FN Thomson Reuters Web of Science™
VR 1.0
PT J
AU Dodelson, S
Vesterinen, M
AF Dodelson, Scott
Vesterinen, Mika
TI Cosmic Neutrino Last Scattering Surface
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID UNIVERSE
AB Neutrinos decoupled from the rest of the cosmic plasma when the Universe was less than one second old, far earlier than the photons, which decoupled at t = 380 000 years. Surprisingly, though, the last scattering surface of massive neutrinos is much closer to us than that of the photons. Here we calculate the properties of the last scattering surfaces of the three species of neutrinos.
C1 [Dodelson, Scott] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA.
[Dodelson, Scott] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA.
[Dodelson, Scott] Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Vesterinen, Mika] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England.
RP Dodelson, S (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA.
FU U.S. Department of Energy [DE-FG02-95ER40896]
FX This work has been supported by the U.S. Department of Energy, including
Grant No. DE-FG02-95ER40896. We thank Alex Kusenko for very fruitful
discussions, Wayne Hu for insight into the neutrino effects on the power
spectrum, and Nicole Bell for her neutrino expertise. We are grateful to
the CTEQ Summer School, where a question at a late night recitation led
to the idea for this work, and to the Aspen Center for Physics where the
work was carried out.
NR 29
TC 11
Z9 11
U1 0
U2 1
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD OCT 23
PY 2009
VL 103
IS 17
AR 171301
DI 10.1103/PhysRevLett.103.171301
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 511KW
UT WOS:000271164500012
PM 19905744
ER
PT J
AU Heidbrink, WW
Park, JM
Murakami, M
Petty, CC
Holcomb, C
Van Zeeland, MA
AF Heidbrink, W. W.
Park, J. M.
Murakami, M.
Petty, C. C.
Holcomb, C.
Van Zeeland, M. A.
TI Evidence for Fast-Ion Transport by Microturbulence
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID DIII-D; TOKAMAK
AB Cross-field diffusion of energetic ions by microturbulence is measured during neutral-beam injection into the DIII-D tokamak. Fast-ion D(alpha), neutron, and motional Stark effect measurements diagnose the fastion distribution function. As expected for transport by plasma turbulence, anomalies relative to the classical prediction are greatest in high temperature plasmas, at low fast-ion energy, and at larger minor radius. Theoretical estimates of fast-ion diffusion are comparable to experimental levels.
C1 [Heidbrink, W. W.] Univ Calif Irvine, Irvine, CA 92697 USA.
[Park, J. M.; Murakami, M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Petty, C. C.; Van Zeeland, M. A.] Gen Atom Co, San Diego, CA 92186 USA.
[Holcomb, C.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
RP Heidbrink, WW (reprint author), Univ Calif Irvine, Irvine, CA 92697 USA.
FU U. S. Department of Energy [SC-G903402, DE-FC0204ER54698]
FX This work was supported by the U. S. Department of Energy under Grants
No. SC-G903402 and No. DE-FC0204ER54698. Assistance by Wenlu Zhang and
the DIII-D team is gratefully acknowledged.
NR 19
TC 45
Z9 45
U1 0
U2 6
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD OCT 23
PY 2009
VL 103
IS 17
AR 175001
DI 10.1103/PhysRevLett.103.175001
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 511KW
UT WOS:000271164500033
PM 19905765
ER
PT J
AU Tenne, DA
Turner, P
Schmidt, JD
Biegalski, M
Li, YL
Chen, LQ
Soukiassian, A
Trolier-McKinstry, S
Schlom, DG
Xi, XX
Fong, DD
Fuoss, PH
Eastman, JA
Stephenson, GB
Thompson, C
Streiffer, SK
AF Tenne, D. A.
Turner, P.
Schmidt, J. D.
Biegalski, M.
Li, Y. L.
Chen, L. Q.
Soukiassian, A.
Trolier-McKinstry, S.
Schlom, D. G.
Xi, X. X.
Fong, D. D.
Fuoss, P. H.
Eastman, J. A.
Stephenson, G. B.
Thompson, C.
Streiffer, S. K.
TI Ferroelectricity in Ultrathin BaTiO3 Films: Probing the Size Effect by
Ultraviolet Raman Spectroscopy
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID PEROVSKITE FILMS; THIN-FILMS; OXIDE; SUPERLATTICES; POLARIZATION;
ENHANCEMENT; NANOSCALE
AB We demonstrate the dramatic effect of film thickness on the ferroelectric phase transition temperature T-c in strained BaTiO3 films grown on SrTiO3 substrates. Using variable-temperature ultraviolet Raman spectroscopy enables measuring T-c in films as thin as 1.6 nm, and a film thickness variation from 1.6 to 10 nm leads to T-c tuning from 70 to about 925 K. Raman data are consistent with synchrotron x-ray scattering results, which indicate the presence of 180 degrees domains below T-c, and thermodynamic phase-field model calculations of T-c as a function of thickness.
C1 [Tenne, D. A.; Turner, P.; Schmidt, J. D.] Boise State Univ, Dept Phys, Boise, ID 83725 USA.
[Biegalski, M.; Li, Y. L.; Chen, L. Q.; Soukiassian, A.; Trolier-McKinstry, S.; Schlom, D. G.; Xi, X. X.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA.
[Li, Y. L.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Xi, X. X.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA.
[Fong, D. D.; Fuoss, P. H.; Eastman, J. A.; Stephenson, G. B.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Stephenson, G. B.; Streiffer, S. K.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
[Thompson, C.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA.
RP Tenne, DA (reprint author), Boise State Univ, Dept Phys, 1910 Univ Dr, Boise, ID 83725 USA.
EM dmitritenne@boisestate.edu
RI Eastman, Jeffrey/E-4380-2011; Schlom, Darrell/J-2412-2013; Tenne,
Dmitri/C-3294-2009; Chen, LongQing/I-7536-2012;
OI Schlom, Darrell/0000-0003-2493-6113; Tenne, Dmitri/0000-0003-2697-8958;
Chen, LongQing/0000-0003-3359-3781; Eastman, Jeff/0000-0002-0847-4265;
Trolier-McKinstry, Susan/0000-0002-7267-9281
FU NSF [DMR-0705127, DMR-0507146, DMR-0820404]; U.S. DOE
[DE-FG02-01ER45907, DE-AC02-06CH11357]; DOE EPSCoR [DE-FG02-04ER46142];
Research Corporation for Science Advancement [7134]
FX This work was supported in part by the NSF Grants No. DMR-0705127 (D. A.
T.), No. DMR-0507146 (L. Q. C., D. G. S., X. X. X.), and DMR-0820404 (L.
Q. C., Y.L.L., D. G. S., X. X. X.); U.S. DOE Grant No. DE-FG02-01ER45907
(X. X. X.), DOE EPSCoR Grant No. DE-FG02-04ER46142 (D. A. T.), and
Research Corporation for Science Advancement Grant No. 7134 (D. A. T.).
X-ray studies at Argonne National Laboratory were supported by the U.S.
Department of Energy under Contract No. DE-AC02-06CH11357.
NR 35
TC 58
Z9 59
U1 11
U2 112
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD OCT 23
PY 2009
VL 103
IS 17
AR 177601
DI 10.1103/PhysRevLett.103.177601
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 511KW
UT WOS:000271164500051
PM 19905783
ER
PT J
AU Walsh, DA
Zaikova, E
Howes, CG
Song, YC
Wright, JJ
Tringe, SG
Tortell, PD
Hallam, SJ
AF Walsh, David A.
Zaikova, Elena
Howes, Charles G.
Song, Young C.
Wright, Jody J.
Tringe, Susannah G.
Tortell, Philippe D.
Hallam, Steven J.
TI Metagenome of a Versatile Chemolithoautotroph from Expanding Oceanic
Dead Zones
SO SCIENCE
LA English
DT Article
ID SULFIDE OXIDATION; ESCHERICHIA-COLI; SULFUR OXIDATION; WATERS; NITRATE;
SEA; PROKARYOTES; DIVERSITY; BACTERIAL; SYMBIONT
AB Oxygen minimum zones, also known as oceanic "dead zones," are widespread oceanographic features currently expanding because of global warming. Although inhospitable to metazoan life, they support a cryptic microbiota whose metabolic activities affect nutrient and trace gas cycling within the global ocean. Here, we report metagenomic analyses of a ubiquitous and abundant but uncultivated oxygen minimum zone microbe (SUP05) related to chemoautotrophic gill symbionts of deep-sea clams and mussels. The SUP05 metagenome harbors a versatile repertoire of genes mediating autotrophic carbon assimilation, sulfur oxidation, and nitrate respiration responsive to a wide range of water-column redox states. Our analysis provides a genomic foundation for understanding the ecological and biogeochemical role of pelagic SUP05 in oxygen-deficient oceanic waters and its potential sensitivity to environmental changes.
C1 [Walsh, David A.; Zaikova, Elena; Howes, Charles G.; Song, Young C.; Wright, Jody J.; Hallam, Steven J.] Univ British Columbia, Dept Microbiol & Immunol, Vancouver, BC V6T 1Z4, Canada.
[Tringe, Susannah G.] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA.
[Tortell, Philippe D.] Univ British Columbia, Dept Earth & Ocean Sci, Vancouver, BC V6T 1Z4, Canada.
[Tortell, Philippe D.] Univ British Columbia, Dept Bot, Vancouver, BC V6T 1Z4, Canada.
[Hallam, Steven J.] Univ British Columbia, Grad Program Bioinformat, Vancouver, BC V6T 1Z4, Canada.
RP Hallam, SJ (reprint author), Univ British Columbia, Dept Microbiol & Immunol, Vancouver, BC V6T 1Z4, Canada.
EM shallam@interchange.ubc.ca
FU U. S. Department of Energy's Office of Science, Biological, and
Environmental Research Program; University of California, Lawrence
Berkeley National Laboratory, Lawrence Livermore National Laboratory
[DE-AC02-05CH11231, DE-AC52-07NA27344]; Los Alamos National Laboratory
[DE-AC02-06NA25396]; Natural Sciences and Engineering Research Council
(NSERC) of Canada [328256-07, STPSC 356988]; Canada Foundation for
Innovation (CFI) [Canada Foundation for Innovation (CFI) 17444];
Canadian Institute for Advanced Research ( CIFAR); Center for
Bioinorganic Chemistry (CEBIC); NSERC; Killam Trust; Tula
Foundation-funded Centre for Microbial Diversity and Evolution (CMDE);
DNA DataBank of Japan and European Molecular Biology Laboratory;
[ACSG00000000]
FX This work was performed under the auspices of the U. S. Department of
Energy's Office of Science, Biological, and Environmental Research
Program and by the University of California, Lawrence Berkeley National
Laboratory, Lawrence Livermore National Laboratory under contract no.
DE-AC02-05CH11231, Lawrence Livermore National Laboratory under contract
no. DE-AC52-07NA27344, and Los Alamos National Laboratory under contract
no. DE-AC02-06NA25396. This work was also supported by grants from the
Natural Sciences and Engineering Research Council (NSERC) of Canada
328256-07 and STPSC 356988, Canada Foundation for Innovation (CFI)
17444; Canadian Institute for Advanced Research ( CIFAR), and the Center
for Bioinorganic Chemistry (CEBIC). D. A. W. was supported by NSERC,
Killam Trust, and the Tula Foundation-funded Centre for Microbial
Diversity and Evolution (CMDE). We thank M. Robert ( Institute of Ocean
Sciences, Sidney, BC, Canada), C. Payne, L. Pakhomova, and J. Granger
(UBC) for help in sampling and chemical analyses and the captains and
crews of the CCGS John P. Tulley and HMS John Strickland for logistical
support. We thank the Joint Genome Institute, including K. Barry, S.
Pitluck, and E. Kirton, for technical assistance and A. Page, K.
Mitchell, and S. Lee in the Hallam laboratory for reading the
manuscript. This metagenome project has been deposited at the DNA
DataBank of Japan and European Molecular Biology Laboratory, and
GenBank, under the project accession ACSG00000000. The version described
in this paper is the first version, ACSG01000000. SSU rRNA gene
sequences were deposited at GenBank under the accession numbers
GQ345343-GQ351265, and fosmid sequences were deposited under the
accession numbers GQ351266 to GQ351269 and GQ369726.
NR 29
TC 148
Z9 151
U1 5
U2 68
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
J9 SCIENCE
JI Science
PD OCT 23
PY 2009
VL 326
IS 5952
BP 578
EP 582
DI 10.1126/science.1175309
PG 5
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 509LN
UT WOS:000271019400043
PM 19900896
ER
PT J
AU Li, SG
Zhai, HJ
Wang, LS
Dixon, DA
AF Li, Shenggang
Zhai, Hua-Jin
Wang, Lai-Sheng
Dixon, David A.
TI Structural and Electronic Properties of Reduced Transition Metal Oxide
Clusters, M3O8 and M3O8- (M = Cr, W), from Photoelectron Spectroscopy
and Quantum Chemical Calculations
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Review
ID DENSITY-FUNCTIONAL THEORY; DIATOMIC DISSOCIATION-ENERGIES; HYDROGEN
STORAGE-SYSTEMS; PHASE CHROMIUM OXYANIONS; ION-MOLECULE REACTIONS;
GAS-PHASE; AB-INITIO; THERMODYNAMIC PROPERTIES; TRIPLE EXCITATIONS;
BASIS-SETS
AB We report a comparative study of reduced transition metal oxide clusters, M3O8- (M = Cr, W) anions and their neutrals, via anion photoelectron spectroscopy (PES) and density functional theory (DFT) and molecular orbital theory (CCSD(T)) calculations. Well-resolved PES spectra are obtained for M3O8- (M = Cr, W) at 193 and 157 nm photon energies. Different PES spectra are observed for M = Cr versus M = W. Extensive DFT and CCSD(T) calculations are performed to locate the ground and low-lying excited states for the neutrals and anions. The ground states of Cr3O8 and Cr3O8- are predicted to be the B-3(2) and B-4(2) States of a C-2v structure, respectively, revealing ferromagnetic spin coupling for Cr 3d electrons. In contrast, the ground states of W3O8 and W3O8- are predicted to be the (1)A' state (C, symmetry) and the (2)A(1) state (C-2v symmetry), respectively, showing metal-metal d-d bonding in the anion. The current cluster geometries are in qualitative agreement with prior DFT studies at the PBE level for M = Cr and the B3LYP level for M = W. The BP86 and PW91 functionals significantly outperform the B3LYP functional for the Cr species, in terms of relative energies, electron detachment energies, and electronic excitation energies, whereas the B3LYP functional is better for the W species. Accurate heats of formation for the ground states of M3O8 are calculated from the clustering energies and the heats of formation of MO2 and MO3. The energetics have been used to predict redox reaction themiochemistry.
C1 [Zhai, Hua-Jin; Wang, Lai-Sheng] Washington State Univ, Dept Phys, Richland, WA 99354 USA.
[Li, Shenggang; Dixon, David A.] Univ Alabama, Dept Chem, Tuscaloosa, AL 35487 USA.
[Zhai, Hua-Jin; Wang, Lai-Sheng] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA.
RP Wang, LS (reprint author), Washington State Univ, Dept Phys, 2710 Univ Dr, Richland, WA 99354 USA.
EM ls.wang@pnl.gov; dadixon@bama.ua.edu
FU Chemical Sciences, Geosciences and Biosciences Division, Office of Basic
Energy Sciences, U.S. Department of Energy (DOE) [DE-FG02-03ER 15481];
DOE's Office of Biological and Environmental Research; University of
Alabama
FX This work was supported by the Chemical Sciences, Geosciences and
Biosciences Division, Office of Basic Energy Sciences, U.S. Department
of Energy (DOE) under Grant DE-FG02-03ER 15481 (catalysis center
program) and was performed, in part, in the W. R. Wiley Environmental
Molecular Sciences Laboratory including the Molecular Science Computing
Facility, a national scientific user facility sponsored by DOE's Office
of Biological and Environmental Research and located at the Pacific
Northwest National Laboratory, operated for DOE by Battelle. D.A.D. also
thanks the Robert Ramsay Chair Fund of The University of Alabama for
support.
NR 111
TC 45
Z9 45
U1 6
U2 34
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD OCT 22
PY 2009
VL 113
IS 42
BP 11273
EP 11288
DI 10.1021/jp9082008
PG 16
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 505EA
UT WOS:000270670700024
PM 19785452
ER
PT J
AU Das, J
Frechet, JMJ
Chakraborty, AK
AF Das, Jayajit
Frechet, J. M. J.
Chakraborty, Arup K.
TI Self-Assembly of Dendronized Polymers
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID BLOCK-COPOLYMER MELTS; DENDRITIC MACROMOLECULES; SUPRAMOLECULAR
CHEMISTRY; MULTIBLOCK COPOLYMERS; DENDRIMERS; PHASES; CHAINS; MODEL
AB The gradual rigidification of a single dendronized chain upon increasing the size and density of the dendron units attached to it is Studied using a Monte Carlo simulation. The dependence of the backbone flexibility oil the size and density of the dendrons is used as ail input to study the self-assembly of dendronized polymers using a real space, self-consistent field theoretic method. These calculations predict different phases ill melts and solutions, ranging from lamellar to gyroid phases, depending upon various physical (temperature, concentration) and architectural (relative Volume fraction of the backbone and the dendron units) parameters.
C1 [Das, Jayajit; Chakraborty, Arup K.] MIT, Dept Chem Engn, Cambridge, MA 02139 USA.
[Chakraborty, Arup K.] MIT, Dept Chem, Cambridge, MA 02139 USA.
[Chakraborty, Arup K.] MIT, Dept Bioengn, Cambridge, MA 02139 USA.
[Frechet, J. M. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Frechet, J. M. J.] Univ Calif Berkeley, Coll Chem, Berkeley, CA 94720 USA.
RP Das, J (reprint author), Ohio State Univ, Battelle Ctr Math Med, Res Inst, Nationwide Childrens Hosp, 700 Childrens Dr, Columbus, OH 43205 USA.
EM das.70@osu.edu; arupc@mit.edu
RI Das, Jayajit/E-2951-2011
NR 37
TC 9
Z9 9
U1 1
U2 28
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD OCT 22
PY 2009
VL 113
IS 42
BP 13768
EP 13775
DI 10.1021/jp902927p
PG 8
WC Chemistry, Physical
SC Chemistry
GA 505EB
UT WOS:000270670800013
PM 19572661
ER
PT J
AU Sun, XQ
Wick, CD
Dang, LX
AF Sun, Xiuquan
Wick, Collin D.
Dang, Liem X.
TI Computational Studies of Aqueous Interfaces of SrCl2 Salt Solutions
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID LIQUID-VAPOR INTERFACE; MOLECULAR-DYNAMICS; SURFACE-TENSION; AIR/WATER
INTERFACE; WATER-SURFACE; VIBRATIONAL SPECTROSCOPY; POLARIZABLE WATER;
ION SOLVATION; SIMULATIONS; ELECTROLYTES
AB The electron density profiles and corresponding Surface structures of an aqueous interface of SrCl2 salt solution were computed by use of molecular dynamics Simulations. We used both polarizable and nonpolarizable potential models to describe molecular interactions. The results demonstrate that the polarizable models captured the essential features of the corresponding X-ray reflectivity experimental data while the corresponding nonpolarizable models could not. In addition, we demonstrated that the shape of the X-ray reflectivity curve could be quantitatively reproduced if the simulations were carried out at lower SrCl2 concentrations, making it likely that the polarizable Models used in this study somewhat overestimate the surface concentration of ions. However, significant interfacial enhancement of both Sr2+ and Cl- appears necessary to reproduce the experimental spectra. This is in contrast to systems with monovalent cations, which have generally been found to have a double layer, in which anions are enhanced at the surface but cations are repelled.
C1 [Sun, Xiuquan; Dang, Liem X.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA.
[Wick, Collin D.] Louisiana Tech Univ, Dept Chem, Ruston, LA 71270 USA.
RP Dang, LX (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA.
NR 40
TC 9
Z9 9
U1 0
U2 7
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD OCT 22
PY 2009
VL 113
IS 42
BP 13993
EP 13997
DI 10.1021/jp9079525
PG 5
WC Chemistry, Physical
SC Chemistry
GA 505EB
UT WOS:000270670800043
PM 19788285
ER
PT J
AU Kim, HS
Kim, B
Lee, B
Chung, H
Lee, CJ
Yoon, HG
Kim, W
AF Kim, Hyung Seok
Kim, Byungwoo
Lee, Byeongdu
Chung, Haegeun
Lee, Cheol Jin
Yoon, Ho Gyu
Kim, Woong
TI Synthesis of Aligned Few-Walled Carbon Nanotubes on Conductive
Substrates
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID DIRECT GROWTH; FIBERS; ELECTRODES; MECHANISM
AB We report a robust synthesis of densely aligned few-walled carbon nanotubes on industrially useful conductive substrates such as carbon fibers and carbon papers. This was achieved by water-assisted chemical vapor deposition using an Al/Fe bimetallic catalyst and a thin epoxy-based polymer layer beneath the catalyst. The carbon nanotubes had a mean diameter of 6 nm, mainly double walls, and lengths up to a couple of millimeters. Raman spectroscopy showed high G-band/D-band intensity ratio (>5) indicating high quality of the nanotubes. They were tightly bound and electrically connected to the substrates, as confirmed by ultrasonication test and enhanced cyclic voltammetry signals, respectively. High quality carbon nanotubes synthesized on conductive substrates may find applications in fuel cells, lithium-ion batteries, and field embitters.
C1 [Kim, Hyung Seok; Kim, Byungwoo; Chung, Haegeun; Yoon, Ho Gyu; Kim, Woong] Korea Univ, Dept Mat Sci & Engn, Seoul 136713, South Korea.
[Lee, Cheol Jin] Korea Univ, Sch Elect Engn, Seoul 136713, South Korea.
[Lee, Byeongdu] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA.
RP Yoon, HG (reprint author), Korea Univ, Dept Mat Sci & Engn, Seoul 136713, South Korea.
EM hgyoon@korea.ac.kr; woongkim@korea.ac.kr
RI Kim, Woong/C-7067-2009;
OI Lee, Byeongdu/0000-0003-2514-8805
FU Korea Research Council of Fundamental Science & Technology (KRCF); Korea
Institute of Science & Technology (KIST); National Research Foundation
of Korea through the Pioneer Research Center Program
[M10711160001-08M1116-00110]; World Class University Project [WCU,
R32-2008-000-10082-0]; Ministry of Education, Science and Technology;
U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-AC02-06CH11357]
FX The authors thank Dr. Myung Hwa Kim for his help with the GISAXS
measurement. We acknowledge the supports from the Korea Research Council
of Fundamental Science & Technology (KRCF) and Korea Institute of
Science & Technology (KIST) for "National Agenda Project program", and
the National Research Foundation of Korea through the Pioneer Research
Center Program (No. M10711160001-08M1116-00110), and World Class
University Project (WCU, R32-2008-000-10082-0) funded by the Ministry of
Education, Science and Technology. Use of the Advanced Photon Source at
Argonne National Laboratory was supported by the U.S. Department of
Energy, Office of Science, Office of Basic Energy Sciences, under
Contract No. DE-AC02-06CH11357.
NR 23
TC 18
Z9 18
U1 3
U2 16
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD OCT 22
PY 2009
VL 113
IS 42
BP 17983
EP 17988
DI 10.1021/jp9078162
PG 6
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 505ED
UT WOS:000270671100003
ER
PT J
AU Perkins, CL
AF Perkins, Craig L.
TI Molecular Anchors for Self-Assembled Monolayers on ZnO: A Direct
Comparison of the Thiol and Phosphonic Acid Moieties
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID INDIUM-TIN OXIDE; RAY PHOTOELECTRON-SPECTROSCOPY; ORGANOSULFUR
COMPOUNDS; THERMAL-DECOMPOSITION; ELECTRON-DIFFRACTION; CHARGE
INJECTION; GOLD SURFACES; CHAIN-LENGTH; METAL-OXIDES; FILMS
AB Two of the most promising schemes for attaching organic molecules to metal oxides are based on the chemistry of the thiol and phosphonic acid moieties. We have made a direct comparison of the efficacy of these two molecular anchors on zinc oxide by comparing the chemical and physical properties of n-hexane derivatives of both. The surface properties of polycrystalline ZnO thin films and ZnO(000 (1) over bar)-O crystals modified with 1-hexanethiol and 1-hexanephosphonic acid were examined with a novel quartz crystal microbalance (QCM)-based flow cell reactor, angle-resolved and temperature-dependent photoelectron spectroscopy, and contact angle measurements. A means of using ammonium chloride as a probe of molecule-ZnO interactions is introduced and used to ascertain the relative quality of self-assembled monolayers (SAMs) based on thiols and phosphonic acids, QCM data shows that a phosphonic acid-anchored alkyl chain only six carbons long can provide significant corrosion protection for ZnO against Bronsted acids, reducing the etch rate relative to the bare ZnO surface by a factor or more than nine. In contrast, we find that monolayers from the analogous molecule hexanethiol are more defective as revealed by their higher ionic permeability and lower hydrophobicity, Substrate attenuation X-ray photoelectron spectroscopy (XPS) experiments were used to determine the thickness of SAMs formed by the two hexane derivatives and it was found that SAMs from phosphonic acids were approximately twice as thick as those formed by hexanethiol. The thermal stability of the two linking groups was also explored and we find that previous claims of highly stable alkanethiolate monolayers on ZnO are suspect. Taken as a whole, our results indicate that the phosphonic acid moiety is preferred over thiols for the attachment of short alkyl groups to ZnO.
C1 Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Perkins, CL (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.
FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable
Energy Laboratory
FX The author would like to thank Xiaonan Li for growth of the ZnO films
used in QCM and temperature-dependent XPS experiments, Chun-Sheng Jiang
for AFM measurements, and Sheyu Guo front EPV Solar for the ZnO:
Al/glass films. This work was supported by the U.S. Department of Energy
under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy
Laboratory.
NR 70
TC 50
Z9 51
U1 4
U2 63
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD OCT 22
PY 2009
VL 113
IS 42
BP 18276
EP 18286
DI 10.1021/jp906013r
PG 11
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 505ED
UT WOS:000270671100041
ER
PT J
AU Cheng, L
Mei, DH
Ge, QF
AF Cheng, Lei
Mei, Donghai
Ge, Qingfeng
TI Origin of Support Effects on the Reactivity of a Ceria Cluster
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID TRANSFORM INFRARED-SPECTROSCOPY; DENSITY-FUNCTIONAL THEORY;
OXYGEN-STORAGE PROPERTIES; CO OXIDATION; MIXED OXIDES;
THERMAL-STABILITY; SURFACE-STRUCTURE; ROOM-TEMPERATURE; REDOX
PROPERTIES; CARBON-MONOXIDE
AB The interaction between an active oxide and an oxide support plays a critical role in controlling the reactivity of oxide-on-oxide catalysts. In the present study; the reactivity of a small ceria cluster (Ce(sic)O4) supported on the reducible monoclinic zirconia and the irreducible gamma-alumina was investigated using the first-principles density functional theory method. Our results showed that the binding energies of the Ce2O4 cluster on the supporting ZrO2(111) and gamma-Al2O3(100) substrates are -5.32 and -4.06 eV, respectively, indicating a very strong interaction. On the basis of these oxide-on-oxide model catalysts, the effects of supports on the reactivity of Ce2O4 cluster were probed by the adsorption of CO2 and CO. The acidic CO2 molecule chemisorbs at the O sites of the cluster, forming a carbonate-like (CO32-) species through in acid-base interaction. Neither ZrO2(111) nor gamma-AlO3(100) exhibits a significant effect on CO2 adsorption over the supported Ce2O4 cluster. In contrast, the reactive adsorption of CO oil die supported Ce2O4 Cluster Shows a strong dependence on the supporting oxides: The reactive adsorption energy for CO on the gamma-Al2O3(100))-supported Ce2O4 is -4-33 eV, whereas that on the ZrO2(111)-supported cluster is only -0.55 eV. This reactive adsorption was accompanied by the reduction of Ce4+ to Ce3+ Ce2O4 clusters, leading to the formation of (Ce2O2)2+CO32-, which can be considered as an intermediate for CO oxidation to CO2. The very different stabilities of the (Ce2O2)2+CO32- intermediate on the two oxide supports were analyzed in the context of CO oxidation catalyzed by ceria. The ZrO2(111)-supported Ce2O4 cluster is expected to be highly active for CO oxidation, whereas the turnover from CO to CO2 on the gamma-Al2O3(100)-supported and the unsupported Ce2O4 clusters is hindered by the desorption of CO2 from the (Ce2O2)2+CO32- intermediates.
C1 [Mei, Donghai] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA.
[Cheng, Lei; Ge, Qingfeng] So Illinois Univ, Dept Chem & Biochem, Carbondale, IL 62901 USA.
RP Mei, DH (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA.
EM Donghai.mei@pnl.gov; qge@chem.siu.edu
RI Mei, Donghai/D-3251-2011; Ge, Qingfeng/A-8498-2009; Cheng,
Lei/J-9014-2012; Mei, Donghai/A-2115-2012
OI Ge, Qingfeng/0000-0001-6026-6693; Mei, Donghai/0000-0002-0286-4182
FU Pacific Northwest National Laboratory (PNNL); National Energy Research
Scientific Computing Center (NERSC); Computational Grand Challenge
"Computational Catalysis" [GC20691]; U.S. Department of Energy
FX This work, was partially supported by the Laboratory Directed Research
and Development (LDRD) project at Pacific Northwest National Laboratory
(PNNL). Computing time was granted by the National Energy Research
Scientific Computing Center (NERSC) and by a Computational Grand
Challenge "Computational Catalysis" (Grant GC20691) using the Molecular
Science Computing. Facility in the William. R. Wiley Environmental
Molecular Sciences Laboratory (EMSL), a U.S. Department of Energy
National scientific user facility located at PNNL.
NR 67
TC 6
Z9 6
U1 3
U2 15
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD OCT 22
PY 2009
VL 113
IS 42
BP 18296
EP 18303
DI 10.1021/jp906873t
PG 8
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 505ED
UT WOS:000270671100044
ER
PT J
AU Shane, DT
Corey, RL
Bowman, RC
Zidan, R
Stowe, AC
Hwang, SJ
Kim, C
Conradi, MS
AF Shane, David T.
Corey, Robert L.
Bowman, Robert C., Jr.
Zidan, Ragaiy
Stowe, Ashley C.
Hwang, Son-Jong
Kim, Chul
Conradi, Mark S.
TI NMR Studies of the Hydrogen Storage Compound NaMgH3
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID PEROVSKITE-TYPE HYDRIDES; MMGH3 M; RELAXATION; NANOCRYSTALLINE;
CONDUCTORS; STABILITY; MOTION; SYSTEM; NA; RB
AB Hydrogen and Na-23 NMR were performd to 400 degrees C on NaMgH3 powder produced by reactive ball-milling of NaH and MgH2. The H resonance shows narrowing already at 100 degrees C as a narrow line superimposed on the broad, rigid-lattice signal. With increasing temperature, the fraction of spins in the narrow component grows smoothly, approaching 100% near 275 degrees C. This heterogeneous narrowing suggests a wide distribution of H motion rates. After annealing, at 400 degrees C, the narrow component intensity at temperatures below 200 degrees C was substantially reduced and both H and Na-23 relaxation rates 1/7(1) were decreased. Thus, it appears that the high rates of H motion, particularly oil first heating, are due to regions with poorly organized crystal structure. If this disorder could be maintained, this might be an avenue toward improved reaction kinetics of this or other hydrides. In the annealed sample, the activation energy for H diffusion is approximately 95 kJ/mol.
C1 [Shane, David T.; Corey, Robert L.; Conradi, Mark S.] Washington Univ, Dept Phys, St Louis, MO 63130 USA.
[Corey, Robert L.] Dakota Sch Mines & Technol, Dept Phys, Rapid City, SD 57701 USA.
[Bowman, Robert C., Jr.] RCB Hydrides LLC, Franklin, OH 45005 USA.
[Zidan, Ragaiy] Savannah River Natl Lab, Energy Secur Directorate, Aiken, SC 29808 USA.
[Stowe, Ashley C.] Y 12 Natl Secur Complex, Oak Ridge, TN 37831 USA.
[Hwang, Son-Jong; Kim, Chul] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA.
[Kim, Chul] Hannam Univ, Dept Chem, Taejon 305811, South Korea.
RP Conradi, MS (reprint author), Washington Univ, Dept Phys, 1 Brookings Dr, St Louis, MO 63130 USA.
EM msc@wuphys.wustl.edu
NR 35
TC 16
Z9 16
U1 0
U2 12
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD OCT 22
PY 2009
VL 113
IS 42
BP 18414
EP 18419
PG 6
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 505ED
UT WOS:000270671100059
ER
PT J
AU Thompson, AP
Plimpton, SJ
Mattson, W
AF Thompson, Aidan P.
Plimpton, Steven J.
Mattson, William
TI General formulation of pressure and stress tensor for arbitrary
many-body interaction potentials under periodic boundary conditions
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID SIMULATIONS; EWALD; FORCE
AB Three distinct forms are derived for the force virial contribution to the pressure and stress tensor of a collection of atoms interacting under periodic boundary conditions. All three forms are written in terms of forces acting on atoms, and so are valid for arbitrary many-body interatomic potentials. All three forms are mathematically equivalent. In the special case of atoms interacting with pair potentials, they reduce to previously published forms. (i) The atom-cell form is similar to the standard expression for the virial for a finite nonperiodic system, but with an explicit correction for interactions with periodic images. (ii) The atom form is particularly suited to implementation in modern molecular dynamics simulation codes using spatial decomposition parallel algorithms. (iii) The group form of the virial allows the contributions to the virial to be assigned to individual atoms. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3245303]
C1 [Thompson, Aidan P.; Plimpton, Steven J.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Mattson, William] USA, Res Lab, Weap & Mat Res Directorate, Aberdeen Proving Ground, MD 21005 USA.
RP Thompson, AP (reprint author), Sandia Natl Labs, POB 5800,MS 1110, Albuquerque, NM 87185 USA.
EM athomps@sandia.gov
FU Laboratory Directed Research and Development program at Sandia National
Laboratories; United States Department of Energy [DE-AC04-94AL85000];
Department of Defense High Performance Computing Modernization Program
Software Application Institute for Multiscale Reactive Modeling of
Insensitive Munitions
FX This work was supported by the Laboratory Directed Research and
Development program at Sandia National Laboratories, a multiprogram
laboratory operated by Sandia Corporation, a Lockheed Martin Co., for
the United States Department of Energy, under Contract No.
DE-AC04-94AL85000. This work was supported in part by the Department of
Defense High Performance Computing Modernization Program Software
Application Institute for Multiscale Reactive Modeling of Insensitive
Munitions.
NR 11
TC 86
Z9 87
U1 6
U2 36
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD OCT 21
PY 2009
VL 131
IS 15
AR 154107
DI 10.1063/1.3245303
PG 6
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 512CA
UT WOS:000271219000010
PM 20568847
ER
PT J
AU Cowee, MM
Winske, D
Gary, SP
AF Cowee, M. M.
Winske, D.
Gary, S. P.
TI Two-dimensional hybrid simulations of superdiffusion at the magnetopause
driven by Kelvin-Helmholtz instability
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
ID KINETIC SIMULATION; ION-TRANSPORT; BOUNDARY; PLASMA; VORTEX; TURBULENCE;
DIFFUSION
AB This paper describes the self-consistent simulation of plasma transport across the magnetic field at the magnetopause driven by Kelvin-Helmholtz (KH) instability. Two-dimensional hybrid (kinetic ions, fluid electrons) simulations of the most KH-unstable configuration where the shear flow is oriented perpendicular to the uniform magnetic field are carried out. The motion of the simulation particles is tracked during the run in order to calculate their mean-square displacement normal to the initial magnetopause surface, from which diffusion coefficients may be determined. The diffusion coefficients are found to be time dependent, with D alpha t(alpha), where alpha > 0. Additionally, the probability distribution functions (PDF) of the "jump lengths'' the particles make over time are found to be non-Gaussian. Such time-dependent diffusion coefficients and non-Gaussian PDFs have been associated with so-called "superdiffusion,'' in which diffusive mixing of particles is enhanced over classical diffusion. The results indicate that while smaller-scale turbulence associated with the breakdown of vortices contributes to this enhanced diffusion, the growth of large-scale, coherent vortices is the more important process in facilitating it.
C1 [Cowee, M. M.; Winske, D.; Gary, S. P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Cowee, MM (reprint author), Los Alamos Natl Lab, Mail Stop D466,Grp ISR-1, Los Alamos, NM 87545 USA.
EM mcowee@lanl.gov
NR 21
TC 21
Z9 21
U1 0
U2 3
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0148-0227
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD OCT 21
PY 2009
VL 114
AR A10209
DI 10.1029/2009JA014222
PG 8
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 510ZV
UT WOS:000271134000004
ER
PT J
AU Wang, TJ
Hoy, JA
Lamm, MH
Nilsen-Hamilton, M
AF Wang, Tianjiao
Hoy, Julie A.
Lamm, Monica H.
Nilsen-Hamilton, Marit
TI Computational and Experimental Analyses Converge to Reveal a Coherent
Yet Malleable Aptamer Structure That Controls Chemical Reactivity
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID MALACHITE GREEN; LEUCOMALACHITE GREEN; MOLECULAR-DYNAMICS; BINDING
MECHANISM; LIGAND-BINDING; B6C3F(1) MICE; RNA DYNAMICS; INDUCED-FIT;
RECOGNITION; RESOLUTION
AB As short nucleic acids, aptamers in solution are believed to be structurally flexible Consistent with this view, most aptamers examined for this property have been shown to bind their target molecules by mechanisms that can be described as "induced fit". But, it is not known to what extent this. structural flexibility affects the integrity of the target-aptamer interaction Using the malachite green aptarner (MGA) as a model system, we show that the MGA can protect its bound target, malachite green (MG), from oxidation over several days Protection is reversed by an oligonucleotide complementary to the MGA binding pocket. Computational cavity analysis of the MGA-MG structure predicted that IVIG oxidation is protected because a molecule as small as an OH(-) is sterically excluded from the C1 position of the bound IVIG These results suggest that, while the MGA-MG interface is sufficiently coherent to prevent OH- penetration, the bases involved in the interaction are sufficiently mobile that they can exchange out of the IVIG binding interface to hybridize with a complementary oligonucleotide The computational predictions were confirmed experimentally using variants of the MGA with single base changes in the binding pocket. This work demonstrates the successful application of molecular dynamics simulations and cavity analysis in determining the effects of sequence variations on the structure of a small single-stranded nucleic acid It also shows that a nucleic acid aptamer can control access to specific chemical groups on its target, which suggests that aptamers might be applied for selectively protecting small molecules from modification
C1 [Wang, Tianjiao; Nilsen-Hamilton, Marit] Iowa State Univ, Dept Biochem Biophys & Mol Biol, Ames, IA 50011 USA.
[Hoy, Julie A.] Iowa State Univ, Macromol Xray Crystallog Facil, Off Biotechnol, Ames, IA 50011 USA.
[Lamm, Monica H.] Iowa State Univ, Dept Chem & Biol Engn, Ames, IA 50011 USA.
[Wang, Tianjiao; Nilsen-Hamilton, Marit] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
RP Nilsen-Hamilton, M (reprint author), Iowa State Univ, Dept Biochem Biophys & Mol Biol, Ames, IA 50011 USA.
RI Wang, Tianjiao/B-6154-2013
FU Department of Energy-Biological Systems Science Division, Office of
Energy Science Research [DE-AC02-07CH11358]
FX Work at the Ames Laboratory was supported by the Department of
Energy-Biological Systems Science Division, Office of Energy Science
Research Under Contract No. DE-AC02-07CH11358. We thank Mark Hargrove
and Amy Andreotti for useful advice and Gaya Amarasinghe for the same
and also for help in interpreting the NMR data for the MGA variants We
also thank Bruce Fulton in the Biomolecular Structure Facility and Kamel
Harrata and Shu Xu in the Chemical Instrumentation Facility at Iowa
State University for their technical support and advice in the NMR and
mass spectrometry experiments. We thank Aimin Yan for his help on
statistical analysis We also thank the journal's anonymous reviewers for
their insightful comments.
NR 40
TC 11
Z9 11
U1 2
U2 19
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD OCT 21
PY 2009
VL 131
IS 41
BP 14747
EP 14755
DI 10.1021/ja902719q
PG 9
WC Chemistry, Multidisciplinary
SC Chemistry
GA 512SV
UT WOS:000271271800046
PM 19778045
ER
PT J
AU Du, SY
Francisco, JS
Schenter, GK
Garrett, BC
AF Du, Shiyu
Francisco, Joseph S.
Schenter, Gregory K.
Garrett, Bruce C.
TI Interaction of ClO Radical with Liquid Water
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID TRANSFERABLE INTERACTION MODELS; ANTARCTIC OZONE DEPLETION;
COUPLED-CLUSTER THEORY; PARTICLE MESH EWALD; MOLECULAR-DYNAMICS;
CHLORINE OXIDE; 1ST PRINCIPLES; ELECTRON CORRELATION; AIR/WATER
INTERFACE; MASS ACCOMMODATION
AB In the present work, the interaction between ClO radical and liquid water is studied using molecular dynamics simulations. We perform simulations of collisions of a ClO radical with the surface of liquid water to understand the accommodation of ClO by liquid water. Simulation results show that the ClO radical has a higher propensity to be adsorbed on the air-water interface than to be dissolved in the bulk The free energy profile is also calculated, and the solvation free energy and Henry's law constant are determined for ClO as Delta G(s) of -2.9 kcal/mol and 5.5 M/atm, respectively The mechanism of the ClO recombination reaction is also discussed, and the results are consistent with laboratory findings.
C1 [Du, Shiyu; Francisco, Joseph S.] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA.
[Du, Shiyu; Francisco, Joseph S.] Purdue Univ, Dept Earth & Atmospher Sci, W Lafayette, IN 47907 USA.
[Schenter, Gregory K.; Garrett, Bruce C.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA.
RP Francisco, JS (reprint author), Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA.
EM francisc@purdue.edu
RI Garrett, Bruce/F-8516-2011; Schenter, Gregory/I-7655-2014
OI Schenter, Gregory/0000-0001-5444-5484
FU Chemical Sciences Division, Office of Basic Energy Sciences, Department
of Energy
FX We would like to thank Collin D Wick and Tsun-Mei Chang for their
assistance. Work by B C.G and G K.S. was supported by the Chemical
Sciences Division, Office of Basic Energy Sciences, Department of
Energy. The Pacific Northwest National Laboratory is operated by
Battelle for the U.S. Department of Energy.
NR 60
TC 6
Z9 6
U1 5
U2 28
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD OCT 21
PY 2009
VL 131
IS 41
BP 14778
EP 14785
DI 10.1021/ja9033186
PG 8
WC Chemistry, Multidisciplinary
SC Chemistry
GA 512SV
UT WOS:000271271800050
PM 19788303
ER
PT J
AU Shen, TY
Langan, P
French, AD
Johnson, GP
Gnanakaran, S
AF Shen, Tongye
Langan, Paul
French, Alfred D.
Johnson, Glenn P.
Gnanakaran, S.
TI Conformational Flexibility of Soluble Cellulose Oligomers: Chain Length
and Temperature Dependence
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID NEUTRON FIBER DIFFRACTION; HYDROGEN-BONDING SYSTEM; SYNCHROTRON X-RAY;
MOLECULAR-DYNAMICS SIMULATIONS; CRYSTAL-STRUCTURE; DISACCHARIDE
CONFORMATION; QUANTUM-MECHANICS; AQUEOUS-SOLUTION; FORCE-FIELD; WATER
AB Structures, dynamics, and stabilities of different sized cellulosic oligomers need to be considered when designing enzymatic cocktails for the conversion of biomass to biofuels since they can be both productive substrates and inhibitors of the overall process. In the present work, the conformational variability, hydrogen bonding, and mechanical properties of short, soluble cellulose chains are investigated as a function of chain length. Cellulose oligomers consisting 2, 4, and 6 beta-D-glucose units are examined in explicit solvent using replica exchange molecular dynamics (REMD) which provides a rigorous evaluation of the relative stabilities of different conformations and their temperature dependencies. This application of REMD to oligosaccharides in solution also allows evaluation of the quality of the force-field and its suitability for sampling carbohydrates efficiently. Simulation results are analyzed in synergy with polymer theory and compared to known measurements of oligomers and crystals. As the chain length is increased, the conformations of the oligomers become more rigid and likely to form intrachain hydrogen bonds, like those found in crystals. Several other conformations and hydrogen bonding patterns distinguish these short cellulose chains from those in cellulose crystals. These studies have also addressed the key role played by solvent on shifting the conformational preferences of the oligosacchandes with respect to vacuum and crystals. Correlation between pyranose ring flipping and the conformation of the 1,4-glycosidic bond was observed.
C1 [Shen, Tongye; Gnanakaran, S.] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA.
[Shen, Tongye] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA.
[French, Alfred D.; Johnson, Glenn P.] ARS, USDA, SRRC, Cotton Struct & Qual Res Unit, New Orleans, LA 70124 USA.
RP Gnanakaran, S (reprint author), Los Alamos Natl Lab, Theoret Biol & Biophys Grp, POB 1663, Los Alamos, NM 87545 USA.
RI Shen, Tongye/A-9718-2008; Langan, Paul/N-5237-2015;
OI Shen, Tongye/0000-0003-1495-3104; Langan, Paul/0000-0002-0247-3122;
Gnanakaran, S/0000-0002-9368-3044
FU United States Department of Energy and Center for Nonlinear Studies;
U.S. Department of Agriculture [6435-44000-070-00D]
FX We thank Dr. R. J Woods for very helpful discussions on the GLYCAM
force-field We would also like to thank Dr M. Mustyakrmov, Dr. D. Fox.
and other members of the cellulosic biofuels team at I-os Alamos
National Lab for their Support. This work Was Supported in pail by an
LANL-LDRD grant from the United States Department of Energy and Center
for Nonlinear Studies Funding for A.D.F. and G.P.J. was from the U.S.
Department of Agriculture, Agricultural Research Service project
6435-44000-070-00D.
NR 62
TC 68
Z9 68
U1 4
U2 34
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD OCT 21
PY 2009
VL 131
IS 41
BP 14786
EP 14794
DI 10.1021/ja9034158
PG 9
WC Chemistry, Multidisciplinary
SC Chemistry
GA 512SV
UT WOS:000271271800051
PM 19824731
ER
PT J
AU Jeltema, TE
Gerke, BF
Laird, ES
Willmer, CNA
Coil, AL
Cooper, MC
Davis, M
Nandra, K
Newman, JA
AF Jeltema, Tesla E.
Gerke, Brian F.
Laird, Elise S.
Willmer, Christopher N. A.
Coil, Alison L.
Cooper, Michael C.
Davis, Marc
Nandra, Kirpal
Newman, Jeffrey A.
TI Groups of galaxies in AEGIS: the 200-ks Chandra extended X-ray source
catalogue
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE galaxies: active; galaxies: clusters: general; X-rays: galaxies:
clusters
ID INTERMEDIATE-REDSHIFT GROUPS; DIGITAL SKY SURVEY; GROTH STRIP;
STATISTICAL PROPERTIES; DATA RELEASE; TO 1; CLUSTERS; FIELD; EVOLUTION;
SAMPLE
AB We present the discovery of seven X-ray emitting groups of galaxies selected as extended X-ray sources in the 200-ks Chandra coverage of the All-wavelength Extended Groth Strip International Survey (AEGIS). In addition, we report on active galactic nucleus (AGN) activity associated with these systems. For the six extended sources which lie within the Deep Extragalactic Evolutionary Probe 2 (DEEP2) Galaxy Redshift Survey coverage, we identify optical counterparts and determine velocity dispersions. In particular, we find three massive high-redshift groups at z > 0.7, one of which is at z = 1.13, the first X-ray detections of spectroscopically selected DEEP2 groups. We also present a first look at the L(X)-T, L(X)-Sigma and Sigma-T scaling relations for high-redshift massive groups. We find that the properties of these X-ray selected systems agree well with the scaling relations of similar systems at low redshift, although there are X-ray undetected groups in the DEEP2 catalogue with similar velocity dispersions. The other three X-ray groups with identified redshifts are associated with lower mass groups at z similar to 0.07 and together form part of a large structure or 'supergroup' in the southern portion of the AEGIS field. Similar to other X-ray-luminous groups, all of the low-redshift systems are centred on massive elliptical galaxies, and all of the high-redshift groups have likely central galaxies or galaxy pairs. Interestingly, the central galaxies in the highest redshift system show indications of ongoing star formation. All of the central group galaxies host X-ray point sources, radio sources and/or show optical AGN emission. Particularly interesting examples of central AGN activity include a bent-double radio source plus X-ray point source at the centre of a group at z = 0.74, extended radio and double X-ray point sources associated with the central galaxy in the lowest redshift group at z = 0.066, and a bright green valley galaxy (part of a pair) in the z = 1.13 group which shows optical AGN emission lines.
C1 [Gerke, Brian F.] SLAC, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94725 USA.
[Laird, Elise S.; Nandra, Kirpal] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England.
[Willmer, Christopher N. A.; Cooper, Michael C.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA.
[Coil, Alison L.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA.
[Coil, Alison L.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA.
[Davis, Marc] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA.
[Newman, Jeffrey A.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA.
EM tesla@ucolick.org
FU National Aeronautics and Space Administration [AR9-0017X, NAS8-03060];
Alexander F. Morrison Fellowship; University of California; Department
of Energy [DE-AC3-76SF00515]; UK Science and Technology Facilities
Council
FX We would like to sincerely thank the anonymous referee for their
comments which led to several improvements in the paper. We would also
like to thank members of the AEGIS team, particularly D. Rosario and Rob
Ivison, for their advice and support with the multiwavelength data.
Support for this work was provided by the National Aeronautics and Space
Administration through Chandra Award Number AR9-0017X issued by the
Chandra X-ray Observatory Centre, which is operated by the Smithsonian
Astrophysical Observatory for and on behalf of the National Aeronautics
Space Administration under contract NAS8-03060. TEJ is grateful for
support from the Alexander F. Morrison Fellowship, administered through
the University of California Observatories and the Regents of the
University of California. BFG was supported by the US Department of
Energy under contract number DE-AC3-76SF00515. Support for MCC was
provided by NASA through the Spitzer Space Telescope Fellowship Program.
ESL acknowledges financial support from the UK Science and Technology
Facilities Council. This study makes use of data from AEGIS, a
multiwavelength sky survey conducted with the Chandra, GALEX, Hubble,
Keck, CFHT, MMT, Subaru, Palomar, Spitzer, VLA and other telescopes and
supported in part by the NSF, NASA and the STFC.
NR 56
TC 12
Z9 12
U1 0
U2 0
PU WILEY-BLACKWELL PUBLISHING, INC
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0035-8711
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD OCT 21
PY 2009
VL 399
IS 2
BP 715
EP 727
DI 10.1111/j.1365-2966.2009.15377.x
PG 13
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 505AW
UT WOS:000270661300017
ER
PT J
AU Skibba, RA
Bamford, SP
Nichol, RC
Lintott, CJ
Andreescu, D
Edmondson, EM
Murray, P
Raddick, MJ
Schawinski, K
Slosar, A
Szalay, AS
Thomas, D
Vandenberg, J
AF Skibba, Ramin A.
Bamford, Steven P.
Nichol, Robert C.
Lintott, Chris J.
Andreescu, Dan
Edmondson, Edward M.
Murray, Phil
Raddick, M. Jordan
Schawinski, Kevin
Slosar, Anze
Szalay, Alexander S.
Thomas, Daniel
Vandenberg, Jan
TI Galaxy Zoo: disentangling the environmental dependence of morphology and
colour star
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE methods: statistical; galaxies: clusters: general; galaxies: evolution;
galaxies: haloes; galaxies: structure; large-scale structure of Universe
ID DIGITAL-SKY-SURVEY; STELLAR MASS FUNCTIONS; DARK-MATTER HALOES; REDSHIFT
SURVEY; DATA RELEASE; MERGER RATE; LUMINOSITY FUNCTION;
PHYSICAL-PROPERTIES; DENSITY RELATION; SPIRAL GALAXIES
AB We analyse the environmental dependence of galaxy morphology and colour with two-point clustering statistics, using data from the Galaxy Zoo, the largest sample of visually classified morphologies yet compiled, extracted from the Sloan Digital Sky Survey. We present two-point correlation functions of spiral and early-type galaxies, and we quantify the correlation between morphology and environment with marked correlation functions. These yield clear and precise environmental trends across a wide range of scales, analogous to similar measurements with galaxy colours, indicating that the Galaxy Zoo classifications themselves are very precise. We measure morphology marked correlation functions at fixed colour and find that they are relatively weak, with the only residual correlation being that of red galaxies at small scales, indicating a morphology gradient within haloes for red galaxies. At fixed morphology, we find that the environmental dependence of colour remains strong, and these correlations remain for fixed morphology and luminosity. An implication of this is that much of the morphology-density relation is due to the relation between colour and density. Our results also have implications for galaxy evolution: the morphological transformation of galaxies is usually accompanied by a colour transformation, but not necessarily vice versa. A spiral galaxy may move on to the red sequence of the colour-magnitude diagram without quickly becoming an early type. We analyse the significant population of red spiral galaxies, and present evidence that they tend to be located in moderately dense environments and are often satellite galaxies in the outskirts of haloes. Finally, we combine our results to argue that central and satellite galaxies tend to follow different evolutionary paths.
C1 [Skibba, Ramin A.] Max Planck Inst Astron, D-69117 Heidelberg, Germany.
[Bamford, Steven P.; Nichol, Robert C.; Edmondson, Edward M.; Thomas, Daniel] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 2EG, Hants, England.
[Bamford, Steven P.] Univ Nottingham, Ctr Astron & Particle Theory, Nottingham NG7 2RD, England.
[Lintott, Chris J.] Univ Oxford, Oxford OX1 3RH, England.
[Andreescu, Dan] LinkLab, Bronx, NY 10471 USA.
[Murray, Phil] Fingerprint Digital Media, Newtownards BT23 7GY, Down, North Ireland.
[Raddick, M. Jordan; Szalay, Alexander S.; Vandenberg, Jan] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA.
[Schawinski, Kevin] Yale Univ, Yale Ctr Astron & Astrophys, New Haven, CT 06520 USA.
[Slosar, Anze] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA.
[Slosar, Anze] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
RP Skibba, RA (reprint author), Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany.
EM skibba@mpia.de
RI Bamford, Steven/E-8702-2010;
OI Bamford, Steven/0000-0001-7821-7195; Schawinski,
Kevin/0000-0001-5464-0888
FU NASA [NNG05GA60G.]; Alfred P. Sloan Foundation; Participating
Institutions; National Science Foundation,; US Department of Energy;
Japanese Monbukagakusho; Max Planck Society; Higher Education Funding
Council for England.
FX The SDSS is managed by the Astrophysical Research Consortium for the
Participating Institutions. The Participating Institutions are the
American Museum of Natural History, Astrophysical Institute Potsdam,
University of Basel, Cambridge University, Case Western Reserve
University, University of Chicago, Drexel University, Fermilab, the
Institute for Advanced Study, the Japan Participation Group, Johns
Hopkins University, the Joint Institute for Nuclear Astrophysics, the
Kavli Institute for Particle Astrophysics and Cosmology, the Korean
Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos
National Laboratory, the Max-Planck-Institute for Astronomy (MPA), the
MaxPlanck-Institute for Astrophysics (MPIA), New Mexico State
University, Ohio State University, University of Pittsburgh, University
of Portsmouth, Princeton University, the United States Naval Observatory
and the University of Washington.
NR 92
TC 118
Z9 121
U1 0
U2 1
PU WILEY-BLACKWELL PUBLISHING, INC
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0035-8711
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD OCT 21
PY 2009
VL 399
IS 2
BP 966
EP 982
DI 10.1111/j.1365-2966.2009.15334.x
PG 17
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 505AW
UT WOS:000270661300041
ER
PT J
AU Moses, WW
AF Moses, William W.
TI Photodetectors for nuclear medical imaging
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Photodetectors; PET; SPECT; Photomultiplier tube; HPD; GAPD
ID TIME-OF-FLIGHT; SILICON PHOTOMULTIPLIER; PET; SCINTILLATOR; PHOTODIODES;
PROSPECTS
AB There have been a number of recent advances in hotodetector technology, notably in photomultiplier tubes with high quantum efficiency (up to similar to 50%), hybrid photodetectors, and silicon-based Geiger-mode photodetectors. This paper looks at the potential benefits that these technologies can bring to nuclear medicine, notably single photon emission computed tomography (SPECT) and positron emission tomography (PET). We find that while the potential benefits to SPECT are relatively small, they can bring performance improvements in many areas for PET. Published by Elsevier B.V.
C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Moses, WW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Mailstop 55-121-1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM wwmoses@lbl.gov
FU US Department of Energy [DE-AC02-05CH11231]; National Institutes of
Health [R01-EB006085]
FX This work was supported in part by the Director, Office of Science,
Office of Biological and Environmental Research, Medical Science
Division of the US Department of Energy under Contract no.
DE-AC02-05CH11231, and in part by the National Institutes of Health,
National Institute of Biomedical Imaging and Bioengineering under grant
no. R01-EB006085.
NR 21
TC 7
Z9 7
U1 0
U2 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD OCT 21
PY 2009
VL 610
IS 1
BP 11
EP 15
DI 10.1016/j.nima.2009.05.032
PG 5
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 534CT
UT WOS:000272873800003
PM 20161403
ER
PT J
AU Moses, WW
Choong, WS
Hull, G
Payne, S
Cherepy, N
Valentine, JD
AF Moses, William W.
Choong, Woon-Seng
Hull, Giulia
Payne, Steve
Cherepy, Nerine
Valentine, John D.
TI Photodetectors for scintillator proportionality measurement
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Scintillator non-proportionality; Photodetectors; Photomultiplier tubes;
Hybrid photodetectors
ID INTRINSIC ENERGY RESOLUTION; PHOTOMULTIPLIER TUBE; PHOTODIODES;
CALIBRATION; CRYSTALS; FACILITY; DESIGN
AB We evaluate photodetectors for use in a Compton Coincidence apparatus designed for measuring scintillator proportionality. There are many requirements placed on the photodetector in these systems, including active area, linearity, and the ability to accurately measure low light levels (which implies high quantum efficiency and high signal-to-noise ratio). Through a combination of measurement and Monte Carlo simulation, we evaluate a number of potential photodetectors, especially photomultiplier tubes and hybrid photodetectors. Of these, we find that the most promising devices available are photomultiplier tubes with high (similar to 50%) quantum efficiency, although hybrid photodetectors with high quantum efficiency would be preferable. Published by Elsevier B.V.
C1 [Moses, William W.; Choong, Woon-Seng] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Hull, Giulia; Payne, Steve; Cherepy, Nerine; Valentine, John D.] Lawrence Livermore Natl Lab, Livermore, CA USA.
RP Moses, WW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
EM wwmoses@lbl.gov
RI Cherepy, Nerine/F-6176-2013
OI Cherepy, Nerine/0000-0001-8561-923X
FU US Department of Energy [DE-AC02-05CH11231, NNSA
LB06-316-PD05/NN2001000, DE-AC52-07NA27344]; Domestic Nuclear Detection
Office of the Department of Homeland Security
FX This work is supported in part by the National Nuclear Security
Administration, Office of Defense Nuclear Nonproliferation, Office of
Nuclear Nonproliferation Research and Engineering (NA-22) of the US
Department of Energy under Contract no. DE-AC02-05CH11231, Grant no.
NNSA LB06-316-PD05/NN2001000, and in part under the auspices of the US
Department of Energy Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344 and by the Domestic Nuclear Detection Office
of the Department of Homeland Security.
NR 27
TC 1
Z9 1
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD OCT 21
PY 2009
VL 610
IS 1
BP 45
EP 49
DI 10.1016/j.nima.2009.05.057
PG 5
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 534CT
UT WOS:000272873800011
ER
PT J
AU Barton, P
Stapels, C
Johnson, E
Christian, J
Moses, WW
Janecek, M
Wehe, D
AF Barton, Paul
Stapels, Christopher
Johnson, Erik
Christian, James
Moses, William W.
Janecek, Martin
Wehe, David
TI Effect of SSPM surface coating on light collection efficiency and
optical crosstalk for scintillation detection
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Silicon photomultipliers; Scintillation detectors; Optical system design
AB As part of a project to develop a complete stochastic model of the solid state photomultiplier (SSPM), we simulated the effects of a reflective layer in the non-active region which reflects photons back into the crystal for a second chance at detection. The scintillation photon collection efficiency of the proposed device is greater than that predicted by the scintillation yield and the ratio of active area. The added reflectivity also increases external optical crosstalk from hot carrier emissions and the collection efficiency for these photons was simulated to be of the same order as the scintillation photon collection efficiency. As a function of excess bias, the rate of hot carrier emissions will rise more rapidly than the photon detection efficiency (PDE), setting a practical upper limit on the applied bias. Due to spectral mismatch between detection and avalanche emission, a blue-sensitve SSPM will be largely transparent to its own emissions. The spatial dependence of externally reflected hot carrier emissions was determined to be approximately uniform. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Barton, Paul; Wehe, David] Univ Michigan, Ann Arbor, MI 48109 USA.
[Stapels, Christopher; Johnson, Erik; Christian, James] Radiat Monitoring Devices Inc, Watertown, MA 02172 USA.
[Moses, William W.; Janecek, Martin] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Barton, P (reprint author), Univ Michigan, Ann Arbor, MI 48109 USA.
EM pbarton@umich.edu
FU National Nuclear Security Administration; Office of Defense Nuclear
Nonproliferation, Office of Nonproliferation Research and Development
[NA22]; US Department of Energy [DE-AC0205CH11231]
FX This work was supported in part by the National Nuclear Security
Administration, Office of Defense Nuclear Nonproliferation, Office of
Nonproliferation Research and Development (NA22) of the US Department of
Energy under Contract no. DE-AC0205CH11231.
NR 7
TC 2
Z9 2
U1 0
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD OCT 21
PY 2009
VL 610
IS 1
BP 393
EP 396
DI 10.1016/j.nima.2009.05.187
PG 4
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 534CT
UT WOS:000272873800101
ER
PT J
AU Erdelyi, B
AF Erdelyi, B.
TI A comprehensive study of the most likely path formalism for
proton-computed tomography
SO PHYSICS IN MEDICINE AND BIOLOGY
LA English
DT Article
ID MULTIPLE-SCATTERING; PARTICLE; FIELDS
AB We investigate some generalizations of the most likely path formalism developed for proton-computed tomography. The stochastic path of a proton inside a homogeneous medium is replaced by a deterministic smooth path that maximizes the probability of the proton passing through the points on this curve, given measured entrance and exit parameters for each individual proton. We study various factors that influence this curve and the associated error envelopes. These factors are the influence of the energy loss, a logarithmic correction factor in the small angle Coulomb scattering and the importance of path length versus material thickness. We develop a method for further constraining the possible proton paths by including energy information in the derivation of the most likely path, utilizing an infinite-dimensional constrained functional analysis method. It is shown that while there is an additional uncertainty on the most likely path that is difficult to determine experimentally, the associated error envelopes are smaller, resulting in possibly slightly improved spatial resolution for proton-computed tomography.
C1 [Erdelyi, B.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA.
[Erdelyi, B.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
RP Erdelyi, B (reprint author), No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA.
EM erdelyi@nicadd.niu.edu
NR 16
TC 11
Z9 11
U1 0
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0031-9155
J9 PHYS MED BIOL
JI Phys. Med. Biol.
PD OCT 21
PY 2009
VL 54
IS 20
BP 6095
EP 6122
DI 10.1088/0031-9155/54/20/005
PG 28
WC Engineering, Biomedical; Radiology, Nuclear Medicine & Medical Imaging
SC Engineering; Radiology, Nuclear Medicine & Medical Imaging
GA 503TO
UT WOS:000270563300005
PM 19779216
ER
PT J
AU Freedman, WL
Burns, CR
Phillips, MM
Wyatt, P
Persson, SE
Madore, BF
Contreras, C
Folatelli, G
Gonzalez, ES
Hamuy, M
Hsiao, E
Kelson, DD
Morrell, N
Murphy, DC
Roth, M
Stritzinger, M
Sturch, L
Suntzeff, NB
Astier, P
Balland, C
Bassett, B
Boldt, L
Carlberg, RG
Conley, AJ
Frieman, JA
Garnavich, PM
Guy, J
Hardin, D
Howell, DA
Kessler, R
Lampeitl, H
Marriner, J
Pain, R
Perrett, K
Regnault, N
Riess, AG
Sako, M
Schneider, DP
Sullivan, M
Wood-Vasey, M
AF Freedman, Wendy L.
Burns, Christopher R.
Phillips, M. M.
Wyatt, Pamela
Persson, S. E.
Madore, Barry F.
Contreras, Carlos
Folatelli, Gaston
Gonzalez, E. Sergio
Hamuy, Mario
Hsiao, Eric
Kelson, Daniel D.
Morrell, Nidia
Murphy, D. C.
Roth, Miguel
Stritzinger, Maximilian
Sturch, Laura
Suntzeff, Nick B.
Astier, P.
Balland, C.
Bassett, Bruce
Boldt, Luis
Carlberg, R. G.
Conley, Alexander J.
Frieman, Joshua A.
Garnavich, Peter M.
Guy, J.
Hardin, D.
Howell, D. Andrew
Kessler, Richard
Lampeitl, Hubert
Marriner, John
Pain, R.
Perrett, Kathy
Regnault, N.
Riess, Adam G.
Sako, Masao
Schneider, Donald P.
Sullivan, Mark
Wood-Vasey, Michael
TI THE CARNEGIE SUPERNOVA PROJECT: FIRST NEAR-INFRARED HUBBLE DIAGRAM TO z
similar to 0.7
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE cosmology: observations; distance scale; supernovae: general
ID DIGITAL SKY SURVEY; HIGH-REDSHIFT SUPERNOVAE; IA LIGHT CURVES;
2-PARAMETER LUMINOSITY CORRECTION; PROBE WMAP OBSERVATIONS;
SPACE-TELESCOPE; DARK ENERGY; ACCELERATING UNIVERSE; STANDARD STARS;
IMAGE SUBTRACTION
AB The Carnegie Supernova Project (CSP) is designed to measure the luminosity distance for Type Ia supernovae (SNe Ia) as a function of redshift, and to set observational constraints on the dark energy contribution to the total energy content of the universe. The CSP differs from other projects to date in its goal of providing an I-band rest-frame Hubble diagram. Here, we present the first results from near-infrared observations obtained using the Magellan Baade telescope for SNe Ia with 0.1 < z < 0.7. We combine these results with those from the low-redshift CSP at z < 0.1. In this paper, we describe the overall goals of this long-term program, the observing strategy, data reduction procedures, and treatment of systematic uncertainties. We present light curves and an I-band Hubble diagram for this first sample of 35 SNe Ia, and we compare these data to 21 new SNe Ia at low redshift. These data support the conclusion that the expansion of the universe is accelerating. When combined with independent results from baryon acoustic oscillations, these data yield Omega(m) = 0.27 +/- 0.02( statistical) and Omega(DE) = 0.76 +/- 0.13( statistical) +/- 0.09(systematic), for the matter and dark energy densities, respectively. If we parameterize the data in terms of an equation of state, omega (with no time dependence), assume a flat geometry, and combine with baryon acoustic oscillations, we find that omega = -1.05 +/- 0.13( statistical) +/- 0.09( systematic). The largest source of systematic uncertainty on w arises from uncertainties in the photometric calibration, signaling the importance of securing more accurate photometric calibrations for future supernova cosmology programs. Finally, we conclude that either the dust affecting the luminosities of SNe Ia has a different extinction law (R(V) = 1.8) than that in the Milky Way (where R(V) = 3.1), or that there is an additional intrinsic color term with luminosity for SNe Ia, independent of the decline rate. Understanding and disentangling these effects is critical for minimizing the systematic uncertainties in future SN Ia cosmology studies.
C1 [Freedman, Wendy L.; Burns, Christopher R.; Wyatt, Pamela; Persson, S. E.; Madore, Barry F.; Kelson, Daniel D.; Murphy, D. C.; Sturch, Laura] Carnegie Observ, Pasadena, CA 91101 USA.
[Phillips, M. M.; Contreras, Carlos; Folatelli, Gaston; Gonzalez, E. Sergio; Morrell, Nidia; Roth, Miguel; Stritzinger, Maximilian; Boldt, Luis] Las Campanas Observ, Carnegie Inst Washington, Colina El Pino, Chile.
[Folatelli, Gaston; Hamuy, Mario] Univ Chile, Dept Astron, Santiago, Chile.
[Hsiao, Eric] Univ Victoria, Dept Phys & Astron, Victoria, BC V8W 3P6, Canada.
[Suntzeff, Nick B.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA.
[Astier, P.; Balland, C.; Guy, J.; Hardin, D.; Pain, R.; Regnault, N.] Univ Paris 06, LPNHE, CNRS, IN2P3, F-75252 Paris 05, France.
[Astier, P.; Balland, C.; Guy, J.; Hardin, D.; Pain, R.; Regnault, N.] Univ Paris 07, LPNHE, CNRS, IN2P3, F-75252 Paris 05, France.
[Balland, C.] Coll France, APC, F-75005 Paris, France.
[Bassett, Bruce] S African Astron Observ, ZA-7935 Observatory, South Africa.
[Bassett, Bruce] Univ Cape Town, Dept Math & Appl Math, ZA-7701 Rondebosch, South Africa.
[Carlberg, R. G.; Conley, Alexander J.; Perrett, Kathy] Univ Toronto, Dept Astron, Toronto, ON M5S 3H8, Canada.
[Frieman, Joshua A.; Marriner, John] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA.
[Frieman, Joshua A.; Kessler, Richard] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Frieman, Joshua A.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA.
[Garnavich, Peter M.] Univ Notre Dame, Notre Dame, IN 46556 USA.
[Howell, D. Andrew] Las Cumbres Observ Global Telescope Network, Goleta, CA 93117 USA.
[Howell, D. Andrew] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
[Kessler, Richard] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Lampeitl, Hubert] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth P01 3FX, Hants, England.
[Riess, Adam G.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA.
[Riess, Adam G.] Space Telescope Sci Inst, Baltimore, MD 21218 USA.
[Sako, Masao] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA.
[Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA.
[Sullivan, Mark] Univ Oxford, Dept Astrophys, Oxford OX1 3RH, England.
[Wood-Vasey, Michael] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA.
RP Freedman, WL (reprint author), Carnegie Observ, 813 Santa Barbara St, Pasadena, CA 91101 USA.
RI Folatelli, Gaston/A-4484-2011; Carlberg, Raymond/I-6947-2012; Hamuy,
Mario/G-7541-2016;
OI Carlberg, Raymond/0000-0002-7667-0081; Sullivan,
Mark/0000-0001-9053-4820
NR 84
TC 66
Z9 66
U1 0
U2 6
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD OCT 20
PY 2009
VL 704
IS 2
BP 1036
EP 1058
DI 10.1088/0004-637X/704/2/1036
PG 23
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 502UQ
UT WOS:000270486200003
ER
PT J
AU Alam, U
Sahni, V
Starobinsky, AA
AF Alam, Ujjaini
Sahni, Varun
Starobinsky, Alexei A.
TI RECONSTRUCTING COSMOLOGICAL MATTER PERTURBATIONS USING STANDARD CANDLES
AND RULERS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE cosmological parameters; cosmology: theory; distance scale
ID ANISOTROPY-PROBE OBSERVATIONS; GALAXY REDSHIFT SURVEY;
HUBBLE-SPACE-TELESCOPE; DARK ENERGY; ACCELERATING UNIVERSE;
ACOUSTIC-OSCILLATIONS; EXPANSION HISTORY; MODIFIED GRAVITY; SUPERNOVA
DATA; CONSTRAINTS
AB For a large class of dark energy (DE) models, for which the effective gravitational constant is a constant and there is no direct exchange of energy between DE and dark matter (DM), knowledge of the expansion history suffices to reconstruct the growth factor of linearized density perturbations in the non-relativistic matter component on scales much smaller than the Hubble distance. In this paper, we develop a non-parametric-method for extracting information about the perturbative growth factor from data pertaining to the luminosity or angular size distances. A comparison of the reconstructed density contrast with observations of large-scale structure and gravitational lensing can help distinguish DE models such as the cosmological constant and quintessence from models based on modified gravity theories as well as models in which DE and DM are either unified or interact directly. We show that for current supernovae (SNe) data, the linear growth factor at z = 0.3 can be constrained to 5% and the linear growth rate to 6%. With future SNe data, such as expected from the Joint Dark Energy Mission, we may be able to constrain the growth factor to 2%-3% and the growth rate to 3%-4% at z = 0.3 with this unbiased, model-independent reconstruction method. For future baryon acoustic oscillation data which would deliver measurements of both the angular diameter distance and the Hubble parameter, it should be possible to constrain the growth factor at z = 2.5%-9%. These constraints grow tighter with the errors on the data sets. With a large quantity of data expected in the next few years, this method can emerge as a competitive tool for distinguishing between different models of dark energy.
C1 [Alam, Ujjaini] Los Alamos Natl Lab, ISR Div, ISR 1, Los Alamos, NM 87545 USA.
[Sahni, Varun] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India.
[Starobinsky, Alexei A.] LD Landau Theoret Phys Inst, Moscow 119334, Russia.
[Starobinsky, Alexei A.] Univ Tokyo, Grad Sch Sci, RESCEU, Tokyo 1130033, Japan.
RP Alam, U (reprint author), Los Alamos Natl Lab, ISR Div, ISR 1, POB 1663, Los Alamos, NM 87545 USA.
EM ujjaini@lanl.gov; varun@iucaa.ernet.in; alstar@landau.ac.ru
RI Sahni, Varun/H-3336-2012;
OI Starobinsky, Alexei/0000-0002-8946-9088
FU RFBR [08-02-00923]; Russian Academy of Sciences; LDRD
FX A. A. S. acknowledges RESCEU hospitality as a visiting professor. He was
also partially supported by the grant RFBR 08-02-00923 and by the
Scientific Programme "Astronomy" of the Russian Academy of Sciences. U.
A. acknowledges support from the LDRD program at Los Alamos National
Laboratory and useful discussions with S. Habib, D. Holz, and Z. Lukic.
NR 97
TC 11
Z9 11
U1 0
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD OCT 20
PY 2009
VL 704
IS 2
BP 1086
EP 1097
DI 10.1088/0004-637X/704/2/1086
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 502UQ
UT WOS:000270486200006
ER
PT J
AU Hernandez, JA
George, SJ
Rubio, LM
AF Hernandez, Jose A.
George, Simon J.
Rubio, Luis M.
TI Molybdenum Trafficking for Nitrogen Fixation
SO BIOCHEMISTRY
LA English
DT Review
ID MOLYBDATE TRANSPORT OPERON; ABSORPTION FINE-STRUCTURE;
ELECTRON-PARAMAGNETIC-RESONANCE; TRANSCRIPTIONAL REGULATOR MODE;
IRON-SULFUR CLUSTERS; IN-VITRO SYNTHESIS; FEMO-CO PRECURSOR;
AZOTOBACTER-VINELANDII; ESCHERICHIA-COLI; KLEBSIELLA-PNEUMONIAE
AB The molybdenum nitrogenase is responsible for most biological nitrogen fixation, a prokaryotic metabolic process that determines the global biogeochemical cycles of nitrogen and carbon. Here we describe the trafficking of molybdenum for nitrogen Fixation in the model diazotrophic bacterium Azotobacter vinelandii. The genes and proteins involved in molybdenum uptake, homeostasis, storage, regulation, and nitrogenase cofactor biosynthesis are reviewed. Molybdenum biochemistry in A, vinelandii reveals unexpected mechanisms and a new role for iron-sulfur clusters in the sequestration and delivery of molybdenum.
C1 [Rubio, Luis M.] Fdn IMDEA Energia, Unit Biochem Proc, Pozuelo De Alarcon 28223, Spain.
[Hernandez, Jose A.] Midwestern Univ, Dept Biochem, Glendale, AZ 85308 USA.
[George, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Biol & Environm Xray Facil, Berkeley, CA 94720 USA.
RP Rubio, LM (reprint author), Fdn IMDEA Energia, Unit Biochem Proc, Campus Montegancedo UPM, Pozuelo De Alarcon 28223, Spain.
EM luis.rubio@imdea.org
RI Rubio, Luis/B-5827-2009
OI Rubio, Luis/0000-0003-1596-2475
FU ERC [205442]; Midwestern University Intramural Funds; National
Institutes of Health [GM-65440]
FX This work was supported by ERC Starting Grant 205442 (L.M.R.), by
Midwestern University Intramural Funds (J.A.H.), and by National
Institutes of Health Grant GM-65440 (SIG.).
NR 114
TC 14
Z9 15
U1 1
U2 34
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0006-2960
J9 BIOCHEMISTRY-US
JI Biochemistry
PD OCT 20
PY 2009
VL 48
IS 41
BP 9711
EP 9721
DI 10.1021/bi901217p
PG 11
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 504DY
UT WOS:000270595900003
PM 19772354
ER
PT J
AU da Veiga, LB
Gyrya, V
Lipnikov, K
Manzini, G
AF da Veiga, L. Beirao
Gyrya, V.
Lipnikov, K.
Manzini, G.
TI Mimetic finite difference method for the Stokes problem on polygonal
meshes
SO JOURNAL OF COMPUTATIONAL PHYSICS
LA English
DT Article
DE Incompressible Stokes equations; Mimetic discretization; Polygonal mesh
ID DIFFUSION-PROBLEMS; POLYHEDRAL MESHES; GRIDS; CONVERGENCE; EQUATIONS;
FAMILY
AB Various approaches to extend finite element methods to non-traditional elements (general polygons, pyramids, polyhedra, etc.) have been developed over the last decade. The construction of basis functions for such elements is a challenging task and may require extensive geometrical analysis. The mimetic finite difference (MFD) method works on general polygonal meshes and has many similarities with low-order finite element methods. Both schemes try to preserve the fundamental properties of the underlying physical and mathematical models. The essential difference between the two schemes is that the MFD method uses only the surface representation of discrete unknowns to build the stiffness and mass matrices. Since no extension of basis functions inside the mesh elements is required, practical implementation of the MFD method is simple for polygonal meshes that may include degenerate and non-convex elements. In this article, we present a new MFD method for the Stokes problem on arbitrary polygonal meshes and analyze its stability. The method is developed for the general case of tensor coefficients, which allows us to apply it to a linear elasticity problem, as well. Numerical experiments show, for the velocity variable, second-order convergence in a discrete L 2 norm and first-order convergence in a discrete H(1) norm. For the pressure variable, first-order convergence is shown in the L 2 norm. (C) 2009 Elsevier Inc. All rights reserved.
C1 [Gyrya, V.] Penn State Univ, Dept Math, University Pk, PA 16802 USA.
[da Veiga, L. Beirao] Dipartimento Matemat F Enriques, I-20133 Milan, Italy.
[Lipnikov, K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Manzini, G.] CNR, Ist Matemat Applicata & Tecnol Informat, I-27100 Pavia, Italy.
RP Gyrya, V (reprint author), Penn State Univ, Dept Math, University Pk, PA 16802 USA.
EM beirao@mat.unimi.it; gyrya@math.psu.edu; lipnikov@lanl.gov;
Marco.Manzini@imati.cnr.it
RI Beirao da Veiga, Lourenco/A-8080-2010;
OI Manzini, Gianmarco/0000-0003-3626-3112; Gyrya,
Vitaliy/0000-0002-5083-8878
NR 36
TC 49
Z9 49
U1 1
U2 10
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0021-9991
J9 J COMPUT PHYS
JI J. Comput. Phys.
PD OCT 20
PY 2009
VL 228
IS 19
BP 7215
EP 7232
DI 10.1016/j.jcp.2009.06.034
PG 18
WC Computer Science, Interdisciplinary Applications; Physics, Mathematical
SC Computer Science; Physics
GA 491MF
UT WOS:000269582300006
ER
PT J
AU Demircan, O
Xu, CC
Zondlo, J
Finklea, HO
AF Demircan, Oktay
Xu, Chunchuan
Zondlo, John
Finklea, Harry O.
TI In situ Van der Pauw measurements of the Ni/YSZ anode during exposure to
syngas with phosphine contaminant
SO JOURNAL OF POWER SOURCES
LA English
DT Article; Proceedings Paper
CT 10th Symposium on Fast Ionic Conductors
CY SEP 14-17, 2008
CL Grybow, POLAND
DE SOFC; Van der Pauw method; Syngas; Phosphine; Degradation; Anode
resistivity
ID OXIDE FUEL-CELLS; YTTRIA-STABILIZED ZIRCONIA;
PHOTOELECTRON-SPECTROSCOPY; COAL SYNGAS; SOFC ANODES; NICKEL; ELECTRODE;
PERFORMANCE; PHOSPHORUS; PARAMETERS
AB Solid oxide fuel cells (SOFCs) represent an option to provide a bridging technology for energy conversion (coal syngas) as well as a long-term technology (hydrogen from biomass). Whether the fuel is coal syngas or hydrogen from biomass, the effect of impurities on the performance of the anode is a vital question. The anode resistivity during SOFC operation with phosphine-contaminated syngas was studied using the in situ Van der Pauw method. Commercial anode-supported solid oxide fuel cells (Ni/YSZ composite anodes, YSZ electrolytes) were exposed to a synthetic coal syngas mixture (H(2), H(2)O, CO, and CO(2)) at a constant current and their performance evaluated periodically with electrochemical methods (cyclic voltammetry, impedance spectroscopy, and polarization curves). In one test, after 170 h of phosphine exposure, a significant degradation of cell performance (loss of cell voltage, increase of series resistance and increase of polarization resistance) was evident. The rate of voltage loss was 1.4 mV h(-1). The resistivity measurements on Ni/YSZ anode by the in situ Van der Pauvv method showed that there were no significant changes in anode resistivity both under clean syngas and syngas with 10 ppm PH(3). XRD analysis suggested that Ni(5)P(2) and P(2)O(5) are two compounds accumulated on the anode. XPS studies provided support for the presence of two phosphorus phases with different oxidation states on the external anode surface. Phosphorus, in a positive oxidation state, was observed in the anode active layer. Based on these observations, the effect of 10ppm phosphine impurity (or its reaction products with coal syngas) is assigned to the loss of performance of the Ni/YSZ active layer next to the electrolyte, and not to any changes in the thick Ni/YSZ support layer. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Demircan, Oktay; Finklea, Harry O.] W Virginia Univ, C Eugene Bennett Dept Chem, Morgantown, WV 26506 USA.
[Xu, Chunchuan; Zondlo, John] W Virginia Univ, Dept Chem Engn, Morgantown, WV 26506 USA.
[Finklea, Harry O.] US DOE, Natl Energy Technol Lab, Inst Adv Energy Studies, Morgantown, WV 26505 USA.
RP Demircan, O (reprint author), W Virginia Univ, C Eugene Bennett Dept Chem, 217 Clark Hall Prospect St,POB 6045, Morgantown, WV 26506 USA.
EM Oktay.Demircan@mail.wvu.edu
NR 28
TC 8
Z9 8
U1 2
U2 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-7753
J9 J POWER SOURCES
JI J. Power Sources
PD OCT 20
PY 2009
VL 194
IS 1
BP 214
EP 219
DI 10.1016/j.jpowsour.2009.04.071
PG 6
WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials
Science, Multidisciplinary
SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science
GA 491MZ
UT WOS:000269584400029
ER
PT J
AU Zhang, RY
Wang, L
Khalizov, AF
Zhao, J
Zheng, J
McGraw, RL
Molina, LT
AF Zhang, Renyi
Wang, Lin
Khalizov, Alexei F.
Zhao, Jun
Zheng, Jun
McGraw, Robert L.
Molina, Luisa T.
TI Formation of nanoparticles of blue haze enhanced by anthropogenic
pollution
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE aerosol; biogenic; climate; nucleation; forest
ID IONIZATION MASS-SPECTROMETRY; ORGANIC AEROSOL FORMATION; PARTICLE
FORMATION; ATMOSPHERIC OXIDATION; NUCLEATION; CHEMISTRY; ISOPRENE;
GROWTH; CLUSTERS; VAPORS
AB The molecular processes leading to formation of nanoparticles of blue haze over forested areas are highly complex and not fully understood. We show that the interaction between biogenic organic acids and sulfuric acid enhances nucleation and initial growth of those nanoparticles. With one cis-pinonic acid and three to five sulfuric acid molecules in the critical nucleus, the hydrophobic organic acid part enhances the stability and growth on the hydrophilic sulfuric acid counterpart. Dimers or heterodimers of biogenic organic acids alone are unfavorable for new particle formation and growth because of their hydrophobicity. Condensation of low-volatility organic acids is hindered on nano-sized particles, whereas ammonia contributes negligibly to particle growth in the size range of 3-30 nm. The results suggest that initial growth from the critical nucleus to the detectable size of 2-3 nm most likely occurs by condensation of sulfuric acid and water, implying that anthropogenic sulfur emissions (mainly from power plants) strongly influence formation of terrestrial biogenic particles and exert larger direct and indirect climate forcing than previously recognized.
C1 [Zhang, Renyi; Wang, Lin; Khalizov, Alexei F.; Zhao, Jun; Zheng, Jun] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA.
[Zhang, Renyi; Wang, Lin; Khalizov, Alexei F.; Zhao, Jun; Zheng, Jun] Texas A&M Univ, Dept Chem, College Stn, TX 77843 USA.
[McGraw, Robert L.] Brookhaven Natl Lab, Div Atmospher Sci, Upton, NY 11973 USA.
[Molina, Luisa T.] Molina Ctr Energy & Environm, La Jolla, CA 92093 USA.
[Molina, Luisa T.] MIT, Cambridge, MA 02139 USA.
RP Zhang, RY (reprint author), Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA.
EM zhang@ariel.met.tamu.edu
RI Khalizov, Alexei/E-9024-2010; Zhang, Renyi/A-2942-2011; Zheng,
Jun/E-6772-2010; Zhao, Jun/C-8565-2009
OI Khalizov, Alexei/0000-0003-3817-7568; Zhao, Jun/0000-0002-3340-4816
FU Robert A. Welch Foundation [A-1417]; China National Natural Science
Foundation [40728006]; Department of Energy Atmospheric Sciences Program
FX We thank the use of the Laboratory for Molecular Simulations at Texas
A&M University, and Dr. Lisa M. Perez for assistance with the
calculations. This work was supported by the Robert A. Welch Foundation
Grant A-1417 and the China National Natural Science Foundation Grant
40728006, and the Department of Energy Atmospheric Sciences Program (to
R. L. M.).
NR 36
TC 127
Z9 129
U1 13
U2 102
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD OCT 20
PY 2009
VL 106
IS 42
BP 17650
EP 17654
DI 10.1073/pnas.0910125106
PG 5
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 508UR
UT WOS:000270963100011
PM 19815498
ER
PT J
AU Chan, CM
Zhou, C
Brunzelle, JS
Huang, RH
AF Chan, Chio Mui
Zhou, Chun
Brunzelle, Joseph S.
Huang, Raven H.
TI Structural and biochemical insights into 2 '-O-methylation at the 3
'-terminal nucleotide of RNA by Hen1
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE RNA interference; RNA methylation; RNA repair; X-ray crystallography
ID ARGONAUTE SILENCING COMPLEX; PLANT MICRORNA BIOGENESIS;
DOUBLE-STRANDED-RNA; CRYSTAL-STRUCTURE; METHYLTRANSFERASE; RECOGNITION;
CLEAVAGE; PROTEIN; RISC; DNA
AB Small RNAs of approximate to 20-30 nt have diverse and important biological roles in eukaryotic organisms. After being generated by Dicer or Piwi proteins, all small RNAs in plants and a subset of small RNAs in animals are further modified at their 3'-terminal nucleotides via 2'-O-methylation, carried out by the S-adenosylmethionine-dependent methyltransferase (MTase) Hen1. Methylation at the 3' terminus is vital for biological functions of these small RNAs. Here, we report four crystal structures of the MTase domain of a bacterial homolog of Hen1 from Clostridium thermocellum and Anabaena variabilis, which are enzymatically indistinguishable from the eukaryotic Hen1 in their ability to methylate small single-stranded RNAs. The structures reveal that, in addition to the core fold of the MTase domain shared by other RNA and DNA MTases, the MTase domain of Hen1 possesses a motif and a domain that are highly conserved and are unique to Hen1. The unique motif and domain are likely to be involved in RNA substrate recognition and catalysis. The structures allowed us to construct a docking model of an RNA substrate bound to the MTase domain of bacterial Hen1, which is likely similar to that of the eukaryotic counterpart. The model, supported by mutational studies, provides insight into RNA substrate specificity and catalytic mechanism of Hen1.
C1 [Chan, Chio Mui; Zhou, Chun; Huang, Raven H.] Univ Illinois, Dept Biochem, Urbana, IL 61801 USA.
[Huang, Raven H.] Univ Illinois, Ctr Biophys & Computat Biol, Urbana, IL 61801 USA.
[Brunzelle, Joseph S.] Argonne Natl Lab, Life Sci Collaborat Access Team, Argonne, IL 60439 USA.
RP Huang, RH (reprint author), Univ Illinois, Dept Biochem, Urbana, IL 61801 USA.
EM huang@uiuc.edu
FU National Science Foundation [MCB-0920966]
FX We thank S. Nair for critical reading and editing of the manuscript; J.
Wu (University of Rochester, Rochester, NY) and T. Thiel (University of
Missouri, St. Louis) for genomic DNAs; and the staffs of beamline 21ID
at the Advanced Photon Source for their assistance during data
collection. This work was supported by National Science Foundation Grant
MCB-0920966.
NR 28
TC 17
Z9 17
U1 1
U2 6
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD OCT 20
PY 2009
VL 106
IS 42
BP 17699
EP 17704
DI 10.1073/pnas.0907540106
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 508UR
UT WOS:000270963100020
ER
PT J
AU Jun, YW
Sheikholeslami, S
Hostetter, DR
Tajon, C
Craik, CS
Alivisatos, AP
AF Jun, Young-Wook
Sheikholeslami, Sassan
Hostetter, Daniel R.
Tajon, Cheryl
Craik, Charles S.
Alivisatos, A. Paul
TI Continuous imaging of plasmon rulers in live cells reveals early-stage
caspase-3 activation at the single-molecule level
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE caspase; live cell imaging; plasmonic nanoparticles; protease sensor;
single-molecule imaging
ID QUANTUM-DOT BLINKING; LIVING CELLS; GRANZYME-B; APOPTOSIS; DYNAMICS;
PROTEIN; NANOCRYSTALS; SPECIFICITY; SUPPRESSION; MICROSCOPY
AB The use of plasmon coupling in metal nanoparticles has shown great potential for the optical characterization of many biological processes. Recently, we have demonstrated the use of "plasmon rulers'' to observe conformational changes of single biomolecules in vitro. Plasmon rulers provide robust signals without photo-bleaching or blinking. Here, we show the first application of plasmon rulers to in vivo studies to observe very long trajectories of single biomolecules in live cells. We present a unique type of plasmon ruler comprised of peptide-linked gold nanoparticle satellites around a core particle, which was used as a probe to optically follow cell-signaling pathways in vivo at the single-molecule level. These "crown nanoparticle plasmon rulers'' allowed us to continuously monitor trajectories of caspase-3 activity in live cells for over 2 h, providing sufficient time to observe early-stage caspase-3 activation, which was not possible by conventional ensemble analyses.
C1 [Jun, Young-Wook; Sheikholeslami, Sassan; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Jun, Young-Wook; Sheikholeslami, Sassan; Alivisatos, A. Paul] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Hostetter, Daniel R.; Tajon, Cheryl; Craik, Charles S.] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94158 USA.
[Tajon, Cheryl; Craik, Charles S.] Univ Calif San Francisco, Grad Program Chem & Chem Biol, San Francisco, CA 94158 USA.
RP Alivisatos, AP (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
EM alivis@berkeley.edu
RI Jun, Young-wook/A-4141-2008; Alivisatos , Paul /N-8863-2015
OI Alivisatos , Paul /0000-0001-6895-9048
FU National Institutes of Health [R01-GM77856, NOT-OD-09-056, CA72006,
CA128765]; US Air Force Office of Scientific Research-Korea Ministry of
Education-Science and Technology Nano-Bio-Information Technology Program
[K20716000001-07A0400-00100]; Lawrence Berkeley National Laboratory
[LB08003826]; Leukemia and Lymphoma Society Fellowship [5552-06];
National Institute of General Medical Sciences [1 R25 GM56847]
FX We thank Prof. J. Wells ( University of California, San Francisco),
Prof. M. Shuman ( University of California, San Francisco), Prof. C.
Larabell ( Lawrence Berkeley National Laboratory), Dr. W. Gu, Dr. A.
Mastroianni, Dr. S. Claridge, and C. Choi for helpful discussion. We
also thank Dr. Dennis Wolan and Julie Zorn for advice on caspase-3
activity assays and for providing us with purified recombinant
caspase-3, and A. Fischer and M. Yasukawa for cell culture. This work
was supported by the National Institutes of Health Grant R01-GM77856,
NOT-OD-09-056 and the US Air Force Office of Scientific Research-Korea
Ministry of Education-Science and Technology Nano-Bio-Information
Technology Program K20716000001-07A0400-00100; Lawrence Berkeley
National Laboratory LB08003826, Leukemia and Lymphoma Society Fellowship
5552-06 ( to D. R. H.), National Institute of General Medical Sciences
Grant 1 R25 GM56847 ( to C. T.), and National Institutes of Health
Grants CA72006 and CA128765 ( to C. S. C.).
NR 42
TC 105
Z9 112
U1 7
U2 65
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD OCT 20
PY 2009
VL 106
IS 42
BP 17735
EP 17740
DI 10.1073/pnas.0907367106
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 508UR
UT WOS:000270963100026
PM 19805121
ER
PT J
AU Reith, F
Etschmann, B
Grosse, C
Moors, H
Benotmane, MA
Monsieurs, P
Grass, G
Doonan, C
Vogt, S
Lai, B
Martinez-Criado, G
George, GN
Nies, DH
Mergeay, M
Pring, A
Southam, G
Brugger, J
AF Reith, Frank
Etschmann, Barbara
Grosse, Cornelia
Moors, Hugo
Benotmane, Mohammed A.
Monsieurs, Pieter
Grass, Gregor
Doonan, Christian
Vogt, Stefan
Lai, Barry
Martinez-Criado, Gema
George, Graham N.
Nies, Dietrich H.
Mergeay, Max
Pring, Allan
Southam, Gordon
Brugger, Joel
TI Mechanisms of gold biomineralization in the bacterium Cupriavidus
metallidurans
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE bacteria; XAS
ID SULFATE-REDUCING BACTERIA; FILAMENTOUS CYANOBACTERIA;
RALSTONIA-METALLIDURANS; SIGMA FACTORS; HEAVY-METALS; STRAIN CH34;
COMPLEX; RESISTANCE; GEOMICROBIOLOGY; BIOACCUMULATION
AB While the role of microorganisms as main drivers of metal mobility and mineral formation under Earth surface conditions is now widely accepted, the formation of secondary gold (Au) is commonly attributed to abiotic processes. Here we report that the biomineralization of Au nanoparticles in the metallophillic bacterium Cupriavidus metallidurans CH34 is the result of Au-regulated gene expression leading to the energy-dependent reductive precipitation of toxic Au(III)-complexes. C. metallidurans, which forms biofilms on Au grains, rapidly accumulates Au(III)-complexes from solution. Bulk and microbeam synchrotron X-ray analyses revealed that cellular Au accumulation is coupled to the formation of Au(I)-S complexes. This process promotes Au toxicity and C. metallidurans reacts by inducing oxidative stress and metal resistances gene clusters ( including a Au-specific operon) to promote cellular defense. As a result, Au detoxification is mediated by a combination of efflux, reduction, and possibly methylation of Au-complexes, leading to the formation of Au(I)-C-compounds and nanoparticulate Au(0). Similar particles were observed in bacterial biofilms on Au grains, suggesting that bacteria actively contribute to the formation of Au grains in surface environments. The recognition of specific genetic responses to Au opens the way for the development of bioexploration and bioprocessing tools.
C1 [Reith, Frank; Brugger, Joel] Univ Adelaide, Sch Earth & Environm Sci, Ctr Tecton Resources & Explorat, Adelaide, SA 5000, Australia.
[Reith, Frank] Commonwealth Sci & Ind Res Org CSIRO Land & Water, Glen Osmond, SA 5064, Australia.
[Etschmann, Barbara; Pring, Allan; Brugger, Joel] S Australian Museum, Dept Mineral, Adelaide, SA 5005, Australia.
[Etschmann, Barbara] S Australian Museum, CSIRO Explorat & Min, Adelaide, SA 5000, Australia.
[Etschmann, Barbara] Univ Tasmania, CODES Ctr Excellence, Hobart, Tas 7001, Australia.
[Grosse, Cornelia; Nies, Dietrich H.] Univ Halle Wittenberg, Inst Biol & Mikrobiol, DE-06120 Halle, Germany.
[Moors, Hugo; Benotmane, Mohammed A.; Monsieurs, Pieter; Mergeay, Max] Inst Environm Hlth & Safety, Nucl Res Ctr, Microbiol Unit, Expertise Grp Mol & Cellular Biol, B-2400 Mol, Belgium.
[Grass, Gregor] Univ Nebraska, Sch Biol Sci, Lincoln, NE 68588 USA.
[Doonan, Christian] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA.
[Vogt, Stefan; Lai, Barry] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Martinez-Criado, Gema] European Synchrotron Radiat Facil, Expt Div, F-38043 Grenoble, France.
[George, Graham N.] Univ Saskatchewan, Dept Geol Sci, Saskatoon, SK S7N 5E2, Canada.
[Southam, Gordon] Univ Western Ontario, Dept Earth Sci, Dept Biol, London, ON N6A 5B7, Canada.
RP Reith, F (reprint author), Univ Adelaide, Sch Earth & Environm Sci, Ctr Tecton Resources & Explorat, Adelaide, SA 5000, Australia.
EM frank.reith@csiro.au
RI Monsieurs, Pieter/A-2917-2009; Brugger, Joel/C-7113-2008; Mergeay,
Max/H-2003-2011; Reith, Frank/E-5542-2011; Etschmann,
Barbara/H-7731-2012; Grass, Gregor/A-9981-2009; George,
Graham/E-3290-2013; Martinez-Criado, Gema/C-6624-2014; Southam,
Gordon/D-1983-2013; Vogt, Stefan/B-9547-2009; Vogt, Stefan/J-7937-2013
OI Brugger, Joel/0000-0003-1510-5764; Grass, Gregor/0000-0002-8002-7718;
Martinez-Criado, Gema/0000-0002-4503-9385; Southam,
Gordon/0000-0002-8941-1249; Vogt, Stefan/0000-0002-8034-5513; Vogt,
Stefan/0000-0002-8034-5513
FU Advanced Photon Source (APS); European Synchrotron Research Facility
(ESRF); Stanford Synchrotron Radiation Laboratory (SSRL); Natural
Sciences and Engineering Research Council Canada; University of
Saskatchewan; Australian Research Council; Australian Synchrotron
Research Funding Schemes
FX We thank the Advanced Photon Source (APS), the European Synchrotron
Research Facility (ESRF), and the Stanford Synchrotron Radiation
Laboratory (SSRL) for provision of beamtime; Barrick Gold and Newmont
Gold for support; the Natural Sciences and Engineering Research Council
Canada, which supported research at the University of Saskatchewan; P.
Self, L. Waterhouse, and L. Green at Adelaide Microscopy; and J. Parson
from Prophet Gold Mine for access and support. This work was supported
by the Australian Research Council and Australian Synchrotron Research
Funding Schemes.
NR 49
TC 106
Z9 108
U1 7
U2 91
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD OCT 20
PY 2009
VL 106
IS 42
BP 17757
EP 17762
DI 10.1073/pnas.0904583106
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 508UR
UT WOS:000270963100030
PM 19815503
ER
PT J
AU Prikhodko, VY
Nguyen, K
Choi, JS
Daw, CS
AF Prikhodko, Vitaly Y.
Nguyen, Ke
Choi, Jae-Soon
Daw, C. Stuart
TI Axial length effects on Lean NOx Trap performance
SO APPLIED CATALYSIS B-ENVIRONMENTAL
LA English
DT Article
DE Lean NOx Trap (LNT); NOx storage/reduction; NSR; Size effect; Gas hourly
space velocity; Back-mixing
ID STORAGE-REDUCTION CATALYST; REGENERATION; AMMONIA; SULFUR; PT/BAO/AL2O3;
BREAKTHROUGH; ADSORPTION; HYDROGEN
AB The effect of axial length on the NO, reduction performance of two different commercial Lean NOx Trap (LNT) monolithic catalysts was experimentally investigated in a bench flow reactor. The washcoat composition of one of the catalysts consisted of Pt and K on gamma-Al2O3; whereas the other catalyst contained a complex mixture of Pt, Pd, Rh, Ba, Ce, Zr, Mg, Al and others. The NOx removal characteristics of cylindrical monolith segments of constant diameter (2.22 cm) and axial lengths of 2.54, 5.08 and 7.62 cm were evaluated using a simulated lean engine exhaust containing water and carbon dioxide at a constant space velocity of 30,000 h(-1). No significant effects of length were observed when the catalysts were fully reduced with hydrogen between NOx capture phases. However when the catalysts were only partially regenerated NO, reduction efficiency increased with monolith length. Intra-catalyst H-2 measurements at different axial locations indicated that at least some of the efficiency loss during partial regeneration occurred when back-mixed H-2 was directly oxidized and became unavailable for nitrate reduction. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Prikhodko, Vitaly Y.; Nguyen, Ke] Univ Tennessee, Mech Aerosp & Biomed Engn Dept, Knoxville, TN 37996 USA.
[Prikhodko, Vitaly Y.; Choi, Jae-Soon; Daw, C. Stuart] Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, Knoxville, TN 37932 USA.
RP Nguyen, K (reprint author), Univ Tennessee, Mech Aerosp & Biomed Engn Dept, 414 Dougherty Engn Bldg, Knoxville, TN 37996 USA.
EM knguyen@utk.edu
OI Choi, Jae-Soon/0000-0002-8162-4207
FU U.S. Department of Energy, Office of Vehicle Technologies
FX This research was sponsored by the U.S. Department of Energy, Office of
Vehicle Technologies, with Ken Howden and Gurpreet Singh as the Program
Managers. We thank Umicore (Dr. Owen Bailey) and EmeraChern for
providing the catalysts used in this study.
NR 25
TC 7
Z9 7
U1 0
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0926-3373
J9 APPL CATAL B-ENVIRON
JI Appl. Catal. B-Environ.
PD OCT 19
PY 2009
VL 92
IS 1-2
BP 9
EP 16
DI 10.1016/j.apcatb.2009.07.030
PG 8
WC Chemistry, Physical; Engineering, Environmental; Engineering, Chemical
SC Chemistry; Engineering
GA 514CU
UT WOS:000271372200002
ER
PT J
AU Chien, TY
Santos, TS
Bode, M
Guisinger, NP
Freeland, JW
AF Chien, TeYu
Santos, Tiffany S.
Bode, Matthias
Guisinger, Nathan P.
Freeland, John W.
TI Controllable local modification of fractured Nb-doped SrTiO3 surfaces
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID ROOM-TEMPERATURE; TRANSITION; OXIDE
AB Nanoscale surface modification of a fractured Nb-doped SrTiO3 surface is demonstrated in a controlled way by scanning tunneling microscopy. By applying positive voltage pulses, holes can be created and the width and depth of the hole can be controlled by selecting the appropriate bias and pulse duration. The process shows a threshold condition for creation of the holes and change in the local electronic density of state consistent with exposure of the underlying TiO2 layer by removal of SrO. By applying negative bias, the hole can be partially refilled from the transfer of adsorbates on the tip. (C) 2009 American Institute of Physics. [doi:10.1063/1.3254184]
C1 [Chien, TeYu; Freeland, John W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Santos, Tiffany S.; Bode, Matthias; Guisinger, Nathan P.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
RP Chien, TY (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
EM tchien@anl.gov
RI Bode, Matthias/S-3249-2016
OI Bode, Matthias/0000-0001-7514-5560
FU U. S. Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-AC02-06CH11357]
FX Work at Argonne, including the Center for Nanoscale Materials, is
supported by the U. S. Department of Energy, Office of Science, Office
of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
NR 20
TC 14
Z9 14
U1 0
U2 15
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD OCT 19
PY 2009
VL 95
IS 16
AR 163107
DI 10.1063/1.3254184
PG 3
WC Physics, Applied
SC Physics
GA 512BU
UT WOS:000271218200049
ER
PT J
AU Hopkins, PE
Rakich, PT
Olsson, RH
El-Kady, IF
Phinney, LM
AF Hopkins, Patrick E.
Rakich, Peter T.
Olsson, Roy H.
El-Kady, Ihab F.
Phinney, Leslie M.
TI Origin of reduction in phonon thermal conductivity of microporous solids
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID THERMOELECTRIC-MATERIALS; SILICON FILMS; GERMANIUM
AB Porous structures have strong tunable size effects due to increased surface area. Size effects on phonon thermal conductivity have been observed in porous materials with periodic voids on the order of microns. This letter explores the origin of this size effect on phonon thermal conductivity observed in periodic microporous membranes. Pore-edge boundary scattering of low frequency phonons explains the temperature trends in the thermal conductivity; further reduction in thermal conductivity is explained by the porosity. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3250166]
C1 [Hopkins, Patrick E.; Rakich, Peter T.; Olsson, Roy H.; El-Kady, Ihab F.; Phinney, Leslie M.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Hopkins, PE (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM pehopki@sandia.gov
RI El-Kady, Ihab/D-2886-2013
OI El-Kady, Ihab/0000-0001-7417-9814
FU Harry S. Truman Fellowship through the LDRD Program at Sandia National
Laboratories; United States Department of Energy's National Nuclear
Security Administration [DE-AC04-94Al85000]
FX P. E. H. acknowledges funding by the Harry S. Truman Fellowship through
the LDRD Program at Sandia National Laboratories. The authors thank
Edward S. Piekos for insightful discussions. Sandia is a multiprogram
laboratory operated by Sandia Corporation, a Lockheed-Martin Co. for the
United States Department of Energy's National Nuclear Security
Administration under Contract No. DE-AC04-94Al85000.
NR 23
TC 32
Z9 32
U1 3
U2 16
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD OCT 19
PY 2009
VL 95
IS 16
AR 161902
DI 10.1063/1.3250166
PG 3
WC Physics, Applied
SC Physics
GA 512BU
UT WOS:000271218200015
ER
PT J
AU Idrobo, JC
Oxley, MP
Walkosz, W
Klie, RF
Ogut, S
Mikijelj, B
Pennycook, SJ
Pantelides, ST
AF Idrobo, J. C.
Oxley, M. P.
Walkosz, W.
Klie, R. F.
Ogut, S.
Mikijelj, B.
Pennycook, S. J.
Pantelides, S. T.
TI Identification and lattice location of oxygen impurities in alpha-Si3N4
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID SILICON-NITRIDE; CRYSTAL-STRUCTURE; RESOLUTION; POWDERS; ENERGY; PHASE
AB For over 40 years impurities have been believed to stabilize the ceramic alpha-Si3N4 but there is no direct evidence for their identity or lattice location. In bulk materials electron microscopy can generally image heavy impurities. Here we report direct imaging of N columns in alpha-Si3N4 that suggests the presence of excess light elements in specific N columns. First-principles calculations rule out Si or N interstitials and suggest O impurities, which are then confirmed by atomically resolved electron-energy-loss spectroscopy. The result provides a possible explanation for the stability of alpha-Si3N4 with implications for the design of next-generation structural ceramics. c 2009 American Institute of Physics. [doi: 10.1063/1.3250922]
C1 [Idrobo, J. C.; Oxley, M. P.; Pennycook, S. J.; Pantelides, S. T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA.
[Idrobo, J. C.; Oxley, M. P.; Pennycook, S. J.; Pantelides, S. T.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
[Idrobo, J. C.; Walkosz, W.; Klie, R. F.; Ogut, S.] Univ Illinois, Dept Phys, Chicago, IL 60607 USA.
[Mikijelj, B.] Ceradyne Inc, Costa Mesa, CA 92626 USA.
RP Idrobo, JC (reprint author), Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA.
EM juan.idrobo@vanderbilt.edu
RI Ogut, Serdar/B-1749-2012; Idrobo, Juan/H-4896-2015
OI Idrobo, Juan/0000-0001-7483-9034
FU National Science Foundation [DMR-0605964, DMR-0513048]; Office of Basic
Energy Sciences, Division of Materials Sciences and Engineering, U. S.
Department of Energy; McMinn Endowment
FX This research was partially supported by the National Science Foundation
under Grant Nos. DMR-0605964 (J. C. I., W. W., and S. O.) and
DMR-0513048 (J. C. I.), the Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering, U. S. Department of Energy (M. P. O.
and S. J. P.), the SHaRE User Facility, which is sponsored by the
Division of Scientific User Facilities, Office of Basic Energy Sciences,
U. S. Department of Energy, and by the McMinn Endowment (S. T. P.) at
Vanderbilt University. Computations were supported by the National
Center for Supercomputing Applications.
NR 17
TC 9
Z9 9
U1 0
U2 8
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD OCT 19
PY 2009
VL 95
IS 16
AR 164101
DI 10.1063/1.3250922
PG 3
WC Physics, Applied
SC Physics
GA 512BU
UT WOS:000271218200068
ER
PT J
AU Telling, ND
Coker, VS
Cutting, RS
van der Laan, G
Pearce, CI
Pattrick, RAD
Arenholz, E
Lloyd, JR
AF Telling, N. D.
Coker, V. S.
Cutting, R. S.
van der Laan, G.
Pearce, C. I.
Pattrick, R. A. D.
Arenholz, E.
Lloyd, J. R.
TI Remediation of Cr(VI) by biogenic magnetic nanoparticles: An x-ray
magnetic circular dichroism study
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID AQUEOUS CR(VI); ABSORPTION
AB Biologically synthesized magnetite (Fe(3)O(4)) nanoparticles are studied using x-ray absorption and x-ray magnetic circular dichroism following exposure to hexavalent Cr solution. By examining their magnetic state, Cr cations are shown to exist in trivalent form on octahedral sites within the magnetite spinel surface. The possibility of reducing toxic Cr(VI) into a stable, nontoxic form, such as a Cr(3+)-spinel layer, makes biogenic magnetite nanoparticles an attractive candidate for Cr remediation. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3249578]
C1 [Telling, N. D.; Coker, V. S.; Cutting, R. S.; van der Laan, G.; Pearce, C. I.; Pattrick, R. A. D.; Lloyd, J. R.] Univ Manchester, Sch Earth Atmospher & Environm Sci, Manchester M13 9PL, Lancs, England.
[van der Laan, G.] Diamond Light Source, Magnet Spect Grp, Didcot OX11 0DE, Oxon, England.
[Arenholz, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA.
RP Telling, ND (reprint author), Univ Manchester, Sch Earth Atmospher & Environm Sci, Manchester M13 9PL, Lancs, England.
EM neil.telling@manchester.ac.uk
RI Coker, Victoria/B-4181-2012; van der Laan, Gerrit/Q-1662-2015
OI van der Laan, Gerrit/0000-0001-6852-2495
FU EPSRC [EP/D057310/1, EP/D058767/1]; BBSRC [BB/E003788/1]; U. S.
Department of Energy [DE-AC02-05CH11231]
FX This work was supported by Grant Nos. EP/D057310/1 and EP/D058767/1 from
EPSRC and BB/E003788/1 from BBSRC. We thank R. L. Kimber for sample
preparation. Supported by the U. S. Department of Energy under Contract
No. DE-AC02-05CH11231.
NR 12
TC 20
Z9 20
U1 1
U2 10
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD OCT 19
PY 2009
VL 95
IS 16
AR 163701
DI 10.1063/1.3249578
PG 3
WC Physics, Applied
SC Physics
GA 512BU
UT WOS:000271218200066
ER
PT J
AU Mundy, CJ
Kuo, IFW
Tuckerman, ME
Lee, HS
Tobias, DJ
AF Mundy, Christopher J.
Kuo, I-Feng W.
Tuckerman, Mark E.
Lee, Hee-Seung
Tobias, Douglas J.
TI Hydroxide anion at the air-water interface
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID INITIO MOLECULAR-DYNAMICS; LIQUID-VAPOR INTERFACE; HYDRATED EXCESS
PROTON; NEAT WATER; AQUEOUS INTERFACES; SURFACE; IONS; SOLVATION;
HYDRONIUM; DENSITY
AB Whether aqueous interfaces are acidic or basic has implications for interfacial chemistry, but the question remains open. We employ first-principles molecular dynamics simulations to determine the intrinsic propensity of OH(-) for the air-water interface and find that OH(-) is stabilized by roughly k(B)T at the interface vs. the bulk. We predict, therefore, that the surface population OH(-) is slightly enhanced. Our simulations suggest that the solvation of OH(-) at the interface is similar to that observed in small water clusters, and they reveal changes in the orientation of solvating water molecules that are consistent with surface-sensitive vibrational spectra. (C) 2009 Published by Elsevier B.V.
C1 [Tobias, Douglas J.] Univ Calif Irvine, Dept Chem, AirUCI, Irvine, CA 92697 USA.
[Mundy, Christopher J.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA.
[Kuo, I-Feng W.] Lawrence Livermore Natl Lab, Div Chem Sci, Livermore, CA 94550 USA.
[Tuckerman, Mark E.] New York Univ, Courant Inst Math Sci, Dept Chem, New York, NY 10003 USA.
[Lee, Hee-Seung] Univ N Carolina, Dept Chem & Biochem, Wilmington, NC 28403 USA.
RP Tobias, DJ (reprint author), Univ Calif Irvine, Dept Chem, AirUCI, Irvine, CA 92697 USA.
EM dtobias@uci.edu
RI Tobias, Douglas/B-6799-2015
FU National Science Foundation [CHE-0431512, CHE-0704036]; UNCW; US
Department of Energy (DOE); Lawrence Livermore National Laboratory
(LLNL) [DE-AC52-07NA27344]; Environmental Molecular Sciences Laboratory
at Pacific Northwest National Laboratory (PNNL); Office of Science of
the U.S. DOE [DE-AC05-00OR22725, DE-AC02-06CH11357]; Molecular Sciences
Computing Facility at PNNL
FX D.J. T. and M. E. T. acknowledge support from the National Science
Foundation (Grants CHE-0431512 and CHE-0704036). H. S. L. was supported
by a summer research initiative and the Cahill research fund at UNCW.
The work of I. F. W. K. was performed under the auspices of the US
Department of Energy (DOE) at Lawrence Livermore National Laboratory
(LLNL) under Contract DE-AC52-07NA27344. C.J.M. is supported by the DOE
Office of Basic Energy Sciences Chemical, Geosciences, and Biosciences
division. All of the bulk calculations were performed using the
computing resource NWice located in the Environmental Molecular Sciences
Laboratory at Pacific Northwest National Laboratory (PNNL). The
interface calculations were enabled by a 2008-2009 INCITE award to
C.J.M. on the CRAY XT4 ( using resources of the National Center for
Computational Sciences at Oak Ridge National Laboratory (ORNL), which is
supported by the Office of Science of the U.S. DOE under Contract No.
DE-AC05-00OR22725) and the BlueGene/P at Argonne National Laboratory
(resources of the Argonne Leadership Computing Facility at Argonne
National Laboratory, which is supported by the Office of Science of the
U. S. DOE under contract DE-AC02-06CH11357). C.J.M. and D.J.T. also
acknowledge NERSC 2008 Early Use awards on the CRAY XT5 at ORNL. I. F.
W. K. acknowledges computer time allocated via the Computational Grand
Challenge awards at LLNL. D. J. T. acknowledges a grant of computer time
from the Molecular Sciences Computing Facility at PNNL.
NR 49
TC 75
Z9 75
U1 5
U2 51
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD OCT 19
PY 2009
VL 481
IS 1-3
BP 2
EP 8
DI 10.1016/j.cplett.2009.09.003
PG 7
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 508BX
UT WOS:000270902900002
ER
PT J
AU Sun, XQ
Yoo, S
Xantheas, SS
Dang, LX
AF Sun, Xiuquan
Yoo, Soohaeng
Xantheas, Sotiris S.
Dang, Liem X.
TI The reorientation mechanism of hydroxide ions in water: A molecular
dynamics study
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID SPACE GAUSSIAN PSEUDOPOTENTIALS; TRANSPORT MECHANISM; SOLVATION SHELL;
LIQUID WATER; BASIS-SETS; DENSITY; SPECTROSCOPY; CLUSTERS; MOBILITY;
APPROXIMATION
AB Classical molecular dynamics simulations with a polarizable force field indicate two major structural motifs for the aqueous bulk solvation of OH(-): a four- and a five-coordinated solvent hydrogen bond donor to OHV in addition to a weak solvent hydrogen bond acceptor by OH(-). A two-step mechanism for the reorientation of OH(-) in water is proposed: first, the reorientation of OH(-) is initiated by the coupled translation with the water molecules in its first solvation shell; second, the OH(-) relaxes to the minimum energy configuration. The first step is the rate-limiting one for this mechanism. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Sun, Xiuquan; Yoo, Soohaeng; Xantheas, Sotiris S.; Dang, Liem X.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA.
RP Dang, LX (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, 902 Battelle Blvd,POB 999,MS K1-83, Richland, WA 99352 USA.
EM liem.dang@pnl.gov
RI Xantheas, Sotiris/L-1239-2015;
OI Xantheas, Sotiris/0000-0002-6303-1037
NR 50
TC 18
Z9 19
U1 0
U2 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD OCT 19
PY 2009
VL 481
IS 1-3
BP 9
EP 16
DI 10.1016/j.cplett.2009.09.004
PG 8
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 508BX
UT WOS:000270902900003
ER
PT J
AU Yoo, S
Xantheas, SS
Zeng, XC
AF Yoo, Soohaeng
Xantheas, Sotiris S.
Zeng, Xiao Cheng
TI The melting temperature of bulk silicon from ab initio molecular
dynamics simulations
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID SPACE GAUSSIAN PSEUDOPOTENTIALS; LIQUID PHASE-TRANSITION; WATER;
PRESSURE; DENSITY; ICE
AB We estimated a melting temperature of T-m similar to 1540 +/- 50 K at zero pressure for silicon from constant enthalpy and constant pressure (NPH) Born-Oppenheimer Molecular Dynamics (BOMD) simulations of a coexisting crystalline-liquid phase. The computed Tm is below the experimental melting point of 1685 K, but it is consistent with a previously predicted first-order liquid-liquid phase transition (LLPT) at a critical point T-c similar to 1232 K and P-c similar to -12 kB [P. Ganesh, M. Widom, Phys. Rev. Lett. 102 (2009) 075701], which is in a highly supercooled state. (C) 2009 Published by Elsevier B.V.
C1 [Zeng, Xiao Cheng] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA.
[Yoo, Soohaeng; Xantheas, Sotiris S.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA.
RP Zeng, XC (reprint author), Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA.
EM xzeng1@unl.edu
RI Xantheas, Sotiris/L-1239-2015;
OI Xantheas, Sotiris/0000-0002-6303-1037
FU Chemical Sciences, Geosciences and Biosciences Division; Materials
Science and Engineering Division [DE-FG02-04ER46164]; Office of Basic
Energy Sciences, U. S. Department of Energy; Nebraska Research
Initiative
FX We acknowledge support from the Chemical Sciences, Geosciences and
Biosciences Division, and the Materials Science and Engineering Division
(DE-FG02-04ER46164), Office of Basic Energy Sciences, U. S. Department
of Energy, and from the Nebraska Research Initiative. Battelle operates
the Pacific Northwest National Laboratory for the U. S. Department of
Energy. This research was performed in part using the Molecular Science
Computing Facility (MSCF) in the Environmental Molecular Sciences
Laboratory, a national scientific user facility sponsored by the
Department of Energy's Office of Biological and Environmental Research.
Additional computer resources were provided by the Office of Basic
Energy Sciences, U.S. Department of Energy at the National Energy
Research Scientific Computing (NERSC) center at the Lawrence Berkeley
National Laboratory (LBNL) in Berkeley, CA.
NR 34
TC 11
Z9 11
U1 0
U2 16
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD OCT 19
PY 2009
VL 481
IS 1-3
BP 88
EP 90
DI 10.1016/j.cplett.2009.09.075
PG 3
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 508BX
UT WOS:000270902900019
ER
PT J
AU Cao, ZJ
Balasubramanian, K
Calvert, MG
Nitsche, H
AF Cao, Zhiji
Balasubramanian, K.
Calvert, Michael G.
Nitsche, Heino
TI Solvation Effects on Isomeric Preferences of Curium(III) Complexes with
Multidentate phosphonopropionic Acid Ligands: CmH(2)PPA(2+) and
CmHPPA(+) Complexes
SO INORGANIC CHEMISTRY
LA English
DT Article
ID LASER FLUORESCENCE SPECTROSCOPY; RELATIVISTIC EFFECTIVE POTENTIALS;
SPIN-ORBIT OPERATORS; AQUEOUS-SOLUTION; ELECTRONIC-STRUCTURE; CARBONATE
COMPLEXES; HYDRATION NUMBER; ACTINYL IONS; CM(III); CHEMISTRY
AB We have carried out both time-resolved laser fluorescence spectroscopic and computational studies on the complexes of curium(Ill) with multidentate Phosphonopropionic (PPA) acid ligands. A number of complexes of Cm(Ill) with these ligands, such as CmH(2)PPA(2+), CmHPPA(+), Cm[H(2)PPA](2)(+), and Cm[HPPA](2)(-) have been studied. Our computational studies focused on all possible isomers in the gas phase and aqueous solution so that the relative binding strengths of carboxylic versus phosphoric groups can be assessed in these multidentate systems. The solvation effects play an important role in the determination of the preferred configurations and binding propensities of carboxylate versus phosphate sites of the ligands. Our computations assess the relative strengths of single and multidentate complexes in solutions for these systems. The computed free energies of solvation explain the experimentally observed fluorescence spectra and the lifetimes of these complexes in that as more water molecules are displaced from the first hydration sphere by the ligands that bind to Cm(III), the fluorescence lifetime increases. We have found that the most stable complex for CmH(2)PPA(2+) in the aqueous phase exhibits a monodentate complex where the curium(Ill) is bound to the deprotonated phosphate oxygen atom. Our A longer fluorescence lifetime of CmH(2)PPA(2+) (112 mu s) compared to the free Cm(III) computations support the observe aquo ion (65 mu s), suggesting a greater degree of H2O displacement from the hydration sphere. For the Cm-HPPA(+) complex, we find a tridentate form as the most stable structure which supports the observed fluorescence lifetime for the CmHPPA(+) complex (172 mu s), confining the removal of up to six water molecules from the inner hydration sphere. The relative stabilities of the complexes are found to vary substantially between the gas phase and solution, indicating a major role of solvation in the relative stabilities of these complexes.
C1 [Cao, Zhiji; Balasubramanian, K.] Calif State Univ Hayward, Coll Sci, Hayward, CA 94542 USA.
[Balasubramanian, K.] Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, Livermore, CA 94550 USA.
[Balasubramanian, K.; Calvert, Michael G.; Nitsche, Heino] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA.
[Calvert, Michael G.; Nitsche, Heino] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
RP Balasubramanian, K (reprint author), Calif State Univ Hayward, Coll Sci, Hayward, CA 94542 USA.
EM balu@llnl.gov
RI Cao, Zhiji/A-5957-2010
FU U.S. Department of Energy [DE-FG0205ER 15657]; Department of Energy,
Office of Civilian Radioactive Waste Management
FX This research was supported by the U.S. Department of Energy under Grant
DE-FG0205ER 15657. The work at LLNL was performed under the auspices of
the U.S. Department of Energy. The authors would like to acknowledge
computational support oil Lawrence Livermore's supercomputer comprising
992 processors supported by DOE's accelerated supercomputing initiative
program. M.G.C. was supported by a Department of Energy, Office of
Civilian Radioactive Waste Management Fellowship.
NR 53
TC 7
Z9 7
U1 0
U2 8
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0020-1669
EI 1520-510X
J9 INORG CHEM
JI Inorg. Chem.
PD OCT 19
PY 2009
VL 48
IS 20
BP 9700
EP 9714
DI 10.1021/ic901054h
PG 15
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA 503SY
UT WOS:000270561400014
PM 19757852
ER
PT J
AU Gourdon, O
Izaola, Z
Elcoro, L
Petricek, V
Miller, GJ
AF Gourdon, Olivier
Izaola, Zunbeltz
Elcoro, Luis
Petricek, Vaclav
Miller, Gordon J.
TI Structure Determination of Two Modulated gamma-Brass Structures in the
Zn-Pd System through a (3+1)-Dimensional Space Description
SO INORGANIC CHEMISTRY
LA English
DT Article
ID QUASI-CRYSTAL APPROXIMANTS; INTERGROWTH COMPOUNDS
AB The structure determination of two composite compounds in the Zn-Pd system with close relationships to the cubic gamma-brass structure Zn11-delta Pd2+delta is reported. Their structures have been solved from single crystal X-ray diffraction data within a (3 + 1)-dimensional [(3 + 1)D] formalism. Zn75.7(7)Pd24.3 and Zn78.8(7)Pd21.2 crystallize with orthorhombic symmetry, superspace group Xmmm(00 gamma)0s0 (X [(1/2,1/2,0,0); (0,1/2,1/2,1/2); (1/2,0,1/2,1/2)]), with the following lattice parameters, respectively: a(s) = 12.929(3) angstrom, b(s) = 9.112(4) angstrom, c(s) = 2.5631(7) angstrom, q = 8/13 c* and V-s = 302.1(3) angstrom(3) and a(s) = 12.909(3) angstrom, b(s) = 9.115(3) angstrom, c(s) = 2.6052(6) angstrom, q = 11/18 c* and V-s = 306.4(2) angstrom(3). Their structures may be considered as commensurate because they can be refined in the conventional 3D space groups (Cmce and Cmcm, respectively) using supercells, but they also refined within the (3 + 1)D formalism to residual factors R = 3.14% for 139 parameters and 1184 independent reflections for Zn75.7(7)Pd24.3 and R = 3.16% for 175 parameters and 1804 independent reflections for Zn78.8(7)Pd21.2. The use of the (3 + 1)D formalism improves the results of the refinement and leads to a better understanding of the complexity of the atomic arrangement through the various modulations (occupation waves and displacive waves). Our refinements emphasize a unique Pd/Zn occupancy modulation at the center of distorted icosahedra, a modulation which correlates with the distortion of these polyhedra.
C1 [Gourdon, Olivier] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Julich Ctr Neutron Sci, Oak Ridge, TN 37831 USA.
[Izaola, Zunbeltz] Helmholtz Zentrum Berlin, D-14109 Berlin, Germany.
[Elcoro, Luis] Univ Basque Country, Dept Fis Mat Condensada, F Ciencia & Tecnol, E-48080 Bilbao, Spain.
[Petricek, Vaclav] Acad Sci Czech Republic, Inst Phys, CZ-18040 Prague 8, Czech Republic.
[Miller, Gordon J.] Iowa State Univ, US Dept Energy, Dept Chem, Ames, IA 50011 USA.
[Miller, Gordon J.] Iowa State Univ, US Dept Energy, Ames Lab, Ames, IA 50011 USA.
RP Gourdon, O (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Julich Ctr Neutron Sci, Oak Ridge, TN 37831 USA.
EM gourdonoa@ornl.gov
RI Petricek, Vaclav/G-6868-2014; Elcoro, Luis/H-4584-2015
OI Elcoro, Luis/0000-0002-5427-0984
FU Iowa State University [DE-AC02-07CH11358]; Materials Sciences Division
of the Office of Basic Energy Sciences of the U.S. Department of Energy;
MEC-Spain
FX The authors are grateful to Dr. Warren Straszheim at Iowa State
University for the EDXS measurements. This work was carried out at the
Ames Laboratory, which is operated for the U.S. Department of Energy by
Iowa State University under Contract No. DE-AC02-07CH11358. This work
was supported by the Materials Sciences Division of the Office of Basic
Energy Sciences of the U.S. Department of Energy and the MEC-Spain.
Development of the program Jana2006 was supported Praemium Academiae of
Czech Academy of Sciences. The authors also wish to thank the reviewers
for their thorough review and useful suggestions.
NR 16
TC 10
Z9 10
U1 0
U2 4
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0020-1669
J9 INORG CHEM
JI Inorg. Chem.
PD OCT 19
PY 2009
VL 48
IS 20
BP 9715
EP 9722
DI 10.1021/ic900830y
PG 8
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA 503SY
UT WOS:000270561400015
PM 19757803
ER
PT J
AU Ozanich, RM
Lucke, RB
Melville, AM
Wright, BW
AF Ozanich, R. M., Jr.
Lucke, R. B.
Melville, A. M.
Wright, B. W.
TI Tests gauge LED sensors for fuel-dye measurements
SO OIL & GAS JOURNAL
LA English
DT Article
ID LIGHT-EMITTING-DIODES; PH
C1 [Ozanich, R. M., Jr.; Wright, B. W.] Pacific NW Natl Lab, Natl Secur Directorate, Richland, WA 99352 USA.
RP Ozanich, RM (reprint author), Pacific NW Natl Lab, Natl Secur Directorate, Richland, WA 99352 USA.
EM richard.ozanich@pnl.gov
NR 8
TC 0
Z9 0
U1 1
U2 1
PU PENNWELL PUBL CO ENERGY GROUP
PI TULSA
PA 1421 S SHERIDAN RD PO BOX 1260, TULSA, OK 74112 USA
SN 0030-1388
J9 OIL GAS J
JI Oil Gas J.
PD OCT 19
PY 2009
VL 107
IS 39
BP 46
EP +
PG 7
WC Energy & Fuels; Engineering, Petroleum
SC Energy & Fuels; Engineering
GA 686ZV
UT WOS:000284742400016
ER
PT J
AU Link, JM
Yager, PM
Anjos, JC
Bediaga, I
Castromonte, C
Machado, AA
Magnin, J
Massafferri, A
de Miranda, JM
Pepe, IM
Polycarpo, E
dos Reis, AC
Carrillo, S
Cuautle, E
Sanchez-Hernandez, A
Uribe, C
Vazquez, F
Agostino, L
Cinquini, L
Cumalat, JP
Frisullo, V
O'Reilly, B
Segoni, I
Stenson, K
Butler, JN
Cheung, HWK
Chiodini, G
Gaines, I
Garbincius, PH
Garren, LA
Gottschalk, E
Kasper, PH
Kreymer, AE
Kutschke, R
Wang, M
Benussi, L
Bianco, S
Fabbri, FL
Zallo, A
Casimiro, E
Reyes, M
Cawlfield, C
Kim, DY
Rahimi, A
Wiss, J
Gardner, R
Kryemadhi, A
Chung, YS
Kang, JS
Ko, BR
Kwak, JW
Lee, KB
Cho, K
Park, H
Alimonti, G
Barberis, S
Boschini, M
Cerutti, A
D'Angelo, P
DiCorato, M
Dini, P
Edera, L
Erba, S
Inzani, P
Leveraro, F
Malvezzi, S
Menasce, D
Mezzadri, M
Moroni, L
Pedrini, D
Pontoglio, C
Prelz, F
Rovere, M
Sala, S
Davenport, TF
Arena, V
Boca, G
Bonomi, G
Gianini, G
Liguori, G
Pegna, DL
Merlo, MM
Pantea, D
Ratti, SP
Riccardi, C
Vitulo, P
Gobel, C
Otalora, J
Hernandez, H
Lopez, AM
Mendez, H
Paris, A
Quinones, J
Ramirez, JE
Zhang, Y
Wilson, JR
Handler, T
Mitchell, R
Engh, D
Hosack, M
Johns, WE
Luiggi, E
Moore, JE
Nehring, M
Sheldon, PD
Vaandering, EW
Webster, M
Sheaff, M
AF Link, J. M.
Yager, P. M.
Anjos, J. C.
Bediaga, I.
Castromonte, C.
Machado, A. A.
Magnin, J.
Massafferri, A.
de Miranda, J. M.
Pepe, I. M.
Polycarpo, E.
dos Reis, A. C.
Carrillo, S.
Cuautle, E.
Sanchez-Hernandez, A.
Uribe, C.
Vazquez, F.
Agostino, L.
Cinquini, L.
Cumalat, J. P.
Frisullo, V.
O'Reilly, B.
Segoni, I.
Stenson, K.
Butler, J. N.
Cheung, H. W. K.
Chiodini, G.
Gaines, I.
Garbincius, P. H.
Garren, L. A.
Gottschalk, E.
Kasper, P. H.
Kreymer, A. E.
Kutschke, R.
Wang, M.
Benussi, L.
Bianco, S.
Fabbri, F. L.
Zallo, A.
Casimiro, E.
Reyes, M.
Cawlfield, C.
Kim, D. Y.
Rahimi, A.
Wiss, J.
Gardner, R.
Kryemadhi, A.
Chung, Y. S.
Kang, J. S.
Ko, B. R.
Kwak, J. W.
Lee, K. B.
Cho, K.
Park, H.
Alimonti, G.
Barberis, S.
Boschini, M.
Cerutti, A.
D'Angelo, P.
DiCorato, M.
Dini, P.
Edera, L.
Erba, S.
Inzani, P.
Leveraro, F.
Malvezzi, S.
Menasce, D.
Mezzadri, M.
Moroni, L.
Pedrini, D.
Pontoglio, C.
Prelz, F.
Rovere, M.
Sala, S.
Davenport, T. F., III
Arena, V.
Boca, G.
Bonomi, G.
Gianini, G.
Liguori, G.
Pegna, D. Lopes
Merlo, M. M.
Pantea, D.
Ratti, S. P.
Riccardi, C.
Vitulo, P.
Goebel, C.
Otalora, J.
Hernandez, H.
Lopez, A. M.
Mendez, H.
Paris, A.
Quinones, J.
Ramirez, J. E.
Zhang, Y.
Wilson, J. R.
Handler, T.
Mitchell, R.
Engh, D.
Hosack, M.
Johns, W. E.
Luiggi, E.
Moore, J. E.
Nehring, M.
Sheldon, P. D.
Vaandering, E. W.
Webster, M.
Sheaff, M.
TI The K-pi(+) S-wave from the D+ -> K-pi(+)pi(+) decay
SO PHYSICS LETTERS B
LA English
DT Article
ID DALITZ PLOT ANALYSIS; FOCUS; SPECTROMETER; SCATTERING
AB Using data from FOCUS (E831) experiment at Fermilab, we present a model independent partial-wave analysis of the K-pi(+) S-wave amplitude from the decay D+ -> K-pi(+)pi(+). The S-wave is a generic complex function to be determined directly from the data fit. The P- and D-waves are parameterized by a sum of Breit-Wigner amplitudes. The measurement of the S-wave amplitude covers the whole elastic range of the K-pi(+) system. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Anjos, J. C.; Bediaga, I.; Castromonte, C.; Machado, A. A.; Magnin, J.; Massafferri, A.; de Miranda, J. M.; Pepe, I. M.; Polycarpo, E.; dos Reis, A. C.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil.
[Link, J. M.; Yager, P. M.] Univ Calif Davis, Davis, CA 95616 USA.
[Carrillo, S.; Cuautle, E.; Sanchez-Hernandez, A.; Uribe, C.; Vazquez, F.] CINVESTAV, Mexico City 07000, DF, Mexico.
[Agostino, L.; Cinquini, L.; Cumalat, J. P.; Frisullo, V.; O'Reilly, B.; Segoni, I.; Stenson, K.] Univ Colorado, Boulder, CO 80309 USA.
[Butler, J. N.; Cheung, H. W. K.; Chiodini, G.; Gaines, I.; Garbincius, P. H.; Garren, L. A.; Gottschalk, E.; Kasper, P. H.; Kreymer, A. E.; Kutschke, R.; Wang, M.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Benussi, L.; Bianco, S.; Fabbri, F. L.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[Casimiro, E.; Reyes, M.] Univ Guanajuato, Guanajuato 37150, Mexico.
[Cawlfield, C.; Kim, D. Y.; Rahimi, A.; Wiss, J.] Univ Illinois, Urbana, IL 61801 USA.
[Gardner, R.; Kryemadhi, A.] Indiana Univ, Bloomington, IN 47405 USA.
[Chung, Y. S.; Kang, J. S.; Ko, B. R.; Kwak, J. W.; Lee, K. B.] Korea Univ, Seoul 136701, South Korea.
[Cho, K.; Park, H.] Kyungpook Natl Univ, Taegu 702701, South Korea.
[Alimonti, G.; Barberis, S.; Boschini, M.; Cerutti, A.; D'Angelo, P.; DiCorato, M.; Dini, P.; Edera, L.; Erba, S.; Inzani, P.; Leveraro, F.; Malvezzi, S.; Menasce, D.; Mezzadri, M.; Moroni, L.; Pedrini, D.; Pontoglio, C.; Prelz, F.; Rovere, M.; Sala, S.] Ist Nazl Fis Nucl, I-20133 Milan, Italy.
[Alimonti, G.; Barberis, S.; Boschini, M.; Cerutti, A.; D'Angelo, P.; DiCorato, M.; Dini, P.; Edera, L.; Erba, S.; Inzani, P.; Leveraro, F.; Malvezzi, S.; Menasce, D.; Mezzadri, M.; Moroni, L.; Pedrini, D.; Pontoglio, C.; Prelz, F.; Rovere, M.; Sala, S.] Univ Milan, Milan, Italy.
[Davenport, T. F., III] Univ N Carolina, Asheville, NC 28804 USA.
[Arena, V.; Boca, G.; Bonomi, G.; Gianini, G.; Liguori, G.; Pegna, D. Lopes; Merlo, M. M.; Pantea, D.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] Univ Pavia, Dipartimento Fis Nucl & Teor, I-27100 Pavia, Italy.
[Arena, V.; Boca, G.; Bonomi, G.; Gianini, G.; Liguori, G.; Pegna, D. Lopes; Merlo, M. M.; Pantea, D.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] Ist Nazl Fis Nucl, I-27100 Pavia, Italy.
[Goebel, C.; Otalora, J.] Pontificia Univ Catolica Rio de Janeiro, Rio De Janeiro, Brazil.
[Hernandez, H.; Lopez, A. M.; Mendez, H.; Paris, A.; Quinones, J.; Ramirez, J. E.; Zhang, Y.] Univ Puerto Rico, Mayaguez, PR 00681 USA.
[Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA.
[Handler, T.; Mitchell, R.] Univ Tennessee, Knoxville, TN 37996 USA.
[Engh, D.; Hosack, M.; Johns, W. E.; Luiggi, E.; Moore, J. E.; Nehring, M.; Sheldon, P. D.; Vaandering, E. W.; Webster, M.] Vanderbilt Univ, Nashville, TN 37235 USA.
[Sheaff, M.] Univ Wisconsin, Madison, WI 53706 USA.
RP dos Reis, AC (reprint author), Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil.
EM alberto@cbpf.br
RI Bonomi, Germano/G-4236-2010; Kwak, Jungwon/K-8338-2012; Anjos,
Joao/C-8335-2013; Link, Jonathan/L-2560-2013; Castromonte Flores, Cesar
Manuel/O-6177-2014; Benussi, Luigi/O-9684-2014; Gobel Burlamaqui de
Mello, Carla /H-4721-2016; Menasce, Dario Livio/A-2168-2016;
OI Bonomi, Germano/0000-0003-1618-9648; Link, Jonathan/0000-0002-1514-0650;
Castromonte Flores, Cesar Manuel/0000-0002-9559-3704; Benussi,
Luigi/0000-0002-2363-8889; Gobel Burlamaqui de Mello, Carla
/0000-0003-0523-495X; Menasce, Dario Livio/0000-0002-9918-1686; bianco,
stefano/0000-0002-8300-4124
FU US National Science Foundation; US Department of Energy; Italian
Istituto Nazionale di Fisica Nucleare and Ministero della Istruzione
UniversiO e Ricerca; Brazilian Conselho Nacional de Desenvolvimento
Cientifico e Tecnologico; FAPERJ; CONACyT-Mexico; Korea Research
Foundation of the Korean Ministry of Education
FX We wish to acknowledge the assistance of the staffs of Fermi National
Accelerator Laboratory, the INFN of Italy, and the physics departments
of the collaborating institutions. This research was supported in part
by the US National Science Foundation, the US Department of Energy, the
Italian Istituto Nazionale di Fisica Nucleare and Ministero della
Istruzione UniversiO e Ricerca, the Brazilian Conselho Nacional de
Desenvolvimento Cientifico e Tecnologico and FAPERJ, CONACyT-Mexico, and
the Korea Research Foundation of the Korean Ministry of Education.
NR 17
TC 23
Z9 23
U1 0
U2 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0370-2693
J9 PHYS LETT B
JI Phys. Lett. B
PD OCT 19
PY 2009
VL 681
IS 1
BP 14
EP 21
DI 10.1016/j.physletb.2009.09.057
PG 8
WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 514QW
UT WOS:000271411000003
ER
PT J
AU Liang, JF
Beene, JR
Caraley, AL
Esbensen, H
Galindo-Uribarri, A
Gross, CJ
Mueller, PE
Schmitt, KT
Shapira, D
Stracener, DW
Varner, RL
AF Liang, J. F.
Beene, J. R.
Caraley, A. L.
Esbensen, H.
Galindo-Uribarri, A.
Gross, C. J.
Mueller, P. E.
Schmitt, K. T.
Shapira, D.
Stracener, D. W.
Varner, R. L.
TI Dynamic polarization in the Coulomb breakup of loosely bound F-17
SO PHYSICS LETTERS B
LA English
DT Article
DE Coulomb dissociation; Radioactive beam; Dynamic polarization
ID DISSOCIATION; MODEL; B-8
AB Angular distributions of the Coulomb breakup of radioactive F-17 were measured by impinging a 10 MeV/nucleon beam on Pb-208 and on Ni-58 to study the dynamic polarization effects. The breakup products, oxygen and a proton, were detected in coincidence. First-order perturbation theory significantly overpredicts the breakup cross section for the Pb-208 target. Dynamical calculations with a dynamic polarization as the leading order correction were performed. The calculations reproduce the data for F-17 oil Ni-58 but overpredict the breakup of F-17 on Pb-208 by a factor of two at forward angles. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Liang, J. F.; Beene, J. R.; Galindo-Uribarri, A.; Gross, C. J.; Mueller, P. E.; Shapira, D.; Stracener, D. W.; Varner, R. L.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA.
[Caraley, A. L.] SUNY Coll Oswego, Dept Phys, Oswego, NY 13126 USA.
[Esbensen, H.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
[Schmitt, K. T.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37966 USA.
RP Liang, JF (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA.
EM liangjf@ornl.gov
FU US Department of Energy [DE-AC05-000R22725, DE-AC02-06CH11357]
FX We would like to thank J.W. Johnson for his support in implementing the
hardware for the experiment. We wish to thank the operation staff of the
HRIBF for delivering the superb quality 17F beam. Research at
the Oak Ridge National Laboratory is supported by the US Department of
Energy under contract DE-AC05-000R22725 with UT-Battelle, LLC. H.E. is
supported by the US Department of Energy, Nuclear Physics Division,
under contract No. DE-AC02-06CH11357.
NR 27
TC 10
Z9 10
U1 0
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0370-2693
J9 PHYS LETT B
JI Phys. Lett. B
PD OCT 19
PY 2009
VL 681
IS 1
BP 22
EP 25
DI 10.1016/j.physletb.2009.09.055
PG 4
WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 514QW
UT WOS:000271411000004
ER
PT J
AU Weisbrod, N
McGinnis, T
Rockhold, ML
Niemet, MR
Selker, JS
AF Weisbrod, Noam
McGinnis, Thomas
Rockhold, Mark L.
Niemet, Michael R.
Selker, John S.
TI Effective Darcy-scale contact angles in porous media imbibing solutions
of various surface tensions
SO WATER RESOURCES RESEARCH
LA English
DT Article
ID SALINE SOLUTIONS; LIQUID DROPLETS; WATER; PENETRATION; SOILS; FLOW
AB Surface tensions of high-salinity solutions are significantly different from those of pure water. Our objective was to develop and test a methodology to determine whether these surface tension effects predictably alter imbibition into dry and moist porous media. Static and dynamic experiments were performed using four grades of quartz sand to determine the effects of solution salinity on imbibition. Results were quantified as apparent contact angles between the sand and three solutions (pure water, 5 molal NaNO(3), and n-hexane). Contact angles determined using a static method in initially air dried sand ranged from 23 degrees to 31 degrees, with the same values found for both water and the NaNO(3) solution. Effective contact angles determined for the air-dried sand using a dynamic method based on a modified version of the Green and Ampt model were about twice those found using the static method, averaging 45 degrees and 62 degrees for water and the NaNO(3) solution, respectively. In prewetted sands, the dynamic imbibition data yielded apparent contact angles of 2 degrees and 21 degrees for water and the NaNO(3) solution, respectively, with the latter value comparing well to a predicted value of 25 degrees for the NaNO(3) solution solely on the basis of surface tension contrast. The results of this study indicate that on the Darcy scale, saline solutions appear to follow the relationship of nonzero contact angles with other miscible fluids of different surface tensions used to prewet the sand grains, in agreement with the macroscale infiltration results of Weisbrod et al. (2004).
C1 [Weisbrod, Noam] Ben Gurion Univ Negev, Dept Environm Hydrol & Microbiol, Ben Gurion, Israel.
[McGinnis, Thomas; Selker, John S.] Oregon State Univ, Dept Biol & Ecol Engn, Corvallis, OR 97331 USA.
[Niemet, Michael R.] CH2M Hill Inc, Corvallis, OR 97330 USA.
[Rockhold, Mark L.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Weisbrod, N (reprint author), Ben Gurion Univ Negev, Dept Environm Hydrol & Microbiol, Ben Gurion, Israel.
EM weisbrod@bgu.ac.il; mark.rockhold@pnl.gov; niemet@ch2m.com;
selkerj@engr.orst.edu
RI Weisbrod, Noam/A-9824-2011;
OI Selker, John/0000-0001-9751-6094
FU Department of Energy [DE-FG07-98ER14925]; Oregon Agricultural Experiment
Station
FX We would like to thank Maria Dragila for many constructive discussions
during the experimental stages. The authors are also greatly indebted to
the four anonymous reviewers whose comments significantly improved this
manuscript. This work was funded by the Department of Energy under
contract DE-FG07-98ER14925 and had the support of the Oregon
Agricultural Experiment Station.
NR 25
TC 8
Z9 8
U1 0
U2 17
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0043-1397
J9 WATER RESOUR RES
JI Water Resour. Res.
PD OCT 17
PY 2009
VL 45
AR W00D39
DI 10.1029/2008WR006957
PG 10
WC Environmental Sciences; Limnology; Water Resources
SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water
Resources
GA 508PV
UT WOS:000270946200002
ER
PT J
AU Battaglia, M
AF Battaglia, M.
TI The role of an e(+)e(-) linear collider in the study of cosmic dark
matter
SO NEW JOURNAL OF PHYSICS
LA English
DT Article
ID SUPERSYMMETRY; BENCHMARKS; WMAP; LHC; ABUNDANCE; BEAMS; LEP
AB The potential of a high energy, high luminosity e(+) e(-) linear collider in the study of a weakly interacting massive new particle as a cosmic dark matter candidate is reviewed, with special emphasis on supersymmetric scenarios. Results of detailed simulation studies for supersymmetric neutralino dark matter indicate that the accuracy from linear collider data of sufficient energy may allow us to infer the dark matter relic density to accuracies comparable to those already obtained from the study of cosmic microwave background and other astrophysical data, thus providing a powerful test on the nature of dark matter by combining results from particle colliders with satellite and direct detection experiment data.
C1 [Battaglia, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Battaglia, M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Battaglia, M (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
EM MBattaglia@lbl.gov
NR 74
TC 5
Z9 5
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1367-2630
J9 NEW J PHYS
JI New J. Phys.
PD OCT 16
PY 2009
VL 11
AR 105025
DI 10.1088/1367-2630/11/10/105025
PG 17
WC Physics, Multidisciplinary
SC Physics
GA 509QP
UT WOS:000271033500023
ER
PT J
AU Duffy, LD
van Bibber, K
AF Duffy, Leanne D.
van Bibber, Karl
TI Axions as dark matter particles
SO NEW JOURNAL OF PHYSICS
LA English
DT Article
ID LARGE-SCALE STRUCTURE; STRONG CP PROBLEM; INVISIBLE-AXION; LIGHT
PSEUDOSCALARS; GOLDSTONE BOSONS; GLOBAL STRINGS; COSMIC STRINGS;
HARMLESS AXION; EARLY UNIVERSE; COSMOLOGY
AB We overview the current status of axions as dark matter. The axion is the pseudo-Nambu-Goldstone boson which arises from the Peccei-Quinn solution to the strong CP problem. Additionally, cold axion populations that can contribute to the dark matter of the universe will be generated via this mechanism. After reviewing these topics, we focus on constraints from the laboratory, astrophysics and cosmology. We discuss the current status of experimental searches and the consequences of the distribution of dark matter axions in the galactic halo for these searches. The axion remains an excellent candidate for the dark matter and future experiments, particularly the Axion Dark Matter eXperiment (ADMX), will cover a large fraction of the axion parameter space.
C1 [Duffy, Leanne D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[van Bibber, Karl] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[van Bibber, Karl] USN, Postgrad Sch, Monterey, CA 93943 USA.
RP Duffy, LD (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
EM lduffy@lanl.gov; kvanbibber@llnl.gov
OI Duffy, Leanne/0000-0002-0123-6723
FU US Department of Energy [DE-AC52-07-NA27344, LLNL-JRNL-412070,
DE-AC52-06NA25396, LA-UR09-02007]; Los Alamos National Laboratory;
Lawrence Livermore and Los Alamos National Laboratories
FX This work at Lawrence Livermore National Laboratory was supported in
part by the US Department of Energy under contract no. DE-AC52-07NA27344
and is approved for publication under LLNL-JRNL-412070. At Los Alamos
National Laboratory, this work was supported in part by the National
Nuclear Security Administration of the US Department of Energy under
contract no. DE-AC52-06NA25396 and is approved for publication under
LA-UR09-02007. The support of the Laboratory Directed Research and
Development Program for enabling technology development at both Lawrence
Livermore and Los Alamos National Laboratories is gratefully
acknowledged.
NR 83
TC 39
Z9 39
U1 1
U2 6
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 1367-2630
J9 NEW J PHYS
JI New J. Phys.
PD OCT 16
PY 2009
VL 11
AR 105008
DI 10.1088/1367-2630/11/10/105008
PG 20
WC Physics, Multidisciplinary
SC Physics
GA 509QP
UT WOS:000271033500006
ER
PT J
AU Halzen, F
Hooper, D
AF Halzen, Francis
Hooper, Dan
TI The indirect search for dark matter with IceCube
SO NEW JOURNAL OF PHYSICS
LA English
DT Article
ID HIGH-ENERGY NEUTRINOS; PARTICLE; CANDIDATES; LIMITS; SOLAR; SUN
AB We revisit the prospects for IceCube and similar kilometer-scale telescopes to detect neutrinos produced by the annihilation of weakly interacting massive dark matter particles (WIMPs) in the Sun. We emphasize that the astrophysics of the problem is understood; models can be observed or, alternatively, ruled out. In searching for a WIMP with spin-independent interactions with ordinary matter, IceCube is only competitive with direct detection experiments if the WIMP mass is sufficiently large. For spin-dependent interactions IceCube already has improved the best limits on spin-dependent WIMP cross sections by two orders of magnitude. This is largely due to the fact that models with significant spin-dependent couplings to protons are the least constrained and, at the same time, the most promising because of the efficient capture of WIMPs in the Sun. We identify models where dark matter particles are beyond the reach of any planned direct detection experiments while being within reach of neutrino telescopes. In summary, we find that, even when contemplating recent direct detection results, neutrino telescopes have the opportunity to play an important as well as complementary role in the search for particle dark matter.
C1 [Halzen, Francis] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.
[Hooper, Dan] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Hooper, Dan] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA.
RP Halzen, F (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA.
EM halzen@icecube.wisc.edu; dhooper@fnal.gov
NR 36
TC 25
Z9 25
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 1367-2630
J9 NEW J PHYS
JI New J. Phys.
PD OCT 16
PY 2009
VL 11
AR 105019
DI 10.1088/1367-2630/11/10/105019
PG 17
WC Physics, Multidisciplinary
SC Physics
GA 509QP
UT WOS:000271033500017
ER
PT J
AU Konar, P
Kong, K
Matchev, KT
Perelstein, M
AF Konar, Partha
Kong, Kyoungchul
Matchev, Konstantin T.
Perelstein, Maxim
TI Shedding light on the dark sector with direct WIMP production
SO NEW JOURNAL OF PHYSICS
LA English
DT Article
ID INTERNATIONAL LINEAR COLLIDER; E&E ANNIHILATION; SUPERSYMMETRIC
PARTICLES; RADIATIVE PRODUCTION; PHOTON PRODUCTION; PHOTINOS; SIGNALS;
SNEUTRINOS; MATTER
AB A weakly interacting massive particle (WIMP) provides an attractive dark matter candidate, and should be within reach of the next generation of high-energy colliders. We consider the process of direct WIMP pair-production, accompanied by an initial-state radiation photon, in electron-positron collisions at the proposed International Linear Collider (ILC). We present a parametrization of the differential cross section for this process which conveniently separates the model-independent information provided by cosmology from the model-dependent inputs from particle physics. As an application, we consider two simple models, one supersymmetric and another of the 'universal extra dimensions' (UED) type. The discovery reach of the ILC and the expected precision of parameter measurements are studied in each model. In addition, for each of the two examples, we also investigate the ability of the ILC to distinguish between the two models through a shape-discrimination analysis of the photon energy spectrum. We show that with sufficient beam polarization the alternative model interpretation can be ruled out in a large part of the relevant parameter space.
C1 [Konar, Partha; Matchev, Konstantin T.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA.
[Kong, Kyoungchul] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA.
[Perelstein, Maxim] Cornell Univ, Inst High Energy Phenomenol, Newman Lab Elementary Particle Phys, Ithaca, NY 14853 USA.
RP Matchev, KT (reprint author), Univ Florida, Dept Phys, Gainesville, FL 32611 USA.
EM matchev@phys.ufl.edu
OI Konar, Partha/0000-0001-8796-1688
FU US Department of Energy [DE-FG02-97ER41029]; NSF [PHY-0355005]; LLC
[DE-AC02-07CH11359]; US Department of Energy
FX We thank Hye-Sung Lee for collaboration in the early stage of this
project. KM and MP thank the Kavli Institute for Theoretical Physics
(KITP) in Santa Barbara, where parts of this work were completed. PK and
KM are supported in part by a US Department of Energy grant
DE-FG02-97ER41029. MP is supported by the NSF grant PHY-0355005.
Fermilab is operated by Fermi Research Alliance, LLC under contract no.
DE-AC02-07CH11359 with the US Department of Energy.
NR 59
TC 34
Z9 34
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1367-2630
J9 NEW J PHYS
JI New J. Phys.
PD OCT 16
PY 2009
VL 11
AR 105004
DI 10.1088/1367-2630/11/10/105004
PG 16
WC Physics, Multidisciplinary
SC Physics
GA 509QP
UT WOS:000271033500002
ER
PT J
AU Serpico, PD
Hooper, D
AF Serpico, Pasquale Dario
Hooper, Dan
TI Gamma rays from dark matter annihilation in the central region of the
Galaxy
SO NEW JOURNAL OF PHYSICS
LA English
DT Article
ID GALACTIC-CENTER; NEUTRALINO ANNIHILATION; MILKY-WAY; INNER STRUCTURE;
BLACK-HOLE; HALOES; RADIATION; DIRECTION; BREAKING
AB In this paper, we review the prospects for the Fermi satellite (formerly known as GLAST) to detect gamma rays from dark matter annihilations in the Central Region of the Milky Way, in particular, in the light of the recent observations and discoveries of Imaging Atmospheric Cherenkov Telescopes. While the existence of significant astrophysical backgrounds in this part of the sky limits Fermi's discovery potential to some degree, this can be mitigated by exploiting the peculiar energy spectrum and angular distribution of the dark matter annihilation signal relative to those of astrophysical backgrounds.
C1 [Serpico, Pasquale Dario] CERN, Div Phys, Theory Grp, CH-1211 Geneva 23, Switzerland.
[Hooper, Dan] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Hooper, Dan] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA.
RP Serpico, PD (reprint author), CERN, Div Phys, Theory Grp, CH-1211 Geneva 23, Switzerland.
EM serpico@cern.ch; dhooper@fnal.gov
FU Fermi Research Alliance, LLC [DE-AC02-07CH11359]; NASA [NNX08AH34G]
FX PS would like to thank the Galileo Galilei Institute for Theoretical
Physics for the hospitality and the INFN for partial support during the
completion of this work. DH is supported in part by the Fermi Research
Alliance, LLC under Contract no. DE-AC02-07CH11359 with the US
Department of Energy and by NASA grant NNX08AH34G.
NR 76
TC 10
Z9 10
U1 0
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1367-2630
J9 NEW J PHYS
JI New J. Phys.
PD OCT 16
PY 2009
VL 11
AR 105010
DI 10.1088/1367-2630/11/10/105010
PG 18
WC Physics, Multidisciplinary
SC Physics
GA 509QP
UT WOS:000271033500008
ER
PT J
AU Zioutas, K
Tsagri, M
Semertzidis, Y
Papaevangelou, T
Dafni, T
Anastassopoulos, V
AF Zioutas, K.
Tsagri, M.
Semertzidis, Y.
Papaevangelou, T.
Dafni, T.
Anastassopoulos, V.
TI Axion searches with helioscopes and astrophysical signatures for
axion(-like) particles
SO NEW JOURNAL OF PHYSICS
LA English
DT Review
ID RHESSI MICROFLARE STATISTICS; MAGNETIC-FIELD PROPERTIES; SOLAR-FLARE
PRODUCTIVITY; STRONG CP PROBLEM; X-RAY; ACTIVE REGIONS; DARK-MATTER;
COHERENT CONVERSION; LIGHT BOSON; HOT PLASMA
AB Axions should be produced copiously in stars such as the Sun. The first part of this paper reviews the capabilities and performance of axion helioscopes. The mechanism they rely on is described and the experimental results for the interaction of solar axions and axion-like particles with matter are given. The second part is actually observationally driven. New results obtained with Monte Carlo simulation reconstruct solar observations, previously dismissed, supporting an axion(-like) involvement with m(a) approximate to 1-2 x 10(-2) eV c(-2). To further quantify the suggested solar observations as being originated by axions, additional theoretical work is needed. However, the recently suggested axion interaction with magnetic field gradients is a generic theoretical example that seems to reconcile for the first time current limits, derived from axion helioscopes, and potential axion-related solar x-ray activity, thus avoiding contradictions with the best experimental limits. Magnetic quadrupoles can be used to experimentally test this idea, thus becoming a new catalyst in axion experiments. Finally, a short outlook for the future is given, in view of the experimental expansion of axion research with the state-of-the-art orbiting x-ray observatories.
C1 [Papaevangelou, T.] Ctr Etud Nucl Saclay, IRFU, Gif Sur Yvette, France.
[Zioutas, K.; Tsagri, M.; Anastassopoulos, V.] Univ Patras, Patras, Greece.
[Zioutas, K.] CERN, European Org Nucl Res, CH-1211 Geneva 23, Switzerland.
[Semertzidis, Y.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Dafni, T.] Univ Zaragoza, Lab Fis Nucl & Astroparticulas, Zaragoza, Spain.
RP Papaevangelou, T (reprint author), Ctr Etud Nucl Saclay, IRFU, Gif Sur Yvette, France.
EM Thomas.Papaevangelou@cern.ch
RI Dafni, Theopisti /J-9646-2012; Semertzidis, Yannis K./N-1002-2013;
Papaevangelou, Thomas/G-2482-2016
OI Dafni, Theopisti /0000-0002-8921-910X; Papaevangelou,
Thomas/0000-0003-2829-9158
FU GSRT; EU [EU-RII3-CT-2004-506222]
FX We would like to thank the referees for their constructive comments and
criticism concerning this paper; we do believe that, following their
recommendations, the paper has gained in clarity and scientific value.
We are grateful to the members of the CAST collaboration, for the use of
CAST related results. Similarly, we also thank Professor Makoto Minowa
from the Sumico collaboration. We gratefully acknowledge the support of
Biljana Lakic and Magda Lola. One of us (KZ) thanks Hugh Hudson for
informative discussions during his short visit at CERN. We thank Tullio
Basaglia from the CERN library for providing promptly most of the
publications used throughout this work. KZ thanks CERN for long years of
hospitality and support of all kinds. We give credit to Eduardo
Guendelman for allowing us to use the conversion probabilities he has
calculated prior to publication. The support we have received from the
Greek funding agency GSRT is gratefully acknowledged. This research was
partially supported by the ILIAS (Integrated Large Infrastructures for
Astroparticle Science) project funded by the EU under contract
EU-RII3-CT-2004-506222.
NR 111
TC 15
Z9 15
U1 1
U2 5
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 1367-2630
J9 NEW J PHYS
JI New J. Phys.
PD OCT 16
PY 2009
VL 11
AR 105020
DI 10.1088/1367-2630/11/10/105020
PG 30
WC Physics, Multidisciplinary
SC Physics
GA 509QP
UT WOS:000271033500018
ER
PT J
AU Aubert, B
Bona, M
Karyotakis, Y
Lees, JP
Poireau, V
Prencipe, E
Prudent, X
Tisserand, V
Tico, JG
Grauges, E
Lopez, L
Palano, A
Pappagallo, M
Eigen, G
Stugu, B
Sun, L
Battaglia, M
Brown, DN
Kerth, LT
Kolomensky, YG
Lynch, G
Osipenkov, IL
Tackmann, K
Tanabe, T
Hawkes, CM
Soni, N
Watson, AT
Koch, H
Schroeder, T
Asgeirsson, DJ
Fulsom, BG
Hearty, C
Mattison, TS
McKenna, JA
Barrett, M
Khan, A
Randle-Conde, A
Blinov, VE
Bukin, AD
Buzykaev, AR
Druzhinin, VP
Golubev, VB
Onuchin, AP
Serednyakov, SI
Skovpen, YI
Solodov, EP
Todyshev, KY
Bondioli, M
Curry, S
Eschrich, I
Kirkby, D
Lankford, AJ
Lund, P
Mandelkern, M
Martin, EC
Stoker, DP
Abachi, S
Buchanan, C
Atmacan, H
Gary, JW
Liu, F
Long, O
Vitug, GM
Yasin, Z
Zhang, L
Sharma, V
Campagnari, C
Hong, TM
Kovalskyi, D
Mazur, MA
Richman, JD
Beck, TW
Eisner, AM
Heusch, CA
Kroseberg, J
Lockman, WS
Martinez, AJ
Schalk, T
Schumm, BA
Seiden, A
Winstrom, LO
Cheng, CH
Doll, DA
Echenard, B
Fang, F
Hitlin, DG
Narsky, I
Piatenko, T
Porter, FC
Andreassen, R
Mancinelli, G
Meadows, BT
Mishra, K
Sokoloff, MD
Bloom, PC
Ford, WT
Gaz, A
Hirschauer, JF
Nagel, M
Nauenberg, U
Smith, JG
Wagner, SR
Ayad, R
Soffer, A
Toki, WH
Wilson, RJ
Feltresi, E
Hauke, A
Jasper, H
Karbach, M
Merkel, J
Petzold, A
Spaan, B
Wacker, K
Kobel, MJ
Nogowski, R
Schubert, KR
Schwierz, R
Volk, A
Bernard, D
Bonneaud, GR
Latour, E
Verderi, M
Clark, PJ
Playfer, S
Watson, JE
Andreotti, M
Bettoni, D
Bozzi, C
Calabrese, R
Cecchi, A
Cibinetto, G
Franchini, P
Luppi, E
Negrini, M
Petrella, A
Piemontese, L
Santoro, V
Baldini-Ferroli, R
Calcaterra, A
de Sangro, R
Finocchiaro, G
Pacetti, S
Patteri, P
Peruzzi, IM
Piccolo, M
Rama, M
Zallo, A
Contri, R
Lo Vetere, M
Monge, MR
Passaggio, S
Patrignani, C
Robutti, E
Tosi, S
Chaisanguanthum, KS
Morii, M
Adametz, A
Marks, J
Schenk, S
Uwer, U
Bernlochner, FU
Klose, V
Lacker, HM
Bard, DJ
Dauncey, PD
Tibbetts, M
Behera, PK
Chai, X
Charles, MJ
Mallik, U
Cochran, J
Crawley, HB
Dong, L
Meyer, WT
Prell, S
Rosenberg, EI
Rubin, AE
Gao, YY
Gritsan, AV
Guo, ZJ
Arnaud, N
Bequilleux, J
D'Orazio, A
Davier, M
da Costa, JF
Grosdidier, G
Le Diberder, F
Lepeltier, V
Lutz, AM
Pruvot, S
Roudeau, P
Schune, MH
Serrano, J
Sordini, V
Stocchi, A
Wormser, G
Lange, DJ
Wright, DM
Bingham, I
Burke, JP
Chavez, CA
Fry, JR
Gabathuler, E
Gamet, R
Hutchcroft, DE
Payne, DJ
Touramanis, C
Bevan, AJ
Clarke, CK
Di Lodovico, F
Sacco, R
Sigamani, M
Cowan, G
Paramesvaran, S
Wren, AC
Brown, DN
Davis, CL
Denig, AG
Fritsch, M
Gradl, W
Alwyn, KE
Bailey, D
Barlow, RJ
Jackson, G
Lafferty, GD
West, TJ
Yi, JI
Anderson, J
Chen, C
Jawahery, A
Roberts, DA
Simi, G
Tuggle, JM
Dallapiccola, C
Salvati, E
Saremi, S
Cowan, R
Dujmic, D
Fisher, PH
Henderson, SW
Sciolla, G
Spitznagel, M
Taylor, F
Yamamoto, RK
Zhao, M
Patel, PM
Robertson, SH
Lazzaro, A
Lombardo, V
Palombo, F
Bauer, JM
Cremaldi, L
Godang, R
Kroeger, R
Summers, DJ
Zhao, HW
Simard, M
Taras, P
Nicholson, H
De Nardo, G
Lista, L
Monorchio, D
Onorato, G
Sciacca, C
Raven, G
Snoek, HL
Jessop, CP
Knoepfel, KJ
LoSecco, JM
Wang, WF
Corwin, LA
Honscheid, K
Kagan, H
Kass, R
Morris, JP
Rahimi, AM
Regensburger, JJ
Sekula, SJ
Wong, QK
Blount, NL
Brau, J
Frey, R
Igonkina, O
Kolb, JA
Lu, M
Rahmat, R
Sinev, NB
Strom, D
Strube, J
Torrence, E
Castelli, G
Gagliardi, N
Margoni, M
Morandin, M
Posocco, M
Rotondo, M
Simonetto, F
Stroili, R
Voci, C
Sanchez, PD
Ben-Haim, E
Briand, H
Chauveau, J
Hamon, O
Leruste, P
Ocariz, J
Perez, A
Prendki, J
Sitt, S
Gladney, L
Biasini, M
Manoni, E
Angelini, C
Batignani, G
Bettarini, S
Calderini, G
Carpinelli, M
Cervelli, A
Forti, F
Giorgi, MA
Lusiani, A
Marchiori, G
Morganti, M
Neri, N
Paoloni, E
Rizzo, G
Walsh, JJ
Pegna, DL
Lu, C
Olsen, J
Smith, AJS
Telnov, AV
Anulli, F
Baracchini, E
Cavoto, G
Faccini, R
Ferrarotto, F
Ferroni, F
Gaspero, M
Jackson, PD
Gioi, LL
Mazzoni, MA
Morganti, S
Piredda, G
Renga, F
Voena, C
Ebert, M
Hartmann, T
Schroder, H
Waldi, R
Adye, T
Franek, B
Olaiya, EO
Wilson, FF
Emery, S
Esteve, L
de Monchenault, GH
Kozanecki, W
Vasseur, G
Yeche, C
Zito, M
Chen, XR
Liu, H
Park, W
Purohit, MV
White, RM
Wilson, JR
Allen, MT
Aston, D
Bartoldus, R
Benitez, JF
Cenci, R
Coleman, JP
Convery, MR
Dingfelder, JC
Dorfan, J
Dubois-Felsmann, GP
Dunwoodie, W
Field, RC
Gabareen, AM
Graham, MT
Grenier, P
Hast, C
Innes, WR
Kaminski, J
Kelsey, MH
Kim, H
Kim, P
Kocian, ML
Leith, DWGS
Li, S
Lindquist, B
Luitz, S
Luth, V
Lynch, HL
MacFarlane, DB
Marsiske, H
Messner, R
Muller, DR
Neal, H
Nelson, S
O'Grady, CP
Ofte, I
Perl, M
Ratcliff, BN
Roodman, A
Salnikov, AA
Schindler, RH
Schwiening, J
Snyder, A
Su, D
Sullivan, MK
Suzuki, K
Swain, SK
Thompson, JM
Va'vra, J
Wagner, AP
Weaver, M
West, CA
Wisniewski, WJ
Wittgen, M
Wright, DH
Wulsin, HW
Yarritu, AK
Yi, K
Young, CC
Ziegler, V
Burchat, PR
Edwards, AJ
Miyashita, TS
Ahmed, S
Alam, MS
Ernst, JA
Pan, B
Saeed, MA
Zain, SB
Spanier, SM
Wogsland, BJ
Eckmann, R
Ritchie, JL
Ruland, AM
Schilling, CJ
Schwitters, RF
Drummond, BW
Izen, JM
Lou, XC
Bianchi, F
Gamba, D
Pelliccioni, M
Bomben, M
Bosisio, L
Cartaro, C
Della Ricca, G
Lanceri, L
Vitale, L
Azzolini, V
Lopez-March, N
Martinez-Vidal, F
Milanes, DA
Oyanguren, A
Albert, J
Banerjee, S
Bhuyan, B
Choi, HHF
Hamano, K
King, GJ
Kowalewski, R
Lewczuk, MJ
Nugent, IM
Roney, JM
Sobie, RJ
Gershon, TJ
Harrison, PF
Ilic, J
Latham, TE
Mohanty, GB
Puccio, EMT
Band, HR
Chen, X
Dasu, S
Flood, KT
Pan, Y
Prepost, R
Vuosalo, CO
Wu, SL
AF Aubert, B.
Bona, M.
Karyotakis, Y.
Lees, J. P.
Poireau, V.
Prencipe, E.
Prudent, X.
Tisserand, V.
Garra Tico, J.
Grauges, E.
Lopez, L.
Palano, A.
Pappagallo, M.
Eigen, G.
Stugu, B.
Sun, L.
Battaglia, M.
Brown, D. N.
Kerth, L. T.
Kolomensky, Yu. G.
Lynch, G.
Osipenkov, I. L.
Tackmann, K.
Tanabe, T.
Hawkes, C. M.
Soni, N.
Watson, A. T.
Koch, H.
Schroeder, T.
Asgeirsson, D. J.
Fulsom, B. G.
Hearty, C.
Mattison, T. S.
McKenna, J. A.
Barrett, M.
Khan, A.
Randle-Conde, A.
Blinov, V. E.
Bukin, A. D.
Buzykaev, A. R.
Druzhinin, V. P.
Golubev, V. B.
Onuchin, A. P.
Serednyakov, S. I.
Skovpen, Yu. I.
Solodov, E. P.
Todyshev, K. Yu.
Bondioli, M.
Curry, S.
Eschrich, I.
Kirkby, D.
Lankford, A. J.
Lund, P.
Mandelkern, M.
Martin, E. C.
Stoker, D. P.
Abachi, S.
Buchanan, C.
Atmacan, H.
Gary, J. W.
Liu, F.
Long, O.
Vitug, G. M.
Yasin, Z.
Zhang, L.
Sharma, V.
Campagnari, C.
Hong, T. M.
Kovalskyi, D.
Mazur, M. A.
Richman, J. D.
Beck, T. W.
Eisner, A. M.
Heusch, C. A.
Kroseberg, J.
Lockman, W. S.
Martinez, A. J.
Schalk, T.
Schumm, B. A.
Seiden, A.
Winstrom, L. O.
Cheng, C. H.
Doll, D. A.
Echenard, B.
Fang, F.
Hitlin, D. G.
Narsky, I.
Piatenko, T.
Porter, F. C.
Andreassen, R.
Mancinelli, G.
Meadows, B. T.
Mishra, K.
Sokoloff, M. D.
Bloom, P. C.
Ford, W. T.
Gaz, A.
Hirschauer, J. F.
Nagel, M.
Nauenberg, U.
Smith, J. G.
Wagner, S. R.
Ayad, R.
Soffer, A.
Toki, W. H.
Wilson, R. J.
Feltresi, E.
Hauke, A.
Jasper, H.
Karbach, M.
Merkel, J.
Petzold, A.
Spaan, B.
Wacker, K.
Kobel, M. J.
Nogowski, R.
Schubert, K. R.
Schwierz, R.
Volk, A.
Bernard, D.
Bonneaud, G. R.
Latour, E.
Verderi, M.
Clark, P. J.
Playfer, S.
Watson, J. E.
Andreotti, M.
Bettoni, D.
Bozzi, C.
Calabrese, R.
Cecchi, A.
Cibinetto, G.
Franchini, P.
Luppi, E.
Negrini, M.
Petrella, A.
Piemontese, L.
Santoro, V.
Baldini-Ferroli, R.
Calcaterra, A.
de Sangro, R.
Finocchiaro, G.
Pacetti, S.
Patteri, P.
Peruzzi, I. M.
Piccolo, M.
Rama, M.
Zallo, A.
Contri, R.
Lo Vetere, M.
Monge, M. R.
Passaggio, S.
Patrignani, C.
Robutti, E.
Tosi, S.
Chaisanguanthum, K. S.
Morii, M.
Adametz, A.
Marks, J.
Schenk, S.
Uwer, U.
Bernlochner, F. U.
Klose, V.
Lacker, H. M.
Bard, D. J.
Dauncey, P. D.
Tibbetts, M.
Behera, P. K.
Chai, X.
Charles, M. J.
Mallik, U.
Cochran, J.
Crawley, H. B.
Dong, L.
Meyer, W. T.
Prell, S.
Rosenberg, E. I.
Rubin, A. E.
Gao, Y. Y.
Gritsan, A. V.
Guo, Z. J.
Arnaud, N.
Bequilleux, J.
D'Orazio, A.
Davier, M.
da Costa, J. Firmino
Grosdidier, G.
Le Diberder, F.
Lepeltier, V.
Lutz, A. M.
Pruvot, S.
Roudeau, P.
Schune, M. H.
Serrano, J.
Sordini, V.
Stocchi, A.
Wormser, G.
Lange, D. J.
Wright, D. M.
Bingham, I.
Burke, J. P.
Chavez, C. A.
Fry, J. R.
Gabathuler, E.
Gamet, R.
Hutchcroft, D. E.
Payne, D. J.
Touramanis, C.
Bevan, A. J.
Clarke, C. K.
Di Lodovico, F.
Sacco, R.
Sigamani, M.
Cowan, G.
Paramesvaran, S.
Wren, A. C.
Brown, D. N.
Davis, C. L.
Denig, A. G.
Fritsch, M.
Gradl, W.
Alwyn, K. E.
Bailey, D.
Barlow, R. J.
Jackson, G.
Lafferty, G. D.
West, T. J.
Yi, J. I.
Anderson, J.
Chen, C.
Jawahery, A.
Roberts, D. A.
Simi, G.
Tuggle, J. M.
Dallapiccola, C.
Salvati, E.
Saremi, S.
Cowan, R.
Dujmic, D.
Fisher, P. H.
Henderson, S. W.
Sciolla, G.
Spitznagel, M.
Taylor, F.
Yamamoto, R. K.
Zhao, M.
Patel, P. M.
Robertson, S. H.
Lazzaro, A.
Lombardo, V.
Palombo, F.
Bauer, J. M.
Cremaldi, L.
Godang, R.
Kroeger, R.
Summers, D. J.
Zhao, H. W.
Simard, M.
Taras, P.
Nicholson, H.
De Nardo, G.
Lista, L.
Monorchio, D.
Onorato, G.
Sciacca, C.
Raven, G.
Snoek, H. L.
Jessop, C. P.
Knoepfel, K. J.
LoSecco, J. M.
Wang, W. F.
Corwin, L. A.
Honscheid, K.
Kagan, H.
Kass, R.
Morris, J. P.
Rahimi, A. M.
Regensburger, J. J.
Sekula, S. J.
Wong, Q. K.
Blount, N. L.
Brau, J.
Frey, R.
Igonkina, O.
Kolb, J. A.
Lu, M.
Rahmat, R.
Sinev, N. B.
Strom, D.
Strube, J.
Torrence, E.
Castelli, G.
Gagliardi, N.
Margoni, M.
Morandin, M.
Posocco, M.
Rotondo, M.
Simonetto, F.
Stroili, R.
Voci, C.
Sanchez, P. del Amo
Ben-Haim, E.
Briand, H.
Chauveau, J.
Hamon, O.
Leruste, Ph.
Ocariz, J.
Perez, A.
Prendki, J.
Sitt, S.
Gladney, L.
Biasini, M.
Manoni, E.
Angelini, C.
Batignani, G.
Bettarini, S.
Calderini, G.
Carpinelli, M.
Cervelli, A.
Forti, F.
Giorgi, M. A.
Lusiani, A.
Marchiori, G.
Morganti, M.
Neri, N.
Paoloni, E.
Rizzo, G.
Walsh, J. J.
Pegna, D. Lopes
Lu, C.
Olsen, J.
Smith, A. J. S.
Telnov, A. V.
Anulli, F.
Baracchini, E.
Cavoto, G.
Faccini, R.
Ferrarotto, F.
Ferroni, F.
Gaspero, M.
Jackson, P. D.
Gioi, L. Li
Mazzoni, M. A.
Morganti, S.
Piredda, G.
Renga, F.
Voena, C.
Ebert, M.
Hartmann, T.
Schroeder, H.
Waldi, R.
Adye, T.
Franek, B.
Olaiya, E. O.
Wilson, F. F.
Emery, S.
Esteve, L.
de Monchenault, G. Hamel
Kozanecki, W.
Vasseur, G.
Yeche, Ch.
Zito, M.
Chen, X. R.
Liu, H.
Park, W.
Purohit, M. V.
White, R. M.
Wilson, J. R.
Allen, M. T.
Aston, D.
Bartoldus, R.
Benitez, J. F.
Cenci, R.
Coleman, J. P.
Convery, M. R.
Dingfelder, J. C.
Dorfan, J.
Dubois-Felsmann, G. P.
Dunwoodie, W.
Field, R. C.
Gabareen, A. M.
Graham, M. T.
Grenier, P.
Hast, C.
Innes, W. R.
Kaminski, J.
Kelsey, M. H.
Kim, H.
Kim, P.
Kocian, M. L.
Leith, D. W. G. S.
Li, S.
Lindquist, B.
Luitz, S.
Luth, V.
Lynch, H. L.
MacFarlane, D. B.
Marsiske, H.
Messner, R.
Muller, D. R.
Neal, H.
Nelson, S.
O'Grady, C. P.
Ofte, I.
Perl, M.
Ratcliff, B. N.
Roodman, A.
Salnikov, A. A.
Schindler, R. H.
Schwiening, J.
Snyder, A.
Su, D.
Sullivan, M. K.
Suzuki, K.
Swain, S. K.
Thompson, J. M.
Va'vra, J.
Wagner, A. P.
Weaver, M.
West, C. A.
Wisniewski, W. J.
Wittgen, M.
Wright, D. H.
Wulsin, H. W.
Yarritu, A. K.
Yi, K.
Young, C. C.
Ziegler, V.
Burchat, P. R.
Edwards, A. J.
Miyashita, T. S.
Ahmed, S.
Alam, M. S.
Ernst, J. A.
Pan, B.
Saeed, M. A.
Zain, S. B.
Spanier, S. M.
Wogsland, B. J.
Eckmann, R.
Ritchie, J. L.
Ruland, A. M.
Schilling, C. J.
Schwitters, R. F.
Drummond, B. W.
Izen, J. M.
Lou, X. C.
Bianchi, F.
Gamba, D.
Pelliccioni, M.
Bomben, M.
Bosisio, L.
Cartaro, C.
Della Ricca, G.
Lanceri, L.
Vitale, L.
Azzolini, V.
Lopez-March, N.
Martinez-Vidal, F.
Milanes, D. A.
Oyanguren, A.
Albert, J.
Banerjee, Sw.
Bhuyan, B.
Choi, H. H. F.
Hamano, K.
King, G. J.
Kowalewski, R.
Lewczuk, M. J.
Nugent, I. M.
Roney, J. M.
Sobie, R. J.
Gershon, T. J.
Harrison, P. F.
Ilic, J.
Latham, T. E.
Mohanty, G. B.
Puccio, E. M. T.
Band, H. R.
Chen, X.
Dasu, S.
Flood, K. T.
Pan, Y.
Prepost, R.
Vuosalo, C. O.
Wu, S. L.
CA BABAR Collaboration
TI Evidence for the eta(b)(1S) Meson in Radiative Y(2S) Decay
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID ANNIHILATION; QUARKONIUM; PHYSICS; JETS; QCD
AB We have performed a search for the eta(b)(1S) meson in the radiative decay of the Y(2S) resonance using a sample of 91.6 x 10(6) Y(2S) events recorded with the BABAR detector at the PEP-II B factory at the SLAC National Accelerator Laboratory. We observe a peak in the photon energy spectrum at E-gamma = 609.3(-4.5)(+4.6)(stat) +/- 1.9(syst) MeV, corresponding to an eta(b)(1S) mass of 9394.2(-4.9)(+4.8)(stat) +/- 2.0(syst) MeV/c(2). The branching fraction for the decay Y(2S) --> gamma eta(b)(1S) is determined to be 3.9 +/- 1.1(stat)(-0.9)(+1.1)(syst)] x 10(-4). We find the ratio of branching fractions B[Y(2S) --> gamma eta(b)(1S)]/B[Y(3S) --> gamma eta(b)(1S)] = 0.82 +/- 0.24(stat)(-0.19)(+0.20)(syst).
C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France.
[Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, F-74941 Annecy Le Vieux, France.
[Garra Tico, J.; Grauges, E.] Univ Barcelona, Fac Fis, Dept Estructura & Constituents Mat, E-08028 Barcelona, Spain.
[Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy.
[Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy.
[Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway.
[Battaglia, M.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England.
[Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany.
[Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada.
[Barrett, M.; Khan, A.; Randle-Conde, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England.
[Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia.
[Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA.
[Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA.
[Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA.
[Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA.
[Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA.
[Beck, T. W.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA.
[Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA.
[Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA.
[Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA.
[Ayad, R.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA.
[Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany.
[Kobel, M. J.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany.
[Bernard, D.; Bonneaud, G. R.; Latour, E.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France.
[Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland.
[Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy.
[Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy.
[Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[Contri, R.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy.
[Contri, R.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy.
[Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA.
[Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany.
[Bernlochner, F. U.; Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany.
[Bard, D. J.; Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England.
[Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA.
[Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA.
[Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA.
[Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France.
[Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France.
[Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England.
[Bevan, A. J.; Clarke, C. K.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England.
[Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England.
[Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA.
[Denig, A. G.; Fritsch, M.; Gradl, W.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany.
[Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England.
[Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA.
[Dallapiccola, C.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA.
[Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA.
[Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada.
[Lazzaro, A.; Lombardo, V.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy.
[Lazzaro, A.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy.
[Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA.
[Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada.
[Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA.
[De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy.
[De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy.
[Raven, G.; Snoek, H. L.] NIKHEF, Natl Inst Nucl Phys & High Energy Phys, NL-1009 DB Amsterdam, Netherlands.
[Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA.
[Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA.
[Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA.
[Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy.
[Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy.
[Sanchez, P. del Amo; Ben-Haim, E.; Briand, H.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.] Univ Paris 07, Univ Paris 06, CNRS, IN2P3,Lab Phys Nucl & Hautes Energies, F-75252 Paris, France.
[Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA.
[Biasini, M.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy.
[Biasini, M.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy.
[Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy.
[Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy.
[Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy.
[Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA.
[Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy.
[Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
[Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany.
[Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England.
[Emery, S.; Esteve, L.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, Irfu, SPP, Ctr Etud Saclay, F-91191 Gif Sur Yvette, France.
[Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA.
[Allen, M. T.; Aston, D.; Bartoldus, R.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA.
[Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA.
[Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA.
[Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA.
[Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA.
[Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA.
[Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy.
[Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy.
[Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy.
[Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy.
[Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain.
[Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada.
[Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England.
[Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA.
[Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy.
RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France.
RI Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014;
Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani,
Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani,
Alberto/A-3329-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo,
Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey,
Raymond/E-2830-2016; Patrignani, Claudia/C-5223-2009; Monge, Maria
Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi,
Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Neri, Nicola/G-3991-2012;
Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro,
Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Della Ricca,
Giuseppe/B-6826-2013; Negrini, Matteo/C-8906-2014
OI Raven, Gerhard/0000-0002-2897-5323; Calabrese,
Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035;
Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere,
Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288;
Morandin, Mauro/0000-0003-4708-4240; Lusiani,
Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175;
Pappagallo, Marco/0000-0001-7601-5602; Calcaterra,
Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636;
Patrignani, Claudia/0000-0002-5882-1747; Monge, Maria
Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300;
Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900;
Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965;
Rotondo, Marcello/0000-0001-5704-6163; de Sangro,
Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255;
Della Ricca, Giuseppe/0000-0003-2831-6982; Negrini,
Matteo/0000-0003-0101-6963
FU DOE; NSF (USA); NSERC (Canada); CEA; CNRS-IN2P3 (France); BMBF; DFG
(Germany); INFN (Italy); FOM (The Netherlands); NFR (Norway); MES
(Russia); MEC (Spain); STFC (United Kingdom); Marie Curie EIF (European
Union); A. P. Sloan Foundation.
FX We are grateful for the excellent luminosity and machine conditions
provided by our PEP-II colleagues, and for the substantial dedicated
effort from the computing organizations that support BABAR. The
collaborating institutions wish to thank SLAC for its support and kind
hospitality. This work is supported by DOE and NSF (USA), NSERC
(Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN
(Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain),
and STFC (United Kingdom). Individuals have received support from the
Marie Curie EIF (European Union) and the A. P. Sloan Foundation.
NR 23
TC 63
Z9 63
U1 0
U2 6
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD OCT 16
PY 2009
VL 103
IS 16
AR 161801
DI 10.1103/PhysRevLett.103.161801
PG 7
WC Physics, Multidisciplinary
SC Physics
GA 508AP
UT WOS:000270899500017
ER
PT J
AU Mihajlovic, G
Pearson, JE
Garcia, MA
Bader, SD
Hoffmann, A
AF Mihajlovic, G.
Pearson, J. E.
Garcia, M. A.
Bader, S. D.
Hoffmann, A.
TI Negative Nonlocal Resistance in Mesoscopic Gold Hall Bars: Absence of
the Giant Spin Hall Effect
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID FERROMAGNET-SEMICONDUCTOR INTERFACE; ELECTRICAL DETECTION; INJECTION;
FLUCTUATIONS; TRANSMISSION; DEVICES; WIRES
AB We report the observation of negative nonlocal resistances in multiterminal mesoscopic gold Hall bar structures whose characteristic dimensions are larger than the electron mean-free path. Our results can only be partially explained by a classical diffusive model of the nonlocal transport, and are not consistent with a recently proposed model based on spin Hall effects. Instead, our analysis suggests that a quasiballistic transport mechanism is responsible for the observed negative nonlocal resistance. Based on the sensitivity of our measurements and the spin Hall effect model, we find an upper limit for the spin Hall angle in gold of 0.023 at 4.5 K.
C1 [Mihajlovic, G.; Pearson, J. E.; Bader, S. D.; Hoffmann, A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Garcia, M. A.] Univ Complutense Madrid, Dpto Fis Mat, E-28040 Madrid, Spain.
[Bader, S. D.; Hoffmann, A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
RP Mihajlovic, G (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM mihajlovic@anl.gov
RI Bader, Samuel/A-2995-2013; Hoffmann, Axel/A-8152-2009; Garcia, Miguel
Angel/N-3043-2016
OI Hoffmann, Axel/0000-0002-1808-2767; Garcia, Miguel
Angel/0000-0001-9972-2182
FU DOE BES [DE-AC02-06CH11357]
FX We thank Dimitrie Culcer, Roland Winkler, Oleksandr Mosendz, and
Sadamichi Maekawa for useful discussions and comments. This work was
supported by DOE BES under Contract No. DE-AC02-06CH11357.
NR 26
TC 51
Z9 51
U1 6
U2 24
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD OCT 16
PY 2009
VL 103
IS 16
AR 166601
DI 10.1103/PhysRevLett.103.166601
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 508AP
UT WOS:000270899500041
PM 19905713
ER
PT J
AU Pierce, MS
Chang, KC
Hennessy, D
Komanicky, V
Sprung, M
Sandy, A
You, H
AF Pierce, M. S.
Chang, K. C.
Hennessy, D.
Komanicky, V.
Sprung, M.
Sandy, A.
You, H.
TI Surface X-Ray Speckles: Coherent Surface Diffraction from Au(001)
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID RECONSTRUCTION; GOLD; SCATTERING; FLUCTUATIONS; REFLECTIVITY; MECHANISM;
PHASES; DOMAIN
AB We present coherent speckled x-ray diffraction patterns obtained from a monolayer of surface atoms. We measured both the specular anti-Bragg reflection and the off-specular hexagonal reconstruction peak for the Au(001) surface reconstruction. We observed fluctuations of the speckle patterns even when the integrated intensity appears static. By autocorrelating the speckle patterns, we were able to identify two qualitatively different surface dynamic behaviors of the hex reconstruction depending on the sample temperature.
C1 [Pierce, M. S.; Chang, K. C.; Hennessy, D.; Komanicky, V.; You, H.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Komanicky, V.] Safarik Univ, Fac Sci, Kosice 04001, Slovakia.
[Sprung, M.; Sandy, A.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Sprung, M.] DESY, HASYLAB, D-2000 Hamburg, Germany.
RP Pierce, MS (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.
RI Hennessy, Daniel/A-6203-2011; Pierce, Michael/D-5570-2014; Chang,
Kee-Chul/O-9938-2014; You, Hoydoo/A-6201-2011
OI Pierce, Michael/0000-0002-9209-8556; Chang,
Kee-Chul/0000-0003-1775-2148; You, Hoydoo/0000-0003-2996-9483
FU U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-AC02-06CH11357]
FX This work and use of the Advanced Photon Source were supported by the
U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Contract No. DE-AC02-06CH11357.
NR 28
TC 20
Z9 20
U1 1
U2 23
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD OCT 16
PY 2009
VL 103
IS 16
AR 165501
DI 10.1103/PhysRevLett.103.165501
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 508AP
UT WOS:000270899500035
PM 19905707
ER
PT J
AU Reichhardt, C
Reichhardt, CJO
AF Reichhardt, C.
Reichhardt, C. J. Olson
TI Random Organization and Plastic Depinning
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID HYDRODYNAMIC INTERACTIONS; II SUPERCONDUCTORS; VORTEX DYNAMICS;
RANDOM-MEDIA; FLUX-FLOW; LATTICE; TRANSPORT; THRESHOLD; NETWORKS;
VORTICES
AB We provide evidence that the general phenomenon of plastic depinning can be described as an absorbing phase transition, and shows the same features as the random organization which was recently studied in periodically driven particle systems [L. Corte et al., Nature Phys. 4, 420 (2008)]. In the plastic flow system, the pinned regime corresponds to the absorbing state and the moving state corresponds to the fluctuating state. When an external force is suddenly applied, the system eventually organizes into one of these two states with a time scale that diverges as a power law at a nonequilibrium transition. We propose a simple experiment to test for this transition in systems with random disorder.
C1 [Reichhardt, C.; Reichhardt, C. J. Olson] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RP Reichhardt, C (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
OI Reichhardt, Cynthia/0000-0002-3487-5089
FU NNSA; U.S. DoE at LANL [DE-AC52-06NA25396]
FX This work was carried out under the auspices of the NNSA of the U.S. DoE
at LANL under Contract No. DE-AC52-06NA25396.
NR 37
TC 33
Z9 33
U1 0
U2 9
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD OCT 16
PY 2009
VL 103
IS 16
AR 168301
DI 10.1103/PhysRevLett.103.168301
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 508AP
UT WOS:000270899500058
PM 19905729
ER
PT J
AU Sandberg, I
Benkadda, S
Garbet, X
Ropokis, G
Hizanidis, K
del-Castillo-Negrete, D
AF Sandberg, I.
Benkadda, S.
Garbet, X.
Ropokis, G.
Hizanidis, K.
del-Castillo-Negrete, D.
TI Universal Probability Distribution Function for Bursty Transport in
Plasma Turbulence
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID TOKAMAK EDGE TURBULENCE; DEVICES
AB Bursty transport phenomena associated with convective motion present universal statistical characteristics among different physical systems. In this Letter, a stochastic univariate model and the associated probability distribution function for the description of bursty transport in plasma turbulence is presented. The proposed stochastic process recovers the universal distribution of density fluctuations observed in plasma edge of several magnetic confinement devices and the remarkable scaling between their skewness S and kurtosis K. Similar statistical characteristics of variabilities have been also observed in other physical systems that are characterized by convection such as the x-ray fluctuations emitted by the Cygnus X-1 accretion disc plasmas and the sea surface temperature fluctuations.
C1 [Sandberg, I.; Hizanidis, K.] Natl Tech Univ Athens, Assoc Euratom Hellen Republ, GR-15773 Athens, Greece.
[Sandberg, I.; Ropokis, G.] Inst Space Applicat & Remote Sensing, Natl Observ Athens, Penteli 15236, Greece.
[Benkadda, S.] Univ Aix Marseille 1, CNRS, France Japan Magnet Fus Lab, LIA 336,UMR 6633, Marseille, France.
[Garbet, X.] CEA Cadarache, IRFM, F-13108 St Paul Les Durance, France.
[del-Castillo-Negrete, D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RP Sandberg, I (reprint author), Natl Tech Univ Athens, Assoc Euratom Hellen Republ, GR-15773 Athens, Greece.
RI Sandberg, Ingmar/C-6053-2014;
OI del-Castillo-Negrete, Diego/0000-0001-7183-801X
FU Oak Ridge National Laboratory; European Atomic Energy Community and the
Hellenic Republic [ERB 5005 CT 99 0100]
FX I. S. acknowledges fruitful discussions with Yu. Khotyaintsev, F.
Lepreti, and A. Anastasiadis. D.C.N. acknowledges support from the Oak
Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S.
This work was supported under the Contract of Association ERB 5005 CT 99
0100 between the European Atomic Energy Community and the Hellenic
Republic. The content of the publication is the sole responsibility of
its author (s) and it does not necessarily represent the views of the
Commission or its services.
NR 15
TC 19
Z9 19
U1 3
U2 9
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD OCT 16
PY 2009
VL 103
IS 16
AR 165001
DI 10.1103/PhysRevLett.103.165001
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 508AP
UT WOS:000270899500029
PM 19905701
ER
PT J
AU Schmitz, O
Evans, TE
Fenstermacher, ME
Unterberg, EA
Austin, ME
Bray, BD
Brooks, NH
Frerichs, H
Groth, M
Jakubowski, MW
Lasnier, CJ
Lehnen, M
Leonard, AW
Mordijck, S
Moyer, RA
Osborne, TH
Reiter, D
Samm, U
Schaffer, MJ
Unterberg, B
West, WP
AF Schmitz, O.
Evans, T. E.
Fenstermacher, M. E.
Unterberg, E. A.
Austin, M. E.
Bray, B. D.
Brooks, N. H.
Frerichs, H.
Groth, M.
Jakubowski, M. W.
Lasnier, C. J.
Lehnen, M.
Leonard, A. W.
Mordijck, S.
Moyer, R. A.
Osborne, T. H.
Reiter, D.
Samm, U.
Schaffer, M. J.
Unterberg, B.
West, W. P.
CA DIII-D Res Team
TEXTOR Res Team
TI Resonant Pedestal Pressure Reduction Induced by a Thermal Transport
Enhancement due to Stochastic Magnetic Boundary Layers in High
Temperature Plasmas
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID ERGODIC DIVERTOR; H-MODE; TOKAMAK; TEXTOR; STABILITY; EDGE
AB Good alignment of the magnetic field line pitch angle with the mode structure of an external resonant magnetic perturbation (RMP) field is shown to induce modulation of the pedestal electron pressure p(e) in high confinement high rotation plasmas at the DIII-D tokamak with a shape similar to ITER, the next step tokamak experiment. This is caused by an edge safety factor q(95) resonant enhancement of the thermal transport, while in contrast, the RMP induced particle pump out does not show a significant resonance. The measured p(e) reduction correlates to an increase in the modeled stochastic layer width during pitch angle variations matching results from resistive low rotation plasmas at the TEXTOR tokamak. These findings suggest a field line pitch angle resonant formation of a stochastic magnetic edge layer as an explanation for the q(95) resonant character of type-I edge localized mode suppression by RMPs.
C1 [Schmitz, O.; Frerichs, H.; Lehnen, M.; Reiter, D.; Samm, U.; Unterberg, B.] Forschungszentrum Julich, Plasma Phys IEF4, D-52428 Julich, Germany.
[Evans, T. E.; Austin, M. E.; Bray, B. D.; Brooks, N. H.; Leonard, A. W.; Osborne, T. H.; Schaffer, M. J.; West, W. P.] Gen Atom Co, San Diego, CA 92186 USA.
[Fenstermacher, M. E.; Groth, M.; Lasnier, C. J.] Lawrence Livermore Natl Lab, Livermore, CA USA.
[Unterberg, E. A.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA.
[Jakubowski, M. W.] Max Planck Inst Plasma Phys, Greifswald, Germany.
[Mordijck, S.; Moyer, R. A.] Univ Calif San Diego, La Jolla, CA 92093 USA.
RP Schmitz, O (reprint author), Forschungszentrum Julich, Plasma Phys IEF4, D-52428 Julich, Germany.
RI Groth, Mathias/G-2227-2013; Unterberg, Ezekial/F-5240-2016;
OI Unterberg, Ezekial/0000-0003-1353-8865; Unterberg,
Bernhard/0000-0003-0866-957X
FU U.S. Department of Energy [DE-FC02-04ER54698, DE-AC52-07NA27344,
DE-AC05-06ER23100, DE-FG02-07ER54917]
FX This work was supported in part by the U.S. Department of Energy under
Grants No. DE-FC02-04ER54698, No. DE-AC52-07NA27344, No.
DE-AC05-06ER23100, and No. DE-FG02-07ER54917.
NR 30
TC 39
Z9 39
U1 0
U2 5
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD OCT 16
PY 2009
VL 103
IS 16
AR 165005
DI 10.1103/PhysRevLett.103.165005
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 508AP
UT WOS:000270899500033
PM 19905705
ER
PT J
AU Sessi, P
Guisinger, NP
Guest, JR
Bode, M
AF Sessi, P.
Guisinger, N. P.
Guest, J. R.
Bode, M.
TI Temperature and Size Dependence of Antiferromagnetism in Mn
Nanostructures
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID VICINAL W(110) SURFACES; MAGNETISM; MICROSCOPY; FE(110); GROWTH; FE; CO
AB We report on variable-temperature STM investigations of the spontaneous long-range magnetic order of Mn monolayer nanostructures epitaxially grown on stepped W(110). The measurements reveal that the onset of the antiferromagnetic order is closely related to the Mn nanostructure width along the [001] direction, with a decreasing Neel temperature as we move from a 2D toward a quasi-1D system. In contrast, lateral confinement along the [1 (1) over bar0] direction seems to play a less important role. The results are discussed in terms of anisotropic exchange coupling and of boundary effects, both potentially stabilizing long-range magnetic order in nanostructures confined in the [1 (1) over bar0] direction.
C1 [Sessi, P.] Politecn Milan, CNISM, Dipartimento Fis, I-20133 Milan, Italy.
[Guisinger, N. P.; Guest, J. R.; Bode, M.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
RP Sessi, P (reprint author), Politecn Milan, CNISM, Dipartimento Fis, I-20133 Milan, Italy.
RI Guest, Jeffrey/B-2715-2009; Sessi, Paolo/L-6186-2015; Bode,
Matthias/S-3249-2016
OI Guest, Jeffrey/0000-0002-9756-8801; Sessi, Paolo/0000-0003-1261-0386;
Bode, Matthias/0000-0001-7514-5560
FU U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-AC02-06CH11357]
FX Use of the Center for Nanoscale Materials was supported by the U.S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Contract No. DE-AC02-06CH11357.
NR 24
TC 11
Z9 11
U1 0
U2 15
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD OCT 16
PY 2009
VL 103
IS 16
AR 167201
DI 10.1103/PhysRevLett.103.167201
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 508AP
UT WOS:000270899500047
PM 19905719
ER
PT J
AU Sonier, JE
Pacradouni, V
Sabok-Sayr, SA
Hardy, WN
Bonn, DA
Liang, R
Mook, HA
AF Sonier, J. E.
Pacradouni, V.
Sabok-Sayr, S. A.
Hardy, W. N.
Bonn, D. A.
Liang, R.
Mook, H. A.
TI Detection of the Unusual Magnetic Orders in the Pseudogap Region of a
High-Temperature Superconducting YBa2Cu3O6.6 Crystal by Muon-Spin
Relaxation
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID SINGLE-CRYSTALS; OXIDE
AB We present muon-spin relaxation (mu SR) measurements on a large YBa2Cu3O6.6 single crystal in which two kinds of unusual magnetic order have been detected in the pseudogap region by neutron scattering. A comparison is made to measurements on smaller, higher quality YBa2Cu3Oy single crystals. One type of magnetic order is observed in all samples, but does not evolve significantly with hole doping. A second type of unusual magnetic order is observed only in the YBa2Cu3O6.6 single crystal. This magnetism has an ordered magnetic moment that is quantitatively consistent with the neutron experiments, but is confined to just a small volume of the sample (similar to 3%). Our findings do not support theories that ascribe the pseudogap to a state characterized by loop-current order, but instead indicate that dilute impurity phases are the source of the unusual magnetic orders in YBa2Cu3Oy.
C1 [Sonier, J. E.; Pacradouni, V.; Sabok-Sayr, S. A.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada.
[Hardy, W. N.; Bonn, D. A.; Liang, R.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada.
[Mook, H. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RP Sonier, JE (reprint author), Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada.
FU Natural Sciences and Engineering Research Council of Canada; Canadian
Institute for Advanced Research
FX We thank G. A. Sawatzky for helpful discussions, and TRIUMF's Centre for
Molecular and Materials Science for technical assistance. This work was
supported by the Natural Sciences and Engineering Research Council of
Canada and the Canadian Institute for Advanced Research.
NR 31
TC 38
Z9 38
U1 0
U2 13
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD OCT 16
PY 2009
VL 103
IS 16
AR 167002
DI 10.1103/PhysRevLett.103.167002
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 508AP
UT WOS:000270899500045
PM 19905717
ER
PT J
AU Thorn, DB
Gu, MF
Brown, GV
Beiersdorfer, P
Porter, FS
Kilbourne, CA
Kelley, RL
AF Thorn, Daniel B.
Gu, Ming F.
Brown, Gregory V.
Beiersdorfer, Peter
Porter, F. Scott
Kilbourne, Caroline A.
Kelley, Richard L.
TI Precision Measurement of the K-Shell Spectrum from Highly Charged Xenon
with an Array of X-Ray Calorimeters
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID HELIUM-LIKE IONS; CONFIGURATION-INTERACTION CALCULATIONS; LAMB SHIFT;
GROUND-STATE; FE-XXV; HYDROGENLIKE; URANIUM; MICROCALORIMETER;
TRANSITIONS; ENERGIES
AB We present a measurement of the K-shell spectrum from highly charged xenon ions recorded with a high-energy x-ray calorimeter spectrometer array that can distinguish between various theories for the atomic structure of the two electron system. The array was designed to provide high resolution with high quantum efficiency in the 10-60 keV x-ray range which allows us to resolve blends that afflicted previous measurements. A precision of better than 2 eV was achieved in the measurement of the Xe(52+) and Xe(53+) K-shell transitions located near 31 keV, which is an order of magnitude better than previously reported.
C1 [Thorn, Daniel B.; Gu, Ming F.; Brown, Gregory V.; Beiersdorfer, Peter] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Porter, F. Scott; Kilbourne, Caroline A.; Kelley, Richard L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
RP Thorn, DB (reprint author), Extreme Matter Inst, Darmstadt, Germany.
EM dbthorn@gsi.de
RI Porter, Frederick/D-3501-2012; Kelley, Richard/K-4474-2012
OI Porter, Frederick/0000-0002-6374-1119;
FU U.S. Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]; NASA Astronomy and Physics Research and Analysis
Program (APRA); NASA/GSFC
FX We gratefully acknowledge fruitful discussions with Mau Chen, as well as
expert technical support on EBIT by Ed Magee, and thank John Gygax and
Jonathan King for help in building and designing the ECS spectrometer.
This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract No.
DE-AC52-07NA27344 and supported by NASA Astronomy and Physics Research
and Analysis Program (APRA) grants to LLNL and NASA/GSFC.
NR 30
TC 17
Z9 17
U1 0
U2 5
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD OCT 16
PY 2009
VL 103
IS 16
AR 163001
DI 10.1103/PhysRevLett.103.163001
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 508AP
UT WOS:000270899500019
PM 19905691
ER
PT J
AU Ye, F
Chi, SX
Fernandez-Baca, JA
Moreo, A
Dagotto, E
Lynn, JW
Mathieu, R
Kaneko, Y
Tokura, Y
Dai, PC
AF Ye, F.
Chi, Songxue
Fernandez-Baca, J. A.
Moreo, A.
Dagotto, E.
Lynn, J. W.
Mathieu, R.
Kaneko, Y.
Tokura, Y.
Dai, Pengcheng
TI Electronic Self-Organization in the Single-Layer Manganite
Pr1-xCa1+xMnO4
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID NEUTRON-DIFFRACTION; PHASE-SEPARATION; CHARGE; PR1-XCAXMNO3; PHYSICS
AB We use neutron scattering to investigate the doping evolution of the magnetic correlations in the single-layer manganite Pr1-xCa1-xMnO4, away from the x = 0.5 composition where the CE-type commensurate antiferromagnetic (AF) structure is stable. We find that short-range incommensurate spin correlations develop as the system is electron doped (x < 0.5), which coexist with the CE-type AF order. This suggests that electron doping in this system induces an inhomogeneous electronic self-organization, where commensurate AF patches with x = 0.5 are separated by electron-rich domain walls with short-range magnetic correlations. This behavior is strikingly different than for the perovskite Pr1-xCaxMnO3, where the long-range CE-type commensurate AF structure is stable over a wide range of electron or hole doping around x = 0.5.
C1 [Ye, F.; Fernandez-Baca, J. A.; Dai, Pengcheng] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA.
[Chi, Songxue; Fernandez-Baca, J. A.; Moreo, A.; Dagotto, E.; Dai, Pengcheng] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
[Moreo, A.; Dagotto, E.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[Lynn, J. W.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA.
[Mathieu, R.; Kaneko, Y.; Tokura, Y.] JST, ERATO Spin Superstruct Project, Tokyo 1138656, Japan.
[Tokura, Y.] RIKEN, Adv Sci Inst, Cross Correlated Mat Res Grp CMRG, Wako, Saitama 3510198, Japan.
[Tokura, Y.] Univ Tokyo, Dept Appl Phys, Tokyo 1138656, Japan.
[Mathieu, R.; Kaneko, Y.; Tokura, Y.] JST, Multiferro Project, Tokyo 1138656, Japan.
RP Ye, F (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA.
EM yef1@ornl.gov
RI Ye, Feng/B-3210-2010; Dai, Pengcheng /C-9171-2012; Tokura,
Yoshinori/C-7352-2009; Kaneko, Yoshio/B-3274-2013; Fernandez-Baca,
Jaime/C-3984-2014; Chi, Songxue/A-6713-2013; Kaneko, Yoshio/D-3905-2017;
OI Ye, Feng/0000-0001-7477-4648; Dai, Pengcheng /0000-0002-6088-3170;
Fernandez-Baca, Jaime/0000-0001-9080-5096; Chi,
Songxue/0000-0002-3851-9153; Kaneko, Yoshio/0000-0001-5209-1379;
Mathieu, Roland/0000-0002-5261-2047
FU Division of Scientific User Facilities of the Office of Basic Energy
Sciences; U. S. Department of Energy; U. S. NSF [DMR-0756568,
DE-FG02-05ER46202]; NSF [DMR-0706020]; Division of Materials Sciences
and Engineering, U. S. DOE
FX We are grateful to D. Khomskii, Y. Ren, and M. Braden for their helpful
discussions. The experimental work was partially supported by the
Division of Scientific User Facilities of the Office of Basic Energy
Sciences, U. S. Department of Energy and by the U. S. NSF DMR-0756568
and DOE No. DE-FG02-05ER46202 grants. The theory effort was supported by
the NSF grant No. DMR-0706020, and by the Division of Materials Sciences
and Engineering, U. S. DOE under contract with UT-Battelle, LLC.
NR 26
TC 7
Z9 7
U1 0
U2 11
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD OCT 16
PY 2009
VL 103
IS 16
AR 167202
DI 10.1103/PhysRevLett.103.167202
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 508AP
UT WOS:000270899500048
PM 19905720
ER
PT J
AU Reichhardt, CJO
Lopatina, LM
AF Reichhardt, C. J. Olson
Lopatina, L. M.
TI A Ball-and-Chain Polymer Model
SO SCIENCE
LA English
DT Editorial Material
C1 [Reichhardt, C. J. Olson; Lopatina, L. M.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Lopatina, L. M.] Kent State Univ, Inst Liquid Crystal, Kent, OH 44242 USA.
RP Reichhardt, CJO (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
EM cjrx@lanl.gov
NR 7
TC 6
Z9 6
U1 2
U2 20
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
J9 SCIENCE
JI Science
PD OCT 16
PY 2009
VL 326
IS 5951
BP 374
EP 375
DI 10.1126/science.1180973
PG 2
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 506ZM
UT WOS:000270818600032
PM 19833947
ER
PT J
AU Zhu, ZH
Nachimuthu, P
Lea, AS
AF Zhu, Zihua
Nachimuthu, Ponnusamy
Lea, Alan S.
TI Molecular Depth Profiling of Sucrose Films: A Comparative Study of
C-60(n+) Ions and Traditional Cs+ and O-2(+) Ions
SO ANALYTICAL CHEMISTRY
LA English
DT Article
ID TOF-SIMS; MASS-SPECTROMETRY; GA BOMBARDMENT; MICROSCOPIC INSIGHTS;
SPUTTERING YIELDS; SINGLE CELLS; BEAM; AG(111); TISSUE;
BUCKMINSTERFULLERENE
AB Depth profiling of sucrose thin films was investigated with time-of-flight secondary ion mass spectrometry (TOF-SIMS) using 10 keV C-60(+), 20 keV C-60(2+), and 30 keV C-60(3+), and 250, 500, and 1000 eV Cs+ and O-2(+) as sputtering ions. With C-60(n+) ions, the molecular ion signal initially decreases and reaches a steady state that is about 38-51% of its original intensity, depending on the energy of the C-60(n+) ions. In contrast, with Cs+ and O-2(+) sputtering, molecular ion signals decrease quickly to the noise level, even using very low-energy (250 eV) ions. In addition, the measured width of the sucrose/Si interface is much narrower Using C-60(+) ions than that using Cs+ or O-2(+) ions. To understand the mechanisms of sputtering-induced damage by these ions, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were used to characterize the bottoms of these sputter craters. XPS data show very little chemical change in the C-60(+) sputter crater, while considerable amorphous carbon was found in the O-2(+) and Cs+ sputter craters, indicating extensive decomposition of the sucrose molecules. AFM images show a very flat bottom in the C-60(+) sputter crater, while the bottoms of the Cs+ and O-2(+) sputter craters are significantly rougher. We used the sputtering model developed by Wucher and co-workers to quantitatively analyze our C-60(1-3+) data. The results show that low energy C-60(+) ions generate a relatively thin damage layer with a high molecular ion signal, suggesting that low energy C-60(+) may be the optimal choice for molecular depth profiling of sucrose films.
C1 [Zhu, Zihua; Nachimuthu, Ponnusamy; Lea, Alan S.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA.
RP Zhu, ZH (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, POB 999, Richland, WA 99352 USA.
EM zihua.zhu@pnl.gov
RI Zhu, Zihua/K-7652-2012;
OI Lea, Alan/0000-0002-4232-1553
FU Department of Energy's Office of Biological and Environmental Research
FX The research was performed using EMSL, a national scientific user
facility sponsored by the Department of Energy's Office of Biological
and Environmental Research which is located at Pacific Northwest
National Laboratory. The authors would also like to acknowledge optical
profilometer data frorn Mr. Warren Fogg and the writing suggestions
frorn Dr. Anil Shukla in Pacific Northwest National Laboratory.
NR 35
TC 13
Z9 13
U1 1
U2 12
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0003-2700
J9 ANAL CHEM
JI Anal. Chem.
PD OCT 15
PY 2009
VL 81
IS 20
BP 8272
EP 8279
DI 10.1021/ac900553z
PG 8
WC Chemistry, Analytical
SC Chemistry
GA 505DZ
UT WOS:000270670600002
PM 19769372
ER
PT J
AU Kertesz, V
Connelly, HM
Erickson, BK
Hettich, RL
AF Kertesz, Vilmos
Connelly, Heather M.
Erickson, Brian K.
Hettich, Robert L.
TI PTMSearchPlus: Software Tool for Automated Protein Identification and
Post-Translational Modification Characterization by Integrating Accurate
Intact Protein Mass and Bottom-Up Mass Spectrometric Data Searches
SO ANALYTICAL CHEMISTRY
LA English
DT Article
ID MULTIPLY-CHARGED IONS; TOP-DOWN; RHODOPSEUDOMONAS-PALUSTRIS; PROTEOMIC
ANALYSIS; SPECTRAL DATA; TANDEM; DISSOCIATION
AB PTMSearchPlus is a software tool for the automated integration of accurate intact protein mass (AIPM) and bottom-up (BU) mass spectra searches/data in order to both confidently identify the intact proteins and to characterize their post-translational modifications (PTMs). The development of PTMSearchPlus was motivated by the desire to effectively integrate high-resolution intact protein molecular masses with bottom-up peptide MS/MS data. PTMSearchPlus requires as input both intact protein and proteolytic peptide mass spectra collected from the same protein mixture, a FASTA protein database, and a selection of possible PTMs, the types and ranges of which can be specified. The output of PTMSearchPlus is a list of intact and modified proteins matching the AIPM data concomitant with their respective peptides found by the BU search. This list also contains protein and peptide sequence coverage information, scores, etc. that can be used for further evaluation or refiltering of the results. Corresponding and annotated AIPM and BU mass spectra are also displayed for visual inspection when a listed protein or a peptide is selected. These and other controls ensure that the user can manually evaluate, modify (e.g., remove obvious false positives, low quality spectra etc.), and save the results of the automated search if necessary. Driven by die exponential growth in the number of possible peptide candidates in a BU search when multiple PTMs are probed, the advantages on search speed by limiting the total number of possible PTMs on a peptide in the BU search or by performing an "AIPM predicted" BU search are also discussed in addition to the integration approach. The features of PTMSearchPlus are demonstrated using both a protein standard mixture and a complex protein mixture from Escherichia coli. Experimental data revealed a unique advantage of coupling AIPM and the BU data sets that is mutually beneficial for both approaches. Namely, AIPM data can confirm that no PTM peptides were missed in a BU search, while the BU search determines the location of the PTM. This information is not available using an AIPM search alone.
C1 [Kertesz, Vilmos; Connelly, Heather M.; Erickson, Brian K.; Hettich, Robert L.] Oak Ridge Natl Lab, Div Chem Sci, Organ & Biol Mass Spectrometry Grp, Oak Ridge, TN 37831 USA.
[Connelly, Heather M.; Erickson, Brian K.] Univ Tennessee, Oak Ridge Natl Lab, Grad Sch Genome Sci & Technol, Oak Ridge, TN 37830 USA.
RP Kertesz, V (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Organ & Biol Mass Spectrometry Grp, POB 2008, Oak Ridge, TN 37831 USA.
EM kerteszv@ornl.gov; hettichrl@ornl.gov
RI Kertesz, Vilmos/M-8357-2016; Hettich, Robert/N-1458-2016
OI Kertesz, Vilmos/0000-0003-0186-5797; Hettich, Robert/0000-0001-7708-786X
FU National Institutes of Health, General Medicine Program
[NIH-R01-GM070754]; University of Tennessee-Battelle with the U.S.
Department of Energy [DF AC05-000R22725]
FX Co-first authors VX and H.M.C. contributed equally to this work. The
authors thank David L. Tabb (Vanderbilt University, Nashville, TN) and
Alan Rockwood (ARUP Laboratories, Salt Lake City, UT) for their help in
integrating the MyriMatch scoring algorithm and the isotopic envelope
calculator, respectively, into PTMSearchPlus. The authors thank Morgan
Giddings (University of North Carolina, Chapel Hill, NC) for supplying
the Escherichia coli ribosomal sample as part of another project.
Research support was provided by the National Institutes of Health,
General Medicine Program (Grant NIH-R01-GM070754). H.M.C. and BXE. wish
to acknowledge the ORNL-UTK Genome Science and Technology Graduate
School. Oak Ridge National Laboratory is managed and operated by the
University of Tennessee-Battelle, LLC under Contract DF AC05-000R22725
with the U.S. Department of Energy.
NR 28
TC 6
Z9 6
U1 0
U2 5
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0003-2700
J9 ANAL CHEM
JI Anal. Chem.
PD OCT 15
PY 2009
VL 81
IS 20
BP 8387
EP 8395
DI 10.1021/ac901163c
PG 9
WC Chemistry, Analytical
SC Chemistry
GA 505DZ
UT WOS:000270670600015
PM 19775152
ER
PT J
AU Holman, HYN
Miles, R
Hao, Z
Wozei, E
Anderson, LM
Yang, H
AF Holman, Hoi-Ying N.
Miles, Robin
Hao, Zhao
Wozei, Eleanor
Anderson, L. Meadow
Yang, Haw
TI Real-Time Chemical Imaging of Bacterial Activity in Biofilms Using
Open-Channel Microfluidics and Synchrotron FTIR Spectromicroscopy
SO ANALYTICAL CHEMISTRY
LA English
DT Article
ID TRANSFORM INFRARED-SPECTROSCOPY; RAMAN MICROSCOPY; MITOMYCIN-C; SCATTER
CORRECTION; IR SPECTROSCOPY; HUMAN-CELLS; DNA; ADDUCT; RESISTANCE;
RADIATION
AB Real-time chemical imaging of bacterial activities can facilitate a comprehensive understanding of the dynamics of biofilm structures and functions. Synchrotron-radiation-based Fourier transform infrared (SR-MR) spectromicroscopy can yield high spatial resolution and label-free vibrational signatures of chemical bonds in biomolecules, but the abundance of water in biofilms has hindered SR-FTIR's sensitivity in investigating bacterial activity. We developed a simple open-channel microfluidic system that can circumvent the water-absorption barrier for chemical imaging of the developmental dynamics of bacterial biofilms with a spatial resolution of several micrometers. This system maintains a 10 mu m thick laminar-flow-through biofilm system that minimizes both the imaging volume in liquid and the signal interference from geometry-induced fringing, Here we demonstrate the ability of the open-channel microfluidic platform to maintain the functionality of living cells while enabling high-quality SR-FTIR measurements. We include several applications that show how microbes in biofilms adapt to their immediate environments. The ability to directly monitor and map bacterial changes in biofilms can yield significant insight into a wide range of microbial systems, especially when coupled to more sophisticated microfluidic platforms.
C1 [Holman, Hoi-Ying N.; Hao, Zhao; Wozei, Eleanor] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Miles, Robin] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Anderson, L. Meadow; Yang, Haw] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
RP Holman, HYN (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM hyholman@lbl.gov
RI Holman, Hoi-Ying/N-8451-2014; Hao, Zhao/G-2391-2015
OI Holman, Hoi-Ying/0000-0002-7534-2625; Hao, Zhao/0000-0003-0677-8529
FU U.S. Department of Energy Office of Biological and Environmental
Research's Structural Biology Program [DE-AC02-05CH11231, KP1501021]
FX This work was supported by the U.S. Department of Energy Office of
Biological and Environmental Research's Structural Biology Program
through Contracts DE-AC02-05CH11231 and KP1501021 with Lawrence Berkeley
National Laboratory. Thanks to Dr. Tina Van Dyk of E. I. du Pont de
Nemours and Co. for providing Escherichia coli DPD2794.
NR 54
TC 52
Z9 53
U1 2
U2 52
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0003-2700
J9 ANAL CHEM
JI Anal. Chem.
PD OCT 15
PY 2009
VL 81
IS 20
BP 8564
EP 8570
DI 10.1021/ac9015424
PG 7
WC Chemistry, Analytical
SC Chemistry
GA 505DZ
UT WOS:000270670600039
PM 19775125
ER
PT J
AU La Duc, MT
Osman, S
Vaishampayan, P
Piceno, Y
Andersen, G
Spry, JA
Venkateswaran, K
AF La Duc, Myron T.
Osman, Shariff
Vaishampayan, Parag
Piceno, Yvette
Andersen, Gary
Spry, J. A.
Venkateswaran, Kasthuri
TI Comprehensive Census of Bacteria in Clean Rooms by Using DNA Microarray
and Cloning Methods
SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY
LA English
DT Article
ID MICROBIAL DIVERSITY; SEQUENCE DATA; ENVIRONMENT; SPACECRAFT; ARB
AB A census of clean room surface-associated bacterial populations was derived from the results of both the cloning and sequencing of 16S rRNA genes and DNA microarray (PhyloChip) analyses. Samples from the Lockheed Martin Aeronautics Multiple Testing Facility (LMA-MTF), the Kennedy Space Center Payload Hazard and Servicing Facility (KSC-PHSF), and the Jet Propulsion Laboratory Spacecraft Assembly Facility (JPL-SAF) clean rooms were collected during the various assembly phases of the Phoenix and Mars Science Laboratory (MSL) spacecraft. Clone library-derived analyses detected a larger bacterial diversity prior to the arrival of spacecraft hardware in these clean room facilities. PhyloChip results were in agreement with this trend but also unveiled the presence of anywhere from 9- to 70-fold more bacterial taxa than cloning approaches. Among the facilities sampled, the JPL-SAF (MSL mission) housed a significantly less diverse bacterial population than either the LMA-MTF or KSC-PHSF (Phoenix mission). Bacterial taxa known to thrive in arid conditions were frequently detected in MSL-associated JPL-SAF samples, whereas proteobacterial lineages dominated Phoenix-associated KSC-PHSF samples. Comprehensive bacterial censuses, such as that reported here, will help space-faring nations preemptively identify contaminant biomatter that may compromise extraterrestrial life detection experiments. The robust nature and high sensitivity of DNA microarray technologies should prove beneficial to a wide range of scientific, electronic, homeland security, medical, and pharmaceutical applications and to any other ventures with a vested interest in monitoring and controlling contamination in exceptionally clean environments.
C1 [La Duc, Myron T.; Vaishampayan, Parag; Spry, J. A.; Venkateswaran, Kasthuri] CALTECH, Jet Prop Lab, NASA, Biotechnol & Planetary Protect Grp, Pasadena, CA 91109 USA.
[Osman, Shariff; Piceno, Yvette; Andersen, Gary] Lawrence Berkeley Natl Lab, Berkeley, CA USA.
RP Venkateswaran, K (reprint author), CALTECH, Jet Prop Lab, NASA, Biotechnol & Planetary Protect Grp, Mail Stop 89,Oak Grove Dr, Pasadena, CA 91109 USA.
EM kjvenkat@jpl.nasa.gov
RI Piceno, Yvette/I-6738-2016; Andersen, Gary/G-2792-2015
OI Piceno, Yvette/0000-0002-7915-4699; Andersen, Gary/0000-0002-1618-9827
FU [DE-AC02-05CH11231]
FX We thank K. Buxbaum and C. Conley for valuable advice and encouragement.
We also thank Todd DeSantis for his input and support using the
Greengenes suite of tools (www.greengenes.lbl.gov).
NR 36
TC 49
Z9 49
U1 0
U2 11
PU AMER SOC MICROBIOLOGY
PI WASHINGTON
PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA
SN 0099-2240
J9 APPL ENVIRON MICROB
JI Appl. Environ. Microbiol.
PD OCT 15
PY 2009
VL 75
IS 20
BP 6559
EP 6567
DI 10.1128/AEM.01073-09
PG 9
WC Biotechnology & Applied Microbiology; Microbiology
SC Biotechnology & Applied Microbiology; Microbiology
GA 503QD
UT WOS:000270552500018
PM 19700540
ER
PT J
AU Wilkins, MJ
VerBerkmoes, NC
Williams, KH
Callister, SJ
Mouser, PJ
Elifantz, H
N'Guessan, AL
Thomas, BC
Nicora, CD
Shah, MB
Abraham, P
Lipton, MS
Lovley, DR
Hettich, RL
Long, PE
Banfield, JF
AF Wilkins, Michael J.
VerBerkmoes, Nathan C.
Williams, Kenneth H.
Callister, Stephen J.
Mouser, Paula J.
Elifantz, Hila
N'Guessan, A. Lucie
Thomas, Brian C.
Nicora, Carrie D.
Shah, Manesh B.
Abraham, Paul
Lipton, Mary S.
Lovley, Derek R.
Hettich, Robert L.
Long, Philip E.
Banfield, Jillian F.
TI Proteogenomic Monitoring of Geobacter Physiology during Stimulated
Uranium Bioremediation
SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY
LA English
DT Article
ID BACTERIAL COMMUNITY STRUCTURE; PROTEIN IDENTIFICATIONS;
MASS-SPECTROMETRY; CITRATE SYNTHASE; RIBOSOMAL-RNA; ACCURATE MASS;
EXPRESSION; PROTEOMICS; SULFURREDUCENS; REDUCTION
AB Implementation of uranium bioremediation requires methods for monitoring the membership and activities of the subsurface microbial communities that are responsible for reduction of soluble U(VI) to insoluble U(IV). Here, we report a proteomics-based approach for simultaneously documenting the strain membership and microbial physiology of the dominant Geobacter community members during in situ acetate amendment of the U-contaminated Rifle, CO, aquifer. Three planktonic Geobacter-dominated samples were obtained from two wells down-gradient of acetate addition. Over 2,500 proteins from each of these samples were identified by matching liquid chromatography-tandem mass spectrometry spectra to peptides predicted from seven isolate Geobacter genomes. Genome-specific peptides indicate early proliferation of multiple M21 and Geobacter bemidjiensis-like strains and later possible emergence of M21 and G. bemidjiensis-like strains more closely related to Geobacter lovleyi. Throughout biostimulation, the proteome is dominated by enzymes that convert acetate to acetyl-coenzyme A and pyruvate for central metabolism, while abundant peptides matching tricarboxylic acid cycle proteins and ATP synthase subunits were also detected, indicating the importance of energy generation during the period of rapid growth following the start of biostimulation. Evolving Geobacter strain composition may be linked to changes in protein abundance over the course of biostimulation and may reflect changes in metabolic functioning. Thus, metagenomics-independent community proteogenomics can be used to diagnose the status of the subsurface consortia upon which remediation biotechnology relies.
C1 [Wilkins, Michael J.; Thomas, Brian C.; Banfield, Jillian F.] Univ Calif Berkeley, Dept Earth & Planetary Sci & Environm Sci Policy, Berkeley, CA 94720 USA.
[VerBerkmoes, Nathan C.; Shah, Manesh B.; Abraham, Paul; Hettich, Robert L.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
[VerBerkmoes, Nathan C.; Shah, Manesh B.; Abraham, Paul; Hettich, Robert L.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA.
[Williams, Kenneth H.; Banfield, Jillian F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA.
[Callister, Stephen J.; Nicora, Carrie D.; Lipton, Mary S.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99353 USA.
[Mouser, Paula J.; Elifantz, Hila; N'Guessan, A. Lucie; Lovley, Derek R.] Univ Massachusetts, Dept Microbiol, Amherst, MA 01002 USA.
[Abraham, Paul] Univ Tennessee, Grad Sch Genome Sci & Technol, Knoxville, TN 37830 USA.
[Long, Philip E.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99353 USA.
RP Banfield, JF (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci & Environm Sci Policy, Hilgard Hall, Berkeley, CA 94720 USA.
EM jbanfield@berkeley.edu
RI Wilkins, Michael/A-9358-2013; Long, Philip/F-5728-2013; Williams,
Kenneth/O-5181-2014; Abraham, Paul/K-5599-2015; Hettich,
Robert/N-1458-2016
OI Long, Philip/0000-0003-4152-5682; Williams, Kenneth/0000-0002-3568-1155;
Hettich, Robert/0000-0001-7708-786X
FU DOE [DOE-AC05-00OR22725, DE-AC05-76RL01830]; Environmental and
Remediation Sciences Program, Biological and Environmental Research,
Office of Science, U.S. DOE
FX This research was sponsored by the Environmental and Remediation
Sciences Program, Biological and Environmental Research, Office of
Science, U.S. DOE.
NR 36
TC 81
Z9 84
U1 3
U2 36
PU AMER SOC MICROBIOLOGY
PI WASHINGTON
PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA
SN 0099-2240
J9 APPL ENVIRON MICROB
JI Appl. Environ. Microbiol.
PD OCT 15
PY 2009
VL 75
IS 20
BP 6591
EP 6599
DI 10.1128/AEM.01064-09
PG 9
WC Biotechnology & Applied Microbiology; Microbiology
SC Biotechnology & Applied Microbiology; Microbiology
GA 503QD
UT WOS:000270552500021
PM 19717633
ER
PT J
AU Kristiansson, E
Hugenholtz, P
Dalevi, D
AF Kristiansson, Erik
Hugenholtz, Philip
Dalevi, Daniel
TI ShotgunFunctionalizeR: an R-package for functional comparison of
metagenomes
SO BIOINFORMATICS
LA English
DT Article
ID DATABASE
AB Microorganisms are ubiquitous in nature and constitute intrinsic parts of almost every ecosystem. A culture-independent and powerful way to study microbial communities is metagenomics. In such studies, functional analysis is performed on fragmented genetic material from multiple species in the community. The recent advances in high-throughput sequencing have greatly increased the amount of data in metagenomic projects. At present, there is an urgent need for efficient statistical tools to analyse these data. We have created ShotgunFunctionalizeR, an R-package for functional comparison of metagenomes. The package contains tools for importing, annotating and visualizing metagenomic data produced by shotgun high-throughput sequencing. ShotgunFunctionalizeR contains several statistical procedures for assessing functional differences between samples, both for individual genes and for entire pathways. In addition to standard and previously published methods, we have developed and implemented a novel approach based on a Poisson model. This procedure is highly flexible and thus applicable to a wide range of different experimental designs. We demonstrate the potential of ShotgunFunctionalizeR by performing a regression analysis on metagenomes sampled at multiple depths in the Pacific Ocean.
C1 [Kristiansson, Erik] Univ Gothenburg, Dept Zool, Gothenburg, Sweden.
[Kristiansson, Erik] Univ Gothenburg, Sahlgrenska Acad, Dept Neurosci & Physiol, Gothenburg, Sweden.
[Hugenholtz, Philip] DOE Joint Genome Inst, Microbial Ecol Program, Walnut Creek, CA USA.
[Dalevi, Daniel] Chalmers, Dept Comp Sci & Engn, S-41296 Gothenburg, Sweden.
RP Kristiansson, E (reprint author), Univ Gothenburg, Dept Zool, Gothenburg, Sweden.
EM erik.kristiansson@zool.gu.se; dalevi@chalmers.se
RI Hugenholtz, Philip/G-9608-2011
FU Swedish Research Council Formas; Svenska Sallskapet for Medicinsk
Forskning (SSMF)
FX This work was funded by the Swedish Research Council Formas and Svenska
Sallskapet for Medicinsk Forskning (SSMF).
NR 15
TC 72
Z9 74
U1 2
U2 18
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 1367-4803
EI 1460-2059
J9 BIOINFORMATICS
JI Bioinformatics
PD OCT 15
PY 2009
VL 25
IS 20
BP 2737
EP 2738
DI 10.1093/bioinformatics/btp508
PG 2
WC Biochemical Research Methods; Biotechnology & Applied Microbiology;
Computer Science, Interdisciplinary Applications; Mathematical &
Computational Biology; Statistics & Probability
SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology;
Computer Science; Mathematical & Computational Biology; Mathematics
GA 505ID
UT WOS:000270685200018
PM 19696045
ER
PT J
AU Maiorella, BL
Blanch, HW
Wilke, CR
AF Maiorella, B. L.
Blanch, H. W.
Wilke, C. R.
TI Economic Evaluation of Alternative Ethanol Fermentation Processes
SO BIOTECHNOLOGY AND BIOENGINEERING
LA English
DT Article
ID SACCHAROMYCES-CEREVISIAE; ALCOHOL FERMENTATION; PRODUCT; INHIBITION;
DESIGN; OPTIMIZATION; KINETICS; RECYCLE
AB Eleven alternative fermentation schemes for ethanol production are compared. Conventional batch, continuous, cell recycle, and immobilized cell processes, as well as membrane, extraction, and vacuum processes which remove ethanol from the broth selectively as it is produced, are considered. The processes are compared on identical bases using a consistent model for the yeast metabolism. Both molasses and cellulose hydrolyzate are considered as feeds. Optimized ethanol plants, including feed preparation, fermentation, and product recovery sections are designed and total costs are projected.
C1 [Maiorella, B. L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA.
RP Maiorella, BL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
NR 48
TC 2
Z9 3
U1 2
U2 5
PU JOHN WILEY & SONS INC
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN, NJ 07030 USA
SN 0006-3592
J9 BIOTECHNOL BIOENG
JI Biotechnol. Bioeng.
PD OCT 15
PY 2009
VL 104
IS 3
BP 421
EP 443
PG 23
WC Biotechnology & Applied Microbiology
SC Biotechnology & Applied Microbiology
GA 522TQ
UT WOS:000272022200002
ER
PT J
AU Wang, DJ
Jang, DJ
AF Wang, Daojing
Jang, Deok-Jin
TI Protein Kinase CK2 Regulates Cytoskeletal Reorganization during Ionizing
Radiation-Induced Senescence of Human Mesenchymal Stem Cells
SO CANCER RESEARCH
LA English
DT Article
ID MYOSIN HEAVY-CHAIN; CELLULAR SENESCENCE; TUMOR-SUPPRESSOR;
CATALYTIC-SUBUNIT; ONCOGENIC RAS; PHOSPHORYLATION; CANCER; EXPRESSION;
MOTILITY; GENE
AB Human mesenchymal stem cells (hMSC) are critical for tissue regeneration. How hMSC respond to genotoxic stresses and potentially contribute to aging and cancer remain underexplored. We showed that ionizing radiation induced cellular senescence of hMSC over a period of 10 days, showing a critical transition between days 3 and 6. This was confirmed by senescence-associated beta-galactosidase staining, protein expression profiles of key cell cycle regulators (retinoblastoma protein, p53, p21(waf1/Cip1), and p16(INK4A)), and senescence-associated secretory phenotypes (interleukin-8, interleukin-12, GRO, and MDC). We observed dramatic cytoskeletal reorganization of hMSC through reduction of myosin-10, redistribution of myosin-9, and secretion of profilin-1. Using a SILAC-based phosphoproteomics method, we detected significant reduction of myosin-9 phosphorylation at Ser(1943), coinciding with its redistribution. Importantly, through treatment with cell-permeable inhibitors (4,5,6,7-tetrabromo-1H-benzotriazole and 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole) and gene knockdown using RNA interference, we identified CK2, a kinase responsible for myosin-9 phosphorylation at Ser(1943), as a key factor contributing to the radiation-induced senescence of hMSC. We showed that individual knockdown of CK2 catalytic subunits CK2 alpha and CK2 alpha' induced hMSC senescence. However, only knockdown of CK2 alpha resulted in morphologic phenotypes resembling those of radiation-induced senescence. These results suggest that CK2 alpha and CK2 alpha' play differential roles in hMSC senescence progression, and their relative expression might represent a novel regulatory mechanism for CK2 activity. [Cancer Res 2009;69(20):8200-7]
C1 [Wang, Daojing; Jang, Deok-Jin] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA.
RP Wang, DJ (reprint author), Lawrence Berkeley Natl Lab, Div Life Sci, 1 Cyclotron Rd,MS 977-250, Berkeley, CA 94720 USA.
EM djwang@lbl.gov
FU U.S. Department of Energy and the National Aeronautics and Space
Administration; NIH [R21GM077870]; University of California/Lawrence
Berkeley National Laboratory [AC02-05CH11231]
FX Grant support: Low Dose Radiation Research Program jointly funded by the
U.S. Department of Energy and the National Aeronautics and Space
Administration and by NIH grant R21GM077870. This work was done under
the auspices of the U.S. Department of Energy at the University of
California/Lawrence Berkeley National Laboratory under contract. no.
DE-AC02-05CH11231.
NR 50
TC 35
Z9 40
U1 1
U2 5
PU AMER ASSOC CANCER RESEARCH
PI PHILADELPHIA
PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA
SN 0008-5472
J9 CANCER RES
JI Cancer Res.
PD OCT 15
PY 2009
VL 69
IS 20
BP 8200
EP 8207
DI 10.1158/0008-5472.CAN-09-1976
PG 8
WC Oncology
SC Oncology
GA 508MM
UT WOS:000270935500039
PM 19826041
ER
PT J
AU Bazarov, AV
Hines, WC
Mukhopadhyay, R
Beliveau, A
Melodyev, S
Zaslavsky, Y
Yaswen, P
AF Bazarov, Alexey V.
Hines, William C.
Mukhopadhyay, Rituparna
Beliveau, Alain
Melodyev, Sonya
Zaslavsky, Yuri
Yaswen, Paul
TI Telomerase activation by c-Myc in human mammary epithelial cells
requires additional genomic changes
SO CELL CYCLE
LA English
DT Article
DE breast cancer; comparative genomic hybridization; hTERT;
immortalization; senescence
ID HTERT GENE; BREAST-CANCER; IN-SITU; REVERSE-TRANSCRIPTASE; EXPRESSION;
IMMORTALIZATION; SENESCENCE; TERT; TRANSFORMATION; TARGET
AB A central question in breast cancer biology is how cancer cells acquire telomerase activity required for unlimited proliferation. According to one model, proliferation of telomerase(-) pre-malignant cells leads to telomere dysfunction and increased genomic instability. Such instability leads in rare cases to reactivation of telomerase and immortalization. The mechanism of telomerase reactivation remains unknown. We have studied immortalization of cultured human mammary epithelial cells by c-Myc, a positive transcriptional regulator of the hTERT gene encoding the catalytic subunit of telomerase. Retrovirally introduced c-Myc cDNA resulted in immortalization of human mammary epithelial cells in which the cyclin dependent kinase inhibitor, p16(INK4A), was inactivated by an shRNA-encoding retrovirus. However, while c-Myc introduction immediately resulted in increased activity of transiently transfected hTERT promoter reporter constructs, endogenous hTERT mRNA levels did not change until about 60 population doublings after c-Myc introduction. Increased endogenous hTERT transcripts and stabilization of telomeric DNA in cells expressing exogenous c-Myc coincided with telomere dysfunction-associated senescence in control cultures. Genome copy number analyses of immortalized cells indicated amplifications of some or all of chromosome 5, where hTERT genes are located. hTERT gene copy number, however, was not increased in one case. The results are consistent with the hypothesis that changes in chromosome 5, while not necessarily increasing hTERT gene copy number, resulted in removal of repressive chromatin structures around hTERT loci, allowing induction of hTERT transcription. These in vitro results model one possible sequence of events leading to immortalization of breast epithelial cells during cancer progression.
C1 [Hines, William C.; Mukhopadhyay, Rituparna; Beliveau, Alain; Melodyev, Sonya; Yaswen, Paul] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA.
[Bazarov, Alexey V.; Zaslavsky, Yuri] Univ Calif San Francisco, Dept Lab Med, San Francisco, CA 94143 USA.
RP Yaswen, P (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA.
EM P_Yaswen@lbl.gov
FU Flight Attendant Medical Research Institute [032122]; Cure Research
Grant [BCTR0707231]; US Department of Energy [DE-AC03-76SF00098]; Komen
Foundation [PDF0707408]
FX We thank Drs. Scott Lowe and Tae Kook Kim for providing reagents, Dr.
Alfred Au and the UCSF Comprehensive Cancer Center Tissue Core for
reduction mammaplasty samples, and Dr. Greg Hamilton and the UCSF Array
Core for performing aCGH. This work was supported by a Flight Attendant
Medical Research Institute Young Clinical Investigator Award No. 032122
(A.V.B.), a Komen for the Cure Research Grant No. BCTR0707231 (A.V.B.),
and the Office of Energy Research, Office of Health and Biological
Research, US Department of Energy (P.Y.) under Contract No.
DE-AC03-76SF00098 (P.Y.). W.C.H. was supported by postdoctoral
fellowship PDF0707408 from the Komen Foundation.
NR 25
TC 16
Z9 20
U1 0
U2 2
PU LANDES BIOSCIENCE
PI AUSTIN
PA 1806 RIO GRANDE ST, AUSTIN, TX 78702 USA
SN 1538-4101
J9 CELL CYCLE
JI Cell Cycle
PD OCT 15
PY 2009
VL 8
IS 20
BP 3373
EP 3378
PG 6
WC Cell Biology
SC Cell Biology
GA 514DK
UT WOS:000271374300027
PM 19806010
ER
PT J
AU Bland, PA
Jackson, MD
Coker, RF
Cohen, BA
Webber, JBW
Lee, MR
Duffy, CM
Chater, RJ
Ardakani, MG
McPhail, DS
McComb, DW
Benedix, GK
AF Bland, Philip A.
Jackson, Matthew D.
Coker, Robert F.
Cohen, Barbara A.
Webber, J. Beau W.
Lee, Martin R.
Duffy, Christina M.
Chater, Richard J.
Ardakani, Mahmoud G.
McPhail, David S.
McComb, David W.
Benedix, Gretchen K.
TI Why aqueous alteration in asteroids was isochemical: High porosity not
equal high permeability
SO EARTH AND PLANETARY SCIENCE LETTERS
LA English
DT Article
DE meteorite; carbonaceous chondrite; asteroidal alteration; permeability;
isochemical alteration; fluid flow; closed/open system
ID CHONDRITE PARENT BODIES; EARLY SOLAR-SYSTEM; OXYGEN ISOTOPIC
COMPOSITION; X-RAY-DIFFRACTION; CARBONACEOUS CHONDRITES; MODAL
MINERALOGY; CM2 CHONDRITES; CI CHONDRITES; METEORITES; CHONDRULES
AB Carbonaceous chondrite meteorites are the most compositionally primitive rocks in the solar system, but the most chemically pristine (Cl1 and CM2 chondrites) have experienced pervasive aqueous alteration, apparently within asteroid parent bodies. Unfractionated soluble elements suggest very limited flow of liquid water, indicting a closed-system at scales large than 100's mu m, consistent with data from oxygen isotopes, and meteorite petrography. However, numerical studies persistently predict large-scale (10's km) water transport in model asteroids, either in convecting cells, or via 'exhalation' flow - an open-system at scales up to 10's km. These models have tended to use permeabilites in the range 10(-13) to 10(-11) m(2). we show that the permeability of plausible chondritic starting materials lies in the range 10(-19) to 10(-17) m(2) (0.1-10 mu D): around six orders-of-magnitude lower than previously assumed. This low permeability is largely a result of the extreme fine grain-size of primitive chondritic materials. Applying these permeability estimates in numerical models, we predict very limited liquid water flow (distances of 100's mu m at most), even in a high porosity, water-saturated asteroid, with a high thermal gradient, over millions of years. Isochemical alteration, with flow over minimal lengthscales, is not a special circumstance. It is inevitable, once we consider the fundamental material properties of these rocks. To achieve large-scale flow it would require average matrix grain sizes in primitive materials of 10's-100's mu m - orders of magnitude larger than observed. Finally, in addition to reconciling numerical modelling with meteorite data, our work explains several other features of these enigmatic rocks, most particularly, why the most chemically primitive meteorites are also the most altered. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Bland, Philip A.; Jackson, Matthew D.; Duffy, Christina M.] Univ London Imperial Coll Sci Technol & Med, IARC, Dept Earth Sci & Engn, London SW7 2AZ, England.
[Bland, Philip A.; Benedix, Gretchen K.] Nat Hist Museum, Dept Mineral, IARC, London SW7 5BD, England.
[Coker, Robert F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Cohen, Barbara A.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA.
[Webber, J. Beau W.] Univ Kent, Sch Phys Sci, Canterbury CT2 7NR, Kent, England.
[Webber, J. Beau W.] Inst Petr Engn, Edinburgh EH14 4AS, Midlothian, Scotland.
[Lee, Martin R.] Univ Glasgow, Dept Geog & Earth Sci, Glasgow G12 8QQ, Lanark, Scotland.
[Chater, Richard J.; Ardakani, Mahmoud G.; McPhail, David S.; McComb, David W.] Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2AZ, England.
RP Bland, PA (reprint author), Univ London Imperial Coll Sci Technol & Med, IARC, Dept Earth Sci & Engn, S Kensington Campus, London SW7 2AZ, England.
EM p.a.bland@imperial.ac.uk
RI Lee, Martin/D-9169-2011; Jackson, Matthew/N-5121-2014; Webber, J B
W/C-4317-2008; McComb, David/A-7808-2010;
OI Lee, Martin/0000-0002-6004-3622; Webber, J B W/0000-0002-8967-4671;
Benedix, Gretchen/0000-0003-0990-8878
FU Royal Society; Science & Technology Facilities Council (STFC)
[PPA/G/S/2003/00071]
FX We acknowledge the financial support from the Royal Society, and the
Science & Technology Facilities Council (STFC) under grant number
PPA/G/S/2003/00071: PAB thanks Ed Young and Richard Ash for the numerous
useful discussions on this topic. The final draft of the paper benefited
from comments by two anonymous reviewers.
NR 66
TC 45
Z9 45
U1 2
U2 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0012-821X
J9 EARTH PLANET SC LETT
JI Earth Planet. Sci. Lett.
PD OCT 15
PY 2009
VL 287
IS 3-4
BP 559
EP 568
DI 10.1016/j.epsl.2009.09.004
PG 10
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 522PQ
UT WOS:000272010800029
ER
PT J
AU Bai, J
Liu, CX
Ball, WP
AF Bai, Jing
Liu, Chongxuan
Ball, William P.
TI Study of Sorption-Retarded U(VI) Diffusion in Hanford Silt/Clay Material
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
LA English
DT Article
ID URANIUM(VI) SORPTION; SUBSURFACE SEDIMENTS; ADSORPTION; TRANSPORT; SITE;
MODEL; DESORPTION; COMPLEXES; GRANITE; IBARAKI
AB A diffusion cell method was applied to measure the effective pore diffusion coefficient (D(p)) for U(VI) under strictly controlled chemical conditions in a silt/clay sediment from the U.S. Department of Energy Hanford site, WA. "Inward-flux" diffusion studies were conducted in which [U(VI)] in both aqueous and solid phases was measured as a function of distance in the diffusion cell under conditions of constant concentration at the cell boundaries. A sequential extraction method was developed to measure sorbed contaminant U(VI) in the solid phase containing extractable background U(VI). The effect of sorption kinetics on U(VI) interparticle diffusion was evaluated by comparing sorption-retarded diffusion models with sorption described either as equilibrium or intraparticle diffusion-limited processes. Both experimental and modeling results indicated that(1)a single pore diffusion coefficient can simulate the diffusion of total aqueous U(VI), and (2) the local equilibrium assumption (LEA) is appropriate for modeling sorption-retraded diffusion under the given experimental conditions, D(p) of 1.6-1.7 x 10(-6) cm(2)/s was estimated in aqueous solution at pH 8.0 and saturated with respect to calcite, as relevant to some subsurface regions of the Hanford site.
C1 [Bai, Jing; Ball, William P.] Johns Hopkins Univ, Dept Geog & Environm Engn, Baltimore, MD 21218 USA.
[Liu, Chongxuan] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Bai, J (reprint author), Johns Hopkins Univ, Dept Geog & Environm Engn, 3400 N Charles St, Baltimore, MD 21218 USA.
EM jbai@jhu.edu
RI Liu, Chongxuan/C-5580-2009; Ball, William/A-3285-2010
OI Ball, William/0000-0001-5217-8108
FU Environmental Remediation Science Program of the office of Science; U.S.
Department of Energy [DE-FG07-02ER63498]
FX The research described in this manuscript was supported in large part by
the Environmental Remediation Science Program of the office of Science,
U.S. Department of Energy under contract DE-FG07-02ER63498.
NR 33
TC 14
Z9 14
U1 2
U2 26
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0013-936X
J9 ENVIRON SCI TECHNOL
JI Environ. Sci. Technol.
PD OCT 15
PY 2009
VL 43
IS 20
BP 7706
EP 7711
DI 10.1021/es901306c
PG 6
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA 504DR
UT WOS:000270594900022
PM 19921882
ER
PT J
AU Yoon, H
Oostrom, M
Werth, CJ
AF Yoon, Hongkyu
Oostrom, Mart
Werth, Charles J.
TI Estimation of Interfacial Tension between Organic Liquid Mixtures and
Water
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
LA English
DT Article
ID MOLAR VOLUME; SYSTEMS; PREDICTION; BINARY; DNAPL; MODEL
AB Knowledge of IFT values for chemical mixtures helps guide the design and analysis of various processes, including NAPL remediation with surfactants or alcohol flushing, enhanced oil recovery, and chemical separation technologies, yet available literature values are sparse. A comprehensive comparison of thermodynamic and empirical models for estimating interfacial tension (IFT) of organic chemical mixtures with water is conducted, mainly focusing on chlorinated organic compounds for 14 ternary, three quaternary, and one quinary systems. Emphasis is placed on novel results for systems with three and four organic chemical compounds, and for systems with composite organic compounds like lard oil and mineral oil, Seven models are evaluated: the ideal and nonideal monolayer models (MLID and MLNID), the ideal and nonideal mutual solubility models (MSID and MSNID.), an empirical model for ternary systems (EM), a linear mixing model based on mole fractions (LMMM), and a newly developed linear mixing model based on volume fractions of organic mixtures (LMMV) for higher order systems. The two ideal models (MLID and MSID) fit ternary systems of chlorinated organic compounds without surface active compounds relatively well. However, both ideal models did not perform well for the mixtures containing p surface active compound. However, for these systems, both the MLNID and MSNID models matched the IFT data well. It is shown that the MLNID model with a surface coverage value (0.00341 mmol/m(2)) obtained in this study can practically be. used for chlorinated organic compounds. The LMMM results in poorer estimates of the IFT as the difference in IFT values of individual organic compounds in a mixture increases. The EM, with two fitting parameters, provided accurate results for all 14 ternary systems including composite organic compounds. The new LMMV method for quaternary and higher component systems was successfully tested. This study shows that the LMMV may be able to be used. for higher component systems and it can be easily incorporated into compositional multiphase flow models using only parameters from ternary systems.
C1 [Yoon, Hongkyu; Werth, Charles J.] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA.
[Oostrom, Mart] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA.
RP Werth, CJ (reprint author), Univ Illinois, Dept Civil & Environm Engn, 205 N Mathews Ave, Urbana, IL 61801 USA.
EM werth@illinois.edu
FU Office of Science (BER); U.S. Department of Energy (DOF)-Environmental
Remodiation Sciences Program (ERSP) [DE-FG02-06ER64207]; U,S. DOE's
Office of Biological and Environmental Research; U.S. DOE [DE-AC06-76RLO
1830]
FX This work was supported by the Office of Science (BER), U.S. Department
of Energy (DOF)-Environmental Remodiation Sciences Program (ERSP), Grant
No. DE-FG02-06ER64207. We thank Scott Nellis for measuring IFTs of the
CT-DBBP-TBP-LO system. Part of the work was conducted in the
Environmental Molecular Sciences Laboratory (EMSL), a national
scientific user facility sponsored by the U,S. DOE's Office of
Biological and Environmental Research and located at Pacific Northwest
National Laboratory (PNNL), PNNL is operated by Battelle Memorial
Institute for the U.S. DOE under Contract DE-AC06-76RLO 1830.
NR 25
TC 12
Z9 13
U1 6
U2 28
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0013-936X
EI 1520-5851
J9 ENVIRON SCI TECHNOL
JI Environ. Sci. Technol.
PD OCT 15
PY 2009
VL 43
IS 20
BP 7754
EP 7761
DI 10.1021/es901061k
PG 8
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA 504DR
UT WOS:000270594900030
PM 19921890
ER
PT J
AU Lumetta, GJ
McNamara, BK
Buck, EC
Fiskum, SK
Snow, LA
AF Lumetta, Gregg J.
McNamara, Bruce K.
Buck, Edgar C.
Fiskum, Sandra K.
Snow, Lanee A.
TI Characterization of High Phosphate Radioactive Tank Waste and Simulant
Development
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
LA English
DT Article
ID CHROMIUM
AB A sample of high-level radioactive tank waste was characterized to provide a basis for developing a waste simulant. The simulant is required for pilot-scale testing of pretreatment processes in a nonradiological facility. The waste material examined was derived from the bismuth phosphate process, which was the first industrial process implemented to separate plutonium from Irradiated nuclear fuel, The bismuth phosphate process sludge is a complex mixture rich in bismuth, iron, sodium, phosphorus, silicon, and uranium, The form of phosphorus in this particular tank waste material is of specific importance because that is the primary component (other than water-soluble sodium salts) that must be removed from the high-level waste solids by pretreatment. This work shows unequivocally that the phosphorus in this waste material is not present as bismuth phosphate. Rather, the phosphorus appears to be incorporated mostly into an amorphous iron(III) phosphate phase. The bismuth in the sludge solids is best described as BiFeO(3). The behavior of phosphorus during caustic leaching of the bismuth phosphate process sledge solids is also discussed.
C1 [Lumetta, Gregg J.; McNamara, Bruce K.; Buck, Edgar C.; Fiskum, Sandra K.; Snow, Lanee A.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Lumetta, GJ (reprint author), Pacific NW Natl Lab, POB 999,MSIN P7-25, Richland, WA 99352 USA.
EM gregg.lumetta@pnl.gov
RI Buck, Edgar/D-4288-2009; Buck, Edgar/N-7820-2013
OI Buck, Edgar/0000-0001-5101-9084
FU U.S. Department of Energy by Battelle [DE-C05-76RL01830]; Bechtel
National, Inc.
FX Pacific Northwest National Laboratory is operated for the U.S.
Department of Energy by Battelle under Contract DE-C05-76RL01830. This
work was funded by the U.S. Department of Energy through the Office of
Environmental Management and under the guidance of Bechtel National,
Inc.
NR 18
TC 7
Z9 7
U1 1
U2 5
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0013-936X
J9 ENVIRON SCI TECHNOL
JI Environ. Sci. Technol.
PD OCT 15
PY 2009
VL 43
IS 20
BP 7843
EP 7848
DI 10.1021/es9013746
PG 6
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA 504DR
UT WOS:000270594900043
PM 19921903
ER
PT J
AU Duncan, KE
Gieg, LM
Parisi, VA
Tanner, RS
Tringe, SG
Bristow, J
Suflita, JM
AF Duncan, Kathleen E.
Gieg, Lisa M.
Parisi, Victoria A.
Tanner, Ralph S.
Tringe, Susannah Green
Bristow, Jim
Suflita, Joseph M.
TI Biocorrosive Thermophilic Microbial Communities in Alaskan Worth Slope
Oil Facilities
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
LA English
DT Article
ID SP NOV.; GEN. NOV.; PETROLEUM RESERVOIR; ANAEROBIC OXIDATION; PRODUCTION
WATER; NORTH-SEA; BACTERIUM; ARCHAEA; SEQUENCES; SEDIMENTS
AB Corrosion of metallic oilfield pipelines by microorganisms is a costly but poorly understood phenomenon, with standard treatment methods targeting mesophilic sulfate-reducing bacteria. In assessing biocorrosion potential at an Alaskan North Slope oil field, we identified thermophilic hydrogen-using methanogens, syntrophic bacteria, peptide- and amino acid-fermenting bacteria, iron reducers, sulfur/thiosulfate-reducing bacteria, and sulfate-reducing archaea. These microbes can stimulate metal corrosion through production of organic acids, CO(2), sulfur species, and via hydrogen oxidation and iron reduction, implicating many more types of organisms than are currently targeted. Micromolar quantities of putative anaerobic metabolites of C(1)-C(4) n-alkanes in pipeline fluids were detected, implying that these low molecular weight hydrocarbons, routinely reinjected into reservoirs for oil recovery purposes, are biodegraded and can provide biocorrosive microbial communities with an important source of nutrients.
C1 [Duncan, Kathleen E.; Gieg, Lisa M.; Parisi, Victoria A.; Tanner, Ralph S.; Suflita, Joseph M.] Univ Oklahoma, Dept Bot & Microbiol, Norman, OK 73019 USA.
[Duncan, Kathleen E.; Gieg, Lisa M.; Parisi, Victoria A.; Tanner, Ralph S.; Suflita, Joseph M.] Univ Oklahoma, Inst Energy & Environm, Norman, OK 73019 USA.
[Tringe, Susannah Green; Bristow, Jim] DOE Joint Genome Inst, Walnut Creek, CA USA.
RP Suflita, JM (reprint author), Univ Oklahoma, Dept Bot & Microbiol, Norman, OK 73019 USA.
EM jsuflita@ou.edu
FU National Science Foundation [0647712]; ConocoPhillips
FX Support from the National Science Foundation (Award No. 0647712) and
ConocoPhillips is gratefully acknowledged. We particularly appreciate
the assistance of Dr. Gary Jenneman and the Alaska Business Unit
personnel or ConocoPhillips for organizing, collecting and shipping
samples as well as for the use of ANS laboratory facilities. The
conclusions expressed in this paper are those of the authors and not
necessarily shared by ConocoPhillips.
NR 46
TC 71
Z9 74
U1 1
U2 24
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0013-936X
J9 ENVIRON SCI TECHNOL
JI Environ. Sci. Technol.
PD OCT 15
PY 2009
VL 43
IS 20
BP 7977
EP 7984
DI 10.1021/es9013932
PG 8
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA 504DR
UT WOS:000270594900063
PM 19921923
ER
PT J
AU Fang, YL
Yabusaki, SB
Morrison, SJ
Amonette, JP
Long, PE
AF Fang, Yilin
Yabusaki, Steven B.
Morrison, Stan J.
Amonette, James P.
Long, Philip E.
TI Multicomponent reactive transport modeling of uranium bioremediation
field experiments
SO GEOCHIMICA ET COSMOCHIMICA ACTA
LA English
DT Article
ID DISSIMILATORY METAL REDUCTION; MICROBIAL REDUCTION; BIOGEOCHEMICAL
PROCESSES; CONTAMINATED AQUIFER; MINERAL ASSEMBLAGES; U(VI) REDUCTION;
FE(III) OXIDES; SEDIMENTS; IRON; ADSORPTION
AB A reaction network integrating abiotic and microbially mediated reactions has been developed to simulate biostimulation field experiments at a former Uranium Mill Tailings Remedial Action (UMTRA) site in Rifle, Colorado. The reaction network was calibrated using data from the 2002 field experiment, after which it was applied without additional calibration to field experiments performed in 2003 and 2007. The robustness of the model specification is significant in that (1) the 2003 biostimulation field experiment was performed with 3 times higher acetate concentrations than the previous biostimulation in the same field plot (i.e., the 2002 experiment), and (2) the 2007 field experiment was performed in a new unperturbed plot on the same site. The biogeochemical reactive transport simulations accounted for four terminal electron-accepting processes (TEAPs), two distinct functional microbial populations, two pools of bioavailable Fe(III) minerals (iron oxides and phyllosilicate iron), uranium aqueous and surface complexation, mineral precipitation and dissolution. The conceptual model for bioavailable iron reflects recent laboratory studies with sediments from the UMTRA site that demonstrated that the bulk (similar to 90%) of initial Fe(III) bioreduction is associated with phyllosilicate rather than oxide forms of iron. The uranium reaction network includes a U(VI) surface complexation model based on laboratory studies with Rifle site sediments and aqueous complexation reactions that include ternary complexes (e. g., calcium-uranyl-carbonate). The bioreduced U(IV), Fe(II), and sulfide components produced during the experiments are strongly associated with the solid phases and may play an important role in long-term uranium immobilization. (C) 2009 Elsevier Ltd. All rights reserved.
C1 [Fang, Yilin; Yabusaki, Steven B.; Amonette, James P.; Long, Philip E.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Morrison, Stan J.] SM Stoller Corp, Grand Junction, CO 81503 USA.
RP Fang, YL (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999, Richland, WA 99352 USA.
EM yilin.fang@pnl.gov
RI Long, Philip/F-5728-2013; Fang, Yilin/J-5137-2015
OI Long, Philip/0000-0003-4152-5682;
FU Office of Science, U. S. Department of Energy
FX This research was funded by the Environmental Remediation Science
Program, Biological and Environmental Research, Office of Science, U. S.
Department of Energy. Pacific Northwest National Laboratory is operated
by Battelle for the U. S. Department of Energy under Contract
DE-AC05-76RL01830. This manuscript benefited significantly from the
anonymous reviewers and Dr. Jon Chorover and we thank them for their
helpful comments and suggestions.
NR 65
TC 51
Z9 51
U1 1
U2 30
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0016-7037
EI 1872-9533
J9 GEOCHIM COSMOCHIM AC
JI Geochim. Cosmochim. Acta
PD OCT 15
PY 2009
VL 73
IS 20
BP 6029
EP 6051
DI 10.1016/j.gca.2009.07.019
PG 23
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 541LF
UT WOS:000273416500006
ER
PT J
AU Ku, TL
Luo, S
Goldstein, SJ
Murrell, MT
Chu, WL
Dobson, PF
AF Ku, T. L.
Luo, S.
Goldstein, S. J.
Murrell, M. T.
Chu, W. L.
Dobson, P. F.
TI Modeling non-steady state radioisotope transport in the vadose zone - A
case study using uranium isotopes at Pena Blanca, Mexico
SO GEOCHIMICA ET COSMOCHIMICA ACTA
LA English
DT Article
ID I NATURAL ANALOG; MASS-SPECTROMETRY; YUCCA MOUNTAIN; CHIHUAHUA; WATERS;
SERIES
AB Current models using U-and Th-series disequilibria to study radioisotope transport in groundwater systems mostly consider a steady-state situation. These models have limited applicability to the vadose zone (UZ) where the concentration and migratory behavior of radioisotopes in fluid are often transitory. We present here, as a first attempt of its kind, a model simulating the non-steady state, intermittent fluid transport in vadose layers. It provides quantitative constraints on in-situ migration of dissolved and colloidal radioisotopes in terms of retardation factor and rock-water interaction (or water transit) time. For uranium, the simulation predicts that intermittent flushing in the UZ leads to a linear relationship between reciprocal U concentration and (234)U/(238)U ratio in percolating waters, with the intercept and slope bearing information on the rates of dissolution and alpha-recoil of U isotopes, respectively. The general validity of the model appears to be borne out by the measurement of uranium isotopes in UZ waters collected at various times over a period during 1995-2006 from a site in the Pena Blanca mining district, Mexico, where the Nopal I uranium deposit is located. Enhanced (234)U/(238)U ratios in vadose-zone waters resulting from lengthened non-flushing time as prescribed by the model provide an interpretative basis for using (234)U/(238)U in cave calcites to reconstruct the regional changes in hydrology and climate. We also provide a theoretical account of the model's potential applications using radium isotopes. (C) 2009 Elsevier Ltd. All rights reserved.
C1 [Ku, T. L.] Univ So Calif, Dept Earth Sci, Los Angeles, CA 90089 USA.
[Ku, T. L.; Luo, S.; Chu, W. L.] Natl Cheng Kung Univ, Dept Earth Sci, Tainan 701, Taiwan.
[Goldstein, S. J.; Murrell, M. T.] Los Alamos Natl Lab, Nucl & Radiochem Grp, Los Alamos, NM 87545 USA.
[Dobson, P. F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA.
RP Ku, TL (reprint author), Univ So Calif, Dept Earth Sci, Los Angeles, CA 90089 USA.
EM rku@usc.edu
RI Dobson, Patrick/D-8771-2015
OI Dobson, Patrick/0000-0001-5031-8592
NR 27
TC 10
Z9 10
U1 3
U2 15
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0016-7037
J9 GEOCHIM COSMOCHIM AC
JI Geochim. Cosmochim. Acta
PD OCT 15
PY 2009
VL 73
IS 20
BP 6052
EP 6064
DI 10.1016/j.gca.2009.07.011
PG 13
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 541LF
UT WOS:000273416500007
ER
PT J
AU Ulrich, KU
Ilton, ES
Veeramani, H
Sharp, JO
Bernier-Latmani, R
Schofield, EJ
Bargar, JR
Giammar, DE
AF Ulrich, Kai-Uwe
Ilton, Eugene S.
Veeramani, Harish
Sharp, Jonathan O.
Bernier-Latmani, Rizlan
Schofield, Eleanor J.
Bargar, John R.
Giammar, Daniel E.
TI Comparative dissolution kinetics of biogenic and chemogenic uraninite
under oxidizing conditions in the presence of carbonate
SO GEOCHIMICA ET COSMOCHIMICA ACTA
LA English
DT Article
ID RAY PHOTOELECTRON-SPECTROSCOPY; SOLUTION SATURATION STATE; OXIDATIVE
DISSOLUTION; REDUCING CONDITIONS; UNIRRADIATED UO2; PENTAVALENT URANIUM;
CHARGE-DISTRIBUTION; DISPOSAL CONDITIONS; HYDROGEN-PEROXIDE;
DISSOLVED-OXYGEN
AB The long-term stability of biogenic uraninite with respect to oxidative dissolution is pivotal to the success of in situ bioreduction strategies for the subsurface remediation of uranium legacies. Batch and flow-through dissolution experiments were conducted along with spectroscopic analyses to compare biogenic uraninite nanoparticles obtained from Shewanella oneidensis MR-1 and chemogenic UO(2.00) with respect to their equilibrium solubility, dissolution mechanisms, and dissolution kinetics in water of varied oxygen and carbonate concentrations. Both materials exhibited a similar intrinsic solubility of similar to 10(-8) M under reducing conditions. The two materials had comparable dissolution rates under anoxic as well as oxidizing conditions, consistent with structural bulk homology of biogenic and stoichiometric uraninite. Carbonate reversibly promoted uraninite dissolution under both moderately oxidizing and reducing conditions, and the biogenic material yielded higher surface area-normalized dissolution rates than the chemogenic. This difference is in accordance with the higher proportion of U(V) detected on the biogenic uraninite surface by means of X-ray photoelectron spectroscopy. Reasonable sources of a stable U(V)-bearing intermediate phase are discussed. The observed increase of the dissolution rates can be explained by carbonate complexation of U(V) facilitating the detachment of U(V) from the uraninite surface. The fraction of surface-associated U(VI) increased with dissolved oxygen concentration. Simultaneously, X-ray absorption spectra showed conversion of the bulk from UO(2.0) to UO(2+x). In equilibrium with air, combined spectroscopic results support the formation of a near-surface layer of approximate composition UO(2.25) (U(4)O(9)) coated by an outer layer of U(VI). This result is in accordance with flow-through dissolution experiments that indicate control of the dissolution rate of surface-oxidized uraninite by the solubility of metaschoepite under the tested conditions. Although U(V) has been observed in electrochemical studies on the dissolution of spent nuclear fuel, this is the first investigation that demonstrates the formation of a stable U(V) intermediate phase on the surface of submicron-sized uraninite particles suspended in aqueous solutions. (C) 2009 Elsevier Ltd. All rights reserved.
C1 [Ulrich, Kai-Uwe; Giammar, Daniel E.] Washington Univ, Dept Energy Environm & Chem Engn, St Louis, MO 63130 USA.
[Ilton, Eugene S.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Veeramani, Harish; Sharp, Jonathan O.; Bernier-Latmani, Rizlan] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland.
[Schofield, Eleanor J.; Bargar, John R.] Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA.
RP Ulrich, KU (reprint author), BGD Soil & Groundwater Lab GmbH, Tiergartenstr 48, D-01219 Dresden, Germany.
EM kulrich@bgd-gmbh.de
RI Bernier-Latmani, Rizlan/E-4398-2011; Sharp, Jonathan/A-4893-2013;
Veeramani, Harish/N-2783-2015
OI Bernier-Latmani, Rizlan/0000-0001-6547-722X; Sharp,
Jonathan/0000-0002-2942-1066; Veeramani, Harish/0000-0002-7623-209X
FU U. S. Department of Energy, Office of Basic Energy Sciences
[DE-FG02-06ER64227, 1027869, 1027833, 1027834]; NIH; NSF [20021-113784]
FX We thank Dan Schwarz and David Clark for providing synthetic
UO2.00 material and Satya Chinni for running samples on the
KPA. We are grateful to Sabine Ulrich, Edgar Leslie, and Scott Dixon for
their assistance in the laboratory. We appreciate helpful discussions
with Steven Conradson. We thank the Associate Editor, Dr. Zhu, and two
anonymous reviewers who helped improve an earlier draft of this
manuscript. Funding was provided by the U. S. Department of Energy,
Office of Basic Energy Sciences grant # DE-FG02-06ER64227, through the
linked Grants 1027869 (SSRL), 1027833 (EPFL), and 1027834 (WU). Part of
this research was carried out at the Stanford Synchrotron Radiation
Light-source, a national user facility operated by Stanford University
on behalf of the U. S. DOE-OBER. Portions of this project were supported
by the DOE-BER-funded SSRL Environmental Remediation Science Program and
the DOE-BER and NIH-NCRR-funded SSRL Structural Molecular Biology
Program. Work carried out at EPFL was funded in part by the Swiss NSF
Grant # 20021-113784.
NR 68
TC 49
Z9 49
U1 3
U2 48
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0016-7037
J9 GEOCHIM COSMOCHIM AC
JI Geochim. Cosmochim. Acta
PD OCT 15
PY 2009
VL 73
IS 20
BP 6065
EP 6083
DI 10.1016/j.gca.2009.07.012
PG 19
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 541LF
UT WOS:000273416500008
ER
PT J
AU Knight, KB
Kita, NT
Mendybaev, RA
Richter, FM
Davis, AM
Valley, JW
AF Knight, Kim B.
Kita, Noriko T.
Mendybaev, Ruslan A.
Richter, Frank M.
Davis, Andrew M.
Valley, John W.
TI Silicon isotopic fractionation of CAI-like vacuum evaporation residues
SO GEOCHIMICA ET COSMOCHIMICA ACTA
LA English
DT Article
ID AL-RICH INCLUSIONS; REFRACTORY INCLUSIONS; CRYSTALLIZATION SEQUENCES;
FORSTERITE; ALLENDE; CONDENSATION; DIFFUSION; MAGNESIUM; KINETICS;
ELEMENTS
AB Calcium-, aluminum-rich inclusions (CAIs) are often enriched in the heavy isotopes of magnesium and silicon relative to bulk solar system materials. It is likely that these isotopic enrichments resulted from evaporative mass loss of magnesium and silicon from early solar system condensates while they were molten during one or more high-temperature reheating events. Quantitative interpretation of these enrichments requires laboratory determinations of the evaporation kinetics and associated isotopic fractionation effects for these elements. The experimental data for the kinetics of evaporation of magnesium and silicon and the evaporative isotopic fractionation of magnesium is reasonably complete for Type B CAI liquids (Richter F. M., Davis A. M., Ebel D. S., and Hashimoto A. (2002) Elemental and isotopic fractionation of Type B CAIs: experiments, theoretical considerations, and constraints on their thermal evolution. Geochim. Cosmochim. Acta 66, 521-540; Richter F. M., Janney P. E., Mendybaev R. A., Davis A. M., and Wadhwa M. (2007a) Elemental and isotopic fractionation of Type B CAI-like liquids by evaporation. Geochim. Cosmochim. Acta 71, 5544-5564.). However, the isotopic fractionation factor for silicon evaporating from such liquids has not been as extensively studied. Here we report new ion microprobe silicon isotopic measurements of residual glass from partial evaporation of Type B CAI liquids into vacuum. The silicon isotopic fractionation is reported as a kinetic fractionation factor, alpha(Si), corresponding to the ratio of the silicon isotopic composition of the evaporation flux to that of the residual silicate liquid. For CAI-like melts, we find that alpha(Si) = 0.98985 +/- 0.00044 (2 sigma) for (29)Si/(28)Si with no resolvable variation with temperature over the temperature range of the experiments, 1600-1900 degrees C. This value is different from what has been reported for evaporation of liquid Mg(2)SiO(4) (Davis A. M., Hashimoto A., Clayton R. N., and Mayeda T. K. (1990) Isotope mass fractionation during evaporation of Mg(2)SiO(4). Nature 347, 655-658.) and of a melt with CI chondritic proportions of the major elements (Wang J., Davis A. M., Clayton R. N., Mayeda T. K., and Hashimoto A. (2001) Chemical and isotopic fractionation during the evaporation of the FeO-MgO-SiO(2)-CaO-Al(2)O(3)-TiO(2)-REE melt system. Geochim. Cosmochim. Acta 65, 479-494.). There appears to be some compositional control on alpha(Si), whereas no compositional effects have been reported for alpha(Mg). We use the values of alpha(Si) and alpha(Mg), to calculate the chemical compositions of the unevaporated precursors of a number of isotopically fractionated CAIs from CV chondrites whose chemical compositions and magnesium and silicon isotopic compositions have been previously measured. (C) 2009 Elsevier Ltd. All rights reserved.
C1 [Knight, Kim B.; Mendybaev, Ruslan A.; Richter, Frank M.; Davis, Andrew M.] Univ Chicago, Chicago Ctr Cosmochem, Chicago, IL 60637 USA.
[Knight, Kim B.; Mendybaev, Ruslan A.; Richter, Frank M.; Davis, Andrew M.] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA.
[Davis, Andrew M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Kita, Noriko T.; Valley, John W.] Univ Wisconsin, Dept Geol & Geophys, WiscSIMS, Madison, WI 53706 USA.
RP Knight, KB (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
EM knight29@llnl.gov
RI Valley, John/B-3466-2011; Kita, Noriko/H-8035-2016;
OI Valley, John/0000-0003-3530-2722; Kita, Noriko/0000-0002-0204-0765;
Davis, Andrew/0000-0001-7955-6236
FU NASA [NNG06GF19G, NNG06GE85G]; NSF [EAR03-19230, EAR07-44079]
FX This work was supported by the NASA Cosmochemistry Program through
grants NNG06GF19G (AMD, KBK) and NNG06GE85G (RAM, FMR). The WiscSIMS ion
microprobe facility is partially supported by NSF grants EAR03-19230 and
EAR07-44079 (JWV, NTK). T. Ushikubo is thanked for his optimism and
assistance with the isotopic measurements done at the University of
Wisconsin, D. Heinz is thanked for the use of his tools for sample
preparation, K. Ludwig is thanked for his freely distributed Isoplot
program. Constructive reviews by S. Tachibana and an anonymous reviewer
are gratefully acknowledged.
NR 28
TC 22
Z9 22
U1 7
U2 17
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0016-7037
J9 GEOCHIM COSMOCHIM AC
JI Geochim. Cosmochim. Acta
PD OCT 15
PY 2009
VL 73
IS 20
BP 6390
EP 6401
DI 10.1016/j.gca.2009.07.008
PG 12
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 541LF
UT WOS:000273416500027
ER
PT J
AU Moucha, R
Forte, AM
Rowley, DB
Mitrovica, JX
Simmons, NA
Grand, SP
AF Moucha, Robert
Forte, Alessandro M.
Rowley, David B.
Mitrovica, Jerry X.
Simmons, Nathan A.
Grand, Stephen P.
TI Deep mantle forces and the uplift of the Colorado Plateau
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
ID WESTERN UNITED-STATES; RIO-GRANDE RIFT; NORTH-AMERICA; LITHOSPHERE;
CONVECTION; SUBDUCTION; EVOLUTION; RIDGE; CONSTRAINTS; CALIFORNIA
AB We introduce a quantitative model of global mantle convection that reconstructs the detailed motion of a warm mantle upwelling over the last 30 Ma towards the interior of the southwestern USA from observed present-day mantle heterogeneity. The onset and evolution of uplift in the central Basin and Range province and Colorado Plateau during this time is determined by tracking the topographic swell due to this mantle upwelling. We show that: (1) the extension and basaltic volcanism (post 25 Ma) in the central Basin and Range coincides with the arrival and eastward progression of this upwelling, and (2) dynamic uplift of the southern Colorado Plateau, totaling about 1 km, transpired in the last 20 Ma. Since 10 Ma, the center of uplift continued northeastward from the southwestern rim of the plateau consistent with a young Grand Canyon model and eastward sweep of magmatism in the western Colorado Plateau. Citation: Moucha, R., A. M. Forte, D. B. Rowley, J. X. Mitrovica, N. A. Simmons, and S. P. Grand (2009), Deep mantle forces and the uplift of the Colorado Plateau, Geophys. Res. Lett., 36, L19310, doi: 10.1029/2009GL039778.
C1 [Moucha, Robert; Forte, Alessandro M.] Univ Quebec, Geotop, Montreal, PQ H3C 3P8, Canada.
[Rowley, David B.] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA.
[Mitrovica, Jerry X.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA.
[Simmons, Nathan A.] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94550 USA.
[Grand, Stephen P.] Univ Texas Austin, Jackson Sch Geol Sci, Austin, TX 78712 USA.
RP Moucha, R (reprint author), Univ Quebec, Geotop, Montreal, PQ H3C 3P8, Canada.
EM moucha@sca.uqam.ca
RI Grand, Stephen/B-4238-2011; Simmons, Nathan/J-9022-2014;
OI Rowley, David/0000-0001-9767-9029
FU Canada Research Chair program; Natural Sciences and Engineering Research
Council of Canada; US DOE [DE-AC52-07NA27344.LLNL-JRNL-414161]; NSF
[EAR0309189]
FX We thank R. Flowers and K. Karlstrom, for their comments which helped to
clarify the arguments and results presented in this paper. Support for
RM was provided by the Earth System Evolution Program of the Canadian
Institute for Advanced Research (CIFAR) in the form of a postdoctoral
fellowship. AMF, DBR and JXM acknowledge funding provided by CIFAR. AMF
also acknowledges the Canada Research Chair program and the Natural
Sciences and Engineering Research Council of Canada. NAS work performed
under the auspice of the US DOE by LLNL under contract
DE-AC52-07NA27344.LLNL-JRNL-414161. SPG acknowledges NSF grant
EAR0309189. This is GEOTOP-UQAM-McGill contribution 2009-0011.
NR 32
TC 56
Z9 56
U1 1
U2 27
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD OCT 15
PY 2009
VL 36
AR L19310
DI 10.1029/2009GL039778
PG 6
WC Geosciences, Multidisciplinary
SC Geology
GA 508OO
UT WOS:000270942900003
ER
PT J
AU Tolmachev, AV
Robinson, EW
Wu, S
Pasa-Tolic, L
Smith, RD
AF Tolmachev, Aleksey V.
Robinson, Errol W.
Wu, Si
Pasa-Tolic, Ljiljana
Smith, Richard D.
TI FT-ICR MS optimization for the analysis of intact proteins
SO INTERNATIONAL JOURNAL OF MASS SPECTROMETRY
LA English
DT Article
DE FT-ICR; Top-down proteomics; Dynamic range; Resolution; Mass accuracy
ID ION-CYCLOTRON RESONANCE; FTICR MASS-SPECTROMETRY; CELL; IDENTIFICATION;
DISSOCIATION; PROTEOMICS; RESOLUTION; EJECTION; DESIGN; TRAPS
AB Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) remains the technique of choice for the analysis of intact proteins from complex biological systems, i.e., top-down proteomics. Recently, we have implemented a compensated open cylindrical ion trapping cell into a 12 T Fr-ICR mass spectrometer. This new cell has previously demonstrated improved sensitivity, dynamic range, and mass measurement accuracy for the analysis of relatively small tryptic peptides. These improvements are due to the modified trapping potential of the cell which closely approximates the ideal harmonic trapping potential. Here, we report the instrument optimization for the analysis of large macro-molecular ions, such as proteins. Single transient mass spectra of multiply charged bovine ubiquitin ions with sub-ppm mass measurement accuracy, improved signal intensity, and increased dynamic range were obtained using this new cell with increased post-excitation cyclotron radii. The increased cyclotron radii correspond to increased ion kinetic energy and collisions between neutrals and ions with sufficient kinetic energy can exceed a threshold of single collision ion fragmentation. A transition then occurs from relatively long signal lifetimes at low excitation radii to potentially shorter lifetimes, defined by the average ion-neutral collision time. The proposed high energy ion loss mechanism is evaluated and compared with experimental results for bovine ubiquitin and serum albumin. We find that the analysis of large macromolecules can be significantly improved by the further reduction of pressure in the ion trapping cell. This reduces the high energy ion losses and can enable increased sensitivity and mass measurement accuracy to be realized without compromising resolution. Further, these results appear to be generally applicable to FTMS, and it is expected that the high energy ion loss mechanism also applies to Orbitrap mass analyzers. (C) 2008 Elsevier B.V. All rights reserved.
C1 [Tolmachev, Aleksey V.; Robinson, Errol W.; Wu, Si; Pasa-Tolic, Ljiljana; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA.
RP Pasa-Tolic, L (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999, Richland, WA 99352 USA.
EM ljiljana.pasatolic@pnl.gov
RI Robinson, Errol/I-3148-2012; Smith, Richard/J-3664-2012
OI Robinson, Errol/0000-0003-0696-6239; Smith, Richard/0000-0002-2381-2349
FU National Center for Research Resources [RR 018522]; National Institute
of Allergy and Infectious Diseases NIH/DHHS [Y1-AI-4894-01]; National
Institute of General Medical Sciences NIGMS [R01 GM063883]; U.S.
Department of Energy (DOE) Office of Biological and Environmental
Research; DOE [DE-AC05-76RLO 1830]
FX The authors gratefully acknowledge Dr. J. Laskin for helpful
discussions. Portions of this work were supported by the National Center
for Research Resources (RR 018522), the National Institute of Allergy
and Infectious Diseases (NIH/DHHS through interagency agreement
Y1-AI-4894-01), the National Institute of General Medical Sciences
(NIGMS, R01 GM063883), and the U.S. Department of Energy (DOE) Office of
Biological and Environmental Research. Work was performed in the
Environmental Molecular Science Laboratory, a DOE national scientific
user facility located on the campus of Pacific Northwest National
Laboratory (PNNL) in Richland, Washington. PNNL is a multi-program
national laboratory operated by Battelle for the DOE under Contract
DE-AC05-76RLO 1830.
NR 29
TC 24
Z9 24
U1 3
U2 29
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1387-3806
J9 INT J MASS SPECTROM
JI Int. J. Mass Spectrom.
PD OCT 15
PY 2009
VL 287
IS 1-3
BP 32
EP 38
DI 10.1016/j.ijms.2008.10.010
PG 7
WC Physics, Atomic, Molecular & Chemical; Spectroscopy
SC Physics; Spectroscopy
GA 514ZK
UT WOS:000271435500006
ER
PT J
AU Eliseev, EA
Morozovska, AN
Kalinin, SV
Li, YL
Shen, J
Glinchuk, MD
Chen, LQ
Gopalan, V
AF Eliseev, Eugene A.
Morozovska, Anna N.
Kalinin, Sergei V.
Li, Yulan
Shen, Jie
Glinchuk, Maya D.
Chen, Long-Qing
Gopalan, Venkatraman
TI Surface effect on domain wall width in ferroelectrics
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID FILMS; DEPOLARIZATION
AB We study the effect of the depolarization field on a domain wall structure near the surface of a ferroelectric. Since in real situation bound and screening charges form an electric double layer, the breaking of this layer by the domain wall induces stray depolarization field, which in turn changes the domain wall structure. Power law decay of the stray field results in the power law of polarization saturation near the surface, as compared to exponential saturation in the bulk. Obtained results predict that the surface broadening of ferroelectric domain walls appeared near Curie temperature as well as describe domain wall depth profile in weak ferroelectrics. We qualitatively describe extra-broad domain walls near LiNbO3 and LiTaO3 surfaces observed experimentally at room temperature, which probably originate at high temperatures but did not fully relax their width with temperature decrease allowing for lattice pinning and defect centers. Thus results have broad implication for fundamental issues such as maximal information storage density in ferroelectric data storage, domain wall pinning mechanisms at surfaces and interfaces, and nucleation dynamics. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3236644]
C1 [Eliseev, Eugene A.; Morozovska, Anna N.; Glinchuk, Maya D.] Natl Acad Sci Ukraine, Inst Problems Mat Sci, UA-03142 Kiev, Ukraine.
[Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Kalinin, Sergei V.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[Li, Yulan; Chen, Long-Qing; Gopalan, Venkatraman] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA.
[Shen, Jie] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA.
[Morozovska, Anna N.] Natl Acad Sci Ukraine, Inst Semicond Phys, UA-03028 Kiev, Ukraine.
RP Eliseev, EA (reprint author), Natl Acad Sci Ukraine, Inst Problems Mat Sci, 3 Krjijanovskogo, UA-03142 Kiev, Ukraine.
EM eliseev@i.com.ua; morozo@i.com.ua
RI Kalinin, Sergei/I-9096-2012; Chen, LongQing/I-7536-2012; Shen,
Jie/B-4956-2014; Shen, Jie/P-4151-2016
OI Kalinin, Sergei/0000-0001-5354-6152; Chen, LongQing/0000-0003-3359-3781;
Shen, Jie/0000-0002-4885-5732; Shen, Jie/0000-0002-4885-5732
FU Science and Technology Center in Ukraine [3306]; National Science
Foundation [DMR-0602986, 0512165, 0507146, 0213623, MR-0908718]; CNMS;
DOE [DE-FG02-07ER46417]; Ministry of Science and Education of Ukrainian
[UU30/004]
FX Research was partially (E.A.E. and M.D.G.) supported by the Science and
Technology Center in Ukraine, Project No. 3306. The research is
supported in part (S.V.K.) by the Division of Scientific User
Facilities, DOE BES. V. G. wishes to gratefully acknowledge financial
support from the National Science Foundation Grant Nos. DMR-0602986,
0512165, 0507146, and 0213623, and CNMS at Oak Ridge National
Laboratory. L. Q. and Y. L. are supported by DOE under Grant No.
DE-FG02-07ER46417 and Los Alamos National Laboratory. Research also
sponsored by Ministry of Science and Education of Ukrainian (Grant No.
UU30/004) and National Science Foundation (Materials World Network,
MR-0908718).
NR 19
TC 13
Z9 14
U1 1
U2 21
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0021-8979
EI 1089-7550
J9 J APPL PHYS
JI J. Appl. Phys.
PD OCT 15
PY 2009
VL 106
IS 8
AR 084102
DI 10.1063/1.3236644
PG 6
WC Physics, Applied
SC Physics
GA 513XS
UT WOS:000271358100069
ER
PT J
AU Hagmann, CA
Hall, JM
Johnson, MS
McNabb, DP
Kelley, JH
Huibregtse, C
Kwan, E
Rusev, G
Tonchev, AP
AF Hagmann, C. A.
Hall, J. M.
Johnson, M. S.
McNabb, D. P.
Kelley, J. H.
Huibregtse, C.
Kwan, E.
Rusev, G.
Tonchev, A. P.
TI Transmission-based detection of nuclides with nuclear resonance
fluorescence using a quasimonoenergetic photon source
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID SCATTERING; URANIUM; ATOMS
AB We provide a detailed experimental validation of the concept of transmission-based isotope detection. The dominant background processes in this class of systems were measured by studying the detection of (238)U with a quasimonochromatic (Delta E/E similar to 3%) photon beam. A notch develops in the spectrum transmitted through our test objects due to the preferential attenuation of photons with an energy that resonantly excites a bound nuclear state in (238)U near 2 MeV. The notch was measured downstream of our test objects by means of resonant photon scattering from a secondary (238)U target. The dominant backgrounds measured in the notch detector due to radioactive decay and elastic scattering of the transmitted beam are presented. Processes that refill the notch with off-resonance photons will obscure the signal and result in a higher probability of false negatives. A measurement of the refill process produced a null result, and we report an upper limit on the magnitude of the notch fill factor. (C) 2009 American Institute of Physics. [doi:10.1063/1.3238328]
C1 [Hagmann, C. A.; Hall, J. M.; Johnson, M. S.; McNabb, D. P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Kelley, J. H.; Huibregtse, C.] N Carolina State Univ, Raleigh, NC 27695 USA.
[Kwan, E.; Rusev, G.; Tonchev, A. P.] Duke Univ, Durham, NC 27708 USA.
RP Hagmann, CA (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
EM hagmann1@llnl.gov
FU U.S. Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]
FX This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract No.
DE-AC52-07NA27344. We thank C. Angell, S. Hammond, H. J. Karwowski, J.
R. Tompkins, and W. Tornow for useful discussions and help with the data
taking.
NR 19
TC 19
Z9 19
U1 0
U2 2
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD OCT 15
PY 2009
VL 106
IS 8
AR 084901
DI 10.1063/1.3238328
PG 7
WC Physics, Applied
SC Physics
GA 513XS
UT WOS:000271358100110
ER
PT J
AU Hale, LM
Zhou, XW
Zimmerman, JA
Moody, NR
Ballarini, R
Gerberich, WW
AF Hale, L. M.
Zhou, X. W.
Zimmerman, J. A.
Moody, N. R.
Ballarini, R.
Gerberich, W. W.
TI Molecular dynamics simulation of delamination of a stiff,
body-centeredcubic crystalline film from a compliant Si substrate
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID INTERATOMIC POTENTIALS; THIN-FILMS; SILICON; STRESS; ENERGY; FE
AB Compliant substrate technology offers an effective approach to grow high-quality multilayered films, of importance to microelectronics and microelectromechanical systems devices. By using a thin, soft substrate to relieve the mismatch strain of an epitaxial film, the critical thickness of misfit dislocation formation in the overlayer is effectively increased. Experiments have indicated that stiff films deposited onto Si substrates can delaminate at the interface. However, the atomic mechanisms of the deformation and the fracture of the films have not been well studied. Here, we have applied molecular dynamics simulations to study the delamination of a stiff body-centered-cubic crystalline film from a compliant Si substrate due to tensile loading. The observed mechanical behavior is shown to be relatively independent of small changes in temperature, loading rate, and system size. Fracture occurs at the interface between the two materials resulting in nearly atomically clean surfaces. Dislocations are seen to nucleate in the body-centered-cubic film prior to delamination. At higher strains, a phase change to a face centered cubic is observed within the body-centered-cubic film, facilitating extensive dislocation growth and interaction. The various defects that form prior to fracture are discussed and related to the mechanical properties of the system. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3238521]
C1 [Hale, L. M.; Gerberich, W. W.] Univ Minnesota, Dept Mat Sci, Minneapolis, MN 55455 USA.
[Zhou, X. W.; Zimmerman, J. A.] Sandia Natl Labs, Dept Mech Mat, Livermore, CA 94550 USA.
[Moody, N. R.] Sandia Natl Labs, Dept Analyt Mat Sci, Livermore, CA 94550 USA.
[Ballarini, R.] Univ Minnesota, Dept Civil Engn, Minneapolis, MN 55455 USA.
RP Hale, LM (reprint author), Univ Minnesota, Dept Mat Sci, Minneapolis, MN 55455 USA.
EM lhale@cems.umn.edu
RI Zimmerman, Jonathan/A-8019-2012
FU National Science Foundation [NSF_CMMI 0800896]; Air Force through
program [AOARD-08-4131]; Abu Dhabi-Minnesota Institute for Research
Excellence (ADMIRE); Sandia Corporation; Lockheed Martin Co.; U. S.
Department of Energy's National Nuclear Security Administration
[DEAC04-94AL85000]
FX This work was partially supported by the National Science Foundation
Grant No. NSF_CMMI 0800896. One of us (W.W.G.) would like to acknowledge
the support of the Air Force through program Grant No. AOARD-08-4131
dedicated to understanding plasticity and fracture in hard materials and
the Abu Dhabi-Minnesota Institute for Research Excellence (ADMIRE), a
partnership between the Petroleum Institute (PI) of Abu Dhabi and the
Department of Chemical Engineering and Materials Science of the
University of Minnesota. Sandia is a multiprogram laboratory operated by
Sandia Corporation, a Lockheed Martin Co., for the U. S. Department of
Energy's National Nuclear Security Administration under Contract No.
DEAC04-94AL85000.
NR 25
TC 3
Z9 3
U1 0
U2 14
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD OCT 15
PY 2009
VL 106
IS 8
AR 083503
DI 10.1063/1.3238521
PG 7
WC Physics, Applied
SC Physics
GA 513XS
UT WOS:000271358100025
ER
PT J
AU Jiang, XW
Deng, HX
Li, SS
Luo, JW
Wang, LW
AF Jiang, Xiang-Wei
Deng, Hui-Xiong
Li, Shu-Shen
Luo, Jun-Wei
Wang, Lin-Wang
TI Quantum mechanical simulation of nanosized metal-oxide-semiconductor
field-effect transistor using empirical pseudopotentials: A comparison
for charge density occupation methods
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID ELECTRONIC-STRUCTURE; SILICON DEVICES; TRANSPORT; MOSFETS;
NANOTRANSISTORS; APPROXIMATION; EQUATIONS; DESIGN; MODELS; LIMIT
AB The atomistic pseudopotential quantum mechanical calculations are used to study the transport in million atom nanosized metal-oxide-semiconductor field-effect transistors. In the charge self-consistent calculation, the quantum mechanical eigenstates of closed systems instead of scattering states of open systems are calculated. The question of how to use these eigenstates to simulate a nonequilibrium system, and how to calculate the electric currents, is addressed. Two methods to occupy the electron eigenstates to yield the charge density in a nonequilibrium condition are tested and compared. One is a partition method and another is a quasi-Fermi level method. Two methods are also used to evaluate the current: one uses the ballistic and tunneling current approximation, another uses the drift-diffusion method. (C) 2009 American Institute of Physics. [doi:10.1063/1.3248262]
C1 [Jiang, Xiang-Wei; Deng, Hui-Xiong; Li, Shu-Shen] Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China.
[Luo, Jun-Wei] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Wang, Lin-Wang] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA.
RP Jiang, XW (reprint author), Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, POB 912, Beijing 100083, Peoples R China.
EM xwjiang@semi.ac.cn
RI LUO, JUN-WEI/A-8491-2010; LUO, JUNWEI/B-6545-2013
FU National Basic Research Program of China [G2009CB929300]; National
Natural Science Foundation of China [60821061, 60776061]; U.S.
Department of Energy BES, Office of Science [DE-AC02-05CH11231]
FX This work was supported by the National Basic Research Program of China
(973 Program) Grant No. G2009CB929300 and the National Natural Science
Foundation of China under Grant Nos. 60821061 and 60776061. L. W. W. is
funded by the U.S. Department of Energy BES, Office of Science, under
Contract No. DE-AC02-05CH11231.
NR 40
TC 3
Z9 3
U1 2
U2 5
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD OCT 15
PY 2009
VL 106
IS 8
AR 084510
DI 10.1063/1.3248262
PG 9
WC Physics, Applied
SC Physics
GA 513XS
UT WOS:000271358100107
ER
PT J
AU Martin, JE
Gulley, G
AF Martin, James E.
Gulley, G.
TI Field-structured composites for efficient, directed heat transfer
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID THERMAL-CONDUCTIVITY
AB Thermally conductive composites are needed for a variety of applications, especially as thermal interface materials. Unfortunately, the addition of even highly conductive particles to a polymer raises its conductivity only slightly and incurs a commensurate increase in the viscosity of the prepolymer resin. Meaningful increases in the thermal conductivity of the final composite require a filled resin that has the rheology of a typical paste. In this paper, we report on the use of uniaxial, biaxial, and triaxial ac magnetic fields to organize thermally conductive magnetic particles into structures that conduct heat more efficiently. Experimental results are compared to an extension of the Maxwell-Eucken theory that takes into account spatial correlations between particles. Both theory and experiment show that the thermal conductivity of field-structured composites increases essentially linearly with particle loading, and that the enhancement is significantly greater than that of unstructured composites. The measured conductivity enhancements are found to be comparable to the enhancements in magnetic permeability of these composites and are far less than the enhancements in the electrical conductivity. These results indicate the value of field structuring in enhancing the performance of a thermal interface material and show that particle percolation is not a critical factor in achieving high performance. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3245322]
C1 [Martin, James E.; Gulley, G.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Martin, JE (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM jmartin@sandia.gov
FU U. S. Department of Energy [DE-AC0494AL85000]
FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the U. S. Department of Energy under
Contract No. DE-AC0494AL85000. This work was supported by the Division
of Materials Sciences and Engineering, Office of Basic Energy Sciences,
U. S. Department of Energy (DOE).
NR 17
TC 13
Z9 14
U1 1
U2 9
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD OCT 15
PY 2009
VL 106
IS 8
AR 084301
DI 10.1063/1.3245322
PG 7
WC Physics, Applied
SC Physics
GA 513XS
UT WOS:000271358100076
ER
PT J
AU Noh, JH
Hong, HB
Lee, JK
Cho, CM
Kim, JY
Lee, S
Cho, IS
Jung, HS
Hong, KS
AF Noh, Jun Hong
Hong, Hee Beom
Lee, Jung-Kun
Cho, Chin Moo
Kim, Jin Young
Lee, Sangwook
Cho, In-Sun
Jung, Hyun Suk
Hong, Kug Sun
TI Structure and dielectric properties of cubic Bi-2(Zn1/3Ta2/3)(2)O-7 thin
films
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID PYROCHLORE; CERAMICS; RELAXATION; GROWTH
AB Pyrochlore Bi-2(Zn1/3Ta2/3)(2)O-7 (BZT) films were prepared by pulsed laser deposition on Pt/TiO2/SiO2/Si substrates. In contrast to bulk monoclinic BZT ceramics, the BZT films have a cubic structure mediated by an interfacial layer. The dielectric properties of the cubic BZT films [epsilon similar to 177, temperature coefficient of capacitance (TCC) similar to- 170 ppm/degrees C] are much different from those of monoclinic BZT ceramics (epsilon similar to 61, TCC similar to+60 ppm/degrees C). Increasing the thickness of the BZT films returns the crystal structure to the monoclinic phase, which allows the dielectric properties of the BZT films to be tuned without changing their chemical composition. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3246807]
C1 [Lee, Jung-Kun] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15260 USA.
[Noh, Jun Hong; Hong, Hee Beom; Cho, Chin Moo; Hong, Kug Sun] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 151742, South Korea.
[Lee, Sangwook; Cho, In-Sun; Hong, Kug Sun] Seoul Natl Univ, Res Inst Adv Mat, Seoul 151742, South Korea.
[Kim, Jin Young] Natl Renewable Energy Lab, Chem & Biosci Ctr, Golden, CO 80401 USA.
[Jung, Hyun Suk] Kookmin Univ, Sch Adv Mat Engn, Seoul 136702, South Korea.
RP Lee, JK (reprint author), Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15260 USA.
EM jul37@pitt.edu
RI Kim, Jin Young/B-7077-2012; Cho, In Sun/H-6557-2011; Lee,
Sangwook/O-9166-2015; Jung, Hyun Suk/H-3659-2015;
OI Kim, Jin Young/0000-0001-7728-3182; Lee, Sangwook/0000-0002-3535-0241;
Jung, Hyun Suk/0000-0002-7803-6930
NR 19
TC 0
Z9 0
U1 1
U2 3
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD OCT 15
PY 2009
VL 106
IS 8
AR 084103
DI 10.1063/1.3246807
PG 4
WC Physics, Applied
SC Physics
GA 513XS
UT WOS:000271358100070
ER
PT J
AU Wang, ZG
Gao, F
Li, JB
Zu, XT
Weber, WJ
AF Wang, Zhiguo
Gao, Fei
Li, Jingbo
Zu, Xiaotao
Weber, William J.
TI Stone-Wales defects created by low energy recoils in single-walled
silicon carbide nanotubes
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID BETA-SIC NANORODS; CARBON NANOTUBES; DISPLACEMENT; NANOWIRES
AB The defect creation at low energy events was studied using density functional theory molecular dynamics simulations in silicon carbide nanotubes, and the displacement threshold energies determined exhibit a dependence on sizes, which decrease with decreasing diameter of the nanotubes. The Stone-Wales (SW) defect, which is a common defect configurations induced through irradiation in nanotubes, has also been investigated, and the formation energies of the SW defects increase with increasing diameter of the nanotubes. The mean threshold energies were found to be 23 and 18 eV for Si and C in armchair (5,5) nanotubes. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3238307]
C1 [Wang, Zhiguo; Zu, Xiaotao] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China.
[Wang, Zhiguo; Li, Jingbo] Chinese Acad Sci, State Key Lab Superlattices & Microstruct, Inst Semicond, Beijing 100083, Peoples R China.
[Gao, Fei; Weber, William J.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Wang, ZG (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China.
EM zgwang@uestc.edu.cn; fei.gao@pnl.gov; jbli@semi.ac.cn
RI Weber, William/A-4177-2008; Gao, Fei/H-3045-2012; Wang,
Zhiguo/B-7132-2009
OI Weber, William/0000-0002-9017-7365;
FU National Natural Science Foundation of China [10704014]; Sichuan Young
Scientists Foundation [09ZQ026029]; PhD Funding Support Program of
Education Ministry of China [20090450052]; "One-Hundred Talents Plan" of
the Chinese Academy of Sciences; U. S. Department of Energy
[DE-AC0576RL01830]
FX Z. Wang was financially supported by the National Natural Science
Foundation of China (Grant No. 10704014), the Sichuan Young Scientists
Foundation (Grant No. 09ZQ026029), and the PhD Funding Support Program
of Education Ministry of China (Grant No. 20090450052). J. Li gratefully
acknowledges financial support from the "One-Hundred Talents Plan" of
the Chinese Academy of Sciences. F. Gao and W. J. Weber were supported
by the Division of Materials Sciences and Engineering, Office of Basic
Energy Sciences, U. S. Department of Energy under Contract No.
DE-AC0576RL01830.
NR 28
TC 17
Z9 17
U1 0
U2 15
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD OCT 15
PY 2009
VL 106
IS 8
AR 084305
DI 10.1063/1.3238307
PG 4
WC Physics, Applied
SC Physics
GA 513XS
UT WOS:000271358100080
ER
PT J
AU Bhatnagar, A
Choi, Y
Yoon, Y
Shin, Y
Jeon, BH
Kang, JW
AF Bhatnagar, Amit
Choi, YangHun
Yoon, YeoJoon
Shin, Yongsoon
Jeon, Byong-Hun
Kang, Joon-Wun
TI Bromate removal from water by granular ferric hydroxide (GFH)
SO JOURNAL OF HAZARDOUS MATERIALS
LA English
DT Article
DE Bromate removal; Granular ferric hydroxide (GFH); Sorption isotherms;
Equilibrium and kinetic modeling; Adsorption mechanism
ID ION-EXCHANGE-RESIN; ACTIVATED CARBON; AQUEOUS-SOLUTIONS; DRINKING-WATER;
ADSORPTION; EQUILIBRIUM; IRRADIATION; DIFFUSION; REDUCTION; KINETICS
AB The feasibility of granular ferric hydroxide (GFH) for bromate removal from water has been studied. Batch experiments were performed to study the influence of various experimental parameters such as effect of contact time, initial bromate concentration, temperature, pH and effect of competing anions on bromate removal by GFH. The adsorption kinetics indicates that uptake rate of bromate was rapid at the beginning and 75% adsorption was completed in 5 min and equilibrium was achieved within 20 min. The sorption process was well described by pseudo-second-order kinetics. The maximum adsorption potential of GFH for bromate removal was 16.5 mg g(-1) at 25 degrees C. The adsorption data fitted well to the Langmuir model. The increase in OH peak and absence of Br-O bonding in MR spectra indicate that ion-exchange was the main mechanism during bromate sorption on GFH. The effects of competing anions and solution pHs (3-9) were negligible. Results of the present study suggest that GFH can be effectively utilized for bromate removal from drinking water. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Bhatnagar, Amit; Choi, YangHun; Yoon, YeoJoon; Jeon, Byong-Hun; Kang, Joon-Wun] Yonsei Univ, Dept Environm Engn, YIEST, Wonju 220710, Gangwon Do, South Korea.
[Shin, Yongsoon] Pacific NW Natl Lab, Richland, WA 99354 USA.
RP Kang, JW (reprint author), Yonsei Univ, Dept Environm Engn, YIEST, Wonju 220710, Gangwon Do, South Korea.
EM jwk@yonsei.ac.kr
RI BHATNAGAR, AMIT/A-8838-2008;
OI BHATNAGAR, AMIT/0000-0002-3565-9943; Jeon, Byong-Hun/0000-0002-5478-765X
FU Basic Science Programs funded by the Ministry of Science & Technology
(MOST) of Korea [R01-2006-000-10250-0]; Brain Korea-21 (BK-21) of
Ministry of Education & Human Resource Development
FX This work was supported by grant No.(R01-2006-000-10250-0) from the
Basic Science Programs funded by the Ministry of Science & Technology
(MOST) of Korea, 21 st Frontier research project (Sustainable Water
Resources Research Center 3-4-3) and by Brain Korea-21 (BK-21) of
Ministry of Education & Human Resource Development.
NR 36
TC 56
Z9 61
U1 1
U2 28
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0304-3894
J9 J HAZARD MATER
JI J. Hazard. Mater.
PD OCT 15
PY 2009
VL 170
IS 1
BP 134
EP 140
DI 10.1016/j.jhazmat.2009.04.123
PG 7
WC Engineering, Environmental; Engineering, Civil; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA 485YJ
UT WOS:000269162000019
PM 19481866
ER
PT J
AU Tang, GP
Mayes, MA
Parker, JC
Yin, XPL
Watson, DB
Jardine, PM
AF Tang, Guoping
Mayes, Melanie A.
Parker, Jack C.
Yin, Xiangping L.
Watson, David B.
Jardine, Philip M.
TI Improving parameter estimation for column experiments by multi-model
evaluation and comparison
SO JOURNAL OF HYDROLOGY
LA English
DT Article
DE Sensitivity/uncertainty analysis; Nonlinear least squares;
Equilibrium/non-equilibrium convective; dispersion equation; Monte Carlo
analysis
ID NONEQUILIBRIUM SOLUTE TRANSPORT; UNSATURATED POROUS-MEDIA; SOIL COLUMNS;
AGGREGATED OXISOL; PREFERENTIAL FLOW; IMMOBILE WATER; SATURATED SOIL;
DISCRIMINATION; LYSIMETER; DESIGN
AB The equilibrium convection dispersion equation model is often unable to accurately simulate breakthrough curves from column experiments. While the non-equilibrium convection dispersion equation model may match the data well, uncertainty in parameter estimates is often large. In this work we investigate approaches to improve match for the equilibrium model and reduce parameter estimate uncertainty for the non-equilibrium model. Four column experiment data sets are selected from the literature for the illustration. For the equilibrium convection dispersion equation model, we show that measurement error, presence of immobile water, and other mechanisms can cause mismatch between model predictions and observations because the model is sensitive to water content. The mismatch may be overcome by calibrating the effective water content. For the non-equilibrium convection dispersion equation model, simultaneous fitting of multiple tracers with reduced number of calibration parameters (e.g., assuming the dispersivity and mobile water fraction to be identical for different tracers, the mass transfer coefficient to be proportional to tracer molecular diffusion coefficient) can reduce the uncertainty in parameter estimate and better identify/quantify the non-equilibrium processes. By evaluating and comparing the multiple estimates obtained with different choices of calibration parameters (e.g., fixing or estimating water content), parameterizations and models (e.g., equilibrium or non-equilibrium), the reliability of the data interpretation can be improved by quantifying uncertainty in the experiment, considering alternative transport processes, and following the principle of parsimony. Published by Elsevier B.V.
C1 [Tang, Guoping; Mayes, Melanie A.; Yin, Xiangping L.; Watson, David B.; Jardine, Philip M.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA.
[Parker, Jack C.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA.
RP Tang, GP (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008,MS 6038, Oak Ridge, TN 37831 USA.
EM tangg@ornl.gov
RI Tang, Guoping/A-5141-2010
OI Tang, Guoping/0000-0003-1090-3564
FU Environmental Remediation Sciences Program; US DOE [DEAC05-00OR22725]
FX We acknowledge the DOE Office of Biological and Environmental Research
for support of this research through the Environmental Remediation
Sciences Program. We acknowledge Frederick M. Mann of the Tank Farm
Vadose Zone Group and CH2 M Hill Hanford Group, Inc. for providing
support for the IDF work under contract with the US DOE. Oak Ridge
National Laboratory is managed by the University of Tennessee-Battelle,
LLC, under contract DEAC05-00OR22725 with the US DOE.
NR 40
TC 14
Z9 14
U1 2
U2 13
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-1694
J9 J HYDROL
JI J. Hydrol.
PD OCT 15
PY 2009
VL 376
IS 3-4
BP 567
EP 578
DI 10.1016/j.jhydrol.2009.07.063
PG 12
WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources
SC Engineering; Geology; Water Resources
GA 511LD
UT WOS:000271165600020
ER
PT J
AU Kim, DS
Il Cho, H
Kim, DH
Lee, BS
Lee, BS
Yoon, SW
Kim, YS
Moon, GY
Byun, H
Rhim, JW
AF Kim, Dae Sik
Il Cho, Hyun
Kim, Dae Hoon
Lee, Byung Seong
Lee, Bo Sung
Yoon, Suk Won
Kim, Yu Seung
Moon, Go Young
Byun, Hongsik
Rhim, Ji Won
TI Surface fluorinated poly(vinyl alcohol)/poly(styrene sulfonic
acid-co-maleic acid) membrane for polymer electrolyte membrane fuel
cells
SO JOURNAL OF MEMBRANE SCIENCE
LA English
DT Article
DE Proton conductivity; Methanol permeability; Crosslinked poly(vinyl
alcohol) membranes; Poly(styrene sulfonic acid-co-maleic acid); Direct
fluorination
ID PROTON CONDUCTIVITY; HYBRID MEMBRANES; ALCOHOL); POLYSULFONE;
PERFORMANCE; PROPERTY; BEHAVIOR
AB Surface fluorination effectively reduced the water absorption of crosslinked polyvinyl alcohol (PVA)/poly(styrene sulfonic acid-co-maleic acid) (PSSA_MA) membranes. The crosslinked PVA membranes were prepared using PSSA_MA as a crosslinking agent as well as a donor of the hydrophilic group (-SO(3)H and/or -COOH). Surface treatment by gaseous fluorine treatment disrupted the C-OH bonds and generated C-F and C-F(2) groups at the membrane surface where atomic percent of fluorine increased up to 5.4%. The membranes with highly hydrophobic fluorinated surface exhibited improved proton conductivity and methanol permeability at a relatively low water uptake. (c) 2009 Elsevier B.V. All rights reserved.
C1 [Il Cho, Hyun; Kim, Dae Hoon; Lee, Byung Seong; Lee, Bo Sung; Yoon, Suk Won; Rhim, Ji Won] Hannam Univ, Dept Chem Engn, Taejon 305811, South Korea.
[Kim, Dae Sik; Kim, Yu Seung] Los Alamos Natl Lab, Mat Phys & Applicat Sensors & Electrochem Devices, Los Alamos, NM 87545 USA.
[Moon, Go Young] LS Ind Syst Co Ltd, Adv Sci & Tech Div, Anyang 431080, South Korea.
[Byun, Hongsik] Keimyung Univ, Dept Chem Syst Engn, Taegu 704701, South Korea.
RP Rhim, JW (reprint author), Hannam Univ, Dept Chem Engn, 461-6 Jeonmin Dong, Taejon 305811, South Korea.
EM jwrhim@hnu.kr
FU Korea Institute of Energy Technology Evaluation and Planning (KETEP)
FX This study was supported by the R & D Fund of Renewable Energy, Korea
Institute of Energy Technology Evaluation and Planning (KETEP).
NR 25
TC 26
Z9 26
U1 1
U2 13
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0376-7388
J9 J MEMBRANE SCI
JI J. Membr. Sci.
PD OCT 15
PY 2009
VL 342
IS 1-2
BP 138
EP 144
DI 10.1016/j.memsci.2009.06.034
PG 7
WC Engineering, Chemical; Polymer Science
SC Engineering; Polymer Science
GA 492RZ
UT WOS:000269678400017
ER
PT J
AU Jensen, L
Govind, N
AF Jensen, Lasse
Govind, Niranjan
TI Reply to "Comment on 'Excited States of DNA Base Pairs Using Long-Range
Corrected Time-Dependent Density Functional Theory'"
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Editorial Material
C1 [Jensen, Lasse] Penn State Univ, Dept Chem, University Pk, PA 16802 USA.
[Govind, Niranjan] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA.
RP Jensen, L (reprint author), Penn State Univ, Dept Chem, 104 Chem Bldg, University Pk, PA 16802 USA.
EM jensen@chem.psu.edu; niri.govind@pnl.gov
RI Govind, Niranjan/D-1368-2011; Jensen, Lasse/B-5132-2008
NR 0
TC 2
Z9 2
U1 0
U2 3
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD OCT 15
PY 2009
VL 113
IS 41
BP 11095
EP 11095
DI 10.1021/jp908490z
PG 1
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 503MO
UT WOS:000270538800029
ER
PT J
AU Lloyd, MT
Lee, YJ
Davis, RJ
Fang, E
Fleming, RM
Hsu, JWP
Kline, RJ
Toney, MF
AF Lloyd, Matthew T.
Lee, Yun-Ju
Davis, Robert J.
Fang, Erica
Fleming, Robert M.
Hsu, Julia W. P.
Kline, R. Joseph
Toney, Michael F.
TI Improved Efficiency in Poly(3-hexylthiophene)/Zinc Oxide Solar Cells via
Lithium Incorporation
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID HYBRID PHOTOVOLTAIC DEVICES; LI-DOPED ZNO; POLYTHIOPHENE; NANOPARTICLES;
POLYMER; FILM
AB The efficiency of poly(3-hexylthiophene)/zinc oxide planar heterojunction solar cells is on average raised by a factor of 2.9 by incorporating lithium during the sol-gel processing of the metal oxide layer. Studies performed on over 300 diodes show systematic increases in both open-circuit voltage (V,,,) and short-circuit current (J(sc)) up to an optimum Li concentration between 15 and 20 atom %. Compared to pure ZnO devices, the incorporation of lithium improves the V(oc) and J(sc) by an average of 42 and 90%, respectively. For the best device, the efficiency increases by a factor of 7.5, yielding a power conversion efficiency of 0.44%, which is approaching the efficiency of the state-of-the-art nanostructured hybrid solar cells. Enhancements in V(oc) are attributed to a larger donor-acceptor energy band edge offset due to a rigid shift of Zn(1-x)Li(x)O energy levels toward to the vacuum level with Li incorporation. J(sc), improvements arise from a higher surface roughness with lithium incorporation and from better P3HT ordering at the heterojunction interface.
C1 [Lloyd, Matthew T.; Lee, Yun-Ju; Davis, Robert J.; Fang, Erica; Fleming, Robert M.; Hsu, Julia W. P.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Kline, R. Joseph] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA.
[Toney, Michael F.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA.
RP Lloyd, MT (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.
EM matthew.lloyd@nrel.gov
RI Kline, Regis/B-8557-2008; Fleming, Robert/B-1248-2008
FU Sandia LDRD program; Division of Material Sciences and Engineering; U.S.
Department of Energy [DE-AC04-94AL85000]
FX The authors gratefully acknowledge J. A. Ohlhausen for collection of the
TOF-SIMS profiles, M. Rodriguez for pointing out the lithium carbonate
phase, J. Huang for SAED and TEM imaging, and M. T. Brurnbach for
fruitful discussion. Portions of this research were carried out at the
Stanford Synchrotron Radiation Lightsource, a national user facility
operated by Stanford University on behalf of the U.S. Department of
Energy, Office of Basic Energy Sciences. This work was supported by
Sandia LDRD program and by the Division of Material Sciences and
Engineering, Office of Basic Energy Sciences, U.S. Department of Energy
under Contract DE-AC04-94AL85000.
NR 24
TC 19
Z9 21
U1 1
U2 10
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD OCT 15
PY 2009
VL 113
IS 41
BP 17608
EP 17612
DI 10.1021/jp907758s
PG 5
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 502LA
UT WOS:000270459900006
ER
PT J
AU Yim, WL
Johnson, JK
AF Yim, Wai-Leung
Johnson, J. Karl
TI Ozone Oxidation of Single Walled Carbon Nanotubes from Density
Functional Theory
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID INITIO MOLECULAR-DYNAMICS; VIBRATIONAL FREQUENCIES; PHYSICAL ADSORPTION;
POTENTIAL-ENERGY; DEFECT SITE; GAS-PHASE; OZONOLYSIS; SURFACE; HYDROGEN;
CO2
AB Ozone is known to react with single-walled nanotubes (SWNTs) to form oxide species on the nanotubes and, upon annealing, to etch the SWNTs. However, the mechanism of ozone attack is not known. We use gradient-corrected density functional theory to compute the potential energy surfaces for O(3) dissociation on the side-wall of a pristine (8,8) SWNT. Two decomposition pathways were considered; the first involves the formation of a Criegee intermediate, with a barrier of 17 kcal/mol, followed by transformations leading to lactone, quinone, and carbonyl functional groups. The activation barriers for these transformations are below 23 kcal/mol. The cleavage of the lactone group, evolving CO and CO(2), have barrier heights of 39.4 and 49.3 kcal/mol, respectively. This agrees well with experimental findings that the evolution of CO(2) and CO occur at 600 K. The second decomposition pathway involves the direct cleavage of the ozonide, forming a singlet O(2) and an ether or epoxide group on the SWNT. This pathway competes with the Criegee mechanism; the barrier for forming singlet O(2)is 7.9 kcal/mol, which is 9.1 kcal/mol lower than the barrier to formation of the Criegee intermediate, indicating that formation of ether or epoxide groups is kinetically favored. However, formation of ester and carbonyl groups could proceed by subsequent addition of O(3) on newly generated defect sites. Vibrational frequency calculations were carried out on cluster models in order to predict infrared absorption signals of local structures. The calculated results for C=O stretching frequencies agree well with experiments. Analysis of the calculated frequencies indicates that the unassigned experimental band at 1380 cm(-1) is due to ester and ether groups, while the unassigned band at 925 cm(-1) is due to epoxide groups. The vibrational frequency of the O(+)-O(-) stretch in the Criegee intermediate is in the range 1055-1096 cm(-1).
C1 [Yim, Wai-Leung; Johnson, J. Karl] Univ Pittsburgh, Dept Chem Engn, Pittsburgh, PA 15261 USA.
[Yim, Wai-Leung] Univ Pittsburgh, Ctr Surface Sci, Dept Chem, Pittsburgh, PA 15260 USA.
[Johnson, J. Karl] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA.
RP Johnson, JK (reprint author), Univ Pittsburgh, Dept Chem Engn, Pittsburgh, PA 15261 USA.
EM karlj@pitt.edu
RI Yim, Wai-Leung/B-6629-2013; Johnson, Karl/E-9733-2013
OI Johnson, Karl/0000-0002-3608-8003
FU Army Research Office
FX We gratefully acknowledge the Army Research Office for the support of
this work. Computations were performed at the Center for Molecular and
Material Simulations at the University of Pittsburgh and at the U.S.
Army Research Laboratory Ma jor Shared Resource Center through a
Department of Defense High Performance Computing challenge grant. We
acknowledge Professor K. D. Jordon for many helpful discussions.
NR 84
TC 30
Z9 30
U1 5
U2 27
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD OCT 15
PY 2009
VL 113
IS 41
BP 17636
EP 17642
DI 10.1021/jp908089c
PG 7
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 502LA
UT WOS:000270459900010
ER
PT J
AU Gaufin, T
Pattison, M
Gautam, R
Stoulig, C
Dufour, J
MacFarland, J
Mandell, D
Tatum, C
Marx, MH
Ribeiro, RM
Montefiori, D
Apetrei, C
Pandrea, I
AF Gaufin, Thaidra
Pattison, Melissa
Gautam, Rajeev
Stoulig, Crystal
Dufour, Jason
MacFarland, Jeanne
Mandell, Daniel
Tatum, Coty
Marx, Matthew H.
Ribeiro, Ruy M.
Montefiori, David
Apetrei, Cristian
Pandrea, Ivona
TI Effect of B-Cell Depletion on Viral Replication and Clinical Outcome of
Simian Immunodeficiency Virus Infection in a Natural Host
SO JOURNAL OF VIROLOGY
LA English
DT Article
ID AFRICAN-GREEN MONKEYS; NEUTRALIZING ANTIBODY-RESPONSES; ANTI-CD20
MONOCLONAL-ANTIBODY; SYSTEMIC-LUPUS-ERYTHEMATOSUS; HUMORAL
IMMUNE-RESPONSES; CD4(+) T-CELLS; SOOTY MANGABEYS; SIV INFECTION; HIV-1
INFECTION; LYMPHOCYTE DYSFUNCTIONS
AB Simian immunodeficiency virus (SIV)-infected African nonhuman primates do not progress to AIDS in spite of high and persistent viral loads (VLs). Some authors consider the high viral replication observed in chronic natural SIV infections to be due to lower anti-SIV antibody titers than those in rhesus macaques, suggesting a role of antibodies in controlling viral replication. We therefore investigated the impact of antibody responses on the outcome of acute and chronic SIVagm replication in African green monkeys (AGMs). Nine AGMs were infected with SIVagm. sab. Four AGMs were infused with 50 mg/kg of body weight anti-CD20 (rituximab; a gift from Genentech) every 21 days, starting from day -7 postinfection up to 184 days. The remaining AGMs were used as controls and received SIVagm only. Rituximab-treated AGMs were successfully depleted of CD20 cells in peripheral blood, lymph nodes (LNs), and intestine, as shown by the dynamics of CD20(+) and CD79a(+) cells. There was no significant difference in VLs between CD20-depleted AGMs and control monkeys: peak VLs ranged from 10(7) to 10(8) copies/ml; set-point values were 10(4) to 10(5) SIV RNA copies/ml. Levels of acute mucosal CD4(+) T-cell depletion were similar for treated and nontreated animals. SIVagm seroconversion was delayed for the CD20-depleted AGMs compared to results for the controls. There was a significant difference in both the timing and magnitude of neutralizing antibody responses for CD20-depleted AGMs compared to results for controls. CD20 depletion significantly altered the histological structure of the germinal centers in the LNs and Peyer's patches. Our results, although obtained with a limited number of animals, suggest that humoral immune responses play only a minor role in the control of SIV viral replication during acute and chronic SIV infection in natural hosts.
C1 [Apetrei, Cristian; Pandrea, Ivona] Univ Pittsburgh, Ctr Vaccine Res, Pittsburgh, PA 15261 USA.
[Gaufin, Thaidra; Pattison, Melissa; Gautam, Rajeev; MacFarland, Jeanne; Mandell, Daniel; Tatum, Coty; Apetrei, Cristian] Tulane Natl Primate Res Ctr, Div Microbiol, Covington, LA 70433 USA.
[Stoulig, Crystal; Marx, Matthew H.; Pandrea, Ivona] Tulane Natl Primate Res Ctr, Div Comparat Pathol, Covington, LA 70433 USA.
[Dufour, Jason] Tulane Natl Primate Res Ctr, Div Vet Med, Covington, LA 70433 USA.
[Ribeiro, Ruy M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Montefiori, David] Duke Univ, Dept Surg, Durham, NC 27710 USA.
[Apetrei, Cristian] Tulane Univ, Sch Publ Hlth, Dept Trop Med, New Orleans, LA 70112 USA.
[Pandrea, Ivona] Tulane Univ, Sch Med, Dept Pathol, New Orleans, LA 70112 USA.
RP Pandrea, I (reprint author), Univ Pittsburgh, Ctr Vaccine Res, 9045 Biomedial Sci Tower 3,3501 5th Ave, Pittsburgh, PA 15261 USA.
EM pandrea@pitt.edu
OI Ribeiro, Ruy/0000-0002-3988-8241
FU National Institute of Allergy and Infectious Diseases [R01 AI064066, R21
AI069935, R01 AI065325, P20 RR020159, P51 RR000164]
FX We thank James Binley, Preston A. Marx, Christopher J. Miller, Louis
Picker, and James Robinson for helpful discussions; the Division of
Veterinary Medicine of the TNPRC for animal care; Mary Barnes for
reading the manuscript; and Robin Rodriguez for help in preparing
figures.; This work was supported by grants R01 AI064066 and R21
AI069935 (IP), R01 AI065325 and P20 RR020159 (CA), and P51 RR000164
(TNPRC) from the National Institute of Allergy and Infectious Diseases
(http://www3. niaid. nih. gov/) and from the National Center for
Research Resources (http://www.ncrr.nih.gov/).; The funders had no role
in the study design, data collection and analysis, the decision to
publish, or the preparation of the manuscript.
NR 76
TC 32
Z9 32
U1 0
U2 1
PU AMER SOC MICROBIOLOGY
PI WASHINGTON
PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA
SN 0022-538X
J9 J VIROL
JI J. Virol.
PD OCT 15
PY 2009
VL 83
IS 20
BP 10347
EP 10357
DI 10.1128/JVI.00880-09
PG 11
WC Virology
SC Virology
GA 498FC
UT WOS:000270121600003
PM 19656874
ER
PT J
AU Whitney, JB
Luedemann, C
Hraber, P
Rao, SS
Mascola, JR
Nabel, GJ
Letvin, NL
AF Whitney, James B.
Luedemann, Corinne
Hraber, Peter
Rao, Srinivas S.
Mascola, John R.
Nabel, Gary J.
Letvin, Norman L.
TI T-Cell Vaccination Reduces Simian Immunodeficiency Virus Levels in Semen
SO JOURNAL OF VIROLOGY
LA English
DT Article
ID SEXUAL TRANSMISSION; HETEROSEXUAL TRANSMISSION; HIV-INFECTION; VIRAL
LOAD; URETHRITIS; VACCINES; IMPACT; MODEL
AB Recent findings suggest that most sexual transmission of human immunodeficiency virus type 1 (HIV-1) occurs during the acute phase of infection when viral replication is most intense. Here, we show that vaccine-elicited cellular immune responses can significantly reduce simian immunodeficiency virus levels in the semen during the period of primary infection in monkeys. A vaccine that decreases the quantity of HIV-1 in the semen of males during primary infection might decrease HIV-1 transmission in human populations and therefore affect the spread of AIDS.
C1 [Whitney, James B.; Luedemann, Corinne; Letvin, Norman L.] Harvard Univ, Beth Israel Deaconess Med Ctr, Sch Med, Div Viral Pathogenesis,Dept Med, Boston, MA 02215 USA.
[Hraber, Peter] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Rao, Srinivas S.; Mascola, John R.; Nabel, Gary J.; Letvin, Norman L.] NIAID, Vaccine Res Ctr, Bethesda, MD 20892 USA.
RP Letvin, NL (reprint author), Harvard Univ, Beth Israel Deaconess Med Ctr, Sch Med, Div Viral Pathogenesis,Dept Med, CLS 1043,3 Blackfan Circle, Boston, MA 02215 USA.
EM nletvin@bidmc.harvard.edu
OI Hraber, Peter/0000-0002-2920-4897
FU Intramural Research Program of the Vaccine Research Center, NIAID
FX This work was supported by the Intramural Research Program of the
Vaccine Research Center, NIAID.
NR 22
TC 13
Z9 13
U1 0
U2 0
PU AMER SOC MICROBIOLOGY
PI WASHINGTON
PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA
SN 0022-538X
J9 J VIROL
JI J. Virol.
PD OCT 15
PY 2009
VL 83
IS 20
BP 10840
EP 10843
DI 10.1128/JVI.01202-09
PG 4
WC Virology
SC Virology
GA 498FC
UT WOS:000270121600050
PM 19640980
ER
PT J
AU Li, HQ
Misra, A
Zhu, YT
Horita, Z
Koch, CC
Holesinger, TG
AF Li, Hongqi
Misra, Amit
Zhu, Yuntian
Horita, Zenji
Koch, Carl C.
Holesinger, Terry G.
TI Processing and characterization of nanostructured Cu-carbon nanotube
composites
SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES
MICROSTRUCTURE AND PROCESSING
LA English
DT Article
DE Nanostructures; Metal-matrix composite; Carbon nanotubes; Strength
ID MATRIX NANOCOMPOSITES; THERMAL-STABILITY; ALUMINUM; STRENGTH; BEHAVIOR;
MICROHARDNESS; EVOLUTION; HARDNESS; MODULUS
AB Carbon nanotube (CNT) reinforced nanostructured Cu matrix composite with a grain size less than 25 nm has been successfully fabricated via a combination of ball milling and high-pressure torsion. CNTs were found to be homogeneously dispersed into the metal matrix, leading to grain refinement with a narrow grain size distribution and significant increase in hardness. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Li, Hongqi; Misra, Amit] Los Alamos Natl Lab, Ctr Integrated Nonotechnol, Los Alamos, NM 87545 USA.
[Zhu, Yuntian; Koch, Carl C.] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA.
[Horita, Zenji] Kyushu Univ, Dept Mat Sci & Engn, Fukuoka 8190395, Japan.
[Holesinger, Terry G.] Los Alamos Natl Lab, Superconduct Technol Ctr, Los Alamos, NM 87545 USA.
RP Li, HQ (reprint author), Los Alamos Natl Lab, Ctr Integrated Nonotechnol, POB 1663, Los Alamos, NM 87545 USA.
EM hongqi2007@gmail.com
RI Zhu, Yuntian/B-3021-2008; Li, Hongqi/B-6993-2008; Choi, Yoon
Jeong/C-6798-2008; Misra, Amit/H-1087-2012; Koch, Carl/B-9101-2008;
U-ID, Kyushu/C-5291-2016
OI Zhu, Yuntian/0000-0002-5961-7422;
NR 27
TC 45
Z9 46
U1 3
U2 19
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0921-5093
J9 MAT SCI ENG A-STRUCT
JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
PD OCT 15
PY 2009
VL 523
IS 1-2
BP 60
EP 64
DI 10.1016/j.msea.2009.05.031
PG 5
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Metallurgy & Metallurgical Engineering
SC Science & Technology - Other Topics; Materials Science; Metallurgy &
Metallurgical Engineering
GA 504QT
UT WOS:000270632900010
ER
PT J
AU Talapin, DV
Shevchenko, EV
Bodnarchuk, MI
Ye, XC
Chen, J
Murray, CB
AF Talapin, Dmitri V.
Shevchenko, Elena V.
Bodnarchuk, Maryna I.
Ye, Xingchen
Chen, Jun
Murray, Christopher B.
TI Quasicrystalline order in self-assembled binary nanoparticle
superlattices
SO NATURE
LA English
DT Article
ID MONODISPERSE NANOCRYSTALS; MODEL; PARTICLES; TILINGS; PHASE
AB The discovery of quasicrystals in 1984 changed our view of ordered solids as periodic structures(1,2) and introduced new long-range-ordered phases lacking any translational symmetry(3-5). Quasi-crystals permit symmetry operations forbidden in classical crystallography, for example five-, eight-, ten-and 12-fold rotations, yet have sharp diffraction peaks. Intermetallic compounds have been observed to form both metastable and energetically stabilized quasicrystals(1,3,5); quasicrystalline order has also been reported for the tantalum telluride phase with an approximate Ta(1.6)Te composition(6). Later, quasicrystals were discovered in soft matter, namely supramolecular structures of organic dendrimers(7) and tri-block copolymers(8), and micrometre-sized colloidal spheres have been arranged into quasicrystalline arrays by using intense laser beams that create quasi-periodic optical standing-wave patterns(9). Here we show that colloidal inorganic nanoparticles can self-assemble into binary aperiodic superlattices. We observe formation of assemblies with dodecagonal quasicrystalline order in different binary nanoparticle systems: 13.4-nm Fe(2)O(3) and 5-nm Au nanocrystals, 12.6-nm Fe(3)O(4) and 4.7-nm Au nanocrystals, and 9-nm PbS and 3-nm Pd nanocrystals. Such compositional flexibility indicates that the formation of quasicrystalline nanoparticle assemblies does not require a unique combination of interparticle interactions, but is a general sphere-packing phenomenon governed by the entropy and simple interparticle potentials. We also find that dodecagonal quasicrystalline superlattices can form low-defect interfaces with ordinary crystalline binary superlattices, using fragments of (3(3).4(2)) Archimedean tiling as the 'wetting layer' between the periodic and aperiodic phases.
C1 [Talapin, Dmitri V.; Bodnarchuk, Maryna I.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA.
[Talapin, Dmitri V.; Shevchenko, Elena V.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
[Ye, Xingchen; Murray, Christopher B.] Univ Penn, Dept Chem, Philadelphia, PA 19104 USA.
[Chen, Jun; Murray, Christopher B.] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA.
RP Talapin, DV (reprint author), Univ Chicago, Dept Chem, 5735 S Ellis Ave, Chicago, IL 60637 USA.
EM dvtalapin@uchicago.edu; eshevchenko@anl.gov
RI Chen, Jun/F-7103-2014; Ye, Xingchen/D-3202-2017
OI Ye, Xingchen/0000-0001-6851-2721
FU US National Science Foundation (NSF) [DMR-0847535, DMR-0213745];
Austrian Nanoinitiative; Center for Nanoscale Materials; Argonne
National Laboratory; US Department of Energy [DE-AC02-06CH11357]
FX We thank S. O'Brien, W. Heiss, A. P. Alivisatos, T. Witten, W. Green and
J. Urban for discussions and V. Altoe for help with analytical TEM
studies. D. V. T. acknowledges support from the US National Science
Foundation (NSF) CAREER Program under award number DMR-0847535 and the
NSF MRSEC Program under award number DMR-0213745. M. I. B. acknowledges
financial support from the Austrian Nanoinitiative. The work at the
Center for Nanoscale Materials, Argonne National Laboratory, was
supported by the US Department of Energy under contract number
DE-AC02-06CH11357.
NR 30
TC 270
Z9 271
U1 21
U2 297
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 0028-0836
J9 NATURE
JI Nature
PD OCT 15
PY 2009
VL 461
IS 7266
BP 964
EP 967
DI 10.1038/nature08439
PG 4
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 506ZF
UT WOS:000270817700043
PM 19829378
ER
PT J
AU Moreira, PAFP
Devanathan, R
Yu, JG
Weber, WJ
AF Moreira, Pedro A. F. P.
Devanathan, Ram
Yu, Jianguo
Weber, William J.
TI Molecular-dynamics simulation of threshold displacement energies in
zircon
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM
INTERACTIONS WITH MATERIALS AND ATOMS
LA English
DT Article
DE Zircon; Molecular dynamics; Radiation effects; Displacement energy
ID WASTE FORMS; ACTINIDES; SILICATE; CRYSTALS; ZRSIO4; DAMAGE; PHASE
AB Molecular-dynamics simulations were used to examine the displacement threshold energy (E(d)) surface for Zr, Si and O in zircon using two different interatomic potentials. For each sublattice, the simulation was repeated from different initial conditions to estimate the uncertainty in the calculated value of E(d). The displacement threshold energies vary considerably with crystallographic direction and sublattice. Based on the present simulations and previous experimental studies, this work recommends E(d) values of 75, 75 and 60 eV for Zr, Si and O, respectively. to be used in Monte Carlo simulations of irradiation damage profile in zircon. (C) 2009 Elsevier B.V. All rights reserved
C1 [Moreira, Pedro A. F. P.; Devanathan, Ram; Yu, Jianguo; Weber, William J.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA.
[Moreira, Pedro A. F. P.] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil.
RP Devanathan, R (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA.
RI Weber, William/A-4177-2008; Yu, Jianguo/C-3424-2013; Devanathan,
Ram/C-7247-2008; Moreira, Pedro /D-1750-2013; Inst. of Physics, Gleb
Wataghin/A-9780-2017; Moreira, Pedro/E-1086-2012
OI Weber, William/0000-0002-9017-7365; Yu, Jianguo/0000-0001-5604-8132;
Devanathan, Ram/0000-0001-8125-4237; Moreira, Pedro
/0000-0003-0975-6034; Moreira, Pedro/0000-0003-2843-775X
FU Materials Sciences and Engineering Division, Office of Basic Energy
Sciences (BES); US Department of Energy (DOE) [DE-AC05-76RL01830]; CNPq
(Conselho Nacional de Desenvolvimento Cientifico e Tecnologico), Brazil
FX This work was funded by the Materials Sciences and Engineering Division,
Office of Basic Energy Sciences (BES), US Department of Energy (DOE)
under Contract No. DE-AC05-76RL01830. The computations were performed
using resources of the EMSL, a national scientific user facility
sponsored by the DOE's Office of Biological and Environmental Research
located at Pacific Northwest National Laboratory. P. A. F. P. M.
acknowledges CNPq (Conselho Nacional de Desenvolvimento Cientifico e
Tecnologico), Brazil, for a fellowship. JY was partly supported by a DOE
BES Computational Materials Science Network Cooperative Research Team
grant.
NR 25
TC 14
Z9 15
U1 2
U2 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-583X
J9 NUCL INSTRUM METH B
JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms
PD OCT 15
PY 2009
VL 267
IS 20
BP 3431
EP 3436
DI 10.1016/j.nimb.2009.07.023
PG 6
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Atomic, Molecular & Chemical; Physics, Nuclear
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 512MA
UT WOS:000271252300007
ER
PT J
AU Wilcox, R
Byrd, JM
Doolittle, L
Huang, G
Staples, JW
AF Wilcox, Russell
Byrd, J. M.
Doolittle, Lawrence
Huang, Gang
Staples, J. W.
TI Stable transmission of radio frequency signals on fiber links using
interferometric delay sensing
SO OPTICS LETTERS
LA English
DT Article
ID OPTICAL FREQUENCY; DIODE-LASER; STABILITY; SYNCHRONIZATION
AB We demonstrate distribution of a 2850 MHz rf signal over stabilized optical fiber links. For a 2.2 km link we measure an rms drift of 19.4 fs over 60 h, and for a 200 m link an rms drift of 8.4 fs over 20 h. The rf signals are transmitted as amplitude modulation on a continuous optical carrier. Variations in the delay length are sensed using heterodyne interferometry and used to correct the rf phase. The system uses standard fiber telecommunications components. (C) 2009 Optical Society of America
C1 [Wilcox, Russell; Byrd, J. M.; Doolittle, Lawrence; Huang, Gang; Staples, J. W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Byrd, JM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM JMByrd@lbl.gov
RI Huang, Gang/I-7772-2013
FU U.S. Department of Energy [DE-AC02-05CH11231]
FX This work was supported by the U.S. Department of Energy under contract
DE-AC02-05CH11231.
NR 11
TC 38
Z9 39
U1 0
U2 4
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 0146-9592
J9 OPT LETT
JI Opt. Lett.
PD OCT 15
PY 2009
VL 34
IS 20
BP 3050
EP 3052
PG 3
WC Optics
SC Optics
GA 514DM
UT WOS:000271374500002
PM 19838222
ER
PT J
AU Li, JS
Han, S
Zhang, S
Bartal, G
Zhang, X
AF Li, Jensen
Han, Seunghoon
Zhang, Shuang
Bartal, Guy
Zhang, Xiang
TI Designing the Fourier space with transformation optics
SO OPTICS LETTERS
LA English
DT Article
ID HYPERLENS; LIGHT; FIELD
AB We show that transformation optics can be applied to extend the functionalities of conventional optical devices. In particular, geometrically compressing the input facet of any conventional optical elements can extend the input spatial frequency bandwidth. As an example, we design a Fourier lens that can transform the image to its reciprocal space and operate for incident light of subwavelength profile. An explicit design employing metal-dielectric layers is given for realization. (C) 2009 Optical Society of America
C1 [Li, Jensen; Han, Seunghoon; Zhang, Shuang; Bartal, Guy; Zhang, Xiang] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr NSEC, Berkeley, CA 94720 USA.
[Zhang, Xiang] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Zhang, X (reprint author), Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr NSEC, 3112 Etcheverry Hall, Berkeley, CA 94720 USA.
EM xiang@berkeley.edu
RI Zhang, Xiang/F-6905-2011;
OI Li, Jensen/0000-0002-2099-8942
FU U.S. Army Research Office (ARO) MURI program [50432PH-MUR]; National
Science Foundation Nano-scale Science and Engineering Center (NSFNSEC)
[CMMI-0751621]
FX We acknowledge financial support from the U.S. Army Research Office
(ARO) MURI program 50432PH-MUR and the National Science Foundation
Nano-scale Science and Engineering Center (NSFNSEC) under award
CMMI-0751621.
NR 19
TC 11
Z9 11
U1 2
U2 7
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 0146-9592
EI 1539-4794
J9 OPT LETT
JI Opt. Lett.
PD OCT 15
PY 2009
VL 34
IS 20
BP 3128
EP 3130
PG 3
WC Optics
SC Optics
GA 514DM
UT WOS:000271374500028
PM 19838248
ER
PT J
AU Farahi, RH
Passian, A
Jones, YK
Tetard, L
Lereu, AL
Thundat, TG
AF Farahi, R. H.
Passian, A.
Jones, Y. K.
Tetard, L.
Lereu, A. L.
Thundat, T. G.
TI Laser reflectometry of submegahertz liquid meniscus ringing
SO OPTICS LETTERS
LA English
DT Article
ID MARANGONI FORCES
AB Optical techniques that permit nondestructive probing of interfacial dynamics of various media are of key importance in numerous applications such as ellipsometry, mirage effect, and all-optical switching. Characterization of the various phases of microjet droplet formation yields important information for volume control, uniformity, velocity, and rate. The ringing of the meniscus and the associated relaxation time that occurs after droplet breakoff affect subsequent drop formation and is an indicator of the physical properties of the fluid. Using laser reflectometry, we present an analysis of the meniscus oscillations in an orifice of a piezoelectric microjet. (C) 2009 Optical Society of America
C1 [Farahi, R. H.; Passian, A.; Tetard, L.; Lereu, A. L.; Thundat, T. G.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Farahi, R. H.; Passian, A.; Tetard, L.] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA.
[Jones, Y. K.] Alcorn State Univ, Alcorn, MS 39096 USA.
RP Farahi, RH (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
EM farahirh@ornl.gov
RI Lereu, Aude/P-6414-2016
OI Lereu, Aude/0000-0001-7390-7832
FU Department of Energy's of Oak Ridge National Laboratory (ORNL); Oak
Ridge National Laboratory, Oak Ridge, Tennessee [37831-6123];
UT-Battelle, LLC for the Department of Energy [DEAC05-0096OR22725]
FX This research was supported by the Department of Homeland
Security-sponsored Southeast Region Research Initiative (SERRI) at the
Department of Energy's Oak Ridge National Laboratory (ORNL). Oak Ridge
National Laboratory, Oak Ridge, Tennessee, 37831-6123, is managed by
UT-Battelle, LLC for the Department of Energy under contract number
DEAC05-0096OR22725.
NR 7
TC 3
Z9 3
U1 0
U2 3
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 0146-9592
J9 OPT LETT
JI Opt. Lett.
PD OCT 15
PY 2009
VL 34
IS 20
BP 3148
EP 3150
PG 3
WC Optics
SC Optics
GA 514DM
UT WOS:000271374500035
PM 19838255
ER
PT J
AU Maple, MB
Baumbach, RE
Hamlin, JJ
Zocco, DA
Taylor, BJ
Butch, NP
Jeffries, JR
Weir, ST
Sales, BC
Mandrus, D
McGuire, MA
Sefat, AS
Jin, R
Vohra, YK
Chu, JH
Fisher, IR
AF Maple, M. B.
Baumbach, R. E.
Hamlin, J. J.
Zocco, D. A.
Taylor, B. J.
Butch, N. P.
Jeffries, J. R.
Weir, S. T.
Sales, B. C.
Mandrus, D.
McGuire, M. A.
Sefat, A. S.
Jin, R.
Vohra, Y. K.
Chu, J. -H.
Fisher, I. R.
TI New correlated electron physics from new materials
SO PHYSICA B-CONDENSED MATTER
LA English
DT Article
ID LAYERED QUATERNARY COMPOUND; ZRCUSIAS TYPE-STRUCTURE; FERMI-LIQUID
BEHAVIOR; SUPERCONDUCTIVITY; FERROMAGNETISM; COEXISTENCE; URU2SI2;
SYSTEM; URHGE; UGE2
AB Many important advances in the physics of strongly correlated electron systems have been driven by the development of new materials: for instance the filled skutterudites MT(4)X(12) (M = alkali metal, alkaline earth, lanthanide, or actinide; T = Fe, Ru, or Os; X = P, As. or Sb), certain lanthanide and actinide intermetallic compounds such as URu(2-x)Re(x)Si(2) and CeTIn(5) (T = Co, Rh, or Ir), and layered oxypnictides and related materials. These types of complex multinary d- and f-electron compounds have proven to be a vast reservoir of novel strongly correlated electron ground states and phenomena. In these materials, the occurrence of such a wide range of ground states and phenomena arises from a delicate interplay between competing interactions that can be tuned by partial or complete substitution of one element for another, as well as the application of pressure, and magnetic fields, resulting in rich and complex electronic phase diagrams in the hyperspace of temperature, chemical composition, pressure and magnetic field. It seems clear that this type of "materials driven physics" will continue to play a central role in the development of the field of strongly correlated electron systems in the future, through the discovery of new materials that exhibit unexpected phenomena and experiments on known materials in an effort to optimize their physical properties and test relevant theories. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Maple, M. B.; Baumbach, R. E.; Hamlin, J. J.; Zocco, D. A.; Taylor, B. J.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA.
[Butch, N. P.] Univ Maryland, Ctr Nanophys & Adv Mat, College Pk, MD 20742 USA.
[Maple, M. B.; Baumbach, R. E.; Hamlin, J. J.; Zocco, D. A.; Taylor, B. J.] Univ Calif San Diego, Inst Pure & Appl Phys Sci, La Jolla, CA 92093 USA.
[Jeffries, J. R.; Weir, S. T.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
[Sales, B. C.; Mandrus, D.; McGuire, M. A.; Sefat, A. S.; Jin, R.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
[Vohra, Y. K.] Univ Alabama, Dept Phys, Birmingham, AL 35294 USA.
[Chu, J. -H.; Fisher, I. R.] Stanford Univ, Dept Appl Phys, Geballe Lab Adv Mat, Stanford, CA 94305 USA.
RP Maple, MB (reprint author), Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA.
EM mbmaple@ucsd.edu
RI McGuire, Michael/B-5453-2009; Baumbach, Ryan/C-5528-2012; Weir,
Samuel/H-5046-2012; Mandrus, David/H-3090-2014; Zocco,
Diego/O-3440-2014; Sefat, Athena/R-5457-2016
OI McGuire, Michael/0000-0003-1762-9406; Sefat, Athena/0000-0002-5596-3504
FU US Department of Energy (DOE) [DE FG02-04ER46105, DE-AC02-76SF00515];
National Science Foundation (NSF) [0802478]
FX At UCSD, crystal growth work was supported by the US Department of
Energy (DOE) under research Grant DE FG02-04ER46105 and low temperature
measurements were funded by the National Science Foundation (NSF) under
Grant 0802478. Work at Stanford University was supported by the
Department of Energy, Office of Basic Energy Sciences under contract
DE-AC02-76SF00515.
NR 51
TC 15
Z9 15
U1 0
U2 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0921-4526
J9 PHYSICA B
JI Physica B
PD OCT 15
PY 2009
VL 404
IS 19
BP 2924
EP 2929
DI 10.1016/j.physb.2009.07.141
PG 6
WC Physics, Condensed Matter
SC Physics
GA 513XL
UT WOS:000271357300011
ER
PT J
AU Holanda, LM
Duque, JGS
Bittar, EM
Adriano, C
Pagliuso, PG
Rettori, C
Hu, RW
Petrovic, C
Maquilon, S
Fisk, Z
Huber, DL
Oseroff, SB
AF Holanda, L. M.
Duque, J. G. S.
Bittar, E. M.
Adriano, C.
Pagliuso, P. G.
Rettori, C.
Hu, R. W.
Petrovic, C.
Maquilon, S.
Fisk, Z.
Huber, D. L.
Oseroff, S. B.
TI Field-dependent collective ESR mode in YbRh2Si2
SO PHYSICA B-CONDENSED MATTER
LA English
DT Article
DE Heavy fermions; YbRh2Si2; Electron spin resonance (ESR)
ID ELECTRON-SPIN-RESONANCE; EXCHANGE-COUPLED SYSTEMS; QUANTUM
CRITICAL-POINT; INTERMETALLIC COMPOUNDS; PARAMAGNETIC-RESONANCE; UNLIKE
SPINS; METALS; ABSORPTION
AB Electron spin resonance (ESR) experiments in YbRh2Si2 Kondo lattice (T-K similar or equal to 25 K) at different field/frequencies (4.1 <= v <= 34.4 GHz) and H-perpendicular to c revealed: (i) a strong field dependent Yb3+ spin-lattice relaxation, (ii) a weak field and T-dependent effective g-value, (iii) a suppression of the ESR intensity beyond 15% of Lu-doping, and (iv) a strong sample and Lu-doping (<= 15%) dependence of the ESR data. These results suggest that the ESR signal in YbRh2Si2 may be due to a coupled Yb3+-conduction electron resonant collective mode with a subtle field-dependent spins dynamic. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Holanda, L. M.; Duque, J. G. S.; Bittar, E. M.; Adriano, C.; Pagliuso, P. G.; Rettori, C.] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil.
[Hu, R. W.; Petrovic, C.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Maquilon, S.] Univ Calif Davis, Dept Phys, Davis, CA 95617 USA.
[Huber, D. L.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.
[Fisk, Z.] Univ Calif Irvine, Irvine, CA 92697 USA.
[Oseroff, S. B.] San Diego State Univ, San Diego, CA 92182 USA.
RP Rettori, C (reprint author), Univ Estadual Campinas, Inst Fis Gleb Wataghin, CP 6165, BR-13083970 Campinas, SP, Brazil.
EM rettori@ifi.unicamp.br
RI Rettori, Carlos/C-3966-2012; Pagliuso, Pascoal/C-9169-2012; Hu,
Rongwei/E-7128-2012; Bittar, Eduardo/B-6266-2008; Petrovic,
Cedomir/A-8789-2009; Inst. of Physics, Gleb Wataghin/A-9780-2017
OI Rettori, Carlos/0000-0001-6692-7915; Bittar,
Eduardo/0000-0002-2762-1312; Petrovic, Cedomir/0000-0001-6063-1881;
FU FAPESP; CNPq (Brazil); NSF (USA)
FX We thank FAPESP and CNPq (Brazil) and NSF (USA) for financial support;
and P. Coleman, E. Miranda, D.J. Garcia and M. Continentino for fruitful
discussions.
NR 44
TC 4
Z9 4
U1 0
U2 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0921-4526
EI 1873-2135
J9 PHYSICA B
JI Physica B
PD OCT 15
PY 2009
VL 404
IS 19
BP 2964
EP 2968
DI 10.1016/j.physb.2009.07.024
PG 5
WC Physics, Condensed Matter
SC Physics
GA 513XL
UT WOS:000271357300020
ER
PT J
AU Sondezi-Mhlungu, BM
Adroja, DT
Strydom, AM
Paschen, S
Goremychkin, EA
AF Sondezi-Mhlungu, B. M.
Adroja, D. T.
Strydom, A. M.
Paschen, S.
Goremychkin, E. A.
TI Crystal electric field excitations in ferromagnetic CeTX compounds
SO PHYSICA B-CONDENSED MATTER
LA English
DT Article
DE Strongly correlated electrons; Crystal field excitations; Specific heat;
Inelastic neutron scattering
ID MAGNETIC-PROPERTIES; CECUSI; CEAUGE
AB A ferromagnetic ground state was identified for the compounds CeCuGe (T(C) = 10 K), CeCuSi (T(C) = 15 K) [F. Yang, et al., J. Appl. Phys. 69 (1991) 4705] and CeAuGe (T(C) = 10 K) [R. Pottgen, J. Magn. Magn. Mater. 152 (1996) 196]. The observed saturation magnetic moment values at low temperatures for all three compounds are considerably less than the theoretically expected value g(j)J = 2.14 mu(B) for the free Ce(3+) ion involving the entire six-fold J = 5/2 multiplet, and thus provide a first indication of partial lifting of the f-electron level degeneracy in these compounds. Specific heat data yield crystal electric field (CEF) excitation energies (Delta(Sch)) equivalent to 140 K for CeCuGe, 110 K for CeCuSi and 280 K for CeAuCe. To confirm the presence of CEF excitations directly, we have carried out inelastic neutron scattering (INS) measurements on all three compounds, using the HET spectrometer at ISIS Facility. Here, we present a detailed analysis of the INS spectra of CeCuSi on the basis of a CEF model and the detailed analysis of the INS of the other two compounds will be reported elsewhere. (C) 2009 Published by Elsevier B.V.
C1 [Sondezi-Mhlungu, B. M.; Strydom, A. M.] Univ Johannesburg, Dept Phys, ZA-2006 Auckland Pk, South Africa.
[Adroja, D. T.; Goremychkin, E. A.] STFC Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England.
[Paschen, S.] TU Wien, IFP, A-1040 Vienna, Austria.
[Goremychkin, E. A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
RP Sondezi-Mhlungu, BM (reprint author), Univ Johannesburg, Dept Phys, POB 524, ZA-2006 Auckland Pk, South Africa.
EM bmhlungu@uj.ac.za
RI Paschen, Silke/C-3841-2014
OI Paschen, Silke/0000-0002-3796-0713
FU University of Johannesburg Research Committee; SA National Research
Foundation [2072956]
FX A.M. Strydom thanks the University of Johannesburg Research Committee
and the SA National Research Foundation, Grant no. 2072956, for
financial support.
NR 9
TC 8
Z9 8
U1 0
U2 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0921-4526
J9 PHYSICA B
JI Physica B
PD OCT 15
PY 2009
VL 404
IS 19
BP 3032
EP 3034
DI 10.1016/j.physb.2009.07.014
PG 3
WC Physics, Condensed Matter
SC Physics
GA 513XL
UT WOS:000271357300040
ER
PT J
AU Vargas, JM
Garcia, FA
Rettori, C
Garcia, DJ
Sales, B
Schlottmann, P
Oseroff, SB
AF Vargas, J. M.
Garcia, F. A.
Rettori, C.
Garcia, D. J.
Sales, B.
Schlottmann, P.
Oseroff, S. B.
TI The g-value of Er3+ doped unfilled skutterudite CoSb3 (T-h) reveals the
existence of an additional sixth order term in the crystal field
Hamiltonian
SO PHYSICA B-CONDENSED MATTER
LA English
DT Article
DE Filled skutterudite; Antimonides; CoSb3; Rare-earth metal
ID ELECTRIC-FIELDS
AB Electron spin resonance (ESR) experiments have been carried out in single crystals of the unfilled skutterudite CoSb3 doped with Er ions. The X- (9.5 GHz) and Q- (34.4 GHz) band spectra obtained at low temperature (4-20 K) shown a temperature independent g-value of 6.21(5). This g-value can only be explained with the addition of a second sixth order B-6(1)(O-6(2) - O-6(6)) term to the usual cubic crystal field Hamiltonian. The ESR of Er3+ show the typical temperature dependence of the line-shape and line-width expected for insulating host. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Vargas, J. M.; Garcia, F. A.; Rettori, C.] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil.
[Garcia, D. J.] Consejo Nacl Invest Cient & Tecn, San Carlos De Bariloche, RN, Argentina.
[Garcia, D. J.] Ctr Atom Bariloche, San Carlos De Bariloche, RN, Argentina.
[Sales, B.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Schlottmann, P.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA.
[Oseroff, S. B.] San Diego State Univ, San Diego, CA 92182 USA.
RP Rettori, C (reprint author), Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil.
EM rettori@ifi.unicamp.br
RI Rettori, Carlos/C-3966-2012; Garcia, Fernando/B-3800-2013; Schlottmann,
Pedro/G-1579-2013; Inst. of Physics, Gleb Wataghin/A-9780-2017;
OI Rettori, Carlos/0000-0001-6692-7915; Garcia,
Fernando/0000-0001-5694-640X; Garcia, Daniel Julio/0000-0001-6777-9184
FU FAPESP; CNPq, Brazil; Division of Materials Sciences and Engineering,
Office of Basic Energy Sciences, U.S. Department of Energy
FX The work at UNICAMP was supported by FAPESP and CNPq, Brazil. Research
at ORNL sponsored by the Division of Materials Sciences and Engineering,
Office of Basic Energy Sciences, U.S. Department of Energy.
NR 12
TC 1
Z9 1
U1 0
U2 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0921-4526
J9 PHYSICA B
JI Physica B
PD OCT 15
PY 2009
VL 404
IS 19
BP 3035
EP 3037
DI 10.1016/j.physb.2009.07.012
PG 3
WC Physics, Condensed Matter
SC Physics
GA 513XL
UT WOS:000271357300041
ER
PT J
AU Thorsmolle, VK
Averitt, RD
Demsar, J
Smith, DL
Tretiak, S
Martin, RL
Chi, X
Crone, BK
Ramirez, AP
Taylor, AJ
AF Thorsmolle, V. K.
Averitt, R. D.
Demsar, J.
Smith, D. L.
Tretiak, S.
Martin, R. L.
Chi, X.
Crone, B. K.
Ramirez, A. P.
Taylor, A. J.
TI Photoexcited carrier relaxation dynamics in pentacene probed by
ultrafast optical spectroscopy: Influence of morphology on relaxation
processes
SO PHYSICA B-CONDENSED MATTER
LA English
DT Article
DE Ultrafast spectroscopy; Organic semiconductors; Sample morphology
ID EXCITON DYNAMICS; CHARGE-TRANSFER; LOW-COST; POLYMERS; FILMS; CELLS
AB We present a comparative study of ultrafast photoexcited state relaxation in pentacene single crystals and in pure and C(60)-doped pentacene films using optical pump-probe spectroscopy. The photoinduced absorption spectra in pentacene crystals is consistent with a dominant singlet-triplet fission decay channel for above-gap excitation. This decay channel is suppressed in thin films and even further suppressed by electron trapping in C60-doped films. Thus we show that suppression of triplet state production, which is necessary for free carrier formation and thus photovoltaic and photodiode performance, is controllable via sample morphology. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Thorsmolle, V. K.] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland.
[Thorsmolle, V. K.; Averitt, R. D.; Demsar, J.; Smith, D. L.; Tretiak, S.; Martin, R. L.; Chi, X.; Crone, B. K.; Ramirez, A. P.; Taylor, A. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Averitt, R. D.] Boston Univ, Boston, MA 02215 USA.
[Demsar, J.] Univ Konstanz, Dept Phys, D-78457 Constance, Germany.
[Demsar, J.] Univ Konstanz, Ctr Appl Photon, D-78457 Constance, Germany.
[Demsar, J.] Jozef Stefan Inst, Dept Complex Matter, Ljubljana, Slovenia.
[Chi, X.] Texas A&M Univ Kingsville, Kingsville, TX 78363 USA.
[Ramirez, A. P.] Bell Labs, Alcatel Lucent, Murray Hill, NJ 07974 USA.
RP Thorsmolle, VK (reprint author), Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland.
EM verner.thorsmolle@epfl.ch
RI Tretiak, Sergei/B-5556-2009; Thorsmolle, Verner/M-1095-2015; Demsar,
Jure/B-5578-2008; Demsar, Jure/F-7243-2016
OI Tretiak, Sergei/0000-0001-5547-3647; Thorsmolle,
Verner/0000-0002-5890-4403; Demsar, Jure/0000-0003-4551-7444;
FU Laboratory Directed Research and Development program at Los Alamos
National Laboratory, the Department of Energy (DOE) Center for
Integrated Nanotechnologies; DOE [DE-FG02-04ER46118]
FX This work was supported by the Laboratory Directed Research and
Development program at Los Alamos National Laboratory, the Department of
Energy (DOE) Center for Integrated Nanotechnologies, and DOE Grant no.
DE-FG02-04ER46118. We are grateful to Michael Grdtzel, Majed Chergui,
Christoph Gadermaier, Thomas Dekorsy and Alfred Leitenstorfer for
valuable comments.
NR 30
TC 14
Z9 14
U1 2
U2 28
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0921-4526
J9 PHYSICA B
JI Physica B
PD OCT 15
PY 2009
VL 404
IS 19
BP 3127
EP 3130
DI 10.1016/j.physb.2009.07.063
PG 4
WC Physics, Condensed Matter
SC Physics
GA 513XL
UT WOS:000271357300065
ER
PT J
AU Szabo, P
Pribulova, Z
Pristas, G
Bud'ko, SL
Canfield, PC
Samuely, P
AF Szabo, P.
Pribulova, Z.
Pristas, G.
Bud'ko, S. L.
Canfield, P. C.
Samuely, P.
TI Two gap superconductivity in Ba0.55K0.45Fe2As2 single crystals studied
by the directional point-contact Andreev reflection spectroscopy
SO PHYSICA B-CONDENSED MATTER
LA English
DT Article
AB First directional point-contact Andreev reflection spectroscopy on the Ba0.55K0.45Fe2As2 single crystals is presented. The spectra show significant differences when measured in the ab plane in comparison with those measured in the c direction. In the latter case no traces of superconducting energy gap could be found, just a reduced point-contact conductance persisting up to about 100 K and indicating reduced density of states. On the other hand within the ab plane two nodeless superconducting energy gaps Delta(s) approximate to 2-5 meV and Delta(L) approximate to 9-11 meV are detected. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Szabo, P.; Pribulova, Z.; Samuely, P.] IEP Slovak Acad Sci, Ctr Low Temp Phys, SK-04001 Kosice, Slovakia.
[Szabo, P.; Pribulova, Z.; Samuely, P.] Safarik Univ, SK-04001 Kosice, Slovakia.
[Pristas, G.; Bud'ko, S. L.; Canfield, P. C.] Ames Lab, Ames, IA 50011 USA.
[Pristas, G.; Bud'ko, S. L.; Canfield, P. C.] Iowa State Univ, Ames, IA 50011 USA.
RP Samuely, P (reprint author), IEP Slovak Acad Sci, Ctr Low Temp Phys, Watsonova 47, SK-04001 Kosice, Slovakia.
EM samuely@saske.sk
RI Canfield, Paul/H-2698-2014
FU Slovak Research and Development Agency [VVCE-0058-07, APVV-0346-07,
LPP-0101-06]; EC [MTKD-CT-2005-030002]; Department of Energy-Basic
Energy Sciences [DE-AC02-07CH11358]
FX This work has been supported by the Slovak Research and Development
Agency under the Contract nos. VVCE-0058-07, APVV-0346-07 and
LPP-0101-06 and by the EC Framework Programme MTKD-CT-2005-030002.
Centre of Low Temperature Physics is operated as the Centre of
Excellence of the Slovak Academy of Sciences. The liquid nitrogen for
the experiment has been sponsored by the U.S. Steel Kosice, s.r.o. Work
at the Ames Laboratory was supported by the Department of Energy-Basic
Energy Sciences under Contract no. DE-AC02-07CH11358.
NR 22
TC 1
Z9 1
U1 0
U2 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0921-4526
J9 PHYSICA B
JI Physica B
PD OCT 15
PY 2009
VL 404
IS 19
BP 3220
EP 3222
DI 10.1016/j.physb.2009.07.108
PG 3
WC Physics, Condensed Matter
SC Physics
GA 513XL
UT WOS:000271357300088
ER
PT J
AU Torikachvili, MS
Bud'ko, SL
Ni, N
Canfield, PC
AF Torikachvili, M. S.
Bud'ko, S. L.
Ni, Ni
Canfield, P. C.
TI Hydrostatic pressure study of the structural phase transitions and
superconductivity in single crystals of (Ba1-xKx)Fe2As2 (x=0 and 0.45)
and CaFe2As2
SO PHYSICA B-CONDENSED MATTER
LA English
DT Article
DE Arsenides; Superconductivity; H-c2; Pressure effects
ID 43 K
AB We studied the effect of hydrostatic pressure (P) on the structural phase transitions and superconductivity in the ternary and pseudo-ternary iron arsenides CaFe2As2, BaFe2As2, and (Ba0.55K0.45)Fe2As2, by means of measurements of electrical resistivity (rho) in the 1.8-300 K temperature (T) range, pressures up to 20 kbar, and magnetic fields up to 9 T. CaFe2As2 and BaFe2As2 (lightly doped with Sn) display structural phase transitions near 170 and 85 K, respectively, and do not exhibit superconductivity in ambient pressure, while K-doped (Ba0.55K0.45)Fe2As2 is superconducting for T<30 K. The effect of pressure on BaFe2As2 is to shift the onset of the crystallographic transformation down in temperature at the rate of similar to-1.04 K/kbar, while shifting the whole rho(T) curves downward, whereas its effect on superconducting (Ba0.55K0.45)Fe2As2 is to shift the onset of superconductivity to lower temperatures at the rate of similar to-0.21 K/kbar. The effect of pressure on CaFe2As2 is first to suppress the crystallographic transformation and induce superconductivity with onset near 12 K very rapidly, i.e., for P<5kbar. However, higher pressures bring about another phase transformation characterized by reduced-resistivity, and the suppression of superconductivity, confining superconductivity to a narrow pressure dome centered near 5 kbar. Upper critical field (H-c2) data in (Ba0.55K0.45)Fe2As2 and CaFe2As2 are discussed. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Torikachvili, M. S.] San Diego State Univ, Dept Phys, San Diego, CA 92182 USA.
[Bud'ko, S. L.; Ni, Ni; Canfield, P. C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
[Bud'ko, S. L.; Ni, Ni; Canfield, P. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
RP Torikachvili, MS (reprint author), San Diego State Univ, Dept Phys, San Diego, CA 92182 USA.
EM milton@sciences.sdsu.edu
RI Canfield, Paul/H-2698-2014
FU National Science Foundation [DMR-0306165, DMR0805335]; US Department of
Energy-Basic Energy Sciences [DE-AC02-07CH11358]
FX MST gratefully acknowledges support from the National Science Foundation
under Grants no. DMR-0306165 and DMR0805335. Work at the Ames Laboratory
was supported by the US Department of Energy-Basic Energy Sciences under
Contract no. DE-AC02-07CH11358.
NR 19
TC 1
Z9 1
U1 1
U2 16
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0921-4526
J9 PHYSICA B
JI Physica B
PD OCT 15
PY 2009
VL 404
IS 19
BP 3223
EP 3226
DI 10.1016/j.physb.2009.07.117
PG 4
WC Physics, Condensed Matter
SC Physics
GA 513XL
UT WOS:000271357300089
ER
PT J
AU Walker, HC
Ewings, RA
Fabrizi, F
Mannix, D
Mazzoli, C
Wilkins, SB
Paolasini, L
Prabhakaran, D
Boothroyd, AT
McMorrow, DF
AF Walker, H. C.
Ewings, R. A.
Fabrizi, F.
Mannix, D.
Mazzoli, C.
Wilkins, S. B.
Paolasini, L.
Prabhakaran, D.
Boothroyd, A. T.
McMorrow, D. F.
TI X-ray resonant scattering study of the magnetic phase diagram of
multiferroic TbMnO3
SO PHYSICA B-CONDENSED MATTER
LA English
DT Article
DE TbMnO3; X-ray resonant scattering; Magnetoelectric multiferroics
AB We present the magnetic phase diagram of multiferroic TbMnO3 for H parallel to b determined using X-ray resonant scattering at the Tb L-3-edge. Investigations of two different magnetic domains, C-type and F-type, demonstrate very similar behaviour in high applied magnetic fields, with a low temperature incommensurate to commensurate transition at H similar or equal to 4.5T, concurrent with the polarisation flop observed in bulk magnetoelectric measurements. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Walker, H. C.; McMorrow, D. F.] UCL, London Ctr Nanotechnol, London WC1E 6BT, England.
[Walker, H. C.; McMorrow, D. F.] UCL, Dept Phys & Astron, London WC1E 6BT, England.
[Ewings, R. A.; Prabhakaran, D.; Boothroyd, A. T.] Univ Oxford, Dept Phys, Oxford OX1 3PU, England.
[Mannix, D.] European Synchrotron Radiat Facil, XMaS CRG Beamline, F-38043 Grenoble 9, France.
[Wilkins, S. B.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA.
RP Walker, HC (reprint author), European Synchrotron Radiat Facil, XMaS CRG Beamline, Boite Postale 220, F-38043 Grenoble 9, France.
EM helen.walker@esrf.fr
RI McMorrow, Desmond/C-2655-2008; Walker, Helen/C-4201-2011; Mazzoli,
Claudio/J-4360-2012;
OI McMorrow, Desmond/0000-0002-4947-7788; Walker,
Helen/0000-0002-7859-5388; Mannix, Danny/0000-0002-7346-6894
NR 18
TC 3
Z9 3
U1 0
U2 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0921-4526
J9 PHYSICA B
JI Physica B
PD OCT 15
PY 2009
VL 404
IS 19
BP 3264
EP 3266
DI 10.1016/j.physb.2009.07.085
PG 3
WC Physics, Condensed Matter
SC Physics
GA 513XL
UT WOS:000271357300100
ER
PT J
AU Windisch, CF
Thallapally, PK
McGrail, BP
AF Windisch, Charles F., Jr.
Thallapally, Praveen K.
McGrail, B. Peter
TI Adsorption of CO2 on CO3II[Co-III(CN)(6)](2) using DRIFTS
SO SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY
LA English
DT Article
DE Carbon dioxide; Adsorption; Prussian blue; DRIFTS; Infrared
spectroscopy; Reflectance spectroscopy
ID METAL-ORGANIC FRAMEWORKS; PRUSSIAN BLUE ANALOGS; CARBON-DIOXIDE
ADSORPTION; SUPERCRITICAL CONDITIONS; HYDROGEN STORAGE; SPECTRA;
MICROPOROSITY; SPECTROSCOPY; ISOTHERMS; CAPACITY
AB Adsorption Of CO2 on dehydrated Prussian blue analogue Co-3(II) [Co-III(CN)(6)](2) was studied using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). An infrared peak at 2340 cm(-1) assigned to adsorbed CO2 was identified and used semi-quantitatively to construct an isotherm at 298 K that followed the Langmuir-Freundlich equation in the low-coverage Henry's law limit with CO2 pressure below about 25 kPa. Temperature-dependence at 6.8 kPa CO2 was used to determine Delta H-ad = -23 +/- 3 kJ mol(-1), in this limit as well. Deviation from the Langmuir-Freundlich model was significant at temperatures above 298 K and attributed primarily to a loss of reliability of the DRIFT spectra at higher CO2 pressures, particularly at higher temperatures, and the accompanying uncertainties in the difference spectra when correcting for the presence of gaseous CO2. Based on this work, the application of DRIFTS to study CO2 adsorption on Prussian blue analogues and other adsorbents is promising, although the range of conditions over which it can be applied appears to be more limited than with other techniques. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Windisch, Charles F., Jr.; Thallapally, Praveen K.; McGrail, B. Peter] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Windisch, CF (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA.
EM cf.windisch@pnl.gov
RI thallapally, praveen/I-5026-2014
OI thallapally, praveen/0000-0001-7814-4467
FU U.S. Department of Energy, Office of Fossil Energy
FX This work was supported by the U.S. Department of Energy, Office of
Fossil Energy. The Pacific Northwest National Laboratory is operated by
Battelle for the U.S. Department of Energy under Contract
DE-AC05-76RL01830.
NR 38
TC 12
Z9 12
U1 2
U2 11
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1386-1425
J9 SPECTROCHIM ACTA A
JI Spectroc. Acta Pt. A-Molec. Biomolec. Spectr.
PD OCT 15
PY 2009
VL 74
IS 3
BP 629
EP 634
DI 10.1016/j.saa.2009.07.004
PG 6
WC Spectroscopy
SC Spectroscopy
GA 509VX
UT WOS:000271048300005
PM 19651535
ER
PT J
AU Park, KT
Meunier, V
Pan, MH
Shelton, WA
Yu, NH
Plummer, EW
AF Park, K. T.
Meunier, V.
Pan, M. H.
Shelton, W. A.
Yu, N. -H.
Plummer, E. W.
TI Nanoclusters of TiO2 wetted with gold
SO SURFACE SCIENCE
LA English
DT Article
DE Density functional calculations; Scanning tunneling microscopy; Surface
structure, morphology, roughness and topography; Chemisorption; Titanium
oxide; Gold; Carbon monoxide
ID GENERALIZED GRADIENT APPROXIMATION; TOTAL-ENERGY CALCULATIONS;
AUGMENTED-WAVE METHOD; CATALYTIC-ACTIVITY; SUPPORTED GOLD; BASIS-SET;
TIO2(110); NANOPARTICLES; OXIDATION; MOLECULES
AB We combined scanning tunneling microscopy and density functional theory to establish the structure-functionality relationship for nanometer-sized defects on TiO2(1 1 0). Three-angstrom high topographically distinct dots are ascribed to stoichiometric TiO2 nanoclusters with low coordination numbers. The under-coordinated O atoms of the nanocluster, with surface O atoms, provide exceptionally strong binding sites for Au nanoparticles. Our atomistic model elucidates a number of characteristics salient to low temperature CO oxidation by Au nanoparticles. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Park, K. T.; Yu, N. -H.] Baylor Univ, Dept Phys, Waco, TX 76798 USA.
[Meunier, V.; Pan, M. H.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Meunier, V.; Shelton, W. A.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA.
[Plummer, E. W.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA.
RP Park, KT (reprint author), Baylor Univ, Dept Phys, Waco, TX 76798 USA.
EM Kenneth_Park@baylor.edu
RI Meunier, Vincent/F-9391-2010
OI Meunier, Vincent/0000-0002-7013-179X
FU Scientific User Facilities Division; Division of Materials Science [DE
AC05-00OR22725]; Department of Energy
FX This research was sponsored by the Scientific User Facilities Division
and also by the Division of Materials Science (DE AC05-00OR22725
contracted with UT-Battelle, LLC), Department of Energy. The
computations were performed using the resources of the National Center
for Computational Sciences at ORNL.
NR 29
TC 7
Z9 7
U1 0
U2 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURF SCI
JI Surf. Sci.
PD OCT 15
PY 2009
VL 603
IS 20
BP 3131
EP 3135
DI 10.1016/j.susc.2009.08.028
PG 5
WC Chemistry, Physical; Physics, Condensed Matter
SC Chemistry; Physics
GA 511PV
UT WOS:000271179600015
ER
PT J
AU Scognamiglio, L
Hutchings, L
AF Scognamiglio, Laura
Hutchings, Lawrence
TI A test of a physically-based strong ground motion prediction methodology
with the 26 September 1997, M-w=6.0 Colfiorito (Umbria-Marche sequence),
Italy earthquake
SO TECTONOPHYSICS
LA English
DT Article; Proceedings Paper
CT Conference on Ten Years after the Umbria-Marche Earthquake
CY JUN 26-27, 2007
CL Camerino, ITALY
DE Empirical Green's functions; Strong ground motion prediction; 1997, M-w
6.0, Umbria-Marche Earthquake; Physically-based ground motion synthesis
ID MODELING COSEISMIC DISPLACEMENTS; EMPIRICAL GREENS-FUNCTIONS; RUPTURE
DIRECTIVITY; TIME HISTORIES; MAIN SHOCKS; AFTERSHOCKS; VALIDATION;
MAINSHOCK; GPS
AB We test the physically-based ground motion hazard prediction methodology of Hutchings et al [Hutchings, L. loannidou. E. Kalogeras. I. Voulgans. N., Savy, J. Foxall. W, Scognamigho, L, and Stavrakakis, G, (2007) A physically-based strong ground motion prediction methodology: Application to PSHA and the 1999 M=6.0 Athens Earthquake Geophys J Int 168, 569-680] through an a posteriori prediction of the 26 September 1997, M-w 6.0 Colfiorito (Umbria-Marche, Italy) earthquake at four stations By "physically-based" we refer to ground motion synthesized with quasi-dynamic rupture models derived front physics and an understanding of the earthquake process We test five hypotheses proposed by Hutchings et al. [Hutchings, I., loannidou, E., Kalogeras, I, Voulgaris, N., Savy. J, Foxall. W.. Scognamigho. L and Stavrakakis. G., (2007). A physically-based strong ground motion prediction methodology. Application to PSHA and the 1999 M=60 Athens Earthquake Geophys J Int 168, 569-680 1 that support application of the methodology to physically-based probabilistic seismic hazard or risk analysis.
We use two methods to test the hypotheses First, we test whether observed records fall within the 68% log-normal confidence interval for the distribution of absolute acceleration response (AAR), pseudo velocity response (PSV), and Fourier amplitude spectra (FFT) created by a suite of source models We also used the godness of fit between synthesized seismograms to verify whether at least one of the source models in the Suite generates seismograms that match the observed waveforms, and if good fits to seismograms are due to source models that are close to what is actually known about the Colfiorito earthquake. We tested the hypotheses with a range Of Source parameters proposed by Hutchings et al. [Hutchings, L. loannidou, E, Kalogeras. I. Voulgans. N, Savy. J.. Foxall. W.. Scognamigho, L. and Stavrakakis, G. (2007) A physically-based strong ground motion prediction methodology; Application to PSHA and the 1999 M = 6 0 Athens Earthquake Geophys J Int 168. 569-680]. We synthesized records from 100 rupture scenarios that were generated by a Monte Carlo selection of parameters within the range. This range was based upon having some prior knowledge of where the earthquake would occur Observed values of AAR, PSV and FFT fit within the 68% confidence interval for all four stations. and one of the models generated seismograms that had a good fit compared to the observations.
Moreover, a strict test for validating a physically-based ground motion hazard prediction methodology is that as more information is known about the source, the uncertainty of the prediction should narrow, but still include the actual ground motion Then. we tightened the source parameters to be centered about the known parameters for the Colfiorito earthquake, and allowed for less uncertainty in their values. We found this to be true for this test While the 68% confidence interval narrowed from a Factor of +/- about 4 to +/- about 2 for the distributions. observed values of AAR. PSV and FFT still fit within the distributions for all four stations Ultimately. we have calculated peak ground velocity (PGV) and peak ground acceleration (PGA) for all the synthetic seismograms obtained from the computed scenarios, and we have found that they are comparable with the actual and with those from the attenuation relation.
We conclude that the methodology of Hutchings et al. [Hutchings, L. loannidau, E, Kalogeras, I, Voulgans, N. Savy, J.. Foxall. W., Scognamigho. L. and Stavrakakis. G. (2007) A physically-based strong ground motion prediction methodology. Application to PSHA and the 1999 M = 6 0 Athens Earthquake. Geophys J lilt 168. 569-680] is promising in giving ground motion hazard prediction estimates. (C) 2009 Elsevier B V All rights reserved.
C1 [Scognamiglio, Laura] Ist Nazl Geofis & Vulcanol, I-00143 Rome, Italy.
[Hutchings, Lawrence] Lawrence Berkeley Natl Lab, Berkeley, CA 94025 USA.
RP Scognamiglio, L (reprint author), Ist Nazl Geofis & Vulcanol, Via Vigna Murata 605, I-00143 Rome, Italy.
RI Scognamiglio, Laura/F-4656-2014
OI Scognamiglio, Laura/0000-0002-5437-5276
NR 42
TC 5
Z9 5
U1 1
U2 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0040-1951
J9 TECTONOPHYSICS
JI Tectonophysics
PD OCT 15
PY 2009
VL 476
IS 1-2
SI SI
BP 145
EP 158
DI 10.1016/j.tecto.2009.05.024
PG 14
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 512MH
UT WOS:000271253000014
ER
PT J
AU Ngwa, HA
Kanthasamy, A
Anantharam, V
Song, CJ
Witte, T
Houk, R
Kanthasamy, AG
AF Ngwa, Hilary Afeseh
Kanthasamy, Arthi
Anantharam, Vellareddy
Song, Chunjuan
Witte, Travis
Houk, Robert
Kanthasamy, Anumantha G.
TI Vanadium induces dopaminergic neurotoxicity via protein kinase Cdelta
dependent oxidative signaling mechanisms: Relevance to etiopathogenesis
of Parkinson's disease
SO TOXICOLOGY AND APPLIED PHARMACOLOGY
LA English
DT Article
DE Metal mixtures; Vanadium; Manganese; Neurotoxicity; Oxidative stress;
Parkinson's disease
ID APOPTOTIC CELL-DEATH; METHYLCYCLOPENTADIENYL MANGANESE TRICARBONYL;
ENVIRONMENTAL RISK-FACTORS; CASPASE-3-DEPENDENT PROTEOLYTIC CLEAVAGE;
C-DELTA; CYTOCHROME-C; NEURODEGENERATIVE DISEASES; RNA INTERFERENCE;
NEURONAL CELLS; PKC-DELTA
AB Environmental exposure to neurotoxic metals through various sources including exposure to welding fumes has been linked to an increased incidence of Parkinson's disease (PD). Welding fumes contain many different metals including vanadium typically present as particulates containing vanadium pentoxide (V(2)O(5)). However, possible neurotoxic effects of this metal oxide on dopaminergic neuronal cells are not well studied. In the present Study, we characterized vanadium-induced oxidative stress-dependent cellular events in cell culture models of PD. V(2)O(5) was neurotoxic to dopaminergic neuronal cells including primary nigral dopaminergic neurons and the EC(50) was determined to be 37 mu M in N27 dopaminergic neuronal cell model. The neurotoxic effect was accompanied by a time-dependent uptake of vanadium and Upregulation of metal transporter proteins Tf and DMT1 in N27 cells. Additionally, vanadium resulted in a threefold increase in reactive oxygen species generation, followed by release of mitochondrial cytochrome c into cytoplasm and Subsequent activation of caspase-9 (>fourfold) and caspase-3 (>ninefold). Interestingly, vanadium exposure induced proteolytic cleavage of native protein kinase Cdelta (PKC delta, 72-74 kDa) to yield a 41 kDa catalytically active fragment resulting in a persistent increase in PKC delta kinase activity. Co-treatment with pan-caspase inhibitor Z-VAD-FMK significantly blocked vanadium-induced PKC delta proteolytic activation, indicating that caspases mediate PKC delta cleavage. Also, co-treatment with Z-VAD-FMK almost completely inhibited V(2)O(5)-induced DNA fragmentation. Furthermore, PKC delta knockdown using siRNA protected N27 cells from V(2)O(5)-induced apoptotic cell death. Collectively, these results demonstrate that vanadium can exert neurotoxic effects in dopaminergic neuronal cells via caspase-3-dependent PKC delta cleavage, suggesting that metal exposure may promote nigral dopaminergic degeneration. (C) 2009 Elsevier Inc. All rights reserved.
C1 [Kanthasamy, Anumantha G.] Iowa State Univ, Dept Biomed Sci, Iowa Ctr Adv Neurotoxicol, Parkinsons Disorder Res Lab, Ames, IA 50011 USA.
[Witte, Travis; Houk, Robert] US DOE, Ames Lab, Ames, IA 50011 USA.
[Witte, Travis; Houk, Robert] Iowa State Univ, Dept Chem, Ames, IA 50011 USA.
RP Kanthasamy, AG (reprint author), Iowa State Univ, Dept Biomed Sci, Iowa Ctr Adv Neurotoxicol, Parkinsons Disorder Res Lab, 2062 Vet Med Bldg, Ames, IA 50011 USA.
EM akanthas@iastate.edu
FU National Institutes of Health (NIH) [ES10586, NS 38644]; Ames Laboratory
[DE-AC02-07CH11358]
FX This work was supported by National Institutes of Health (NIH) Grants
ES10586 and NS 38644. The W. Eugene and Linda Lloyd Endowed Chair to AGK
also is acknowledged. The ICP-MS device was provided by the U. S.
Department of Energy, Nuclear Nonproliferation and Basic Energy Sciences
Programs. Ames Laboratory is operated under Contract DE-AC02-07CH11358.
The authors acknowledge Ms. MaryAnn deVries for her assistance ill the
preparation of this manuscript.
NR 85
TC 38
Z9 39
U1 2
U2 4
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0041-008X
J9 TOXICOL APPL PHARM
JI Toxicol. Appl. Pharmacol.
PD OCT 15
PY 2009
VL 240
IS 2
BP 273
EP 285
DI 10.1016/j.taap.2009.07.025
PG 13
WC Pharmacology & Pharmacy; Toxicology
SC Pharmacology & Pharmacy; Toxicology
GA 503TE
UT WOS:000270562100019
ER
PT J
AU Joly, AG
Beck, KM
Hess, WP
AF Joly, Alan G.
Beck, Kenneth M.
Hess, Wayne P.
TI Photodesorption of excited iodine atoms from KI (100)
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID ELECTRON-STIMULATED DESORPTION; ALKALI-HALIDES; SURFACE EXCITATION;
POTASSIUM-HALIDES; LASER-DESORPTION; IONIC SURFACES; TRANSITIONS;
SPECTRA; KI(100); KBR
AB Band-to-band photoexcitation of potassium iodide single crystals with UV photons produces thermal and hyperthermal I-atom emission in both the ground I((2)P(3/2)) and spin-orbit excited I*((2)P(1/2)) states. Thermal halogen atom emission is preceded by H-center diffusion from bulk to surface and excited atom emission indicates that the excited hole spin state relaxation is incomplete before H-center diffusion to the surface. The hyperthermal I-atom kinetic energy distribution is inverted in the sense that the electronically excited I*((2)P(1/2)) atoms are more energetic than the ground state I*((2)P(3/2)) atoms. The mechanism for hyperthermal emission of halogen atoms and their kinetic energy distributions are discussed in terms of recent calculations and a simple curve crossing model for the dynamical desorption process. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3245869]
C1 [Joly, Alan G.; Hess, Wayne P.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA.
[Beck, Kenneth M.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA.
RP Hess, WP (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, POB 999, Richland, WA 99352 USA.
EM wayne.hess@pnl.gov
FU Department of Energy, Division of Chemical Sciences, Geosciences and
Biosciences, of the Office of Basic Energy Sciences
FX The authors were supported by the Department of Energy, Division of
Chemical Sciences, Geosciences and Biosciences, of the Office of Basic
Energy Sciences. Pacific Northwest National Laboratory is operated for
the U. S. Department of Energy by Battelle. Experiments were performed
at the Environmental Molecular Sciences Laboratory, a U. S. Department
of Energy user facility operated by the office of Biological and
Environmental Research.
NR 31
TC 0
Z9 0
U1 0
U2 5
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD OCT 14
PY 2009
VL 131
IS 14
AR 144509
DI 10.1063/1.3245869
PG 6
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 507BS
UT WOS:000270825600028
PM 19831454
ER
PT J
AU Kim, HY
Kent, PRC
AF Kim, Hye-Young
Kent, P. R. C.
TI van der Waals forces: Accurate calculation and assessment of approximate
methods in dielectric nanocolloids up to 16 nm
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID DRUDE-MODEL CALCULATION; DISPERSION FORCES; COLLOIDAL PARTICLES; GENERAL
THEORY; SURFACE
AB A microscopic method is used to calculate the van der Waals (VDW) forces between large nanocolloids. We assess the reliability of predictions derived from the most commonly used macroscopic method in practice, the Dzyaloshinskii-Lifshitz-Pitaevskii (DLP) theory combined with the Derjaguin approximation, by calculating the VDW interactions using the "coupled dipole method" (CDM). The CDM, which has demonstrated its ability to calculate VDW interactions for small nanoclusters, accounts for all many-body forces, and it does not assume a continuous, homogeneous dielectric function in each material. It is shown that, out of three explored, one of the routinely assumed properties ("small-separation dominance") of VDW forces predicted from the macroscopic method is generally applicable for large spherical dielectric nanoclusters of diameter 16 nm allowing much more efficient CDM calculations. The failure of two other routinely assumed properties, "infinite-depth approximation" and "sphere-cube analogy," demonstrates that the effect of finite-size and shape is important in nanocolloid systems even at the large size of 16 nm. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3244645]
C1 [Kim, Hye-Young] SE Louisiana Univ, Dept Chem & Phys, Hammond, LA 70402 USA.
[Kent, P. R. C.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
RP Kim, HY (reprint author), SE Louisiana Univ, Dept Chem & Phys, Hammond, LA 70402 USA.
EM hye-young.kim@selu.edu
RI Kent, Paul/A-6756-2008
OI Kent, Paul/0000-0001-5539-4017
FU U.S. Department of Energy Basic Energy Science [DOE-FG02-07ER46414];
Center of Nanophase Materials Sciences, Oak Ridge National Laboratory
[CNMS2007-075, CNMS2009-038]; National Energy Research Scientific
Computing Center
FX This research has been supported by the U.S. Department of Energy Basic
Energy Science Grant No. DOE-FG02-07ER46414, Center of Nanophase
Materials Sciences, Oak Ridge National Laboratory (Grant Nos.
CNMS2007-075 and CNMS2009-038), and the National Energy Research
Scientific Computing Center. We thank Milton Cole and Darrell Velegol
for stimulating discussions.
NR 24
TC 5
Z9 5
U1 0
U2 7
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD OCT 14
PY 2009
VL 131
IS 14
AR 144705
DI 10.1063/1.3244645
PG 5
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 507BS
UT WOS:000270825600036
PM 19831462
ER
PT J
AU Wang, SB
Mao, WL
Autrey, T
AF Wang, Shibing
Mao, Wendy L.
Autrey, Tom
TI Bonding in boranes and their interaction with molecular hydrogen at
extreme conditions
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID CAMBRIDGE STRUCTURAL DATABASE; AMMONIA-BORANE; THERMAL-DECOMPOSITION;
HIGH-PRESSURE; CRYSTAL-STRUCTURES; STORAGE; RELEASE; STATE; CLATHRATE;
BH3NH3
AB The effects of high pressure and temperature on the bonding in ammonia borane (AB), NH3BH3 and decaborane (DB), B10H14 and their interactions with molecular hydrogen (H-2) were investigated using Raman spectroscopy in a diamond anvil cell. At 0.7 GPa, AB becomes amorphous between 120 and 127 C, indicating a positive Clapeyron slope. Heated to 140 degrees C, AB begins to undergo decomposition to polyaminoborane. The amorphous and decomposed AB does not recrystallize back to AB during slow cooling to room temperature or upon application of high pressure up to 3 GPa, underscoring the challenge of rehydrogenation of decomposed AB. The molecular Raman modes broaden in the reacted phase, and the NH3 modes show no pressure dependence. DB was studied at room temperature up to 11 GPa. The observed frequency dependence with pressure (d nu/dP) and mode Gruneisen parameters varied for different spectral groups, and a new transition was identified at approximately 3 GPa. In both DB and heated AB, we found that they could store additional H-2 with the application of pressure. We estimate that we can store approximately 3 wt % H-2 in heated AB at 3 GPa and 1 wt % H-2 in DB at 4.5 GPa. c 2009 American Institute of Physics. [doi: 10.1063/1.3244982]
C1 [Wang, Shibing] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA.
[Mao, Wendy L.] Stanford Univ, Dept Geol & Environm Sci, Stanford, CA 94305 USA.
[Mao, Wendy L.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA.
[Autrey, Tom] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Wang, SB (reprint author), Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA.
EM shibingw@stanford.edu
RI Mao, Wendy/D-1885-2009
FU Department of Energy (DOE) [DE-AC02-76SF00515]; DOE-NNSA
FX We thank Dr. Jinfu Shu for help with sample loading. This work is
supported by the Department of Energy (DOE) under Award No.
DE-AC02-76SF00515 at the Stanford Institute for Materials & Energy
Science. T. A. acknowledges support from the U. S. Department of Energy,
Office of Basic Energy, Division of Chemical Sciences, Biosciences and
Geosciences. PNNL is operated by Battelle. Travel to and use of the
Geophysical Laboratory facilities was supported by DOE-NNSA (CDAC).
NR 35
TC 12
Z9 12
U1 0
U2 6
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
EI 1089-7690
J9 J CHEM PHYS
JI J. Chem. Phys.
PD OCT 14
PY 2009
VL 131
IS 14
AR 144508
DI 10.1063/1.3244982
PG 6
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 507BS
UT WOS:000270825600027
PM 19831453
ER
PT J
AU McMeeking, GR
Kreidenweis, SM
Baker, S
Carrico, CM
Chow, JC
Collett, JL
Hao, WM
Holden, AS
Kirchstetter, TW
Malm, WC
Moosmuller, H
Sullivan, AP
Wold, CE
AF McMeeking, Gavin R.
Kreidenweis, Sonia M.
Baker, Stephen
Carrico, Christian M.
Chow, Judith C.
Collett, Jeffrey L., Jr.
Hao, Wei Min
Holden, Amanda S.
Kirchstetter, Thomas W.
Malm, William C.
Moosmueller, Hans
Sullivan, Amy P.
Wold, Cyle E.
TI Emissions of trace gases and aerosols during the open combustion of
biomass in the laboratory
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Review
ID TRANSFORM INFRARED-SPECTROSCOPY; FINE-PARTICLE EMISSIONS; POLYCYCLIC
AROMATIC-HYDROCARBONS; PRESCRIBED CHAPARRAL FIRE; UNITED-STATES; ORGANIC
AEROSOL; CHEMICAL-CHARACTERIZATION; FIREPLACE COMBUSTION; BURNING
EMISSIONS; OPTICAL-PROPERTIES
AB We characterized the gas- and speciated aerosol-phase emissions from the open combustion of 33 different plant species during a series of 255 controlled laboratory burns during the Fire Laboratory at Missoula Experiments (FLAME). The plant species we tested were chosen to improve the existing database for U. S. domestic fuels: laboratory-based emission factors have not previously been reported for many commonly burned species that are frequently consumed by fires near populated regions and protected scenic areas. The plants we tested included the chaparral species chamise, manzanita, and ceanothus, and species common to the southeastern United States (common reed, hickory, kudzu, needlegrass rush, rhododendron, cord grass, sawgrass, titi, and wax myrtle). Fire-integrated emission factors for gas- phase CO2, CO, CH4, C2-4 hydrocarbons, NH3, SO2, NO, NO2, HNO3, and particle-phase organic carbon (OC), elemental carbon (EC), SO42-, NO3-, Cl-, Na+, K+, and NH4+ generally varied with both fuel type and with the fire-integrated modified combustion efficiency (MCE), a measure of the relative importance of flaming- and smoldering-phase combustion to the total emissions during the burn. Chaparral fuels tended to emit less particulate OC per unit mass of dry fuel than did other fuel types, whereas southeastern species had some of the largest observed emission factors for total fine particulate matter. Our measurements spanned a larger range of MCE than prior studies, and thus help to improve estimates of the variation of emissions with combustion conditions for individual fuels.
C1 [McMeeking, Gavin R.; Kreidenweis, Sonia M.; Carrico, Christian M.; Collett, Jeffrey L., Jr.; Holden, Amanda S.; Sullivan, Amy P.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA.
[Baker, Stephen; Hao, Wei Min; Wold, Cyle E.] US Forest Serv, Fire Sci Lab, Missoula, MT 59808 USA.
[Chow, Judith C.; Moosmueller, Hans] Desert Res Inst, Div Atmospher Sci, Reno, NV 89512 USA.
[Kirchstetter, Thomas W.] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA.
[Malm, William C.] Colorado State Univ, Natl Pk Serv, CIRA, Ft Collins, CO 80523 USA.
RP McMeeking, GR (reprint author), Univ Manchester, Ctr Atmospher Sci, Manchester M13 9PL, Lancs, England.
EM gavin.mcmeeking@manchester.ac.uk
RI McMeeking, Gavin/A-7679-2008; Collett, Jeffrey/F-2862-2010; Moosmuller,
Hans/F-8250-2011; Kreidenweis, Sonia/E-5993-2011;
OI McMeeking, Gavin/0000-0001-9782-3713; Collett,
Jeffrey/0000-0001-9180-508X; Kreidenweis, Sonia/0000-0002-2561-2914;
Moosmuller, Hans/0000-0002-1021-8877
FU Joint Fire Science Program under Project JFSP [05-3-1-06]; U. S.
Department of Agriculture; National Park Service [J2350-07-5181]; U. S.
Department of Energy's Office of Science (BER) through the Western
Regional Center of the National Institute for Climatic Change Research
FX FLAME was supported by the Joint Fire Science Program under Project JFSP
05-3-1-06, which is funded by the U. S. Department of Agriculture, by
the National Park Service (J2350-07-5181) and by the U. S. Department of
Energy's Office of Science (BER) through the Western Regional Center of
the National Institute for Climatic Change Research. We thank R. Cullin,
D. Day, G. Engling, and L. Mazzoleni for their assistance in collecting
samples and P. Freeborn, E. Lincoln, and the FSL staff for their help
during the burns. We also thank C. McDade and L. Ashbaugh for their
assistance with the IMPROVE samplers and data. FLAME fuels were provided
by M. Chandler, J. Chong, D. Davis, G. Engling, G. Gonzalez, S. Grace,
J. Hinkley, R. Jandt, R. Moore, S. Mucci, R. Olson, K. Outcalt, J.
Reardon, K. Robertson, P. Spaine, and D. Weise. We also thank R.
Sullivan and E. Levin for proofreading the manuscript. GRM was supported
by a Graduate Research Environmental Fellowship (GREF) from the U. S.
Department of Energy's Global Change Education Program (GCEP). The
manuscript has benefited immensely from the comments of three anonymous
reviewers, and we thank them for their contributions.
NR 108
TC 138
Z9 138
U1 15
U2 86
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD OCT 14
PY 2009
VL 114
AR D19210
DI 10.1029/2009JD011836
PG 20
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 508OU
UT WOS:000270943500002
ER
PT J
AU Riggs, SC
McDonald, RD
Kemper, JB
Stegen, Z
Boebinger, GS
Balakirev, FF
Kohama, Y
Migliori, A
Chen, H
Liu, RH
Chen, XH
AF Riggs, Scott C.
McDonald, R. D.
Kemper, J. B.
Stegen, Z.
Boebinger, G. S.
Balakirev, F. F.
Kohama, Y.
Migliori, A.
Chen, H.
Liu, R. H.
Chen, X. H.
TI Doping dependent nonlinear Hall effect in SmFeAsO1-xFx
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
ID SUPERCONDUCTIVITY
AB We report the Hall resistivity, rho(xy), of polycrystalline SmFeAsO1-xFx for four different fluorine concentrations from the onset of superconductivity through the collapse of the structural phase transition. For the two more highly doped samples, rho(xy) is linear in magnetic field up to 50 T with only weak temperature dependence, reminiscent of a simple Fermi liquid. For the lightly doped samples with x < 0.15, we find a low temperature regime characterized as rho(xy) (H) being both nonlinear in magnetic field and strongly temperature-dependent even though the Hall angle is small. The onset temperature for this nonlinear regime is in the vicinity of the structural phase (SPT)/magnetic ordering (MO) transitions. The temperature dependence of the Hall resistivity is consistent with a thermal activation of carriers across an energy gap. The evolution of the energy gap with doping is reported.
C1 [Riggs, Scott C.; Kemper, J. B.; Stegen, Z.; Boebinger, G. S.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA.
[McDonald, R. D.; Balakirev, F. F.; Kohama, Y.; Migliori, A.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA.
[Chen, H.; Liu, R. H.; Chen, X. H.] Univ Sci & Technol China, Dept Phys, Hefei 230026, Anhui, Peoples R China.
[Chen, H.; Liu, R. H.; Chen, X. H.] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China.
RP Riggs, SC (reprint author), Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA.
EM scr@magnet.fsu.edu
RI McDonald, Ross/H-3783-2013; Liu, Ronghua/A-9790-2013;
OI McDonald, Ross/0000-0002-0188-1087; Liu, Ronghua/0000-0002-4053-3923;
Mcdonald, Ross/0000-0002-5819-4739
NR 26
TC 3
Z9 3
U1 0
U2 8
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
J9 J PHYS-CONDENS MAT
JI J. Phys.-Condes. Matter
PD OCT 14
PY 2009
VL 21
IS 41
AR 412201
DI 10.1088/0953-8984/21/41/412201
PG 5
WC Physics, Condensed Matter
SC Physics
GA 498BJ
UT WOS:000270110000001
PM 21693981
ER
PT J
AU Karakoti, AS
Singh, S
Kumar, A
Malinska, M
Kuchibhatla, SVNT
Wozniak, K
Self, WT
Seal, S
AF Karakoti, Ajay S.
Singh, Sanjay
Kumar, Amit
Malinska, Maura
Kuchibhatla, Satyanarayana V. N. T.
Wozniak, Krzysztof
Self, William T.
Seal, Sudipta
TI PEGylated Nanoceria as Radical Scavenger with Tunable Redox Chemistry
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID HOMOGENEOUS PRECIPITATION METHOD; CERIUM OXIDE NANOPARTICLES;
POLYETHYLENE-GLYCOL; SUPEROXIDE-DISMUTASE; FINE PARTICLES; CONJUGATE;
DELIVERY
AB We report the direct synthesis of cerium oxide nanoparticles (CNPs) in polyethylene glycol (PEG) based solutions with efficient radical scavenging properties. Synthesis of CNPs in PEG demonstrated a concentration dependent (of PEG) redox activity characterized by UV-visible spectroscopy. PEGylated CNPs acted as efficient radical scavengers, and superoxide dismutase (SOD) activity of CNPs synthesized in various concentration of PEG did not reduce compared to bare nanoceria. In addition to superoxide, PEGylated nanoceria demonstrated quenching of peroxide radicals as welt. It was observed that the reaction with hydrogen peroxide leads to the formation of a charge transfer complex governed by the concentration of PEG. The stability of the charge transfer complex provides the tunable oxidation state of CNPs. The stability of this complex influences the regenerative capacity of the active 3+ oxidation state of CNPs. The cell viability as well as SOD activity of PEGylated CNPs is compared to those of bare CNPs, and the differences are outlined.
C1 [Karakoti, Ajay S.; Kumar, Amit; Seal, Sudipta] Univ Cent Florida, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA.
[Singh, Sanjay; Self, William T.] Univ Cent Florida, Dept Mol Biol & Microbiol, Orlando, FL 32816 USA.
[Seal, Sudipta] Univ Cent Florida, NSTC, Orlando, FL 32816 USA.
Univ Cent Florida, Burnett Sch Biomed Sci, Orlando, FL 32816 USA.
[Malinska, Maura; Wozniak, Krzysztof] Univ Warsaw, Dept Chem, PL-00325 Warsaw, Poland.
[Kuchibhatla, Satyanarayana V. N. T.] Pacific NW Natl Lab, EMSL, Richland, WA 99354 USA.
RP Karakoti, AS (reprint author), Univ Cent Florida, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA.
EM karakoti@mail.ucf.edu; sseal@mail.ucf.edu
RI Self, William/A-6704-2008; Kumar, Amit/E-9483-2011;
OI Malinska, Maura/0000-0002-7138-7041
FU NSF NIRT; NIH [RO1 AG031529]; NSF REU [EEC-0453436]
FX Funding from NSF NIRT, NIH RO1 AG031529-01, NSF REU Site (International
Supplement) EEC-0453436 is acknowledged. Portion of research performed
using EMSL (facility sponsored by DOE's OBER).
NR 23
TC 122
Z9 125
U1 12
U2 80
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD OCT 14
PY 2009
VL 131
IS 40
BP 14144
EP 14145
DI 10.1021/ja9051087
PG 2
WC Chemistry, Multidisciplinary
SC Chemistry
GA 512SS
UT WOS:000271271500009
PM 19769392
ER
PT J
AU Holcombe, TW
Woo, CH
Kavulak, DFJ
Thompson, BC
Frechet, JMJ
AF Holcombe, Thomas W.
Woo, Claire H.
Kavulak, David F. J.
Thompson, Barry C.
Frechet, Jean M. J.
TI All-Polymer Photovoltaic Devices of Poly(3-(4-n-octyl)-phenylthiophene)
from Grignard Metathesis (GRIM) Polymerization
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID PHENYL-SUBSTITUTED POLYTHIOPHENES; COMPOSITE SOLAR-CELLS; CONDUCTING
POLYMERS; CHARGE-TRANSFER; BLENDS; POLY(3-ALKYLTHIOPHENES);
HETEROJUNCTIONS; DONOR
AB The synthesis of poly[3-(4-n-octyl)-phenylthiophene] (POPT) from Grignard Metathesis (GRIM) is reported. GRIM POPT is found to have favorable electronic, optical, and processing properties for organic photovoltaics (OPVs). Space-charge limited current and field effect transistor measurements for POPT yielded hole mobilities of 1 X 10(-4) cm(2)/(V s) and 0.05 cm(2)/(V s), respectively. Spincasting GRIM POPT from chlorobenzene yields a thin film with a 1.8 eV band gap, and PC(61)BM:POPT bulk heterojection devices provide a peak performance of 3.1%. Additionally, an efficiency of 2.0% is achieved in an all-polymer, bilayer OPV using poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-(1-cyanovinylene)phenylene) (CNPPV) as an acceptor. This state-of-the-art all-polymer device is analyzed in comparison to the analogous poly(3-hexylthiophene) (P3HT)/CNPPV device. Counter to expectations based on more favorable energy level alignment, greater active layer tight absorption, and similar hole mobility, P3HT/CNPPV devices perform less well than POPT/CNPPV devices with a peak efficiency of 0.93%.
C1 [Holcombe, Thomas W.; Kavulak, David F. J.; Thompson, Barry C.; Frechet, Jean M. J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Woo, Claire H.; Frechet, Jean M. J.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA.
[Holcombe, Thomas W.; Woo, Claire H.; Kavulak, David F. J.; Frechet, Jean M. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Frechet, JMJ (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
EM frechet@berkeley.edu
OI Frechet, Jean /0000-0001-6419-0163
FU U.S. Department of Energy [DE-AC02-05CH11231]; King Abdullah University
of Science and Technology (KAUST) Center for Advanced Molecular
Photovoltaics [KUS-C1-015-21]; NSF
FX This work was supported by the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231 and in part by the King Abdullah University of
Science and Technology (KAUST) Center for Advanced Molecular
Photovoltaics (Award No. KUS-C1-015-21). T.W.H. and C.H.W. thank the NSF
for graduate research fellowships. We also thank Jill E. Millstone and
Alejandro L. Briseno for helpful discussions.
NR 26
TC 129
Z9 129
U1 3
U2 55
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD OCT 14
PY 2009
VL 131
IS 40
BP 14160
EP +
DI 10.1021/ja9059359
PG 4
WC Chemistry, Multidisciplinary
SC Chemistry
GA 512SS
UT WOS:000271271500017
PM 19757792
ER
PT J
AU Carnes, EC
Harper, JC
Ashley, CE
Lopez, DM
Brinker, LM
Liu, JW
Singh, S
Brozik, SM
Brinker, CJ
AF Carnes, Eric C.
Harper, Jason C.
Ashley, Carlee E.
Lopez, DeAnna M.
Brinker, Lina M.
Liu, Juewen
Singh, Seerna
Brozik, Susan M.
Brinker, C. Jeffrey
TI Cell-Directed Localization and Orientation of a Functional Foreign
Transmembrane Protein within a Silica Nanostructure
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID SOL-GEL GLASS; BACTERIORHODOPSIN; ENCAPSULATION; RECONSTITUTION;
LIPOSOMES; VIABILITY; BACTERIA
AB A simple procedure for introducing functional exogenous membrane-bound proteins to viable cells encapsulated within a lipid templated silica nanostructure is. described. In one method, bacteriorbodopsin (bR) was added directly to a Saccharomyces cerevisiae solution along with short zwitterionic diacylphosphatidylcholines (diC(6) PC) and mixed with equal volumes of a sol precursor solution. Alternatively, bR was first incorporated into liposomes (bR-proteoliposomes) and then added to an S. cerevisiae solution with diC(6) PC, and this was followed by mixing with sol precursor solution. Films prepared from bR added directly to diC, PC resulted in bR localization near S. cerevisiae cells in a disordered and diffuse fashion, while films prepared from bR-proteoliposomes added to the diC(6) PC/yeast solution resulted in preferential localization of bR near yeast cell surfaces, forming bR-containing multilayer vesicles. Importantly, bR introduced via proteoliposomes was observed to modulate pH gradients developed at the cell surface, demonstrating both retained functionality and preferential orientation. Localization of liposome lipid or bR did not occur around neutrally charged latex beads acting as cell surrogates, demonstrating that living cells actively organize the multilayered lipid during evaporation-induced self-assembly. We expect this simple procedure for introducing functional and oriented membrane-bound proteins to the surface of cells to be general and adaptable to other membrane-bound proteins. This advance may prove useful in fundamental studies of membrane protein function and cell-cell signaling and in imparting non-native characteristics to arbitrary cells.
C1 [Carnes, Eric C.; Harper, Jason C.; Ashley, Carlee E.; Lopez, DeAnna M.; Brinker, Lina M.; Liu, Juewen; Singh, Seerna; Brozik, Susan M.; Brinker, C. Jeffrey] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA.
[Brinker, C. Jeffrey] Univ New Mexico, Dept Mol Genet & Microbiol, Albuquerque, NM 87131 USA.
[Harper, Jason C.; Brozik, Susan M.; Brinker, C. Jeffrey] Sandia Natl Labs, Albuquerque, NM 87106 USA.
RP Brinker, CJ (reprint author), Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA.
EM cjbrink@sandia.gov
RI Liu, Juewen/A-2701-2014
FU Air Force Office of Science and Research (AFOSR); DOE Office of Science,
Office of Basic Energy Sciences, the Defense Threat Reduction Agency
(DTRA) CB Basic Research Program; Sandia's LDRD Program; United States
Department of Energy [DE-AC04-94AL85000]
FX This work was funded by the Air Force Office of Science and Research
(AFOSR), the DOE Office of Science, Office of Basic Energy Sciences, the
Defense Threat Reduction Agency (DTRA) CB Basic Research Program, and
Sandia's LDRD Program. We thank Constantine Khripin for measuring the pH
dependence of Oregon Green fluorescence emission. Sandia is a
multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the United States Department of Energy under
Contract DE-AC04-94AL85000.
NR 24
TC 16
Z9 16
U1 0
U2 26
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD OCT 14
PY 2009
VL 131
IS 40
BP 14255
EP +
DI 10.1021/ja906055m
PG 5
WC Chemistry, Multidisciplinary
SC Chemistry
GA 512SS
UT WOS:000271271500059
PM 19764723
ER
PT J
AU Petkov, V
Cozzoli, PD
Buonsanti, R
Cingolani, R
Ren, Y
AF Petkov, Valeri
Cozzoli, P. Davide
Buonsanti, Raffaella
Cingolani, Roberto
Ren, Yang
TI Size, Shape, and Internal Atomic Ordering of Nanocrystals by Atomic Pair
Distribution Functions: A Comparative Study of gamma-Fe2O3 Nanosized
Spheres and Tetrapods
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID X-RAY-DIFFRACTION; NANOPARTICLES; REFINEMENT
AB Due to their limited length of structural coherence nanocrystalline materials show very diffuse powder X-ray diffraction patterns that are difficult to interpret unambiguously. We demonstrate that a combination of high-energy X-ray powder diffraction and atomic pair distribution function analysis can be used to both assess the geometry (i.e., size and shape) and determine the internal atomic ordering of nanocrystalline materials in a straightforward way. As an example we consider cubic gamma-Fe2O3 nanosized crystals shaped as spheres and tetrapods.
C1 [Petkov, Valeri] Cent Michigan Univ, Dept Phys, Mt Pleasant, MI 48858 USA.
[Cozzoli, P. Davide; Buonsanti, Raffaella] Univ Salento, Scuola Super ISUFI, I-73100 Lecce, Italy.
[Cozzoli, P. Davide; Buonsanti, Raffaella; Cingolani, Roberto] CNR INFM, Natl Nanotechnol Lab, Unita Ric IIT, I-73100 Lecce, Italy.
[Cingolani, Roberto] Fdn Ist Italiano Tecnol, IIT, I-16163 Genoa, Italy.
[Ren, Yang] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RP Petkov, V (reprint author), Cent Michigan Univ, Dept Phys, Mt Pleasant, MI 48858 USA.
EM petkov@phy.cmich.edu
RI Cingolani, Roberto/B-9191-2011; COZZOLI, Pantaleo Davide/J-3973-2014
OI COZZOLI, Pantaleo Davide/0000-0001-8037-6937
FU DOE [DE-AC02-06CH11357]
FX Work at APS is supported by DOE under Contract DE-AC02-06CH11357.
Benedetta Antonazzo is also thanked for help with the TP synthesis.
NR 15
TC 26
Z9 27
U1 4
U2 32
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD OCT 14
PY 2009
VL 131
IS 40
BP 14264
EP +
DI 10.1021/ja9067589
PG 5
WC Chemistry, Multidisciplinary
SC Chemistry
GA 512SS
UT WOS:000271271500062
PM 19807180
ER
PT J
AU Jo, YS
van der Vlies, AJ
Gantz, J
Thacher, TN
Antonijevic, S
Cavadini, S
Demurtas, D
Stergiopulos, N
Hubbell, JA
AF Jo, Yun Suk
van der Vlies, Andre J.
Gantz, Jay
Thacher, Tyler N.
Antonijevic, Sasa
Cavadini, Simone
Demurtas, Davide
Stergiopulos, Nikolaos
Hubbell, Jeffrey A.
TI Micelles for Delivery of Nitric Oxide
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID THERAPEUTIC STRATEGIES; SECONDARY-AMINES; RESTENOSIS; DONORS;
ATHEROSCLEROSIS; APOPTOSIS; DRUG; NO; NANOPARTICLES; MECHANISMS
AB We designed block copolymer pro-amphiphiles and amphiphiles for providing very long-term release of nitric oxide (NO). A block copolymer of N-acryloylmorpholine (AM, as a hydrophile) and N-acryloyl-2,5-dimethylpiperazine (AZd, as a hydrophilic precursor) was synthesized. The poly(N-acryloyl-2,5-dimethylpiperazine) (PAZd) is water-soluble, but chemical reaction of the secondary amines with NO to form a N-diazeniumdiolate (NONOate) converts the hydrophilic PAZd into a hydrophobic poly(sodium-l(N-acryloyl-2,5-dimethylpiperazin-1-yl)diazen-1-ium-1,2-diolate) (PAZd center dot NONOate), driving aggregation. The PAM block guides this process toward micellization, rather than precipitation, yielding ca. 50 nm spherical micelles. The hydrophobic core of the micelle shielded the NONOate from the presence of water, and thus protons, which are required for NO liberation, delaying release to a remarkable 7 d half-life. Release of the NO returned the original soluble polymer. The very small NO-loaded micelles were able to penetrate complex tissue structures, such as the arterial media, opening up a number of tissue targets to NO-based therapy.
C1 [Jo, Yun Suk; van der Vlies, Andre J.; Gantz, Jay; Thacher, Tyler N.; Stergiopulos, Nikolaos; Hubbell, Jeffrey A.] Ecole Polytech Fed Lausanne, Inst Bioengn IBI, CH-1015 Lausanne, Switzerland.
[Antonijevic, Sasa; Cavadini, Simone] Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn ISIC, CH-1015 Lausanne, Switzerland.
[Antonijevic, Sasa] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Antonijevic, Sasa] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Demurtas, Davide] Univ Lausanne, Lab Analyse Ultrastruct, CH-1015 Lausanne, Switzerland.
RP Hubbell, JA (reprint author), Ecole Polytech Fed Lausanne, Inst Bioengn IBI, CH-1015 Lausanne, Switzerland.
EM jeffrey.hubbell@epfl.ch
RI van der vlies, andre/A-8956-2010; Hubbell, Jeffrey/A-9266-2008;
Stergiopulos, Nikos/A-6776-2012; Antonov, Alexander/I-2413-2012
OI Hubbell, Jeffrey/0000-0003-0276-5456;
FU Ecole Polytechnique Federale de Lausanne (EPFL)
FX We thank Dr. Do Kyung Kim and Ms. Meng Meng Lin (Keele University in the
U.K.) for their valuable help and discussions with regard to
thermogravimetric analysis (TGA) and differential scanning calorimetry
(DSC) experiments. The project was funded by the Ecole Polytechnique
Federale de Lausanne (EPFL).
NR 39
TC 40
Z9 40
U1 5
U2 39
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD OCT 14
PY 2009
VL 131
IS 40
BP 14413
EP 14418
DI 10.1021/ja905123t
PG 6
WC Chemistry, Multidisciplinary
SC Chemistry
GA 512SS
UT WOS:000271271500080
PM 19764751
ER
PT J
AU Mock, MT
Potter, RG
Camaioni, DM
Li, J
Dougherty, WG
Kassel, WS
Twamley, B
DuBois, DL
AF Mock, Michael T.
Potter, Robert G.
Camaioni, Donald M.
Li, Jun
Dougherty, William G.
Kassel, W. Scott
Twamley, Brendan
DuBois, Daniel L.
TI Thermodynamic Studies and Hydride Transfer Reactions from a Rhodium
Complex to BX3 Compounds
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID AMMONIA-BORANE DEHYDROGENATION; CHEMICAL HYDROGEN STORAGE;
TRANSITION-METAL HYDRIDES; REACTIONS INVOLVING BORON; AB-INITIO
CALCULATIONS; DONOR ABILITIES; THERMAL-DECOMPOSITION; ORGANIC-COMPOUNDS;
PERIODIC TRENDS; REGENERATION
AB This study examines the use of transition-metal hydride complexes that can be generated by the heterolytic cleavage of H-2 gas to form B-H bonds. Specifically, these studies are focused on providing a reliable and quantitative method for determining when hydride transfer from transition-metal hydrides; to three-coordinate BX3 (X = OR, SPh, F, H; R = Ph, p-C6H4OMe, C6F5, Bu-t, Si(Me)(3)) compounds will be favorable. This involves both experimental and theoretical determinations of hydride transfer abilities. Thermodynamic hydride donor abilities (Delta G degrees(H-)) were determined for HRh(dmpe)(2) and HRh(depe)(2), where dmpe = 1,2-bis(dimethylphosphinoethane) and depe = 1,2-bis(diethylphosphinoethane), on a previously established scale in acetonitrile. This hydride donor ability was used to determine the hydride donor ability of [HBEt3](-) on this scale. Isodesmic reactions between [HBEt3](-) and selected BX3 compounds to form BEt3 and [HBX3](-) were examined computationally to determine their relative hydride affinities. The use of these scales of hydride donor abilities and hydride affinities for transition-metal hydrides and BX3 compounds is illustrated with a few selected reactions relevant to the regeneration of ammonia borane. Our findings indicate that it is possible to form B-H bonds from B-X bonds, and the extent to which BX3 compounds are reduced by transition-metal hydride complexes forming species containing multiple B-H bonds depends on the heterolytic B-X bond energy. An example is the reduction of B(SPh)(3) using HRh(dmpe)(2) in the presence of triethylamine to form Et3N-BH3 in high yields.
C1 [Mock, Michael T.; Potter, Robert G.; Camaioni, Donald M.; Li, Jun; DuBois, Daniel L.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Dougherty, William G.; Kassel, W. Scott] Villanova Univ, Dept Chem, Villanova, PA 19085 USA.
[Twamley, Brendan] Univ Idaho, Dept Chem, Moscow, ID 83844 USA.
RP DuBois, DL (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA.
EM daniel.dubois@pnl.gov
RI Li, Jun/E-5334-2011
OI Li, Jun/0000-0002-8456-3980
FU U.S. Department of Energy's (DOE)
FX This work was supported by the U.S. Department of Energy's (DOE) Office
of Energy Efficiency and Renewable Energy Center of Excellence for
Chemical Hydrogen Storage. A portion of the research was per-formed
using EMSL, a national scientific user facility sponsored by the
Department of Energy's Office of Biological and Environmental Research
and located at Pacific Northwest National Laboratory (PNNL). PNNL is
operated by Battelle for DOE. The Bruker (Siemens) SMART APEX
diffraction facility was established at the University of Idaho with the
assistance of the NSF-EPSCoR program and the M. J. Murdock Charitable
Trust, Vancouver, WA.
NR 61
TC 51
Z9 51
U1 1
U2 27
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD OCT 14
PY 2009
VL 131
IS 40
BP 14454
EP 14465
DI 10.1021/ja905287q
PG 12
WC Chemistry, Multidisciplinary
SC Chemistry
GA 512SS
UT WOS:000271271500085
PM 19754124
ER
PT J
AU Yim, JWL
Xiang, B
Wu, JQ
AF Yim, Joanne W. L.
Xiang, Bin
Wu, Junqiao
TI Sublimation of GeTe Nanowires and Evidence of Its Size Effect Studied by
in Situ TEM
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID GERMANIUM TELLURIDE NANOWIRES; PHASE-CHANGE NANOWIRES; EVAPORATION;
MEMORY; NONVOLATILE
AB We report sublimation of crystalline GeTe nanowires at elevated temperatures in vacuum imaged by in situ transmission electron microscopy. The GeTe nanowires exhibit significant melting point suppression in the presence of Au contamination. A nanosized effusion cell is formed by coating the GeTe core with a SiO(2) shell, where the core can be evaporated or sublimated from the open end of the shell at high temperatures. By measuring the speed of the moving interface between the condensed and vapor phases, we determined the vaporization coefficient of these nanowires to be greater than or equal to similar to 10(-3) over a wide range of temperatures. At the final stage of the nanowire vaporization, the material loss occurs at a higher rate, which is evidence of a higher vaporization coefficient for nanosized GeTe. This in situ technique offers a quantitative method of investigating phase transition dynamics and kinetics of nanomaterials, an important topic for designing nanoscale devices to be operated at high temperatures such as phase change memory.
C1 [Yim, Joanne W. L.; Xiang, Bin; Wu, Junqiao] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
[Yim, Joanne W. L.; Xiang, Bin; Wu, Junqiao] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Wu, JQ (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
EM wuj@berkeley.edu
RI Wu, Junqiao/G-7840-2011; Xiang, Bin/C-9192-2012
OI Wu, Junqiao/0000-0002-1498-0148;
FU National Science Foundation [EEC-0425914]; Lawrence Berkeley National
Laboratory (LBNL) under the Department of Energy [DE-AC02-05CH11231]
FX The authors thank Prof. A. Stacy of U.C. Berkeley for the use of the
diffractometer. We are grateful for technical assistance from C. Song,
Z. Lee, and Prof. A. Minor. This work was supported in part by National
Science Foundation under Grant No. EEC-0425914 and in part by the
Laboratory Directed Research and Development Program of Lawrence
Berkeley National Laboratory (LBNL) under the Department of Energy
Contract No. DE-AC02-05CH11231. J.Y. acknowledges support from the
National Science Foundation - Graduate Research Fellowship Program.
Portions of this work were performed at the National Center for Electron
Microscopy, LBNL, and the U.C. Berkeley Microfabrication Laboratory.
NR 25
TC 14
Z9 14
U1 8
U2 48
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD OCT 14
PY 2009
VL 131
IS 40
BP 14526
EP 14530
DI 10.1021/ja905808d
PG 5
WC Chemistry, Multidisciplinary
SC Chemistry
GA 512SS
UT WOS:000271271500092
PM 19807191
ER
PT J
AU Dauter, Z
Wlodawer, A
AF Dauter, Zbigniew
Wlodawer, Alexander
TI Proteins Do Not Have Strong Spines After All
SO STRUCTURE
LA English
DT Editorial Material
ID REFINEMENT
AB In this issue of Structure, Berkholz et al. show that the detailed backbone geometry of proteins depends on the local conformation and suggest how this information can be practically used in modeling and refining protein structures.
C1 [Dauter, Zbigniew] Argonne Natl Lab, NCI, Macromol Crystallog Lab, Synchrotron Radiat Res Sect, Argonne, IL 60439 USA.
[Wlodawer, Alexander] FCRDC, NCI, Macromol Crystallog Lab, Prot Struct Sect, Ft Detrick, MD 21702 USA.
RP Dauter, Z (reprint author), Argonne Natl Lab, NCI, Macromol Crystallog Lab, Synchrotron Radiat Res Sect, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM zdauter@anl.gov
NR 9
TC 5
Z9 5
U1 0
U2 1
PU CELL PRESS
PI CAMBRIDGE
PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA
SN 0969-2126
J9 STRUCTURE
JI Structure
PD OCT 14
PY 2009
VL 17
IS 10
BP 1278
EP 1279
DI 10.1016/j.str.2009.09.002
PG 2
WC Biochemistry & Molecular Biology; Biophysics; Cell Biology
SC Biochemistry & Molecular Biology; Biophysics; Cell Biology
GA 509VS
UT WOS:000271047700002
PM 19836327
ER
PT J
AU Wang, T
Li, H
Lin, G
Tang, CY
Li, DY
Nathan, C
Darwin, KH
Li, HL
AF Wang, Tao
Li, Hua
Lin, Gang
Tang, Chunyan
Li, Dongyang
Nathan, Carl
Darwin, K. Heran
Li, Huilin
TI Structural Insights on the Mycobacterium tuberculosis Proteasomal ATPase
Mpa
SO STRUCTURE
LA English
DT Article
ID RHODOCOCCUS-ERYTHROPOLIS; PROTEIN-DEGRADATION; HYDROGEN-EXCHANGE; 20S
PROTEASOMES; PORE LOOPS; AAA-ATPASE; MACHINE; RECOGNITION; HYDROLYSIS;
MECHANISM
AB Proteasome-mediated protein turnover in all domains of life is an energy-dependent process that requires ATPase activity. Mycobacterium tuberculosis (Mtb) was recently shown to possess a ubiquitin-like proteasome pathway that plays an essential role in Mtb resistance to killing by products of host macrophages. Here we report our structural and biochemical investigation of Mpa, the presumptive Mtb proteasomal ATPase. We demonstrate that Mpa binds to the Mtb proteasome in the presence of ATP gamma S, providing the physical evidence that Mpa is the proteasomal ATPase. X-ray crystallographic determination of the conserved interdomain showed a five stranded double beta barrel structure containing a Greek key motif. Structure and mutational analysis indicate a major role of the interdomain for Mpa hexamerization. Our mutational and functional studies further suggest that the central channel in the Mpa hexamer is involved in protein substrate translocation and degradation. These studies provide insights into how a bacterial proteasomal ATPase interacts with and facilitates protein degradation by the proteasome.
C1 [Wang, Tao; Li, Hua; Tang, Chunyan; Li, Dongyang; Li, Huilin] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA.
[Lin, Gang; Nathan, Carl] Cornell Univ, Weill Med Coll, Dept Microbiol & Immunol, New York, NY 10021 USA.
[Darwin, K. Heran] NYU, Sch Med, Dept Microbiol, New York, NY 10016 USA.
[Li, Huilin] SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA.
RP Li, HL (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA.
EM heran.darwin@med.nyu.edu; hli@bnl.gov
RI Tang, Chunyan/E-8352-2010; li, lianbo/H-1152-2011
FU National Institutes of Health (NIH) [A1070285, A1065437, HL092774,
A1064768]; Brookhaven National Laboratory LDRD [06-60]
FX We thank A. Heroux and S. Eswaramoorthy for their expert advice on X-ray
crystallography. We thank the staff of Beam lines X25 and X29 at the
National Synchrotron Light Source, Brookhaven National Laboratory, for
technical assistance in data collection. This work is supported by
National Institutes of Health (NIH) grant A1070285 and Brookhaven
National Laboratory LDRD grant 06-60 to H.L. and by NIH grants A1065437
and HL092774 to K.H.D. and A1064768 to C.N.
NR 39
TC 36
Z9 40
U1 4
U2 16
PU CELL PRESS
PI CAMBRIDGE
PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA
SN 0969-2126
J9 STRUCTURE
JI Structure
PD OCT 14
PY 2009
VL 17
IS 10
BP 1377
EP 1385
DI 10.1016/j.str.2009.08.010
PG 9
WC Biochemistry & Molecular Biology; Biophysics; Cell Biology
SC Biochemistry & Molecular Biology; Biophysics; Cell Biology
GA 509VS
UT WOS:000271047700013
PM 19836337
ER
PT J
AU Karkamkar, A
Kathmann, SM
Schenter, GK
Heldebrant, DJ
Hess, N
Gutowski, M
Autrey, T
AF Karkamkar, Abhijeet
Kathmann, Shawn M.
Schenter, Gregory K.
Heldebrant, David J.
Hess, Nancy
Gutowski, Maciej
Autrey, Tom
TI Thermodynamic and Structural Investigations of Ammonium Borohydride, a
Solid with a Highest Content of Thermodynamically and Kinetically
Accessible Hydrogen
SO CHEMISTRY OF MATERIALS
LA English
DT Article
ID THERMAL-DECOMPOSITION; ALKALI BOROHYDRIDES; LIQUID AMMONIA; STORAGE;
BORANE; DIAMMONIATE; DIBORANE; HYDRIDES; SYSTEM; RAMAN
C1 [Karkamkar, Abhijeet; Kathmann, Shawn M.; Schenter, Gregory K.; Heldebrant, David J.; Hess, Nancy; Autrey, Tom] Pacific NW Natl Lab, Richland, WA 99354 USA.
[Gutowski, Maciej] Heriot Watt Univ, Sch Engn & Phys Sci, Edinburgh EH14 4AS, Midlothian, Scotland.
RP Autrey, T (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA.
RI Schenter, Gregory/I-7655-2014;
OI Schenter, Gregory/0000-0001-5444-5484; Hess, Nancy/0000-0002-8930-9500
FU U.S. Department of Energy; Office of Basic Energy; Division of Chemical
Sciences, Biosciences and Geosciences
FX This work was Supported Support from the U.S. Department of Energy,
Office of Basic Energy, Division of Chemical Sciences, Biosciences and
Geosciences. PNNL is operated for the DOE by Battelle.
NR 22
TC 35
Z9 35
U1 0
U2 28
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0897-4756
J9 CHEM MATER
JI Chem. Mat.
PD OCT 13
PY 2009
VL 21
IS 19
BP 4356
EP 4358
DI 10.1021/cm902385c
PG 3
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA 502LO
UT WOS:000270461700004
ER
PT J
AU Srivastava, S
Podsiadlo, P
Critchley, K
Zhu, J
Qin, M
Shim, BS
Kotov, NA
AF Srivastava, Sudhanshu
Podsiadlo, Paul
Critchley, Kevin
Zhu, Jian
Qin, Ming
Shim, Bong Sup
Kotov, Nicholas A.
TI Single-Walled Carbon Nanotubes Spontaneous Loading into Exponentially
Grown LBL Films
SO CHEMISTRY OF MATERIALS
LA English
DT Article
ID POLYELECTROLYTE MULTILAYER FILMS; EXCHANGE PROCESSES;
ELECTRICAL-CONDUCTIVITY; COMPOSITES; NANOPARTICLES; NANOWIRES
AB Exponentially growing layer-by-layer (e-LBL) assembled films attracts a lot of attention mostly due to multiple practical applications in biology and medicine. However, e-LBL was observed only for a very limited number of polymers. This fact inevitably limits the area of research and functionalitics that one can obtain for them. Also, it is fundamentally important to gain better understanding of the effect and importance of molecular flexibility for e-LBL films. Here we report that dispersions of rod-like nanocolloids such as single walled carbon nanotubes (SWNTs) and nanowires (NWs) can spontaneously "bore into" and stay in the e-LBL matrix. Molecular rigidity and surface charge appear to be the key parameters determining the possibility Of Such a process and its extent. SWNT forms a thick 2-25 mu m penetration layer, while insufficient flexibility leads to hedgehog structures in the case of CdTe and Te NA's. Electrical properties of the films obtained display fundamental differences with SWNT composites made by standard methods. They were attributed to thermal activation of vibrational modes of film components disturbing nanotube-to-nanotube tunneling. The dynamic nature of the e-LBL film combined with unique SWNTs properties can lead to a new type of smart materials and can help a better understanding of methods of morphological control in nanocomposites.
C1 [Srivastava, Sudhanshu; Podsiadlo, Paul; Critchley, Kevin; Zhu, Jian; Qin, Ming; Shim, Bong Sup; Kotov, Nicholas A.] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA.
[Srivastava, Sudhanshu; Podsiadlo, Paul; Critchley, Kevin; Zhu, Jian; Qin, Ming; Shim, Bong Sup; Kotov, Nicholas A.] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA.
[Srivastava, Sudhanshu; Podsiadlo, Paul; Critchley, Kevin; Zhu, Jian; Qin, Ming; Shim, Bong Sup; Kotov, Nicholas A.] Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA.
[Podsiadlo, Paul] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
RP Kotov, NA (reprint author), Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA.
EM kotov@umich.edu
RI Zhu, Jian/D-4122-2012; Zhu, Jian/H-6443-2015;
OI Zhu, Jian/0000-0002-7004-0257; Critchley, Kevin/0000-0002-0112-8626;
Shim, Bong Sup/0000-0003-3205-6191; Kotov, Nicholas/0000-0002-6864-5804
FU AFOSR [MURI 444286-PO61716, ONR N00014-06-1-0473, Air Force
FA9550-05-1-043]; NSF [CMS-0528867, R8112-G1]; Fannie and John Hertz
Foundation; EU [MOIF-CT-2006-0396361]
FX The work is supported by AFOSR MURI 444286-PO61716, ONR
N00014-06-1-0473, Air Force FA9550-05-1-043, NSF CMS-0528867, and NSF
R8112-G1. P.P. thanks the Fannie and John Hertz Foundation for the
graduate fellowship. K.C. thanks the EU under Marie Curie Fellowship
(MOIF-CT-2006-0396361 for support.
NR 33
TC 18
Z9 19
U1 4
U2 33
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0897-4756
J9 CHEM MATER
JI Chem. Mat.
PD OCT 13
PY 2009
VL 21
IS 19
BP 4397
EP 4400
DI 10.1021/cm900773v
PG 4
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA 502LO
UT WOS:000270461700010
ER
PT J
AU Gupta, G
Slanac, DA
Kumar, P
Wiggins-Camacho, JD
Wang, XQ
Swinnea, S
More, KL
Dai, S
Stevenson, KJ
Johnston, KP
AF Gupta, Gaurav
Slanac, Daniel A.
Kumar, Pavan
Wiggins-Camacho, Jaclyn D.
Wang, Xiqing
Swinnea, Steven
More, Karren L.
Dai, Sheng
Stevenson, Keith J.
Johnston, Keith P.
TI Highly Stable and Active Pt-Cu Oxygen Reduction Electrocatalysts Based
on Mesoporous Graphitic Carbon Supports
SO CHEMISTRY OF MATERIALS
LA English
DT Article
ID MEMBRANE FUEL-CELLS; SHELL NANOPARTICLE ELECTROCATALYSTS; CO-AU
ELECTROCATALYSTS; PARTICLE-SIZE; BIMETALLIC NANOPARTICLES; DURABILITY
ENHANCEMENT; PLATINUM CATALYSTS; ALLOY CATALYSTS; FE ALLOYS; SURFACE
AB The activity of oxygen reduction catalysts for fuel cells often decreases markedly (30-70%) during potential cycling tests designed to accelerate catalyst degradation. Herein we achieved essentially no loss in electrochemical surface area and catalyst activity during potential cycling from 0.5 to 1.2 V for presynthesized Pt-Cu nanoparticles of controlled composition that were infused into highly graphitic disordered mesoporous carbons (DMC). The high stability is favored by the strong metal-support interactions and low tendency for carbon oxidation, which mitigates the mechanisms of degradation. Electrochemical dealloying transforms the composition from Pt20Cu80 to Pt85Cu15 with a strained Pt-rich shell, which exhibits an enhanced ORR activity of 0.46 A/mg(Pt), > 4 fold that of pure Pt catalysts. The high uniformity in particle size and composition both before and after dealloying, as a consequence of the presynthesis/infusion technique, is beneficial For elucidating the mechanism of catalyst activity and, ultimately, for designing more active catalysts.
C1 [Gupta, Gaurav; Slanac, Daniel A.; Kumar, Pavan; Wiggins-Camacho, Jaclyn D.; Swinnea, Steven; Stevenson, Keith J.; Johnston, Keith P.] Univ Texas Austin, Austin, TX 78712 USA.
[Wang, Xiqing; More, Karren L.; Dai, Sheng] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RP Johnston, KP (reprint author), Univ Texas Austin, 1 Univ Stn C0400, Austin, TX 78712 USA.
EM kpj@che.utexas.edu
RI Wang, Xiqing/E-3062-2010; More, Karren/A-8097-2016; Dai,
Sheng/K-8411-2015
OI Wang, Xiqing/0000-0002-1843-008X; More, Karren/0000-0001-5223-9097; Dai,
Sheng/0000-0002-8046-3931
FU National Science Foundation [CHE-9876674]; Department of Energy Office
of Basic Energy Sciences; Robert A. Welch Foundation [F-1319, F-1529]
FX This material is based on work supported in part by the STC Program of
the National Science Foundation under Agreement CHE-9876674, the
Department of Energy Office of Basic Energy Sciences, and the Robert A.
Welch Foundation (F-1319 and F-1529).
NR 74
TC 76
Z9 76
U1 11
U2 81
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0897-4756
EI 1520-5002
J9 CHEM MATER
JI Chem. Mat.
PD OCT 13
PY 2009
VL 21
IS 19
BP 4515
EP 4526
DI 10.1021/cm901203n
PG 12
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA 502LO
UT WOS:000270461700024
ER
PT J
AU Zhang, F
Wong, SS
AF Zhang, Fen
Wong, Stanislaus S.
TI Controlled Synthesis of Semiconducting Metal Sulfide Nanowires
SO CHEMISTRY OF MATERIALS
LA English
DT Review
ID PHOTOCATALYTIC HYDROGEN-PRODUCTION; ONE-DIMENSIONAL NANOSTRUCTURES;
DIFFUSION-LIMITED AGGREGATION; DC ELECTROCHEMICAL DEPOSITION;
ROOM-TEMPERATURE SYNTHESIS; ALUMINUM-OXIDE TEMPLATES; SINGLE-SOURCE
PRECURSORS; ONE-POT SYNTHESIS; PBS QUANTUM DOTS; CDS THIN-FILMS
AB We describe the preparation and characterization of (a) discrete, individual motifs and (b) arrays of crystalline and pure semiconducting transition metal sulfide (CuS, PbS, and CdS) nanowires, synthesized via an inexpensive, generalizable, simplistic, and ambient modified template-directed technique. We have demonstrated control over the diameters and lengths of our one-dimensional (1-D) nanostructures through corresponding variations in the template membrane's pore size and thickness. We have not only successfully generated cubic-phase 1-D CdS nanowires but also produced, at slightly elevated temperatures, unusual CdS cactus-like, hierarchical nanostructures, consisting of tiny nanoneedles projecting out from the outer surfaces of parent CdS nanotube motifs. Opto-vibrational properties of all of these metal sulfide nanomaterials have been extensively studied. In addition, our results indicate that our as-prepared hexagonal-phase CdS cactus-like nanotubes evinced a higher photocatalytic degradation activity than that of both cubic CdS nanowires and their commercial bulk counterparts.
C1 [Zhang, Fen; Wong, Stanislaus S.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.
[Wong, Stanislaus S.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA.
RP Wong, SS (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.
EM sswong@notes.cc.sunysb.edu
RI Zhang, Fen/G-5015-2010
FU U.S. Department of Energy [DE-AC02-98CH 10886]; National Science
Foundation [DMR-0348239]; Alfred P. Sloan Foundation
FX We acknowledge the U.S. Department of Energy (DE-AC02-98CH 10886) for
generous facility and personnel support. We also thank the National
Science Foundation (CAREER Award DMR-0348239) and the Alfred P. Sloan
Foundation for PI support and experimental Supplies. Moreover, we are
grateful to Dr. Dezhi Wang at Boston College, as well as Dr. James Quinn
and Dr. Susan van Horn at SUNY Stony Brook for their invaluable help
with electron microscopy. We appreciate the assistance of Dr. Mandakini
Kanungo with Raman analyses.
NR 133
TC 103
Z9 104
U1 22
U2 200
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0897-4756
EI 1520-5002
J9 CHEM MATER
JI Chem. Mat.
PD OCT 13
PY 2009
VL 21
IS 19
BP 4541
EP 4554
DI 10.1021/cm901492f
PG 14
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA 502LO
UT WOS:000270461700026
ER
PT J
AU Ubic, R
Subodh, G
Gout, D
Sebastian, MT
Proffen, T
AF Ubic, Rick
Subodh, Ganesanpotti
Gout, Delphine
Sebastian, Mailadil T.
Proffen, Thomas
TI Crystal Structure of Sr0.4Ce0.4TiO3 Ceramics
SO CHEMISTRY OF MATERIALS
LA English
DT Article
ID MICROWAVE DIELECTRIC-PROPERTIES; NEUTRON POWDER DIFFRACTION; HOMOLOGOUS
SERIES; PHASE-TRANSITION; TEMPERATURE; PEROVSKITES; LACOO3
AB A cerium-doped SrTiO3 compound with the composition Sr0.4Ce0.4TiO3 has been produced by conventional solid-state processing. The structure of this compound was analyzed by X-ray, electron, and neutron diffraction. While no superlattice can be observed via X-ray diffraction, both electron and neutron diffraction show evidence of a noncubic supercell caused by antiphase tilting of oxygen octahedra. The most likely space group is C2/c, corresponding to an a(-)b(-)b(-) tilt system. Octahedra are tilted by similar to 5 degrees about the pseudo-cubic a-axis and similar to 1.5 degrees about the pseudo-cubic b- and c-axes.
C1 [Ubic, Rick] Boise State Univ, Dept Mat Sci & Engn, Coll Engn, Boise, ID 83725 USA.
[Subodh, Ganesanpotti; Sebastian, Mailadil T.] Inst Interdisciplinary Sci & Technol, Mat & Minerals Div, Trivandrum 695019, Kerala, India.
[Gout, Delphine] Forschungszentrum Julich, Julich Ctr Neutron Sci SNS, D-52425 Julich, Germany.
[Gout, Delphine] Oak Ridge Natl Lab, Oak Ridge, TN 38371 USA.
[Proffen, Thomas] Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA.
RP Ubic, R (reprint author), Boise State Univ, Dept Mat Sci & Engn, Coll Engn, Boise, ID 83725 USA.
EM RickUbic@BosieState.edu
RI Lujan Center, LANL/G-4896-2012; SEBASTIAN, Mailadil/C-2818-2009; TVM,
NIIST/E-5132-2012; ganesanpotti, Subodh/N-9831-2013; Proffen,
Thomas/B-3585-2009
OI SEBASTIAN, Mailadil/0000-0003-4039-8685; TVM, NIIST/0000-0002-5814-466X;
ganesanpotti, Subodh/0000-0002-6784-094X; Proffen,
Thomas/0000-0002-1408-6031
FU National Science Foundation [0521315]; U.S. Department of Energy
FX This work has been supported by the National Science Foundation through
the Major Research Instrumentation Program, Award No. 0521315. In
addition, work at the Los Alamos Neutron Science Center's Lujan Neutron
Scattering Center was sponsored by the Scientific User Facilities
Division, Office of Basic Energy Sciences, U.S. Department of Energy.
NR 25
TC 11
Z9 11
U1 1
U2 20
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0897-4756
J9 CHEM MATER
JI Chem. Mat.
PD OCT 13
PY 2009
VL 21
IS 19
BP 4706
EP 4710
DI 10.1021/cm9018698
PG 5
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA 502LO
UT WOS:000270461700045
ER
PT J
AU Liang, CD
Dudney, NJ
Howe, JY
AF Liang, Chengdu
Dudney, Nancy J.
Howe, Jane Y.
TI Hierarchically Structured Sulfur/Carbon Nanocomposite Material for
High-Energy Lithium Battery
SO CHEMISTRY OF MATERIALS
LA English
DT Article
ID LI/S SECONDARY BATTERY; SULFUR ELECTRODE; MESOPOROUS CARBONS;
ELECTROCHEMICAL PERFORMANCE; LIQUID ELECTROLYTE; BLOCK-COPOLYMERS;
COMPOSITE; CATHODE; CELL
AB We report herein a hierarchically structured sulfur-carbon (S/C) nanocomposite material as the high surface-area cathode for rechargeable lithium batteries. A porous carbon with a uniform distribution of mesopores of 7.3 nm has been synthesized through a soft-template synthesis method. The potassium hydroxide activation of this mesoporous carbon results in a bimodal porous carbon with added microporosity of less than 2 nm to the existing mesopores without deterioration of the integrity of the original mesoporous carbon. Elemental sulfur has been loaded to the micropores through a solution infiltration method. The resulted S/C composites with various loading level or sulfur have a high surface areas and large internal porosities. These materials have been tested as novel cathodes for Li/S batteries. The results show that the cyclability and the utilization of sulfur in the Li/S batteries have been significantly improved. The large internal porosity and Surface area of the micromesoporous carbon is essential for the high utilization of sulfur.
C1 [Liang, Chengdu] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Dudney, Nancy J.; Howe, Jane Y.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
RP Liang, CD (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
EM liangcn@ornl.gov
RI Howe, Jane/G-2890-2011; Liang, Chengdu/G-5685-2013; Dudney,
Nancy/I-6361-2016
OI Dudney, Nancy/0000-0001-7729-6178
FU Oak Ridge National Laboratory [S08-027]; U.S. Department of Energy
FX The authors thank the Oak Ridge National Laboratory for the financial
support through a laboratory-directed research and development Grant
S08-027. The synthesis and structural characterization of the bimodal
porous materials and the S/C composites were conducted at the Center for
Nanophase Materials Sciences, which is sponsored at Oak Ridge National
Laboratory by the Scicntific User Facilities Division, Office of Basic
Energy Sciences, U.S. Department of Energy. C.D.L. thanks M. D. Pawel
for proofreading the manuscript.
NR 30
TC 506
Z9 525
U1 71
U2 558
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0897-4756
J9 CHEM MATER
JI Chem. Mat.
PD OCT 13
PY 2009
VL 21
IS 19
BP 4724
EP 4730
DI 10.1021/cm902050j
PG 7
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA 502LO
UT WOS:000270461700048
ER
PT J
AU Nyman, M
Rodriguez, MA
Rohwer, LES
Martin, JE
Waller, M
Osterloh, FE
AF Nyman, May
Rodriguez, Mark A.
Rohwer, Lauren E. S.
Martin, James E.
Waller, Mollie
Osterloh, Frank E.
TI Unique LaTaO4 Polymorph for Multiple Energy Applications
SO CHEMISTRY OF MATERIALS
LA English
DT Article
ID LUMINESCENT PROPERTIES; PHOTOCATALYTIC PROPERTY; PEROVSKITE NANOSHEETS;
CRYSTAL-STRUCTURE; RBLNTA(2)O(7) LN; LA; SM; NIOBATES; ION;
PHOTOLUMINESCENCE
AB Rare-earth niobate and tantalate (RE-Nb/Ta) materials are of considerable interest in environmental and energy-related applications that include phosphors for solid-state lighting, photocatalysts for both contaminant degeneration and H-2 generation, chemically robust hosts for nuclear materials and wastes, and ion conductors for lithium batteries or solid-oxide fuel cells. However, the chemically inert nature limits the synthetic routes available to obtain these materials, which in turn hampers the discovery and development of new RE-Nb/Ta phases. Of the simple orthotantalate, LaTaO4, there were three polymorphs known prior. With this paper, we present the structural characterization (from high-resolution X-ray powder diffraction data collected at the APS II-BM line) of a fourth polymorph. It is obtained only from dehydration of La2Ta2O7(OH)(2), Which is in turn synthesized hydrothermally. The structure of the new LaTaO4 Polymorph is distinctive from the others in the arrangement of the alternating La-O polyhedra layers and TaO6 octahedra layers. Luminescence measurements (Eu-doped) and photocatalysis studies of the new LaTaO4 polymorph, and comparison to the performance of a previously described LaTaO4 polymorph reveals enhanced performance of the new polymorph in both applications. This study illustrates the relevance of form-function relationships in solid-state materials, as well as the important role of synthesis in the development of advanced functional materials.
C1 [Nyman, May; Rodriguez, Mark A.; Rohwer, Lauren E. S.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Waller, Mollie; Osterloh, Frank E.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA.
RP Nyman, M (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM mdnyman@sandia.gov
OI Osterloh, Frank /0000-0002-9288-3407
FU Sandia National Laboratories; United States Department of Energy
National Energy Technology Laboratory [DE-PS26-06NT42942]; National
Science Foundation [CBET 0829142]; United States Department of Energy
[DE-AC04-94AL85000]
FX The SNL authors acknowledge Sandia National Laboratories' LDRD program
and United States Department of Energy National Energy Technology
Laboratory (DE-PS26-06NT42942) for support for this work. F.E. Osterloh
thanks the National Science Foundation for supporting this work with an
'Energy for Sustainability Grant' (CBET 0829142). Sandia is a
multiprogram laboratory operated by Sandia Corporation, a
Lockheed-Martin Company, for the United States Department of Energy
under Contract DE-AC04-94AL85000. We thank Lynn Ribaud at APS for his
help with specimen preparation, data collection, and file formatting.
NR 38
TC 35
Z9 35
U1 3
U2 57
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0897-4756
J9 CHEM MATER
JI Chem. Mat.
PD OCT 13
PY 2009
VL 21
IS 19
BP 4731
EP 4737
DI 10.1021/cm9020645
PG 7
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA 502LO
UT WOS:000270461700049
ER
PT J
AU Yoon, H
Oostrom, M
Wietsma, TW
Werth, CJ
Valocchi, AJ
AF Yoon, Hongkyu
Oostrom, Mart
Wietsma, Thomas W.
Werth, Charles J.
Valocchi, Albert J.
TI Numerical and experimental investigation of DNAPL removal mechanisms in
a layered porous medium by means of soil vapor extraction
SO JOURNAL OF CONTAMINANT HYDROLOGY
LA English
DT Article
DE Soil Vapor Extraction (SVE); Flow cell; DNAPL; STOMP; Multiphase
ID NONAQUEOUS PHASE LIQUID; GOVERNING MULTIPHASE FLOW;
CARBON-TETRACHLORIDE; MASS-TRANSFER; WATER-CONTENT; HANFORD SITE; VADOSE
ZONE; MODEL; SYSTEMS; AIR
AB The purpose of this work is to identify the mechanisms that govern the removal of carbon tetrachloride (CT) during soil vapor extraction (SVE) by comparing numerical and analytical model simulations with a detailed data set from a well-defined intermediate-scale flow cell experiment. The flow cell was packed with a fine-grained sand layer embedded in a coarse-rained sand matrix. A total of 499 mL CT was injected at the top of the flow cell and allowed to redistribute in the variably saturated system. A dual-energy gamma radiation system was used to determine the initial NAPL saturation profile in the fine-grained sand layer. Gas concentrations at the outlet of the flow cell and 15 sampling ports inside the flow cell were measured during subsequent CT removal using SVE. Results show that CT mass was removed quickly in coarse-grained sand, followed by a slow removal from the fine-grained sand layer. Consequently, effluent gas concentrations decreased quickly at first, and then started to decrease gradually, resulting in long-term tailing. The long-term tailing was mainly due to diffusion from the fine-grained sand layer to the coarse-grained sand zone. An analytical solution for a one-dimensional advection and a first-order mass transfer model matched the tailing well with two fitting parameters. Given detailed knowledge of the permeability field and initial CT distribution. we were also able to predict the effluent concentration tailing and gas concentration profiles at sampling ports using a numerical simulator assuming equilibrium CT evaporation. The numerical model predictions were accurate within the uncertainty of independently measured or literature derived parameters. This study demonstrates that proper numerical modeling of CT removal through SVE can be achieved using equilibrium evaporation of NAPL if detailed fine-scale knowledge of the CT distribution and physical heterogeneity is incorporated into the model. However, CT removal could also be fit by a first-order mass transfer analytical model, potentially leading to an erroneous conclusion that the long-term tailing in the experiment was kinetically controlled due to rate-limited NAPL evaporation. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Yoon, Hongkyu; Werth, Charles J.; Valocchi, Albert J.] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA.
[Oostrom, Mart] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA.
[Wietsma, Thomas W.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA.
RP Werth, CJ (reprint author), Univ Illinois, Dept Civil & Environm Engn, 205 N Mathews Ave, Urbana, IL 61801 USA.
EM werth@illinois.edu
FU Office of Science (BER); U.S. Department of Energy [DE-FG02-06ER64207];
Battelle Memorial Institute for the Department of Energy (DOE)
[DE-AC06-76RLO 1830]
FX This work was primarily supported by the Office of Science (BER), U.S.
Department of Energy - Environmental Remediation Sciences Program
(ERSP), Grant No. DE-FG02-06ER64207. The intermediate-scale experiment
was performed in the Environmental Molecular Sciences Laboratory (EMSL),
a national scientific user facility sponsored by the DOE's Office of
Biological and Environmental Research and located at Pacific Northwest
National Laboratory. PNNL is operated by the Battelle Memorial Institute
for the Department of Energy (DOE) under Contract DE-AC06-76RLO 1830.
Funding for M. Oostrom and T.W. Wietsma was provided by the U.S.
Department of Energy through Fluor Hanford, Inc., Richland, Washington
as part of the Remediation and Closure Science Project Scientists
interested in conducting experimental work in the EMSL are encouraged to
contact M. Oostrom (matt. oostrom@pnl.gov).
NR 43
TC 8
Z9 11
U1 7
U2 36
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0169-7722
EI 1873-6009
J9 J CONTAM HYDROL
JI J. Contam. Hydrol.
PD OCT 13
PY 2009
VL 109
IS 1-4
BP 1
EP 13
DI 10.1016/j.jconhyd.2009.07.001
PG 13
WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources
SC Environmental Sciences & Ecology; Geology; Water Resources
GA 513ON
UT WOS:000271332500001
PM 19720427
ER
PT J
AU Jin, JZ
Wu, JZ
Frischknecht, AL
AF Jin, Jiezhu
Wu, Jianzhong
Frischknecht, Amalie L.
TI Modeling Microscopic Morphology and Mechanical Properties of Block
Copolymer/Nanoparticle Composites
SO MACROMOLECULES
LA English
DT Article
ID COPOLYMER-NANOPARTICLE COMPOSITES; CUBIC PHASES; NANOCOMPOSITES;
SIMULATION; MIXTURES; BEHAVIOR; MELTS
AB The morphology of block copolymer and nanoparticle composites depends not only on the copolymer architecture but also on the Surface energy, geometry, and volume fraction of the embedding nanoparticles. Toward a quantitative description of the composite structure and associated thermo-mechanical properties from a molecular perspective, we examined the performance of a nonlocal density functional theory that accounts for the excluded-volume effects and intra- and inter-chain correlations self-consistently. It is predicted that, within the lamellar structures of symmetric block copolymers, neutral particles are localized at the microdomain interface, leading to a reduction of the lamellar thickness. Conversely, particles that are energetically biased to a particular microdomain expand the block copolymer lamellar structure. The dilation or shrinkage of the lamellar thickness also depends on the particle packing density. Both particle dispersion and particle-polymer interfacial structure are highly sensitive to the ratio of the particle diameter to the lamellar thickness. While small nanoparticles may either increase or reduce the extensional moduli of the composite material depending on the nanoparticle volume fraction and polymer-particle interactions, large particles always enhance the mechanical properties regardless of the polyrner-particle interactions. The theoretical predictions are found to be in qualitative agreement with simulation results and experiments.
C1 [Jin, Jiezhu; Wu, Jianzhong] Univ Calif Riverside, Dept Chem & Environm Engn, Riverside, CA 92521 USA.
[Frischknecht, Amalie L.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Wu, JZ (reprint author), Univ Calif Riverside, Dept Chem & Environm Engn, Riverside, CA 92521 USA.
EM jwu@engr.ucr.edu
RI Wu, Jianzhong/I-5164-2013; Frischknecht, Amalie/N-1020-2014;
OI Frischknecht, Amalie/0000-0003-2112-2587; Wu,
Jianzhong/0000-0002-4582-5941
FU U.S. Department of Energy [DE-FG02-06ER46296, DE-AC03-76SF0009,
DE-AC52-06NA25396, DE-AC04-94AL85000]
FX This research is sponsored by the U.S. Department of Energy
(DE-FG02-06ER46296) and uses the computational resources from the
National Energy Research Scientific Computing Center (NERSC), which is
supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC03-76SF0009. This work was also performed in
part at the US Department of Energy, Center for Integrated
Nanotechnologies, at Los Alamos National Laboratory (Contract
DE-AC52-06NA25396) and Sandia National Laboratories (Contract
DE-AC04-94AL85000)
NR 29
TC 11
Z9 11
U1 1
U2 13
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0024-9297
J9 MACROMOLECULES
JI Macromolecules
PD OCT 13
PY 2009
VL 42
IS 19
BP 7537
EP 7544
DI 10.1021/ma9006686
PG 8
WC Polymer Science
SC Polymer Science
GA 502LN
UT WOS:000270461600040
ER
PT J
AU Welch, PM
Welch, CF
AF Welch, Paul M.
Welch, Cynthia F.
TI Tecto-Dendrimers: A Study of Covalently Bound Nanospheres
SO MACROMOLECULES
LA English
DT Article
ID CORE-SHELL TECTO(DENDRIMERS); ATOMIC-FORCE MICROSCOPY; BUILDING-BLOCKS;
SIMULATION; MOLECULES; POLYMERS; DELIVERY; QUALITY; SPHERES; SYSTEM
AB We present a computational and theoretical study of the size, shape, and solution properties of tecto-dendrimers. This class of polymer, composed of a central dendrimer with multiple dendrimers attached at its periphery, holds promise for multidrug delivery and environmental remediation applications. We find (i) that the maximum number of tecto-units that may be attached to the central core varies logarithmically with the ratio of the sizes of the component dendrimers, (ii) that the total density profiles display a minimum near the junction of the tecto-units with the core, (iii) that a simple expression captures the radius or gyration for a wide range of topologies, (iv) that the intrinsic viscosity displays a maximum as a function of the number of tecto-units attached, and (v) that the sphericity increases with increasing number of attached tecto-units. These results support the notion that the dendritic components can be viewed as independent building blocks for multifunctional devices.
C1 [Welch, Paul M.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA.
RP Welch, PM (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
EM pwelch@lanl.gov
OI Welch, Cynthia/0000-0002-4638-6434; Welch, Paul/0000-0001-5614-2065
FU U.S. Department of Energy [DE-AC52-06NA25396, SCFY081004]
FX This work was carried out under the auspices of the National Nuclear
Security Administration of the U.S. Department of Energy at Los Alamos
National Laboratory under Contract DE-AC52-06NA25396. Financial support
provided by the U.S. Department of Energy Office of Biological and
Environmental Research under Proposal SCFY081004.
NR 36
TC 5
Z9 5
U1 1
U2 7
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0024-9297
J9 MACROMOLECULES
JI Macromolecules
PD OCT 13
PY 2009
VL 42
IS 19
BP 7571
EP 7578
DI 10.1021/ma901157y
PG 8
WC Polymer Science
SC Polymer Science
GA 502LN
UT WOS:000270461600044
ER
PT J
AU Jagust, WJ
Landau, SM
Shaw, LM
Trojanowski, JQ
Koeppe, RA
Reiman, EM
Foster, NL
Petersen, RC
Weiner, MW
Price, JC
Mathis, CA
AF Jagust, W. J.
Landau, S. M.
Shaw, L. M.
Trojanowski, J. Q.
Koeppe, R. A.
Reiman, E. M.
Foster, N. L.
Petersen, R. C.
Weiner, M. W.
Price, J. C.
Mathis, C. A.
CA Alzheimer's Dis Neuroimaging Initi
TI Relationships between biomarkers in aging and dementia
SO NEUROLOGY
LA English
DT Article
ID MILD COGNITIVE IMPAIRMENT; POSITRON-EMISSION-TOMOGRAPHY; PHOSPHORYLATED
TAU-PROTEIN; PITTSBURGH COMPOUND-B; ALZHEIMERS-DISEASE;
CEREBROSPINAL-FLUID; AMYLOID DEPOSITION; CLINICAL-DIAGNOSIS;
GLUCOSE-METABOLISM; PET
AB Background: PET imaging using [(18)F]fluorodeoxyglucose (FDG) and [(11)C]Pittsburgh compound B (PIB) have been proposed as biomarkers of Alzheimer disease (AD), as have CSF measures of the 42 amino acid beta-amyloid protein (A beta(1-42)) and total and phosphorylated tau (t-tau and p-tau). Relationships between biomarkers and with disease severity are incompletely understood.
Methods: Ten subjects with AD, 11 control subjects, and 34 subjects with mild cognitive impairment from the Alzheimer's Disease Neuroimaging Initiative underwent clinical evaluation; CSF measurement of A beta(1-42), t-tau, and p-tau; and PIB-PET and FDG-PET scanning. Data were analyzed using continuous regression and dichotomous outcomes with subjects classified as "positive" or "negative" for AD based on cutoffs established in patients with AD and controls from other cohorts.
Results: Dichotomous categorization showed substantial agreement between PIB-PET and CSF A beta(1-42) measures (91% agreement, kappa = 0.74), modest agreement between PIB-PET and p-tau (76% agreement, kappa = 0.50), and minimal agreement for other comparisons (kappa < 0.3). Mini-Mental State Examination score was significantly correlated with FDG-PET but not with PIB-PET or CSF A beta(1-42). Regression models adjusted for diagnosis showed that PIB-PET was significantly correlated with A beta(1-42), t-tau, and p-tau(181p), whereas FDG-PET was correlated only with A beta(1-42).
Conclusions: PET and CSF biomarkers of A beta agree with one another but are not related to cognitive impairment. [(18)F]fluorodeoxyglucose-PET is modestly related to other biomarkers but is better related to cognition. Different biomarkers for Alzheimer disease provide different information from one another that is likely to be complementary. Neurology (R) 2009; 73: 1193-1199
C1 [Jagust, W. J.; Landau, S. M.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94620 USA.
[Jagust, W. J.; Landau, S. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94620 USA.
[Shaw, L. M.; Trojanowski, J. Q.] Univ Penn, Sch Med, Dept Pathol & Lab Med, Inst Aging,Ctr Neurodegenerat Dis Res, Philadelphia, PA 19104 USA.
[Koeppe, R. A.] Univ Michigan, Dept Radiol, Div Nucl Med, Ann Arbor, MI 48109 USA.
[Reiman, E. M.] Banner Alzheimers Inst, Phoenix, AZ USA.
[Reiman, E. M.] Banner Good Samaritan PET Ctr, Phoenix, AZ USA.
[Foster, N. L.] Univ Utah, Ctr Alzheimers Care Imaging & Res, Salt Lake City, UT USA.
[Foster, N. L.] Univ Utah, Dept Neurol, Salt Lake City, UT USA.
[Petersen, R. C.] Mayo Clin, Dept Neurol, Coll Med, Rochester, MN USA.
[Weiner, M. W.] Ctr Imaging Neurodegenerat Dis, Dept Vet Affairs Med Ctr, San Francisco, CA USA.
[Price, J. C.; Mathis, C. A.] Univ Pittsburgh, Dept Radiol, Pittsburgh, PA 15260 USA.
RP Jagust, WJ (reprint author), Univ Calif Berkeley, Helen Wills Neurosci Inst, 132 Barker Hall, Berkeley, CA 94620 USA.
EM jagust@berkeley.edu
RI Scharre, Douglas/E-4030-2011
FU NIH [AG024904, AG027859]
FX Supported by NIH grants AG024904 and AG027859.
NR 31
TC 226
Z9 227
U1 2
U2 12
PU LIPPINCOTT WILLIAMS & WILKINS
PI PHILADELPHIA
PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA
SN 0028-3878
J9 NEUROLOGY
JI Neurology
PD OCT 13
PY 2009
VL 73
IS 15
BP 1193
EP 1199
DI 10.1212/WNL.0b013e3181bc010c
PG 7
WC Clinical Neurology
SC Neurosciences & Neurology
GA 505OQ
UT WOS:000270704000006
PM 19822868
ER
PT J
AU Chorin, AJ
Tu, XM
AF Chorin, Alexandre J.
Tu, Xuemin
TI Implicit sampling for particle filters
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE pseudo-Gaussian; Jacobian; chainless sampling
ID MONTE-CARLO; MODELS
AB We present a particle-based nonlinear filtering scheme, related to recent work on chainless Monte Carlo, designed to focus particle paths sharply so that fewer particles are required. The main features of the scheme are a representation of each new probability density function by means of a set of functions of Gaussian variables (a distinct function for each particle and step) and a resampling based on normalization factors and Jacobians. The construction is demonstrated on a standard, ill-conditioned test problem.
C1 [Chorin, Alexandre J.] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA.
Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Chorin, AJ (reprint author), Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA.
EM chorin@math.berkeley.edu
RI Tu, Xuemin/D-9928-2011
FU U. S. Department of Energy [DE-AC02-05CH11231]; National Science
Foundation [DMS-0705910]
FX We thank Prof. G. I. Barenblatt, Prof. R. Kupferman, Prof. R. Miller,
and Dr. J. Weare for asking searching questions and providing good
advice, and most particularly, Prof. J. Goodman, who read the manuscript
carefully and pointed out areas that needed work. This work was
supported in part by U. S. Department of Energy Contract No.
DE-AC02-05CH11231 and by the National Science Foundation Grant
DMS-0705910.
NR 21
TC 51
Z9 52
U1 0
U2 12
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD OCT 13
PY 2009
VL 106
IS 41
BP 17249
EP 17254
DI 10.1073/pnas.0909196106
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 506DS
UT WOS:000270754400007
PM 19805147
ER
PT J
AU Ishizaki, A
Fleming, GR
AF Ishizaki, Akihito
Fleming, Graham R.
TI Theoretical examination of quantum coherence in a photosynthetic system
at physiological temperature
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE photosynthesis; electronic energy transfer; quantum dynamics
ID 2-DIMENSIONAL ELECTRONIC SPECTROSCOPY; GREEN SULFUR BACTERIA; FMO
ANTENNA COMPLEXES; ENERGY-TRANSFER; CHLOROBIUM-TEPIDUM;
BACTERIOCHLOROPHYLL PROTEIN; ROOM-TEMPERATURE; DYNAMICS; RELAXATION
AB The observation of long-lived electronic coherence in a photosynthetic pigment-protein complex, the Fenna-Matthews-Olson (FMO) complex, is suggestive that quantum coherence might play a significant role in achieving the remarkable efficiency of photosynthetic electronic energy transfer (EET), although the data were acquired at cryogenic temperature [Engel GS, et al. (2007) Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446: 782-786]. In this paper, the spatial and temporal dynamics of EET through the FMO complex at physiological temperature are investigated theoretically. The numerical results reveal that quantum wave-like motion persists for several hundred femtoseconds even at physiological temperature, and suggest that the FMO complex may work as a rectifier for unidirectional energy flow from the peripheral light-harvesting antenna to the reaction center complex by taking advantage of quantum coherence and the energy landscape of pigments tuned by the protein scaffold. A potential role of quantum coherence is to overcome local energetic traps and aid efficient trapping of electronic energy by the pigments facing the reaction center complex.
C1 [Ishizaki, Akihito; Fleming, Graham R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Ishizaki, Akihito; Fleming, Graham R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
RP Fleming, GR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
EM grfleming@lbl.gov
RI Ishizaki, Akihito/A-7069-2010
OI Ishizaki, Akihito/0000-0002-0246-4461
FU U. S. Department of Energy [DE-AC02-05CH11231, DE-AC03-76SF000098];
Japan Society for the Promotion of Science
FX We thank Yuan-Chung Cheng, Tae Kyu Ahn, Thomas Renger, and Alan
Aspuru-Guzik for insightful discussions and critical reading of the
manuscript. This work was supported by the Director, Office of Science,
Office of Basic Energy Sciences, of the U. S. Department of Energy under
Contract. DE-AC02-05CH11231 and by the Chemical Sciences, Geosciences
and Biosciences Division, Office of Basic Energy Sciences, U. S.
Department of Energy under contract DE-AC03-76SF000098. A. I. was
supported by Postdoctoral Fellowship for Research Abroad by the Japan
Society for the Promotion of Science.
NR 44
TC 427
Z9 431
U1 6
U2 87
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD OCT 13
PY 2009
VL 106
IS 41
BP 17255
EP 17260
DI 10.1073/pnas.0908989106
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 506DS
UT WOS:000270754400008
PM 19815512
ER
PT J
AU Chen, K
Liu, J
Heck, S
Chasis, JA
An, XL
Mohandas, N
AF Chen, Ke
Liu, Jing
Heck, Susanne
Chasis, Joel A.
An, Xiuli
Mohandas, Narla
TI Resolving the distinct stages in erythroid differentiation based on
dynamic changes in membrane protein expression during erythropoiesis
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE CD44; CD71; erythroblast differentiation; cell adhesion; erythrocyte
ID RED-CELL MEMBRANE; RETICULOCYTE MATURATION; ASYNCHRONOUS SYNTHESIS;
TRANSFERRIN RECEPTOR; UNEQUAL SYNTHESIS; ALPHA-SPECTRIN; BETA-SPECTRIN;
BLOOD-CELLS; ERYTHROBLASTS; SKELETON
AB Erythropoiesis is the process by which nucleated erythroid progenitors proliferate and differentiate to generate, every second, millions of nonnucleated red cells with their unique discoid shape and membrane material properties. Here we examined the time course of appearance of individual membrane protein components during murine erythropoiesis to throw new light on our understanding of the evolution of the unique features of the red cell membrane. We found that the accumulation of all of the major transmembrane and all skeletal proteins of the mature red blood cell, except actin, accrued progressively during terminal erythroid differentiation. At the same time, and in marked contrast, accumulation of various adhesion molecules decreased. In particular, the adhesion molecule, CD44 exhibited a progressive and dramatic decrease from proerythroblast to reticulocyte; this enabled us to devise a new strategy for distinguishing unambiguously between erythroblasts at successive developmental stages. These findings provide unique insights into the genesis of red cell membrane function during erythroblast differentiation and also offer a means of defining stage-specific defects in erythroid maturation in inherited and acquired red cell disorders and in bone marrow failure syndromes.
C1 [Chen, Ke; Liu, Jing; An, Xiuli; Mohandas, Narla] New York Blood Ctr, Red Cell Physiol Lab, New York, NY 10065 USA.
[Chasis, Joel A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA.
[An, Xiuli] Peking Univ, Hlth Sci Ctr, Dept Biophys, Beijing 100191, Peoples R China.
RP An, XL (reprint author), New York Blood Ctr, Red Cell Physiol Lab, New York, NY 10065 USA.
EM xan@nybloodcenter.org
FU NIDDK NIH HHS [R01 DK082722]
NR 37
TC 152
Z9 153
U1 2
U2 17
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD OCT 13
PY 2009
VL 106
IS 41
BP 17413
EP 17418
DI 10.1073/pnas.0909296106
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 506DS
UT WOS:000270754400036
PM 19805084
ER
PT J
AU Ahlers, S
Stone, PR
Sircar, N
Arenholz, E
Dubon, OD
Bougeard, D
AF Ahlers, S.
Stone, P. R.
Sircar, N.
Arenholz, E.
Dubon, O. D.
Bougeard, D.
TI Comparison of the magnetic properties of GeMn thin films through Mn
L-edge x-ray absorption
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID CIRCULAR-DICHROISM; MN5GE3
AB X-ray absorption spectroscopy of epitaxial GeMn thin films reveals an experimentally indistinguishable electronic configuration of Mn atoms incorporated in Ge1-xMnx nanoclusters and in precipitates of the intermetallic compound Mn5Ge3, respectively. However, the average magnetic response of thin films containing Ge1-xMnx nanoclusters is lower than the response of films containing Mn5Ge3 precipitates. This reduced magnetic response of Ge1-xMnx nanoclusters is explained in terms of a fraction of Mn atoms being magnetically inactive due to antiferromagnetic coupling or the presence of structural disorder. A determination of the role of magnetically inactive Mn atoms in the self-assembly of the thermodynamically metastable Ge1-xMnx nanoclusters seems to be an essential ingredient for an enhanced control of this promising high Curie temperature magnetic semiconductor. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3232245]
C1 [Ahlers, S.; Sircar, N.; Bougeard, D.] Tech Univ Munich, Walter Schottky Inst, D-85748 Garching, Germany.
[Stone, P. R.; Dubon, O. D.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
[Arenholz, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA.
RP Ahlers, S (reprint author), Tech Univ Munich, Walter Schottky Inst, Coulombwall 3, D-85748 Garching, Germany.
EM bougeard@wsi.tum.de
FU German Science Foundation (DFG) [SPP 1285]; U.S. Department of Energy
[DE-AC02-05CH11231]; Alexander von HumboldtStiftung
FX This work was funded by the German Science Foundation (DFG) via
Schwerpunktprogramm SPP 1285 Halbleiter Spintronik and supported by the
U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The
authors acknowledge access to facilities of the Nanosystems Initiative
Munich (NIM) and the Department of Chemistry, Technische Universitat
Munchen, and support by M. Doblinger, T. F. Fassler, M. B. Boeddinghaus,
R. Farshchi, and S. Tardif. P. R. S. is furthermore grateful for support
from NSF and ND-SEG and D. B. for support by Alexander von
HumboldtStiftung.
NR 20
TC 12
Z9 12
U1 0
U2 6
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD OCT 12
PY 2009
VL 95
IS 15
AR 151911
DI 10.1063/1.3232245
PG 3
WC Physics, Applied
SC Physics
GA 508FU
UT WOS:000270915700031
ER
PT J
AU Broesler, R
Haller, EE
Walukiewicz, W
Muranaka, T
Matsumoto, T
Nabetani, Y
AF Broesler, R.
Haller, E. E.
Walukiewicz, W.
Muranaka, T.
Matsumoto, T.
Nabetani, Y.
TI Temperature dependence of the band gap of ZnSe1-xOx
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID ALLOYS
AB We have studied the temperature dependence of the band gap of molecular-beam-epitaxy-grown ZnSe1-xOx films (x=0-0.021) using photoluminescence spectroscopy from 15 to 280 K. The temperature dependence of the band gap decreases with increasing oxygen concentration, which can be quantitatively explained by an anticrossing interaction between the highly localized oxygen defect states and the extended states of the conduction band. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3242026]
C1 [Broesler, R.; Haller, E. E.; Walukiewicz, W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Broesler, R.; Haller, E. E.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
[Muranaka, T.; Matsumoto, T.; Nabetani, Y.] Univ Yamanashi, Dept Elect Engn, Kofu, Yamanashi 4008511, Japan.
RP Walukiewicz, W (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
EM w_walukiewicz@lbl.gov
FU U.S. Department of Energy [DE-AC02-05CH11231]
FX This work is supported by the Director, Office of Science, Office of
Basic Energy Sciences, Division of Materials Sciences and Engineering,
of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
NR 11
TC 21
Z9 21
U1 0
U2 5
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD OCT 12
PY 2009
VL 95
IS 15
AR 151907
DI 10.1063/1.3242026
PG 3
WC Physics, Applied
SC Physics
GA 508FU
UT WOS:000270915700027
ER
PT J
AU Subramania, G
Lee, YJ
Fischer, AJ
Luk, TS
Brinker, CJ
Dunphy, D
AF Subramania, G.
Lee, Y. -J.
Fischer, A. J.
Luk, T. S.
Brinker, C. J.
Dunphy, D.
TI Emission modification of CdSe quantum dots by titanium dioxide visible
logpile photonic crystal
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID LIGHT-EMISSION; NANOCAVITY; REDISTRIBUTION; LASER; GAP
AB Air band modes of three-dimensional photonic crystals (3DPCs) have a higher photonic density of states, potentially enabling greater emission enhancement. However, it is challenging to introduce emitters into the "air" region without significantly disturbing the photonic band structure of the PC. Here, we overcome this difficulty by introducing a low refractive index aerogel matrix containing CdSe quantum dots (625 nm peak emission) into a titanium dioxide logpile PC. We observe that the aerogel infiltration indeed preserves the bandstructure. We measure an emission suppression of similar to 0.25 times inside and an enhancement of approximately three times outside the bandgap with only one vertical unit cell. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3245309]
C1 [Subramania, G.; Lee, Y. -J.; Fischer, A. J.; Luk, T. S.; Brinker, C. J.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Dunphy, D.] Univ New Mexico, NSF, Dept Chem & Nucl Engn, Ctr Microengineered Mat, Albuquerque, NM 87131 USA.
RP Subramania, G (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM gssubra@sandia.gov
FU DOE Basic Energy Sciences Office; Sandia's LDRD office; U. S. DOE's NNSA
[DE-AC04-94AL85000]
FX The authors acknowledge the DOE Basic Energy Sciences Office and
Sandia's LDRD office. Sandia is a multiprogram laboratory operated by
Sandia Corporation, a Lockheed Martin Co., for the U. S. DOE's NNSA
under Contract No. DE-AC04-94AL85000.
NR 22
TC 6
Z9 6
U1 1
U2 6
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD OCT 12
PY 2009
VL 95
IS 15
AR 151101
DI 10.1063/1.3245309
PG 3
WC Physics, Applied
SC Physics
GA 508FU
UT WOS:000270915700001
ER
PT J
AU Zepeda-Ruiz, LA
Chason, E
Gilmer, GH
Wang, YM
Xu, HW
Nikroo, A
Hamza, AV
AF Zepeda-Ruiz, Luis A.
Chason, Eric
Gilmer, George H.
Wang, Yinmin
Xu, Hongwei
Nikroo, Abbas
Hamza, Alex V.
TI Understanding the relation between stress and surface morphology in
sputtered films: Atomistic simulations and experiments
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID THIN-FILMS; 3 DIMENSIONS; GROWTH; COALESCENCE; DEPOSITION
AB The relation between stress evolution and surface morphology during deposition of sputtered films is examined by combining kinetic Monte Carlo simulations and stress measurements. We find that the surface morphology is susceptible to an instability, which transforms from layer-by-layer growth to the formation of pillarlike columns. The gaps between these columns prevent complete densification and can lead to a network of pores in the layer. We propose that the formation of this structure changes the stress in the growing layers from compressive to tensile. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3246791]
C1 [Zepeda-Ruiz, Luis A.; Gilmer, George H.; Wang, Yinmin; Hamza, Alex V.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA.
[Chason, Eric] Brown Univ, Div Engn, Providence, RI USA.
[Xu, Hongwei; Nikroo, Abbas] Gen Atom Co, San Diego, CA 92121 USA.
RP Zepeda-Ruiz, LA (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA.
EM zepedaruiz1@llnl.gov
RI Wang, Yinmin (Morris)/F-2249-2010
OI Wang, Yinmin (Morris)/0000-0002-7161-2034
FU Office of Basic Energy Science [DE-AC52-07NA27344]
FX This work was prepared by LLNL under Contract No. DE-AC52-07NA27344 with
support from the Office of Basic Energy Science.
NR 20
TC 14
Z9 14
U1 0
U2 23
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD OCT 12
PY 2009
VL 95
IS 15
AR 151910
DI 10.1063/1.3246791
PG 3
WC Physics, Applied
SC Physics
GA 508FU
UT WOS:000270915700030
ER
PT J
AU Zhong, LH
Matthews, JF
Hansen, PI
Crowley, MF
Cleary, JM
Walker, RC
Nimlos, MR
Brooks, CL
Adney, WS
Himmel, ME
Brady, JW
AF Zhong, Linghao
Matthews, James F.
Hansen, Peter I.
Crowley, Michael F.
Cleary, Joseph M.
Walker, Ross C.
Nimlos, Mark R.
Brooks, Charles L., III
Adney, William S.
Himmel, Michael E.
Brady, John W.
TI Computational simulations of the Trichoderma reesei cellobiohydrolase I
acting on microcrystalline cellulose I beta: the enzyme-substrate
complex
SO CARBOHYDRATE RESEARCH
LA English
DT Article
DE Cellulase; Cellobiohydrolase I; Cellulose; Computer modeling; Molecular
dynamics
ID BINDING DOMAINS; ALANINE DIPEPTIDE; DYNAMICS; FORCE; SOLVENT; PROTEIN;
CONTINUUM; EXPLICIT; MODULES; CHAIN
AB Cellobiohydrolases are the dominant components of the commercially relevant Trichoderma reesei cellulase system. Although natural cellulases can totally hydrolyze crystalline cellulose to soluble sugars, the current enzyme loadings and long digestion times required render these enzymes less than cost effective for biomass conversion processes. It is clear that cellobiohydrolases must be improved via protein engineering to reduce processing costs. To better understand cellobiohydrolase function, new simulations have been conducted using CHARM of cellobiohydrolase I (CBH I) from T. reesei interacting with a model segment (cellodextrin) of a cellulose microfibril in which one chain from the substrate has been placed into the active site tunnel mimicking the hypothesized configuration prior to final substrate docking (i.e., the +1 and +2 sites are unoccupied), which is also the structure following a catalytic bond scission. No tendency was found for the protein to dissociate from or translate along the substrate surface during this initial simulation, nor to align with the direction of the cellulose chains. However, a tendency for the decrystallized cellodextrin to partially re-anneal into the cellulose surface hints that the arbitrary starting configuration selected was not ideal. (C) 2009 Elsevier Ltd. All rights reserved.
C1 [Zhong, Linghao; Matthews, James F.; Hansen, Peter I.; Brady, John W.] Cornell Univ, Dept Food Sci, Ithaca, NY 14853 USA.
[Crowley, Michael F.; Cleary, Joseph M.; Nimlos, Mark R.; Adney, William S.; Himmel, Michael E.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Walker, Ross C.] San Diego Supercomp Ctr, La Jolla, CA 92093 USA.
[Brooks, Charles L., III] Univ Michigan, Dept Chem, Ann Arbor, MI 48109 USA.
[Brooks, Charles L., III] Univ Michigan, Biophys Program, Ann Arbor, MI 48109 USA.
[Zhong, Linghao] Penn State Univ, Mt Alto, PA 17237 USA.
RP Brady, JW (reprint author), Cornell Univ, Dept Food Sci, Ithaca, NY 14853 USA.
EM jwb7@cornell.edu
RI crowley, michael/A-4852-2013
OI crowley, michael/0000-0001-5163-9398
FU U.S. DOE Office of Biological and Environmental Research and Office of
Advanced Scientific Computing Research
FX This work was supported under the SciDAC Program by the U.S. DOE Office
of Biological and Environmental Research and the Office of Advanced
Scientific Computing Research. The authors also thank R. H. Atalla, J.
Sugiyama, G. T. Beckham, and D. B. Wilson, for helpful discussions.
NR 30
TC 32
Z9 34
U1 1
U2 27
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0008-6215
J9 CARBOHYD RES
JI Carbohydr. Res.
PD OCT 12
PY 2009
VL 344
IS 15
BP 1984
EP 1992
DI 10.1016/j.carres.2009.07.005
PG 9
WC Biochemistry & Molecular Biology; Chemistry, Applied; Chemistry, Organic
SC Biochemistry & Molecular Biology; Chemistry
GA 509UG
UT WOS:000271043300008
PM 19699474
ER
PT J
AU Wu, WJ
Demar, P
Crawford, M
AF Wu, Wenji
Demar, Phil
Crawford, Matt
TI Sorting Reordered Packets with Interrupt Coalescing
SO COMPUTER NETWORKS
LA English
DT Article
DE TCP; Packet reordering; Interrupt coalescing; Protocol stack; High
performance networking
ID TCP; PERFORMANCE; ROBUST
AB TCP performs poorly in networks with serious packet reordering. Processing reordered packets in the TCP-layer is costly and inefficient, involving interaction of the sender and receiver. Motivated by the interrupt coalescing mechanism that delivers packets upward for protocol processing in blocks, we propose a new strategy, Sorting Reordered Packets with Interrupt Coalescing (SRPIC), to reduce packet reordering in the receiver. SRPIC works in the network device driver; it makes use of the interrupt coalescing mechanism to sort the reordered packets belonging to the same TCP stream in a block of packets before delivering them upward: each sorted block is internally ordered. Experiments have proven the effectiveness of SRPIC against forward path reordering. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Wu, Wenji; Demar, Phil; Crawford, Matt] Fermilab Natl Accelerator Lab, Comp Div, Fermilab MS120, Batavia, IL 60510 USA.
RP Wu, WJ (reprint author), Fermilab Natl Accelerator Lab, Comp Div, Fermilab MS120, POB 500, Batavia, IL 60510 USA.
EM wenji@fnal.gov; demar@fnal.gov; crawdad@fnal.gov
NR 41
TC 9
Z9 9
U1 0
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1389-1286
EI 1872-7069
J9 COMPUT NETW
JI Comput. Netw.
PD OCT 12
PY 2009
VL 53
IS 15
BP 2646
EP 2662
DI 10.1016/j.comnet.2009.05.012
PG 17
WC Computer Science, Hardware & Architecture; Computer Science, Information
Systems; Engineering, Electrical & Electronic; Telecommunications
SC Computer Science; Engineering; Telecommunications
GA 497LA
UT WOS:000270059500003
ER
PT J
AU Qian, X
Chen, W
Gao, H
Hicks, K
Kramer, K
Laget, JM
Mibe, T
Stepanyan, S
Tedeschi, DJ
Xu, W
Adhikari, KP
Amaryan, M
Anghinolfi, M
Baghdasaryan, H
Ball, J
Battaglieri, M
Batourine, V
Bedlinskiy, I
Bellis, M
Biselli, AS
Bookwalter, C
Branford, D
Briscoe, WJ
Brooks, WK
Burkert, VD
Careccia, SL
Carman, DS
Cole, PL
Collins, P
Crede, V
D'Angelo, A
Daniel, A
Dashyan, N
De Vita, R
De Sanctis, E
Deur, A
Dey, B
Dhamija, S
Dickson, R
Djalali, C
Dodge, GE
Doughty, D
Dupre, R
Eugenio, P
Fedotov, G
Fegan, S
Fersch, R
Fradi, A
Gabrielyan, MY
Gilfoyle, GP
Giovanetti, KL
Girod, FX
Goetz, JT
Gohn, W
Golovatch, E
Gothe, RW
Griffloenn, KA
Guidal, M
Guo, L
Hafidi, K
Hakobyan, H
Hanretty, C
Hassall, N
Heddle, D
Holtrop, M
Hyde, CE
Ilieva, Y
Ireland, DG
Ishkhanov, BS
Isupov, EL
Jawalkar, SS
Johnstone, JR
Joo, K
Keller, D
Khandaker, M
Khetarpal, P
Kim, W
Klein, A
Klein, FJ
Kubarovsky, V
Kuleshovz, SV
Kuznetsov, V
Livingston, K
Lu, HY
Martinez, D
Mayer, M
McCracken, ME
McKinnon, B
Meyer, CA
Mineeva, T
Mirazita, M
Mokeev, V
Moriya, K
Morrison, B
Munevar, E
Nadel-Turonski, R
Nasseripour, R
Nepali, CS
Niccolai, S
Niculescu, G
Niculescu, I
Niroula, MR
Osipenko, M
Ostrovidov, AI
Park, K
Park, S
Pasyuk, E
Pereirav, SA
Pisano, S
Pogorelko, O
Pozdniakov, S
Price, JW
Procureur, S
Protopopescu, D
Raue, BA
Ricco, G
Ripani, M
Ritchie, BG
Rosner, G
Rossi, P
Sabatie, F
Saini, MS
Salgado, C
Schott, D
Schumacher, RA
Seraydaryan, H
Sharabian, YG
Smith, ES
Sober, DI
Sokhan, D
Strakovsky, II
Strauch, S
Taiuti, M
Tkachenko, S
Ungaro, M
Vineyard, MF
Watts, DP
Weinstein, LB
Weygand, DP
Williams, M
Wolin, E
Wood, MH
Zana, L
Zhang, J
Zhao, B
Zhao, ZW
AF Qian, X.
Chen, W.
Gao, H.
Hicks, K.
Kramer, K.
Laget, J. M.
Mibe, T.
Stepanyan, S.
Tedeschi, D. J.
Xu, W.
Adhikari, K. P.
Amaryan, M.
Anghinolfi, M.
Baghdasaryan, H.
Ball, J.
Battaglieri, M.
Batourine, V.
Bedlinskiy, I.
Bellis, M.
Biselli, A. S.
Bookwalter, C.
Branford, D.
Briscoe, W. J.
Brooks, W. K.
Burkert, V. D.
Careccia, S. L.
Carman, D. S.
Cole, P. L.
Collins, P.
Crede, V.
D'Angelo, A.
Daniel, A.
Dashyan, N.
De Vita, R.
De Sanctis, E.
Deur, A.
Dey, B.
Dhamija, S.
Dickson, R.
Djalali, C.
Dodge, G. E.
Doughty, D.
Dupre, R.
Eugenio, P.
Fedotov, G.
Fegan, S.
Fersch, R.
Fradi, A.
Gabrielyan, M. Y.
Gilfoyle, G. P.
Giovanetti, K. L.
Girod, F. X.
Goetz, J. T.
Gohn, W.
Golovatch, E.
Gothe, R. W.
Griffloenn, K. A.
Guidal, M.
Guo, L.
Hafidi, K.
Hakobyan, H.
Hanretty, C.
Hassall, N.
Heddle, D.
Holtrop, M.
Hyde, C. E.
Ilieva, Y.
Ireland, D. G.
Ishkhanov, B. S.
Isupov, E. L.
Jawalkar, S. S.
Johnstone, J. R.
Joo, K.
Keller, D.
Khandaker, M.
Khetarpal, P.
Kim, W.
Klein, A.
Klein, F. J.
Kubarovsky, V.
Kuleshovz, S. V.
Kuznetsov, V.
Livingston, K.
Lu, H. Y.
Martinez, D.
Mayer, M.
McCracken, M. E.
McKinnon, B.
Meyer, C. A.
Mineeva, T.
Mirazita, M.
Mokeev, V.
Moriya, K.
Morrison, B.
Munevar, E.
Nadel-Turonski, R.
Nasseripour, R.
Nepali, C. S.
Niccolai, S.
Niculescu, G.
Niculescu, I.
Niroula, M. R.
Osipenko, M.
Ostrovidov, A. I.
Park, K.
Park, S.
Pasyuk, E.
Pereirav, S. Anefalos
Pisano, S.
Pogorelko, O.
Pozdniakov, S.
Price, J. W.
Procureur, S.
Protopopescu, D.
Raue, B. A.
Ricco, G.
Ripani, M.
Ritchie, B. G.
Rosner, G.
Rossi, P.
Sabatie, F.
Saini, M. S.
Salgado, C.
Schott, D.
Schumacher, R. A.
Seraydaryan, H.
Sharabian, Y. G.
Smith, E. S.
Sober, D. I.
Sokhan, D.
Strakovsky, I. I.
Strauch, S.
Taiuti, M.
Tkachenko, S.
Ungaro, M.
Vineyard, M. F.
Watts, D. P.
Weinstein, L. B.
Weygand, D. P.
Williams, M.
Wolin, E.
Wood, M. H.
Zana, L.
Zhang, J.
Zhao, B.
Zhao, Z. W.
TI The extraction of phi-N total cross section from d(gamma, pK(+)K(-))n
CLAS Collaboration
SO PHYSICS LETTERS B
LA English
DT Article
ID LARGE MOMENTUM-TRANSFER; VECTOR-MESONS; PHOTOPRODUCTION; PROTON
AB We report on the first measurement of the differential cross section of phi-meson photoproduction for the d(gamma, pK(+)K(-))n exclusive reaction channel. The experiment was performed using a tagged-photon beam and the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. A combined analysis using data from the d(gamma, pK(+)K(-))n channel and those from a previous publication on coherent phi production on the deuteron has been carried out to extract the phi - N total cross section, sigma(phi N). The extracted phi - N total cross section favors a value above 20 mb. This value is larger than the value extracted using vector-meson dominance models for phi photoproduction on the proton. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Qian, X.; Chen, W.; Gao, H.; Kramer, K.] Duke Univ, Durham, NC 27708 USA.
[Hicks, K.; Mibe, T.; Daniel, A.; Keller, D.] Ohio Univ, Athens, OH 45701 USA.
[Laget, J. M.; Ball, J.; Girod, F. X.; Procureur, S.; Sabatie, F.] CEA, Ctr Saclay, Irfu Serv Phys Nucl, F-91191 Gif Sur Yvette, France.
[Laget, J. M.; Stepanyan, S.; Batourine, V.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Cole, P. L.; Deur, A.; Doughty, D.; Guo, L.; Heddle, D.; Joo, K.; Klein, F. J.; Kubarovsky, V.; Mokeev, V.; Raue, B. A.; Sharabian, Y. G.; Smith, E. S.; Weygand, D. P.; Wolin, E.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA.
[Tedeschi, D. J.; Djalali, C.; Gothe, R. W.; Ilieva, Y.; Lu, H. Y.; Nasseripour, R.; Park, K.; Strauch, S.; Wood, M. H.; Zhao, Z. W.] Univ S Carolina, Columbia, SC 29208 USA.
[Xu, W.] MIT, Cambridge, MA 02139 USA.
[Dupre, R.; Hafidi, K.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Collins, P.; Morrison, B.; Pasyuk, E.; Ritchie, B. G.] Arizona State Univ, Tempe, AZ 85287 USA.
[Goetz, J. T.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA.
[Price, J. W.] Calif State Univ Dominguez Hills, Carson, CA 90747 USA.
[Bellis, M.; Dey, B.; Dickson, R.; McCracken, M. E.; Meyer, C. A.; Moriya, K.; Schumacher, R. A.; Williams, M.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA.
[Klein, F. J.; Nadel-Turonski, R.; Sober, D. I.] Catholic Univ Amer, Washington, DC 20064 USA.
[Doughty, D.; Heddle, D.] Christopher Newport Univ, Newport News, VA 23606 USA.
[Gohn, W.; Joo, K.; Mineeva, T.; Ungaro, M.; Zhao, B.] Univ Connecticut, Storrs, CT 06269 USA.
[Branford, D.; Sokhan, D.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland.
[Biselli, A. S.] Fairfield Univ, Fairfield, CT 06824 USA.
[Dhamija, S.; Gabrielyan, M. Y.; Nasseripour, R.; Raue, B. A.; Schott, D.] Florida Int Univ, Miami, FL 33199 USA.
[Bookwalter, C.; Crede, V.; Eugenio, P.; Hanretty, C.; Ostrovidov, A. I.; Park, S.; Saini, M. S.] Florida State Univ, Tallahassee, FL 32306 USA.
[Briscoe, W. J.; Ilieva, Y.; Munevar, E.; Niccolai, S.; Niculescu, I.; Strakovsky, I. I.; Strauch, S.] George Washington Univ, Washington, DC 20052 USA.
[Fegan, S.; Hassall, N.; Ireland, D. G.; Johnstone, J. R.; Livingston, K.; McKinnon, B.; Protopopescu, D.; Rosner, G.; Watts, D. P.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland.
[Cole, P. L.; Martinez, D.] Idaho State Univ, Pocatello, ID 83209 USA.
[De Sanctis, E.; Mirazita, M.; Pereirav, S. Anefalos; Rossi, P.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[Anghinolfi, M.; Battaglieri, M.; De Vita, R.; Golovatch, E.; Osipenko, M.; Ricco, G.; Ripani, M.; Taiuti, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy.
[D'Angelo, A.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy.
[Fradi, A.; Guidal, M.; Niccolai, S.; Pisano, S.] Inst Phys Nucl ORSAY, Orsay, France.
[Bedlinskiy, I.; Kuleshovz, S. V.; Pogorelko, O.; Pozdniakov, S.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Giovanetti, K. L.; Niculescu, G.] James Madison Univ, Harrisonburg, VA 22807 USA.
[Kim, W.; Kuznetsov, V.; Park, K.] Kyungpook Natl Univ, Taegu 702701, South Korea.
[Ishkhanov, B. S.; Isupov, E. L.] Moscow MV Lomonosov State Univ, Moscow, Russia.
[Holtrop, M.; Zana, L.] Univ New Hampshire, Durham, NH 03824 USA.
[Khandaker, M.; Salgado, C.; Vineyard, M. F.] Norfolk State Univ, Norfolk, VA 23504 USA.
[Adhikari, K. P.; Amaryan, M.; Careccia, S. L.; Dodge, G. E.; Hyde, C. E.; Klein, A.; Mayer, M.; Nepali, C. S.; Niroula, M. R.; Seraydaryan, H.; Tkachenko, S.; Weinstein, L. B.; Zhang, J.] Old Dominion Univ, Norfolk, VA 23529 USA.
[Biselli, A. S.; Khetarpal, P.] Rensselaer Polytech Inst, Troy, NY 12180 USA.
[Gilfoyle, G. P.; Vineyard, M. F.] Univ Richmond, Richmond, VA 23173 USA.
[D'Angelo, A.] Univ Roma Tor Vergata, I-00133 Rome, Italy.
[Fedotov, G.; Golovatch, E.; Mokeev, V.] Skobeltsyn Nucl Phys Inst, Moscow 119899, Russia.
[Vineyard, M. F.] Union Coll, Schenectady, NY 12308 USA.
[Brooks, W. K.; Hakobyan, H.; Kuleshovz, S. V.] Univ Tecn Federico Santa Maria, Valparaiso, Chile.
[Baghdasaryan, H.] Univ Virginia, Charlottesville, VA 22901 USA.
[Fersch, R.; Griffloenn, K. A.; Jawalkar, S. S.] Coll William & Mary, Williamsburg, VA 23187 USA.
[Dashyan, N.; Hakobyan, H.; Sharabian, Y. G.] Yerevan Phys Inst, Yerevan 375036, Armenia.
RP Qian, X (reprint author), Duke Univ, Durham, NC 27708 USA.
EM xqian@jlab.org
RI Osipenko, Mikhail/N-8292-2015; Zhang, Jixie/A-1461-2016; Sabatie,
Franck/K-9066-2015; Ireland, David/E-8618-2010; Gao, Haiyan/G-2589-2011;
Lu, Haiyun/B-4083-2012; Protopopescu, Dan/D-5645-2012; Zana,
Lorenzo/H-3032-2012; Isupov, Evgeny/J-2976-2012; Ishkhanov,
Boris/E-1431-2012; Zhao, Bo/J-6819-2012; Brooks, William/C-8636-2013;
Schumacher, Reinhard/K-6455-2013; D'Angelo, Annalisa/A-2439-2012; Meyer,
Curtis/L-3488-2014
OI Osipenko, Mikhail/0000-0001-9618-3013; Qian, Xin/0000-0002-7903-7935;
Bellis, Matthew/0000-0002-6353-6043; Sabatie,
Franck/0000-0001-7031-3975; Ireland, David/0000-0001-7713-7011; Zhao,
Bo/0000-0003-3171-5335; Brooks, William/0000-0001-6161-3570; Schumacher,
Reinhard/0000-0002-3860-1827; D'Angelo, Annalisa/0000-0003-3050-4907;
Meyer, Curtis/0000-0001-7599-3973
FU US Department of Energy [DE-FG02-03ER41231]; National Science
Foundation; Istituto Nazionale di Fisica Nucleate; French Centre
National de la Recherche Scientifique; French Commissariat a l'Energie
Atomique; US Department of Energy; UK Science and Technology Facilities
Council (STFC); Korean Science and Engineering Foundation; Southeastern
Universities Research Association (SURA) [DE-AC05-84ER40150]
FX We thank Misak Sargsian and Mark Strikman for helpful conversations. We
acknowledge the outstanding efforts of the staff of the Accelerator and
Physics Divisions at Jefferson Lab who made this experiment possible.
This work was supported in part by the US Department of Energy under
contract number DE-FG02-03ER41231, the National Science Foundation, the
Istituto Nazionale di Fisica Nucleate, the French Centre National de la
Recherche Scientifique, the French Commissariat a l'Energie Atomique,
the US Department of Energy, the National Science Foundation, the UK
Science and Technology Facilities Council (STFC), and the Korean Science
and Engineering Foundation. The Southeastern Universities Research
Association (SURA) operates the Thomas Jefferson National Accelerator
Facility for the United States Department of Energy under contract
DE-AC05-84ER40150.
NR 30
TC 12
Z9 12
U1 0
U2 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0370-2693
J9 PHYS LETT B
JI Phys. Lett. B
PD OCT 12
PY 2009
VL 680
IS 5
BP 417
EP 422
DI 10.1016/j.physletb.2009.09.024
PG 6
WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 513ZQ
UT WOS:000271363200005
ER
PT J
AU Lintott, CJ
Schawinski, K
Keel, W
van Arkel, H
Bennert, N
Edmondson, E
Thomas, D
Smith, DJB
Herbert, PD
Jarvis, MJ
Virani, S
Andreescu, D
Bamford, SP
Land, K
Murray, P
Nichol, RC
Raddick, MJ
Slosar, A
Szalay, A
Vandenberg, J
AF Lintott, Chris J.
Schawinski, Kevin
Keel, William
van Arkel, Hanny
Bennert, Nicola
Edmondson, Edward
Thomas, Daniel
Smith, Daniel J. B.
Herbert, Peter D.
Jarvis, Matt J.
Virani, Shanil
Andreescu, Dan
Bamford, Steven P.
Land, Kate
Murray, Phil
Nichol, Robert C.
Raddick, M. Jordan
Slosar, Anze
Szalay, Alex
Vandenberg, Jan
TI Galaxy Zoo: 'Hanny's Voorwerp', a quasar light echo?
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE galaxies: active; galaxies: individual: IC 2497; galaxies: peculiar;
quasars: general
ID ACTIVE GALACTIC NUCLEI; DIGITAL-SKY-SURVEY; EMISSION-LINE REGIONS;
HUBBLE-SPACE-TELESCOPE; STAR-FORMING GALAXIES; HOST GALAXIES; INFRARED
GALAXIES; STELLAR OBJECTS; RADIO JET; IMAGES
AB We report the discovery of an unusual object near the spiral galaxy IC 2497, discovered by visual inspection of the Sloan Digital Sky Survey (SDSS) as part of the Galaxy Zoo project. The object, known as Hanny's Voorwerp, is bright in the SDSS g band due to unusually strong [O III]4959, 5007 emission lines. We present the results of the first targeted observations of the object in the optical, ultraviolet and X-ray, which show that the object contains highly ionized Gas. Although the line ratios are similar to extended emission-line regions near luminous active galactic nucleus (AGN), the source of this ionization is not apparent. The emission-fine properties, and lack of X-ray emission from IC 2497, suggest either a highly obscured AGN with a novel geometry arranged to allow photoionization of the object but not the galaxy's own circumnuclear gas, or, as we argue, the first detection of a quasar light echo. In this case, either the luminosity of the central source has decreased dramatically or else the obscuration in the system has increased within 10(5) yr. This object may thus represent the first direct probe of quasar history on these time-scales.
C1 [Lintott, Chris J.; Schawinski, Kevin; Land, Kate] Univ Oxford, Dept Phys, Oxford OX1 3RH, England.
[Schawinski, Kevin] Yale Univ, Dept Phys, New Haven, CT 06511 USA.
[Schawinski, Kevin; Virani, Shanil] Yale Univ, Yale Ctr Astron & Astrophys, New Haven, CT 06520 USA.
[Keel, William] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA.
[Keel, William] SARA Observ, Tucson, AZ 85719 USA.
[Bennert, Nicola] Univ Calif Riverside, Inst Geophys & Planetary Phys, Riverside, CA 92521 USA.
[Bennert, Nicola; Bamford, Steven P.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
[Edmondson, Edward; Thomas, Daniel; Nichol, Robert C.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England.
[Smith, Daniel J. B.] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England.
[Herbert, Peter D.; Jarvis, Matt J.] Univ Hertfordshire, Ctr Astrophys, Sci & Technol Res Inst, Hatfield AL10 9AB, Herts, England.
[Andreescu, Dan] LinkLab, Bronx, NY 10471 USA.
[Murray, Phil] Fingerprint Digital Media, Newtownards BT23 7GY, Co Down, North Ireland.
[Raddick, M. Jordan; Szalay, Alex; Vandenberg, Jan] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA.
[Slosar, Anze] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA.
[Slosar, Anze] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
RP Lintott, CJ (reprint author), Univ Oxford, Dept Phys, Oxford OX1 3RH, England.
EM cjl@astro.ox.ac.uk
RI Bamford, Steven/E-8702-2010;
OI Bamford, Steven/0000-0001-7821-7195; Smith, Daniel/0000-0001-9708-253X;
Schawinski, Kevin/0000-0001-5464-0888
FU Association of Universities for Research in Astronomy (AURA); National
Science Foundation
FX Visiting Astronomer, Kitt Peak National Observatory. National Optical
Astronomy Observatory, which is operated by the Association of
Universities for Research in Astronomy (AURA) under cooperative
agreement with the National Science Foundation.
NR 65
TC 60
Z9 60
U1 0
U2 3
PU WILEY-BLACKWELL
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0035-8711
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD OCT 11
PY 2009
VL 399
IS 1
BP 129
EP 140
DI 10.1111/j.1365-2966.2009.15299.x
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 511KN
UT WOS:000271163200009
ER
PT J
AU Skilton, JL
Pandey-Pommier, M
Hinton, JA
Cheung, CC
Aharonian, FA
Brucker, J
Dubus, G
Fiasson, A
Funk, S
Gallant, Y
Marcowith, A
Reimer, O
AF Skilton, J. L.
Pandey-Pommier, M.
Hinton, J. A.
Cheung, C. C.
Aharonian, F. A.
Brucker, J.
Dubus, G.
Fiasson, A.
Funk, S.
Gallant, Y.
Marcowith, A.
Reimer, O.
TI The radio counterpart of the likely TeV binary HESS J0632+057
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE radio continuum: stars; X-rays: binaries
ID X-RAY BINARY; ENERGY GAMMA-RAYS; LS 5039; SKY SURVEY; STARS; EMISSION;
DISCOVERY; LS-5039; I+61-DEGREES-303; PERIASTRON
AB The few known gamma-ray binary systems are all associated with variable radio and X-ray emission. The TeV source HESS J0632+057, apparently associated with the Be star MWC 148, is plausibly I new member of this class. Following the identification of a variable X-ray counterpart to the TeV source we conducted Giant Metrewave Radio Telescope (GMRT) and Very Large Array (VLA) observations in 2008 June-September to search for the radio counterpart of this object. A point-like radio source at the position of the star is detected in both 1280-MHz GMRT and 5-GHz VLA observations, with an average spectral index, alpha, of similar to 0.6. In the VLA data there is significant flux variability oil similar to month time-scales around the mean flux density of approximate to 0.3 mJy. These radio properties (and the overall spectral energy distribution) are consistent with an interpretation of HESS J0632+057 as a lower power analogue of the established gamma-ray binary systems.
C1 [Skilton, J. L.; Hinton, J. A.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England.
[Pandey-Pommier, M.] Leiden Observ, NL-2300 RA Leiden, Netherlands.
[Cheung, C. C.] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA.
[Aharonian, F. A.] Dublin Inst Adv Studies, Dublin 2, Ireland.
[Brucker, J.] Univ Erlangen Nurnberg, Inst Phys, D-91058 Erlangen, Germany.
[Dubus, G.] Univ Grenoble 1, Lab Astrophys Grenoble, INSU, CNRS, F-38041 Grenoble 9, France.
[Fiasson, A.; Gallant, Y.; Marcowith, A.] Univ Montpellier 2, Lab Phys Theor & Astroparticules, CNRS, IN2P3, F-34095 Montpellier 5, France.
[Fiasson, A.] CNRS, Lab Annecy Le Vieux Phys Particules, IN2P3, F-74941 Annecy Le Vieux, France.
[Funk, S.; Reimer, O.] SLAC, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA.
[Reimer, O.] Univ Innsbruck, Inst Astro & Particle Phys, A-6020 Innsbruck, Austria.
RP Skilton, JL (reprint author), Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England.
EM J.L.Skilton03@leeds.ac.uk
RI Reimer, Olaf/A-3117-2013; Funk, Stefan/B-7629-2015
OI Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080
FU UK Science and Technology Facilities Council (STFC) Advanced Fellowship;
NASA Postdoctoral Program at Goddard Space Flight Center; European
Community [ERC-StG-200911]
FX We thank the staff of the GMRT who made these observations possible. We
thank Dr S. Roy and Professor V. Kulkarni of NCRA for the help provided
during the GMRT observation and data transmission to the Leiden
Observatory, H. E. Wheelwright and J. J Stead for useful discussions and
all anonymous referee for helpful comments. JAH is supported by a UK
Science and Technology Facilities Council (STFC) Advanced Fellowship.
CCC is supported by an appointment to the NASA Postdoctoral Program at
Goddard Space Flight Center, administered by Oak Ridge Associated
Universities through it contract with NASA. GD is supported by European
Community contract ERC-StG-200911.
NR 37
TC 28
Z9 28
U1 0
U2 0
PU WILEY-BLACKWELL
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0035-8711
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD OCT 11
PY 2009
VL 399
IS 1
BP 317
EP 322
DI 10.1111/j.1365-2966.2009.15272.x
PG 6
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 511KN
UT WOS:000271163200026
ER
PT J
AU Meier, E
Biedron, SG
LeBlanc, G
Morgan, MJ
Wu, J
AF Meier, E.
Biedron, S. G.
LeBlanc, G.
Morgan, M. J.
Wu, J.
TI Development of a combined feed forward-feedback system for an electron
Linac
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Linac; Energy control; Jitter; Neural networks
ID NEURAL-NETWORKS
AB This paper describes the results of an advanced control algorithm for the stabilization of electron beam energy in a Linac. The approach combines a conventional Proportional-integral (PI) controller with a neural network (NNET) feed forward algorithm; it utilizes the robustness of PI control and the ability of a feed forward system in order to exert control over a wider range of frequencies. The NNET is trained to recognize jitter occurring in the phase and voltage of one of the klystrons, based on a record of these parameters, and predicts future energy deviations. A systematic approach is developed to determine the optimal NNET parameters that are then applied to the Australian Synchrotron Linac. The system's capability to fully cancel multi-frequency jitter is demonstrated. The NNET system is then augmented with the PI algorithm, and further jitter attenuation is achieved when the NNET is not operating optimally. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Meier, E.; Morgan, M. J.] Monash Univ, Sch Phys, Clayton, Vic 3800, Australia.
[Meier, E.; LeBlanc, G.] Australian Synchrotron, Clayton, Vic 3168, Australia.
[Meier, E.; Biedron, S. G.] Sincrotrone Trieste, FERMI Elettra, I-34012 Trieste, Italy.
[Biedron, S. G.] Argonne Natl Lab, Dept Def Project Off, Argonne, IL 60439 USA.
[Wu, J.] SLAC Natl Accelerator Lab, LCLS, Menlo Pk, CA 94025 USA.
RP Meier, E (reprint author), Monash Univ, Sch Phys, Wellington Rd, Clayton, Vic 3800, Australia.
EM evelyne.meier@synchrotron.org.au; biedron@anl.gov;
Greg.LeBlanc@synchrotron.org.au; Michael.Morgan@sci.monash.edu.au;
jhwu@slac.stanford.edu
NR 19
TC 5
Z9 5
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD OCT 11
PY 2009
VL 609
IS 2-3
BP 79
EP 88
DI 10.1016/j.nima.2009.08.028
PG 10
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 516NC
UT WOS:000271548200001
ER
PT J
AU Gao, F
Gai, W
Wong, T
Jing, CG
Liu, WM
AF Gao, Feng
Gai, Wei
Wong, Thomas
Jing, Chunguang
Liu, Wanming
TI Design considerations for a higher-order-mode dielectric-loaded power
extractor set for millimeter-wave generation
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Dielectric loaded; Power extraction; Mode suppression; Millimeter-wave
generation
ID ACCELERATOR
AB The design of an electron-beam excited device for millimeter-wave generation is presented. Referred to as a dielectric-loaded power extractor, it is based on the higher-order-mode operation of a dielectric-loaded waveguide. With a matching transition, the unit can deliver power to the output waveguide at one of two frequencies, 20.8 and 35.1 GHz, corresponding to the TM(02) and TM(03) modes, respectively. By properly choosing the thickness of the dielectric lining, both modes are tuned to synchronize with an ultra-relativistic electron beam traversing the unit so that the wakefield generated by the beam is excited at these modes, chosen to be at 20.8 and 35.1 GHz, respectively, both corresponding to a harmonic of the 1.3 GHz operating frequency at an accelerator facility. Power generated in the unintended TM(01) mode is effectively suppressed for bunch train operation by a novel technique. The device consists of a dielectric-loaded decelerating structure and two changeable output couplers to deliver the millimeter-wave power to a standard waveguide. For a drive beam with 50 nC of charge per bunch, power levels of 90.4 and 8.68 MW are expected to be delivered by the device at 20.8 and 35.1 GHz, respectively. (C) 2009 Published by Elsevier B.V.
C1 [Gao, Feng; Gai, Wei; Liu, Wanming] Argonne Natl Lab, Argonne, IL 60439 USA.
[Gao, Feng; Wong, Thomas] IIT, Chicago, IL 60616 USA.
[Jing, Chunguang] Euclid TechLabs LLC, Solon, OH 44139 USA.
RP Gao, F (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM GAOFENG@IIT.EDU
NR 14
TC 1
Z9 1
U1 0
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD OCT 11
PY 2009
VL 609
IS 2-3
BP 89
EP 94
DI 10.1016/j.nima.2009.08.048
PG 6
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 516NC
UT WOS:000271548200002
ER
PT J
AU Aguilar-Arevalo, A
Blecher, M
Bryman, DA
Comfort, J
Doornbos, J
Doria, L
Hussein, A
Ito, N
Kettell, S
Kurchaninov, L
Malbrunot, C
Marshall, GM
Numao, T
Poutissou, R
Sher, A
Walker, B
Yamada, K
AF Aguilar-Arevalo, A.
Blecher, M.
Bryman, D. A.
Comfort, J.
Doornbos, J.
Doria, L.
Hussein, A.
Ito, N.
Kettell, S.
Kurchaninov, L.
Malbrunot, C.
Marshall, G. M.
Numao, T.
Poutissou, R.
Sher, A.
Walker, B.
Yamada, K.
TI High purity pion beam at TRIUMF
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Beam channel; Particle separation; Pion decay
ID BRANCHING RATIO; SCATTERING; MESONS; PI(+)
AB An extension of the TRIUMF M13 low-energy pion channel designed to suppress positrons based on an energy-loss technique is described. A source of beam channel momentum calibration from the decay pi(+) -> e(+) v is also described. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Aguilar-Arevalo, A.; Doornbos, J.; Doria, L.; Kurchaninov, L.; Marshall, G. M.; Numao, T.; Poutissou, R.; Sher, A.] TRIUMF, Vancouver, BC V6T 2A3, Canada.
[Blecher, M.] Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA.
[Bryman, D. A.; Malbrunot, C.; Walker, B.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada.
[Comfort, J.] Arizona State Univ, Tempe, AZ 85287 USA.
[Hussein, A.] Univ No British Columbia, Prince George, BC V2N 4Z9, Canada.
[Ito, N.; Yamada, K.] Osaka Univ, Dept Phys, Osaka 5600043, Japan.
[Kettell, S.] Brookhaven Natl Lab, Upton, NY 11973 USA.
RP Numao, T (reprint author), TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada.
EM toshio@triumf.ca
OI Doria, Luca/0000-0002-7800-6328; Aguilar-Arevalo, Alexis
A./0000-0001-9279-3375; MALBRUNOT, Chloe/0000-0001-6193-6601
FU Natural Science and Engineering Research Council; National Research
Council of Canada; US National Science Foundation [Phy-0553611]
FX The authors wish to thank C. Ballard, N. Khan, R. Kokke, D. Evans, K.
Reiniger, and the beam line group for the design and installation work.
This work was supported by the Natural Science and Engineering Research
Council and the National Research Council of Canada. One of the authors
(M.B.) has been supported by US National Science Foundation Grant
Phy-0553611.
NR 12
TC 16
Z9 16
U1 0
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD OCT 11
PY 2009
VL 609
IS 2-3
BP 102
EP 105
DI 10.1016/j.nima.2009.08.053
PG 4
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 516NC
UT WOS:000271548200004
ER
PT J
AU Cabrera, A
Adamson, P
Barker, M
Belias, A
Boyd, S
Crone, G
Drake, G
Falk, E
Harris, PG
Hartnell, J
Jenner, L
Kordosky, M
Lang, K
Litchfield, RP
Michael, D
Miyagawa, PS
Morse, R
Murgia, S
Nichol, R
Nicholls, T
Pearce, GF
Petyt, D
Reyna, D
Saakyan, R
Shanahan, P
Smith, C
Symes, P
Tagg, N
Thomas, J
Vahle, P
Weber, A
AF Cabrera, A.
Adamson, P.
Barker, M.
Belias, A.
Boyd, S.
Crone, G.
Drake, G.
Falk, E.
Harris, P. G.
Hartnell, J.
Jenner, L.
Kordosky, M.
Lang, K.
Litchfield, R. P.
Michael, D.
Miyagawa, P. S.
Morse, R.
Murgia, S.
Nichol, R.
Nicholls, T.
Pearce, G. F.
Petyt, D.
Reyna, D.
Saakyan, R.
Shanahan, P.
Smith, C.
Symes, P.
Tagg, N.
Thomas, J.
Vahle, P.
Weber, A.
TI Comparisons of the MINOS near and far detector readout systems at a test
beam
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Neutrino detector calibration; Iron-scintillator sampling calorimeter;
Test beam measurements; Readout system
ID PHOTOMULTIPLIERS; CALORIMETERS; PERFORMANCE
AB MINOS is a long baseline neutrino oscillation experiment that uses two detectors separated by 734 km. The readout systems used for the two detectors are different and have to be independently calibrated. To verify and make a direct comparison of the calibrated response of the two readout systems, test beam data were acquired using a smaller calibration detector. This detector was simultaneously instrumented with both readout systems and exposed to the CERN PS T7 test beam. Differences in the calibrated response of the two systems are shown to arise from differences in response non-linearity, photomultiplier tube crosstalk, and threshold effects at the few percent level. These differences are reproduced by the Monte Carlo (MC) simulation to better than 1% and a scheme that corrects for these differences by calibrating the MC to match the data in each detector separately is presented. The overall difference in calorimetric response between the two readout systems is shown to be consistent with zero to a precision of 1.3% in data and 0.3% in MC with no significant energy dependence. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Drake, G.; Reyna, D.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Michael, D.] CALTECH, Lauritsen Lab, Pasadena, CA 91125 USA.
[Shanahan, P.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Adamson, P.; Crone, G.; Jenner, L.; Nichol, R.; Saakyan, R.; Smith, C.; Thomas, J.] UCL, Dept Phys & Astron, London WC1E 6BT, England.
[Petyt, D.] Univ Minnesota, Minneapolis, MN 55455 USA.
[Cabrera, A.; Barker, M.; Hartnell, J.; Litchfield, R. P.; Miyagawa, P. S.; Tagg, N.; Weber, A.] Univ Oxford, Subdept Particle Phys, Oxford OX1 3RH, England.
[Boyd, S.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA.
[Belias, A.; Nicholls, T.; Pearce, G. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England.
[Murgia, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA.
[Falk, E.; Harris, P. G.; Hartnell, J.; Morse, R.; Symes, P.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England.
[Kordosky, M.; Lang, K.; Vahle, P.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA.
RP Cabrera, A (reprint author), Univ Paris 07, APC, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France.
EM anatael@in2p3.fr; j.j.hartnell@sussex.ac.uk
RI Nichol, Ryan/C-1645-2008; Harris, Philip/I-7419-2012;
OI Harris, Philip/0000-0003-4369-3874; Hartnell,
Jeffrey/0000-0002-1744-7955; Weber, Alfons/0000-0002-8222-6681
FU UK Particle Physics and Astronomy Research Council (PPARC); US
Department of Energy (DOE); European Union (EU)
FX This work was funded in part by the UK Particle Physics and Astronomy
Research Council (PPARC), the US Department of Energy (DOE) and the
European Union (EU). We would like to thank CERN for providing the test
beams and support. Special thanks are due to L Durieu and M. Hauschild
for their help throughout this project. We are grateful for the
engineering support provided by T. Durkin, M. Proga, D. Atree, J.
Trevor, J. Hanson, M. Williams, P. Groves and G. Sillman and electronics
support from C. Nelson, B. Luebke, T. Fitzpatrick.
NR 15
TC 9
Z9 9
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD OCT 11
PY 2009
VL 609
IS 2-3
BP 106
EP 113
DI 10.1016/j.nima.2009.07.016
PG 8
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 516NC
UT WOS:000271548200005
ER
PT J
AU Abazov, VM
Abbott, B
Abolins, M
Acharya, BS
Adams, M
Adams, T
Aguilo, E
Ahsan, M
Alexeev, GD
Alkhazov, G
Alton, A
Alverson, G
Alves, GA
Ancu, LS
Andeen, T
Anzelc, MS
Aoki, M
Arnoud, Y
Arov, M
Arthaud, M
Askew, A
Asman, B
Atramentov, O
Avila, C
BackusMayes, J
Badaud, F
Bagby, L
Baldin, B
Bandurin, DV
Banerjee, S
Barberis, E
Barfuss, AF
Bargassa, P
Baringer, R
Barreto, J
Bartlett, JF
Bassler, U
Bauer, D
Beale, S
Bean, A
Begalli, M
Begel, M
Belanger-Champagne, C
Bellantoni, L
Bellavance, A
Benitez, JA
Beri, SB
Bernardi, G
Bernhard, R
Bertram, I
Besancon, M
Beuselinck, R
Bezzubov, VA
Bhat, PC
Bhatnagar, V
Blazey, G
Blessing, S
Bloom, K
Boehnlein, A
Boline, D
Bolton, TA
Boos, EE
Borissov, G
Bose, T
Brandt, A
Brock, R
Brooijmans, G
Bross, A
Brown, D
Bu, XB
Buchholz, D
Buehler, M
Buescher, V
Bunichev, V
Burdin, S
Burnett, TH
Buszello, CP
Calfayan, R
Calpas, B
Calvet, S
Cammin, J
Carrasco-Lizarraga, MA
Carrera, E
Carvalho, W
Casey, BCK
Castilla-Valdez, H
Chakrabarti, S
Chakraborty, D
Chan, KM
Chandra, A
Cheu, E
Cho, DK
Cho, SW
Choi, S
Choudhary, B
Christoudias, T
Cihangir, S
Claes, D
Clutter, J
Cooke, M
Cooper, WE
Corcoran, M
Couderc, F
Cousinou, MC
Cutts, D
Cwiok, M
Das, A
Davies, G
De, K
de Jong, SJ
De La Cruz-Burelo, E
DeVaughan, K
Deliot, F
Demarteau, M
Demina, R
Denisov, D
Denisov, SP
Desai, S
Diehl, HT
Diesburg, M
Dominguez, A
Dorland, T
Dubey, A
Dudko, LV
Duflot, L
Duggan, D
Duperrin, A
Dutt, S
Dyshkant, A
Eads, M
Edmunds, D
Ellison, J
Elvira, VD
Enari, Y
Eno, S
Escalier, M
Evans, H
Evdokimov, A
Evdokimov, VN
Facini, G
Ferapontov, AV
Ferbel, T
Fiedler, F
Filthaut, F
Fisher, W
Fisk, HE
Fortner, M
Fox, H
Fu, S
Fuess, S
Gadfort, T
Galea, CF
Garcia-Bellido, A
Gavrilov, V
Gay, P
Geist, W
Geng, W
Gerber, CE
Gershtein, Y
Gillberg, D
Ginther, G
Gomez, B
Goussiou, A
Grannis, PD
Greder, S
Greenlee, H
Greenwood, ZD
Gregores, EM
Grenier, G
Gris, P
Grivaz, JF
Grohsjean, A
Grunendahl, S
Grunewald, MW
Guo, F
Guo, J
Gutierrez, G
Gutierrez, P
Haas, A
Haefner, R
Hagopian, S
Haley, J
Hall, I
Hall, RE
Han, L
Harder, K
Harel, A
Hauptman, JM
Hays, J
Hebbeker, T
Hedin, D
Hegeman, JG
Heinson, AP
Heintz, U
Hensel, C
Heredia-De La Cruz, I
Herner, K
Hesketh, G
Hildreth, MD
Hirosky, R
Hoang, T
Hobbs, JD
Hoeneisen, B
Hohlfeld, M
Hossain, S
Houben, R
Hu, Y
Hubacek, Z
Huske, N
Hynek, V
Lashvili, I
Illingworth, R
Ito, AS
Jabeen, S
Jaffre, M
Jain, S
Jakobs, K
Jamin, D
Jesik, R
Johns, K
Johnson, C
Johnson, M
Johnston, D
Jonckheere, A
Jonsson, R
Juste, A
Kajfasz, E
Karmanov, D
Kasper, PA
Katsanos, I
Kaushik, V
Kehoe, R
Kermiche, S
Khalatyan, N
Khanov, A
Kharchilava, A
Kharzheeva, YN
Khatidze, D
Kirby, MH
Kirsch, M
Klima, B
Kohli, JM
Konrath, JP
Kozelov, AV
Kraus, J
Kuhl, T
Kumar, A
Kupco, A
Kurca, T
Kuzmin, VA
Kvita, J
Lacroix, F
Lam, D
Lammers, S
Landsberg, G
Lebrun, P
Lee, HS
Lee, WM
Leflat, A
Lellouch, J
Li, L
Li, QZ
Lietti, SM
Lim, JK
Lincoln, D
Linnemann, J
Lipaev, VV
Lipton, R
Liu, Y
Liu, Z
Lobodenko, A
Lokajicek, M
Love, P
Lubatti, HJ
Luna-Garcia, R
Lyon, AL
Maciel, AKA
Mackin, D
Mattig, R
Magana-Villalba, R
Mal, PK
Malik, S
Malyshev, VL
Maravin, Y
Martin, B
McCarthy, R
McGivern, CL
Meijer, MM
Melnitchouk, A
Mendoza, L
Menezes, D
Mercadante, PG
Merkin, M
Merritt, KW
Meyer, A
Meyer, J
Mondal, NK
Montgomery, HE
Moore, RW
Moulik, T
Muanza, GS
Mulhearn, M
Mundal, O
Mundim, L
Nagy, E
Naimuddin, M
Narain, M
Neal, HA
Negret, JP
Neustroev, P
Nilsen, H
Nogima, H
Novaes, SF
Nunnemann, T
Obrant, G
Ochando, C
Onoprienko, D
Orduna, J
Oshima, N
Osman, N
Osta, J
Otec, R
Garzon, GJOY
Owen, M
Padilla, M
Padley, P
Pangilinan, M
Parashar, N
Park, SJ
Park, SK
Parsons, J
Partridge, R
Parua, N
Patwa, A
Penning, B
Perfilov, M
Peters, K
Peters, Y
Petroff, P
Piegaia, R
Piper, J
Pleier, MA
Podesta-Lerma, PLM
Podstavkov, VM
Pogorelov, Y
Pol, ME
Polozov, P
Popov, AV
Prewitt, M
Protopopescu, S
Qian, J
Quadt, A
Quinn, B
Rakitine, A
Rangel, MS
Ranjan, K
Ratoff, PN
Renkel, P
Rich, P
Rijssenbeek, M
Ripp-Baudot, I
Rizatdinova, F
Robinson, S
Rominsky, M
Royon, C
Rubinov, P
Ruchti, R
Safronov, G
Sajot, G
Sanchez-Hernandez, A
Sanders, MP
Sanghi, B
Savage, G
Sawyer, L
Scanlon, T
Schaile, D
Schamberger, RD
Scheglov, Y
Schellman, H
Schliephake, T
Schlobohm, S
Schwanenberger, C
Schwienhorst, R
Sekaric, J
Severini, H
Shabalina, E
Shamim, M
Shary, V
Shchukin, AA
Shivpuri, RK
Siccardi, V
Simak, V
Sirotenko, V
Skubic, P
Slattery, P
Smirnov, D
Snow, GR
Snow, J
Snyder, S
Soldner-Remboldax, S
Sonnenschein, L
Sopczak, A
Sosebee, M
Soustruznik, K
Spurlock, B
Stark, J
Stolin, V
Stoyanova, DA
Strandberg, J
Strang, MA
Strauss, E
Strauss, M
Strohmer, R
Strom, D
Stutte, L
Sumowidagdo, S
Svoisky, P
Takahashi, M
Tanasijczuk, A
Taylor, W
Tiller, B
Titov, M
Tokmenin, VV
Torchiani, I
Tsybychev, D
Tuchming, B
Tully, C
Tuts, PM
Unalan, R
Uvarov, L
Uvarov, S
Uzunyan, S
van den Berg, PJ
Van Kooten, R
van Leuwen, WM
Varelas, N
Varnes, EW
Vasilyev, IA
Verdier, P
Vertogradov, LS
Verzocchi, M
Vesterinen, M
Vilanova, D
Vint, P
Vokac, P
Wagner, R
Wahl, HD
Wang, MHLS
Warchol, J
Watts, G
Wayne, M
Weber, G
Weber, M
Welty-Rieger, L
Wenger, A
Wetstein, M
White, A
Wicke, D
Williams, MRJ
Wilson, GW
Wimpenny, SJ
Wobisch, M
Wood, DR
Wyatt, TR
Xie, Y
Xu, C
Yacoob, S
Yamada, R
Zeitnitz, C
Zelitch, S
Zhao, T
Zhou, B
Zhu, J
Zielinski, M
Zieminska, D
Zivkovic, L
Zutshi, V
Zverev, EG
AF Abazov, V. M.
Abbott, B.
Abolins, M.
Acharya, B. S.
Adams, M.
Adams, T.
Aguilo, E.
Ahsan, M.
Alexeev, G. D.
Alkhazov, G.
Alton, A.
Alverson, G.
Alves, G. A.
Ancu, L. S.
Andeen, T.
Anzelc, M. S.
Aoki, M.
Arnoud, Y.
Arov, M.
Arthaud, M.
Askew, A.
Asman, B.
Atramentov, O.
Avila, C.
BackusMayes, J.
Badaud, F.
Bagby, L.
Baldin, B.
Bandurin, D. V.
Banerjee, S.
Barberis, E.
Barfuss, A. -F.
Bargassa, P.
Baringer, R.
Barreto, J.
Bartlett, J. F.
Bassler, U.
Bauer, D.
Beale, S.
Bean, A.
Begalli, M.
Begel, M.
Belanger-Champagne, C.
Bellantoni, L.
Bellavance, A.
Benitez, J. A.
Beri, S. B.
Bernardi, G.
Bernhard, R.
Bertram, I.
Besancon, M.
Beuselinck, R.
Bezzubov, V. A.
Bhat, P. C.
Bhatnagar, V.
Blazey, G.
Blessing, S.
Bloom, K.
Boehnlein, A.
Boline, D.
Bolton, T. A.
Boos, E. E.
Borissov, G.
Bose, T.
Brandt, A.
Brock, R.
Brooijmans, G.
Bross, A.
Brown, D.
Bu, X. B.
Buchholz, D.
Buehler, M.
Buescher, V.
Bunichev, V.
Burdin, S.
Burnett, T. H.
Buszello, C. P.
Calfayan, R.
Calpas, B.
Calvet, S.
Cammin, J.
Carrasco-Lizarraga, M. A.
Carrera, E.
Carvalho, W.
Casey, B. C. K.
Castilla-Valdez, H.
Chakrabarti, S.
Chakraborty, D.
Chan, K. M.
Chandra, A.
Cheu, E.
Cho, D. K.
Cho, S. W.
Choi, S.
Choudhary, B.
Christoudias, T.
Cihangir, S.
Claes, D.
Clutter, J.
Cooke, M.
Cooper, W. E.
Corcoran, M.
Couderc, F.
Cousinou, M. -C.
Cutts, D.
Cwiok, M.
Das, A.
Davies, G.
De, K.
de Jong, S. J.
De La Cruz-Burelo, E.
DeVaughan, K.
Deliot, F.
Demarteau, M.
Demina, R.
Denisov, D.
Denisov, S. P.
Desai, S.
Diehl, H. T.
Diesburg, M.
Dominguez, A.
Dorland, T.
Dubey, A.
Dudko, L. V.
Duflot, L.
Duggan, D.
Duperrin, A.
Dutt, S.
Dyshkant, A.
Eads, M.
Edmunds, D.
Ellison, J.
Elvira, V. D.
Enari, Y.
Eno, S.
Escalier, M.
Evans, H.
Evdokimov, A.
Evdokimov, V. N.
Facini, G.
Ferapontov, A. V.
Ferbel, T.
Fiedler, F.
Filthaut, F.
Fisher, W.
Fisk, H. E.
Fortner, M.
Fox, H.
Fu, S.
Fuess, S.
Gadfort, T.
Galea, C. F.
Garcia-Bellido, A.
Gavrilov, V.
Gay, P.
Geist, W.
Geng, W.
Gerber, C. E.
Gershtein, Y.
Gillberg, D.
Ginther, G.
Gomez, B.
Goussiou, A.
Grannis, P. D.
Greder, S.
Greenlee, H.
Greenwood, Z. D.
Gregores, E. M.
Grenier, G.
Gris, Ph.
Grivaz, J. -F.
Grohsjean, A.
Gruenendahl, S.
Gruenewald, M. W.
Guo, F.
Guo, J.
Gutierrez, G.
Gutierrez, P.
Haas, A.
Haefner, R.
Hagopian, S.
Haley, J.
Hall, I.
Hall, R. E.
Han, L.
Harder, K.
Harel, A.
Hauptman, J. M.
Hays, J.
Hebbeker, T.
Hedin, D.
Hegeman, J. G.
Heinson, A. P.
Heintz, U.
Hensel, C.
Heredia-De la Cruz, I.
Herner, K.
Hesketh, G.
Hildreth, M. D.
Hirosky, R.
Hoang, T.
Hobbs, J. D.
Hoeneisen, B.
Hohlfeld, M.
Hossain, S.
Houben, R.
Hu, Y.
Hubacek, Z.
Huske, N.
Hynek, V.
Lashvili, I.
Illingworth, R.
Ito, A. S.
Jabeen, S.
Jaffre, M.
Jain, S.
Jakobs, K.
Jamin, D.
Jesik, R.
Johns, K.
Johnson, C.
Johnson, M.
Johnston, D.
Jonckheere, A.
Jonsson, R.
Juste, A.
Kajfasz, E.
Karmanov, D.
Kasper, P. A.
Katsanos, I.
Kaushik, V.
Kehoe, R.
Kermiche, S.
Khalatyan, N.
Khanov, A.
Kharchilava, A.
Kharzheeva, Y. N.
Khatidze, D.
Kirby, M. H.
Kirsch, M.
Klima, B.
Kohli, J. M.
Konrath, J. -P
Kozelov, A. V.
Kraus, J.
Kuhl, T.
Kumar, A.
Kupco, A.
Kurca, T.
Kuzmin, V. A.
Kvita, J.
Lacroix, F.
Lam, D.
Lammers, S.
Landsberg, G.
Lebrun, P.
Lee, H. S.
Lee, W. M.
Leflat, A.
Lellouch, J.
Li, L.
Li, Q. Z.
Lietti, S. M.
Lim, J. K.
Lincoln, D.
Linnemann, J.
Lipaev, V. V.
Lipton, R.
Liu, Y.
Liu, Z.
Lobodenko, A.
Lokajicek, M.
Love, P.
Lubatti, H. J.
Luna-Garcia, R.
Lyon, A. L.
Maciel, A. K. A.
Mackin, D.
Maettig, R.
Magana-Villalba, R.
Mal, P. K.
Malik, S.
Malyshev, V. L.
Maravin, Y.
Martin, B.
McCarthy, R.
McGivern, C. L.
Meijer, M. M.
Melnitchouk, A.
Mendoza, L.
Menezes, D.
Mercadante, P. G.
Merkin, M.
Merritt, K. W.
Meyer, A.
Meyer, J.
Mondal, N. K.
Montgomery, H. E.
Moore, R. W.
Moulik, T.
Muanza, G. S.
Mulhearn, M.
Mundal, O.
Mundim, L.
Nagy, E.
Naimuddin, M.
Narain, M.
Neal, H. A.
Negret, J. P.
Neustroev, P.
Nilsen, H.
Nogima, H.
Novaes, S. F.
Nunnemann, T.
Obrant, G.
Ochando, C.
Onoprienko, D.
Orduna, J.
Oshima, N.
Osman, N.
Osta, J.
Otec, R.
Otero y Garzon, G. J.
Owen, M.
Padilla, M.
Padley, P.
Pangilinan, M.
Parashar, N.
Park, S. -J.
Park, S. K.
Parsons, J.
Partridge, R.
Parua, N.
Patwa, A.
Penning, B.
Perfilov, M.
Peters, K.
Peters, Y.
Petroff, P.
Piegaia, R.
Piper, J.
Pleier, M. -A.
Podesta-Lerma, P. L. M.
Podstavkov, V. M.
Pogorelov, Y.
Pol, M. -E.
Polozov, P.
Popov, A. V.
Prewitt, M.
Protopopescu, S.
Qian, J.
Quadt, A.
Quinn, B.
Rakitine, A.
Rangel, M. S.
Ranjan, K.
Ratoff, P. N.
Renkel, P.
Rich, P.
Rijssenbeek, M.
Ripp-Baudot, I.
Rizatdinova, F.
Robinson, S.
Rominsky, M.
Royon, C.
Rubinov, P.
Ruchti, R.
Safronov, G.
Sajot, G.
Sanchez-Hernandez, A.
Sanders, M. P.
Sanghi, B.
Savage, G.
Sawyer, L.
Scanlon, T.
Schaile, D.
Schamberger, R. D.
Scheglov, Y.
Schellman, H.
Schliephake, T.
Schlobohm, S.
Schwanenberger, C.
Schwienhorst, R.
Sekaric, J.
Severini, H.
Shabalina, E.
Shamim, M.
Shary, V.
Shchukin, A. A.
Shivpuri, R. K.
Siccardi, V.
Simak, V.
Sirotenko, V.
Skubic, P.
Slattery, P.
Smirnov, D.
Snow, G. R.
Snow, J.
Snyder, S.
Soeldner-Rembold, S.
Sonnenschein, L.
Sopczak, A.
Sosebee, M.
Soustruznik, K.
Spurlock, B.
Stark, J.
Stolin, V.
Stoyanova, D. A.
Strandberg, J.
Strang, M. A.
Strauss, E.
Strauss, M.
Stroehmer, R.
Strom, D.
Stutte, L.
Sumowidagdo, S.
Svoisky, P.
Takahashi, M.
Tanasijczuk, A.
Taylor, W.
Tiller, B.
Titov, M.
Tokmenin, V. V.
Torchiani, I.
Tsybychev, D.
Tuchming, B.
Tully, C.
Tuts, P. M.
Unalan, R.
Uvarov, L.
Uvarov, S.
Uzunyan, S.
van den Berg, P. J.
Van Kooten, R.
van Leuwen, W. M.
Varelas, N.
Varnes, E. W.
Vasilyev, I. A.
Verdier, P.
Vertogradov, L. S.
Verzocchi, M.
Vesterinen, M.
Vilanova, D.
Vint, P.
Vokac, P.
Wagner, R.
Wahl, H. D.
Wang, M. H. L. S.
Warchol, J.
Watts, G.
Wayne, M.
Weber, G.
Weber, M.
Welty-Rieger, L.
Wenger, A.
Wetstein, M.
White, A.
Wicke, D.
Williams, M. R. J.
Wilson, G. W.
Wimpenny, S. J.
Wobisch, M.
Wood, D. R.
Wyatt, T. R.
Xie, Y.
Xu, C.
Yacoob, S.
Yamada, R.
Zeitnitz, C.
Zelitch, S.
Zhao, T.
Zhou, B.
Zhu, J.
Zielinski, M.
Zieminska, D.
Zivkovic, L.
Zutshi, V.
Zverev, E. G.
CA DO Collaboration
TI A novel method for modeling the recoil in W boson events at hadron
colliders
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE W; Z; Mass; Width; Hadron; Collider; Tevatron; D0; Recoil
ID GAUGE THEORIES; DETECTOR
AB We present a new method for modeling the hadronic recoil in W -> lv events produced at hadron colliders. The recoil is chosen from a library of recoils in Z -> ll data events and overlaid on a simulated W -> lv event. Implementation of this method requires that the data recoil library describe the proper-ties of the measured recoil as a function of the true, rather than the measured, transverse momentum of the boson. We address this issue using a multidimensional Bayesian unfolding technique. We estimate the statistical and systematic uncertainties from this method for the W boson mass and width measurements assuming 1 fb(-1) of data from the Fermilab Tevatron. The uncertainties are found to be small and comparable to those of a more traditional parameterized recoil model. For the highprecision measurements that will be possible with data from Run 11 of the Fermilab Tevatron and from the CERN LHC, the method presented in this paper may be advantageous, since it does not require an understanding of the measured recoil from first principles. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA.
[Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina.
[Alves, G. A.; Barreto, J.; Maciel, A. K. A.; Pol, M. -E.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil.
[Begalli, M.; Carvalho, W.; Mundim, L.; Nogima, H.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil.
[Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil.
[Lietti, S. M.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil.
[Beale, S.; Gillberg, D.; Moore, R. W.; Taylor, W.] Univ Alberta, Edmonton, AB, Canada.
[Beale, S.; Gillberg, D.; Moore, R. W.; Taylor, W.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada.
[Beale, S.; Gillberg, D.; Moore, R. W.; Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada.
[Beale, S.; Gillberg, D.; Moore, R. W.; Taylor, W.] McGill Univ, Montreal, PQ, Canada.
[Bu, X. B.; Han, L.; Liu, Y.; Taylor, W.] Univ Sci & Technol China, Hefei 230026, Peoples R China.
[Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia.
[Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic.
[Hubacek, Z.; Hynek, V.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic.
[Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic.
[Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador.
[Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.] Univ Clermont Ferrand, CNRS IN2P3, LPC, Clermont, France.
[Arnoud, Y.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS IN2P3, Inst Natl Polytech Grenoble, LPSC, F-38031 Grenoble, France.
[Barfuss, A. -F.; Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Escalier, M.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CNRS IN2P3, CPPM, Marseille, France.
[Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Rangel, M. S.] Univ Paris 11, IN2P3 CNRS, LAL, Orsay, France.
[Bernardi, G.; Huske, N.; Lellouch, J.] Univ Paris 06, IN2P3 CNRS, LPNHE, Paris, France.
[Bernardi, G.; Huske, N.; Lellouch, J.] Univ Paris 07, IN2P3 CNRS, LPNHE, Paris, France.
[Arthaud, M.; Bassler, U.; Besancon, M.; Couderc, F.; Deliot, F.; Grohsjean, A.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, Irfu, SPP, Saclay, France.
[Brown, D.; Geist, W.; Greder, S.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg, CNRS IN2P3, IPHC, Strasbourg, France.
[Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS IN2P3, IPNL, F-69622 Villeurbanne, France.
[Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France.
[Hebbeker, T.; Kirsch, M.; Meyer, A.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany.
[Buescher, V.; Hohlfeld, M.; Mundal, O.; Pleier, M. -A.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany.
[Bernhard, R.; Jakobs, K.; Konrath, J. -P; Nilsen, H.; Penning, B.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany.
[Hensel, C.; Meyer, J.; Park, S. -J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany.
[Fiedler, F.; Kuhl, T.; Weber, G.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany.
[Calfayan, R.; Haefner, R.; Nunnemann, T.; Sanders, M. P.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany.
[Maettig, R.; Schliephake, T.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany.
[Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India.
[Choudhary, B.; Dubey, A.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India.
[Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India.
[Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland.
[Cho, S. W.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea.
[Choi, S.] Sungkyunkwan Univ, Suwon, South Korea.
[Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De la Cruz, I.; Magana-Villalba, R.; Orduna, J.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City, DF, Mexico.
[Hegeman, J. G.; Houben, R.; van den Berg, P. J.; van Leuwen, W. M.] FOM Inst NIKHEF, Amsterdam, Netherlands.
[Hegeman, J. G.; Houben, R.; van den Berg, P. J.; van Leuwen, W. M.] Univ Amsterdam NIKHEF, Amsterdam, Netherlands.
[Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Meijer, M. M.] Radboud Univ Nijmegen NIKHEF, Nijmegen, Netherlands.
[Abazov, V. M.; Alexeev, G. D.; Kharzheeva, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.] Joint Inst Nucl Res, Dubna, Russia.
[Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia.
[Bezzubov, V. A.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Prorvino, Russia.
[Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia.
[Asman, B.; Belanger-Champagne, C.] Stockholm Univ, S-10691 Stockholm, Sweden.
[Asman, B.; Belanger-Champagne, C.] Uppsala Univ, Uppsala, Sweden.
[Bertram, I.; Borissov, G.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster, England.
[Bauer, D.; Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, R.; Osman, N.; Robinson, S.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England.
[Harder, K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Vesterinen, M.; Wyatt, T. R.] Univ Manchester, Manchester, Lancs, England.
[Cheu, E.; Das, A.; Johns, K.; Mal, P. K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA.
[Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA.
[Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA.
[Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Carrera, E.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Hoang, T.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA.
[Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Merritt, K. W.; Montgomery, H. E.; Naimuddin, M.; Oshima, N.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Weber, M.; Yamada, R.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Adams, M.; Gerber, C. E.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA.
[Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.; Zutshi, V.] Univ Illinois, De Kalb, IL 60115 USA.
[Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Yacoob, S.] Northwestern Univ, Evanston, IL 60208 USA.
[Evans, H.; Lammers, S.; Parua, N.; Van Kooten, R.; Welty-Rieger, L.] Indiana Univ, Bloomington, IN 47405 USA.
[Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA.
[Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA.
[Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA.
[Baringer, R.; Bean, A.; Clutter, J.; McGivern, C. L.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA.
[Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.] Kansas State Univ, Manhattan, KS 66506 USA.
[Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA.
[Eno, S.; Ferbel, T.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA.
[Boline, D.; Bose, T.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA.
[Alverson, G.; Barberis, E.; Facini, G.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA.
[Alton, A.; Herner, K.; Neal, H. A.; Qian, J.; Strandberg, J.; Xu, C.; Zhou, B.; Zieminska, D.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Abolins, M.; Benitez, J. A.; Brock, R.; Edmunds, D.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA.
[Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA.
[Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA.
[Haley, J.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA.
[Lashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA.
[Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA.
[Cammin, J.; Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Slattery, P.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA.
[Begel, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Snow, J.] Langston Univ, Langston, OK 73050 USA.
[Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA.
[Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA.
[Cutts, D.; Enari, Y.; Khatidze, D.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.] Brown Univ, Providence, RI 02912 USA.
[Brandt, A.; De, K.; Kaushik, V.; Sosebee, M.; Spurlock, B.; White, A.] Univ Texas Arlington, Arlington, TX 76019 USA.
[Kehoe, R.] So Methodist Univ, Dallas, TX 75275 USA.
[Bargassa, P.; Corcoran, M.; Mackin, D.; Padley, P.; Prewitt, M.; Renkel, P.] Rice Univ, Houston, TX 77005 USA.
[Buehler, M.; Hirosky, R.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA.
[BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA.
RP Zhu, J (reprint author), SUNY Stony Brook, Stony Brook, NY 11794 USA.
EM junjie@fnal.gov
RI Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013; Deliot,
Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek,
Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov,
Alexander/J-3812-2014; Guo, Jun/O-5202-2015; Li, Liang/O-1107-2015;
Bargassa, Pedrame/O-2417-2016; Mundim, Luiz/A-1291-2012; Ancu, Lucian
Stefan/F-1812-2010; Shivpuri, R K/A-5848-2010; Gutierrez,
Phillip/C-1161-2011; bu, xuebing/D-1121-2012; Dudko, Lev/D-7127-2012;
Leflat, Alexander/D-7284-2012; Perfilov, Maxim/E-1064-2012; Boos,
Eduard/D-9748-2012; Merkin, Mikhail/D-6809-2012; Novaes,
Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Yip, Kin/D-6860-2013;
OI De, Kaushik/0000-0002-5647-4489; Sharyy,
Viatcheslav/0000-0002-7161-2616; Guo, Jun/0000-0001-8125-9433; Li,
Liang/0000-0001-6411-6107; Bean, Alice/0000-0001-5967-8674; Bargassa,
Pedrame/0000-0001-8612-3332; Carrera, Edgar/0000-0002-0857-8507; Mundim,
Luiz/0000-0001-9964-7805; Ancu, Lucian Stefan/0000-0001-5068-6723;
Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549;
Heredia De La Cruz, Ivan/0000-0002-8133-6467; Yip,
Kin/0000-0002-8576-4311; Christoudias, Theodoros/0000-0001-9050-3880;
Williams, Mark/0000-0001-5448-4213; Belanger-Champagne,
Camille/0000-0003-2368-2617
FU DOE; NSF (USA); CEA; CNRS/IN2P3 (France); FASI; Rosatom and RFBR
(Russia); CNPq; FAPERJ; FAPESP; FUNDUNESP (Brazil); DAE; DST (India);
Colciencias (Colombia); CONACyT (Mexico); KRF; KOSEF (Korea); CONICET;
UBACyT (Argentina); FOM (The Netherlands); STFC; Royal Society (United
Kingdom); MSMT; GACR (Czech Republic); CRC Program; CFl; NSERC; WestGrid
Project (Canada); BMBF; DFG (Germany); SFI (Ireland); Swedish Research
Council (Sweden); CAS; CNSF (China); Alexander von Humboldt Foundation
(Germany)
FX We thank the staffs at Fermilab and collaborating institutions, and
acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3
(France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and
FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT
(Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM
(The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and
GACR (Czech Republic); CRC Program, CFl, NSERC and WestGrid Project
(Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research
Council (Sweden); CAS and CNSF (China); and the Alexander von Humboldt
Foundation (Germany).
NR 24
TC 4
Z9 4
U1 0
U2 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD OCT 11
PY 2009
VL 609
IS 2-3
BP 250
EP 262
DI 10.1016/j.nima.2009.08.056
PG 13
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 516NC
UT WOS:000271548200027
ER
PT J
AU Flechsig, U
Jaggi, A
Spielmann, S
Padmore, HA
MacDowell, AA
AF Flechsig, U.
Jaggi, A.
Spielmann, S.
Padmore, H. A.
MacDowell, A. A.
TI The optics beamline at the Swiss Light Source
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Crystal monochromator; Channel cut; Photon flux
ID PERFORMANCE; MONOCHROMATOR; METROLOGY; DESIGN; MIRROR
AB We present the successful installation and the performance of a new beamline for optics and instrumentation research and developments at the Swiss Light Source. The beamline covers the photon energy range from 5.5 to 22.5 keV at a bending magnet with a cryogenically cooled Si(l 11) channel cut monochromator followed by a bendable toroidal mirror with 1:1 focusing. Monochromator and focusing mirror can be retracted independently to allow monochromatic and pink beam mode with and without focusing. In focused monochromatic mode we measured a usable photon flux of 2 x 10(11) photons/s at 11 keV within a focus of 70 mu m x 140 mu m (FWHM v x h). The higher order contamination has been determined with absorption foils. We measured 0.025% of second order light at 9 keV and 17% of third order contamination at 6 keV. In pink beam mode we measured with a thermopile sensor a radiation power of 10.6 W for 1 mrad acceptance. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Flechsig, U.; Jaggi, A.; Spielmann, S.] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland.
[Padmore, H. A.; MacDowell, A. A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA.
RP Flechsig, U (reprint author), Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland.
EM uwe.flechsig@psi.ch
RI MacDowell, Alastair/K-4211-2012
NR 19
TC 20
Z9 20
U1 2
U2 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD OCT 11
PY 2009
VL 609
IS 2-3
BP 281
EP 285
DI 10.1016/j.nima.2009.07.092
PG 5
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 516NC
UT WOS:000271548200031
ER
PT J
AU Hatayama, M
Takenaka, H
Gullikson, EM
Suda, A
Midorikawa, K
AF Hatayama, Masatoshi
Takenaka, Hisataka
Gullikson, Eric M.
Suda, Akira
Midorikawa, Katsumi
TI Broadband extreme ultraviolet multilayer mirror for supercontinuum light
at a photon energy of 35-65 eV
SO APPLIED OPTICS
LA English
DT Article
ID ATTOSECOND PULSES; NONLINEAR OPTICS; RANGE; NM
AB We have developed a broadband multilayer mirror for photon energies between 35 and 65 eV. This extreme ultraviolet (EUV) mirror has an almost flat reflectivity profile at normal incidence, and the average reflectivity is 8%. The bandwidth of this mirror is 30 eV centered around 50 eV, 1.5 times broader than conventional multilayer mirrors in this energy region. This new mirror can be used in a variety of applications using supercontinuum EUV light sources including attosecond metrology. (C) 2009 Optical Society of America
C1 [Suda, Akira; Midorikawa, Katsumi] RIKEN Adv Sci Inst, Wako, Saitama 3510198, Japan.
[Hatayama, Masatoshi; Midorikawa, Katsumi] Saitama Univ, Grad Sch Sci & Engn, Saitama 3388570, Japan.
[Hatayama, Masatoshi; Takenaka, Hisataka] NTT AT Nanofabricat Cooperat, Kanagawa 2430018, Japan.
[Gullikson, Eric M.] Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Suda, A (reprint author), RIKEN Adv Sci Inst, 2-1 Hirosawa, Wako, Saitama 3510198, Japan.
EM asuda@riken.jp
RI Midorikawa, Katsumi/B-6335-2015; Suda, Akira/P-8994-2015
OI Midorikawa, Katsumi/0000-0002-0588-519X; Suda, Akira/0000-0002-0165-8539
NR 16
TC 5
Z9 5
U1 0
U2 6
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 1559-128X
EI 2155-3165
J9 APPL OPTICS
JI Appl. Optics
PD OCT 10
PY 2009
VL 48
IS 29
BP 5464
EP 5466
DI 10.1364/AO.48.005464
PG 3
WC Optics
SC Optics
GA 505DC
UT WOS:000270667800006
PM 19823227
ER
PT J
AU Windt, DL
Bellotti, JA
Kjomrattanawanich, B
Seely, JF
AF Windt, David L.
Bellotti, Jeffrey A.
Kjomrattanawanich, Benjawan
Seely, John F.
TI Performance optimization of Si/Gd extreme ultraviolet multilayers
SO APPLIED OPTICS
LA English
DT Article
ID GADOLINIUM; MISSION; FILMS
AB We compare the performance, stability and microstructure of Si/Gd multilayers containing thin barrier layers of W, B4C, or SiNx, and determine that multilayers containing 0.6 nm thick W barrier layers at each interface provide the best compromise between high peak reflectance in the extreme ultraviolet near lambda = 60 nm and good stability upon heating. The Si/W/Gd films have sharper interfaces and also show vastly superior thermal stability relative to Si/Gd multilayers without barrier layers. We find that these structures have relatively small compressive film stresses, and show good temporal stability thus far. We measured a peak reflectance of 29.7% at lambda = 62.5 nm, and a spectral bandpass of Delta lambda = 9 nm (FWHM), for an optimized Si/W/Gd multilayer having a period d = 32.0 nm. (C) 2009 Optical Society of America
C1 [Windt, David L.; Bellotti, Jeffrey A.] Reflect Xray Opt LLC, New York, NY 10027 USA.
[Kjomrattanawanich, Benjawan] Univ Space Res Assoc, Brookhaven Natl Lab, Upton, NY 11973 USA.
[Seely, John F.] USN, Res Lab, Washington, DC 20375 USA.
RP Windt, DL (reprint author), Reflect Xray Opt LLC, 1361 Amsterdam Ave,Suite 3B, New York, NY 10027 USA.
EM davidwindt@gmail.com
FU NASA Small Business Innovation Research [NNM07AA41C, NNM08AA24C]
FX This research was sponsored by NASA Small Business Innovation Research
contract numbers NNM07AA41C and NNM08AA24C.
NR 8
TC 2
Z9 2
U1 0
U2 5
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 1559-128X
EI 2155-3165
J9 APPL OPTICS
JI Appl. Optics
PD OCT 10
PY 2009
VL 48
IS 29
BP 5502
EP 5508
DI 10.1364/AO.48.005502
PG 7
WC Optics
SC Optics
GA 505DC
UT WOS:000270667800012
PM 19823233
ER
PT J
AU Sikora, M
Stawarz, L
Moderski, R
Nalewajko, K
Madejski, GM
AF Sikora, Marek
Stawarz, Lukasz
Moderski, Rafall
Nalewajko, Krzysztof
Madejski, Greg M.
TI CONSTRAINING EMISSION MODELS OF LUMINOUS BLAZAR SOURCES
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE acceleration of particles; galaxies: active; galaxies: jets; gamma rays:
theory; quasars: general; radiation mechanisms: non-thermal
ID GAMMA-RAY EMISSION; BL LACERTAE OBJECTS; SPECTRAL ENERGY-DISTRIBUTIONS;
MAGNETOSONIC SHOCK-WAVES; LINE ARRAY OBSERVATIONS; EGRET-DETECTED
QUASARS; ACTIVE GALACTIC NUCLEI; RADIO-LOUD QUASARS;
PARTICLE-ACCELERATION; 3C 454.3
AB Many luminous blazars which are associated with quasar-type active galactic nuclei display broadband spectra characterized by a large luminosity ratio of their high-energy (gamma-ray) and low-energy (synchrotron) spectral components. This large ratio, reaching values up to 100, challenges the standard synchrotron self-Compton models by means of substantial departures from the minimum power condition. Luminous blazars also typically have very hard X-ray spectra, and those in turn seem to challenge hadronic scenarios for the high-energy blazar emission. As shown in this paper, no such problems are faced by the models which involve Comptonization of radiation provided by a broad-line region, or dusty molecular torus. The lack or weakness of bulk-Compton and Klein-Nishina features indicated by the presently available data favors the production of gamma-rays via upscattering of infrared photons from hot dust. This implies that the blazar emission zone is located at parsec-scale distances from the nucleus, and as such is possibly associated with the extended, quasi-stationary reconfinement shocks formed in relativistic outflows. This scenario predicts characteristic timescales for flux changes in luminous blazars to be days/weeks, consistent with the variability patterns observed in such systems at infrared, optical, and gamma -ray frequencies. We also propose that the parsec-scale blazar activity can be occasionally accompanied by dissipative events taking place at sub-parsec distances and powered by internal shocks and/or reconnection of magnetic fields. These could account for the multiwavelength intraday flares occasionally observed in powerful blazar sources.
C1 [Sikora, Marek; Moderski, Rafall; Nalewajko, Krzysztof] Nicolaus Copernicus Astron Ctr, PL-00716 Warsaw, Poland.
[Stawarz, Lukasz; Madejski, Greg M.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA.
[Stawarz, Lukasz] Jagiellonian Univ, Astron Observ, PL-30244 Krakow, Poland.
[Stawarz, Lukasz; Madejski, Greg M.] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA.
RP Sikora, M (reprint author), Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland.
EM sikora@camk.edu.pl
FU NASA [NNX08AZ77G, NNX09AG12G]; Department of Energy [DE-AE3-76SF00515];
Polish MNiSW [N N203 301635, N N203 380336]; Polish Astroparticle
Network [621/E-78/BWSN-0068/2008]
FX We acknowledge financial support by NASA grants NNX08AZ77G and
NNX09AG12G, by the Department of Energy contract to SLAC No.
DE-AE3-76SF00515, by the Polish MNiSW grant N N203 301635, N N203
380336, and the Polish Astroparticle Network 621/E-78/BWSN-0068/2008.
NR 74
TC 138
Z9 139
U1 6
U2 9
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD OCT 10
PY 2009
VL 704
IS 1
BP 38
EP 50
DI 10.1088/0004-637X/704/1/38
PG 13
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 499KR
UT WOS:000270219500004
ER
PT J
AU Zingale, M
Almgren, AS
Bell, JB
Nonaka, A
Woosley, SE
AF Zingale, M.
Almgren, A. S.
Bell, J. B.
Nonaka, A.
Woosley, S. E.
TI LOW MACH NUMBER MODELING OF TYPE IA SUPERNOVAE. IV. WHITE DWARF
CONVECTION
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE convection; hydrodynamics; methods: numerical; nuclear reactions,
nucleosynthesis, abundances; supernovae: general; white dwarfs
ID HYPERBOLIC CONSERVATION-LAWS; DETONATION MODEL; CARBON IGNITION;
HYDRODYNAMICS; SIMULATIONS; EVOLUTION; FLAMES; DEFLAGRATIONS;
ENHANCEMENT; PROPAGATION
AB We present the first three-dimensional, full-star simulations of convection in a white dwarf preceding a Type Ia supernova, specifically the last few hours before ignition. For these long-time calculations, we use our low Mach number hydrodynamics code, MAESTRO, which we have further developed to treat spherical stars centered in a three-dimensional Cartesian geometry. The main change required is a procedure to map the one-dimensional radial base state to and from the Cartesian grid. Our models recover the dipole structure of the flow seen in previous calculations, but our long-time integration shows that the orientation of the dipole changes with time. Furthermore, we show the development of gravity waves in the outer, stable portion of the star. Finally, we evolve several calculations to the point of ignition and discuss the range of ignition radii.
C1 [Zingale, M.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
[Almgren, A. S.; Bell, J. B.; Nonaka, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Computat Sci & Engn, Berkeley, CA 94720 USA.
[Woosley, S. E.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA.
RP Zingale, M (reprint author), SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
OI Zingale, Michael/0000-0001-8401-030X
FU DOE [DE-FG02-06ER41448, DE-AC02-05CH11231, DE-FC02-06ER41438,
DE-AC05-00OR22725, DE-AC02-06CH11357]
FX Computer time for the supporting calculations presented here was
provided by Livermore Computing's Atlas machine through LLNL's
Multiprogrammatic & Institutional Computing Program. The test problem
calculation used resources of the Argonne Leadership Computing Facility
at Argonne National Laboratory, which is supported by the Office of
Science of the U. S. Department of Energy under contract
DE-AC02-06CH11357. Some visualizations were performed using the VisIt
package. We thank Gunther Weber for his assistance with VisIt.
NR 41
TC 46
Z9 46
U1 0
U2 6
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD OCT 10
PY 2009
VL 704
IS 1
BP 196
EP 210
DI 10.1088/0004-637X/704/1/196
PG 15
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 499KR
UT WOS:000270219500017
ER
PT J
AU Woosley, SE
Kerstein, AR
Sankaran, V
Aspden, AJ
Ropke, FK
AF Woosley, S. E.
Kerstein, A. R.
Sankaran, V.
Aspden, A. J.
Roepke, F. K.
TI TYPE Ia SUPERNOVAE: CALCULATIONS OF TURBULENT FLAMES USING THE LINEAR
EDDY MODEL
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE hydrodynamics; shock waves; supernovae: general; turbulence
ID DIRECT NUMERICAL SIMULATIONS; FLUID DYNAMICAL SIMULATIONS;
RAYLEIGH-TAYLOR INSTABILITY; SUBGRID SCALE-MODEL; NUCLEAR FLAMES;
WHITE-DWARFS; DETONATION TRANSITION; CARBON IGNITION; PREMIXED FLAMES;
MASSIVE STARS
AB The nature of carbon burning flames in Type Ia supernovae is explored as they interact with Kolmogorov turbulence. One-dimensional calculations using the Linear Eddy Model of Kerstein elucidate three regimes of turbulent burning. In the simplest case, large-scale turbulence folds and deforms thin laminar flamelets to produce a flame brush with a total burning rate given approximately by the speed of turbulent fluctuations on the integral scale, U-L, This is the regime where the supernova explosion begins and where most of its pre-detonation burning occurs. As the density declines, turbulence starts to tear the individual flamelets, making broader structures that move faster. For a brief time, these turbulent flamelets are still narrow compared to their spacing and the concept of a flame brush moving with an overall speed of UL remains valid. However, the typical width of the individual flamelets, which is given by the condition that their turnover time equals their burning time, continues to increase as the density declines. Eventually, mixed regions almost as large as the integral scale itself are transiently formed. At that point, a transition to detonation can occur. The conditions for such a transition are explored numerically and it is estimated that the transition will occur for densities near 1 x 10(7) g cm(-3), provided the turbulent speed on the integral scale exceeds about 20% sonic. An example calculation shows the details of a detonation actually developing.
C1 [Woosley, S. E.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA.
[Kerstein, A. R.; Sankaran, V.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA.
[Aspden, A. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Computat Sci & Engn, Berkeley, CA 94720 USA.
[Roepke, F. K.] Max Planck Inst Astrophys, D-85741 Garching, Germany.
RP Woosley, SE (reprint author), Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA.
EM woosley@ucolick.org; arkerst@sandia.gov; AJAspden@lbl.gov;
fritz@mpa-Garching.mpg.de
RI Aspden, Andy/A-7391-2017;
OI Aspden, Andy/0000-0002-2970-4824; Ropke, Friedrich/0000-0002-4460-0097
FU NASA [NNG05GG08G]; DOE [DE-FC02-06ER41438, AC04-94AL85000]; SciDAC
[DE-AC02-05CH11231]; Seaborg Fellowship
FX The authors gratefully acknowledges helpful conversations on the subject
of the paper with John Bell, Wolfgang Hillebrandt, and Martin Lisewski.
At UCSC, this research was supported by the NASA Theory Program
(NNG05GG08G) and the DOE SciDAC Program (DE-FC02-06ER41438). Research at
LBNL was also supported by the SciDAC Program (DE-AC02-05CH11231). A.
Aspden was also supported at LBNL by a Seaborg Fellowship. Work at
Sandia was supported by the US Department of Energy, Office of Basic
Energy Sciences, Division of Chemical Sciences, Geosciences and
Biosciences. Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the US Department of Energy
under contract DE-AC04-94AL85000. The DNS computations presented here
were performed on the ATLAS Linux Cluster at LLNL as part of a Grand
Challenge Project.
NR 44
TC 48
Z9 48
U1 1
U2 10
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD OCT 10
PY 2009
VL 704
IS 1
BP 255
EP 273
DI 10.1088/0004-637X/704/1/255
PG 19
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 499KR
UT WOS:000270219500022
ER
PT J
AU Thrane, E
Abe, K
Hayato, Y
Iida, T
Ikeda, M
Kameda, J
Kobayashi, K
Koshio, Y
Miura, M
Moriyama, S
Nakahata, M
Nakayama, S
Obayashi, Y
Ogawa, H
Sekiya, H
Shiozawa, M
Suzuki, Y
Takeda, A
Takenaga, Y
Takeuchi, Y
Ueno, K
Ueshima, K
Watanabe, H
Yamada, S
Vagins, MR
Hazama, S
Higuchi, I
Ishihara, C
Kajita, T
Kaneyuki, K
Mitsuka, G
Nishino, H
Okumura, K
Tanimoto, N
Dufour, F
Kearns, E
Litos, M
Raaf, JL
Stone, JL
Sulak, LR
Goldhaber, M
Bays, K
Casper, D
Cravens, JP
Kropp, WR
Mine, S
Regis, C
Smy, MB
Sobel, HW
Ganezer, KS
Hill, J
Keig, WE
Jang, JS
Jeong, IS
Kim, JY
Lim, IT
Fechner, M
Scholberg, K
Walter, CW
Wendell, R
Tasaka, S
Learned, JG
Matsuno, S
Watanabe, Y
Hasegawa, T
Ishida, T
Ishii, T
Kobayashi, T
Nakadaira, T
Nakamura, K
Nishikawa, K
Oyama, Y
Sakashita, K
Sekiguchi, T
Tsukamoto, T
Suzuki, AT
Ichikawa, AK
Minamino, A
Nakaya, T
Yokoyama, M
Dazeley, S
Svoboda, R
Habig, A
Fukuda, Y
Itow, Y
Tanaka, T
Jung, CK
Lopez, G
McGrew, C
Yanagisawa, C
Tamura, N
Idehara, Y
Ishino, H
Kibayashi, A
Sakuda, M
Kuno, Y
Yoshida, M
Kim, SB
Yang, BS
Ishizuka, T
Okazawa, H
Choi, Y
Seo, HK
Furuse, Y
Nishijima, K
Yokosawa, Y
Koshiba, M
Totsuka, Y
Chen, S
Gong, G
Heng, Y
Xue, T
Yang, Z
Zhang, H
Kielczewska, D
Mijakowski, P
Connolly, K
Dziomba, M
Wilkes, RJ
AF Thrane, E.
Abe, K.
Hayato, Y.
Iida, T.
Ikeda, M.
Kameda, J.
Kobayashi, K.
Koshio, Y.
Miura, M.
Moriyama, S.
Nakahata, M.
Nakayama, S.
Obayashi, Y.
Ogawa, H.
Sekiya, H.
Shiozawa, M.
Suzuki, Y.
Takeda, A.
Takenaga, Y.
Takeuchi, Y.
Ueno, K.
Ueshima, K.
Watanabe, H.
Yamada, S.
Vagins, M. R.
Hazama, S.
Higuchi, I.
Ishihara, C.
Kajita, T.
Kaneyuki, K.
Mitsuka, G.
Nishino, H.
Okumura, K.
Tanimoto, N.
Dufour, F.
Kearns, E.
Litos, M.
Raaf, J. L.
Stone, J. L.
Sulak, L. R.
Goldhaber, M.
Bays, K.
Casper, D.
Cravens, J. P.
Kropp, W. R.
Mine, S.
Regis, C.
Smy, M. B.
Sobel, H. W.
Ganezer, K. S.
Hill, J.
Keig, W. E.
Jang, J. S.
Jeong, I. S.
Kim, J. Y.
Lim, I. T.
Fechner, M.
Scholberg, K.
Walter, C. W.
Wendell, R.
Tasaka, S.
Learned, J. G.
Matsuno, S.
Watanabe, Y.
Hasegawa, T.
Ishida, T.
Ishii, T.
Kobayashi, T.
Nakadaira, T.
Nakamura, K.
Nishikawa, K.
Oyama, Y.
Sakashita, K.
Sekiguchi, T.
Tsukamoto, T.
Suzuki, A. T.
Ichikawa, A. K.
Minamino, A.
Nakaya, T.
Yokoyama, M.
Dazeley, S.
Svoboda, R.
Habig, A.
Fukuda, Y.
Itow, Y.
Tanaka, T.
Jung, C. K.
Lopez, G.
McGrew, C.
Yanagisawa, C.
Tamura, N.
Idehara, Y.
Ishino, H.
Kibayashi, A.
Sakuda, M.
Kuno, Y.
Yoshida, M.
Kim, S. B.
Yang, B. S.
Ishizuka, T.
Okazawa, H.
Choi, Y.
Seo, H. K.
Furuse, Y.
Nishijima, K.
Yokosawa, Y.
Koshiba, M.
Totsuka, Y.
Chen, S.
Gong, G.
Heng, Y.
Xue, T.
Yang, Z.
Zhang, H.
Kielczewska, D.
Mijakowski, P.
Connolly, K.
Dziomba, M.
Wilkes, R. J.
CA Super Kamiokande Collaboration
TI SEARCH FOR ASTROPHYSICAL NEUTRINO POINT SOURCES AT SUPER-KAMIOKANDE
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE galaxies: active; gamma rays: bursts; neutrinos; pulsars: general;
supernova remnants
ID HIGH-ENERGY NEUTRINOS; UPWARD-GOING MUONS; GAMMA-RAY BURSTS;
COSMIC-RAYS; GRB 080319B; DISCOVERY; TELESCOPE; ASTRONOMY; DETECTOR
AB It has been hypothesized that large fluxes of neutrinos may be created in astrophysical "cosmic accelerators." The primary background for a search for astrophysical neutrinos comes from atmospheric neutrinos, which do not exhibit the pointlike directional clustering that characterizes a distant astrophysical signal. We perform a search for neutrino point sources using the upward-going muon data from three phases of operation (SK-I, SK-II, and SK-III) spanning 2623 days of live time taken from 1996 April 1 to 2007 August 11. The search looks for signals from suspected galactic and extragalactic sources, transient sources, and uncataloged sources. While we find interesting signatures from two objects-RX J1713.7-3946 (97.5% CL) and GRB 991004D (95.3% CL)-these signatures lack compelling statistical significance given trial factors. We set limits on the flux and fluence of neutrino point sources above energies of 1.6 GeV.
C1 [Thrane, E.] Univ Minnesota, Dept Phys & Astron, Minneapolis, MN 55455 USA.
[Abe, K.; Hayato, Y.; Iida, T.; Kameda, J.; Kobayashi, K.; Koshio, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakayama, S.; Obayashi, Y.; Ogawa, H.; Sekiya, H.; Shiozawa, M.; Suzuki, Y.; Takeda, A.; Takenaga, Y.; Takeuchi, Y.; Ueno, K.; Ueshima, K.; Watanabe, H.; Yamada, S.] Univ Tokyo, Kamioka Observ, Inst Cosm Ray Res, Gifu 5061205, Japan.
[Hayato, Y.; Koshio, Y.; Moriyama, S.; Nakahata, M.; Sekiya, H.; Shiozawa, M.; Suzuki, Y.; Takeuchi, Y.; Vagins, M. R.; Kajita, T.; Kaneyuki, K.; Kearns, E.; Stone, J. L.; Smy, M. B.; Sobel, H. W.; Scholberg, K.; Walter, C. W.; Nakamura, K.; Nakaya, T.] Univ Tokyo, IPMU, Chiba 2778568, Japan.
[Vagins, M. R.; Bays, K.; Casper, D.; Cravens, J. P.; Kropp, W. R.; Regis, C.; Smy, M. B.; Sobel, H. W.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA.
[Hazama, S.; Higuchi, I.; Ishihara, C.; Kajita, T.; Kaneyuki, K.; Mitsuka, G.; Nishino, H.; Okumura, K.; Tanimoto, N.] Univ Tokyo, Res Ctr Cosm Neutrinos, Inst Cosm Ray Res, Chiba 2778582, Japan.
[Dufour, F.; Kearns, E.; Litos, M.; Stone, J. L.; Sulak, L. R.] Boston Univ, Dept Phys, Boston, MA 02215 USA.
[Goldhaber, M.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
[Ganezer, K. S.; Hill, J.; Keig, W. E.] Calif State Univ, Dept Phys, Carson, CA 90747 USA.
[Jang, J. S.; Jeong, I. S.; Kim, J. Y.; Lim, I. T.] Chonnam Natl Univ, Dept Phys, Kwangju 500757, South Korea.
[Fechner, M.; Scholberg, K.; Walter, C. W.; Wendell, R.] Duke Univ, Dept Phys, Durham, NC 27708 USA.
[Tasaka, S.] Gifu Univ, Dept Phys, Gifu 5011193, Japan.
[Learned, J. G.; Matsuno, S.] Univ Hawaii, Dept Phys & Astron, Honolulu, HI 96822 USA.
[Watanabe, Y.] Kanagawa Univ, Fac Engn, Kanagawa 2218686, Japan.
[Hasegawa, T.; Ishida, T.; Ishii, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Nishikawa, K.; Oyama, Y.; Sakashita, K.; Tsukamoto, T.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan.
[Suzuki, A. T.] Kobe Univ, Dept Phys, Kobe, Hyogo 6578501, Japan.
[Ichikawa, A. K.; Minamino, A.; Nakaya, T.; Yokoyama, M.] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan.
[Dazeley, S.; Svoboda, R.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
[Habig, A.] Univ Minnesota, Dept Phys, Duluth, MN 55812 USA.
[Fukuda, Y.] Miyagi Univ Educ, Dept Phys, Sendai, Miyagi 9800845, Japan.
[Itow, Y.; Tanaka, T.] Nagoya Univ, Solar Terr Environm Lab, Aichi 4648602, Japan.
[Jung, C. K.; Lopez, G.; McGrew, C.; Yanagisawa, C.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
[Tamura, N.] Niigata Univ, Dept Phys, Niigata 9502181, Japan.
[Idehara, Y.; Ishino, H.; Kibayashi, A.; Sakuda, M.] Okayama Univ, Dept Phys, Okayama 7008530, Japan.
[Kuno, Y.; Yoshida, M.] Osaka Univ, Dept Phys, Osaka 5600043, Japan.
[Kim, S. B.; Yang, B. S.] Seoul Natl Univ, Dept Phys, Seoul 151742, South Korea.
[Ishizuka, T.] Shizuoka Univ, Dept Syst Engn, Shizuoka 4328561, Japan.
[Okazawa, H.] Shizuoka Univ Welf, Dept Informat Social Welf, Shizuoka 4258611, Japan.
[Choi, Y.; Seo, H. K.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea.
[Furuse, Y.; Nishijima, K.; Yokosawa, Y.] Tokai Univ, Dept Phys, Kanagawa 2591292, Japan.
[Koshiba, M.; Totsuka, Y.; Connolly, K.] Univ Tokyo, Tokyo 1130033, Japan.
[Chen, S.; Gong, G.; Heng, Y.; Xue, T.; Yang, Z.; Zhang, H.] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China.
[Kielczewska, D.; Mijakowski, P.] Warsaw Univ, Inst Expt Phys, PL-00681 Warsaw, Poland.
[Dziomba, M.; Wilkes, R. J.] Univ Washington, Dept Phys, Seattle, WA 98195 USA.
RP Thrane, E (reprint author), Univ Minnesota, Dept Phys & Astron, Minneapolis, MN 55455 USA.
RI Yokoyama, Masashi/A-4458-2011; Nakamura, Kenzo/F-7174-2010; Sobel,
Henry/A-4369-2011; Obayashi, Yoshihisa/A-4472-2011; Suzuki,
Yoichiro/F-7542-2010; Takeuchi, Yasuo/A-4310-2011; Wilkes,
R.Jeffrey/E-6011-2013; Kim, Soo-Bong/B-7061-2014; Ishino,
Hirokazu/C-1994-2015; Koshio, Yusuke/C-2847-2015; Kibayashi,
Atsuko/K-7327-2015;
OI Yokoyama, Masashi/0000-0003-2742-0251; Ishino,
Hirokazu/0000-0002-8623-4080; Koshio, Yusuke/0000-0003-0437-8505; Raaf,
Jennifer/0000-0002-4533-929X
FU Japanese Ministry of Education, Culture, Sports, Science and Technology;
U. S. Department of Energy; U. S. National Science Foundation; Korean
Research Foundation [BK21]; Korea Science and Engineering Foundation
FX The application of this algorithm to searches for astronomical point
sources and many details of its design were motivated by discussions
with Professor Thompson Burnett who helped develop a similar algorithm
for use with the Fermi-GLAST Gamma-ray Space Telescope, and we
gratefully acknowledge his input. Data on muon range and neutrino cross
sections were graciously provided by M. Reno. The authors gratefully
acknowledge the cooperation of the Kamioka Mining and Smelting Company.
Super-Kamiokande has been built and operated from funds provided by the
Japanese Ministry of Education, Culture, Sports, Science and Technology
as well as the U. S. Department of Energy and the U. S. National Science
Foundation. Some participants have been supported by funds from the
Korean Research Foundation (BK21) and the Korea Science and Engineering
Foundation.
NR 36
TC 20
Z9 20
U1 0
U2 9
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD OCT 10
PY 2009
VL 704
IS 1
BP 503
EP 512
DI 10.1088/0004-637X/704/1/503
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 499KR
UT WOS:000270219500039
ER
PT J
AU Jee, MJ
Rosati, P
Ford, HC
Dawson, KS
Lidman, C
Perlmutter, S
Demarco, R
Strazzullo, V
Mullis, C
Bohringer, H
Fassbender, R
AF Jee, M. J.
Rosati, P.
Ford, H. C.
Dawson, K. S.
Lidman, C.
Perlmutter, S.
Demarco, R.
Strazzullo, V.
Mullis, C.
Boehringer, H.
Fassbender, R.
TI HUBBLE SPACE TELESCOPE WEAK-LENSING STUDY OF THE GALAXY CLUSTER XMMU
J2235.3-2557 AT z similar to 1.4: A SURPRISINGLY MASSIVE GALAXY CLUSTER
WHEN THE UNIVERSE IS ONE-THIRD OF ITS CURRENT AGE
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE cosmology: observations; dark matter; galaxies: clusters: individual
(XMMU J2235.3-2557); galaxies: high-redshift; gravitational lensing;
X-rays: galaxies: clusters
ID PROBE WMAP OBSERVATIONS; POINT-SPREAD FUNCTION; DARK-MATTER HALOES;
ADVANCED CAMERA; X-RAY; PHOTOMETRIC REDSHIFTS; NON-GAUSSIANITY; DEEP
FIELD; EVOLUTION; NORMALIZATION
AB We present a weak-lensing analysis of the z similar or equal to 1.4 galaxy cluster XMMU J2235.3-2557, based on deep Advanced Camera for Surveys images. Despite the observational challenge set by the high redshift of the lens, we detect a substantial lensing signal at the greater than or similar to 8 sigma level. This clear detection is enabled in part by the high mass of the cluster, which is verified by our both parametric and non-parametric estimation of the cluster mass. Assuming that the cluster follows a Navarro-Frenk-White mass profile, we estimate that the projected mass of the cluster within r = 1 Mpc is (8.5 +/- 1.7) x 10(14) M(circle dot), where the error bar includes the statistical uncertainty of the shear profile, the effect of possible interloping background structures, the scatter in concentration parameter, and the error in our estimation of the mean redshift of the background galaxies. The high X-ray temperature 8.6(-1.2)(+1.3) keV of the cluster recently measured with Chandra is consistent with this high lensing mass. When we adopt the 1 sigma lower limit as a mass threshold and use the cosmological parameters favored by the Wilkinson Microwave Anisotropy Probe 5-year (WMAP5) result, the expected number of similarly massive clusters at z greater than or similar to 1.4 in the 11 square degree survey is N similar to 5 x 10(-3). Therefore, the discovery of the cluster within the survey volume is a rare event with a probability less than or similar to 1% and may open new scenarios in our current understanding of cluster formation within the standard cosmological model.
C1 [Jee, M. J.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA.
[Rosati, P.] European So Observ, D-85748 Garching, Germany.
[Ford, H. C.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA.
[Dawson, K. S.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA.
[Lidman, C.] European So Observ, Santiago 19, Chile.
[Perlmutter, S.] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Demarco, R.] Univ Concepcion, Dept Astron, Concepcion, Chile.
[Strazzullo, V.] Natl Radio Astron Observ, Socorro, NM 87801 USA.
[Mullis, C.] Wachovia Corp, Winston Salem, NC 27101 USA.
[Boehringer, H.; Fassbender, R.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany.
RP Jee, MJ (reprint author), Univ Calif Davis, Dept Phys, Davis, CA 95616 USA.
OI Fassbender, Rene/0000-0001-7489-0702
FU TABASGO foundation; NASA [GO-10496, GO-10698, NAS 5-26555]; GO-10496 and
GO-10698; U. S. Department of Energy [AC02-05CH11231]
FX M. J. J. acknowledges support for the current research from the TABASGO
foundation presented in the form of the Large Synoptic Survey Telescope
Cosmology Fellowship. Financial support for this work was in part
provided by NASA through program GO-10496 and GO-10698 from the Space
Telescope Science Institute, which is operated by AURA, Inc., under NASA
contract NAS 5-26555. This work was also supported in part by the
Director, Office of Science, Office of High Energy and Nuclear Physics,
of the U. S. Department of Energy under contract no. AC02-05CH11231. We
thank Stefano Borgani and Hu Zhan for verifying our estimation of the
cluster abundance.
NR 57
TC 97
Z9 97
U1 0
U2 5
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD OCT 10
PY 2009
VL 704
IS 1
BP 672
EP 686
DI 10.1088/0004-637X/704/1/672
PG 15
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 499KR
UT WOS:000270219500052
ER
PT J
AU Giannakis, D
Rosner, R
Fischer, PF
AF Giannakis, D.
Rosner, R.
Fischer, P. F.
TI Instabilities in free-surface Hartmann flow at low magnetic Prandtl
numbers
SO JOURNAL OF FLUID MECHANICS
LA English
DT Article
ID HYDRODYNAMIC STABILITY PROBLEMS; ORR-SOMMERFELD EQUATION; INCLINED
PLANE; LIQUID-FILM; ELECTROMAGNETIC-FIELD; PARALLEL FLOWS; LAYER;
MAGNETOHYDRODYNAMICS; WAVES
AB We study the linear stability of the flow of a viscous electrically conducting capillary fluid on a planar fixed plate in the presence of gravity and a uniform magnetic field, assuming that the plate is either a perfect electrical insulator or a perfect conductor. We first confirm that the Squire transformation for magnetohydrodynamics is compatible with the stress and insulating boundary conditions at the free surface but argue that unless the flow is driven at fixed Galilei and capillary numbers, respectively parameterizing gravity and surface tension, the critical mode is not necessarily two-dimensional. We then investigate numerically how a flow-normal magnetic field and the associated Hartmann steady state affect the soft and hard instability modes of free-surface flow, working in the low-magnetic-Prandtl-number regime of conducting laboratory fluids (Pm <= 10(-4)). Because it is a critical-layer instability (moderately modified by the presence of the free surface), the hard mode exhibits similar behaviour as the even unstable mode in channel Hartmann flow, in terms of both the weak influence of An on its neutral-stability curve and the dependence of its critical Reynolds number Re(c) on the Hartmann number Ha. In contrast, the structure of the soft mode's growth-rate contours in the (Re, alpha) plane, where alpha is the wavenumber, differs markedly between problems with small, but non-zero, Pin and their counterparts in the inductionless limit, Pm SE arrow 0. As derived from large-wavelength approximations and confirmed numerically, the soft mode's critical Reynolds number grows exponentially with Ha in inductionless problems. However, when Pm is non-zero the Lorentz force originating from the steady-state current leads to a modification of Re(c)(Ha) to either a sub-linearly increasing or a decreasing function of Ha, respectively for problems with insulating or perfectly conducting walls. In insulating-wall problems we also observe pairs of counter-propagating Alfven waves, the upstream-propagating wave undergoing an instability driven by energy transferred from the steady-state shear to both of the velocity and magnetic degrees of freedom. Movies are available with the online version of the paper.
C1 [Giannakis, D.; Rosner, R.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA.
[Rosner, R.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA.
[Rosner, R.; Fischer, P. F.] Argonne Natl Lab, Argonne, IL 60439 USA.
RP Giannakis, D (reprint author), Univ Chicago, Dept Phys, Chicago, IL 60637 USA.
EM dg227@uchicago.edu
RI Giannakis, Dimitrios/K-3575-2012
NR 49
TC 1
Z9 1
U1 0
U2 6
PU CAMBRIDGE UNIV PRESS
PI NEW YORK
PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
SN 0022-1120
J9 J FLUID MECH
JI J. Fluid Mech.
PD OCT 10
PY 2009
VL 636
BP 217
EP 277
DI 10.1017/S0022112009007824
PG 61
WC Mechanics; Physics, Fluids & Plasmas
SC Mechanics; Physics
GA 510DQ
UT WOS:000271068600010
ER
PT J
AU Kisslinger, LS
Henley, EM
Johnson, MB
AF Kisslinger, Leonard S.
Henley, Ernest M.
Johnson, Mikkel B.
TI LARGE MIXING ANGLE STERILE NEUTRINOS AND PULSAR VELOCITIES
SO MODERN PHYSICS LETTERS A
LA English
DT Article
DE Supernova; pulsars; pulsar kick; sterile neutrinos
ID NEUTRON-STARS; MAGNETIC-FIELD; OSCILLATIONS; MATTER
AB We investigate the momentum given to a protoneutron star, the pulsar kick, during the first ten seconds after temperature equilibrium is reached. Using a model with two sterile neutrinos obtained by fits to the MiniBooNE and LSND experiments, which is consistent with a new global fit, there is a large mixing angle, and the effective volume for emission is calculated. Using formulations with neutrinos created by URCA processes in a strong magnetic field, so the lowest Landau level has a sizable probability, we find that with known parameters, the asymmetric sterile neutrino emissivity might account for large pulsar kicks.
C1 [Kisslinger, Leonard S.] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA.
[Henley, Ernest M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA.
[Johnson, Mikkel B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Kisslinger, LS (reprint author), Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA.
EM kissling@andrew.cmu.edu
FU DOE [W-7405-ENG-36, DE-FG02-97ER41014]
FX This work was supported in part by DOE contracts W-7405-ENG-36 and
DE-FG02-97ER41014. The authors thank Terry Goldman; and William Louis,
Gerald Garvey and other LANL members of the MiniBooNE Collaboration for
helpful discussions.
NR 34
TC 7
Z9 7
U1 0
U2 0
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE
SN 0217-7323
EI 1793-6632
J9 MOD PHYS LETT A
JI Mod. Phys. Lett. A
PD OCT 10
PY 2009
VL 24
IS 31
BP 2507
EP 2516
DI 10.1142/S0217732309031806
PG 10
WC Physics, Nuclear; Physics, Particles & Fields; Physics, Mathematical
SC Physics
GA 512CF
UT WOS:000271219600004
ER
PT J
AU Ko, H
Zhang, ZX
Chueh, YL
Ho, JC
Lee, J
Fearing, RS
Javey, A
AF Ko, Hyunhyub
Zhang, Zhenxing
Chueh, Yu-Lun
Ho, Johnny C.
Lee, Jongho
Fearing, Ronald S.
Javey, Ali
TI Wet and Dry Adhesion Properties of Self-Selective Nanowire Connectors
SO ADVANCED FUNCTIONAL MATERIALS
LA English
DT Article
ID GECKO FOOT-HAIR; SURFACES; ARRAYS; FORCE
AB Here, the wet and dry adhesion properties of hybrid Ge/parylene nanowire (NW) connectors are examined. The ability of the NW connectors to bind strongly even under lubricating conditions, such as mineral oil, sheds light on the dominant role of van der Waals interactions in the observed adhesion. The superhydrophobic surface of the NW connectors enables the wet, self-cleaning of contaminant particles from the surface, similar to the lotus effect. In addition, the effect of NW length on the shear adhesion strength, repeated usability, and robustness of the connectors, all critical properties for applications that require reversible binding of components, is examined.
C1 [Ko, Hyunhyub; Zhang, Zhenxing; Chueh, Yu-Lun; Ho, Johnny C.; Lee, Jongho; Fearing, Ronald S.; Javey, Ali] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA.
[Ko, Hyunhyub; Zhang, Zhenxing; Chueh, Yu-Lun; Ho, Johnny C.; Javey, Ali] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Ko, Hyunhyub; Zhang, Zhenxing; Chueh, Yu-Lun; Ho, Johnny C.; Javey, Ali] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA.
[Zhang, Zhenxing] Lanzhou Univ, Minist Educ, Key Lab Magnetism & Magnet Mat, Lanzhou 730000, Gansu, Peoples R China.
RP Ko, H (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA.
EM ajavey@eecs.berkeley.edu
RI Ho, Johnny/K-5275-2012; Javey, Ali/B-4818-2013; Ko,
Hyunhyub/C-4848-2009; Zhang, Zhenxing/A-8762-2008; Chueh,
Yu-Lun/E-2053-2013;
OI Ho, Johnny/0000-0003-3000-8794; Zhang, Zhenxing/0000-0002-4946-0492;
Chueh, Yu-Lun/0000-0002-0155-9987; Lee, Jongho/0000-0003-0398-4220
FU DARPA/DSO; NSF Center of Integrated Nanomechanical Systems; Berkeley
Sensor and Actuator Center; China Scholarship Council; Lawrence Berkeley
National Laboratory
FX H. Ko, Z. Zhang contributed equally. We thank B. E. Schubert and R.
Kapadia for insightful discussions. This work was supported by
DARPA/DSO, NSF Center of Integrated Nanomechanical Systems, and Berkeley
Sensor and Actuator Center. Z. Z. acknowledges a fellowship from the
China Scholarship Council. The nanowire synthesis part of this project
was supported by a Laboratory Directed Research and Development grant
from Lawrence Berkeley National Laboratory. Supporting Information is
available online from Wiley InterScience or from the author.
NR 25
TC 22
Z9 24
U1 2
U2 27
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY
SN 1616-301X
J9 ADV FUNCT MATER
JI Adv. Funct. Mater.
PD OCT 9
PY 2009
VL 19
IS 19
BP 3098
EP 3102
DI 10.1002/adfm.200901178
PG 5
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 510ZJ
UT WOS:000271132700010
ER
PT J
AU Datta, AB
Hura, GL
Wolberger, C
AF Datta, Ajit B.
Hura, Greg L.
Wolberger, Cynthia
TI The Structure and Conformation of Lys63-Linked Tetraubiquitin
SO JOURNAL OF MOLECULAR BIOLOGY
LA English
DT Article
DE ubiquitin; X-ray crystallography; small-angle X-ray scattering; Lys63
tetraubiquitin
ID LINEAR POLYUBIQUITIN CHAINS; KAPPA-B ACTIVATION; X-RAY SOLUTION;
UBIQUITIN CHAINS; MACROMOLECULAR STRUCTURES; SCATTERING; BINDING;
RECOGNITION; NEMO; DEGRADATION
AB Ubiquitination involves the covalent attachment of the ubiquitin (Ub) C-terminus to the lysine side chain of a substrate protein by an isopeptide bond. The modification can comprise a single Ub moiety or a chain of Ub molecules joined by isopeptide bonds between the C-terminus of one Ub with one of the seven lysine residues in the next Ub. Modification of substrate proteins with Lys63-linked poly-Ub plays a key nondegradative signaling role in many biological processes, including DNA repair and nuclear factor-kappa B activation, whereas substrates modified by Lys48-linked chains are targeted to the proteasome for degradation. The distinct signaling properties of alternatively linked Ub chains presumably stem from structural differences that can be distinguished by effector proteins. We have determined the crystal structure of Lys63 tetra-Ub at a resolution of 1.96 angstrom and performed small-angle X-ray scattering experiments and molecular dynamics simulations to probe the conformation of Lys63 tetra-Ub in solution. The chain adopts a highly extended conformation in the crystal, in contrast with the compact globular fold of Lys48 tetra-Ub. Small-angle X-ray scattering experiments show that the Lys63 tetra-Ub chain is dynamic in solution, adopting an ensemble of conformations that are more compact than the extended form in the crystal. The results of these studies provide a basis for understanding the differences in the behavior and recognition of Lys63 poly-Ub chains. (C) 2009 Elsevier Ltd. All rights reserved.
C1 [Datta, Ajit B.; Wolberger, Cynthia] Johns Hopkins Univ, Sch Med, Dept Biophys & Biophys Chem, Baltimore, MD 21205 USA.
[Datta, Ajit B.; Wolberger, Cynthia] Johns Hopkins Univ, Sch Med, Howard Hughes Med Inst, Baltimore, MD 21205 USA.
[Hura, Greg L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Phys Biosci Div, Berkeley, CA 94720 USA.
RP Wolberger, C (reprint author), Johns Hopkins Univ, Sch Med, Dept Biophys & Biophys Chem, Baltimore, MD 21205 USA.
EM cwolberg@jhmi.edu
FU Howard Hughes Medical Institute; National Cancer Institute [CA92584]
FX This work was supported by the Howard Hughes Medical Institute (A.B.D
and C.W.) and the National Cancer Institute (SBDR grant no. CA92584;
G.H.). We thank Michal Hammel from the Lawrence Berkeley National
Laboratory for helping with the implementation of MES.
NR 40
TC 66
Z9 69
U1 2
U2 10
PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
PI LONDON
PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND
SN 0022-2836
J9 J MOL BIOL
JI J. Mol. Biol.
PD OCT 9
PY 2009
VL 392
IS 5
BP 1117
EP 1124
DI 10.1016/j.jmb.2009.07.090
PG 8
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 504NQ
UT WOS:000270624100001
PM 19664638
ER
PT J
AU Gin, BC
Garrahan, JP
Geissler, PL
AF Gin, Brian C.
Garrahan, Juan P.
Geissler, Phillip L.
TI The Limited Role of Nonnative Contacts in the Folding Pathways of a
Lattice Protein
SO JOURNAL OF MOLECULAR BIOLOGY
LA English
DT Article
DE Go model; nonnative contacts; lattice model; protein folding; principle
of minimum frustration
ID ENERGY LANDSCAPE; TRANSITION-STATE; MODEL; MECHANISMS; KINETICS;
THERMODYNAMICS; SIMULATION; SEQUENCES; DYNAMICS; EVOLUTION
AB Models of protein energetics that neglect interactions between amino acids that are not adjacent in the native state, such as the Go model, encode or underlie many influential ideas on protein folding. Implicit in this simplification is a crucial assumption that has never been critically evaluated in a broad context: Detailed mechanisms of protein folding are not biased by normative contacts, typically argued to be a consequence of sequence design and/or topology. Here we present, using computer simulations of a well-studied lattice heteropolymer model, the first systematic test of this oft-assumed correspondence over the statistically significant range of hundreds of thousands of amino acid sequences that fold to the same native structure. Contrary to previous conjectures, we find a multiplicity of folding mechanisms, suggesting that Go-like models cannot be justified by considerations of topology alone. Instead, we find that the crucial factor in discriminating among topological pathways is the heterogeneity of native contact energies: The order in which native contacts accumulate is profoundly insensitive to omission of nonnative interactions, provided that native contact heterogeneity is retained. This robustness holds over a surprisingly wide range of folding rates for our designed sequences. Mirroring predictions based on the principle of minimum frustration, fast-folding sequences match their Go-like counterparts in both topological mechanism and transit times. Less optimized sequences dwell much longer in the unfolded state and/or off-pathway intermediates than do Go-like models. For dynamics that bridge unfolded and unfolded states, however, even slow folders exhibit topological mechanisms and transit times nearly identical with those of their Go-like counterparts. Our results do not imply a direct correspondence between folding trajectories of Go-like models and those of real proteins, but they do help to clarify key topological and energetic assumptions that are commonly used to justify such caricatures. (C) 2009 Elsevier Ltd. All rights reserved.
C1 [Gin, Brian C.; Geissler, Phillip L.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Gin, Brian C.; Geissler, Phillip L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Chem Sci & Phys Biosci Div, Berkeley, CA 94720 USA.
[Gin, Brian C.] Univ Calif San Francisco, Sch Med, San Francisco, CA 94143 USA.
[Garrahan, Juan P.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England.
RP Geissler, PL (reprint author), Univ Calif Berkeley, Dept Chem, 207 Gilman Hall, Berkeley, CA 94720 USA.
EM geissler@berkeley.edu
FU Office of Science of the US Department of Energy [DE-AC-0205CH11231,
DE-AC02-05CH11231]; Ruben/Fatt Memorial Endowment; Engineering and
Physical Sciences Research Council [GR/S54074/01]
FX This research used the resources of the National Energy Research
Scientific Computing Center, which was supported by the Office of
Science of the US Department of Energy under contract no.
DE-AC-0205CH11231. This work was supported by the Director, Office of
Science, Office of Basic Energy Sciences, Chemical Sciences and Physical
Biosciences Divisions, of the US Department of Energy under contract no.
DE-AC02-05CH11231. In carrying out this work, B.C.G. was supported by
the Ruben/Fatt Memorial Endowment, and J.P.G. was supported by
Engineering and Physical Sciences Research Council grant GR/S54074/01.
J.P.G. was a Visiting Pitzer Professor at the University of California
at Berkeley during the time that this work was initiated.
NR 40
TC 25
Z9 25
U1 0
U2 11
PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
PI LONDON
PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND
SN 0022-2836
J9 J MOL BIOL
JI J. Mol. Biol.
PD OCT 9
PY 2009
VL 392
IS 5
BP 1303
EP 1314
DI 10.1016/j.jmb.2009.06.058
PG 12
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 504NQ
UT WOS:000270624100017
PM 19576901
ER
PT J
AU Zhuang, M
Calabrese, MF
Liu, J
Waddell, MB
Nourse, A
Hammel, M
Miller, DJ
Walden, H
Duda, DM
Seyedin, SN
Hoggard, T
Harper, JW
White, KP
Schulman, BA
AF Zhuang, Min
Calabrese, Matthew F.
Liu, Jiang
Waddell, M. Brett
Nourse, Amanda
Hammel, Michal
Miller, Darcie J.
Walden, Helen
Duda, David M.
Seyedin, Steven N.
Hoggard, Timothy
Harper, J. Wade
White, Kevin P.
Schulman, Brenda A.
TI Structures of SPOP-Substrate Complexes: Insights into Molecular
Architectures of BTB-Cul3 Ubiquitin Ligases
SO MOLECULAR CELL
LA English
DT Article
ID OXIDATIVE STRESS; BTB DOMAIN; TRANSCRIPTION FACTOR; PROTEIN SPOP; E3
LIGASE; F-BOX; SCF; DEGRADATION; ADAPTER; NRF2
AB In the largest E3 ligase subfamily, Cul3 binds a BTB domain, and an associated protein-interaction domain such as MATH recruits substrates for ubiquitination. Here, we present biochemical and structural analyses of the MATH-BTB protein, SPOP. We define a SPOP-binding consensus (SBC) and determine structures revealing recognition of SBCs from the phosphatase Puc, the transcriptional regulator Ci, and the chromatin component MacroH2A. We identify a dimeric SPOP-Cul3 assembly involving a conserved helical structure C-terminal of BTB domains, which we call "3-box" due to its facilitating Cul3 binding and its resemblance to F-/SOCS-boxes in other cullin-based E3s. Structural flexibility between the substrate-binding MATH and Cul3-binding BTB/3-box domains potentially allows a SPOP dimer to engage multiple SBCs found within a single substrate, such as Puc. These studies provide a molecular understanding of how MATH-BTB proteins recruit substrates to Cul3 and how their dimerization and conformational variability may facilitate avid interactions with diverse substrates.
C1 [Zhuang, Min; Calabrese, Matthew F.; Miller, Darcie J.; Walden, Helen; Duda, David M.; Seyedin, Steven N.; Hoggard, Timothy; Schulman, Brenda A.] St Jude Childrens Hosp, Dept Biol Struct, Memphis, TN 38105 USA.
[Waddell, M. Brett; Nourse, Amanda] St Jude Childrens Hosp, Hartwell Ctr Biotechnol & Bioinformat, Memphis, TN 38105 USA.
[Duda, David M.; Schulman, Brenda A.] St Jude Childrens Hosp, Howard Hughes Med Inst, Memphis, TN 38105 USA.
[Zhuang, Min; Schulman, Brenda A.] Univ Tennessee, Hlth Sci Ctr, Interdisplinary Program, Memphis, TN 38126 USA.
[Liu, Jiang; White, Kevin P.] Univ Chicago, Inst Genom & Syst Biol, Chicago, IL 60637 USA.
[Liu, Jiang; White, Kevin P.] Argonne Natl Lab, Chicago, IL 60637 USA.
[Liu, Jiang; White, Kevin P.] Univ Chicago, Dept Human Genet, Chicago, IL 60637 USA.
[Hammel, Michal] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
[Hoggard, Timothy] Univ Wisconsin, Dept Biomol Chem, Program Mol & Cellular Biol, Madison, WI 53706 USA.
[Harper, J. Wade] Harvard Univ, Dept Pathol, Sch Med, Boston, MA 02115 USA.
RP Schulman, BA (reprint author), St Jude Childrens Hosp, Dept Biol Struct, Memphis, TN 38105 USA.
EM brenda.schulman@stjude.org
OI Seyedin, Steven/0000-0002-6841-968X
FU ALSAC (American Lebanese Syrian Associated Charities); NIH [R01GM069530,
GM070565, P30CA021765]; Beckman Young InvestigatorAwards; W.M. Keck
Foundation; Chicago Biomedical Consortium; Damon Runyon Cancer Research
Foundation [DRG 2021-9]; NCRR [RR-1 5301]; U.S. DOE, Office of Basic
Energy Sciences [W-31-109-ENG-38, 8.2.2]; HHMI; NCI [CA92584]; DOE
[DE-AC03-76SF00098, DE-AC02-05CH11231, DE-AC02-98CH 10886]
FX We are grateful to D. King, V. Pagala, K. Kodali, and X. Ding for mass
spectrometry; to R. Cassell and P. Rodrigues for peptide synthesis and
purification; to C. Ross, A. Fereira, and J. Bollinger for computational
support; to L. Borg and A. Voss for technical assistance; to S. Otieno
and R. Kriwacki for assistance with CD; to J. Wang and J. Obenauer at
the Hartwell Center for bioinformatics; to D.W. Miller and S. Bozeman
for administrative support; to D. Scott for advice; and to K.R.
Rajashankar and 1. Kurinov for assistance at synchrotron. This work was
supported in part by ALSAC (American Lebanese Syrian Associated
Charities), grants from the NIH (R01GM069530 to B.A.S., GM070565 to
J.W.H., and P30CA021765 to St. Jude), Beckman Young InvestigatorAwards
(to B.A.S. and K.P.W.), awards from the W.M. Keck Foundation, and the
Searle Funds at The Chicago Community Trust from the Chicago Biomedical
Consortium (to K.P.W.). B.A.S. is an Investigator of the Howard Hughes
Medical Institute (HHMI). M.F.C. is an HHMI fellow ofthe Damon Runyon
Cancer Research Foundation (DRG 2021-9). Northeastern Collaborative
Access Team at the Advanced Photon Source (APS) is funded by RR-1 5301
from the NCRR at the NIH. Support for Southeast Regional Collaborative
Access Team at the APS may be found at http://www.ser-cat.org/members.
html. APS is funded by U.S. DOE, Office of Basic Energy Sciences,
Contract W-31-109-ENG-38, 8.2.2 (Advanced Light Source, ALS) is
supported by HHMI. Structurally Integrated Biology for Life Sciences
Beamline/12.3.1 (ALS) is funded by NCI CA92584 and DOE
DE-AC03-76SF00098. ALS is funded by DOE Contract DE-AC02-05CH11231. X25
(National Synchrotron Light Source) is funded by DOE Contract
DE-AC02-98CH 10886.
NR 60
TC 120
Z9 127
U1 3
U2 23
PU CELL PRESS
PI CAMBRIDGE
PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA
SN 1097-2765
J9 MOL CELL
JI Mol. Cell
PD OCT 9
PY 2009
VL 36
IS 1
BP 39
EP 50
DI 10.1016/j.molcel.2009.09.022
PG 12
WC Biochemistry & Molecular Biology; Cell Biology
SC Biochemistry & Molecular Biology; Cell Biology
GA 510AN
UT WOS:000271060500005
PM 19818708
ER
PT J
AU Aaltonen, T
Adelman, J
Akimoto, T
Gonzalez, BA
Amerio, S
Amidei, D
Anastassov, A
Annovi, A
Antos, J
Apollinari, G
Apresyan, A
Arisawa, T
Artikov, A
Ashmanskas, W
Attal, A
Aurisano, A
Azfar, F
Badgett, W
Barbaro-Galtieri, A
Barnes, VE
Barnett, BA
Barria, P
Bartos, P
Bartsch, V
Bauer, G
Beauchemin, PH
Bedeschi, F
Beecher, D
Behari, S
Bellettini, G
Bellinger, J
Benjamin, D
Beretvas, A
Beringer, J
Bhatti, A
Binkley, M
Bisello, D
Bizjak, I
Blair, RE
Blocker, C
Blumenfeld, B
Bocci, A
Bodek, A
Boisvert, V
Bolla, G
Bortoletto, D
Boudreau, J
Boveia, A
Brau, B
Bridgeman, A
Brigliadori, L
Bromberg, C
Brubaker, E
Budagov, J
Budd, HS
Budd, S
Burke, S
Burkett, K
Busetto, G
Bussey, P
Buzatu, A
Byrum, KL
Cabrera, S
Calancha, C
Campanelli, M
Campbell, M
Canelli, F
Canepa, A
Carls, B
Carlsmith, D
Carosi, R
Carrillo, S
Carron, S
Casal, B
Casarsa, M
Castro, A
Catastini, P
Cauz, D
Cavaliere, V
Cavalli-Sforza, M
Cerri, A
Cerrito, L
Chang, SH
Chen, YC
Chertok, M
Chiarelli, G
Chlachidze, G
Chlebana, F
Cho, K
Chokheli, D
Chou, JP
Choudalakis, G
Chuang, SH
Chung, K
Chung, WH
Chung, YS
Chwalek, T
Ciobanu, CI
Ciocci, MA
Clark, A
Clark, D
Compostella, G
Convery, ME
Conway, J
Cordelli, M
Cortiana, G
Cox, CA
Cox, DJ
Crescioli, F
Almenar, CC
Cuevas, J
Culbertson, R
Cully, JC
Dagenhart, D
Datta, M
Davies, T
de Barbaro, P
De Cecco, S
Deisher, A
De Lorenzo, G
Dell'Orso, M
Deluca, C
Demortier, L
Deng, J
Deninno, M
Derwent, PF
Di Canto, A
di Giovanni, GP
Dionisi, C
Di Ruzza, B
Dittmann, JR
D'Onofrio, M
Donati, S
Dong, P
Donini, J
Dorigo, T
Dube, S
Efron, J
Elagin, A
Erbacher, R
Errede, D
Errede, S
Eusebi, R
Fang, HC
Farrington, S
Fedorko, WT
Feild, RG
Feindt, M
Fernandez, JP
Ferrazza, C
Field, R
Flanagan, G
Forrest, R
Frank, MJ
Franklin, M
Freeman, JC
Furic, I
Gallinaro, M
Galyardt, J
Garberson, F
Garcia, JE
Garfinkel, AF
Garosi, P
Genser, K
Gerberich, H
Gerdes, D
Gessler, A
Giagu, S
Giakoumopoulou, V
Giannetti, P
Gibson, K
Gimmell, JL
Ginsburg, CM
Giokaris, N
Giordani, M
Giromini, P
Giunta, M
Giurgiu, G
Glagolev, V
Glenzinski, D
Gold, M
Goldschmidt, N
Golossanov, A
Gomez, G
Gomez-Ceballos, G
Goncharov, M
Gonzalez, O
Gorelov, I
Goshaw, AT
Goulianos, K
Gresele, A
Grinstein, S
Grosso-Pilcher, C
Group, RC
Grundler, U
da Costa, JG
Gunay-Unalan, Z
Haber, C
Hahn, K
Hahn, SR
Halkiadakis, E
Han, BY
Han, JY
Happacher, F
Hara, K
Hare, D
Hare, M
Harper, S
Harr, RF
Harris, RM
Hartz, M
Hatakeyama, K
Hays, C
Heck, M
Heijboer, A
Heinrich, J
Henderson, C
Herndon, M
Heuser, J
Hewamanage, S
Hidas, D
Hill, CS
Hirschbuehl, D
Hocker, A
Hou, S
Houlden, M
Hsu, SC
Huffman, BT
Hughes, RE
Husemann, U
Hussein, M
Huston, J
Incandela, J
Introzzi, G
Iori, M
Ivanov, A
James, E
Jang, D
Jayatilaka, B
Jeon, EJ
Jha, MK
Jindariani, S
Johnson, W
Jones, M
Joo, KK
Jun, SY
Jung, JE
Junk, TR
Kamon, T
Kar, D
Karchin, PE
Kato, Y
Kephart, R
Ketchum, W
Keung, J
Khotilovich, V
Kilminster, B
Kim, DH
Kim, HS
Kim, HW
Kim, JE
Kim, MJ
Kim, SB
Kim, SH
Kim, YK
Kimura, N
Kirsch, L
Klimenko, S
Knuteson, B
Ko, BR
Kondo, K
Kong, DJ
Konigsberg, J
Korytov, A
Kotwal, AV
Kreps, M
Kroll, J
Krop, D
Krumnack, N
Kruse, M
Krutelyov, V
Kubo, T
Kuhr, T
Kulkarni, NP
Kurata, M
Kwang, S
Laasanen, AT
Lami, S
Lammel, S
Lancaster, M
Lander, RL
Lannon, K
Lath, A
Latino, G
Lazzizzera, I
LeCompte, T
Lee, E
Lee, HS
Lee, SW
Leone, S
Lewis, JD
Lin, CS
Linacre, J
Lindgren, M
Lipeles, E
Lister, A
Litvintsev, DO
Liu, C
Liu, T
Lockyer, NS
Loginov, A
Loreti, M
Lovas, L
Lucchesi, D
Luci, C
Lueck, J
Lujan, P
Lukens, P
Lungu, G
Lyons, L
Lys, J
Lysak, R
MacQueen, D
Madrak, R
Maeshima, K
Makhoul, K
Maki, T
Maksimovic, P
Malde, S
Malik, S
Manca, G
Manousakis-Katsikakis, A
Margaroli, F
Marino, C
Marino, CP
Martin, A
Martin, V
Martinez, M
Martinez-Ballarin, R
Maruyama, T
Mastrandrea, P
Masubuchi, T
Mathis, M
Mattson, ME
Mazzanti, P
McFarland, KS
McIntyre, P
McNulty, R
Mehta, A
Mehtala, P
Menzione, A
Merkel, P
Mesropian, C
Miao, T
Miladinovic, N
Miller, R
Mills, C
Milnik, M
Mitra, A
Mitselmakher, G
Miyake, H
Moggi, N
Mondragon, MN
Moon, CS
Moore, R
Morello, MJ
Morlock, J
Fernandez, PM
Mulmenstadt, J
Mukherjee, A
Muller, T
Mumford, R
Murat, P
Mussini, M
Nachtman, J
Nagai, Y
Nagano, A
Naganoma, J
Nakamura, K
Nakano, I
Napier, A
Necula, V
Nett, J
Neu, C
Neubauer, MS
Neubauer, S
Nielsen, J
Nodulman, L
Norman, M
Norniella, O
Nurse, E
Oakes, L
Oh, SH
Oh, YD
Oksuzian, I
Okusawa, T
Orava, R
Osterberg, K
Griso, SP
Pagliarone, C
Palencia, E
Papadimitriou, V
Papaikonomou, A
Paramonov, AA
Parks, B
Pashapour, S
Patrick, J
Pauletta, G
Paulini, M
Paus, C
Peiffer, T
Pellett, DE
Penzo, A
Phillips, TJ
Piacentino, G
Pianori, E
Pinera, L
Pitts, K
Plager, C
Pondrom, L
Poukhov, O
Pounder, N
Prakoshyn, F
Pronko, A
Proudfoot, J
Ptohos, F
Pueschel, E
Punzi, G
Pursley, J
Rademacker, J
Rahaman, A
Ramakrishnan, V
Ranjan, N
Redondo, I
Renton, P
Renz, M
Rescigno, M
Richter, S
Rimondi, F
Ristori, L
Robson, A
Rodrigo, T
Rodriguez, T
Rogers, E
Rolli, S
Roser, R
Rossi, M
Rossin, R
Roy, P
Ruiz, A
Russ, J
Rusu, V
Rutherford, B
Saarikko, H
Safonov, A
Sakumoto, WK
Salto, O
Santi, L
Sarkar, S
Sartori, L
Sato, K
Savoy-Navarro, A
Schlabach, P
Schmidt, A
Schmidt, EE
Schmidt, MA
Schmidt, MP
Schmitt, M
Schwarz, T
Scodellaro, L
Scribano, A
Scuri, F
Sedov, A
Seidel, S
Seiya, Y
Semenov, A
Sexton-Kennedy, L
Sforza, F
Sfyrla, A
Shalhout, SZ
Shears, T
Shepard, PF
Shimojima, M
Shiraishi, S
Shochet, M
Shon, Y
Shreyber, I
Sinervo, P
Sisakyan, A
Slaughter, AJ
Slaunwhite, J
Sliwa, K
Smith, JR
Snider, FD
Snihur, R
Soha, A
Somalwar, S
Sorin, V
Spreitzer, T
Squillacioti, P
Stanitzki, M
Denis, RS
Stelzer, B
Stelzer-Chilton, O
Stentz, D
Strologas, J
Strycker, GL
Suh, JS
Sukhanov, A
Suslov, I
Suzuki, T
Taffard, A
Takashima, R
Takeuchi, Y
Tanaka, R
Tecchio, M
Teng, PK
Terashi, K
Thom, J
Thompson, AS
Thompson, GA
Thomson, E
Tipton, P
Ttito-Guzman, P
Tkaczyk, S
Toback, D
Tokar, S
Tollefson, K
Tomura, T
Tonelli, D
Torre, S
Torretta, D
Totaro, P
Tourneur, S
Trovato, M
Tsai, SY
Tu, Y
Turini, N
Ukegawa, F
Vallecorsa, S
van Remortel, N
Varganov, A
Vataga, E
Vazquez, F
Velev, G
Vellidis, C
Vidal, M
Vidal, R
Vila, I
Vilar, R
Vine, T
Vogel, M
Volobouev, I
Volpi, G
Wagner, P
Wagner, RG
Wagner, RL
Wagner, W
Wagner-Kuhr, J
Wakisaka, T
Wallny, R
Wang, SM
Warburton, A
Waters, D
Weinberger, M
Weinelt, J
Wester, WC
Whitehouse, B
Whiteson, D
Wicklund, AB
Wicklund, E
Wilbur, S
Williams, G
Williams, HH
Wilson, P
Winer, BL
Wittich, P
Wolbers, S
Wolfe, C
Wright, T
Wu, X
Rthwein, FW
Xie, S
Yagil, A
Yamamoto, K
Yamaoka, J
Yang, UK
Yang, YC
Yao, WM
Yeh, GP
Yi, K
Yoh, J
Yorita, K
Yoshida, T
Yu, GB
Yu, I
Yu, SS
Yun, JC
Zanello, L
Zanetti, A
Zhang, X
Zheng, Y
Zucchelli, S
AF Aaltonen, T.
Adelman, J.
Akimoto, T.
Alvarez Gonzalez, B.
Amerio, S.
Amidei, D.
Anastassov, A.
Annovi, A.
Antos, J.
Apollinari, G.
Apresyan, A.
Arisawa, T.
Artikov, A.
Ashmanskas, W.
Attal, A.
Aurisano, A.
Azfar, F.
Badgett, W.
Barbaro-Galtieri, A.
Barnes, V. E.
Barnett, B. A.
Barria, P.
Bartos, P.
Bartsch, V.
Bauer, G.
Beauchemin, P. -H.
Bedeschi, F.
Beecher, D.
Behari, S.
Bellettini, G.
Bellinger, J.
Benjamin, D.
Beretvas, A.
Beringer, J.
Bhatti, A.
Binkley, M.
Bisello, D.
Bizjak, I.
Blair, R. E.
Blocker, C.
Blumenfeld, B.
Bocci, A.
Bodek, A.
Boisvert, V.
Bolla, G.
Bortoletto, D.
Boudreau, J.
Boveia, A.
Brau, B.
Bridgeman, A.
Brigliadori, L.
Bromberg, C.
Brubaker, E.
Budagov, J.
Budd, H. S.
Budd, S.
Burke, S.
Burkett, K.
Busetto, G.
Bussey, P.
Buzatu, A.
Byrum, K. L.
Cabrera, S.
Calancha, C.
Campanelli, M.
Campbell, M.
Canelli, F.
Canepa, A.
Carls, B.
Carlsmith, D.
Carosi, R.
Carrillo, S.
Carron, S.
Casal, B.
Casarsa, M.
Castro, A.
Catastini, P.
Cauz, D.
Cavaliere, V.
Cavalli-Sforza, M.
Cerri, A.
Cerrito, L.
Chang, S. H.
Chen, Y. C.
Chertok, M.
Chiarelli, G.
Chlachidze, G.
Chlebana, F.
Cho, K.
Chokheli, D.
Chou, J. P.
Choudalakis, G.
Chuang, S. H.
Chung, K.
Chung, W. H.
Chung, Y. S.
Chwalek, T.
Ciobanu, C. I.
Ciocci, M. A.
Clark, A.
Clark, D.
Compostella, G.
Convery, M. E.
Conway, J.
Cordelli, M.
Cortiana, G.
Cox, C. A.
Cox, D. J.
Crescioli, F.
Almenar, C. Cuenca
Cuevas, J.
Culbertson, R.
Cully, J. C.
Dagenhart, D.
Datta, M.
Davies, T.
de Barbaro, P.
De Cecco, S.
Deisher, A.
De Lorenzo, G.
Dell'Orso, M.
Deluca, C.
Demortier, L.
Deng, J.
Deninno, M.
Derwent, P. F.
Di Canto, A.
di Giovanni, G. P.
Dionisi, C.
Di Ruzza, B.
Dittmann, J. R.
D'Onofrio, M.
Donati, S.
Dong, P.
Donini, J.
Dorigo, T.
Dube, S.
Efron, J.
Elagin, A.
Erbacher, R.
Errede, D.
Errede, S.
Eusebi, R.
Fang, H. C.
Farrington, S.
Fedorko, W. T.
Feild, R. G.
Feindt, M.
Fernandez, J. P.
Ferrazza, C.
Field, R.
Flanagan, G.
Forrest, R.
Frank, M. J.
Franklin, M.
Freeman, J. C.
Furic, I.
Gallinaro, M.
Galyardt, J.
Garberson, F.
Garcia, J. E.
Garfinkel, A. F.
Garosi, P.
Genser, K.
Gerberich, H.
Gerdes, D.
Gessler, A.
Giagu, S.
Giakoumopoulou, V.
Giannetti, P.
Gibson, K.
Gimmell, J. L.
Ginsburg, C. M.
Giokaris, N.
Giordani, M.
Giromini, P.
Giunta, M.
Giurgiu, G.
Glagolev, V.
Glenzinski, D.
Gold, M.
Goldschmidt, N.
Golossanov, A.
Gomez, G.
Gomez-Ceballos, G.
Goncharov, M.
Gonzalez, O.
Gorelov, I.
Goshaw, A. T.
Goulianos, K.
Gresele, A.
Grinstein, S.
Grosso-Pilcher, C.
Group, R. C.
Grundler, U.
da Costa, J. Guimaraes
Gunay-Unalan, Z.
Haber, C.
Hahn, K.
Hahn, S. R.
Halkiadakis, E.
Han, B. -Y.
Han, J. Y.
Happacher, F.
Hara, K.
Hare, D.
Hare, M.
Harper, S.
Harr, R. F.
Harris, R. M.
Hartz, M.
Hatakeyama, K.
Hays, C.
Heck, M.
Heijboer, A.
Heinrich, J.
Henderson, C.
Herndon, M.
Heuser, J.
Hewamanage, S.
Hidas, D.
Hill, C. S.
Hirschbuehl, D.
Hocker, A.
Hou, S.
Houlden, M.
Hsu, S. -C.
Huffman, B. T.
Hughes, R. E.
Husemann, U.
Hussein, M.
Huston, J.
Incandela, J.
Introzzi, G.
Iori, M.
Ivanov, A.
James, E.
Jang, D.
Jayatilaka, B.
Jeon, E. J.
Jha, M. K.
Jindariani, S.
Johnson, W.
Jones, M.
Joo, K. K.
Jun, S. Y.
Jung, J. E.
Junk, T. R.
Kamon, T.
Kar, D.
Karchin, P. E.
Kato, Y.
Kephart, R.
Ketchum, W.
Keung, J.
Khotilovich, V.
Kilminster, B.
Kim, D. H.
Kim, H. S.
Kim, H. W.
Kim, J. E.
Kim, M. J.
Kim, S. B.
Kim, S. H.
Kim, Y. K.
Kimura, N.
Kirsch, L.
Klimenko, S.
Knuteson, B.
Ko, B. R.
Kondo, K.
Kong, D. J.
Konigsberg, J.
Korytov, A.
Kotwal, A. V.
Kreps, M.
Kroll, J.
Krop, D.
Krumnack, N.
Kruse, M.
Krutelyov, V.
Kubo, T.
Kuhr, T.
Kulkarni, N. P.
Kurata, M.
Kwang, S.
Laasanen, A. T.
Lami, S.
Lammel, S.
Lancaster, M.
Lander, R. L.
Lannon, K.
Lath, A.
Latino, G.
Lazzizzera, I.
LeCompte, T.
Lee, E.
Lee, H. S.
Lee, S. W.
Leone, S.
Lewis, J. D.
Lin, C. -S.
Linacre, J.
Lindgren, M.
Lipeles, E.
Lister, A.
Litvintsev, D. O.
Liu, C.
Liu, T.
Lockyer, N. S.
Loginov, A.
Loreti, M.
Lovas, L.
Lucchesi, D.
Luci, C.
Lueck, J.
Lujan, P.
Lukens, P.
Lungu, G.
Lyons, L.
Lys, J.
Lysak, R.
MacQueen, D.
Madrak, R.
Maeshima, K.
Makhoul, K.
Maki, T.
Maksimovic, P.
Malde, S.
Malik, S.
Manca, G.
Manousakis-Katsikakis, A.
Margaroli, F.
Marino, C.
Marino, C. P.
Martin, A.
Martin, V.
Martinez, M.
Martinez-Ballarin, R.
Maruyama, T.
Mastrandrea, P.
Masubuchi, T.
Mathis, M.
Mattson, M. E.
Mazzanti, P.
McFarland, K. S.
McIntyre, P.
McNulty, R.
Mehta, A.
Mehtala, P.
Menzione, A.
Merkel, P.
Mesropian, C.
Miao, T.
Miladinovic, N.
Miller, R.
Mills, C.
Milnik, M.
Mitra, A.
Mitselmakher, G.
Miyake, H.
Moggi, N.
Mondragon, M. N.
Moon, C. S.
Moore, R.
Morello, M. J.
Morlock, J.
Fernandez, P. Movilla
Mulmenstadt, J.
Mukherjee, A.
Muller, Th.
Mumford, R.
Murat, P.
Mussini, M.
Nachtman, J.
Nagai, Y.
Nagano, A.
Naganoma, J.
Nakamura, K.
Nakano, I.
Napier, A.
Necula, V.
Nett, J.
Neu, C.
Neubauer, M. S.
Neubauer, S.
Nielsen, J.
Nodulman, L.
Norman, M.
Norniella, O.
Nurse, E.
Oakes, L.
Oh, S. H.
Oh, Y. D.
Oksuzian, I.
Okusawa, T.
Orava, R.
Osterberg, K.
Griso, S. Pagan
Pagliarone, C.
Palencia, E.
Papadimitriou, V.
Papaikonomou, A.
Paramonov, A. A.
Parks, B.
Pashapour, S.
Patrick, J.
Pauletta, G.
Paulini, M.
Paus, C.
Peiffer, T.
Pellett, D. E.
Penzo, A.
Phillips, T. J.
Piacentino, G.
Pianori, E.
Pinera, L.
Pitts, K.
Plager, C.
Pondrom, L.
Poukhov, O.
Pounder, N.
Prakoshyn, F.
Pronko, A.
Proudfoot, J.
Ptohos, F.
Pueschel, E.
Punzi, G.
Pursley, J.
Rademacker, J.
Rahaman, A.
Ramakrishnan, V.
Ranjan, N.
Redondo, I.
Renton, P.
Renz, M.
Rescigno, M.
Richter, S.
Rimondi, F.
Ristori, L.
Robson, A.
Rodrigo, T.
Rodriguez, T.
Rogers, E.
Rolli, S.
Roser, R.
Rossi, M.
Rossin, R.
Roy, P.
Ruiz, A.
Russ, J.
Rusu, V.
Rutherford, B.
Saarikko, H.
Safonov, A.
Sakumoto, W. K.
Salto, O.
Santi, L.
Sarkar, S.
Sartori, L.
Sato, K.
Savoy-Navarro, A.
Schlabach, P.
Schmidt, A.
Schmidt, E. E.
Schmidt, M. A.
Schmidt, M. P.
Schmitt, M.
Schwarz, T.
Scodellaro, L.
Scribano, A.
Scuri, F.
Sedov, A.
Seidel, S.
Seiya, Y.
Semenov, A.
Sexton-Kennedy, L.
Sforza, F.
Sfyrla, A.
Shalhout, S. Z.
Shears, T.
Shepard, P. F.
Shimojima, M.
Shiraishi, S.
Shochet, M.
Shon, Y.
Shreyber, I.
Sinervo, P.
Sisakyan, A.
Slaughter, A. J.
Slaunwhite, J.
Sliwa, K.
Smith, J. R.
Snider, F. D.
Snihur, R.
Soha, A.
Somalwar, S.
Sorin, V.
Spreitzer, T.
Squillacioti, P.
Stanitzki, M.
Denis, R. St.
Stelzer, B.
Stelzer-Chilton, O.
Stentz, D.
Strologas, J.
Strycker, G. L.
Suh, J. S.
Sukhanov, A.
Suslov, I.
Suzuki, T.
Taffard, A.
Takashima, R.
Takeuchi, Y.
Tanaka, R.
Tecchio, M.
Teng, P. K.
Terashi, K.
Thom, J.
Thompson, A. S.
Thompson, G. A.
Thomson, E.
Tipton, P.
Ttito-Guzman, P.
Tkaczyk, S.
Toback, D.
Tokar, S.
Tollefson, K.
Tomura, T.
Tonelli, D.
Torre, S.
Torretta, D.
Totaro, P.
Tourneur, S.
Trovato, M.
Tsai, S. -Y.
Tu, Y.
Turini, N.
Ukegawa, F.
Vallecorsa, S.
van Remortel, N.
Varganov, A.
Vataga, E.
Vazquez, F.
Velev, G.
Vellidis, C.
Vidal, M.
Vidal, R.
Vila, I.
Vilar, R.
Vine, T.
Vogel, M.
Volobouev, I.
Volpi, G.
Wagner, P.
Wagner, R. G.
Wagner, R. L.
Wagner, W.
Wagner-Kuhr, J.
Wakisaka, T.
Wallny, R.
Wang, S. M.
Warburton, A.
Waters, D.
Weinberger, M.
Weinelt, J.
Wester, W. C., III
Whitehouse, B.
Whiteson, D.
Wicklund, A. B.
Wicklund, E.
Wilbur, S.
Williams, G.
Williams, H. H.
Wilson, P.
Winer, B. L.
Wittich, P.
Wolbers, S.
Wolfe, C.
Wright, T.
Wu, X.
Rthwein, F. Wu
Xie, S.
Yagil, A.
Yamamoto, K.
Yamaoka, J.
Yang, U. K.
Yang, Y. C.
Yao, W. M.
Yeh, G. P.
Yi, K.
Yoh, J.
Yorita, K.
Yoshida, T.
Yu, G. B.
Yu, I.
Yu, S. S.
Yun, J. C.
Zanello, L.
Zanetti, A.
Zhang, X.
Zheng, Y.
Zucchelli, S.
CA CDF Collaboration
TI Precision Measurement of the X(3872) Mass in J/psi pi(+)pi(-) Decays
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID DETECTOR
AB We present an analysis of the mass of the X(3872) reconstructed via its decay to J/psi pi(+)pi(-) using 2.4 fb(-1) of integrated luminosity from p (p) over bar collisions at root s = 1.96 TeV, collected with the CDF II detector at the Fermilab Tevatron. The possible existence of two nearby mass states is investigated. Within the limits of our experimental resolution the data are consistent with a single state, and having no evidence for two states we set upper limits on the mass difference between two hypothetical states for different assumed ratios of contributions to the observed peak. For equal contributions, the 95% confidence level upper limit on the mass difference is 3.6 MeV/c(2). Under the single-state model the X(3872) mass is measured to be 3871.61 +/- 0.16(stat) +/- 0.19(syst) MeV/c(2), which is the most precise determination to date.
C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland.
[Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland.
[Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan.
[Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece.
[Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Martinez, M.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain.
[Dittmann, J. R.; Frank, M. J.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA.
[Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy.
[Brigliadori, L.; Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy.
[Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA.
[Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA.
[Dong, P.; Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA.
[Norman, M.; Rthwein, F. Wu; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA.
[Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA.
[Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain.
[Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA.
[Adelman, J.; Brubaker, E.; Canelli, F.; Fedorko, W. T.; Grosso-Pilcher, C.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Bartos, P.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia.
[Bartos, P.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia.
[Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia.
[Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.] Duke Univ, Durham, NC 27708 USA.
[Antos, J.; Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burke, S.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Chung, K.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lovas, L.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Mondragon, M. N.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Rutherford, B.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yi, K.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA.
[Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[Clark, A.; Garcia, J. E.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland.
[Bussey, P.; Davies, T.; Martin, V.; Robson, A.; Denis, R. St.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland.
[Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.] Harvard Univ, Cambridge, MA 02138 USA.
[Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA.
[Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA.
[Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany.
[Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea.
[Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea.
[Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea.
[Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea.
[Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea.
[Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju 561756, South Korea.
[Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -S.; Lujan, P.; Lys, J.; Mulmenstadt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England.
[Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Makhoul, K.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England.
[Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] CIEMAT, E-28040 Madrid, Spain.
[Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Goncharov, M.; Hahn, K.; Henderson, C.; Knuteson, B.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA.
[Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada.
[Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada.
[Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada.
[Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada.
[Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA.
[Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA.
[Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA.
[Efron, J.; Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA.
[Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan.
[Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan.
[Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England.
[Amerio, S.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy.
[Amerio, S.; Bisello, D.; Busetto, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy.
[Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, CNRS, LPNHE, IN2P3,UMR7585, F-75252 Paris, France.
[Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA.
[Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy.
[Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Punzi, G.; Sforza, F.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy.
[Barria, P.; Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Garosi, P.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy.
[Ferrazza, C.; Trovato, M.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy.
[Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA.
[Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA.
[Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA.
[Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA.
[Dionisi, C.; Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy.
[Dionisi, C.; Giagu, S.; Iori, M.; Luci, C.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, I-00185 Rome, Italy.
[Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA.
[Aurisano, A.; Elagin, A.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA.
[Cauz, D.; Di Ruzza, B.; Giordani, M.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy.
[Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, I-33100 Udine, Italy.
[Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan.
[Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA.
[Arisawa, T.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan.
[Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA.
[Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA.
[Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA.
RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland.
RI Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Xie,
Si/O-6830-2016; Canelli, Florencia/O-9693-2016; Ruiz,
Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco,
Sandro/B-1016-2012; manca, giulia/I-9264-2012; Amerio,
Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Annovi,
Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; St.Denis,
Richard/C-8997-2012; Warburton, Andreas/N-8028-2013; Kim,
Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon,
Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Grinstein,
Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ,
James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera,
Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose
/H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza,
Matteo/H-7102-2015; Chiarelli, Giorgio/E-8953-2012; Muelmenstaedt,
Johannes/K-2432-2015
OI Nielsen, Jason/0000-0002-9175-4419; Jun, Soon Yung/0000-0003-3370-6109;
Toback, David/0000-0003-3457-4144; Hays, Chris/0000-0003-2371-9723;
Farrington, Sinead/0000-0001-5350-9271; Robson,
Aidan/0000-0002-1659-8284; Torre, Stefano/0000-0002-7565-0118; Introzzi,
Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Xie,
Si/0000-0003-2509-5731; Canelli, Florencia/0000-0001-6361-2117; Lami,
Stefano/0000-0001-9492-0147; Margaroli, Fabrizio/0000-0002-3869-0153;
Group, Robert/0000-0002-4097-5254; Vidal Marono,
Miguel/0000-0002-2590-5987; Ruiz, Alberto/0000-0002-3639-0368; Punzi,
Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398;
Ivanov, Andrew/0000-0002-9270-5643; Warburton,
Andreas/0000-0002-2298-7315; Moon, Chang-Seong/0000-0001-8229-7829;
Scodellaro, Luca/0000-0002-4974-8330; Grinstein,
Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787;
Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611;
Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese
/0000-0003-0002-5462; Chiarelli, Giorgio/0000-0001-9851-4816;
Muelmenstaedt, Johannes/0000-0003-1105-6678
NR 31
TC 65
Z9 66
U1 1
U2 12
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD OCT 9
PY 2009
VL 103
IS 15
AR 152001
DI 10.1103/PhysRevLett.103.152001
PG 8
WC Physics, Multidisciplinary
SC Physics
GA 505EK
UT WOS:000270672100011
PM 19905622
ER
PT J
AU Airapetian, A
Akopov, N
Akopov, Z
Aschenauer, EC
Augustyniak, W
Avetissian, A
Avetisyan, E
Bacchetta, A
Ball, B
Bianchi, N
Blok, HP
Bottcher, H
Bonomo, C
Borissov, A
Bryzgalov, V
Burns, J
Capiluppi, M
Capitani, GP
Cisbani, E
Ciullo, G
Contalbrigo, M
Dalpiaz, PF
Deconinck, W
De Leo, R
De Nardo, L
De Sanctis, E
Diefenthaler, M
Di Nezza, P
Dreschler, J
Duren, M
Ehrenfried, M
Elbakian, G
Ellinghaus, F
Elschenbroich, U
Fabbri, R
Fantoni, A
Felawka, L
Frullani, S
Gabbert, D
Gapienko, G
Gapienko, V
Garibaldi, F
Gharibyan, V
Giordano, F
Gliske, S
Hadjidakis, C
Hartig, M
Hasch, D
Hill, G
Hillenbrand, A
Hoek, M
Holler, Y
Hristova, I
Imazu, Y
Ivanilov, A
Jackson, HE
Jo, HS
Joosten, S
Kaiser, R
Keri, T
Kinney, E
Kisselev, A
Korotkov, V
Kozlov, V
Kravchenko, P
Lagamba, L
Lamb, R
Lapikas, L
Lehmann, I
Lenisa, P
Linden-Levy, LA
Ruiz, AL
Lorenzon, W
Lu, XG
Lu, XR
Ma, BQ
Mahon, D
Makins, NCR
Manaenkov, SI
Manfre, L
Mao, Y
Marianski, B
de la Ossa, AM
Marukyan, H
Miller, CA
Miyachi, Y
Movsisyan, A
Murray, M
Mussgiller, A
Nappi, E
Naryshkin, Y
Nass, A
Negodaev, M
Nowak, WD
Pappalardo, LL
Perez-Benito, R
Reimer, PE
Reolon, AR
Riedl, C
Rith, K
Rosner, G
Rostomyan, A
Rubin, J
Ryckbosch, D
Salomatin, Y
Sanftl, F
Schafer, A
Schnell, G
Schuler, KP
Seitz, B
Shibata, TA
Shutov, V
Stancari, M
Statera, M
Steijger, JJM
Stenzel, H
Stewart, J
Stinzing, F
Taroian, S
Terkulov, A
Trzcinski, A
Tytgat, M
Vandenbroucke, A
van der Nat, PB
Van Haarlem, Y
Van Hulse, C
Varanda, M
Veretennikov, D
Vikhrov, V
Vilardi, I
Vogel, C
Wang, S
Yaschenko, S
Ye, H
Ye, Z
Yen, S
Yu, W
Zeiler, D
Zihlmann, B
Zupranski, P
AF Airapetian, A.
Akopov, N.
Akopov, Z.
Aschenauer, E. C.
Augustyniak, W.
Avetissian, A.
Avetisyan, E.
Bacchetta, A.
Ball, B.
Bianchi, N.
Blok, H. P.
Boettcher, H.
Bonomo, C.
Borissov, A.
Bryzgalov, V.
Burns, J.
Capiluppi, M.
Capitani, G. P.
Cisbani, E.
Ciullo, G.
Contalbrigo, M.
Dalpiaz, P. F.
Deconinck, W.
De Leo, R.
De Nardo, L.
De Sanctis, E.
Diefenthaler, M.
Di Nezza, P.
Dreschler, J.
Dueren, M.
Ehrenfried, M.
Elbakian, G.
Ellinghaus, F.
Elschenbroich, U.
Fabbri, R.
Fantoni, A.
Felawka, L.
Frullani, S.
Gabbert, D.
Gapienko, G.
Gapienko, V.
Garibaldi, F.
Gharibyan, V.
Giordano, F.
Gliske, S.
Hadjidakis, C.
Hartig, M.
Hasch, D.
Hill, G.
Hillenbrand, A.
Hoek, M.
Holler, Y.
Hristova, I.
Imazu, Y.
Ivanilov, A.
Jackson, H. E.
Jo, H. S.
Joosten, S.
Kaiser, R.
Keri, T.
Kinney, E.
Kisselev, A.
Korotkov, V.
Kozlov, V.
Kravchenko, P.
Lagamba, L.
Lamb, R.
Lapikas, L.
Lehmann, I.
Lenisa, P.
Linden-Levy, L. A.
Ruiz, A. Lopez
Lorenzon, W.
Lu, X. -G.
Lu, X. -R.
Ma, B. -Q.
Mahon, D.
Makins, N. C. R.
Manaenkov, S. I.
Manfre, L.
Mao, Y.
Marianski, B.
de la Ossa, A. Martinez
Marukyan, H.
Miller, C. A.
Miyachi, Y.
Movsisyan, A.
Murray, M.
Mussgiller, A.
Nappi, E.
Naryshkin, Y.
Nass, A.
Negodaev, M.
Nowak, W. -D.
Pappalardo, L. L.
Perez-Benito, R.
Reimer, P. E.
Reolon, A. R.
Riedl, C.
Rith, K.
Rosner, G.
Rostomyan, A.
Rubin, J.
Ryckbosch, D.
Salomatin, Y.
Sanftl, F.
Schaefer, A.
Schnell, G.
Schueler, K. P.
Seitz, B.
Shibata, T. -A.
Shutov, V.
Stancari, M.
Statera, M.
Steijger, J. J. M.
Stenzel, H.
Stewart, J.
Stinzing, F.
Taroian, S.
Terkulov, A.
Trzcinski, A.
Tytgat, M.
Vandenbroucke, A.
van der Nat, P. B.
Van Haarlem, Y.
Van Hulse, C.
Varanda, M.
Veretennikov, D.
Vikhrov, V.
Vilardi, I.
Vogel, C.
Wang, S.
Yaschenko, S.
Ye, H.
Ye, Z.
Yen, S.
Yu, W.
Zeiler, D.
Zihlmann, B.
Zupranski, P.
CA HERMES Collaboration
TI Observation of the Naive-T-Odd Sivers Effect in Deep-Inelastic
Scattering
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID FINAL-STATE INTERACTIONS; TRANSVERSE-SPIN ASYMMETRIES; PARTON
DISTRIBUTIONS; LEPTOPRODUCTION; GAUGE; COLLISIONS; TARGET; RING
AB Azimuthal single-spin asymmetries of leptoproduced pions and charged kaons were measured on a transversely polarized hydrogen target. Evidence for a naive-T-odd, transverse-momentum-dependent parton distribution function is deduced from nonvanishing Sivers effects for pi(+), pi(0), and K(+/-), as well as in the difference of the pi(+) and pi(-) cross sections.
C1 [Airapetian, A.; Dueren, M.; Ehrenfried, M.; Keri, T.; Perez-Benito, R.; Stenzel, H.; Yu, W.] Univ Giessen, Inst Phys, D-35392 Giessen, Germany.
[Jackson, H. E.; Reimer, P. E.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
[De Leo, R.; Lagamba, L.; Nappi, E.; Vilardi, I.] Ist Nazl Fis Nucl, Sez Bari, I-70124 Bari, Italy.
[Ma, B. -Q.; Mao, Y.; Wang, S.; Ye, H.] Peking Univ, Sch Phys, Beijing 100871, Peoples R China.
[Ellinghaus, F.; Kinney, E.; de la Ossa, A. Martinez] Univ Colorado, Nucl Phys Lab, Boulder, CO 80309 USA.
[Avetisyan, E.; Bacchetta, A.; Borissov, A.; Deconinck, W.; De Nardo, L.; Giordano, F.; Hartig, M.; Holler, Y.; Mussgiller, A.; Rostomyan, A.; Schueler, K. P.; Varanda, M.; Ye, Z.; Zihlmann, B.] DESY, D-22603 Hamburg, Germany.
[Aschenauer, E. C.; Boettcher, H.; Fabbri, R.; Gabbert, D.; Hillenbrand, A.; Hristova, I.; Lu, X. -G.; Negodaev, M.; Nowak, W. -D.; Riedl, C.; Schnell, G.; Stewart, J.; Yaschenko, S.] DESY, D-15738 Zeuthen, Germany.
[Shutov, V.] Joint Inst Nucl Res, Dubna 141980, Russia.
[Diefenthaler, M.; Mussgiller, A.; Nass, A.; Rith, K.; Stinzing, F.; Vogel, C.; Yaschenko, S.; Zeiler, D.] Univ Erlangen Nurnberg, Inst Phys, D-91058 Erlangen, Germany.
[Bonomo, C.; Capiluppi, M.; Ciullo, G.; Contalbrigo, M.; Dalpiaz, P. F.; Giordano, F.; Lenisa, P.; Pappalardo, L. L.; Stancari, M.; Statera, M.] Univ Ferrara, Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy.
[Bonomo, C.; Capiluppi, M.; Ciullo, G.; Contalbrigo, M.; Dalpiaz, P. F.; Giordano, F.; Lenisa, P.; Pappalardo, L. L.; Stancari, M.; Statera, M.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy.
[Bianchi, N.; Capitani, G. P.; De Sanctis, E.; Di Nezza, P.; Fantoni, A.; Hadjidakis, C.; Hasch, D.; Reolon, A. R.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[Elschenbroich, U.; Jo, H. S.; Joosten, S.; Ruiz, A. Lopez; Ryckbosch, D.; Schnell, G.; Tytgat, M.; Vandenbroucke, A.; Van Haarlem, Y.; Van Hulse, C.] Univ Ghent, Dept Subat & Radiat Phys, B-9000 Ghent, Belgium.
[Burns, J.; Hill, G.; Hoek, M.; Kaiser, R.; Keri, T.; Lehmann, I.; Mahon, D.; Murray, M.; Rosner, G.; Seitz, B.] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland.
[Diefenthaler, M.; Joosten, S.; Lamb, R.; Linden-Levy, L. A.; Makins, N. C. R.; Rubin, J.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
[Kozlov, V.; Terkulov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia.
[Blok, H. P.; Dreschler, J.; Lapikas, L.; Steijger, J. J. M.; van der Nat, P. B.] Natl Inst Subat Phys Nikhef, NL-1009 DB Amsterdam, Netherlands.
[Kisselev, A.; Kravchenko, P.; Manaenkov, S. I.; Naryshkin, Y.; Veretennikov, D.; Vikhrov, V.] Petersburg Nucl Phys Inst, Gatchina 188300, Leningrad Reg, Russia.
[Bryzgalov, V.; Gapienko, G.; Gapienko, V.; Ivanilov, A.; Korotkov, V.; Salomatin, Y.] Inst High Energy Phys, Protvino 142281, Moscow Region, Russia.
[Sanftl, F.; Schaefer, A.] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany.
[Cisbani, E.; Frullani, S.; Garibaldi, F.; Manfre, L.] Ist Nazl Fis Nucl, Sez Roma 1, Grp Sanita, I-00161 Rome, Italy.
[Cisbani, E.; Frullani, S.; Garibaldi, F.; Manfre, L.] Ist Super Sanita, Phys Lab, I-00161 Rome, Italy.
[Felawka, L.; Miller, C. A.; Yen, S.] TRIUMF, Vancouver, BC V6T 2A3, Canada.
[Imazu, Y.; Lu, X. -R.; Miyachi, Y.; Shibata, T. -A.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan.
[Blok, H. P.] Vrije Univ Amsterdam, Dept Phys & Astron, NL-1081 HV Amsterdam, Netherlands.
[Augustyniak, W.; Marianski, B.; Trzcinski, A.; Zupranski, P.] Andrzej Soltan Inst Nucl Studies, PL-00689 Warsaw, Poland.
[Akopov, N.; Akopov, Z.; Avetissian, A.; Elbakian, G.; Gharibyan, V.; Marukyan, H.; Movsisyan, A.; Taroian, S.] Yerevan Phys Inst, Yerevan 375036, Armenia.
[Airapetian, A.; Ball, B.; Deconinck, W.; De Nardo, L.; Gliske, S.; Lorenzon, W.] Univ Michigan, Randall Lab Phys, Ann Arbor, MI 48109 USA.
RP Airapetian, A (reprint author), Univ Giessen, Inst Phys, D-35392 Giessen, Germany.
RI Cisbani, Evaristo/C-9249-2011; Bacchetta, Alessandro/F-3199-2012;
Deconinck, Wouter/F-4054-2012; Reimer, Paul/E-2223-2013; Negodaev,
Mikhail/A-7026-2014; Taroian, Sarkis/E-1668-2014; Kozlov,
Valentin/M-8000-2015; Terkulov, Adel/M-8581-2015;
OI Cisbani, Evaristo/0000-0002-6774-8473; Bacchetta,
Alessandro/0000-0002-8824-8355; Deconinck, Wouter/0000-0003-4033-6716;
Lagamba, Luigi/0000-0002-0233-9812; Hoek, Matthias/0000-0002-1893-8764
FU EU [RII3-CT-2004-506078]
FX We gratefully acknowledge the DESY management for its support, the staff
at DESY and the collaborating institutions for their significant effort,
and our national funding agencies and the EU RII3-CT-2004-506078 program
for financial support.
NR 41
TC 175
Z9 175
U1 1
U2 14
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD OCT 9
PY 2009
VL 103
IS 15
AR 152002
DI 10.1103/PhysRevLett.103.152002
PG 5
WC Physics, Multidisciplinary
SC Physics
GA 505EK
UT WOS:000270672100012
PM 19905623
ER
PT J
AU Alwall, J
Hiramastsu, K
Nojiri, MM
Shimizu, Y
AF Alwall, Johan
Hiramastsu, Kenji
Nojiri, Mihoko M.
Shimizu, Yasuhiro
TI Novel Reconstruction Technique for New Physics Processes with Initial
State Radiation
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID HADRON COLLIDERS; MEASURING MASSES
AB The production of heavy particles at hadron colliders is associated with radiation of additional quarks and gluons from incoming partons. They can have significant transverse momenta and the additional initial state radiation (ISR) jets complicate the reconstruction of new particle masses. Taking gluino pair production and decay at the Large Hadron Collider as an example, we develop a novel technique to reduce these effects, allowing for a better reconstruction of masses through the measurement of kinematical end points.
C1 [Alwall, Johan] SLAC, Menlo Pk, CA 94025 USA.
[Hiramastsu, Kenji; Nojiri, Mihoko M.] KEK, IPNS, Tsukuba, Ibaraki 3050801, Japan.
[Hiramastsu, Kenji; Nojiri, Mihoko M.] Grad Univ Adv Studies, SOKENDAI, Tsukuba, Ibaraki 3050801, Japan.
[Nojiri, Mihoko M.] IPMU, Kashiwa, Chiba 2778568, Japan.
[Shimizu, Yasuhiro] Tohoku Univ, IIAIR, Aoba Ku, Sendai, Miyagi 9808578, Japan.
RP Alwall, J (reprint author), SLAC, MS 81,2575 Sand Hill Rd, Menlo Pk, CA 94025 USA.
FU MEXT, Japan [16081207, 18340060]
FX This work is supported in part by World Premier International Research
Center (WPI) Initiative, MEXT, Japan. M. M. N. is supported in part by
the Grant-in-Aid for Science Research, MEXT, Japan (No. 16081207 and No.
18340060).
NR 19
TC 34
Z9 34
U1 0
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD OCT 9
PY 2009
VL 103
IS 15
AR 151802
DI 10.1103/PhysRevLett.103.151802
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 505EK
UT WOS:000270672100010
PM 19905621
ER
PT J
AU Beaud, P
Johnson, SL
Vorobeva, E
Staub, U
De Souza, RA
Milne, CJ
Jia, QX
Ingold, G
AF Beaud, P.
Johnson, S. L.
Vorobeva, E.
Staub, U.
De Souza, R. A.
Milne, C. J.
Jia, Q. X.
Ingold, G.
TI Ultrafast Structural Phase Transition Driven by Photoinduced Melting of
Charge and Orbital Order
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID PEROVSKITE MANGANITE; METAL TRANSITION; EXCITATION
AB We use femtosecond x-ray diffraction to probe directly the structural dynamics of a charge ordered and orbitally ordered thin film of La(0.42)Ca(0.58)MnO(3) initiated by an ultrafast optical pulse. At low excitation fluences we observe the displacive excitation of a coherent optical A(g) phonon. Under high excitation conditions we observe a complete phase transition within 1 ps via the disappearance of a superlattice reflection. The initial step of the phase transition occurs on a time scale significantly faster than the 200 fs time resolution of our experiment.
C1 [Beaud, P.; Johnson, S. L.; Vorobeva, E.; Staub, U.; De Souza, R. A.; Ingold, G.] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland.
[Milne, C. J.] Ecole Polytech Fed Lausanne, Lab Spect Ultrarapide, CH-1015 Lausanne, Switzerland.
[Jia, Q. X.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Beaud, P (reprint author), Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland.
EM paul.beaud@psi.ch
RI Milne, Christopher/C-6883-2008; Johnson, Steven/B-3252-2008; Jia, Q.
X./C-5194-2008; Beaud, Paul/A-8178-2008; Staub, Urs/C-4914-2015
OI Milne, Christopher/0000-0003-4714-9139; Johnson,
Steven/0000-0001-6074-4894; Beaud, Paul/0000-0001-5028-9138;
FU U.S. Department of Energy; Center for Integrated Nanotechnologies
FX We thank Christof Schneider for helpful discussions, Daniel Grolimund,
Camelia Borca, and Alex Oggenfuss for assisting with the experiments.
These experiments were performed on the X05LA beam line at the Swiss
Light Source, Paul Scherrer Institut, Villigen, Switzerland. The work at
Los Alamos was supported by the U.S. Department of Energy through the
LANL/LDRD program and the Center for Integrated Nanotechnologies.
NR 24
TC 60
Z9 60
U1 2
U2 49
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD OCT 9
PY 2009
VL 103
IS 15
AR 155702
DI 10.1103/PhysRevLett.103.155702
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 505EK
UT WOS:000270672100040
PM 19905651
ER
PT J
AU Benisti, D
Strozzi, DJ
Gremillet, L
Morice, O
AF Benisti, Didier
Strozzi, David J.
Gremillet, Laurent
Morice, Olivier
TI Nonlinear Landau Damping Rate of a Driven Plasma Wave
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
AB In this Letter, we discuss the concept of the nonlinear Landau damping rate, nu, of a driven electron plasma wave, and provide a very simple, practical formula for nu, which agrees very well with results inferred from Vlasov simulations of stimulated Raman scattering. nu actually is more complicated an operator than a plain damping rate, and it may only be seen as such because it assumes almost constant values before abruptly dropping to 0. The decrease of nu to 0 is moreover shown to occur later when the wave amplitude varies in the direction transverse to its propagation.
C1 [Benisti, Didier; Gremillet, Laurent; Morice, Olivier] CEA, DAM, DIF, F-91297 Arpajon, France.
[Strozzi, David J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Benisti, D (reprint author), CEA, DAM, DIF, F-91297 Arpajon, France.
EM didier.benisti@cea.fr
OI Strozzi, David/0000-0001-8814-3791
NR 10
TC 26
Z9 26
U1 0
U2 5
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD OCT 9
PY 2009
VL 103
IS 15
AR 155002
DI 10.1103/PhysRevLett.103.155002
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 505EK
UT WOS:000270672100035
PM 19905646
ER
PT J
AU Cerny, J
Moltz, DM
Lee, DW
Perajarvi, K
Barquest, BR
Grossman, LE
Jeong, W
Jewett, CC
AF Cerny, J.
Moltz, D. M.
Lee, D. W.
Perajarvi, K.
Barquest, B. R.
Grossman, L. E.
Jeong, W.
Jewett, C. C.
TI Reinvestigation of the Direct Two-Proton Decay of the Long-Lived Isomer
Ag-94(m) [0.4 s, 6.7 MeV, (21+)]
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID PROTON; RADIOACTIVITY
AB An attempt to confirm the reported direct one-proton and two-proton decays of the (21+) isomer at 6.7(5) MeV in Ag-94 has been made. The 0.39(4) s half-life of the isomer permitted use of a helium-jet system to transport reaction products from the Ca-40 + Ni-nat reaction at 197 MeV to a low-background area; 24 gas Delta E-(Si)E detector telescopes were used to identify emitted protons down to 0.4 MeV. No evidence was obtained for two-proton radioactivity with a summed energy of 1.9(1) MeV and a branching ratio of 0.5(3)%. Two groups of one-proton radioactivity from this isomer had also been reported; our data confirm the lower energy group at 0.79(3) MeV with its branching ratio of 1.9(5)%.
C1 [Cerny, J.; Moltz, D. M.; Barquest, B. R.; Grossman, L. E.; Jeong, W.; Jewett, C. C.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Cerny, J.; Lee, D. W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA.
[Perajarvi, K.] STUK Radiat & Nucl Safety Author, FIN-00881 Helsinki, Finland.
RP Cerny, J (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
RI Lee, Dongwon/F-8675-2012
OI Lee, Dongwon/0000-0003-3133-5199
FU U.S. Department of Energy, Office of Nuclear Physics [DE-AC02-05CH11231]
FX This work was supported by the U. S. Department of Energy, Office of
Nuclear Physics, under Contract No. DE-AC02-05CH11231 (LBNL).
NR 19
TC 14
Z9 14
U1 3
U2 5
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD OCT 9
PY 2009
VL 103
IS 15
AR 152502
DI 10.1103/PhysRevLett.103.152502
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 505EK
UT WOS:000270672100018
PM 19905629
ER
PT J
AU Giovannetti, G
Kumar, S
Khomskii, D
Picozzi, S
van den Brink, J
AF Giovannetti, Gianluca
Kumar, Sanjeev
Khomskii, Daniel
Picozzi, Silvia
van den Brink, Jeroen
TI Multiferroicity in Rare-Earth Nickelates RNiO3
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; NEUTRON-DIFFRACTION; CHARGE
DISPROPORTIONATION; ELECTRIC POLARIZATION; METAL-INSULATOR; PEROVSKITES;
FERROELECTRICITY; TRANSITION; SOLIDS
AB We show that charge ordered rare-earth nickelates of the type RNiO3 (R Ho, Lu, Pr and Nd) are multiferroic with very large magnetically-induced ferroelectric (FE) polarizations. This we determine from first principles electronic structure calculations. The emerging FE polarization is directly tied to the long-standing puzzle of which kind of magnetic ordering is present in this class of materials: its direction and size indicate the type of ground-state spin configuration that is realized. Vice versa, the small energy differences between the different magnetic orderings suggest that a chosen magnetic ordering can be stabilized by cooling the system in the presence of an electric field.
C1 [Giovannetti, Gianluca; Kumar, Sanjeev; van den Brink, Jeroen] Leiden Univ, Inst Lorentz Theoret Phys, NL-2300 RA Leiden, Netherlands.
[Giovannetti, Gianluca; Kumar, Sanjeev] Univ Twente, Fac Sci & Technol, NL-7500 AE Enschede, Netherlands.
[Giovannetti, Gianluca; Kumar, Sanjeev] Univ Twente, MESA Res Inst, NL-7500 AE Enschede, Netherlands.
[Giovannetti, Gianluca] INFM, CNR, CASTI Reg Lab, I-67100 Laquila, Italy.
[Khomskii, Daniel] Univ Cologne, Inst Phys, D-50937 Cologne, Germany.
[van den Brink, Jeroen] Radboud Univ Nijmegen, Inst Mol & Mat, NL-6500 GL Nijmegen, Netherlands.
[van den Brink, Jeroen] Stanford Univ, Stanford Inst Mat & Energy Sci, Menlo Pk, CA USA.
[van den Brink, Jeroen] Leibniz Inst Solid State & Mat Res Dresden, D-01171 Dresden, Germany.
[van den Brink, Jeroen] SLAC, Menlo Pk, CA USA.
RP Giovannetti, G (reprint author), Leiden Univ, Inst Lorentz Theoret Phys, NL-2300 RA Leiden, Netherlands.
RI van den Brink, Jeroen/E-5670-2011; Picozzi, Silvia/E-2374-2011;
Giovannetti, Gianluca/L-4339-2013
OI van den Brink, Jeroen/0000-0001-6594-9610; Picozzi,
Silvia/0000-0002-3232-788X;
FU Stichting FOM; NCF and NanoNed; Netherlands; SFB 608, Germany; European
Research Council [203523BISMUTH]
FX We thank Maxim Mostovoy for stimulating discussions. This work is
supported by Stichting FOM, NCF and NanoNed, The Netherlands and by SFB
608, Germany. The research leading to part of these results has received
funding from the European Research Council under the European Community
Seventh Framework Program (FP7/2007-2013)/ERC Grant Agreement No.
203523BISMUTH.
NR 29
TC 51
Z9 51
U1 5
U2 44
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD OCT 9
PY 2009
VL 103
IS 15
AR 156401
DI 10.1103/PhysRevLett.103.156401
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 505EK
UT WOS:000270672100043
ER
PT J
AU Musfeldt, JL
Vergara, LI
Brinzari, TV
Lee, C
Tung, LC
Kang, J
Wang, YJ
Schlueter, JA
Manson, JL
Whangbo, MH
AF Musfeldt, J. L.
Vergara, L. I.
Brinzari, T. V.
Lee, C.
Tung, L. C.
Kang, J.
Wang, Y. J.
Schlueter, J. A.
Manson, J. L.
Whangbo, M. -H.
TI Magnetoelastic Coupling through the Antiferromagnet-to-Ferromagnet
Transition of Quasi-Two-Dimensional [Cu(HF2)(pyz)(2)]BF4 Using Infrared
Spectroscopy
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID MAGNETIC MODEL SYSTEMS; VIBRATIONAL PROPERTIES; COORDINATION POLYMERS;
CRYSTAL; SPECTRA; LIGANDS; PHYSICS; CHAINS; S=1/2
AB We investigated magnetoelastic coupling through the field-driven transition to the fully polarized magnetic state in quasi-two-dimensional [Cu(HF2)(pyz)(2)]BF4 by magnetoinfrared spectroscopy. This transition modifies out-of-plane ring distortion and bending vibrational modes of the pyrazine ligand. The extent of these distortions increases with the field, systematically tracking the low-temperature magnetization. These distortions weaken the antiferromagnetic spin exchange, a finding that provides important insight into magnetic transitions in other copper halides.
C1 [Musfeldt, J. L.; Vergara, L. I.; Brinzari, T. V.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA.
[Lee, C.; Kang, J.; Whangbo, M. -H.] N Carolina State Univ, Dept Chem, Raleigh, NC 27695 USA.
[Tung, L. C.; Wang, Y. J.] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA.
[Schlueter, J. A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Manson, J. L.] Eastern Washington Univ, Dept Chem & Biochem, Cheney, WA 99004 USA.
RP Musfeldt, JL (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA.
FU NSF (UT, NHMFL); DoE (NHMFL, Argonne, NCSU); Research Corporation (EWU);
State of Florida (NHMFL)
FX This research was supported by the NSF (UT, NHMFL), the DoE (NHMFL,
Argonne, NCSU), the Research Corporation (EWU), and the State of Florida
(NHMFL). We thank P. A. Goddard for useful conversations and access to
magnetization data. We thank J. S. Brooks and C. P. Landee for useful
discussions.
NR 37
TC 20
Z9 20
U1 0
U2 6
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD OCT 9
PY 2009
VL 103
IS 15
AR 157401
DI 10.1103/PhysRevLett.103.157401
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 505EK
UT WOS:000270672100054
PM 19905665
ER
PT J
AU Noronha, J
Dumitru, A
AF Noronha, Jorge
Dumitru, Adrian
TI Thermal Width of the Y at Large 't Hooft Coupling
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID DE-SITTER SUPERGRAVITY; N GAUGE-THEORY; FINITE-TEMPERATURE; WILSON
LOOPS; QUARKONIUM DISSOCIATION; FIELD-THEORIES; MATTER; LIMIT
AB We use the anti-de Sitter/conformal field theory correspondence to show that the heavy quark (static) potential in a strongly coupled plasma develops an imaginary part at finite temperature. Thus, deeply bound heavy quarkonia states acquire a small nonzero thermal width when the 't Hooft coupling lambda = g(2)N(c) >> 1 and the number of colors N(c) -> infinity. In the dual gravity description, this imaginary contribution comes from thermal fluctuations around the bottom of the classical sagging string in the bulk that connects the heavy quarks located at the boundary. We predict a strong suppression of Y's in heavy-ion collisions and discuss how this may be used to estimate the initial temperature.
C1 [Noronha, Jorge] Columbia Univ, Dept Phys, New York, NY 10027 USA.
[Dumitru, Adrian] CUNY Bernard M Baruch Coll, Dept Nat Sci, New York, NY 10010 USA.
[Dumitru, Adrian] CUNY, Grad Sch, New York, NY 10016 USA.
[Dumitru, Adrian] CUNY, Univ Ctr, New York, NY 10016 USA.
[Dumitru, Adrian] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA.
RP Noronha, J (reprint author), Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA.
RI Noronha, Jorge/M-8800-2014; Noronha, Jorge/E-5783-2013
FU U. S.-DOE Nuclear Science [DE-FG02-93ER40764]; City University of New
York; U. S.-DOE [DE-FG02-09ER41620]
FX We thank W. Zajc for useful comments on the preprint of this manuscript.
J. N. acknowledges support from U. S.-DOE Nuclear Science Grant No.
DE-FG02-93ER40764. A. D. gratefully acknowledges support from The City
University of New York through a PSC-CUNY grant and by the Office of
Nuclear Physics, U. S.-DOE Grant No. DE-FG02-09ER41620. J. N. and A. D.
also thank Goethe University for their hospitality and the Helmholtz
International Center for FAIR for support within the LOEWE program.
NR 27
TC 26
Z9 26
U1 0
U2 0
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD OCT 9
PY 2009
VL 103
IS 15
AR 152304
DI 10.1103/PhysRevLett.103.152304
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 505EK
UT WOS:000270672100016
PM 19905627
ER
PT J
AU Ovchinnikov, OS
Jesse, S
Bintacchit, P
Trolier-McKinstry, S
Kalinin, SV
AF Ovchinnikov, O. S.
Jesse, S.
Bintacchit, P.
Trolier-McKinstry, S.
Kalinin, S. V.
TI Disorder Identification in Hysteresis Data: Recognition Analysis of the
Random-Bond-Random-Field Ising Model
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
AB An approach for the direct identification of disorder type and strength in physical systems based on recognition analysis of hysteresis loop shape is developed. A large number of theoretical examples uniformly distributed in the parameter space of the system is generated and is decorrelated using principal component analysis (PCA). The PCA components are used to train a feed-forward neural network using the model parameters as targets. The trained network is used to analyze hysteresis loops for the investigated system. The approach is demonstrated using a 2D random-bond-random-field Ising model, and polarization switching in polycrystalline ferroelectric capacitors.
C1 [Jesse, S.; Kalinin, S. V.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Ovchinnikov, O. S.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
[Bintacchit, P.; Trolier-McKinstry, S.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA.
[Bintacchit, P.; Trolier-McKinstry, S.] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA.
RP Kalinin, SV (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
EM sergei2@ornl.gov
RI Kalinin, Sergei/I-9096-2012; Jesse, Stephen/D-3975-2016;
OI Kalinin, Sergei/0000-0001-5354-6152; Jesse, Stephen/0000-0002-1168-8483;
Trolier-McKinstry, Susan/0000-0002-7267-9281
FU ORNL LDRD; ORNL HERE; Center for Dielectric Studies; National Security
Science and Engineering Faculty program; Royal Thai Government
FX The work was supported by the ORNL LDRD program (S. V. K, S. J.) and the
ORNL HERE program (O. O). Funding for work at Penn State was supplied by
the Center for Dielectric Studies, the National Security Science and
Engineering Faculty program, and a Royal Thai Government grant (P. B).
NR 18
TC 9
Z9 9
U1 2
U2 13
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD OCT 9
PY 2009
VL 103
IS 15
AR 157203
DI 10.1103/PhysRevLett.103.157203
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 505EK
UT WOS:000270672100053
PM 19905664
ER
PT J
AU Wang, XJ
Freund, HP
Harder, D
Miner, WH
Murphy, JB
Qian, H
Shen, Y
Yang, X
AF Wang, X. J.
Freund, H. P.
Harder, D.
Miner, W. H., Jr.
Murphy, J. B.
Qian, H.
Shen, Y.
Yang, X.
TI Efficiency and Spectrum Enhancement in a Tapered Free-Electron Laser
Amplifier
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID EXTREME-ULTRAVIOLET; EXTRACTION
AB We report the first experimental characterization of efficiency and spectrum enhancement in a laser-seeded free-electron laser using a tapered undulator. Output and spectra in the fundamental and third harmonic were measured versus distance for uniform and tapered undulators. With a 4% field taper over 3 m, a 300% (50%) increase in the fundamental (third harmonic) output was observed. A significant improvement in the spectra with the elimination of sidebands was observed using a tapered undulator. The experiment is in good agreement with predictions using the MEDUSA simulation code.
C1 [Wang, X. J.; Harder, D.; Murphy, J. B.; Qian, H.; Shen, Y.; Yang, X.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA.
[Freund, H. P.; Miner, W. H., Jr.] Sci Applicat Int Corp, Mclean, VA 22102 USA.
RP Wang, XJ (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA.
FU NSLS; Office of Naval Research (ONR); Joint Technology Office; U.S.
Department of Energy (DOE) [DE-AC02-98CH1-886]
FX We would like to acknowledge technical support from R. K. Li, P. Singh,
and T. Watanabe. We are grateful for support from the NSLS. This work is
supported in part by the Office of Naval Research (ONR), the Joint
Technology Office, and U.S. Department of Energy (DOE) under Contract
No. DE-AC02-98CH1-886.
NR 16
TC 28
Z9 30
U1 0
U2 3
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD OCT 9
PY 2009
VL 103
IS 15
AR 154801
DI 10.1103/PhysRevLett.103.154801
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 505EK
UT WOS:000270672100033
PM 19905644
ER
PT J
AU Chain, PSG
Grafham, DV
Fulton, RS
FitzGerald, MG
Hostetler, J
Muzny, D
Ali, J
Birren, B
Bruce, DC
Buhay, C
Cole, JR
Ding, Y
Dugan, S
Field, D
Garrity, GM
Gibbs, R
Graves, T
Han, CS
Harrison, SH
Highlander, S
Hugenholtz, P
Khouri, HM
Kodira, CD
Kolker, E
Kyrpides, NC
Lang, D
Lapidus, A
Malfatti, SA
Markowitz, V
Metha, T
Nelson, KE
Parkhill, J
Pitluck, S
Qin, X
Read, TD
Schmutz, J
Sozhamannan, S
Sterk, P
Strausberg, RL
Sutton, G
Thomson, NR
Tiedje, JM
Weinstock, G
Wollam, A
Detter, JC
AF Chain, P. S. G.
Grafham, D. V.
Fulton, R. S.
FitzGerald, M. G.
Hostetler, J.
Muzny, D.
Ali, J.
Birren, B.
Bruce, D. C.
Buhay, C.
Cole, J. R.
Ding, Y.
Dugan, S.
Field, D.
Garrity, G. M.
Gibbs, R.
Graves, T.
Han, C. S.
Harrison, S. H.
Highlander, S.
Hugenholtz, P.
Khouri, H. M.
Kodira, C. D.
Kolker, E.
Kyrpides, N. C.
Lang, D.
Lapidus, A.
Malfatti, S. A.
Markowitz, V.
Metha, T.
Nelson, K. E.
Parkhill, J.
Pitluck, S.
Qin, X.
Read, T. D.
Schmutz, J.
Sozhamannan, S.
Sterk, P.
Strausberg, R. L.
Sutton, G.
Thomson, N. R.
Tiedje, J. M.
Weinstock, G.
Wollam, A.
Detter, J. C.
CA Genomic Stand Consortium
Human Microbiome Project Jumpstart
TI Genome Project Standards in a New Era of Sequencing
SO SCIENCE
LA English
DT Editorial Material
C1 [Chain, P. S. G.] Lawrence Livermore Natl Lab, Livermore, CA USA.
[Chain, P. S. G.; Cole, J. R.; Garrity, G. M.; Harrison, S. H.; Tiedje, J. M.] Michigan State Univ, E Lansing, MI 48824 USA.
[Fulton, R. S.; Graves, T.; Weinstock, G.; Wollam, A.] Washington Univ, Sch Med, St Louis, MO 63130 USA.
[Muzny, D.; Buhay, C.; Ding, Y.; Dugan, S.; Gibbs, R.; Highlander, S.; Qin, X.] Baylor Coll Med, Houston, TX 77030 USA.
[Bruce, D. C.; Detter, J. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Kolker, E.] Seattle Childrens Hosp & Res Inst, Seattle, WA USA.
[Kolker, E.] Univ Washington, Sch Med, Seattle, WA 98195 USA.
[Markowitz, V.] Lawrence Berkeley Natl Lab, Berkeley, CA USA.
EM pchain@lanl.gov; dg1@sanger.ac.uk
RI Field, Dawn/C-1653-2010; Parkhill, Julian/G-4703-2011; Hugenholtz,
Philip/G-9608-2011; Lapidus, Alla/I-4348-2013; Read,
Timothy/E-6240-2011; Kolker, Eugene/C-6711-2008; chain,
patrick/B-9777-2013; Garrity, George/F-7551-2013; Schmutz,
Jeremy/N-3173-2013; Kyrpides, Nikos/A-6305-2014
OI Parkhill, Julian/0000-0002-7069-5958; Lapidus, Alla/0000-0003-0427-8731;
Sterk, Peter/0000-0003-1668-7778; Garrity, George/0000-0002-4465-7034;
Schmutz, Jeremy/0000-0001-8062-9172; Kyrpides, Nikos/0000-0002-6131-0462
FU NHGRI NIH HHS [U54 HG004968, U54 HG004973]
NR 5
TC 192
Z9 193
U1 3
U2 38
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
J9 SCIENCE
JI Science
PD OCT 9
PY 2009
VL 326
IS 5950
BP 236
EP 237
DI 10.1126/science.1180614
PG 2
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 504EX
UT WOS:000270599500024
PM 19815760
ER
PT J
AU Zhang, LZ
Zybin, SV
van Duin, ACT
Dasgupta, S
Goddard, WA
Kober, EM
AF Zhang, Luzheng
Zybin, Sergey V.
van Duin, Adri C. T.
Dasgupta, Siddharth
Goddard, William A., III
Kober, Edward M.
TI Carbon Cluster Formation during Thermal Decomposition of
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and
1,3,5-Triamino-2,4,6-trinitrobenzene High Explosives from ReaxFF
Reactive Molecular Dynamics Simulations
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID ELECTRONEGATIVITY EQUALIZATION METHOD; FORCE-FIELD; ULTRADISPERSED
DIAMONDS; DETONATION PRODUCTS; ULTRAFINE DIAMOND; SOLID EXPLOSIVES;
PHASE-DIAGRAM; AB-INITIO; HMX; TRANSITION
AB We report molecular dynamics (MD) simulations using the first-principles-based ReaxFF reactive force field to study the thermal decomposition of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) at various densities and temperatures. TATB is known to produce a large amount (15-30%) of high-molecular-weight carbon clusters, whereas detonation of nitramines such as HMX and RDX (1,3,5-trinitroperhydro-1,3,5-triazine) generate predominantly low-molecular-weight products. In agreement with experimental observation, these simulations predict that TATB decomposition quickly (by 30 ps) initiates the formation of large carbonaceous clusters (more than 4000 amu, or similar to 15-30% of the total system mass.), and HMX decomposition leads almost exclusively to small-molecule products. We find that HMX decomposes readily on this time scale at lower temperatures, for which the decomposition rate of TATB is about an order of magnitude slower. Analyzing the ReaxFF MD results leads to the detailed atomistic structure of this carbon-rich phase of TATB and allows characterization of the kinetics and chemistry related to this phase and their dependence on system density and temperature. The carbon-rich phase formed from TATB contains mainly polyaromatic rings with large oxygen content, leading to graphitic regions. We use these results to describe the initial reaction steps of thermal decomposition of HMX and TATB in terms of the rates for forming primary and secondary products, allowing comparison to experimentally derived models. These studies show that MD using the ReaxFF reactive force field provides detailed atomistic information that explains such macroscopic observations as the dramatic difference in carbon cluster formation between TATB and HMX. This shows that ReaxFF MD captures the fundamental differences in the mechanisms of such systems and illustrates how the ReaxFF may be applied to model complex chemical phenomena in energetic materials. The studies here illustrate this for modestly sized systems and modest periods; however, ReaxFF calculations of reactive processes have already been reported on systems with similar to 10(6) atoms. Thus, with suitable computational facilities, one can study the atomistic level chemical processes in complex systems under extreme conditions.
C1 [Zhang, Luzheng; Zybin, Sergey V.; van Duin, Adri C. T.; Dasgupta, Siddharth; Goddard, William A., III] CALTECH, Mat & Proc Simulat Ctr, Pasadena, CA 91125 USA.
[Kober, Edward M.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RP Goddard, WA (reprint author), CALTECH, Mat & Proc Simulat Ctr, Pasadena, CA 91125 USA.
EM wag@wag.caltech.edu
FU Office of Naval Research [N00014-05-1-0778, N00014-09-1-0634]; Army
Research Office [W911NF-05-1-0345]; U.S. Department of Energy
[65287-00108]
FX This research was supported by the Office of Naval Research (Grant no.
N00014-05-1-0778 and N00014-09-1-0634, program managers Dr. Judah
Goldwasser and Cliff Bedford), the Army Research Office (MURI Grant no.
W911NF-05-1-0345, program managers Dr. David Matin and Dr. Ralph
Anthenien), and the U.S. Department of Energy (65287-00108 through Los
Alamos National Laboratory). The computer facilifics were provided by
ONR-DURIP and ARO-DURIP.
NR 60
TC 95
Z9 108
U1 16
U2 95
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD OCT 8
PY 2009
VL 113
IS 40
BP 10619
EP 10640
DI 10.1021/jp901353a
PG 22
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 501ER
UT WOS:000270362900005
PM 19791809
ER
PT J
AU Budzien, J
Thompson, AP
Zybin, SV
AF Budzien, Joanne
Thompson, Aidan P.
Zybin, Sergey V.
TI Reactive Molecular Dynamics Simulations of Shock Through a Single
Crystal of Pentaerythritol Tetranitrate
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID ELECTRONEGATIVITY EQUALIZATION METHOD; ENERGETIC MATERIALS; FORCE-FIELD;
PETN; DECOMPOSITION; SENSITIVITY; ORIENTATION; INITIATION; MECHANICS
AB Large-scale molecular dynamics simulations and the reactive force field ReaxFF were used to study shock-induced initiation in crystalline pentaerythritol tetranitrate (PETN). In the calculations, a PETN single crystal was impacted against a wall, driving a shockwave back through the crystal in the [100] direction. Two impact speeds (4 and 3 km/s) were used to compare strong and moderate shock behavior. The primary difference between the two shock strengths is the time required to exhibit the same qualitative behaviors with the lower impact speed lagging behind the faster impact speed. For both systems, the shock velocity exhibits an initial deceleration due to onset. of endothermic reactions followed by acceleration due to the onset of exothermic reactions. At long times, the shock velocity reaches a steady value. After the initial deceleration period, peaks are observed in the profiles of the density and axial stress with the strongly shocked system having sharp peaks while the weakly shocked system developed broad peaks due to the slower shock velocity acceleration. The dominant initiation reactions in both systems lead to the formation of NO2 with lesser quantities of NO3 and formaldehyde also produced.0
C1 [Budzien, Joanne; Thompson, Aidan P.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Zybin, Sergey V.] CALTECH, Pasadena, CA 91125 USA.
RP Budzien, J (reprint author), Frostburg State Univ, Frostburg, MD 21532 USA.
EM jbudzien@frostburg.edu
RI Budzien, Joanne/E-8315-2011
FU United States Department of Energy's National Nuclear Security
Administration [DE-AC04-94AL85000]; Army Research Office
[W911NF-05-1-0345]; Office of Naval Research [N00014-05-10778]
FX Sandia is it multiprogram laboratory operated by Sandia Corporation, it
Lockheed Martin Company, for the United States Department of Energy's
National Nuclear Security Administration under Contract
DE-AC04-94AL85000. S,V.Z. was supported by the Army Research Office
(W911NF-05-1-0345) and the Office of Naval Research (N00014-05-10778).
NR 25
TC 50
Z9 57
U1 2
U2 34
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD OCT 8
PY 2009
VL 113
IS 40
BP 13142
EP 13151
DI 10.1021/jp9016695
PG 10
WC Chemistry, Physical
SC Chemistry
GA 501EX
UT WOS:000270363500004
PM 19791817
ER
PT J
AU Annunziata, O
Vergara, A
Paduano, L
Sartorio, R
Miller, DG
Albright, JG
AF Annunziata, Onofrio
Vergara, Alessandro
Paduano, Luigi
Sartorio, Roberto
Miller, Donald G.
Albright, John G.
TI Quaternary Diffusion Coefficients in a Protein-Polymer-Salt-Water System
Determined by Rayleigh Interferometry
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID DYNAMIC LIGHT-SCATTERING; MULTICOMPONENT DIFFUSION; MUTUAL DIFFUSION;
CRYSTAL-GROWTH; PREFERENTIAL INTERACTIONS; POLY(ETHYLENE GLYCOL);
ISOTHERMAL DIFFUSION; TERNARY DIFFUSION; LYSOZYME CHLORIDE; CROWDED
SOLUTIONS
AB We have experimentally investigated multicomponent diffusion in a protein-polymer-salt-water quaternary system. Specifically, we have measured the nine multicomponent diffusion coefficients, D(ij), for the lysozyme-poly(ethylene glycol)-NaCl-water system at pH 4.5 and 25 degrees C using precision Rayleigh interferometry. Lysozyme is a model protein for protein-crystallization and enzymology studies. We find that the protein diffusion coefficient, D, 1, decreases as polymer concentration increases at a given salt concentration. This behavior can be quantitatively related to the corresponding increase in fluid viscosity only at low polymer concentration. However, at high polymer concentration (250 g/L), protein diffusion is enhanced compared to the corresponding viscosity prediction. We also find that a protein concentration gradient induces salt diffusion from high to low protein concentration. This effect increases in the presence of poly(ethylene glycol). Finally, we have evaluated systematic errors associated with measurements of protein diffusion coefficients by dynamic light scattering. This work overall helps characterize protein diffusion in crowded environments and may provide guidance for further theoretical developments in the field of protein crystallization and protein diffusion in such crowded systems, Such as the cytoplasm of living cells.
C1 [Annunziata, Onofrio; Albright, John G.] Texas Christian Univ, Dept Chem, Ft Worth, TX 76129 USA.
[Vergara, Alessandro; Paduano, Luigi; Sartorio, Roberto] Univ Naples Federico 2, Dept Chem, I-80126 Naples, Italy.
[Miller, Donald G.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
RP Annunziata, O (reprint author), Texas Christian Univ, Dept Chem, Ft Worth, TX 76129 USA.
EM o.annunziata@tcu.edu
OI PADUANO, Luigi/0000-0002-1105-4237; Vergara,
Alessandro/0000-0003-4135-0245
FU Italian Space Agency [ARS-99-15]; NASA BioTechnology Program
[NAG8-1356]; ACS Petroleum Research Fund [47244-G4]
FX This research was supported by the Italian Space Agency (ARS-99-15), the
NASA BioTechnology Program (NAG8-1356), and the ACS Petroleum Research
Fund (47244-G4).
NR 56
TC 12
Z9 12
U1 0
U2 15
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD OCT 8
PY 2009
VL 113
IS 40
BP 13446
EP 13453
DI 10.1021/jp906977m
PG 8
WC Chemistry, Physical
SC Chemistry
GA 501EX
UT WOS:000270363500042
PM 19746957
ER
PT J
AU Jiang, DE
Whetten, RL
Luo, WD
Dai, S
AF Jiang, De-en
Whetten, Robert L.
Luo, Weidong
Dai, Sheng
TI The Smallest Thiolated Gold Superatom Complexes
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID THEORETICAL CHEMISTRY; CRYSTAL-STRUCTURE; PROTECTED AU-25; CLUSTER
COMPOUNDS; KDA GOLD; NANOCLUSTERS; MOLECULES; AU-38; AUROPHILICITY;
NANOPARTICLES
AB The superatom concept of metallic cluster valence is based oil the electron-shell model as first proposed to explain the special stability of certain metal-atom clusters generated in the gas phase. It accounts for the magic-number series 2, 8, 18, 34, 58, ... by shell-closing of the superatom orbitals 1S, 1P, 1D .... Recently, the superatom-complex concept has been introduced to explain the compositions of high-yield gold-cluster compounds, especially Au(25)(SR)(18)(-) and Au(102)(SR)(44) (with -SR being it thiolate group), corresponding to the magic numbers of 8 and 58, respectively. Surprisingly, no thiolated gold cluster accounting for the first closing (electron count 2) has yet been determined, structure-bonding considerations lead us to propose Au(12)(SR)(9)(+) as the Superior candidate for the Smallest thiolated gold superatom. This cluster features all octahedron core covered by three RS(AuSR)(2) motifs. It has a unique C(3) axis, is chiral, and possesses ideal aurophilic interactions and, therefore, should exist in nature. The folding of thiol-rich biomolecules may help us to realize this complex, which may also be prepared from available phosphine-ligated gold clusters.
C1 [Jiang, De-en; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
[Whetten, Robert L.] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA.
[Luo, Weidong] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA.
[Luo, Weidong] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
RP Jiang, DE (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
EM jiangd@ornl.gov
RI Jiang, De-en/D-9529-2011; Dai, Sheng/K-8411-2015; Luo,
Weidong/A-8418-2009
OI Jiang, De-en/0000-0001-5167-0731; Dai, Sheng/0000-0002-8046-3931; Luo,
Weidong/0000-0003-3829-1547
FU U.S. Department of Energy [DE-AC05-00OR22725]
FX This work was supported by the Office of Basic Energy Sciences. U.S.
Department of Energy, under Contract No. DE-AC05-00OR22725 with
UT-Battelle. LLC.
NR 50
TC 62
Z9 62
U1 3
U2 42
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD OCT 8
PY 2009
VL 113
IS 40
BP 17291
EP 17295
DI 10.1021/jp9035937
PG 5
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 501EK
UT WOS:000270362100003
ER
PT J
AU Krems, M
Zwolak, M
Pershin, YV
Di Ventra, M
AF Krems, Matt
Zwolak, Michael
Pershin, Yuriy V.
Di Ventra, Massimiliano
TI Effect of Noise on DNA Sequencing via Transverse Electronic Transport
SO BIOPHYSICAL JOURNAL
LA English
DT Article
ID SOLID-STATE NANOPORE; SINGLE-STRANDED-DNA; POLYNUCLEOTIDE MOLECULES;
MEMBRANE CHANNEL; FORCE-FIELD; DISCRIMINATION; TRANSLOCATION;
CONDUCTANCE; ORIENTATION; MICROSCOPE
AB Previous theoretical studies have shown that measuring the transverse current across DNA strands while they translocate through a nanopore or channel may provide a statistically distinguishable signature of the DNA bases, and may thus allow for rapid DNA sequencing. However, fluctuations of the environment, such as ionic and DNA motion, introduce important scattering processes that may affect the viability of this approach to sequencing. To understand this issue, we have analyzed a simple model that captures the role of this complex environment in electronic dephasing and its ability to remove charge carriers from current-carrying states. We find that these effects do not strongly influence the current distributions due to the off-resonant nature of tunneling through the nucleotides-a result we expect to be a common feature of transport in molecular junctions. In particular, only large scattering strengths, as compared to the energetic gap between the molecular states and the Fermi level, significantly alter the form of the current distributions. Since this gap itself is quite large, the current distributions remain protected from this type of noise, further supporting the possibility of using transverse electronic transport measurements for DNA sequencing.
C1 [Zwolak, Michael] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Krems, Matt; Di Ventra, Massimiliano] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA.
[Pershin, Yuriy V.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA.
[Pershin, Yuriy V.] Univ S Carolina, USC Nanoctr, Columbia, SC 29208 USA.
RP Zwolak, M (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
EM mpzwolak@gmail.com
RI Di Ventra, Massimiliano/E-1667-2011; Pershin, Yuriy/F-4453-2012; Zwolak,
Michael/G-2932-2013
OI Di Ventra, Massimiliano/0000-0001-9416-189X; Zwolak,
Michael/0000-0001-6443-7816
FU National Institutes of Health-National Human Genome Research Institute;
U.S. Department of Energy through the LANL/LDRD Program
FX This research is supported by the National Institutes of Health-National
Human Genome Research Institute and by the U.S. Department of Energy
through the LANL/LDRD Program.
NR 43
TC 41
Z9 41
U1 1
U2 16
PU CELL PRESS
PI CAMBRIDGE
PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA
SN 0006-3495
J9 BIOPHYS J
JI Biophys. J.
PD OCT 7
PY 2009
VL 97
IS 7
BP 1990
EP 1996
DI 10.1016/j.bpj.2009.06.055
PG 7
WC Biophysics
SC Biophysics
GA 504AV
UT WOS:000270586000021
PM 19804730
ER
PT J
AU Ho, PJ
Starodub, D
Saldin, DK
Shneerson, VL
Ourmazd, A
Santra, R
AF Ho, P. J.
Starodub, D.
Saldin, D. K.
Shneerson, V. L.
Ourmazd, A.
Santra, R.
TI Molecular structure determination from x-ray scattering patterns of
laser-aligned symmetric-top molecules
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID FIELDS; ALIGNMENT; DEFORMATION; DIFFRACTION; ORIENTATION; IONIZATION;
DYNAMICS; PHASE; IONS
AB We investigate the molecular structure information contained in the x-ray diffraction patterns of an ensemble of rigid CF(3)Br molecules aligned by an intense laser pulse at finite rotational temperature. The diffraction patterns are calculated at an x-ray photon energy of 20 keV to probe molecular structure at angstrom-scale resolution. We find that a structural reconstruction algorithm based on iterative phase retrieval fails to extract a reliable structure. However, the high atomic number of Br compared with C or F allows each diffraction pattern to be treated as a hologram. Using this approach, the azimuthal projection of the molecular electron density about the alignment axis may be retrieved. (C) 2009 American Institute of Physics. [doi:10.1063/1.3245404]
C1 [Ho, P. J.; Santra, R.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Starodub, D.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA.
[Saldin, D. K.; Shneerson, V. L.; Ourmazd, A.] Univ Wisconsin, Dept Phys, Milwaukee, WI 53201 USA.
[Santra, R.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA.
RP Ho, PJ (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM rsantra@anl.gov
RI Santra, Robin/E-8332-2014
OI Santra, Robin/0000-0002-1442-9815
FU Office of Basic Energy Sciences; Office of Science, U. S. Department of
Energy [DE-AC02-06CH11357, DE-FG02-84ER45076, DE-FG02-06ER46277,
DE-FG03-02ER45996]
FX We thank Henry Chapman for an inspiring discussion. We acknowledge
support from the Office of Basic Energy Sciences, Office of Science, U.
S. Department of Energy as follows: Contract No. DE-AC02-06CH11357
(P.J.H. and R. S.), Grant Nos. DE-FG02-84ER45076 and DE-FG02-06ER46277
(V. L. S. and D. K. S.), and Grant No. DE-FG03-02ER45996 (D.S.).
NR 34
TC 22
Z9 22
U1 0
U2 9
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD OCT 7
PY 2009
VL 131
IS 13
AR 131101
DI 10.1063/1.3245404
PG 4
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 507BR
UT WOS:000270825500001
PM 19814536
ER
PT J
AU Minh, DDL
Chodera, JD
AF Minh, David D. L.
Chodera, John D.
TI Optimal estimators and asymptotic variances for nonequilibrium
path-ensemble averages
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID FREE-ENERGY DIFFERENCES; HISTOGRAM ANALYSIS METHOD; MOLECULE PULLING
EXPERIMENTS; MONTE-CARLO INTEGRATION; EMPIRICAL DISTRIBUTIONS;
COMPUTER-SIMULATIONS; FLUCTUATION THEOREM; EQUILIBRIUM; MODELS; BOUNDS
AB Existing optimal estimators of nonequilibrium path-ensemble averages are shown to fall within the framework of extended bridge sampling. Using this framework, we derive a general minimal-variance estimator that can combine nonequilibrium trajectory data sampled from multiple path-ensembles to estimate arbitrary functions of nonequilibrium expectations. The framework is also applied to obtain asymptotic variance estimates, which are a useful measure of statistical uncertainty. In particular, we develop asymptotic variance estimates pertaining to Jarzynski's equality for free energies and the Hummer-Szabo expressions for the potential of mean force, calculated from uni- or bidirectional path samples. These estimators are demonstrated on a model single-molecule pulling experiment. In these simulations, the asymptotic variance expression is found to accurately characterize the confidence intervals around estimators when the bias is small. Hence, the confidence intervals are inaccurately described for unidirectional estimates with large bias, but for this model it largely reflects the true error in a bidirectional estimator derived by Minh and Adib. (C) 2009 American Institute of Physics. [doi:10.1063/1.3242285]
C1 [Minh, David D. L.] NIDDK, Chem Phys Lab, NIH, Bethesda, MD 20892 USA.
[Chodera, John D.] Univ Calif Berkeley, Calif Inst Quantitat Biosci QB3, Berkeley, CA 94720 USA.
RP Minh, DDL (reprint author), Argonne Natl Lab, Biosci Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM daveminh@gmail.com; jchodera@berkeley.edu
RI Minh, David/A-4655-2009;
OI Minh, David/0000-0002-4802-2618; Chodera, John/0000-0003-0542-119X
FU Intramural NIH HHS
NR 61
TC 29
Z9 29
U1 1
U2 13
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0021-9606
EI 1089-7690
J9 J CHEM PHYS
JI J. Chem. Phys.
PD OCT 7
PY 2009
VL 131
IS 13
AR 134110
DI 10.1063/1.3242285
PG 9
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 507BR
UT WOS:000270825500011
PM 19814546
ER
PT J
AU Mather, JH
McFarlane, SA
AF Mather, James H.
McFarlane, Sally A.
TI Cloud classes and radiative heating profiles at the Manus and Nauru
Atmospheric Radiation Measurement (ARM) sites
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID ATLANTIC TROPICAL EXPERIMENT; CONVECTIVE SYSTEMS; WESTERN PACIFIC;
PHASE-III; DIVERGENCE; RADAR; CIRCULATION; FIELDS; CIRRUS
AB The tropical western Pacific is a convective regime; however, the frequency and depth of convection is dependent on dynamical forcing which exhibits variability on a range of temporal scales and also on location within the region. Manus Island, Papua New Guinea, lies in the heart of the western Pacific warm pool region and exhibits frequent deep convection much of the time, while Nauru, which lies approximately 20 degrees to the east of Manus, is in a transition zone where the frequency of convection is dependent on the phase of the El Nino - Southern Oscillation. Because of this difference in dynamical regime, the distribution of clouds and the associated radiative heating is quite different at the two sites. Individual cloud types (boundary layer cumulus, thin cirrus, stratiform convective outflow) do occur at both sites, but with different frequencies. In this study we compare cloud profiles and heating profiles for specific cloud types at these two sites using data from the Atmospheric Radiation Measurement (ARM) Climate Research Facility. Results of this comparison indicate that while the frequency of specific cloud types differ between the two sites as one would expect, the characteristics of individual cloud classes are remarkably similar. This information could prove to be very useful for applying tropical ARM data to the broader region.
C1 [Mather, James H.; McFarlane, Sally A.] Pacific NW Natl Lab, Climate Phys Grp, Richland, WA 99352 USA.
RP Mather, JH (reprint author), Pacific NW Natl Lab, Climate Phys Grp, POB 999,MS K9-38, Richland, WA 99352 USA.
EM jim.mather@pnl.gov
RI McFarlane, Sally/C-3944-2008
FU U.S. Department of Energy (DOE)
FX The Pacific Northwest National Laboratory is operated by Battelle for
the U.S. Department of Energy (DOE). This research was supported by the
DOE Office of Biological and Environmental Research as part of the
Atmospheric Radiation Measurement (ARM) program.
NR 31
TC 12
Z9 12
U1 0
U2 6
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD OCT 7
PY 2009
VL 114
AR D19204
DI 10.1029/2009JD011703
PG 12
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 505MQ
UT WOS:000270698100001
ER
PT J
AU Albao, MA
Evans, JW
Chuang, FC
AF Albao, Marvin A.
Evans, J. W.
Chuang, Feng-Chuan
TI A kinetic Monte Carlo study on the role of defects and detachment in the
formation and growth of In chains on Si(100)
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
ID AB-INITIO; FILM GROWTH; AD-DIMER; SURFACE; STM; DIFFUSION; INDIUM; AL
AB Deposition on a Si(100) surface and subsequent self-assembly of In atoms into one-dimensional (1D) atomic chains at room temperature is investigated via kinetic Monte Carlo simulation of a suitable atomistic model. Model development is guided by recent experimental observations in which 1D In chains nucleate effectively exclusively at C-type defects, although In atoms can detach from chains. We find that a monotonically decreasing form of the scaled island size distribution (ISD) is consistent with a high defect density which facilitates persistent chain nucleation even at relatively high coverages. The predominance of heterogeneous nucleation may be attributed to several factors including low surface diffusion barriers, a high defect density, and relatively weak In-In binding.
C1 [Albao, Marvin A.; Chuang, Feng-Chuan] Natl Sun Yat Sen Univ, Dept Phys, Kaohsiung 804, Taiwan.
[Albao, Marvin A.] Univ Philippines Los Banos, Inst Math & Phys Sci, Los Banos 4031, Philippines.
[Evans, J. W.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA.
[Evans, J. W.] Iowa State Univ, Dept Math, Ames, IA 50011 USA.
RP Chuang, FC (reprint author), Natl Sun Yat Sen Univ, Dept Phys, Kaohsiung 804, Taiwan.
EM fchuang@mail.nsysu.edu.tw
RI Chuang, FengChuan/H-7166-2013
OI Chuang, FengChuan/0000-0003-0351-4253
FU NCTS; National Science Council of Taiwan [NSC95-2112M110-022]; US
Department of Energy (USDOE), Office of Basic Energy Sciences
[DE-AC02-07CH11358]
FX This work was supported by the NCTS and the National Science Council of
Taiwan under grant No. NSC95-2112M110-022. We are grateful to the
National Center for High-performance Computing in Taiwan for computer
time and facilities. JWE was supported by the US Department of Energy
(USDOE), Office of Basic Energy Sciences through the Division of
Chemical Sciences. His work was performed at the Ames Laboratory which
is operated for the USDOE by Iowa State University under contract No.
DE-AC02-07CH11358.
NR 29
TC 12
Z9 12
U1 0
U2 6
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
EI 1361-648X
J9 J PHYS-CONDENS MAT
JI J. Phys.-Condes. Matter
PD OCT 7
PY 2009
VL 21
IS 40
AR 405002
DI 10.1088/0953-8984/21/40/405002
PG 8
WC Physics, Condensed Matter
SC Physics
GA 495XV
UT WOS:000269929800004
PM 21832404
ER
PT J
AU Shukla, AK
Dhaka, RS
D'Souza, SW
Maniraj, M
Barman, SR
Horn, K
Ebert, P
Urban, K
Wu, D
Lograsso, TA
AF Shukla, A. K.
Dhaka, R. S.
D'Souza, S. W.
Maniraj, M.
Barman, S. R.
Horn, K.
Ebert, Ph
Urban, K.
Wu, D.
Lograsso, T. A.
TI Manganese adlayers on i-Al-Pd-Mn quasicrystal: growth and electronic
structure
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
ID LEVEL PHOTOEMISSION; BINDING ENERGIES; SURFACES; FILMS; FE; CORE;
DIFFRACTION; MONOLAYER; INTERFACE; AG(001)
AB Pseudomorphic growth of thin elemental metal films is often observed on a variety of crystalline solids. On quasicrystalline surfaces with their complex structure and the absence of translational periodicity, the situation is different since elemental metals do not exhibit quasicrystalline order, and hence the specific interaction between overlayer and substrate is decisive. Here we study the growth of manganese films on an icosahedral i-Al-Pd-Mn alloy with a view to establishing the growth mode and electronic structure. Although we observe an exponential intensity variation of the adlayer and substrate related x-ray photoemission spectroscopy (XPS) peaks, low energy electron diffraction (LEED) shows that Mn adlayers do not exhibit quasicrystallinity. The detailed structure of the Mn 2p core level line reveals considerable electronic structure differences between the quasicrystalline and elemental metal environment. Evidence of a substantial local magnetic moment on the Mn atoms in the overlayer (about 2.8 mu(B)) is obtained from the Mn 3s exchange splitting.
C1 [Shukla, A. K.; Dhaka, R. S.; D'Souza, S. W.; Maniraj, M.; Barman, S. R.] UGC DAE Consortium Sci Res, Indore 452001, Madhya Pradesh, India.
[Shukla, A. K.] Nancy Univ UPV Metz, CNRS, Inst Jean Lamour, Dept CP2S,ENS Mines Nancy,CS 14234, F-54042 Nancy, France.
[Horn, K.] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany.
[Ebert, Ph; Urban, K.] Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany.
[Wu, D.; Lograsso, T. A.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA.
RP Shukla, AK (reprint author), UGC DAE Consortium Sci Res, Khandwa Rd, Indore 452001, Madhya Pradesh, India.
EM Ajay.Shukla@mines.inpl-nancy.fr
RI Roy Barman, Sudipta/B-2026-2010; Dhaka, Rajendra/F-9018-2011; Dhaka,
Rajendra/C-2486-2013;
OI Ebert, Ph./0000-0002-2022-2378
FU Chemistry Department of Centre National De La Recherche Scientifique,
France; US Department of Energy, Basic Energy Sciences
[De-AC02-07CH11358]
FX The work has been performed through funding from D S T Max Planck
Institute Partner Group project and Ramanna Research Grant. AKS
acknowledges support from the Chemistry Department of Centre National De
La Recherche Scientifique, France. DW and TAL acknowledge support from
the US Department of Energy, Basic Energy Sciences under Contract No.
De-AC02-07CH11358.
NR 46
TC 6
Z9 6
U1 1
U2 6
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
J9 J PHYS-CONDENS MAT
JI J. Phys.-Condes. Matter
PD OCT 7
PY 2009
VL 21
IS 40
AR 405005
DI 10.1088/0953-8984/21/40/405005
PG 8
WC Physics, Condensed Matter
SC Physics
GA 495XV
UT WOS:000269929800007
PM 21832407
ER
PT J
AU Melechko, AV
Desikan, R
McKnight, TE
Klein, KL
Rack, PD
AF Melechko, Anatoli V.
Desikan, Ramya
McKnight, Timothy E.
Klein, Kate L.
Rack, Philip D.
TI Synthesis of vertically aligned carbon nanofibres for interfacing with
live systems
SO JOURNAL OF PHYSICS D-APPLIED PHYSICS
LA English
DT Review
ID CHEMICAL-VAPOR-DEPOSITION; ADDRESSABLE BIOMOLECULAR FUNCTIONALIZATION;
ELECTRON-TRANSFER KINETICS; LARGE-SCALE SYNTHESIS; GENE DELIVERY ARRAYS;
DIAMOND THIN-FILMS; ELECTROCHEMICAL CHARACTERIZATION; FORCE MICROSCOPY;
CYTOCHROME-C; NANOELECTRODE ENSEMBLES
AB The ability to synthesize carbon nanofibres (CNFs) with a high degree of control over their geometry, location and structure via catalytic plasma-enhanced chemical vapour deposition has expanded the possibility of new applications. The nanoscale dimensions and high aspect ratio of vertically aligned carbon nanofibres (VACNFs), along with favourable physical and chemical characteristics, has provided a nanostructured material with properties that are well-suited for interfacing with live cells and tissues. This review surveys the aspects of synthesis, integration and functionalization of VACNFs, followed by examples of how VACNFs have been used to interface with live systems for a variety of advanced nanoscale biological applications.
C1 [Melechko, Anatoli V.; Desikan, Ramya] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA.
[McKnight, Timothy E.; Klein, Kate L.; Rack, Philip D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Klein, Kate L.; Rack, Philip D.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
RP Melechko, AV (reprint author), N Carolina State Univ, Dept Mat Sci & Engn, Box 7907, Raleigh, NC 27695 USA.
RI Melechko, Anatoli/B-8820-2008; McKnight, Tim/H-3087-2011;
OI McKnight, Tim/0000-0003-4326-9117; Rack, Philip/0000-0002-9964-3254
FU DOE Office of Science; NIBIB [R01EB006316]
FX AVM and PDR would like to acknowledge the support by the Materials
Sciences and Engineering programme of the DOE Office of Science. AVM and
TEM was supported by grant R01EB006316 ( NIBIB) and through the
Laboratory Directed Research and Development funding programme of the
Oak Ridge National Laboratory, which is managed for the US Department of
Energy by UT- Battelle, LLC. KLK was supported by the Center for
Nanophase Materials Sciences, which is sponsored by the US Department of
Energy, Basic Energy Sciences, Division of Scientific User Facilities.
NR 140
TC 19
Z9 19
U1 2
U2 17
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0022-3727
J9 J PHYS D APPL PHYS
JI J. Phys. D-Appl. Phys.
PD OCT 7
PY 2009
VL 42
IS 19
AR 193001
DI 10.1088/0022-3727/42/19/193001
PG 28
WC Physics, Applied
SC Physics
GA 496RJ
UT WOS:000269993100002
ER
PT J
AU Tsunegi, S
Sakuraba, Y
Oogane, M
Telling, ND
Shelford, LR
Arenholz, E
van der Laan, G
Hicken, RJ
Takanashi, K
Ando, Y
AF Tsunegi, S.
Sakuraba, Y.
Oogane, M.
Telling, N. D.
Shelford, L. R.
Arenholz, E.
van der Laan, G.
Hicken, R. J.
Takanashi, K.
Ando, Y.
TI Tunnel magnetoresistance in epitaxially grown magnetic tunnel junctions
using Heusler alloy electrode and MgO barrier
SO JOURNAL OF PHYSICS D-APPLIED PHYSICS
LA English
DT Article
ID HALF-METALLIC FERROMAGNET; ROOM-TEMPERATURE; SPIN-POLARIZATION;
DEPENDENCE
AB Epitaxially grown magnetic tunnel junctions (MTJs) with a stacking structure of Co2MnSi/MgO/CoFe were fabricated. Their tunnel magnetoresistance (TMR) effects were investigated. The TMR ratio and tunnelling conductance characteristics of MTJs were considerably different between those with an MgO barrier prepared using sputtering (SP-MTJ) and those prepared using EB evaporation (EB-MTJ). The EB-MTJ exhibited a very large TMR ratio of 217% at room temperature and 753% at 2K. The bias voltage dependence of the tunnelling conductance in the parallel magnetic configuration for the EB-MTJ suggests that the observed large TMR ratio at RT results from the coherent tunnelling process through the crystalline MgO barrier. The tunnelling conductance in the anti-parallel magnetic configuration suggests that the large temperature dependence of the TMR ratio results from the inelastic spin-flip tunnelling process.
C1 [Tsunegi, S.; Oogane, M.; Ando, Y.] Tohoku Univ, Grad Sch Engn, Dept Appl Phys, Sendai, Miyagi 9808579, Japan.
[Sakuraba, Y.; Takanashi, K.] Tohoku Univ, Inst Mat Res, Aoba Ku, Sendai, Miyagi 9808577, Japan.
[Telling, N. D.] Univ Manchester, Sch Earth Atmospher & Environm Sci, Manchester M13 9P, Lancs, England.
[Telling, N. D.] STFC Daresbury Lab, Magnet Spect Grp, Warrington WA4 4AD, Cheshire, England.
[Shelford, L. R.; van der Laan, G.; Hicken, R. J.] Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England.
[Arenholz, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA.
[van der Laan, G.] Diamond Light Source, Didcot OX11 0DE, Oxon, England.
RP Tsunegi, S (reprint author), Tohoku Univ, Grad Sch Engn, Dept Appl Phys, Aoba Yama 6-6-05, Sendai, Miyagi 9808579, Japan.
RI Sakuraba, Yuya/C-1902-2009; Takanashi, Koki/A-9488-2011; van der Laan,
Gerrit/Q-1662-2015
OI van der Laan, Gerrit/0000-0001-6852-2495
FU Ministry of Education, Culture, Sports, Science and Technology of Japan
(MEXT); US Department of Energy [DE-AC02-05CH11231]
FX This study was supported by the 'High-Performance Low-Power Consumption
Spin Devices and Storage Systems' programme under Research and
Development for Next-Generation Information Technology, and Grant-in-Aid
for Scientific Research for Priority Area 'Creation and Control of Spin
Current' by the Ministry of Education, Culture, Sports, Science and
Technology of Japan (MEXT). This research was partly conducted at the
Laboratory for Nanoelectronics and Spintronics, Research Institute of
Electrical Communication, Tohoku University. The Advanced Light Source
is supported by the Director, Office of Science, Office of Basic Energy
Sciences, of the US Department of Energy under Contract No
DE-AC02-05CH11231.
NR 27
TC 9
Z9 9
U1 0
U2 11
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0022-3727
EI 1361-6463
J9 J PHYS D APPL PHYS
JI J. Phys. D-Appl. Phys.
PD OCT 7
PY 2009
VL 42
IS 19
AR 195004
DI 10.1088/0022-3727/42/19/195004
PG 6
WC Physics, Applied
SC Physics
GA 496RJ
UT WOS:000269993100026
ER
PT J
AU Knappenberger, KL
Schwartzberg, AM
Dowgiallo, AM
Lowman, CA
AF Knappenberger, Kenneth L., Jr.
Schwartzberg, Adam M.
Dowgiallo, Anne-Marie
Lowman, Casey A.
TI Electronic Relaxation Dynamics in Isolated and Aggregated Hollow Gold
Nanospheres
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID SINGLE-MOLECULE FLUORESCENCE; COUPLED METAL NANOPARTICLES;
OPTICAL-PROPERTIES; ENHANCED FLUORESCENCE; PLASMON RESONANCE; ULTRAFAST;
SPECTROSCOPY; NANOCRYSTALS; AG
AB Electronic relaxation and interparticle electromagnetic coupling processes in hollow gold nanospheres (HGNs) and HGN aggregates are described. These plasmon-tunable HGNS exhibit an unexpected, but systematic, blue shift of the surface plasmon resonance spectral position when the particles are aggregated. Femtosecond transient absorption measuements and finite-difference time-domain (FDTD) calculations are used to demonstrate that this blue shift is the result of delocalization of the Fermi-gas over multiple particles, an effect not observed with solid spherical particles. The ultrafast electron-phonon coupling lifetimes for the thin-shelled HGNs increase upon aggregation, indicating significant enhancement in interparticle electromagnetic coupling. For instance, a 48-nm HGN with a shell thickness of 7 nm shows ultrafast electron-phonon coupling with a lifetime of 300 +/- 100 fs, and upon aggregation, this lifetime increases to 730 +/- 140 fs. The experimental data strongly suggest that confinement effects in HGNs allow for enhanced energy transport over nanometer distances and this effect can be applied to developing more efficient devices, including photovoltaics.
C1 [Knappenberger, Kenneth L., Jr.; Dowgiallo, Anne-Marie; Lowman, Casey A.] Florida State Univ, Dept Chem & Biochem, Tallahassee, FL 32306 USA.
[Schwartzberg, Adam M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Knappenberger, KL (reprint author), Florida State Univ, Dept Chem & Biochem, Tallahassee, FL 32306 USA.
EM klk@chem.fsu.edu
FU Florida State University; CRC-FYAP; [NSF-DMR0654118]
FX K.L.K. acknowledges Florida State University, CRC-FYAP, and
NSF-DMR0654118 for financial support.
NR 29
TC 26
Z9 26
U1 3
U2 25
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD OCT 7
PY 2009
VL 131
IS 39
BP 13892
EP +
DI 10.1021/ja903086g
PG 4
WC Chemistry, Multidisciplinary
SC Chemistry
GA 502DC
UT WOS:000270433900004
PM 19788321
ER
PT J
AU Blois, TM
Hong, H
Kim, TH
Bowie, JU
AF Blois, Tracy M.
Hong, Heedeok
Kim, Tae H.
Bowie, James U.
TI Protein Unfolding with a Steric Trap
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID HUMAN DIHYDROFOLATE-REDUCTASE; DENATURED STATE; STREPTAVIDIN; BINDING;
METHOTREXATE; STABILITY; EQUILIBRIUM; VARIANTS; DOMAINS; SYSTEM
AB The study of protein folding requires a method to drive unfolding, which is typically accomplished by altering solution conditions to favor the denatured state. This has the undesirable consequence that the molecular forces responsible for configuring the polypeptide chain are also changed. It would therefore be useful to develop methods that can drive unfolding without the need for destabilizing solvent conditions. Here we introduce a new method to accomplish this goat, which we call steric trapping. In the steric trap method, the target protein is labeled with two biotin tags placed close in space so that both biotin tags can only be bound by streptavidin when the protein unfolds. Thus, binding of the second streptavidin is energetically coupled to unfolding of the target protein. Testing the method on a model protein, dihydrofolate reductase (DHFR), we find that streptavidin binding can drive unfolding and that the apparent binding affinity reports on changes in DHFR stability. Finally, by employing the slow off-rate of wild-type streptavidin, we find that DHFR can be locked in the unfolded state. The steric trap method provides a simple method for studying aspects of protein folding and stability in native solvent conditions, could be used to specifically unfold selected domains, and could be applicable to membrane proteins.
C1 [Blois, Tracy M.; Hong, Heedeok; Kim, Tae H.; Bowie, James U.] Univ Calif Los Angeles, Dept Chem & Biochem, UCLA DOE Inst Genom & Prote, Inst Mol Biol, Los Angeles, CA 90095 USA.
RP Bowie, JU (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, UCLA DOE Inst Genom & Prote, Inst Mol Biol, Los Angeles, CA 90095 USA.
EM bowie@mbi.ucla.edu
FU NIH [R01 GM063919, R01 GM081783]
FX We thank Alice Ting for monovalent streptavidin constructs and all Bowie
lab members for thoughtful reading of the manuscript. The work was
supported by NIH Grants R01 GM063919 and R01 GM081783 to J.U.B. and an
NIH Chemistry-Biology Interface training fellowship to T.M.B.
NR 24
TC 13
Z9 13
U1 1
U2 4
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD OCT 7
PY 2009
VL 131
IS 39
BP 13914
EP +
DI 10.1021/ja905725n
PG 3
WC Chemistry, Multidisciplinary
SC Chemistry
GA 502DC
UT WOS:000270433900015
PM 19739627
ER
PT J
AU Wu, ZG
Allendorf, MD
Grossman, JC
AF Wu, Zhigang
Allendorf, Mark D.
Grossman, Jeffrey C.
TI Quantum Monte Carlo Simulation of Nanoscale MgH2 Cluster Thermodynamics
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID HYDROGEN-STORAGE; DENSITY; MAGNESIUM; NANOPARTICLES; SYSTEM
AB We calculated the desorption energy of MgH2 clusters using the highly accurate quantum Monte Carlo (QMC) approach, which can provide desorption energies with chemical accuracy (within similar to 1 kcal/mol) and therefore provides a valuable benchmark for such hydrogen-storage simulations. Compared with these QMC results, the most widely used density functional theory (DFT) computations (including a wide range of exchange-correlation functionals) cannot reach a consistent and suitable Level of accuracy across the thermodynamically tunable range for MgH2 clusters. Furthermore, our QMC calculations show that the DFT error depends substantially on cluster size. These results suggest that in simulating metal-hydride systems it is very important to apply accurate methods that go beyond traditional mean-field approaches as a benchmark of their performance for a given material, and QMC is an appealing method to provide such a benchmark due to its high level of accuracy and favorable scaling (N-3) with the number of electrons.
C1 [Wu, Zhigang; Grossman, Jeffrey C.] Univ Calif Berkeley, Berkeley Nanotechnol & Nanosci Inst, Berkeley, CA 94720 USA.
[Allendorf, Mark D.] Sandia Natl Labs, Energy Nanomat Dept, Livermore, CA 94551 USA.
[Wu, Zhigang] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA.
[Grossman, Jeffrey C.] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA.
RP Grossman, JC (reprint author), Univ Calif Berkeley, Berkeley Nanotechnol & Nanosci Inst, Berkeley, CA 94720 USA.
EM jcg@mit.edu
RI Wu, Zhigang/K-2554-2014
OI Wu, Zhigang/0000-0001-8959-2345
FU U.S. Department of Energy Office of Hydrogen, Fuel Cells, and
Infrastructure Program
FX This work was Supported by the U.S. Department of Energy Office of
Hydrogen, Fuel Cells, and Infrastructure Program. Calculations were
performed at NERSC in Lawrence Berkeley National Laboratory and at TACC
through the Teragrid. We thank L. Wagner, L. Wang, and D. Johnson for
useful discussions.
NR 22
TC 40
Z9 41
U1 0
U2 28
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD OCT 7
PY 2009
VL 131
IS 39
BP 13918
EP +
DI 10.1021/ja905639m
PG 4
WC Chemistry, Multidisciplinary
SC Chemistry
GA 502DC
UT WOS:000270433900017
PM 19739635
ER
PT J
AU Park, J
Zheng, H
Jun, YW
Alivisatos, AP
AF Park, Jungwon
Zheng, Haimei
Jun, Young-Wook
Alivisatos, A. Paul
TI Hetero-Epitaxial Anion Exchange Yields Single-Crystalline Hollow
Nanoparticles
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID CATION-EXCHANGE; NANOCRYSTALS; KIRKENDALL; DIFFUSION; NANORODS;
NANOSTRUCTURES; GOLD; ZNS
AB Anion exchange with S was performed on ZnO colloidal nanoparticles. The resulting hollow ZnS nanoparticles are crystal whose shape is dictated by the initial ZnO. Crystallographic and elemental analyses provide insight into the mechanism of the anion exchange.
C1 [Park, Jungwon; Zheng, Haimei; Jun, Young-Wook; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Zheng, Haimei] Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA.
[Zheng, Haimei; Jun, Young-Wook; Alivisatos, A. Paul] Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Alivisatos, AP (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
EM alivis@berkeley.edu
RI Jun, Young-wook/A-4141-2008; Alivisatos , Paul /N-8863-2015; Park,
Jungwon/O-1153-2016
OI Alivisatos , Paul /0000-0001-6895-9048; Park,
Jungwon/0000-0003-2927-4331
FU U.S. Department of Energy [DE-AC02-05CH11231]; DAF AFOSR
[FA9550-07-1-0334]
FX This work was supported by the Director, Office of Science, Office of
Basic Energy Sciences, Materials Sciences and Engineering Division, of
the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 for
funding the development of a new synthetic approach for the hollow
nanomaterials and by a grant from DAF AFOSR under Award No.
FA9550-07-1-0334 for the examination of the nanomaterials for energy
absorbing properties. Helpful discussions with and revision by Jennifer
A. Dionne are acknowledged. TEM investigation was performed at National
Center for Electron Microscope, LBNL.
NR 22
TC 114
Z9 115
U1 11
U2 122
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD OCT 7
PY 2009
VL 131
IS 39
BP 13943
EP +
DI 10.1021/ja905732q
PG 4
WC Chemistry, Multidisciplinary
SC Chemistry
GA 502DC
UT WOS:000270433900028
PM 19788329
ER
PT J
AU Lipton, AS
Heck, RW
de Jong, WA
Gao, AR
Wu, XJ
Roehrich, A
Harbison, GS
Ellis, PD
AF Lipton, Andrew S.
Heck, Robert W.
de Jong, Wibe A.
Gao, Amy R.
Wu, Xiongjian
Roehrich, Adrienne
Harbison, Gerard S.
Ellis, Paul D.
TI Low Temperature Cu-65 NMR Spectroscopy of the Cu+ Site in Azurin
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID ELECTRIC-FIELD GRADIENTS; CYTOCHROME-C-OXIDASE; BLUE COPPER PROTEINS;
GAUSSIAN-BASIS SETS; X-RAY-ABSORPTION; PSEUDOMONAS-AERUGINOSA;
CRYSTAL-STRUCTURE; STRUCTURAL FEATURES; DENSITY FUNCTIONALS; ATOMS LI
AB Cu-65 central-transition NMR spectroscopy of the blue copper protein azurin in the reduced Cu(I) state, conducted at 18.8 T and 10 K, gave a strongly second order quadrupole perturbed spectrum, which yielded a Cu-65 quadrupole coupling constant of +/- 71.2 +/- 1 MHz, corresponding to an electric field gradient of +/- 1.49 atomic units at the copper site, and an asymmetry parameter of approximately 0.2. Quantum chemical calculations employing second order Moller-Plesset perturbation theory and large basis sets successfully reproduced these experimental results. Sensitivity and relaxation times were quite favorable, suggesting that NMR may be a useful probe of the electronic state of copper sites in proteins.
C1 [Lipton, Andrew S.; Heck, Robert W.; de Jong, Wibe A.; Gao, Amy R.; Ellis, Paul D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA.
[Wu, Xiongjian; Roehrich, Adrienne; Harbison, Gerard S.] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA.
RP Harbison, GS (reprint author), Pacific NW Natl Lab, Div Biol Sci, 902 Battelle Blvd, Richland, WA 99352 USA.
EM gerry@setanta.unl.edu
RI DE JONG, WIBE/A-5443-2008
OI DE JONG, WIBE/0000-0002-7114-8315
FU National Institutes of Health (NIH) [EB-2050]; United States Department
of Energy (DOE) Office of Science; U.S. Department of Energy's Office of
Biological and Environmental Research
FX This project was supported by grants from the National Institutes of
Health (NIH, Federal Grant EB-2050) and the United States Department of
Energy (DOE) Office of Science, through PNNL's Science Undergraduate
Laboratory Internship (SULI) program for ARG. This research was carried
out in the Environmental Molecular Sciences Laboratory (a national
scientific user facility sponsored by the U.S. Department of Energy's
Office of Biological and Environmental Research) located at Pacific
Northwest National Laboratory and operated for DOE by Battelle.
Computations were performed in part using the Molecular Science
Computing Facility in EMSL. NWChem Version 5.1, as developed and
distributed by Pacific Northwest National Laboratory, P.O. Box 999,
Richland, Washington 99352 USA, and funded by the U.S. Department of
Energy, was used to obtain some of these results. We thank Jesse Sears
for extensive modifications of NMR probes to eliminate copper background
signals, and GSH thanks EMSL for partial funding of a sabbatical. The
Macintosh cluster at the University of Nebraska was provided by the
Defense Advanced Research Projects Agency.
NR 67
TC 17
Z9 17
U1 1
U2 13
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD OCT 7
PY 2009
VL 131
IS 39
BP 13992
EP 13999
DI 10.1021/ja901308v
PG 8
WC Chemistry, Multidisciplinary
SC Chemistry
GA 502DC
UT WOS:000270433900035
PM 19746904
ER
PT J
AU Lee, SE
Sasaki, DY
Perroud, TD
Yoo, D
Patel, KD
Lee, LP
AF Lee, Somin Eunice
Sasaki, Darryl Y.
Perroud, Thomas D.
Yoo, Daniel
Patel, Kamlesh D.
Lee, Luke P.
TI Biologically Functional Cationic Phospholipid-Gold Nanoplasmonic
Carriers of RNA
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID BREAST-CANCER CELLS; IN-VIVO; PHOTOTHERMAL THERAPY; LIVING CELLS;
ENCAPSULATED MATERIALS; SURFACE MODIFICATION; GENE-EXPRESSION; CELLULAR
UPTAKE; OPTICAL FORCES; DRUG-DELIVERY
AB Biologically functional cationic phospholipid-gold nanoplasmonic carriers have been designed to simultaneously exhibit carrier capabilities, demonstrate improved colloidal stability, and show no cytotoxicity under physiological conditions. Cargo, such as RNA, DNA, proteins, or drugs, can be adsorbed onto or incorporated into the cationic phospholipid bilayer membrane. These carriers are able to retain their unique nanoscale optical properties under physiological conditions, making them particularly useful in a wide range of imaging, therapeutic, and gene delivery applications that utilize selective nanoplasmonic properties.
C1 [Lee, Somin Eunice; Yoo, Daniel; Lee, Luke P.] Univ Calif Berkeley, UCSF UCB Joint Grad Grp Bioengn, Berkeley Sensor & Actuator Ctr, Dept Bioengn,Biomol Nanotechnol Ctr, Berkeley, CA 94720 USA.
[Sasaki, Darryl Y.; Perroud, Thomas D.; Patel, Kamlesh D.] Sandia Natl Labs, Livermore, CA 94551 USA.
RP Lee, LP (reprint author), Univ Calif Berkeley, UCSF UCB Joint Grad Grp Bioengn, Berkeley Sensor & Actuator Ctr, Dept Bioengn,Biomol Nanotechnol Ctr, Berkeley, CA 94720 USA.
EM lplee@berkeley.edu
RI Patel, Kamlesh/A-9728-2009
FU National Physical Science Consortium (NPSC); Department of Energy Office
of Basic Energy Sciences [DE-AC04-94AL85000]
FX We acknowledge the National Physical Science Consortium (NPSC) graduate
fellowship for support of S.E.L. We thank Terry Johnson and Dave
Robinson for technical insight. We thank the UC Berkeley undergraduate
students Dana Donnenwirth, Daniel Rosen, Gabe Sudario, and Alan Wilk for
assistance with viability/cytotoxicity experiments. We also thank Ann
Fischer and Michelle Yasukawa of the UC Berkeley Tissue Culture Facility
for long-term maintenance of MCF-7 and BT474 cell lines. We acknowledge
the Division of Materials Science and Engineering in the Department of
Energy Office of Basic Energy Sciences for financial support of D.Y.S.
at Sandia. Sandia is a multiprogram laboratory operated by Sandia Corp.,
a Lockheed Martin Co., for the United States Department of Energy under
Contract DE-AC04-94AL85000.
NR 59
TC 49
Z9 50
U1 1
U2 21
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD OCT 7
PY 2009
VL 131
IS 39
BP 14066
EP 14074
DI 10.1021/ja904326j
PG 9
WC Chemistry, Multidisciplinary
SC Chemistry
GA 502DC
UT WOS:000270433900043
PM 19746908
ER
PT J
AU Ding, ZF
Currier, RP
Zhao, YS
Yang, DL
AF Ding, Zhongfen
Currier, Robert P.
Zhao, Yusheng
Yang, Dali
TI Self-Assembled Polyaniline Nanotubes with Rectangular Cross-Sections
SO MACROMOLECULAR CHEMISTRY AND PHYSICS
LA English
DT Article
DE intermediate aggregates; morphology; open circuit potential; polyaniline
nanotubes; reaction kinetics; rectangular cross-sections; self-assembly
ID CONDUCTING POLYMER NANOSTRUCTURES; OXIDATIVE POLYMERIZATION;
MORPHOLOGICAL EVOLUTION; SUB-MICROTUBES; ANILINE; MECHANISM; ACID;
DENDRITES; TEMPLATE; ESR
AB Nanomaterials made from the conducting polymer polyaniline (PANI) have very unique applications due to their high surface area and ease of processing. The link between synthesis conditions and morphology of PANI nanomaterials has been the subject of numerous investigations in recent years. Formation mechanisms for different morphologies have also been proposed. In this work, we report a self-assembly method to make high yield PANI nanotubes with rectangular holes and outer contours by qualitatively and purposely controlling reaction rate. We find that aggregation of detectable and separable reaction intermediates is directly correlated with PANI nanotubes formation, consistent with the observation of oligoaniline precipitates reported in the literature. Control over intermediate aggregates morphology is studied systematically. By controlling the reaction rate through adjusting acid and oxidant concentrations, we can slow down the aggregation rate of the intermediates to largely enhance the yield of nanotubes with rectangular cross-sections. To understand the correlation between the intermediates aggregation and the morphology of the resulting PANI tubes, the morphologies of intermediate aggregates and final nanotubes were characterized using SEM, STEM, and TEM. Open circuit potential (OCP) was used to monitor the polymerization process. Molecular weight distribution results were also obtained for the intermediate aggregates and the final products. Based on our study, we propose a simple PANI nanotube formation mechanism.
C1 [Ding, Zhongfen; Currier, Robert P.; Zhao, Yusheng; Yang, Dali] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Ding, ZF (reprint author), Los Alamos Natl Lab, MST 7,MS E544, Los Alamos, NM 87545 USA.
EM zding@lanl.gov; dyang@lanl.gov
RI Lujan Center, LANL/G-4896-2012
FU Laboratory Directed Research and Development program
FX We would like to thank Dr. Ross E. Muenchausen (LANL MST-8) for UV-Vis
access and Dr. Rob Dickerson and Dr. Rod McCabe (LANL MST-6) for SEM and
TEM access and Dr. Debra Wrobleski for GPC access. We also would like to
thank Professor Richard B. Kaner (UCLA) for thoughtful discussions. This
work was supported by the Laboratory Directed Research and Development
program at Los Alamos National Laboratory.
NR 35
TC 20
Z9 23
U1 1
U2 31
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY
SN 1022-1352
J9 MACROMOL CHEM PHYSIC
JI Macromol. Chem. Phys.
PD OCT 7
PY 2009
VL 210
IS 19
BP 1600
EP 1606
DI 10.1002/macp.200900250
PG 7
WC Polymer Science
SC Polymer Science
GA 507NA
UT WOS:000270859800004
ER
PT J
AU Nikiforov, MP
Reukov, VV
Thompson, GL
Vertegel, AA
Guo, S
Kalinin, SV
Jesse, S
AF Nikiforov, M. P.
Reukov, V. V.
Thompson, G. L.
Vertegel, A. A.
Guo, S.
Kalinin, S. V.
Jesse, S.
TI Functional recognition imaging using artificial neural networks:
applications to rapid cellular identification via broadband
electromechanical response
SO NANOTECHNOLOGY
LA English
DT Article
ID ATOMIC-FORCE MICROSCOPY; CELLS; CANTILEVER; NANOSCALE; DYNAMICS; TRENDS
AB Functional recognition imaging in scanning probe microscopy (SPM) using artificial neural network identification is demonstrated. This approach utilizes statistical analysis of complex SPM responses at a single spatial location to identify the target behavior, which is reminiscent of associative thinking in the human brain, obviating the need for analytical models. We demonstrate, as an example of recognition imaging, rapid identification of cellular organisms using the difference in electromechanical activity over a broad frequency range. Single-pixel identification of model Micrococcus lysodeikticus and Pseudomonas fluorescens bacteria is achieved, demonstrating the viability of the method.
C1 [Nikiforov, M. P.; Guo, S.; Kalinin, S. V.; Jesse, S.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Reukov, V. V.; Thompson, G. L.; Vertegel, A. A.] Clemson Univ, Dept Bioengn, Clemson, SC 29634 USA.
RP Nikiforov, MP (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
EM sergei2@ornl.gov
RI Nikiforov, Maxim/C-1965-2012; Kalinin, Sergei/I-9096-2012; Jesse,
Stephen/D-3975-2016
OI Kalinin, Sergei/0000-0001-5354-6152; Jesse, Stephen/0000-0002-1168-8483
FU Scientific User Facilities Division, Office of Basic Energy Sciences, US
Department of Energy; NIH [RR024449]; ORNL SEED program
FX This research was supported by the ORNL SEED program (SJ, MPN, SVK).
Part of this research, at the Oak Ridge National Laboratory's Center for
Nanophase Materials Sciences, was sponsored by the Scientific User
Facilities Division, Office of Basic Energy Sciences, US Department of
Energy. The research was supported in part by NIH grant RR024449.
NR 39
TC 12
Z9 12
U1 1
U2 8
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0957-4484
EI 1361-6528
J9 NANOTECHNOLOGY
JI Nanotechnology
PD OCT 7
PY 2009
VL 20
IS 40
AR 405708
DI 10.1088/0957-4484/20/40/405708
PG 8
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Physics, Applied
SC Science & Technology - Other Topics; Materials Science; Physics
GA 495XW
UT WOS:000269929900035
PM 19752493
ER
PT J
AU Chapuran, TE
Toliver, P
Peters, NA
Jackel, J
Goodman, MS
Runser, RJ
McNown, SR
Dallmann, N
Hughes, RJ
McCabe, KP
Nordholt, JE
Peterson, CG
Tyagi, KT
Mercer, L
Dardy, H
AF Chapuran, T. E.
Toliver, P.
Peters, N. A.
Jackel, J.
Goodman, M. S.
Runser, R. J.
McNown, S. R.
Dallmann, N.
Hughes, R. J.
McCabe, K. P.
Nordholt, J. E.
Peterson, C. G.
Tyagi, K. T.
Mercer, L.
Dardy, H.
TI Optical networking for quantum key distribution and quantum
communications
SO NEW JOURNAL OF PHYSICS
LA English
DT Article
ID FIBER; CRYPTOGRAPHY; SWITCH
AB Modern optical networking techniques have the potential to greatly extend the applicability of quantum communications by moving beyond simple point-to-point optical links and by leveraging existing fibre infrastructures. We experimentally demonstrate many of the fundamental capabilities that are required. These include optical-layer multiplexing, switching and routing of quantum signals; quantum key distribution (QKD) in a dynamically reconfigured optical network; and coexistence of quantum signals with strong conventional telecom traffic on the same fibre. We successfully operate QKD at 1310 nm over a fibre shared with four optically amplified data channels near 1550 nm. We identify the dominant impairment as spontaneous anti-Stokes Raman scattering of the strong signals, quantify its impact, and measure and model its propagation through fibre. We describe a quantum networking architecture which can provide the flexibility and scalability likely to be critical for supporting widespread deployment of quantum applications.
C1 [Chapuran, T. E.; Toliver, P.; Peters, N. A.; Jackel, J.; Goodman, M. S.] Telcordia Technol, Piscataway, NJ 08854 USA.
[Runser, R. J.; McNown, S. R.] Lab Telecommun Sci, College Pk, MD 20740 USA.
[Dallmann, N.; Hughes, R. J.; McCabe, K. P.; Nordholt, J. E.; Peterson, C. G.; Tyagi, K. T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Mercer, L.; Dardy, H.] USN, Res Lab, Washington, DC 20375 USA.
RP Chapuran, TE (reprint author), Telcordia Technol, 1 Telcordia Dr, Piscataway, NJ 08854 USA.
EM tc@research.telcordia.com
RI McCabe, Kevin/H-3381-2013; Peters, Nicholas/F-2530-2010
OI Peters, Nicholas/0000-0002-7215-9630
FU IARPA; Laboratory for Telecommunications Sciences
FX We gratefully acknowledge that this work was supported by IARPA, and
hosted by the Laboratory for Telecommunications Sciences.
NR 41
TC 78
Z9 85
U1 1
U2 13
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1367-2630
J9 NEW J PHYS
JI New J. Phys.
PD OCT 7
PY 2009
VL 11
AR 105001
DI 10.1088/1367-2630/11/10/105001
PG 19
WC Physics, Multidisciplinary
SC Physics
GA 507AJ
UT WOS:000270821200001
ER
PT J
AU Zeng, GSL
Gullberg, GT
AF Zeng, Gengsheng L.
Gullberg, Grant T.
TI Exact iterative reconstruction for the interior problem
SO PHYSICS IN MEDICINE AND BIOLOGY
LA English
DT Article
ID ROI RECONSTRUCTION; RADON-TRANSFORM; PROJECTIONS; TOMOGRAPHY
AB There is a trend in single photon emission computed tomography (SPECT) that small and dedicated imaging systems are becoming popular. For example, many companies are developing small dedicated cardiac SPECT systems with different designs. These dedicated systems have a smaller field of view (FOV) than a full- size clinical system. Thus data truncation has become the norm rather than the exception in these systems. Therefore, it is important to develop region of interest (ROI) reconstruction algorithms using truncated data. This paper is a stepping stone toward this direction. This paper shows that the common generic iterative image reconstruction algorithms are able to exactly reconstruct the ROI under the conditions that the convex ROI is fully sampled and the image value in a sub-region within the ROI is known. If the ROI includes a sub-region that is outside the patient body, then the conditions can be easily satisfied.
C1 [Zeng, Gengsheng L.] Univ Utah, Dept Radiol, Utah Ctr Adv Imaging, Salt Lake City, UT 84108 USA.
[Gullberg, Grant T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Radiotracer Dev & Imaging Technol, Berkeley, CA 94720 USA.
RP Zeng, GSL (reprint author), Univ Utah, Dept Radiol, Utah Ctr Adv Imaging, Salt Lake City, UT 84108 USA.
EM larry@ucair.med.utah.edu; gtgullberg@lbl.gov
FU Margolis Foundation; NIH [EB00121]; US Department of Energy
[DE-AC02-05CH11231]
FX This work was supported in part by the Margolis Foundation and an NIH
grant EB00121 and by the Director, Office of Science, Office of
Biological and Environmental Research of the US Department of Energy
under contract DE-AC02-05CH11231.
NR 14
TC 12
Z9 12
U1 1
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0031-9155
J9 PHYS MED BIOL
JI Phys. Med. Biol.
PD OCT 7
PY 2009
VL 54
IS 19
BP 5805
EP 5814
DI 10.1088/0031-9155/54/19/009
PG 10
WC Engineering, Biomedical; Radiology, Nuclear Medicine & Medical Imaging
SC Engineering; Radiology, Nuclear Medicine & Medical Imaging
GA 497IE
UT WOS:000270051600010
PM 19741279
ER
PT J
AU Choi, M
Sukumar, N
Liu, AM
Davidson, VL
AF Choi, Moonsung
Sukumar, Narayanasami
Liu, Aimin
Davidson, Victor L.
TI Defining the Role of the Axial Ligand of the Type 1 Copper Site in
Amicyanin by Replacement of Methionine with Leucine
SO BIOCHEMISTRY
LA English
DT Article
ID INTERPROTEIN ELECTRON-TRANSFER; C-TYPE CYTOCHROMES; X-RAY-STRUCTURE;
METHYLAMINE DEHYDROGENASE; PARACOCCUS-DENITRIFICANS; REDUCTION
POTENTIALS; CRYSTAL-STRUCTURES; REORGANIZATION ENERGY;
OXIDATION-REDUCTION; ANGSTROM RESOLUTION
AB The effects of replacing the axial methionine ligand of the type I copper site with leucine on the structure and function of amicyanin have been characterized. The crystal structures of the oxidized and reduced forms of the protein reveal that the copper site is now tricoordinate with no axial ligand, and that the copper coordination distances for the two ligands provided by histidines are significantly increased. Despite these structural changes, the absorption and EPR spectra of M98L amicyanin are only slightly altered and still consistent with that of a typical type 1 site. The oxidation-reduction midpoint potential (E(m)) value becomes 127 mV more positive as a consequence of the M98L mutation, most likely because of the increased hydrophobicity of the copper site. The most dramatic effect of the mutation was on the electron transfer (ET) reaction from reduced M98L amicyanin to cytochrome c(55li) within the protein ET complex. The rate decreased 435-fold, which was much more than expected from the change in E(m). Examination of the temperature dependence of the ET rate (k(ET)) revealed that the mutation caused a 13.6-fold decrease in the electronic coupling (H(AB)) for the reaction. A similar decrease was predicted from a comparative analysis of the crystal structures of reduced M98L and native amicyanins. The most direct route of ET for this reaction is through the Met98 ligand. Inspection of the structures suggests that the major determinant of the large decrease in the experimentally determined values of H(AB) and k(ET) is the increased distance from the copper to the protein within the type 1 site of M98L amicyanin.
C1 [Choi, Moonsung; Davidson, Victor L.] Univ Mississippi, Med Ctr, Dept Biochem, Jackson, MS 39216 USA.
[Sukumar, Narayanasami] Cornell Univ, Argonne Natl Lab, NE CAT, Argonne, IL 60439 USA.
[Sukumar, Narayanasami] Cornell Univ, Argonne Natl Lab, Dept Chem & Chem Biol, Argonne, IL 60439 USA.
[Liu, Aimin] Georgia State Univ, Dept Chem, Atlanta, GA 30302 USA.
RP Davidson, VL (reprint author), Univ Mississippi, Med Ctr, Dept Biochem, 2500 N State St, Jackson, MS 39216 USA.
EM sukumar@anl.gov; vdavidson@biochem.umsmed.edu
RI Liu, Aimin/C-1572-2017;
OI Liu, Aimin/0000-0002-4182-8176; Davidson, Victor/0000-0002-1966-7302
FU National Institutes of Health (NIH) [GM-41574]; NCRR [RR-15301]; NIH;
U.S. Department of Energy, Office of Science, Office of Basic Energy
Science [DE-AC02-06CH11357]
FX This work was supported by National Institutes of Health (NIH) Grant
GM-41574 (V.L.D.). Use of NE-CAT beamlines and this work is supported by
Award RR-15301 (NE-CAT facility) from the NCRR, NIH. Use of the APS is
supported by the U.S. Department of Energy, Office of Science, Office of
Basic Energy Science. under Contract DE-AC02-06CH11357.
NR 61
TC 12
Z9 12
U1 0
U2 2
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0006-2960
J9 BIOCHEMISTRY-US
JI Biochemistry
PD OCT 6
PY 2009
VL 48
IS 39
BP 9174
EP 9184
DI 10.1021/bi900836h
PG 11
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 498JU
UT WOS:000270136600002
PM 19715303
ER
PT J
AU Cherezov, V
Hanson, MA
Griffith, MT
Hilgart, MC
Sanishvili, R
Nagarajan, V
Stepanov, S
Fischetti, RF
Kuhn, P
Stevens, RC
AF Cherezov, Vadim
Hanson, Michael A.
Griffith, Mark T.
Hilgart, Mark C.
Sanishvili, Ruslan
Nagarajan, Venugopalan
Stepanov, Sergey
Fischetti, Robert F.
Kuhn, Peter
Stevens, Raymond C.
TI Rastering strategy for screening and centring of microcrystal samples of
human membrane proteins with a sub-10 mu m size X-ray synchrotron beam
SO JOURNAL OF THE ROYAL SOCIETY INTERFACE
LA English
DT Article
DE lipidic cubic phase; G protein-coupled receptor; minibeam;
microcrystallography
ID LIPIDIC CUBIC PHASES; RADIATION-DAMAGE; CRYSTAL-STRUCTURE; COUPLED
RECEPTOR; SOLUBLE-PROTEINS; DIFFRACTION DATA; BINDING-SITE;
CRYSTALLOGRAPHY; CRYSTALLIZATION; RESOLUTION
AB Crystallization of human membrane proteins in lipidic cubic phase often results in very small but highly ordered crystals. Advent of the sub-10 mu m minibeam at the APS GM/CA CAT has enabled the collection of high quality diffraction data from such microcrystals. Herein we describe the challenges and solutions related to growing, manipulating and collecting data from optically invisible microcrystals embedded in an opaque frozen in meso material. Of critical importance is the use of the intense and small synchrotron beam to raster through and locate the crystal sample in an efficient and reliable manner. The resulting diffraction patterns have a significant reduction in background, with strong intensity and improvement in diffraction resolution compared with larger beam sizes. Three high-resolution structures of human G protein-coupled receptors serve as evidence of the utility of these techniques that will likely be useful for future structural determination efforts. We anticipate that further innovations of the technologies applied to microcrystallography will enable the solving of structures of ever more challenging targets.
C1 [Cherezov, Vadim; Hanson, Michael A.; Griffith, Mark T.; Stevens, Raymond C.] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA.
[Kuhn, Peter] Scripps Res Inst, Dept Cell Biol, La Jolla, CA 92037 USA.
[Hilgart, Mark C.; Sanishvili, Ruslan; Nagarajan, Venugopalan; Stepanov, Sergey; Fischetti, Robert F.] Argonne Natl Lab, Biosci Div, APS, GM CA CAT, Argonne, IL 60439 USA.
RP Cherezov, V (reprint author), Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA.
EM vcherezo@scripps.edu
RI Cherezov, Vadim/L-9812-2013
OI Cherezov, Vadim/0000-0002-5265-3914
FU NIH [P50 GM073197, GM075915]; Protein Structure Initiative [U54
GM074961]; NSF [IIS0308078]; Science Foundation Ireland [02-IN1-B266];
National Cancer Institute [Y1-CO-1020]; National Institute of General
Medical Sciences [Y1-GM-1104]
FX This work was supported in part by the NIH Roadmap Initiative grant P50
GM073197 and Protein Structure Initiative grant U54 GM074961. The
authors acknowledge D. Rosenbaum and B. Kobilka from Stanford University
for providing initial beta2AR-T4L samples, crystals of which
were used to develop some of the approaches described in this paper, as
well as Y. Zheng, Ohio State University, and M. Caffrey, University of
Limerick, for the generous loan of the in meso robot (built with support
from the NIH (GM075915), the NSF (IIS0308078) and Science Foundation
Ireland (02-IN1-B266)). The GM/CA CAT beamline (23-ID) is supported by
the National Cancer Institute (Y1-CO-1020) and the National Institute of
General Medical Sciences (Y1-GM-1104).
NR 48
TC 77
Z9 79
U1 1
U2 3
PU ROYAL SOC
PI LONDON
PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND
SN 1742-5689
J9 J R SOC INTERFACE
JI J. R. Soc. Interface
PD OCT 6
PY 2009
VL 6
BP S587
EP S597
DI 10.1098/rsif.2009.0142.focus
PG 11
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 494PQ
UT WOS:000269826500004
PM 19535414
ER
PT J
AU Benhassine, M
Saiz, E
Tomsia, AP
De Coninck, J
AF Benhassine, M.
Saiz, E.
Tomsia, A. P.
De Coninck, J.
TI Nonreactive Spreading at High-Temperature Revisited for Metal Systems
via Molecular Dynamics
SO LANGMUIR
LA English
DT Article
ID EMBEDDED-ATOM-METHOD; ATOMISTIC SIMULATIONS; CONTACT-ANGLE; INTERFACE;
AG; CU; SURFACES; LIQUIDS; FILMS
AB The spreading for Cu and Ag droplets oil top of a rigid solid surface modeling Mo is herewith considered via molecular dynamics. The dynamics of the base radius and the contact angle are recorded and fitted using the molecular-kinetic theory. A method is described to determine for liquid metals at the microscopic level the parameters appearing in this theory. These microscopic parameters are calculated directly in the simulations and compared to the Fitted values. The agreement between the fitted values and the calculated ones shows that the dissipation of energy within the drop is caused primarily by the friction of liquid atoms over the substrate. This validation supports the understanding of the mechanisms controlling the spreading of liquid metals which, up to now, were based on experimental data and fitting procedures.
C1 [Benhassine, M.; De Coninck, J.] Univ Mons, Ctr Res Mol Modelling, B-7000 Mons, Belgium.
[Saiz, E.; Tomsia, A. P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Sci Mat, Berkeley, CA 94720 USA.
RP De Coninck, J (reprint author), Univ Mons, Ctr Res Mol Modelling, Parc Initialis,Av Copernic 1, B-7000 Mons, Belgium.
EM joel.de.coninck@crmm.umh.ac.be
FU Office of Science, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering, of the U.S. Department of Energy
[DE-AC02-05CH1123]
FX M.B. is grateful to the F.N.R.S. of Belgium under the fonds pour la
Formation la Recherche dans l'Industrie et dans l'Agriculture. We
gratefully thank Prof. M. Hou of the ULB in Belgium and Dr. T. D. Blake
for fruitful discussions on molecular modeling and wetting. This work
was also supported by the Director, Office of Science, Office of Basic
Energy Sciences, Division of Materials Sciences and Engineering, of the
U.S. Department of Energy under Contract DE-AC02-05CH1123
NR 37
TC 13
Z9 13
U1 2
U2 12
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0743-7463
J9 LANGMUIR
JI Langmuir
PD OCT 6
PY 2009
VL 25
IS 19
BP 11450
EP 11458
DI 10.1021/la902958k
PG 9
WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science,
Multidisciplinary
SC Chemistry; Materials Science
GA 498JV
UT WOS:000270136900042
PM 19702248
ER
PT J
AU Provis, JL
Rose, V
Bernal, SA
van Deventer, JSJ
AF Provis, John L.
Rose, Volker
Bernal, Susan A.
van Deventer, Jannie S. J.
TI High-Resolution Nanoprobe X-ray Fluorescence Characterization of
Heterogeneous Calcium and Heavy Metal Distributions in Alkali-Activated
Fly Ash
SO LANGMUIR
LA English
DT Article
ID SURFACE PREDOMINANCE; AIRBORNE PARTICLES; POWER-STATIONS; BY-PRODUCTS;
PART II; MICROSCOPY; GEOPOLYMERS; SPECIATION; CHROMIUM; WASTE
AB The nanoscale distribution of elements within fly ash and the aluminosilicate gel products of its alkaline activation ("fly ash geopolymers") are analyzed by means of synchrotron X-ray fluorescence using a hard X-ray Nanoprobe instrument. The distribution of calcium within a hydroxide-activated (fly ash/KOH solution) geopolymer gel is seen to be highly heterogeneous, with these data providing for the first time direct evidence of the formation of discrete high-calcium particles within the binder structure of a geopolymer synthesized from a low-calcium (< 2 wt % as oxides) fly ash. The silicate-activated (fly ash/potassium silicate solution) sample, by contrast, shows a much more homogeneous geopolymer gel binder structure surrounding the unreacted fly ash particles. This has important implications for the understanding of calcium chemistry within aluminosilicate geopolymer gel phases. Additionally, chromium and iron are seen to be very closely correlated within the structures of both fly ash and the geopolymer product and remain within the regions of the geopolymer which can be identified as unreacted fly ash particles. Given that the potential for chromium release has been one of the queries surrounding the widespread utilization of construction Materials derived from fly ash, the observation that this element appears to be localized within the fly ash rather than dispersed throughout the gel binder indicates that it is unlikely to be released problematically into the environment.
C1 [Provis, John L.; Bernal, Susan A.; van Deventer, Jannie S. J.] Univ Melbourne, Dept Chem & Biomol Engn, Melbourne, Vic 3010, Australia.
[Rose, Volker] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Bernal, Susan A.] Univ Valle, Dept Mat Engn, Composite Mat Grp CENM, Cali, Colombia.
RP Provis, JL (reprint author), Univ Melbourne, Dept Chem & Biomol Engn, Melbourne, Vic 3010, Australia.
EM jprovis@unimelb.edu.au
RI Rose, Volker/B-1103-2008;
OI Rose, Volker/0000-0002-9027-1052; Bernal, Susan A/0000-0002-9647-3106;
Provis, John/0000-0003-3372-8922
FU U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-AC02-06CH11357]; Australian Research Council (ARC);
Particulate Fluids Processing Centre; Colciencias; Walter Mangold Trust;
Australian Synchrotron Research Program
FX Use of the Center for Nanoscale Materials was supported by the U.S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Contract DE-AC02-06CH11357. Use of the Advanced Photon
Source was supported by the U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences, under Contract
DE-AC02-06CH11357. This work was funded by the Australian Research
Council (ARC), including partial funding from the Particulate Fluids
Processing Centre, a Special Research Centre of the ARC, and through
Discovery Project grants. The work of S.A.B. was supported by travelling
scholarships from Colciencias and from the Walter Mangold Trust. Travel
funding for J.L.P. was supplied by the Australian Synchrotron Research
Program. We thank Dr. Jorg Maser, Dr, Robert Winarski, Dr. Martin Holt,
and Ms. Claire White for assistance with experiments oil the Nanoprobe
instrument.
NR 49
TC 32
Z9 32
U1 2
U2 17
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0743-7463
J9 LANGMUIR
JI Langmuir
PD OCT 6
PY 2009
VL 25
IS 19
BP 11897
EP 11904
DI 10.1021/la901560h
PG 8
WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science,
Multidisciplinary
SC Chemistry; Materials Science
GA 498JV
UT WOS:000270136900101
PM 19788232
ER
PT J
AU Zhou, X
Graziani, D
Pines, A
AF Zhou, Xin
Graziani, Dominic
Pines, Alexander
TI Hyperpolarized xenon NMR and MRI signal amplification by gas extraction
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE remote detection; dissolved-phase xenon MRI; molecular imaging; phase
transition
ID LASER-POLARIZED XE-129; MAGNETIC-RESONANCE; REMOTE-DETECTION;
NOBLE-GASES; FLOW SYSTEM; SPECTROSCOPY; BIOSENSOR; DIFFUSION; LUNGS;
FIELD
AB A method is reported for enhancing the sensitivity of NMR of dissolved xenon by detecting the signal after extraction to the gas phase. We demonstrate hyperpolarized xenon signal amplification by gas extraction (Hyper-SAGE) in both NMR spectra and magnetic resonance images with time-of-flight information. Hyper-SAGE takes advantage of a change in physical phase to increase the density of polarized gas in the detection coil. At equilibrium, the concentration of gas-phase xenon is approximate to 10 times higher than that of the dissolved-phase gas. After extraction the xenon density can be further increased by several orders of magnitude by compression and/or liquefaction. Additionally, being a remote detection technique, the Hyper-SAGE effect is further enhanced in situations where the sample of interest would occupy only a small proportion of the traditional NMR receiver. Coupled with targeted xenon biosensors, Hyper-SAGE offers another path to highly sensitive molecular imaging of specific cell markers by detection of exhaled xenon gas.
C1 [Pines, Alexander] Univ Calif Berkeley, Div Mat Sci, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
RP Pines, A (reprint author), Univ Calif Berkeley, Div Mat Sci, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
EM pines@berkeley.edu
RI Zhou, Xin/D-9987-2016
OI Zhou, Xin/0000-0002-5580-7907
FU Director, Office of Science, Office of Basic Energy Sciences, Materials
Sciences Division; U. S. Department of Energy [DE-AC02-05CH11231]
FX We thank Prof. David Wemmer and Dr. Vikram Bajaj for critical reading
and helpful suggestions on the manuscript. This work was supported by
the Director, Office of Science, Office of Basic Energy Sciences,
Materials Sciences Division, of the U. S. Department of Energy under
Contract DE-AC02-05CH11231.
NR 33
TC 31
Z9 34
U1 4
U2 21
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD OCT 6
PY 2009
VL 106
IS 40
BP 16903
EP 16906
DI 10.1073/pnas.0909147106
PG 4
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 503MD
UT WOS:000270537500005
PM 19805177
ER
PT J
AU Orjalo, AV
Bhaumik, D
Gengler, BK
Scott, GK
Campisi, J
AF Orjalo, Arturo V.
Bhaumik, Dipa
Gengler, Bridget K.
Scott, Gary K.
Campisi, Judith
TI Cell surface-bound IL-1 alpha is an upstream regulator of the
senescence-associated IL-6/IL-8 cytokine network
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE aging; cancer; inflammation; invasion; IRAK1
ID HISTONE DEACETYLASE INHIBITORS; NF-KAPPA-B; ENDOTHELIAL-CELLS;
ENDOGENOUS IL-1-ALPHA; TUMOR SUPPRESSION; HUMAN FIBROBLASTS;
GENE-EXPRESSION; BREAST-CANCER; INTERLEUKIN-1; AUTOCRINE
AB Inflammation underlies most age-related diseases, including cancer, but the etiology is poorly understood. One proposed factor is the presence of senescent cells, which increase with age. The senescence response arrests the proliferation of potentially oncogenic cells, and most senescent cells secrete high levels of proinflammatory cytokines and other proteins. The complex senescence-associated secretory phenotype is likely regulated at multiple levels, most of which are unknown. We show that cell surface-bound IL-1 alpha is essential for signaling the senescence-associated secretion of IL-6 and IL-8, 2 proinflammatory cytokines that also reinforce the senescence growth arrest. Senescent human fibroblasts expressed high levels of IL-1 alpha mRNA, intracellular protein, and cell surface-associated protein, but secreted very little protein. An IL-1 receptor (IL1R) antagonist, neutralizing IL-1 alpha antibodies, and IL-1 alpha depletion by RNA interference all markedly reduced senescence-associated IL-6/IL-8 secretion. Depletion of the key IL-1R signaling component IRAK1 also suppressed this secretion, and IL-1 alpha neutralizing antibodies prevented IRAK1 degradation, indicating engagement of the IL-1R signaling pathway. Furthermore, IL-1 alpha depletion reduced the DNA binding activity of NF-kappa B and C/EBP beta, which stimulate IL-6/IL-8 transcription. IL-1 alpha was a general regulator of senescence-associated IL-6/IL-8 secretion because IL-1 alpha blockade reduced IL-6/IL-8 secretion whether cells senesced owing to DNA damage, replicative exhaustion, oncogenic RAS, or chromatin relaxation. Furthermore, conditioned medium from IL-1 alpha-depleted senescent cells markedly reduced the IL-6/IL-8-dependent invasiveness of metastatic cancer cells, indicating that IL-1 alpha regulates the biological effects of these cytokines. Thus, cell surface IL-1 alpha is an essential cell-autonomous regulator of the senescence-associated IL-6/IL-8 cytokine network.
C1 [Orjalo, Arturo V.; Bhaumik, Dipa; Gengler, Bridget K.; Scott, Gary K.; Campisi, Judith] Buck Inst Age Res, Novato, CA 94945 USA.
[Campisi, Judith] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Campisi, J (reprint author), Buck Inst Age Res, 8001 Redwood Blvd, Novato, CA 94945 USA.
EM jcampisi@buckinstitute.org
FU National Institutes of Health [P01-AG025901, P30-AG025708, R37-AG09909,
U54-CA12654, T32-AG000266]; Larry L. Hillblom Foundation
FX We thank Drs. Pierre Desprez and Francis Rodier for valuable comments
and critical reading of the manuscript. This work was supported by
Grants P01-AG025901, P30-AG025708, R37-AG09909, U54-CA12654, and
T32-AG000266 from the National Institutes of Health, and the Larry L.
Hillblom Foundation.
NR 47
TC 169
Z9 170
U1 0
U2 12
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD OCT 6
PY 2009
VL 106
IS 40
BP 17031
EP 17036
DI 10.1073/pnas.0905299106
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 503MD
UT WOS:000270537500032
PM 19805069
ER
PT J
AU Sims, GE
Jun, SR
Wu, GA
Kim, SH
AF Sims, Gregory E.
Jun, Se-Ran
Wu, Guohong Albert
Kim, Sung-Hou
TI Whole-genome phylogeny of mammals: Evolutionary information in genic and
nongenic regions
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE alignment-free genome comparison; feature frequency profile (FFP);
mammalian phylogeny; noncoding DNA; nongenic regions of the genome
ID PLACENTAL MAMMALS; SEQUENCES; RATES; TREES; SUBSTITUTIONS; INSERTIONS;
ARTIFACTS; ALIGNMENT; ELEMENTS; INTRONS
AB Ten complete mammalian genome sequences were compared by using the "feature frequency profile'' (FFP) method of alignment-free comparison. This comparison technique reveals that the whole nongenic portion of mammalian genomes contains evolutionary information that is similar to their genic counterparts-the intron and exon regions. We partitioned the complete genomes of mammals (such as human, chimp, horse, and mouse) into their constituent nongenic, intronic, and exonic components. Phylogenic species trees were constructed for each individual component class of genome sequence data as well as the whole genomes by using standard tree-building algorithms with FFP distances. The phylogenies of the whole genomes and each of the component classes (exonic, intronic, and nongenic regions) have similar topologies, within the optimal feature length range, and all agree well with the evolutionary phylogeny based on a recent large dataset, multispecies, and multigene-based alignment. In the strictest sense, the FFP-based trees are genome phylogenies, not species phylogenies. However, the species phylogeny is highly related to the whole-genome phylogeny. Furthermore, our results reveal that the footprints of evolutionary history are spread throughout the entire length of the whole genome of an organism and are not limited to genes, introns, or short, highly conserved, nongenic sequences that can be adversely affected by factors (such as a choice of sequences, homoplasy, and different mutation rates) resulting in inconsistent species phylogenies.
C1 [Sims, Gregory E.; Jun, Se-Ran; Wu, Guohong Albert; Kim, Sung-Hou] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Kim, Sung-Hou] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Kim, SH (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
EM shkim@cchem.berkeley.edu
FU National Institutes of Health [GM62412]; Korean Ministry of Science and
Technology [R31-2008-000-10086-0]
FX We are grateful to Drs. Kevin Rowe and Susan P. Holmes for their expert
advice and discussion. This work was supported by National Institutes of
Health Grant GM62412 and the Korean Ministry of Science and Technology
(World Class University Project R31-2008-000-10086-0).
NR 48
TC 32
Z9 33
U1 1
U2 15
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD OCT 6
PY 2009
VL 106
IS 40
BP 17077
EP 17082
DI 10.1073/pnas.0909377106
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 503MD
UT WOS:000270537500040
PM 19805074
ER
PT J
AU Briegel, A
Ortega, DR
Tocheva, EI
Wuichet, K
Li, Z
Chen, SY
Muller, A
Iancu, CV
Murphy, GE
Dobro, MJ
Zhulin, IB
Jensen, GJ
AF Briegel, Ariane
Ortega, Davi R.
Tocheva, Elitza I.
Wuichet, Kristin
Li, Zhuo
Chen, Songye
Mueller, Axel
Iancu, Cristina V.
Murphy, Gavin E.
Dobro, Megan J.
Zhulin, Igor B.
Jensen, Grant J.
TI Universal architecture of bacterial chemoreceptor arrays
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE bacterial ultrastructure; chemotaxis; electron cryo-tomography
ID CHEMOTAXIS RECEPTOR TSR; ESCHERICHIA-COLI; RHODOBACTER-SPHAEROIDES;
CAULOBACTER-CRESCENTUS; DIRECT VISUALIZATION; SIGNALING PROTEINS;
SENSITIVITY; DOMAIN; CELL; ADAPTATION
AB Chemoreceptors are key components of the high-performance signal transduction system that controls bacterial chemotaxis. Chemoreceptors are typically localized in a cluster at the cell pole, where interactions among the receptors in the cluster are thought to contribute to the high sensitivity, wide dynamic range, and precise adaptation of the signaling system. Previous structural and genomic studies have produced conflicting models, however, for the arrangement of the chemoreceptors in the clusters. Using whole-cell electron cryo-tomography, here we show that chemoreceptors of different classes and in many different species representing several major bacterial phyla are all arranged into a highly conserved, 12-nm hexagonal array consistent with the proposed "trimer of dimers'' organization. The various observed lengths of the receptors confirm current models for the methylation, flexible bundle, signaling, and linker sub-domains in vivo. Our results suggest that the basic mechanism and function of receptor clustering is universal among bacterial species and was thus conserved during evolution.
C1 [Briegel, Ariane; Tocheva, Elitza I.; Li, Zhuo; Chen, Songye; Iancu, Cristina V.; Murphy, Gavin E.; Dobro, Megan J.; Jensen, Grant J.] CALTECH, Div Biol, Pasadena, CA 91125 USA.
[Mueller, Axel] CALTECH, Div Chem, Pasadena, CA 91125 USA.
[Briegel, Ariane; Li, Zhuo; Jensen, Grant J.] CALTECH, Howard Hughes Med Inst, Pasadena, CA 91125 USA.
[Ortega, Davi R.] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA.
[Ortega, Davi R.; Wuichet, Kristin; Zhulin, Igor B.] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA.
[Zhulin, Igor B.] Oak Ridge Natl Lab, BioEnergy Ctr, Oak Ridge, TN 37831 USA.
[Zhulin, Igor B.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA.
RP Jensen, GJ (reprint author), CALTECH, Div Biol, Pasadena, CA 91125 USA.
EM jensen@caltech.edu
RI Zhulin, Igor/A-2308-2012;
OI Zhulin, Igor/0000-0002-6708-5323; Dobro, Megan/0000-0002-6464-3932
FU National Institutes of Health [R01 AI067548, P50 GM082545, R01 GM72285];
Howard Hughes Medical Institute; Beckman Institute at Caltech; Agouron
Institute
FX The authors wish to thank Eric Matson, Reinhard Rachel, Kevin Bruhn,
Gordon Cannon, Alan Barbour, Sarkis Mazmanian, Jeanette Beatty, Maria
Sandkvist, Dianne Newman, and John S. Parkinson for bacterial strains;
Howard Berg for the penicillin treatment protocol for E. coli; Jane H.
Ding for computational support; Juergen Plitzko, Alasdair McDowall and
Jian Shi for EM support; and Roger Alexander, Luke Ulrich, and Bhanu
Rekapalli for assistance and helpful suggestions. The authors also thank
Professor Wolfgang Baumeister (Max Planck Institute for Biochemistry,
Martinsried, Germany) for the permission to include the data from T.
maritima (which was collected in his laboratory and under his
supervision) in this study. This work was supported in part by National
Institutes of Health Grants R01 AI067548 and P50 GM082545 (to G.J.J.)
and R01 GM72285 (to I.B.Z.), as well as the Howard Hughes Medical
Institute, the Beckman Institute at Caltech, and gifts to Caltech from
the Gordon and Betty Moore Foundation and Agouron Institute.
NR 44
TC 151
Z9 153
U1 2
U2 12
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD OCT 6
PY 2009
VL 106
IS 40
BP 17181
EP 17186
DI 10.1073/pnas.0905181106
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 503MD
UT WOS:000270537500058
PM 19805102
ER
PT J
AU Moore, JD
Morrison, K
Perkins, GK
Schlagel, DL
Lograsso, TA
Gschneidner, KA
Pecharsky, VK
Cohen, LF
AF Moore, James D.
Morrison, Kelly
Perkins, Garry K.
Schlagel, Deborah L.
Lograsso, Thomas A.
Gschneidner, Karl A., Jr.
Pecharsky, Vital K.
Cohen, Lesley F.
TI Metamagnetism Seeded by Nanostructural Features of Single-Crystalline
Gd5Si2Ge2
SO ADVANCED MATERIALS
LA English
DT Article
ID TEM ANALYSIS; TEMPERATURE; ALLOYS; IDENTIFICATION; GD-5(SI2GE2);
ABSOLUTE; TB
AB Gd5Si2Ge2 belongs to the class of materials known as metamagnets that show promise for application in room-temperature magnetic refrigeration using a phenomenon known as the magnetocaloric effect. Here we image the metamagnetic transition using a local scanning Hall probe and reveal how the microstructure controls the critical properties.
C1 [Moore, James D.; Morrison, Kelly; Perkins, Garry K.; Cohen, Lesley F.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England.
[Schlagel, Deborah L.; Lograsso, Thomas A.; Gschneidner, Karl A., Jr.; Pecharsky, Vital K.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA.
[Gschneidner, Karl A., Jr.; Pecharsky, Vital K.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA.
RP Moore, JD (reprint author), Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England.
EM james.moore@imperial.ac.uk
RI morrison, kelly/G-5249-2013
OI morrison, kelly/0000-0001-5672-3310
FU Office of Basic Energy Sciences; Office of Science of the U.S.
Department of Energy [DE-AC02-07CH11358]; Iowa State University of
Science and Technology; EPSRC; European Commission; Leverhulme Trust
FX Work at the Ames Laboratory is supported by the Office of Basic Energy
Sciences, Office of Science of the U.S. Department of Energy under
Contract No. DE-AC02-07CH11358 with Iowa State University of Science and
Technology. The work at Imperial College London is supported by the
EPSRC, the European Commission and the Leverhulme Trust.
NR 25
TC 28
Z9 28
U1 5
U2 30
PU WILEY-BLACKWELL
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0935-9648
J9 ADV MATER
JI Adv. Mater.
PD OCT 5
PY 2009
VL 21
IS 37
BP 3780
EP 3783
DI 10.1002/adma.200900093
PG 4
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 509GB
UT WOS:000271001900012
ER
PT J
AU Yang, H
Wang, HY
Yoon, J
Wang, YQ
Jain, M
Feldmann, DM
Dowden, PC
MacManus-Driscoll, JL
Jia, QX
AF Yang, Hao
Wang, Haiyan
Yoon, Jongsik
Wang, Yongqiang
Jain, Menka
Feldmann, David M.
Dowden, Paul C.
MacManus-Driscoll, Judith L.
Jia, Quanxi
TI Vertical Interface Effect on the Physical Properties of Self-Assembled
Nanocomposite Epitaxial Films
SO ADVANCED MATERIALS
LA English
DT Article
ID THIN-FILMS; BATIO3-COFE2O4 NANOSTRUCTURES; LEAKAGE CURRENT;
FERROELECTRICITY; MULTIFERROICS; ENHANCEMENT; BIFEO3
AB The vertical interface effect on the physical properties of epitaxial metal-oxide films is demonstrated. Self-assembled (BiFeO(3))(0.5):(Sm(2)O(3))(0.5) nanocomposite films are fabricated with three-dimensional heteroepitaxy having an ordered nanocolumnar structure on a large scale. The vertical interface effect on lattice parameters, dielectric properties, and leakage currents is investigated.
C1 [Yang, Hao; Wang, Yongqiang; Jain, Menka; Feldmann, David M.; Dowden, Paul C.; Jia, Quanxi] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA.
[Wang, Haiyan; Yoon, Jongsik] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA.
[MacManus-Driscoll, Judith L.] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England.
RP Jia, QX (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, POB 1663, Los Alamos, NM 87545 USA.
EM haoyang4301@yahoo.com; qxjia@lanl.gov
RI Jia, Q. X./C-5194-2008; Wang, Haiyan/P-3550-2014;
OI Wang, Haiyan/0000-0002-7397-1209; Jain, Menka/0000-0002-2264-6895
FU U.S. Department of Energy; LANL/LDRD program; Center for Integrated
Nanotechnologies; National Science Foundation [DMR0709831]
FX This work was supported by the U.S. Department of Energy through the
LANL/LDRD program and the Center for Integrated Nanotechnologies. H. W.
and J. Y. acknowledge financial support from National Science Foundation
(DMR0709831).
NR 24
TC 48
Z9 48
U1 5
U2 80
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY
SN 0935-9648
J9 ADV MATER
JI Adv. Mater.
PD OCT 5
PY 2009
VL 21
IS 37
BP 3794
EP 3798
DI 10.1002/adma.200900781
PG 5
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 509GB
UT WOS:000271001900015
ER
PT J
AU Bahng, MK
Mukarakate, C
Robichaud, DJ
Nimlos, MR
AF Bahng, Mi-Kyung
Mukarakate, Calvin
Robichaud, David J.
Nimlos, Mark R.
TI Current technologies for analysis of biomass thermochemical processing:
A review
SO ANALYTICA CHIMICA ACTA
LA English
DT Review
DE Biomass; Thermochemical conversion; Pyrolysis; Gasification; Analytical
technique; Biofuel
ID PYROLYSIS-GAS CHROMATOGRAPHY; MASS-SPECTROMETRIC ANALYSIS;
WATER-INSOLUBLE FRACTION; ENTRAINED FLOW REACTOR; VICTORIAN BROWN-COAL;
PULSE SHOCK-TUBE; OF-THE-ART; ENHANCED MULTIPHOTON IONIZATION;
NEAR-INFRARED SPECTROSCOPY; THERMAL PLASMA PYROLYSIS
AB Pyrolysis and gasification are two of the more promising utilization methods for the conversion of biomass toward a clean fuel source. To truly understand and model these processes requires detailed knowledge ranging from structural information of raw biomass, elemental composition, gas-phase reaction kinetics and mechanisms, and product distributions (both desired and undesired). The various analytical methods of biomass pyrolysis/gasification processing are discussed, including reactor types, analytical tools, and recent examples in the areas of (a) compositional analysis, (b) structural analysis, (c) reaction mechanisms, and (d) kinetic Studies on biomass thermochemical processing. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Bahng, Mi-Kyung; Mukarakate, Calvin; Robichaud, David J.; Nimlos, Mark R.] Natl Bioenergy Ctr, Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Bahng, MK (reprint author), Natl Bioenergy Ctr, Natl Renewable Energy Lab, Golden, CO 80401 USA.
EM mi-kyung.bahng@nrel.gov
FU U.S. Department of Energy's Biomass Program [DE-AC36-99GO10337];
Laboratory Directed Research and Development Program at the NREL
FX This work was supported by the U.S. Department of Energy's Biomass
Program, under Contract No. DE-AC36-99GO10337 with the National
Renewable Energy Laboratory (NREC) and by the Laboratory Directed
Research and Development Program at the NREL. Authors thank Dr. Bryon
Donohoe at NREL and Dr. HansHeinrich Carstensen at Colorado School of
Mines for reviewing the manuscript and for their constructive comments.
NR 245
TC 97
Z9 103
U1 6
U2 128
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0003-2670
J9 ANAL CHIM ACTA
JI Anal. Chim. Acta
PD OCT 5
PY 2009
VL 651
IS 2
BP 117
EP 138
DI 10.1016/j.aca.2009.08.016
PG 22
WC Chemistry, Analytical
SC Chemistry
GA 506AV
UT WOS:000270745600001
PM 19782803
ER
PT J
AU Cuenya, BR
Ono, LK
Croy, JR
Naitabdi, A
Heinrich, H
Zhao, J
Alp, EE
Sturhahn, W
Keune, W
AF Cuenya, B. Roldan
Ono, L. K.
Croy, J. R.
Naitabdi, A.
Heinrich, H.
Zhao, J.
Alp, E. E.
Sturhahn, W.
Keune, W.
TI Structure and phonon density of states of supported size-selected
(FeAu)-Fe-57 nanoclusters: A nuclear resonant inelastic x-ray scattering
study
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID SYNCHROTRON-RADIATION; AU; NANOPARTICLES; CATALYSTS; DYNAMICS
AB We have measured the phonon density of states (PDOS) of isolated bcc and fcc FexAu1-x alloy nanoclusters (NCs) by nuclear resonant inelastic x-ray scattering. Drastic deviations were observed with respect to the PDOS of bulk Fe-Au alloys. Important information on the structure and thermodynamic properties of these NCs was obtained. (C) 2009 American Institute of Physics. [doi:10.1063/1.3236539]
C1 [Cuenya, B. Roldan; Ono, L. K.; Croy, J. R.; Naitabdi, A.; Heinrich, H.] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA.
[Heinrich, H.] Univ Cent Florida, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA.
[Zhao, J.; Alp, E. E.; Sturhahn, W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Keune, W.] Max Planck Inst Mikrostrukturphys, D-06120 Halle, Germany.
RP Cuenya, BR (reprint author), Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA.
EM roldan@physics.ucf.edu
RI Naitabdi, Ahmed/F-5758-2014; Roldan Cuenya, Beatriz/L-1874-2016
OI Naitabdi, Ahmed/0000-0002-1307-5584; Roldan Cuenya,
Beatriz/0000-0002-8025-307X
FU NSF [CAREER-DMR-0448491, DMR-0906562]; U. S. DOE [DEAC02-06CH11357]
FX Funding from NSF (Grant Nos. CAREER-DMR-0448491 and DMR-0906562) and U.
S. DOE (Grant No. DEAC02-06CH11357) is greatly appreciated.
NR 21
TC 17
Z9 17
U1 0
U2 16
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD OCT 5
PY 2009
VL 95
IS 14
AR 143103
DI 10.1063/1.3236539
PG 3
WC Physics, Applied
SC Physics
GA 505DW
UT WOS:000270670200062
ER
PT J
AU Jun, SH
Shim, JH
Oh, SK
Yu, SC
Kim, DH
Mesler, B
Fischer, P
AF Jun, Su-Hyeong
Shim, Je-Ho
Oh, Suhk-Kun
Yu, Seong-Cho
Kim, Dong-Hyun
Mesler, Brooke
Fischer, Peter
TI Nonlinear motion of coupled magnetic vortices in
ferromagnetic/nonmagnetic/ferromagnetic trilayer
SO APPLIED PHYSICS LETTERS
LA English
DT Article
AB We have investigated a coupled motion of two parallel vortex cores in ferromagnetic/nonmagnetic/ferromagnetic trilayer cylinders by means of micromagnetic simulation. Dynamic motion of two vortices with parallel and antiparallel relative chiralities of curling spins around the vortex cores have been examined after excitation by 1 ns pulsed external field, revealing a nontrivial coupled vortices motion. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3243985]
C1 [Jun, Su-Hyeong; Shim, Je-Ho; Oh, Suhk-Kun; Yu, Seong-Cho; Kim, Dong-Hyun] Chungbuk Natl Univ, Dept Phys, Cheongju 361763, South Korea.
[Mesler, Brooke; Fischer, Peter] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA.
[Mesler, Brooke] Univ Calif Berkeley, Appl Sci & Technol Grad Grp, Berkeley, CA 94720 USA.
RP Kim, DH (reprint author), Chungbuk Natl Univ, Dept Phys, Cheongju 361763, South Korea.
EM donghyun@cbnu.ac.kr
RI Fischer, Peter/A-3020-2010; Kim, Dong-Hyun/F-7195-2012; MSD,
Nanomag/F-6438-2012
OI Fischer, Peter/0000-0002-9824-9343;
FU Korea Research Foundation; Korean Government [KRF-2007-331-C00097]; NSF
Extreme Ultraviolet Engineering Research Center; Director, Office of
Science; Office of Basic Energy Sciences; Materials Sciences and
Engineering Division; U. S. Department of Energy
FX This work was supported by the Korea Research Foundation Grant funded by
the Korean Government (Grant No. KRF-2007-331-C00097). B. M.
acknowledges financial support from the NSF Extreme Ultraviolet
Engineering Research Center. P. F. acknowledges financial support by the
Director, Office of Science, Office of Basic Energy Sciences, Materials
Sciences and Engineering Division, of the U. S. Department of Energy.
NR 11
TC 16
Z9 16
U1 0
U2 6
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD OCT 5
PY 2009
VL 95
IS 14
AR 142509
DI 10.1063/1.3243985
PG 3
WC Physics, Applied
SC Physics
GA 505DW
UT WOS:000270670200048
ER
PT J
AU Kalinin, SV
Rodriguez, BJ
Jesse, S
Morozovska, AN
Bokov, AA
Ye, ZG
AF Kalinin, S. V.
Rodriguez, B. J.
Jesse, S.
Morozovska, A. N.
Bokov, A. A.
Ye, Z. -G.
TI Spatial distribution of relaxation behavior on the surface of a
ferroelectric relaxor in the ergodic phase
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID LEAD MAGNESIUM NIOBATE; TRENDS
AB Spatial homogeneity of polarization relaxation behavior on the surface of 0.9Pb(Mg1/3Nb2/3)O-3-0.1PbTiO(3) crystals in the ergodic relaxor phase is studied using three-dimensional time-resolved spectroscopic piezoresponse force microscopy. The number of statistically independent components in the spectroscopic image is determined using principal component analysis. In the studied measurement time interval, the spectra generally exhibit logarithmic behavior with spatially varying slope and offset, and the statistical distribution of these parameters are studied. The data illustrate the presence of mesoscopic heterogeneity in the dynamics of the relaxation behavior that can be interpreted as spatial variation in local Vogel-Fulcher temperatures. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3242011]
C1 [Kalinin, S. V.; Jesse, S.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Rodriguez, B. J.] Univ Coll Dublin, Dublin 4, Ireland.
[Morozovska, A. N.] Natl Acad Sci Ukraine, V Lashkaryov Inst Semicond Phys, UA-03028 Kiev, Ukraine.
[Bokov, A. A.; Ye, Z. -G.] Simon Fraser Univ, Dept Chem, Burnaby, BC V5A 1A6, Canada.
[Bokov, A. A.; Ye, Z. -G.] Simon Fraser Univ, 4D LABS, Burnaby, BC V5A 1A6, Canada.
RP Kalinin, SV (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
EM sergei2@ornl.gov
RI Bokov, Alexei/C-6924-2008; Kalinin, Sergei/I-9096-2012; Rodriguez,
Brian/A-6253-2009; Jesse, Stephen/D-3975-2016
OI Bokov, Alexei/0000-0003-1126-3378; Kalinin, Sergei/0000-0001-5354-6152;
Rodriguez, Brian/0000-0001-9419-2717; Jesse, Stephen/0000-0002-1168-8483
FU Center for Nanoscale Materials Sciences; Oak Ridge National Laboratory;
Division of Scientific User Facilities; Office of Basic Energy Sciences;
U. S. Department of Energy; CNMS User Program [CNMS2007-085]; Office of
Naval Research [N00014-06-1-0166]
FX The research is supported by the Center for Nanoscale Materials Sciences
(S. V. K., B. J. R., and S. J.) at the Oak Ridge National Laboratory,
Division of Scientific User Facilities, Office of Basic Energy Sciences,
U. S. Department of Energy and was a part of the CNMS User Program
(Grant No. CNMS2007-085). This work is also supported (A. A. B. and Z.
G. Y.) by the Office of Naval Research (Grant No. N00014-06-1-0166). B.
J. R. also acknowledges the support of UCD Research.
NR 20
TC 25
Z9 25
U1 2
U2 22
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0003-6951
EI 1077-3118
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD OCT 5
PY 2009
VL 95
IS 14
AR 142902
DI 10.1063/1.3242011
PG 3
WC Physics, Applied
SC Physics
GA 505DW
UT WOS:000270670200050
ER
PT J
AU Kumar, S
Chan, CWI
Hu, Q
Reno, JL
AF Kumar, Sushil
Chan, Chun Wang I.
Hu, Qing
Reno, John L.
TI Two-well terahertz quantum-cascade laser with direct intrawell-phonon
depopulation
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID SEMICONDUCTOR
AB We report the simplest quantum-cascade laser (QCL) to-date with only two quantum wells per QCL period, and at low temperatures, only three subband levels participate in electron transport. The lower laser level is directly depopulated via intrawell longitudinal-optical phonon scattering, which is in contrast with all the previously demonstrated terahertz QCLs, and maintains an ultrashort lower level lifetime under all operating bias and temperatures. Optical gain is due to a diagonal photon-assisted tunneling transition. Laser operation at 4.6 THz is obtained up to a heat-sink temperature of 121 K with a low-temperature threshold current density of 350 A/cm(2). Due to the simplicity of a two-well design, its electrical transport behavior could be analyzed in greater detail. A thermally activated carrier leakage due to higher-energy parasitic levels is speculated to be the most likely cause of a steep rise in the lasing threshold current density with temperature. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3243459]
C1 [Kumar, Sushil; Chan, Chun Wang I.; Hu, Qing] MIT, Dept Elect Engn & Comp Sci, Elect Res Lab, Cambridge, MA 02139 USA.
[Reno, John L.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA.
RP Kumar, S (reprint author), MIT, Dept Elect Engn & Comp Sci, Elect Res Lab, Cambridge, MA 02139 USA.
EM sushil@mit.edu
FU AFOSR; NASA; NSF; Sandia Corporation; U.S. Department of Energy
[DE-AC04-94AL85000]
FX This work is supported by AFOSR, NASA, and NSF. Sandia is a multiprogram
laboratory operated by Sandia Corporation, a Lockheed Martin Co., for
the U.S. Department of Energy under Contract No. DE-AC04-94AL85000.
NR 19
TC 41
Z9 43
U1 1
U2 11
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD OCT 5
PY 2009
VL 95
IS 14
AR 141110
DI 10.1063/1.3243459
PG 3
WC Physics, Applied
SC Physics
GA 505DW
UT WOS:000270670200010
ER
PT J
AU LeBeau, JM
Engel-Herbert, R
Jalan, B
Cagnon, J
Moetakef, P
Stemmer, S
Stephenson, GB
AF LeBeau, James M.
Engel-Herbert, Roman
Jalan, Bharat
Cagnon, Joel
Moetakef, Pouya
Stemmer, Susanne
Stephenson, G. Brian
TI Stoichiometry optimization of homoepitaxial oxide thin films using x-ray
diffraction
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID MOLECULAR-BEAM EPITAXY; SRTIO3 FILMS; GROWTH; SURFACE
AB Homoepitaxial SrTiO(3) thin films grown by molecular beam epitaxy are analyzed using high-resolution x-ray diffraction and transmission electron microscopy. Measured 00L x-ray scans from stoichiometric and nonstoichiometric films are compared with calculations that account for the effects of film thickness, lattice parameter, fractional site occupancy, and an offset between film and substrate at the interface. It is found that thickness fringes, commonly observed around Bragg reflections even in stoichiometric homoepitaxial SrTiO(3) films, arise from a film/substrate interface offset. Transmission electron microscopy studies confirm the presence of strain at those homoepitaxial interfaces that show an offset in x-ray diffraction. The consequences for stoichiometry optimization of homoepitaxial films using high-resolution x-ray diffraction and the quality of regrown oxide interfaces are discussed. (C) 2009 American Institute of Physics. (doi: 10.1063/1.3243696)
C1 [LeBeau, James M.; Engel-Herbert, Roman; Jalan, Bharat; Cagnon, Joel; Moetakef, Pouya; Stemmer, Susanne] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA.
[Stephenson, G. Brian] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Stephenson, G. Brian] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
RP LeBeau, JM (reprint author), Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA.
EM lebeau@mrl.ucsb.edu; stemmer@mrl.ucsb.edu
RI Stemmer, Susanne/H-6555-2011; Moetakef, Pouya/F-6353-2012; LeBeau,
James/B-6370-2008; Jalan, Bharat/H-9448-2015
OI Stemmer, Susanne/0000-0002-3142-4696; Moetakef,
Pouya/0000-0003-0642-4704;
FU Department of Energy [DE-FG02-06ER45994]; GAANN program [P200A07044]; U.
S. Department of Energy [DE-AC02-06CH11357]; National Science Foundation
[DMR 0520415]
FX The authors thank Jim Speck for many helpful discussions and ideas. The
research at UCSB was supported by the Department of Energy (Grant No.
DE-FG02-06ER45994). J. M. L. also thanks the U. S. Department of
Education for a fellowship under the GAANN program (Grant No.
P200A07044). G. B. S. is supported by the U. S. Department of Energy,
Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357.
The work made use of the UCSB MRL Central facilities supported by the
MRSEC Program of the National Science Foundation under Award No. DMR
0520415.
NR 17
TC 19
Z9 19
U1 0
U2 17
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD OCT 5
PY 2009
VL 95
IS 14
AR 142905
DI 10.1063/1.3243696
PG 3
WC Physics, Applied
SC Physics
GA 505DW
UT WOS:000270670200053
ER
PT J
AU Lin, TY
Bae, JU
Bohra, G
Lim, K
Reno, JL
Bird, JP
AF Lin, T. -Y.
Bae, J. -U.
Bohra, G.
Lim, K.
Reno, J. L.
Bird, J. P.
TI Influence of quantum-interference on the fringing-field
magnetoresistance of hybrid ferromagnetic/semiconductor devices
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID 2-DIMENSIONAL ELECTRON-GAS; MAGNETIC BARRIER; BALLISTIC REGIME;
TRANSPORT
AB We investigate magnetotransport in hybrid ferromagnetic devices, comprised of laterally confined semiconductor channels that are bridged by nanomagnets that generate magnetic barriers. We identify a regime of low-temperature behavior in these devices, in which the magnetoresistance generated by the nanomagnets is suppressed with decrease of temperature. This result is shown to be correlated with the onset of quantum-interference effects (weak localization) in the semiconductor channel. (C) 2009 American Institute of Physics. [doi:10.1063/1.3236775]
C1 [Lin, T. -Y.; Bae, J. -U.; Bohra, G.; Lim, K.; Bird, J. P.] SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14216 USA.
[Reno, J. L.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA.
RP Lin, TY (reprint author), SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14216 USA.
EM jbird@buffalo.edu
RI Bird, Jonathan/G-4068-2010
OI Bird, Jonathan/0000-0002-6966-9007
FU U. S. Department of Energy [DE-FG02-04ER46180, DEAC04-94AL85000]
FX Work supported by the Department of Energy (Grant No. DE-FG02-04ER46180)
and performed, in part, at the Center for Integrated Nanotechnologies, a
U. S. DOE, Office of Basic Energy Sciences Nanoscale Science Research
Center. Sandia National Laboratories is a multi-program laboratory
operated by Sandia Corporation, a Lockheed-Martin Co., for the U. S.
Department of Energy under Contract No. DEAC04-94AL85000.
NR 27
TC 4
Z9 4
U1 1
U2 11
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD OCT 5
PY 2009
VL 95
IS 14
AR 143113
DI 10.1063/1.3236775
PG 3
WC Physics, Applied
SC Physics
GA 505DW
UT WOS:000270670200072
ER
PT J
AU Qiu, S
Krishnan, VB
Padula, SA
Noebe, RD
Brown, DW
Clausen, B
Vaidyanathan, R
AF Qiu, S.
Krishnan, V. B.
Padula, S. A., II
Noebe, R. D.
Brown, D. W.
Clausen, B.
Vaidyanathan, R.
TI Measurement of the lattice plane strain and phase fraction evolution
during heating and cooling in shape memory NiTi
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID NEUTRON-DIFFRACTION; SUPERELASTIC NITI; TIC COMPOSITES; REFINEMENT;
TEXTURE; SPECTRA
AB We report on in situ neutron diffraction measurements during heating and cooling through the phase transformation in shape memory NiTi. The lattice plane specific strain evolution remains linear with temperature and is not influenced by intergranular stresses, enabling the determination of the thermal expansion tensor of B19' NiTi. The neutron measurements are consistent with macroscopic dilatometric measurements and a 30 000 grain polycrystalline self-consistent model. The accommodative nature of B19' NiTi results in macroscopic shape changes being offset (with temperature) from the start and finish of the transformation. The texture does not evolve in the absence of biasing stresses. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3245308]
C1 [Qiu, S.; Krishnan, V. B.; Vaidyanathan, R.] Univ Cent Florida, AMPAC, Orlando, FL 32816 USA.
[Qiu, S.; Krishnan, V. B.; Vaidyanathan, R.] Univ Cent Florida, Mech Mat & Aerosp Engn Dept, Orlando, FL 32816 USA.
[Padula, S. A., II; Noebe, R. D.] NASA, Glenn Res Ctr, Mat & Struct Div, Cleveland, OH 44135 USA.
[Brown, D. W.; Clausen, B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Qiu, S (reprint author), Univ Cent Florida, AMPAC, Orlando, FL 32816 USA.
EM raj@mail.ucf.edu
RI Clausen, Bjorn/B-3618-2015
OI Clausen, Bjorn/0000-0003-3906-846X
FU NASA Fundamental Aeronautics Program; Supersonics Project [NNX08AB51A];
NSF [DMR-0239512]; Office of Basic Energy Sciences (DOE)
FX S. Q., V. B. K., and R. V. acknowledge funding from the NASA Fundamental
Aeronautics Program, Supersonics Project (Grant No. NNX08AB51A) and NSF
(Grant No. CAREER DMR-0239512). The authors thank T. Sisneros, S. Kabra,
J. Wall, and C. Aydiner at LANL for technical support. This work has
benefited from the use of the Lujan Neutron Scattering Center at LANSCE,
which is funded by the Office of Basic Energy Sciences (DOE). LANL is
operated by Los Alamos National Security LLC under DOE under Contract
No. DE-AC52-06NA25396.
NR 23
TC 23
Z9 23
U1 0
U2 13
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD OCT 5
PY 2009
VL 95
IS 14
AR 141906
DI 10.1063/1.3245308
PG 3
WC Physics, Applied
SC Physics
GA 505DW
UT WOS:000270670200022
ER
PT J
AU Hill, KK
Xie, G
Foley, BT
Smith, TJ
Munk, AC
Bruce, D
Smith, LA
Brettin, TS
Detter, JC
AF Hill, Karen K.
Xie, Gary
Foley, Brian T.
Smith, Theresa J.
Munk, Amy C.
Bruce, David
Smith, Leonard A.
Brettin, Thomas S.
Detter, John C.
TI Recombination and insertion events involving the botulinum neurotoxin
complex genes in Clostridium botulinum types A, B, E and F and
Clostridium butyricum type E strains
SO BMC BIOLOGY
LA English
DT Article
ID SEROTYPE-A SUBTYPES; GENOME SEQUENCE; EVOLUTION; DATABASE; CLUSTERS;
INTERRELATIONSHIPS; IDENTIFICATION; COMPONENT; ORGANISMS; PROTEINS
AB Background: Clostridium botulinum is a taxonomic designation for at least four diverse species that are defined by the expression of one (monovalent) or two (bivalent) of seven different C. botulinum neurotoxins (BoNTs, A-G). The four species have been classified as C. botulinum Groups I-IV. The presence of bont genes in strains representing the different Groups is probably the result of horizontal transfer of the toxin operons between the species.
Results: Chromosome and plasmid sequences of several C. botulinum strains representing A, B, E and F serotypes and a C. butyricum type E strain were compared to examine their genomic organization, or synteny, and the location of the botulinum toxin complex genes. These comparisons identified synteny among proteolytic (Group I) strains or nonproteolytic (Group II) strains but not between the two Groups. The bont complex genes within the strains examined were not randomly located but found within three regions of the chromosome or in two specific sites within plasmids. A comparison of sequences from a Bf strain revealed homology to the plasmid pCLJ with similar locations for the bont/bv b genes but with the bont/a4 gene replaced by the bont/f gene. An analysis of the toxin cluster genes showed that many recombination events have occurred, including several events within the ntnh gene. One such recombination event resulted in the integration of the bont/a1 gene into the serotype toxin B ha cluster, resulting in a successful lineage commonly associated with food borne botulism outbreaks. In C. botulinum type E and C. butyricum type E strains the location of the bont/e gene cluster appears to be the result of insertion events that split a rarA, recombination-associated gene, independently at the same location in both species.
Conclusion: The analysis of the genomic sequences representing different strains reveals the presence of insertion sequence (IS) elements and other transposon-associated proteins such as recombinases that could facilitate the horizontal transfer of the bonts; these events, in addition to recombination among the toxin complex genes, have led to the lineages observed today within the neurotoxin-producing clostridia.
C1 [Hill, Karen K.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA.
[Xie, Gary; Munk, Amy C.; Bruce, David; Brettin, Thomas S.; Detter, John C.] Los Alamos Natl Lab, DOE Joint Genome Inst, Los Alamos, NM 87545 USA.
[Foley, Brian T.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Smith, Theresa J.; Smith, Leonard A.] USA, Med Inst Infect Dis USAMRIID, Integrated Toxicol Div, Ft Detrick, MD 21702 USA.
RP Hill, KK (reprint author), Los Alamos Natl Lab, Biosci Div, POB 1663, Los Alamos, NM 87545 USA.
EM khill@lanl.gov; xie@lanl.gov; btf@lanl.gov; theresa.j.smith@us.army.mil;
cmunk@lanl.gov; dbruce@lanl.gov; Leonard.a.Smith1@us.army.mil;
brettints@ornl.gov; cdetter@lanl.gov
OI Foley, Brian/0000-0002-1086-0296; xie, gary/0000-0002-9176-924X
FU Department of Homeland Security Science and Technology Directorate
[HSHQDC-08-C00158]; DOE Joint Genome Institute at Los Alamos National
Laboratory; NIAID [U01 AI056493]
FX This work was funded in part by the Department of Homeland Security
Science and Technology Directorate under contract number
HSHQDC-08-C00158. The DOE Joint Genome Institute at Los Alamos National
Laboratory acknowledges the support of the Intelligence Technology
Innovation Center for this research. This work was partially supported
by NIAID cooperative agreement U01 AI056493.
NR 47
TC 71
Z9 71
U1 1
U2 18
PU BIOMED CENTRAL LTD
PI LONDON
PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND
SN 1741-7007
J9 BMC BIOL
JI BMC Biol.
PD OCT 5
PY 2009
VL 7
AR 66
DI 10.1186/1741-7007-7-66
PG 18
WC Biology
SC Life Sciences & Biomedicine - Other Topics
GA 510CN
UT WOS:000271065700001
PM 19804621
ER
PT J
AU Sierka, M
Dobler, J
Sauer, J
Zhai, HJ
Wang, LS
AF Sierka, Marek
Doebler, Jens
Sauer, Joachim
Zhai, Hua-Jin
Wang, Lai-Sheng
TI The [(Al2O3)(2)](-) Anion Cluster: Electron Localization-Delocalization
Isomerism
SO CHEMPHYSCHEM
LA English
DT Article
DE aluminum oxide clusters; density functional calculations; genetic
algorithm; isomers; photoelectron spectroscopy
ID ALUMINUM-OXIDE CLUSTERS; AL3ON-N=1-3 CLUSTERS; GAS-PHASE;
PHOTOELECTRON-SPECTROSCOPY; METAL-CLUSTERS; SPECTRA; IONS; DENSITY;
PHOTOISOMERIZATION; APPROXIMATION
C1 [Sierka, Marek; Doebler, Jens; Sauer, Joachim] Humboldt Univ, Inst Chem, D-10099 Berlin, Germany.
[Zhai, Hua-Jin; Wang, Lai-Sheng] Washington State Univ, Dept Phys, Richland, WA 99354 USA.
[Zhai, Hua-Jin; Wang, Lai-Sheng] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA.
RP Sierka, M (reprint author), Humboldt Univ, Inst Chem, Unter Linden 6, D-10099 Berlin, Germany.
EM marek.sierka@chemie.hu-berlin.de; ls.wang@pnl.gov
RI Sierka, Marek/F-7614-2010; Sauer, Joachim/B-7020-2016
OI Sauer, Joachim/0000-0001-6798-6212
FU Fonds der Chernischen Industrie; Deutsche Forschungsgemeinschaft [546];
Chemical Sciences, Geosciences and Biosciences Division; Office of Basic
Energy Sciences; U.S. Department of Energy (DOE)
FX The theoretical work done at Berlin was supported by the Fonds der
Chernischen Industrie and the Deutsche Forschungsgemeinschaft (Center of
Excellence UNICAT and Sonderforschungsbereich 546). The experimental
work done at Richland was supported by the Chemical Sciences,
Geosciences and Biosciences Division, Office of Basic Energy Sciences,
U.S. Department of Energy (DOE) under the catalysis center program and
was performed at the EMSL, a national scientific user facility sponsored
by DOE's Office of Biological and Environmental Research and located at
Pacific Northwest Notional Laboratory, operated for DOE by Battelle.
NR 57
TC 22
Z9 22
U1 2
U2 19
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 1439-4235
EI 1439-7641
J9 CHEMPHYSCHEM
JI ChemPhysChem
PD OCT 5
PY 2009
VL 10
IS 14
BP 2410
EP 2413
DI 10.1002/cphc.200900460
PG 4
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 507OV
UT WOS:000270864900008
PM 19618425
ER
PT J
AU Koo, HJ
Xiang, HJ
Lee, C
Whangbo, MH
AF Koo, Hyun-Joo
Xiang, Hongjun
Lee, Changhoon
Whangbo, Myung-Hwan
TI Effect of Magnetic Dipole-Dipole Interactions on the Spin Orientation
and Magnetic Ordering of the Spin-Ladder Compound Sr3Fe2O5
SO INORGANIC CHEMISTRY
LA English
DT Article
ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; EXCHANGE INTERACTIONS;
METALS; OXIDE
AB First-principles density functional theory calculations show that the spin-lattice of Sr3Fe2O5 is practically 2D in terms of its spin-exchange interactions. The magnetic dipole-dipole interactions are found to be essential for the 3D magnetic ordering of Sr3Fe2O5 at a very low temperature.
C1 [Koo, Hyun-Joo] Kyung Hee Univ, Dept Chem, Seoul 130701, South Korea.
[Koo, Hyun-Joo] Kyung Hee Univ, Res Inst Basic Sci, Seoul 130701, South Korea.
[Xiang, Hongjun] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Lee, Changhoon; Whangbo, Myung-Hwan] N Carolina State Univ, Dept Chem, Raleigh, NC 27695 USA.
RP Koo, HJ (reprint author), Kyung Hee Univ, Dept Chem, Seoul 130701, South Korea.
EM hjkoo@khu.ac.kr; mike_whangbo@ncsu.edu
RI Xiang, Hongjun/I-4305-2016
OI Xiang, Hongjun/0000-0002-9396-3214
FU U.S. Department of Energy [DE-FG0-286ER45259]; Korean Research
Foundation [KRF-2007C00028]
FX M.-H.W. thanks the U.S. Department of Energy for financial support
(Grant DE-FG0-286ER45259) and computer resources at the NERSC Center and
R. K. Kremer for invaluable discussion. H.-J.K. thanks the Korean
Research Foundation (Grant KRF-2007C00028; MOEHRD, Basic Research
Promotion Fund).
NR 17
TC 26
Z9 26
U1 0
U2 8
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0020-1669
J9 INORG CHEM
JI Inorg. Chem.
PD OCT 5
PY 2009
VL 48
IS 19
BP 9051
EP 9053
DI 10.1021/ic9007526
PG 3
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA 497VJ
UT WOS:000270091000004
PM 19719142
ER
PT J
AU Boyle, TJ
Pratt, HD
Ottley, LAM
Alam, TM
McIntyre, SK
Rodriguez, MA
Farrell, J
Campana, CF
AF Boyle, Timothy J.
Pratt, Harry D., III
Ottley, Leigh Anna M.
Alam, Todd M.
McIntyre, Sarah K.
Rodriguez, Mark A.
Farrell, Joshua
Campana, Charles F.
TI Homo- and Heterometallic Complexes of Tetra-(Di-Substituted
Hydroxybenzyl)-N,N '-Ethylenediamine Derivatives
SO INORGANIC CHEMISTRY
LA English
DT Article
ID X-RAY STRUCTURES; ALKALINE-EARTH METAL; NEO-PENTOXIDE PRECURSORS;
THIN-FILMS; STRUCTURAL-CHARACTERIZATION; CRYSTAL-STRUCTURE; TITANIUM(IV)
NEOPENTOXIDES; ALKOXIDE PRECURSORS; CERAMIC MATERIALS; NANOPARTICLES
AB The coordination behavior of a series of group 4 metal alkoxides [M(OR)(4)] modified by a set of novel substituted hydroxybenzyl ethylene diamine (H(4)-ED-L(4)) ligands {[tetra(3,5-di-t-butyl-2-hydroxybenzyl)-N,N'-ethylenediamine] termed H(4)-ED-DBP(4) (1), [tetra(3,5-di-t-amyl-2-hydroxybenzyl)-N,N'-ethylenediamine] termed H(4)-ED-DAP(4) (1a), and [tetra(3',5-dichloro-2-hydroxybenzyl)-N,N'-ethylenediamine] termed H(4)-ED-DCP(4) (2)} was elucidated. The reaction of 1 or 1a with the M(OR)(4) precursor led to the isolation of the structural similar species M(ED-L(4)) where L = DBP, M=Ti (3), Zr (4), Hf (5); L = DAP, M = Zr (4a), Hf (5a). In contrast, the reaction of 2 with the M(OR)(4) precursors yielded Ti(ED-DCP(4)) (6). (py)(2)Zr(ED-DCP(4)) (7), and (HOBu(t))Hf(ED-DCP(4)) (8) where py = pyridine and HOBu(t) = HOC(CH(3))(3). For 3-6, the cations of the monomeric species were completely encapsulated by all available heteroatoms (four O and two N) of the ED-L(4) ligands, yielding an octahedral geometry for each metal center. For 7 and 8, an identical binding by the ED-DCP(4) ligand was observed with the additional coordination of Lewis basic adducts, forming 8- and 7-coordinated metal centers, respectively. Switching to +2 cations led to the isolation of [(THF)Ca](2)(ED-DBP(4)) (9a) where THF=tetrahydrofuran, {[(py)Ca](4)(ED-(mu-DBP-eta(6))(4))(2)}(n) (9b), and [(py)Zn](ED-DBP(4))[Zn(py)(2)] (10) center dot 5py and [(py)Sn](2)(ED-DBP(4)) (11). The structures of these species were significantly different in arrangement compared to the Group 4 derivatives. Further attempts to produce a mixed +4/+2 cationic species yielded [(py)(ONep)(2)Ti(ED-DBP(4))Zn(py)] (12). Reacting the single-source precursor CO[mu-OC(6)H(4)(CHMe(2))(2)center dot 2)(2)Li-(py)(2)](2) with 1, led to the isolation of (py)Li[Eb-DBP(3)(H-DBP)]Co (13), with one of the phenol protons remaining unreacted. The synthesis and characterization of these compounds are presented in detail.
C1 [Boyle, Timothy J.; Pratt, Harry D., III; Ottley, Leigh Anna M.; Alam, Todd M.; McIntyre, Sarah K.; Rodriguez, Mark A.] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA.
[Farrell, Joshua] Coll Holy Cross, Dept Chem, Worcester, MA 01610 USA.
[Campana, Charles F.] Bruker AXS Inc, Madison, WI 53711 USA.
RP Boyle, TJ (reprint author), Sandia Natl Labs, Adv Mat Lab, 1001 Univ Blvd SE, Albuquerque, NM 87106 USA.
EM tiboyle@sandia.gov
OI Campana, Charles/0000-0002-0495-0922
FU Research Corporation for a Cottrell College Science Award [CC6827]; U.S.
Department of Energy, Office of Basic Energy Science, Division of
Material Sciences and Engineering
FX The authors would like to thank Ms. C. Higham, Mr. Niconchuk, and Ms. B.
Bergeron (College of Holy Cross) and Ms. T. Doan (AIMS@UNM High School)
for technical synthetic assistance, and UMass Amherst Mass Spectrometry
Center for assistance with all high resolution MS data. For support of
this research, the authors thank the Research Corporation for a Cottrell
College Science Award (CC6827) and the U.S. Department of Energy, Office
of Basic Energy Science, Division of Material Sciences and Engineering.
Sandia is a multiprogram laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the United States Department of Energy's
National Nuclear Security Administration under contract
DE-AC04-94AL85000.
NR 54
TC 11
Z9 11
U1 2
U2 9
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0020-1669
J9 INORG CHEM
JI Inorg. Chem.
PD OCT 5
PY 2009
VL 48
IS 19
BP 9191
EP 9204
DI 10.1021/ic900691a
PG 14
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA 497VJ
UT WOS:000270091000025
PM 19746896
ER
PT J
AU D'Aleo, A
Moore, EG
Szigethy, G
Xu, J
Raymond, KN
AF D'Aleo, Anthony
Moore, Evan G.
Szigethy, Geza
Xu, Jide
Raymond, Kenneth N.
TI Aryl Bridged 1-Hydroxypyridin-2-one: Effect of the Bridge on the Eu(III)
Sensitization 'Process
SO INORGANIC CHEMISTRY
LA English
DT Article
ID LUMINESCENT LANTHANIDE COMPLEXES; POLYMER WAVE-GUIDES; HIGHLY
LUMINESCENT; AGENTS; STATES; IONS; EU3+; TEMPERATURE; AMPLIFIERS; ENERGY
AB The efficiency of Eu(3+) luminescence by energy transfer from an antenna ligand can be strongly dependent on the metal ion coordination geometry. The geometric component of the Eu(III) sensitization has been probed using series of tetradentate 1,2-HOPO derivatives that are connected by bridges of varying length and geometry. The ligands are N, N'-(1,2-phenylene)bis(1-hydroxy-6-oxo-1,6-dihydropyridine-2-carboxamide) for the ligand (L(1)), 1-hydroxy-N-(2-(1-hydroxy-6-oxo-1,6-dihydropyridine-2-carboxamido)benzyl)-6-oxo-1,6-dihydropyridine-2-carboxamide (L(2)) and N, N'-(1,2-phenylenebis(methylene))bis(1-hydroxy-6-oxo-1,6-dihydropyridine-2-carboxamide) (L(3)). Spectroscopic characterization of both the Gd(III) and the Eu(III) metal complexes, time-dependent density functional theory (TD-DFT) analysis of model compounds and evaluation of the kinetic parameters for the europium emission were completed. Some striking differences were observed in the luminescence quantum yield by altering the bridging unit. The [Eu(L(2))(2)](-) derivative shows efficient sensitization coupled with good metal centered emission. For [Eu(L(3))(2)](-), the large quenching of the luminescence quantum yield compared to [Eu(L(2))(2)](-) is primarily a result of one inner sphere water molecule bound to the europium cation while for [Eu(L(1))(2)](-), the low luminescence quantum yield can be attributed to inefficient sensitization of the europium ion.
C1 [Raymond, Kenneth N.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
RP Raymond, KN (reprint author), Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
EM raymond@socrates.berkeley.edu
FU NIH [HL69832]; U.S. Department of Energy [DE-AC02-05CH11231]
FX This work was partially supported by the NIH (Grant HL69832) and
supported by the Director, Office of Science, Office of Basic Energy
Sciences, and the Division of Chemical Sciences, Geosciences, and
Biosciences of the U.S. Department of Energy at LBNL under Contract No.
DE-AC02-05CH11231. This technology is licensed to Lumiphore, Inc. in
which some of the authors have a financial interest.
NR 37
TC 10
Z9 10
U1 4
U2 19
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0020-1669
J9 INORG CHEM
JI Inorg. Chem.
PD OCT 5
PY 2009
VL 48
IS 19
BP 9316
EP 9324
DI 10.1021/ic901161z
PG 9
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA 497VJ
UT WOS:000270091000037
PM 19722546
ER
PT J
AU Vazquez, GJ
Dodge, CJ
Francis, AJ
AF Vazquez, Gustavo J.
Dodge, Cleveland J.
Francis, Arokiasamy J.
TI Bioreduction of U(VI)-Phthalate to a Polymeric U(IV)-Phthalate Colloid
SO INORGANIC CHEMISTRY
LA English
DT Article
ID URANYL COMPLEXES; URANIUM; ACID; REDUCTION; MIGRATION; HUMICS; MATTER
AB Phthalic acid, a ubiquitous organic ligand, formed soluble mono- and biligand complexes with a uranyl ion that was then reduced to a U(IV)-phthalate by a Clostridium species under anaerobic conditions. We confirmed the reduction of the hexavalent uranium to the tetravalent oxidation state by UV-vis absorption and X-ray absorption near edge structure spectroscopy. Sequential micro- and ultrafiltration of the solution revealed that the bioreduced uranium was present as a colloid with particles between 0.03 and 0.45 mu m. Analysis with extended X-ray absorption fine structure revealed the association of the reduced uranium with the phthalic acid as a repeating biligand 1:2 U(IV):phthalic acid polymer. This is the first report of the formation of a U(IV) complexed to two phthalic acid molecules in the form of a polymeric colloid. Although it was proposed that the bioreduction and the precipitation of uranium might be an invaluable strategy to immobilize uranium in contaminated environments, our results suggest that the organic ligands present there might hinder the precipitation of the bioreduced uranium under anaerobic conditions and, thereby, enhance its environmental mobility as uranium organic complexes or colloids.
C1 [Vazquez, Gustavo J.; Dodge, Cleveland J.; Francis, Arokiasamy J.] Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA.
RP Dodge, CJ (reprint author), Brookhaven Natl Lab, Dept Environm Sci, POB 5000, Upton, NY 11973 USA.
EM dodge1@bnl.gov
FU Environmental Remediation Sciences Program (ERSP); Climate and
Environmental Sciences Division [DE-AC02-98CH 10886]
FX This research was funded by the Environmental Remediation Sciences
Program (ERSP), Climate and Environmental Sciences Division, Office of
Biological and Environmental Research (OBER) Office of Science, and U.S.
Department of Energy under contract no. DE-AC02-98CH 10886. The authors
thank Avril Woodhead for editorial assistance.
NR 25
TC 8
Z9 9
U1 1
U2 15
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0020-1669
J9 INORG CHEM
JI Inorg. Chem.
PD OCT 5
PY 2009
VL 48
IS 19
BP 9485
EP 9490
DI 10.1021/ic900694k
PG 6
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA 497VJ
UT WOS:000270091000055
PM 19780622
ER
PT J
AU Mukherjee, R
McCaddon, A
Smith, CA
Brasch, NE
AF Mukherjee, Riya
McCaddon, Andrew
Smith, Clyde A.
Brasch, Nicola E.
TI Synthesis, Synchrotron X-ray Diffraction, and Kinetic Studies on the
Formation of a Novel Thiolatocobalamin of Captopril: Evidence for
cis-trans Isomerization in the beta-Axial Ligand
SO INORGANIC CHEMISTRY
LA English
DT Article
ID ANGIOTENSIN-CONVERTING ENZYME; CO-S BOND; ACE-INHIBITORS;
STRUCTURAL-CHARACTERIZATION; CRYSTAL-CHEMISTRY; THIYL RADICALS; VITAMIN
B12; METAL-IONS; COBALAMINS; BINDING
AB The orally administered therapeutic captopril is widely used for treating hypertension, congestive heart failure, and cardiovascular disease. However, a number of undesirable side effects are associated with high doses of captopril. By coordinating a therapeutic to the upper (= beta) axial site of the naturally occurring macrocycle cobalamin (vitamin B(12)), the absorption and cellular uptake of the therapeutic can be significantly enhanced. We report the synthesis of captopril-cobalamin, a derivative of vitamin B(12) in which captopril is bound via its thiol group at the beta-axial site of cobalamin. Characterization of captopril-cobalamin by (1)H NMR spectroscopy and X-ray diffraction shows that captopril-cobalamin exists in both solution and the solid state as a mixture of geometric isomers. Kinetic studies on the formation of captopril-cobalamin have been carded out, and the data fits a model in which the thiol form (RSH, k(1) = 40.9 +/- 1.2 M(-1) s(-1)) and the thiolate form of captopril (RS(-), k(2) = 660 +/- 170 M(-1) s(-1)) react rapidly with aquacobalamin.
C1 [Mukherjee, Riya; Brasch, Nicola E.] Kent State Univ, Dept Chem, Kent, OH 44242 USA.
[McCaddon, Andrew] Cardiff Univ, Cardiff Sch Med, Cardiff CF14 4XN, S Glam, Wales.
[McCaddon, Andrew] Rhosllanerchrugog, Gardden Rd Surg, Wrexham LL14 2EN, Wales.
[Smith, Clyde A.] Stanford Univ, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA.
[Brasch, Nicola E.] Kent State Univ, Sch Biomed Sci, Kent, OH 44242 USA.
RP Brasch, NE (reprint author), Kent State Univ, Dept Chem, Kent, OH 44242 USA.
EM nbrasch@kent.edu
FU Ohio Board of Regents
FX We thank Dr. Scott D. Bunge, Department of Chemistry, Kent State
University, for useful discussions and the Ohio Board of Regents for
funding (to N.E.B.).
NR 71
TC 12
Z9 13
U1 0
U2 12
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0020-1669
J9 INORG CHEM
JI Inorg. Chem.
PD OCT 5
PY 2009
VL 48
IS 19
BP 9526
EP 9534
DI 10.1021/ic900891y
PG 9
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA 497VJ
UT WOS:000270091000060
PM 19780623
ER
PT J
AU Scandale, W
Vomiero, A
Bagli, E
Baricordi, S
Dalpiaz, P
Fiorini, M
Guidi, V
Mazzolari, A
Vincenzi, D
Milan, R
Della Mea, G
Vallazza, E
Afonin, AG
Chesnokov, YA
Maisheev, VA
Yazynin, IA
Golovatyuk, VM
Kovalenko, AD
Taratin, AM
Denisov, AS
Gavrikov, YA
Ivanov, YM
Lapina, LR
Malyarenko, LG
Skorobogatov, VV
Suvorov, VM
Vavilov, SA
Bolognini, D
Hasan, S
Mattera, A
Prest, M
Shiraishi, S
AF Scandale, W.
Vomiero, A.
Bagli, E.
Baricordi, S.
Dalpiaz, P.
Fiorini, M.
Guidi, V.
Mazzolari, A.
Vincenzi, D.
Milan, R.
Della Mea, Gianantonio
Vallazza, E.
Afonin, A. G.
Chesnokov, Yu. A.
Maisheev, V. A.
Yazynin, I. A.
Golovatyuk, V. M.
Kovalenko, A. D.
Taratin, A. M.
Denisov, A. S.
Gavrikov, Yu. A.
Ivanov, Yu. M.
Lapina, L. R.
Malyarenko, L. G.
Skorobogatov, V. V.
Suvorov, V. M.
Vavilov, S. A.
Bolognini, D.
Hasan, S.
Mattera, A.
Prest, M.
Shiraishi, S.
TI High-efficiency deflection of high-energy negative particles through
axial channeling in a bent crystal
SO PHYSICS LETTERS B
LA English
DT Article
ID CHARGED-PARTICLES
AB Deflection due to axial channeling in a silicon crystal bent along the < 111 > axis was observed for 150 GeV/c negative particles, mainly pi(-) mesons, at one of the secondary beams of the CERN SPS. The whole beam was deflected to one side with the efficiency of about 90% and with the peak position at the bend crystal angle alpha = 43 mu rad. The deflection occurs mainly due to doughnut scattering of above-barrier particles by the atomic strings of the crystal. However, due to a high probability of particle recapture into bound states with the atomic strings their contribution to the deflection should be about 15% for Our case according to simulation results. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Golovatyuk, V. M.; Kovalenko, A. D.; Taratin, A. M.] Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia.
[Scandale, W.] European Org Nucl Res, CERN, CH-1211 Geneva 23, Switzerland.
[Vomiero, A.] CNR, INFM, I-25133 Brescia, Italy.
[Bagli, E.; Baricordi, S.; Dalpiaz, P.; Fiorini, M.; Guidi, V.; Mazzolari, A.; Vincenzi, D.] Univ Ferrara, Ist Nazl Fis Nucl, Sez Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy.
[Milan, R.] Lab Nazl Legnaro, Ist Nazl Fis Nucl, I-35020 Legnaro, PD, Italy.
[Della Mea, Gianantonio] Univ Trent, Dipartimento Ingn Mat & Tecnol Ind, I-38050 Trento, Italy.
[Vallazza, E.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy.
[Afonin, A. G.; Chesnokov, Yu. A.; Maisheev, V. A.; Yazynin, I. A.] Inst High Energy Phys, RU-142284 Protvino, Moscow Region, Russia.
[Denisov, A. S.; Gavrikov, Yu. A.; Ivanov, Yu. M.; Lapina, L. R.; Malyarenko, L. G.; Skorobogatov, V. V.; Suvorov, V. M.; Vavilov, S. A.] Petersburg Nucl Phys Inst, Gatchina 188300, Leningrad Reg, Russia.
[Bolognini, D.; Hasan, S.; Mattera, A.; Prest, M.] Univ Insubria, I-22100 Como, Italy.
[Bolognini, D.; Hasan, S.; Mattera, A.; Prest, M.] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20126 Milan, Italy.
[Shiraishi, S.] Fermi Natl Lab, Batavia, IL 60510 USA.
RP Taratin, AM (reprint author), Joint Inst Nucl Res, Joliot Curie 6, Dubna 141980, Moscow Region, Russia.
EM alexander.taratin@cern.ch
RI Vomiero, Alberto/F-7567-2010; Bagli, Enrico/E-5906-2012; Vincenzi,
Donato/J-5064-2012; Fiorini, Massimiliano/A-5354-2015; Mazzolari,
Andrea/A-1100-2017;
OI guidi, vincenzo/0000-0001-9726-8481; Vomiero,
Alberto/0000-0003-2935-1165; Bagli, Enrico/0000-0003-3913-7701; Fiorini,
Massimiliano/0000-0001-6559-2084; Mazzolari, Andrea/0000-0003-0804-6778;
MILAN, Riccardo/0000-0001-5863-8654; PREST, MICHELA/0000-0003-3161-4454
NR 12
TC 16
Z9 16
U1 0
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0370-2693
EI 1873-2445
J9 PHYS LETT B
JI Phys. Lett. B
PD OCT 5
PY 2009
VL 680
IS 4
BP 301
EP 304
DI 10.1016/j.physletb.2009.09.009
PG 4
WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 513YM
UT WOS:000271360100002
ER
PT J
AU Williams, RS
Dodson, GE
Limbo, O
Yamada, Y
Williams, JS
Guenther, G
Classen, S
Glover, JNM
Iwasaki, H
Russell, P
Tainer, JA
AF Williams, R. Scott
Dodson, Gerald E.
Limbo, Oliver
Yamada, Yoshiki
Williams, Jessica S.
Guenther, Grant
Classen, Scott
Glover, J. N. Mark
Iwasaki, Hiroshi
Russell, Paul
Tainer, John A.
TI Nbs1 Flexibly Tethers Ctp1 and Mre11-Rad50 to Coordinate DNA
Double-Strand Break Processing and Repair
SO CELL
LA English
DT Article
ID PHOSPHOPEPTIDE RECOGNITION; SACCHAROMYCES-CEREVISIAE; STRUCTURAL BASIS;
SCATTERING SAXS; DAMAGE-RESPONSE; ATM ACTIVATION; BRCT REPEATS; FHA
DOMAIN; COMPLEX; MDC1
AB The Nijmegen breakage syndrome 1 (Nbs1) subunit of the Mre11-Rad50-Nbs1 (MRN) complex protects genome integrity by coordinating double-strand break (DSB) repair and checkpoint signaling through undefined interactions with ATM, MDC1, and Sae2/Ctp1/CtIP. Here, fission yeast and human Nbs1 structures defined by X-ray crystallography and small angle X-ray scattering (SAXS) reveal Nbs1 cardinal features: fused, extended, FHA-BRCT(1)-BRCT(2) domains flexibly linked to C-terminal Mre11- and ATM-binding motifs. Genetic, biochemical, and structural analyses of an Nbs1-Ctp1 complex show Nbs1 recruits phosphorylated Ctp1 to DSBs via binding of the Nbs1 FHA domain to a Ctp1 pThr- Asp motif. Nbs1 structures further identify an extensive FHA-BRCT interface, a bipartite MDC1-binding scaffold, an extended conformational switch, and the molecular consequences associated with cancer predisposing Nijmegen breakage syndrome mutations. Tethering of Ctp1 to a flexible Nbs1 arm suggests a mechanism for restricting DNA end processing and homologous recombination activities of Sae2/Ctp1/CtIP to the immediate vicinity of DSBs.
C1 [Williams, R. Scott; Dodson, Gerald E.; Limbo, Oliver; Yamada, Yoshiki; Williams, Jessica S.; Guenther, Grant; Russell, Paul; Tainer, John A.] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA.
[Dodson, Gerald E.; Limbo, Oliver; Yamada, Yoshiki; Williams, Jessica S.; Russell, Paul] Scripps Res Inst, Dept Cell Biol, La Jolla, CA 92037 USA.
[Williams, R. Scott; Guenther, Grant; Tainer, John A.] Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA.
[Classen, Scott; Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Mol Biol, Div Life Sci, Berkeley, CA 94720 USA.
[Glover, J. N. Mark] Univ Alberta, Dept Biochem, Edmonton, AB T6G 2H7, Canada.
[Iwasaki, Hiroshi] Yokohama City Univ, Int Grad Sch Arts & Sci, Div Mol & Cellular Biol, Kanagawa 2300045, Japan.
RP Russell, P (reprint author), Scripps Res Inst, Dept Mol Biol, 10550 N Torrey Pines Rd,MB4, La Jolla, CA 92037 USA.
EM prussell@scripps.edu; jat@scripps.edu
RI Williams, Robert/A-6059-2015
FU Canadian Institutes of Health Research; Alberta Heritage Foundation for
Medical Research; National Cancer Institute [CA117638, CA92584,
CA77325]; SIBYLS beamline [BL12.3.1]; United States Department of Energy
program Integrated Diffraction Analysis Technologies
[DE-AC02-05CH11231]; Skaggs Institute for Chemical Biology
FX Fellowship support was provided to R. S. W. (Canadian Institutes of
Health Research, the Alberta Heritage Foundation for Medical Research,
and the Skaggs Institute for Chemical Biology), G.E.D. (National
Institutes of Health National Research Service Award), and Y.Y. (The
Uehara Memorial Foundation). Work on Mre11 complex and Ctp1 in the
authors' laboratories is supported by National Cancer Institute grants
CA117638, CA92584, and CA77325. SIBYLS beamline (BL12.3.1) efforts at
the Advanced Light Source of Lawrence Berkeley National Laboratory are
supported by United States Department of Energy program Integrated
Diffraction Analysis Technologies (for integrating crystallography and
X-ray scattering) under contract number DE-AC02-05CH11231. We thank
SIBYLS staff G. Hura and M. Hammel for expert SAXS data collection
assistance, B. Chapados, C. Chahwan for discussions, and E. Getzoff and
G. Williams for comments.
NR 54
TC 166
Z9 169
U1 0
U2 11
PU CELL PRESS
PI CAMBRIDGE
PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA
SN 0092-8674
J9 CELL
JI Cell
PD OCT 2
PY 2009
VL 139
IS 1
BP 87
EP 99
DI 10.1016/j.cell.2009.07.033
PG 13
WC Biochemistry & Molecular Biology; Cell Biology
SC Biochemistry & Molecular Biology; Cell Biology
GA 501NM
UT WOS:000270388600018
PM 19804755
ER
PT J
AU Krenkova, J
Gargano, A
Lacher, NA
Schneiderheinze, JM
Svec, F
AF Krenkova, Jana
Gargano, Andrea
Lacher, Nathan A.
Schneiderheinze, Jeffrey M.
Svec, Frantisek
TI High binding capacity surface grafted monolithic columns for cation
exchange chromatography of proteins and peptides
SO JOURNAL OF CHROMATOGRAPHY A
LA English
DT Article
DE Monolith; Capillary column; Glycidyl methacrylate; Grafting; Ion
exchange chromatography; Proteins; Peptides
ID 2-DIMENSIONAL LIQUID-CHROMATOGRAPHY; RIGID POLYMER MONOLITHS; CAPILLARY
ELECTROCHROMATOGRAPHY; SEPARATION MEDIA; OFF-LINE; ION CHROMATOGRAPHY;
MASS-SPECTROMETRY; STATIONARY PHASES; TECHNOLOGY; CHEMISTRY
AB Poly(glycidyl methacrylate-co-ethylene methacrylate) monoliths have been prepared in 100 mu m i.d capillaries and their epoxy groups hydrolyzed to obtain poly(2,3-dihydroxypropyl methacrylate-co-ethylene methacrylate) matrix. These polymers were then photografted in a single step with 2-acrylamido-2-methyl-1-propanesulfonic acid and acrylic acid to afford stationary phases for a strong and a weak cation exchange chromatography, respectively. Alternatively, poly(ethylene glycol) methacrylate was used for grafting in the first step in order to enhance hydrophilicity of the support followed by photografting with 2-acrylamido-2-methyl-1-propanesulfonic acid or acrylic acid in the second step. These new columns were used for the separation of proteins and peptides. A mixture of ovalbumin, alpha-chymotrypsinogen, cytochrome c, ribonuclease A and lysozyme was used to assess the chromatographic performance for large molecules while a cytochrome c digest served as a model mixture of peptides. All tested columns featured excellent mass transfer as demonstrated with very steep breakthrough curves. The highest binding capacities were found for columns prepared using the two step functionalization. Columns with sulfonic acid functionalities adsorbed up to 21.5 mg/mL lysozyme while the capacity of the weak cation exchange column functionalized with acrylic acid was 29.2 mg/mL (C) 2009 Elsevier B.V. All rights reserved.
C1 [Krenkova, Jana; Gargano, Andrea; Svec, Frantisek] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Gargano, Andrea] Univ Pavia, Dept Pharmaceut Chem, I-27100 Pavia, Italy.
[Lacher, Nathan A.; Schneiderheinze, Jeffrey M.] Pfizer Global Biol, Analyt Res & Dev, St Louis, MO USA.
RP Svec, F (reprint author), EO Lawrence Berkeley Natl Lab, Mailstop 67R6110, Berkeley, CA 94720 USA.
EM fsvec@lbl.gov
RI Gargano, Andrea/J-4878-2013
OI Gargano, Andrea/0000-0003-3361-7341
FU U.S. Department of Energy [DE-AC02-05CH11231]; Pfizer Inc
FX This work was supported by the Director, Office of Science, Office of
Basic Energy Sciences, Materials Sciences and Engineering Division, of
the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Support of J.K. by Pfizer Inc. is gratefully acknowledged.
NR 48
TC 33
Z9 36
U1 1
U2 23
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0021-9673
J9 J CHROMATOGR A
JI J. Chromatogr. A
PD OCT 2
PY 2009
VL 1216
IS 40
BP 6824
EP 6830
DI 10.1016/j.chroma.2009.08.031
PG 7
WC Biochemical Research Methods; Chemistry, Analytical
SC Biochemistry & Molecular Biology; Chemistry
GA 500QD
UT WOS:000270317500007
PM 19717157
ER
PT J
AU Cappa, F
Rutqvist, J
Yamamoto, K
AF Cappa, Frederic
Rutqvist, Jonny
Yamamoto, Koji
TI Modeling crustal deformation and rupture processes related to upwelling
of deep CO2-rich fluids during the 1965-1967 Matsushiro earthquake swarm
in Japan
SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH
LA English
DT Article
ID NIIGATA EARTHQUAKE; SLIP; FLOW; PRESSURE; STRESS; OVERPRESSURE;
PERMEABILITY; GENERATION; SEISMICITY; INJECTION
AB In Matsushiro, central Japan, a series of more than 700,000 earthquakes occurred over a 2-year period (1965-1967) associated with a strike-slip faulting sequence. This swarm of earthquakes resulted in ground surface deformations, cracking of the topsoil, and enhanced spring outflows with changes in chemical compositions, as well as carbon dioxide (CO2) degassing. Previous investigations of the Matsushiro earthquake swarm have suggested that migration of underground water and/or magma may have had a strong influence on the swarm activity. In this study, employing coupled multiphase flow and geomechanical modeling, we show that observed crustal deformations and seismicity could have been driven by upwelling of deep CO2-rich fluids around the intersection of two fault zones: the regional east Nagano earthquake fault and the conjugate Matsushiro fault. We show that the observed spatial evolution of seismicity along the two faults and magnitudes surface uplift are convincingly explained by a few megapascals of pressurization from the upwelling fluid within the critically stressed crust, a crust under a strike-slip stress regime near the frictional strength limit. Our analysis indicates that the most important cause for triggering of seismicity during the Matsushiro swarm was the fluid pressurization with the associated reduction in effective stress and strength in fault segments that were initially near critically stressed for shear failure. Moreover, our analysis indicates that a 2-order-of-magnitude permeability enhancement in ruptured fault segments may be necessary to match the observed time evolution of surface uplift. We conclude that our hydromechanical modeling study of the Matsushiro earthquake swarm shows a clear connection between earthquake rupture, deformation, stress, and permeability changes, as well as large-scale fluid flow related to degassing of CO2 in the shallow seismogenic crust. Thus our study provides further evidence of the important role of deep fluid sources in earthquake fault dynamics and surface deformations.
C1 [Cappa, Frederic; Rutqvist, Jonny] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA.
[Yamamoto, Koji] Mizuho Informat & Res Inst, Chiyoda Ku, Tokyo 1010054, Japan.
[Yamamoto, Koji] Japan Oil Gas & Met Natl Corp, Tokyo, Japan.
[Cappa, Frederic] Univ Nice Sophia Antipolis, Cote dAzur Observ, UMR6526, GeoAzur, F-06560 Sophia Antipolis, France.
RP Cappa, F (reprint author), Univ Nice Sophia Antipolis, Cote dAzur Observ, UMR6526, GeoAzur, 250 Rue Albert Einstein,Lucioles 1, F-06560 Sophia Antipolis, France.
EM cappa@geoazur.unice.fr; jrutqvist@lbl.gov
RI Rutqvist, Jonny/F-4957-2015; Cappa, Frederic/B-4014-2017
OI Rutqvist, Jonny/0000-0002-7949-9785; Cappa, Frederic/0000-0003-4859-8024
FU Ministry of Economy, Trade and Industry Ministry of Japan; Assistant
Secretary for Fossil Energy, Office of Natural Gas and Petroleum
Technology [DE-AC02-05CH11231]
FX This work was financed by the Ministry of Economy, Trade and Industry
Ministry of Japan. Further funds for completing this paper were provided
by the Assistant Secretary for Fossil Energy, Office of Natural Gas and
Petroleum Technology, through the National Energy Technology Laboratory
under U. S. Department of Energy contract DE-AC02-05CH11231. The authors
acknowledge the advice from the Technical Advisory Committee members and
colleagues of the Natural Analogue Study for CO2 Geological
Sequestration. The authors are grateful for the constructive comments
and recommendations by Associate Editor Dan Faulkner, University of
Liverpool; for the editorial review by Dan Hawkes, Lawrence Berkeley
National Laboratory; for an external technical review by Giovanni
Chiodini, National Institute of Geophysics and Volcanology, Napoli; and
for the comments of one unidentified reviewer which substantially
improved this paper.
NR 64
TC 44
Z9 47
U1 0
U2 12
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9313
EI 2169-9356
J9 J GEOPHYS RES-SOL EA
JI J. Geophys. Res.-Solid Earth
PD OCT 2
PY 2009
VL 114
AR B10304
DI 10.1029/2009JB006398
PG 20
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 502MR
UT WOS:000270465000001
ER
PT J
AU Quan, HT
AF Quan, H. T.
TI Finite-temperature scaling of magnetic susceptibility and the geometric
phase in the XY spin chain
SO JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL
LA English
DT Article
ID MACROSCOPIC ENTANGLEMENT; QUANTUM CRITICALITY; ISING-MODEL; TRANSITIONS;
LATTICE; FIELD
AB We study the magnetic susceptibility of the 1D quantum XY model, and show that when the temperature approaches zero, the magnetic susceptibility exhibits finite-temperature scaling behavior. The scaling behavior of the magnetic susceptibility in the 1D quantum XY model, due to the quantum-classical mapping, can easily be experimentally tested. Furthermore, the universality in the critical properties of the magnetic susceptibility in the quantum XY model is verified. Our study also reveals the close relation between the magnetic susceptibility and the geometric phase in some spin systems, where the quantum phase transitions are driven by an external magnetic field.
C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RP Quan, HT (reprint author), Los Alamos Natl Lab, Div Theoret, MS B213, Los Alamos, NM 87545 USA.
RI Quan, Haitao/G-8521-2012
OI Quan, Haitao/0000-0002-4130-2924
FU US Department of Energy through the LANL/LDRD Program
FX The author thanks F M Cucchietti and Rishi Sharma for stimulating
discussions and gratefully acknowledges the support of the US Department
of Energy through the LANL/LDRD Program for this work.
NR 48
TC 4
Z9 4
U1 0
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1751-8113
EI 1751-8121
J9 J PHYS A-MATH THEOR
JI J. Phys. A-Math. Theor.
PD OCT 2
PY 2009
VL 42
IS 39
AR 395002
DI 10.1088/1751-8113/42/39/395002
PG 9
WC Physics, Multidisciplinary; Physics, Mathematical
SC Physics
GA 493WZ
UT WOS:000269771100004
ER
PT J
AU Abazov, VM
Abbott, B
Abolins, M
Acharya, BS
Adams, M
Adams, T
Aguilo, E
Ahsan, M
Alexeev, GD
Alkhazov, G
Alton, A
Alverson, G
Alves, GA
Ancu, LS
Andeen, T
Anzelc, MS
Aoki, M
Arnoud, Y
Arov, M
Arthaud, M
Askew, A
Asman, B
Atramentov, O
Avila, C
BackusMayes, J
Badaud, F
Bagby, L
Baldin, B
Bandurin, DV
Banerjee, S
Barberis, E
Barfuss, AF
Bargassa, P
Baringer, P
Barreto, J
Bartlett, JF
Bassler, U
Bauer, D
Beale, S
Bean, A
Begalli, M
Begel, M
Belanger-Champagne, C
Bellantoni, L
Bellavance, A
Benitez, JA
Beri, SB
Bernardi, G
Bernhard, R
Bertram, I
Besancon, M
Beuselinck, R
Bezzubov, VA
Bhat, PC
Bhatnagar, V
Blazey, G
Blessing, S
Bloom, K
Boehnlein, A
Boline, D
Bolton, TA
Boos, EE
Borissov, G
Bose, T
Brandt, A
Brock, R
Brooijmans, G
Bross, A
Brown, D
Bu, XB
Buchholz, D
Buehler, M
Buescher, V
Bunichev, V
Burdin, S
Burnett, TH
Buszello, CP
Calfayan, P
Calpas, B
Calvet, S
Cammin, J
Carrasco-Lizarraga, MA
Carrera, E
Carvalho, W
Casey, BCK
Castilla-Valdez, H
Chakrabarti, S
Chakraborty, D
Chan, KM
Chandra, A
Cheu, E
Cho, DK
Cho, SW
Choi, S
Choudhary, B
Christoudias, T
Cihangir, S
Claes, D
Clutter, J
Cooke, M
Cooper, WE
Corcoran, M
Couderc, F
Cousinou, MC
Cutts, D
Cwiok, M
Das, A
Davies, G
De, K
de Jong, SJ
De La Cruz-Burelo, E
DeVaughan, K
Deliot, F
Demarteau, M
Demina, R
Denisov, D
Denisov, SP
Desai, S
Diehl, HT
Diesburg, M
Dominguez, A
Dorland, T
Dubey, A
Dudko, LV
Duflot, L
Duggan, D
Duperrin, A
Dutt, S
Dyshkant, A
Eads, M
Edmunds, D
Ellison, J
Elvira, VD
Enari, Y
Eno, S
Escalier, M
Evans, H
Evdokimov, A
Evdokimov, VN
Facini, G
Ferapontov, AV
Ferbel, T
Fiedler, F
Filthaut, F
Fisher, W
Fisk, HE
Fortner, M
Fox, H
Fu, S
Fuess, S
Gadfort, T
Galea, CF
Garcia-Bellido, A
Gavrilov, V
Gay, P
Geist, W
Geng, W
Gerber, CE
Gershtein, Y
Gillberg, D
Ginther, G
Gomez, B
Goussiou, A
Grannis, PD
Greder, S
Greenlee, H
Greenwood, ZD
Gregores, EM
Grenier, G
Gris, P
Grivaz, JF
Grohsjean, A
Grunendahl, S
Grunewald, MW
Guo, F
Guo, J
Gutierrez, G
Gutierrez, P
Haas, A
Haefner, P
Hagopian, S
Haley, J
Hall, I
Hall, RE
Han, L
Harder, K
Harel, A
Hauptman, JM
Hays, J
Hebbeker, T
Hedin, D
Hegeman, JG
Heinson, AP
Heintz, U
Hensel, C
Heredia-De La Cruz, I
Herner, K
Hesketh, G
Hildreth, MD
Hirosky, R
Hoang, T
Hobbs, JD
Hoeneisen, B
Hohlfeld, M
Hossain, S
Houben, P
Hu, Y
Hubacek, Z
Huske, N
Hynek, V
Iashvili, I
Illingworth, R
Ito, AS
Jabeen, S
Jaffre, M
Jain, S
Jakobs, K
Jamin, D
Jesik, R
Johns, K
Johnson, C
Johnson, M
Johnston, D
Jonckheere, A
Jonsson, P
Juste, A
Kajfasz, E
Karmanov, D
Kasper, PA
Katsanos, I
Kaushik, V
Kehoe, R
Kermiche, S
Khalatyan, N
Khanov, A
Kharchilava, A
Kharzheev, YN
Khatidze, D
Kirby, MH
Kirsch, M
Klima, B
Kohli, JM
Konrath, JP
Kozelov, AV
Kraus, J
Kuhl, T
Kumar, A
Kupco, A
Kurca, T
Kuzmin, VA
Kvita, J
Lacroix, F
Lam, D
Lammers, S
Landsberg, G
Lebrun, P
Lee, HS
Lee, WM
Leflat, A
Lellouch, J
Li, L
Li, QZ
Lietti, SM
Lim, JK
Lincoln, D
Linnemann, J
Lipaev, VV
Lipton, R
Liu, Y
Liu, Z
Lobodenko, A
Lokajicek, M
Love, P
Lubatti, HJ
Luna-Garcia, R
Lyon, AL
Maciel, AKA
Mackin, D
Mattig, P
Magana-Villalba, R
Mal, PK
Malik, S
Malyshev, VL
Maravin, Y
Martin, B
McCarthy, R
McGivern, CL
Meijer, MM
Melnitchouk, A
Mendoza, L
Menezes, D
Mercadante, PG
Merkin, M
Merritt, KW
Meyer, A
Meyer, J
Mondal, NK
Montgomery, HE
Moore, RW
Moulik, T
Muanza, GS
Mulhearn, M
Mundal, O
Mundim, L
Nagy, E
Naimuddin, M
Narain, M
Neal, HA
Negret, JP
Neustroev, P
Nilsen, H
Nogima, H
Novaes, SF
Nunnemann, T
Obrant, G
Ochando, C
Onoprienko, D
Orduna, J
Oshima, N
Osman, N
Osta, J
Otec, R
Garzon, GJOY
Owen, M
Padilla, M
Padley, P
Pangilinan, M
Parashar, N
Park, SJ
Park, SK
Parsons, J
Partridge, R
Parua, N
Patwa, A
Penning, B
Perfilov, M
Peters, K
Peters, Y
Petroff, P
Piegaia, R
Piper, J
Pleier, MA
Podesta-Lerma, PLM
Podstavkov, VM
Pogorelov, Y
Pol, ME
Polozov, P
Popov, AV
Prewitt, M
Protopopescu, S
Qian, J
Quadt, A
Quinn, B
Rakitine, A
Rangel, MS
Ranjan, K
Ratoff, PN
Renkel, P
Rich, P
Rijssenbeek, M
Ripp-Baudot, I
Rizatdinova, F
Robinson, S
Rominsky, M
Royon, C
Rubinov, P
Ruchti, R
Safronov, G
Sajot, G
Sanchez-Hernandez, A
Sanders, MP
Sanghi, B
Savage, G
Sawyer, L
Scanlon, T
Schaile, D
Schamberger, RD
Scheglov, Y
Schellman, H
Schliephake, T
Schlobohm, S
Schwanenberger, C
Schwienhorst, R
Sekaric, J
Severini, H
Shabalina, E
Shamim, M
Shary, V
Shchukin, AA
Shivpuri, RK
Siccardi, V
Simak, V
Sirotenko, V
Skubic, P
Slattery, P
Smirnov, D
Snow, GR
Snow, J
Snyder, S
Soldner-Rembold, S
Sonnenschein, L
Sopczak, A
Sosebee, M
Soustruznik, K
Spurlock, B
Stark, J
Stolin, V
Stoyanova, DA
Strandberg, J
Strang, MA
Strauss, E
Strauss, M
Strohmer, R
Strom, D
Stutte, L
Sumowidagdo, S
Svoisky, P
Takahashi, M
Tanasijczuk, A
Taylor, W
Tiller, B
Titov, M
Tokmenin, VV
Torchiani, I
Tsybychev, D
Tuchming, B
Tully, C
Tuts, PM
Unalan, R
Uvarov, L
Uvarov, S
Uzunyan, S
van den Berg, PJ
Van Kooten, R
van Leeuwen, WM
Varelas, N
Varnes, EW
Vasilyev, IA
Verdier, P
Vertogradov, LS
Verzocchi, M
Vesterinen, M
Vilanova, D
Vint, P
Vokac, P
Wagner, R
Wahl, HD
Wang, MHLS
Warchol, J
Watts, G
Wayne, M
Weber, G
Weber, M
Welty-Rieger, L
Wenger, A
Wetstein, M
White, A
Wicke, D
Williams, MRJ
Wilson, GW
Wimpenny, SJ
Wobisch, M
Wood, DR
Wyatt, TR
Xie, Y
Xu, C
Yacoob, S
Yamada, R
Yang, WC
Yasuda, T
Yatsunenko, YA
Ye, Z
Yin, H
Yip, K
Yoo, HD
Youn, SW
Yu, J
Zeitnitz, C
Zelitch, S
Zhao, T
Zhou, B
Zhu, J
Zielinski, M
Zieminska, D
Zivkovic, L
Zutshi, V
Zverev, EG
AF Abazov, V. M.
Abbott, B.
Abolins, M.
Acharya, B. S.
Adams, M.
Adams, T.
Aguilo, E.
Ahsan, M.
Alexeev, G. D.
Alkhazov, G.
Alton, A.
Alverson, G.
Alves, G. A.
Ancu, L. S.
Andeen, T.
Anzelc, M. S.
Aoki, M.
Arnoud, Y.
Arov, M.
Arthaud, M.
Askew, A.
Asman, B.
Atramentov, O.
Avila, C.
BackusMayes, J.
Badaud, F.
Bagby, L.
Baldin, B.
Bandurin, D. V.
Banerjee, S.
Barberis, E.
Barfuss, A. -F.
Bargassa, P.
Baringer, P.
Barreto, J.
Bartlett, J. F.
Bassler, U.
Bauer, D.
Beale, S.
Bean, A.
Begalli, M.
Begel, M.
Belanger-Champagne, C.
Bellantoni, L.
Bellavance, A.
Benitez, J. A.
Beri, S. B.
Bernardi, G.
Bernhard, R.
Bertram, I.
Besancon, M.
Beuselinck, R.
Bezzubov, V. A.
Bhat, P. C.
Bhatnagar, V.
Blazey, G.
Blessing, S.
Bloom, K.
Boehnlein, A.
Boline, D.
Bolton, T. A.
Boos, E. E.
Borissov, G.
Bose, T.
Brandt, A.
Brock, R.
Brooijmans, G.
Bross, A.
Brown, D.
Bu, X. B.
Buchholz, D.
Buehler, M.
Buescher, V.
Bunichev, V.
Burdin, S.
Burnett, T. H.
Buszello, C. P.
Calfayan, P.
Calpas, B.
Calvet, S.
Cammin, J.
Carrasco-Lizarraga, M. A.
Carrera, E.
Carvalho, W.
Casey, B. C. K.
Castilla-Valdez, H.
Chakrabarti, S.
Chakraborty, D.
Chan, K. M.
Chandra, A.
Cheu, E.
Cho, D. K.
Cho, S. W.
Choi, S.
Choudhary, B.
Christoudias, T.
Cihangir, S.
Claes, D.
Clutter, J.
Cooke, M.
Cooper, W. E.
Corcoran, M.
Couderc, F.
Cousinou, M-C.
Cutts, D.
Cwiok, M.
Das, A.
Davies, G.
De, K.
de Jong, S. J.
De La Cruz-Burelo, E.
DeVaughan, K.
Deliot, F.
Demarteau, M.
Demina, R.
Denisov, D.
Denisov, S. P.
Desai, S.
Diehl, H. T.
Diesburg, M.
Dominguez, A.
Dorland, T.
Dubey, A.
Dudko, L. V.
Duflot, L.
Duggan, D.
Duperrin, A.
Dutt, S.
Dyshkant, A.
Eads, M.
Edmunds, D.
Ellison, J.
Elvira, V. D.
Enari, Y.
Eno, S.
Escalier, M.
Evans, H.
Evdokimov, A.
Evdokimov, V. N.
Facini, G.
Ferapontov, A. V.
Ferbel, T.
Fiedler, F.
Filthaut, F.
Fisher, W.
Fisk, H. E.
Fortner, M.
Fox, H.
Fu, S.
Fuess, S.
Gadfort, T.
Galea, C. F.
Garcia-Bellido, A.
Gavrilov, V.
Gay, P.
Geist, W.
Geng, W.
Gerber, C. E.
Gershtein, Y.
Gillberg, D.
Ginther, G.
Gomez, B.
Goussiou, A.
Grannis, P. D.
Greder, S.
Greenlee, H.
Greenwood, Z. D.
Gregores, E. M.
Grenier, G.
Gris, Ph.
Grivaz, J. -F.
Grohsjean, A.
Gruenendahl, S.
Gruenewald, M. W.
Guo, F.
Guo, J.
Gutierrez, G.
Gutierrez, P.
Haas, A.
Haefner, P.
Hagopian, S.
Haley, J.
Hall, I.
Hall, R. E.
Han, L.
Harder, K.
Harel, A.
Hauptman, J. M.
Hays, J.
Hebbeker, T.
Hedin, D.
Hegeman, J. G.
Heinson, A. P.
Heintz, U.
Hensel, C.
Heredia-De la Cruz, I.
Herner, K.
Hesketh, G.
Hildreth, M. D.
Hirosky, R.
Hoang, T.
Hobbs, J. D.
Hoeneisen, B.
Hohlfeld, M.
Hossain, S.
Houben, P.
Hu, Y.
Hubacek, Z.
Huske, N.
Hynek, V.
Iashvili, I.
Illingworth, R.
Ito, A. S.
Jabeen, S.
Jaffre, M.
Jain, S.
Jakobs, K.
Jamin, D.
Jesik, R.
Johns, K.
Johnson, C.
Johnson, M.
Johnston, D.
Jonckheere, A.
Jonsson, P.
Juste, A.
Kajfasz, E.
Karmanov, D.
Kasper, P. A.
Katsanos, I.
Kaushik, V.
Kehoe, R.
Kermiche, S.
Khalatyan, N.
Khanov, A.
Kharchilava, A.
Kharzheev, Y. N.
Khatidze, D.
Kirby, M. H.
Kirsch, M.
Klima, B.
Kohli, J. M.
Konrath, J. -P.
Kozelov, A. V.
Kraus, J.
Kuhl, T.
Kumar, A.
Kupco, A.
Kurca, T.
Kuzmin, V. A.
Kvita, J.
Lacroix, F.
Lam, D.
Lammers, S.
Landsberg, G.
Lebrun, P.
Lee, H. S.
Lee, W. M.
Leflat, A.
Lellouch, J.
Li, L.
Li, Q. Z.
Lietti, S. M.
Lim, J. K.
Lincoln, D.
Linnemann, J.
Lipaev, V. V.
Lipton, R.
Liu, Y.
Liu, Z.
Lobodenko, A.
Lokajicek, M.
Love, P.
Lubatti, H. J.
Luna-Garcia, R.
Lyon, A. L.
Maciel, A. K. A.
Mackin, D.
Maettig, P.
Magana-Villalba, R.
Mal, P. K.
Malik, S.
Malyshev, V. L.
Maravin, Y.
Martin, B.
McCarthy, R.
McGivern, C. L.
Meijer, M. M.
Melnitchouk, A.
Mendoza, L.
Menezes, D.
Mercadante, P. G.
Merkin, M.
Merritt, K. W.
Meyer, A.
Meyer, J.
Mondal, N. K.
Montgomery, H. E.
Moore, R. W.
Moulik, T.
Muanza, G. S.
Mulhearn, M.
Mundal, O.
Mundim, L.
Nagy, E.
Naimuddin, M.
Narain, M.
Neal, H. A.
Negret, J. P.
Neustroev, P.
Nilsen, H.
Nogima, H.
Novaes, S. F.
Nunnemann, T.
Obrant, G.
Ochando, C.
Onoprienko, D.
Orduna, J.
Oshima, N.
Osman, N.
Osta, J.
Otec, R.
Otero Y Garzon, G. J.
Owen, M.
Padilla, M.
Padley, P.
Pangilinan, M.
Parashar, N.
Park, S. -J.
Park, S. K.
Parsons, J.
Partridge, R.
Parua, N.
Patwa, A.
Penning, B.
Perfilov, M.
Peters, K.
Peters, Y.
Petroff, P.
Piegaia, R.
Piper, J.
Pleier, M. -A.
Podesta-Lerma, P. L. M.
Podstavkov, V. M.
Pogorelov, Y.
Pol, M. -E.
Polozov, P.
Popov, A. V.
Prewitt, M.
Protopopescu, S.
Qian, J.
Quadt, A.
Quinn, B.
Rakitine, A.
Rangel, M. S.
Ranjan, K.
Ratoff, P. N.
Renkel, P.
Rich, P.
Rijssenbeek, M.
Ripp-Baudot, I.
Rizatdinova, F.
Robinson, S.
Rominsky, M.
Royon, C.
Rubinov, P.
Ruchti, R.
Safronov, G.
Sajot, G.
Sanchez-Hernandez, A.
Sanders, M. P.
Sanghi, B.
Savage, G.
Sawyer, L.
Scanlon, T.
Schaile, D.
Schamberger, R. D.
Scheglov, Y.
Schellman, H.
Schliephake, T.
Schlobohm, S.
Schwanenberger, C.
Schwienhorst, R.
Sekaric, J.
Severini, H.
Shabalina, E.
Shamim, M.
Shary, V.
Shchukin, A. A.
Shivpuri, R. K.
Siccardi, V.
Simak, V.
Sirotenko, V.
Skubic, P.
Slattery, P.
Smirnov, D.
Snow, G. R.
Snow, J.
Snyder, S.
Soeldner-Rembold, S.
Sonnenschein, L.
Sopczak, A.
Sosebee, M.
Soustruznik, K.
Spurlock, B.
Stark, J.
Stolin, V.
Stoyanova, D. A.
Strandberg, J.
Strang, M. A.
Strauss, E.
Strauss, M.
Stroehmer, R.
Strom, D.
Stutte, L.
Sumowidagdo, S.
Svoisky, P.
Takahashi, M.
Tanasijczuk, A.
Taylor, W.
Tiller, B.
Titov, M.
Tokmenin, V. V.
Torchiani, I.
Tsybychev, D.
Tuchming, B.
Tully, C.
Tuts, P. M.
Unalan, R.
Uvarov, L.
Uvarov, S.
Uzunyan, S.
van den Berg, P. J.
Van Kooten, R.
van Leeuwen, W. M.
Varelas, N.
Varnes, E. W.
Vasilyev, I. A.
Verdier, P.
Vertogradov, L. S.
Verzocchi, M.
Vesterinen, M.
Vilanova, D.
Vint, P.
Vokac, P.
Wagner, R.
Wahl, H. D.
Wang, M. H. L. S.
Warchol, J.
Watts, G.
Wayne, M.
Weber, G.
Weber, M.
Welty-Rieger, L.
Wenger, A.
Wetstein, M.
White, A.
Wicke, D.
Williams, M. R. J.
Wilson, G. W.
Wimpenny, S. J.
Wobisch, M.
Wood, D. R.
Wyatt, T. R.
Xie, Y.
Xu, C.
Yacoob, S.
Yamada, R.
Yang, W. -C.
Yasuda, T.
Yatsunenko, Y. A.
Ye, Z.
Yin, H.
Yip, K.
Yoo, H. D.
Youn, S. W.
Yu, J.
Zeitnitz, C.
Zelitch, S.
Zhao, T.
Zhou, B.
Zhu, J.
Zielinski, M.
Zieminska, D.
Zivkovic, L.
Zutshi, V.
Zverev, E. G.
CA D0 Collaboration
TI Measurement of the W Boson Mass
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID QED RADIATIVE-CORRECTIONS; HADRON COLLIDERS; WIDTH; COLLISIONS; PHYSICS;
LEP
AB We present a measurement of the W boson mass in W -> e nu decays using 1 fb(-1) of data collected with the D0 detector during Run II of the Fermilab Tevatron collider. With a sample of 499830 W -> e nu candidate events, we measure M(W)=80.401 +/- 0.043 GeV. This is the most precise measurement from a single experiment.
C1 [Abazov, V. M.; Alexeev, G. D.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia.
[Otero Y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina.
[Alves, G. A.; Barreto, J.; Maciel, A. K. A.; Pol, M. -E.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil.
[Begalli, M.; Carvalho, W.; Mundim, L.; Nogima, H.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil.
[Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil.
[Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil.
[Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Taylor, W.] Univ Alberta, Edmonton, AB, Canada.
[Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada.
[Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Taylor, W.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada.
[Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Taylor, W.] McGill Univ, Montreal, PQ, Canada.
[Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China.
[Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia.
[Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic.
[Hubacek, Z.; Hynek, V.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic.
[Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic.
[Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador.
[Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, Clermont, France.
[Arnoud, Y.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, LPSC,Inst Natl Polytech Grenoble, IN2P3, Grenoble, France.
[Barfuss, A. -F.; Calpas, B.; Cousinou, M-C.; Duperrin, A.; Escalier, M.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Univ Aix Marseille 1, CPPM, CNRS, IN2P3, Marseille, France.
[Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.; Rangel, M. S.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France.
[Bernardi, G.; Huske, N.; Lellouch, J.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France.
[Bernardi, G.; Huske, N.; Lellouch, J.] Univ Paris 07, Paris, France.
[Arthaud, M.; Bassler, U.; Besancon, M.; Couderc, F.; Deliot, F.; Grohsjean, A.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, Irfu, SPP, Saclay, France.
[Brown, D.; Geist, W.; Greder, S.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France.
[Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France.
[Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IPNL, IN2P3, F-69622 Villeurbanne, France.
[Hebbeker, T.; Kirsch, M.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany.
[Buescher, V.; Hohlfeld, M.; Mundal, O.; Pleier, M. -A.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany.
[Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany.
[Hensel, C.; Meyer, J.; Park, S. -J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany.
[Fiedler, F.; Kuhl, T.; Weber, G.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany.
[Calfayan, P.; Haefner, P.; Nunnemann, T.; Sanders, M. P.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany.
[Maettig, P.; Schliephake, T.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany.
[Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India.
[Choudhary, B.; Dubey, A.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India.
[Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India.
[Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland.
[Cho, S. W.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea.
[Choi, S.] Sungkyunkwan Univ, Suwon, South Korea.
[Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De la Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico.
[Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands.
[Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] FOM Inst NIKHEF, Amsterdam, Netherlands.
[Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands.
[Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia.
[Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia.
[Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia.
[Asman, B.; Belanger-Champagne, C.] Uppsala Univ, Uppsala, Sweden.
[Asman, B.; Belanger-Champagne, C.] Stockholm Univ, S-10691 Stockholm, Sweden.
[Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster, England.
[Bauer, D.; Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Robinson, S.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England.
[Harder, K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Vesterinen, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester, Lancs, England.
[Cheu, E.; Das, A.; Johns, K.; Mal, P. K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA.
[Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA.
[Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA.
[Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Carrera, E.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Hoang, T.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA.
[Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Merritt, K. W.; Montgomery, H. E.; Naimuddin, M.; Oshima, N.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Weber, M.; Yamada, R.; Yasuda, T.; Ye, Z.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Adams, M.; Gerber, C. E.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA.
[Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA.
[Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Yacoob, S.] Northwestern Univ, Evanston, IL 60208 USA.
[Evans, H.; Lammers, S.; Parua, N.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA.
[Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA.
[Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA.
[Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA.
[Baringer, P.; Bean, A.; Clutter, J.; McGivern, C. L.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA.
[Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.] Kansas State Univ, Manhattan, KS 66506 USA.
[Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA.
[Eno, S.; Ferbel, T.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA.
[Boline, D.; Bose, T.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA.
[Alverson, G.; Barberis, E.; Facini, G.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA.
[Alton, A.; Herner, K.; Neal, H. A.; Qian, J.; Strandberg, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Abolins, M.; Benitez, J. A.; Brock, R.; Edmunds, D.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA.
[Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA.
[Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA.
[Haley, J.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA.
[Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA.
[Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA.
[Cammin, J.; Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Slattery, P.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA.
[Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA.
[Begel, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Snow, J.] Langston Univ, Langston, OK 73050 USA.
[Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA.
[Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA.
[Cutts, D.; Enari, Y.; Khatidze, D.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA.
[Brandt, A.; De, K.; Kaushik, V.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA.
[Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA.
[Bargassa, P.; Corcoran, M.; Mackin, D.; Padley, P.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA.
[Buehler, M.; Hirosky, R.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA.
[BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA.
RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia.
RI De, Kaushik/N-1953-2013; Ancu, Lucian Stefan/F-1812-2010; Alves,
Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy,
Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco,
Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias,
Theodoros/E-7305-2015; Guo, Jun/O-5202-2015; Li, Liang/O-1107-2015; Yip,
Kin/D-6860-2013; Fisher, Wade/N-4491-2013; Shivpuri, R K/A-5848-2010;
Gutierrez, Phillip/C-1161-2011; bu, xuebing/D-1121-2012; Leflat,
Alexander/D-7284-2012; Dudko, Lev/D-7127-2012; Perfilov,
Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; Merkin,
Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mercadante,
Pedro/K-1918-2012; Mundim, Luiz/A-1291-2012; Bargassa,
Pedrame/O-2417-2016; Juste, Aurelio/I-2531-2015;
OI Hoeneisen, Bruce/0000-0002-6059-4256; Malik, Sudhir/0000-0002-6356-2655;
Blazey, Gerald/0000-0002-7435-5758; Evans, Harold/0000-0003-2183-3127;
Beuselinck, Raymond/0000-0003-2613-7446; Weber,
Gernot/0000-0003-4199-1640; Heinson, Ann/0000-0003-4209-6146; grannis,
paul/0000-0003-4692-2142; Qian, Jianming/0000-0003-4813-8167; De,
Kaushik/0000-0002-5647-4489; Ancu, Lucian Stefan/0000-0001-5068-6723;
Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias,
Theodoros/0000-0001-9050-3880; Guo, Jun/0000-0001-8125-9433; Li,
Liang/0000-0001-6411-6107; Heredia De La Cruz, Ivan/0000-0002-8133-6467;
Yip, Kin/0000-0002-8576-4311; Dudko, Lev/0000-0002-4462-3192; Novaes,
Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; Bean,
Alice/0000-0001-5967-8674; Sawyer, Lee/0000-0001-8295-0605; Bargassa,
Pedrame/0000-0001-8612-3332; Hedin, David/0000-0001-9984-215X; Carrera,
Edgar/0000-0002-0857-8507; Wahl, Horst/0000-0002-1345-0401; Juste,
Aurelio/0000-0002-1558-3291; Begel, Michael/0000-0002-1634-4399; de
Jong, Sijbrand/0000-0002-3120-3367; Landsberg, Greg/0000-0002-4184-9380;
Blessing, Susan/0000-0002-4455-7279; Gershtein,
Yuri/0000-0002-4871-5449; Duperrin, Arnaud/0000-0002-5789-9825; Haas,
Andrew/0000-0002-4832-0455; Williams, Mark/0000-0001-5448-4213; Weber,
Michele/0000-0002-2770-9031; Grohsjean, Alexander/0000-0003-0748-8494;
Melnychuk, Oleksandr/0000-0002-2089-8685; Bassler,
Ursula/0000-0002-9041-3057; Filthaut, Frank/0000-0003-3338-2247;
Bertram, Iain/0000-0003-4073-4941; Belanger-Champagne,
Camille/0000-0003-2368-2617
FU DOE; NSF (USA); CEA; CNRS/IN2P3; FASI; Rosatom; RFBR (Russia); CNPq;
FAPERJ; FAPESP; FUNDUNESP (Brazil); DAE; DST (India); Colciencias
(Colombia); CONACyT (Mexico); KRF; KOSEF (Korea); CONICET; UBACyT
(Argentina); FOM (The Netherlands); STFC; Royal Society (United
Kingdom); MSMT; GACR (Czech Republic); CRC Program; CFI; NSERC;
West-Grid Project (Canada); BMBF; DFG (Germany); SFI (Ireland); Swedish
Research Council (Sweden); CAS; CNSF (China); Alexander von Humboldt
Foundation (Germany)
FX We thank the staffs at Fermilab and collaborating institutions, and
acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3
(France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and
FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT
(Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM
(The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and
GACR (Czech Republic); CRC Program, CFI, NSERC and West-Grid Project
(Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research
Council (Sweden); CAS and CNSF (China); and the Alexander von Humboldt
Foundation (Germany).
NR 28
TC 34
Z9 34
U1 0
U2 7
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD OCT 2
PY 2009
VL 103
IS 14
AR 141801
DI 10.1103/PhysRevLett.103.141801
PG 7
WC Physics, Multidisciplinary
SC Physics
GA 502KR
UT WOS:000270458800013
ER
PT J
AU Afanasiev, S
Aidala, C
Ajitanand, NN
Akiba, Y
Alexander, J
Al-Jamel, A
Aoki, K
Aphecetche, L
Armendariz, R
Aronson, SH
Averbeck, R
Awes, TC
Azmoun, B
Babintsev, V
Baldisseri, A
Barish, KN
Barnes, PD
Bassalleck, B
Bathe, S
Batsouli, S
Baublis, V
Bauer, F
Bazilevsky, A
Belikov, S
Bennett, R
Berdnikov, Y
Bjorndal, MT
Boissevain, JG
Borel, H
Boyle, K
Brooks, ML
Brown, DS
Bucher, D
Buesching, H
Bumazhnov, V
Bunce, G
Burward-Hoy, JM
Butsyk, S
Campbell, S
Chai, JS
Chernichenko, S
Chiba, J
Chi, CY
Chiu, M
Choi, IJ
Chujo, T
Cianciolo, V
Cleven, CR
Cobigo, Y
Cole, BA
Comets, MP
Constantin, P
Csanad, M
Csorgo, T
Dahms, T
Das, K
David, G
Delagrange, H
Denisov, A
d'Enterria, D
Deshpande, A
Desmond, EJ
Dietzsch, O
Dion, A
Drachenberg, JL
Drapier, O
Drees, A
Dubey, AK
Durum, A
Dzhordzhadze, V
Efremenko, YV
Egdemir, J
Enokizono, A
En'yo, H
Espagnon, B
Esumi, S
Fields, DE
Fleuret, F
Fokin, SL
Forestier, B
Fraenkel, Z
Frantz, JE
Franz, A
Frawley, AD
Fukao, Y
Fung, SY
Gadrat, S
Gastineau, F
Germain, M
Glenn, A
Gonin, M
Gosset, J
Goto, Y
de Cassagnac, RG
Grau, N
Greene, SV
Perdekamp, MG
Gunji, T
Gustafsson, HA
Hachiya, T
Henni, AH
Haggerty, JS
Hagiwara, MN
Hamagaki, H
Harada, H
Hartouni, EP
Haruna, K
Harvey, M
Haslum, E
Hasuko, K
Hayano, R
Heffner, M
Hemmick, TK
Heuser, JM
He, X
Hiejima, H
Hill, JC
Hobbs, R
Holmes, M
Holzmann, W
Homma, K
Hong, B
Horaguchi, T
Hur, MG
Ichihara, T
Imai, K
Inaba, M
Isenhower, D
Isenhower, L
Ishihara, M
Isobe, T
Issah, M
Isupov, A
Jacak, BV
Jia, J
Jin, J
Jinnouchi, O
Johnson, BM
Joo, KS
Jouan, D
Kajihara, F
Kametani, S
Kamihara, N
Kaneta, M
Kang, JH
Kawagishi, T
Kazantsev, AV
Kelly, S
Khanzadeev, A
Kim, DJ
Kim, E
Kim, YS
Kinney, E
Kiss, A
Kistenev, E
Kiyomichi, A
Klein-Boesing, C
Kochenda, L
Kochetkov, V
Komkov, B
Konno, M
Kotchetkov, D
Kozlov, A
Kroon, PJ
Kunde, GJ
Kurihara, N
Kurita, K
Kweon, MJ
Kwon, Y
Kyle, GS
Lacey, R
Lajoie, JG
Lebedev, A
Le Bornec, Y
Leckey, S
Lee, DM
Lee, MK
Leitch, MJ
Leite, MAL
Lim, H
Litvinenko, A
Liu, MX
Li, XH
Maguire, CF
Makdisi, YI
Malakhov, A
Malik, MD
Manko, VI
Masui, H
Matathias, F
McCain, MC
McGaughey, PL
Miake, Y
Miller, TE
Milov, A
Mioduszewski, S
Mishra, GC
Mitchell, JT
Morrison, DP
Moss, JM
Moukhanova, TV
Mukhopadhyay, D
Murata, J
Nagamiya, S
Nagata, Y
Nagle, JL
Naglis, M
Nakamura, T
Newby, J
Nguyen, M
Norman, BE
Nouicer, R
Nyanin, AS
Nystrand, J
O'Brien, E
Ogilvie, CA
Ohnishi, H
Ojha, ID
Okada, H
Okada, K
Omiwade, OO
Oskarsson, A
Otterlund, I
Ozawa, K
Pal, D
Palounek, APT
Pantuev, V
Papavassiliou, V
Park, J
Park, WJ
Pate, SF
Pei, H
Peng, JC
Pereira, H
Peresedov, V
Peressounko, DY
Pinkenburg, C
Pisani, RP
Purschke, ML
Purwar, AK
Qu, H
Rak, J
Ravinovich, I
Read, KF
Reuter, M
Reygers, K
Riabov, V
Riabov, Y
Roche, G
Romana, A
Rosati, M
Rosendahl, SSE
Rosnet, P
Rukoyatkin, P
Rykov, VL
Ryu, SS
Sahlmueller, B
Saito, N
Sakaguchi, T
Sakai, S
Samsonov, V
Sato, HD
Sato, S
Sawada, S
Semenov, V
Seto, R
Sharma, D
Shea, TK
Shein, I
Shibata, TA
Shigaki, K
Shimomura, M
Shohjoh, T
Shoji, K
Sickles, A
Silva, CL
Silvermyr, D
Sim, KS
Singh, CP
Singh, V
Skutnik, S
Smith, WC
Soldatov, A
Soltz, RA
Sondheim, WE
Sorensen, SP
Sourikova, IV
Staley, F
Stankus, PW
Stenlund, E
Stepanov, M
Ster, A
Stoll, SP
Sugitate, T
Suire, C
Sullivan, JP
Sziklai, J
Tabaru, T
Takagi, S
Takagui, EM
Taketani, A
Tanaka, KH
Tanaka, Y
Tanida, K
Tannenbaum, MJ
Taranenko, A
Tarjan, P
Thomas, TL
Togawa, M
Tojo, J
Torii, H
Towell, RS
Tram, VN
Tserruya, I
Tsuchimoto, Y
Tuli, SK
Tydesjo, H
Tyurin, N
Vale, C
Valle, H
van Hecke, HW
Velkovska, J
Vertesi, R
Vinogradov, AA
Vznuzdaev, E
Wagner, M
Wang, XR
Watanabe, Y
Wessels, J
White, SN
Willis, N
Winter, D
Woody, CL
Wysocki, M
Xie, W
Yanovich, A
Yokkaichi, S
Young, GR
Younus, I
Yushmanov, IE
Zajc, WA
Zaudtke, O
Zhang, C
Zimanyi, J
Zolin, L
AF Afanasiev, S.
Aidala, C.
Ajitanand, N. N.
Akiba, Y.
Alexander, J.
Al-Jamel, A.
Aoki, K.
Aphecetche, L.
Armendariz, R.
Aronson, S. H.
Averbeck, R.
Awes, T. C.
Azmoun, B.
Babintsev, V.
Baldisseri, A.
Barish, K. N.
Barnes, P. D.
Bassalleck, B.
Bathe, S.
Batsouli, S.
Baublis, V.
Bauer, F.
Bazilevsky, A.
Belikov, S.
Bennett, R.
Berdnikov, Y.
Bjorndal, M. T.
Boissevain, J. G.
Borel, H.
Boyle, K.
Brooks, M. L.
Brown, D. S.
Bucher, D.
Buesching, H.
Bumazhnov, V.
Bunce, G.
Burward-Hoy, J. M.
Butsyk, S.
Campbell, S.
Chai, J. -S.
Chernichenko, S.
Chiba, J.
Chi, C. Y.
Chiu, M.
Choi, I. J.
Chujo, T.
Cianciolo, V.
Cleven, C. R.
Cobigo, Y.
Cole, B. A.
Comets, M. P.
Constantin, P.
Csanad, M.
Csoergo, T.
Dahms, T.
Das, K.
David, G.
Delagrange, H.
Denisov, A.
d'Enterria, D.
Deshpande, A.
Desmond, E. J.
Dietzsch, O.
Dion, A.
Drachenberg, J. L.
Drapier, O.
Drees, A.
Dubey, A. K.
Durum, A.
Dzhordzhadze, V.
Efremenko, Y. V.
Egdemir, J.
Enokizono, A.
En'yo, H.
Espagnon, B.
Esumi, S.
Fields, D. E.
Fleuret, F.
Fokin, S. L.
Forestier, B.
Fraenkel, Z.
Frantz, J. E.
Franz, A.
Frawley, A. D.
Fukao, Y.
Fung, S. -Y.
Gadrat, S.
Gastineau, F.
Germain, M.
Glenn, A.
Gonin, M.
Gosset, J.
Goto, Y.
de Cassagnac, R. Granier
Grau, N.
Greene, S. V.
Perdekamp, M. Grosse
Gunji, T.
Gustafsson, H. -A
Hachiya, T.
Henni, A. Hadj
Haggerty, J. S.
Hagiwara, M. N.
Hamagaki, H.
Harada, H.
Hartouni, E. P.
Haruna, K.
Harvey, M.
Haslum, E.
Hasuko, K.
Hayano, R.
Heffner, M.
Hemmick, T. K.
Heuser, J. M.
He, X.
Hiejima, H.
Hill, J. C.
Hobbs, R.
Holmes, M.
Holzmann, W.
Homma, K.
Hong, B.
Horaguchi, T.
Hur, M. G.
Ichihara, T.
Imai, K.
Inaba, M.
Isenhower, D.
Isenhower, L.
Ishihara, M.
Isobe, T.
Issah, M.
Isupov, A.
Jacak, B. V.
Jia, J.
Jin, J.
Jinnouchi, O.
Johnson, B. M.
Joo, K. S.
Jouan, D.
Kajihara, F.
Kametani, S.
Kamihara, N.
Kaneta, M.
Kang, J. H.
Kawagishi, T.
Kazantsev, A. V.
Kelly, S.
Khanzadeev, A.
Kim, D. J.
Kim, E.
Kim, Y. -S.
Kinney, E.
Kiss, A.
Kistenev, E.
Kiyomichi, A.
Klein-Boesing, C.
Kochenda, L.
Kochetkov, V.
Komkov, B.
Konno, M.
Kotchetkov, D.
Kozlov, A.
Kroon, P. J.
Kunde, G. J.
Kurihara, N.
Kurita, K.
Kweon, M. J.
Kwon, Y.
Kyle, G. S.
Lacey, R.
Lajoie, J. G.
Lebedev, A.
Le Bornec, Y.
Leckey, S.
Lee, D. M.
Lee, M. K.
Leitch, M. J.
Leite, M. A. L.
Lim, H.
Litvinenko, A.
Liu, M. X.
Li, X. H.
Maguire, C. F.
Makdisi, Y. I.
Malakhov, A.
Malik, M. D.
Manko, V. I.
Masui, H.
Matathias, F.
McCain, M. C.
McGaughey, P. L.
Miake, Y.
Miller, T. E.
Milov, A.
Mioduszewski, S.
Mishra, G. C.
Mitchell, J. T.
Morrison, D. P.
Moss, J. M.
Moukhanova, T. V.
Mukhopadhyay, D.
Murata, J.
Nagamiya, S.
Nagata, Y.
Nagle, J. L.
Naglis, M.
Nakamura, T.
Newby, J.
Nguyen, M.
Norman, B. E.
Nouicer, R.
Nyanin, A. S.
Nystrand, J.
O'Brien, E.
Ogilvie, C. A.
Ohnishi, H.
Ojha, I. D.
Okada, H.
Okada, K.
Omiwade, O. O.
Oskarsson, A.
Otterlund, I.
Ozawa, K.
Pal, D.
Palounek, A. P. T.
Pantuev, V.
Papavassiliou, V.
Park, J.
Park, W. J.
Pate, S. F.
Pei, H.
Peng, J. -C.
Pereira, H.
Peresedov, V.
Peressounko, D. Yu.
Pinkenburg, C.
Pisani, R. P.
Purschke, M. L.
Purwar, A. K.
Qu, H.
Rak, J.
Ravinovich, I.
Read, K. F.
Reuter, M.
Reygers, K.
Riabov, V.
Riabov, Y.
Roche, G.
Romana, A.
Rosati, M.
Rosendahl, S. S. E.
Rosnet, P.
Rukoyatkin, P.
Rykov, V. L.
Ryu, S. S.
Sahlmueller, B.
Saito, N.
Sakaguchi, T.
Sakai, S.
Samsonov, V.
Sato, H. D.
Sato, S.
Sawada, S.
Semenov, V.
Seto, R.
Sharma, D.
Shea, T. K.
Shein, I.
Shibata, T. -A.
Shigaki, K.
Shimomura, M.
Shohjoh, T.
Shoji, K.
Sickles, A.
Silva, C. L.
Silvermyr, D.
Sim, K. S.
Singh, C. P.
Singh, V.
Skutnik, S.
Smith, W. C.
Soldatov, A.
Soltz, R. A.
Sondheim, W. E.
Sorensen, S. P.
Sourikova, I. V.
Staley, F.
Stankus, P. W.
Stenlund, E.
Stepanov, M.
Ster, A.
Stoll, S. P.
Sugitate, T.
Suire, C.
Sullivan, J. P.
Sziklai, J.
Tabaru, T.
Takagi, S.
Takagui, E. M.
Taketani, A.
Tanaka, K. H.
Tanaka, Y.
Tanida, K.
Tannenbaum, M. J.
Taranenko, A.
Tarjan, P.
Thomas, T. L.
Togawa, M.
Tojo, J.
Torii, H.
Towell, R. S.
Tram, V-N.
Tserruya, I.
Tsuchimoto, Y.
Tuli, S. K.
Tydesjo, H.
Tyurin, N.
Vale, C.
Valle, H.
van Hecke, H. W.
Velkovska, J.
Vertesi, R.
Vinogradov, A. A.
Vznuzdaev, E.
Wagner, M.
Wang, X. R.
Watanabe, Y.
Wessels, J.
White, S. N.
Willis, N.
Winter, D.
Woody, C. L.
Wysocki, M.
Xie, W.
Yanovich, A.
Yokkaichi, S.
Young, G. R.
Younus, I.
Yushmanov, I. E.
Zajc, W. A.
Zaudtke, O.
Zhang, C.
Zimanyi, J.
Zolin, L.
CA PHENIX Collaboration
TI Charged Kaon Interferometric Probes of Space-Time Evolution in Au plus
Au Collisions at s(NN)=200 GeV
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID HEAVY-ION COLLISIONS; QCD PHASE-TRANSITION; BOSE-EINSTEIN; SYSTEMS;
MATTER
AB Bose-Einstein correlations of charged kaons are used to probe Au+Au collisions at s(NN)=200 GeV and are compared to charged pion probes, which have a larger hadronic scattering cross section. Three-dimensional Gaussian source radii are extracted, along with a one-dimensional kaon emission source function. The centrality dependences of the three Gaussian radii are well described by a single linear function of N-part(1/3) with a zero intercept. Imaging analysis shows a deviation from a Gaussian tail at r greater than or similar to 10 fm, although the bulk emission at lower radius is well described by a Gaussian. The presence of a non-Gaussian tail in the kaon source reaffirms that the particle emission region in a heavy-ion collision is extended, and that similar measurements with pions are not solely due to the decay of long-lived resonances.
C1 [Afanasiev, S.; Isupov, A.; Litvinenko, A.; Malakhov, A.; Peresedov, V.; Rukoyatkin, P.; Zolin, L.] Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia.
[Drachenberg, J. L.; Hagiwara, M. N.; Isenhower, D.; Isenhower, L.; Omiwade, O. O.; Smith, W. C.; Towell, R. S.] Abilene Christian Univ, Abilene, TX 79699 USA.
[Singh, C. P.; Singh, V.; Tuli, S. K.] Banaras Hindu Univ, Dept Phys, Varanasi 221005, Uttar Pradesh, India.
[Aronson, S. H.; Azmoun, B.; Bazilevsky, A.; Belikov, S.; Buesching, H.; Bunce, G.; David, G.; Desmond, E. J.; Franz, A.; Haggerty, J. S.; Harvey, M.; Johnson, B. M.; Kistenev, E.; Kroon, P. J.; Makdisi, Y. I.; Mioduszewski, S.; Mitchell, J. T.; Morrison, D. P.; Nouicer, R.; O'Brien, E.; Pinkenburg, C.; Pisani, R. P.; Purschke, M. L.; Sato, S.; Shea, T. K.; Sourikova, I. V.; Stoll, S. P.; Tannenbaum, M. J.; White, S. N.; Woody, C. L.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Barish, K. N.; Bathe, S.; Bauer, F.; Fung, S. -Y.; Kotchetkov, D.; Li, X. H.; Seto, R.; Xie, W.] Univ Calif Riverside, Riverside, CA 92521 USA.
[Gunji, T.; Hamagaki, H.; Hayano, R.; Isobe, T.; Kajihara, F.; Kurihara, N.; Ozawa, K.] Univ Tokyo, Grad Sch Sci, Ctr Nucl Study, Bunkyo Ku, Tokyo 1130033, Japan.
[Kelly, S.; Kinney, E.; Nagle, J. L.; Wysocki, M.] Univ Colorado, Boulder, CO 80309 USA.
[Aidala, C.; Batsouli, S.; Bjorndal, M. T.; Chi, C. Y.; Chiu, M.; Cole, B. A.; d'Enterria, D.; Frantz, J. E.; Jia, J.; Jin, J.; Winter, D.; Zajc, W. A.; Zhang, C.] Nevis Labs, Irvington, NY 10533 USA.
[Aidala, C.; Batsouli, S.; Bjorndal, M. T.; Chi, C. Y.; Chiu, M.; Cole, B. A.; d'Enterria, D.; Frantz, J. E.; Jia, J.; Jin, J.; Winter, D.; Zajc, W. A.; Zhang, C.] Columbia Univ, New York, NY 10027 USA.
[Baldisseri, A.; Borel, H.; Cobigo, Y.; Gosset, J.; Pereira, H.; Staley, F.] CEA Saclay, F-91191 Gif Sur Yvette, France.
[Tarjan, P.; Vertesi, R.] Debrecen Univ, H-4010 Debrecen, Hungary.
[Csanad, M.; Kiss, A.] Eotvos Lorand Univ, ELTE, H-1117 Budapest, Hungary.
[Das, K.; Frawley, A. D.] Florida State Univ, Tallahassee, FL 32306 USA.
[Cleven, C. R.; He, X.; Mishra, G. C.; Qu, H.] Georgia State Univ, Atlanta, GA 30303 USA.
[Enokizono, A.; Hachiya, T.; Harada, H.; Haruna, K.; Homma, K.; Nakamura, T.; Shigaki, K.; Sugitate, T.; Tsuchimoto, Y.] Hiroshima Univ, Higashihiroshima 7398526, Japan.
[Babintsev, V.; Bumazhnov, V.; Chernichenko, S.; Denisov, A.; Durum, A.; Kochetkov, V.; Semenov, V.; Shein, I.; Soldatov, A.; Tyurin, N.; Yanovich, A.] Inst High Energy Phys, State Res Ctr Russian Federat, IHEP Protvino, Protvino 142281, Russia.
[Perdekamp, M. Grosse; Hiejima, H.; McCain, M. C.; Peng, J. -C.] Univ Illinois, Urbana, IL 61801 USA.
[Belikov, S.; Constantin, P.; Grau, N.; Hill, J. C.; Lajoie, J. G.; Lebedev, A.; Ogilvie, C. A.; Pei, H.; Rak, J.; Rosati, M.; Skutnik, S.; Vale, C.] Iowa State Univ, Ames, IA 50011 USA.
[Chai, J. -S.; Hur, M. G.; Kim, Y. -S.] KAERI, Cyclotron Applicat Lab, Seoul, South Korea.
[Chiba, J.; Nagamiya, S.; Sato, S.; Sawada, S.; Tanaka, K. H.] High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan.
[Csoergo, T.; Ster, A.; Sziklai, J.; Zimanyi, J.] Hungarian Acad Sci, KFKI Res Inst Particle & Nucl Phys, MTA KFKI RMKI, H-1525 Budapest 114, Hungary.
[Hong, B.; Kweon, M. J.; Park, W. J.; Sim, K. S.] Korea Univ, Seoul 136701, South Korea.
[Fokin, S. L.; Kazantsev, A. V.; Manko, V. I.; Moukhanova, T. V.; Nyanin, A. S.; Peressounko, D. Yu.; Vinogradov, A. A.; Yushmanov, I. E.] Kurchatov Inst, Russian Res Ctr, Moscow, Russia.
[Aoki, K.; Fukao, Y.; Imai, K.; Okada, H.; Saito, N.; Sato, H. D.; Shoji, K.; Togawa, M.; Wagner, M.] Kyoto Univ, Kyoto 6068502, Japan.
[Drapier, O.; Fleuret, F.; Gonin, M.; de Cassagnac, R. Granier; Romana, A.; Tram, V-N.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France.
[Hartouni, E. P.; Heffner, M.; Newby, J.; Soltz, R. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Barnes, P. D.; Boissevain, J. G.; Brooks, M. L.; Burward-Hoy, J. M.; Kunde, G. J.; Lee, D. M.; Leitch, M. J.; Liu, M. X.; McGaughey, P. L.; Moss, J. M.; Norman, B. E.; Palounek, A. P. T.; Sondheim, W. E.; Sullivan, J. P.; van Hecke, H. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Forestier, B.; Gadrat, S.; Roche, G.; Rosnet, P.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, F-63177 Aubiere, France.
[Gustafsson, H. -A; Haslum, E.; Nystrand, J.; Oskarsson, A.; Otterlund, I.; Rosendahl, S. S. E.; Stenlund, E.; Tydesjo, H.] Lund Univ, Dept Phys, SE-22100 Lund, Sweden.
[Bucher, D.; Klein-Boesing, C.; Reygers, K.; Sahlmueller, B.; Wessels, J.; Zaudtke, O.] Univ Munster, Inst Kernphys, D-48149 Munster, Germany.
[Joo, K. S.] Myongji Univ, Yongin 449728, Kyonggido, South Korea.
[Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan.
[Bassalleck, B.; Fields, D. E.; Hobbs, R.; Malik, M. D.; Thomas, T. L.; Younus, I.] Univ New Mexico, Albuquerque, NM 87131 USA.
[Al-Jamel, A.; Armendariz, R.; Brown, D. S.; Kyle, G. S.; Papavassiliou, V.; Pate, S. F.; Stepanov, M.; Wang, X. R.] New Mexico State Univ, Las Cruces, NM 88003 USA.
[Awes, T. C.; Cianciolo, V.; Efremenko, Y. V.; Read, K. F.; Silvermyr, D.; Stankus, P. W.; Young, G. R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Comets, M. P.; Espagnon, B.; Jouan, D.; Le Bornec, Y.; Suire, C.; Willis, N.] Univ Paris 11, IPN Orsay, CNRS, IN2P3,BP1, F-91406 Orsay, France.
[Baublis, V.; Khanzadeev, A.; Kochenda, L.; Komkov, B.; Riabov, V.; Riabov, Y.; Samsonov, V.; Vznuzdaev, E.] Petersburg Nucl Phys Inst, PNPI, Gatchina 188300, Leningrad Reg, Russia.
[Akiba, Y.; Aoki, K.; En'yo, H.; Fukao, Y.; Goto, Y.; Hachiya, T.; Hasuko, K.; Heuser, J. M.; Horaguchi, T.; Ichihara, T.; Imai, K.; Ishihara, M.; Kajihara, F.; Kamihara, N.; Kiyomichi, A.; Kurita, K.; Murata, J.; Ohnishi, H.; Okada, H.; Rykov, V. L.; Saito, N.; Sato, H. D.; Shibata, T. -A.; Shoji, K.; Taketani, A.; Tanida, K.; Togawa, M.; Tojo, J.; Torii, H.; Tsuchimoto, Y.; Wagner, M.; Watanabe, Y.; Yokkaichi, S.] RIKEN, Nishina Ctr Accelerator Based Sci, Wako, Saitama 3510198, Japan.
[Akiba, Y.; Bunce, G.; Deshpande, A.; En'yo, H.; Fields, D. E.; Goto, Y.; Perdekamp, M. Grosse; Ichihara, T.; Jinnouchi, O.; Kaneta, M.; Okada, K.; Saito, N.; Tabaru, T.; Taketani, A.; Tanida, K.; Watanabe, Y.; Xie, W.; Yokkaichi, S.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA.
[Kurita, K.; Murata, J.] Rikkyo Univ, Dept Phys, Toshima Ku, Tokyo 1718501, Japan.
[Berdnikov, Y.] St Petersburg State Polytech Univ, St Petersburg, Russia.
[Dietzsch, O.; Leite, M. A. L.; Silva, C. L.; Takagui, E. M.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
[Kim, E.; Lim, H.; Park, J.] Seoul Natl Univ, Syst Elect Lab, Seoul, South Korea.
[Ajitanand, N. N.; Alexander, J.; Holzmann, W.; Issah, M.; Lacey, R.; Taranenko, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.
[Averbeck, R.; Bennett, R.; Boyle, K.; Butsyk, S.; Campbell, S.; Dahms, T.; Deshpande, A.; Dion, A.; Drees, A.; Egdemir, J.; Hemmick, T. K.; Jacak, B. V.; Leckey, S.; Matathias, F.; Milov, A.; Nguyen, M.; Pantuev, V.; Purwar, A. K.; Reuter, M.; Sickles, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
[Aphecetche, L.; Delagrange, H.; Gastineau, F.; Germain, M.; Henni, A. Hadj] Univ Nantes, Ecole Mines Nantes, SUBATECH, CNRS IN2P3, F-44307 Nantes, France.
[Dzhordzhadze, V.; Glenn, A.; Read, K. F.; Sorensen, S. P.] Univ Tennessee, Knoxville, TN 37996 USA.
[Horaguchi, T.; Kamihara, N.; Shibata, T. -A.] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan.
[Esumi, S.; Inaba, M.; Kawagishi, T.; Konno, M.; Masui, H.; Miake, Y.; Nagata, Y.; Sakai, S.; Sato, S.; Shimomura, M.; Shohjoh, T.; Takagi, S.] Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 305, Japan.
[Chujo, T.; Greene, S. V.; Holmes, M.; Maguire, C. F.; Miller, T. E.; Mukhopadhyay, D.; Ojha, I. D.; Pal, D.; Valle, H.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA.
[Dubey, A. K.; Fraenkel, Z.; Kozlov, A.; Naglis, M.; Ravinovich, I.; Sharma, D.; Tserruya, I.] Weizmann Inst Sci, IL-76100 Rehovot, Israel.
[Choi, I. J.; Kang, J. H.; Kim, D. J.; Kwon, Y.; Lee, M. K.; Ryu, S. S.] Yonsei Univ, Seoul 120749, South Korea.
[Kametani, S.; Sakaguchi, T.] Waseda Univ, Adv Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1620044, Japan.
RP Afanasiev, S (reprint author), Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia.
EM jacak@skipper.physics.sunysb.edu
RI Taketani, Atsushi/E-1803-2017; seto, richard/G-8467-2011; Csanad,
Mate/D-5960-2012; Csorgo, Tamas/I-4183-2012; YANG, BOGEUM/I-8251-2012;
Semenov, Vitaliy/E-9584-2017; Dahms, Torsten/A-8453-2015; En'yo,
Hideto/B-2440-2015; Hayano, Ryugo/F-7889-2012; HAMAGAKI,
HIDEKI/G-4899-2014; Durum, Artur/C-3027-2014; Sorensen, Soren
/K-1195-2016; Yokkaichi, Satoshi/C-6215-2017;
OI Taketani, Atsushi/0000-0002-4776-2315; Dahms,
Torsten/0000-0003-4274-5476; Hayano, Ryugo/0000-0002-1214-7806;
Sorensen, Soren /0000-0002-5595-5643; Sullivan, John/0000-0002-9067-1531
FU DOE; NSF (USA); MEXT; JSPS (Japan); CNPq; FAPESP (Brazil); NSFC (China);
IN2P3/CNRS; CEA (France); BMBF; DAAD; AvH (Germany); OTKA (Hungary); DAE
(India); ISF (Israel); KRF; KOSEF (Korea); MES; RAS; FAAE (Russia); VR;
KAW (Sweden); U. S. CRDF for the FSU; U. S.-Hungarian NSF-OTKA-MTA; U.
S.-Israel BSF
FX We thank the staff of the Collider-Accelerator and Physics Departments
at BNL for their vital contributions. We acknowledge support from the
Office of Nuclear Physics in DOE Office of Science and NSF (USA), MEXT
and JSPS (Japan), CNPq and FAPESP (Brazil), NSFC (China), IN2P3/CNRS,
and CEA (France), BMBF, DAAD, and AvH (Germany), OTKA (Hungary), DAE
(India), ISF (Israel), KRF and KOSEF (Korea), MES, RAS, and FAAE
(Russia), VR and KAW (Sweden), U. S. CRDF for the FSU, U. S.-Hungarian
NSF-OTKA-MTA, and U. S.-Israel BSF.
NR 28
TC 20
Z9 20
U1 6
U2 13
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD OCT 2
PY 2009
VL 103
IS 14
AR 142301
DI 10.1103/PhysRevLett.103.142301
PG 6
WC Physics, Multidisciplinary
SC Physics
GA 502KR
UT WOS:000270458800016
PM 19905563
ER
PT J
AU Ahmed, Z
Akerib, DS
Arrenberg, S
Bailey, CN
Balakishiyeva, D
Baudis, L
Bauer, DA
Beaty, J
Brink, PL
Bruch, T
Bunker, R
Cabrera, B
Caldwell, DO
Cooley, J
Cushman, P
DeJongh, F
Dragowsky, MR
Duong, L
Figueroa-Feliciano, E
Filippini, J
Fritts, M
Golwala, SR
Grant, DR
Hall, J
Hennings-Yeomans, R
Hertel, S
Holmgren, D
Hsu, L
Huber, ME
Kamaev, O
Kiveni, M
Kos, M
Leman, SW
Mahapatra, R
Mandic, V
Moore, D
McCarthy, KA
Mirabolfathi, N
Nelson, H
Ogburn, RW
Pyle, M
Qiu, X
Ramberg, E
Rau, W
Reisetter, A
Saab, T
Sadoulet, B
Sander, J
Schnee, RW
Seitz, DN
Serfass, B
Sundqvist, KM
Tarka, M
Wang, G
Yellin, S
Yoo, J
Young, BA
AF Ahmed, Z.
Akerib, D. S.
Arrenberg, S.
Bailey, C. N.
Balakishiyeva, D.
Baudis, L.
Bauer, D. A.
Beaty, J.
Brink, P. L.
Bruch, T.
Bunker, R.
Cabrera, B.
Caldwell, D. O.
Cooley, J.
Cushman, P.
DeJongh, F.
Dragowsky, M. R.
Duong, L.
Figueroa-Feliciano, E.
Filippini, J.
Fritts, M.
Golwala, S. R.
Grant, D. R.
Hall, J.
Hennings-Yeomans, R.
Hertel, S.
Holmgren, D.
Hsu, L.
Huber, M. E.
Kamaev, O.
Kiveni, M.
Kos, M.
Leman, S. W.
Mahapatra, R.
Mandic, V.
Moore, D.
McCarthy, K. A.
Mirabolfathi, N.
Nelson, H.
Ogburn, R. W.
Pyle, M.
Qiu, X.
Ramberg, E.
Rau, W.
Reisetter, A.
Saab, T.
Sadoulet, B.
Sander, J.
Schnee, R. W.
Seitz, D. N.
Serfass, B.
Sundqvist, K. M.
Tarka, M.
Wang, G.
Yellin, S.
Yoo, J.
Young, B. A.
CA CDMS Collaboration
TI Search for Axions with the CDMS Experiment
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID COHERENT PRIMAKOFF CONVERSION; SOLAR AXIONS; DARK-MATTER; INVARIANCE;
DETECTORS
AB We report on the first axion search results from the Cryogenic Dark Matter Search (CDMS) experiment at the Soudan Underground Laboratory. An energy threshold of 2 keV for electron-recoil events allows a search for possible solar axion conversion into photons or local galactic axion conversion into electrons in the germanium crystal detectors. The solar axion search sets an upper limit on the Primakov coupling g(a gamma gamma) of 2.4x10(-9) GeV(-1) at the 95% confidence level for an axion mass less than 0.1 keV/c(2). This limit benefits from the first precise measurement of the absolute crystal plane orientations in this type of experiment. The galactic axion search analysis sets a world-leading experimental upper limit on the axioelectric coupling g(aee) of 1.4x10(-12) at the 90% confidence level for an axion mass of 2.5 keV/c(2).
C1 [Ahmed, Z.; Filippini, J.; Golwala, S. R.; Moore, D.; Ogburn, R. W.; Wang, G.] CALTECH, Dept Phys, Pasadena, CA 91125 USA.
[Akerib, D. S.; Bailey, C. N.; Dragowsky, M. R.; Grant, D. R.; Hennings-Yeomans, R.] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA.
[Bauer, D. A.; DeJongh, F.; Hall, J.; Holmgren, D.; Hsu, L.; Ramberg, E.; Yoo, J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Sadoulet, B.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Figueroa-Feliciano, E.; Hertel, S.; Leman, S. W.; McCarthy, K. A.] MIT, Dept Phys, Cambridge, MA 02139 USA.
[Rau, W.] Queens Univ, Dept Phys, Kingston, ON K7L 3N6, Canada.
[Reisetter, A.] St Olaf Coll, Dept Phys, Northfield, MN 55057 USA.
[Young, B. A.] Santa Clara Univ, Dept Phys, Santa Clara, CA 95053 USA.
[Brink, P. L.; Cabrera, B.; Cooley, J.; Ogburn, R. W.; Pyle, M.; Yellin, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA.
[Kiveni, M.; Kos, M.; Schnee, R. W.] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA.
[Mahapatra, R.] Texas A&M Univ, Dept Phys, College Stn, TX 93106 USA.
[Filippini, J.; Mirabolfathi, N.; Sadoulet, B.; Seitz, D. N.; Serfass, B.; Sundqvist, K. M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Bunker, R.; Caldwell, D. O.; Nelson, H.; Sander, J.; Yellin, S.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
[Huber, M. E.] Univ Colorado, Dept Phys, Denver, CO 80217 USA.
[Balakishiyeva, D.; Saab, T.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA.
[Beaty, J.; Cushman, P.; Duong, L.; Fritts, M.; Kamaev, O.; Mandic, V.; Qiu, X.; Reisetter, A.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA.
[Arrenberg, S.; Baudis, L.; Bruch, T.; Tarka, M.] Univ Zurich, Inst Phys, Zurich, Switzerland.
[Huber, M. E.] Univ Colorado, Dept Elect Engn, Denver, CO 80217 USA.
RP Ahmed, Z (reprint author), CALTECH, Dept Phys, Pasadena, CA 91125 USA.
RI Bailey, Catherine/C-6107-2009; Qiu, Xinjie/C-6164-2012; Hall,
Jeter/F-6108-2013; Hall, Jeter/E-9294-2015; Yoo, Jonghee/K-8394-2016;
Pyle, Matt/E-7348-2015; Huber, Martin/B-3354-2011
OI Pyle, Matt/0000-0002-3490-6754; Holmgren, Donald/0000-0001-6701-7737;
Bunker, Raymond/0000-0003-2174-7632;
FU National Science Foundation [AST-9978911, PHY-0542066, PHY-0503729,
PHY-0503629, PHY-0503641, PHY-0504224, PHY0705052]; Department of Energy
[DE-AC03-76SF00098, DE-FG02-91ER40688, DE-FG02-92ER40701,
DE-FG03-90ER40569, DE-FG03-91ER40618]; Swiss National Foundation
[20-118119]; NSERC Canada [SAPIN 341314-07]
FX This experiment would not have been possible without the contributions
of numerous engineers and technicians; we would like to especially thank
Larry Novak, Richard Schmitt, and Astrid Tomada. We thank the CAST and
Tokyo helioscope collaborations for providing us with their axion
limits. The direction measurement of the true north in the Soudan
Underground Laboratory relied on the help from the Fermilab Alignment
Group. Special thanks to Virgil Bocean. This work is supported in part
by the National Science Foundation (Grants No. AST-9978911, No.
PHY-0542066, No. PHY-0503729, No. PHY-0503629, No. PHY-0503641, No.
PHY-0504224, and No. PHY0705052), by the Department of Energy (Contracts
No. DE-AC03-76SF00098, No. DE-FG02-91ER40688, No. DE-FG02-92ER40701, No.
DE-FG03-90ER40569, and No. DE-FG03-91ER40618), by the Swiss National
Foundation (SNF Grant No. 20-118119), and by NSERC Canada (Grant SAPIN
341314-07).
NR 27
TC 42
Z9 42
U1 0
U2 1
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD OCT 2
PY 2009
VL 103
IS 14
AR 141802
DI 10.1103/PhysRevLett.103.141802
PG 5
WC Physics, Multidisciplinary
SC Physics
GA 502KR
UT WOS:000270458800014
PM 19905561
ER
PT J
AU Hsieh, D
Xia, Y
Qian, D
Wray, L
Meier, F
Dil, JH
Osterwalder, J
Patthey, L
Fedorov, AV
Lin, H
Bansil, A
Grauer, D
Hor, YS
Cava, RJ
Hasan, MZ
AF Hsieh, D.
Xia, Y.
Qian, D.
Wray, L.
Meier, F.
Dil, J. H.
Osterwalder, J.
Patthey, L.
Fedorov, A. V.
Lin, H.
Bansil, A.
Grauer, D.
Hor, Y. S.
Cava, R. J.
Hasan, M. Z.
TI Observation of Time-Reversal-Protected Single-Dirac-Cone
Topological-Insulator States in Bi2Te3 and Sb2Te3
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID SPIN TEXTURES; SURFACE
AB We show that the strongly spin-orbit coupled materials Bi2Te3 and Sb2Te3 and their derivatives belong to the Z(2) topological-insulator class. Using a combination of first-principles theoretical calculations and photoemission spectroscopy, we directly show that Bi2Te3 is a large spin-orbit-induced indirect bulk band gap (delta similar to 150 meV) semiconductor whose surface is characterized by a single topological spin-Dirac cone. The electronic structure of self-doped Sb2Te3 exhibits similar Z(2) topological properties. We demonstrate that the dynamics of spin-Dirac fermions can be controlled through systematic Mn doping, making these materials classes potentially suitable for topological device applications.
C1 [Hsieh, D.; Xia, Y.; Qian, D.; Wray, L.; Hasan, M. Z.] Princeton Univ, Joseph Henry Labs Phys, Princeton, NJ 08544 USA.
[Meier, F.; Dil, J. H.; Patthey, L.] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland.
[Meier, F.; Dil, J. H.; Osterwalder, J.] Univ Zurich Irchel, Inst Phys, CH-8057 Zurich, Switzerland.
[Fedorov, A. V.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Lin, H.; Bansil, A.] Northeastern Univ, Dept Phys, Boston, MA 02115 USA.
[Grauer, D.; Hor, Y. S.; Cava, R. J.] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA.
RP Hsieh, D (reprint author), Princeton Univ, Joseph Henry Labs Phys, Princeton, NJ 08544 USA.
EM mzhasan@Princeton.edu
RI Grauer, David/F-2777-2011; HASAN, M. Zahid/D-8237-2012; Dil,
Hugo/F-6995-2012; Qian, Dong/O-1028-2015; Lin, Hsin/F-9568-2012
OI Dil, Hugo/0000-0002-6016-6120; Lin, Hsin/0000-0002-4688-2315
FU DOE/BES [DE-FG-0205ER46200, AC03-76SF00098, DE-FG0207ER46352]; NSF
[DMR-0819860]; A. P. Sloan Foundation
FX The use of synchrotron x rays and theoretical computations is supported
by DOE/BES (No. DE-FG-0205ER46200, No. AC03-76SF00098, and No.
DE-FG0207ER46352). Materials growth is supported by NSF (No.
DMR-0819860). M. Z. H. acknowledges the A. P. Sloan Foundation.
NR 30
TC 454
Z9 457
U1 22
U2 210
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD OCT 2
PY 2009
VL 103
IS 14
AR 146401
DI 10.1103/PhysRevLett.103.146401
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 502KR
UT WOS:000270458800038
PM 19905585
ER
PT J
AU Ke, XZ
Chen, CF
Yang, JH
Wu, LJ
Zhou, J
Li, Q
Zhu, YM
Kent, PRC
AF Ke, Xuezhi
Chen, Changfeng
Yang, Jihui
Wu, Lijun
Zhou, Juan
Li, Qiang
Zhu, Yimei
Kent, P. R. C.
TI Microstructure and a Nucleation Mechanism for Nanoprecipitates in
PbTe-AgSbTe2
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID THERMOELECTRIC-MATERIALS; SILICON NANOWIRES; AGPBMSBTE2+M; PERFORMANCE;
DEVICES; MERIT
AB Many recent advances in thermoelectric (TE) materials are attributed to their nanoscale constituents. Determination of the nanocomposite structures has represented a major experimental and computational challenge and eluded previous attempts. Here we present the first atomically resolved structures of high performance TE material PbTe-AgSbTe2 by transmission electron microscopy imaging and density functional theory calculations. The results establish an accurate structural characterization for PbTe-AgSbTe2 and identify the interplay of electric dipolar interactions and strain fields as the driving mechanism for nanoprecipitate nucleation and aggregation.
C1 [Ke, Xuezhi; Chen, Changfeng] Univ Nevada, Dept Phys, Las Vegas, NV 89154 USA.
[Ke, Xuezhi; Chen, Changfeng] Univ Nevada, High Pressure Sci & Engn Ctr, Las Vegas, NV 89154 USA.
[Ke, Xuezhi] E China Normal Univ, Dept Phys, Shanghai 200062, Peoples R China.
[Ke, Xuezhi] E China Normal Univ, Inst Theoret Phys, Shanghai 200062, Peoples R China.
[Yang, Jihui] Gen Motors R&D Ctr, Mat & Proc Lab, Warren, MI 48090 USA.
[Wu, Lijun; Zhou, Juan; Li, Qiang; Zhu, Yimei] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA.
[Kent, P. R. C.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
RP Ke, XZ (reprint author), Univ Nevada, Dept Phys, Las Vegas, NV 89154 USA.
EM xzke@phy.ecnu.edu.cn; chen@physics.unlv.edu; jihui.yang@gm.com;
zhu@bnl.gov
RI Kent, Paul/A-6756-2008; Yang, Jihui/A-3109-2009
OI Kent, Paul/0000-0001-5539-4017;
FU DOE [DE-FC52-06NA26274, DE-FC26-04NT42278, DE-AC02-98CH10886]
FX We thank Markus Eisenbach, Doug Kothe, Julia White, and D. Ray Johnson
for their help with the computations. This work was supported by DOE
Cooperative Agreements DE-FC52-06NA26274 (X. K., C. C.) and
DE-FC26-04NT42278 (J.Y.). Work at BNL was supported by the DOE Office of
Science under Contract No. DE-AC02-98CH10886. This research used
resources (Cray XT4) of the National Center for Computational Sciences
and the Center for Nanophase Materials Sciences at ORNL, which are
sponsored by the respective facilities divisions of the DOE Offices of
Advanced Scientific Computing Research and Basic Energy Sciences.
NR 22
TC 47
Z9 47
U1 1
U2 41
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD OCT 2
PY 2009
VL 103
IS 14
AR 145502
DI 10.1103/PhysRevLett.103.145502
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 502KR
UT WOS:000270458800033
PM 19905580
ER
PT J
AU Morozov, VS
Chao, AW
Krisch, AD
Leonova, MA
Raymond, RS
Sivers, DW
Wong, VK
Kondratenko, AM
AF Morozov, V. S.
Chao, A. W.
Krisch, A. D.
Leonova, M. A.
Raymond, R. S.
Sivers, D. W.
Wong, V. K.
Kondratenko, A. M.
TI Narrow Spin Resonance Width and Spin Flip with an rf-Bunched Deuteron
Beam
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID COSY; SYNCHROTRON; SCATTERING; ELECTRON; PROTONS
AB We used an rf solenoid to study the widths of rf spin resonances with both bunched and unbunched beams of 1.85 GeV/c polarized deuterons stored in the COSY synchrotron. With the unbunched beam at different fixed rf-solenoid frequencies, we observed only partial depolarization near the resonance. However, the bunched beam's polarization was almost fully flipped; moreover, its resonance was much narrower. We then used Chao's recent equations to explain this behavior and to calculate the polarization's dependence on various rf-solenoid and beam parameters. Our data and calculations indicate that a bunched deuteron beam's polarization can behave as if the beam has zero momentum spread.
C1 [Morozov, V. S.; Chao, A. W.; Krisch, A. D.; Leonova, M. A.; Raymond, R. S.; Sivers, D. W.; Wong, V. K.] Univ Michigan, Spin Phys Ctr, Ann Arbor, MI 48109 USA.
[Kondratenko, A. M.] GOO Zaryad, Novosibirsk 630058, Russia.
[Chao, A. W.] SLAC, Menlo Pk, CA 94025 USA.
RP Morozov, VS (reprint author), Univ Michigan, Spin Phys Ctr, Ann Arbor, MI 48109 USA.
FU German BMBF Science Ministry
FX We thank COSY's staff for a successful run. We thank E. D. Courant, Ya.
S. Derbenev, D. Eversheim, A. Garishvili, R. Gebel, F. Hinterberger, A.
Lehrach, J. Liu, B. Lorentz, R. Maier, Yu. F. Orlov, D. Prasuhn, H.
Rohdjess, T. Roser, H. Sato, A. Schnase, W. Scobel, E. J. Stephenson, H.
Stockhorst, K. Ulbrich, D. Welsch, and K. Yonehara for help and advice.
The work was supported by grants from the German BMBF Science Ministry
and its JCHP-FFE program at COSY.
NR 38
TC 3
Z9 3
U1 0
U2 1
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD OCT 2
PY 2009
VL 103
IS 14
AR 144801
DI 10.1103/PhysRevLett.103.144801
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 502KR
UT WOS:000270458800026
PM 19905573
ER
PT J
AU Robey, HF
Amendt, PA
Milovich, JL
Park, HS
Hamza, AV
Bono, MJ
AF Robey, H. F.
Amendt, P. A.
Milovich, J. L.
Park, H. -S.
Hamza, A. V.
Bono, M. J.
TI Hohlraum-Driven Mid-Z (SiO2) Double-Shell Implosions on the Omega Laser
Facility and Their Scaling to NIF
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID NATIONAL-IGNITION-FACILITY; TAYLOR INSTABILITY; MIXING TRANSITION;
TARGETS; ACCELERATION; SIMULATIONS
AB High-convergence, hohlraum-driven implosions of double-shell capsules using mid-Z (SiO2) inner shells have been performed on the OMEGA laser facility [T. R. Boehly , Opt. Commun. 133, 495 (1997)]. These experiments provide an essential extension of the results of previous low-Z (CH) double-shell implosions [P. A. Amendt , Phys. Rev. Lett. 94, 065004 (2005)] to materials of higher density and atomic number. Analytic modeling, supported by highly resolved 2D numerical simulations, is used to account for the yield degradation due to interfacial atomic mixing. This extended experimental database from OMEGA enables a validation of the mix model, and provides a means for quantitatively assessing the prospects for high-Z double-shell implosions on the National Ignition Facility [Paisner , Laser Focus World 30, 75 (1994)].
C1 [Robey, H. F.; Amendt, P. A.; Milovich, J. L.; Park, H. -S.; Hamza, A. V.; Bono, M. J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
RP Robey, HF (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
OI Park, Hae-Sim/0000-0003-2614-0303
NR 19
TC 5
Z9 5
U1 0
U2 10
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD OCT 2
PY 2009
VL 103
IS 14
AR 145003
DI 10.1103/PhysRevLett.103.145003
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 502KR
UT WOS:000270458800030
PM 19905577
ER
PT J
AU Sokolov, A
Aranson, IS
AF Sokolov, Andrey
Aranson, Igor S.
TI Reduction of Viscosity in Suspension of Swimming Bacteria
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
AB Measurements of the shear viscosity in suspensions of swimming Bacillus subtilis in free-standing liquid films have revealed that the viscosity can decrease by up to a factor of 7 compared to the viscosity of the same liquid without bacteria or with nonmotile bacteria. The reduction in viscosity is observed in two complementary experiments: one studying the decay of a large vortex induced by a moving probe and another measuring the viscous torque on a rotating magnetic particle immersed in the film. The viscosity depends on the concentration and swimming speed of the bacteria.
C1 [Sokolov, Andrey] IIT, Chicago, IL 60616 USA.
[Sokolov, Andrey; Aranson, Igor S.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
RP Sokolov, A (reprint author), IIT, 3101 S Dearborn St, Chicago, IL 60616 USA.
RI Aranson, Igor/I-4060-2013
FU US DOE, Office of Basic Energy Sciences [DEAC02-06CH11357]
FX This work was supported by the US DOE, Office of Basic Energy Sciences,
contract DEAC02-06CH11357.
NR 20
TC 135
Z9 135
U1 5
U2 33
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD OCT 2
PY 2009
VL 103
IS 14
AR 148101
DI 10.1103/PhysRevLett.103.148101
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 502KR
UT WOS:000270458800057
PM 19905604
ER
PT J
AU Sydorenko, D
Kaganovich, I
Raitses, Y
Smolyakov, A
AF Sydorenko, D.
Kaganovich, I.
Raitses, Y.
Smolyakov, A.
TI Breakdown of a Space Charge Limited Regime of a Sheath in a Weakly
Collisional Plasma Bounded by Walls with Secondary Electron Emission
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID HALL THRUSTER; INSTABILITY
AB A new regime of plasma-wall interaction is identified in particle-in-cell simulations of a hot plasma bounded by walls with secondary electron emission. Such a plasma has a strongly non-Maxwellian electron velocity distribution function and consists of bulk plasma electrons and beams of secondary electrons. In the new regime, the plasma sheath is not in a steady space charge limited state even though the secondary electron emission produced by the plasma bulk electrons is so intense that the corresponding partial emission coefficient exceeds unity. Instead, the plasma-sheath system performs relaxation oscillations by switching quasiperiodically between the space charge limited and non-space-charge limited states.
C1 [Sydorenko, D.; Smolyakov, A.] Univ Saskatchewan, Dept Phys & Engn Phys, Saskatoon, SK S7N 5E2, Canada.
[Kaganovich, I.; Raitses, Y.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
RP Sydorenko, D (reprint author), Univ Alberta, Edmonton, AB T6G 2G7, Canada.
FU AFOSR; US-Israel BSF
FX This work was partially supported by the AFOSR and US-Israel BSF.
Authors acknowledge fruitful discussions with A. V. Khrabrov, V. I.
Demidov, and Ya. E. Krasik.
NR 21
TC 27
Z9 28
U1 1
U2 22
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD OCT 2
PY 2009
VL 103
IS 14
AR 145004
DI 10.1103/PhysRevLett.103.145004
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 502KR
UT WOS:000270458800031
PM 19905578
ER
PT J
AU Yoshida, S
Reinhold, CO
Burgdorfer, J
Dunning, FB
AF Yoshida, S.
Reinhold, C. O.
Burgdoerfer, J.
Dunning, F. B.
TI Comment on "Nondispersing Bohr Wave Packets"
SO PHYSICAL REVIEW LETTERS
LA English
DT Editorial Material
AB A Comment on the Letter by H. Maeda, J. H. Gurian, and T. F. Gallagher, [Phys. Rev. Lett. 102, 103001 (2009)]. The authors of the Letter offer a Reply.
C1 [Yoshida, S.; Burgdoerfer, J.] Vienna Univ Technol, Inst Theoret Phys, A-1040 Vienna, Austria.
[Reinhold, C. O.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA.
[Reinhold, C. O.; Burgdoerfer, J.] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA.
[Dunning, F. B.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA.
RP Yoshida, S (reprint author), Vienna Univ Technol, Inst Theoret Phys, A-1040 Vienna, Austria.
OI Reinhold, Carlos/0000-0003-0100-4962
NR 4
TC 2
Z9 2
U1 0
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD OCT 2
PY 2009
VL 103
IS 14
AR 149301
DI 10.1103/PhysRevLett.103.149301
PG 1
WC Physics, Multidisciplinary
SC Physics
GA 502KR
UT WOS:000270458800061
PM 19905608
ER
PT J
AU WoldeGabriel, G
Ambrose, SH
Barboni, D
Bonnefille, R
Bremond, L
Currie, B
DeGusta, D
Hart, WK
Murray, AM
Renne, PR
Jolly-Saad, MC
Stewart, KM
White, TD
AF WoldeGabriel, Giday
Ambrose, Stanley H.
Barboni, Doris
Bonnefille, Raymonde
Bremond, Laurent
Currie, Brian
DeGusta, David
Hart, William K.
Murray, Alison M.
Renne, Paul R.
Jolly-Saad, M. C.
Stewart, Kathlyn M.
White, Tim D.
TI The Geological, Isotopic, Botanical, Invertebrate, and Lower Vertebrate
Surroundings of Ardipithecus ramidus
SO SCIENCE
LA English
DT Article
ID AFRICA; CARBON; KENYA; AUSTRALOPITHECUS; CLASSIFICATION; ASSEMBLAGES;
VEGETATION; RESOLUTION; PALEOSOLS; ECOSYSTEM
AB Sediments containing Ardipithecus ramidus were deposited 4.4 million years ago on an alluvial floodplain in Ethiopia's western Afar rift. The Lower Aramis Member hominid-bearing unit, now exposed across a >9-kilometer structural arc, is sandwiched between two volcanic tuffs that have nearly identical (40)Ar/(39)Ar ages. Geological data presented here, along with floral, invertebrate, and vertebrate paleontological and taphonomic evidence associated with the hominids, suggest that they occupied a wooded biotope over the western three-fourths of the paleotransect. Phytoliths and oxygen and carbon stable isotopes of pedogenic carbonates provide evidence of humid cool woodlands with a grassy substrate.
C1 [WoldeGabriel, Giday] Los Alamos Natl Lab, Earth Environm Sci Div, Los Alamos, NM 87545 USA.
[Ambrose, Stanley H.] Univ Illinois, Dept Anthropol, Urbana, IL 61801 USA.
[Barboni, Doris; Bonnefille, Raymonde] Univ Aix Marseille, CNRS, MR6635, CEREGE, F-13545 Aix En Provence, France.
[Bremond, Laurent] Univ Montpellier 2, CNRS, EPHE, Ctr Bioarchaeol & Ecol,UMR5059,Inst Bot, F-34090 Montpellier, France.
[Currie, Brian; Hart, William K.] Miami Univ, Dept Geol, Oxford, OH 45056 USA.
[DeGusta, David] Stanford Univ, Dept Anthropol, Stanford, CA 94305 USA.
[Murray, Alison M.] Univ Alberta, Dept Biol Sci, Edmonton, AB T6G 2E9, Canada.
[Renne, Paul R.] Berkeley Geochronol Ctr, Berkeley, CA 94709 USA.
[Renne, Paul R.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA.
[Jolly-Saad, M. C.] Univ Paris Ouest La Def, Ctr Henri Elhai, F-92001 Nanterre, France.
[Stewart, Kathlyn M.] Canadian Museum Nat, Ottawa, ON K1P 6P4, Canada.
[White, Tim D.] Univ Calif Berkeley, Human Evolut Res Ctr, Berkeley, CA 94720 USA.
[White, Tim D.] Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA.
RP WoldeGabriel, G (reprint author), Los Alamos Natl Lab, Earth Environm Sci Div, POB 1663, Los Alamos, NM 87545 USA.
EM wgiday@lanl.gov; timwhite@berkeley.edu
RI Barboni, Doris/A-6908-2010; Murray, Alison/L-5242-2013
OI Barboni, Doris/0000-0001-7753-1254; Murray, Alison/0000-0001-9648-2902
FU NSF [8210897, 9318698, 9512534, 9632389, 9910344, 0321893]; Institute of
Geophysics and Planetary Physics of the University of California at Los
Alamos National Laboratory (LANL); Philip and Elaina Hampton Fund for
Faculty International Initiatives at Miami University
FX Supported by NSF grants 8210897, 9318698, 9512534, 9632389, 9910344, and
0321893 HOMINID-RHOI; the Institute of Geophysics and Planetary Physics
of the University of California at Los Alamos National Laboratory
(LANL); and the Philip and Elaina Hampton Fund for Faculty International
Initiatives at Miami University. The Earth and Environmental Sciences
Division Electron Microprobe laboratory at LANL assisted with access and
use. We thank G. Curtis for fieldwork, insight, and inspiration; M.
Pickford, H. Hutchinson, and W. Shear for gastropod, chelonian, and
millipede identifications, respectively; M. Buchet and X. Prasad for
pollen preparations and microscopic observations; M. Duperon-Laudouaneix
and J. Duperon for identification of fossil wood; K. Brudvik and H.
Gilbert for illustrations; J. Quade, N. Levin, and S. Semaw for
discussion and comparative data; the Ministry of Tourism and Culture,
the Authority for Research and Conservation of the Cultural Heritage,
and the National Museum of Ethiopia for permissions and facilitation;
and the Afar Regional Government, the Afar people of the Middle Awash,
and many other field workers for contributing directly to the research
efforts.
NR 32
TC 37
Z9 37
U1 3
U2 21
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
J9 SCIENCE
JI Science
PD OCT 2
PY 2009
VL 326
IS 5949
DI 10.1126/science.1175817
PG 5
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 501CA
UT WOS:000270355600033
ER
PT J
AU Pluth, MD
Bergman, RG
Raymond, KN
AF Pluth, Michael D.
Bergman, Robert G.
Raymond, Kenneth N.
TI Proton-Mediated Chemistry and Catalysis in a Self-Assembled
Supramolecular Host
SO ACCOUNTS OF CHEMICAL RESEARCH
LA English
DT Review
ID BASIC SOLUTION; MOLECULAR RECOGNITION; BETA-CYCLODEXTRIN; PK(A) SHIFTS;
ORTHOFORMATE HYDROLYSIS; SYNTHETIC RECEPTOR; ARTIFICIAL ENZYMES;
STABILIZATION; ENCAPSULATION; WATER
AB Synthetic supramolecular host assemblies can impart unique reactivity to encapsulated guest molecules. Synthetic host molecules have been developed to carry out complex reactions within their cavities, despite the fact that they lack the type of specifically tailored functional groups normally located in the analogous active sites of enzymes. Over the past decade, the Raymond group has developed a series of self-assembled supramolecules and the Bergman group, has developed and studied a number of catalytic transformations. In this Account, we detail recent collaborative work between these two groups, focusing on chemical catalysis stemming from the encapsulation of protonated guests and expanding to acid catalysis in basic solution.
We initially investigated the ability of a water-soluble, self-assembled supramolecular host molecule to encapsulate protonated guests in its hydrophobic core. Our study of encapsulated protonated amines revealed rich host-guest chemistry. We established that self-exchange (that is, in-out guest movement) rates of protonated amines were dependent on the steric bulk of the amine rather than its basicity. The host molecule has purely rotational tetrahedral (T) symmetry, so guests with geminal N-methyl groups (and their attendant mirror plane) were effectively desymmetrized; this allowed for the observation and quantification of the barriers for nitrogen inversion followed by bond rotation. Furthermore, small nitrogen heterocycles, such as N-alkylaziridines, N-alkylazetidines, and N-alkylpyrrolidines, were found to be encapsulated as proton-bound homodimers or homotrimers. We further investigated the thermodynamic stabilization of protonated amines, showing that encapsulation makes the amines more basic in the cavity. Encapsulation raises the effective basicity of protonated amines by up to 4.5 pK(a) units, a difference almost as large as that between the moderate and strong bases carbonate and hydroxide.
The thermodynamic stabilization of protonated guests was translated into chemical catalysis by taking advantage of the potential for accelerating reactions that take place via positively charged transition states, which could be potentially stabilized by encapsulation. Orthoformates, generally stable in neutral or basic solution, were found to be suitable substrates for catalytic hydrolysis by the assembly. Orthoformates small enough to undergo encapsulation were readily hydrolyzed by the assembly in basic solution, with rate acceleration factors up to 3900 compared with those of the corresponding uncatalyzed reactions. Furthering the analogy to enzymes that obey Michaelis-Menten kinetics, we observed competitive inhibition with the inhibitor NPr(4)(+), thereby confirming that the interior cavity of the assembly was the active site for catalysis. Mechanistic studies revealed that the assembly is required for catalysis and that the rate-limiting step of the reaction involves proton transfer from hydronium to the encapsulated substrate. Encapsulation in the assembly changes the orthoformate hydrolysis from an A-1 mechanism (in which decomposition of the protonated substrate is the rate-limiting step) to an A-S(E)2 mechanism (in which proton transfer is the rate-limiting step). The study of hydrolysis in the assembly was next extended to acetals, which were also catalytically hydrolyzed by the assembly in basic solution. Acetal hydrolysis changed from the A-1 mechanism in solution to an A-2 mechanism inside the assembly, where attack of water on the protonated substrate is rate limiting.
This work provides rare examples of assembly-catalyzed reactions that proceed with substantial rate accelerations despite the absence of functional groups in the cavity and with mechanisms fully elucidated by quantitative kinetic studies.
C1 [Bergman, Robert G.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA.
RP Bergman, RG (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
EM rbergman@berkeley.edu; raymond@socrates.berkeley.edu
RI Pluth, Michael/A-7222-2012
OI Pluth, Michael/0000-0003-3604-653X
FU Director, Office of Science, Office of Basic Energy Sciences; Division
of Chemical Sciences, Geosciences, and Biosciences of the U.S.
Department of Energy [DE-AC02-05CH11231]; NSF
FX This work was supported by the Director, Office of Science, Office of
Basic Energy Sciences, and the Division of Chemical Sciences,
Geosciences, and Biosciences of the U.S. Department of Energy at LBNL
under Contract No. DE-AC02-05CH11231 and a NSF predoctoral fellowship to
M. D.P.
NR 48
TC 364
Z9 364
U1 20
U2 142
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0001-4842
J9 ACCOUNTS CHEM RES
JI Accounts Chem. Res.
PD OCT
PY 2009
VL 42
IS 10
BP 1650
EP 1659
DI 10.1021/ar900118t
PG 10
WC Chemistry, Multidisciplinary
SC Chemistry
GA 509RF
UT WOS:000271035200018
PM 19591461
ER
PT J
AU Ashcraft, E
Ji, HN
Mays, J
Dadmun, M
AF Ashcraft, Earl
Ji, Haining
Mays, Jimmy
Dadmun, Mark
TI A Novel Reactive Processing Technique: Using Telechelic Polymers To
Reactively Compatibilize Polymer Blends
SO ACS APPLIED MATERIALS & INTERFACES
LA English
DT Article
DE polymer blend; interfacial modification; compatibilization; telechelic;
multiblock copolymer; coalescence; coarsening constant; plasticization
ID BLOCK-COPOLYMERS; ANIONIC SYNTHESIS; MULTIBLOCK COPOLYMERS;
MOLECULAR-WEIGHT; POLYSTYRENE/POLY(DIMETHYLSILOXANE) BLENDS; DROPLET
COALESCENCE; SOLID SUBSTRATE; DISPERSED PHASE; INTERFACE; KINETICS
AB Difunctional reactive polymers, telechelics, were used to reactively form multiblock copolymers in situ when melt-blended with a blend of polystyrene and polyisoprene To quantify the ability of the copolymer to compatibilize the blends, the time evolution of the domain size upon annealing was analyzed by SEM It was found that the most effective parameter to quantify the ability of the copolymer to inhibit droplet coalescence is K(rel/stable), the relative coarsening constant multiplied by the stabilization time These results indicate that intermediate-molecular-weight telechelic pairs of both highly reactive Anhydride-PS-Anhydride/NH(2)-PI-NH(2) and slower reacting Epoxy-PS-Epoxy/COOH-PI-COOH both effectively suppress coalescence, with the optimal molecular weight being slightly above the critical molecular weight of the homopolymer. M(c) The effects Of telechelic loading were also investigated, where the optimal loading concentration for this system was 0 5 wt %, as higher concentrations exhibited a plasticizing effect due to the presence of unreacted low-molecular-weight telechelics present in the blend A determination of the interfacial coverage of the copolymer shows that a conversion of similar to 15-30 % was required for 20 % surface coverage at 5.0 wt % telechelic loading, indicating a large excess of telechelics in this system At the optimal loading level of 0.5 wt %, a conversion of 15 % was required for 20 % surface coverage The results of these experiments provide a clear understanding of the role of telechelic loading and molecular weight on its ability to reactively form interfacial modifiers in phase-separated polymer blends and provide guidelines for the development of similar reactive processing schemes that can use telechelic polymers to reactively compatibilize a broad range of polymer blends
C1 [Ashcraft, Earl; Ji, Haining; Mays, Jimmy; Dadmun, Mark] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA.
[Mays, Jimmy; Dadmun, Mark] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
RP Dadmun, M (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA.
OI Dadmun, Mark/0000-0003-4304-6087
FU National Science Foundation Collaborative Research in Chemistry
[CHE0304807]
FX We thank the National Science Foundation Collaborative Research in
Chemistry (Grant No. CHE0304807) for financial support, which funded
this research
NR 49
TC 7
Z9 8
U1 0
U2 11
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1944-8244
J9 ACS APPL MATER INTER
JI ACS Appl. Mater. Interfaces
PD OCT
PY 2009
VL 1
IS 10
BP 2163
EP 2173
DI 10.1021/am900333y
PG 11
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
SC Science & Technology - Other Topics; Materials Science
GA 510QH
UT WOS:000271105000014
PM 20355850
ER
PT J
AU Luo, GM
Zhang, Q
Del Castillo, AR
Urban, V
O'Neill, H
AF Luo, Guangming
Zhang, Qiu
Del Castillo, Alexis Rae
Urban, Volker
O'Neill, Hugh
TI Characterization of Sol-Gel-Encapsulated Proteins Using Small-Angle
Neutron Scattering
SO ACS APPLIED MATERIALS & INTERFACES
LA English
DT Article
DE sol-gel; enzyme; protein entrapment; small-angle neutron scattering;
protein conformation
ID GREEN FLUORESCENT PROTEIN; SILICA-GELS; X-RAY; GLASSES; MATRIX; GFP
AB Entrapment of biomolecules in silica-derived sol-gels has grown into a vibrant area of research since it was originally demonstrated However, accessing the consequences of entrapment on biomolecules and the gel structure remains a major challenge in characterizing these biohybrid materials. We present the first demonstration that it is possible With small-angle neutron scattering (SANS) to study the conformation of dilute proteins that are entrapped in transparent and dense sol-gels Using deuterium-labeled green fluorescent protein (GFP) and SANS with contrast variation, we demonstrate that the scattering signatures of the sol-gel and the protein can be separated Analysis of the scattering curves of the sol-gels using a mass-fractal model shows that the size OF the colloidal silica particles and the fractal dimensions of the gels were similar in the absence and presence of protein, demonstrating that GFP did not influence the reaction pathway for the formation of the gel. The major structural difference in the gels was that the pore size was increased 2-fold in the presence of the protein At the contrast match point for silica, the scattering signal from GFP inside the gel became distinguishable over a wide q range. Simulated scattering curves representing a monomer. end-to-end dimer, and parallel dimer of the protein were calculated and compared to the experimental data. Our results show that the most likely structure of GFP is that of an end-to-end dimer This approach can be readily applied and holds great potential for the structural characterization of complex biohybrid and other materials
C1 [Luo, Guangming; Zhang, Qiu; Del Castillo, Alexis Rae; Urban, Volker; O'Neill, Hugh] Oak Ridge Natl Lab, Ctr Struct Mol Biol, Div Chem Sci, Oak Ridge, TN 37831 USA.
[Zhang, Qiu] Oak Ridge Natl Lab, Biodeuterat Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
RP Urban, V (reprint author), Oak Ridge Natl Lab, Ctr Struct Mol Biol, Div Chem Sci, Oak Ridge, TN 37831 USA.
RI Urban, Volker/N-5361-2015;
OI Urban, Volker/0000-0002-7962-3408; O'Neill, Hugh/0000-0003-2966-5527
FU U S Department of Energy (DOE) [DEAC05-000R22725]; DOE Science
Undergraduate Laboratory Internship
FX We thank Dr. Sat Venkatesh Pingali for assistance with data collection,
Dr Ken Littrell for development of the SANS data reduction software, and
Dr Dean Myles for his support on this project This research was
sponsored by the Laboratory Directed Research and Development Prograrn
of Oak Ridge National Laboratory (ORNL) and by the Office of Biological
and Environmental Research, using facilities supported by the U S
Department of Energy (DOE), managed by UT-Battelle, LLC, under Contract
DEAC05-000R22725 A R D C was supported by a DOE Science Undergraduate
Laboratory Internship managed by Oak Ridge Institute of Science and
Education
NR 33
TC 18
Z9 18
U1 0
U2 9
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1944-8244
J9 ACS APPL MATER INTER
JI ACS Appl. Mater. Interfaces
PD OCT
PY 2009
VL 1
IS 10
BP 2262
EP 2268
DI 10.1021/am900430v
PG 7
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
SC Science & Technology - Other Topics; Materials Science
GA 510QH
UT WOS:000271105000025
PM 20355861
ER
PT J
AU Meredig, B
Salleo, A
Gee, R
AF Meredig, Bryce
Salleo, Alberto
Gee, Richard
TI Ordering of Poly(3-hexylthiophene) Nanocrystallites on the Basis of
Substrate Surface Energy
SO ACS NANO
LA English
DT Article
DE OTFT; P3HT; morphology; ordering; molecular dynamics; OTS; substrate
ID THIN-FILM TRANSISTORS; FIELD-EFFECT TRANSISTORS; CHARGE-TRANSPORT;
MOLECULAR-WEIGHT; EFFECT MOBILITY; REGIOREGULAR POLYTHIOPHENE; MONOLAYER
FILMS; PERFORMANCE; ENHANCEMENT; INTERFACES
AB Molecular dynamics simulations are used to study the influence of functionalized substrates on the orientation of poly(3-hexylthiophene) (P3HT) nanocrystallites, which in turn plays a critical role in P3HT-based transistor performance. The effects of alkyl-trichlorosilane self-assembled monolayer packing density, packing order, and end-group functionality are independently investigated. Across these factors, the potential energy surface presented by the substrate to the P3HT molecules is determined to be the main driver of P3HT ordering. Surprisingly, disordered substrates with a smoothly varying potential energy landscape are found to encourage edge-on P3HT orientation while highly ordered substrates have undesirable potential energy wells that reduce the edge-on orientation of P3HT because of substrate-side-chain interactions.
C1 [Meredig, Bryce; Gee, Richard] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
[Salleo, Alberto] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA.
RP Gee, R (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
EM gee10@llnl.gov
FU U.S. Department of Energy [DE-AC52-07NA27344]; National Science
Foundation
FX This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. A.S. acknowledges funding from the National Science
Foundation, Career Award.
NR 36
TC 39
Z9 39
U1 4
U2 36
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
J9 ACS NANO
JI ACS Nano
PD OCT
PY 2009
VL 3
IS 10
BP 2881
EP 2886
DI 10.1021/nn800707z
PG 6
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 510QR
UT WOS:000271106100005
PM 19746953
ER
PT J
AU Subramanian, A
Alt, AR
Dong, LX
Kratochvil, BE
Bolognesi, CR
Nelson, BJ
AF Subramanian, Arunkumar
Alt, Andreas R.
Dong, Lixin
Kratochvil, Bradley E.
Bolognesi, Colombo R.
Nelson, Bradley J.
TI Electrostatic Actuation and Electromechanical Switching Behavior of
One-Dimensional Nanostructures
SO ACS NANO
LA English
DT Article
DE carbon nanotubes; nanoelectromechanical systems; electrostatic
actuation; pull-in GAP; shell engineering
ID CARBON NANOTUBES; FABRICATION; DEPOSITION; NANOWIRES; NANORELAY; ARRAYS
AB We report on the electromechanical actuation and switching performance of nanoconstructs involving doubly clamped, Individual multiwalled carbon nanotubes. Batch-fabricated, three-state switches with low ON-state voltage (6.7 V average) are demonstrated. A nanoassembly architecture that permits individual probing of one device at a time without crosstalk from other nanotubes, which are originally assembled in parallel, is presented. Experimental investigations into device performance metrics such as hysteresis, repeatability and failure modes are presented, Furthermore, current-driven shell etching is demonstrated as a tool to tune the nanomechanical clamping configuration, stiffness, and actuation voltage of fabricated devices. Computational models, which take Into account the nonlinearities induced by stress-stiffening of 1-D nanowires at large deformations, are presented. Apart from providing accurate estimates of device performance, these models provide new insights into the extension of stable travel range in electrostatically actuated nanowire-based constructs as compared to their microscale counterparts.
C1 [Subramanian, Arunkumar; Dong, Lixin; Kratochvil, Bradley E.; Nelson, Bradley J.] ETH, Inst Robot & Intelligent Syst, CH-8092 Zurich, Switzerland.
[Subramanian, Arunkumar] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA.
[Alt, Andreas R.; Bolognesi, Colombo R.] ETH, THz Elect Grp, Lab Electromagnet Fields & Microwave Elect IfH, CH-8092 Zurich, Switzerland.
[Dong, Lixin] Michigan State Univ, E Lansing, MI 48824 USA.
RP Subramanian, A (reprint author), ETH, Inst Robot & Intelligent Syst, CH-8092 Zurich, Switzerland.
EM asubram@sandia.gov; bnelson@ethz.ch
RI Dong, Lixin/B-3115-2008; Nelson, Bradley/B-7761-2013
OI Dong, Lixin/0000-0002-8816-4944; Nelson, Bradley/0000-0001-9070-6987
NR 39
TC 10
Z9 10
U1 3
U2 27
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
J9 ACS NANO
JI ACS Nano
PD OCT
PY 2009
VL 3
IS 10
BP 2953
EP 2964
DI 10.1021/nn900436x
PG 12
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 510QR
UT WOS:000271106100012
PM 19739601
ER
PT J
AU Alayoglu, S
Zavalij, P
Eichhorn, B
Wang, Q
Frenkel, AI
Chupas, P
AF Alayoglu, Selim
Zavalij, Peter
Eichhorn, Bryan
Wang, Qi
Frenkel, Anatoly I.
Chupas, Peter
TI Structural and Architectural Evaluation of Bimetallic Nanoparticles: A
Case Study of Pt-Ru Core-Shell and Alloy Nanoparticles
SO ACS NANO
LA English
DT Article
DE core-shell; nanoparticles; EXAFS; catalysts; structure-property
relationships
ID RAY-ABSORPTION SPECTROSCOPY; METAL-SURFACES; REACTIVITY; OXIDATION;
CLUSTERS; NANOCRYSTALS; DIFFRACTION; SCATTERING; CATALYSTS; GROWTH
AB A comprehensive structural/architectural evaluation of the PtRu (1:1) alloy and Ru@Pt core-shell nanoparticles (NPs) provides spatially resolved structural information on sub-5 nm NPs. A combination of extended X-ray absorption fine structure (EXAFS), X-ray absorption near edge structure (XANES), pair distribution function (PDF) analyses, Debye function simulations of X-ray diffraction (XRD), and field emission transmission electron microscopy/energy dispersive spectroscopy (FE-TEM/EDS) analyses provides complementary information used to construct a detailed picture of the core/shell and alloy nanostructures. The 4.4 nm PtRu (1:1) alloys are crystalline homogeneous random alloys with little twinning in a typical face-centered cubic (fcc) cell. The Pt atoms are predominantly metallic, whereas the Ru atoms are partially oxidized and are presumably located on the NP surface. The 4.0 nm Ru@Pt NPs have highly distorted hcp Ru cores that are primarily in the metallic state but show little order beyond 8 A. In contrast, the 1-2 monolayer thick Pt shells are relatively crystalline but are slightly distorted (compressed) relative to bulk fcc Pt. The homo- and heterometallic coordination numbers and bond lengths are equal to those predicted by the model cluster structure, showing that the Ru and Pt metals remain phase-separated in the core and shell components and that the interface between the core and shell is quite normal.
C1 [Alayoglu, Selim; Zavalij, Peter; Eichhorn, Bryan] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA.
[Wang, Qi; Frenkel, Anatoly I.] Yeshiva Univ, Dept Phys, New York, NY 10016 USA.
[Chupas, Peter] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA.
RP Eichhorn, B (reprint author), Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA.
EM eichhorn@umd.edu
RI Frenkel, Anatoly/D-3311-2011; Wang, Qi/C-5478-2012; Zavalij,
Peter/H-3817-2012
OI Frenkel, Anatoly/0000-0002-5451-1207; Zavalij, Peter/0000-0001-5762-3469
FU National Science Foundation [CHE0401850]; DOE HFI program
[DE-FG02-05ER15731]; U.S. Department of Energy [DE-FG02-03ER15476,
DE-AC02-98CH10886, DE-FG02-05ER15688, DE-AC02-06CH11357]; NSF MRI
[0619191]; Synchrotron Catalysis Consortium
FX This material is based upon work supported by the National Science
Foundation under Grant No. CHE0401850 and the DOE HFI program, Grant No.
DE-FG02-05ER15731, A.I.F. and Q.W. acknowledge support by grant from the
U.S. Department of Energy (DE-FG02-03ER15476). We thank Dr. Wen-An Chou
and Mr. Larry Lai for assistance with TEM data collection and gratefully
acknowledge the NSF MRI for funding through grant 0619191. We also
acknowledge Dr. B. Toby at the Advanced Photon Source at Argonne
National Laboratory for XRD data collection. Use of the NSLS was
supported by the U.S. Department of Energy, Office of Science, Office of
Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. Beamline
X18B at the NSLS is supported in part by the Synchrotron Catalysis
Consortium, U.S. Department of Energy Grant No. DE-FG02-05ER15688. The
use of the APS was supported by the U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences, under Contract No.
DE-AC02-06CH11357. Use of the Advanced Photon Source was supported by
the U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Contract No. DE-AC02-06CH11357.
NR 49
TC 117
Z9 117
U1 15
U2 129
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
J9 ACS NANO
JI ACS Nano
PD OCT
PY 2009
VL 3
IS 10
BP 3127
EP 3137
DI 10.1021/nn900242v
PG 11
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 510QR
UT WOS:000271106100036
PM 19731934
ER
PT J
AU Tesfai, A
El-Zahab, B
Kelley, AT
Li, M
Garno, JC
Baker, GA
Warner, IM
AF Tesfai, Aaron
El-Zahab, Bilal
Kelley, Algernon T.
Li, Min
Garno, Jayne C.
Baker, Gary A.
Warner, Isiah M.
TI Magnetic and Nonmagnetic Nanoparticles from a Group of Uniform Materials
Based on Organic Salts
SO ACS NANO
LA English
DT Article
DE nanosynthesis; emulsion; molten salt; ionic liquids; GUMBOS; reverse
micelles; magnetic nanoparticles
ID TEMPERATURE IONIC LIQUIDS; OXIDE NANOPARTICLES; REVERSE MICELLES;
SURFACE; EXTRACTION; PARTICLES; SOLVENTS; NANORODS; FLUIDS
AB The size and uniformity of magnetic nanoparticles developed from a group of uniform materials based on organic salts (GUMBOS) were controlled using an in situ ion exchange, water-in-oil (w/o) microemulsion preparation. Most of these nanoGUMBOS are in fact ionic liquids (i.e., melting points less than 100 degrees C), while others have melting points above the conventional 100 degrees C demarcation. Simple variations in the reagent concentrations following a w/o approach allowed us to smoothly and predictably vary nanoparticle dimensions across a significant size regime with excellent uniformity. Average sizes of GUMBOS particles ranging from 14 to 198 nm were achieved by manipulation of the reagent concentration, for example. Controllable formation of this new breed of nanoparticles is Important for numerous potential applications and will open up interesting new opportunities in drug delivery, magnetic resonance imaging, and protein separations, among other areas.
C1 [Tesfai, Aaron; El-Zahab, Bilal; Kelley, Algernon T.; Li, Min; Garno, Jayne C.; Warner, Isiah M.] Louisiana State Univ, Dept Chem, Baton Rouge, LA 70803 USA.
[Baker, Gary A.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
RP Warner, IM (reprint author), Louisiana State Univ, Dept Chem, Baton Rouge, LA 70803 USA.
EM iwarner@lsu.edu
RI El-Zahab, Bilal/A-2588-2010; LI, MIN/C-2427-2008; kistner,
kharol/E-6849-2010; Baker, Gary/H-9444-2016;
OI Baker, Gary/0000-0002-3052-7730; El-Zahab, Bilal/0000-0003-4348-807X
FU National Science Foundation; National Institutes of Health; Philip W.
West Endowment
FX I.M.W. acknowledges the National Science Foundation, the National
Institutes of Health, and the Philip W. West Endowment for support of
this work. The authors thank Dr. John F. DiTusa for assistance in the
SQUID measurements, and Sergio de Rooy for technical assistance.
NR 40
TC 29
Z9 29
U1 3
U2 43
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
J9 ACS NANO
JI ACS Nano
PD OCT
PY 2009
VL 3
IS 10
BP 3244
EP 3250
DI 10.1021/nn900781g
PG 7
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 510QR
UT WOS:000271106100050
PM 19780529
ER
PT J
AU Pantano, A
Nardelli, MB
AF Pantano, A.
Nardelli, M. Buongiorno
TI Simulation of the Electromechanical Behavior of Multiwall Carbon
Nanotubes
SO ACS NANO
LA English
DT Article
DE carbon nanotubes; mechanical deformation; electron transport; finite
element; tight-binding
ID MECHANICAL DEFORMATION; ELECTRICAL-PROPERTIES; SINGLE-WALL; CONDUCTANCE;
DEVICES
AB The enormous potential of carbon nanotubes (CNTs) as primary components in electronic devices and NEMS necessitates the understanding and predicting of the effects of mechanical deformation on electron transport in CNTs. In principle, detailed atomic/electronic calculations can provide both the deformed configuration and the resulting electrical transport behavior of the CNT. However, the computational expense of these simulations limits the size of the CNTs that can be studied with this technique, and a direct analysis of CNTs of the dimension used in nanoelectronic devices seems prohibitive at the present. Here a computationally effective mixed finite element (FE)/tight-binding (TB) approach able to simulate the electromechanical behavior of CNT devices is presented, The TB code is carefully designed to realize orders-of-magnitude reduction in computational time in calculating deformation-induced changes In electrical transport properties of the nanotubes. The FE-TB computational approach is validated in a simulation of laboratory experiments on a multiwall CNT and then used to demonstrate the role of the multiwall structure in providing robustness to conductivity in the event of imposed mechanical deformations.
C1 [Pantano, A.] Univ Palermo, Dipartimento Meccan, I-90128 Palermo, Italy.
[Nardelli, M. Buongiorno] N Carolina State Univ, Ctr High Performance Simulat, Raleigh, NC 27695 USA.
[Nardelli, M. Buongiorno] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA.
[Nardelli, M. Buongiorno] Oak Ridge Natl Lab, CCS CSM, Oak Ridge, TN 37831 USA.
RP Pantano, A (reprint author), Univ Palermo, Dipartimento Meccan, Viale Sci, I-90128 Palermo, Italy.
EM apantano@dima.unipa.it; mbnardelli@ncsu.edu
RI Buongiorno Nardelli, Marco/C-9089-2009
FU Ministero dell'Universita e della Ricerca "Rientro del Cervelli"; AFOSR
DURINT [F49620-01-1-0477]; Math. Inform. and Comput. Sci. Division,
Office of Adv. Sci. Comp. Res. of the U.S. Dept. of Energy
[DE-AC05-00OR22725]; DOE-SC; NSF-NIRT [DMR-0304299]
FX This research was funded by the Ministero dell'Universita e della
Ricerca "Rientro del Cervelli" funding, and in part by the AFOSR DURINT
Contract No. F49620-01-1-0477. M.B.N. wishes to acknowledge the Math.
Inform. and Comput. Sci. Division, Office of Adv. Sci. Comp. Res. of the
U.S. Dept. of Energy under Contract No. DE-AC05-00OR22725 with
UT-Battelle, the DOE-SC grant, the NSF-NIRT Grant DMR-0304299, and for
partial support of this work.
NR 35
TC 6
Z9 6
U1 0
U2 7
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
J9 ACS NANO
JI ACS Nano
PD OCT
PY 2009
VL 3
IS 10
BP 3266
EP 3272
DI 10.1021/nn900795n
PG 7
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 510QR
UT WOS:000271106100053
PM 19772304
ER
PT J
AU Kors, CA
Wallace, E
Davies, DR
Li, L
Laible, PD
Nollert, P
AF Kors, Christopher A.
Wallace, Ellen
Davies, Douglas R.
Li, Liang
Laible, Philip D.
Nollert, Peter
TI Effects of impurities on membrane-protein crystallization in different
systems
SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY
LA English
DT Article
ID PHOTOSYNTHETIC REACTION-CENTER; CYTOCHROME-C-OXIDASE; LIPIDIC CUBIC
PHASES; X-RAY-DIFFRACTION; RHODOBACTER-SPHAEROIDES; ANGSTROM RESOLUTION;
CRYSTAL-STRUCTURE; REACTION CENTERS; SARCOPLASMIC-RETICULUM;
MACROMOLECULAR IMPURITIES
AB When starting a protein-crystallization project, scientists are faced with several unknowns. Amongst them are these questions: (i) is the purity of the starting material sufficient? and (ii) which type of crystallization experiment is the most promising to conduct? The difficulty in purifying active membrane-protein samples for crystallization trials and the high costs associated with producing such samples require an extremely pragmatic approach. Additionally, practical guidelines are needed to increase the efficiency of membrane-protein crystallization. In order to address these conundrums, the effects of commonly encountered impurities on various membrane-protein crystallization regimes have been investigated and it was found that the lipidic cubic phase (LCP) based crystallization methodology is more robust than crystallization in detergent environments using vapor diffusion or microbatch approaches in its ability to tolerate contamination in the forms of protein, lipid or other general membrane components. LCP-based crystallizations produced crystals of the photosynthetic reaction center (RC) of Rhodobacter sphaeroides from samples with substantial levels of residual impurities. Crystals were obtained with protein contamination levels of up to 50% and the addition of lipid material and membrane fragments to pure samples of RC had little effect on the number or on the quality of crystals obtained in LCP-based crystallization screens. If generally applicable, this tolerance for impurities may avoid the need for samples of ultrahigh purity when undertaking initial crystallization screening trials to determine preliminary crystallization conditions that can be optimized for a given target protein.
C1 [Wallace, Ellen; Davies, Douglas R.; Nollert, Peter] DeCODE Biostruct, Bainbridge Isl, WA 98110 USA.
[Kors, Christopher A.; Laible, Philip D.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA.
[Li, Liang] Univ Chicago, Dept Chem, Chicago, IL 60637 USA.
[Li, Liang] Univ Chicago, Inst Biophys Dynam, Chicago, IL 60637 USA.
RP Nollert, P (reprint author), DeCODE Biostruct, 7869 NE Day Rd W, Bainbridge Isl, WA 98110 USA.
EM pnollert@decode.com
FU NIH [P01 GM075913]; University of Chicago/Argonne National Laboratory
(ANL); University of Chicago; Department of Energy [DE-AC02-06CH11357]
FX The authors would like to thank Scott Lovell for assistance with the
crystal diffraction data collection, Hui Li for assistance with
operation and programming of the Mosquito crystallization robot and
Donna Mielke and Deborah Hanson for critical reading of the manuscript.
This work was funded by the NIH Roadmap grant P01 GM075913 and a
University of Chicago/Argonne National Laboratory (ANL) collaborative
research award. This work was also supported by the University of
Chicago and the Department of Energy under section H. 35 of Department
of Energy Contract No. DE-AC02-06CH11357 to UChicago Argonne LLC to
manage Argonne National Laboratory.
NR 82
TC 16
Z9 16
U1 0
U2 6
PU WILEY-BLACKWELL PUBLISHING, INC
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0907-4449
J9 ACTA CRYSTALLOGR D
JI Acta Crystallogr. Sect. D-Biol. Crystallogr.
PD OCT
PY 2009
VL 65
BP 1062
EP 1073
DI 10.1107/S0907444909029163
PG 12
WC Biochemical Research Methods; Biochemistry & Molecular Biology;
Biophysics; Crystallography
SC Biochemistry & Molecular Biology; Biophysics; Crystallography
GA 494UY
UT WOS:000269845500006
PM 19770503
ER
PT J
AU Moriarty, NW
Grosse-Kunstleve, RW
Adams, PD
AF Moriarty, Nigel W.
Grosse-Kunstleve, Ralf W.
Adams, Paul D.
TI electronic Ligand Builder and Optimization Workbench (eLBOW): a tool for
ligand coordinate and restraint generation
SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY
LA English
DT Article
ID MOLECULAR-ORBITAL METHODS; CONVERGENCE ACCELERATION; STRUCTURE
VALIDATION; GEOMETRIES; COMPLEXES; AM1; CRYSTALLOGRAPHY; REFINEMENT;
ALGORITHMS; SOFTWARE
AB The electronic Ligand Builder and Optimization Workbench (eLBOW) is a program module of the PHENIX suite of computational crystallographic software. It is designed to be a flexible procedure that uses simple and fast quantum-chemical techniques to provide chemically accurate information for novel and known ligands alike. A variety of input formats and options allow the attainment of a number of diverse goals including geometry optimization and generation of restraints.
C1 [Moriarty, Nigel W.; Grosse-Kunstleve, Ralf W.; Adams, Paul D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Adams, Paul D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA.
RP Moriarty, NW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd,Mailstop 64R0246, Berkeley, CA 94720 USA.
EM nwmoriarty@lbl.gov
RI Adams, Paul/A-1977-2013
OI Adams, Paul/0000-0001-9333-8219
FU NIH-NIGMS [P01GM063210]; US Department of Energy [AC02-05CH11231]
FX The authors would like to thank James J. P. Stewart for his assistance
with details of the AM1 semi-empirical method and Odon Farkas for his
assistance with the DIIS method for geometry optimization. Thanks are
also expressed to Rick Muller, the author of PyQuante, for his
contributions and accommodations, and Herb Klei for his extensive
testing and feedback. We acknowledge financial support from NIH-NIGMS
under grant No. P01GM063210 and support from the US Department of Energy
under Contract No. DE AC02-05CH11231.
NR 39
TC 202
Z9 202
U1 3
U2 10
PU WILEY-BLACKWELL PUBLISHING, INC
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0907-4449
J9 ACTA CRYSTALLOGR D
JI Acta Crystallogr. Sect. D-Biol. Crystallogr.
PD OCT
PY 2009
VL 65
BP 1074
EP 1080
DI 10.1107/S0907444909029436
PG 7
WC Biochemical Research Methods; Biochemistry & Molecular Biology;
Biophysics; Crystallography
SC Biochemistry & Molecular Biology; Biophysics; Crystallography
GA 494UY
UT WOS:000269845500007
PM 19770504
ER
PT J
AU Li, L
Ungar, T
Wang, YD
Morris, JR
Tichy, G
Lendvai, J
Yang, YL
Ren, Y
Choo, H
Liaw, PK
AF Li, L.
Ungar, T.
Wang, Y. D.
Morris, J. R.
Tichy, G.
Lendvai, J.
Yang, Y. L.
Ren, Y.
Choo, H.
Liaw, P. K.
TI Microstructure evolution during cold rolling in a nanocrystalline Ni-Fe
alloy determined by synchrotron X-ray diffraction
SO ACTA MATERIALIA
LA English
DT Article
DE Nanocrystalline; Grain growth; Detwinning; X-ray line-profile analysis;
Far-from-equilibrium state
ID STACKING-FAULT ENERGY; GRAIN-GROWTH; PLASTIC-DEFORMATION;
DISLOCATION-STRUCTURE; PROFILE ANALYSIS; THIN-FILMS; METALS; NICKEL;
SIZE; TEMPERATURE
AB Stress softening after cold rolling is observed in an electrodeposited nanocrystalline Ni-Fe alloy. The grain-size distribution becomes much broader after the cold rolling. Microstructure changes, though moderate, such as simultaneously decreased dislocation and twin densities with grain growth during cold rolling, are systematically proved by synchrotron high-energy X-ray diffraction, transmission electron microscopy and differential scanning calorimetry (DSC). The amorphous fractions in the form of grain boundaries are evidenced by the diffuse-background scatterings and large DSC values. Partial dislocation separation calculation, a dislocation mean free path and annihilation model, and texture development together reveal that the current nanocrystalline Ni-Fe alloy exhibits the combined behavior of perfect dislocation slip and grain-boundary mediated deformation. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
C1 [Li, L.; Morris, J. R.; Choo, H.; Liaw, P. K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
[Ungar, T.; Tichy, G.; Lendvai, J.] Eotvos Lorand Univ, Dept Mat Phys, H-1518 Budapest, Hungary.
[Wang, Y. D.] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China.
[Morris, J. R.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
[Ren, Y.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA.
[Yang, Y. L.] Jiangxi Acad Sci, Inst Appl Phys, Nanchang 330029, Peoples R China.
RP Liaw, PK (reprint author), Univ Tennessee, Dept Mat Sci & Engn, 427-B Dougherty Engn Hall, Knoxville, TN 37996 USA.
EM pliaw@utk.edu
RI ran, shi/G-9380-2013; wang, yandong/G-9404-2013; Choo, Hahn/A-5494-2009;
Lendvai, Janos/J-4445-2013; Morris, J/I-4452-2012
OI Choo, Hahn/0000-0002-8006-8907; Morris, J/0000-0002-8464-9047
FU US Department of Energy, Office of Science, and Office of Basic Energy
Science [DE-AC02-06CH11357]; National Science Foundation (NSF)
[DMR-0231320]; Hungarian National Science Foundation [67692, 71594];
National Natural Science Foundation of China [50725102]; Ministry of
Education in China; Division of Materials Sciences and Engineering, the
US Department of Energy [DE-AC0500OR22725]
FX The authors are grateful to A.O. Kovacs for his kind assistance in
carrying out DSC measurements, and to Dr. H.Q. Li for his kind
discussion before the publication. The use of the Advanced Photon Source
was supported by the US Department of Energy, Office of Science, and
Office of Basic Energy Science, under Contract No. DE-AC02-06CH11357.
The present work was supported by the National Science Foundation (NSF)
International Materials Institutes (IMI) program (DMR-0231320). T.U. and
J.L. are grateful to the Hungarian National Science Foundation (OTKA
#67692 and #71594) for supporting this work. Y.D.W. is grateful to the
National Natural Science Foundation of China (Grant No. 50725102) and
the Ministry of Education in China for supporting this work. J.R.M.
acknowledges support by the Division of Materials Sciences and
Engineering, the US Department of Energy under Contract No.
DE-AC0500OR22725 with UT-Battelle, LLC.
NR 58
TC 43
Z9 44
U1 2
U2 37
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-6454
EI 1873-2453
J9 ACTA MATER
JI Acta Mater.
PD OCT
PY 2009
VL 57
IS 17
BP 4988
EP 5000
DI 10.1016/j.actamat.2009.07.002
PG 13
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA 505JZ
UT WOS:000270691000006
ER
PT J
AU Worsley, MA
Pauzauskie, PJ
Kucheyev, SO
Zaug, JM
Hamza, AV
Satcher, JH
Baumann, TF
AF Worsley, Marcus A.
Pauzauskie, Peter J.
Kucheyev, Sergei O.
Zaug, Joseph M.
Hamza, Alex V.
Satcher, Joe H., Jr.
Baumann, Theodore F.
TI Properties of single-walled carbon nanotube-based aerogels as a function
of nanotube loading
SO ACTA MATERIALIA
LA English
DT Article
DE Sol-gel; Raman spectroscopy; Electrical resistivity/conductivity;
Nanocomposite; Porous material
ID ORGANIC AEROGELS; COMPOSITES; CONDUCTIVITY; FORMALDEHYDE; RESORCINOL
AB Here, we present the synthesis and characterization of low-density single-walled carbon nanotube-based aerogels (SWNT-CA). Aerogels with varying nanotube loading (0-55 wt.%) and density (20-350 mg cm(-3)) were fabricated and characterized by four-probe method, electron microscopy, Raman spectroscopy and nitrogen porosimetry. Several properties of the SANT-CAs were highly dependent upon nanotube loading. At nanotube loadings of 55 wt.%, shrinkage of the aerogel monoliths during carbonization and drying was almost completely eliminated. Electrical conductivities are improved by an order of magnitude for the SWNT-CA (55 wt.% nanotubes) compared to those of foams without nanotubes. Surface areas as high as 184 m(2) g(-1) were achieved for SWNT-CAs with greater than 20 wt.% nanotube loading. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
C1 [Worsley, Marcus A.; Pauzauskie, Peter J.; Kucheyev, Sergei O.; Zaug, Joseph M.; Hamza, Alex V.; Satcher, Joe H., Jr.; Baumann, Theodore F.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA.
RP Worsley, MA (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, 7000 East Ave, Livermore, CA 94550 USA.
EM worsley1@llnl.gov
RI Pauzauskie, Peter/A-1316-2014; Worsley, Marcus/G-2382-2014
OI Worsley, Marcus/0000-0002-8012-7727
FU US Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]; DOE Office of Energy Efficiency and Renewable
Energy
FX This work was performed under the auspices of the US Department of
Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344 and funded by the DOE Office of Energy Efficiency and
Renewable Energy.
NR 29
TC 36
Z9 36
U1 4
U2 62
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-6454
J9 ACTA MATER
JI Acta Mater.
PD OCT
PY 2009
VL 57
IS 17
BP 5131
EP 5136
DI 10.1016/j.actamat.2009.07.012
PG 6
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA 505JZ
UT WOS:000270691000019
ER
PT J
AU Xiong, YH
Hofmeister, WH
Cheng, Z
Smugeresky, JE
Lavernia, EJ
Schoenung, JM
AF Xiong, Yuhong
Hofmeister, William H.
Cheng, Zhao
Smugeresky, John E.
Lavernia, Enrique J.
Schoenung, Julie M.
TI In situ thermal imaging and three-dimensional finite element modeling of
tungsten carbide-cobalt during laser deposition
SO ACTA MATERIALIA
LA English
DT Article
DE Thermal imaging; Finite element modeling; WC-Co; Laser engineered net
shaping
ID DIRECT METAL-DEPOSITION; WC-CO; FABRICATION; COMPOSITES; LENS;
MICROSTRUCTURE; BEHAVIOR; POWDER
AB Laser deposition is being used for the fabrication of net shapes from a broad range of materials, including tungsten carbide-cobalt (WC-Co) cermets (composites composed of a metallic phase and a hard refractory phase). During deposition, an unusual thermal condition is created for cermets, resulting in rather complex microstructures. To provide a fundamental insight into the evolution of such microstructures, we studied the thermal behavior of WC-Co cermets during laser deposition involving complementary results from in situ high-speed thermal imaging and three-dimensional finite element modeling. The former allowed for the characterization of temperature gradients and cooling rates in the vicinity of the molten pool, whereas the latter allowed for simulation of the entire sample. By combining the two methods, a more robust analysis of the thermal behavior was achieved. The model and the imaging results correlate well with each other and with the alternating sublayers observed in the microstructure. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
C1 [Xiong, Yuhong; Lavernia, Enrique J.; Schoenung, Julie M.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA.
[Hofmeister, William H.] Univ Tennessee, Inst Space, Ctr Laser Applicat, Tullahoma, TN 37388 USA.
[Cheng, Zhao] Earth Mech Inc, Oakland, CA 94621 USA.
[Smugeresky, John E.] Sandia Natl Labs, Livermore, CA 94551 USA.
RP Schoenung, JM (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA.
EM jmschoenung@ucdavis.edu
RI Lavernia, Enrique/I-6472-2013;
OI Lavernia, Enrique/0000-0003-2124-8964; Hofmeister,
William/0000-0002-4145-7061
FU United States National Science Foundation [DMI-0423695]; United States
Department of Energy [DE-AC0494AL85000]
FX This paper is based upon work supported by the United States National
Science Foundation under Grant No. DMI-0423695. Work by Sandia is
supported by the United States Department of Energy under contract
DE-AC0494AL85000. Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the United States Department
of Energy. The authors would like to thank Professor Jean-Pierre
Delplanque at UC Davis for suggestions on the modeling work, and Dr.
Baolong Zheng and Mr. Jonathan Nguyen at UC Davis for assistance with
the laboratory work.
NR 38
TC 16
Z9 16
U1 4
U2 28
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-6454
J9 ACTA MATER
JI Acta Mater.
PD OCT
PY 2009
VL 57
IS 18
BP 5419
EP 5429
DI 10.1016/j.actamat.2009.07.038
PG 11
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA 513TJ
UT WOS:000271346100012
ER
PT J
AU Brown, TL
Saldana, C
Murthy, TG
Mann, JB
Guo, Y
Allard, LF
King, AH
Compton, WD
Trumble, KP
Chandrasekar, S
AF Brown, Travis L.
Saldana, Christopher
Murthy, Tejas G.
Mann, James B.
Guo, Yang
Allard, Larry F.
King, Alexander H.
Compton, W. Dale
Trumble, Kevin P.
Chandrasekar, Srinivasan
TI A study of the interactive effects of strain, strain rate and
temperature in severe plastic deformation of copper
SO ACTA MATERIALIA
LA English
DT Article
DE Severe plastic deformation; High speed deformation; Dynamic
recrystallization; Copper; Ultrafine grained microstructure
ID NANOSTRUCTURED METAL; REFINEMENT; EVOLUTION
AB The deformation field in machining was controlled to access a range of deformation parameters-strains of 1-15, strain rates of 10-100,000 s(-1) and temperatures of up to 0.4 T(m)-in the severe plastic deformation (SPD) of copper. This range is far wider than has been accessed to date in conventional SPD methods, enabling a study of the interactive effects of the parameters on microstructure and strength properties. Nano-twinning was demonstrated at strain rates as small as 1000 s(-1) at -196 degrees C and at strain rates of >= 10,000 s(-1) even when the deformation temperature was well above room temperature. Bi-modal grain structures were produced in a single stage of deformation through in situ partial dynamic recrystallization. The SPD conditions for engineering specific microstructures by deformation rate control are presented in the form of maps, both in deformation parameter space and in terms of the Zener-Hollomon parameter. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
C1 [Brown, Travis L.; Saldana, Christopher; Murthy, Tejas G.; Mann, James B.; Guo, Yang; Compton, W. Dale; Chandrasekar, Srinivasan] Purdue Univ, Sch Ind Engn, Ctr Mat Proc & Tribol, W Lafayette, IN 47907 USA.
[Allard, Larry F.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[King, Alexander H.] Ames Lab, Ames, IA 50011 USA.
[Trumble, Kevin P.] Purdue Univ, Sch Mat Engn, Ctr Mat Proc & Tribol, W Lafayette, IN 47907 USA.
RP Chandrasekar, S (reprint author), Purdue Univ, Sch Ind Engn, Ctr Mat Proc & Tribol, W Lafayette, IN 47907 USA.
EM chandy@purdue.edu
RI King, Alexander/B-3148-2012; King, Alexander/P-6497-2015
OI King, Alexander/0000-0001-9677-3769; King, Alexander/0000-0001-7101-6585
FU NSF [CMMI-0626047, CMMI-MPM-0800481]; Department of Energy; Ford
University Research Program; US Department of Energy, Office of Energy
Efficiency and Renewable Energy, Vehicle Technologies Program
FX This work was supported in part by NSF Grants CMMI-0626047 and
CMMI-MPM-0800481, the Department of Energy, a Ford University Research
Program award and an NSF Graduate Research Fellowship (to CS).
Microscopy work at the Oak Ridge National Laboratory's High Temperature
Materials Laboratory was sponsored by the US Department of Energy,
Office of Energy Efficiency and Renewable Energy, Vehicle Technologies
Program.
NR 33
TC 48
Z9 50
U1 1
U2 34
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-6454
J9 ACTA MATER
JI Acta Mater.
PD OCT
PY 2009
VL 57
IS 18
BP 5491
EP 5500
DI 10.1016/j.actamat.2009.07.052
PG 10
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA 513TJ
UT WOS:000271346100018
ER
PT J
AU Jeffries, JR
Blobaum, KJM
Schwartz, AJ
AF Jeffries, J. R.
Blobaum, K. J. M.
Schwartz, A. J.
TI On the potential for vacancy annihilation as a mechanism for
conditioning in Pu-1.9 at.% Ga
SO ACTA MATERIALIA
LA English
DT Article
DE Plutonium; Phase transformation; Vacancies
ID QUENCHED-IN VACANCIES; MARTENSITIC TRANSFORMATIONS; ALLOYS; PHASE;
KINETICS; PLUTONIUM
AB The delta -> alpha' martensitic transformation in Pu-1.9 at.% Ga occurs when the alloy is cooled below about -100 degrees C. This transformation is isothermal and exhibits a remarkable susceptibility to an ambient-temperature isothermal hold (referred to as conditioning) prior to the transformation. This "conditioning" effect can dramatically increase the amount of transformation that occurs at low temperature, however, the mechanism by which conditioning affects the delta -> alpha' transformation is not known. This conditioning effect may be a more general phenomenon, and thus knowledge of the mechanism responsible for conditioning is of great importance to understanding the delta -> alpha' transformation itself as well as the general circumstances that can affect martensitic phase transformations. Using differential scanning calorimetry measurements, vacancy annihilation as a mechanism for the conditioning effect has been examined. While there are some characteristics of the conditioning effect that are reminiscent of vacancy annihilation, the results of these experiments suggest that vacancy annihilation is not a likely candidate description for the conditioning effect. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
C1 [Jeffries, J. R.; Blobaum, K. J. M.; Schwartz, A. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Jeffries, JR (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave,L-350, Livermore, CA 94550 USA.
EM jeffries4@llnl.gov
FU US Department of Energy, National Nuclear Security Administration
[DE-AC52-07NA27344]; Laboratory Directed Research and Development
[07-ERD-047]
FX We thank M.E. Manley, K.T. Moore, and C.A. Marianetti for useful
discussions. Lawrence Livermore National Laboratory is operated by
Lawrence Livermore National Security, LLC, for the US Department of
Energy, National Nuclear Security Administration under Contract
DE-AC52-07NA27344. This work was funded through Laboratory Directed
Research and Development under project tracking code 07-ERD-047.
NR 31
TC 2
Z9 2
U1 3
U2 12
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-6454
EI 1873-2453
J9 ACTA MATER
JI Acta Mater.
PD OCT
PY 2009
VL 57
IS 18
BP 5512
EP 5520
DI 10.1016/j.actamat.2009.07.050
PG 9
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA 513TJ
UT WOS:000271346100020
ER
PT J
AU Wang, J
Hirth, JP
Tome, CN
AF Wang, J.
Hirth, J. P.
Tome, C. N.
TI ((1)over-bar0 1 2) Twinning nucleation mechanisms in
hexagonal-close-packed crystals
SO ACTA MATERIALIA
LA English
DT Article
DE Twinning; Dislocation; Magnesium; Molecular dynamics
ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; HCP METALS;
COMPUTER-SIMULATION; DISLOCATIONS; INTERFACES; DEFECTS; CRYSTALLOGRAPHY;
MAGNESIUM; ZIRCONIUM
AB Mechanisms for ((1) over bar 0 1 2) twinning in hexagonal-close-packed crystals at an atomic scale were studied using topological analysis and atomistic simulations. Two twinning mechanisms were found: a normal-twinning mechanism in which a stable twin nucleus is created by simultaneous nucleation of multiple twinning dislocations; and a zonal-twinning mechanism in which a stable twin nucleus is created by simultaneous nucleation of a partial dislocation and multiple twinning dislocations. The twinning direction, dependent on the ratio of lattice parameters c/a, is along [1 0 (1) over bar 1] when c/a < root 3, but along the opposite direction when c/a > root 3. Atomistic simulations, using density function theory for Mg, Zr and Zn and an empirical potential for Mg, were performed to study the kinetics and energetics associated with the two twinning mechanisms. The results show that the zonal-twinning mechanism is energetically favorable relative to the normal-twinning mechanism, because the zonal dislocation has a smaller Burgers vector. Published by Elsevier Ltd on behalf of Acta Materialia Inc.
C1 [Wang, J.; Hirth, J. P.; Tome, C. N.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA.
RP Wang, J (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA.
EM wangj6@lanl.gov
RI Tome, Carlos/D-5058-2013; Wang, Jian/F-2669-2012
OI Wang, Jian/0000-0001-5130-300X
FU US Department of Energy, Office of Basic Energy Sciences [FWP-06SCPE401]
FX This work was supported by the US Department of Energy, Office of Basic
Energy Sciences (Project No: FWP-06SCPE401).
NR 38
TC 132
Z9 133
U1 9
U2 99
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-6454
J9 ACTA MATER
JI Acta Mater.
PD OCT
PY 2009
VL 57
IS 18
BP 5521
EP 5530
DI 10.1016/j.actamat.2009.07.047
PG 10
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA 513TJ
UT WOS:000271346100021
ER
PT J
AU Vukmirovic, N
Indjin, D
Ikonic, Z
Harrison, P
AF Vukmirovic, N.
Indjin, D.
Ikonic, Z.
Harrison, P.
TI Quantum Dots as Sources and Detectors of Mid- and Far-Infrared
Radiation: Theoretical Models
SO ACTA PHYSICA POLONICA A
LA English
DT Article; Proceedings Paper
CT International School and Conference on Photonics (PHOTONICA09)
CY AUG 24-28, 2009
CL Belgrade, SERBIA
ID INTRABAND ABSORPTION; ELECTRONIC-STRUCTURE; SEMICONDUCTOR-LASER; CASCADE
LASER; PHOTODETECTORS; ELECTROLUMINESCENCE; SUPERLATTICES; TRANSPORT
AB We present a review of theoretical methods used to study the electronic structure, optical and transport properties of intraband optoelectronic devices based on self-assembled quantum dots.
C1 [Vukmirovic, N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA.
[Indjin, D.; Ikonic, Z.; Harrison, P.] Univ Leeds, Sch Elect & Elect Engn, Leeds, W Yorkshire, England.
RP Vukmirovic, N (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA.
EM NVukmirovic@lbl.gov
RI Vukmirovic, Nenad/D-9489-2011
OI Vukmirovic, Nenad/0000-0002-4101-1713
NR 35
TC 6
Z9 6
U1 0
U2 0
PU POLISH ACAD SCIENCES INST PHYSICS
PI WARSAW
PA AL LOTNIKOW 32-46, PL-02-668 WARSAW, POLAND
SN 0587-4246
EI 1898-794X
J9 ACTA PHYS POL A
JI Acta Phys. Pol. A
PD OCT
PY 2009
VL 116
IS 4
BP 464
EP 467
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 526TR
UT WOS:000272317700006
ER
PT J
AU Chinn, RE
AF Chinn, Richard E.
TI HARDNESS, BEARINGS, AND THE ROCKWELLS
SO ADVANCED MATERIALS & PROCESSES
LA English
DT Article
C1 Natl Energy Technol Lab, US Dept Energy, Albany, OR 97321 USA.
RP Chinn, RE (reprint author), Natl Energy Technol Lab, US Dept Energy, 1450 Queen Ave SW, Albany, OR 97321 USA.
EM richard.chinn@netl.doe.gov
NR 0
TC 1
Z9 1
U1 0
U2 2
PU ASM INT
PI MATERIALS PARK
PA SUBSCRIPTIONS SPECIALIST CUSTOMER SERVICE, MATERIALS PARK, OH 44073-0002
USA
SN 0882-7958
J9 ADV MATER PROCESS
JI Adv. Mater. Process.
PD OCT
PY 2009
VL 167
IS 10
BP 29
EP 31
PG 3
WC Materials Science, Multidisciplinary
SC Materials Science
GA 514LV
UT WOS:000271397100005
ER
PT J
AU Stacy, SC
Pantoya, ML
Prentice, DJ
Steffler, ED
Daniels, MA
AF Stacy, Shawn C.
Pantoya, Michelle L.
Prentice, Daniel J.
Steffler, Eric D.
Daniels, Michael A.
TI NANOCOMPOSITES FOR UNDERWATER DEFLAGRATION
SO ADVANCED MATERIALS & PROCESSES
LA English
DT Article
C1 [Pantoya, Michelle L.] Texas Tech Univ, Dept Mech Engn, Lubbock, TX 79409 USA.
[Prentice, Daniel J.; Steffler, Eric D.; Daniels, Michael A.] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
RP Pantoya, ML (reprint author), Texas Tech Univ, Dept Mech Engn, Lubbock, TX 79409 USA.
EM michelle.pantoya@ttu.edu
FU Idaho National Laboratory (INL); Army Researdn Office [W911NF-04-1-0217]
FX The authors acknowledge technical and financial assistance for this work
provided by Idaho National Laboratory (INL). INL is a multiprogram
laboratory operated by Battelle Energy Alliance for the United States
Department of Energy. M. Pantoya gratefully acknowledges partial support
of this work by the Army Researdn Office under contract number
W911NF-04-1-0217 and Dr. Ralph Anthenien.
NR 0
TC 6
Z9 6
U1 1
U2 7
PU ASM INT
PI MATERIALS PARK
PA SUBSCRIPTIONS SPECIALIST CUSTOMER SERVICE, MATERIALS PARK, OH 44073-0002
USA
SN 0882-7958
J9 ADV MATER PROCESS
JI Adv. Mater. Process.
PD OCT
PY 2009
VL 167
IS 10
BP 33
EP 35
PG 3
WC Materials Science, Multidisciplinary
SC Materials Science
GA 514LV
UT WOS:000271397100006
ER
PT J
AU Bollt, EM
Chartrand, R
Esedoglu, S
Schultz, P
Vixie, KR
AF Bollt, Erik M.
Chartrand, Rick
Esedoglu, Selim
Schultz, Pete
Vixie, Kevin R.
TI Graduated adaptive image denoising: local compromise between total
variation and isotropic diffusion
SO ADVANCES IN COMPUTATIONAL MATHEMATICS
LA English
DT Article
DE Graduated adaptive image denoising; Total variation; Isotropic diffusion
ID RESTORATION
AB We introduce variants of the variational image denoising method proposed by Blomgren et al. (In: Numerical Analysis 1999 (Dundee), pp. 43-67. Chapman & Hall, Boca Raton, FL, 2000), which interpolates between total-variation denoising and isotropic diffusion denoising. We study how parameter choices affect results and allow tuning between TV denoising and isotropic diffusion for respecting texture on one spatial scale while denoising features assumed to be noise on finer spatial scales. Furthermore, we prove existence and (where appropriate) uniqueness of minimizers. We consider both L (2) and L (1) data fidelity terms.
C1 [Bollt, Erik M.] Clarkson Univ, Potsdam, NY 13699 USA.
[Chartrand, Rick; Schultz, Pete; Vixie, Kevin R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Esedoglu, Selim] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA.
RP Bollt, EM (reprint author), Clarkson Univ, POB 5815, Potsdam, NY 13699 USA.
EM bolltem@clarkson.edu
OI Chartrand, Rick/0000-0003-3256-2238
FU Department of Energy [W-7405-ENG-36]; NSF [DMS-0410085]
FX The work of the third and fifth authors was funded by the Department of
Energy under contract W-7405-ENG-36. The work of the fourth author was
supported by NSF grant DMS-0410085.
NR 13
TC 24
Z9 24
U1 1
U2 6
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1019-7168
J9 ADV COMPUT MATH
JI Adv. Comput. Math.
PD OCT
PY 2009
VL 31
IS 1-3
BP 61
EP 85
DI 10.1007/s10444-008-9082-7
PG 25
WC Mathematics, Applied
SC Mathematics
GA 453VX
UT WOS:000266642100004
ER
PT J
AU Fox, A
Williams, M
Richardson, AD
Cameron, D
Gove, JH
Quaife, T
Ricciuto, D
Reichstein, M
Tomelleri, E
Trudinger, CM
Van Wijk, MT
AF Fox, Andrew
Williams, Mathew
Richardson, Andrew D.
Cameron, David
Gove, Jeffrey H.
Quaife, Tristan
Ricciuto, Daniel
Reichstein, Markus
Tomelleri, Enrico
Trudinger, Cathy M.
Van Wijk, Mark T.
TI The REFLEX project: Comparing different algorithms and implementations
for the inversion of a terrestrial ecosystem model against eddy
covariance data
SO AGRICULTURAL AND FOREST METEOROLOGY
LA English
DT Article
DE Data assimilation; Metropolis; Carbon cycle; Ecosystem modelling; Monte
Carlo; Kalman filter; Eddy covariance; REFLEX project; Parameter
optimisation; Confidence intervals
ID PARAMETER-ESTIMATION; DATA ASSIMILATION; CARBON-DIOXIDE; UNCERTAINTY;
CLIMATE; FOREST; PRODUCTIVITY; VARIABILITY; SIMULATION; FEEDBACKS
AB We describe a model-data fusion (MDF) inter-comparison project (REFLEX), which compared various algorithms for estimating carbon (C) model parameters consistent with both measured carbon fluxes and states and a simple C model. Participants were provided with the model and with both synthetic net ecosystem exchange (NEE) of CO(2) and leaf area index(LAI) data, generated from the model with added noise, and observed NEE and LAI data from two eddy covariance sites. Participants endeavoured to estimate model parameters and states consistent with the model for all cases over the two years for which data were provided, and generate predictions for one additional year without observations. Nine participants contributed results using Metropolis algorithms, Kalman filters and a genetic algorithm. For the synthetic data case, parameter estimates compared well with the true values. The results of the analyses indicated that parameters linked directly to gross primary production (GPP) and ecosystem respiration, such as those related to foliage allocation and turnover, or temperature sensitivity of heterotrophic respiration, were best constrained and characterised. Poorly estimated parameters were those related to the allocation to and turnover of fine root/wood pools. Estimates of confidence intervals varied among algorithms, but several algorithms successfully located the true values of annual fluxes from synthetic experiments within relatively narrow 90% confidence intervals, achieving >80% success rate and mean NEE confidence intervals < 110 gC m(-2) year(-1) for the synthetic case. Annual C flux estimates generated by participants generally agreed with gap-filling approaches using half-hourly data. The estimation of ecosystem respiration and GPP through MDF agreed well with outputs from partitioning studies using half-hourly data. Confidence limits on annual NEE increased by an average of 88% in the prediction year compared to the previous year, when data were available. Confidence intervals on annual NEE increased by 30% when observed data were used instead of synthetic data, reflecting and quantifying the addition of model error. Finally, our analyses indicated that incorporating additional constraints, using data on C pools (wood, soil and fine roots) would help to reduce uncertainties for model parameters poorly served by eddy covariance data. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Williams, Mathew] Univ Edinburgh, Sch Geosci, Ctr Terr Carbon Dynam, Edinburgh, Midlothian, Scotland.
[Fox, Andrew] Univ Sheffield, Sch Appl Maths, Ctr Terr Carbon Dynam, Sheffield, S Yorkshire, England.
[Richardson, Andrew D.] Univ New Hampshire, Complex Syst Res Ctr, Durham, NH 03824 USA.
[Cameron, David] Ctr Ecol & Hydrol, Penicuik, Midlothian, Scotland.
[Gove, Jeffrey H.] US Forest Serv, USDA, No Res Stn, Durham, NH USA.
[Quaife, Tristan] UCL, Dept Geog, Ctr Terr Carbon Dynam, London, England.
[Ricciuto, Daniel] Oak Ridge Natl Lab, Oak Ridge, TN USA.
[Reichstein, Markus; Tomelleri, Enrico] Max Planck Inst Biogeochem, Jena, Germany.
[Trudinger, Cathy M.] CSIRO Marine & Atmospher Res, Ctr Australian Weather & Climate Res, Aspendale, Vic, Australia.
[Van Wijk, Mark T.] Wageningen Univ, Wageningen, Netherlands.
RP Williams, M (reprint author), Univ Edinburgh, Sch Geosci, Ctr Terr Carbon Dynam, Edinburgh, Midlothian, Scotland.
EM mat.williams@ed.ac.uk
RI Trudinger, Cathy/A-2532-2008; Quaife, Tristan/C-1355-2008; Reichstein,
Markus/A-7494-2011; Richardson, Andrew/F-5691-2011; Cook,
Bruce/M-4828-2013; Williams, Mathew/G-6140-2016; Ricciuto,
Daniel/I-3659-2016
OI van Wijk, Mark/0000-0003-0728-8839; Trudinger,
Cathy/0000-0002-4844-2153; Quaife, Tristan/0000-0001-6896-4613;
Reichstein, Markus/0000-0001-5736-1112; Richardson,
Andrew/0000-0002-0148-6714; Cook, Bruce/0000-0002-8528-000X; Williams,
Mathew/0000-0001-6117-5208; Ricciuto, Daniel/0000-0002-3668-3021
NR 37
TC 60
Z9 60
U1 2
U2 24
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-1923
J9 AGR FOREST METEOROL
JI Agric. For. Meteorol.
PD OCT 1
PY 2009
VL 149
IS 10
BP 1597
EP 1615
DI 10.1016/j.agrformet.2009.05.002
PG 19
WC Agronomy; Forestry; Meteorology & Atmospheric Sciences
SC Agriculture; Forestry; Meteorology & Atmospheric Sciences
GA 488UX
UT WOS:000269376900004
ER
PT J
AU Huang, DD
Foley, BT
Tolzmann, CA
Ouma, A
Bremer, JW
AF Huang, Diana D.
Foley, Brian T.
Tolzmann, Catlin A.
Ouma, Annastasia
Bremer, James W.
TI Complex Mosaic Composition of Near Full-Length Genomes of Two NED
(NIH-ENVA-DOD) Subtype Panel HIV Type 1 Strains, BCF-Dioum and BCF-Kita,
Originating from the Democratic Republic of Congo (DRC)
SO AIDS RESEARCH AND HUMAN RETROVIRUSES
LA English
DT Article
ID MAXIMUM-LIKELIHOOD; RECOMBINANT; IDENTIFICATION; SEQUENCES; AFRICA
AB Sequence characterization of the near full-length genomes of HIV-1 isolates BCF-Dioum and BCF-Kita, originating from the Democratic Republic of Congo (DRC), was continued. These NED panel isolates, contributed by F. Brun-Vezinet (ENVA-France), were first identified as subtypes G and H, respectively. Our earlier analyses of portions of their pol genes showed that both were likely to be intersubtype recombinants of different composition. This study analyzed the remainder of each genome, confirming them to be complex recombinants. The BCF-Dioum genome resembles CRF06_cpx strains found in West Africa, composed of subtypes A/G/J/K. The BCF-Kita genome is a unique complex recombinant A-F-G-H-K-U strain. These data support previous observations of the complexity of strains originating from the DRC. BCF-Dioum may be a suitable strain for standards and reagents since it matches a defined circulating recombinant form. Studies and reagents made from BCF-Kita should take into account its complex genome.
C1 [Huang, Diana D.; Tolzmann, Catlin A.; Ouma, Annastasia; Bremer, James W.] Rush Med Coll, Dept Immunol Microbiol, Chicago, IL 60612 USA.
[Foley, Brian T.] Los Alamos Natl Lab, HIV Sequence Database, Theoret Biol & Biophys Grp T6, Los Alamos, NM 87545 USA.
RP Huang, DD (reprint author), Rush Med Coll, Dept Immunol Microbiol, 1653 W Congress Pkwy, Chicago, IL 60612 USA.
EM diana_huang@rush.edu
OI Foley, Brian/0000-0002-1086-0296
FU NIAID [NO1-AI85354, HHSN266200500044C/NO1-AI-50044.]
FX This work was supported by NIAID contract NO1-AI85354 and
HHSN266200500044C/NO1-AI-50044.
NR 18
TC 1
Z9 1
U1 0
U2 0
PU MARY ANN LIEBERT INC
PI NEW ROCHELLE
PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA
SN 0889-2229
J9 AIDS RES HUM RETROV
JI Aids Res. Hum. Retrovir.
PD OCT
PY 2009
VL 25
IS 10
BP 1039
EP 1043
DI 10.1089/aid.2009.0078
PG 5
WC Immunology; Infectious Diseases; Virology
SC Immunology; Infectious Diseases; Virology
GA 508SQ
UT WOS:000270956200013
PM 19795987
ER
PT J
AU Fawcett, SE
Gordon, RA
Jamieson, HE
AF Fawcett, Skya E.
Gordon, Robert A.
Jamieson, Heather E.
TI Optimizing experimental design, overcoming challenges, and gaining
valuable information from the Sb K-edge XANES region
SO AMERICAN MINERALOGIST
LA English
DT Article
DE Antimony; XANES; high-energy XAS; linear combination fitting; sulfosalt
ID RAY-ABSORPTION SPECTROSCOPY; CRYSTAL-STRUCTURE; ARSENIC SPECIATION;
QUANTITATIVE SPECIATION; ENVIRONMENTAL-SAMPLES; ANTIMONY DISTRIBUTION;
XAFS DETERMINATION; CONTAMINATED SOIL; FINE-STRUCTURE; CHEMICAL FORM
AB There are many challenges associated with collecting, processing, and interpreting high-energy XAS data. The most significant of these are broad spectra, minimal separation of edge positions, and high background owing to the Compton tail. Studies of the Sb system are a particular challenge owing to its complex bonding character and formation of mixed oxidation-state minerals. Furthermore, in environmental samples such as stream sediment containing mine waste, different Sb phases may coexist. Ways to overcome these challenges and achieve accurate and useful information are presented. Our investigations used Sb K-edge X-ray absorption near-edge spectroscopy (XANES) to elucidate Sb geochemical behavior. Several Sb mineral spectra are presented, including Sb sulfosalts, and contrasted based on the different hosting and coordination environments around the Sb atom in the crystal structure. These comparisons lead to the recognition of how the different hosting and coordination environments are manifested in the shape of the Sb mineral spectra. In fact from the shape of the spectra, the occupation of the Sb atom in a single or in multiple crystallographic sites, regardless of whether multiple phases are present in the sample, is discernible. Furthermore, we demonstrate that quantitative information can be derived from the XANES region using linear combination fitting of the derivative spectra, rather than the energy spectra. Particularly useful to the advancement of Sb research is the demonstration that a significant amount of information can be gained from the Sb K-edge XANES region.
C1 [Fawcett, Skya E.; Jamieson, Heather E.] Queens Univ, Dept Geol Sci & Geol Engn, Kingston, ON K7L 3N6, Canada.
[Gordon, Robert A.] Simon Fraser Univ, Argonne, IL 60439 USA.
[Gordon, Robert A.] Argonne Natl Lab, Adv Photon Source, PNC XOR, Argonne, IL 60439 USA.
RP Fawcett, SE (reprint author), Lorax Environm, Vancouver, BC V6J 3H9, Canada.
EM sfawcett@lorax.ca
FU U.S. Department Energy [DE-AC02-06CH11357]; NSERC; Mineralogical
Association of Canada
FX PNC/XOR facilities at the Advanced Photon Source, and research at these
facilities, are supported by the U.S. Department of Energy-Basic Energy
Sciences, a major facilities access grain from NSERC, the University of
Washington, Simon Fraser University, and the Advanced Photon Source. Use
of the Advanced Photon Source is also supported by the U.S. Department
Energy, Office of Science, Office of Basic Energy Sciences, under
Contract DE-AC02-06CH11357. This study was partly funded through the
NSERC Northern Research Internship and by the Mineralogical Association
of Canada. We thank the Giant Mine Remediation Team for site access and
kindly support. Ron Peterson of Queen's University provided helpful
discussions on Sb mineralogy and offered technical assistance.
NR 67
TC 6
Z9 6
U1 3
U2 15
PU MINERALOGICAL SOC AMER
PI CHANTILLY
PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA
SN 0003-004X
J9 AM MINERAL
JI Am. Miner.
PD OCT
PY 2009
VL 94
IS 10
BP 1377
EP 1387
DI 10.2138/am.2009.3112
PG 11
WC Geochemistry & Geophysics; Mineralogy
SC Geochemistry & Geophysics; Mineralogy
GA 504EU
UT WOS:000270599200009
ER
PT J
AU Shvartsburg, AA
Tang, KQ
Smith, RD
Holden, M
Rush, M
Thompson, A
Toutoungi, D
AF Shvartsburg, Alexandre A.
Tang, Keqi
Smith, Richard D.
Holden, Martin
Rush, Martyn
Thompson, Andrew
Toutoungi, Danielle
TI Ultrafast Differential Ion Mobility Spectrometry at Extreme Electric
Fields Coupled to Mass Spectrometry
SO ANALYTICAL CHEMISTRY
LA English
DT Article
ID GAS-PHASE SEPARATIONS; ESI-FAIMS-MS; TRYPTIC PEPTIDES; IONIZATION; TIME;
TEMPERATURE; CONFORMERS; FRAGMENTATION; SENSITIVITY; RESOLUTION
AB Microchip-based field asymmetric waveform ion mobility spectrometry (FAIMS) analyzers featuring a grid of 35 mu m-wide channels have allowed electric field intensity (E) over 60 kV/cm, or about twice that in previous devices with >0.5 mm gaps. Since the separation speed scales as E(4) to E(6), these chips filter ions in just similar to 20 mu s (or similar to 100-10 000 times faster than "macroscopic" designs), although with reduced resolution. Here we report integration of these chips into electrospray ionization (ESI) mass spectrometry, with ESI coupled to FAIMS via a curtain plate/orifice interface with edgewise ion injection into the gap. Adjusting gas flows in the system permits control of ion residence time in FAIMS, which affects resolving power independently of ion desolvation after the ESI source. The results agree with a priori simulations and scaling rules. Applications illustrated include analyses of amino acids and peptides. Because of limited resolving power, the present FAIMS units are more suitable for distinguishing compound classes than individual species. In particular, peptides separate from many other classes, including PEGs that are commonly encountered in proteomic analyses. In practical analyses with realistic time constraints, the effective separation power of present FAIMS may approach that of "macroscopic" systems.
C1 [Shvartsburg, Alexandre A.; Tang, Keqi; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA.
[Holden, Martin; Rush, Martyn; Thompson, Andrew; Toutoungi, Danielle] Owlstone Ltd, Cambridge CB4 0GD, England.
RP Shvartsburg, AA (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999, Richland, WA 99352 USA.
RI Smith, Richard/J-3664-2012
OI Smith, Richard/0000-0002-2381-2349
FU Battelle Independent RD program; NIH National Center for Research
Resources
FX Portions of this work were supported by the Battelle Independent R&D
program and the NIH National Center for Research Resources. We thank Dr.
Erin S. Baker for her peptide samples.
NR 45
TC 32
Z9 33
U1 3
U2 28
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0003-2700
J9 ANAL CHEM
JI Anal. Chem.
PD OCT 1
PY 2009
VL 81
IS 19
BP 8048
EP 8053
DI 10.1021/ac901479e
PG 6
WC Chemistry, Analytical
SC Chemistry
GA 501EA
UT WOS:000270361100029
PM 19708673
ER
PT J
AU Bhandari, D
Wells, SM
Retterer, ST
Sepaniak, MJ
AF Bhandari, Deepak
Wells, Sabrina M.
Retterer, Scott T.
Sepaniak, Michael J.
TI Characterization and Detection of Uranyl Ion Sorption on Silver Surfaces
Using Surface Enhanced Raman Spectroscopy
SO ANALYTICAL CHEMISTRY
LA English
DT Article
ID SPECTRA; URANIUM(VI); SCATTERING; HYDROLYSIS; COMPLEXES; SERS;
25-DEGREES-C; HYDROXIDE; FILMS; OXIDE
AB The study of the chemical bebavior of uranyl species and its rapid detection is of primary environmental and nonproliferation concern. Herein, we report on a surface enhanced Raman spectroscopic study of uranyl ion (UO(2)(2+)) sorption onto the thermally vapor deposited silver particle surface. The ability of vibrational spectroscopy to characterize surface phenomenon and the remarkable sensitivity of surface enhanced Raman spectroscopy (SERS) have been introduced as an appropriate combination for the surface characterization and detection of UO(2)(2+) onto the silver surface. The appearance of symmetric stretching frequency of UO(2)(2+) around 700 cm(-1) and the disappearance of the 854 cm(-1) band are attributed to the development of a chemical bond between silver surface and uranyl species. The effects of temperature, solute-surface inter-action time, and pH have been studied using silver modified polypropylene filter (PPF) substrates. Results show that under appropriate conditions, the concentration of uranyl ion as low as 20 ng/mL can be easily detected using the discussed SERS approach without any surface modification of silver nanoparticles. Moreover, an alternative SERS approach of uranyl detection is demonstrated using nanolithographically fabricated SERS substrates.
C1 [Bhandari, Deepak; Wells, Sabrina M.; Sepaniak, Michael J.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA.
[Retterer, Scott T.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
RP Sepaniak, MJ (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA.
EM msepaniak@utk.edu
RI Retterer, Scott/A-5256-2011
OI Retterer, Scott/0000-0001-8534-1979
FU U.S. Environmental Protection Agency [EPA-83274001]
FX This research was supported by the U.S. Environmental Protection Agency
STAR program under Grant EPA-83274001 with The University of Tennessee.
Nanofabricated substrates were created at Oak Ridge National
Laboratory's Center for Nanophase Material Sciences, sponsored by the
Scientific User Facilities Division, Office of Basic Energy Sciences,
U.S. Department of Energy. The authors Would like to thank Dr. George
Schweitzer of UT-Knoxville for providing uranyl nitrate hexahydrate.
NR 41
TC 27
Z9 29
U1 2
U2 45
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0003-2700
J9 ANAL CHEM
JI Anal. Chem.
PD OCT 1
PY 2009
VL 81
IS 19
BP 8061
EP 8067
DI 10.1021/ac901266f
PG 7
WC Chemistry, Analytical
SC Chemistry
GA 501EA
UT WOS:000270361100031
PM 19737007
ER
PT J
AU Kanarska, Y
Lomov, I
Glenn, L
Antoun, T
AF Kanarska, Y.
Lomov, I.
Glenn, L.
Antoun, T.
TI Numerical simulation of cloud rise phenomena associated with nuclear
bursts
SO ANNALS OF NUCLEAR ENERGY
LA English
DT Article
ID ANELASTIC APPROXIMATION; EQUATIONS; FLOWS
AB We present numerical simulations of cloud evolution from nuclear explosions using high-resolution numerical methods. Our numerical approach includes a fluid mechanical model that is a combination of a compressible code (GEODYN) and a low Mach code (LMC). Early stages of nuclear explosions that are characterized by the blust wave propagation are simulated with an explicit code (GEODYN) that solves the compressible Navier-Stokes equations via a high-order Godunov scheme. As soon as the blust wave weakens (approximate to 10 s) the subsequent cloud rise due to buoyancy forces can be effectively simulated by the LMC code. LMC is an implicit code based on a pressure projection technique, and derived from the compressible Navier-Stokes equations using an asymptotic analysis in Mach number. It analytically eliminates time step restrictions based on sound wave propagation and it is computationally efficient and accurate for simulations of cloud rise dynamics at later stages. We perform a series of cloud rise scenarios ranging from an idealized bubble rise problem to realistic air bursts. We analyze effects of compressible dynamics on cloud evolution at different stages. It is found that in a realistic configuration, interaction of the reflected shock wave from the ground with the fireball significantly affects cloud evolution, in contrast to the equivalent idealized bubble rise simulations. We validate the code predictions against available experimental data. It is demonstrated that, by providing the initial source from the compressible GEODYN code, late time flow evolution can be successfully simulated with the fast, efficient and accurate LMC code. (C) 2009 Elsevier Ltd. All rights reserved.
C1 [Kanarska, Y.; Lomov, I.; Glenn, L.; Antoun, T.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
RP Kanarska, Y (reprint author), Lawrence Livermore Natl Lab, POB 808,L-231, Livermore, CA 94551 USA.
EM kanarska1@llnl.gov
FU US Department of Energy [DE-AC52-07NA27344]
FX This work performed under the auspices of the US Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NR 25
TC 2
Z9 2
U1 1
U2 5
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0306-4549
J9 ANN NUCL ENERGY
JI Ann. Nucl. Energy
PD OCT
PY 2009
VL 36
IS 10
BP 1475
EP 1483
DI 10.1016/j.anucene.2009.08.009
PG 9
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA 513SL
UT WOS:000271343600001
ER
PT J
AU Berthrong, ST
Schadt, CW
Pineiro, G
Jackson, RB
AF Berthrong, Sean T.
Schadt, Christopher W.
Pineiro, Gervasio
Jackson, Robert B.
TI Afforestation Alters the Composition of Functional Genes in Soil and
Biogeochemical Processes in South American Grasslands
SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY
LA English
DT Article
ID PROBE DESIGN CRITERIA; NITROGEN MINERALIZATION; BACTERIAL COMMUNITIES;
LITTER DECOMPOSITION; BIOGEOGRAPHY; MICROARRAY; EXPRESSION; DIVERSITY;
ECOSYSTEM; BIODIVERSITY
AB Soil microbes are highly diverse and control most soil biogeochemical reactions. We examined how microbial functional genes and biogeochemical pools responded to the altered chemical inputs accompanying land use change. We examined paired native grasslands and adjacent Eucalyptus plantations (previously grassland) in Uruguay, a region that lacked forests before European settlement. Along with measurements of soil carbon, nitrogen, and bacterial diversity, we analyzed functional genes using the GeoChip 2.0 microarray, which simultaneously quantified several thousand genes involved in soil carbon and nitrogen cycling. Plantations and grassland differed significantly in functional gene profiles, bacterial diversity, and biogeochemical pool sizes. Most grassland profiles were similar, but plantation profiles generally differed from those of grasslands due to differences in functional gene abundance across diverse taxa. Eucalypts decreased ammonification and N fixation functional genes by 11% and 7.9% (P < 0.01), which correlated with decreased microbial biomass N and more NH4+ in plantation soils. Chitinase abundance decreased 7.8% in plantations compared to levels in grassland (P = 0.017), and C polymer-degrading genes decreased by 1.5% overall (P < 0.05), which likely contributed to 54% (P < 0.05) more C in undecomposed extractable soil pools and 27% less microbial C (P < 0.01) in plantation soils. In general, afforestation altered the abundance of many microbial functional genes, corresponding with changes in soil biogeochemistry, in part through altered abundance of overall functional gene types rather than simply through changes in specific taxa. Such changes in microbial functional genes correspond with altered C and N storage and have implications for long-term productivity in these soils.
C1 [Berthrong, Sean T.] Duke Univ, Dept Biol, Univ Program Ecol, Durham, NC 27708 USA.
[Schadt, Christopher W.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA.
[Pineiro, Gervasio] Univ Buenos Aires, Fac Agron, Lab Anal Reg & Teledetecc, IFEVA,CONICET, Buenos Aires, DF, Argentina.
[Pineiro, Gervasio; Jackson, Robert B.] Duke Univ, Nicholas Sch Environm, Durham, NC 27708 USA.
RP Berthrong, ST (reprint author), Duke Univ, Dept Biol, Univ Program Ecol, Campus Box 90338, Durham, NC 27708 USA.
EM sberthrong@gmail.com
RI Pineiro, Gervasio/D-2743-2009; Schadt, Christopher/B-7143-2008
OI Pineiro, Gervasio/0000-0003-0184-9797; Schadt,
Christopher/0000-0001-8759-2448
FU National Science Foundation [0717191]; IAI [2031]; FONCYT-PICT
[06-1764]; U. S. Department of Energy Global Change Education Program;
National Science Foundation Doctoral Dissertation Enhancement [0725942]
FX We acknowledge support from the National Science Foundation (DEB no.
0717191) and the IAI (CRN II no. 2031). G. P. was supported by
FONCYT-PICT grant no. 06-1764, and S. T. B. was supported by a Graduate
Research in the Environment Fellowship from the U. S. Department of
Energy Global Change Education Program and a National Science Foundation
Doctoral Dissertation Enhancement Grant (OISE no. 0725942).
NR 51
TC 30
Z9 34
U1 4
U2 32
PU AMER SOC MICROBIOLOGY
PI WASHINGTON
PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA
SN 0099-2240
EI 1098-5336
J9 APPL ENVIRON MICROB
JI Appl. Environ. Microbiol.
PD OCT 1
PY 2009
VL 75
IS 19
BP 6240
EP 6248
DI 10.1128/AEM.01126-09
PG 9
WC Biotechnology & Applied Microbiology; Microbiology
SC Biotechnology & Applied Microbiology; Microbiology
GA 498CE
UT WOS:000270113200024
PM 19700539
ER
PT J
AU Arteaga, O
Canillas, A
Jellison, GE
AF Arteaga, Oriol
Canillas, Adolf
Jellison, Gerald E., Jr.
TI Determination of the components of the gyration tensor of quartz by
oblique incidence transmission two-modulator generalized ellipsometry
SO APPLIED OPTICS
LA English
DT Article
ID ACCURACY UNIVERSAL POLARIMETER; DICHROIC CRYSTAL SECTIONS;
OPTICAL-ACTIVITY; CIRCULAR-DICHROISM; POLARIZATION MODULATION; LINEAR
BIREFRINGENCE; MULTIPLE REFLECTIONS; ALPHA-QUARTZ; DISPERSION; LIGHT
AB The two independent components of the gyration tensor of quartz, g(11) and g(33), have been spectroscopically measured using a transmission two-modulator generalized ellipsometer. The method is used to determine the optical activity in crystals in directions other than the optic axis, where the linear birefringence is much larger than the optical activity. (C) 2009 Optical Society of America
C1 [Arteaga, Oriol; Canillas, Adolf] Univ Barcelona, Dept Fis Aplicada & Opt, IN2UB, FEMAN Grp, E-08028 Barcelona, Spain.
[Jellison, Gerald E., Jr.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA.
RP Arteaga, O (reprint author), Univ Barcelona, Dept Fis Aplicada & Opt, IN2UB, FEMAN Grp, E-08028 Barcelona, Spain.
EM oarteaga@ub.edu
RI Arteaga, Oriol/F-7465-2011; Arteaga, Oriol/B-9568-2015
OI Arteaga, Oriol/0000-0001-9015-0237
FU Spanish government [AYA2006-1648-C02-01]; Ministerio de Educacion y
Ciencia (MEC) of Spain [FPU AP2006-00193]; Division of Materials Science
and Engineering; Office of Basic Energy Sciences, U. S. Department of
Energy (DOE) [DE-AC05-00OR22725]
FX O. Arteaga and A. Canillas acknowledge financial support from the
Spanish government (AYA2006-1648-C02-01). O. A. also acknowledges
financial support from the Ministerio de Educacion y Ciencia (MEC) of
Spain (FPU AP2006-00193). G. E. Jellison acknowledges the financial
support of the Division of Materials Science and Engineering, Office of
Basic Energy Sciences, U. S. Department of Energy (DOE), under contract
DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and
operated by UT-Battelle, LLC. We thank J. M. Ribo for motivating the
research.
NR 39
TC 20
Z9 20
U1 3
U2 6
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 1559-128X
EI 2155-3165
J9 APPL OPTICS
JI Appl. Optics
PD OCT 1
PY 2009
VL 48
IS 28
BP 5307
EP 5317
DI 10.1364/AO.48.005307
PG 11
WC Optics
SC Optics
GA 501JJ
UT WOS:000270377500013
PM 19798370
ER
PT J
AU Yue, YA
Eres, G
Wang, XW
Guo, LY
AF Yue, Yanan
Eres, Gyula
Wang, Xinwei
Guo, Liying
TI Characterization of thermal transport in micro/nanoscale wires by
steady-state electro-Raman-thermal technique
SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING
LA English
DT Article
ID WALLED CARBON NANOTUBES; TEMPERATURE-DEPENDENCE; SPECTRA; SPECTROSCOPY
AB In this work, a novel steady-state electro-Raman-thermal (SERT) technique is developed to characterize the thermal transport in one-dimensional micro/nanoscale materials. The SERT technique involves steady-state joule heating of a suspended sample and measuring its middle point temperature based on the temperature dependence of the Raman shift peak intensity. The thermal conductivity is determined from a linear fitting of the temperature against heating power. Multi-wall carbon nanotube bundles are characterized using the SERT technique to verify its measurement capacity. As it does not need to track the transient process of heat transfer, the SERT technique has the great potential for measuring short materials down to nm long.
C1 [Yue, Yanan; Wang, Xinwei; Guo, Liying] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA.
[Eres, Gyula] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
RP Wang, XW (reprint author), Iowa State Univ, Dept Mech Engn, 2025 Black Engn Bldg, Ames, IA 50011 USA.
EM xwang3@iastate.edu
RI Yue, Yanan/E-1609-2015; Eres, Gyula/C-4656-2017
OI Yue, Yanan/0000-0002-3489-3949; Eres, Gyula/0000-0003-2690-5214
FU Iowa State University
FX Support of this work from the start-up fund of Iowa State University is
gratefully acknowledged. X. Wang also very much appreciates the
discussion with Professor Yongfeng Lu of the University of
Nebraska-Lincoln during the development of the SERT technique.
NR 21
TC 16
Z9 16
U1 0
U2 8
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0947-8396
J9 APPL PHYS A-MATER
JI Appl. Phys. A-Mater. Sci. Process.
PD OCT
PY 2009
VL 97
IS 1
BP 19
EP 23
DI 10.1007/s00339-009-5352-6
PG 5
WC Materials Science, Multidisciplinary; Physics, Applied
SC Materials Science; Physics
GA 486OM
UT WOS:000269206600003
ER
PT J
AU Heckl, OH
Baer, CRE
Krankel, C
Marchese, SV
Schapper, F
Holler, M
Sudmeyer, T
Robinson, JS
Tisch, JWG
Couny, F
Light, P
Benabid, F
Keller, U
AF Heckl, O. H.
Baer, C. R. E.
Kraenkel, C.
Marchese, S. V.
Schapper, F.
Holler, M.
Suedmeyer, T.
Robinson, J. S.
Tisch, J. W. G.
Couny, F.
Light, P.
Benabid, F.
Keller, U.
TI High harmonic generation in a gas-filled hollow-core photonic crystal
fiber
SO APPLIED PHYSICS B-LASERS AND OPTICS
LA English
DT Article
ID EXTREME-ULTRAVIOLET; RARE-GASES; LASER; FIELD; RADIATION; SYSTEM;
PULSES; LIGHT
AB High harmonic generation (HHG) of intense infrared laser radiation (Ferray et al., J. Phys. B: At. Mol. Opt. Phys. 21:L31, 1988; McPherson et al., J. Opt. Soc. Am. B 4:595, 1987) enables coherent vacuum-UV (VUV) to soft-X-ray sources. In the usual setup, energetic femtosecond laser pulses are strongly focused into a gas jet, restricting the interaction length to the Rayleigh range of the focus. The average photon flux is limited by the low conversion efficiency and the low average power of the complex laser amplifier systems (Keller, Nature 424:831, 2003; Sudmeyer et al., Nat. Photonics 2:599, 2008; Roser et al., Opt. Lett. 30:2754, 2005; Eidam et al., IEEE J. Sel. Top. Quantum Electron. 15:187, 2009) which typically operate at kilohertz repetition rates. This represents a severe limitation for many experiments using the harmonic radiation in fields such as metrology or high-resolution imaging. Driving HHG with novel high-power diode-pumped multi-megahertz laser systems has the potential to significantly increase the average photon flux. However, the higher average power comes at the expense of lower pulse energies because the repetition rate is increased by more than a thousand times, and efficient HHG is not possible in the usual geometry. So far, two promising techniques for HHG at lower pulse energies were developed: external build-up cavities (Gohle et al., Nature 436:234, 2005; Jones et al., Phys. Rev. Lett. 94:193, 2005) and resonant field enhancement in nanostructured targets (Kim et al., Nature 453:757, 2008). Here we present a third technique, which has advantages in terms of ease of HHG light extraction, transverse beam quality, and the possibility to substantially increase conversion efficiency by phase-matching (Paul et al., Nature 421:51, 2003; Ren et al., Opt. Express 16:17052, 2008; Serebryannikov et al., Phys. Rev. E (Stat. Nonlinear Soft Matter Phys.) 70:66611, 2004; Serebryannikov et al., Opt. Lett. 33:977, 2008; Zhang et al., Nat. Phys. 3:270, 2007). The interaction between the laser pulses and the gas occurs in a Kagome-type Hollow-Core Photonic Crystal Fiber (HC-PCF) (Benabid et al., Science 298:399, 2002), which reduces the detection threshold for HHG to only 200 nJ. This novel type of fiber guides nearly all of the light in the hollow core (Couny et al., Science 318:1118, 2007), preventing damage even at intensities required for HHG. Our fiber guided 30-fs pulses with a pulse energy of more than 10 mu J, which is more than five times higher than for any other photonic crystal fiber (Hensley et al., Conference on Lasers and Electro-Optics (CLEO), IEEE Press, New York, 2008).
C1 [Heckl, O. H.; Baer, C. R. E.; Kraenkel, C.; Marchese, S. V.; Schapper, F.; Holler, M.; Suedmeyer, T.; Keller, U.] ETH, Inst Quantum Elect, Dept Phys, CH-8093 Zurich, Switzerland.
[Robinson, J. S.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Robinson, J. S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Tisch, J. W. G.] Univ London Imperial Coll Sci Technol & Med, Quantum Opt & Laser Sci Grp, Blackett Lab, London SW7 2BW, England.
[Couny, F.; Light, P.; Benabid, F.] Univ Bath, Dept Phys, Bath BA2 7AY, Avon, England.
RP Heckl, OH (reprint author), ETH, Inst Quantum Elect, Dept Phys, CH-8093 Zurich, Switzerland.
EM heckl@phys.ethz.ch
RI Krankel, Christian/A-1320-2009; Heckl, Oliver/A-2160-2009; Benabid,
Fetah/C-1592-2013; Holler, Mirko/I-3962-2014; Keller,
Ursula/N-2437-2016; Light, Philip/C-8315-2009
OI Krankel, Christian/0000-0003-3609-5825; Keller,
Ursula/0000-0002-1689-8041; Light, Philip/0000-0003-3873-7991
NR 32
TC 61
Z9 61
U1 0
U2 43
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0946-2171
J9 APPL PHYS B-LASERS O
JI Appl. Phys. B-Lasers Opt.
PD OCT
PY 2009
VL 97
IS 2
BP 369
EP 373
DI 10.1007/s00340-009-3771-x
PG 5
WC Optics; Physics, Applied
SC Optics; Physics
GA 510LF
UT WOS:000271089300016
ER
PT J
AU Mirguet, C
Dejoie, C
Roucau, C
De Parseval, P
Teat, SJ
Sciau, P
AF Mirguet, C.
Dejoie, C.
Roucau, C.
De Parseval, Ph
Teat, S. J.
Sciau, Ph
TI NATURE AND MICROSTRUCTURE OF GALLIC IMITATIONS OF SIGILLATA SLIPS FROM
THE LA GRAUFESENQUE WORKSHOP*
SO ARCHAEOMETRY
LA English
DT Article
DE TERRA SIGILLATA; SLIP; MICROPROBE ANALYSIS; X-RAY DIFFRACTION;
TRANSMISSION ELECTRONIC MICROSCOPY
ID X-RAY-DIFFRACTION; BLACK GLOSS; CERAMICS; POTTERY; CLAYS; SITES
AB The red glaze (slip) that characterizes the Terra Sigillata potteries greatly contributed to their success during the Roman period. The colour of the slip can in fact be partially explained by the microstructure (crystalline phases, grain sizes) and the physico-chemistry (composition) of the ceramics. However, the precise process and the diffusion of this technique are still not fully known. In particular, we do not know yet how the production of sigillata took place in the south of Gaul, and the role that was played by the production under Italian influence (pre-sigillata) preceding the first local sigillata. In this work, a combination of transmission electron microscopy (TEM) and X-ray synchrotron diffraction techniques was used to study the microstructure of pre-sigillata slips from the main southern Gaul workshop (La Graufesenque), in order to compare their characteristics with those of high-quality sigillata. These first results seem to indicate that the antique potters chose clays adapted to their firing conditions and to the type of coating that they wanted to make. These productions cannot be described as an initial phase for the later sigillata production and, rather, seem to correspond to the intention of developing a specific type of pottery only inspired by the famous Italian sigillata forms.
C1 [Mirguet, C.; Roucau, C.; Sciau, Ph] CNRS, CEMES, UPR 8011, F-31055 Toulouse 4, France.
[Dejoie, C.] CNRS UJF, Inst NEEL, F-38042 Grenoble, France.
[De Parseval, Ph] Univ Toulouse, CNRS, LMTG, IRD,OMP, F-31400 Toulouse, France.
[Teat, S. J.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Sciau, P (reprint author), CNRS, CEMES, UPR 8011, 29 Rue J Marvig, F-31055 Toulouse 4, France.
EM Sciau@cemes.fr
RI Sciau, Philippe/C-7734-2011
FU Conseil Regional de Midi-Pyrenees [03007514, 06001527]; Director, Office
of Science, Office of Basic Energy Sciences, Materials Sciences
Division, of the US Department of Energy [DE-AC03-76SF00098]
FX The authors would like to thank Alain Vernhet for archaeological samples
as well as Laure Noe and Catherine Crestou for sample preparation. This
research was supported by the Conseil Regional de Midi-Pyrenees, under
contract numbers 03007514 and 06001527. The Advanced Light Source is
supported by the Director, Office of Science, Office of Basic Energy
Sciences, Materials Sciences Division, of the US Department of Energy,
under contract number DE-AC03-76SF00098 at Lawrence Berkeley National
Laboratory.
NR 28
TC 6
Z9 6
U1 1
U2 8
PU WILEY-BLACKWELL PUBLISHING, INC
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0003-813X
J9 ARCHAEOMETRY
JI Archaeometry
PD OCT
PY 2009
VL 51
BP 748
EP 762
DI 10.1111/j.1475-4754.2008.00452.x
PG 15
WC Archaeology; Chemistry, Analytical; Chemistry, Inorganic & Nuclear;
Geosciences, Multidisciplinary
SC Archaeology; Chemistry; Geology
GA 493HY
UT WOS:000269728600004
ER
PT J
AU Brambley, MR
Katipamula, S
AF Brambley, Michael R.
Katipamula, Srinivas
TI Commercial Building Retuning A Low-Cost Way to Improve Energy
Performance
SO ASHRAE JOURNAL
LA English
DT Article
C1 [Brambley, Michael R.; Katipamula, Srinivas] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Brambley, MR (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA.
NR 6
TC 2
Z9 2
U1 1
U2 6
PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC,
PI ATLANTA
PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA
SN 0001-2491
J9 ASHRAE J
JI ASHRAE J.
PD OCT
PY 2009
VL 51
IS 10
BP 12
EP +
PG 8
WC Thermodynamics; Construction & Building Technology; Engineering,
Mechanical
SC Thermodynamics; Construction & Building Technology; Engineering
GA 508LY
UT WOS:000270934100004
ER
PT J
AU McKenney, K
Dieckmann, J
Brodrick, J
AF McKenney, Kurtis
Dieckmann, John
Brodrick, James
TI An Updated Look At DCV Approaches
SO ASHRAE JOURNAL
LA English
DT Editorial Material
C1 [McKenney, Kurtis; Dieckmann, John] TIAX, Cambridge, MA USA.
[Brodrick, James] US DOE, Bldg Technol Program, Washington, DC USA.
RP McKenney, K (reprint author), TIAX, Cambridge, MA USA.
NR 12
TC 0
Z9 0
U1 0
U2 1
PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC,
PI ATLANTA
PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA
SN 0001-2491
J9 ASHRAE J
JI ASHRAE J.
PD OCT
PY 2009
VL 51
IS 10
BP 82
EP +
PG 2
WC Thermodynamics; Construction & Building Technology; Engineering,
Mechanical
SC Thermodynamics; Construction & Building Technology; Engineering
GA 508LY
UT WOS:000270934100011
ER
PT J
AU Meneux, B
Guzzo, L
de la Torre, S
Porciani, C
Zamorani, G
Abbas, U
Bolzonella, M
Garilli, B
Iovino, A
Pozzetti, L
Zucca, E
Lilly, SJ
Le Fevre, O
Kneib, JP
Carollo, CM
Contini, T
Mainieri, V
Renzini, A
Scodeggio, M
Bardelli, S
Bongiorno, A
Caputi, K
Coppa, G
Cucciati, O
de Ravel, L
Franzetti, P
Kampczyk, P
Knobel, C
Kovac, K
Lamareille, F
Le Borgne, JF
Le Brun, V
Maier, C
Pello, R
Peng, Y
Montero, EP
Ricciardelli, E
Silverman, JD
Tanaka, M
Tasca, L
Tresse, L
Vergani, D
Bottini, D
Cappi, A
Cimatti, A
Cassata, P
Fumana, M
Koekemoer, AM
Leauthaud, A
Maccagni, D
Marinoni, C
McCracken, HJ
Memeo, P
Oesch, P
Scaramella, R
AF Meneux, B.
Guzzo, L.
de la Torre, S.
Porciani, C.
Zamorani, G.
Abbas, U.
Bolzonella, M.
Garilli, B.
Iovino, A.
Pozzetti, L.
Zucca, E.
Lilly, S. J.
Le Fevre, O.
Kneib, J. -P.
Carollo, C. M.
Contini, T.
Mainieri, V.
Renzini, A.
Scodeggio, M.
Bardelli, S.
Bongiorno, A.
Caputi, K.
Coppa, G.
Cucciati, O.
de Ravel, L.
Franzetti, P.
Kampczyk, P.
Knobel, C.
Kovac, K.
Lamareille, F.
Le Borgne, J. -F.
Le Brun, V.
Maier, C.
Pello, R.
Peng, Y.
Montero, E. Perez
Ricciardelli, E.
Silverman, J. D.
Tanaka, M.
Tasca, L.
Tresse, L.
Vergani, D.
Bottini, D.
Cappi, A.
Cimatti, A.
Cassata, P.
Fumana, M.
Koekemoer, A. M.
Leauthaud, A.
Maccagni, D.
Marinoni, C.
McCracken, H. J.
Memeo, P.
Oesch, P.
Scaramella, R.
TI The zCOSMOS survey. The dependence of clustering on luminosity and
stellar mass at z=0.2-1
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE cosmology: observations; large-scale structure of Universe; surveys;
Galaxy: evolution
ID VLT DEEP SURVEY; GALAXY REDSHIFT SURVEY; HALO OCCUPATION DISTRIBUTION;
LARGE-SCALE STRUCTURE; SPACE CORRELATION-FUNCTIONS; DIGITAL SKY SURVEY;
1ST EPOCH DATA; REAL-SPACE; ENVIRONMENTAL DEPENDENCE; PHOTOMETRIC
REDSHIFTS
AB Aims. We study the dependence of galaxy clustering on luminosity and stellar mass at redshifts z similar to [0.2-1], using the first 10K redshifts from the zCOSMOS spectroscopic survey of the COSMOS field.
Methods. We measured the redshift-space correlation functions xi(r(p), pi) and xi(s) and the projected function, omega(p)(r(p)) for subsamples covering different luminosity, mass, and redshift ranges. We explored and quantified in detail the observational selection biases from the flux-limited nature of the survey, using ensembles of realistic semi-analytic mock samples built from the Millennium simulation. We used the same mock data sets to carefully check our covariance and error estimate techniques, comparing the performances of methods based on the scatter in the mocks and on bootstrapping schemes. We finally compared our measurements to the cosmological model predictions from the mock surveys.
Results. At odds with other measurements at similar redshift and in the local Universe, we find a weak dependence of galaxy clustering on luminosity in all three redshift bins explored. A mild dependence on stellar mass is instead observed, in particular on small scales, which becomes particularly evident in the central redshift bin (0.5 < z < 0.8), where omega(p)(r(p)) shows strong excess power on scales > 1 h(-1) Mpc. This is reflected in the shape of the full xi(r(p), p) that we interpret as produced by dominating structures almost perpendicular to the line of sight in the survey volume. Comparing to z similar to 0 measurements, we do not see any significant evolution with redshift of the amplitude of clustering for bright and/or massive galaxies.
Conclusions. This is consistent with previous results and the standard picture in which the bias evolves more rapidly for the most massive haloes, which in turn host the highest-stellar-mass galaxies. At the same time, however, the clustering measured in the zCOSMOS 10K data at 0.5 < z < 1 for galaxies with log(M/M(circle dot)) = 10 is only marginally consistent with the predictions from the mock surveys. On scales larger than similar to 2 h(-1) Mpc, the observed clustering amplitude is compatible only with similar to 1% of the mocks. Thus, if the power spectrum of matter is Lambda CDM with standard normalisation and the bias has no "unnatural" scale-dependence, this result indicates that COSMOS has picked up a particularly rare, similar to 2-3 sigma positive fluctuation in a volume of similar to 10(6) h(-1) Mpc(3). These findings underline the need for larger surveys of the z similar to 1 Universe to appropriately characterise the level of structure at this epoch.
C1 [Meneux, B.; Bongiorno, A.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany.
[Meneux, B.] Univ Sternwarte, D-81679 Munich, Germany.
[Guzzo, L.; de la Torre, S.] Osserv Astron Brera, INAF, I-23807 Merate, LC, Italy.
[de la Torre, S.; Le Fevre, O.; Kneib, J. -P.; Cucciati, O.; de Ravel, L.; Le Brun, V.; Tasca, L.; Tresse, L.; Cassata, P.] Univ Aix Marseille 1, Lab Astrophys Marseille, UMR 6110, CNRS, F-13376 Marseille 12, France.
[de la Torre, S.; Garilli, B.; Scodeggio, M.; Franzetti, P.; Tasca, L.; Bottini, D.; Fumana, M.; Maccagni, D.; Memeo, P.] Ist Astrofis Spaziale & Fis Cosm, INAF, I-20133 Milan, Italy.
[Porciani, C.] Argelander Inst Astron, D-53121 Bonn, Germany.
[Porciani, C.; Lilly, S. J.; Carollo, C. M.; Kampczyk, P.; Knobel, C.; Kovac, K.; Maier, C.; Peng, Y.; Silverman, J. D.; Oesch, P.] ETH, Inst Astron, CH-8092 Zurich, Switzerland.
[Zamorani, G.; Bolzonella, M.; Pozzetti, L.; Zucca, E.; Bardelli, S.; Coppa, G.; Vergani, D.; Cappi, A.] Osservatorio Astron Bologna, INAF, Bologna, Italy.
[Abbas, U.] Osserv Astron Torino, INAF, I-10025 Pino Torinese, TO, Italy.
[Iovino, A.] Osserv Astron Brera, INAF, Milan, Italy.
[Contini, T.; Lamareille, F.; Le Borgne, J. -F.; Pello, R.; Montero, E. Perez] Univ Toulouse, Lab Astrophys Toulouse Tarbes, CNRS Toulouse, F-31400 Toulouse, France.
[Mainieri, V.; Tanaka, M.] European So Observ, D-8046 Garching, Germany.
[Renzini, A.; Ricciardelli, E.] Univ Padua, Dipartimento Astron, I-35122 Padua, Italy.
[Coppa, G.] Univ Bologna, Dipartimento Astron, Bologna, Italy.
[Koekemoer, A. M.] Space Telescope Sci Inst, Baltimore, MD 21218 USA.
[Leauthaud, A.] Univ Calif Berkeley, Berkeley Lab, Berkeley, CA 94720 USA.
[Leauthaud, A.] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA.
[Marinoni, C.] Univ Provence, Ctr Phys Theor, UMR 6207, CNRS, F-13288 Marseille, France.
[McCracken, H. J.] Univ Paris 06, Inst Astrophys Paris, Paris, France.
[Scaramella, R.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy.
RP Meneux, B (reprint author), Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany.
EM bmeneux@mpe.mpg.de
RI Kneib, Jean-Paul/A-7919-2015; Zucca, Elena/O-9396-2015; Cappi,
Alberto/O-9391-2015; Bardelli, Sandro/O-9369-2015; Bolzonella,
Micol/O-9495-2015; Pello, Roser/G-4754-2010; Le Fevre,
Olivier/G-7389-2011;
OI Bongiorno, Angela/0000-0002-0101-6624; Scodeggio,
Marco/0000-0002-2282-5850; Franzetti, Paolo/0000-0002-6986-0127;
Vergani, Daniela/0000-0003-0898-2216; Scaramella,
Roberto/0000-0003-2229-193X; Oesch, Pascal/0000-0001-5851-6649; Maier,
Christian/0000-0001-6405-2182; Garilli, Bianca/0000-0001-7455-8750;
Kneib, Jean-Paul/0000-0002-4616-4989; Zucca, Elena/0000-0002-5845-8132;
Cappi, Alberto/0000-0002-9200-7167; Bardelli,
Sandro/0000-0002-8900-0298; Bolzonella, Micol/0000-0003-3278-4607;
Fumana, Marco/0000-0001-6787-5950; Iovino, Angela/0000-0001-6958-0304;
bottini, dario/0000-0001-6917-041X; Pozzetti, Lucia/0000-0001-7085-0412;
Zamorani, Giovanni/0000-0002-2318-301X; Perez Montero,
E/0000-0003-3985-4882; Koekemoer, Anton/0000-0002-6610-2048
FU [ASI/COFIS/WP3110I/026/07/0]
FX We thank the anonymous referee for a detailed review of the manuscript
that helped to improve the paper. We thank G. De Lucia, J. Blaizot, S.
Phleps, and A. Sanchez for their thorough comments on an early version
of the manuscript. This work was supported by Grant
ASI/COFIS/WP3110I/026/07/0.
NR 86
TC 66
Z9 68
U1 0
U2 1
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD OCT
PY 2009
VL 505
IS 2
BP 463
EP 482
DI 10.1051/0004-6361/200912314
PG 20
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 504ST
UT WOS:000270638600003
ER
PT J
AU Abdo, AA
Ackermann, M
Ajello, M
Ampe, J
Anderson, B
Atwood, WB
Axelsson, M
Bagagli, R
Baldini, L
Ballet, J
Barbiellini, G
Bartelt, J
Bastieri, D
Baughman, BM
Bechtol, K
Bederede, D
Bellardi, F
Bellazzini, R
Belli, F
Berenji, B
Bisello, D
Bissaldi, E
Bloom, ED
Bogaert, G
Bogart, JR
Bonamente, E
Borgland, AW
Bourgeois, P
Bouvier, A
Bregeon, J
Brez, A
Brigida, M
Bruel, P
Burnett, TH
Busetto, G
Caliandro, GA
Cameron, RA
Campell, M
Caraveo, PA
Carius, S
Carlson, P
Casandjian, JM
Cavazzuti, E
Ceccanti, M
Cecchi, C
Charles, E
Chekhtman, A
Cheung, CC
Chiang, J
Chipaux, R
Cillis, AN
Ciprini, S
Claus, R
Cohen-Tanugi, J
Condamoor, S
Conrad, J
Corbet, R
Cutini, S
Davis, DS
DeKlotz, M
Dermer, CD
de Angelis, A
de Palma, F
Digel, SW
Dizon, P
Dormody, M
Silva, EDE
Drell, PS
Dubois, R
Dumora, D
Edmonds, Y
Fabiani, D
Farnier, C
Favuzzi, C
Ferrara, EC
Ferreira, O
Fewtrell, Z
Flath, DL
Fleury, P
Focke, WB
Fouts, K
Frailis, M
Freytag, D
Fukazawa, Y
Funk, S
Fusco, P
Garganov, F
Gasparrini, D
Gehrelscao, N
Germani, S
Giebels, B
Giglietto, N
Giordano, F
Glanzman, T
Godfrey, G
Goodman, J
Grenier, IA
Grondin, MH
Grove, JE
Guillemot, L
Guiriec, S
Hakimi, M
Haller, G
Hanabata, Y
Hart, PA
Hascall, P
Hays, E
Huffer, M
Hughes, RE
Johannesson, G
Johnson, AS
Johnson, RP
Johnson, TJ
Johnson, WN
Kamae, T
Katagiri, H
Kataoka, J
Kavelaars, A
Kelly, H
Kerr, M
Klamra, W
Knodlseder, J
Kocian, ML
Kuehn, F
Kuss, M
Latronico, L
Lavalley, C
Leas, B
Lee, B
Lee, SH
Lemoine-Goumard, M
Longo, F
Loparco, F
Lott, B
Lovellette, MN
Lubrano, P
Lung, DK
Madejski, GM
Makeev, A
Marangelli, B
Marchetti, M
Massai, MM
May, D
Mazzenga, G
Mazziotta, MN
McEnery, JE
McGlynn, S
Meurer, C
Michelson, PF
Minuti, M
Mirizzi, N
Mitra, P
Mitthumsiri, W
Mizuno, T
Moiseev, AA
Mongelli, M
Monte, C
Monzani, ME
Moretti, E
Morselli, A
Moskalenko, IV
Murgia, S
Nelson, D
Nilsson, L
Nishino, S
Nolan, PL
Nuss, E
Ohno, M
Ohsugi, T
Omodei, N
Orlando, E
Ormes, JF
Ozaki, M
Paccagnella, A
Paneque, D
Panetta, JH
Parent, D
Pelassa, V
Pepe, M
Pesce-Rollins, M
Picozza, P
Pinchera, M
Piron, F
Porter, TA
Raino, S
Rando, R
Rapposelli, E
Raynor, W
Razzano, M
Reimer, A
Reimer, O
Reposeur, T
Reyes, LC
Ritz, S
Robinson, S
Rochester, LS
Rodriguez, AY
Romani, RW
Roth, M
Ryde, F
Sacchetti, A
Sadrozinski, HFW
Saggini, N
Sanchez, D
Sander, A
Sapozhnikov, L
Saxton, OH
Parkinson, PMS
Sellerholm, A
Sgro, C
Siskind, EJ
Smith, DA
Smith, PD
Spandre, G
Spinelli, P
Starck, JL
Stephens, TE
Strickman, MS
Strong, AW
Sugizaki, M
Suson, DJ
Tajima, H
Takahashi, H
Takahashi, T
Tanaka, T
Tenze, A
Thayer, JB
Thayer, JG
Thompson, DJ
Tibaldo, L
Tibolla, O
Torres, DF
Tosti, G
Tramacere, A
Turri, M
Usher, TL
Vilchez, N
Virmani, N
Vitale, V
Wai, LL
Waite, AP
Wang, P
Winer, BL
Wood, DL
Wood, KS
Yasuda, H
Ylinen, T
Ziegler, M
AF Abdo, A. A.
Ackermann, M.
Ajello, M.
Ampe, J.
Anderson, B.
Atwood, W. B.
Axelsson, M.
Bagagli, R.
Baldini, L.
Ballet, J.
Barbiellini, G.
Bartelt, J.
Bastieri, D.
Baughman, B. M.
Bechtol, K.
Bederede, D.
Bellardi, F.
Bellazzini, R.
Belli, F.
Berenji, B.
Bisello, D.
Bissaldi, E.
Bloom, E. D.
Bogaert, G.
Bogart, J. R.
Bonamente, E.
Borgland, A. W.
Bourgeois, P.
Bouvier, A.
Bregeon, J.
Brez, A.
Brigida, M.
Bruel, P.
Burnett, T. H.
Busetto, G.
Caliandro, G. A.
Cameron, R. A.
Campell, M.
Caraveo, P. A.
Carius, S.
Carlson, P.
Casandjian, J. M.
Cavazzuti, E.
Ceccanti, M.
Cecchi, C.
Charles, E.
Chekhtman, A.
Cheung, C. C.
Chiang, J.
Chipaux, R.
Cillis, A. N.
Ciprini, S.
Claus, R.
Cohen-Tanugi, J.
Condamoor, S.
Conrad, J.
Corbet, R.
Cutini, S.
Davis, D. S.
DeKlotz, M.
Dermer, C. D.
de Angelis, A.
de Palma, F.
Digel, S. W.
Dizon, P.
Dormody, M.
do Couto e Silva, E.
Drell, P. S.
Dubois, R.
Dumora, D.
Edmonds, Y.
Fabiani, D.
Farnier, C.
Favuzzi, C.
Ferrara, E. C.
Ferreira, O.
Fewtrell, Z.
Flath, D. L.
Fleury, P.
Focke, W. B.
Fouts, K.
Frailis, M.
Freytag, D.
Fukazawa, Y.
Funk, S.
Fusco, P.
Garganov, F.
Gasparrini, D.
Gehrelscao, N.
Germani, S.
Giebels, B.
Giglietto, N.
Giordano, F.
Glanzman, T.
Godfrey, G.
Goodman, J.
Grenier, I. A.
Grondin, M. -H.
Grove, J. E.
Guillemot, L.
Guiriec, S.
Hakimi, M.
Haller, G.
Hanabata, Y.
Hart, P. A.
Hascall, P.
Hays, E.
Huffer, M.
Hughes, R. E.
Johannesson, G.
Johnson, A. S.
Johnson, R. P.
Johnson, T. J.
Johnson, W. N.
Kamae, T.
Katagiri, H.
Kataoka, J.
Kavelaars, A.
Kelly, H.
Kerr, M.
Klamra, W.
Knoedlseder, J.
Kocian, M. L.
Kuehn, F.
Kuss, M.
Latronico, L.
Lavalley, C.
Leas, B.
Lee, B.
Lee, S. -H.
Lemoine-Goumard, M.
Longo, F.
Loparco, F.
Lott, B.
Lovellette, M. N.
Lubrano, P.
Lung, D. K.
Madejski, G. M.
Makeev, A.
Marangelli, B.
Marchetti, M.
Massai, M. M.
May, D.
Mazzenga, G.
Mazziotta, M. N.
McEnery, J. E.
McGlynn, S.
Meurer, C.
Michelson, P. F.
Minuti, M.
Mirizzi, N.
Mitra, P.
Mitthumsiri, W.
Mizuno, T.
Moiseev, A. A.
Mongelli, M.
Monte, C.
Monzani, M. E.
Moretti, E.
Morselli, A.
Moskalenko, I. V.
Murgia, S.
Nelson, D.
Nilsson, L.
Nishino, S.
Nolan, P. L.
Nuss, E.
Ohno, M.
Ohsugi, T.
Omodei, N.
Orlando, E.
Ormes, J. F.
Ozaki, M.
Paccagnella, A.
Paneque, D.
Panetta, J. H.
Parent, D.
Pelassa, V.
Pepe, M.
Pesce-Rollins, M.
Picozza, P.
Pinchera, M.
Piron, F.
Porter, T. A.
Raino, S.
Rando, R.
Rapposelli, E.
Raynor, W.
Razzano, M.
Reimer, A.
Reimer, O.
Reposeur, T.
Reyes, L. C.
Ritz, S.
Robinson, S.
Rochester, L. S.
Rodriguez, A. Y.
Romani, R. W.
Roth, M.
Ryde, F.
Sacchetti, A.
Sadrozinski, H. F. -W.
Saggini, N.
Sanchez, D.
Sander, A.
Sapozhnikov, L.
Saxton, O. H.
Parkinson, P. M. Saz
Sellerholm, A.
Sgro, C.
Siskind, E. J.
Smith, D. A.
Smith, P. D.
Spandre, G.
Spinelli, P.
Starck, J. -L.
Stephens, T. E.
Strickman, M. S.
Strong, A. W.
Sugizaki, M.
Suson, D. J.
Tajima, H.
Takahashi, H.
Takahashi, T.
Tanaka, T.
Tenze, A.
Thayer, J. B.
Thayer, J. G.
Thompson, D. J.
Tibaldo, L.
Tibolla, O.
Torres, D. F.
Tosti, G.
Tramacere, A.
Turri, M.
Usher, T. L.
Vilchez, N.
Virmani, N.
Vitale, V.
Wai, L. L.
Waite, A. P.
Wang, P.
Winer, B. L.
Wood, D. L.
Wood, K. S.
Yasuda, H.
Ylinen, T.
Ziegler, M.
TI The on-orbit calibration of the Fermi Large Area Telescope
SO ASTROPARTICLE PHYSICS
LA English
DT Article
DE GLAST; Fermi; FGST; LAT; Telescope; Gamma-ray; Calibrations
ID RAY-SPACE-TELESCOPE; BEAM TEST; TRACKER; PULSAR; CALORIMETER; DETECTOR;
READOUT; DESIGN; MODEL
AB The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope began its on-orbit operations on June 23, 2008. Calibrations, defined in a generic sense, correspond to synchronization of trigger signals, optimization of delays for latching data, determination of detector thresholds, gains and responses, evaluation of the perimeter of the South Atlantic Anomaly (SAA), measurements of live time, of absolute time, and internal and spacecraft boresight alignments. Here we describe on-orbit calibration results obtained using known astrophysical sources, galactic cosmic rays, and charge injection into the front-end electronics of each detector. Instrument response functions will be described in a separate publication. This paper demonstrates the stability of calibrations and describes minor changes observed since launch. These results have been used to calibrate the LAT datasets to be publicly released in August 2009. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Ackermann, M.; Ajello, M.; Bartelt, J.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Bogart, J. R.; Borgland, A. W.; Bouvier, A.; Cameron, R. A.; Campell, M.; Charles, E.; Chiang, J.; Claus, R.; Condamoor, S.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Edmonds, Y.; Flath, D. L.; Focke, W. B.; Fouts, K.; Freytag, D.; Funk, S.; Glanzman, T.; Godfrey, G.; Goodman, J.; Hakimi, M.; Haller, G.; Hart, P. A.; Huffer, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kavelaars, A.; Kelly, H.; Kocian, M. L.; Lee, S. -H.; Madejski, G. M.; Michelson, P. F.; Mitra, P.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nelson, D.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Rochester, L. S.; Romani, R. W.; Sapozhnikov, L.; Saxton, O. H.; Sugizaki, M.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Turri, M.; Usher, T. L.; Wai, L. L.; Waite, A. P.; Wang, P.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA.
[Ackermann, M.; Ajello, M.; Bartelt, J.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Bogart, J. R.; Borgland, A. W.; Bouvier, A.; Cameron, R. A.; Campell, M.; Charles, E.; Chiang, J.; Claus, R.; Condamoor, S.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Edmonds, Y.; Flath, D. L.; Focke, W. B.; Fouts, K.; Freytag, D.; Funk, S.; Glanzman, T.; Godfrey, G.; Goodman, J.; Hakimi, M.; Haller, G.; Hart, P. A.; Huffer, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kavelaars, A.; Kelly, H.; Kocian, M. L.; Lee, S. -H.; Madejski, G. M.; Michelson, P. F.; Mitra, P.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nelson, D.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Rochester, L. S.; Romani, R. W.; Sapozhnikov, L.; Saxton, O. H.; Sugizaki, M.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Turri, M.; Usher, T. L.; Wai, L. L.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA.
[Abdo, A. A.; Ampe, J.; Chekhtman, A.; Dermer, C. D.; Fewtrell, Z.; Grove, J. E.; Johnson, W. N.; Leas, B.; Lovellette, M. N.; Makeev, A.; May, D.; Raynor, W.; Strickman, M. S.; Wood, D. L.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA.
[Abdo, A. A.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA.
[Anderson, B.; Atwood, W. B.; Dormody, M.; Johnson, R. P.; Porter, T. A.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA.
[Anderson, B.; Atwood, W. B.; Dormody, M.; Johnson, R. P.; Porter, T. A.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA.
[Axelsson, M.] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden.
[Axelsson, M.; Carlson, P.; Conrad, J.; Klamra, W.; McGlynn, S.; Meurer, C.; Ryde, F.; Sellerholm, A.; Ylinen, T.] AlbaNova, Oskar Klein Ctr Cosmo Particle Phys, SE-10691 Stockholm, Sweden.
[Bagagli, R.; Baldini, L.; Bellardi, F.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ceccanti, M.; Fabiani, D.; Kuss, M.; Latronico, L.; Massai, M. M.; Minuti, M.; Omodei, N.; Pesce-Rollins, M.; Pinchera, M.; Rapposelli, E.; Razzano, M.; Saggini, N.; Sgro, C.; Spandre, G.; Tenze, A.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy.
[Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Starck, J. -L.] Univ Paris Diderot, Lab AIM, CEA Saclay, CEA IRFU,CNRS,Serv Astrophys, F-91191 Gif Sur Yvette, France.
[Barbiellini, G.; Longo, F.; Moretti, E.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy.
[Barbiellini, G.; Longo, F.; Moretti, E.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy.
[Bastieri, D.; Bisello, D.; Busetto, G.; Paccagnella, A.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy.
[Bastieri, D.; Bisello, D.; Busetto, G.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy.
[Baughman, B. M.; Hughes, R. E.; Kuehn, F.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA.
[Bederede, D.; Bourgeois, P.] CEA Saclay, IRFU Dir, F-91191 Gif Sur Yvette, France.
[Belli, F.; Marchetti, M.; Mazzenga, G.; Morselli, A.; Picozza, P.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy.
[Belli, F.; Marchetti, M.; Mazzenga, G.; Picozza, P.; Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy.
[Bissaldi, E.; Orlando, E.; Strong, A. W.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany.
[Bogaert, G.; Bruel, P.; Ferreira, O.; Fleury, P.; Giebels, B.; Sanchez, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France.
[Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy.
[Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy.
[Brigida, M.; Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Marangelli, B.; Mirizzi, N.; Monte, C.; Raino, S.; Spinelli, P.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy.
[Brigida, M.; Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Marangelli, B.; Mirizzi, N.; Monte, C.; Raino, S.; Spinelli, P.] Politecn Bari, I-70126 Bari, Italy.
[Brigida, M.; Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Garganov, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Marangelli, B.; Mazziotta, M. N.; Mirizzi, N.; Mongelli, M.; Monte, C.; Raino, S.; Sacchetti, A.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy.
[Burnett, T. H.; Kerr, M.; Robinson, S.; Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA.
[Caraveo, P. A.] Ist Astrofis Spaziale & Fis Cosm, INAF, I-20133 Milan, Italy.
[Carius, S.; Nilsson, L.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden.
[Carlson, P.; Conrad, J.; Klamra, W.; McGlynn, S.; Ryde, F.; Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden.
[Cavazzuti, E.; Cutini, S.; Gasparrini, D.] ASI, Sci Data Ctr, I-00044 Frascati, Italy.
[Chekhtman, A.; Makeev, A.] George Mason Univ, Fairfax, VA 22030 USA.
[Cheung, C. C.; Cillis, A. N.; Corbet, R.; Davis, D. S.; Ferrara, E. C.; Gehrelscao, N.; Hays, E.; Johnson, T. J.; McEnery, J. E.; Ritz, S.; Thompson, D. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Chipaux, R.] CEA Saclay, IRFU, Serv Phys Particules, F-91191 Gif Sur Yvette, France.
[Chipaux, R.] CEA Saclay, IRFU SEDI, F-91191 Gif Sur Yvette, France.
[Cohen-Tanugi, J.; Farnier, C.; Lavalley, C.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France.
[Conrad, J.; Meurer, C.; Sellerholm, A.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden.
[Corbet, R.; Davis, D. S.] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA.
[DeKlotz, M.] Stellar Solut Inc, Palo Alto, CA 94306 USA.
[de Angelis, A.; Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy.
[de Angelis, A.; Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Coll Udine, I-33100 Udine, Italy.
[Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France.
[Dizon, P.; Virmani, N.] ATK Space Prod, Beltsville, MD 20705 USA.
[Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] Ctr Etud Nucl Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France.
[Fukazawa, Y.; Hanabata, Y.; Katagiri, H.; Mizuno, T.; Nishino, S.; Ohsugi, T.; Takahashi, H.; Yasuda, H.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan.
[Gehrelscao, N.; Johnson, T. J.; Moiseev, A. A.] Univ Maryland, College Pk, MD 20742 USA.
[Guiriec, S.] Univ Alabama, Huntsville, AL 35899 USA.
[Hascall, P.; Lee, B.; Lung, D. K.] Orbital Network Engn, Cupertino, CA 95014 USA.
[Kataoka, J.] Tokyo Inst Technol, Dept Phys, Meguro, Tokyo 1528551, Japan.
[Kataoka, J.] Waseda Univ, Shinjuku Ku, Tokyo 1698050, Japan.
[Knoedlseder, J.; Vilchez, N.] UPS, CNRS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France.
[Moiseev, A. A.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA.
[Nilsson, L.] Matfakta Kalmar AB, S-30477 Kalmar, Sweden.
[Ohno, M.; Ozaki, M.; Takahashi, T.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan.
[Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA.
[Paccagnella, A.] Univ Padua, Dipartimento Ingn Informaz, I-35131 Padua, Italy.
[Reimer, A.; Reimer, O.] Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria.
[Reimer, A.; Reimer, O.] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria.
[Reyes, L. C.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Robinson, S.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Rodriguez, A. Y.; Torres, D. F.] CSIC, IEEC, Inst Ciencies Espai, Barcelona 08193, Spain.
[Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA.
[Stephens, T. E.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA.
[Stephens, T. E.] USRA, Columbia, MD 21044 USA.
[Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA.
[Tibolla, O.] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany.
[Torres, D. F.] Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain.
[Tramacere, A.] CIFS, I-10133 Turin, Italy.
[Wai, L. L.] Yahoo Inc, Sunnyvale, CA 94089 USA.
RP Silva, EDE (reprint author), Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA.
EM eduardo@slac.stanford.edu
RI Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Reimer,
Olaf/A-3117-2013; Funk, Stefan/B-7629-2015; Loparco,
Francesco/O-8847-2015; Johannesson, Gudlaugur/O-8741-2015; Moskalenko,
Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro,
Carmelo/K-3395-2016; Bissaldi, Elisabetta/K-7911-2016; Torres,
Diego/O-9422-2016; Starck, Jean-Luc/D-9467-2011; Thompson,
David/D-2939-2012; McEnery, Julie/D-6612-2012; Chipaux,
Remi/G-1145-2010; Ozaki, Masanobu/K-1165-2013; Rando,
Riccardo/M-7179-2013; Baldini, Luca/E-5396-2012; lubrano,
pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Nolan,
Patrick/A-5582-2009; Kuss, Michael/H-8959-2012; giglietto,
nicola/I-8951-2012; Tosti, Gino/E-9976-2013; Saz Parkinson, Pablo
Miguel/I-7980-2013
OI Moretti, Elena/0000-0001-5477-9097; Cutini, Sara/0000-0002-1271-2924;
Gasparrini, Dario/0000-0002-5064-9495; Tramacere,
Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; Giordano,
Francesco/0000-0002-8651-2394; Picozza, Piergiorgio/0000-0002-7986-3321;
Stephens, Thomas/0000-0003-3065-6871; De Angelis,
Alessandro/0000-0002-3288-2517; Frailis, Marco/0000-0002-7400-2135;
Caraveo, Patrizia/0000-0003-2478-8018; Bastieri,
Denis/0000-0002-6954-8862; Omodei, Ni