re03,2008Ha23,2008We10,2007Ke09,2006Ka48, 2006De36,2006Ri15) have resulted in improved Q values and separation energies. However, many deficiencies still remain. Some examples are given below. Excited-state data for Ga-84 and As-84 are nonexistent, and those for Ge-84 are scarce, The radioactive decay Schemes of Ga-84, Ge-84, Se-84, Y-84 (39.5 min), Y-84 (4.6 s), Zr-84 and Nb-84 suffer from incompleteness and that for Mo-84 decay is not known at all. The energy ordering of the two activities (39.5 min and and 4.6 8) of Y-84 is not well established, although, high-spin with tentative spin-parity of (6+) is adopted here as the ground State of Y-84 based on weak arguments. From a conference report published in 2000, it is clear that extensive experiments were done to investigate decays of Zr-84 and Y-84, but details of these studies never appeared in literature and none were made available to the evaluators when requested from original authors. This evaluation was carried out as part of ENSDF workshop for Nuclear Structure and Decay Data Evaluators, organized and hosted by the "Horia Hulubei" National Institute for Physics and Nuclear Engineering, Bucharest, Romania during March 30, 2009 - April 3, 2009. Names of the evaluators principally responsible for evaluation of individual nuelides are given under the respective Adopted data sets. C1 [Abriola, Daniel] IAEA, Vienna, Austria. [Bostan, Melih] Istanbul U, Istanbul, Turkey. [Erturk, Sefa] Nigde U, Nigde, Turkey. [Fadil, Manssour] GANIL, Caen, France. [Galan, Monica] CIEMAT, Madrid, Spain. [Juutinen, Sakari] U Jyvaskyla, Jyvaskyla, Finland. [Kibedi, Tibor] Australian Natl Univ, Canberra, ACT, Australia. [Kondev, Filip] ANL, Argonne, IL USA. [Luca, Aurelian; Negret, Alexandru] IFIN HH, Bucharest, Romania. [Nica, Ninel] Texas A&M, College Stn, TX USA. [Pfeiffer, Bernd] GSI Darmstadt, Darmstadt, Germany. [Singh, Balraj] McMaster, Hamilton, ON, Canada. [Sonzogni, Alejandro; Tuli, Jagdish] NNDC, BNL, Upton, NY USA. [Timar, Janos] ATOMKI, Debrecen, Hungary. [Venkova, Tsanka] INRNE, Sofia, Bulgaria. [Zuber, Kazimierz] IFJ PAN, Krakow, Poland. RP Abriola, D (reprint author), IAEA, Vienna, Austria. RI Luca, Aurelian/A-3645-2011; Kibedi, Tibor/E-8282-2010 OI Kibedi, Tibor/0000-0002-9205-7500 FU Office of Science of the DOE, USA [DE-AC02-06CH11357, 98CH10886] FX The authors thank Nicolae Victor Zamfir (IFIN-HH) and Dimiter Balabanski (Sofia, Bulgaria) for facilitating the workshop at IFIN-HH, and Dorel Bucureseu (IFIN-HH) for consultations on matters related to A=84. Coordination for this collaborative effort was provided by Balraj Singh (McMaster). Work at the US centers and McMaster was supported by the Office of Science of the DOE, USA, under contract # DE-AC02-06CH11357 and -98CH10886. NR 315 TC 12 Z9 12 U1 1 U2 12 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 EI 1095-9904 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD NOV PY 2009 VL 110 IS 11 BP 2815 EP + DI 10.1016/j.nds.2009.10.002 PG 128 WC Physics, Nuclear SC Physics GA 523QE UT WOS:000272088600002 ER PT J AU Symochko, DM Browne, E Tuli, JK AF Symochko, D. M. Browne, E. Tuli, J. K. TI Nuclear Data Sheets for A=119 SO NUCLEAR DATA SHEETS LA English DT Review ID BOSON-FERMION MODEL; PROTON-HOLE STATES; EVEN TIN ISOTOPES; HIGH-SPIN STATES; INTERNAL-CONVERSION COEFFICIENT; NONCOLLECTIVE OBLATE STATES; NEUTRON-DEFICIENT ISOTOPES; ISOBARIC ANALOGUE STATES; NEGATIVE-PARITY STATES; ATOMIC MASS EVALUATION AB The evaluators present in this publication spectroscopic data and level schemes from radioactive decay and nuclear reaction studies for all isobars with mass number A=119. C1 [Symochko, D. M.] Natl Acad Sci Ukraine, Inst Elect Phys, Uzhgorod, Ukraine. [Tuli, J. K.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. RP Symochko, DM (reprint author), Natl Acad Sci Ukraine, Inst Elect Phys, Uzhgorod, Ukraine. FU Office of Nuclear Physics, Office of Science, US Department of Energy [DE-AC02-98CH10946] FX Research sponsored by Office of Nuclear Physics, Office of Science, US Department of Energy, under contract DE-AC02-98CH10946. NR 245 TC 15 Z9 15 U1 0 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD NOV PY 2009 VL 110 IS 11 BP 2945 EP + DI 10.1016/j.nds.2009.10.003 PG 160 WC Physics, Nuclear SC Physics GA 523QE UT WOS:000272088600003 ER PT J AU Lomperski, S Farmer, MT AF Lomperski, S. Farmer, M. T. TI Corium crust strength measurements SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article ID WATER; COOLABILITY; BEHAVIOR AB Corium strength is of interest in the context of a severe reactor accident in which molten core material melts through the reactor vessel and collects on the containment basemat. Some accident management strategies involve pouring water over the melt to solidify it and halt corium/concrete interactions. The effectiveness of this method could be influenced by the strength of the corium crust at the interface between the melt and coolant. A strong, coherent crust anchored to the containment walls could allow the yet-molten corium to fall away from the crust as it erodes the basemat, thereby thermally decoupling the melt from the coolant and sharply reducing the cooling rate. This paper presents a diverse collection of measurements of the mechanical strength of corium. The data is based on load tests of corium samples in three different contexts: (1) small blocks cut from the debris of the large-scale MACE experiments, (2) 30 cm-diameter, 75 kg ingots produced by SSWICS quench tests, and (3) high temperature crusts loaded during large-scale corium/concrete interaction (CCI) tests. In every case the corium consisted of varying proportions of UO(2), ZrO(2), and the constituents of concrete to represent a LWR melt at different stages of a molten core/concrete interaction. The collection of data was used to assess the strength and stability of an anchored, plant-scale crust. The results indicate that such a crust is likely to be too weak to support itself above the melt. It is therefore improbable that an anchored crust configuration could persist and the melt become thermally decoupled from the water layer to restrict cooling and prolong an attack of the reactor cavity concrete. Published by Elsevier B.V. C1 [Lomperski, S.; Farmer, M. T.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Lomperski, S (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM lomperski@anl.gov; farmer@anl.gov FU Nuclear Energy Agency, Organization for Economic Cooperation and Development (NEA/OECD) FX The authors are grateful for the financial support of the countries participating in the joint cooperative MCCI Project run under the auspices of the Nuclear Energy Agency, Organization for Economic Cooperation and Development (NEA/OECD). NR 29 TC 3 Z9 3 U1 0 U2 2 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD NOV PY 2009 VL 239 IS 11 BP 2551 EP 2561 DI 10.1016/j.nucengdes.2009.06.013 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 513YW UT WOS:000271361100037 ER PT J AU Biener, J Ho, DD Wild, C Woerner, E Biener, MM El-dasher, BS Hicks, DG Eggert, JH Celliers, PM Collins, GW Teslich, NE Kozioziemski, BJ Haan, SW Hamza, AV AF Biener, J. Ho, D. D. Wild, C. Woerner, E. Biener, M. M. El-dasher, B. S. Hicks, D. G. Eggert, J. H. Celliers, P. M. Collins, G. W. Teslich, N. E., Jr. Kozioziemski, B. J. Haan, S. W. Hamza, A. V. TI Diamond spheres for inertial confinement fusion SO NUCLEAR FUSION LA English DT Article ID NATIONAL-IGNITION-FACILITY; PHYSICS BASIS; TARGETS; NUCLEATION; GROWTH; ENERGY; NIF; SIMULATIONS; DESIGN; CARBON AB The National Ignition Facility (NIF) will allow scientists to prove the feasibility of inertial confinement fusion (ICF). The success of ICF experiments at NIF will critically depend on the availability of robust targets. Guided by computer simulations, we generated a new target design that takes advantage of the extreme atomic density of synthetic diamond, and developed a process that allows us to produce large quantities of these ultrahigh precision diamond targets via a low-cost batch process. Computer simulations were used to assess the performance and the robustness of these diamond targets. The results demonstrate that diamond has the potential to outperform other target materials in terms of energy efficiency and implosion stability, thus making successful ignition more likely. C1 [Biener, J.; Ho, D. D.; Biener, M. M.; El-dasher, B. S.; Hicks, D. G.; Eggert, J. H.; Celliers, P. M.; Collins, G. W.; Teslich, N. E., Jr.; Kozioziemski, B. J.; Haan, S. W.; Hamza, A. V.] Lawrence Livermore Natl Lab, Nanoscale Synth & Characterizat Lab, Livermore, CA 94550 USA. [Wild, C.; Woerner, E.] Fraunhofer Inst Appl Solid State Phys, D-79108 Freiburg, Germany. RP Biener, J (reprint author), Lawrence Livermore Natl Lab, Nanoscale Synth & Characterizat Lab, Livermore, CA 94550 USA. EM biener2@llnl.gov RI Collins, Gilbert/G-1009-2011; Hicks, Damien/B-5042-2015 OI Hicks, Damien/0000-0001-8322-9983 FU US Department of Energy [DE-AC52-07NA27344] FX This work was performed under the auspices of the US Department of Energy by the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 30 TC 30 Z9 30 U1 5 U2 19 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2009 VL 49 IS 11 AR 112001 DI 10.1088/0029-5515/49/11/112001 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 523MK UT WOS:000272077800001 ER PT J AU DeMange, P Marian, J Caro, M Caro, A AF DeMange, P. Marian, J. Caro, M. Caro, A. TI Thermo-mechanical and neutron lifetime modelling and design of Be pebbles in the neutron multiplier for the LIFE engine SO NUCLEAR FUSION LA English DT Article ID IRRADIATED BERYLLIUM; FUSION-REACTOR; BLANKET; CREEP; TEMPERATURE; PARTICLES; STRESSES; TRITIUM; ENERGY; DAMAGE AB Concept designs for the laser inertial fusion/fission energy (LIFE) engine include a neutron multiplication blanket containing Be pebbles flowing in a molten salt coolant. These pebbles must be designed to withstand the extreme irradiation and temperature conditions in the blanket to enable a reliable and cost-effective operation of LIFE. In this work, we develop design criteria for spherical Be pebbles on the basis of their thermo-mechanical behaviour under continued neutron exposure. We consider the effects of high fluence and fast fluxes on the elastic, thermal and mechanical properties of nuclear-grade Be. Our results suggest a maximum pebble diameter of 30 mm to avoid tensile failure, coated with an anti-corrosive, high-strength metallic shell to avoid failure by pebble contact. Moreover, we find that the operation temperature must always be kept above 450 degrees C to enable creep to relax the stresses induced by swelling. Under these circumstances, we estimate the pebble lifetime to be at least 16 months if uncoated, and up to six years when coated. We identify the sources of uncertainty on the properties used and discuss the advantages of new intermetallic beryllides and their use in LIFE's neutron multiplier. To establish Be-pebble lifetimes with improved confidence, reliable experiments to measure irradiation creep must be performed. C1 [DeMange, P.; Marian, J.; Caro, M.; Caro, A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP DeMange, P (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94550 USA. FU US Department of Energy [DE-AC52-07NA27344] FX Helpful discussions with R.W. Moir, J.C. Farmer and R. Abbott are acknowledged. The authors thank K. Kramer and J. Latkowski for providing the neutronics calculations. This work was performed under the auspices of the US Department of Energy by the Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 52 TC 0 Z9 1 U1 0 U2 4 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2009 VL 49 IS 11 AR 115013 DI 10.1088/0029-5515/49/11/115013 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 523MK UT WOS:000272077800014 ER PT J AU Gohil, P Jernigan, TC Scoville, JT Strait, EJ AF Gohil, P. Jernigan, T. C. Scoville, J. T. Strait, E. J. TI The H-mode power threshold in hydrogen plasmas in DIII-D SO NUCLEAR FUSION LA English DT Article ID TRANSITION THRESHOLD; DIVERTOR GEOMETRY; D TOKAMAK; JET; DATABASE AB In DIII-D, experiments have been performed in hydrogen plasmas to determine the requirement for hydrogen operation in ITER. The H-mode threshold power has been determined to increase with input torque for both hydrogen and deuterium plasmas with the H-mode power threshold for hydrogen plasmas being greater by approximately a factor of 2 at zero torque than in comparable deuterium plasmas. The threshold power for hydrogen discharges with full counter-current beam injection is roughly the same as the threshold power for deuterium discharges with co-current beam injection. The plasma geometry also influences the power threshold through the vertical distance between the X-point and the divertor surface. C1 [Gohil, P.; Scoville, J. T.; Strait, E. J.] Gen Atom Co, San Diego, CA 92186 USA. [Jernigan, T. C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Gohil, P (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. FU US Department of Energy [DE-FC02-04ER54698, DE-AC05-00OR22725] FX This work was supported by the US Department of Energy under DE-FC02-04ER54698 and DE-AC05-00OR22725. NR 18 TC 19 Z9 19 U1 2 U2 6 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2009 VL 49 IS 11 AR 115004 DI 10.1088/0029-5515/49/11/115004 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 523MK UT WOS:000272077800005 ER PT J AU Groth, M Boedo, JA Brooks, NH Isler, RC Leonard, AW Porter, GD Watkins, JG West, WP Bray, BD Fenstermacher, ME Groebner, RJ Moyer, RA Rudakov, DL Yu, JH Zeng, L AF Groth, M. Boedo, J. A. Brooks, N. H. Isler, R. C. Leonard, A. W. Porter, G. D. Watkins, J. G. West, W. P. Bray, B. D. Fenstermacher, M. E. Groebner, R. J. Moyer, R. A. Rudakov, D. L. Yu, J. H. Zeng, L. TI Effect of cross-field drifts on flows in the main scrape-off-layer of DIII-D L-mode plasmas SO NUCLEAR FUSION LA English DT Article ID RADIAL ELECTRIC-FIELD; D DIVERTOR; EDGE PLASMA; SOL FLOWS; TOKAMAK; TRANSPORT; CODE; JET; DENSITY; PROBE AB The flow velocities of deuterons and low charge-state carbon ions have been measured simultaneously in the main scrape-off-layer (SOL) in low-density plasmas in DIII-D, and the dependences of these flow fields on the direction of the cross-field drifts (E x B and B x del B) have been investigated. These measurements were taken poloidally localized in the SOL region vertically opposite the divertor X-point. The carbon ion flows do not necessarily match those of the deuterons either in the direction with respect to the magnetic field lines or in magnitude, suggesting that physics effects apart from entrainment play a significant role in the impurity response. In configurations with the ion B x del B drift towards the divertor X-point, the parallel-B deuteron velocities at the plasma crown are high (-20 to -30 km s(-1) in the direction of the high field side (HFS) divertor), while they are nearly zero in configurations with the opposite B x del B drift direction. The flow direction of singly and doubly charged carbon ions is independent of the ion B x del B drift direction, and the ions flow at approximately -5 to -10 km s(-1) towards the HFS divertor. Simulations with the UEDGE code have been carried out to better understand the underlying physics processes. Inclusion of cross-field drifts in the simulations produced divertor solutions for density and temperature that agree significantly better with measured divertor parameters. These simulations do not, however, reproduce the measured flow fields at the crown for the configuration with the ion B x del B drift towards the divertor X-point. The UEDGE code has also been used to understand the influence of pumping at the HFS divertor plate, and a poloidal dependence in the radial transport coefficient. C1 [Groth, M.; Porter, G. D.; Fenstermacher, M. E.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Boedo, J. A.; Moyer, R. A.; Rudakov, D. L.; Yu, J. H.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Brooks, N. H.; Leonard, A. W.; West, W. P.; Bray, B. D.; Groebner, R. J.] Gen Atom Co, San Diego, CA 92186 USA. [Isler, R. C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Watkins, J. G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Zeng, L.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. RP Groth, M (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. RI Groth, Mathias/G-2227-2013; OI Isler, Ralph/0000-0002-5368-7200 FU US Department of Energy [DE-AC52-07NA27344, DE-FG0207ER54917, DE-FC02-04ER54698, DE-AC05-00OR22725, DE-AC04-94AL85000, DE-FG02-08ER54984] FX This work performed under the auspices of the US Department of Energy by the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, DE-FG0207ER54917, DE-FC02-04ER54698, DE-AC05-00OR22725, DE-AC04-94AL85000 and DE-FG02-08ER54984. NR 55 TC 8 Z9 8 U1 1 U2 6 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2009 VL 49 IS 11 AR 115002 DI 10.1088/0029-5515/49/11/115002 PG 14 WC Physics, Fluids & Plasmas SC Physics GA 523MK UT WOS:000272077800003 ER PT J AU Humphreys, DA Casper, TA Eidietis, N Ferrara, M Gates, DA Hutchinson, IH Jackson, GL Kolemen, E Leuer, JA Lister, J LoDestro, LL Meyer, WH Pearlstein, LD Portone, A Sartori, F Walker, ML Welander, AS Wolfe, SM AF Humphreys, D. A. Casper, T. A. Eidietis, N. Ferrara, M. Gates, D. A. Hutchinson, I. H. Jackson, G. L. Kolemen, E. Leuer, J. A. Lister, J. LoDestro, L. L. Meyer, W. H. Pearlstein, L. D. Portone, A. Sartori, F. Walker, M. L. Welander, A. S. Wolfe, S. M. TI Experimental vertical stability studies for ITER performance and design guidance SO NUCLEAR FUSION LA English DT Article ID OPERATION AB Operating experimental devices have provided key inputs to the design process for ITER axisymmetric control. In particular, experiments have quantified controllability and robustness requirements in the presence of realistic noise and disturbance environments, which are difficult or impossible to characterize with modelling and simulation alone. This kind of information is particularly critical for ITER vertical control, which poses the highest demands on poloidal field system performance, since the consequences of loss of vertical control can be severe. This work describes results of multi-machine studies performed under a joint ITPA experiment (MDC-13) on fundamental vertical control performance and controllability limits. We present experimental results from Alcator C-Mod, DIII-D, NSTX, TCV and JET, along with analysis of these data to provide vertical control performance guidance to ITER. Useful metrics to quantify this control performance include the stability margin and maximum controllable vertical displacement. Theoretical analysis of the maximum controllable vertical displacement suggests effective approaches to improving performance in terms of this metric, with implications for ITER design modifications. Typical levels of noise in the vertical position measurement and several common disturbances which can challenge the vertical control loop are assessed and analysed. C1 [Humphreys, D. A.; Eidietis, N.; Jackson, G. L.; Leuer, J. A.; Walker, M. L.; Welander, A. S.] Gen Atom Co, San Diego, CA 92186 USA. [Casper, T. A.; LoDestro, L. L.; Meyer, W. H.; Pearlstein, L. D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Ferrara, M.; Hutchinson, I. H.; Wolfe, S. M.] MIT, Cambridge, MA 02139 USA. [Gates, D. A.; Kolemen, E.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Lister, J.] Ecole Polytech Fed Lausanne, CRPP Lausanne, CH-1015 Lausanne, Switzerland. [Portone, A.] Fus Energy, Barcelona, Spain. [Sartori, F.] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon, Oxon, England. RP Humphreys, DA (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. EM dave.humphreys@gat.com RI Hutchinson, Ian/D-1136-2009; OI Hutchinson, Ian/0000-0003-4276-6576; sartori, Filippo/0000-0002-3451-3467; Walker, Michael/0000-0002-4341-994X FU US Department of Energy [DE-FC02-04ER54698, DE-AC52-07NA27344, DE-FG02-04ER54235] FX This work was supported by the US Department of Energy under DE-FC02-04ER54698, DE-AC52-07NA27344 and DE-FG02-04ER54235. This report was prepared as an account of work by or for the ITER Organization. The Members of the Organization are the People's Republic of China, the European Atomic Energy Community, the Republic of India, Japan, the Republic of Korea, the Russian Federation and the United States of America. The views and opinions expressed herein do not necessarily reflect those of the Members or any agency thereof. NR 13 TC 41 Z9 41 U1 0 U2 7 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2009 VL 49 IS 11 AR 115003 DI 10.1088/0029-5515/49/11/115003 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 523MK UT WOS:000272077800004 ER PT J AU Jackson, GL Casper, TA Luce, TC Humphreys, DA Ferron, JR Hyatt, AW Leuer, JA Petrie, TW Turco, F West, WP AF Jackson, G. L. Casper, T. A. Luce, T. C. Humphreys, D. A. Ferron, J. R. Hyatt, A. W. Leuer, J. A. Petrie, T. W. Turco, F. West, W. P. TI Simulating ITER plasma startup and rampdown scenarios in the DIII-D tokamak SO NUCLEAR FUSION LA English DT Article ID CONSUMPTION; OPERATION AB DIII-D experiments have investigated ITER startup scenarios, including an initial phase where the plasma was limited on low field side poloidal bumper limiters. In addition, l(i) feedback control has been tested with the goal of producing discharges in ITER within the capabilities of the poloidal field coil set and favourable to the intended mode of operations in the subsequent constant current (flattop) phase. These discharges have been modelled using the Corsica free boundary equilibrium code. High performance hybrid scenario discharges (beta(N) = 2.8, H(98, y2) = 1.4) and ITER H-mode baseline discharges (beta(N) > 1.6, H(98, y2) = 1-1.2) have been obtained experimentally in an ITER similar shape after the ITER-relevant startup. Studies have been initiated to develop a reliable scenario for exiting the burn phase and ramping down the plasma current in ITER without disruptions. C1 [Jackson, G. L.; Luce, T. C.; Humphreys, D. A.; Ferron, J. R.; Hyatt, A. W.; Petrie, T. W.; West, W. P.] Gen Atom Co, San Diego, CA 92186 USA. [Casper, T. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Turco, F.] Oak Ridge Inst Sci Educ, Oak Ridge, TN USA. RP Jackson, GL (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. EM jackson@fusion.gat.com FU US Department of Energy [DE-FC02-04ER54698, DE-AC52-07NA27344, DE-AC05-06OR23100] FX This work supported by the US Department of Energy under DE-FC02-04ER54698, DE-AC52-07NA27344 and DE-AC05-06OR23100. This report was prepared as an account of work by or for the ITER organization. The members of the organization are the People's Republic of China, the European Atomic Energy Community, the Republic of India, Japan, the Republic of Korea, the Russian Federation and the United States of America. The views and opinions expressed herein do not necessarily reflect those of the members or any agency thereof. NR 16 TC 15 Z9 15 U1 0 U2 4 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2009 VL 49 IS 11 AR 115027 DI 10.1088/0029-5515/49/11/115027 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 523MK UT WOS:000272077800028 ER PT J AU McKee, GR Gohil, P Schlossberg, DJ Boedo, JA Burrell, KH Degrassie, JS Groebner, RJ Moyer, RA Petty, CC Rhodes, TL Schmitz, L Shafer, MW Solomon, WM Umansky, M Wang, G White, AE Xu, X AF McKee, G. R. Gohil, P. Schlossberg, D. J. Boedo, J. A. Burrell, K. H. deGrassie, J. S. Groebner, R. J. Moyer, R. A. Petty, C. C. Rhodes, T. L. Schmitz, L. Shafer, M. W. Solomon, W. M. Umansky, M. Wang, G. White, A. E. Xu, X. TI Dependence of the L- to H-mode power threshold on toroidal rotation and the link to edge turbulence dynamics SO NUCLEAR FUSION LA English DT Article ID GEODESIC ACOUSTIC MODE; BEAM EMISSION-SPECTROSCOPY; DIII-D TOKAMAK; ZONAL FLOWS; VELOCITY SHEAR; FLUCTUATION MEASUREMENTS; TRANSITION; TRANSPORT; CONFINEMENT; PLASMA AB The injected power required to induce a transition from L-mode to H-mode plasmas is found to depend strongly on the injected neutral beam torque and consequent plasma toroidal rotation. Edge turbulence and flows, measured near the outboard midplane of the plasma (0.85 < r/a < 1.0) on DIII-D with the high-sensitivity 2D beam emission spectroscopy (BES) system, likewise vary with rotation and suggest a causative connection. The L-H power threshold in plasmas with the ion del B drift directed away from the X-point decreases from 4-6 MW with co-current beam injection, to 2-3 MW near zero net injected torque and to <2 MW with counter-injection in the discharges examined. Plasmas with the ion del B drift directed towards the X-point exhibit a qualitatively similar though less pronounced power threshold dependence on rotation. 2D edge turbulence measurements with BES show an increasing poloidal flow shear as the L-H transition is approached in all conditions. As toroidal rotation is varied from co-current to balanced in L-mode plasmas, the edge turbulence changes from a uni-modal character to a bi-modal structure, with the appearance of a low-frequency (f = 10-50 kHz) mode propagating in the electron diamagnetic direction, similar to what is observed as the ion del B drift is directed towards the X-point in co-rotating plasmas. At low rotation, the poloidal turbulence flow near the edge reverses prior to the L-H transition, generating a significant poloidal flow shear that exceeds the measured turbulence decorrelation rate. This increased poloidal turbulence velocity shear appears to facilitate the L-H transition. No such reversal is observed in high rotation plasmas. The high-frequency poloidal turbulence velocity spectrum exhibits a transition from a geodesic acoustic mode zonal flow to a higher-power, lower frequency zero-mean-frequency zonal flow as rotation varies from co-current to balanced during a torque scan at constant injected neutral beam power, perhaps also facilitating the L-H transition. This reduced power threshold at lower toroidal rotation may benefit inherently low-rotation plasmas such as ITER. C1 [McKee, G. R.; Schlossberg, D. J.; Shafer, M. W.] Univ Wisconsin, Madison, WI 53706 USA. [Gohil, P.; Burrell, K. H.; deGrassie, J. S.; Groebner, R. J.; Petty, C. C.] Gen Atom Co, San Diego, CA 92186 USA. [Boedo, J. A.; Moyer, R. A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Rhodes, T. L.; Schmitz, L.; Wang, G.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Solomon, W. M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Umansky, M.; Xu, X.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [White, A. E.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA. RP McKee, GR (reprint author), Univ Wisconsin, 1500 Engn Dr, Madison, WI 53706 USA. RI White, Anne/B-8990-2011; OI Solomon, Wayne/0000-0002-0902-9876; Shafer, Morgan/0000-0001-9808-6305 FU US Department of Energy [DE-FG02-89ER53296, DE-FC02-04ER54698, DE-FG02-04ER54758, DE-FG03-01ER54615, DE-AC0276CH03073, DE-AC52-07NA27344] FX This work was supported by the US Department of Energy under DE-FG02-89ER53296, DE-FC02-04ER54698, DE-FG02-04ER54758, DE-FG03-01ER54615, DE-AC0276CH03073 and DE-AC52-07NA27344. NR 47 TC 42 Z9 44 U1 0 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2009 VL 49 IS 11 AR 115016 DI 10.1088/0029-5515/49/11/115016 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 523MK UT WOS:000272077800017 ER PT J AU Na, YS Kessel, CE Park, JM Yi, S Becoulet, A Sips, ACC Kim, JY AF Na, Yong-Su Kessel, C. E. Park, J. M. Yi, Sumin Becoulet, A. Sips, A. C. C. Kim, J. Y. TI Simulations of KSTAR high performance steady state operation scenarios SO NUCLEAR FUSION LA English DT Article ID GENERAL AXISYMMETRICAL EQUILIBRIA; BOOTSTRAP CURRENT; H-MODE; TRANSPORT; TOKAMAKS; ROTATION; PARTICLE; PLASMAS; REGIME; HEAT AB We report the results of predictive modelling of high performance steady state operation scenarios in KSTAR. Firstly, the capabilities of steady state operation are investigated with time-dependent simulations using a free-boundary plasma equilibrium evolution code coupled with transport calculations. Secondly, the reproducibility of high performance steady state operation scenarios developed in the DIII-D tokamak, of similar size to that of KSTAR, is investigated using the experimental data taken from DIII-D. Finally, the capability of ITER-relevant steady state operation is investigated in KSTAR. It is found that KSTAR is able to establish high performance steady state operation scenarios; beta(N) above 3, H-98(y, 2) up to 2.0, f(BS) up to 0.76 and f(NI) equals 1.0. In this work, a realistic density profile is newly introduced for predictive simulations by employing the scaling law of a density peaking factor. The influence of the current ramp-up scenario and the transport model is discussed with respect to the fusion performance and non-inductive current drive fraction in the transport simulations. As observed in the experiments, both the heating and the plasma current waveforms in the current ramp-up phase produce a strong effect on the q-profile, the fusion performance and also on the non-inductive current drive fraction in the current flattop phase. A criterion in terms of q(min) is found to establish ITER-relevant steady state operation scenarios. This will provide a guideline for designing the current ramp-up phase in KSTAR. It is observed that the transport model also affects the predictive values of fusion performance as well as the non-inductive current drive fraction. The Weiland transport model predicts the highest fusion performance as well as non-inductive current drive fraction in KSTAR. In contrast, the GLF23 model exhibits the lowest ones. ITER-relevant advanced scenarios cannot be obtained with the GLF23 model in the conditions given in this work. Finally, ideal MHD stability is investigated for the ITER-relevant advanced scenarios in KSTAR. The methods and results presented in this paper are expected to contribute to improving the ITER and beyond ITER predictive simulations. C1 [Na, Yong-Su] Seoul Natl Univ, Dept Nucl Engn, Seoul 151744, South Korea. [Na, Yong-Su; Yi, Sumin; Kim, J. Y.] Natl Fus Res Inst, Taejon 305333, South Korea. [Kessel, C. E.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Park, J. M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Becoulet, A.] EURATOM, CEA, DSM DRFC, Ctr Cadarache, F-13108 St Paul Les Durance, France. [Sips, A. C. C.] Max Planck Inst Plasma Phys, EURATOM Assoc, D-85748 Garching, Germany. RP Na, YS (reprint author), Seoul Natl Univ, Dept Nucl Engn, 599 Gwanangno, Seoul 151744, South Korea. EM ysna@snu.ac.kr FU Korea Science and Engineering Foundation (KOSEF); National RD Program; National Research Foundation of Korea (NRF); Ministry of Education, Science and Technology & Ministry of Knowledge Economy [R11-2008-072-01002-0, 2009-0082633] FX The authors would like to express their deep gratitude to Professor C. K. Choi (Purdue University) for fruitful discussions. This work was supported by the Korea Science and Engineering Foundation (KOSEF) and the National R&D Program through the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education, Science and Technology & Ministry of Knowledge Economy (Nos. R11-2008-072-01002-0 and 2009-0082633). NR 30 TC 11 Z9 11 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2009 VL 49 IS 11 AR 115018 DI 10.1088/0029-5515/49/11/115018 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 523MK UT WOS:000272077800019 ER PT J AU Reimerdes, H Garofalo, AM Strait, EJ Buttery, RJ Chu, MS In, Y Jackson, GL La Haye, RJ Lanctot, MJ Liu, YQ Okabayashi, M Park, JK Schaffer, MJ Solomon, WM AF Reimerdes, H. Garofalo, A. M. Strait, E. J. Buttery, R. J. Chu, M. S. In, Y. Jackson, G. L. La Haye, R. J. Lanctot, M. J. Liu, Y. Q. Okabayashi, M. Park, J. -K. Schaffer, M. J. Solomon, W. M. TI Effect of resonant and non-resonant magnetic braking on error field tolerance in high beta plasmas SO NUCLEAR FUSION LA English DT Article ID TOROIDAL-MOMENTUM DISSIPATION; RESISTIVE WALL MODES; DIII-D PLASMAS; TOKAMAKS; STABILIZATION; ROTATION; INSTABILITY; STABILITY AB Tokamak plasmas become less tolerant to externally applied non-axisymmetric magnetic 'error' fields as beta increases, due to a resonant interaction of the non-axisymmetric field with a stable n = 1 kink mode. Similar to observations in low beta plasmas, the limit to tolerable n = 1 magnetic field errors in neutral beam injection heated H-mode plasmas is seen as a bifurcation in the torque balance, which is followed by error field-driven locked modes and severe confinement degradation or a disruption. The error field tolerance is, therefore, largely determined by the braking torque resulting from the non-axisymmetric magnetic field. DIII-D experiments distinguish between a resonant-like torque, which decreases with increasing rotation, and a non-resonant-like torque, which increases with increasing rotation. While only resonant braking leads to a rotation collapse, modelling shows that non-resonant components can lower the tolerance to resonant components. The strong reduction of the error field tolerance with increasing beta, which has already been observed in early high beta experiments in DIII-D (La Haye et al 1992 Nucl. Fusion 32 2119), is linked to an increasing resonant field amplification resulting from a stable kink mode (Boozer 2001 Phys. Rev. Lett. 86 5059). The amplification of externally applied n = 1 fields is measured with magnetic pick-up coils at normalized beta values as low as 1 and seen to increase with beta. The rate at which the amplification increases with beta becomes larger above the no-wall ideal MHD stability limit, where kinetic effects stabilize the resistive wall mode. The extent of the beta dependence and its importance for low torque scenarios was not previously appreciated, and was not included in the empirical scaling of the error field tolerance for ITER, which focused on the lowest density phase of a discharge prior to H-mode access (Buttery et al 1999 Nucl. Fusion 39 1827, 1999 ITER Physics Basis Nucl. Fusion 39 2137). However, the measurable increase in the plasma response with beta can be exploited for 'dynamic' correction (i.e. with slow magnetic feedback) of the amplified error field. C1 [Reimerdes, H.; Lanctot, M. J.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Garofalo, A. M.; Strait, E. J.; Chu, M. S.; Jackson, G. L.; La Haye, R. J.; Schaffer, M. J.] Gen Atom Co, San Diego, CA 92186 USA. [Buttery, R. J.; Liu, Y. Q.] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [In, Y.] FAR TECH Inc, San Diego, CA 92121 USA. [Okabayashi, M.; Park, J. -K.; Solomon, W. M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Reimerdes, H (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. EM reimerdes@fusion.gat.com RI Lanctot, Matthew J/O-4979-2016; OI Lanctot, Matthew J/0000-0002-7396-3372; Solomon, Wayne/0000-0002-0902-9876 FU US Department of Energy [DE-FG02-89ER53297, DE-FC02-04ER54698, DE-AC02-76CH03073] FX This work was supported by the US Department of Energy under DE-FG02-89ER53297, DE-FC02-04ER54698 and DE-AC02-76CH03073. The authors would like to thank Professor A. H. Boozer and Drs K. H. Burrell, A. J. Cole and S. A. Sabbagh for insightful discussions. NR 35 TC 52 Z9 52 U1 0 U2 7 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2009 VL 49 IS 11 AR 115001 DI 10.1088/0029-5515/49/11/115001 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 523MK UT WOS:000272077800002 ER PT J AU Wampler, WR Doerner, RP AF Wampler, W. R. Doerner, R. P. TI The influence of displacement damage on deuterium retention in tungsten exposed to plasma SO NUCLEAR FUSION LA English DT Article ID FACING MATERIALS; HIGH FLUENCES; HELIUM-IONS; HIGH-FLUX; HYDROGEN; IRRADIATION; RELEASE; BEHAVIOR; TANTALUM; METALS AB Trapping of tritium at lattice damage from fusion neutron irradiation is expected to increase the tritium inventory in tungsten components in ITER. The magnitude of this increase depends on the concentration of traps that are produced, and on the depth to which the increased tritium retention extends into the material. Experiments to address these issues are described, in which displacement damage by ion irradiation was used as a surrogate for neutron damage. Irradiated samples were exposed to high flux deuterium plasma to simulate divertor conditions. The resulting deuterium content was measured by nuclear reaction analysis. Measurements were done at various damage levels up to those expected from the end-of-life neutron fluence in ITER. These experiments determine the number of traps produced by displacement damage and the rate at which they are filled during exposure to plasma. The role of defect annealing was explored through plasma exposures at various temperatures. In addition to trapping at damage, near-surface retention from internal precipitation was observed at lower temperatures. Addition of 5% helium to the deuterium plasma greatly reduced D retention by precipitation by localizing it closer to the surface. Results from these experiments indicate that the contribution to tritium inventory in ITER from trapping at neutron damage should be small. C1 [Wampler, W. R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Doerner, R. P.] Univ Calif San Diego, La Jolla, CA 92093 USA. RP Wampler, WR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM wrwampl@sandia.gov FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia is a multi-program laboratory operated by the Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The vacuum plasma sprayed tungsten samples were provided by G.-N. Luo of the Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), Hefei, China. Thermal desorption measurements of deuterium in vacuum plasma sprayed tungsten were done by Karl Umstadter at the University of California San Diego. NR 32 TC 75 Z9 75 U1 6 U2 38 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2009 VL 49 IS 11 AR 115023 DI 10.1088/0029-5515/49/11/115023 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 523MK UT WOS:000272077800024 ER PT J AU Wilson, JR Parker, R Bitter, M Bonoli, PT Fiore, C Harvey, RW Hill, K Hubbard, AE Hughes, JW Ince-Cushman, A Kessel, C Ko, JS Meneghini, O Phillips, CK Porkolab, M Rice, J Schmidt, AE Scott, S Shiraiwa, S Valeo, E Wallace, G Wright, JC AF Wilson, J. R. Parker, R. Bitter, M. Bonoli, P. T. Fiore, C. Harvey, R. W. Hill, K. Hubbard, A. E. Hughes, J. W. Ince-Cushman, A. Kessel, C. Ko, J. S. Meneghini, O. Phillips, C. K. Porkolab, M. Rice, J. Schmidt, A. E. Scott, S. Shiraiwa, S. Valeo, E. Wallace, G. Wright, J. C. CA Alcator C-Mod Team TI Lower hybrid heating and current drive on the Alcator C-Mod tokamak SO NUCLEAR FUSION LA English DT Article ID CONFINEMENT; ELECTRONS AB On the Alcator C-Mod tokamak, lower hybrid current drive (LHCD) is being used to modify the current profile with the aim of obtaining advanced tokamak (AT) performance in plasmas with parameters similar to those that would be required on ITER. To date, power levels in excess of 1 MW at a frequency of 4.6 GHz have been coupled into a variety of plasmas. Experiments have established that LHCD on C-Mod behaves globally as predicted by theory. Bulk current drive efficiencies, n(20)I(lh)R/P(lh) similar to 0.25, inferred from magnetics and MSE are in line with theory. Quantitative comparisons between local measurements, MSE, ECE and hard x-ray bremsstrahlung, and theory/simulation using the GENRAY, TORIC-LH CQL3D and TSC-LSC codes have been performed. These comparisons have demonstrated the off-axis localization of the current drive, its magnitude and location dependence on the launched n(parallel to) spectrum, and the use of LHCD during the current ramp to save volt-seconds and delay the peaking of the current profile. Broadening of the x-ray emission profile during ICRF heating indicates that the current drive location can be controlled by the electron temperature, as expected. In addition, an alteration in the plasma toroidal rotation profile during LHCD has been observed with a significant rotation in the counter-current direction. Notably, the rotation is accompanied by peaking of the density and temperature profiles on a current diffusion time scale inside of the half radius where the LH absorption is taking place. C1 [Wilson, J. R.; Bitter, M.; Hill, K.; Kessel, C.; Phillips, C. K.; Scott, S.; Valeo, E.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Parker, R.; Bonoli, P. T.; Fiore, C.; Hubbard, A. E.; Hughes, J. W.; Ince-Cushman, A.; Ko, J. S.; Meneghini, O.; Porkolab, M.; Rice, J.; Schmidt, A. E.; Shiraiwa, S.; Wallace, G.; Wright, J. C.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Harvey, R. W.] CompX, Del Mar, CA 92014 USA. RP Wilson, JR (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM jrwilson@pppl.gov FU USDOE [DE-FC02-99ER54512, DE-AC02-76CH03073] FX This work was performed under USDOE Contract numbers DE-FC02-99ER54512 and DE-AC02-76CH03073. NR 19 TC 19 Z9 19 U1 2 U2 11 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2009 VL 49 IS 11 AR 115015 DI 10.1088/0029-5515/49/11/115015 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 523MK UT WOS:000272077800016 ER PT J AU Alexander, G Barley, J Batygin, Y Berridge, S Bharadwaj, V Bower, G Bugg, W Decker, FJ Dollan, R Efremenko, Y Flottmann, K Gharibyan, V Hast, C Iverson, R Kolanoski, H Kovermann, JW Laihem, K Lohse, T McDonald, KT Mikhailichenko, AA Moortgat-Pick, GA Pahl, P Pitthan, R Poschl, R Reinherz-Aronis, E Riemann, S Schalicke, A Schuler, KP Schweizer, T Scott, D Sheppard, JC Stahl, A Szalata, Z Walz, DR Weidemann, A AF Alexander, G. Barley, J. Batygin, Y. Berridge, S. Bharadwaj, V. Bower, G. Bugg, W. Decker, F-J. Dollan, R. Efremenko, Y. Floettmann, K. Gharibyan, V. Hast, C. Iverson, R. Kolanoski, H. Kovermann, J. W. Laihem, K. Lohse, T. McDonald, K. T. Mikhailichenko, A. A. Moortgat-Pick, G. A. Pahl, P. Pitthan, R. Poeschl, R. Reinherz-Aronis, E. Riemann, S. Schaelicke, A. Schueler, K. P. Schweizer, T. Scott, D. Sheppard, J. C. Stahl, A. Szalata, Z. Walz, D. R. Weidemann, A. TI Undulator-based production of polarized positrons SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Undulator; Positron; Polarization ID CIRCULAR POLARIZATION; LONGITUDINAL POLARIZATION; LINEAR COLLIDERS; MUON DECAY; GAMMA-RAYS; BREMSSTRAHLUNG; ELECTRON; TRANSMISSION; PARTICLES; HELICITY AB Full exploitation of the physics potential of a future International Linear Collider will require the use of polarized electron and positron beams. Experiment E166 at the Stanford Linear Accelerator Center (SLAC) has demonstrated a scheme in which an electron beam passes through a helical undulator to generate photons (whose first-harmonic spectrum extended to 7.9MeV) with circular polarization, which are then converted in a thin target to generate longitudinally polarized positrons and electrons. The experiment was carried out with a 1-m-long, 400-period, pulsed helical undulator in the Final Focus Test Beam (FFTB) operated at 46.6 GeV. Measurements of the positron polarization have been performed at five positron energies from 4.5 to 7.5 MeV. In addition, the electron polarization has been determined at 6.7 MeV, and the effect of operating the undulator with a ferrofluid was also investigated. To compare the measurements with expectations, detailed simulations were made with an upgraded version of GEANT4 that includes the dominant polarization-dependent interactions of electrons, positrons. and photons with matter. The measurements agree with calculations, corresponding to 80% polarization for positrons near 6 MeV and 90% for electrons near 7 MeV. (C) 2009 Elsevier B.V. All rights reserved. C1 [Laihem, K.; Riemann, S.; Schaelicke, A.] DESY, D-15738 Zeuthen, Germany. [Stahl, A.] Rhein Westfal TH Aachen, D-52056 Aachen, Germany. [Dollan, R.; Kolanoski, H.; Lohse, T.; Schweizer, T.] Humboldt Univ, D-12489 Berlin, Germany. STFC Daresbury Lab, Warrington WA5 0HB, Cheshire, England. Cockcroft Inst, Warrington WA5 0HB, Cheshire, England. [Moortgat-Pick, G. A.] Univ Durham, Durham DH1 3LE, England. [Floettmann, K.; Gharibyan, V.; Pahl, P.; Poeschl, R.; Schueler, K. P.] DESY, D-22607 Hamburg, Germany. [Barley, J.; Mikhailichenko, A. A.] Cornell Univ, Ithaca, NY 14853 USA. [Berridge, S.; Bugg, W.; Efremenko, Y.] Univ Tennessee, Knoxville, TN 37996 USA. [Batygin, Y.; Bharadwaj, V.; Bower, G.; Decker, F-J.; Hast, C.; Iverson, R.; Pitthan, R.; Sheppard, J. C.; Szalata, Z.; Walz, D. R.; Weidemann, A.] SLAC, Menlo Pk, CA 94025 USA. [McDonald, K. T.] Princeton Univ, Princeton, NJ 08544 USA. [Alexander, G.; Reinherz-Aronis, E.] Tel Aviv Univ, IL-69978 Tel Aviv, Israel. [Gharibyan, V.] YerPhl, Yerevan 375036, Armenia. RP Schalicke, A (reprint author), DESY, D-15738 Zeuthen, Germany. EM andreas.schaelicke@desy.de RI Stahl, Achim/E-8846-2011 OI Stahl, Achim/0000-0002-8369-7506 FU DOE [DE-AC03-76SF00515, DE-FG05-91ER40627, DE-FG02-91ER40671, DE-FG02-03ER41283, DE-FG02-04ER41353]; NSF (USA) [PHY-0202078]; European Commission (Germany) [RIDS-011899]; STFC (United Kingdom); ISF (Israel) [342/05]; SLAC FX The authors gratefully acknowledge the general support of the DESY research division and the particular contributions of Y. Holler and A. Petrov at DESY/Hamburg and M. Jablonski from Humboldt University; and the support and efforts of the entire SLAC staff, and in particular the assistance of S. Anderson, A. Baker, L. Bentson, B. Brugnoletti, F. Gaudreault, H. Imfeld, J. Minister, M. Racine, R. Rogers, N. Spencer, K. Traeger, and H. Vincke. NR 65 TC 8 Z9 8 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 1 PY 2009 VL 610 IS 2 BP 451 EP 487 DI 10.1016/j.nima.2009.07.091 PG 37 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 539GC UT WOS:000273240800001 ER PT J AU Robinson, SM Kiff, SD Ashbaker, ED Flumerfelt, E Salvitti, M AF Robinson, S. M. Kiff, S. D. Ashbaker, E. D. Flumerfelt, E. Salvitti, M. TI Effects of high count rate and gain shift on isotope-identification algorithms SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Radiation detection; Gamma-ray spectroscopy; Gain shift; NaI; Dead time; Pulse pileup; Isotope identification ID GAMMA-RAY; SYSTEM; TEMPERATURE AB Spectroscopic gamma-ray detectors are used for many research, industrial, and homeland-security applications. Thallium-doped sodium iodide (NaI(Tl)) scintillation crystals coupled to photomultiplier tubes provide medium resolution spectral data about the surrounding environment. NaI(Tl)-based detectors, paired with spectral identification algorithms, are often effective for identifying gamma-ray sources by isotope. However, intrinsic limitations for NaI(Tl) systems exist, including gain shifts and spectral marring (e.g., loss of resolution and count-rate saturation) at high count rates. These effects are hardware-dependent and have strong effects on the radioisotopic identification capability of NaI(Tl)-based systems. In this work, the effects of high count rate on the response of isotope-identification algorithms are explored. It is shown that a small gain shift of a few tens of keV is sufficient to disturb identification. The onset of this and other spectral effects is estimated for NaI(Tl) crystals, and a mechanism for mitigating these effects by estimating and correcting for them is implemented and evaluated. (C) 2009 Elsevier B.V. All rights reserved. C1 [Robinson, S. M.; Kiff, S. D.; Ashbaker, E. D.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Flumerfelt, E.] Univ Tennessee, Knoxville, TN 37996 USA. [Salvitti, M.] Juniata Coll, Huntingdon, PA 16652 USA. RP Robinson, SM (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999, Richland, WA 99352 USA. EM sean.robinson@pnl.gov FU United States Department of Homeland Security; United States Department of Energy by Battelle [DE-AC05-76RLO 1830] FX This work was supported by the United States Department of Homeland Security. Pacific Northwest National Laboratory is operated for the United States Department of Energy by Battelle under contract DE-AC05-76RLO 1830. NR 17 TC 0 Z9 0 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 1 PY 2009 VL 610 IS 2 BP 509 EP 514 DI 10.1016/j.nima.2009.08.063 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 539GC UT WOS:000273240800004 ER PT J AU Siciliano, ER Ely, JH Kouzes, RT Schweppe, JE Strachan, DM Yokuda, ST AF Siciliano, E. R. Ely, J. H. Kouzes, R. T. Schweppe, J. E. Strachan, D. M. Yokuda, S. T. TI Energy calibration of gamma spectra in plastic scintillators using Compton kinematics (vol 594, pg 232, 2008) SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Correction C1 [Siciliano, E. R.; Ely, J. H.; Kouzes, R. T.; Schweppe, J. E.; Strachan, D. M.; Yokuda, S. T.] Pacific NW Natl Lab, Natl Secur Div, Richland, WA 99352 USA. RP Kouzes, RT (reprint author), Pacific NW Natl Lab, Natl Secur Div, 1005 Country Court, Richland, WA 99352 USA. EM rkouzes@pnl.gov NR 1 TC 0 Z9 0 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 1 PY 2009 VL 610 IS 2 BP 627 EP 627 DI 10.1016/j.nima.2009.09.001 PG 1 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 539GC UT WOS:000273240800018 ER PT J AU Lee, HY Gorres, J Becker, HW Stech, E Strandberg, E Wiescher, A AF Lee, H. Y. Goerres, J. Becker, H. -W. Stech, E. Strandberg, E. Wiescher, A. TI Production and characterization of oxygen-reduced implanted Ne-21 targets SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE Implanted target; Ne isotopes; Thick target yield; Deuteron-Induced gamma-ray Emission ID RESONANCE STRENGTHS; EXCITED STATES; PROTON CAPTURE; NUCLEI; SI-28; NA-22 AB Implanted neon targets were produced for nuclear astrophysics experiments at the Ruhr-Universitat Bochum, and their characteristics were studied at the University of Notre Dame. The Ne ions were implanted sequentially at two different energies to create a more uniform depth distribution. The targets were stable under high beam loads. To reduce the amount of oxygen contamination on the target's surface, a procedure of chemical cleaning and thermal outgassing of targets was developed. The impact of this treatment on implanted Ne targets was investigated and found to reduce the oxygen amount by a factor of 4. The depth profile of the implanted Ne atoms was studied via narrow (p,gamma) resonances while the oxygen contamination was monitored using the Deuteron-Induced gamma-ray Emission (DIGE) method. (C) 2009 Elsevier B.V. All rights reserved. C1 [Lee, H. Y.; Goerres, J.; Stech, E.; Strandberg, E.; Wiescher, A.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Lee, H. Y.; Goerres, J.; Stech, E.; Strandberg, E.; Wiescher, A.] Univ Notre Dame, Joint Inst Nucl Phys, Notre Dame, IN 46556 USA. [Becker, H. -W.] Ruhr Univ Bochum, DTL, Inst Expt Phys 3, D-40781 Bochum, Germany. RP Lee, HY (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM hylee@anl.gov FU National Science Foundation NSF [0434844]; Joint Institute for Nuclear Astrophysics [JINA PHY02-16783] FX The authors would like to thank M. Couder, A. Couture, S. Falahat, L. Lamm, P.J. LeBlanc, J. Lingle, B. Mulder, S. O'Brien, and A. Palumbo for the assistances during the experiment. This work was supported by the National Science Foundation NSF - Grant 0434844 and the Joint Institute for Nuclear Astrophysics JINA PHY02-16783. NR 33 TC 1 Z9 1 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X EI 1872-9584 J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD NOV PY 2009 VL 267 IS 21-22 BP 3539 EP 3544 DI 10.1016/j.nimb.2009.08.019 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 524EA UT WOS:000272125400009 ER PT J AU Young, G Sorensen, S AF Young, Glenn Sorensen, Soren TI Preface SO NUCLEAR PHYSICS A LA English DT Editorial Material C1 [Young, Glenn] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Sorensen, Soren] Univ Tennessee, Knoxville, TN 37996 USA. RP Young, G (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD NOV 1 PY 2009 VL 830 BP VII EP VIII DI 10.1016/j.nuclphysa.2009.10.161 PG 2 WC Physics, Nuclear SC Physics GA 532QA UT WOS:000272763300001 ER PT J AU Petreczky, P AF Petreczky, Peter TI Lattice QCD at finite temperature : present status SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2009) CY MAR 30-APR 04, 2009 CL Knoxville, TN ID SU(2) GAUGE-THEORY; MONTE-CARLO; THERMODYNAMICS; ENERGY; PLASMA AB I review recent progress in finite temperature lattice calculations, including calculations of Equation of State, fluctuations of conserved charges and spatial correlation functions. I compare lattice results with the predictions of hadron resonance gas model, resummed perturbation theory and 3-dimensional effective field theory. Comparison of the lattice results for certain ratios with the prediction of AdS/CFT correspondence is also discussed. C1 [Petreczky, Peter] RIKEN, BNL, Upton, NY 11973 USA. [Petreczky, Peter] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Petreczky, Peter] CAS, Kavli Inst Theoret Phys China, Beijing 100190, Peoples R China. RP Petreczky, P (reprint author), RIKEN, BNL, Upton, NY 11973 USA. NR 46 TC 26 Z9 26 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD NOV 1 PY 2009 VL 830 BP 11C EP 18C DI 10.1016/j.nuclphysa.2009.10.086 PG 8 WC Physics, Nuclear SC Physics GA 532QA UT WOS:000272763300003 ER PT J AU Leitch, M AF Leitch, Michael CA PHENIX Collaboration TI Highlights from PHENIX-I: Initial State and Early Times SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2009) CY MAR 30-APR 04, 2009 CL Knoxville, TN ID DIMUON PRODUCTION; COLLISIONS; J/PSI AB We will review the latest physics developments from PHENIX concentrating on cold nuclear matter effects, the initial state for heavy-ion collisions, and probes of the earliest stages of the hot-dense medium created in those collisions. Recent physics results from p + p and d + Au collisions; and from direct photons, quarkonia and low-mass vector mesons in A+A collisions will be highlighted. Insights from these measurements into the characteristics of the initial state and about the earliest times in heavy-ion collisions will be discussed. C1 [Leitch, Michael] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Leitch, M (reprint author), Los Alamos Natl Lab, P-25 MS H-846, Los Alamos, NM 87545 USA. NR 17 TC 5 Z9 5 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD NOV 1 PY 2009 VL 830 BP 27C EP 34C DI 10.1016/j.nuclphysa.2009.09.009 PG 8 WC Physics, Nuclear SC Physics GA 532QA UT WOS:000272763300005 ER PT J AU Videbaek, F AF Videbaek, F. CA BRAHMS Collaboration TI Overview and Recent Results from BRAHMS SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2009) CY MAR 30-APR 04, 2009 CL Knoxville, TN ID COLLISIONS AB The BRAHMS experiment was designed to measure and characterize in particular the properties of rapidity dependence of particle production in heavy ion collisions. The data-taking is now over, results of several years of analysis have been published and demonstrates several important features of the rapidity dependence, not envisioned from the start of the RHIC program. The bulk properties of the system formed at high rapidity resemble that of systems at lower energies at mid-rapidity when referenced via the baryo-chemical potential. New physics in AA are essentially observed at mid-rapidity including the demonstration that high-p(T) suppression is a final state effect. Another key result is that in d+A collisions at forward rapidities where the very low-x region of the nucleus was probed, a strong suppression of pion production was observed consistent with the picture of gluon saturation. The latest results examines the centrality and rapidity dependence of nuclear stopping, the particle production of pions, collective expansion vs. rapidity, and the baryon enhancement at intermediate values Of p(T). C1 [Videbaek, F.; BRAHMS Collaboration] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Videbaek, F (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. NR 18 TC 8 Z9 8 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD NOV 1 PY 2009 VL 830 BP 43C EP 50C DI 10.1016/j.nuclphysa.2009.09.011 PG 8 WC Physics, Nuclear SC Physics GA 532QA UT WOS:000272763300007 ER PT J AU Vale, CM AF Vale, Carla M. CA PHENIX Collaboration TI Highlights from PHENIX II - Exploring the QCD medium SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2009) CY MAR 30-APR 04, 2009 CL Knoxville, TN AB Much of the present experimental effort at RHIC is now directed towards understanding the properties of the hot and dense colored medium created in A+A collisions. Recent results from PHENIX on the dynamical evolution of the medium and its response to high momentum probes are presented, and their impact on our overall understanding of heavy-ion collisions is discussed. C1 [Vale, Carla M.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Vale, CM (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. NR 9 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD NOV 1 PY 2009 VL 830 BP 66C EP 73C DI 10.1016/j.nuclphysa.2009.09.013 PG 8 WC Physics, Nuclear SC Physics GA 532QA UT WOS:000272763300010 ER PT J AU Sickles, AM AF Sickles, Anne M. TI Jet-Medium Interactions with Identified Particles SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2009) CY MAR 30-APR 04, 2009 CL Knoxville, TN AB Identified particles have long been of great interest at RHIC in large part because of the baryon/meson differences observed at intermediate p(T) and the implications for hadronization via quark coalescence. With recent high statistics data identified particles are also now central to understanding the details of the jet-medium interactions and energy loss and hadron formation at intermediate and high p(T). In particular, high p(T) identified particle spectra along with two-particle correlations triggered with direct photons, neutral pions or electrons from heavy flavor decay with hadrons can provide information about how medium modifications to jet fragmentation depend on parton type. I will review recent results with identified particles both in heavy ion systems and the reference measurements in p+p collisions. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. RP Sickles, AM (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM anne@bnl.gov NR 39 TC 3 Z9 3 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD NOV 1 PY 2009 VL 830 BP 131C EP 138C DI 10.1016/j.nuclphysa.2009.09.015 PG 8 WC Physics, Nuclear SC Physics GA 532QA UT WOS:000272763300018 ER PT J AU Salur, S AF Salur, Sevil TI Full Jet Reconstruction in Heavy Ion Collisions SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2009) CY MAR 30-APR 04, 2009 CL Knoxville, TN ID HADRON-COLLISIONS; CROSS-SECTIONS; PARTON SHOWER; ALGORITHM; ANNIHILATION AB Full jet reconstruction has traditionally been thought to be difficult in heavy ion events due to large multiplicity backgrounds. The search for new physics in high luminosity p+p collisions at the LHC similarly requires the precise measurement of jets over large backgrounds caused by pile up; this has motivated the development of a new generation of jet reconstruction algorithms which are also applicable in the heavy ion environment. We review the latest results on jet-medium interactions as seen in A+A collisions at RHIC, focusing on the new techniques for full jet reconstruction. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Salur, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd MS-70R0319, Berkeley, CA 94720 USA. NR 52 TC 13 Z9 13 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD NOV 1 PY 2009 VL 830 BP 139C EP 146C DI 10.1016/j.nuclphysa.2009.09.016 PG 8 WC Physics, Nuclear SC Physics GA 532QA UT WOS:000272763300019 ER PT J AU Shi, SS AF Shi, Shusu CA STAR Collaboration TI Event anisotropy v(2) at STAR SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2009) CY MAR 30-APR 04, 2009 CL Knoxville, TN AB Collective flow reflects the dynamical evolution in high-energy heavy ion collisions. In particular, the elliptic flow reflects early collision dynamics [1]. We present a systematic analysis of elliptic flow (v(2)) for identified particles measured in Au + Au and Cu + Cu collisions at root s(NN) = 200 GeV. Number of quark scaling is tested in the intermediate p(T) region and in the smaller system (Cu + Cu). The Cu + Cu collisions results are compared with those from ideal hydrodynamic model calculations. C1 [Shi, Shusu] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Shi, Shusu] Huazhong Normal Univ, Inst Particle Phys, Wuhan 430079, Hubei, Peoples R China. [Shi, Shusu] Huazhong Normal Univ, Minist Educ, Key Lab Quark & Lepton Phys, Wuhan 430079, Hubei, Peoples R China. RP Shi, SS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. NR 20 TC 17 Z9 17 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD NOV 1 PY 2009 VL 830 BP 187C EP 190C DI 10.1016/j.nuclphysa.2009.10.093 PG 4 WC Physics, Nuclear SC Physics GA 532QA UT WOS:000272763300029 ER PT J AU Kitazawa, M Karsch, F AF Kitazawa, Masakiyo Karsch, Frithjof TI Spectral Properties of Quarks at Finite Temperature in Lattice QCD SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2009) CY MAR 30-APR 04, 2009 CL Knoxville, TN ID EXCITATIONS AB We analyze the quark spectral function above and below the critical temperature for deconfinement and at finite momentum in quenched lattice QCD. It is found that the temporal quark correlation function in the deconfined phase near the critical temperature is well reproduced by a two-pole ansatz for the spectral function. The bare quark mass and momentum dependences of the spectral function are analyzed with this ansatz. In the chiral limit we find that even near the critical temperature the quark spectral function has two collective modes corresponding to the normal and plasmino excitations in the high temperature (T) limit. The pole mass of these modes at zero momentum, which should be identified to be the thermal mass of the quark, is approximately proportional to T in a rather wide range of T in the deconfined phase. C1 [Kitazawa, Masakiyo] Osaka Univ, Dept Phys, Osaka 5600043, Japan. [Karsch, Frithjof] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Kitazawa, M (reprint author), Osaka Univ, Dept Phys, Osaka 5600043, Japan. NR 9 TC 2 Z9 2 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD NOV 1 PY 2009 VL 830 BP 223C EP 226C DI 10.1016/j.nuclphysa.2009.09.024 PG 4 WC Physics, Nuclear SC Physics GA 532QA UT WOS:000272763300038 ER PT J AU Maezawa, Y Aoki, S Ejiri, S Hatsuda, T Ishii, N Kanaya, K Ohno, H Umeda, T AF Maezawa, Y. Aoki, S. Ejiri, S. Hatsuda, T. Ishii, N. Kanaya, K. Ohno, H. Umeda, T. CA WHOT-QCD Collaboration TI Free energies of heavy quarks in full-QCD lattice simulations with Wilson-type quark action SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2009) CY MAR 30-APR 04, 2009 CL Knoxville, TN AB The free energy between a static quark and an antiquark is studied by using the color-singlet Polyakov-line correlation at finite temperature in lattice QCD with 2+1 flavors of improved Wilson quarks. From the simulations on 32(3) X 12, 10, 8, 6, 4 lattices in the high temperature phase, based on the fixed scale approach, we find that, the heavy-quark free energies at short distance converge to the heavy-quark potential evaluated from the Wilson loop at zero temperature, in accordance with the expected insensitivity of short distance physics to the temperature. At long distance, the heavy-quark free energies approach to twice the single-quark free energies, implying that the interaction between heavy quarks is screened. The Debye screening mass obtained from the long range behavior of the free energy is compared with the results of thermal perturbation theory. C1 [Maezawa, Y.] RIKEN, Nishina Accelerator Res Ctr, Enyo Radiat Lab, Wako, Saitama 3510198, Japan. [Aoki, S.; Kanaya, K.; Ohno, H.] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. [Aoki, S.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Ejiri, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Hatsuda, T.; Ishii, N.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. [Umeda, T.] Hiroshima Univ, Grad Sch Educ, Hiroshima 7398524, Japan. RP Maezawa, Y (reprint author), RIKEN, Nishina Accelerator Res Ctr, Enyo Radiat Lab, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. RI Hatsuda, Tetsuo/C-2901-2013 NR 8 TC 4 Z9 4 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD NOV 1 PY 2009 VL 830 BP 247C EP 250C DI 10.1016/j.nuclphysa.2009.10.021 PG 4 WC Physics, Nuclear SC Physics GA 532QA UT WOS:000272763300044 ER PT J AU Ploskon, M AF Ploskon, Mateusz CA STAR Collaboration TI Inclusive cross section and correlations of fully reconstructed jets in root s(NN)=200 GeV Au + Au and p plus p collisions SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2009) CY MAR 30-APR 04, 2009 CL Knoxville, TN ID HADRON-COLLISIONS AB We present an experimental study of full jet reconstruction in the high multiplicity environment of heavy ion collisions, utilizing root s(NN) = 200 GeV p + p and central Au + Au data measured by STAR. Inclusive differential jet production cross sections and ratios are reported, as well as high-p(T) hadron-jet coincidences. C1 [Ploskon, Mateusz; STAR Collaboration] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Ploskon, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. NR 12 TC 34 Z9 34 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD NOV 1 PY 2009 VL 830 BP 255C EP 258C DI 10.1016/j.nuclphysa.2009.10.095 PG 4 WC Physics, Nuclear SC Physics GA 532QA UT WOS:000272763300046 ER PT J AU Zhang, BW AF Zhang, Ben-Wei TI Jet Observables of Parton Energy Loss in High-Energy Nuclear Collisions SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2009) CY MAR 30-APR 04, 2009 CL Knoxville, TN AB While strong attenuation of single particle production and particle correlations has provided convincing evidence for large parton energy loss in the QGP, its application to jet tomography has inherent limitations due to the inclusive nature of the measurements. Generalization of this suppression to full jet observables leads to an unbiased, more differential and thus powerful approach to determining the characteristics of the hot QCD medium created in high-energy nuclear collisions. In this article we report on recent theoretical progress in calculating jet shapes and the related jet cross sections in the presence of QGP-induced parton energy loss. (i) A theoretical model of intra-jet energy flow in heavy-ion collisions is discussed. (ii) Realistic numerical simulations demonstrate the nuclear modification factor R(AA)(p(T)) evolves continuously with the jet cone size R(max) or the acceptance cut omega(min) - a novel feature of jet quenching. The anticipated broadening of jets is subtle and most readily manifested in the periphery of the cone for smaller cone radii. C1 [Zhang, Ben-Wei] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Zhang, Ben-Wei] Hua Zhong Normal Univ, Key Lab Quark & Lepton Phys, Minist Educ, Wuhan, Peoples R China. RP Zhang, BW (reprint author), Los Alamos Natl Lab, Div Theoret, MS B238, Los Alamos, NM 87545 USA. NR 11 TC 1 Z9 1 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD NOV 1 PY 2009 VL 830 BP 259C EP 262C DI 10.1016/j.nuclphysa.2009.10.022 PG 4 WC Physics, Nuclear SC Physics GA 532QA UT WOS:000272763300047 ER PT J AU Ollitrault, JY Poskanzer, AM Voloshin, SA AF Ollitrault, Jean-Yves Poskanzer, Arthur M. Voloshin, Sergei A. TI Effect of flow fluctuations and nonflow on elliptic flow methods SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2009) CY MAR 30-APR 04, 2009 CL Knoxville, TN AB We discuss how the different estimates of elliptic flow are influenced by flow fluctuations and nonflow effects. It is explained why the event-plane method yields estimates between the two-particle correlation methods and the multiparticle correlation methods. It is argued that nonflow effects and fluctuations cannot be disentangled without other assumptions. However, we provide equations where, with reasonable assumptions about fluctuations and nonflow, all measured values of elliptic flow converge to a unique mean v(2,PP) elliptic flow in the participant plane. Thus, the 20% spread in observed elliptic flow measurements from different analysis methods is no longer mysterious. C1 [Ollitrault, Jean-Yves] CNRS, URA2306, CEA, Inst Phys Theor Saclay, F-91191 Gif Sur Yvette, France. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Wayne State Univ, Detroit, MI 48201 USA. RP Ollitrault, JY (reprint author), CNRS, URA2306, CEA, Inst Phys Theor Saclay, F-91191 Gif Sur Yvette, France. RI Ollitrault, Jean-Yves/B-3709-2010; Voloshin, Sergei/I-4122-2013 OI Ollitrault, Jean-Yves/0000-0001-6037-7975; NR 13 TC 3 Z9 3 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD NOV 1 PY 2009 VL 830 BP 279C EP 282C DI 10.1016/j.nuclphysa.2009.09.026 PG 4 WC Physics, Nuclear SC Physics GA 532QA UT WOS:000272763300052 ER PT J AU Marquet, C Beuf, G Xiao, BW AF Marquet, C. Beuf, G. Xiao, B. -W. TI Energy loss and thermalization of heavy quarks in a strongly-coupled plasma SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2009) CY MAR 30-APR 04, 2009 CL Knoxville, TN AB Using the AdS/CFT correspondence, we compute the medium-induced energy loss of a decelerating heavy quark moving through a strongly-coupled supersymmetric Yang Mills plasma. In the regime where the deceleration is small, a perturbative calculation is possible and we obtain the first two corrections to the energy-loss rate of a heavy quark with constant velocity. The thermalization of the heavy quark is also discussed. C1 [Marquet, C.; Beuf, G.] CEA Saclay, Inst Phys Theor, F-91191 Gif Sur Yvette, France. [Xiao, B. -W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Marquet, C (reprint author), CEA Saclay, Inst Phys Theor, F-91191 Gif Sur Yvette, France. RI Beuf, Guillaume/B-3186-2017 OI Beuf, Guillaume/0000-0002-5894-7657 NR 11 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD NOV 1 PY 2009 VL 830 BP 307C EP 310C DI 10.1016/j.nuclphysa.2009.09.030 PG 4 WC Physics, Nuclear SC Physics GA 532QA UT WOS:000272763300059 ER PT J AU Dumitru, A AF Dumitru, Adrian TI Quarkonium in a viscous QGP SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2009) CY MAR 30-APR 04, 2009 CL Knoxville, TN ID FINITE-TEMPERATURE; BOUND-STATES; FIELD-THEORIES; POLYAKOV LOOP; WILSON LOOPS; QUARKS; PLASMA; QCD AB I discuss viscosity corrections to thermal effects on the static QCD potential within hard-thermal loop resummed perturbation theory and for a strongly coupled, large-N(c) conformal field theory dual to five-dimensional Gauss-Bonnet gravity. I also present model predictions for quarkonium binding energies in the deconfined phase and for suppression of R(AA)((sic) -> e(+)e(-)). C1 [Dumitru, Adrian] CUNY Bernard M Baruch Coll, Dept Nat Sci, New York, NY 10010 USA. [Dumitru, Adrian] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. RP Dumitru, A (reprint author), CUNY Bernard M Baruch Coll, Dept Nat Sci, 17 Lexington Ave,A-506, New York, NY 10010 USA. NR 33 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD NOV 1 PY 2009 VL 830 BP 323C EP 326C DI 10.1016/j.nuclphysa.2009.09.032 PG 4 WC Physics, Nuclear SC Physics GA 532QA UT WOS:000272763300063 ER PT J AU Kikola, D AF Kikola, Daniel CA STAR Collaboration TI J/psi production in Au plus Au and Cu plus Cu collisions at root s(NN)=200 GeV at STAR SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2009) CY MAR 30-APR 04, 2009 CL Knoxville, TN ID SUPPRESSION; NUCLEON AB J/psi production is considered to be a sensitive probe of the properties of quark gluon plasma created in nucleus+nucleus collisions at RHIC. In this article, the recent analysis of m-id-rapidity (|y| < 1) J/psi production via the dielectron decay channel in Au+Au (year 2007) and Cu+Cu (year 2005) collisions at root s(NN) = 200 GeV at STAR is reported. It is compared to STAR p+p results in order to study the nuclear modification factor as a function of transverse momentum and centrality. The results are compared to previously published data and available theoretical models. C1 [Kikola, Daniel] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Kikola, Daniel] Warsaw Univ Technol, Fac Phys, Warsaw, Poland. RP Kikola, D (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. NR 14 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD NOV 1 PY 2009 VL 830 BP 327C EP 330C DI 10.1016/j.nuclphysa.2009.10.028 PG 4 WC Physics, Nuclear SC Physics GA 532QA UT WOS:000272763300064 ER PT J AU Qu, Z Liu, YP Xu, N Zhuang, PF AF Qu, Zhen Liu, Yunpeng Xu, Nu Zhuang, Pengfei TI J/psi production at mid and forward rapidity at RHIC SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2009) CY MAR 30-APR 04, 2009 CL Knoxville, TN DE J/psi production; regeneration; heavy ion collisions; quark-gluon plasma ID TRANSVERSE-MOMENTUM DEPENDENCE; SHORT-DISTANCE ANALYSIS; HEAVY-QUARK SYSTEMS; NUCLEAR COLLISIONS; SUPPRESSION; SPS AB We calculate the rapidity dependence of J/psi nuclear modification factor and averaged transverse momentum square in heavy ion collisions at RHIC in a 3-dimensional transport approach with regeneration mechanism. C1 [Qu, Zhen; Liu, Yunpeng; Zhuang, Pengfei] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Xu, Nu] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Qu, Z (reprint author), Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. NR 22 TC 5 Z9 6 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD NOV 1 PY 2009 VL 830 BP 335C EP 338C DI 10.1016/j.nuclphysa.2009.10.100 PG 4 WC Physics, Nuclear SC Physics GA 532QA UT WOS:000272763300066 ER PT J AU Dunlop, JC AF Dunlop, J. C. TI Open Heavy Flavor Production in Heavy Ion Collisions SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2009) CY MAR 30-APR 04, 2009 CL Knoxville, TN ID QCD MATTER; TOMOGRAPHY AB The interaction of heavy partons, charm and beauty, with the matter created in heavy ion collisions has been of great interest in recent years. Heavy partons were predicted to interact less strongly with the matter than light partons. In apparent contrast to these predictions, unexpectedly strong suppression of non-photonic electrons from heavy flavor decays has been seen. However, significant experimental uncertainties remain, both in the measurements themselves and in the separation of the contribution from charm and beauty, which have complicated the interpretation of these results. The current experimental situation is critically reviewed and prospects for making these measurements more easily interpretable discussed. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. RP Dunlop, JC (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. NR 21 TC 4 Z9 4 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD NOV 1 PY 2009 VL 830 BP 419C EP 426C DI 10.1016/j.nuclphysa.2009.09.036 PG 8 WC Physics, Nuclear SC Physics GA 532QA UT WOS:000272763300077 ER PT J AU Zhang, HZ Owens, JF Wang, EK Wang, XN AF Zhang, Hanzhong Owens, J. F. Wang, Enke Wang, Xin-Nian TI Gamma-Jet Tomography of Quark-Gluon Plasma in High-Energy Nuclear Collisions SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2009) CY MAR 30-APR 04, 2009 CL Knoxville, TN ID DIRECT PHOTON PRODUCTION AB Within the next-to-leading order (NLO) perturbative QCD (pQCD) parton model, suppression of away-side hadron spectra associated with a high p(T) photon due to parton energy loss is shown to provide a complete tomographic picture of the dense matter formed in high-energy heavy-ion collisions at RHIC. Dictated by the shape of the gamma-triggered jet spectrum in NLO pQCD, hadron spectra at large z(T) = p(T)(h)/p(T)(gamma) (greater than or similar to) 1 are more susceptible to parton energy loss and therefore are dominated by surface emission of gamma -triggered jets, whereas small z(T) hadrons mainly come from fragmentation of jets with reduced energy from volume emission. These lead to different centrality dependence of the hadron suppression in different regions Of z(T). C1 [Zhang, Hanzhong; Wang, Enke] Huazhong Normal Univ, Inst Particle Phys, Wuhan 430079, Hubei, Peoples R China. [Zhang, Hanzhong; Wang, Enke] Huazhong Normal Univ, Minist Educ, Key Lab Quark & Lepton Phys, Wuhan, Peoples R China. [Owens, J. F.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Wang, Xin-Nian] Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Zhang, HZ (reprint author), Huazhong Normal Univ, Inst Particle Phys, Wuhan 430079, Hubei, Peoples R China. OI Wang, Xin-Nian/0000-0002-9734-9967 NR 14 TC 4 Z9 4 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD NOV 1 PY 2009 VL 830 BP 443C EP 446C DI 10.1016/j.nuclphysa.2009.10.037 PG 4 WC Physics, Nuclear SC Physics GA 532QA UT WOS:000272763300080 ER PT J AU Molnar, D Huovinen, P AF Molnar, Denes Huovinen, Pasi TI Applicability of viscous hydrodynamics at RHIC SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2009) CY MAR 30-APR 04, 2009 CL Knoxville, TN AB In an earlier work[1] we established that causal Israel-Stewart viscous hydrodynamics is only accurate in RHIC applications at very low shear viscosities 4 pi eta(s)/s less than or similar to 1.5 - 2. We show here that the region of applicability is significantly reduced if bulk viscosity plays a role in the dynamics. C1 [Molnar, Denes; Huovinen, Pasi] Purdue Univ, Dept Phys, W Lafayette, IN 47906 USA. [Molnar, Denes] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Huovinen, Pasi] Goethe Univ Frankfurt, Inst Theoret Phys, D-6000 Frankfurt, Germany. RP Molnar, D (reprint author), Purdue Univ, Dept Phys, 525 Northwestern Ave, W Lafayette, IN 47906 USA. NR 14 TC 9 Z9 9 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD NOV 1 PY 2009 VL 830 BP 475C EP 478C DI 10.1016/j.nuclphysa.2009.10.104 PG 4 WC Physics, Nuclear SC Physics GA 532QA UT WOS:000272763300088 ER PT J AU Koch, V AF Koch, Volker TI Elliptic Flow at Large Viscosity SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2009) CY MAR 30-APR 04, 2009 CL Knoxville, TN AB In this contribution we present an alternative scenario for the large elliptic flow observed in relativistic heavy ion collisions. Motivated by recent results from Lattice QCD on flavor off-diagonal susceptibilities we argue that the matter right above T(c) can be described by single-particle dynamics in a repulsive single-particle potential, which in turn gives rise to elliptic flow. These ideas can be tested experimentally by measuring elliptic flow of heavy quarks, preferably via the measurement of J/Psi elliptic flow. C1 Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Koch, V (reprint author), Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. NR 14 TC 8 Z9 8 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD NOV 1 PY 2009 VL 830 BP 479C EP 482C DI 10.1016/j.nuclphysa.2009.10.042 PG 4 WC Physics, Nuclear SC Physics GA 532QA UT WOS:000272763300089 ER PT J AU Baker, MD AF Baker, Mark D. CA ATLAS Collaboration TI Direct gamma and gamma-jet measurement capability of ATLAS for Pb plus Pb collisions SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2009) CY MAR 30-APR 04, 2009 CL Knoxville, TN AB The ATLAS detector at the LHC is capable of efficiently separating photons and neutral hadrons based on their shower shapes over a wide range in eta, phi, and E(T), either in addition to or instead of isolation cuts. This provides ATLAS with a unique strength for direct photon and gamma-jet physics as well as access to the unique capability to measure non-isolated photons from fragmentation or from the medium. We present a first look at the ATLAS direct photon measurement capabilities in Pb+Pb and, for reference, p+p collisions at root s(NN) = 5.5 TeV over the region vertical bar eta vertical bar < 2.4. C1 [Baker, Mark D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Baker, MD (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. NR 3 TC 4 Z9 4 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD NOV 1 PY 2009 VL 830 BP 499C EP 502C DI 10.1016/j.nuclphysa.2009.09.040 PG 4 WC Physics, Nuclear SC Physics GA 532QA UT WOS:000272763300094 ER PT J AU Fries, RJ Kunihiro, T Muller, B Ohnishi, A Schafer, A AF Fries, R. J. Kunihiro, T. Mueller, B. Ohnishi, A. Schaefer, A. TI From 0 to 5000 in 2 x 10(-24) seconds: Entropy production in relativistic heavy-ion collisions SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2009) CY MAR 30-APR 04, 2009 CL Knoxville, TN ID LATTICE; FIELDS; BANG AB We review what is known about the contributions to the final entropy from the different stages of a relativistic nuclear collision, including recent results on the decoherence entropy and the entropy produced during the hydrodynamic phase by viscous effects. We then present a general framework, based on the Husimi distribution function, for the calculation of entropy growth in quantum field theories, which is applicable to the earliest ("glasma") phase of the collision during which most of the entropy is generated. The entropy calculated from the Husimi distribution exhibits linear growth when the quantum field contains unstable modes and is asymptotically equal to the Kolmogorov-Sinai (KS) entropy. We outline how the approach can be used to investigate the problem of entropy production in a relativistic heavy-ion reaction from first principles. C1 [Fries, R. J.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Fries, R. J.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Kunihiro, T.] Kyoto Univ, Dept Phys, Sakyo Ku, Kyoto 6068502, Japan. [Mueller, B.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Ohnishi, A.] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan. [Schaefer, A.] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany. RP Fries, RJ (reprint author), Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. RI Ohnishi, Akira/F-7403-2011 OI Ohnishi, Akira/0000-0003-1513-0468 NR 26 TC 9 Z9 9 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD NOV 1 PY 2009 VL 830 BP 519C EP 522C DI 10.1016/j.nuclphysa.2009.09.041 PG 4 WC Physics, Nuclear SC Physics GA 532QA UT WOS:000272763300099 ER PT J AU Kharzeev, DE AF Kharzeev, Dmitri E. TI Chern-Simons current and local parity violation in hot QCD matter SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2009) CY MAR 30-APR 04, 2009 CL Knoxville, TN ID ELECTRODYNAMICS AB Non-Abelian gauge theories "live" in a space-time with non-trivial topology that can be characterized by an odd-dimensional Chern-Simons form. In QCD, Chern-Simons form is induced by the chiral anomaly and the presence of topological solutions; it opens a possibility for the breaking of P and CP invariances in strong interactions ("the strong CP problem"). While there is apparently no global P and CP violation in QCD, here I argue that topological fluctuations in hot quark-gluon matter can become directly observable in the presence of a very intense external magnetic field by inducing local P- and CP- odd effects. These phenomena can be described by using the Maxwell-Chern-Simons electrodynamics as an effective theory. Local P and CP violation in hot QCD matter can be observed in experiment through the "chiral magnetic effect" - the separation of electric charge along the axis of magnetic field that is created by the colliding relativistic ions. There is a recent evidence for the electric charge separation relative to the reaction plane of heavy ion collisions from the STAR Collaboration at RHIC. C1 [Kharzeev, Dmitri E.] Brookhaven Natl Lab, Dept Phys, Nucl Theory Grp, Upton, NY 11973 USA. [Kharzeev, Dmitri E.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. RP Kharzeev, DE (reprint author), Brookhaven Natl Lab, Dept Phys, Nucl Theory Grp, Upton, NY 11973 USA. NR 18 TC 20 Z9 20 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD NOV 1 PY 2009 VL 830 BP 543C EP 546C DI 10.1016/j.nuclphysa.2009.10.049 PG 4 WC Physics, Nuclear SC Physics GA 532QA UT WOS:000272763300105 ER PT J AU Kang, ZB Qiu, JW Vogelsang, W AF Kang, Zhong-Bo Qiu, Jian-Wei Vogelsang, Werner TI Low-mass dilepton production in pp and AA collisions SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2009) CY MAR 30-APR 04, 2009 CL Knoxville, TN ID FRAGMENTATION; PHOTONS; MATTER AB We adopt a factorized QCD formalism to describe the transverse momentum distribution of low-mass lepton pairs produced in pp collisions, when the pair transverse momentum Q(T) >> Q, with the pair's invariant mass Q as low as Q similar to Lambda(QCD). We extend this formalism to dilepton production in AA collisions by including the nuclear-dependent power correction due to parton multiple scattering. C1 [Kang, Zhong-Bo; Qiu, Jian-Wei] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Vogelsang, Werner] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Kang, ZB (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RI Kang, Zhongbo/P-3645-2014 NR 16 TC 3 Z9 3 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD NOV 1 PY 2009 VL 830 BP 571C EP 574C DI 10.1016/j.nuclphysa.2009.10.051 PG 4 WC Physics, Nuclear SC Physics GA 532QA UT WOS:000272763300112 ER PT J AU Gelis, F Lappi, T Venugopalan, R AF Gelis, Francois Lappi, Tuomas Venugopalan, Raju TI Long range rapidity correlations and the ridge in A plus A collisions SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2009) CY MAR 30-APR 04, 2009 CL Knoxville, TN ID STRONG EXTERNAL SOURCES; HIGH-ENERGY SCATTERING; HEAVY-ION COLLISIONS AB We discuss results for n-gluon correlations that form the basis of the Glasma flux tube picture of early times in heavy ion collisions. Our formalism is valid to all orders in perturbation theory at leading logarithmic accuracy in x and includes both QCD bremsstrahlung and the many body screening and recombination effects that are important at large parton densities. Long range rapidity correlations, as seen in the near-side ridge in heavy ion collisions, are a chronometer of these early time strong color field dynamics. They also contain information on how radial flow develops in heavy ion collisions. C1 [Gelis, Francois; Lappi, Tuomas] CEA DSM Saclay, Inst Phys Theor, F-91191 Gif Sur Yvette, France. [Lappi, Tuomas] Univ Jyvaskyla, Dept Phys, Jyvaskyla 40014, Finland. [Venugopalan, Raju] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Gelis, F (reprint author), CEA DSM Saclay, Inst Phys Theor, Bat 774, F-91191 Gif Sur Yvette, France. NR 28 TC 6 Z9 6 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD NOV 1 PY 2009 VL 830 BP 591C EP 594C DI 10.1016/j.nuclphysa.2009.10.053 PG 4 WC Physics, Nuclear SC Physics GA 532QA UT WOS:000272763300117 ER PT J AU Ferroni, L Koch, V AF Ferroni, L. Koch, V. TI Study of the crossover transition of a gas of extended hadrons SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2009) CY MAR 30-APR 04, 2009 CL Knoxville, TN AB We formulate a simple model for a gas of extended hadrons at zero chemical potential by taking inspiration from the compressible bag model. We show that a crossover transition qualitatively similar to lattice QCD can be reproduced by such a system by including some appropriate additional dynamics. Under certain conditions, at high temperature, the system consists of a finite number of infinitely extended bags, which occupy the entire space. In this situation the system behaves as an ideal gas of quarks and gluons. C1 [Ferroni, L.; Koch, V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Ferroni, L (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. NR 4 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD NOV 1 PY 2009 VL 830 BP 629C EP 630C DI 10.1016/j.nuclphysa.2009.10.060 PG 2 WC Physics, Nuclear SC Physics GA 532QA UT WOS:000272763300130 ER PT J AU Tang, AH AF Tang, Aihong TI Footprints of the (Nearly) Perfect Liquid SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2009) CY MAR 30-APR 04, 2009 CL Knoxville, TN ID HEAVY-ION COLLISIONS; ELLIPTIC FLOW AB In relativistic heavy-ion collisions, the system has gone through a series of evolution, almost at every stage of its evolution it leaves behind footprints in flow observable. Those footprints contain valuable information of the bulk property of the (nearly) perfect liquid. By examing footprints of the nearly perfect liquid, we address a few important issues, including the ideal hydrodynamic limit, estimation of eta/s, testing the Number of Constituent Quark scaling at low energy, in small system, at large transverse momentum, and in forward region. Future prospect of flow study is discussed. C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Tang, AH (reprint author), Brookhaven Natl Lab, Dept Phys, POB 5000, Upton, NY 11973 USA. EM aihong@bnl.gov NR 28 TC 2 Z9 2 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD NOV 1 PY 2009 VL 830 BP 673C EP 680C DI 10.1016/j.nuclphysa.2009.10.061 PG 8 WC Physics, Nuclear SC Physics GA 532QA UT WOS:000272763300138 ER PT J AU Fries, RJ Liu, W AF Fries, Rainer J. Liu, Wei TI High-P-T Physics with Identified Particles SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2009) CY MAR 30-APR 04, 2009 CL Knoxville, TN ID QUARK-GLUON PLASMA; RADIATIVE ENERGY-LOSS; CONVERSIONS; COLLISIONS; HADRONS AB The suppression of high-P-T particles in heavy ion collisions was one of the key discoveries at the Relativistic Heavy Ion Collider. This is usually parameterized by the average rate of momentum-transfer squared to this particle, (q) over cap. Here we argue that measurements of identified particles at high P-T, can lead to complementary information about the medium. The leading particle of a jet can change its identity through interactions with the medium. Tracing such flavor conversions could allow us to constrain the mean free path. Here we review the basic concepts of flavor conversions and discuss applications to particle ratios and elliptic flow. We make a prediction that strangeness is enhanced at high P-T at RHIC energies while its elliptic flow is suppressed. C1 [Fries, Rainer J.; Liu, Wei] Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA. [Fries, Rainer J.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. RP Fries, RJ (reprint author), Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA. NR 31 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD NOV 1 PY 2009 VL 830 BP 693C EP 696C DI 10.1016/j.nuclphysa.2009.09.057 PG 4 WC Physics, Nuclear SC Physics GA 532QA UT WOS:000272763300142 ER PT J AU Xu, YC AF Xu, Yichun CA STAR Collaboration TI Measurements of neutral and charged kaon production at high p(T) up to 15 GeV/c at STAR SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2009) CY MAR 30-APR 04, 2009 CL Knoxville, TN ID TRANSVERSE-MOMENTUM; D+AU COLLISIONS; HADRON SPECTRA; P+P; AU+AU AB We report an extension of charged kaon transverse momentum (p(T)) spectra at mid-rapidity (|y| < 0.5) up to 15 GeV/c, neutral kaon p(T) spectra up to 12 GeV/c using events triggered by the Barrel Electro-Magnetic Calorimeter (BEMC) from p+p collisions at root s(NN) = 200 GeV The K-+/-/pi(+/-) and K-0/pi(+/-) at high p(T) are compared in p+p and Au+Au collisions, and nuclear modification factor (R-AA)for pion, kaon, proton and rho are discussed. The R-AA for kaon in central collisions are consistent with theory calculation having jet conversion in a plasma of quarks and gluons. C1 [Xu, Yichun] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Xu, YC (reprint author), Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. EM xuyichun@mail.ustc.edu.cn NR 16 TC 5 Z9 6 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD NOV 1 PY 2009 VL 830 BP 701C EP 704C DI 10.1016/j.nuclphysa.2009.09.059 PG 4 WC Physics, Nuclear SC Physics GA 532QA UT WOS:000272763300144 ER PT J AU McLerran, L AF McLerran, Larry TI Quarkyonic Matter and the Revised Phase Diagram of QCD SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2009) CY MAR 30-APR 04, 2009 CL Knoxville, TN ID LARGE N-C; FINITE-DENSITY; QUARKS; MODEL AB At high baryon number density, it has been proposed that a new phase of QCD matter controls the physics. This matter is confining but can have densities much larger than Lambda(3)(QCD) Its existence is argued from large N-c approximations, and model computations. It is approximately chirally symmetric. C1 [McLerran, Larry] RIKEN, Brookhaven Ctr, Upton, NY 11973 USA. [McLerran, Larry] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP McLerran, L (reprint author), RIKEN, Brookhaven Ctr, Upton, NY 11973 USA. NR 23 TC 5 Z9 5 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD NOV 1 PY 2009 VL 830 BP 709C EP 712C DI 10.1016/j.nuclphysa.2009.10.063 PG 4 WC Physics, Nuclear SC Physics GA 532QA UT WOS:000272763300146 ER PT J AU Ejiri, S AF Ejiri, Shinji TI Critical point in finite density lattice QCD by canonical approach SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2009) CY MAR 30-APR 04, 2009 CL Knoxville, TN AB We propose a method to find the QCD critical point at finite density calculating the canonical partition function Z(C)(T, N) by Monte-Carlo simulations of lattice QCD, and analyze data obtained by a simulation with two-flavor p4-improved staggered quarks with pion mass m(pi) approximate to 770MeV. It is found that the shape of an effective potential changes gradually as the temperature decreases and a first order phase transition appears in the low temperature and high density region. This result strongly Suggests the existence of the critical point in the (T, mu(q)) phase diagram. C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Ejiri, S (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. NR 10 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD NOV 1 PY 2009 VL 830 BP 717C EP 720C DI 10.1016/j.nuclphysa.2009.09.060 PG 4 WC Physics, Nuclear SC Physics GA 532QA UT WOS:000272763300148 ER PT J AU Soltz, RA AF Soltz, R. A. CA HotQCD Collaboration TI The HotQCD Equation of State SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2009) CY MAR 30-APR 04, 2009 CL Knoxville, TN AB We present results from recent calculations of the QCD equation of state by the HotQCD Collaboration and review the implications for hydrodynamic modeling. The equation of state of QCD at zero baryon density was calculated on a lattice of dimensions 32(3) x 8 with m(l) = 0.1 m(s) (corresponding to a pion mass of similar to 220 MeV) using two improved staggered fermion actions, p4 and asqtad. Calculations were performed along lines of constant physics using more than 100M cpu-hours on BG/L supercomputers at LLNL, NYBlue, and SDSC. We present parameterizations of the equation of state suitable for input into hydrodynamics models of heavy ion collisions. C1 [Soltz, R. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Soltz, RA (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. NR 6 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD NOV 1 PY 2009 VL 830 BP 725C EP 728C DI 10.1016/j.nuclphysa.2009.09.061 PG 4 WC Physics, Nuclear SC Physics GA 532QA UT WOS:000272763300150 ER PT J AU Kanaya, K Umeda, T Aoki, S Ejiri, S Hatsuda, T Ishii, N Maezawa, Y Ohno, H AF Kanaya, K. Umeda, T. Aoki, S. Ejiri, S. Hatsuda, T. Ishii, N. Maezawa, Y. Ohno, H. CA WHOT-QCD Collaboration TI Fixed scale approach to the equation of state on the lattice SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2009) CY MAR 30-APR 04, 2009 CL Knoxville, TN AB We propose a fixed scale approach to calculate the equation of state (EOS) in lattice QCD. In this approach, the temperature T is varied by N(t) at fixed lattice spacings. This enables us to reduce T = 0 simulations which are required to provide basic data in finite temperature studies but are quite expensive in the conventional fixed-N(t) approach. Since the conventional integral method to obtain the pressure is inapplicable at fixed scale, we introduce a new method, "T-integration method", to calculate pressure non-perturbatively. We test the fixed scale approach armed with the T-integral method in quenched QCD on isotropic and anisotropic lattices. Our method is found to be powerful to obtain reliable results for the equation of state, especially at intermediate and low temperatures. Reduction of the computational cost of T = 0 simulations is indispensable to study EOS in QCD with dynamical quarks. The status of our study in N(f) = 2 + 1 QCD with improved Wilson quarks is also reported. C1 [Kanaya, K.; Aoki, S.; Ohno, H.] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. [Umeda, T.] Hiroshima Univ, Grad Sch Educ, Hiroshima 7398524, Japan. [Aoki, S.] Brookhaven Natl Lab, RIKEN Res Ctr, Upton, NY 11973 USA. [Ejiri, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Hatsuda, T.; Ishii, N.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. [Maezawa, Y.] RIKEN, Nishina Accelerator Res Ctr, Enyo Radiat Lab, Wako, Saitama 3510198, Japan. RP Kanaya, K (reprint author), Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. RI Hatsuda, Tetsuo/C-2901-2013 NR 5 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD NOV 1 PY 2009 VL 830 BP 801C EP 804C DI 10.1016/j.nuclphysa.2009.10.004 PG 4 WC Physics, Nuclear SC Physics GA 532QA UT WOS:000272763300169 ER PT J AU Aoki, Y Borsanyi, S Durr, S Fodor, Z Katz, SD Krieg, S Szabo, KK AF Aoki, Y. Borsanyi, S. Durr, S. Fodor, Z. Katz, S. D. Krieg, S. Szabo, K. K. TI QCD transition temperature: approaching the continuum on the lattice SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2009) CY MAR 30-APR 04, 2009 CL Knoxville, TN AB In order to clarify the source of the discrepancy between our previous transition temperature determination [Phys. Lett. B 643, 46 (2006)] and that of the Bielefeld-Brookhaven-Columbia-Riken collaboration we improved our calculations by taking even smaller lattice spacings (N(t) = 12 and N(t) = 16 at one point) and by using physical quark masses also for the T=0 quantities. In addition to the kaon decay constant used for scale setting we determine four quantities (masses of the Omega baryon, K*(892) and phi(1020) mesons and the pion decay constant) which are found to agree with experiment. This implies that -independently of which of these quantities is used to set the overall scale- the same results are obtained within a few percent. At finite temperature we use finer lattices down to a less than or similar to 0.1 fm. Our new results confirm completely our previous findings. We compare the results with those of the 'hotQCD' collaboration. C1 [Aoki, Y.] Brookhaven Natl Lab, RIKEN Res Ctr, Upton, NY 11973 USA. [Borsanyi, S.; Fodor, Z.; Katz, S. D.; Krieg, S.; Szabo, K. K.] Berg Univ Wuppertal, D-42119 Wuppertal, Germany. [Durr, S.; Fodor, Z.] Forschungszentrum Julich, D-52425 Julich, Germany. [Durr, S.] DESY, NIC, D-15738 Zeuthen, Germany. [Fodor, Z.; Katz, S. D.] Eotvos Lorand Univ, Inst Theoret Phys, H-1117 Budapest, Hungary. [Krieg, S.] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. RP Aoki, Y (reprint author), Brookhaven Natl Lab, RIKEN Res Ctr, Upton, NY 11973 USA. RI Katz, Sandor/A-4154-2011; OI Krieg, Stefan/0000-0002-8417-9823 NR 11 TC 3 Z9 3 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD NOV 1 PY 2009 VL 830 BP 805C EP 808C DI 10.1016/j.nuclphysa.2009.10.141 PG 4 WC Physics, Nuclear SC Physics GA 532QA UT WOS:000272763300170 ER PT J AU Glenn, A AF Glenn, Andrew CA PHENIX Collaboration TI Recent HBT results in Au plus Au and p plus p collisions from PHENIX SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2009) CY MAR 30-APR 04, 2009 CL Knoxville, TN AB We present Hanbury-Brown Twiss measurements from the PHENIX experiment at RHIC for final results for charged kaon pairs from root s(NN) = 200 GeV Au+Au collisions and preliminary results for charged pion pairs from root s = 200 GeV p+p collisions. We find that for kaon pairs from Au+Au, each traditional 3D Gaussian radius shows approximately the same linear increase as a function of N(part)(1/3). An imaging analysis reveals a significant non-Gaussian tail for r greater than or similar to 10 fm. The presence of a tail for kaon pairs demonstrates that similar non-Gaussian tails observed in earlier pion measurements cannot be fully explained by decays of long-lived resonances. The preliminary analysis of pions from root s = 200 GeV p+p minimum biased collisions show correlations which are well suited to traditional 3D HBT radii extraction via the Bowler-Sinyukov method, and we present R(out), R(side), and R(long) as a function of mean transverse pair mass. C1 [Glenn, Andrew] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Glenn, A (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94551 USA. NR 7 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD NOV 1 PY 2009 VL 830 BP 833C EP 836C DI 10.1016/j.nuclphysa.2009.10.126 PG 4 WC Physics, Nuclear SC Physics GA 532QA UT WOS:000272763300177 ER PT J AU Fachini, P AF Fachini, Patricia CA STAR Collaboration TI rho(0) Production in Cu plus Cu Collisions at root s(NN)=200 and 62.4 GeV in STAR SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2009) CY MAR 30-APR 04, 2009 CL Knoxville, TN AB The results on rho(770)(0) production in Cu+Cu collisions at root s(NN) = 200 and 62.4 GeV in STAR are presented. The rho(0) is measured via its hadronic decay channel and used as a sensitive tool to examine the collision dynamics in the hadronic medium. C1 [Fachini, Patricia] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Fachini, P (reprint author), Brookhaven Natl Lab, Bldg 510A, Upton, NY 11973 USA. NR 12 TC 4 Z9 4 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD NOV 1 PY 2009 VL 830 BP 837C EP 840C DI 10.1016/j.nuclphysa.2009.10.007 PG 4 WC Physics, Nuclear SC Physics GA 532QA UT WOS:000272763300178 ER PT J AU Sharma, R AF Sharma, Rishi TI Light Cone wavefunction approach to open heavy flavor dynamics in the QGP SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2009) CY MAR 30-APR 04, 2009 CL Knoxville, TN AB We elucidate the role of time scales that determine heavy quark dynamics in the QGP. Quark-antiquark potentials extracted from the lattice are used to demonstrate the existence of open heavy flavor bound-state solutions in the vicinity of the critical temperature, and their light cone wavefunctions are obtained. We use these wavefunctions to calculate the in-medium modification of the heavy quark distribution and decay probabilities. For the case of high p(T) D or B mesons traversing the QGP, we combine the new meson formation and dissociation mechanism with the traditional parton-level charm and beauty quark quenching to obtain predictions for the heavy meson and non-photonic electron suppression in Cu+Cu and Pb+Pb collisions at RHIC and the LHC, respectively. C1 Los Alamos Natl Lab, Div Theoret, Grp T2, Los Alamos, NM 87545 USA. RP Sharma, R (reprint author), Los Alamos Natl Lab, Div Theoret, Grp T2, Los Alamos, NM 87545 USA. NR 17 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD NOV 1 PY 2009 VL 830 BP 857C EP 860C DI 10.1016/j.nuclphysa.2009.10.127 PG 4 WC Physics, Nuclear SC Physics GA 532QA UT WOS:000272763300183 ER PT J AU Klein, SR AF Klein, Spencer R. TI Muon Production in Relativistic Cosmic-Ray Interactions SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2009) CY MAR 30-APR 04, 2009 CL Knoxville, TN AB Cosmic-rays with energies up to 3 x 10(20) eV have been observed. The nuclear composition of these cosmic rays is unknown but if the incident nuclei are protons then the corresponding center of mass energy is root s(nn) = 700 TeV. High energy muons can be used to probe the composition of these incident nuclei. The energy spectra of high-energy (> 1 TeV) cosmic ray induced muons have been measured with deep underground or under-ice detectors. These muons come from pion and kaon decays and from charm production in the atmosphere. Terrestrial experiments are most sensitive to far-forward muons so the production rates are sensitive to high-x partons in the incident nucleus and low-x partons in the nitrogen/oxygen targets. Muon measurements can complement the central-particle data collected at colliders. This paper will review muon production data and discuss some non-perturbative (soft) models that have been used to interpret the data. I will show measurements of TeV muon transverse momentum (p(T)) spectra in cosmic-ray air showers from MACRO, and describe how the IceCube neutrino observatory and the proposed Km3Net detector will extend these measurements to a higher p(T) region where perturbative QCD should apply. With a 1 km(2) surface area, the full IceCube detector should observe hundreds of muons/year with p(T) in the pQCD regime. C1 [Klein, Spencer R.] LBNL, Div Nucl Sci, Berkeley, CA 94720 USA. [Klein, Spencer R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Klein, SR (reprint author), LBNL, Div Nucl Sci, Berkeley, CA 94720 USA. NR 11 TC 5 Z9 5 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD NOV 1 PY 2009 VL 830 BP 869C EP 872C DI 10.1016/j.nuclphysa.2009.10.128 PG 4 WC Physics, Nuclear SC Physics GA 532QA UT WOS:000272763300186 ER PT J AU Teaney, D AF Teaney, Derek TI A Summary of Bulk Dynamics from Quark Matter 2009 SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 21st International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2009) CY MAR 30-APR 04, 2009 CL Knoxville, TN ID ELLIPTIC FLOW; ECCENTRICITY FLUCTUATIONS; SPS AB I review the recent progress in measuring elliptic flow in heavy ion collisions. These measurements show clearly how hydrodynamics starts to develop as the system size is increased from peripheral to central collisions. During this transition, the momentum range described by hydrodynamics increases as the system progresses from a kinetic to a hydrodynamic regime. Many of the systematic deviations from ideal hydrodynamics are reproduced effortlessly once the shear viscosity is included. In order to extract the shear viscosity from the data, kinetic theory can be used to determine which aspects of the elliptic flow reflect the details of the microscopic interactions, and which aspects reflect the underlying transport coefficients. I also review the identified hadron elliptic flow and the predictions of hydrodynamics for the LHC. C1 [Teaney, Derek] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Teaney, Derek] Brookhaven Natl Lab, Dept Phys, RIKEN BNL Res Ctr, Upton, NY 11973 USA. RP Teaney, D (reprint author), SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. NR 28 TC 2 Z9 2 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD NOV 1 PY 2009 VL 830 BP 891C EP 898C DI 10.1016/j.nuclphysa.2009.10.131 PG 8 WC Physics, Nuclear SC Physics GA 532QA UT WOS:000272763300189 ER PT J AU Pisarski, RD AF Pisarski, Robert D. TI Towards a theory of the semi-Quark Gluon Plasma SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS LA English DT Proceedings Paper CT 47th International- Winter-Schladming-School of the Theoretical Physic on Fundamental Challenges of QCD CY FEB 28-MAR 07, 2009 CL Schladming, AUSTRIA SP Australian Fed Minist Sci & Res, Karl-Franzenus Univ Graz, Province Styria, Town Schladming ID T-HOOFT LOOP; HOT GAUGE-THEORIES; NUCLEUS-NUCLEUS COLLISIONS; FINITE-TEMPERATURE QCD; YANG-MILLS THEORY; FREE-ENERGY; PHASE-TRANSITION; QUANTUM CHROMODYNAMICS; INTERFACE TENSION; POLYAKOV LOOP AB I give a general overview of the theory of thle Quark-Gluon Plasma (QC:P) about the temperature for deconfinement, where the theory is only partially deconfined. I review three topics relevant to study of such a "semi"-QGP. The first is the semi-classical computation of the spatial 't Hooft loop. This is equivalent to computing the interface tension between two Z(N) domains, and indicates how the confined phase is approached from high temperature. The second topic is effective matrix models of Polyakov loops. The last topic is the computation of hard thermal loops in the presence of a spatial 't Hooft loop, as a way of probing the real time properties of tale semi-QGP. C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Pisarski, RD (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. NR 222 TC 1 Z9 1 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5632 J9 NUCL PHYS B-PROC SUP JI Nucl. Phys. B-Proc. Suppl. PD NOV PY 2009 VL 195 BP 157 EP 198 DI 10.1016/j.nuclphysbps.2009.10.015 PG 42 WC Physics, Particles & Fields SC Physics GA 536NP UT WOS:000273051400007 ER PT J AU Pisarski, RD AF Pisarski, Robert D. TI Why Cold, Dense Quark Matter could be "Quarkyonic" SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS LA English DT Proceedings Paper CT 47th International- Winter-Schladming-School of the Theoretical Physic on Fundamental Challenges of QCD CY FEB 28-MAR 07, 2009 CL Schladming, AUSTRIA SP Australian Fed Minist Sci & Res, Karl-Franzenus Univ Graz, Province Styria, Town Schladming ID LARGE-N-C; CHIRAL-SYMMETRY-BREAKING; GAUGE VECTOR-MESONS; FINITE BARYON DENSITY; GROUND-STATE ENERGY; QCD PHASE-DIAGRAM; YANG-MILLS THEORY; QUANTUM CHROMODYNAMICS; SKYRME MODEL; HIGH-TEMPERATURE AB I give a pedagogical review of how cold, dense quark matter call be viewed as "Quarkyonic", at least when the number of colors is large (and the number of flavors, small). This provides a different way of viewing the excitation spectrum of dense quarks. while the free energy is, up to power law corrections; close to that of free quarks, the excitation spectrum is very different, dominated by confined, collective excitations near the Fermi surface. C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Pisarski, RD (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. NR 200 TC 0 Z9 0 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5632 EI 1873-3832 J9 NUCL PHYS B-PROC SUP JI Nucl. Phys. B-Proc. Suppl. PD NOV PY 2009 VL 195 BP 199 EP 216 DI 10.1016/j.nuclphysbps.2009.10.016 PG 18 WC Physics, Particles & Fields SC Physics GA 536NP UT WOS:000273051400008 ER PT J AU McLerran, L AF McLerran, Larry TI The Phase Diagram of QCD and Some Issues of Large N(c) SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS LA English DT Proceedings Paper CT 47th Internationa- Winter-Schladming-School of the Theoretical Physic on Fundamental Challenges of QCD CY FEB 28-MAR 07, 2009 CL Schladming, AUSTRIA SP Austraian Fed Minist Sci & Res, Karl-Franzenus Univ Graz, Province Styria, Town Schladming ID COLOR GLASS CONDENSATE; GLUON DISTRIBUTION-FUNCTIONS; TRANSVERSE-MOMENTUM; NUCLEAR COLLISIONS; SKYRME MODEL; DENSITY; MATTER; EVOLUTION; QUARK AB The large N(c) limit provides a good phenomenology of meson spectra and interactions. I discuss some problems with applying the large N(c) approximation to the description of baryons, and point out a. number of apparent paradoxes and phenomenological difficulties C1 [McLerran, Larry] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [McLerran, Larry] Brookhaven Natl Lab, Riken Brookhaven Ctr, Upton, NY 11973 USA. RP McLerran, L (reprint author), Brookhaven Natl Lab, Dept Phys, POB 5000, Upton, NY 11973 USA. NR 27 TC 1 Z9 2 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5632 J9 NUCL PHYS B-PROC SUP JI Nucl. Phys. B-Proc. Suppl. PD NOV PY 2009 VL 195 BP 275 EP 280 DI 10.1016/j.nuclphysbps.2009.10.020 PG 6 WC Physics, Particles & Fields SC Physics GA 536NP UT WOS:000273051400012 ER PT J AU Aoki, S AF Aoki, Sinya TI From Quarks to Nuclei: Challenges of Lattice QCD SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS LA English DT Proceedings Paper CT 47th International- Winter-Schladming-School of the Theoretical Physic on Fundamental Challenges of QCD CY FEB 28-MAR 07, 2009 CL Schladming, AUSTRIA SP Australian Fed Minist Sci & Res, Karl-Franzenus Univ Graz, Province Styria, Town Schladming ID CHIRAL LAGRANGIANS; FORCES AB I discuss challenges of lattice QCD, "From Quarks to Nuclei", which connect QCD with nuclear physics. C1 [Aoki, Sinya] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. [Aoki, Sinya] Brookhaven Natl Lab, Riken BNL Res Ctr, Upton, NY 11973 USA. RP Aoki, S (reprint author), Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. NR 21 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5632 EI 1873-3832 J9 NUCL PHYS B-PROC SUP JI Nucl. Phys. B-Proc. Suppl. PD NOV PY 2009 VL 195 BP 281 EP 287 DI 10.1016/j.nuclphysbps.2009.10.021 PG 7 WC Physics, Particles & Fields SC Physics GA 536NP UT WOS:000273051400013 ER PT J AU Hutchinson, JD Bess, JD AF Hutchinson, Jesson D. Bess, John D. TI Subcritical Noise Measurements with a Nickel-Reflected Plutonium Sphere SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article ID NUCLEAR-DATA LIBRARY AB Subcritical measurements were conducted with an a-phase plutonium sphere reflected by nickel hemishells using the (252)Cf source-driven noise analysis method to provide criticality safety benchmark data. Measured configurations included a bare plutonium sphere as well as the plutonium sphere reflected by the following nickel thicknesses: 1.27, 2.54, 3.81, 5.08, and 7.62 cm. A certain ratio of spectral quantities was measured for each configuration, which varies linearly with the k(eff) of the system under small perturbations. In addition, two types of Monte Carlo calculations were employed: a modified version of MCNP to calculate the ratio of spectral quantities and a KCODE calculation. From the measured and computed quantities, the effective multiplication factor of each configuration can be approximated. The inferred k(eff) for all six configurations compared well with computed values. A comprehensive uncertainty analysis was then performed that includes uncertainties in the geometry and materials present in the system in addition to the uncertainties in the method and nuclear data. C1 [Hutchinson, Jesson D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Bess, John D.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Hutchinson, JD (reprint author), Los Alamos Natl Lab, MS B228, Los Alamos, NM 87545 USA. EM jesson@lanl.gov OI Bess, John/0000-0002-4936-9103 FU U.S. Department of Energy [DE-AC07-05ID14517] FX their help. This manuscript has been authored by Battelle Energy Alliance, LLC, under contract DE-AC07-05ID14517 with the U.S. Department of Energy. NR 18 TC 1 Z9 1 U1 0 U2 0 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD NOV PY 2009 VL 163 IS 3 BP 285 EP 290 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 552TC UT WOS:000274315500006 ER PT J AU Kelsey, CT Prinja, AK AF Kelsey, Charles T. Prinja, Anil K. TI COUPLED MULTIGROUP PROTON/NEUTRON CROSS SECTIONS FOR DETERMINISTIC TRANSPORT SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 11th International Conference on Radiation Shielding / 15th Topical Meeting of the Radiation-Protection-and-Shielding-Division of the American-Nuclear-Society CY APR 13-18, 2008 CL Pine Mountain, GA SP Amer Nucl Soc, Radiat Protect & Shielding Div DE multigroup cross sections; proton/neutron transport; space radiation ID INTRANUCLEAR-CASCADE CALCULATION AB The limited availability of coupled multigroup proton/neutron cross-section libraries has hampered the use of deterministic transport methods for solving shielding problems involving energetic proton sources. Libraries are developed from evaluated nuclear data for low-energy transport and the physics models of MCNPX for intermediate-energy transport. They allow deterministic solutions of orbiting spacecraft shielding problems. Evaluated cross sections for protons and neutrons are available for many nuclides up to 150 MeV. NJOY99 is used to produce coupled multigroup proton/neutron cross sections from these. For higher energies, MCNPX is run in its cross-section calculation mode where the XSEX3 program is used to tally double-differential cross sections. The XSEX3 program was modified to discretize the cross sections in energy and output Legendre expansions for angular dependence. The NJOY99 and modified XSEX3 output are combined to produce cross-section libraries for energies up to 400 MeV. The libraries are used to solve trapped proton flux shielding problems using the discrete ordinates transport code Attila. High-order Legendre expansions (P-39) are required to accurately describe the highly anisotropic scattering. Attila applies the extended transport correction allowing accurate three-dimensional solutions at much lower degrees. Particle flux solutions for orbiting spacecraft shielding problems obtained with Attila and MCNPX compare favorably. Coupled multigroup proton/neutron cross-section libraries, for use with deterministic transport codes, can be prepared using NJOY99 and MCNPX. Our results using the Attila code demonstrate that multigroup deterministic methods are computationally efficient alternatives to Monte Carlo simulation. C1 [Kelsey, Charles T.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. [Prinja, Anil K.] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. RP Kelsey, CT (reprint author), Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, POB 1663,MS H805, Los Alamos, NM 87545 USA. EM ckelsey@lanl.gov NR 17 TC 0 Z9 0 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD NOV PY 2009 VL 168 IS 2 SI SI BP 257 EP 263 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 513KD UT WOS:000271320300002 ER PT J AU Sublet, JC Cullen, DE MacFarlane, RE AF Sublet, J-Ch. Cullen, D. E. MacFarlane, R. E. TI HOW ACCURATELY CAN WE CALCULATE FAST NEUTRONS SLOWING DOWN IN WATER? SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 11th International Conference on Radiation Shielding / 15th Topical Meeting of the Radiation-Protection-and-Shielding-Division of the American-Nuclear-Society CY APR 13-18, 2008 CL Pine Mountain, GA SP Amer Nucl Soc, Radiat Protect & Shielding Div DE Monte Carlo; slowing down; thermal scattering AB The results produced by a variety of currently available pointwise Monte Carlo neutron transport codes for the relatively simple problem of modeling a fast source of neutrons slowing down and thermalizing in water are compared. Initial comparisons showed rather large differences in the calculated flux: up to 80% differences. By working together to improve the results, iterations were done by (a) ensuring that all codes were using the same data, (b) improving the models used by the codes, and (c) correcting errors in the codes-no code is perfect. Even after a number of iterations, we still found differences, demonstrating that our Monte Carlo and supporting codes are far from perfect. In particular, we found that the often overlooked nuclear data-processing codes can be the weakest link in our systems of codes. The results presented here represent today's state of the art in the sense that all of the Monte Carlo codes are modern, widely available, and used codes. They all can use the most up-to-date nuclear data, and the results are recent; these are the results that current users of these codes should expect to obtain from them. As such, the accuracy and limitations of the codes presented here should serve as guidelines to code users in interpreting their results for similar problems. Results for the improved thermal scattering model now available, using advanced versions of NJOY-99.259, TRIPOLI-4.5, and MCNPX-2.6.f Beta, are presented. For comparisons among experimentally measured water cross sections and the unique JEFF-3.1 and ENDF/B-VII thermal scattering law, S(alpha, beta) data are exemplified. C1 [Sublet, J-Ch.] Commissariat Energie Atom DEN, F-13108 Cadarache, St Paul Lez Dur, France. [Cullen, D. E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [MacFarlane, R. E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Sublet, JC (reprint author), Commissariat Energie Atom DEN, F-13108 Cadarache, St Paul Lez Dur, France. EM jean-christophe.sublet@cea.fr NR 2 TC 0 Z9 0 U1 1 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD NOV PY 2009 VL 168 IS 2 SI SI BP 293 EP 297 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 513KD UT WOS:000271320300008 ER PT J AU Veinot, KG Bogard, JS AF Veinot, K. G. Bogard, J. S. TI ANISOTROPY FACTORS FOR A Cf-252 SOURCE SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 11th International Conference on Radiation Shielding / 15th Topical Meeting of the Radiation-Protection-and-Shielding-Division of the American-Nuclear-Society CY APR 13-18, 2008 CL Pine Mountain, GA SP Amer Nucl Soc, Radiat Protect & Shielding Div DE neutron source; anisotropy; dose equivalent AB A new Cf-252 source has been procured for use at the Dosimetry Applications and Research facility at the Oak Ridge National Laboratory (ORNL). This source was encapsulated by the Californium Facility at ORNL; however, the encapsulation differs from previous designs designated as SR-Cf-100. The new encapsulation, designated SR-Cf-3000, has a similar cylindrical radius to the previous generation but is 1.6 cm longer. Since the encapsulation geometries differ, the amount of internal scattering of neutrons will also differ, leading to changes in anisotropy factors between the two designs. Additionally, the different encapsulations will affect the absorbed dose and dose equivalent delivered per neutron emitted by the source since both the quantity and energy distribution of the emitted neutrons will vary with irradiation angle. This work presents the fluence anisotropy factors for the SR-Cf-3000 series encapsulation as well as absorbed dose and dose equivalent values calculated for various angles of irradiation. The fluence anisotropy factors were found to range from a maximum of 1.037 to a minimum of 0.641 for irradiation angles perpendicular and parallel to the source axis, respectively. Anisotropy in absorbed dose varied from a maximum of 1.033 to a minimum of 0.676 while anisotropy of dose equivalent varied from 1.035 to 0.657. Anisotropy in the region most commonly used was found to be +3.2% for absorbed dose and +3.3% for dose equivalent, and these effects should be included when performing dosimeter irradiations. C1 [Bogard, J. S.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Veinot, KG (reprint author), Y-12 Natl Secur Complex,POB 2009, Oak Ridge, TN 37831 USA. EM veinotkg@y12.doe.gov NR 9 TC 0 Z9 0 U1 0 U2 0 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD NOV PY 2009 VL 168 IS 2 SI SI BP 364 EP 368 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 513KD UT WOS:000271320300021 ER PT J AU Khater, H Brereton, S Singh, M AF Khater, Hesham Brereton, Sandra Singh, Mike TI SHIELDING ANALYSIS FOR X-RAY SOURCES GENERATED IN TARGET CHAMBER OF THE NATIONAL IGNITION FACILITY SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 11th International Conference on Radiation Shielding / 15th Topical Meeting of the Radiation-Protection-and-Shielding-Division of the American-Nuclear-Society CY APR 13-18, 2008 CL Pine Mountain, GA SP Amer Nucl Soc, Radiat Protect & Shielding Div DE National Ignition Facility; inertial confinement fusion; X-ray hazard AB Prompt doses from X-rays generated as result of laser beam interaction with target material are calculated at different locations inside the National Ignition Facility. The maximum dose outside a target chamber diagnostic port is similar to 10 mSv for a shot utilizing the 192 laser beams and 1.8 MJ of laser energy. The dose during a single bundle shot (eight laser beams) drops to similar to 0.4 mSv. Doses calculated outside the target bay (TB) doors and inside the switchyards (SYs) [except for the 5.33-m (17-ft 6-in.) floor level] range from a few microsieverts to similar to 110 mu Sv for 192 beams and scale down proportionally with a smaller number of beams. At the 5.33-m (17-ft 6-in.) floor level, two diagnostic ports are directly facing two of the TB doors, and the maximum doses outside the doors are 0.5 and 0.16 mSv, respectively. Shielding each of the two TB doors with 6.35-mm-thick Pb (1/4-in.) reduces the dose by a factor of 50. One or two bundle shots (8 to 16 laser beams) present a small hazard to personnel in the SYs. C1 [Khater, Hesham; Brereton, Sandra; Singh, Mike] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Khater, H (reprint author), Lawrence Livermore Natl Lab, POB 808,L-462, Livermore, CA 94550 USA. EM khater1@llnl.gov NR 6 TC 1 Z9 1 U1 2 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD NOV PY 2009 VL 168 IS 2 SI SI BP 381 EP 386 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 513KD UT WOS:000271320300024 ER PT J AU Titarenko, Y Batyaev, V Titarenko, A Butko, M Pavlov, K Florya, S Tikhonov, R Boyko, P Kovalenko, A Sobolevsky, N Anashin, V Mashnik, S Gudowski, W Mokhov, N Rakhno, I AF Titarenko, Yury Batyaev, Viacheslav Titarenko, Alexey Butko, Michael Pavlov, Kirill Florya, Sergey Tikhonov, Roman Boyko, Pavel Kovalenko, Alexey Sobolevsky, Nikolai Anashin, Vasily Mashnik, Stepan Gudowski, Waclaw Mokhov, Nikolai Rakhno, Igor TI BEAM DUMP AND LOCAL SHIELDING LAYOUT AROUND THE ITEP RADIATION TEST FACILITY SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 11th International Conference on Radiation Shielding / 15th Topical Meeting of the Radiation-Protection-and-Shielding-Division of the American-Nuclear-Society CY APR 13-18, 2008 CL Pine Mountain, GA SP Amer Nucl Soc, Radiat Protect & Shielding Div DE radiation shielding; dose simulation; single-event upsets AB The Radiation Test Facility (RTF) is under construction at the Institute for Theoretical and Experimental Physics to control the electronics under irradiation of particles that imitate cosmic rays (protons, carbon, aluminum, iron, tin, bismuth, and uranium). For the norms of radiation safety of personnel and users of the RTF to be observed, a local shielding and beam dump must be designed. Simulations of the dose rates around the designed shielding and beam dump are carried out in the present work. C1 [Titarenko, Yury; Batyaev, Viacheslav; Titarenko, Alexey; Butko, Michael; Pavlov, Kirill; Florya, Sergey; Tikhonov, Roman; Boyko, Pavel; Kovalenko, Alexey] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Sobolevsky, Nikolai] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Anashin, Vasily] Inst Space Device Engn, Moscow 111250, Russia. [Mashnik, Stepan] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Gudowski, Waclaw] Royal Inst Technol, S-10691 Stockholm, Sweden. [Mokhov, Nikolai; Rakhno, Igor] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Titarenko, Y (reprint author), Inst Theoret & Expt Phys, Moscow 117259, Russia. EM vfb@itep.ru NR 4 TC 0 Z9 0 U1 0 U2 0 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD NOV PY 2009 VL 168 IS 2 SI SI BP 472 EP 476 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 513KD UT WOS:000271320300038 ER PT J AU Nakashima, H Sakamoto, Y Iwamoto, Y Matsuda, N Kasugai, Y Nakane, Y Masukawa, F Mokhov, NV Leveling, AF Boehnlein, DJ Vaziri, K Sanami, T Matsumura, H Hagiwara, M Iwase, H Kinoshita, N Hirayama, H Oishi, K Nakamura, T Arakawa, H Shigyo, N Ishibashi, K Yashima, H Nakao, N Niita, K AF Nakashima, H. Sakamoto, Y. Iwamoto, Y. Matsuda, N. Kasugai, Y. Nakane, Y. Masukawa, F. Mokhov, N. V. Leveling, A. F. Boehnlein, D. J. Vaziri, K. Sanami, T. Matsumura, H. Hagiwara, M. Iwase, H. Kinoshita, N. Hirayama, H. Oishi, K. Nakamura, T. Arakawa, H. Shigyo, N. Ishibashi, K. Yashima, H. Nakao, N. Niita, K. TI EXPERIMENTAL STUDIES OF SHIELDING AND IRRADIATION EFFECTS AT HIGH-ENERGY ACCELERATOR FACILITIES SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 11th International Conference on Radiation Shielding / 15th Topical Meeting of the Radiation-Protection-and-Shielding-Division of the American-Nuclear-Society CY APR 13-18, 2008 CL Pine Mountain, GA SP Amer Nucl Soc, Radiat Protect & Shielding Div DE high-energy; shielding; experiment ID 68-MEV PROTONS; CONCRETE; TRANSMISSION; 43-MEV; IRON AB Experimental studies of shielding and radiation effects are carried out at Fermi National Accelerator Laboratory (FNAL) under collaboration between FNAL and Japan, aiming at benchmarking simulation codes and studying irradiation effects for the upgrade and design of new high-energy accelerator facilities. The purposes of this collaboration are (a) acquisition of shielding data in a proton beam energy region above 100 GeV, (b) further evaluation of predictive accuracy of the PHITS and MARS codes, (c) modification of physics models and data in these codes if needed, (d) characterization of radiation fields for studies of radiation effects, and (e) development of a code module for an improved description of radiation effects. The first campaign of the experiment was carried out at the Pbar target station and NuMI experimental station at FNAL, which use irradiation of targets with 120-GeV protons for antiproton and neutrino production, respectively. The generated secondary particles passing through steel, concrete, and rock were measured by activation methods as well as by other detectors such as a scintillator with a veto counter, phoswich detector, and a Bonner ball counter on trial. Preliminary experimental and calculated results are presented. C1 [Nakashima, H.; Sakamoto, Y.; Iwamoto, Y.; Matsuda, N.; Kasugai, Y.; Nakane, Y.; Masukawa, F.] Japan Atom Energy Agcy, Naka, Ibaraki 3191195, Japan. [Mokhov, N. V.; Leveling, A. F.; Boehnlein, D. J.; Vaziri, K.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Sanami, T.; Matsumura, H.; Hagiwara, M.; Iwase, H.; Kinoshita, N.; Hirayama, H.] High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. [Oishi, K.] Shimizu Corp, Koto Ku, Tokyo 1358530, Japan. [Nakamura, T.] Tohoku Univ, Aoba Ku, Sendai, Miyagi 9808578, Japan. [Arakawa, H.; Shigyo, N.; Ishibashi, K.] Kyushu Univ, Nishi Ku, Fukuoka 8190395, Japan. [Yashima, H.] Kyoto Univ, Inst Res Reactor, Osaka 5900494, Japan. [Niita, K.] Res Org Informat Sci & Technol, Naka, Ibaraki 3191106, Japan. RP Nakashima, H (reprint author), Japan Atom Energy Agcy, Shirane Shirakata 2-4, Naka, Ibaraki 3191195, Japan. EM nakashima.hiroshi@jaea.go.jp RI Iwamoto, Yosuke/G-5959-2012; OI Sanami, Toshiya/0000-0003-2255-8008 NR 11 TC 7 Z9 7 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD NOV PY 2009 VL 168 IS 2 SI SI BP 482 EP 486 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 513KD UT WOS:000271320300040 ER PT J AU Muhrer, G Wilson, M Kelsey, C Pitcher, E AF Muhrer, G. Wilson, M. Kelsey, Ch. Pitcher, E. TI DESIGN OF THE SHIELDING OF THE MATERIALS TEST STATION SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 11th International Conference on Radiation Shielding / 15th Topical Meeting of the Radiation-Protection-and-Shielding-Division of the American-Nuclear-Society CY APR 13-18, 2008 CL Pine Mountain, GA SP Amer Nucl Soc, Radiat Protect & Shielding Div DE shielding; spallation source; activation script AB The Materials Test Station (MTS) is a project by the Advanced Fuel Cycle Initiative to build a facility that allows for irradiating nuclear fuel and material samples to acquire the necessary knowledge to close the nuclear fuel cycle and thereby reduce the amount and the toxicity of the nuclear waste. This facility is proposed to be located in Area A of the Los Alamos Neutron Science Center at the Los Alamos National Laboratory. The MTS is proposed to be a spallation target facility operated up to 2 MW (2.5 mA at 800 MeV). To safely operate a facility of this size, a large amount of shielding needs to be put into place. In this paper we will discuss the shielding design proposed for the MTS. C1 [Muhrer, G.; Wilson, M.; Kelsey, Ch.; Pitcher, E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Muhrer, G (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM muhrer@lanl.gov RI Lujan Center, LANL/G-4896-2012 NR 10 TC 1 Z9 1 U1 1 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD NOV PY 2009 VL 168 IS 2 SI SI BP 497 EP 501 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 513KD UT WOS:000271320300043 ER PT J AU Muhrer, G Wilson, M Kelsey, C Pitcher, E Gallmeier, F Wohlmuther, M AF Muhrer, G. Wilson, M. Kelsey, Ch. Pitcher, E. Gallmeier, F. Wohlmuther, M. TI SHIELD DESIGN OF THE MATERIALS TEST STATION'S CAMERA ROOM SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 11th International Conference on Radiation Shielding / 15th Topical Meeting of the Radiation-Protection-and-Shielding-Division of the American-Nuclear-Society CY APR 13-18, 2008 CL Pine Mountain, GA SP Amer Nucl Soc, Radiat Protect & Shielding Div DE shielding; spallation source; activation script AB The Materials Test Station (MTS) is a project funded by the Advanced Fuel Cycle Initiative with the goal to build a facility that allows large-scale irradiation for potential future nuclear fuel and material samples to obtain the knowledge and understanding of the nuclear processes necessary to close the nuclear fuel cycle and thereby reduce the amount and the toxicity of the nuclear waste. The MTS is proposed to be built in Area A of the Los Alamos Neutron Science Center and operated at up to 2 MW (2.5 mA at 800 MeV). As part of this operation, a so-called camera room will need to be installed upstream of the target cell. Because of the uniqueness of this functionality, the camera room requires a special shielding design, which will be discussed in this paper. C1 [Muhrer, G.; Wilson, M.; Kelsey, Ch.; Pitcher, E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Gallmeier, F.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. [Wohlmuther, M.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. RP Muhrer, G (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM muhrer@lanl.gov RI Lujan Center, LANL/G-4896-2012 NR 6 TC 1 Z9 1 U1 1 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD NOV PY 2009 VL 168 IS 2 SI SI BP 502 EP 507 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 513KD UT WOS:000271320300044 ER PT J AU Sanchez, JRR Garcia, J Perry, RT AF Ramirez Sanchez, Jose Ramon Garcia, John Perry, R. T. TI CONSIDERATIONS ON REPLACING LEAD WITH STEEL IN GLOVE BOX CONFIGURATIONS SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 11th International Conference on Radiation Shielding / 15th Topical Meeting of the Radiation-Protection-and-Shielding-Division of the American-Nuclear-Society CY APR 13-18, 2008 CL Pine Mountain, GA SP Amer Nucl Soc, Radiat Protect & Shielding Div DE plutonium; shielding; gamma dose AB For environmental reasons, it was proposed to remove the lead shielding in the front panel of a glove box and replace it with another material. This technical note shows that steel could be used. Also, the thickness of steel required to maintain acceptable doses to an operator is determined. Computer modeling and analysis show that 3.175 cm (1 1/4 in.) of steel is required to maintain the same dose to the operator from gamma radiation as 0.635 cm (1/4 in.) of lead. However, it was demonstrated that source placement and geometry play a large role in the operator's dose independent of the structural material because of streaming through ports and windows. Because of streaming, the dose received through the metal in the front panel was not the dominant source of radiation to the operator. It was found that 1.5875 cm (5/8 in.) of steel could be used in the panel. C1 [Ramirez Sanchez, Jose Ramon] Univ Autonoma Estado Mexico, ININ, Toluca, Mexico. [Ramirez Sanchez, Jose Ramon] Univ Autonoma Estado Mexico, Fac Ciencias, Toluca, Mexico. [Garcia, John; Perry, R. T.] Los Alamos Natl Lab, Radiat Protect Div, Los Alamos, NM 87545 USA. RP Sanchez, JRR (reprint author), Univ Autonoma Estado Mexico, ININ, Toluca, Mexico. EM rtperry@lanl.gov NR 6 TC 0 Z9 0 U1 0 U2 0 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD NOV PY 2009 VL 168 IS 2 SI SI BP 524 EP 527 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 513KD UT WOS:000271320300048 ER PT J AU Meyer, F Overbeek, R Rodriguez, A AF Meyer, Folker Overbeek, Ross Rodriguez, Alex TI FIGfams: yet another set of protein families SO NUCLEIC ACIDS RESEARCH LA English DT Article ID ORTHOLOG GROUPS; SCOP DATABASE; RAST SERVER; GENOMES; RESOURCE; ANNOTATION; CLASSIFICATION; ORTHOMCL; TIGRFAMS; TOOLS AB We present FIGfams, a new collection of over 100 000 protein families that are the product of manual curation and close strain comparison. Using the Subsystem approach the manual curation is carried out, ensuring a previously unattained degree of throughput and consistency. FIGfams are based on over 950 000 manually annotated proteins and across many hundred Bacteria and Archaea. Associated with each FIGfam is a two-tiered, rapid, accurate decision procedure to determine family membership for new proteins. FIGfams are freely available under an open source license. These can be downloaded at ftp://ftp.theseed.org/FIGfams/. The web site for FIGfams is http://www.theseed.org/wiki/FIGfams/. C1 [Meyer, Folker] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Meyer, Folker; Rodriguez, Alex] Univ Chicago, Argonne Natl Lab, Computat Inst, Chicago, IL 60637 USA. [Overbeek, Ross] Fellowship Interpretat Genomes, Burr Ridge, IL 60527 USA. RP Meyer, F (reprint author), Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM folker@anl.gov OI Meyer, Folker/0000-0003-1112-2284 FU National Institute of Allergy and Infectious Diseases; National Institutes of Health, Department of Health and Human Services [HHSN266200400042C]; US Department of Energy [DE-AC02-06CH11357] FX Part of this project has been funded with federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under Contract No. HHSN266200400042C. Argonne National Laboratory's work was supported under US Department of Energy contract DE-AC02-06CH11357. Funding for open access charge: US Department of Energy contract DE-AC0206CH11357. NR 28 TC 60 Z9 62 U1 1 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD NOV PY 2009 VL 37 IS 20 BP 6643 EP 6654 DI 10.1093/nar/gkp698 PG 12 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 520DJ UT WOS:000271819900001 PM 19762480 ER PT J AU Qian, SN Arena, D Dvorak, J Qian, K AF Qian, Shinan Arena, Dario Dvorak, Joseph Qian, Kun TI Dynamic monitoring of grating angle at the National Synchrotron Light Source SO OPTICAL ENGINEERING LA English DT Article DE monochromator; grating; optical test; synchrotron radiation ID PENCIL BEAM INTERFEROMETER; LONG TRACE PROFILER; RADIATION AB We present a dynamic monitoring method and monitoring system of grating angle, referred to as the Precise Angle Monitor (PAM), at U4B, a soft x-ray spherical grating monochromator (SGM) beam line at the National Synchrotron Light Source (NSLS). In an SGM, a photon energy scan is accomplished by rotating the grating angle precisely. After several decades of service, the monochromator at U4B developed instabilities that severely impacted the experimental program. Over several hours, either the spectral shape experienced distortions or the spectral peak shifted. In order to directly monitor the grating motion during scans, the optical head of a portable long trace profiler (PTLTP) was installed on U4B as the PAM. We find that the grating rotational motion is not ideal: (1) the scan steps are not smooth and there are high-frequency step angle errors; (2) there is also a low-frequency angle error; and (3) an unstable thermal expansion produces extra rotational error. Measurements of dynamic monitoring are presented, including grating rotation repeatability and thermal instability. The results illustrate the utility of dynamic monitoring of monochromator motion during actual operation. (C) 2009 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3265548] C1 [Qian, Shinan] Brookhaven Natl Lab, Instrumentat Div, Upton, NY 11973 USA. [Arena, Dario; Dvorak, Joseph; Qian, Kun] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Qian, SN (reprint author), Brookhaven Natl Lab, Instrumentat Div, Upton, NY 11973 USA. EM qian@bnl.gov FU U.S. Department of Energy [DE-AC02-98CH10886] FX The authors would like to thank Vivian Stojanoff, of NSLS for her support. This manuscript has been authored by Brookhaven Science Associates, LLC, under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The U.S. Government retains, and the publisher, by accepting the article for publication, acknowledges, a worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. Government purposes. This research was sponsored by the U.S. Department of Energy. NR 7 TC 2 Z9 2 U1 0 U2 3 PU SPIE-SOC PHOTOPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 J9 OPT ENG JI Opt. Eng. PD NOV PY 2009 VL 48 IS 11 AR 113603 DI 10.1117/1.3265548 PG 8 WC Optics SC Optics GA 538UW UT WOS:000273210600007 ER PT J AU Rice, KL Taha, TM Chowdhury, AM Awwal, AAS Woodard, DL AF Rice, Kenneth L. Taha, Tarek M. Chowdhury, Arshad M. Awwal, Abdul A. S. Woodard, Damon L. TI Design and acceleration of phase-only filter-based optical pattern recognition for fingerprint identification SO OPTICAL ENGINEERING LA English DT Article DE fingerprint identification; image correlation; field programmable gate array (FPGA) acceleration; phase-only filter ID JOINT TRANSFORM CORRELATION; CLASSIFICATION; SYSTEM AB We present the use of phase-only filter-based correlation for fingerprint pattern identification. The main advantage of this approach is that it is distortion tolerant and can be realized in optical or electronic parallel hardware. Given that real-world fingerprints are almost never perfect, distortion tolerance can prove to be very important for this application. Our results indicate that the algorithm can identify prints with 58% of the data missing on average. With large fingerprint databases, identification can be a computationally challenging task. The high parallelism in the phase-only correlation filter makes it ideally suited to field programmable gate array (FPGA)-based hardware acceleration. We examine the FPGA-based acceleration of the fingerprint algorithm. On a Xilinx Virtex II Pro FPGA, we achieve speedups of about 47 times over an optimized C implementation of the algorithm on a 2.2-GHz AMD Opteron processor. Our FPGA implementation is optimized to allow efficient processing of large databases. (C) 2009 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3265549] C1 [Rice, Kenneth L.; Woodard, Damon L.] Clemson Univ, Sch Comp, Clemson, SC 29634 USA. [Taha, Tarek M.] Univ Dayton, Dayton, OH 45469 USA. [Chowdhury, Arshad M.] Georgia Inst Technol, Dept Elect & Comp Engn, Atlanta, GA 30332 USA. [Awwal, Abdul A. S.] Lawrence Livermore Natl Lab, Natl Ignit Facil, Livermore, CA 94551 USA. [Chowdhury, Arshad M.; Awwal, Abdul A. S.] Wright State Univ, Dayton, OH 45435 USA. RP Rice, KL (reprint author), Clemson Univ, Sch Comp, Riggs Hall, Clemson, SC 29634 USA. EM ttaha@ieee.org FU NSF CAREER; U.S. Air Force; DOD High Performance Computing Modernization Program FX Kenneth L. Rice and Tarek M. Taha were supported by an NSF CAREER Award and grants from the U.S. Air Force. This work was also supported in part by a grant of computer time from the DOD High Performance Computing Modernization Program at the Naval Research Laboratory. NR 32 TC 2 Z9 2 U1 0 U2 0 PU SPIE-SOC PHOTOPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 J9 OPT ENG JI Opt. Eng. PD NOV PY 2009 VL 48 IS 11 AR 117206 DI 10.1117/1.3265549 PG 11 WC Optics SC Optics GA 538UW UT WOS:000273210600031 ER PT J AU Lee, CH Bihari, B Filler, R Mandal, BK AF Lee, Chi Hang Bihari, Bipin Filler, Robert Mandal, Braja K. TI New azobenzene non-linear optical materials for eye and sensor protection SO OPTICAL MATERIALS LA English DT Article DE Optical anisotropy; Non-linear transmission; Azobenzene materials; Laser blocking devices ID AZO-DYE; FILMS; FULLERENES; ABSORPTION; ANISOTROPY; MECHANISM; BEHAVIOR AB The synthesis and properties of poly(methylmethacrylate) films containing new azobenzene materials with potential applications in eye and sensor protection devices are reported. These films offer both improved wavelength coverage and optically-induced anisotropy compared to a commercially available azo dye, disperse red-1. Films with added diethyl phthalate plasticizer exhibit enhanced optical characteristics, as evidenced by the relatively faster response time in a pump-probe experiment. Plasticized polymer films showed good mechanical, thermal and optical stability. (C) 2009 Elsevier B.V. All rights reserved. C1 [Lee, Chi Hang; Filler, Robert; Mandal, Braja K.] IIT, Dept Biol Chem & Phys Sci, Chicago, IL 60616 USA. [Bihari, Bipin] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Filler, Robert] TechDrive Inc, Chicago, IL 60616 USA. RP Mandal, BK (reprint author), IIT, Dept Biol Chem & Phys Sci, Chicago, IL 60616 USA. EM mandal@iit.edu FU U.S. Army RDE-COM Natick Laboratory, MA [W911QY-05-C-0018] FX We gratefully acknowledge the support from U.S. Army RDE-COM Natick Laboratory, MA (#W911QY-05-C-0018). NR 19 TC 8 Z9 8 U1 1 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0925-3467 J9 OPT MATER JI Opt. Mater. PD NOV PY 2009 VL 32 IS 1 BP 147 EP 153 DI 10.1016/j.optmat.2009.07.001 PG 7 WC Materials Science, Multidisciplinary; Optics SC Materials Science; Optics GA 520ZM UT WOS:000271888500027 ER PT J AU Kvashnina, KO Butorin, SM Modin, A Werme, L Nordgren, J Guo, JH Berger, R AF Kvashnina, K. O. Butorin, S. M. Modin, A. Werme, L. Nordgren, J. Guo, J. -H. Berger, R. TI Electronic structure of complex copper systems probed by resonant inelastic X-ray scattering at Cu L-3 edge SO PHYSICA B-CONDENSED MATTER LA English DT Article DE RIXS; Copper systems; X-ray absorption; X-ray emission ID ABSORPTION-SPECTROSCOPY; EMISSION-SPECTROSCOPY; SPECTRA; SUPERCONDUCTIVITY; EXCITATIONS; SATELLITES; DEPENDENCE; CORROSION; MINERALS; STATES AB We have used X-ray absorption (XA) and resonant inelastic X-ray scattering (RIXS) spectroscopies to study a series of copper compounds, namely Cu2O, CuO, Cu(OH)(2), CuCl2, Cu2S, CuSO4, malachite (Cu-2(CO3)(2)(OH)(2)) and atacamite (CuCl2 center dot 3Cu(OH)(2)). Cu 2p XA spectra provide information about oxidation states. Divalent copper gives a single narrow line due to excitations into the empty 3d state, whereas monovalent copper gives a broad band at higher energy due to transitions to 4s states. Chemical shifts of the main line in the Cu2+ XA spectra of different compounds are observed but in some cases they are too small to make a clear distinction between the species. It is shown that RIXS at the Cu 2p edge has a great potential to distinguish between the species due to large differences in spectral shapes for the same energy of the incident photon beam. First evidence for the possibility of detecting chemical composition of copper compounds is presented and discussed in details. (C) 2009 Elsevier B.V. All rights reserved. C1 [Kvashnina, K. O.; Butorin, S. M.; Modin, A.; Werme, L.; Nordgren, J.] Uppsala Univ, Dept Phys, SE-75121 Uppsala, Sweden. [Werme, L.] Svensk Karnbranslehantering AB SKB, Stockholm, Sweden. [Guo, J. -H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Berger, R.] Uppsala Univ, Dept Chem Mat, SE-75121 Uppsala, Sweden. RP Kvashnina, KO (reprint author), Uppsala Univ, Dept Phys, POB 530, SE-75121 Uppsala, Sweden. EM kristina.kvashnina@esrf.fr RI Kvashnina, Kristina/O-2374-2016 OI Kvashnina, Kristina/0000-0003-4447-4542 FU U.S. Department of Energy at Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX We thank Mikael Ottosson for making the copper oxide samples available. This work was supported by the Swedish Nuclear Fuel and Waste Management Co. (SKB), by the Swedish Research Council and Gbran Gustafsson Foundation for Research in Natural Sciences and Medicine. The ALS work was supported by the Director, Office of Science, Office of Basic Energy Sciences, and Biosciences of the U.S. Department of Energy at Lawrence Berkeley National Laboratory under Contract no. DE-AC02-05CH11231. NR 28 TC 5 Z9 5 U1 0 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD NOV 1 PY 2009 VL 404 IS 20 BP 3559 EP 3566 DI 10.1016/j.physb.2009.05.058 PG 8 WC Physics, Condensed Matter SC Physics GA 517GY UT WOS:000271602500044 ER PT J AU Chopdekar, RV Wong, FJ Takamura, Y Arenholz, E Suzuki, Y AF Chopdekar, Rajesh V. Wong, Franklin J. Takamura, Yayoi Arenholz, Elke Suzuki, Yuri TI Growth and characterization of superconducting spinel oxide LiTi2O4 thin films SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article DE LiTi2O4; Epitaxial thin films ID X-RAY-ABSORPTION; ADVANCED LIGHT-SOURCE; O TERNARY-SYSTEM; MAGNETIC-PROPERTIES; LI1&XTI2-XO4; TEMPERATURE; LITHIUM; SUSCEPTIBILITY; SUBSTITUTION; LI-1-XTI2O4 AB Epitaxial films of LiTi2O4 on single crystalline substrates of MgAl2O4, MgO, and SrTiO3 provide model systems to systematically explore the effects of lattice strain and microstructural disorder on the superconducting state. Lattice strain that affects bandwidth gives rise to variations in the superconducting and normal state properties. Microstructural disorder, such as antiphase boundaries that give rise to Ti network disorder, reduces the critical temperature, and Ti network disorder combined with Mg interdiffusion lead to a much more dramatic effect on the superconducting state. Surface sensitive X-ray absorption spectroscopy has identified Ti to retain site symmetry and average valence of the bulk material regardless of film thickness. (C) 2009 Elsevier B.V. All rights reserved. C1 [Chopdekar, Rajesh V.; Wong, Franklin J.; Suzuki, Yuri] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Chopdekar, Rajesh V.] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA. [Takamura, Yayoi] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Arenholz, Elke] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Chopdekar, RV (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, 210 Hearst Mem Min Bldg, Berkeley, CA 94720 USA. EM rvc2@cornell.edu RI Chopdekar, Rajesh/D-2067-2009 OI Chopdekar, Rajesh/0000-0001-6727-6501 FU Office of Naval Research [N00014-06-1-0452]; National Science Foundation [0604277]; Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC0-205CH11231] FX The authors thank Prof. A. Stacy (UC Berkeley, Chemistry) for the use of her 0 - 20 diffractometer and K.M. Yu (Lawrence Berkeley Lab, Materials Science Division) for taking RBS spectra. RVC would like to thank J.S. Bettinger and B.B. Nelson-Cheeseman for assistance in collecting XA spectra, and Y. Matsushita, I.R. Fisher and M.R. Beasley (Stanford Univ., Applied Physics) for fruitful discussion. FJW would like to thank Cheng-Yu Song (National Center for Electron Microscopy, Lawrence Berkeley National Laboratory) for technical assistance. This research was supported by the Office of Naval Research (N00014-06-1-0452) and the National Science Foundation (0604277). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC0-205CH11231. NR 42 TC 8 Z9 8 U1 1 U2 40 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD NOV 1 PY 2009 VL 469 IS 21 BP 1885 EP 1891 DI 10.1016/j.physc.2009.05.009 PG 7 WC Physics, Applied SC Physics GA 504LR UT WOS:000270618800001 ER PT J AU Guo, XL Xu, FY Wang, L Green, MA Pan, H Wu, H Liu, XK Chen, AB AF Guo, X. L. Xu, F. Y. Wang, L. Green, M. A. Pan, H. Wu, H. Liu, X. K. Chen, A. B. TI Over voltage in the multi-sectioned superconducting solenoid during quenching SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article DE Superconducting magnets; Over voltage; Quench simulation; Quench protection AB Accurate analysis of over voltage in the superconducting solenoid during a quench is one of the basis for quench protection system design. Classical quench simulation methods can only give rough estimation of the over voltage within a magnet coil. In this paper, for multi-sectioned superconducting solenoid, based on the classical assumption of ellipsoidal normal zone, three-dimension temperature results are mapped to one-dimension along the wire, the temperature distribution along the wire and the resistances of each turn are obtained. The coil is treated as circuit comprised of turn resistances, turn self and mutual inductances. The turn resistive voltage, turn inductive voltage, and turn resultant voltage along the wire are calculated. As a result, the maximum internal voltages, the layer-to-layer voltages and the turn-to-turn voltages are better estimated. Utilizing this method, the over voltage in a small solenoid and a large solenoid during quenching have been studied. The result shows that this method can well improve the over voltage estimate, especially when the coil is larger. (C) 2009 Elsevier B.V. All rights reserved. C1 [Guo, X. L.; Xu, F. Y.; Wang, L.; Pan, H.; Wu, H.; Liu, X. K.; Chen, A. B.] Harbin Inst Technol, Inst Cryogen & Superconduct Technol, Harbin 150001, Peoples R China. [Green, M. A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Guo, XL (reprint author), Harbin Inst Technol, Inst Cryogen & Superconduct Technol, Harbin 150001, Peoples R China. EM guoxinglong@hit.edu.cn NR 16 TC 4 Z9 4 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD NOV 1 PY 2009 VL 469 IS 21 BP 1930 EP 1934 DI 10.1016/j.physc.2009.06.011 PG 5 WC Physics, Applied SC Physics GA 504LR UT WOS:000270618800010 ER PT J AU Jena, H Rao, CV Eddy, FP Dooley, J Rambabu, B AF Jena, H. Rao, Ch. Venkateswara Eddy, Fannie Posey Dooley, Jonathan Rambabu, B. TI Structural and proton transport studies on nanocrystalline [Ca-10(PO4)(6)(OH)(2)] (HAp), HAp-Nafion (R) composite, and natural human bone SO PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE LA English DT Article ID SONOCHEMICAL SYNTHESIS; CALCIUM PHOSPHATES; HYDROXYAPATITE POWDERS; LOW-TEMPERATURE; GEL TECHNIQUE; NANOPARTICLES; CONDUCTIVITY; CARBONATE; NMR AB Nanocrystalline hydroxyapatite, Ca-10(PO4)(6)(OH)(2) (HAp) is synthesized from hydroxide gels at room temperature using sonochemical technique. The as-synthesized material is characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), Fourier transform infrared (FT-IR), and solid-state (H-1 and P-31) NMR techniques. Hexagonal structure with space group P6(3)/m is evident from powder XRD. Microscopic analysis with SAED indicates the nanocrystalline nature of the compound. Average particle size of 30 nm with excellent phase purity in good stoichiometric ratios of HAp is observed. The prevalence of protons as hydroxyls in apatitic structure of HAp is evident from FTIR and solid-state NMR. The microstructure and proton conducting properties of the synthesized material are compared with the natural human bone powder having similar constituents. The sonochemically prepared HAp, and HAp-Nafion (R) composite exhibited excellent AC conductivities similar to 10(-5) S cm(-1) at 650 degrees C and similar to 10(-5) S cm(-1) at 160 degrees C, respectively, may find application as an electrolyte for low temperature solid oxide fuel cells (LT-SOFCs) and high temperature polymer electrolyte fuel cells (HT-PEFCs) applications. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Jena, H.; Rao, Ch. Venkateswara; Dooley, Jonathan; Rambabu, B.] Southern Univ, Dept Phys, Solid State Ion & Surface Sci Lab, Baton Rouge, LA 70813 USA. [Jena, H.; Rao, Ch. Venkateswara; Dooley, Jonathan; Rambabu, B.] A&M Coll, Baton Rouge, LA 70813 USA. [Eddy, Fannie Posey] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Rambabu, B (reprint author), Southern Univ, Dept Phys, Solid State Ion & Surface Sci Lab, Baton Rouge, LA 70813 USA. EM rambabu@cox.net OI JENA, HRUDANANDA/0000-0001-7872-2108 FU US-DOD [W911NF-08-1-0415]; US-DOE [ACQ-4-33623] FX BRB acknowledges US-DOD and US-DOE for their support to enhance fuel cell work in the solid state ionics laboratory through grants W911NF-08-1-0415 and ACQ-4-33623. The NREL-MURA scholars (Ms. India Snowden, Ms. Charlotte Patterson, and Mr. Jonathan Dooley) thank Fanny Eddy Posey for introducing them to renewable energy research. NR 37 TC 5 Z9 5 U1 0 U2 12 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1862-6300 J9 PHYS STATUS SOLIDI A JI Phys. Status Solidi A-Appl. Mat. PD NOV PY 2009 VL 206 IS 11 BP 2536 EP 2541 DI 10.1002/pssa.200824429 PG 6 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 529KM UT WOS:000272515500005 ER PT J AU Auzinsh, M Budker, D Rochester, SM AF Auzinsh, M. Budker, D. Rochester, S. M. TI Light-induced polarization effects in atoms with partially resolved hyperfine structure and applications to absorption, fluorescence, and nonlinear magneto-optical rotation SO PHYSICAL REVIEW A LA English DT Article DE atom-photon collisions; excited states; Faraday effect; fluorescence; ground states; hyperfine structure; optical pumping; optical rotation; polarisation; potassium; rubidium; self-induced transparency ID NOUVEAUX EFFETS PREVUS; POMPAGE OPTIQUE; THEORIE QUANTIQUE; MAGNETIC-FIELD; RESONANCE; ORIENTATION; INVERSION; MOLECULES; LASER; CYCLE AB The creation and detection of atomic polarization is examined theoretically through the study of basic optical-pumping mechanisms and absorption and fluorescence measurements and the dependence of these processes on the size of ground- and excited-state hyperfine splittings is determined. The consequences of this dependence are studied in more detail for the case of nonlinear magneto-optical rotation in the Faraday geometry (an effect requiring the creation and detection of rank-two polarization in the ground state) with alkali-metal atoms. Analytic formulas for the optical rotation signal under various experimental conditions are presented. C1 [Auzinsh, M.] Univ Latvia, Dept Phys, LV-1586 Riga, Latvia. [Auzinsh, M.] Univ Latvia, Ctr Laser, LV-1586 Riga, Latvia. [Budker, D.; Rochester, S. M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Budker, D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Auzinsh, M (reprint author), Univ Latvia, Dept Phys, 19 Rainis Blvd, LV-1586 Riga, Latvia. EM marcis.auzins@lu.lv; budker@berkeley.edu; simonr@berkeley.edu RI Budker, Dmitry/F-7580-2016 OI Budker, Dmitry/0000-0002-7356-4814 NR 38 TC 13 Z9 13 U1 2 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9926 EI 2469-9934 J9 PHYS REV A JI Phys. Rev. A PD NOV PY 2009 VL 80 IS 5 AR 053406 DI 10.1103/PhysRevA.80.053406 PG 22 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 526RH UT WOS:000272310000101 ER PT J AU Cherepkov, NA Semenov, SK Schoffler, MS Titze, J Petridis, N Jahnke, T Cole, K Schmidt, LPH Czasch, A Akoury, D Jagutzki, O Williams, JB Cocke, CL Osipov, T Lee, S Prior, MH Belkacem, A Landers, AL Schmidt-Bocking, H Weber, T Dorner, R AF Cherepkov, N. A. Semenov, S. K. Schoeffler, M. S. Titze, J. Petridis, N. Jahnke, T. Cole, K. Schmidt, L. Ph. H. Czasch, A. Akoury, D. Jagutzki, O. Williams, J. B. Cocke, C. L. Osipov, T. Lee, S. Prior, M. H. Belkacem, A. Landers, A. L. Schmidt-Boecking, H. Weber, Th. Doerner, R. TI Separation of Auger transitions into different repulsive states after K-shell photoionization of N-2 molecules SO PHYSICAL REVIEW A LA English DT Article DE Auger effect; inner-shell ionisation; molecule-photon collisions; nitrogen; photoionisation ID VIBRATIONALLY RESOLVED PHOTOIONIZATION; ANGULAR-DISTRIBUTIONS; MOMENTUM SPECTROSCOPY; DIATOMIC-MOLECULES; RECOIL-ION; CO; DYNAMICS; SPECTRUM; N-2(2&); RATES AB The Auger transitions to different repulsive doubly charged molecular ion states are separated by measuring the angular resolved photoelectrons and Auger electrons in coincidence in the molecular fixed frame. The separation is achieved by comparing the experimental Auger-electron angular distributions at different kinetic-energy release values with theoretical curves calculated for different final dicationic states. C1 [Cherepkov, N. A.; Semenov, S. K.] State Univ Aerosp Instrumentat, St Petersburg 190000, Russia. [Cherepkov, N. A.; Schoeffler, M. S.; Titze, J.; Petridis, N.; Jahnke, T.; Cole, K.; Schmidt, L. Ph. H.; Czasch, A.; Akoury, D.; Jagutzki, O.; Schmidt-Boecking, H.; Doerner, R.] Goethe Univ Frankfurt, Inst Kernphys, D-60438 Frankfurt, Germany. [Akoury, D.; Osipov, T.; Lee, S.; Prior, M. H.; Belkacem, A.; Weber, Th.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Williams, J. B.; Landers, A. L.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. [Cocke, C. L.] Kansas State Univ, Dept Phys, Manhattan, KS 66506 USA. RP Cherepkov, NA (reprint author), State Univ Aerosp Instrumentat, St Petersburg 190000, Russia. RI Doerner, Reinhard/A-5340-2008; Landers, Allen/C-1213-2013; Weber, Thorsten/K-2586-2013; Schoeffler, Markus/B-6261-2008 OI Doerner, Reinhard/0000-0002-3728-4268; Weber, Thorsten/0000-0003-3756-2704; Schoeffler, Markus/0000-0001-9214-6848 FU Deutsche Forschungsgemeinschaft; U.S. DOE [DE-AC03-76SF00098, DE-FG02-07ER46357]; RFBR [09-03-00781-a] FX We acknowledge outstanding support by the staff of the Advanced Lights Source in particular by Hendrik Bluhm and Tolek Tyliszczak. The work was supported by the Deutsche Forschungsgemeinschaft and by the office of Basic Energy Sciences, Division of Chemical Sciences of the U.S. DOE under Contracts No. DE-AC03-76SF00098 and No. DE-FG02-07ER46357. N.A.C. acknowledges the financial support of Deutsche Forschungsgemeinschaft and the hospitality of the Goethe University in Frankfurt am Main. N.A.C. and S. K. S. acknowledge the financial support of RFBR (Grant No. 09-03-00781-a). NR 26 TC 14 Z9 14 U1 3 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD NOV PY 2009 VL 80 IS 5 AR 051404 DI 10.1103/PhysRevA.80.051404 PG 4 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 526RH UT WOS:000272310000012 ER PT J AU Pindzola, MS Ludlow, JA Robicheaux, F Colgan, J Fontes, CJ AF Pindzola, M. S. Ludlow, J. A. Robicheaux, F. Colgan, J. Fontes, C. J. TI Fully relativistic time-dependent close-coupling method for electron-impact ionization of atomic ions SO PHYSICAL REVIEW A LA English DT Article DE atom-electron collisions; Dirac equation; eigenvalues and eigenfunctions; electron impact ionisation; neon; positive ions; spin-orbit interactions; wave functions AB A fully relativistic time-dependent close-coupling method is developed based on Dirac's covariant formulation of quantum mechanics. The expansion of a one-electron wave function in spin-orbit eigenfunctions yields the well-known coupled Dirac equations in two radial wave functions, while the expansion of a two-electron wave function in coupled spin-orbit eigenfunctions yields close-coupled Dirac equations in four radial wave functions. The time-dependent Dirac equations are solved directly using numerical methods that avoid the Fermi doubling pathology. Test calculations are carried out using the one-electron coupled equations for j=1/2 elastic potential scattering from Ne9+ at 2.00 keV and using the two-electron close-coupled equations for J=0,1 ionization of Ne9+ at 4.15 keV. C1 [Pindzola, M. S.; Ludlow, J. A.; Robicheaux, F.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. [Colgan, J.; Fontes, C. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Pindzola, MS (reprint author), Auburn Univ, Dept Phys, Auburn, AL 36849 USA. RI Robicheaux, Francis/F-4343-2014; OI Robicheaux, Francis/0000-0002-8054-6040; Colgan, James/0000-0003-1045-3858 FU U. S. Department of Energy FX This work was supported in part by grants from the U. S. Department of Energy. Computational work was carried out at the National Energy Research Scientific Computing Center in Oakland, California. NR 14 TC 4 Z9 4 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 EI 1094-1622 J9 PHYS REV A JI Phys. Rev. A PD NOV PY 2009 VL 80 IS 5 AR 052706 DI 10.1103/PhysRevA.80.052706 PG 6 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 526RH UT WOS:000272310000087 ER PT J AU Podpaly, Y Clementson, J Beiersdorfer, P Williamson, J Brown, GV Gu, MF AF Podpaly, Y. Clementson, J. Beiersdorfer, P. Williamson, J. Brown, G. V. Gu, M. F. TI Spectroscopy of 2s(1/2)-2p(3/2) transitions in W65+ through W71+ SO PHYSICAL REVIEW A LA English DT Article DE particle traps; quantum electrodynamics; spectral line shift; tungsten; X-ray spectra ID BEAM ION-TRAP; CHARGED TUNGSTEN IONS; X-RAY; LAMB SHIFT; TOKAMAK PLASMAS; SPECTROMETER; EBIT; DIAGNOSTICS; SPECTRA; EUV AB A high-resolution flat-crystal spectrometer was used on the SuperEBIT electron beam ion trap to measure the energies of the 2s(1/2)-2p(3/2) transitions in lithiumlike through fluorinelike tungsten. These transitions are strongly affected by energy shifts due to quantum electrodynamics (QED). SuperEBIT was run at an electron energy of 103.2 +/- 0.5 keV and an electron beam current of 150 mA to generate the respective charge states; hydrogenlike aluminum and neonlike krypton were used as calibration elements. The spectra were analyzed with and the results compared to calculations based on the flexible atomic code. Good agreement was found. The measurements yielded line positions with a precision of 1-2 eV, which test QED calculations to 5%-10%. C1 [Podpaly, Y.; Clementson, J.; Beiersdorfer, P.; Williamson, J.; Brown, G. V.; Gu, M. F.] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA. [Podpaly, Y.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. RP Podpaly, Y (reprint author), Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA. NR 32 TC 37 Z9 38 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD NOV PY 2009 VL 80 IS 5 AR 052504 DI 10.1103/PhysRevA.80.052504 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 526RH UT WOS:000272310000074 ER PT J AU Trimble, WL Sulai, IA Ahmad, I Bailey, K Graner, B Greene, JP Holt, RJ Korsch, W Lu, ZT Mueller, P O'Connor, TP AF Trimble, W. L. Sulai, I. A. Ahmad, I. Bailey, K. Graner, B. Greene, J. P. Holt, R. J. Korsch, W. Lu, Z. -T. Mueller, P. O'Connor, T. P. TI Lifetime of the 7s6d D-1(2) atomic state of radium SO PHYSICAL REVIEW A LA English DT Article DE atom-photon collisions; excited states; fluorescence; laser cooling; magneto-optical effects; radiation pressure; radiative lifetimes; radium AB The lifetime of the 7s6d D-1(2) state of atomic radium is determined to be 385(45) mu s using cold Ra-226 atoms prepared in a magneto-optical trap. The D-1(2) state is populated from the decay of the P-1(1) state which is excited by a pulse of 483 nm light. The decay of the D-1(2) state is observed by detecting delayed fluorescence at 714 nm from the last step in the decay sequence P-1(1)-D-1(2)-P-3(1)-S-1(0). The measured lifetime is compared to a number of theoretical calculations. An improved value of the 7s7p P-1(1) level of 20 715.598(6) cm(-1) is obtained. C1 [Trimble, W. L.; Sulai, I. A.; Ahmad, I.; Bailey, K.; Graner, B.; Greene, J. P.; Holt, R. J.; Lu, Z. -T.; Mueller, P.; O'Connor, T. P.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Sulai, I. A.; Lu, Z. -T.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Sulai, I. A.; Graner, B.; Lu, Z. -T.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Korsch, W.] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. RP Trimble, WL (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RI Mueller, Peter/E-4408-2011; Holt, Roy/E-5803-2011; OI Mueller, Peter/0000-0002-8544-8191; Trimble, William L./0000-0001-7029-2676; Sulai, Ibrahim/0000-0003-4631-7006 NR 10 TC 5 Z9 5 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD NOV PY 2009 VL 80 IS 5 AR 054501 DI 10.1103/PhysRevA.80.054501 PG 3 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 526RH UT WOS:000272310000181 ER PT J AU Varma, HR Ciappina, MF Rohringer, N Santra, R AF Varma, Hari R. Ciappina, Marcelo F. Rohringer, Nina Santra, Robin TI Above-threshold ionization in the x-ray regime SO PHYSICAL REVIEW A LA English DT Article DE atom-photon collisions; Compton effect; hydrogen neutral atoms; photoionisation; quantum electrodynamics; two-photon processes ID FREE-ELECTRON LASER; MULTIPHOTON-IONIZATION; ATOMIC-HYDROGEN; 2-PHOTON IONIZATION; RADIATION; PULSES; ABSORPTION; COHERENCE; HELIUM; FIELD AB Two-photon above-threshold ionization processes in the x-ray regime are studied using atomic hydrogen as a model system. Within the minimal-coupling formalism of nonrelativistic quantum electrodynamics, two distinct interactions-A center dot p in second order and A(2) in first order-contribute to the two-photon absorption amplitude. The relative importance of these two interactions is assessed. It is found that above a photon energy of 6.8 keV, the contribution from A(2) to the total two-photon absorption cross section dominates. In this high-energy regime, above-threshold ionization is a nonsequential purely nondipole process. Rate equations are employed to calculate the probabilities of ionization by Compton scattering, one-photon absorption, and two-photon absorption. C1 [Varma, Hari R.; Santra, Robin] Argonne Natl Lab, Argonne, IL 60439 USA. [Ciappina, Marcelo F.] Inst High Performance Comp, Singapore 138682, Singapore. [Rohringer, Nina] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Santra, Robin] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. RP Varma, HR (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Ciappina, Marcelo/E-5071-2011; Rohringer, Nina/B-8030-2012; Santra, Robin/E-8332-2014; Rohringer, Nina/N-3238-2014; OI Santra, Robin/0000-0002-1442-9815; Rohringer, Nina/0000-0001-7905-3567; Ciappina, Marcelo/0000-0002-1123-6460 FU Office of Basic Energy Sciences, Office of Science, U. S. Department of Energy [DE-AC02-06CH11357, DE-AC52-07NA27344]; Visitor Program of the Max Planck Institute for the Physics of Complex Systems FX H. V. and R. S. were supported by the Office of Basic Energy Sciences, Office of Science, U. S. Department of Energy, under Contract No. DE-AC02-06CH11357. M. F. C. acknowledges the Visitor Program of the Max Planck Institute for the Physics of Complex Systems. Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 52 TC 14 Z9 14 U1 1 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD NOV PY 2009 VL 80 IS 5 AR 053424 DI 10.1103/PhysRevA.80.053424 PG 6 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 526RH UT WOS:000272310000119 ER PT J AU Zhang, WX Cappellaro, P Antler, N Pepper, B Cory, DG Dobrovitski, VV Ramanathan, C Viola, L AF Zhang, Wenxian Cappellaro, Paola Antler, Natania Pepper, Brian Cory, David G. Dobrovitski, Viatcheslav V. Ramanathan, Chandrasekhar Viola, Lorenza TI NMR multiple quantum coherences in quasi-one-dimensional spin systems: Comparison with ideal spin-chain dynamics SO PHYSICAL REVIEW A LA English DT Article DE calcium compounds; nuclear magnetic resonance; numerical analysis; quantum wires; spin dynamics; spin Hamiltonians; spin systems ID NUCLEAR-MAGNETIC-RESONANCE; LINE-SHAPE; SOLIDS; DIAMOND; TEMPERATURE; TRANSITIONS; EXCITATION; QUBITS AB The F-19 spins in a crystal of fluorapatite have often been used to experimentally approximate a one-dimensional spin system. Under suitable multipulse control, the nuclear-spin dynamics may be modeled to first approximation by a double-quantum one-dimensional Hamiltonian, which is analytically solvable for nearest-neighbor couplings. Here, we use solid-state nuclear magnetic resonance techniques to investigate the multiple quantum coherence dynamics of fluorapatite, with an emphasis on understanding the region of validity for such a simplified picture. Using experimental, numerical, and analytical methods, we explore the effects of long-range intrachain couplings, cross-chain couplings, as well as couplings to a spin environment, all of which tend to damp the oscillations of the multiple quantum coherence signal at sufficiently long times. Our analysis characterizes the extent to which fluorapatite can faithfully simulate a one-dimensional quantum wire. C1 [Zhang, Wenxian; Viola, Lorenza] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. [Zhang, Wenxian] Fudan Univ, Dep Opt Sci & Engn, Shanghai 200433, Peoples R China. [Cappellaro, Paola] Harvard Smithsonian Ctr Astrophys, ITAMP, Cambridge, MA 02138 USA. [Cappellaro, Paola; Cory, David G.; Ramanathan, Chandrasekhar] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA. [Antler, Natania; Pepper, Brian] MIT, Dept Phys, Cambridge, MA 02139 USA. [Dobrovitski, Viatcheslav V.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. RP Zhang, WX (reprint author), Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. EM lorenza.viola@dartmouth.edu RI Zhang, Wenxian/A-4274-2010; Cappellaro, Paola/B-1413-2010; Ramanathan, Chandrasekhar/C-5207-2008 OI Cappellaro, Paola/0000-0003-3207-594X; Ramanathan, Chandrasekhar/0000-0002-7457-3608 NR 58 TC 21 Z9 21 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9926 EI 2469-9934 J9 PHYS REV A JI Phys. Rev. A PD NOV PY 2009 VL 80 IS 5 AR 052323 DI 10.1103/PhysRevA.80.052323 PG 13 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 526RH UT WOS:000272310000058 ER PT J AU Akrap, A Tu, JJ Li, LJ Cao, GH Xu, ZA Homes, CC AF Akrap, A. Tu, J. J. Li, L. J. Cao, G. H. Xu, Z. A. Homes, C. C. TI Infrared phonon anomaly in BaFe2As2 SO PHYSICAL REVIEW B LA English DT Article DE barium compounds; iron compounds; magnetic transitions; optical conductivity; phonons; solid-state phase transformations; vibrational modes ID SUPERCONDUCTIVITY; SYSTEMS AB The detailed optical properties of BaFe2As2 have been determined over a wide frequency range above and below the structural and magnetic transition at T-N similar or equal to 138 K. A prominent in-plane infrared-active mode is observed at 253 cm(-1) (31.4 meV) at 295 K. The frequency of this vibration shifts discontinuously at T-N; for T < T-N the frequency of this mode displays almost no temperature dependence, yet it nearly doubles in intensity. This anomalous behavior appears to be a consequence of orbital ordering in the Fe-As layers. C1 [Akrap, A.; Homes, C. C.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [Tu, J. J.] CUNY City Coll, Dept Phys, New York, NY 10031 USA. [Li, L. J.; Cao, G. H.; Xu, Z. A.] Zhejiang Univ, Dept Phys, Hangzhou 310027, Peoples R China. RP Akrap, A (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. EM homes@bnl.gov RI Cao, Guanghan/C-4753-2008; Akrap, Ana/G-1409-2013 OI Akrap, Ana/0000-0003-4493-5273 FU National Science Foundation of China; National Basic Research Program of China [2006CB601003, 2007CB925001]; Ministry of Education of China [IRT0754]; Office of Science, U.S. Department of Energy (DOE) [DE-AC02-98CH10886] FX We would like to acknowledge useful discussions with W. Ku, C.-C. Lee, M. Strongin, and W.-G. Yin. This work was supported by the National Science Foundation of China, the National Basic Research Program of China (Grants No. 2006CB601003 and No. 2007CB925001) and the PCSIRT project of the Ministry of Education of China (Grant No. IRT0754). Work at BNL was supported by the Office of Science, U.S. Department of Energy (DOE) under Contract No. DE-AC02-98CH10886. NR 37 TC 62 Z9 62 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2009 VL 80 IS 18 AR 180502 DI 10.1103/PhysRevB.80.180502 PG 4 WC Physics, Condensed Matter SC Physics GA 526RO UT WOS:000272310900027 ER PT J AU Averill, FW Morris, JR Cooper, VR AF Averill, Frank W. Morris, James R. Cooper, Valentino R. TI Calculated properties of fully hydrogenated single layers of BN, BC2N, and graphene: Graphane and its BN-containing analogues SO PHYSICAL REVIEW B LA English DT Article DE adsorption; binding energy; chemisorption; energy gap; graphene; hydrogen; organic compounds ID BORON-NITRIDE NANOTUBES; ELECTRON-GAS; STORAGE; FUNCTIONALIZATION; PSEUDOPOTENTIALS; CAPACITY; CARBONS; ENERGY AB Carbon is an attractive material for hydrogen adsorption due to its light weight, variety of structures, and ability to both physisorb and chemisorb hydrogen. Recently, fully hydrogenated graphene layers ("graphane") have been predicted to exist [J. O. Sofo , Phys. Rev. B 75, 15340 (2007)], and experimentally observed [D. C. Elias , Science 323, 610 (2009)]. In this work, we examine analogs of graphane, in particular BNH2 and BC2NH4. Unlike graphene, these materials have a band gap without hydrogenation. Our results indicate that the hydrogenation product of BN is metastable: the fully hydrogenated compound BNH2 is higher in energy than hexagonal BN sheets plus H-2 molecules, in sharp contrast with graphane. We find that BC2NH4 is energetically very close to hexagonal BC2N+2H(2) molecules. Furthermore, our examination of the relative binding strengths of rows of symmetry related hydrogen atoms on BC2NH4 shows that this compound is marginally higher in energy than BC2NH2 plus an H-2 molecule, with the hydrogen atoms in BC2NH2 absorbed on the carbon sites. These remaining hydrogen atoms are not as strongly bound as in graphane, indicating that the average hydrogen chemisorption energy is controllable by changing the carbon content in the B-C-N layer. C1 [Averill, Frank W.; Morris, James R.; Cooper, Valentino R.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Averill, Frank W.; Morris, James R.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Averill, FW (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Cooper, Valentino /A-2070-2012; Morris, J/I-4452-2012 OI Cooper, Valentino /0000-0001-6714-4410; Morris, J/0000-0002-8464-9047 NR 51 TC 30 Z9 30 U1 5 U2 43 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2009 VL 80 IS 19 AR 195411 DI 10.1103/PhysRevB.80.195411 PG 8 WC Physics, Condensed Matter SC Physics GA 526RP UT WOS:000272311000097 ER PT J AU Batista, CD AF Batista, C. D. TI Canted spiral: An exact ground state of XXZ zigzag spin ladders SO PHYSICAL REVIEW B LA English DT Article DE ferromagnetism; ground states; Heisenberg model; invariance; spontaneous symmetry breaking; SU(2) theory ID SYSTEMS; SYMMETRY; LATTICE; CHAIN AB We derive the exact ground states for a one-dimensional family of S=1/2 XXZ Hamiltonians on the zigzag ladder. These states exhibit true long-range spiral order that spontaneously breaks the U(1) invariance of the Hamiltonian. Besides breaking a continuous symmetry in d=1, this spiral ordering has a ferromagnetic component along the symmetry axis that can take any value between zero and full saturation. In this sense, our canted spiral solutions are a generalization of the SU(2) Heisenberg ferromagnet to nonzero ordering wave vectors of the transverse spin components. We extend this result to the d=2 anisotropic triangular lattice. C1 [Batista, C. D.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Batista, CD (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI Batista, Cristian/J-8008-2016 NR 22 TC 5 Z9 5 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2009 VL 80 IS 18 AR 180406 DI 10.1103/PhysRevB.80.180406 PG 4 WC Physics, Condensed Matter SC Physics GA 526RO UT WOS:000272310900011 ER PT J AU Chen, LM Ristivojevic, Z Nattermann, T AF Chen, Leiming Ristivojevic, Zoran Nattermann, Thomas TI Transport in a Luttinger liquid with dissipation: Two impurities SO PHYSICAL REVIEW B LA English DT Article DE electrical conductivity; impurities; Luttinger liquid ID DIMENSIONAL ELECTRON-GAS; QUANTUM AB We consider theoretically the transport in a one-channel spinless Luttinger liquid with two strong impurities in the presence of dissipation. As a difference with respect to the dissipation free case, where the two impurities fully transmit electrons at resonance points, the dissipation prevents complete transmission in the present situation. A rich crossover diagram for the conductance as a function of applied voltage, temperature, dissipation strength, Luttinger liquid parameter K, and the deviation from the resonance condition is obtained. For weak dissipation and 1/2 < K < 1, the conduction shows a nonmonotonic increase as a function of temperature or voltage. For strong dissipation the conduction increases monotonically but is exponentially small. C1 [Chen, Leiming; Ristivojevic, Zoran; Nattermann, Thomas] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany. [Chen, Leiming] China Univ Min & Technol, Coll Sci, Xuzhou 221116, Peoples R China. [Ristivojevic, Zoran] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Chen, LM (reprint author), Univ Cologne, Inst Theoret Phys, Zulpicher Str 77, D-50937 Cologne, Germany. RI Chen, Leiming/F-9052-2011 NR 14 TC 0 Z9 0 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2009 VL 80 IS 19 AR 195102 DI 10.1103/PhysRevB.80.195102 PG 11 WC Physics, Condensed Matter SC Physics GA 526RP UT WOS:000272311000034 ER PT J AU Chernyshov, AS Mudryk, Y Paudyal, D Pecharsky, VK Gschneidner, KA Schlagel, DL Lograsso, TA AF Chernyshov, A. S. Mudryk, Ya. Paudyal, D. Pecharsky, V. K. Gschneidner, K. A., Jr. Schlagel, D. L. Lograsso, T. A. TI Magnetostructural transition in Gd5Sb0.5Ge3.5 SO PHYSICAL REVIEW B LA English DT Article DE ab initio calculations; antimony alloys; crystal symmetry; exchange interactions (electron); ferromagnetic materials; gadolinium alloys; germanium alloys; ground states; magnetic susceptibility; magnetic transitions; magnetisation; solid-state phase transformations; specific heat; X-ray diffraction ID GIANT MAGNETORESISTANCE; MAGNETIC REFRIGERATION; PHASE-TRANSFORMATION; GD-5(SIXGE1-X)(4); GE; GD-5(SI2GE2); COMPOUND; DYNAMICS; SYSTEMS; ALLOYS AB Magnetic and crystallographic properties of Gd5Sb0.5Ge3.5 were investigated using dc magnetization, ac magnetic susceptibility, and heat capacity of an oriented single crystal, combined with temperature and magnetic field dependent x-ray powder diffraction. The compound undergoes an unusual magnetostructural transition at 40 K and a nonmagnetic second-order transition around 63 K. The detailed crystallographic study of Gd5Sb0.5Ge3.5 shows that contrary to the R-5(SixGe1-x)(4) systems (R is a rare-earth metal), the structural transition occurs without shear displacements of the (2)(infinity)[R5T4] slabs (T=Si, Ge, and Sb), and a substantial volume change (-0.5%) does not lead to a change in crystallographic symmetry. The first-principles electronic structure calculations show higher interslab than intraslab ferromagnetic exchange interaction indicating that Sm5Ge4 type of structure supports a ferromagnetic ground state in Gd5Sb0.5Ge3.5. C1 [Chernyshov, A. S.; Mudryk, Ya.; Paudyal, D.; Pecharsky, V. K.; Gschneidner, K. A., Jr.; Schlagel, D. L.; Lograsso, T. A.] Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. [Chernyshov, A. S.; Paudyal, D.; Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Pecharsky, VK (reprint author), Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. EM vitkp@ameslab.gov FU Iowa State University of Science and Technology; U. S. Department of Energy [DE- AC02- 07CH11358] FX The Ames Laboratory is operated by Iowa State University of Science and Technology for the U. S. Department of Energy under Contract No. DE- AC02- 07CH11358. Work at Ames Laboratory is supported by the Office of Basic Energy Sciences, Materials Sciences Division of the Office of Science. NR 50 TC 8 Z9 8 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2009 VL 80 IS 18 AR 184416 DI 10.1103/PhysRevB.80.184416 PG 9 WC Physics, Condensed Matter SC Physics GA 526RO UT WOS:000272310900074 ER PT J AU Clem, JR AF Clem, John R. TI Field and current distributions and ac losses in superconducting strips SO PHYSICAL REVIEW B LA English DT Article DE critical current density (superconductivity); eddy current losses; magnetic flux; superconducting thin films; type II superconductors ID TRANSPORT CURRENTS; CONDUCTORS; FILMS AB In this paper I discuss analytic and numerical calculations of the magnetic-field and sheet-current distributions in superconducting strips of width 2a and arbitrary thickness 2b at the center when the cross-section is an ellipse, a rectangle, and a shape intermediate between these limits. Using critical-state theory, I use several methods to determine the functional dependence of the ac transport-current losses upon F=I/I(c), where I is the peak alternating current and I(c) is the critical current, and I discuss how this dependence can be affected by the cross-sectional shape, aspect ratio, and a flux-density-dependent critical current density J(c)(B). C1 [Clem, John R.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Clem, John R.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Clem, JR (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. NR 13 TC 10 Z9 11 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2009 VL 80 IS 18 AR 184517 DI 10.1103/PhysRevB.80.184517 PG 12 WC Physics, Condensed Matter SC Physics GA 526RO UT WOS:000272310900105 ER PT J AU Delaire, O May, AF McGuire, MA Porter, WD Lucas, MS Stone, MB Abernathy, DL Ravi, VA Firdosy, SA Snyder, GJ AF Delaire, O. May, A. F. McGuire, M. A. Porter, W. D. Lucas, M. S. Stone, M. B. Abernathy, D. L. Ravi, V. A. Firdosy, S. A. Snyder, G. J. TI Phonon density of states and heat capacity of La3-xTe4 SO PHYSICAL REVIEW B LA English DT Article DE band structure; bonds (chemical); Debye temperature; lanthanum alloys; neutron diffraction; phonons; specific heat; tellurium alloys; vacancies (crystal) ID THERMOELECTRIC-MATERIALS; CHALCOGENIDES; TH3P4 AB The phonon density of states (DOS) of La3-xTe4 compounds (x=0.0,0.18,0.32) was measured at 300, 520, and 780 K, using inelastic neutron scattering. A significant stiffening of the phonon DOS and a large broadening of features were observed upon introduction of vacancies on La sites (increasing x). Heat-capacity measurements were performed at temperatures 1.85 < T < 1200 K and were analyzed to quantify the contributions of phonons and electrons. The Debye temperature and the electronic coefficient of heat capacity determined from these measurements are consistent with the neutron-scattering results, and with previously reported first-principles calculations. Our results indicate that La vacancies in La3-xTe4 strongly scatter phonons and this source of scattering appears to be independent of temperature. The stiffening of the phonon DOS induced by the introduction of vacancies is explained in terms of the electronic structure and the change in bonding character. The temperature dependence of the phonon DOS is captured satisfactorily by the quasiharmonic approximation. C1 [Delaire, O.; Lucas, M. S.; Stone, M. B.; Abernathy, D. L.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [May, A. F.; Snyder, G. J.] CALTECH, Pasadena, CA 91125 USA. [McGuire, M. A.; Porter, W. D.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Ravi, V. A.; Firdosy, S. A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Ravi, V. A.] Calif State Polytech Univ Pomona, Dept Chem & Mat Engn, Pomona, CA 91768 USA. RP Delaire, O (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RI McGuire, Michael/B-5453-2009; May, Andrew/E-5897-2011; BL18, ARCS/A-3000-2012; Snyder, G. Jeffrey/E-4453-2011; Stone, Matthew/G-3275-2011; Abernathy, Douglas/A-3038-2012; Snyder, G/I-2263-2015 OI McGuire, Michael/0000-0003-1762-9406; May, Andrew/0000-0003-0777-8539; Snyder, G. Jeffrey/0000-0003-1414-8682; Stone, Matthew/0000-0001-7884-9715; Abernathy, Douglas/0000-0002-3533-003X; FU Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. DOE. High-temperature; U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy; NSF [DMR- 0520547.] FX We thank David Singh for providing us with the numerical data for the electronic DOS of La3Te4 published in Ref. 27, and for helpful discussions. We thank Rebecca A. Mills for help with the neutron- scattering furnace. This work was partially supported by the Division of Materials Science and Engineering, Basic Energy Sciences, U. S. DOE. Work performed at the California Institute of Technology was done with the assistance of the Jet Propulsion Laboratory, under a contract with the National Aeronautics and Space Administration. The Research at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. DOE. High-temperature calorimetry measurements were conducted at Oak Ridge National Laboratory's High Temperature Materials Laboratory, sponsored by the U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. This work benefitted from DANSE software developed under NSF under Award No. DMR- 0520547. NR 35 TC 39 Z9 39 U1 4 U2 38 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2009 VL 80 IS 18 AR 184302 DI 10.1103/PhysRevB.80.184302 PG 9 WC Physics, Condensed Matter SC Physics GA 526RO UT WOS:000272310900058 ER PT J AU Du, MH AF Du, Mao-Hua TI First-principles study of back-contact effects on CdTe thin-film solar cells SO PHYSICAL REVIEW B LA English DT Article ID STABILITY AB Forming a chemically stable low-resistance back contact for CdTe thin-film solar cells is critically important to the cell performance. This paper reports theoretical study of the effects of the back-contact material, Sb(2)Te(3), on the performance of the CdTe solar cells. First-principles calculations show that Sb impurities in p-type CdTe are donors and can diffuse with low diffusion barrier. There properties are clearly detrimental to the solar-cell performance. The Sb segregation into the grain boundaries may be required to explain the good efficiencies for the CdTe solar cells with Sb(2)Te(3) back contacts. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Du, MH (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Du, Mao-Hua/B-2108-2010 OI Du, Mao-Hua/0000-0001-8796-167X FU U.S. DOE ORNL LDRD program FX This work was supported by the U.S. DOE ORNL LDRD program. NR 25 TC 6 Z9 6 U1 2 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2009 VL 80 IS 20 AR 205322 DI 10.1103/PhysRevB.80.205322 PG 4 WC Physics, Condensed Matter SC Physics GA 526RS UT WOS:000272311400080 ER PT J AU Godwal, BK Petruska, EA Speziale, S Yan, J Clark, SM Kruger, MB Jeanloz, R AF Godwal, B. K. Petruska, E. A. Speziale, S. Yan, J. Clark, S. M. Kruger, M. B. Jeanloz, R. TI High-pressure Raman and x-ray diffraction studies on LaB6 SO PHYSICAL REVIEW B LA English DT Article DE elastic moduli; high-pressure effects; lanthanum compounds; Raman spectra; ultrasonics; vibrational modes; X-ray diffraction ID NONHYDROSTATIC COMPRESSION; LATTICE-DYNAMICS; METALLIC LAB6; TEMPERATURE; STATE; GOLD; HEXABORIDES; CALIBRATION; SCATTERING; EQUATION AB X-ray diffraction measurements and Raman spectroscopy at room temperature document the equation of state and the frequency shifts for E-g, T-2g, and A(1g) vibrational modes of polycrystalline LaB6 under pressure. The data exhibit smooth pressure dependencies, yielding a zero-pressure isothermal bulk modulus K-0T=164(+/- 2) GPa in good accord with independent ultrasonic measurements, and show no evidence of structural or electronic phase transitions up to at least 25 GPa. C1 [Godwal, B. K.; Clark, S. M.; Jeanloz, R.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Petruska, E. A.; Kruger, M. B.] Univ Missouri, Dept Phys, Kansas City, MO 64110 USA. [Speziale, S.] Deutsch GeoForschungszentrum, D-14473 Potsdam, Germany. [Yan, J.; Clark, S. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Jeanloz, R.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. RP Godwal, BK (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. RI Clark, Simon/B-2041-2013 OI Clark, Simon/0000-0002-7488-3438 FU U.S. Department of Energy [DE-AC02-05CH11231]; NSF [DMR-0605493, EAR 06-49658] FX We thank Martin Kunz and Sander Caldwell as well as the ALS staff for support on beamline 12.2.2. The Advanced Light Source is supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This research was partially supported by NSF Contract No. DMR-0605493 to COMPRES under NSF Cooperative Agreement No. EAR 06-49658, and by other grants from the NSF and DOE. NR 30 TC 9 Z9 9 U1 2 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2009 VL 80 IS 17 AR 172104 DI 10.1103/PhysRevB.80.172104 PG 4 WC Physics, Condensed Matter SC Physics GA 526RL UT WOS:000272310400004 ER PT J AU Hardy, F Meingast, C Taufour, V Flouquet, J von Lohneysen, H Fisher, RA Phillips, NE Huxley, A Lashley, JC AF Hardy, F. Meingast, C. Taufour, V. Flouquet, J. v. Loehneysen, H. Fisher, R. A. Phillips, N. E. Huxley, A. Lashley, J. C. TI Two magnetic Gruumlneisen parameters in the ferromagnetic superconductor UGe2 SO PHYSICAL REVIEW B LA English DT Article DE critical points; ferromagnetic materials; Gruneisen coefficient; magnetic superconductors; magnetisation; proximity effect (superconductivity); specific heat; superconducting transitions; thermal expansion; uranium compounds ID COLLECTIVE ELECTRON FERROMAGNETISM; PRESSURE-INDUCED SUPERCONDUCTIVITY; UNCONVENTIONAL SUPERCONDUCTIVITY; FERMI-SURFACE; FLUCTUATIONS; COEXISTENCE; GE-73-NQR; HEAT AB We report ambient-pressure magnetization, heat capacity, and thermal-expansion measurements of the ferromagnetic superconductor UGe2 in high magnetic fields. An analysis of the magnetic heat capacity derived from both magnetization and specific-heat data shows that UGe2 is well described in the framework of the molecular-field theory. Our heat-capacity and thermal-expansion results reveal a clear crossover regime, a feature that illustrates the proximity to the quantum critical end point of a first-order boundary between two different ferromagnetic phases. Furthermore, we show that the ferromagnetic contribution to these thermodynamic quantities can be split into two terms with distinct Gruumlneisen parameters. C1 [Hardy, F.; Meingast, C.; v. Loehneysen, H.] Forschungszentrum Karlsruhe, Inst Festkorperphys, D-76021 Karlsruhe, Germany. [Hardy, F.; v. Loehneysen, H.] Univ Karlsruhe, Inst Phys, D-76128 Karlsruhe, Germany. [Taufour, V.; Flouquet, J.] CEA Grenoble, INAC SPSMS, F-38054 Grenoble, France. [Fisher, R. A.; Phillips, N. E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Phillips, N. E.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Huxley, A.] Univ Edinburgh, Scottish Univ Phys Alliance, Sch Phys, Edinburgh EH9 3JZ, Midlothian, Scotland. [Lashley, J. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Hardy, F (reprint author), Forschungszentrum Karlsruhe, Inst Festkorperphys, D-76021 Karlsruhe, Germany. EM frederic.hardy@ifp.fzk.de FU Helmholtz-Gemeinschaft [VH-VI-127]; Deutsche Forschungsgemeinschaft [FOR 960]; U. S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Helmholtz-Gemeinschaft (Virtual Institute of Research on Quantum Phase Transitions Project No. VH-VI-127) and the Deutsche Forschungsgemeinschaft under Grant No. FOR 960. Work at LBNL was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 33 TC 12 Z9 12 U1 1 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2009 VL 80 IS 17 AR 174521 DI 10.1103/PhysRevB.80.174521 PG 7 WC Physics, Condensed Matter SC Physics GA 526RL UT WOS:000272310400092 ER PT J AU Homes, CC AF Homes, C. C. TI Scaling of the superfluid density in strongly underdoped YBa2Cu3O6+y: Evidence for a Josephson phase SO PHYSICAL REVIEW B LA English DT Article DE barium compounds; electrical conductivity; high-temperature superconductors; Josephson effect; superconducting transition temperature; superfluidity; yttrium compounds ID HIGH-TEMPERATURE SUPERCONDUCTORS; T-C SUPERCONDUCTORS; PENETRATION-DEPTH; COOPER PAIRS; BI2SR2CACU2O8+DELTA; PSEUDOGAP; FILMS; INSULATOR; CUPRATE; OXIDES AB Recent measurements on extremely underdoped YBa2Cu3O6+y [Phys. Rev. Lett. 99, 237003 (2007)] have allowed the critical temperature T-c, superfluid density rho(s0)equivalent to rho(s)(T < T-c), and dc conductivity sigma(dc)(T greater than or similar to T-c) to be determined for a series of electronic dopings for T-c similar or equal to 3-17 K. The general scaling relation rho(s0)/8 similar or equal to 4.4 sigma T-dc(c) is observed, extending the validity of both the ab-plane and c-axis scaling an order of magnitude and creating a region of overlap. This suggests that strongly underdoped materials may constitute a Josephson phase; as the electronic doping is increased a more uniform superconducting state emerges. C1 Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RP Homes, CC (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. EM homes@bnl.gov FU Office of Science, U. S. Department of Energy (DOE) [DE-AC02-98CH10886] FX The author is deeply indebted to D. M. Broun, W. A. Huttema, and P. J. Turner for providing their microwave results on extremely underdoped YBa2Cu3O6.333 and to Ruixing Liang, W. N. Hardy, and D. A. Bonn regarding aspects of materials synthesis. The author would also like to acknowledge useful discussions with A. Akrap, A. V. Chubukov, G. L. Carr, Y. Imry, T. R. Lemberger, P. Littlewood, J. Rameau, M. Strongin, D. B. Tanner, and A. M. Tsvelik. Work in Canada was supported by the Natural Sciences and Engineering Research Council of Canada and the Canadian Institute for Advanced Research. Work at BNL was supported by the Office of Science, U. S. Department of Energy (DOE) under Contract No. DE-AC02-98CH10886. NR 38 TC 8 Z9 8 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2009 VL 80 IS 18 AR 180509 DI 10.1103/PhysRevB.80.180509 PG 4 WC Physics, Condensed Matter SC Physics GA 526RO UT WOS:000272310900034 ER PT J AU Hopkins, PE Serrano, JR AF Hopkins, Patrick E. Serrano, Justin R. TI Phonon localization and thermal rectification in asymmetric harmonic chains using a nonequilibrium Green's function formalism SO PHYSICAL REVIEW B LA English DT Article ID SIMULATION; TRANSPORT AB Thermal transport across one-dimensional atomic chains is studied using a harmonic nonequilibrium Green's function formalism in the ballistic phonon transport regime. Introducing a mass impurity in the chain and mass loading in the thermal contacts leads to interference of phonon waves, which can be manipulated by varying the magnitude of the loading. This shows that thermal rectification is tunable in a completely harmonic system. C1 [Hopkins, Patrick E.; Serrano, Justin R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Hopkins, PE (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM pehopki@sandia.gov FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX P. E. H. is grateful for support from the LDRD program office through Sandia National Laboratories. The authors would like to thank Chris Dames at U. C. Riverside for insightful discussions on thermal rectification. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 19 TC 21 Z9 21 U1 2 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2009 VL 80 IS 20 AR 201408 DI 10.1103/PhysRevB.80.201408 PG 4 WC Physics, Condensed Matter SC Physics GA 526RS UT WOS:000272311400028 ER PT J AU Jiang, C Lin, ZJ Zhao, YS AF Jiang, Chao Lin, Zhijun Zhao, Yusheng TI Superhard diamondlike BC5: A first-principles investigation SO PHYSICAL REVIEW B LA English DT Article DE ab initio calculations; boron compounds; crystal structure; density functional theory; total energy; X-ray diffraction ID GENERALIZED GRADIENT APPROXIMATION; STABILITY; SOLIDS; BORON AB We perform first-principles density-functional calculations to identify the possible crystal structure of a superhard diamondlike BC5 phase, which was recently synthesized under high-pressure and high-temperature conditions. Interestingly, we find only a small total-energy difference between the energetically most favorable ordered configuration and the fully disordered state of BC5 modeled using a 54-atom special quasirandom structure, indicating a weak ordering tendency. It is thus likely that the BC5 phase synthesized under experimental conditions is disordered in nature. Such a conclusion is further corroborated by the fact that the disordered BC5 structure displays volume-per-atom, bulk modulus and its pressure derivative, and simulated x-ray diffraction spectrum in good agreements with experiments. C1 [Jiang, Chao] Los Alamos Natl Lab, Struct Property Relat Grp MST 8, Los Alamos, NM 87545 USA. [Lin, Zhijun; Zhao, Yusheng] Los Alamos Natl Lab, LANSCE Lujan Neutron Scattering Ctr, Los Alamos, NM 87545 USA. RP Jiang, C (reprint author), Los Alamos Natl Lab, Struct Property Relat Grp MST 8, POB 1663, Los Alamos, NM 87545 USA. EM chao@lanl.gov; zlin@lanl.gov; yzhao@lanl.gov RI Jiang, Chao/A-2546-2011; Lujan Center, LANL/G-4896-2012; Lin, Zhijun/A-5543-2010; Jiang, Chao/D-1957-2017 OI Jiang, Chao/0000-0003-0610-6327 FU LANL; DOE [DEAC52-06NA25396] FX All calculations are performed using the parallel computing facilities at Los Alamos National Laboratory (LANL). This research is supported by LANL, which is operated by Los Alamos National Security LLC under DOE under Contract No. DEAC52-06NA25396. NR 35 TC 21 Z9 22 U1 4 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2009 VL 80 IS 18 AR 184101 DI 10.1103/PhysRevB.80.184101 PG 6 WC Physics, Condensed Matter SC Physics GA 526RO UT WOS:000272310900036 ER PT J AU Karapetrov, G Milosevic, MV Iavarone, M Fedor, J Belkin, A Novosad, V Peeters, FM AF Karapetrov, G. Milosevic, M. V. Iavarone, M. Fedor, J. Belkin, A. Novosad, V. Peeters, F. M. TI Transverse instabilities of multiple vortex chains in magnetically coupled NbSe2/permalloy superconductor/ferromagnet bilayers SO PHYSICAL REVIEW B LA English DT Article DE electromagnetic induction; ferromagnetic materials; flux-line lattice; Ginzburg-Landau theory; magnetic flux; niobium compounds; Permalloy; scanning tunnelling microscopy ID DOMAIN STRUCTURE; SUPERCONDUCTIVITY; HETEROSTRUCTURES; HYBRIDS; FILMS AB Using scanning tunneling microscopy and Ginzburg-Landau simulations, we explore vortex configurations in magnetically coupled NbSe2/permalloy superconductor/ferromagnet bilayer. The permalloy film with stripe domain structure induces periodic local magnetic induction in the superconductor, creating a series of pinning-antipinning channels for externally added magnetic flux quanta. Such laterally confined Abrikosov vortices form quasi-one-dimensional arrays (chains). The transitions between multichain states occur through propagation of kinks at the intermediate fields. At high fields we show that the system becomes nonlinear due to a change in both the number of vortices and the confining potential. The longitudinal instabilities of the resulting vortex structures lead to vortices "levitating" in the antipinning channels. C1 [Karapetrov, G.; Iavarone, M.; Fedor, J.; Belkin, A.; Novosad, V.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Milosevic, M. V.; Peeters, F. M.] Univ Antwerp, Dept Fys, B-2020 Antwerp, Belgium. [Fedor, J.] Slovak Acad Sci, Inst Elect Engn, Bratislava 84104, Slovakia. [Belkin, A.] IIT, Div Phys, Chicago, IL 60616 USA. RP Karapetrov, G (reprint author), Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. EM goran@anl.gov RI Milosevic, Milorad/H-9393-2012; Novosad, Valentyn/C-2018-2014; CMT, UAntwerpen Group/A-5523-2016; Novosad, V /J-4843-2015; Karapetrov, Goran/C-2840-2008 OI Karapetrov, Goran/0000-0003-1113-0137 FU Center for Nanoscale Materials; Electron Microscopy Center at Argonne National Laboratory; U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; Flemish Science Foundation [FWO-Vl]; Belgian Science Policy; JSPS/ESF-NES; ESF-AQDJJ network; Vlaanderen-USA bilateral program FX This work as well as the use of the Center for Nanoscale Materials and the Electron Microscopy Center at Argonne National Laboratory was supported by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. M. V. M. and F. M. P. acknowledge support from the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy, the JSPS/ESF-NES program, the ESF-AQDJJ network, and the Vlaanderen-USA bilateral program. NR 31 TC 32 Z9 32 U1 0 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2009 VL 80 IS 18 AR 180506 DI 10.1103/PhysRevB.80.180506 PG 4 WC Physics, Condensed Matter SC Physics GA 526RO UT WOS:000272310900031 ER PT J AU Lee, JS Vescovo, E Kao, CC Beaujour, JM Kent, AD Jang, H Kim, JY Park, JH Shim, JH AF Lee, J. -S. Vescovo, E. Kao, C. -C. Beaujour, J. -M. Kent, A. D. Jang, H. Kim, J. -Y. Park, J. -H. Shim, J. H. TI Role of the nonmagnetic layer in determining the Landeacute g-factor in a spin-transfer system SO PHYSICAL REVIEW B LA English DT Article DE charge transfer states; cobalt; copper; electronic structure; ferromagnetic materials; ferromagnetic resonance; g-factor; interface magnetism; Landau levels; magnetic circular dichroism; magnetic moments; magnetic structure; magnetic thin films; metallic thin films; nickel; palladium; reflectivity; spin systems; valence bands ID CIRCULAR-DICHROISM; THERMAL AGITATION; MAGNETIZATION; DRIVEN; CONDUCTORS AB The microscopic origin of the Landeacute g-factor in two ferromagnetic/nonmagnetic (FM/NM) bilayer systems-Co/Cu and Ni/Pd-has been investigated using x-ray magnetic circular dichroism, resonant magnetic reflectivity, and band calculations. The FM/NM bilayer represents the building block of any complete spin-transfer structure (FM1/NM/FM2). The valence electronic structure is profoundly altered over a finite length across the FM/NM interface. A considerable charge transfer takes place from the NM to the FM material. This results in an enhancement of the orbital-to-spin magnetic moment ratio in the FM layer and an induced magnetic polarization in the NM layer. Both effects turn out to be crucial for a correct understanding of the g-factor in spin-transfer systems. C1 [Lee, J. -S.; Vescovo, E.; Kao, C. -C.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Beaujour, J. -M.; Kent, A. D.] NYU, Dept Phys, New York, NY 10003 USA. [Jang, H.; Kim, J. -Y.; Park, J. -H.] Pohang Univ Sci & Technol, Dept Phys & PAL, Pohang 790784, South Korea. [Shim, J. H.] Pohang Univ Sci & Technol, Dept Chem, Pohang 790784, South Korea. RP Lee, JS (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RI Shim, Ji Hoon/F-5375-2013 NR 25 TC 6 Z9 6 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2009 VL 80 IS 18 AR 180403 DI 10.1103/PhysRevB.80.180403 PG 4 WC Physics, Condensed Matter SC Physics GA 526RO UT WOS:000272310900008 ER PT J AU Li, M Wang, CZ Hao, SG Kramer, MJ Ho, KM AF Li, Maozhi Wang, C. Z. Hao, S. G. Kramer, M. J. Ho, K. M. TI Structural heterogeneity and medium-range order in ZrxCu100-x metallic glasses SO PHYSICAL REVIEW B LA English DT Article DE copper alloys; glass structure; metallic glasses; molecular dynamics method; X-ray diffraction; zirconium alloys ID TOTAL-ENERGY CALCULATIONS; MOLECULAR-DYNAMICS; ATOMIC PACKING; LIQUIDS; MODEL; TRANSITION; GEOMETRY; ALLOYS AB Realistic three-dimensional atomistic structures of ZrxCu100-x (x=35,50) bulk metallic glasses are constructed using a combination of x-ray diffraction experiment and computational modeling. A cluster correlation method is developed to analyze the medium-range order in amorphous systems. We show that the glass systems consist of a stringlike backbone network formed by icosahedral clusters and a liquidlike structure filling in the remaining space. These findings are consistent with those obtained from our independent classical molecular-dynamics studies with embedded-atom method potential for ZrCu system. Such a heterogeneous structure provides a fundamental structural perspective of dynamical heterogeneity and glass formation. C1 [Li, Maozhi] Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China. [Li, Maozhi; Wang, C. Z.; Hao, S. G.; Kramer, M. J.; Ho, K. M.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. RP Li, M (reprint author), Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China. EM wangcz@ameslab.gov RI Hao, Shaogang/E-3527-2010; 石, 源/D-5929-2012; ruc, phy/E-4170-2012 NR 39 TC 104 Z9 105 U1 9 U2 55 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2009 VL 80 IS 18 AR 184201 DI 10.1103/PhysRevB.80.184201 PG 7 WC Physics, Condensed Matter SC Physics GA 526RO UT WOS:000272310900051 ER PT J AU Mascaraque, A Aballe, L Marco, JF Mentes, TO El Gabaly, F Klein, C Schmid, AK McCarty, KF Locatelli, A de la Figuera, J AF Mascaraque, A. Aballe, L. Marco, J. F. Mentes, T. O. El Gabaly, F. Klein, C. Schmid, A. K. McCarty, K. F. Locatelli, A. de la Figuera, J. TI Measuring the magnetization of three monolayer thick Co islands and films by x-ray dichroism SO PHYSICAL REVIEW B LA English DT Article DE cobalt; magnetic circular dichroism; magnetic domains; magnetic moments; magnetic thin films; magnetisation; nanostructured materials; ruthenium; spin dynamics; X-ray absorption spectra; X-ray photoelectron spectra ID CO/RU STRAINED SUPERLATTICES; CIRCULAR-DICHROISM; ANISOTROPY; GROWTH AB Co islands and films are characterized by x-ray magnetic circular dichroism photoemission electron microscopy. The spatial resolution capabilities of the technique together with atomic growth control permit obtaining perfectly flat triangular islands with a given thickness (3 ML), very close to an abrupt spin-reorientation transition. The magnetic domain configurations are found to depend on island size: while small islands can be magnetized in a single-domain state, larger islands show more complex patterns. Furthermore, the magnetization pattern of the larger islands presents a common chirality. By means of dichroic spectromicroscopy at the Co L absorption edges, an experimental estimate of the ratio of the spin and orbital magnetic moment for three monolayer thick films is obtained. C1 [Mascaraque, A.] Univ Complutense Madrid, Dept Fis Mat, E-28040 Madrid, Spain. [Aballe, L.; Mentes, T. O.; Locatelli, A.] Elettra Sincrotrone SCpA, Trieste, Italy. [Marco, J. F.; de la Figuera, J.] CSIC, Inst Quim Fis Rocasolano, Dept Sistemas Baja Dimensionalidad Superficies &, E-28006 Madrid, Spain. [El Gabaly, F.; McCarty, K. F.] Sandia Natl Labs, Dept Mat Phys, Livermore, CA 94550 USA. [Klein, C.; Schmid, A. K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [de la Figuera, J.] Univ Autonoma Madrid, Ctr Microanal Mat, E-28049 Madrid, Spain. RP Mascaraque, A (reprint author), Univ Complutense Madrid, Dept Fis Mat, E-28040 Madrid, Spain. RI de la Figuera, Juan/E-7046-2010; McCarty, Kevin/F-9368-2012; Mascaraque, Arantzazu/D-9504-2012; Marco, Jose/N-3176-2014; OI de la Figuera, Juan/0000-0002-7014-4777; McCarty, Kevin/0000-0002-8601-079X; Mascaraque, Arantzazu/0000-0002-2614-2862; Marco, Jose/0000-0002-5147-1449; Mentes, Tevfik Onur/0000-0003-0413-9272; Locatelli, Andrea/0000-0002-8072-7343 FU U.S. Department of Energy [DE-AC04-94AL85000, DE-AC02-05CH11231]; Spanish Ministry of Education and Science [MAT2006-13149-C02-02]; Comunidad Autonoma de Madrid; CSIC [CCG07-CSIC-MAT-2030, S-0505/MAT/0194] FX This research was partly supported by the U.S. Department of Energy under Contracts No. DE-AC04-94AL85000 and No. DE-AC02-05CH11231, by the Spanish Ministry of Education and Science under Project No. MAT2006-13149-C02-02, and by the Comunidad Autonoma de Madrid and the CSIC under Projects No. CCG07-CSIC-MAT-2030 and No. S-0505/MAT/0194. NR 29 TC 1 Z9 1 U1 0 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2009 VL 80 IS 17 AR 172401 DI 10.1103/PhysRevB.80.172401 PG 4 WC Physics, Condensed Matter SC Physics GA 526RL UT WOS:000272310400008 ER PT J AU Masuda, T Kakurai, K Zheludev, A AF Masuda, T. Kakurai, K. Zheludev, A. TI Spin dimers in the quantum ferrimagnet Cu2Fe2Ge4O13 under staggered and random magnetic fields SO PHYSICAL REVIEW B LA English DT Article DE copper compounds; ferrimagnetic materials; iron compounds; magnetic structure; neutron diffraction; spin systems; triplet state; Zeeman effect ID BOSE-EINSTEIN CONDENSATION; TRANSITION; HELIUM AB We study S=1/2 dimer excitation in a coupled chain and dimer compound Cu2Fe2Ge4O13 by inelastic neutron-scattering technique. The Zeeman split of the dimer triplet by a staggered field is observed at low temperature. With the increase in temperature, the effect of a random field is detected by a drastic broadening of the triplet excitation. Basic dynamics of dimer in the staggered and random fields are experimentally identified in Cu2Fe2Ge4O13. C1 [Masuda, T.] Yokohama City Univ, Dept Nanosyst Sci, Kanagawa 2360027, Japan. [Zheludev, A.] Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. [Kakurai, K.] JAEA, Quantum Beam Sci Div, Ibaraki 3191195, Japan. [Zheludev, A.] ETH, Inst Solid State Phys, CH-8093 Zurich, Switzerland. [Zheludev, A.] ETH, Neutron Scattering Lab, CH-5232 Villigen, Switzerland. [Zheludev, A.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. RP Masuda, T (reprint author), Yokohama City Univ, Dept Nanosyst Sci, Kanagawa 2360027, Japan. EM tmasuda@yokohama-cu.ac.jp FU Yamada Science Foundation; Asahi glass foundation; Ministry of Education, Culture, Sports, Science and Technology of Japan [19740215, 19052004] FX M. Matsumoto is greatly appreciated for fruitful discussion. This work was partly supported by Yamada Science Foundation, Asahi glass foundation, and Grant-in-Aid for Scientific Research (Grants No. 19740215 and No. 19052004) of Ministry of Education, Culture, Sports, Science and Technology of Japan. NR 22 TC 5 Z9 5 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2009 VL 80 IS 18 AR 180412 DI 10.1103/PhysRevB.80.180412 PG 4 WC Physics, Condensed Matter SC Physics GA 526RO UT WOS:000272310900017 ER PT J AU Mlinar, V Zunger, A AF Mlinar, Vladan Zunger, Alex TI Internal electronic structure and fine structure of multiexcitons in semiconductor quantum dots SO PHYSICAL REVIEW B LA English DT Article ID EXCITONIC ARTIFICIAL ATOMS; NANOSTRUCTURES; ENERGY AB We perform a detailed theoretical study of the characteristic internal electronic structure of various multiexcitons (N(h),N(e)), where N(h) is number of holes and N(e) is the number of electrons in the self-assembled semiconductor quantum dots (QDs). For each of the leading (N(h),N(e)) excitonic complexes we start from the single-particle configuration (e.g., a specific occupation pattern of S and P electron and hole levels by a few carriers) and then show the many-particle multiplet levels for the initial state of emission (N(h),N(e)) and the final state of emission (N(h)-1, N(e)-1). We denote which states are dark and which are bright; the order and multiplicity, the leading single-particle character of each multiplet state, and the fine-structure splittings. These are of general utility. We also show explicit numerical values for distances between various transitions for four specific QDs. Here the presented information is important and potentially useful for a few reasons: (i) the information serves as a guide for spectroscopic interpretation; (ii) the information reveals non-Aufbau cases, where the dot does not have Aufbau occupation of carriers' levels; (iii) the information shows which transitions are sensitive to random-alloy fluctuations (if the dot is alloyed) and importance of this effect. We show that because of such alloy information, distances between peaks cannot be used to gauge structural information. C1 [Mlinar, Vladan; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Mlinar, V (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM alex.zunger@nrel.gov RI Zunger, Alex/A-6733-2013 FU U.S. Department of Energy, Office of Science, under NREL [DE-AC36-08GO28308] FX This work was funded by the U.S. Department of Energy, Office of Science, under NREL Contract No. DE-AC36-08GO28308. We thank Patanjali Kambhampati for comments on the paper. NR 33 TC 20 Z9 20 U1 0 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2009 VL 80 IS 20 AR 205311 DI 10.1103/PhysRevB.80.205311 PG 15 WC Physics, Condensed Matter SC Physics GA 526RS UT WOS:000272311400069 ER PT J AU Nukala, PKVV Maier, TA Summers, MS Alvarez, G Schulthess, TC AF Nukala, Phani K. V. V. Maier, Thomas A. Summers, Michael S. Alvarez, Gonzalo Schulthess, Thomas C. TI Fast update algorithm for the quantum Monte Carlo simulation of the Hubbard model SO PHYSICAL REVIEW B LA English DT Article DE Green's function methods; Hubbard model; Monte Carlo methods; strongly correlated electron systems ID MEAN-FIELD THEORY; FERMION SYSTEMS AB This paper presents an efficient algorithm for computing the transition probability in auxiliary field quantum Monte Carlo simulations of strongly correlated electron systems using a Hubbard model. This algorithm is based on a low rank updating of the underlying linear algebra problem, and results in significant computational savings. The computational complexity of computing the transition probability and Green's function update reduces to O(k(2)) during the kth step, where k is the number of accepted spin flips, and results in an algorithm that is faster than the competing delayed update algorithm. Moreover, this algorithm is orders of magnitude faster than traditional algorithms that use naive updating of the Green's function matrix. C1 [Nukala, Phani K. V. V.; Maier, Thomas A.; Summers, Michael S.; Alvarez, Gonzalo; Schulthess, Thomas C.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Schulthess, Thomas C.] ETH, Inst Theoret Phys, CH-8093 Zurich, Switzerland. RP Nukala, PKVV (reprint author), Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RI Maier, Thomas/F-6759-2012 OI Maier, Thomas/0000-0002-1424-9996 NR 15 TC 8 Z9 8 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2009 VL 80 IS 19 AR 195111 DI 10.1103/PhysRevB.80.195111 PG 8 WC Physics, Condensed Matter SC Physics GA 526RP UT WOS:000272311000043 ER PT J AU Plucinski, L Zhao, Y Schneider, CM Sinkovic, B Vescovo, E AF Plucinski, L. Zhao, Yuan Schneider, C. M. Sinkovic, B. Vescovo, E. TI Surface electronic structure of ferromagnetic Fe(001) SO PHYSICAL REVIEW B LA English DT Article DE Brillouin zones; density functional theory; Fermi level; ferromagnetic materials; iron; localised states; magnetic epitaxial layers; metallic epitaxial layers; photoelectron spectra; resonant states; surface states; tunnelling magnetoresistance ID ROOM-TEMPERATURE; FE(100); STATES; FE; SPECTROSCOPY; POLARIZATION; MGO; MAGNETORESISTANCE; ADSORPTION; JUNCTIONS AB A thorough investigation of the surface electronic structure of ferromagnetic Fe(100) films, epitaxially grown on single-crystal W(100), has been conducted using spin- and angle-resolved photoemission combined with state-of-the-art density-functional theory slab computations. The dispersion of the surface emission close to the Fermi level has been assessed quantitatively. The experimental results are in a good agreement with the calculations and, in particular, the presence of a minority surface state with d(xz+yz) character along the Gamma X high-symmetry direction is unambiguously established. Additionally, the calculations predict the existence of a different unoccupied surface state localized at Gamma. The existence of the related minority interface resonance near the Fermi edge and outside of the surface-Brillouin-zone center Gamma is believed to control the tunneling magnetoresistance in Fe/MgO/Fe(001) for very thin MgO spacers thus our results serve as indirect confirmation to these predictions. C1 [Plucinski, L.; Zhao, Yuan; Sinkovic, B.] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. [Plucinski, L.; Schneider, C. M.] KFA Julich GmbH, Forschungszentrum, Inst Festkorperforsch IFF 9, D-52425 Julich, Germany. [Vescovo, E.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Plucinski, L (reprint author), Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. EM l.plucinski@fz-juelich.de RI Plucinski, Lukasz/J-4987-2013; Schneider, Claus/H-7453-2012 OI Plucinski, Lukasz/0000-0002-6865-7274; Schneider, Claus/0000-0002-3920-6255 FU NSF [ECS-0300235]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX We would like to thank the NSLS staff for the technical support during the experiments. Special thanks to James Ablett for carefully reading the manuscript. This work was supported by NSF under Grant No. ECS-0300235. The National Synchrotron Light Source, Brookhaven National Laboratory, is funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 30 TC 9 Z9 9 U1 1 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2009 VL 80 IS 18 AR 184430 DI 10.1103/PhysRevB.80.184430 PG 6 WC Physics, Condensed Matter SC Physics GA 526RO UT WOS:000272310900088 ER PT J AU Prozorov, R Tanatar, MA Ni, N Kreyssig, A Nandi, S Bud'ko, SL Goldman, AI Canfield, PC AF Prozorov, R. Tanatar, M. A. Ni, N. Kreyssig, A. Nandi, S. Bud'ko, S. L. Goldman, A. I. Canfield, P. C. TI Intrinsic pinning on structural domains in underdoped single crystals of Ba(Fe1-xCox)(2)As-2 SO PHYSICAL REVIEW B LA English DT Article DE barium compounds; cobalt compounds; critical current density (superconductivity); doping; flux pinning; iron compounds; magnetic anisotropy; magnetic domain walls; phase diagrams; superconducting critical field; superconducting materials; superconducting transition temperature; X-ray diffraction ID SUPERCONDUCTIVITY; VORTICES AB Critical current density was studied in single crystals of Ba(Fe1-xCox)(2)As-2 for the values of x spanning the entire doping phase diagram. A noticeable enhancement was found for slightly underdoped crystals with the peak at x=0.058. Using a combination of polarized-light imaging, x-ray diffraction and magnetic measurements we associate this behavior with the intrinsic pinning on structural domains in the orthorhombic phase. Domain walls extend throughout the sample thickness in the direction of vortices and act as extended pinning centers. With the increasing x domain structure becomes more intertwined and fine due to a decrease in the orthorhombic distortion. This results in the energy landscape with mazelike spatial modulations favorable for pinning. This finding shows that iron-based pnictide superconductors, characterized by high values of the transition temperature, high upper critical fields, and low anisotropy may intrinsically have relatively high critical current densities. C1 [Prozorov, R.; Tanatar, M. A.; Ni, N.; Kreyssig, A.; Nandi, S.; Bud'ko, S. L.; Goldman, A. I.; Canfield, P. C.] Ames Lab, Ames, IA 50011 USA. [Prozorov, R.; Ni, N.; Bud'ko, S. L.; Goldman, A. I.; Canfield, P. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Prozorov, R (reprint author), Ames Lab, Ames, IA 50011 USA. EM prozorov@ameslab.gov RI Prozorov, Ruslan/A-2487-2008; Canfield, Paul/H-2698-2014 OI Prozorov, Ruslan/0000-0002-8088-6096; FU Department of Energy- Basic Energy Sciences [DE- AC02- 07CH11358]; U. S. DOE [DE- AC02- 06CH11357] FX We thank C. Martin and V. G. Kogan for discussions. Work at the Ames Laboratory and at the MUCAT sector was supported by the Department of Energy- Basic Energy Sciences under Contract No. DE- AC02- 07CH11358. Use of the Advanced Photon Source was supported by U. S. DOE under Contract No. DE- AC02- 06CH11357. R. P. acknowledges support from Alfred P. Sloan Foundation. NR 28 TC 69 Z9 69 U1 0 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2009 VL 80 IS 17 AR 174517 DI 10.1103/PhysRevB.80.174517 PG 5 WC Physics, Condensed Matter SC Physics GA 526RL UT WOS:000272310400088 ER PT J AU Quijano, R de Coss, R Singh, DJ AF Quijano, Ramiro de Coss, Romeo Singh, David J. TI Electronic structure and energetics of the tetragonal distortion for TiH2, ZrH2, and HfH2: A first-principles study SO PHYSICAL REVIEW B LA English DT Article DE ab initio calculations; Brillouin zones; crystal symmetry; electronic density of states; Fermi level; hafnium compounds; spin-orbit interactions; titanium compounds; zirconium compounds ID BISTABLE CRYSTAL-STRUCTURE; ZIRCONIUM HYDRIDE; BAND-STRUCTURE; TITANIUM; DIHYDRIDES; PHASE; EMBRITTLEMENT; SINGULARITY; INSTABILITY; STABILITY AB The electronic structure and energetics of the tetragonal distortion for the fluorite-type dihydrides TiH2, ZrH2, and HfH2 are studied by means of highly accurate first-principles total-energy calculations. For HfH2, in addition to the calculations using the scalar relativistic (SR) approximation, calculations including the spin-orbit coupling have also been performed. The results show that TiH2, ZrH2, and HfH2 in the cubic phase are unstable against tetragonal strain. For the three systems, the total energy shows two minima as a function of the c/a ratio with the lowest-energy minimum at c/a < 1 in agreement with the experimental observations. The band structure of TiH2, ZrH2, and HfH2 (SR) around the Fermi level shows two common features along the two major symmetry directions of the Brillouin zone, Gamma-L and Gamma-K, a nearly flat doubly degenerate band, and a van Hove singularity, respectively. In cubic HfH2 the spin-orbit coupling lifts the degeneracy of the partially filled bands in the Gamma-L path, while the van Hove singularity in the Gamma-K path remains unchanged. The density of states of the three systems in the cubic phase shows a sharp peak at the Fermi level. We found that the tetragonal distortion produces a strong reduction in the density of states at the Fermi level resulting mainly from the splitting of the doubly-degenerate bands in the Gamma-L direction and the shift of the van Hove singularity to above the Fermi level. The validity of the Jahn-Teller model in explaining the tetragonal distortion in this group of dihydrides is discussed. C1 [Quijano, Ramiro; de Coss, Romeo] IPN, Ctr Invest & Estudios Avanzados, Dept Fis Aplicada, Unidad Merida, Merida 97310, Yucatan, Mexico. [Singh, David J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Quijano, R (reprint author), IPN, Ctr Invest & Estudios Avanzados, Dept Fis Aplicada, Unidad Merida, AP 73 Cordemex, Merida 97310, Yucatan, Mexico. RI Singh, David/I-2416-2012; CinvesNano-Merida, CinvesNano-Merida/C-5672-2013 FU CONACYT-Mexico [25794-J]; Department of Energy, Division of Materials Sciences and Engineering FX The authors would like to thank Gerko Oskam, Edgar Martinez-Guerra, and Omar de la Pena for a critical reading of the manuscript. One of the authors (RQ) gratefully acknowledges Consejo Nacional de Ciencia y Tecnolog a (CONACYT, Mexico) and CINVESTAV. This research was partially supported by CONACYT-Mexico under Grant No. 25794-J. Work at ORNL was supported by the Department of Energy, Division of Materials Sciences and Engineering. NR 42 TC 24 Z9 24 U1 2 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2009 VL 80 IS 18 AR 184103 DI 10.1103/PhysRevB.80.184103 PG 8 WC Physics, Condensed Matter SC Physics GA 526RO UT WOS:000272310900038 ER PT J AU Rameau, JD Yang, HB Gu, GD Johnson, PD AF Rameau, J. D. Yang, H. -B. Gu, G. D. Johnson, P. D. TI Coupling of low-energy electrons in the optimally doped Bi2Sr2CaCu2O8+delta superconductor to an optical phonon mode SO PHYSICAL REVIEW B LA English DT Article DE bismuth compounds; calcium compounds; Fermi level; high-temperature superconductors; phonons; photoemission; strontium compounds ID COPPER-OXIDE SUPERCONDUCTORS; RAMAN-SCATTERING AB Laser-based photoemission with photons of energy 6 eV is used to examine the fine details of the very low-energy electron dispersion and associated dynamics in the nodal region of optimally doped Bi2212. A "kink" in the dispersion in the immediate vicinity of the Fermi energy is associated with scattering from an optical phonon previously identified in Raman studies. The identification of this phonon as the appropriate mode is confirmed by comparing the scattering rates observed experimentally with the results of calculated scattering rates based on the properties of the phonon mode. C1 [Rameau, J. D.; Yang, H. -B.; Gu, G. D.; Johnson, P. D.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Rameau, JD (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RI Gu, Genda/D-5410-2013 OI Gu, Genda/0000-0002-9886-3255 FU Department of Energy [DE-AC02-98CH10886] FX The authors would like to acknowledge useful discussions with Chris Homes, Phil Allen, and Tony Valla. The research work described in this paper was supported by the Department of Energy under Contract No. DE-AC02-98CH10886. NR 24 TC 13 Z9 13 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2009 VL 80 IS 18 AR 184513 DI 10.1103/PhysRevB.80.184513 PG 7 WC Physics, Condensed Matter SC Physics GA 526RO UT WOS:000272310900101 ER PT J AU Ristivojevic, Z AF Ristivojevic, Zoran TI Superconducting film with randomly magnetized dots: A realization of the two-dimensional XY model with random phase shifts SO PHYSICAL REVIEW B LA English DT Article DE flux pinning; magnetisation; superconducting thin films; X-Y model ID KOSTERLITZ-THOULESS TRANSITION; JOSEPHSON-JUNCTION ARRAYS; DISORDER; GLASS; SYSTEMS; FIELD AB We consider a thin superconducting film with randomly magnetized dots on top of it. The dots produce a disordered pinning potential for vortices in the film. We show that for dots with permanent and random magnetization normal or parallel to the film surface, our system is an experimental realization of the two-dimensional XY model with random phase shifts. The low-temperature superconducting phase, that exists without magnetic dots, survives in the presence of magnetic dots for sufficiently small disorder. C1 [Ristivojevic, Zoran] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany. [Ristivojevic, Zoran] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Ristivojevic, Z (reprint author), Univ Cologne, Inst Theoret Phys, Zulpicher Str 77, D-50937 Cologne, Germany. FU DFG [NA222/5-2, SFB 608] FX This work is financially supported by the DFG under the Grant No. NA222/5-2 and through SFB 608. The author thanks T. Nattermann and V. Pokrovsky for discussions and A. Petkovic for reading the manuscript and helpful suggestions. NR 41 TC 2 Z9 2 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2009 VL 80 IS 17 AR 174528 DI 10.1103/PhysRevB.80.174528 PG 5 WC Physics, Condensed Matter SC Physics GA 526RL UT WOS:000272310400099 ER PT J AU Sheehy, DE Schmalian, J AF Sheehy, Daniel E. Schmalian, Joerg TI Optical transparency of graphene as determined by the fine-structure constant SO PHYSICAL REVIEW B LA English DT Article DE fine structure; graphene; optical conductivity; transparency ID FERMI-LIQUID BEHAVIOR AB The observed 97.7% optical transparency of graphene has been linked to the value 1/137 of the fine structure constant, by using results for noninteracting Dirac fermions. The agreement in three significant figures requires an explanation for the apparent unimportance of the Coulomb interaction. Using arguments based on Ward identities, the leading corrections to the optical conductivity due to the Coulomb interactions are correctly computed (resolving a theoretical dispute) and shown to amount to only 1%-2%, corresponding to 0.03%-0.04% in the transparency. C1 [Sheehy, Daniel E.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Schmalian, Joerg] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Schmalian, Joerg] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Sheehy, DE (reprint author), Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. RI Schmalian, Joerg/H-2313-2011 FU Ames Laboratory [DE-AC02-07CH11358]; Louisiana Board of Regents [LEQSF (2008-11)-RD-A-10] FX We gratefully acknowledge useful discussions with I. Vekhter, as well as the Aspen Center for Physics where part of this work was carried out. This research was supported by the Ames Laboratory, operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358, and by the Louisiana Board of Regents, under Grant No. LEQSF (2008-11)-RD-A-10. NR 22 TC 54 Z9 54 U1 2 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2009 VL 80 IS 19 AR 193411 DI 10.1103/PhysRevB.80.193411 PG 4 WC Physics, Condensed Matter SC Physics GA 526RP UT WOS:000272311000030 ER PT J AU Stanek, CR Jiang, C Uberuaga, BP Sickafus, KE Cleave, AR Grimes, RW AF Stanek, C. R. Jiang, C. Uberuaga, B. P. Sickafus, K. E. Cleave, A. R. Grimes, R. W. TI Predicted structure and stability of A(4)B(3)O(12) delta-phase compositions SO PHYSICAL REVIEW B LA English DT Article DE crystal structure; density functional theory; holmium compounds; Monte Carlo methods; scandium compounds; thermal stability; thermodynamics ID INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; CRYSTAL-STRUCTURE; X-RAY; PYROCHLORE STRUCTURE; NEUTRON-DIFFRACTION; SEMICONDUCTOR TRANSITION; RADIATION TOLERANCE; SOLID-SOLUTIONS AB A combination of atomistic simulation techniques has been employed to predict ordered structures for a series of A(4)B(3)O(12) delta-phase compounds, where A is a 3+ cation ranging in size from Sc3+ to Ho3+ and B is a 4+ cation ranging from Ti4+ to Zr4+. Experimentally, a fully ordered cation structure has yet to be resolved for any of these compounds. Monte Carlo energy-minimization calculations using short-range pair potentials identified three low-energy arrangements of A(3+) and B4+ cations. The details of these three structures were analyzed with the layer motif method. To quantitatively determine the delta-phase structure of each composition, the three configurations were reevaluated with density-functional theory. We also used special quasirandom structures to compare the ordered low-energy configurations to cation disorder. For all compositions considered, we find that at least one of the three ordered structures is lower in energy than the disordered structure, suggesting the thermodynamic stability of an ordered phase. Of the three ordered structures identified by this approach, one has not been identified previously in the literature for any composition. In addition, we discuss the stability of delta-phase compounds with respect to other "ABO(4-x)" fluorite-derivative compositions and predict the structure of compositions for which none has been reported. C1 [Stanek, C. R.; Jiang, C.; Uberuaga, B. P.; Sickafus, K. E.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Cleave, A. R.; Grimes, R. W.] Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2BP, England. RP Stanek, CR (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM stanek@lanl.gov RI Jiang, Chao/A-2546-2011; Jiang, Chao/D-1957-2017 OI Jiang, Chao/0000-0003-0610-6327 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering [DE-AC52-06NA25396] FX This work was sponsored by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering, and carried out in part for the UKERC materials programme. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U. S. Department of Energy under Contract No. DE-AC52-06NA25396. NR 127 TC 18 Z9 18 U1 3 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2009 VL 80 IS 17 AR 174101 DI 10.1103/PhysRevB.80.174101 PG 11 WC Physics, Condensed Matter SC Physics GA 526RL UT WOS:000272310400019 ER PT J AU Takamura, Y Yang, F Kemik, N Arenholz, E Biegalski, MD Christen, HM AF Takamura, Y. Yang, F. Kemik, N. Arenholz, E. Biegalski, M. D. Christen, H. M. TI Competing interactions in ferromagnetic/antiferromagnetic perovskite superlattices SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetic materials; exchange interactions (electron); ferromagnetic materials; galvanomagnetic effects; lanthanum compounds; magnetic circular dichroism; magnetic multilayers; magnetisation; strontium compounds; superlattices ID X-RAY-ABSORPTION; COLOSSAL MAGNETORESISTANCE; MAGNETIC-PROPERTIES; THIN-FILMS; INTERFACES; EXCHANGE; OXIDES; HETEROINTERFACE; TRANSITION AB Soft x-ray magnetic dichroism, magnetization, and magnetotransport measurements demonstrate that the competition between different magnetic interactions (exchange coupling, electronic reconstruction, and long-range interactions) in La(0.7)Sr(0.3)FeO(3)(LSFO)/La(0.7)Sr(0.3)MnO(3)(LSMO) perovskite oxide superlattices leads to unexpected functional properties. The antiferromagnetic order parameter in LSFO and ferromagnetic order parameter in LSMO show a dissimilar dependence on sublayer thickness and temperature, illustrating the high degree of tunability in these artificially layered materials. C1 [Takamura, Y.; Yang, F.; Kemik, N.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Arenholz, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Biegalski, M. D.; Christen, H. M.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Takamura, Y (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. RI Christen, Hans/H-6551-2013 OI Christen, Hans/0000-0001-8187-7469 NR 37 TC 28 Z9 28 U1 2 U2 37 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2009 VL 80 IS 18 AR 180417 DI 10.1103/PhysRevB.80.180417 PG 4 WC Physics, Condensed Matter SC Physics GA 526RO UT WOS:000272310900022 ER PT J AU Tempere, J Casteels, W Oberthaler, MK Knoop, S Timmermans, E Devreese, JT AF Tempere, J. Casteels, W. Oberthaler, M. K. Knoop, S. Timmermans, E. Devreese, J. T. TI Feynman path-integral treatment of the BEC-impurity polaron SO PHYSICAL REVIEW B LA English DT Article DE Bose-Einstein condensation; effective mass; free energy; phonons; polarons ID SLOW ELECTRONS; LIQUID-HELIUM; ABSORPTION; MOBILITY; CRYSTAL; SURFACE; ENERGY; STATE; FILMS AB The description of an impurity atom in a Bose-Einstein condensate can be cast in the form of Froumlhlich's polaron Hamiltonian, where the Bogoliubov excitations play the role of the phonons. An expression for the corresponding polaronic coupling strength is derived, relating the coupling strength to the scattering lengths, the trap size and the number of Bose condensed atoms. This allows to identify several approaches to reach the strong-coupling limit for the quantum gas polarons, whereas this limit was hitherto experimentally inaccessible in solids. We apply Feynman's path-integral method to calculate for all coupling strengths the polaronic shift in the free energy and the increase in the effective mass. The effect of temperature on these quantities is included in the description. We find similarities to the acoustic polaron results and indications of a transition between free polarons and self-trapped polarons. The prospects, based on the current theory, of investigating the polaron physics with ultracold gases are discussed for lithium atoms in a sodium condensate. C1 [Tempere, J.; Casteels, W.; Devreese, J. T.] Univ Antwerp, TFVS, B-2020 Antwerp, Belgium. [Tempere, J.] Harvard Univ, Lyman Lab Phys, Cambridge, MA 02138 USA. [Oberthaler, M. K.; Knoop, S.] Univ Heidelberg, Kirchhoff Inst Phys, D-69120 Heidelberg, Germany. [Timmermans, E.] Los Alamos Natl Lab, Theoret Div T4, Los Alamos, NM 87545 USA. RP Tempere, J (reprint author), Univ Antwerp, TFVS, Groenenborgerlaan 171, B-2020 Antwerp, Belgium. RI Tempere, Jacques/D-9199-2012; Knoop, Steven/N-6919-2013 OI Knoop, Steven/0000-0002-5090-6295 NR 36 TC 71 Z9 72 U1 0 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2009 VL 80 IS 18 AR 184504 DI 10.1103/PhysRevB.80.184504 PG 8 WC Physics, Condensed Matter SC Physics GA 526RO UT WOS:000272310900092 ER PT J AU Weck, G Eggert, J Loubeyre, P Desbiens, N Bourasseau, E Maillet, JB Mezouar, M Hanfland, M AF Weck, G. Eggert, J. Loubeyre, P. Desbiens, N. Bourasseau, E. Maillet, J. -B. Mezouar, M. Hanfland, M. TI Phase diagrams and isotopic effects of normal and deuterated water studied via x-ray diffraction up to 4.5 GPa and 500 K SO PHYSICAL REVIEW B LA English DT Article DE heavy water; high-pressure effects; isotope shifts; liquid structure; phase diagrams; X-ray diffraction ID LIQUID WATER; PRESSURE; EQUATION; CALIBRATION; SCATTERING; DENSITY; STATE AB We present synchrotron x-ray measurements in a diamond anvil cell of the molecular structure factor of H(2)O and D(2)O fluids up to 4.5 GPa and 500 K. We observe large changes in the structure factor and a dramatic increase in the oxygen coordination number over a 2 GPa pressure range. A P-T diagram of the nearest-neighbor oxygen coordination number, n(OO), is disclosed. Also, a counterintuitive isotopic shift of the variation of n(OO) with pressure is observed. C1 [Weck, G.; Loubeyre, P.; Desbiens, N.; Bourasseau, E.; Maillet, J. -B.] DIF, DAM, CEA, F-91297 Arpajon, France. [Eggert, J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Mezouar, M.; Hanfland, M.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. RP Weck, G (reprint author), DIF, DAM, CEA, F-91297 Arpajon, France. RI Desbiens, Nicolas/B-9568-2009 NR 24 TC 31 Z9 31 U1 0 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2009 VL 80 IS 18 AR 180202 DI 10.1103/PhysRevB.80.180202 PG 4 WC Physics, Condensed Matter SC Physics GA 526RO UT WOS:000272310900003 ER PT J AU Witte, C Findlay, SD Oxley, MP Rehr, JJ Allen, LJ AF Witte, C. Findlay, S. D. Oxley, M. P. Rehr, J. J. Allen, L. J. TI Theory of dynamical scattering in near-edge electron energy loss spectroscopy SO PHYSICAL REVIEW B LA English DT Article DE electron collisions; electron energy loss spectra; nickel compounds; scanning-transmission electron microscopy ID INNER-SHELL IONIZATION; ANISOTROPIC MATERIALS; INELASTIC-SCATTERING; K-SHELL; ORIENTATION DEPENDENCE; DIPOLE APPROXIMATION; FINE-STRUCTURE; REAL-SPACE; PROBE CONVERGENCE; LOSS SPECTRA AB Beyond chemical information, the fine structure of an absorption edge gives bonding and electronic information. We provide a synthesis of fine structure and dynamical scattering theory, allowing the exploration of the effects of dynamical scattering on the measured fine structure. We discuss the effects of experimental geometry in the context of site-specific near-edge spectroscopy of NiAl2O4 and find that large detectors serve to localize the inelastic signal and may be preferable to the small off-axis detectors currently used. We then explore the possibility of measuring changes in fine structure within a unit cell using scanning transmission electron microscopy. We demonstrate that, in principle, it is possible to measure a subtle change in the fine structure of the O K edge in SrTiO3 as the probe is scanned across the unit cell. We explore the best experimental conditions to achieve this and find that large probe-forming and detector apertures help to localize the signal to the atomic sites. C1 [Witte, C.; Allen, L. J.] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia. [Findlay, S. D.] Univ Tokyo, Inst Engn Innovat, Sch Engn, Tokyo 1138656, Japan. [Oxley, M. P.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37325 USA. [Oxley, M. P.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Rehr, J. J.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. RP Witte, C (reprint author), Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia. RI Findlay, Scott/C-9764-2013 OI Findlay, Scott/0000-0003-4862-4827 FU Japan Society for the Promotion of Science (JSPS); Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, U. S. Department of Energ [DE-AC05-00OR22725]; Oak Ridge National Laboratory FX The authors would like to thank Z. Levine, K. Jorissen, and A. Sorini for helpful discussions from their independent explorations of generalizing the FEFF code for the calculation of MDFFs. L.J.A. acknowledges support from the Australian Research Council. S. D. F. is supported by the Japan Society for the Promotion of Science (JSPS). This research was sponsored by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, U. S. Department of Energy, under Contract No. DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. NR 80 TC 9 Z9 9 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2009 VL 80 IS 18 AR 184108 DI 10.1103/PhysRevB.80.184108 PG 15 WC Physics, Condensed Matter SC Physics GA 526RO UT WOS:000272310900043 ER PT J AU Wu, YZ Won, C Wu, J Xu, Y Wang, S Xia, K Rotenberg, E Qiu, ZQ AF Wu, Y. Z. Won, C. Wu, J. Xu, Y. Wang, S. Xia, Ke Rotenberg, E. Qiu, Z. Q. TI Effect of inserting Ni and Co layers on the quantum well states of a thin Cu film grown on Co/Cu(001) SO PHYSICAL REVIEW B LA English DT Article ID SHORT-PERIOD OSCILLATIONS; SPIN POLARIZATION; PHOTOEMISSION; CO(100); INTERFERENCE; SANDWICHES; OVERLAYERS; SUBSTRATE; SYSTEM AB The effect of Ni and Co inserting layers on the quantum well (QW) states of a Cu film grown on Co/Cu(001) is systematically investigated using angle-resolved photoemission spectroscopy. For electron energy E-E-F < -0.5 eV, we find that both Ni and Co inserting layers behave similarly to serve as a potential-energy barrier to divide the Cu film into two Cu QWs. For energy near the Fermi energy, the Ni and Co inserting layers have different effects on the Cu QW states while the Co thin layer still perturbs the Cu QW states, the Ni inserting layer behaves as if it were a Cu layer, especially at the Fermi energy, even up to 10 ML thickness. Such different effects of the Ni and Co inserting layers are attributed to their different electronic band matching with the Cu energy band. The first-principles calculation confirms that the electron reflectivity near the Fermi level is indeed very different at the Cu/Ni and Cu/Co interfaces, supporting the experimental results. C1 [Wu, Y. Z.] Fudan Univ, Dept Phys, Appl Surface Phys State Key Lab, Shanghai 200433, Peoples R China. [Wu, Y. Z.] Fudan Univ, Adv Mat Lab, Shanghai 200433, Peoples R China. [Won, C.] Kyung Hee Univ, Dept Phys, Seoul 130701, South Korea. [Wu, J.; Qiu, Z. Q.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Xu, Y.; Wang, S.; Xia, Ke] Chinese Acad Sci, Inst Phys, State Key Lab Surface Phys, Beijing 100080, Peoples R China. [Rotenberg, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Wu, YZ (reprint author), Fudan Univ, Dept Phys, Appl Surface Phys State Key Lab, Shanghai 200433, Peoples R China. RI Rotenberg, Eli/B-3700-2009; wu, YiZheng/O-1547-2013; Wu, yizheng/P-2395-2014; Qiu, Zi Qiang/O-4421-2016 OI Rotenberg, Eli/0000-0002-3979-8844; Wu, yizheng/0000-0002-9289-1271; Qiu, Zi Qiang/0000-0003-0680-0714 FU National Science Foundation [DMR-0803305]; U. S. Department of Energy [DE-AC03-76SF00098]; NSFC; MOST of China [2006CB921303, 2009CB929203, 2008GR0860]; SHEDF; STCSM; Fok Ying Tong education foundation; KICOS FX This work was supported by the National Science Foundation under Grant No. DMR-0803305, U. S. Department of Energy under Grant No. DE-AC03-76SF00098, NSFC and MOST of China (Grants No. 2006CB921303, No. 2009CB929203, and No. 2008GR0860), SHEDF, STCSM, and Fok Ying Tong education foundation, and KICOS through Global Research Laboratory project. NR 44 TC 2 Z9 2 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2009 VL 80 IS 20 AR 205426 DI 10.1103/PhysRevB.80.205426 PG 7 WC Physics, Condensed Matter SC Physics GA 526RS UT WOS:000272311400112 ER PT J AU Yang, A Steger, M Sekiguchi, T Karaiskaj, D Thewalt, MLW Cardona, M Itoh, KM Riemann, H Abrosimov, NV Churbanov, MF Gusev, AV Bulanov, AD Kovalev, ID Kaliteevskii, AK Godisov, ON Becker, P Pohl, HJ Ager, JW Haller, EE AF Yang, A. Steger, M. Sekiguchi, T. Karaiskaj, D. Thewalt, M. L. W. Cardona, M. Itoh, K. M. Riemann, H. Abrosimov, N. V. Churbanov, M. F. Gusev, A. V. Bulanov, A. D. Kovalev, I. D. Kaliteevskii, A. K. Godisov, O. N. Becker, P. Pohl, H. -J. Ager, J. W., III Haller, E. E. TI Single-frequency laser spectroscopy of the boron bound exciton in Si-28 SO PHYSICAL REVIEW B LA English DT Article DE boron; elemental semiconductors; excitons; photoluminescence; silicon; spectral line breadth ID ULTRAHIGH-RESOLUTION PHOTOLUMINESCENCE; SILICON; SEMICONDUCTORS; PHONON; TRANSITIONS; DONORS AB While the first comparison of shallow bound exciton photoluminescence between natural Si and highly enriched Si-28 dramatically demonstrated the importance of inhomogeneous isotope broadening, the transitions in Si-28 were in fact too narrow to be resolved with the then available instrumental resolution of 0.014 cm(-1). We report results for the boron bound exciton transition in highly enriched Si-28 using a novel apparatus for photoluminescence excitation spectroscopy based on a tuneable single-frequency laser source with sub-MHz resolution. Twenty well-resolved doublets, exhibiting a B-10-B-11 isotope splitting, are observed in the new spectra for Si-28 with isotopic enrichment >99.99%. Linewidths as narrow as 0.0012 cm(-1) (150 neV) full width at half maximum are observed for the most highly enriched sample. C1 [Yang, A.; Steger, M.; Sekiguchi, T.; Karaiskaj, D.; Thewalt, M. L. W.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Cardona, M.] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany. [Itoh, K. M.] Keio Univ, Yokohama, Kanagawa 2238522, Japan. [Itoh, K. M.] CREST JST, Yokohama, Kanagawa 2238522, Japan. [Riemann, H.; Abrosimov, N. V.] Inst Crystal Growth IKZ, D-12489 Berlin, Germany. [Churbanov, M. F.; Gusev, A. V.; Bulanov, A. D.; Kovalev, I. D.] RAS, IChHPS, Nizhnii Novgorod 603000, Russia. [Kaliteevskii, A. K.; Godisov, O. N.] Sci & Tech Ctr Centrotech, St Petersburg 198096, Russia. [Becker, P.] Phys Tekn Bundestanstalt Braunschweig, D-38116 Braunschweig, Germany. [Pohl, H. -J.] VITCON Projectconsult GmbH, D-07743 Jena, Germany. [Ager, J. W., III; Haller, E. E.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Ager, J. W., III; Haller, E. E.] LBNL, Berkeley, CA 94720 USA. RP Yang, A (reprint author), Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. RI Itoh, Kohei/C-5738-2014 FU Natural Sciences and Engineering Research Council of Canada (NSERC) FX This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC). NR 18 TC 1 Z9 1 U1 1 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2009 VL 80 IS 19 AR 195203 DI 10.1103/PhysRevB.80.195203 PG 6 WC Physics, Condensed Matter SC Physics GA 526RP UT WOS:000272311000054 ER PT J AU Yi, M Lu, DH Analytis, JG Chu, JH Mo, SK He, RH Hashimoto, M Moore, RG Mazin, II Singh, DJ Hussain, Z Fisher, IR Shen, ZX AF Yi, M. Lu, D. H. Analytis, J. G. Chu, J-H. Mo, S-K. He, R-H. Hashimoto, M. Moore, R. G. Mazin, I. I. Singh, D. J. Hussain, Z. Fisher, I. R. Shen, Z-X. TI Unconventional electronic reconstruction in undoped (Ba,Sr)Fe2As2 across the spin density wave transition SO PHYSICAL REVIEW B LA English DT Article DE band structure; barium compounds; density functional theory; high-temperature superconductors; iron compounds; magnetic moments; photoelectron spectra; spin density waves; strontium compounds ID IRON-PNICTIDES; ORDER AB Through a systematic high-resolution angle-resolved photoemission study of the iron pnictide compounds (Ba,Sr)Fe2As2, we show that the electronic structures of these compounds are significantly reconstructed across the spin density wave transition, which cannot be described by a simple folding scenario of conventional density wave ordering. Moreover, we find that LDA calculations with an incorporated suppressed magnetic moment of 0.5 mu(B) can match well the details in the reconstructed electronic structure, suggesting that the nature of magnetism in the pnictides is more itinerant than local, while the origin of suppressed magnetic moment remains an important issue for future investigations. C1 [Yi, M.; Analytis, J. G.; Chu, J-H.; He, R-H.; Fisher, I. R.; Shen, Z-X.] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [Yi, M.; Analytis, J. G.; Chu, J-H.; He, R-H.; Fisher, I. R.; Shen, Z-X.] Stanford Univ, Dept Phys, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Yi, M.; Analytis, J. G.; Chu, J-H.; He, R-H.; Fisher, I. R.; Shen, Z-X.] Stanford Univ, Dept Appl Phys, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Lu, D. H.; Moore, R. G.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Mo, S-K.; Hashimoto, M.; Hussain, Z.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Mazin, I. I.] USN, Res Lab, Ctr Computat Mat Sci, Washington, DC 20375 USA. [Singh, D. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Yi, M (reprint author), SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM zxshen@stanford.edu RI He, Ruihua/A-6975-2010; Yi, Ming/E-3145-2010; Singh, David/I-2416-2012; Mo, Sung-Kwan/F-3489-2013 OI Mo, Sung-Kwan/0000-0003-0711-8514 FU DOE Office of Basic Energy Science, Division of Materials Science and Engineering [DE-AC02-76SF00515]; NSF FX We thank E. Cappelluti, T. P. Devereaux, W. S. Lee, B. Moritz, H. Yao, and Y. Yin for helpful discussions. ARPES experiments were performed at the Stanford Synchrotron Radiation Lightsource and the Advanced Light Source, which are both operated by the Office of Basic Energy Science, U. S. Department of Energy. The Stanford work is supported by DOE Office of Basic Energy Science, Division of Materials Science and Engineering, under Contract No. DE-AC02-76SF00515. Work at ORNL was supported by the DOE, Division of Materials Sciences and Engineering. M. Y. thanks the NSF Graduate Research Fellowship Program for financial support. NR 58 TC 94 Z9 94 U1 1 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2009 VL 80 IS 17 AR 174510 DI 10.1103/PhysRevB.80.174510 PG 10 WC Physics, Condensed Matter SC Physics GA 526RL UT WOS:000272310400081 ER PT J AU Yin, WG Ku, W AF Yin, Wei-Guo Ku, Wei TI Flavor-twisted boundary condition for simulations of quantum many-body systems SO PHYSICAL REVIEW B LA English DT Article ID HEISENBERG-ANTIFERROMAGNET; EXACT DIAGONALIZATION; SQUARE LATTICE; STATE; MODEL AB We present an approximative simulation method for quantum many-body systems based on coarse graining the space of the momentum transferred between interacting particles, which leads to effective Hamiltonians of reduced size with the flavor-twisted boundary condition. A rapid, accurate, and fast convergent computation of the ground-state energy is demonstrated on the spin-1/2 quantum antiferromagnet of any dimension by employing only two sites. The method is expected to be useful for future simulations and quick estimates on other strongly correlated systems. C1 [Yin, Wei-Guo; Ku, Wei] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Yin, WG (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM wyin@bnl.gov RI Yin, Weiguo/A-9671-2014 OI Yin, Weiguo/0000-0002-4965-5329 FU U. S. Department of Energy [DE-AC02-98CH10886]; State of New York FX This research utilized resources at the New York Center for Computational Sciences at Stony Brook University/Brookhaven National Laboratory which is supported by the U. S. Department of Energy under Contract No. DE-AC02-98CH10886 and by the State of New York. We are grateful to P. D. Johnson and T. Valla for collaborations that stimulated the work. NR 17 TC 0 Z9 0 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2009 VL 80 IS 18 AR 180402 DI 10.1103/PhysRevB.80.180402 PG 4 WC Physics, Condensed Matter SC Physics GA 526RO UT WOS:000272310900007 ER PT J AU Zentgraf, T Zhang, S Oulton, RF Zhang, X AF Zentgraf, Thomas Zhang, Shuang Oulton, Rupert F. Zhang, Xiang TI Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems SO PHYSICAL REVIEW B LA English DT Article DE gold; integrated optics; nanowires; optical resonators; optical waveguides; self-induced transparency; surface plasmon resonance ID METAMATERIALS; HYBRIDIZATION; GRATINGS AB Plasmons in nanoscale structures represent an exciting new route toward efficient manipulation of photons, especially at subwavelength scales. Of particular interest are the hybridized plasmonic systems, in which the interaction among the plasmonic elements can be utilized to tailor the optical responses. Here we demonstrate a hybridized plasmonic-waveguide system exhibiting behavior similar to that of the electromagnetically induced transparency; namely, an ultranarrow transmission line width arising from a coupling-induced cancellation of the plasmonic resonance. C1 [Zentgraf, Thomas; Zhang, Shuang; Oulton, Rupert F.; Zhang, Xiang] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr, Berkeley, CA 94720 USA. [Zentgraf, Thomas] Univ Stuttgart, Inst Phys 4, D-70550 Stuttgart, Germany. [Zhang, Xiang] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Zentgraf, T (reprint author), Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr, 3112 Etcheverry Hall, Berkeley, CA 94720 USA. RI Zhang, Xiang/F-6905-2011; zhang, shuang/G-5224-2011; Zentgraf, Thomas/G-8848-2013 OI Zentgraf, Thomas/0000-0002-8662-1101 FU U. S. Department of Energy [DE-AC02-05CH11231]; Alexander von Humboldt Foundation; Landesstiftung Baden-Wurttemberg FX We thank Guy Bartal and Atsushi Ishikawa for stimulating discussion and acknowledge financial support from the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. T. Z. thanks the Alexander von Humboldt Foundation and the Landesstiftung Baden-Wurttemberg for their support. NR 21 TC 89 Z9 90 U1 6 U2 33 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2009 VL 80 IS 19 AR 195415 DI 10.1103/PhysRevB.80.195415 PG 6 WC Physics, Condensed Matter SC Physics GA 526RP UT WOS:000272311000101 ER PT J AU Zhang, FX Wang, JW Lang, M Zhang, JM Ewing, RC Boatner, LA AF Zhang, F. X. Wang, J. W. Lang, M. Zhang, J. M. Ewing, R. C. Boatner, L. A. TI High-pressure phase transitions of ScPO4 and YPO4 SO PHYSICAL REVIEW B LA English DT Article DE density functional theory; elastic moduli; high-pressure solid-state phase transformations; scandium compounds; X-ray diffraction; yttrium compounds ID GENERALIZED GRADIENT APPROXIMATION; NUCLEAR-WASTE FORMS; RAMAN-SPECTROSCOPY; ZIRCON ZRSIO4; TRANSFORMATIONS; ORTHOPHOSPHATES; SCINTILLATORS; PHOSPHATES; CHEMISTRY; CRYSTALS AB ScPO4 and YPO4 with the tetragonal zircon-structure were studied at room temperature and pressures up to similar to 50 GPa. Pressure-induced phase transitions to the sheelite structure occur at 30 GPa for ScPO4 and 16.3 GPa for YPO4, respectively. In addition to the scheelite-type high-pressure phase, an intermediate phase with the monoclinic monazite-type structure formed during the phase transition process of YPO4. The high-pressure phases of ScPO4 and YPO4 are not quenchable on pressure release. The pressure dependence of the total energy of the different phases was calculated using density-functional method, and the results confirm the experimentally observed phase relations under pressure. Structural parameters and compressibility of each phase were determined by refinement of the x-ray diffraction patterns. The high-pressure phase of ScPO4 has a very large bulk modulus [376(8) GPa]. C1 [Zhang, F. X.; Wang, J. W.; Lang, M.; Zhang, J. M.; Ewing, R. C.] Univ Michigan, Dept Geol Sci, Ann Arbor, MI 48109 USA. [Boatner, L. A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Boatner, L. A.] Oak Ridge Natl Lab, Ctr Radiat Detect Mat & Syst, Oak Ridge, TN 37831 USA. RP Zhang, FX (reprint author), Univ Michigan, Dept Geol Sci, Ann Arbor, MI 48109 USA. EM rodewing@umich.edu RI Lang, Maik/F-9939-2012; Wang, Jianwei/B-2345-2008; Zhang, Jiaming/H-5591-2012; Boatner, Lynn/I-6428-2013; Zhang, Fuxiang/P-7365-2015 OI Boatner, Lynn/0000-0002-0235-7594; Zhang, Fuxiang/0000-0003-1298-9795 FU Office of Basic Energy Sciences of the U. S. Department of Energy [DE-FG02-97ER45656, DE-AC05-00OR22725, DE-AC02-10886, DE-AC02-06CH11357]; NSF COMPRES [EAR01-35554]; National Institutes of Health/National Institute of General Medical Sciences [DMR-0225180]; W. M. Keck Foundation FX This work was supported by the Office of Basic Energy Sciences of the U. S. Department of Energy, through Grant No. DE-FG02-97ER45656. Research at ORNL is sponsored by the Division of Materials Science and Engineering, Office of Basic Energy Sciences, US DOE, under Contract No. DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. The use of the beam line at X17C and U2 station of NSLS is supported by NSF COMPRES under Contract No. EAR01-35554 and by US-DOE Contract No. DE-AC02-10886. The use of the synchrotron in the B2 station of CHESS at Cornell University is financially supported by the National Science Foundation and the National Institutes of Health/National Institute of General Medical Sciences under NSF Grant No. DMR-0225180. The synchrotron experiments performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory is supported by DOE-BES, DOE-NNSA, NSF, and the W. M. Keck Foundation. APS is supported by DOE-BES under Contract No. DE-AC02-06CH11357. NR 37 TC 31 Z9 32 U1 2 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2009 VL 80 IS 18 AR 184114 DI 10.1103/PhysRevB.80.184114 PG 7 WC Physics, Condensed Matter SC Physics GA 526RO UT WOS:000272310900049 ER PT J AU Zhang, J Wang, CZ Ho, KM AF Zhang, Jian Wang, Cai-Zhuang Ho, Kai-Ming TI Finding the low-energy structures of Si[001] symmetric tilted grain boundaries with a genetic algorithm SO PHYSICAL REVIEW B LA English DT Article DE crystal symmetry; dislocations; elemental semiconductors; silicon; surface structure; tight-binding calculations; tilt boundaries ID SILICON; SEMICONDUCTORS; OPTIMIZATION; SEGREGATION; DIAMOND AB We developed a global structure optimization method, genetic algorithm, for a fast and efficient prediction of grain-boundary structures. Using this method we predicted the most stable structures and a number of low-energy metastable structures for Si[001] symmetric tilted grain boundaries with various tilted angles. We show that most of the grain-boundary structures can be described by the structural unit model with the units being the dislocation cores and perfect-crystal fragments. The energies of the grain-boundary structures obtained from the genetic algorithm optimization are evaluated by tight-binding calculations using the environment-dependent Si tight-binding potential developed previously and found to be in very good agreement with the first-principles calculation results. C1 [Zhang, Jian] US DOE, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys, Ames, IA 50011 USA. RP Zhang, J (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. FU U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358]; National Energy Research Supercomputing Center (NERSC) in Berkeley FX Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. This work was supported by the Director for Energy Research, Office of Basic Energy Sciences, including a grant of computer time at the National Energy Research Supercomputing Center (NERSC) in Berkeley. We are grateful to F. C. Chuang for his help in the development and understanding of the genetic algorithm. Min Ji is thanked for the discussion on the grain-boundary structures. NR 22 TC 20 Z9 20 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2009 VL 80 IS 17 AR 174102 DI 10.1103/PhysRevB.80.174102 PG 6 WC Physics, Condensed Matter SC Physics GA 526RL UT WOS:000272310400020 ER PT J AU Zou, M Pecharsky, VK Gschneidner, KA Mudryk, Y Schlagel, DL Lograsso, TA AF Zou, M. Pecharsky, V. K. Gschneidner, K. A., Jr. Mudryk, Ya. Schlagel, D. L. Lograsso, T. A. TI Electrical resistivity and magnetoresistance of single-crystal Tb5Si2.2Ge1.8 SO PHYSICAL REVIEW B LA English DT Article DE colossal magnetoresistance; magnetic anisotropy; silicon compounds; solid-state phase transformations; terbium compounds ID GIANT MAGNETORESISTANCE; POSITIVE MAGNETORESISTANCE; COLOSSAL MAGNETORESISTANCE; MAGNETOCALORIC COMPOUND; LOW-TEMPERATURES; MAGNETIC-FIELD; TRANSITION; RESISTANCE; MANGANITES; BEHAVIOR AB A positive colossal magnetoresistance (CMR) of 160% has been observed in Tb5Si2.2Ge1.8 with the magnetic field applied parallel to the a axis. When the magnetic field is applied parallel to the b and c axes, the magnetoresistance (MR) is less than 8% and 5%, respectively. The CMR effect originates from intrinsic crystallographic phase coexistence. The anisotropy of the MR effect is due to a unique geometric arrangement of the interphase boundaries and large magnetocrystalline anisotropy of the compound. C1 [Zou, M.; Pecharsky, V. K.; Gschneidner, K. A., Jr.; Mudryk, Ya.; Schlagel, D. L.; Lograsso, T. A.] Iowa State Univ, US Dept Energy, Ames Lab, Ames, IA 50011 USA. [Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Zou, M (reprint author), Iowa State Univ, US Dept Energy, Ames Lab, Ames, IA 50011 USA. EM zoumin@iastate.edu FU Iowa State University [DE-AC02-07CH11358]; Office of Basic Energy Sciences, Materials Sciences Division of the U. S. Department of Energy FX The Ames Laboratory is operated for the U. S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. This work was supported by the Office of Basic Energy Sciences, Materials Sciences Division of the U. S. Department of Energy. NR 41 TC 7 Z9 7 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2009 VL 80 IS 17 AR 174411 DI 10.1103/PhysRevB.80.174411 PG 7 WC Physics, Condensed Matter SC Physics GA 526RL UT WOS:000272310400055 ER PT J AU Zou, M Sampaio, JA Pecharsky, VK Gschneidner, KA AF Zou, M. Sampaio, J. A. Pecharsky, V. K. Gschneidner, K. A., Jr. TI Spontaneous generation of voltage in the magnetocaloric compound La(Fe0.88Si0.12)(13) and comparison to SmMn2Ge2 SO PHYSICAL REVIEW B LA English DT Article DE iron compounds; lanthanum compounds; magnetic transitions; magnetocaloric effects; manganese compounds; samarium compounds ID TRANSFORMATION; GD5SI2GE2 AB Relationships among spontaneous generation of voltage (SGV), magnetocaloric effect, temperature induced first-order magnetic phase transformation, and its thermal effect have been studied based on experimental results of La(Fe0.88Si0.12)(13) and SmMn2Ge2 compounds. Remarkable differences in magnetocaloric effects and temperature-induced unit-cell volume changes during their first-order magnetic phase transformations lead to dramatic differences in their SGV effects. Both temperature and magnetic field trigger SGV in La(Fe0.88Si0.12)(13) compound, but no SGV has been observed in SmMn2Ge2. Our results clarify that it is not the first-order crystallographic or magnetic phase transformation per se, but the strong thermal effects, i.e., latent heat and magnetocaloric effect that play the key role in the SGV mechanism. C1 [Zou, M.; Sampaio, J. A.; Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Zou, M (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. EM zoumin@iastate.edu RI Sampaio, Juraci/D-9707-2012 OI Sampaio, Juraci/0000-0002-8403-6718 FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-07CH11358] FX The authors thank Paul C. Canfield for providing SmMn2Ge2 samples. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences. The Ames Laboratory is operated for the U.S. DOE by Iowa State University under Contract No. DE-AC02-07CH11358. NR 14 TC 11 Z9 11 U1 3 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2009 VL 80 IS 17 AR 172403 DI 10.1103/PhysRevB.80.172403 PG 4 WC Physics, Condensed Matter SC Physics GA 526RL UT WOS:000272310400010 ER PT J AU Afanasiev, S Aidala, C Ajitanand, NN Akiba, Y Alexander, J Al-Jamel, A Aoki, K Aphecetche, L Armendariz, R Aronson, SH Averbeck, R Awes, TC Azmoun, B Babintsev, V Baldisseri, A Barish, KN Barnes, PD Bassalleck, B Bathe, S Batsouli, S Baublis, V Bauer, F Bazilevsky, A Belikov, S Bennett, R Berdnikov, Y Bjorndal, MT Boissevain, JG Borel, H Boyle, K Brooks, ML Brown, DS Bucher, D Buesching, H Bumazhnov, V Bunce, G Burward-Hoy, JM Butsyk, S Campbell, S Chai, JS Chernichenko, S Chiba, J Chi, CY Chiu, M Choi, IJ Chujo, T Cianciolo, V Cleven, CR Cobigo, Y Cole, BA Comets, MP Constantin, P Csanad, M Csorgo, T Dahms, T Das, K David, G Delagrange, H Denisov, A d'Enterria, D Deshpande, A Desmond, EJ Dietzsch, O Dion, A Drachenberg, JL Drapier, O Drees, A Dubey, AK Durum, A Dzhordzhadze, V Efremenko, YV Egdemir, J Enokizono, A En'yo, H Espagnon, B Esumi, S Fields, DE Fleuret, F Fokin, SL Forestier, B Fraenkel, Z Frantz, JE Franz, A Frawley, AD Fukao, Y Fung, SY Gadrat, S Gastineau, F Germain, M Glenn, A Gonin, M Gosset, J Goto, Y de Cassagnac, RG Grau, N Greene, SV Perdekamp, MG Gunji, T Gustafsson, HA Hachiya, T Henni, AH Haggerty, JS Hagiwara, MN Hamagaki, H Harada, H Hartouni, EP Haruna, K Harvey, M Haslum, E Hasuko, K Hayano, R Heffner, M Hemmick, TK Heuser, JM He, X Hiejima, H Hill, JC Hobbs, R Holmes, M Holzmann, W Homma, K Hong, B Horaguchi, T Hur, MG Ichihara, T Imai, K Inaba, M Isenhower, D Isenhower, L Ishihara, M Isobe, T Issah, M Isupov, A Jacak, BV Jia, J Jin, J Jinnouchi, O Johnson, BM Joo, KS Jouan, D Kajihara, F Kametani, S Kamihara, N Kaneta, M Kang, JH Kawagishi, T Kazantsev, AV Kelly, S Khanzadeev, A Kim, DJ Kim, E Kim, YS Kinney, E Kiss, A Kistenev, E Kiyomichi, A Klein-Boesing, C Kochenda, L Kochetkov, V Komkov, B Konno, M Kotchetkov, D Kozlov, A Kroon, PJ Kunde, GJ Kurihara, N Kurita, K Kweon, MJ Kwon, Y Kyle, GS Lacey, R Lajoie, JG Lebedev, A Le Bornec, Y Leckey, S Lee, DM Lee, MK Leitch, MJ Leite, MAL Lim, H Litvinenko, A Liu, MX Li, XH Maguire, CF Makdisi, YI Malakhov, A Malik, MD Manko, VI Masui, H Matathias, F McCain, MC McGaughey, PL Miake, Y Miller, TE Milov, A Mioduszewski, S Mishra, GC Mitchell, JT Morrison, DP Moss, JM Moukhanova, TV Mukhopadhyay, D Murata, J Nagamiya, S Nagata, Y Nagle, JL Naglis, M Nakamura, T Newby, J Nguyen, M Norman, BE Nyanin, AS Nystrand, J O'Brien, E Ogilvie, CA Ohnishi, H Ojha, ID Okada, H Okada, K Omiwade, OO Oskarsson, A Otterlund, I Ozawa, K Pal, D Palounek, APT Pantuev, V Papavassiliou, V Park, J Park, WJ Pate, SF Pei, H Peng, JC Pereira, H Peresedov, V Peressounko, DY Pinkenburg, C Pisani, RP Purschke, ML Purwar, AK Qu, H Rak, J Ravinovich, I Read, KF Reuter, M Reygers, K Riabov, V Riabov, Y Roche, G Romana, A Rosati, M Rosendahl, SSE Rosnet, P Rukoyatkin, P Rykov, VL Ryu, SS Sahlmueller, B Saito, N Sakaguchi, T Sakai, S Samsonov, V Sato, HD Sato, S Sawada, S Semenov, V Seto, R Sharma, D Shea, TK Shein, I Shibata, TA Shigaki, K Shimomura, M Shohjoh, T Shoji, K Sickles, A Silva, CL Silvermyr, D Sim, KS Singh, CP Singh, V Skutnik, S Smith, WC Soldatov, A Soltz, RA Sondheim, WE Sorensen, SP Sourikova, IV Staley, F Stankus, PW Stenlund, E Stepanov, M Ster, A Stoll, SP Sugitate, T Suire, C Sullivan, JP Sziklai, J Tabaru, T Takagi, S Takagui, EM Taketani, A Tanaka, KH Tanaka, Y Tanida, K Tannenbaum, MJ Taranenko, A Tarjan, P Thomas, TL Togawa, M Tojo, J Torii, H Towell, RS Tram, VN Tserruya, I Tsuchimoto, Y Tuli, SK Tydesjo, H Tyurin, N Vale, C Valle, H van Hecke, HW Velkovska, J Vertesi, R Vinogradov, AA Vznuzdaev, E Wagner, M Wang, XR Watanabe, Y Wessels, J White, SN Willis, N Winter, D Woody, CL Wysocki, M Xie, W Yanovich, A Yokkaichi, S Young, GR Younus, I Yushmanov, IE Zajc, WA Zaudtke, O Zhang, C Zimanyi, J Zolin, L AF Afanasiev, S. Aidala, C. Ajitanand, N. N. Akiba, Y. Alexander, J. Al-Jamel, A. Aoki, K. Aphecetche, L. Armendariz, R. Aronson, S. H. Averbeck, R. Awes, T. C. Azmoun, B. Babintsev, V. Baldisseri, A. Barish, K. N. Barnes, P. D. Bassalleck, B. Bathe, S. Batsouli, S. Baublis, V. Bauer, F. Bazilevsky, A. Belikov, S. Bennett, R. Berdnikov, Y. Bjorndal, M. T. Boissevain, J. G. Borel, H. Boyle, K. Brooks, M. L. Brown, D. S. Bucher, D. Buesching, H. Bumazhnov, V. Bunce, G. Burward-Hoy, J. M. Butsyk, S. Campbell, S. Chai, J. -S. Chernichenko, S. Chiba, J. Chi, C. Y. Chiu, M. Choi, I. J. Chujo, T. Cianciolo, V. Cleven, C. R. Cobigo, Y. Cole, B. A. Comets, M. P. Constantin, P. Csanad, M. Csorgo, T. Dahms, T. Das, K. David, G. Delagrange, H. Denisov, A. d'Enterria, D. Deshpande, A. Desmond, E. J. Dietzsch, O. Dion, A. Drachenberg, J. L. Drapier, O. Drees, A. Dubey, A. K. Durum, A. Dzhordzhadze, V. Efremenko, Y. V. Egdemir, J. Enokizono, A. En'yo, H. Espagnon, B. Esumi, S. Fields, D. E. Fleuret, F. Fokin, S. L. Forestier, B. Fraenkel, Z. Frantz, J. E. Franz, A. Frawley, A. D. Fukao, Y. Fung, S. -Y. Gadrat, S. Gastineau, F. Germain, M. Glenn, A. Gonin, M. Gosset, J. Goto, Y. de Cassagnac, R. Granier Grau, N. Greene, S. V. Perdekamp, M. Grosse Gunji, T. Gustafsson, H. A. Hachiya, T. Henni, A. Hadj Haggerty, J. S. Hagiwara, M. N. Hamagaki, H. Harada, H. Hartouni, E. P. Haruna, K. Harvey, M. Haslum, E. Hasuko, K. Hayano, R. Heffner, M. Hemmick, T. K. Heuser, J. M. He, X. Hiejima, H. Hill, J. C. Hobbs, R. Holmes, M. Holzmann, W. Homma, K. Hong, B. Horaguchi, T. Hur, M. G. Ichihara, T. Imai, K. Inaba, M. Isenhower, D. Isenhower, L. Ishihara, M. Isobe, T. Issah, M. Isupov, A. Jacak, B. V. Jia, J. Jin, J. Jinnouchi, O. Johnson, B. M. Joo, K. S. Jouan, D. Kajihara, F. Kametani, S. Kamihara, N. Kaneta, M. Kang, J. H. Kawagishi, T. Kazantsev, A. V. Kelly, S. Khanzadeev, A. Kim, D. J. Kim, E. Kim, Y. -S. Kinney, E. Kiss, A. Kistenev, E. Kiyomichi, A. Klein-Boesing, C. Kochenda, L. Kochetkov, V. Komkov, B. Konno, M. Kotchetkov, D. Kozlov, A. Kroon, P. J. Kunde, G. J. Kurihara, N. Kurita, K. Kweon, M. J. Kwon, Y. Kyle, G. S. Lacey, R. Lajoie, J. G. Lebedev, A. Le Bornec, Y. Leckey, S. Lee, D. M. Lee, M. K. Leitch, M. J. Leite, M. A. L. Lim, H. Litvinenko, A. Liu, M. X. Li, X. H. Maguire, C. F. Makdisi, Y. I. Malakhov, A. Malik, M. D. Manko, V. I. Masui, H. Matathias, F. McCain, M. C. McGaughey, P. L. Miake, Y. Miller, T. E. Milov, A. Mioduszewski, S. Mishra, G. C. Mitchell, J. T. Morrison, D. P. Moss, J. M. Moukhanova, T. V. Mukhopadhyay, D. Murata, J. Nagamiya, S. Nagata, Y. Nagle, J. L. Naglis, M. Nakamura, T. Newby, J. Nguyen, M. Norman, B. E. Nyanin, A. S. Nystrand, J. O'Brien, E. Ogilvie, C. A. Ohnishi, H. Ojha, I. D. Okada, H. Okada, K. Omiwade, O. O. Oskarsson, A. Otterlund, I. Ozawa, K. Pal, D. Palounek, A. P. T. Pantuev, V. Papavassiliou, V. Park, J. Park, W. J. Pate, S. F. Pei, H. Peng, J. -C. Pereira, H. Peresedov, V. Peressounko, D. Yu. Pinkenburg, C. Pisani, R. P. Purschke, M. L. Purwar, A. K. Qu, H. Rak, J. Ravinovich, I. Read, K. F. Reuter, M. Reygers, K. Riabov, V. Riabov, Y. Roche, G. Romana, A. Rosati, M. Rosendahl, S. S. E. Rosnet, P. Rukoyatkin, P. Rykov, V. L. Ryu, S. S. Sahlmueller, B. Saito, N. Sakaguchi, T. Sakai, S. Samsonov, V. Sato, H. D. Sato, S. Sawada, S. Semenov, V. Seto, R. Sharma, D. Shea, T. K. Shein, I. Shibata, T. -A. Shigaki, K. Shimomura, M. Shohjoh, T. Shoji, K. Sickles, A. Silva, C. L. Silvermyr, D. Sim, K. S. Singh, C. P. Singh, V. Skutnik, S. Smith, W. C. Soldatov, A. Soltz, R. A. Sondheim, W. E. Sorensen, S. P. Sourikova, I. V. Staley, F. Stankus, P. W. Stenlund, E. Stepanov, M. Ster, A. Stoll, S. P. Sugitate, T. Suire, C. Sullivan, J. P. Sziklai, J. Tabaru, T. Takagi, S. Takagui, E. M. Taketani, A. Tanaka, K. H. Tanaka, Y. Tanida, K. Tannenbaum, M. J. Taranenko, A. Tarjan, P. Thomas, T. L. Togawa, M. Tojo, J. Torii, H. Towell, R. S. Tram, V. -N. Tserruya, I. Tsuchimoto, Y. Tuli, S. K. Tydesjo, H. Tyurin, N. Vale, C. Valle, H. van Hecke, H. W. Velkovska, J. Vertesi, R. Vinogradov, A. A. Vznuzdaev, E. Wagner, M. Wang, X. R. Watanabe, Y. Wessels, J. White, S. N. Willis, N. Winter, D. Woody, C. L. Wysocki, M. Xie, W. Yanovich, A. Yokkaichi, S. Young, G. R. Younus, I. Yushmanov, I. E. Zajc, W. A. Zaudtke, O. Zhang, C. Zimanyi, J. Zolin, L. CA PHENIX Collaboration TI High-p(T) pi(0) production with respect to the reaction plane in Au plus Au collisions at s(NN)=200 GeV SO PHYSICAL REVIEW C LA English DT Article ID HEAVY-ION COLLISIONS; NUCLEUS-NUCLEUS COLLISIONS; QUARK-GLUON PLASMA; COLLABORATION; PERSPECTIVE; MATTER AB Measurements of the azimuthal anisotropy of high-p(T) neutral pion (pi(0)) production in Au+Au collisions at s(NN)=200 GeV by the PHENIX experiment are presented. The data included in this article were collected during the 2004 Relativistic Heavy Ion Collider running period and represent approximately an order of magnitude increase in the number of analyzed events relative to previously published results. Azimuthal angle distributions of pi(0) mesons detected in the PHENIX electromagnetic calorimeters are measured relative to the reaction plane determined event-by-event using the forward and backward beam-beam counters. Amplitudes of the second Fourier component (v(2)) of the angular distributions are presented as a function of pi(0) transverse momentum (p(T)) for different bins in collision centrality. Measured reaction plane dependent pi(0) yields are used to determine the azimuthal dependence of the pi(0) suppression as a function of p(T), R-AA(Delta phi,p(T)). A jet-quenching motivated geometric analysis is presented that attempts to simultaneously describe the centrality dependence and reaction plane angle dependence of the pi(0) suppression in terms of the path lengths of hypothetical parent partons in the medium. This set of results allows for a detailed examination of the influence of geometry in the collision region and of the interplay between collective flow and jet-quenching effects along the azimuthal axis. C1 [Afanasiev, S.; Isupov, A.; Litvinenko, A.; Malakhov, A.; Peresedov, V.; Rukoyatkin, P.; Zolin, L.] Joint Inst Nucl Res, RU-141980 Dubna, Moscow Region, Russia. [Singh, C. P.; Singh, V.; Tuli, S. K.] Banaras Hindu Univ, Dept Phys, Varanasi 221005, Uttar Pradesh, India. [Aronson, S. H.; Azmoun, B.; Bazilevsky, A.; Belikov, S.; Buesching, H.; Bunce, G.; David, G.; Desmond, E. J.; Franz, A.; Haggerty, J. S.; Harvey, M.; Johnson, B. M.; Kistenev, E.; Kroon, P. J.; Makdisi, Y. I.; Mioduszewski, S.; Mitchell, J. T.; Morrison, D. P.; O'Brien, E.; Pinkenburg, C.; Pisani, R. P.; Purschke, M. L.; Sato, S.; Shea, T. K.; Sourikova, I. V.; Stoll, S. P.; Tannenbaum, M. J.; White, S. N.; Woody, C. L.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Barish, K. N.; Bathe, S.; Bauer, F.; Fung, S. -Y.; Kotchetkov, D.; Li, X. H.; Seto, R.; Xie, W.] Univ Calif Riverside, Riverside, CA 92521 USA. [Gunji, T.; Hamagaki, H.; Hayano, R.; Isobe, T.; Kajihara, F.; Kametani, S.; Kurihara, N.; Ozawa, K.; Sakaguchi, T.] Univ Tokyo, Grad Sch Sci, Ctr Nucl Study, Bunkyo Ku, Tokyo 1130033, Japan. [Kelly, S.; Kinney, E.; Nagle, J. L.; Wysocki, M.] Univ Colorado, Boulder, CO 80309 USA. [Aidala, C.; Batsouli, S.; Bjorndal, M. T.; Chi, C. Y.; Chiu, M.; Cole, B. A.; d'Enterria, D.; Frantz, J. E.; Jia, J.; Jin, J.; Winter, D.; Zajc, W. A.; Zhang, C.] Columbia Univ, New York, NY 10027 USA. [Baldisseri, A.; Borel, H.; Cobigo, Y.; Gosset, J.; Pereira, H.; Staley, F.] CEA Saclay, F-91191 Gif Sur Yvette, France. [Tarjan, P.; Vertesi, R.] Univ Debrecen, H-4010 Debrecen, Hungary. [Csanad, M.; Kiss, A.] Eotvos Lorand Univ, ELTE, H-1117 Budapest, Hungary. [Das, K.; Frawley, A. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Cleven, C. R.; He, X.; Mishra, G. C.; Qu, H.] Georgia State Univ, Atlanta, GA 30303 USA. [Enokizono, A.; Hachiya, T.; Harada, H.; Haruna, K.; Homma, K.; Nakamura, T.; Shigaki, K.; Sugitate, T.; Tsuchimoto, Y.] Hiroshima Univ, Higashihiroshima 7398526, Japan. [Babintsev, V.; Bumazhnov, V.; Chernichenko, S.; Denisov, A.; Durum, A.; Kochetkov, V.; Semenov, V.; Shein, I.; Soldatov, A.; Tyurin, N.; Yanovich, A.] IHEP Protvino, State Res Ctr Russian Federat, RU-142281 Protvino, Russia. [Perdekamp, M. Grosse; Hiejima, H.; McCain, M. C.; Peng, J. -C.] Univ Illinois, Urbana, IL 61801 USA. [Belikov, S.; Constantin, P.; Grau, N.; Hill, J. C.; Lajoie, J. G.; Lebedev, A.; Ogilvie, C. A.; Pei, H.; Rak, J.; Rosati, M.; Skutnik, S.; Vale, C.] Iowa State Univ, Ames, IA 50011 USA. [Chai, J. -S.; Hur, M. G.; Kim, Y. -S.] KAERI, Cyclotron Applicat Lab, Seoul, South Korea. [Chiba, J.; Nagamiya, S.; Sato, S.; Sawada, S.; Tanaka, K. H.] High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. [Csorgo, T.; Ster, A.; Sziklai, J.; Zimanyi, J.] KFKI Res Inst Particle & Nucl Phys, H-1525 Budapest 114, Hungary. [Hong, B.; Kweon, M. J.; Park, W. J.; Sim, K. S.] Korea Univ, Seoul 136701, South Korea. [Fokin, S. L.; Kazantsev, A. V.; Manko, V. I.; Moukhanova, T. V.; Nyanin, A. S.; Peressounko, D. Yu.; Vinogradov, A. A.; Yushmanov, I. E.] Russian Res Ctr, Kurchatov Inst, Moscow, Russia. [Aoki, K.; Fukao, Y.; Imai, K.; Okada, H.; Saito, N.; Sato, H. D.; Shoji, K.; Togawa, M.; Wagner, M.] Kyoto Univ, Kyoto 6068502, Japan. [Drapier, O.; Fleuret, F.; Gonin, M.; de Cassagnac, R. Granier; Romana, A.; Tram, V. -N.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Hartouni, E. P.; Heffner, M.; Newby, J.; Soltz, R. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Barnes, P. D.; Boissevain, J. G.; Brooks, M. L.; Burward-Hoy, J. M.; Kunde, G. J.; Lee, D. M.; Leitch, M. J.; Liu, M. X.; McGaughey, P. L.; Moss, J. M.; Norman, B. E.; Palounek, A. P. T.; Sondheim, W. E.; Sullivan, J. P.; van Hecke, H. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Forestier, B.; Gadrat, S.; Roche, G.; Rosnet, P.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, F-63177 Aubiere, France. [Gustafsson, H. A.; Haslum, E.; Nystrand, J.; Oskarsson, A.; Otterlund, I.; Rosendahl, S. S. E.; Stenlund, E.; Tydesjo, H.] Lund Univ, Dept Phys, SE-22100 Lund, Sweden. [Bucher, D.; Klein-Boesing, C.; Reygers, K.; Sahlmueller, B.; Wessels, J.; Zaudtke, O.] Univ Munster, Inst Kernphys, D-48149 Munster, Germany. [Joo, K. S.] Myongji Univ, Yongin 449728, Kyonggido, South Korea. [Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan. [Bassalleck, B.; Fields, D. E.; Hobbs, R.; Malik, M. D.; Thomas, T. L.; Younus, I.] Univ New Mexico, Albuquerque, NM 87131 USA. [Al-Jamel, A.; Armendariz, R.; Brown, D. S.; Kyle, G. S.; Papavassiliou, V.; Pate, S. F.; Stepanov, M.; Wang, X. R.] New Mexico State Univ, Las Cruces, NM 88003 USA. [Awes, T. C.; Cianciolo, V.; Efremenko, Y. V.; Read, K. F.; Silvermyr, D.; Stankus, P. W.; Young, G. R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Comets, M. P.; Espagnon, B.; Jouan, D.; Le Bornec, Y.; Suire, C.; Willis, N.] Univ Paris 11, IPN Orsay, CNRS, IN2P3, F-91406 Orsay, France. [Baublis, V.; Khanzadeev, A.; Kochenda, L.; Komkov, B.; Riabov, V.; Riabov, Y.; Samsonov, V.; Vznuzdaev, E.] Petersburg Nucl Phys Inst, RU-188300 Gatchina, Leningrad Reg, Russia. [Akiba, Y.; Aoki, K.; En'yo, H.; Fukao, Y.; Goto, Y.; Hachiya, T.; Hasuko, K.; Heuser, J. M.; Horaguchi, T.; Ichihara, T.; Imai, K.; Ishihara, M.; Kajihara, F.; Kamihara, N.; Kiyomichi, A.; Kurita, K.; Murata, J.; Ohnishi, H.; Okada, H.; Rykov, V. L.; Saito, N.; Sato, H. D.; Shibata, T. -A.; Shoji, K.; Taketani, A.; Tanida, K.; Togawa, M.; Tojo, J.; Torii, H.; Tsuchimoto, Y.; Wagner, M.; Watanabe, Y.; Yokkaichi, S.] RIKEN, Nishina Ctr Accelerator Based Sci, Wako, Saitama 3510198, Japan. [Akiba, Y.; Bunce, G.; Deshpande, A.; En'yo, H.; Fields, D. E.; Goto, Y.; Perdekamp, M. Grosse; Ichihara, T.; Jinnouchi, O.; Kaneta, M.; Okada, K.; Saito, N.; Tabaru, T.; Taketani, A.; Tanida, K.; Watanabe, Y.; Xie, W.; Yokkaichi, S.] Brookhaven Natl Lab, RIKEN, Res Ctr, Upton, NY 11973 USA. [Kurita, K.; Murata, J.] Rikkyo Univ, Dept Phys, Toshima Ku, Tokyo 1718501, Japan. [Berdnikov, Y.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Dietzsch, O.; Leite, M. A. L.; Silva, C. L.; Takagui, E. M.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. [Kim, E.; Lim, H.; Park, J.] Seoul Natl Univ, Syst Elect Lab, Seoul, South Korea. [Ajitanand, N. N.; Alexander, J.; Holzmann, W.; Issah, M.; Lacey, R.; Taranenko, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Averbeck, R.; Bennett, R.; Boyle, K.; Butsyk, S.; Campbell, S.; Dahms, T.; Deshpande, A.; Dion, A.; Drees, A.; Egdemir, J.; Hemmick, T. K.; Jacak, B. V.; Leckey, S.; Matathias, F.; Milov, A.; Nguyen, M.; Pantuev, V.; Purwar, A. K.; Reuter, M.; Sickles, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Aphecetche, L.; Delagrange, H.; Gastineau, F.; Germain, M.; Henni, A. Hadj] Univ Nantes, SUBATECH, Ecole Mines Nantes, CNRS,IN2P3, Nantes, France. [Dzhordzhadze, V.; Glenn, A.; Read, K. F.; Sorensen, S. P.] Univ Tennessee, Knoxville, TN 37996 USA. [Horaguchi, T.; Kamihara, N.; Shibata, T. -A.] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. [Esumi, S.; Inaba, M.; Kawagishi, T.; Konno, M.; Masui, H.; Miake, Y.; Nagata, Y.; Sakai, S.; Sato, S.; Shimomura, M.; Shohjoh, T.; Takagi, S.] Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 305, Japan. [Chujo, T.; Greene, S. V.; Holmes, M.; Maguire, C. F.; Miller, T. E.; Mukhopadhyay, D.; Ojha, I. D.; Pal, D.; Valle, H.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Kametani, S.; Sakaguchi, T.] Waseda Univ, Adv Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1620044, Japan. [Dubey, A. K.; Fraenkel, Z.; Kozlov, A.; Naglis, M.; Ravinovich, I.; Sharma, D.; Tserruya, I.] Weizmann Inst Sci, IL-76100 Rehovot, Israel. [Choi, I. J.; Kang, J. H.; Kim, D. J.; Kwon, Y.; Lee, M. K.; Ryu, S. S.] Yonsei Univ, IPAP, Seoul 120749, South Korea. [Drachenberg, J. L.; Hagiwara, M. N.; Isenhower, D.; Isenhower, L.; Omiwade, O. O.; Smith, W. C.; Towell, R. S.] Abilene Christian Univ, Abilene, TX 79699 USA. [Aidala, C.; Batsouli, S.; Bjorndal, M. T.; Chi, C. Y.; Chiu, M.; Cole, B. A.; d'Enterria, D.; Frantz, J. E.; Jia, J.; Jin, J.; Winter, D.; Zajc, W. A.; Zhang, C.] Nevis Labs, Irvington, NY 10533 USA. [Csorgo, T.; Ster, A.; Sziklai, J.; Zimanyi, J.] Hungarian Acad Sci, MTA KFKI RMKI, H-1525 Budapest, Hungary. RP Afanasiev, S (reprint author), Joint Inst Nucl Res, RU-141980 Dubna, Moscow Region, Russia. RI Taketani, Atsushi/E-1803-2017; Semenov, Vitaliy/E-9584-2017; seto, richard/G-8467-2011; Csanad, Mate/D-5960-2012; Csorgo, Tamas/I-4183-2012; YANG, BOGEUM/I-8251-2012; Dahms, Torsten/A-8453-2015; En'yo, Hideto/B-2440-2015; Hayano, Ryugo/F-7889-2012; HAMAGAKI, HIDEKI/G-4899-2014; Durum, Artur/C-3027-2014; Sorensen, Soren /K-1195-2016; Yokkaichi, Satoshi/C-6215-2017; OI Taketani, Atsushi/0000-0002-4776-2315; Dahms, Torsten/0000-0003-4274-5476; Hayano, Ryugo/0000-0002-1214-7806; Sorensen, Soren /0000-0002-5595-5643; Sullivan, John/0000-0002-9067-1531 NR 52 TC 42 Z9 42 U1 5 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2009 VL 80 IS 5 AR 054907 DI 10.1103/PhysRevC.80.054907 PG 29 WC Physics, Nuclear SC Physics GA 526SG UT WOS:000272313000059 ER PT J AU Aznauryan, IG Burkert, VD Biselli, AS Egiyan, H Joo, K Kim, W Park, K Smith, LC Ungaro, M Adhikari, KP Anghinolfi, M Avakian, H Ball, J Battaglieri, M Batourine, V Bedlinskiy, I Bellis, M Bookwalter, C Branford, D Briscoe, WJ Brooks, WK Careccia, SL Carman, DS Cole, PL Collins, P Crede, V D'Angelo, A Daniel, A De Vita, R De Sanctis, E Deur, A Dey, B Dhamija, S Dickson, R Djalali, C Doughty, D Dupre, R El Alaoui, A Elouadrhiri, L Eugenio, P Fedotov, G Fegan, S Forest, TA Gabrielyan, MY Gilfoyle, GP Giovanetti, KL Girod, FX Goetz, JT Gohn, W Golovatch, E Gothe, RW Guidal, M Guo, L Hafidi, K Hakobyan, H Hanretty, C Hassall, N Heddle, D Hicks, K Holtrop, M Hyde, CE Ilieva, Y Ireland, DG Ishkhanov, BS Isupov, EL Jawalkar, SS Jo, HS Johnstone, JR Keller, D Khandaker, M Khetarpal, P Klein, A Klein, FJ Kramer, LH Kubarovsky, V Kuhn, SE Kuleshov, SV Kuznetsov, V Livingston, K Lu, HY Mayer, M McAndrew, J McCracken, ME McKinnon, B Meyer, CA Mineeva, T Mirazita, M Mokeev, V Moreno, B Moriya, K Morrison, B Moutarde, H Munevar, E Nadel-Turonski, P Nasseripour, R Nepali, CS Niccolai, S Niculescu, G Niculescu, I Niroula, MR Osipenko, M Ostrovidov, AI Park, S Pasyuk, E Pereira, SA Pisano, S Pogorelko, O Pozdniakov, S Price, JW Procureur, S Prok, Y Protopopescu, D Raue, BA Ricco, G Ripani, M Ritchie, BG Rosner, G Rossi, P Sabatie, F Saini, MS Salamanca, J Schumacher, RA Seraydaryan, H Shvedunov, NV Sober, DI Sokhan, D Stepanyan, SS Stoler, P Strakovsky, II Strauch, S Suleiman, R Taiuti, M Tedeschi, DJ Tkachenko, S Vineyard, MF Watts, DP Weinstein, LB Weygand, DP Williams, M Wood, MH Zana, L Zhang, J Zhao, B AF Aznauryan, I. G. Burkert, V. D. Biselli, A. S. Egiyan, H. Joo, K. Kim, W. Park, K. Smith, L. C. Ungaro, M. Adhikari, K. P. Anghinolfi, M. Avakian, H. Ball, J. Battaglieri, M. Batourine, V. Bedlinskiy, I. Bellis, M. Bookwalter, C. Branford, D. Briscoe, W. J. Brooks, W. K. Careccia, S. L. Carman, D. S. Cole, P. L. Collins, P. Crede, V. D'Angelo, A. Daniel, A. De Vita, R. De Sanctis, E. Deur, A. Dey, B. Dhamija, S. Dickson, R. Djalali, C. Doughty, D. Dupre, R. El Alaoui, A. Elouadrhiri, L. Eugenio, P. Fedotov, G. Fegan, S. Forest, T. A. Gabrielyan, M. Y. Gilfoyle, G. P. Giovanetti, K. L. Girod, F. X. Goetz, J. T. Gohn, W. Golovatch, E. Gothe, R. W. Guidal, M. Guo, L. Hafidi, K. Hakobyan, H. Hanretty, C. Hassall, N. Heddle, D. Hicks, K. Holtrop, M. Hyde, C. E. Ilieva, Y. Ireland, D. G. Ishkhanov, B. S. Isupov, E. L. Jawalkar, S. S. Jo, H. S. Johnstone, J. R. Keller, D. Khandaker, M. Khetarpal, P. Klein, A. Klein, F. J. Kramer, L. H. Kubarovsky, V. Kuhn, S. E. Kuleshov, S. V. Kuznetsov, V. Livingston, K. Lu, H. Y. Mayer, M. McAndrew, J. McCracken, M. E. McKinnon, B. Meyer, C. A. Mineeva, T. Mirazita, M. Mokeev, V. Moreno, B. Moriya, K. Morrison, B. Moutarde, H. Munevar, E. Nadel-Turonski, P. Nasseripour, R. Nepali, C. S. Niccolai, S. Niculescu, G. Niculescu, I. Niroula, M. R. Osipenko, M. Ostrovidov, A. I. Park, S. Pasyuk, E. Pereira, S. Anefalos Pisano, S. Pogorelko, O. Pozdniakov, S. Price, J. W. Procureur, S. Prok, Y. Protopopescu, D. Raue, B. A. Ricco, G. Ripani, M. Ritchie, B. G. Rosner, G. Rossi, P. Sabatie, F. Saini, M. S. Salamanca, J. Schumacher, R. A. Seraydaryan, H. Shvedunov, N. V. Sober, D. I. Sokhan, D. Stepanyan, S. S. Stoler, P. Strakovsky, I. I. Strauch, S. Suleiman, R. Taiuti, M. Tedeschi, D. J. Tkachenko, S. Vineyard, M. F. Watts, D. P. Weinstein, L. B. Weygand, D. P. Williams, M. Wood, M. H. Zana, L. Zhang, J. Zhao, B. CA CLAS Collaboration TI Electroexcitation of nucleon resonances from CLAS data on single pion electroproduction SO PHYSICAL REVIEW C LA English DT Review ID TRANSITION FORM-FACTORS; RELATIVISTIC QUARK-MODEL; LIGHT-FRONT DYNAMICS; GAMMA-ASTERISK; NEUTRAL PIONS; HIGH-ENERGIES; REGION; PHOTOPRODUCTION; Q2; MESONS AB We present results on the electroexcitation of the low mass resonances Delta(1232)P-33, N(1440)P-11, N(1520)D-13, and N(1535)S-11 in a wide range of Q(2). The results were obtained in the comprehensive analysis of data from the Continuous Electron Beam Accelerator Facility (CEBAF) large acceptance spectrometer (CLAS) detector at the Thomas Jefferson National Accelerator Facility (JLab) on differential cross sections, longitudinally polarized beam asymmetries, and longitudinal target and beam-target asymmetries for pi electroproduction off the proton. The data were analyzed using two conceptually different approaches-fixed-t dispersion relations and a unitary isobar model-allowing us to draw conclusions on the model sensitivity of the obtained electrocoupling amplitudes. The amplitudes for the Delta(1232)P-33 show the importance of a meson-cloud contribution to quantitatively explain the magnetic dipole strength, as well as the electric and scalar quadrupole transitions. They do not show any tendency of approaching the pQCD regime for Q(2)<= 6 GeV2. For the Roper resonance, N(1440)P-11, the data provide strong evidence that this state is a predominantly radial excitation of a three-quark (3q) ground state. Measured in pion electroproduction, the transverse helicity amplitude for the N(1535)S-11 allowed us to obtain the branching ratios of this state to the pi N and eta N channels via comparison with the results extracted from eta electroproduction. The extensive CLAS data also enabled the extraction of the gamma(*)p -> N(1520)D-13 and N(1535)S-11 longitudinal helicity amplitudes with good precision. For the N(1535)S-11, these results became a challenge for quark models and may be indicative of large meson-cloud contributions or of representations of this state that differ from a 3q excitation. The transverse amplitudes for the N(1520)D-13 clearly show the rapid changeover from helicity-3/2 dominance at the real photon point to helicity-1/2 dominance at Q(2)>1 GeV2, confirming a long-standing prediction of the constituent quark model. C1 [Aznauryan, I. G.; Burkert, V. D.; Egiyan, H.; Park, K.; Ungaro, M.; Avakian, H.; Batourine, V.; Brooks, W. K.; Carman, D. S.; Deur, A.; Doughty, D.; Elouadrhiri, L.; Girod, F. X.; Guo, L.; Heddle, D.; Johnstone, J. R.; Kramer, L. H.; Kubarovsky, V.; Mokeev, V.; Raue, B. A.; Weygand, D. P.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Aznauryan, I. G.; Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Biselli, A. S.] Fairfield Univ, Fairfield, CT 06824 USA. [Egiyan, H.; Holtrop, M.; Protopopescu, D.; Zana, L.] Univ New Hampshire, Durham, NH 03824 USA. [Joo, K.; Ungaro, M.; Gohn, W.; Mineeva, T.; Zhao, B.] Univ Connecticut, Storrs, CT 06269 USA. [Joo, K.; Smith, L. C.; Prok, Y.] Univ Virginia, Charlottesville, VA 22901 USA. [Kim, W.; Park, K.; Kuznetsov, V.; Stepanyan, S. S.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Ungaro, M.; Khetarpal, P.; Stoler, P.] Rensselaer Polytech Inst, Troy, NY 12180 USA. [Adhikari, K. P.; Careccia, S. L.; Forest, T. A.; Hyde, C. E.; Klein, A.; Kuhn, S. E.; Mayer, M.; Nepali, C. S.; Niroula, M. R.; Seraydaryan, H.; Tkachenko, S.; Weinstein, L. B.; Zhang, J.] Old Dominion Univ, Norfolk, VA 23529 USA. [Anghinolfi, M.; Battaglieri, M.; De Vita, R.; Osipenko, M.; Ricco, G.; Ripani, M.; Taiuti, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Ball, J.; Girod, F. X.; Moutarde, H.; Procureur, S.; Sabatie, F.] CEA, Ctr Saclay, Irfu Serv Phys Nucl, F-91191 Gif Sur Yvette, France. [Bedlinskiy, I.; Kuleshov, S. V.; Pogorelko, O.; Pozdniakov, S.] Inst Theoret & Expt Phys, RU-117259 Moscow, Russia. [Bellis, M.; Dey, B.; Dickson, R.; McCracken, M. E.; Meyer, C. A.; Moriya, K.; Schumacher, R. A.; Williams, M.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Bookwalter, C.; Crede, V.; Eugenio, P.; Hanretty, C.; Ostrovidov, A. I.; Park, S.; Saini, M. S.] Florida State Univ, Tallahassee, FL 32306 USA. [Dupre, R.; Hafidi, K.] Argonne Natl Lab, Argonne, IL 60441 USA. [Collins, P.; Morrison, B.; Pasyuk, E.; Ritchie, B. G.] Arizona State Univ, Tempe, AZ 85287 USA. [Goetz, J. T.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Price, J. W.] Calif State Univ Dominguez Hills, Carson, CA 90747 USA. [Wood, M. H.] Canisius Coll, Buffalo, NY 14208 USA. [Klein, F. J.; Nadel-Turonski, P.; Sober, D. I.] Catholic Univ Amer, Washington, DC 20064 USA. [Doughty, D.; Heddle, D.] Christopher Newport Univ, Newport News, VA 23606 USA. [Gilfoyle, G. P.] Univ Richmond, Richmond, VA 23173 USA. [Branford, D.; McAndrew, J.; Sokhan, D.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Dhamija, S.; Gabrielyan, M. Y.; Kramer, L. H.; Nasseripour, R.; Raue, B. A.] Florida Int Univ, Miami, FL 33199 USA. [Briscoe, W. J.; Ilieva, Y.; Munevar, E.; Niccolai, S.; Strakovsky, I. I.; Strauch, S.] George Washington Univ, Washington, DC 20052 USA. [Fegan, S.; Hassall, N.; Ireland, D. G.; Johnstone, J. R.; Livingston, K.; McKinnon, B.; Protopopescu, D.; Rosner, G.; Watts, D. P.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Cole, P. L.; Forest, T. A.; Salamanca, J.] Idaho State Univ, Pocatello, ID 83209 USA. [De Sanctis, E.; Mirazita, M.; Pereira, S. Anefalos; Rossi, P.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [D'Angelo, A.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [El Alaoui, A.; Guidal, M.; Jo, H. S.; Moreno, B.; Niccolai, S.; Pisano, S.] Inst Phys Nucl, F-91406 Orsay, France. [Giovanetti, K. L.; Niculescu, G.; Niculescu, I.] James Madison Univ, Harrisonburg, VA 22807 USA. [Suleiman, R.] MIT, Cambridge, MA 02139 USA. [Khandaker, M.] Norfolk State Univ, Norfolk, VA 23504 USA. [Daniel, A.; Hicks, K.; Keller, D.] Ohio Univ, Athens, OH 45701 USA. [Fedotov, G.; Golovatch, E.; Ishkhanov, B. S.; Isupov, E. L.; Mokeev, V.; Shvedunov, N. V.] Skobeltsyn Nucl Phys Inst, RU-119899 Moscow, Russia. [Djalali, C.; Gothe, R. W.; Ilieva, Y.; Lu, H. Y.; Nasseripour, R.; Ostrovidov, A. I.; Strauch, S.; Tedeschi, D. J.] Univ S Carolina, Columbia, SC 29208 USA. [Vineyard, M. F.] Union Coll, Schenectady, NY 12308 USA. [Brooks, W. K.; Hakobyan, H.; Kuleshov, S. V.] Univ Tecn Federico Santa Maria, Valparaiso, Chile. [Jawalkar, S. S.] Coll William & Mary, Williamsburg, VA 23187 USA. RP Aznauryan, IG (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RI D'Angelo, Annalisa/A-2439-2012; Meyer, Curtis/L-3488-2014; Ireland, David/E-8618-2010; Lu, Haiyun/B-4083-2012; Protopopescu, Dan/D-5645-2012; Zana, Lorenzo/H-3032-2012; Isupov, Evgeny/J-2976-2012; Ishkhanov, Boris/E-1431-2012; Zhao, Bo/J-6819-2012; Brooks, William/C-8636-2013; Kuleshov, Sergey/D-9940-2013; Schumacher, Reinhard/K-6455-2013; El Alaoui, Ahmed/B-4638-2015; Sabatie, Franck/K-9066-2015; Osipenko, Mikhail/N-8292-2015; OI D'Angelo, Annalisa/0000-0003-3050-4907; Meyer, Curtis/0000-0001-7599-3973; Ireland, David/0000-0001-7713-7011; Zhao, Bo/0000-0003-3171-5335; Brooks, William/0000-0001-6161-3570; Kuleshov, Sergey/0000-0002-3065-326X; Schumacher, Reinhard/0000-0002-3860-1827; Sabatie, Franck/0000-0001-7031-3975; Osipenko, Mikhail/0000-0001-9618-3013; Hyde, Charles/0000-0001-7282-8120; Mayer, Michael/0000-0001-7600-0873; Bellis, Matthew/0000-0002-6353-6043 FU US Department of Energy [AC05-060R23177]; National Science Foundation; Korea Research Foundation; French Commissariat a l'Energie Atomique; CNRS/IN2P3; Italian Istituto Nazionale di Fisica Nucleare; Moscow State University; UK Science and Technology Facilities Research Council (STFC) FX This work was supported in part by the US Department of Energy and the National Science Foundation, the Korea Research Foundation, the French Commissariat a l'Energie Atomique and CNRS/IN2P3, the Italian Istituto Nazionale di Fisica Nucleare, the Skobeltsyn Institute of Nuclear Physics and Physics Department at Moscow State University, and the UK Science and Technology Facilities Research Council (STFC). Jefferson Science Associates, LLC, operates Jefferson Lab under US DOE Contract No. DE-AC05-060R23177. NR 104 TC 122 Z9 122 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2009 VL 80 IS 5 AR 055203 DI 10.1103/PhysRevC.80.055203 PG 22 WC Physics, Nuclear SC Physics GA 526SG UT WOS:000272313000072 ER PT J AU Batchelder, JC Wood, JL Garrett, PE Green, KL Rykaczewski, KP Bilheux, JC Bingham, CR Carter, HK Fong, D Grzywacz, R Hamilton, JH Hartley, DJ Hwang, JK Krolas, W Kulp, WD Larochelle, Y Piechaczek, A Ramayya, AV Spejewski, EH Stracener, DW Tantawy, MN Winger, JA Zganjar, EF AF Batchelder, J. C. Wood, J. L. Garrett, P. E. Green, K. L. Rykaczewski, K. P. Bilheux, J. -C. Bingham, C. R. Carter, H. K. Fong, D. Grzywacz, R. Hamilton, J. H. Hartley, D. J. Hwang, J. K. Krolas, W. Kulp, W. D. Larochelle, Y. Piechaczek, A. Ramayya, A. V. Spejewski, E. H. Stracener, D. W. Tantawy, M. N. Winger, J. A. Zganjar, E. F. TI Collective and noncollective states in Cd-116 studied via the beta decays of Ag-116(m1,m2,gs) SO PHYSICAL REVIEW C LA English DT Article ID OCTUPOLE STATES; AG ISOTOPES; NUCLEI; SPECTROSCOPY; EXCITATIONS; SCATTERING; MODEL; TE; PD AB We have reinvestigated the beta decay of the three isomers of Ag-116 at the Holifield Radioactive Ion Beam Facility (HRIBF). Through the use of half-life information, we have been able to construct individual decay schemes for each isomer and correct what was a puzzling inconsistency with the published data, namely the beta feeding of 2(+) states by a 5(+) isomer. Our results indicate that the feeding of these levels arises from a 3(+) isomer in Ag-116. A total of 271 gamma-ray transitions (159 new) were assigned to 148 levels (94 new) from the beta decay of Ag-116(m1,m2,gs). Significant deviations are observed from IBM-2 calculations for the decay of the 0(+) and 2(+) members of the previously assigned three-phonon quintuplet. Candidate states for the quadrupole-octupole quintuplet states and pi g(9/2)-pi p(1/2), pi g(9/2)-pi p(3/2), nu h(11/2)-nu s(1/2), nu h(11/2)-nu d(3/2), and nu h(11/2)-nu d(5/2) broken-pair states are assigned. C1 [Batchelder, J. C.; Carter, H. K.; Spejewski, E. H.] Oak Ridge Associated Univ, UNIRIB, Oak Ridge, TN 37831 USA. [Wood, J. L.; Kulp, W. D.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Garrett, P. E.; Green, K. L.] Univ Guelph, Guelph, ON N1G 3W1, Canada. [Rykaczewski, K. P.; Bilheux, J. -C.; Bingham, C. R.; Stracener, D. W.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37931 USA. [Bingham, C. R.; Grzywacz, R.; Hartley, D. J.; Larochelle, Y.; Tantawy, M. N.] Univ Tennessee, Knoxville, TN 37996 USA. [Fong, D.; Hamilton, J. H.; Hwang, J. K.; Krolas, W.; Ramayya, A. V.] Vanderbilt Univ, Nashville, TN 37235 USA. [Hartley, D. J.] USN Acad, Dept Phys, Annapolis, MD 21402 USA. [Krolas, W.] Joint Inst Heavy Ion Phys, Oak Ridge, TN 37831 USA. [Krolas, W.] H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Piechaczek, A.; Zganjar, E. F.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Winger, J. A.] Mississippi State Univ, Mississippi State, MS 39762 USA. RP Batchelder, JC (reprint author), Oak Ridge Associated Univ, UNIRIB, Oak Ridge, TN 37831 USA. RI Krolas, Wojciech/N-9391-2013; Bilheux, Jean/A-2823-2016 OI Bilheux, Jean/0000-0003-2172-6487 FU US Department of Energy [DE-AC05-76OR00033, DOE-AC05-00OR22725, DE-FG02-96ER40958, DE-FG02-96ER41006, DE-FG05-88ER40407, DE-FG02-96ER40983, DE-FG02-96ER40978, W-7405-ENG-48]; Joint Institute for Heavy Ion Physics; Natural Sciences and Engineering Research Council (Canada) FX This work has been supported by the US Department of Energy under Contracts DE-AC05-76OR00033 (UNIRIB), DOE-AC05-00OR22725 (ORNL), DE-FG02-96ER40958 (Georgia Institute of Technology), DE-FG02-96ER41006 (Mississippi State University), DE-FG05-88ER40407 (Vanderbilt University), DE-FG02-96ER40983 (University of Tennessee), DE-FG02-96ER40978 (Louisiana State University), and W-7405-ENG-48 (LLNL) and the Joint Institute for Heavy Ion Physics. Work also supported in part by the Natural Sciences and Engineering Research Council (Canada). NR 53 TC 20 Z9 20 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2009 VL 80 IS 5 AR 054318 DI 10.1103/PhysRevC.80.054318 PG 28 WC Physics, Nuclear SC Physics GA 526SG UT WOS:000272313000032 ER PT J AU Berant, Z Oster, E Casperson, RJ Wolf, A Werner, V Heinz, A Casten, RF Gurdal, G McCutchan, EA Brenner, DS Terry, JR Winkler, R Williams, E Qian, J Schmidt, A Smith, MK Ahn, T Beausang, CW Regan, PH Ross, T Bunce, M Darakchieva, B Meyer, DA LeBlanc, J Dudziak, K Bauer, C Henning, G AF Berant, Z. Oster, E. Casperson, R. J. Wolf, A. Werner, V. Heinz, A. Casten, R. F. Gurdal, G. McCutchan, E. A. Brenner, D. S. Terry, J. R. Winkler, R. Williams, E. Qian, J. Schmidt, A. Smith, M. K. Ahn, T. Beausang, C. W. Regan, P. H. Ross, T. Bunce, M. Darakchieva, B. Meyer, D. A. LeBlanc, J. Dudziak, K. Bauer, C. Henning, G. TI g factor of the 2(1)(+) state of Hf-172 SO PHYSICAL REVIEW C LA English DT Article ID INTERACTING BOSON MODEL; NUCLEI; PROTON AB The g factor of the 2(1)(+) state of Hf-172 was measured using the perturbed angular correlation technique in a static external magnetic field. The result, g(2(1)(+))=0.25(5), is discussed in relation to the systematics of the previously reported g factors in the Hf isotopes and compared with the predictions of several models. An interesting outcome of the analysis presented in this paper is the agreement between the calculated g factors within the interacting boson approximation (IBA) and the results of a large-scale shell model calculation. This agreement supports the emphasis in the IBA on the valence space. The undershooting of the empirical g factors near midshell in both models suggests that they underestimate the role of the saturation of collectivity, which is explicitly incorporated into a phenomenological model that agrees better with the data. C1 [Berant, Z.; Casperson, R. J.; Wolf, A.; Werner, V.; Heinz, A.; Casten, R. F.; Brenner, D. S.; Terry, J. R.; Winkler, R.; Williams, E.; Qian, J.; Schmidt, A.; Smith, M. K.; Ahn, T.; Bunce, M.; Henning, G.] Yale Univ, Wright Nucl Struct Lab, New Haven, CT 06520 USA. [Berant, Z.; Oster, E.; Wolf, A.] Nucl Res Ctr Negev, IL-84190 Beer Sheva, Israel. [Gurdal, G.] Rutgers State Univ, New Brunswick, NJ 08903 USA. [McCutchan, E. A.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Brenner, D. S.] Clark Univ, Dept Chem, Worcester, MA 01610 USA. [Beausang, C. W.; Ross, T.] Univ Richmond, Dept Phys, Richmond, VA 23173 USA. [Regan, P. H.; Ross, T.; Bunce, M.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. [Darakchieva, B.; Meyer, D. A.; LeBlanc, J.; Dudziak, K.] Rhodes Coll, Dept Phys, Memphis, TN 38112 USA. [Bauer, C.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. [Henning, G.] ENS CACHAN, Cachan, France. RP Berant, Z (reprint author), Yale Univ, Wright Nucl Struct Lab, New Haven, CT 06520 USA. RI Qian, Jing/F-9639-2010; Heinz, Andreas/E-3191-2014; Williams, Elizabeth/D-3442-2014; Ahn, Tan/C-9158-2016; Werner, Volker/C-1181-2017 OI Ahn, Tan/0000-0003-2249-7399; Werner, Volker/0000-0003-4001-0150 FU US DOE [DE-FG02-91ER40609, DE-AC02-06CH11357, DE-FG02-88ER-40417]; US NSF [PHY-0245018]; Yale Flint Fund; STFC(UK); YUUP [DPT2006K-120470] FX The authors are indebted to the staff of the Wright Nuclear Structure Laboratory for the skillful operation of the tandem accelerator and especially to Mr. Walter R. Garnett, Jr., for extensive technical support. A. W. and P. H. R. acknowledge the hospitality of theWNSL during the experiment. This work was supported by the US DOE under Grant Nos. DE-FG02-91ER40609, DE-AC02-06CH11357, and DE-FG02-88ER-40417; the US NSF under Grant No. PHY-0245018; the Yale Flint Fund; and the STFC(UK) and YUUP under Project No. DPT2006K-120470. NR 16 TC 3 Z9 3 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2009 VL 80 IS 5 AR 057303 DI 10.1103/PhysRevC.80.057303 PG 4 WC Physics, Nuclear SC Physics GA 526SG UT WOS:000272313000089 ER PT J AU Bhattacharya, M Goodman, CD Garcia, A AF Bhattacharya, M. Goodman, C. D. Garcia, A. TI Weak-interaction strength from charge-exchange reactions versus beta decay in the A=40 isoquintet SO PHYSICAL REVIEW C LA English DT Article ID CROSS-SECTIONS; TENSOR FORCE; AR-40; TI-40; EFFICIENCY; DETECTOR AB We report a measurement of the Gamow-Teller (GT) strength distribution for (40)Ar ->(40)K using the 0(degrees)(p,n) reaction. The measurement extends observed GT strength distribution in the A=40 system up to an excitation energy of similar to 8 MeV. In comparing our results with those from the beta decay of the isospin mirror nucleus (40)Ti, we find that, within the excitation energy region probed by the beta-decay experiment, we observe a total GT strength that is in fair agreement with the beta-decay measurement. However, we find that the relative strength of the two strongest transitions differs by a factor of similar to 1.8 in comparing our results from (p,n) reactions with the beta decay of (40)Ti. Using our results we present the neutrino-capture cross section for (40)Ar. C1 [Bhattacharya, M.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Bhattacharya, M.; Goodman, C. D.] Indiana Univ, Cyclotron Facil, Bloomington, IN 47408 USA. [Garcia, A.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. RP Bhattacharya, M (reprint author), Siemens Med Solut, Mol Imaging Sci & Technol, 2501 N Barrington Rd, Hoffman Estates, IL 60192 USA. EM Manojeet.Bhattacharya@siemens.com FU NSF; DOE FX We thank B. D. Anderson for lending us the gas cell, M. Palarczyk for help with data taking, and G. F. Bertsch for fruitful discussions. This work was supported by the NSF and the DOE. NR 18 TC 13 Z9 13 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2009 VL 80 IS 5 AR 055501 DI 10.1103/PhysRevC.80.055501 PG 6 WC Physics, Nuclear SC Physics GA 526SG UT WOS:000272313000080 ER PT J AU Esbensen, H Reifarth, R AF Esbensen, H. Reifarth, R. TI Coulomb dissociation of C-15 and radiative neutron capture on C-14 (vol 80, 024608, 2009) SO PHYSICAL REVIEW C LA English DT Correction C1 [Esbensen, H.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Reifarth, R.] GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany. [Reifarth, R.] Goethe Univ Frankfurt, D-60438 Frankfurt, Germany. RP Esbensen, H (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. NR 5 TC 1 Z9 1 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2009 VL 80 IS 5 AR 059904 DI 10.1103/PhysRevC.80.059904 PG 2 WC Physics, Nuclear SC Physics GA 526SG UT WOS:000272313000097 ER PT J AU Filip, P Lednicky, R Masui, H Xu, N AF Filip, Peter Lednicky, Richard Masui, Hiroshi Xu, Nu TI Initial eccentricity in deformed Au-197+Au-197 and U-238+U-238 collisions at s(NN)=200 GeV at the BNL Relativistic Heavy Ion Collider SO PHYSICAL REVIEW C LA English DT Article ID HIGH-ENERGY; NUCLEAR COLLISIONS; ELLIPTIC FLOW; DISTRIBUTIONS; MULTIPLICITY; STATE AB Initial eccentricity and eccentricity fluctuations of the interaction volume created in relativistic collisions of deformed Au-197 and U-238 nuclei are studied using optical and Monte Carlo (MC) Glauber simulations. It is found that the nonsphericity noticeably influences the average eccentricity in central collisions, and eccentricity fluctuations are enhanced from deformation. Quantitative results are obtained for Au+Au and U+U collisions at energy s(NN)=200 GeV. C1 [Filip, Peter] Slovak Acad Sci, Inst Phys, Bratislava 84511, Slovakia. [Lednicky, Richard] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Masui, Hiroshi; Xu, Nu] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94705 USA. RP Filip, P (reprint author), Slovak Acad Sci, Inst Phys, Bratislava 84511, Slovakia. EM Peter.Filip@savba.sk RI Lednicky, Richard/K-4164-2013 FU US Department of Energy [DE-AC03-76SF00098]; Slovak Grant Agency [2-7116-29]; JINR Dubna FX The authors are grateful to Art Poskanzer for his comments. This work was supported by the US Department of Energy under Contract No. DE-AC03-76SF00098, Slovak Grant Agency for Sciences VEGA under Grant No. 2-7116-29, and JINR Dubna. NR 29 TC 19 Z9 19 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2009 VL 80 IS 5 AR 054903 DI 10.1103/PhysRevC.80.054903 PG 5 WC Physics, Nuclear SC Physics GA 526SG UT WOS:000272313000055 ER PT J AU Gellanki, J Ragnarsson, I Rudolph, D Svensson, CE Andersson, LL Andreoiu, C Baktash, C Carpenter, MP Charity, RJ Chiara, CJ Eberth, J Ekman, J Fahlander, C Haslip, DS Johansson, EK LaFosse, DR Paul, SD Pechenaya, OL Reviol, W du Rietz, R Sarantites, DG Seweryniak, D Sobotka, LG Thomas, HG Torres, DA Waddington, JC Wilson, JN Yu, CH Zhu, S AF Gellanki, J. Ragnarsson, I. Rudolph, D. Svensson, C. E. Andersson, L. -L. Andreoiu, C. Baktash, C. Carpenter, M. P. Charity, R. J. Chiara, C. J. Eberth, J. Ekman, J. Fahlander, C. Haslip, D. S. Johansson, E. K. LaFosse, D. R. Paul, S. D. Pechenaya, O. L. Reviol, W. du Rietz, R. Sarantites, D. G. Seweryniak, D. Sobotka, L. G. Thomas, H. G. Torres, D. A. Waddington, J. C. Wilson, J. N. Yu, C. H. Zhu, S. TI Characterization of superdeformed bands in Zn-62 SO PHYSICAL REVIEW C LA English DT Article ID GAMMA-RAY SPECTROSCOPY; 60 MASS REGION; ROTATIONAL BANDS; RESPONSE CHARACTERISTICS; SMOOTH TERMINATION; CHANNEL-SELECTION; HIGH-SPIN; GAMMASPHERE; COLLECTIVITY; DECAY AB Combined data from four fusion-evaporation reaction experiments were utilized to investigate deformed and superdeformed structures in Zn-62(30)32. Combination of the Gammasphere gamma-ray spectrometer and ancillary particle detection systems allowed for the connection of rotational bands to well-known, low-lying excited states in Zn-62, as well as spectroscopy of discrete high-spin states reaching excitation energies of E-x=42.5 MeV. Four well- or superdeformed bands in Zn-62 are characterized and described by means of cranked Nilsson-Strutinsky calculations. C1 [Gellanki, J.; Rudolph, D.; Andersson, L. -L.; Andreoiu, C.; Ekman, J.; Fahlander, C.; Johansson, E. K.; du Rietz, R.; Torres, D. A.] Lund Univ, Dept Phys, S-22100 Lund, Sweden. [Ragnarsson, I.] Lund Univ, Div Math Phys, LTH, S-22100 Lund, Sweden. [Svensson, C. E.; Andreoiu, C.; Haslip, D. S.; Waddington, J. C.] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. [Baktash, C.; Paul, S. D.; Yu, C. H.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Carpenter, M. P.; Seweryniak, D.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Charity, R. J.; Chiara, C. J.; LaFosse, D. R.; Pechenaya, O. L.; Reviol, W.; Sarantites, D. G.; Sobotka, L. G.; Wilson, J. N.] Washington Univ, Dept Chem, St Louis, MO 63130 USA. [Eberth, J.; Thomas, H. G.] Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany. [Torres, D. A.] Univ Nacl Colombia, Dept Fis, Bogota, Colombia. RP Gellanki, J (reprint author), Lund Univ, Dept Phys, S-22100 Lund, Sweden. EM gellanki.jnaneswari@nuclear.lu.se RI Rudolph, Dirk/D-4259-2009; Ekman, Jorgen/C-1385-2013; du Rietz, Rickard/I-3794-2013; Carpenter, Michael/E-4287-2015 OI Rudolph, Dirk/0000-0003-1199-3055; du Rietz, Rickard/0000-0002-9884-9058; Carpenter, Michael/0000-0002-3237-5734 NR 34 TC 8 Z9 8 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2009 VL 80 IS 5 AR 051304 DI 10.1103/PhysRevC.80.051304 PG 5 WC Physics, Nuclear SC Physics GA 526SG UT WOS:000272313000005 ER PT J AU Ilyushkin, SV Winger, JA Gross, CJ Rykaczewski, KP Batchelder, JC Cartegni, L Darby, IG Goodin, C Grzywacz, R Hamilton, JH Korgul, A Krolas, W Liddick, SN Mazzocchi, C Padgett, S Piechaczek, A Rajabali, MM Shapira, D Zganjar, EF AF Ilyushkin, S. V. Winger, J. A. Gross, C. J. Rykaczewski, K. P. Batchelder, J. C. Cartegni, L. Darby, I. G. Goodin, C. Grzywacz, R. Hamilton, J. H. Korgul, A. Krolas, W. Liddick, S. N. Mazzocchi, C. Padgett, S. Piechaczek, A. Rajabali, M. M. Shapira, D. Zganjar, E. F. TI beta decay of the pi f(5/2) ground state of Cu-77 studied with 225 MeV and 0.2 MeV purified radioactive beams SO PHYSICAL REVIEW C LA English DT Article ID NEUTRON-RICH ZN; NUCLEI; SPECTROSCOPY AB Isobarically purified beams of Cu-77 with energies of 225 and 0.2 MeV were used at the Holifield Radioactive Ion Beam Facility of Oak Ridge National Laboratory to study beta decay into states in Zn-77. Data taken at 225 MeV allowed the determination of absolute branching ratios relative to the decay of Cu-77 for this beta decay as well as its daughters. From these we obtained a refined beta-delayed neutron emission probability of 30.3(22)% and a probability that the decay proceeds through Zn-77(g) of 49.1(26)%. A total of 64 gamma rays were placed in a level scheme for Zn-77 containing 35 excited states including one state above the neutron separation energy, whereas two gamma rays were observed for the beta n branch to states in Zn-76. The growth and decay curves of some prominent gamma rays indicate a single beta-decaying state with a half-life of 480(9) ms. The decay pattern for Cu-77, with observed feeding of 8(3)% to 7/2(+) Zn-77(g) and 6(3)% to 1/2(-) Zn-77(m), in contrast to the large feeding observed for decay of pi p(3/2) Cu-73(g) to 1/2(-) Zn-73(g), strongly suggests a pi f(5/2) ground state for the studied Cu-77 activity. C1 [Ilyushkin, S. V.; Winger, J. A.] Mississippi State Univ, Dept Phys & Astron, Mississippi State, MS 39762 USA. [Gross, C. J.; Rykaczewski, K. P.; Grzywacz, R.; Shapira, D.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Batchelder, J. C.; Liddick, S. N.] Oak Ridge Associated Univ, UNIRIB, Oak Ridge, TN 37831 USA. [Cartegni, L.; Darby, I. G.; Grzywacz, R.; Korgul, A.; Liddick, S. N.; Mazzocchi, C.; Padgett, S.; Rajabali, M. M.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Darby, I. G.] Katholieke Univ Leuven, Inst Kern Stralingsfys, B-3001 Louvain, Belgium. [Goodin, C.; Hamilton, J. H.; Korgul, A.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Korgul, A.] Warsaw Univ, Inst Expt Phys, PL-00681 Warsaw, Poland. [Korgul, A.; Krolas, W.] Joint Inst Heavy Ion React, Oak Ridge, TN 37831 USA. [Krolas, W.] Polish Acad Sci, Inst Nucl Phys, PL-31342 Krakow, Poland. [Mazzocchi, C.] Univ Milan, I-20133 Milan, Italy. [Mazzocchi, C.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Piechaczek, A.; Zganjar, E. F.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. RP Ilyushkin, SV (reprint author), Mississippi State Univ, Dept Phys & Astron, Mississippi State, MS 39762 USA. EM svi1@msstate.edu RI Krolas, Wojciech/N-9391-2013 FU US Department of Energy [DE-AC05-00OR22725, DE-FG02-96ER41006, DE-FG02-96ER40983, DE-AC05-06OR23100, DE-FG02-96ER40978, DE-FG05-88ER40407]; National Nuclear Security Administration [DEFC03-03NA00143]; Polish Ministry of Science and Higher Education [N N202 1033 33]; Foundation for Polish Science FX We wish to acknowledge the Holifield Radioactive Ion Beam Facility (HRIBF) and staff for their help and the excellent quality of the neutron-rich beams. In addition, the engineering staff at the HRIBF deserves our thanks for their help in constructing the Low-energy Radioactive Ion Beam Spectroscopy Station beam line. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the US Department of Energy under Contract No. DE-AC05-00OR22725. Additionally, this work was supported by US Department of Energy Grant Nos. DE-FG02-96ER41006, DE-FG02-96ER40983, DE-AC05-06OR23100, DE-FG02-96ER40978, and DE-FG05-88ER40407; National Nuclear Security Administration Grant No. DEFC03-03NA00143; Polish Ministry of Science and Higher Education Grant No. N N202 1033 33; and the Foundation for Polish Science. NR 23 TC 27 Z9 27 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2009 VL 80 IS 5 AR 054304 DI 10.1103/PhysRevC.80.054304 PG 10 WC Physics, Nuclear SC Physics GA 526SG UT WOS:000272313000018 ER PT J AU Jeschonnek, S Van Orden, JW AF Jeschonnek, Sabine Van Orden, J. W. TI Target polarization for H-2(e,e(')p)n at GeV energies SO PHYSICAL REVIEW C LA English DT Article ID ELECTRON-SCATTERING; DEUTERON; NUCLEI; ELECTRODISINTEGRATION; TRANSPARENCY; OBSERVABLES; EQUATIONS; SYSTEMS; A(E AB We perform a fully relativistic calculation of the H-2(e,e(')p)n reaction in the impulse approximation employing the Gross equation to describe the deuteron ground state, and we use the SAID parametrization of the full NN scattering amplitude to describe the final state interactions (FSIs). The formalism for treating target polarization with arbitrary polarization axes is discussed, and general properties of some asymmetries are derived from it. We show results for momentum distributions and angular distributions of various asymmetries that can only be accessed with polarized targets. C1 [Jeschonnek, Sabine] Ohio State Univ, Dept Phys, Lima, OH 45804 USA. [Van Orden, J. W.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Van Orden, J. W.] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. RP Jeschonnek, S (reprint author), Ohio State Univ, Dept Phys, Lima, OH 45804 USA. OI Jeschonnek, Sabine/0000-0002-8603-7589 FU US Department of Energy [DE-AC05-84ER40150]; National Science Foundation [PHY-0653312] FX We thank Sebastian Kuhn for his insightful comments on an earlier version of this paper. We thank Michael Kohl for providing us with information on the Bates experiments. This work was supported in part by funds provided by the US Department of Energy through a cooperative research agreement under Contract No. DE-AC05-84ER40150 and by the National Science Foundation under Grant No. PHY-0653312. NR 42 TC 17 Z9 17 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2009 VL 80 IS 5 AR 054001 DI 10.1103/PhysRevC.80.054001 PG 15 WC Physics, Nuclear SC Physics GA 526SG UT WOS:000272313000013 ER PT J AU Lotay, G Woods, PJ Seweryniak, D Carpenter, MP Janssens, RVF Zhu, S AF Lotay, G. Woods, P. J. Seweryniak, D. Carpenter, M. P. Janssens, R. V. F. Zhu, S. TI gamma-ray spectroscopy study of states in Si-27 relevant for the Al-26(m)(p,gamma)Si-27 reaction in novae and supernovae SO PHYSICAL REVIEW C LA English DT Article ID PROTON THRESHOLD STATES; PRESOLAR GRAINS; AL-26; EMISSION AB The heavy-ion, fusion-evaporation reaction C-12(O-16,n) was used to identify gamma-decay transitions from excited states in Si-27 above the proton threshold. The precise level energy measurements, J(pi) assignments, and lifetime measurements of astrophysically important Al-26(m)+p resonances have allowed an evaluation of the Al-26(m)(p,gamma)Si-27 reaction rate. An l(p)=0 resonance has been newly identified at a center-of-mass energy in the Al-26(m)+p system of 146.3(3) keV and is expected to dominate the rate for low stellar temperatures. In addition, an l(p)=1 resonance has been identified at 378.3(30) keV and is likely to dominate the rate at high astrophysical temperatures, such as those found in oxygen-neon novae and core-collapse supernovae. C1 [Lotay, G.; Woods, P. J.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Seweryniak, D.; Carpenter, M. P.; Janssens, R. V. F.; Zhu, S.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Lotay, G (reprint author), Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. RI Carpenter, Michael/E-4287-2015 OI Carpenter, Michael/0000-0002-3237-5734 FU US Department of Energy [DE-AC0206CH11357]; Science and Technologies Facilities Council FX The work was supported by the US Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC0206CH11357. UK personnel were supported by the Science and Technologies Facilities Council. NR 34 TC 8 Z9 8 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2009 VL 80 IS 5 AR 055802 DI 10.1103/PhysRevC.80.055802 PG 9 WC Physics, Nuclear SC Physics GA 526SG UT WOS:000272313000082 ER PT J AU Mekterovic, D Supek, I Abaev, V Bekrenev, V Bircher, C Briscoe, WJ Cadman, RV Clajus, M Comfort, JR Craig, K Grosnick, D Isenhover, D Jerkins, M Joy, M Knecht, N Koetke, DD Kozlenko, N Kulbardis, A Kruglov, S Lolos, G Lopatin, I Manley, DM Manweiler, R Marusic, A McDonald, S Nefkens, BMK Olmsted, J Papandreou, Z Peaslee, D Peterson, J Phaisangittisakul, N Prakhov, SN Price, JW Ramirez, A Sadler, ME Shafi, A Spinka, H Stanislaus, S Starostin, A Staudenmaier, HM Strakovsky, I Tippens, WB Watson, S AF Mekterovic, D. Supek, I. Abaev, V. Bekrenev, V. Bircher, C. Briscoe, W. J. Cadman, R. V. Clajus, M. Comfort, J. R. Craig, K. Grosnick, D. Isenhover, D. Jerkins, M. Joy, M. Knecht, N. Koetke, D. D. Kozlenko, N. Kulbardis, A. Kruglov, S. Lolos, G. Lopatin, I. Manley, D. M. Manweiler, R. Marusic, A. McDonald, S. Nefkens, B. M. K. Olmsted, J. Papandreou, Z. Peaslee, D. Peterson, J. Phaisangittisakul, N. Prakhov, S. N. Price, J. W. Ramirez, A. Sadler, M. E. Shafi, A. Spinka, H. Stanislaus, S. Starostin, A. Staudenmaier, H. M. Strakovsky, I. Tippens, W. B. Watson, S. CA Crystal Ball Collaboration TI Differential cross sections of the charge-exchange reaction pi(-)p ->pi(0)n in the momentum range from 103 to 178 MeV/c SO PHYSICAL REVIEW C LA English DT Article ID ISOSPIN VIOLATION; DELTA-RESONANCE; SCATTERING; BREAKING; PROTON AB Measured values of the differential cross sections for pion-nucleon charge exchange, pi(-)p ->pi(0)n, are presented for pi(-) momenta of 103,112,120,130,139,152, and 178 MeV/c. Complete angular distributions were obtained by using the Crystal Ball detector at the Alternating Gradient Synchrotron at Brookhaven National Laboratory. Statistical uncertainties of the differential cross sections vary from 3 to 6% in the backward angle region and from 6 to about 20% in the forward region with the exception of the two most forward angles. The systematic uncertainties are estimated to be about 3% for all momenta. C1 [Mekterovic, D.; Supek, I.] Rudjer Boskovic Inst, Zagreb 10000, Croatia. [Abaev, V.; Bekrenev, V.; Kozlenko, N.; Kulbardis, A.; Kruglov, S.; Lopatin, I.] Petersburg Nucl Phys Inst, RU-188350 Gatchina, Russia. [Bircher, C.; Isenhover, D.; Jerkins, M.; Joy, M.; Sadler, M. E.; Watson, S.] Abilene Christian Univ, Abilene, TX 79699 USA. [Briscoe, W. J.; Shafi, A.; Strakovsky, I.] George Washington Univ, Washington, DC 20052 USA. [Cadman, R. V.; Spinka, H.] Argonne Natl Lab, Argonne, IL 60439 USA. [Clajus, M.; Marusic, A.; McDonald, S.; Nefkens, B. M. K.; Phaisangittisakul, N.; Prakhov, S. N.; Price, J. W.; Starostin, A.; Tippens, W. B.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Comfort, J. R.; Craig, K.; Ramirez, A.] Arizona State Univ, Tempe, AZ 85287 USA. [Grosnick, D.; Koetke, D. D.; Manweiler, R.; Stanislaus, S.] Valparaiso Univ, Valparaiso, IN 46383 USA. [Knecht, N.; Lolos, G.; Papandreou, Z.] Univ Regina, Regina, SK S4S OA2, Canada. [Manley, D. M.; Olmsted, J.] Kent State Univ, Kent, OH 44242 USA. [Peaslee, D.] Univ Maryland, College Pk, MD 20742 USA. [Peterson, J.] Univ Colorado, Boulder, CO 80309 USA. [Staudenmaier, H. M.] Univ Karlsruhe, D-76128 Karlsruhe, Germany. RP Mekterovic, D (reprint author), Rudjer Boskovic Inst, POB 1016, Zagreb 10000, Croatia. EM dmekter@irb.hr RI Marusic, Ana/E-7683-2013 OI Marusic, Ana/0000-0001-6272-0917 FU US DOE; NSF; Croatian MZOS; Russian Foundation for Basic Research; NSERC of Canada FX This work was supported in part by the US DOE and NSF, by the Croatian MZOS, by the Russian Foundation for Basic Research, and by NSERC of Canada. The assistance of BNL and AGS with the setup is greatly appreciated. NR 18 TC 2 Z9 2 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2009 VL 80 IS 5 AR 055207 DI 10.1103/PhysRevC.80.055207 PG 12 WC Physics, Nuclear SC Physics GA 526SG UT WOS:000272313000076 ER PT J AU Rodriguez-Gallardo, M Arias, JM Gomez-Camacho, J Moro, AM Thompson, IJ Tostevin, JA AF Rodriguez-Gallardo, M. Arias, J. M. Gomez-Camacho, J. Moro, A. M. Thompson, I. J. Tostevin, J. A. TI Four-body continuum-discretized coupled-channels calculations SO PHYSICAL REVIEW C LA English DT Article ID COULOMB BARRIER; SCATTERING; BREAKUP; STATES; HALOS; HE-6 AB The development of a continuum-bin scheme of discretization for three-body projectiles is necessary for studies of reactions of Borromean nuclei such as (6)He within the continuum-discretized coupled-channels approach. Such a procedure, for constructing bin states on selected continuum energy intervals, is formulated and applied for the first time to reactions of a three-body projectile. The continuum representation uses the eigenchannel expansion of the three-body S matrix. The method is applied to the challenging case of the (6)He+(208)Pb reaction at 22 MeV, where an accurate treatment of both the Coulomb and the nuclear interactions with the target is necessary. C1 [Rodriguez-Gallardo, M.] CSIC, Inst Estructura Mat, E-28006 Madrid, Spain. [Rodriguez-Gallardo, M.; Arias, J. M.; Gomez-Camacho, J.; Moro, A. M.] Univ Seville, Dept Fis Atom Mol & Nucl, E-41080 Seville, Spain. [Rodriguez-Gallardo, M.] Univ Lisbon, Ctr Fis Nucl, P-1649003 Lisbon, Portugal. [Gomez-Camacho, J.] Ctr Nacl Aceleradores, E-41092 Seville, Spain. [Thompson, I. J.] Lawrence Livermore Natl Lab, Phys Sci Directorate, Livermore, CA 94551 USA. [Tostevin, J. A.] Univ Surrey, Fac Engn & Phys Sci, Dept Phys, Guildford GU2 7XH, Surrey, England. RP Rodriguez-Gallardo, M (reprint author), CSIC, Inst Estructura Mat, Serrano 123, E-28006 Madrid, Spain. RI Arias, Jose M./G-8988-2011; Rodriguez-Gallardo, Manuela/B-4413-2014; Gomez-Camacho, Joaquin/L-5625-2014; Moro, Antonio/E-6538-2010 OI Arias, Jose M./0000-0001-7363-4328; Rodriguez-Gallardo, Manuela/0000-0002-2831-8315; Gomez-Camacho, Joaquin/0000-0003-0925-5037; Moro, Antonio/0000-0002-0012-8894 FU FCT [POCTI/ISFL/2/275]; DGICYT [FIS 2008-04189, FPA 2006-13807-C02-01]; Spanish Consolider-Ingenio 2010 Programme CPAN [CSD2007-00042]; US Department of Energy at Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; UK Science and Technology Facilities Council [EP/D003628]; Junta de Andalucia FX We are grateful to F. M. Nunes and R. C. Johnson for useful discussions and suggestions. This work was supported in part by the FCT under Grant No. POCTI/ISFL/2/275 and in part by the DGICYT under Project Nos. FIS 2008-04189 and FPA 2006-13807-C02-01 and the Spanish Consolider-Ingenio 2010 Programme CPAN No. CSD2007-00042. Part of this work was performed under the auspices of the US Department of Energy at Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. J.A.T. acknowledges the support of the UK Science and Technology Facilities Council under Grant No. EP/D003628. A. M. M. acknowledges a research grant from the Junta de Andalucia. NR 27 TC 56 Z9 56 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2009 VL 80 IS 5 AR 051601 DI 10.1103/PhysRevC.80.051601 PG 5 WC Physics, Nuclear SC Physics GA 526SG UT WOS:000272313000007 ER PT J AU Sharma, R Vitev, I Zhang, BW AF Sharma, Rishi Vitev, Ivan Zhang, Ben-Wei TI Light-cone wave function approach to open heavy flavor dynamics in QCD matter SO PHYSICAL REVIEW C LA English DT Article ID ION COLLISIONS; ENERGY-LOSS; MESONS; FRAGMENTATION; DECAY AB We calculate the lowest-order charm and beauty parton distribution functions in and fragmentation functions into D and B mesons using the operator definitions of factorized perturbative quantum chromodynamics (QCD). In the vacuum, we find the leading corrections that arise from the structure of the final-state hadrons. Quark-antiquark potentials extracted from the lattice are employed to demonstrate the existence of open heavy flavor bound-state solutions in the quark-gluon plasma in the vicinity of the critical temperature. We provide first results for the in-medium modification of the heavy-quark distribution and decay probabilities in a comoving plasma. In an improved perturbative QCD description of heavy-flavor dynamics in the thermal medium, we combine D- and B-meson formation and dissociation with parton-level charm and beauty quark quenching to obtain predictions for the heavy-meson and nonphotonic-electron suppression in Cu+Cu and Pb+Pb collisions at the Relativistic Heavy Ion Collider and the Large Hadron Collider, respectively. C1 [Sharma, Rishi; Vitev, Ivan; Zhang, Ben-Wei] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Zhang, Ben-Wei] Huazhong Normal Univ, Minist Educ, Key Lab Quark & Lepton Phys, Wuhan, Peoples R China. RP Sharma, R (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. EM rishi@lanl.gov; ivitev@lanl.gov; bzhang@lanl.gov NR 48 TC 131 Z9 131 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2009 VL 80 IS 5 AR 054902 DI 10.1103/PhysRevC.80.054902 PG 17 WC Physics, Nuclear SC Physics GA 526SG UT WOS:000272313000054 ER PT J AU Tsukiyama, K Hjorth-Jensen, M Hagen, G AF Tsukiyama, K. Hjorth-Jensen, M. Hagen, G. TI Gamow shell-model calculations of drip-line oxygen isotopes SO PHYSICAL REVIEW C LA English DT Article AB We employ the Gamow shell model (GSM) to describe low-lying states of the oxygen isotopes O-24 and O-25. The many-body Schroumldinger equation is solved starting from a two-body Hamiltonian defined by a renormalized low-momentum nucleon-nucleon (NN) interaction and a spherical Berggren basis. The Berggren basis treats bound, resonant, and continuum states on an equal footing and is therefore an appropriate representation of loosely bound and unbound nuclear states near threshold. We show that the inclusion of continuum effects has a significant effect on the low-lying 1(+) and 2(+) excited states in O-24. On the other hand, we find that a correct description of binding energy systematics of the ground states is driven by the proper treatment and inclusion of many-body correlation effects. This is supported by the fact that we get O-25 unstable with respect to O-24 in both oscillator and Berggren representations starting from a O-22 core. Furthermore, we show that the structure of these loosely bound or unbound isotopes is strongly influenced by the S-1(0) component of the NN interaction. This has important consequences for our understanding of nuclear stability. C1 [Tsukiyama, K.] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo, Japan. [Hjorth-Jensen, M.] Univ Oslo, Dept Phys, N-0316 Oslo, Norway. [Hjorth-Jensen, M.] Univ Oslo, Ctr Math Applicat, N-0316 Oslo, Norway. [Hagen, G.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Tsukiyama, K (reprint author), Univ Tokyo, Dept Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo, Japan. RI Hjorth-Jensen, Morten/B-1417-2008; Hagen, Gaute/I-6146-2012 OI Hagen, Gaute/0000-0001-6019-1687 FU JSPS; EFES [20244022]; Research Council of Norway [NN2977K]; US Department of Energy [DE-AC05-00OR22725] FX We thank Prof. Takaharu Otsuka for valuable comments. K. T. thanks JSPS for financial support. This work has been supported in part by the JSPS core-to-core program, EFES, by a grant-in-aid for Scientific Research (A) 20244022, and by the Research Council of Norway (Supercomputing Grant NN2977K). Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the US Department of Energy under Contract No. DE-AC05-00OR22725. NR 31 TC 20 Z9 20 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2009 VL 80 IS 5 AR 051301 DI 10.1103/PhysRevC.80.051301 PG 5 WC Physics, Nuclear SC Physics GA 526SG UT WOS:000272313000002 ER PT J AU Wong, CY AF Wong, Cheuk-Yin TI Wigner function of produced particles in string fragmentation SO PHYSICAL REVIEW C LA English DT Review ID NUCLEUS-NUCLEUS COLLISIONS; MASSIVE SCHWINGER MODEL; GLUON DISTRIBUTION-FUNCTIONS; MONTE-CARLO PROGRAM; DUAL-PARTON MODEL; 2 DIMENSIONS; JET FRAGMENTATION; HADRON-NUCLEUS; MULTIPARTICLE PRODUCTION; HIGH-ENERGIES AB I show that quantum chromodynamics in four dimensions (QCD4) with transverse confinement can be approximately compactified into QCD2 with a transverse quark mass m(T) that is obtained by solving a set of coupled transverse eigenvalue equations. In the limits of a strong coupling and a large number of flavors, QCD2 further admits Schwinger QED2-type bosonized solutions. I therefore examine phenomenologically the space-time dynamics of particles produced in string fragmentation by studying the Wigner function of bosons produced in Schwinger QED2, which mimics many features of string fragmentation in quantum chromodynamics. I find that particles with momenta in different regions of the rapidity plateau are produced at the initial moment of string fragmentation as a quark pulls away from an antiquark at high energies, in contrast to classical depictions of string fragmentation with longitudinal space-momentum-time ordering. C1 Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Wong, CY (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. EM wongc@ornl.gov OI Wong, Cheuk-Yin/0000-0001-8223-0659 FU US Department of Energy [DE-AC05-00OR22725] FX The author thanks Professors H. W. Crater and Che-Ming Ko for helpful discussions. This research was supported in part by the Division of Nuclear Physics, US Department of Energy, under Contract No. DE-AC05-00OR22725, managed by UT-Battelle, LLC. NR 123 TC 8 Z9 8 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2009 VL 80 IS 5 AR 054917 DI 10.1103/PhysRevC.80.054917 PG 18 WC Physics, Nuclear SC Physics GA 526SG UT WOS:000272313000069 ER PT J AU Younes, W Gogny, D AF Younes, W. Gogny, D. TI Microscopic calculation of Pu-240 scission with a finite-range effective force SO PHYSICAL REVIEW C LA English DT Article ID GENERATOR-COORDINATE METHOD; D-1 EFFECTIVE INTERACTION; DENSITY-DEPENDENT FORCES; GROUND-STATE; FISSION-BARRIERS; GOGNY FORCE; PAIRING CORRELATIONS; NUCLEI; ISOTOPES; SHAPES AB Hartree-Fock-Bogoliubov calculations of hot fission in Pu-240 have been performed with a newly implemented code that uses the D1S finite-range effective interaction. The hot-scission line is identified in the quadrupole-octupole-moment coordinate space. Fission-fragment shapes are extracted from the calculations. A benchmark calculation for Th-226 is obtained and compared with results in the literature. In addition, technical aspects of the use of HFB calculations for fission studies are examined in detail. In particular, the identification of scission configurations, the sensitivity of near-scission calculations to the choice of collective coordinates in the HFB iterations, and the formalism for the adjustment of collective-variable constraints are discussed. The power of the constraint-adjustment algorithm is illustrated with calculations near the critical scission configurations with up to seven simultaneous constraints. C1 [Younes, W.; Gogny, D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Younes, W (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. NR 45 TC 39 Z9 39 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2009 VL 80 IS 5 AR 054313 DI 10.1103/PhysRevC.80.054313 PG 15 WC Physics, Nuclear SC Physics GA 526SG UT WOS:000272313000027 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Ancu, LS Andeen, T Anzelc, MS Aoki, M Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Atramentov, O Avila, C BackusMayes, J Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brandt, O Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Calfayan, P Calpas, B Calvet, S Cammin, J Carrasco-Lizarraga, MA Carrera, E Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Cheu, E Cho, DK Choi, S Choudhary, B Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cuplov, V Cutts, D Cwiok, M Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E DeVaughan, K Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dorland, T Dubey, A Dudko, LV Duflot, L Duggan, D Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Escalier, M Evans, H Evdokimov, A Evdokimov, VN Facini, G Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gomez, B Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Hossain, S Houben, P Hu, Y Hubacek, Z Huske, N Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jamin, D Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Johnston, D Jonckheere, A Jonsson, P Juste, A Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Kozelov, AV Kraus, J Kuhl, T Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lellouch, J Li, J Li, L Li, QZ Lietti, SM Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Mattig, P Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Maravin, Y Martin, B McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Mendoza, L Menezes, D Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Mitrevski, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T Obrant, G Ochando, C Onoprienko, D Orduna, J Oshima, N Osman, N Osta, J Otec, R Garzon, GJOY Owen, M Padilla, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Popov, AV Potter, C da Silva, WLP Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Takahashi, M Tanasijczuk, A Taylor, W Tiller, B Tissandier, F Titov, M Tokmenin, VV Torchiani, I Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vilanova, D Vint, P Vokac, P Voutilainen, M Wagner, R Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Welty-Rieger, L Wenger, A Wetstein, M White, A Wicke, D Williams, MRJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Ye, Z Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zeitnitz, C Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Ancu, L. S. Andeen, T. Anzelc, M. S. Aoki, M. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Atramentov, O. Avila, C. BackusMayes, J. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Barfuss, A. -F Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brandt, O. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Calfayan, P. Calpas, B. Calvet, S. Cammin, J. Carrasco-Lizarraga, M. A. Carrera, E. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Cheu, E. Cho, D. K. Choi, S. Choudhary, B. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cuplov, V. Cutts, D. Cwiok, M. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. DeVaughan, K. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duflot, L. Duggan, D. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Escalier, M. Evans, H. Evdokimov, A. Evdokimov, V. N. Facini, G. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gomez, B. Goussiou, A. Grannis, P. D. Greder, S. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Huske, N. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jamin, D. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Kozelov, A. V. Kraus, J. Kuhl, T. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lellouch, J. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Maettig, P. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Maravin, Y. Martin, B. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Mendoza, L. Menezes, D. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Mitrevski, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. Obrant, G. Ochando, C. Onoprienko, D. Orduna, J. Oshima, N. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padilla, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Popov, A. V. Potter, C. Prado da Silva, W. L. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Takahashi, M. Tanasijczuk, A. Taylor, W. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Torchiani, I. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vilanova, D. Vint, P. Vokac, P. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Welty-Rieger, L. Wenger, A. Wetstein, M. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Ye, Z. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zeitnitz, C. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. Zutshi, V. Zverev, E. G. CA D0 Collaboration TI Measurement of the top quark mass in final states with two leptons SO PHYSICAL REVIEW D LA English DT Article ID TOPCOLOR-ASSISTED TECHNICOLOR; ELECTROWEAK PRECISION OBSERVABLES; LIKELIHOOD METHOD; MISSING MOMENTUM; DILEPTON EVENTS; COLLISIONS; MODEL; RECONSTRUCTION; DETECTOR; PHYSICS AB We present measurements of the top quark mass (m(t)) in tt candidate events with two final state leptons using 1 fb(-1) of data collected by the D0 experiment. Our data sample is selected by requiring two fully identified leptons or by relaxing one lepton requirement to an isolated track if at least one jet is tagged as a b jet. The top quark mass is extracted after reconstructing the event kinematics under the tt hypothesis using two methods. In the first method, we integrate over expected neutrino rapidity distributions, and in the second we calculate a weight for the possible top quark masses based on the observed particle momenta and the known parton distribution functions. We analyze 83 candidate events in the data and obtain m(t)=176.2 +/- 4.8(stat)+/- 2.1(sys) GeV and m(t)=173.2 +/- 4.9(stat)+/- 2.0(sys) GeV for the two methods, respectively. Accounting for correlations between the two methods, we combine the measurements to obtain m(t)=174.7 +/- 4.4(stat)+/- 2.0(sys) GeV. C1 [Abazov, V. M.; Alexeev, G. D.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Alves, G. A.; Barreto, J.; Maciel, A. K. A.; Pol, M. -E.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.; Carvalho, W.; Malbouisson, H. B.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Rodrigues, R. F.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Hynek, V.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont, France. [Arnoud, Y.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, Inst Natl Polytech Grenoble, LPSC,IN2P3, Grenoble, France. [Barfuss, A. -F; Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Escalier, M.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F; Jaffre, M.; Ochando, C.; Petroff, P.; Rangel, M. S.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Bernardi, G.; Huske, N.; Lellouch, J.; Sanders, M. P.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, SPP, Saclay, France. [Brown, D.; Geist, W.; Greder, S.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Hebbeker, T.; Kirsch, M.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Brandt, O.; Buescher, V.; Hohlfeld, M.; Mundal, O.; Pleier, M. -A.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Hensel, C.; Meyer, J.; Park, S. -J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, D-3400 Gottingen, Germany. [Fiedler, F.; Kuhl, T.; Weber, G.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Maettig, P.; Schliephake, T.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Kim, T. J.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] FOM, Inst NIKHEF, NL-1098 SJ Amsterdam, Netherlands. [Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Cheu, E.; Das, A.; Johns, K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Merritt, K. W.; Naimuddin, M.; Oshima, N.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Weber, M.; Yamada, R.; Yasuda, T.; Ye, Z.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Clutter, J.; McGivern, C. L.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Cuplov, V.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Alverson, G.; Barberis, E.; Facini, G.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Herner, K.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.; Voutilainen, M.] Univ Nebraska, Lincoln, NE 68588 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Cammin, J.; Demina, R.; Garcia-Bellido, A.; Harel, A.; Slattery, P.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Buehler, M.; Hirosky, R.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Mal, P. K.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada. [Bernardi, G.; Huske, N.; Lellouch, J.; Sanders, M. P.] Univ Paris 07, CNRS, IN2P3, LPNHE, Paris, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France. [Choudhary, B.; Dubey, A.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Robinson, S.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester, Lancs, England. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Carrera, E.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Hoang, T.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Evans, H.; Lammers, S.; Parua, N.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Eno, S.; Ferbel, T.; Hadley, N. J.; Jarvis, C.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Bose, T.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Edmunds, D.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Haley, J.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Khatidze, D.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Bargassa, Pedrame/O-2417-2016; Li, Liang/O-1107-2015; Juste, Aurelio/I-2531-2015; Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013; Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Gutierrez, Phillip/C-1161-2011; Mundim, Luiz/A-1291-2012; bu, xuebing/D-1121-2012; Leflat, Alexander/D-7284-2012; Yip, Kin/D-6860-2013; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; OI Haas, Andrew/0000-0002-4832-0455; Williams, Mark/0000-0001-5448-4213; Weber, Michele/0000-0002-2770-9031; Grohsjean, Alexander/0000-0003-0748-8494; Melnychuk, Oleksandr/0000-0002-2089-8685; Bassler, Ursula/0000-0002-9041-3057; Filthaut, Frank/0000-0003-3338-2247; grannis, paul/0000-0003-4692-2142; Qian, Jianming/0000-0003-4813-8167; Evans, Harold/0000-0003-2183-3127; Malik, Sudhir/0000-0002-6356-2655; Blazey, Gerald/0000-0002-7435-5758; Wahl, Horst/0000-0002-1345-0401; Gershtein, Yuri/0000-0002-4871-5449; Weber, Gernot/0000-0003-4199-1640; Bean, Alice/0000-0001-5967-8674; Bargassa, Pedrame/0000-0001-8612-3332; Carrera, Edgar/0000-0002-0857-8507; Landsberg, Greg/0000-0002-4184-9380; Li, Liang/0000-0001-6411-6107; Heredia De La Cruz, Ivan/0000-0002-8133-6467; Sawyer, Lee/0000-0001-8295-0605; Hedin, David/0000-0001-9984-215X; Juste, Aurelio/0000-0002-1558-3291; Begel, Michael/0000-0002-1634-4399; de Jong, Sijbrand/0000-0002-3120-3367; Blessing, Susan/0000-0002-4455-7279; Duperrin, Arnaud/0000-0002-5789-9825; Hoeneisen, Bruce/0000-0002-6059-4256; Beuselinck, Raymond/0000-0003-2613-7446; Heinson, Ann/0000-0003-4209-6146; De, Kaushik/0000-0002-5647-4489; Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Bertram, Iain/0000-0003-4073-4941; Belanger-Champagne, Camille/0000-0003-2368-2617 FU DOE and NSF (U. S.); CEA and CNRS/IN2P3 (France); FASI, Rosatom, and RFBR (Russia); CNPq, FAPERJ, FAPESP, and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF, and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC, and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); Alexander von Humboldt Foundation (Germany) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (U. S.); CEA and CNRS/IN2P3 (France); FASI, Rosatom, and RFBR (Russia); CNPq, FAPERJ, FAPESP, and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF, and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC, and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); and the Alexander von Humboldt Foundation (Germany). NR 48 TC 20 Z9 20 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2009 VL 80 IS 9 AR 092006 DI 10.1103/PhysRevD.80.092006 PG 20 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 526SH UT WOS:000272313100012 ER PT J AU Ahn, EJ Engel, R Gaisser, TK Lipari, P Stanev, T AF Ahn, Eun-Joo Engel, Ralph Gaisser, Thomas K. Lipari, Paolo Stanev, Todor TI Cosmic ray interaction event generator SIBYLL 2.1 SO PHYSICAL REVIEW D LA English DT Article ID DUAL-PARTON MODEL; PARTICLE MULTIPLICITY DISTRIBUTIONS; TOTAL CROSS-SECTIONS; GEV/C BEAM MOMENTUM; SMALL-X PHYSICS; HIGH-ENERGY; CHARGED-PARTICLES; PSEUDORAPIDITY DISTRIBUTIONS; DIFFRACTION DISSOCIATION; INCLUSIVE PRODUCTION AB The cosmic ray interaction event generator Sibyll is widely used in extensive air shower simulations. We describe in detail the properties of Sibyll 2.1 and the differences with the original version 1.7. The major structural improvements are the possibility to have multiple soft interactions, introduction of new parton density functions, and an improved treatment of diffraction. Sibyll 2.1 gives better agreement with fixed target and collider data, especially for the inelastic cross sections and multiplicities of secondary particles. Shortcomings and suggestions for future improvements are also discussed. C1 [Ahn, Eun-Joo] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Ahn, Eun-Joo; Gaisser, Thomas K.; Stanev, Todor] Univ Delaware, Bartol Res Inst, Dept Phys & Astron, Newark, DE 19716 USA. [Engel, Ralph] Forschungszentrum Karlsruhe, Inst Kernphys, D-76021 Karlsruhe, Germany. [Lipari, Paolo] Univ Rome 1, Dipartimento Fis, Ist Nazl Fis Nucl, Sez Roma La Sapienza, I-00185 Rome, Italy. RP Ahn, EJ (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. NR 62 TC 196 Z9 196 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2009 VL 80 IS 9 AR 094003 DI 10.1103/PhysRevD.80.094003 PG 17 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 526SH UT WOS:000272313100023 ER PT J AU Aubert, B Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Martinelli, M Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Battaglia, M Brown, DN Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Asgeirsson, DJ Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Randle-Conde, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Yasin, Z Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Wang, L Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Ongmongkolkul, P Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Toki, WH Wilson, RJ Feltresi, E Hauke, A Jasper, H Karbach, TM Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Nogowski, R Schubert, KR Schwierz, R Volk, A Bernard, D Latour, E Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Fioravanti, E Franchini, P Luppi, E Munerato, M Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Tosi, S Chaisanguanthum, KS Morii, M Adametz, A Marks, J Schenk, S Uwer, U Bernlochner, FU Klose, V Lacker, HM Bard, DJ Dauncey, PD Tibbetts, M Behera, PK Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Arnaud, N Bequilleux, J D'Orazio, A Davier, M Derkach, D da Costa, JF Grosdidier, G Le Diberder, F Lepeltier, V Lutz, AM Malaescu, B Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK Di Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Hafner, A Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Salvati, E Cowan, R Dujmic, D Fisher, PH Henderson, SW Sciolla, G Spitznagel, M Yamamoto, RK Zhao, M Patel, PM Robertson, SH Schram, M Biassoni, P Gandini, P Lazzaro, A Lombardo, V Palombo, F Stracka, S Bauer, JM Cremaldi, L Godang, R Kroeger, R Sonnek, P Summers, DJ Zhao, HW Simard, M Taras, P Nicholson, H De Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Bonneaud, GR Briand, H Chauveau, J Hamon, O Leruste, P Marchiori, G Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Manoni, E Angelini, C Batignani, G Bettarini, S Calderini, G Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S Esteve, L de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Allen, MT Aston, D Bartoldus, R Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Sevilla, MF Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Young, CC Ziegler, V Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Burchat, PR Edwards, AJ Miyashita, TS Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Soffer, A Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Wray, BC Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K King, GJ Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Puccio, EMT Band, HR Chen, X Dasu, S Flood, KT Pan, Y Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Tico, J. Garra Grauges, E. Martinelli, M. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Battaglia, M. Brown, D. N. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Asgeirsson, D. J. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Randle-Conde, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Yasin, Z. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Wang, L. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Ongmongkolkul, P. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Wilson, R. J. Feltresi, E. Hauke, A. Jasper, H. Karbach, T. M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Nogowski, R. Schubert, K. R. Schwierz, R. Volk, A. Bernard, D. Latour, E. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Fioravanti, E. Franchini, P. Luppi, E. Munerato, M. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Tosi, S. Chaisanguanthum, K. S. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Bernlochner, F. U. Klose, V. Lacker, H. M. Bard, D. J. Dauncey, P. D. Tibbetts, M. Behera, P. K. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. Derkach, D. da Costa, J. Firmino Grosdidier, G. Le Diberder, F. Lepeltier, V. Lutz, A. M. Malaescu, B. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Hafner, A. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Salvati, E. Cowan, R. Dujmic, D. Fisher, P. H. Henderson, S. W. Sciolla, G. Spitznagel, M. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Schram, M. Biassoni, P. Gandini, P. Lazzaro, A. Lombardo, V. Palombo, F. Stracka, S. Bauer, J. M. Cremaldi, L. Godang, R. Kroeger, R. Sonnek, P. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Bonneaud, G. R. Briand, H. Chauveau, J. Hamon, O. Leruste, Ph. Marchiori, G. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Calderini, G. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Esteve, L. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Allen, M. T. Aston, D. Bartoldus, R. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Sevilla, M. Franco Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Young, C. C. Ziegler, V. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Burchat, P. R. Edwards, A. J. Miyashita, T. S. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Soffer, A. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Wray, B. C. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. King, G. J. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Puccio, E. M. T. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BaBar Collaboration TI Observation and polarization measurement of B-0 -> a(1)(1260)(+)a(1)(1260)(-) decay SO PHYSICAL REVIEW D LA English DT Article ID TRANSITIONS; SEARCH AB We present measurements of the branching fraction B and longitudinal polarization fraction f(L) for B-0 -> a(1)(1260)(+)a(1)(1260)(-) decays, with a(1)(1260)(+/-)->pi(-)pi(+)pi(+/-). The data sample, collected with the BABAR detector at the SLAC National Accelerator Laboratory, represents 465x10(6) produced BB pairs. We measure B(B-0 -> a(1)(1260)(+)a(1)(1260)(-))x[B(a(1)(1260)(+)->pi(-)pi(+)pi(+))](2)= (11.8 +/- 2.6 +/- 1.6)x10(-6) and f(L)=0.31 +/- 0.22 +/- 0.10, where the first uncertainty is statistical and the second systematic. The decay mode is measured with a significance of 5.0 standard deviations including systematic uncertainties. C1 [Aubert, B.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Martinelli, M.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Martinelli, M.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Battaglia, M.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Randle-Conde, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Ongmongkolkul, P.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.] Univ Colorado, Boulder, CO 80309 USA. [Wagner, S. R.; Ayad, R.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Latour, E.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Bernlochner, F. U.; Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Bard, D. J.; Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Clarke, C. K.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Salvati, E.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Sciolla, G.; Spitznagel, M.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Biassoni, P.; Gandini, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Biassoni, P.; Gandini, P.; Lazzaro, A.; Palombo, F.; Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.; Calderini, G.] Univ Paris 07, Univ Paris 06, CNRS, Lab Phys Nucl & Hautes Energies,IN2P3, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Esteve, L.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Allen, M. T.; Aston, D.; Bartoldus, R.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Sevilla, M. Franco; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.] SLAC, Natl Accelerator Lab, Stanford, CA 94309 USA. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.; Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, IFIC, CSIC, E-46071 Valencia, Spain. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. RP Aubert, B (reprint author), Univ Savoie, LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. RI Rizzo, Giuliana/A-8516-2015; dong, liaoyuan/A-5093-2015; Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Stracka, Simone/M-3931-2015; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Negrini, Matteo/C-8906-2014; Patrignani, Claudia/C-5223-2009; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Della Ricca, Giuseppe/B-6826-2013 OI Strube, Jan/0000-0001-7470-9301; Chen, Chunhui /0000-0003-1589-9955; Bellis, Matthew/0000-0002-6353-6043; Pacetti, Simone/0000-0002-6385-3508; Rizzo, Giuliana/0000-0003-1788-2866; Carpinelli, Massimo/0000-0002-8205-930X; Sciacca, Crisostomo/0000-0002-8412-4072; Adye, Tim/0000-0003-0627-5059; Lafferty, George/0000-0003-0658-4919; Faccini, Riccardo/0000-0003-2613-5141; Martinelli, Maurizio/0000-0003-4792-9178; Cavoto, Gianluca/0000-0003-2161-918X; Wilson, Robert/0000-0002-8184-4103; Lanceri, Livio/0000-0001-8220-3095; Ebert, Marcus/0000-0002-3014-1512; Paoloni, Eugenio/0000-0001-5969-8712; Corwin, Luke/0000-0001-7143-3821; Bettarini, Stefano/0000-0001-7742-2998; Cibinetto, Gianluigi/0000-0002-3491-6231; dong, liaoyuan/0000-0002-4773-5050; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Stracka, Simone/0000-0003-0013-4714; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Hamel de Monchenault, Gautier/0000-0002-3872-3592; Negrini, Matteo/0000-0003-0101-6963; Patrignani, Claudia/0000-0002-5882-1747; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Della Ricca, Giuseppe/0000-0003-2831-6982 FU DOE and NSF (USA); NSERC (Canada); CEA and CNRS-IN2P3 (France); BMBF and DFG (Germany); INFN (Italy); FOM (The Netherlands); NFR (Norway); MES (Russia); MEC (Spain); STFC (United Kingdom); Marie Curie EIF (European Union); A. P. Sloan Foundation FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation. NR 35 TC 4 Z9 5 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2009 VL 80 IS 9 AR 092007 DI 10.1103/PhysRevD.80.092007 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 526SH UT WOS:000272313100013 ER PT J AU Aubert, B Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Martinelli, M Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Battaglia, M Brown, DN Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Asgeirsson, DJ Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Randle-Conde, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Yasin, Z Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Wang, L Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Ongmongkolku, P Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Toki, WH Wilson, RJ Feltresi, E Hauke, A Jasper, H Karbach, TM Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Nogowski, R Schubert, KR Schwierz, R Bernard, D Latour, E Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Fioravanti, E Franchini, P Luppi, E Munerato, M Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Tosi, S Chaisanguanthum, KS Morii, M Adametz, A Marks, J Schenk, S Uwer, U Bernlochner, FU Klose, V Lacker, HM Lueck, T Volk, A Bard, DJ Dauncey, PD Tibbetts, M Behera, PK Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Arnaud, N Bequilleux, J D'Orazio, A Davier, M Derkach, D da Costa, JF Grosdidier, G Le Diberder, F Lepeltier, V Lutz, AM Malaescu, B Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK Di Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Hafner, A Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Salvati, E Cowan, R Dujmic, D Fisher, PH Henderson, SW Sciolla, G Spitznagel, M Yamamoto, RK Zhao, M Patel, PM Robertson, SH Schram, M Biassoni, P Lazzaro, A Lombardo, V Palombo, F Stracka, S Cremaldi, L Godang, R Kroeger, R Sonnek, P Summers, DJ Zhao, HW Simard, M Taras, P Nicholson, H De Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Bonneaud, GR Briand, H Chauveau, J Hamon, O Leruste, P Marchiori, G Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Manoni, E Angelini, C Batignani, G Bettarini, S Calderini, G Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S Esteve, L de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Allen, MT Aston, D Bartoldus, R Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Sevilla, MF Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Young, CC Ziegler, V Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Bellis, M Burchat, PR Edwards, AJ Miyashita, TS Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Soffer, A Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Wray, BC Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K King, GJ Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Puccio, EMT Band, HR Chen, X Dasu, S Flood, KT Pan, Y Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Tico, J. Garra Grauges, E. Martinelli, M. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Battaglia, M. Brown, D. N. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Asgeirsson, D. J. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Randle-Conde, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Yasin, Z. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Wang, L. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Ongmongkolku, P. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Wilson, R. J. Feltresi, E. Hauke, A. Jasper, H. Karbach, T. M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Nogowski, R. Schubert, K. R. Schwierz, R. Bernard, D. Latour, E. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Fioravanti, E. Franchini, P. Luppi, E. Munerato, M. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Tosi, S. Chaisanguanthum, K. S. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Bernlochner, F. U. Klose, V. Lacker, H. M. Lueck, T. Volk, A. Bard, D. J. Dauncey, P. D. Tibbetts, M. Behera, P. K. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. Derkach, D. da Costa, J. Firmino Grosdidier, G. Le Diberder, F. Lepeltier, V. Lutz, A. M. Malaescu, B. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Hafner, A. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Salvati, E. Cowan, R. Dujmic, D. Fisher, P. H. Henderson, S. W. Sciolla, G. Spitznagel, M. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Schram, M. Biassoni, P. Lazzaro, A. Lombardo, V. Palombo, F. Stracka, S. Cremaldi, L. Godang, R. Kroeger, R. Sonnek, P. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Bonneaud, G. R. Briand, H. Chauveau, J. Hamon, O. Leruste, Ph. Marchiori, G. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Calderini, G. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Esteve, L. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Allen, M. T. Aston, D. Bartoldus, R. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Sevilla, M. Franco Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Young, C. C. Ziegler, V. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Bellis, M. Burchat, P. R. Edwards, A. J. Miyashita, T. S. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Soffer, A. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Wray, B. C. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. King, G. J. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Puccio, E. M. T. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. TI Measurements of the tau mass and the mass difference of the tau(+) and tau(-) at BABAR SO PHYSICAL REVIEW D LA English DT Article ID RADIATIVE-CORRECTIONS; DECAY; DETECTOR; LEPTONS AB We present the result from a precision measurement of the mass of the tau lepton, M-tau, based on 423 fb(-1) of data recorded at the Upsilon(4S) resonance with the BABAR detector. Using a pseudomass endpoint method, we determine the mass to be 1776.68 +/- 0.12(stat)+/- 0.41(syst) MeV. We also measure the mass difference between the tau(+) and tau(-), and obtain (M-tau(+)-M-tau(-))/M-AVG(tau)=(-3.4 +/- 1.3(stat)+/- 0.3(syst))x10(-4), where M-AVG(tau) is the average value of M-tau(+) and M-tau(-). C1 [Aubert, B.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, CNRS, IN2P3, LAPP, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Martinelli, M.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Martinelli, M.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Battaglia, M.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Randle-Conde, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Ongmongkolku, P.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Nogowski, R.; Schubert, K. R.; Schwierz, R.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Latour, E.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bernlochner, F. U.; Klose, V.; Lacker, H. M.; Lueck, T.; Volk, A.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Bard, D. J.; Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Clarke, C. K.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Salvati, E.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Sciolla, G.; Spitznagel, M.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Biassoni, P.; Lazzaro, A.; Palombo, F.; Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 AB Amsterdam, Netherlands. [Wang, L.; Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.; Calderini, G.] Univ Paris 07, CNRS, Univ Paris 06, Lab Phys Nucl & Hautes Energies,IN2P3, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Esteve, L.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Allen, M. T.; Aston, D.; Bartoldus, R.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Sevilla, M. Franco; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Bellis, M.; Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Aubert, B (reprint author), Univ Savoie, CNRS, IN2P3, LAPP, F-74941 Annecy Le Vieux, France. RI Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Patrignani, Claudia/C-5223-2009; Monge, Maria Roberta/G-9127-2012; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Stracka, Simone/M-3931-2015; Della Ricca, Giuseppe/B-6826-2013; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; OI Corwin, Luke/0000-0001-7143-3821; Lanceri, Livio/0000-0001-8220-3095; Ebert, Marcus/0000-0002-3014-1512; Hamel de Monchenault, Gautier/0000-0002-3872-3592; Carpinelli, Massimo/0000-0002-8205-930X; Sciacca, Crisostomo/0000-0002-8412-4072; Adye, Tim/0000-0003-0627-5059; Lafferty, George/0000-0003-0658-4919; Martinelli, Maurizio/0000-0003-4792-9178; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Patrignani, Claudia/0000-0002-5882-1747; Monge, Maria Roberta/0000-0003-1633-3195; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Stracka, Simone/0000-0003-0013-4714; Della Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Wilson, Robert/0000-0002-8184-4103; Strube, Jan/0000-0001-7470-9301; Chen, Chunhui /0000-0003-1589-9955; Bellis, Matthew/0000-0002-6353-6043 FU US Department of Energy; National Science Foundation; Natural Sciences and Engineering Research Council (Canada); Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France); Bundesministerium fur Bildung; Forschung and Deutsche Forschungs-gemeinschaft (Germany); Istituto Nazionale di Fisica Nucleare (Italy); Foundation for Fundamental Research on Matter (The Netherlands); Research Council of Norway; Russian Federation; Ministerio de Educacion y Ciencia (Spain); Science and Technology Facilities Council (United Kingdom); Marie-Curie IEF program (European Union); A. P. Sloan Foundation FX We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organ-izations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France), the Bundesministerium fur Bildung und Forschung and Deutsche Forschungs-gemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Educacion y Ciencia (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A. P. Sloan Foundation. NR 25 TC 19 Z9 19 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2009 VL 80 IS 9 AR 092005 DI 10.1103/PhysRevD.80.092005 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 526SH UT WOS:000272313100011 ER PT J AU Aubert, B Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Martinelli, M Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Battaglia, M Brown, DN Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Asgeirsson, DJ Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Randle-Conde, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Yasin, Z Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Wang, L Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Ongmongkolkul, P Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Toki, WH Wilson, RJ Feltresi, E Hauke, A Jasper, H Karbach, TM Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Nogowski, R Schubert, KR Schwierz, R Bernard, D Latour, E Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Fioravanti, E Franchini, P Luppi, E Munerato, M Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Tosi, S Chaisanguanthum, KS Morii, M Adametz, A Marks, J Schenk, S Uwer, U Bernlochner, FU Klose, V Lacker, HM Lueck, T Volk, A Bard, DJ Dauncey, PD Tibbetts, M Behera, PK Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Arnaud, N Bequilleux, J D'Orazio, A Davier, M Derkach, D da Costa, JF Grosdidier, G Le Diberder, F Lepeltier, V Lutz, AM Malaescu, B Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK Di Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Hafner, A Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Salvati, E Cowan, R Dujmic, D Fisher, PH Henderson, SW Sciolla, G Spitznagel, M Yamamoto, RK Zhao, M Patel, PM Robertson, SH Schram, M Biassoni, P Lazzaro, A Lombardo, V Palombo, F Stracka, S Cremaldi, L Godang, R Kroeger, R Sonnek, P Summers, DJ Zhao, HW Simard, M Taras, P Nicholson, H De Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Bonneaud, GR Briand, H Chauveau, J Hamon, O Leruste, P Marchiori, G Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Manoni, E Angelini, C Batignani, G Bettarini, S Calderini, G Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Li Gioi, L Mazzoni, MA Morganti, S Piredda, G Renga, F Voena, C Ebert, M Hartmann, T Schroumlder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S Esteve, L de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Allen, MT Aston, D Bartoldus, R Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Franco Sevilla, M Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Young, CC Ziegler, V Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Bellis, M Burchat, PR Edwards, AJ Miyashita, TS Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Soffer, A Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Wray, BC Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K King, GJ Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Puccio, EMT Band, HR Chen, X Dasu, S Flood, KT Pan, Y Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Garra Tico, J. Grauges, E. Martinelli, M. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Battaglia, M. Brown, D. N. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Asgeirsson, D. J. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Randle-Conde, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Yasin, Z. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Wang, L. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Ongmongkolkul, P. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Wilson, R. J. Feltresi, E. Hauke, A. Jasper, H. Karbach, T. M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Nogowski, R. Schubert, K. R. Schwierz, R. Bernard, D. Latour, E. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Fioravanti, E. Franchini, P. Luppi, E. Munerato, M. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Tosi, S. Chaisanguanthum, K. S. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Bernlochner, F. U. Klose, V. Lacker, H. M. Lueck, T. Volk, A. Bard, D. J. Dauncey, P. D. Tibbetts, M. Behera, P. K. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. Derkach, D. da Costa, J. Firmino Grosdidier, G. Le Diberder, F. Lepeltier, V. Lutz, A. M. Malaescu, B. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Hafner, A. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Salvati, E. Cowan, R. Dujmic, D. Fisher, P. H. Henderson, S. W. Sciolla, G. Spitznagel, M. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Schram, M. Biassoni, P. Lazzaro, A. Lombardo, V. Palombo, F. Stracka, S. Cremaldi, L. Godang, R. Kroeger, R. Sonnek, P. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Bonneaud, G. R. Briand, H. Chauveau, J. Hamon, O. Leruste, Ph. Marchiori, G. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Calderini, G. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Li Gioi, L. Mazzoni, M. A. Morganti, S. Piredda, G. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroumlder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Esteve, L. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Allen, M. T. Aston, D. Bartoldus, R. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Franco Sevilla, M. Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Young, C. C. Ziegler, V. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Bellis, M. Burchat, P. R. Edwards, A. J. Miyashita, T. S. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Soffer, A. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Wray, B. C. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. King, G. J. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Puccio, E. M. T. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. TI Measurement of CP violation observables and parameters for the decays B-+/--> DK*+/- SO PHYSICAL REVIEW D LA English DT Article ID WEAK PHASE; GAMMA; PHYSICS AB We study the decay B--> DK*- using a sample of 379x10(6) Upsilon(4S)-> BB events collected with the BABAR detector at the PEP-II B factory. We perform a Gronau-London-Wyler analysis where the D meson decays into either a CP-even (CP+) eigenstate (K+K-, pi(+)pi(-)), CP-odd (CP-) eigenstate (K-S(0)pi(0), K-S(0)phi, K-S(0)omega) or a non-CP state (K-pi(+)). We also analyze D meson decays into K+pi(-) from a Cabibbo-favored D-0 decay or doubly suppressed D-0 decay [Atwood-Dunietz-Soni (ADS) analysis]. We measure observables that are sensitive to the Cabibbo-Kobayashi-Maskawa angle gamma: the partial-rate charge asymmetries A(CP +/-), the ratios R-CP +/- of the B-decay branching fractions in CP +/- and non-CP decay, the ratio R-ADS of the charge-averaged branching fractions, and the charge asymmetry A(ADS) of the ADS decays: A(CP+)=0.09 +/- 0.13 +/- 0.06, A(CP-)=-0.23 +/- 0.21 +/- 0.07, RCP+=2.17 +/- 0.35 +/- 0.09, RCP-=1.03 +/- 0.27 +/- 0.13, R-ADS=0.066 +/- 0.031 +/- 0.010, and A(ADS)=-0.34 +/- 0.43 +/- 0.16, where the first uncertainty is statistical and the second is systematic. Combining all the measurements and using a frequentist approach yields the magnitude of the ratio between the Cabibbo-suppressed and favored amplitudes, r(B)=0.31 with a one (two) sigma confidence level interval of [0.24, 0.38] ([0.17, 0.43]). The value r(B)=0 is excluded at the 3.3 sigma level. A similar analysis excludes values of gamma in the intervals [0, 7]degrees, [55, 111]degrees, and [175, 180]degrees ([85, 99]degrees) at the one (two) sigma confidence level. C1 [Aubert, B.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, CNRS, LAPP, IN2P3, F-74941 Annecy Le Vieux, France. [Garra Tico, J.; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Martinelli, M.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Martinelli, M.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Randle-Conde, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Institute of Nuclear Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Ongmongkolkul, P.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Nogowski, R.; Schubert, K. R.; Schwierz, R.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Latour, E.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bernlochner, F. U.; Klose, V.; Lacker, H. M.; Lueck, T.; Volk, A.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Behera, P. K.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Dallapiccola, C.; Salvati, E.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Sciolla, G.; Spitznagel, M.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Biassoni, P.; Lazzaro, A.; Palombo, F.; Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.; Calderini, G.] Univ Paris 07, Univ Paris 06, CNRS, Lab Phys Nucl & Hautes Energies,IN2P3, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Li Gioi, L.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroumlder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Emery, S.; Esteve, L.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, Irfu, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Allen, M. T.; Aston, D.; Bartoldus, R.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Franco Sevilla, M.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Battaglia, M.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Ayad, R.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Bard, D. J.; Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bevan, A. J.; Clarke, C. K.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Bellis, M.; Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Aubert, B (reprint author), Univ Savoie, CNRS, LAPP, IN2P3, F-74941 Annecy Le Vieux, France. RI Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Stracka, Simone/M-3931-2015; Della Ricca, Giuseppe/B-6826-2013; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; dong, liaoyuan/A-5093-2015; Rizzo, Giuliana/A-8516-2015; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Patrignani, Claudia/C-5223-2009; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012 OI Paoloni, Eugenio/0000-0001-5969-8712; Corwin, Luke/0000-0001-7143-3821; Bettarini, Stefano/0000-0001-7742-2998; Lanceri, Livio/0000-0001-8220-3095; Ebert, Marcus/0000-0002-3014-1512; Cibinetto, Gianluigi/0000-0002-3491-6231; Hamel de Monchenault, Gautier/0000-0002-3872-3592; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Stracka, Simone/0000-0003-0013-4714; Della Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Strube, Jan/0000-0001-7470-9301; Chen, Chunhui /0000-0003-1589-9955; Bellis, Matthew/0000-0002-6353-6043; dong, liaoyuan/0000-0002-4773-5050; Pacetti, Simone/0000-0002-6385-3508; Rizzo, Giuliana/0000-0003-1788-2866; Carpinelli, Massimo/0000-0002-8205-930X; Sciacca, Crisostomo/0000-0002-8412-4072; Adye, Tim/0000-0003-0627-5059; Lafferty, George/0000-0003-0658-4919; Faccini, Riccardo/0000-0003-2613-5141; Martinelli, Maurizio/0000-0003-4792-9178; Cavoto, Gianluca/0000-0003-2161-918X; Wilson, Robert/0000-0002-8184-4103; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Patrignani, Claudia/0000-0002-5882-1747; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455 FU US Department of Energy; National Science Foundation; Natural Sciences and Engineering Research Council (Canada); Commissariat a l'Energie Atomique; Institut National de Physique Nucleaire et de Physique des Particules (France); Bundesministerium fur Bildung; Forschung and Deutsche Forschungsgemeinschaft (Germany); Istituto Nazionale di Fisica Nucleare (Italy); Foundation for Fundamental Research on Matter (The Netherlands); Research Council of Norway; Ministry of Education and Science of the Russian Federation; Ministerio de Educacion y Ciencia (Spain); Science and Technology Facilities Council (United Kingdom); Marie-Curie IEF program (European Union); A. P. Sloan Foundation FX We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminos-ity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France), the Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Educacion y Ciencia (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A. P. Sloan Foundation. NR 32 TC 37 Z9 37 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2009 VL 80 IS 9 AR 092001 DI 10.1103/PhysRevD.80.092001 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 526SH UT WOS:000272313100007 ER PT J AU Aubert, B Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Martinelli, M Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Battaglia, M Brown, DN Hooberman, B Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Asgeirsson, DJ Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Randle-Conde, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Yasin, Z Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Wang, L Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Ongmongkolkul, P Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Toki, WH Wilson, RJ Feltresi, E Hauke, A Jasper, H Karbach, TM Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Nogowski, R Schubert, KR Schwierz, R Bernard, D Latour, E Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Fioravanti, E Franchini, P Luppi, E Munerato, M Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Tosi, S Chaisanguanthum, KS Morii, M Adametz, A Marks, J Schenk, S Uwer, U Bernlochner, FU Klose, V Lacker, HM Lueck, T Volk, A Bard, DJ Dauncey, PD Tibbetts, M Behera, PK Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Arnaud, N Bequilleux, J D'Orazio, A Davier, M Derkach, D da Costa, JF Grosdidier, G Le Diberder, F Lepeltier, V Lutz, AM Malaescu, B Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK Di Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Hafner, A Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Salvati, E Cowan, R Dujmic, D Fisher, PH Henderson, SW Sciolla, G Spitznagel, M Yamamoto, RK Zhao, M Patel, PM Robertson, SH Schram, M Biassoni, P Lazzaro, A Lombardo, V Palombo, F Stracka, S Cremaldi, L Godang, R Kroeger, R Sonnek, P Summers, DJ Zhao, HW Simard, M Taras, P Nicholson, H De Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Bonneaud, GR Briand, H Chauveau, J Hamon, O Leruste, P Marchiori, G Ocariz, J Perez, A P