FN Thomson Reuters Web of Science™
VR 1.0
PT J
AU Von Ruden, AL
Polikarpov, E
Koech, PK
Cosimbescu, L
Swensen, J
Chopra, N
Darsell, JT
Padmaperuma, AB
AF Von Ruden, Amber L.
Polikarpov, Evgueni
Koech, Phillip K.
Cosimbescu, Lelia
Swensen, James
Chopra, Neetu
Darsell, Jens T.
Padmaperuma, Asanga B.
TI Novel hole blocking materials for blue electro phosphorescent OLEDs
SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Meeting Abstract
C1 [Von Ruden, Amber L.; Polikarpov, Evgueni; Koech, Phillip K.; Cosimbescu, Lelia; Swensen, James; Chopra, Neetu; Darsell, Jens T.; Padmaperuma, Asanga B.] Pacific NW Natl Lab, Energy & Efficiency Div, Richland, WA 99352 USA.
RI Chopra, Neetu/F-3307-2012
OI Chopra, Neetu/0000-0002-0114-532X
NR 0
TC 0
Z9 0
U1 0
U2 0
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0065-7727
J9 ABSTR PAP AM CHEM S
JI Abstr. Pap. Am. Chem. Soc.
PD AUG 16
PY 2009
VL 238
MA 85-ORGN
PG 1
WC Chemistry, Multidisciplinary
SC Chemistry
GA V16HY
UT WOS:000207861908267
ER
PT J
AU Vovk, MV
Sukach, V
Mel'nichenko, N
Gakh, AA
AF Vovk, Mykhailo V.
Sukach, Volodymyr
Mel'nichenko, Nina
Gakh, Andrei A.
TI Novel CF3O-heterocyclic systems for prostate cancer chemotherapy
SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Meeting Abstract
C1 [Vovk, Mykhailo V.; Sukach, Volodymyr; Mel'nichenko, Nina] Natl Acad Sci Ukraine, Inst Organ Chem, UA-02094 Kiev, Ukraine.
[Gakh, Andrei A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
EM mvovk@ioch.kiev.ua; gakhaa@ornl.gov
NR 0
TC 0
Z9 0
U1 0
U2 0
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0065-7727
J9 ABSTR PAP AM CHEM S
JI Abstr. Pap. Am. Chem. Soc.
PD AUG 16
PY 2009
VL 238
MA 735-ORGN
PG 1
WC Chemistry, Multidisciplinary
SC Chemistry
GA V16HY
UT WOS:000207861908767
ER
PT J
AU Walker, BN
Stolee, JA
Pickel, DL
Retterer, S
Vertes, A
AF Walker, Bennett N.
Stolee, Jessica A.
Pickel, Deanna L.
Retterer, Scott
Vertes, Akos
TI ANYL 378-Nanopost array (NAPA) photonic ion sources for soft laser
desorption ionization
SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Meeting Abstract
C1 [Walker, Bennett N.; Stolee, Jessica A.] George Washington Univ, Dept Chem, Washington, DC 20052 USA.
[Pickel, Deanna L.; Retterer, Scott] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Vertes, Akos] George Washington Univ, Dept Chem, WM Keck Inst Prote Technol & Applicat, Washington, DC 20052 USA.
EM bennettw@gwmail.gwu.edu; jstolee@gwmail.gwu.edu; pickeldl@ornl.gov;
rettererst@ornl.gov; vertes@gwu.edu
RI Pickel, Deanna/E-4778-2010; Retterer, Scott/A-5256-2011
OI Retterer, Scott/0000-0001-8534-1979
NR 0
TC 0
Z9 0
U1 0
U2 1
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0065-7727
J9 ABSTR PAP AM CHEM S
JI Abstr. Pap. Am. Chem. Soc.
PD AUG 16
PY 2009
VL 238
MA 378-ANYL
PG 1
WC Chemistry, Multidisciplinary
SC Chemistry
GA V16HY
UT WOS:000207861901175
ER
PT J
AU Wang, C
van der Vliet, D
Strmcnik, D
Markovic, N
Stamenkovic, V
AF Wang, Chao
van der Vliet, Dennis
Strmcnik, Dusan
Markovic, Nenad
Stamenkovic, Vojislav
TI COLL 115-Pt-based nanoparticles as catalyst for energy conversion
SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Meeting Abstract
C1 [Wang, Chao; van der Vliet, Dennis; Strmcnik, Dusan; Markovic, Nenad; Stamenkovic, Vojislav] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
EM chaowang@anl.gov; vrstamenkovic@anl.gov
RI van der Vliet, Dennis/P-2983-2015
OI van der Vliet, Dennis/0000-0002-2524-527X
NR 0
TC 0
Z9 0
U1 0
U2 0
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0065-7727
J9 ABSTR PAP AM CHEM S
JI Abstr. Pap. Am. Chem. Soc.
PD AUG 16
PY 2009
VL 238
MA 115-COLL
PG 1
WC Chemistry, Multidisciplinary
SC Chemistry
GA V16HY
UT WOS:000207861903495
ER
PT J
AU Wang, LQ
Karkamkar, A
Autrey, T
Exarhos, GJ
AF Wang, Li-Qiong
Karkamkar, Abhi
Autrey, Tom
Exarhos, Gregory J.
TI Hyperpolarized 129Xe NMR investigation of ammonia borane in mesoporous
silica
SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Meeting Abstract
C1 [Wang, Li-Qiong; Karkamkar, Abhi; Exarhos, Gregory J.] Pacific NW Natl Lab, Fundamental Sci Div, Richland, WA 99354 USA.
EM lq.wang@pnl.gov; abhi.karkamkar@pnl.gov
NR 0
TC 0
Z9 0
U1 1
U2 4
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0065-7727
J9 ABSTR PAP AM CHEM S
JI Abstr. Pap. Am. Chem. Soc.
PD AUG 16
PY 2009
VL 238
MA 215-INOR
PG 1
WC Chemistry, Multidisciplinary
SC Chemistry
GA V16HZ
UT WOS:000207862000795
ER
PT J
AU Wang, W
Gu, BH
Doktycz, MJ
AF Wang, Wei
Gu, Baohua
Doktycz, Mitchel J.
TI COLL 436-Shape-controlled formation of ceria nanocrystals in a
surfactant- and template-free process
SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Meeting Abstract
C1 [Wang, Wei; Gu, Baohua] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA.
[Doktycz, Mitchel J.] Oak Ridge Natl Lab, Div Life Sci, Oak Ridge, TN 37831 USA.
EM wangw@ornl.gov
RI Gu, Baohua/B-9511-2012; Wang, Wei/B-5924-2012
OI Gu, Baohua/0000-0002-7299-2956;
NR 0
TC 0
Z9 0
U1 0
U2 0
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0065-7727
J9 ABSTR PAP AM CHEM S
JI Abstr. Pap. Am. Chem. Soc.
PD AUG 16
PY 2009
VL 238
MA 436-COLL
PG 1
WC Chemistry, Multidisciplinary
SC Chemistry
GA V16HY
UT WOS:000207861903505
ER
PT J
AU Wang, XP
Hoffmann, CM
AF Wang, Xiaoping
Hoffmann, Christina M.
TI CINF 88-Chemical information from single crystal neutron crystallography
SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Meeting Abstract
C1 [Wang, Xiaoping; Hoffmann, Christina M.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA.
EM wangx@ornl.gov
RI hoffmann, christina/D-2292-2016
OI hoffmann, christina/0000-0002-7222-5845
NR 0
TC 0
Z9 0
U1 0
U2 0
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0065-7727
J9 ABSTR PAP AM CHEM S
JI Abstr. Pap. Am. Chem. Soc.
PD AUG 16
PY 2009
VL 238
MA 88-CINF
PG 1
WC Chemistry, Multidisciplinary
SC Chemistry
GA V16HY
UT WOS:000207861902719
ER
PT J
AU Weare, WW
Yano, J
Yachandra, VK
Kubiak, CP
Frei, HM
AF Weare, Walter Warren
Yano, Junko
Yachandra, Vittal K.
Kubiak, Clifford P.
Frei, Heinz M.
TI Mesoporous silicate surfaces as scaffolds for light-induced electron
transfer into multi-electron catalysts
SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Meeting Abstract
C1 [Weare, Walter Warren; Yano, Junko; Yachandra, Vittal K.; Frei, Heinz M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
[Kubiak, Clifford P.] U CA, Dept Chem & Biochem, DEPT 0358, La Jolla, CA 92093 USA.
EM wwweare@lbl.gov; JYano@LBL.GOV; VKYachandra@LBL.GOV; ckubiak@ucsd.edu;
HMFrei@lbl.gov
NR 0
TC 0
Z9 0
U1 0
U2 0
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0065-7727
J9 ABSTR PAP AM CHEM S
JI Abstr. Pap. Am. Chem. Soc.
PD AUG 16
PY 2009
VL 238
MA 608-PHYS
PG 1
WC Chemistry, Multidisciplinary
SC Chemistry
GA V16HY
UT WOS:000207861909192
ER
PT J
AU Wei, Q
Xu, HW
Yang, DL
Timofeeva, TV
Obrey, SJ
Currier, RP
Zhao, YS
AF Wei, Qiang
Xu, Hongwu
Yang, Dali
Timofeeva, Tatiana V.
Obrey, Stephen J.
Currier, Robert P.
Zhao, Yusheng
TI Metal-organic frameworks from hybrid functional group ligands
SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Meeting Abstract
C1 [Wei, Qiang; Obrey, Stephen J.; Currier, Robert P.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA.
[Xu, Hongwu] Los Alamos Natl Lab, Div Neutron Sci, Los Alamos, NM 87545 USA.
[Yang, Dali] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA.
[Timofeeva, Tatiana V.] New Mexico Highlands Univ, Dept Nat Sci, Las Vegas, NM 87701 USA.
[Zhao, Yusheng] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA.
EM qwei@lanl.gov; hxu@lanl.gov; sobrey@lanl.gov; yzhao@lanl.gov
RI Lujan Center, LANL/G-4896-2012
NR 0
TC 0
Z9 0
U1 0
U2 1
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0065-7727
J9 ABSTR PAP AM CHEM S
JI Abstr. Pap. Am. Chem. Soc.
PD AUG 16
PY 2009
VL 238
MA 528-INOR
PG 1
WC Chemistry, Multidisciplinary
SC Chemistry
GA V16HZ
UT WOS:000207862000105
ER
PT J
AU Welch, CF
Kim, YS
Lee, KS
Johnston, CM
Labouriau, A
Hawley, ME
Hjelm, RP
Orler, EB
AF Welch, Cynthia F.
Kim, Yu Seung
Lee, K. S.
Johnston, Christina M.
Labouriau, Andrea
Hawley, Marilyn E.
Hjelm, Rex P.
Orler, E. Bruce
TI The effect of solvent on morphology of Nafion (R) 212 dispersions and
their effect on fuel cell performance
SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Meeting Abstract
C1 [Welch, Cynthia F.; Hjelm, Rex P.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA.
[Johnston, Christina M.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA.
[Labouriau, Andrea; Orler, E. Bruce] Los Alamos Natl Lab, Polymer & Coatings Grp, Los Alamos, NM 87545 USA.
[Hawley, Marilyn E.] Los Alamos Natl Lab, Struct Property Relat Grp, Los Alamos, NM 87545 USA.
EM cwelch@lanl.gov; johnston@lanl.gov; andrea@lanl.gov; hawley@lanl.gov;
Hjelm@lanl.gov; eborler@lanl.gov
RI Johnston, Christina/A-7344-2011; Lujan Center, LANL/G-4896-2012
NR 0
TC 0
Z9 0
U1 0
U2 8
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0065-7727
J9 ABSTR PAP AM CHEM S
JI Abstr. Pap. Am. Chem. Soc.
PD AUG 16
PY 2009
VL 238
MA 127-FUEL
PG 1
WC Chemistry, Multidisciplinary
SC Chemistry
GA V16HY
UT WOS:000207861905294
ER
PT J
AU Wetzler, M
Zuckermann, RN
Barron, AE
AF Wetzler, Modi
Zuckermann, Ronald N.
Barron, Annelise E.
TI POLY 542-Formation of highly monodisperse nanospheres from peptoid
oligomers
SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Meeting Abstract
C1 [Wetzler, Modi; Barron, Annelise E.] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA.
[Zuckermann, Ronald N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Biol Nanostruct Lab, Berkeley, CA 94720 USA.
NR 0
TC 0
Z9 0
U1 0
U2 0
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0065-7727
J9 ABSTR PAP AM CHEM S
JI Abstr. Pap. Am. Chem. Soc.
PD AUG 16
PY 2009
VL 238
MA 542-POLY
PG 1
WC Chemistry, Multidisciplinary
SC Chemistry
GA V16HY
UT WOS:000207861906332
ER
PT J
AU Wu, CY
AF Wu, Ching-Yen
TI Radioactive nuclear beam experiments at TRIUMF
SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Meeting Abstract
C1 [Wu, Ching-Yen] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
EM wu24@llnl.gov
NR 0
TC 0
Z9 0
U1 0
U2 0
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0065-7727
J9 ABSTR PAP AM CHEM S
JI Abstr. Pap. Am. Chem. Soc.
PD AUG 16
PY 2009
VL 238
MA 37-NUCL
PG 1
WC Chemistry, Multidisciplinary
SC Chemistry
GA V16HY
UT WOS:000207861904578
ER
PT J
AU Wu, HM
Bai, F
Sun, ZC
Fan, HY
AF Wu, Huimeng
Bai, Feng
Sun, Zaicheng
Fan, Hongyou
TI Monodisperse polymer nanoparticle templated metallic core/shell
nanostructures
SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Meeting Abstract
C1 [Wu, Huimeng] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA.
[Bai, Feng; Sun, Zaicheng] Univ New Mexico, NSF Ctr Microengn Mat, Albuquerque, NM 87106 USA.
[Fan, Hongyou] Sandia Natl Labs, Ceram Proc & Inorgan Dept, Albuquerque, NM 87185 USA.
EM hwu@sandia.gov; baifeng@unm.edu; zsun@unm.edu; hfan@sanida.gov
NR 0
TC 0
Z9 0
U1 0
U2 0
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0065-7727
J9 ABSTR PAP AM CHEM S
JI Abstr. Pap. Am. Chem. Soc.
PD AUG 16
PY 2009
VL 238
MA 109-INOR
PG 1
WC Chemistry, Multidisciplinary
SC Chemistry
GA V16HZ
UT WOS:000207862000366
ER
PT J
AU Wu, MM
Mintz, M
Wang, M
Arora, S
AF Wu, May M.
Mintz, Marianne
Wang, Michael
Arora, Salil
TI Water consumption in the production of bioethanol and petroleum gasoline
SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Meeting Abstract
C1 [Wu, May M.; Mintz, Marianne; Wang, Michael; Arora, Salil] Argonne Natl Lab, Argonne, IL 60439 USA.
NR 0
TC 0
Z9 0
U1 1
U2 1
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0065-7727
J9 ABSTR PAP AM CHEM S
JI Abstr. Pap. Am. Chem. Soc.
PD AUG 16
PY 2009
VL 238
MA 309-FUEL
PG 1
WC Chemistry, Multidisciplinary
SC Chemistry
GA V16HY
UT WOS:000207861905155
ER
PT J
AU Wu, ZL
Wang, XQ
Pawel, MD
Dai, S
Overbury, SH
AF Wu, Zili
Wang, Xiqing
Pawel, Michelle D.
Dai, Sheng
Overbury, Steven H.
TI Multiwavelength Raman spectroscopic investigation of silica-supported
vanadium oxide catalysts
SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Meeting Abstract
C1 [Wu, Zili] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Wu, Zili; Wang, Xiqing; Pawel, Michelle D.; Dai, Sheng; Overbury, Steven H.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
EM wuz1@ornl.gov; xzw@ornl.gov; dais@ornl.gov; overburysh@ornl.gov
RI Pawel, Michelle/Q-2729-2015; Overbury, Steven/C-5108-2016; Dai,
Sheng/K-8411-2015
OI Pawel, Michelle/0000-0003-0244-6703; Overbury,
Steven/0000-0002-5137-3961; Dai, Sheng/0000-0002-8046-3931
NR 0
TC 0
Z9 0
U1 0
U2 3
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0065-7727
J9 ABSTR PAP AM CHEM S
JI Abstr. Pap. Am. Chem. Soc.
PD AUG 16
PY 2009
VL 238
MA 76-INOR
PG 1
WC Chemistry, Multidisciplinary
SC Chemistry
GA V16HZ
UT WOS:000207862000080
ER
PT J
AU Xie, H
Schwartz, V
Wu, ZL
Liang, CD
Overbury, SH
AF Xie, Hong
Schwartz, Viviane
Wu, Zili
Liang, Chengdu
Overbury, Steven H.
TI Structure and properties of graphitic carbons for oxidative
dehydrogenation of isobutane
SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Meeting Abstract
C1 [Xie, Hong; Wu, Zili; Liang, Chengdu; Overbury, Steven H.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Wu, Zili; Liang, Chengdu; Overbury, Steven H.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
EM xieh@ornl.gov; schwartzv@ornl.gov; wuz1@ornl.gov; liangcn@ornl.gov;
overburysh@ornl.gov
RI Liang, Chengdu/G-5685-2013; Overbury, Steven/C-5108-2016
OI Overbury, Steven/0000-0002-5137-3961
NR 0
TC 0
Z9 0
U1 0
U2 4
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0065-7727
J9 ABSTR PAP AM CHEM S
JI Abstr. Pap. Am. Chem. Soc.
PD AUG 16
PY 2009
VL 238
MA 80-INOR
PG 1
WC Chemistry, Multidisciplinary
SC Chemistry
GA V16HZ
UT WOS:000207862000196
ER
PT J
AU Xing, XP
Wang, XB
Wang, LS
AF Xing, Xiao-Peng
Wang, Xue-Bin
Wang, Lai-Sheng
TI Photoelectron angular distributions of multiply charged anions: Effects
of photoelectron kinetic energies and molecular structures
SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Meeting Abstract
C1 [Xing, Xiao-Peng; Wang, Xue-Bin] Washington State Univ, Dept Phys, Richland, WA 99354 USA.
[Wang, Lai-Sheng] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA.
[Wang, Lai-Sheng] Washington State Univ, Richland, WA 99352 USA.
EM xiaopeng.xing@pnl.gov; xuebin.wang@pnl.gov; ls.wang@pnl.gov
NR 0
TC 0
Z9 0
U1 0
U2 0
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0065-7727
J9 ABSTR PAP AM CHEM S
JI Abstr. Pap. Am. Chem. Soc.
PD AUG 16
PY 2009
VL 238
MA 542-PHYS
PG 1
WC Chemistry, Multidisciplinary
SC Chemistry
GA V16HY
UT WOS:000207861909036
ER
PT J
AU Yang, CX
Manocchi, AK
Lee, B
Yi, HM
AF Yang, Cuixian
Manocchi, Amy K.
Lee, Byeongdu
Yi, Hyunmin
TI BIOT 259-Viral-templated palladium nanocatalysts for dichromate
reduction
SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Meeting Abstract
C1 [Yang, Cuixian; Manocchi, Amy K.; Yi, Hyunmin] Tufts Univ, Dept Chem & Biol Engn, Medford, MA 02155 USA.
[Lee, Byeongdu] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA.
EM cuixian.yang@tufts.edu; amy.manocchi@tufts.edu; hyunmin.yi@tufts.edu
NR 0
TC 0
Z9 0
U1 0
U2 1
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0065-7727
J9 ABSTR PAP AM CHEM S
JI Abstr. Pap. Am. Chem. Soc.
PD AUG 16
PY 2009
VL 238
MA 259-BIOT
PG 1
WC Chemistry, Multidisciplinary
SC Chemistry
GA V16HY
UT WOS:000207861901785
ER
PT J
AU Yang, J
Hong, KL
Bonnesen, PV
AF Yang, Jun
Hong, Kunlun
Bonnesen, Peter V.
TI An approach to the deuterated PAMAM dendrimers
SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Meeting Abstract
C1 [Yang, Jun; Hong, Kunlun] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA.
[Bonnesen, Peter V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Bonnesen, Peter V.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
EM yangj1@ornl.gov; bonnesenpv@ornl.gov
NR 0
TC 0
Z9 0
U1 0
U2 3
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0065-7727
J9 ABSTR PAP AM CHEM S
JI Abstr. Pap. Am. Chem. Soc.
PD AUG 16
PY 2009
VL 238
MA 109-ORGN
PG 1
WC Chemistry, Multidisciplinary
SC Chemistry
GA V16HY
UT WOS:000207861908628
ER
PT J
AU Yang, P
Batista, ER
Bylaska, EJ
de Jong, WA
Martin, RL
Hay, PJ
AF Yang, Ping
Batista, Enrique R.
Bylaska, Eric J.
de Jong, Wibe A.
Martin, Richard L.
Hay, P. Jeffrey
TI Theoretical studies of electronic structure of actinide complexes
SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Meeting Abstract
C1 [Yang, Ping; Bylaska, Eric J.; de Jong, Wibe A.] Pacific NW Natl Lab, WR Wiley Environm Mol Sci Lab, Richland, WA 99352 USA.
[Batista, Enrique R.; Martin, Richard L.; Hay, P. Jeffrey] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
EM erb@lanl.gov; eric.bylaska@pnl.gov; bert.dejong@pnl.gov; auclark@wsu.edu
NR 0
TC 0
Z9 0
U1 0
U2 1
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0065-7727
J9 ABSTR PAP AM CHEM S
JI Abstr. Pap. Am. Chem. Soc.
PD AUG 16
PY 2009
VL 238
MA 143-NUCL
PG 1
WC Chemistry, Multidisciplinary
SC Chemistry
GA V16HY
UT WOS:000207861904425
ER
PT J
AU Yang, SC
Blachowicz, L
Sandter, W
Bezanilla, F
Makowski, L
Roux, B
AF Yang, Sichun
Blachowicz, Lydia
Sandter, Walter
Bezanilla, Francisco
Makowski, Lee
Roux, Benoit
TI Assembly/disassembly mechanisms of multidomain Src kinase revealed by
X-ray solution scattering and LRET
SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Meeting Abstract
C1 [Yang, Sichun; Blachowicz, Lydia; Sandter, Walter; Bezanilla, Francisco; Roux, Benoit] Univ Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USA.
[Makowski, Lee] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA.
EM scyang@uchicago.edu; lmakowski@anl.gov; roux@uchicago.edu
NR 0
TC 0
Z9 0
U1 0
U2 0
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0065-7727
J9 ABSTR PAP AM CHEM S
JI Abstr. Pap. Am. Chem. Soc.
PD AUG 16
PY 2009
VL 238
MA 32-COMP
PG 1
WC Chemistry, Multidisciplinary
SC Chemistry
GA V16HY
UT WOS:000207861904284
ER
PT J
AU Yano, J
Sauer, KH
Yachandra, VK
AF Yano, Junko
Sauer, Kenneth H.
Yachandra, Vittal K.
TI Water-splitting in nature: Structural and spectroscopic studies of the
Mn4Ca cluster in photosystem II
SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Meeting Abstract
C1 [Yano, Junko; Yachandra, Vittal K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
[Sauer, Kenneth H.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
EM JYano@LBL.GOV; KHSauer@LBL.GOV; VKYachandra@LBL.GOV
NR 0
TC 0
Z9 0
U1 0
U2 0
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0065-7727
J9 ABSTR PAP AM CHEM S
JI Abstr. Pap. Am. Chem. Soc.
PD AUG 16
PY 2009
VL 238
MA 8-PHYS
PG 1
WC Chemistry, Multidisciplinary
SC Chemistry
GA V16HY
UT WOS:000207861909274
ER
PT J
AU Yates, MA
AF Yates, Mary Anne
TI YCC 2-Countering terrorism through science
SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Meeting Abstract
C1 [Yates, Mary Anne] Argonne Natl Lab, Natl Secur Program, Argonne, IL 60439 USA.
[Yates, Mary Anne] Argonne Natl Lab, Homeland Secur Program, Argonne, IL 60439 USA.
NR 0
TC 0
Z9 0
U1 0
U2 0
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0065-7727
J9 ABSTR PAP AM CHEM S
JI Abstr. Pap. Am. Chem. Soc.
PD AUG 16
PY 2009
VL 238
MA 2-YCC
PG 1
WC Chemistry, Multidisciplinary
SC Chemistry
GA V16HY
UT WOS:000207861906812
ER
PT J
AU Ye, XH
Wang, YR
Hopkins, RC
Adams, M
Evans, BR
Mielenz, J
Zhang, YHP
AF Ye, Xinhao
Wang, Yiran
Hopkins, Robert C.
Adams, Mike
Evans, Barbara R.
Mielenz, Jonathan
Zhang, Y-H Percival
TI BIOT 160-Production of 12 H2 per glucose equivalent of cellulosic
materials and water by in vitro synthetic biology approach
SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Meeting Abstract
C1 [Ye, Xinhao; Wang, Yiran; Zhang, Y-H Percival] Virginia Polytech Inst & State Univ, Dept Biol Syst Engn, Blacksburg, VA 24061 USA.
[Hopkins, Robert C.] Univ Georgia, Dept Biochem, Athens, GA 30602 USA.
[Adams, Mike] Univ George, Dept Biochem & Mol Biol, Anthens, GA 30602 USA.
[Evans, Barbara R.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
[Mielenz, Jonathan] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA.
EM xhye@vt.edu; yiran@vt.edu; rch@uga.edu; evansb@ornl.gov; ypzhang@vt.edu
RI Ye, Xinhao/J-7591-2013
NR 0
TC 0
Z9 0
U1 0
U2 0
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0065-7727
J9 ABSTR PAP AM CHEM S
JI Abstr. Pap. Am. Chem. Soc.
PD AUG 16
PY 2009
VL 238
MA 160-BIOT
PG 1
WC Chemistry, Multidisciplinary
SC Chemistry
GA V16HY
UT WOS:000207861901484
ER
PT J
AU Yeh, MF
AF Yeh, Minfang
TI Metal-loaded liquid scintillators for neutrino experiments
SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Meeting Abstract
C1 [Yeh, Minfang] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
EM yeh@bnl.gov
NR 0
TC 0
Z9 0
U1 0
U2 0
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0065-7727
J9 ABSTR PAP AM CHEM S
JI Abstr. Pap. Am. Chem. Soc.
PD AUG 16
PY 2009
VL 238
MA 67-NUCL
PG 1
WC Chemistry, Multidisciplinary
SC Chemistry
GA V16HY
UT WOS:000207861904485
ER
PT J
AU Yin, HF
Dai, S
Overbury, SH
AF Yin, Hongfeng
Dai, Sheng
Overbury, Steven H.
TI CATL 46-Oxidative removal of organic surfactant and promotion of
Au/support (support=SiO2, TiO2, carbon) by treatment with K2MnO4 and
KMnO4
SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Meeting Abstract
C1 [Yin, Hongfeng; Dai, Sheng; Overbury, Steven H.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
EM yinh@ornl.gov; dais@ornl.gov; overburysh@ornl.gov
RI Overbury, Steven/C-5108-2016; Dai, Sheng/K-8411-2015
OI Overbury, Steven/0000-0002-5137-3961; Dai, Sheng/0000-0002-8046-3931
NR 0
TC 0
Z9 0
U1 0
U2 2
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0065-7727
J9 ABSTR PAP AM CHEM S
JI Abstr. Pap. Am. Chem. Soc.
PD AUG 16
PY 2009
VL 238
MA 46-CATL
PG 1
WC Chemistry, Multidisciplinary
SC Chemistry
GA V16HY
UT WOS:000207861901810
ER
PT J
AU Yu, X
Li, YG
Mays, J
Hong, KL
AF Yu, Xiang
Li, Yugang
Mays, Jimmy
Hong, Kunlun
TI Synthesis and characterization of comb-like copolymers with thiophene
backbone
SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Meeting Abstract
C1 [Yu, Xiang] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
[Li, Yugang] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA.
[Mays, Jimmy; Hong, Kunlun] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
EM ygli@ion.chem.utk.edu; mays@ion.chem.utk.edu
NR 0
TC 0
Z9 0
U1 0
U2 1
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0065-7727
J9 ABSTR PAP AM CHEM S
JI Abstr. Pap. Am. Chem. Soc.
PD AUG 16
PY 2009
VL 238
MA 427-PMSE
PG 1
WC Chemistry, Multidisciplinary
SC Chemistry
GA V16HY
UT WOS:000207861905843
ER
PT J
AU Zahariev, F
Gordon, MS
AF Zahariev, Federico
Gordon, Mark S.
TI TDDFT/EFP hybrid for excitations and nonlinear response properties in
solvents
SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Meeting Abstract
C1 [Zahariev, Federico; Gordon, Mark S.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
EM federico@si.msg.chem.iastate.edu; mark@si.msg.chem.iastate.edu
NR 3
TC 0
Z9 0
U1 0
U2 1
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0065-7727
J9 ABSTR PAP AM CHEM S
JI Abstr. Pap. Am. Chem. Soc.
PD AUG 16
PY 2009
VL 238
MA 484-PHYS
PG 1
WC Chemistry, Multidisciplinary
SC Chemistry
GA V16HY
UT WOS:000207861909065
ER
PT J
AU Zalupski, PR
Martin, LR
Nash, KL
AF Zalupski, Peter R.
Martin, Leigh R.
Nash, Kenneth L.
TI Toward understanding the thermodynamics of TALSPEAK process: Lactate
medium
SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Meeting Abstract
C1 [Martin, Leigh R.] Idaho Natl Lab, Aqueous Separat & Radiochem Dept, Idaho Falls, ID 83415 USA.
[Nash, Kenneth L.] Washington State Univ, Dept Chem, Pullman, WA 99164 USA.
EM peter.zalupski@inl.gov; Leigh.Martin@inl.gov; knash@wsu.edu
RI Martin, Leigh/P-3167-2016
OI Martin, Leigh/0000-0001-7241-7110
NR 0
TC 0
Z9 0
U1 0
U2 0
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0065-7727
J9 ABSTR PAP AM CHEM S
JI Abstr. Pap. Am. Chem. Soc.
PD AUG 16
PY 2009
VL 238
MA 101-NUCL
PG 1
WC Chemistry, Multidisciplinary
SC Chemistry
GA V16HY
UT WOS:000207861904484
ER
PT J
AU Zhang, JA
Ma, Z
Jiao, J
Yin, HF
Yu, JH
Dai, S
AF Zhang, Jianan
Ma, Zhen
Jiao, Jian
Yin, Hongfeng
Yu, Jihong
Dai, Sheng
TI COLL 269-Surface modification of mesoporous silica materials by stepwise
grafting of metal phosphates
SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Meeting Abstract
C1 [Zhang, Jianan] Jilin Univ, State Key Lab Inorgan Synth & Preparat Chem, Changchun 130012, Peoples R China.
[Ma, Zhen; Jiao, Jian; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Div Chem Sci, Oak Ridge, TN 37831 USA.
[Yu, Jihong] Jilin Univ, Key Lab Inorgan Synth & Preparat Chem, Changchun 130023, Peoples R China.
EM jianan_z105@yahoo.com.cn; zmu@ornl.gov; jiaoj@ornl.gov; yinh@ornl.gov;
jihong@mailjlu.edu.cn; dais@ornl.gov
RI yu, jihong/C-1381-2011; Dai, Sheng/K-8411-2015
OI yu, jihong/0000-0003-1991-2942; Dai, Sheng/0000-0002-8046-3931
NR 0
TC 0
Z9 0
U1 0
U2 2
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0065-7727
J9 ABSTR PAP AM CHEM S
JI Abstr. Pap. Am. Chem. Soc.
PD AUG 16
PY 2009
VL 238
MA 269-COLL
PG 1
WC Chemistry, Multidisciplinary
SC Chemistry
GA V16HY
UT WOS:000207861903005
ER
PT J
AU Zhang, L
Yang, Y
Xia, G
Heldebrant, DJ
King, DL
Wang, Y
AF Zhang, Liang
Yang, Yong
Xia, Gordon
Heldebrant, David J.
King, David L.
Wang, Yong
TI Investigation of Pt-Re interaction in Pt-Re/C catalysts for production
of hydrogen and biofuels from bioliquid
SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Meeting Abstract
C1 [Zhang, Liang; Yang, Yong; King, David L.; Wang, Yong] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA.
[Xia, Gordon; Heldebrant, David J.] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA.
EM liang.zhang@pnl.gov; yong.yang@pnl.gov; david.heldebrant@pnl.gov;
david.king@pnl.gov; yongwang@pnl.gov
RI Wang, Yong/C-2344-2013
NR 0
TC 0
Z9 0
U1 0
U2 1
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0065-7727
J9 ABSTR PAP AM CHEM S
JI Abstr. Pap. Am. Chem. Soc.
PD AUG 16
PY 2009
VL 238
MA 16-PETR
PG 1
WC Chemistry, Multidisciplinary
SC Chemistry
GA V16HY
UT WOS:000207861904652
ER
PT J
AU Zhang, XY
Guo, JC
Lockard, JV
Attenkofer, K
Jennings, G
Chen, LX
AF Zhang, Xiaoyi
Guo, Jianchang
Lockard, Jenny V.
Attenkofer, Klaus
Jennings, Guy
Chen, Lin X.
TI COLL 352-Visualizing charge transfer and structural change at
dye-nanoparticle interface
SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Meeting Abstract
C1 [Zhang, Xiaoyi; Attenkofer, Klaus; Jennings, Guy] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA.
[Guo, Jianchang] Univ Chicago, Argonne Natl Lab, Dept Chem, Chem Sci & Engn Div, Argonne, IL 60439 USA.
[Chen, Lin X.] Northwestern Univ, Argonne Natl Lab, Dept Chem, Chem Sci & Engn Div, Argonne, IL 60439 USA.
EM xyzhang@aps.anl.gov; lockard@anl.gov; klaus.attenkofer@anl.gov;
lchen@anl.gov
NR 0
TC 0
Z9 0
U1 0
U2 0
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0065-7727
J9 ABSTR PAP AM CHEM S
JI Abstr. Pap. Am. Chem. Soc.
PD AUG 16
PY 2009
VL 238
MA 352-COLL
PG 1
WC Chemistry, Multidisciplinary
SC Chemistry
GA V16HY
UT WOS:000207861903125
ER
PT J
AU Zhang, ZY
Tian, GX
Rao, LF
AF Zhang, Zhiyong
Tian, Guoxin
Rao, Linfeng
TI Computational study of covalency in trivalent actinide and lanthanide
complexes with soft-donor ligands
SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Meeting Abstract
C1 [Zhang, Zhiyong] Stanford Univ, Stanford Nanofabricat Facil, Stanford, CA 94305 USA.
[Tian, Guoxin] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA.
[Rao, Linfeng] Univ Calif Berkeley, Lawrence Berkeley Lab, Actinide Chem Grp, Berkeley, CA 94720 USA.
EM zyzhang@stanford.edu; gtian@lbl.gov; LRao@lbl.gov
NR 0
TC 0
Z9 0
U1 1
U2 4
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0065-7727
J9 ABSTR PAP AM CHEM S
JI Abstr. Pap. Am. Chem. Soc.
PD AUG 16
PY 2009
VL 238
MA 198-NUCL
PG 1
WC Chemistry, Multidisciplinary
SC Chemistry
GA V16HY
UT WOS:000207861904545
ER
PT J
AU Zhao, YN
Trewyn, BG
Slowing, II
AF Zhao, Yannan
Trewyn, Brian G.
Slowing, Igor I.
TI Mesoporous silica nanoparticle-based double drug delivery system for
glucose responsive controlled release of insulin and cyclic AMP
SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Meeting Abstract
C1 Iowa State Univ, Dept Chem, Ames, IA 50011 USA.
Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
EM ynzhao@iastate.edu; bgtrewyn@iastate.edu; islowing@iastate.edu
NR 0
TC 0
Z9 0
U1 3
U2 15
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0065-7727
J9 ABSTR PAP AM CHEM S
JI Abstr. Pap. Am. Chem. Soc.
PD AUG 16
PY 2009
VL 238
MA 295-INOR
PG 1
WC Chemistry, Multidisciplinary
SC Chemistry
GA V16HZ
UT WOS:000207862000576
ER
PT J
AU Zheng, F
Heldebrant, DJ
Karkamkar, A
Linehan, JC
Autrey, T
AF Zheng, Feng
Heldebrant, David J.
Karkamkar, Abhi
Linehan, John C.
Autrey, Tom
TI Large scale synthesis of ammonia borane
SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Meeting Abstract
C1 [Zheng, Feng] Pacific NW Natl Lab, Energy & Efficiency Div, Richland, WA 99352 USA.
[Heldebrant, David J.; Linehan, John C.] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA.
[Karkamkar, Abhi] Pacific NW Natl Lab, Richland, WA 99354 USA.
[Autrey, Tom] Pacific NW Natl Lab, Fundamental Sci Div, Richland, WA 99352 USA.
EM feng.zheng@pnl.gov; david.heldebrant@pnl.gov; abhi.karkamkar@pnl.gov;
john.linehan@pnl.gov
RI Zheng, Feng/C-7678-2009
OI Zheng, Feng/0000-0002-5427-1303
NR 0
TC 0
Z9 0
U1 0
U2 0
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0065-7727
J9 ABSTR PAP AM CHEM S
JI Abstr. Pap. Am. Chem. Soc.
PD AUG 16
PY 2009
VL 238
MA 263-FUEL
PG 1
WC Chemistry, Multidisciplinary
SC Chemistry
GA V16HY
UT WOS:000207861905162
ER
PT J
AU Zhou, J
Takahashi, L
Ahmed, M
AF Zhou, Jia
Takahashi, Lynelle
Ahmed, Musahid
TI ANYL 71-Imaging with mass spectrometry: A SIMS and VUV-photoionization
study of ion-sputtered atoms and clusters
SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Meeting Abstract
C1 [Zhou, Jia] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA.
[Takahashi, Lynelle] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Ahmed, Musahid] Ernest Orlando Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
EM jzhou2@lbl.gov; kazue@berkeley.edu; MAhmed@lbl.gov
NR 0
TC 0
Z9 0
U1 0
U2 1
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0065-7727
J9 ABSTR PAP AM CHEM S
JI Abstr. Pap. Am. Chem. Soc.
PD AUG 16
PY 2009
VL 238
MA 71-ANYL
PG 1
WC Chemistry, Multidisciplinary
SC Chemistry
GA V16HY
UT WOS:000207861901028
ER
PT J
AU Zou, GF
AF Zou, Guifu
TI General chemical solution deposition to epitaxial growth of transition
metal carbide (TiC, NbC, VC, etc.) films
SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Meeting Abstract
C1 [Zou, Guifu] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA.
EM gfzou@lanl.gov
RI ZOU, GUIFU/C-8498-2011
NR 0
TC 0
Z9 0
U1 0
U2 2
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0065-7727
J9 ABSTR PAP AM CHEM S
JI Abstr. Pap. Am. Chem. Soc.
PD AUG 16
PY 2009
VL 238
MA 719-INOR
PG 1
WC Chemistry, Multidisciplinary
SC Chemistry
GA V16HZ
UT WOS:000207862000320
ER
PT J
AU Zou, RQ
AF Zou, Ruqiang
TI Synthesis and characterization of novel metal-organic frameworks for
storage and separation application
SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Meeting Abstract
C1 [Zou, Ruqiang] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA.
[Zou, Ruqiang] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA.
EM rzou@lanl.gov
RI zou, ruqiang/N-8803-2013
NR 0
TC 0
Z9 0
U1 0
U2 1
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0065-7727
J9 ABSTR PAP AM CHEM S
JI Abstr. Pap. Am. Chem. Soc.
PD AUG 16
PY 2009
VL 238
MA 534-INOR
PG 1
WC Chemistry, Multidisciplinary
SC Chemistry
GA V16HZ
UT WOS:000207862000232
ER
PT J
AU Zygmunt, SA
Brandt, DS
Redfern, PC
Zapol, P
Curtiss, LA
AF Zygmunt, S. A.
Brandt, D. S.
Redfern, Paul C.
Zapol, Peter
Curtiss, L. A.
TI CATL 34-Spin-crossing enhancement of oxidative dehydrogenation of
propane on supported vanadium oxide catalysts
SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Meeting Abstract
C1 [Zygmunt, S. A.; Brandt, D. S.] Valparaiso Univ, Dept Phys & Astron, Valparaiso, IN 46383 USA.
[Redfern, Paul C.; Zapol, Peter; Curtiss, L. A.] Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA.
[Zapol, Peter; Curtiss, L. A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
EM stan.zygmunt@valpo.edu; redfern@anl.gov; curtiss@anl.gov
RI Zapol, Peter/G-1810-2012
OI Zapol, Peter/0000-0003-0570-9169
NR 0
TC 0
Z9 0
U1 0
U2 1
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0065-7727
J9 ABSTR PAP AM CHEM S
JI Abstr. Pap. Am. Chem. Soc.
PD AUG 16
PY 2009
VL 238
MA 34-CATL
PG 1
WC Chemistry, Multidisciplinary
SC Chemistry
GA V16HY
UT WOS:000207861901868
ER
PT J
AU Van Berkel, GJ
Kertesz, V
King, RC
AF Van Berkel, Gary J.
Kertesz, Vilmos
King, Richard C.
TI High-Throughput Mode Liquid Microjunction Surface Sampling Probe
SO ANALYTICAL CHEMISTRY
LA English
DT Article
ID ELECTROSPRAY MASS-SPECTROMETRY; THIN TISSUE-SECTIONS;
QUANTITATIVE-ANALYSIS; PHARMACEUTICAL DRUGS; IONIZATION SOURCE; SYSTEM;
DEVICE; MALDI
AB A simple and automated spot sampling operation mode for a liquid microjunction surface sampling probe/electrospray ionization mass spectrometry (LMJ-SSP/ESI-MS) system is reported. Prior manual and automated spot sampling methods with this probe relied on a careful, relatively slow alignment of the probe and surface distance (<20 mu m spacing) to form the probe-to-surface liquid microjunction critical to successful surface sampling. Moreover, sampling multiple spots required retraction of the surface from the probe and a repeat of this careful probe-to-surface distance alignment at the next sampling position. With the method described here, the probe was not positioned as close to the surface, the exact probe-to-surface positioning was found to be less critical (spanning distances from about 100-300 mu m), and this distance was not altered during the sampling of an entire array of sample spots. With the probe positioned within the appropriate distance from the surface, the liquid microjunction was formed by letting the liquid from the sampling end of the probe extend out from the probe to the surface. This was accomplished by reducing the self-aspiration liquid flow rate of the probe to a value less than the volume flow rate pumped into the probe. When the self-aspiration rate of the probe was subsequently increased, analytes on the surface that dissolved at the liquid microjunction were aspirated back into the probe with the liquid that created the liquid microjunction and electrosprayed. Presented here are the basics of this new sampling mode, as well as data that illustrate the potential analytical capabilities of the device to conduct high-throughput quantitative analysis.
C1 [Van Berkel, Gary J.; Kertesz, Vilmos] Oak Ridge Natl Lab, Div Chem Sci, Organ & Biol Mass Spectrometry Grp, Oak Ridge, TN 37831 USA.
[King, Richard C.] PharmaCadence, Hatfield, PA 19440 USA.
RP Van Berkel, GJ (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Organ & Biol Mass Spectrometry Grp, Oak Ridge, TN 37831 USA.
EM vanberkelgj@ornl.gov
RI Kertesz, Vilmos/M-8357-2016
OI Kertesz, Vilmos/0000-0003-0186-5797
FU Battelle Memorial Institute Technology Maturation Fund; United States
Department of Energy [DE-AC05-00OR22725]
FX This research was supported by the Battelle Memorial Institute
Technology Maturation Fund. Oak Ridge National Laboratory is managed and
operated for the United States Department of Energy by UT-Battelle,
I.LC, under Contract DE-AC05-00OR22725.
NR 22
TC 32
Z9 32
U1 2
U2 23
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0003-2700
J9 ANAL CHEM
JI Anal. Chem.
PD AUG 15
PY 2009
VL 81
IS 16
BP 7096
EP 7101
DI 10.1021/ac901098d
PG 6
WC Chemistry, Analytical
SC Chemistry
GA 482RW
UT WOS:000268907400068
PM 19606841
ER
PT J
AU Karpievitch, Y
Stanley, J
Taverner, T
Huang, J
Adkins, JN
Ansong, C
Heffron, F
Metz, TO
Qian, WJ
Yoon, H
Smith, RD
Dabney, AR
AF Karpievitch, Yuliya
Stanley, Jeff
Taverner, Thomas
Huang, Jianhua
Adkins, Joshua N.
Ansong, Charles
Heffron, Fred
Metz, Thomas O.
Qian, Wei-Jun
Yoon, Hyunjin
Smith, Richard D.
Dabney, Alan R.
TI A statistical framework for protein quantitation in bottom-up MS-based
proteomics
SO BIOINFORMATICS
LA English
DT Article
ID MASS-SPECTROMETRY; DISCOVERY; MODEL
AB Motivation: Quantitative mass spectrometry-based proteomics requires protein-level estimates and associated confidence measures. Challenges include the presence of low quality or incorrectly identified peptides and informative missingness. Furthermore, models are required for rolling peptide-level information up to the protein level.
Results: We present a statistical model that carefully accounts for informative missingness in peak intensities and allows unbiased, model-based, protein-level estimation and inference. The model is applicable to both label-based and label-free quantitation experiments. We also provide automated, model-based, algorithms for filtering of proteins and peptides as well as imputation of missing values. Two LC/MS datasets are used to illustrate the methods. In simulation studies, our methods are shown to achieve substantially more discoveries than standard alternatives.
C1 [Karpievitch, Yuliya; Stanley, Jeff; Huang, Jianhua; Dabney, Alan R.] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA.
[Taverner, Thomas; Adkins, Joshua N.; Ansong, Charles; Metz, Thomas O.; Qian, Wei-Jun; Smith, Richard D.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Heffron, Fred; Yoon, Hyunjin] Oregon Hlth & Sci Univ, Portland, OR 97201 USA.
RP Dabney, AR (reprint author), Texas A&M Univ, Dept Stat, 3143 TAMU, College Stn, TX 77843 USA.
EM adabney@stat.tamu.edu
RI Dabney, Alan/C-1171-2011; Smith, Richard/J-3664-2012; Adkins,
Joshua/B-9881-2013;
OI Smith, Richard/0000-0002-2381-2349; Adkins, Joshua/0000-0003-0399-0700;
Metz, Tom/0000-0001-6049-3968
FU PNNL; NIH [R25-CA-90301, DK070146]; National Institute of Allergy and
Infectious Diseases [Y1-AI-4894-01]
FX This work was sponsored by a subcontract from PNNL and by the NIH
R25-CA-90301 training grant at TAMU. Additional support was provided by
NIH grant DK070146 and by the National Institute of Allergy and
Infectious Diseases (NIH/DHHS through interagency agreement
Y1-AI-4894-01).
NR 25
TC 73
Z9 74
U1 0
U2 9
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 1367-4803
J9 BIOINFORMATICS
JI Bioinformatics
PD AUG 15
PY 2009
VL 25
IS 16
BP 2028
EP 2034
DI 10.1093/bioinformatics/btp362
PG 7
WC Biochemical Research Methods; Biotechnology & Applied Microbiology;
Computer Science, Interdisciplinary Applications; Mathematical &
Computational Biology; Statistics & Probability
SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology;
Computer Science; Mathematical & Computational Biology; Mathematics
GA 481KJ
UT WOS:000268808600005
PM 19535538
ER
PT J
AU Liu, WJ
Hong, J
Bevan, DR
Zhang, YHP
AF Liu, Wenjin
Hong, Jiong
Bevan, David R.
Zhang, Y. -H. Percival
TI Fast Identification of Thermostable Beta-Glucosidase Mutants on
Cellobiose by a Novel Combinatorial Selection/Screening Approach
SO BIOTECHNOLOGY AND BIOENGINEERING
LA English
DT Article
DE beta-glucosidase; cellulase; directed evolution; high-throughput
screening; selection; thermostability
ID DIRECTED EVOLUTION; BACILLUS-POLYMYXA; ESCHERICHIA-COLI; CELLULASE;
HYDROLYSIS; ENZYMES; SELECTION; SUBTILIS; GENES; DENATURATION
AB Engineering costly cellulases on natural cellulosic substrates is of importance for emerging biomass-based biorefineries. Directed enzyme evolution is becoming a popular tool, but identification of desired mutants from a large mutant library remains challenging sometimes. In this work, we demonstrated a novel combinatorial selection/screening strategy for finding thermostable beta-glucosidase on its natural substrate-cellobiose. First, selection was conducted through complementation of beta-glucosidase for non-cellobiose-utilizing Escherichia coli so that only the cells expressing active beta-glucosidase can grow on a M9 synthetic medium with cellobiose as the sole carbon source (selection plate). Second, the clones on the selection plates were duplicated by using nylon membranes. After heat treatment, the nylon membranes were overlaid on M9/cellobiose screening plates so that remaining activities of thermostable beta-glucosidase mutants hydrolyzed cellobiose on the screening plates to glucose. Third, the growth of an indicator E. coli strain that call Utilize glucose but n ot cellobiose on the screening plates helped detect the thermostable beta-glucosidase mutants oil the selection plates. Several thermostable mutants were identified from a random mutant library of the Paenibacillus polymyxa beta-glucosidase. The most thermostable mutant A17S had an 11-fold increase in the half-life of thermoinactivation at 50 degrees C. Biotechnol. Bioeng. 2009;103: 1087-1094. (C) 2009 Wiley Periodicals, Inc.
C1 [Liu, Wenjin; Hong, Jiong; Zhang, Y. -H. Percival] Virginia Polytech Inst & State Univ, Dept Biol Syst Engn, Blacksburg, VA 24061 USA.
[Hong, Jiong] Univ Sci & Technol China, Sch Life Sci, Hefei 230026, Anhui, Peoples R China.
[Bevan, David R.] Virginia Polytech Inst & State Univ, Dept Biochem, Blacksburg, VA 24061 USA.
[Zhang, Y. -H. Percival] Virginia Polytech Inst & State Univ, ICTAS, Blacksburg, VA 24061 USA.
[Zhang, Y. -H. Percival] BioEnergy Sci Ctr BESC, DOE, Oak Ridge, TN USA.
RP Zhang, YHP (reprint author), Virginia Polytech Inst & State Univ, Dept Biol Syst Engn, 210-A Seitz Hall, Blacksburg, VA 24061 USA.
EM ypzhang@vt.edu
RI HONG, Jiong/N-1996-2013
OI HONG, Jiong/0000-0002-4592-7083
FU DOE BioEnergy Science Center (BESC); Air Force Office of Scientific
Research [FA9550-08-1-0145]
FX This work was supported mainly by the DOE BioEnergy Science Center
(BESC) and partially by the Air Force Office of Scientific Research
(FA9550-08-1-0145) as well as the DuPont Young professor award
NR 49
TC 35
Z9 36
U1 1
U2 11
PU JOHN WILEY & SONS INC
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN, NJ 07030 USA
SN 0006-3592
J9 BIOTECHNOL BIOENG
JI Biotechnol. Bioeng.
PD AUG 15
PY 2009
VL 103
IS 6
BP 1087
EP 1094
DI 10.1002/bit.22340
PG 8
WC Biotechnology & Applied Microbiology
SC Biotechnology & Applied Microbiology
GA 474EC
UT WOS:000268264300005
PM 19388085
ER
PT J
AU Chen, A
Cuevas, I
Kenny, PA
Miyake, H
Mace, K
Ghajar, C
Boudreau, A
Bissell, M
Boudreau, N
AF Chen, Amy
Cuevas, Ileana
Kenny, Paraic A.
Miyake, Hiroshi
Mace, Kimberley
Ghajar, Cyrus
Boudreau, Aaron
Bissell, Mina
Boudreau, Nancy
TI Endothelial Cell Migration and Vascular Endothelial Growth Factor
Expression Are the Result of Loss of Breast Tissue Polarity
SO CANCER RESEARCH
LA English
DT Article
ID EPITHELIAL-CELLS; 3-DIMENSIONAL CULTURE; PHENOTYPIC REVERSION; SIGNALING
PATHWAYS; ANGIOGENIC SWITCH; CANCER-CELLS; TUMOR-CELLS; IN-VIVO;
HYPOXIA; VEGF
AB Recruiting a new blood supply is a rate-limiting step in tumor progression. In a three-dimensional model of breast carcinogenesis, disorganized, proliferative transformed breast epithelial cells express significantly higher expression of angiogenic genes compared with their polarized, growth-arrested nonmalignant counterparts. Elevated vascular endothelial growth factor (VEGF) secretion by malignant cells enhanced recruitment of endothelial cells (EC) in heterotypic cocultures. Significantly, phenotypic reversion of malignant cells via reexpression of HoxD10, which is lost in malignant progression, significantly attenuated VEGF expression in a hypoxia-inducible factor 1 alpha-independent fashion and reduced EC migration. This was due primarily to restoring polarity: forced proliferation of polarized, nonmalignant cells did not induce VEGF expression and EC recruitment, whereas disrupting the architecture of growth-arrested, reverted cells did. These data show that disrupting cytostructure activates the angiogenic switch even in the absence of proliferation and/or hypoxia and restoring organization of malignant clusters reduces VEGF expression and EC activation to levels found in quiescent nonmalignant epithelium. These data confirm the importance of tissue architecture and polarity in malignant progression. [Cancer Res 2009;69(16):6721-9]
C1 [Chen, Amy; Cuevas, Ileana; Miyake, Hiroshi; Mace, Kimberley; Boudreau, Nancy] Univ Calif San Francisco, Dept Surg, Surg Res Lab, San Francisco, CA 94143 USA.
[Kenny, Paraic A.; Ghajar, Cyrus; Boudreau, Aaron; Bissell, Mina] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA.
[Kenny, Paraic A.] Albert Einstein Coll Med, Dept Dev & Mol Biol, Bronx, NY 10467 USA.
[Kenny, Paraic A.] Albert Einstein Coll Med, Albert Einstein Canc Ctr, Bronx, NY 10467 USA.
RP Boudreau, N (reprint author), Univ Calif San Francisco, Dept Surg, Surg Res Lab, Box 1302, San Francisco, CA 94143 USA.
EM nancyjb@itsa.ucsf.edu
FU California Breast Cancer Research program Award [101B-0157]; U.S.
Department of Energy; OBER Office of Biological and Environmental
Research [DE-AC02-05CH1123]; Distinguished Fellow Award; Low Dose
Radiation Program; Office of Health and Environmental Research, Health
Effects Division [03-76SF00098]; National Cancer Institute [R01CA064786,
R01CA057621, U54CA126552, U54CA112970]; U.S. Department of Defense
[W81XWH0810736, W81XWH0510338]
FX California Breast Cancer Research program Award 101B-0157 (N. Boudreau);
U.S. Department of Energy. OBER Office of Biological and Environmental
Research (DE-AC02-05CH1123), a Distinguished Fellow Award, and Low Dose
Radiation Program and the Office of Health and Environmental Research,
Health Effects Division (03-76SF00098; M. Bissell); National Cancer
Institute awards R01CA064786, R01CA057621, U54CA126552, and U54CA112970;
and U.S. Department of Defense grants W81XWH0810736 and W81XWH0510338.
NR 49
TC 28
Z9 32
U1 2
U2 3
PU AMER ASSOC CANCER RESEARCH
PI PHILADELPHIA
PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA
SN 0008-5472
J9 CANCER RES
JI Cancer Res.
PD AUG 15
PY 2009
VL 69
IS 16
BP 6721
EP 6729
DI 10.1158/0008-5472.CAN-08-4069
PG 9
WC Oncology
SC Oncology
GA 484RI
UT WOS:000269064600044
PM 19654314
ER
PT J
AU Lee, JY
Lee, DW
Lee, KY
Wang, Y
AF Lee, Joon Yeob
Lee, Dae-Won
Lee, Kwan-Young
Wang, Yong
TI Cr-free Fe-based metal oxide catalysts for high temperature water gas
shift reaction of fuel processor using LPG
SO CATALYSIS TODAY
LA English
DT Article; Proceedings Paper
CT Symposium on Catalysis for Hydrogen Energy Production and Utilization
CY JUL 20-22, 2008
CL Gyeongju, SOUTH KOREA
DE WGSR; HTS; LPG; Cr-free catalyst; Fuel processor
ID IRON-BASED CATALYSTS; HYDROGEN-PRODUCTION
AB The goal of this study was to identify the most suitable chromium-free iron-based catalysts for the HTS (high temperature shift) reaction of a fuel processor using LPG. Hexavalent chromium (Cr(6+)) in the commercial HTS catalyst has been regarded as hazardous material. We selected Ni and Co as the substitution for chromium in the Fe-based HTS catalyst and investigated the HTS activities of these Cr-free catalysts at LPG reformate condition. Cr-free Fe-based catalysts which contain Ni, Zn, or Co instead of Cr were prepared by coprecipitation method and the performance of the catalysts in HTS was evaluated under gas mixture conditions (42% H(2), 10% CO, 37% H(2)O, 8% CO(2), and 3% CH(4); R (reduction factor): about 1.2) similar to the gases from steam reforming of LPG (100% conversion at steam/carbon ratio = 3), which is higher than R (under 1) of typically studied LNG reformate condition. Among the prepared Cr-free Fe-based catalysts, the 5 wt%-Co/Fe/20 wt%-Ni and 5 wt%-Zn/Fe/20 wt%-Ni catalysts showed good catalytic activity under this reaction condition simulating LPG reformate gas. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Lee, Joon Yeob; Lee, Kwan-Young] Korea Univ, Dept Chem & Biol Engn, Seoul 136701, South Korea.
[Lee, Dae-Won] Korea Univ, Res Inst Clean Chem Engn Syst, Seoul 136701, South Korea.
[Wang, Yong] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Lee, KY (reprint author), Korea Univ, Dept Chem & Biol Engn, 5-1 Anam Dong, Seoul 136701, South Korea.
EM kylee@korea.ac.kr
RI Wang, Yong/C-2344-2013; Lee, Kwan-Young/F-7603-2013
NR 29
TC 25
Z9 27
U1 2
U2 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0920-5861
J9 CATAL TODAY
JI Catal. Today
PD AUG 15
PY 2009
VL 146
IS 1-2
BP 260
EP 264
DI 10.1016/j.cattod.2009.01.041
PG 5
WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical
SC Chemistry; Engineering
GA 492LN
UT WOS:000269659000042
ER
PT J
AU Fellman, JB
Miller, MP
Cory, RM
D'Amore, DV
White, D
AF Fellman, Jason B.
Miller, Mathew P.
Cory, Rose M.
D'Amore, David V.
White, Dan
TI Characterizing Dissolved Organic Matter Using PARAFAC Modeling of
Fluorescence Spectroscopy: A Comparison of Two Models
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
LA English
DT Article
ID COLORADO FRONT RANGE; NATURAL-WATERS; WETLAND; TERRESTRIAL; TUTORIAL;
MARINE; FOREST; DOC
AB We evaluated whether fitting fluorescence excitation-emission matrices (EEMs) to a previously validated PARAFAC model is an acceptable alternative to building an original model. To do this, we built a 10-component model using 307 EEMs collected from southeast Alaskan soil and streamwater. All 307 EEMs were then fit to the existing model (CM) presented in Cory and McKnight (Environ. Sci. Technol, 2005, 39, 8142-8149), The first approach for evaluating whether the EEMs were fit well to the CM model was an evaluation of the residual EEMs, and we found 22 EEMs were fit poorly by the CM model. Our second measure for verifying whether EEMs were fit well to the CM model was a comparison of correlations between the percent contribution of PARAFAC components and DOM measurements (e.g., dissolved nutrient concentrations), and we found no significant difference (p > 0.05) between the two models. These results support the approach of fitting EEMs to an existing model when DOM is collected from similar environments, which can potentially reduce some of the problems when building an original PARAFAC model. However, it is important to recognize that some of the sensitivity or ecological interpretative power may be lost when fitting EEMs to an existing model.
C1 [Fellman, Jason B.] Univ Alaska, Inst Arctic Biol, Fairbanks, AK 99775 USA.
[Miller, Mathew P.] Univ Colorado, Inst Arctic & Alpine Res, Boulder, CO 80309 USA.
[Cory, Rose M.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA.
[D'Amore, David V.] US Forest Serv, USDA, Pacific NW Res Stn, Juneau, AK 99801 USA.
[White, Dan] Univ Alaska, Inst No Engn, Fairbanks, AK 99775 USA.
RP Fellman, JB (reprint author), Univ Alaska, Inst Arctic Biol, Fairbanks, AK 99775 USA.
EM fsjbf6@uaf.edu
RI Cory, Rose/C-4198-2016;
OI Cory, Rose/0000-0001-9867-7084; Miller, Matthew/0000-0002-2537-1823
NR 22
TC 59
Z9 62
U1 5
U2 58
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0013-936X
EI 1520-5851
J9 ENVIRON SCI TECHNOL
JI Environ. Sci. Technol.
PD AUG 15
PY 2009
VL 43
IS 16
BP 6228
EP 6234
DI 10.1021/es900143g
PG 7
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA 482RZ
UT WOS:000268907700023
PM 19746718
ER
PT J
AU Ahn, K
Pecharsky, VK
Gischneidner, KA
AF Ahn, Kyunghan
Pecharsky, V. K.
Gischneidner, K. A., Jr.
TI The magnetothermal behavior of mixed-valence Eu3O4
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID 2ND-ORDER ZEEMAN TERMS; ROOM-TEMPERATURE; MAGNETIC-SUSCEPTIBILITIES;
MAGNETOCALORIC MATERIALS; RARE-EARTH; REFRIGERATION; FLUCTUATION;
TRANSITION; ENTROPY; FIELD
AB The mixed-valence compound Eu3O4 was prepared by heating an equimolar mixture of EuO and Eu2O3 at 1800 degrees C for 30 h in a sealed tungsten crucible. Room temperature x-ray powder diffraction measurements showed that Eu3O4 is single phase. Magnetic measurements on polycrystalline Eu3O4 are in good agreement with the results reported previously. The heat capacity of Eu3O4 from similar to 2 to 300 K was not reported in the past. The magnetocaloric effect in Eu3O4 was measured for different applied magnetic fields. The magnetic entropy change (-Delta S-mag) calculated from heat capacity data of Eu3O4 is approximately 12.7 J/kg K at 6.5 K for a magnetic field change (Delta B) of 5 T. The adiabatic temperature change (Delta T-ad) in Eu3O4 at 7 K is about 7.0 K for a Delta B of 5 T. Also, the magnetic entropy change (-Delta S-mag) calculated from magnetization data in Eu3O4 is approximately 13.6 J/kg K at 6.3 K for a magnetic field change (Delta B) of 5 T, which is slightly higher than that from the heat capacity data, but is within experimental error. A metamagnetic transition was observed between 0.3 and 0.5 T, however, some antiferromagnetic correlations appear to exist in the magnetically induced ferromagnetic phase at B > 3 T. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3204662]
C1 [Ahn, Kyunghan; Pecharsky, V. K.; Gischneidner, K. A., Jr.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA.
[Ahn, Kyunghan; Pecharsky, V. K.; Gischneidner, K. A., Jr.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA.
RP Ahn, K (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA.
OI Ahn, Kyunghan/0000-0002-7806-8043
FU U.S. Department of Energy [DE-AC02-07CH11358]
FX We thank Dr. A.O. Tsokol for help with some of the experiments. This
work was supported by the Office of Basic Energy Sciences, Materials
Sciences Division of the U.S. Department of Energy under Contract No.
DE-AC02-07CH11358 with Iowa State University.
NR 30
TC 4
Z9 4
U1 2
U2 13
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD AUG 15
PY 2009
VL 106
IS 4
AR 043918
DI 10.1063/1.3204662
PG 6
WC Physics, Applied
SC Physics
GA 497SX
UT WOS:000270083800076
ER
PT J
AU Edmondson, PD
Riley, DJ
Birtcher, RC
Donnelly, SE
AF Edmondson, P. D.
Riley, D. J.
Birtcher, R. C.
Donnelly, S. E.
TI Amorphization of crystalline Si due to heavy and light ion irradiation
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID TRANSMISSION ELECTRON-MICROSCOPY; ISOLATED AMORPHOUS ZONES;
MOLECULAR-DYNAMICS; SILICON; DAMAGE; SEMICONDUCTORS; DEFECT; GE;
IMPLANTATION; BOMBARDMENT
AB The formation of amorphous silicon in crystalline silicon by bombardment with light (Si) and heavy (Xe) ions has been investigated by transmission electron microscopy with in situ ion irradiation. Experiments have been carried out at room temperature and low temperature (50 K) and the results are compared to a simple numerical model for amorphization. The results indicate that the amorphization mechanisms for both irradiations are heterogeneous in nature and that numerous overlaps of the collision cascade are generally required to render the crystal amorphous. Following from this, the nature of the material within the confines of collision cascades will be discussed and it will be shown that the individual cascade volume is not necessarily amorphous as previously described in the scientific literature but contains varying degrees of damage depending on the energy deposited within the cascade. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3195081]
C1 [Edmondson, P. D.; Riley, D. J.; Donnelly, S. E.] Univ Salford, Inst Mat Res, Manchester M5 4WT, Lancs, England.
[Birtcher, R. C.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
RP Edmondson, PD (reprint author), Univ Salford, Inst Mat Res, Manchester M5 4WT, Lancs, England.
EM p.d.edmondson@salford.ac.uk
RI Edmondson, Philip/G-5371-2011;
OI Donnelly, Stephen/0000-0002-9749-5550; Edmondson,
Philip/0000-0001-8990-0870
FU U.K. Engineering and Physical Sciences Research Council
FX Two of the authors (P.D.E. and S.E.D.) would like to thank Argonne
National Laboratory for funding during extended stays at Argonne. P.D.E.
and D.J.R. would also like to thank the U.K. Engineering and Physical
Sciences Research Council for funding. The authors would also like to
give special thanks to K.J. Abrams, A.S. Gandy, and M.-F. Beaufort for
the provision of TEM images, L. Pelaz and L.A. Marques for providing the
atomic configuration files for the TEM image simulations, and W. Weber
for useful discussions.
NR 30
TC 9
Z9 9
U1 1
U2 9
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD AUG 15
PY 2009
VL 106
IS 4
AR 043505
DI 10.1063/1.3195081
PG 8
WC Physics, Applied
SC Physics
GA 497SX
UT WOS:000270083800020
ER
PT J
AU Jensen, BJ
Holtkamp, DB
Rigg, PA
Dolan, DH
AF Jensen, B. J.
Holtkamp, D. B.
Rigg, P. A.
Dolan, D. H.
TI Accuracy limits and window corrections for photon Doppler velocimetry
(vol 101, 013523, 2007)
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Correction
C1 [Jensen, B. J.; Holtkamp, D. B.; Rigg, P. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Dolan, D. H.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Jensen, BJ (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
EM bjjensen@lanl.gov
NR 1
TC 7
Z9 7
U1 1
U2 10
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD AUG 15
PY 2009
VL 106
IS 4
AR 049901
DI 10.1063/1.3213362
PG 1
WC Physics, Applied
SC Physics
GA 497SX
UT WOS:000270083800134
ER
PT J
AU Kini, RN
Bhusal, L
Ptak, AJ
France, R
Mascarenhas, A
AF Kini, R. N.
Bhusal, L.
Ptak, A. J.
France, R.
Mascarenhas, A.
TI Electron Hall mobility in GaAsBi
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID BAND-GAP; GAAS1-XBIX; NITROGEN; SEMICONDUCTORS
AB We present measurements of the electron Hall mobility in n-type GaAs(1-x)Bi(x) epilayers. We observed no significant degradation in the electron mobility with Bi incorporation in GaAs, up to a concentration of 1.2%. At higher Bi concentration (>= 1.6%) some degradation of the electron mobility was observed, although there is no apparent trend. Temperature dependent Hall measurements of the electron mobility suggest neutral impurity scattering to be the dominant scattering mechanism. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3204670]
C1 [Kini, R. N.; Bhusal, L.; Ptak, A. J.; France, R.; Mascarenhas, A.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Kini, RN (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA.
EM rajeev.kini@nrel.gov
RI Kini, Rajeev/D-2342-2009
OI Kini, Rajeev/0000-0002-3305-9346
FU DOE/SC/BES/DMS [DE-AC36-08GO28308]; National Renewable Energy Laboratory
FX The authors would like to thank Michelle Young for processing the
samples. This work was supported by the DOE/SC/BES/DMS under Contract
No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory.
NR 18
TC 58
Z9 58
U1 1
U2 33
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD AUG 15
PY 2009
VL 106
IS 4
AR 043705
DI 10.1063/1.3204670
PG 3
WC Physics, Applied
SC Physics
GA 497SX
UT WOS:000270083800046
ER
PT J
AU Liu, W
Liu, Q
Whitaker, ML
Zhao, YS
Li, BS
AF Liu, Wei
Liu, Qiong
Whitaker, Matthew L.
Zhao, Yusheng
Li, Baosheng
TI Experimental and theoretical studies on the elasticity of molybdenum to
12 GPa
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID EQUATION-OF-STATE; PHASE-TRANSITIONS; PRESSURE; MO; COMPRESSION;
CONSTANTS; ALLOYS; METALS; CR
AB Experiments have been conducted to measure compressional (V-P) and shear wave (V-S) velocities as well as unit-cell volumes (densities) of molybdenum to 12.0 GPa at room temperature using ultrasonic interferometry in conjunction with synchrotron x-radiation. Both V-P and V-S as well as the adiabatic bulk (K-S) and shear (G) moduli exhibit monotonic increase with increasing pressure. A finite strain equation of state analysis of the directly measured velocities and densities yields K-S0 =260.7(5) GPa, G(0)=125.1(2) GPa, K-S0'=4.7(1), and G(0)'=1.5(1) for the elastic bulk and shear moduli and their pressure derivatives at ambient conditions. Complimentary to the experimental data, V-P and V-S as well as the elastic bulk and shear moduli were also computed using density functional theory (DFT) at pressures comparable to the current experiment. Comparing with experimental results, the velocities and elastic moduli from DFT calculations exhibit close agreement with the current experimental data both in their values as well as in their pressure dependence. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3197135]
C1 [Liu, Wei; Liu, Qiong; Whitaker, Matthew L.; Li, Baosheng] SUNY Stony Brook, Inst Mineral Phys, Stony Brook, NY 11794 USA.
[Whitaker, Matthew L.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA.
[Zhao, Yusheng] Los Alamos Natl Lab, LANSCE, Los Alamos, NM 87545 USA.
RP Liu, W (reprint author), SUNY Stony Brook, Inst Mineral Phys, Stony Brook, NY 11794 USA.
EM weiliu3@notes.cc.sunysb.edu
RI Lujan Center, LANL/G-4896-2012; Li, Baosheng/C-1813-2013; Whitaker,
Matthew/C-3225-2008
OI Whitaker, Matthew/0000-0002-3627-6856
FU DoE/NNSA [DEFG5206NA2621]; U.S. Department of Energy; Division of
Materials Sciences and Division of Chemical Sciences
[DE-AC02-76CH00016]; COMPRES [X-17B2]
FX This research is supported by DoE/NNSA (Contract No. DEFG5206NA2621 to
B.L.). We thank Michael Vaughan and Liping Wang for technical support at
the X17B2 beamline. These experiments were carried out at the National
Synchrotron Light Source (NSLS), which is supported by the U.S.
Department of Energy, Division of Materials Sciences and Division of
Chemical Sciences under Contract No. DE-AC02-76CH00016. X-17B2 is
supported by COMPRES. Mineral Physics Institute Publication No. 478.
NR 27
TC 11
Z9 12
U1 0
U2 10
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0021-8979
EI 1089-7550
J9 J APPL PHYS
JI J. Appl. Phys.
PD AUG 15
PY 2009
VL 106
IS 4
AR 043506
DI 10.1063/1.3197135
PG 4
WC Physics, Applied
SC Physics
GA 497SX
UT WOS:000270083800021
ER
PT J
AU Nazaretski, E
Obukhov, Y
Martin, I
Pelekhov, DV
Cha, KC
Akhadov, EA
Hammel, PC
Movshovich, R
AF Nazaretski, E.
Obukhov, Yu.
Martin, I.
Pelekhov, D. V.
Cha, K. C.
Akhadov, E. A.
Hammel, P. C.
Movshovich, R.
TI Localized ferromagnetic resonance force microscopy in Permalloy-cobalt
films
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID MAGNETIC-RESONANCE
AB We report ferromagnetic resonance force microscopy (FMRFM) experiments on a juxtaposed continuous films of Permalloy and cobalt. Our studies demonstrate the capability of FMRFM to perform local spectroscopy of different ferromagnetic materials. Theoretical analysis of the uniform resonance mode near the edge of the film agrees quantitatively with experimental data. Our experiments demonstrate the micron scale lateral resolution in determining local magnetic properties in continuous ferromagnetic samples. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3204029]
C1 [Nazaretski, E.; Martin, I.; Cha, K. C.; Akhadov, E. A.; Movshovich, R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Obukhov, Yu.; Pelekhov, D. V.; Hammel, P. C.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA.
RP Nazaretski, E (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA.
EM enazaretski@bnl.gov
RI Hammel, P Chris/O-4845-2014
OI Hammel, P Chris/0000-0002-4138-4798
FU U. S. Department of Energy [DE-FG02-03ER46054]; Center for Integrated
Nanotechnologies at Los Alamos; Sandia National Laboratories
FX The work performed at Los Alamos was supported by the U. S. Department
of Energy, and Center for Integrated Nanotechnologies at Los Alamos and
Sandia National Laboratories. The work at OSU was supported by the U. S.
Department of Energy through Grant No. DE-FG02-03ER46054.
NR 15
TC 0
Z9 0
U1 0
U2 7
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD AUG 15
PY 2009
VL 106
IS 4
AR 046103
DI 10.1063/1.3204029
PG 3
WC Physics, Applied
SC Physics
GA 497SX
UT WOS:000270083800130
ER
PT J
AU Runkle, RC
Smith, LE
Peurrung, AJ
AF Runkle, Robert C.
Smith, L. Eric
Peurrung, Anthony J.
TI The photon haystack and emerging radiation detection technology
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Review
ID SENSITIVE CDZNTE DETECTOR; SPECIAL NUCLEAR MATERIAL; POINT-SOURCE
DETECTION; RAY IMAGING-SYSTEM; GAMMA-RAY; PORTAL MONITORS;
CODED-APERTURE; SAFEGUARDS APPLICATIONS; NAI(TL) SCINTILLATORS;
MULTICHANNEL SPECTRA
AB The resources devoted to interdicting special nuclear materials have increased considerably over the last several years in step with growing efforts to counter nuclear proliferation and nuclear terrorism. This changing landscape has led to a large amount of research and development that aims to improve the effectiveness of technology now deployed worldwide. Interdicting special nuclear materials is most commonly addressed by detecting and characterizing emitted gamma rays, but modest signature emissions can be obscured by attenuating material and must be differentiated from large and highly variable environmental background emissions. It is a daunting technical challenge to identify special nuclear materials via gamma-ray detection, but a host of new detection technologies is now emerging. This challenge motivates our review of special nuclear material signatures, the physics of detection approaches, emerging technologies, and performance metrics. The use of benchmark gamma-ray sources aids our discussion. (C) 2009 American Institute Of Physics. [DOI: 10.1063/1.3207769]
C1 [Runkle, Robert C.; Smith, L. Eric; Peurrung, Anthony J.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Runkle, RC (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA.
EM robert.runkle@pnl.gov
FU Pacific Northwest National Laboratory [PNNL-SA-63476]; U.S. Department
of Energy by Battelle [DE-AC05-76RL01830]
FX The authors acknowledge David Jordan, Cari Seifert, and Brian Milbrath
for their thorough review of this manuscript. Many thanks go to Eric
Ashbaker, Scott Kiff, and Dan Sidor for their assistance with the
simulations. The composition of this manuscript was funded by Pacific
Northwest National Laboratory and is report number PNNL-SA-63476.
Pacific Northwest National Laboratory is operated for the U.S.
Department of Energy by Battelle under Contract No. DE-AC05-76RL01830.
NR 105
TC 19
Z9 19
U1 5
U2 25
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD AUG 15
PY 2009
VL 106
IS 4
AR 041101
DI 10.1063/1.3207769
PG 21
WC Physics, Applied
SC Physics
GA 497SX
UT WOS:000270083800001
ER
PT J
AU Seo, H
Bellenger, F
Chung, KB
Houssa, M
Meuris, M
Heyns, M
Lucovsky, G
AF Seo, H.
Bellenger, F.
Chung, K. B.
Houssa, M.
Meuris, M.
Heyns, M.
Lucovsky, G.
TI Extrinsic interface formation of HfO2 and Al2O3/GeOx gate stacks on Ge
(100) substrates
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID PASSIVATION; DIELECTRICS; DEFECTS; SURFACE
AB The extrinsic interfaces present at the HfO2/GeOx/Ge and Al2O3/GeOx/Ge gate stacks are investigated. The effective trapped charge density, estimated from hysteresis in capacitance-voltage characteristics, is higher for HfO2 than for Al2O3, implying qualitatively different charge trapping sources in each dielectric. Spectroscopic ellipsometry and medium energy ion scattering measurements reveal that HfO2 deposition induces the formation of a thicker germanate (intermixed) layer at the HfO2/GeOx interface, where nonstoichiometric Ge-rich GeOx having significantly low bandgap (similar to 1.8 eV) is present. In contrast, Al2O3 deposition leads to an abrupt and thinner O-rich GeOx interfacial layer without Ge-rich GeOx phase. The proposed band alignment indicates that Ge-rich GeOx layer at HfO2/GeOx arises a significant band potential well trapping, while O-rich GeOx layer in Al2O3/GeOx is responsible for a relatively lower charge trapping at band potential well. The combined results strongly suggest that the control of the GeOx interface layers is crucial to reduce the high charge trapping at high-kappa/GeOx/Ge gate stacks. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3204026]
C1 [Seo, H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Bellenger, F.; Meuris, M.; Heyns, M.] IMEC, B-3001 Heverlee, Belgium.
[Chung, K. B.; Lucovsky, G.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA.
[Houssa, M.] Katholieke Univ Leuven, Dept Phys & Astron, B-3001 Louvain, Belgium.
RP Seo, H (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
EM lucovsky@ncsu.edu
RI Houssa, Michel/C-9909-2011
NR 20
TC 12
Z9 12
U1 2
U2 9
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD AUG 15
PY 2009
VL 106
IS 4
AR 044909
DI 10.1063/1.3204026
PG 6
WC Physics, Applied
SC Physics
GA 497SX
UT WOS:000270083800122
ER
PT J
AU Tang, YJJ
Yi, S
Zhuang, WQ
Zinder, SH
Keasling, JD
Alvarez-Cohen, L
AF Tang, Yinjie J.
Yi, Shan
Zhuang, Wei-Qin
Zinder, Stephen H.
Keasling, Jay D.
Alvarez-Cohen, Lisa
TI Investigation of Carbon Metabolism in "Dehalococcoides ethenogenes"
Strain 195 by Use of Isotopomer and Transcriptomic Analyses
SO JOURNAL OF BACTERIOLOGY
LA English
DT Article
ID VINYL-CHLORIDE REDUCTASE; FLUX ANALYSIS; ISOLEUCINE BIOSYNTHESIS;
GENE-EXPRESSION; GENOME SEQUENCE; ETHENE; DEHALOGENASE; BACTERIUM;
TETRACHLOROETHENE; TRICHLOROETHENE
AB Members of the genus "Dehalococcoides" are the only known microorganisms that can completely dechlorinate tetrachloroethene and trichloroethene to the innocuous end product, ethene. This study examines the central metabolism in "Dehalococcoides ethenogenes" strain 195 via (13)C-labeled tracer experiments. Supported by the genome annotation and the transcript profile, isotopomer analysis of key metabolites clarifies ambiguities in the genome annotation and identifies an unusual biosynthetic pathway in strain 195. First, the (13)C-labeling studies revealed that strain 195 contains complete amino acid biosynthesis pathways, even though current genome annotation suggests that several of these pathways are incomplete. Second, the tricarboxylic acid cycle of strain 195 is confirmed to be branched, and the Wood-Ljungdahl carbon fixation pathway is shown to not be functionally active under our experimental conditions; rather, CO(2) is assimilated via two reactions, conversion of acetyl-coenzyme A (acetyl coenzyme A [acetyl-CoA]) to pyruvate catalyzed by pyruvate synthase (DET0724-0727) and pyruvate conversion to oxaloacetate via pyruvate carboxylase (DET0119-0120). Third, the (13)C-labeling studies also suggested that isoleucine is synthesized from acetyl-CoA and pyruvate via citramalate synthase (CimA, EC 2.3.1.182), rather than from the common pathway via threonine ammonia-lyase (EC 4.3.1.19). Finally, evidence is presented that strain 195 may contain an undocumented citrate synthase (>95% Re-type stereospecific), i.e., a novel Re-citrate synthase that is apparently different from the one recently reported in Clostridium kluyveri.
C1 [Yi, Shan; Zhuang, Wei-Qin; Alvarez-Cohen, Lisa] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA.
[Tang, Yinjie J.] Washington Univ, St Louis, MO 63130 USA.
[Alvarez-Cohen, Lisa] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA.
[Zinder, Stephen H.] Cornell Univ, Microbiol Sect, Ithaca, NY 14853 USA.
[Keasling, Jay D.] Lawrence Berkeley Lab, Joint Bioenergy Inst, Emeryville, CA 94608 USA.
RP Alvarez-Cohen, L (reprint author), Univ Calif Berkeley, Dept Civil & Environm Engn, 760 Davis Hall, Berkeley, CA 94720 USA.
EM alvarez@ce.berkeley.edu
RI Yi, Shan/I-4589-2012; Keasling, Jay/J-9162-2012; ZHUANG,
WEI-QIN/A-5235-2014
OI Yi, Shan/0000-0003-1371-0418; Keasling, Jay/0000-0003-4170-6088; ZHUANG,
WEI-QIN/0000-0001-9600-5225
FU NIEHS [ES04705]; Strategic Environmental Research and Development
Program at U.S. Department of Energy [ER-1587]; Nanyang Technological
University of Singapore; U.S. Department of Energy
FX This research was funded by the Superfund Basic Research Program under
grant NIEHS ES04705, the Strategic Environmental Research and
Development Program at U.S. Department of Energy (project ER-1587), the
Nanyang Technological University of Singapore (L.A.C.), the Joint
BioEnergy Institute through a grant from the U.S. Department of Energy
to J.D.K., and the I-CARES (International Center for Advanced Renewable
Energy and Sustainability) at Washington University (Y.J.T.).
NR 42
TC 44
Z9 45
U1 2
U2 22
PU AMER SOC MICROBIOLOGY
PI WASHINGTON
PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA
SN 0021-9193
J9 J BACTERIOL
JI J. Bacteriol.
PD AUG 15
PY 2009
VL 191
IS 16
BP 5224
EP 5231
DI 10.1128/JB.00085-09
PG 8
WC Microbiology
SC Microbiology
GA 475UJ
UT WOS:000268386600021
PM 19525347
ER
PT J
AU Harris, DR
Pollock, SV
Wood, EA
Goiffon, RJ
Klingele, AJ
Cabot, EL
Schackwitz, W
Martin, J
Eggington, J
Durfee, TJ
Middle, CM
Norton, JE
Popelars, MC
Li, H
Klugman, SA
Hamilton, LL
Bane, LB
Pennacchio, LA
Albert, TJ
Perna, NT
Cox, MM
Battista, JR
AF Harris, Dennis R.
Pollock, Steve V.
Wood, Elizabeth A.
Goiffon, Reece J.
Klingele, Audrey J.
Cabot, Eric L.
Schackwitz, Wendy
Martin, Joel
Eggington, Julie
Durfee, Timothy J.
Middle, Christina M.
Norton, Jason E.
Popelars, Michael C.
Li, Hao
Klugman, Sarit A.
Hamilton, Lindsay L.
Bane, Lukas B.
Pennacchio, Len A.
Albert, Thomas J.
Perna, Nicole T.
Cox, Michael M.
Battista, John R.
TI Directed Evolution of Ionizing Radiation Resistance in Escherichia coli
SO JOURNAL OF BACTERIOLOGY
LA English
DT Article
ID STALLED REPLICATION FORKS; DEINOCOCCUS-RADIODURANS; DNA-POLYMERASES;
REPAIR; RADIORESISTANCE; BACTERIA; PROTEIN; ADAPTATION; SEQUENCE;
ELEMENT
AB We have generated extreme ionizing radiation resistance in a relatively sensitive bacterial species, Escherichia coli, by directed evolution. Four populations of Escherichia coli K-12 were derived independently from strain MG1655, with each specifically adapted to survive exposure to high doses of ionizing radiation. D(37) values for strains isolated from two of the populations approached that exhibited by Deinococcus radiodurans. Complete genomic sequencing was carried out on nine purified strains derived from these populations. Clear mutational patterns were observed that both pointed to key underlying mechanisms and guided further characterization of the strains. In these evolved populations, passive genomic protection is not in evidence. Instead, enhanced recombinational DNA repair makes a prominent but probably not exclusive contribution to genome reconstitution. Multiple genes, multiple alleles of some genes, multiple mechanisms, and multiple evolutionary pathways all play a role in the evolutionary acquisition of extreme radiation resistance. Several mutations in the recA gene and a deletion of the e14 prophage both demonstrably contribute to and partially explain the new phenotype. Mutations in additional components of the bacterial recombinational repair system and the replication restart primosome are also prominent, as are mutations in genes involved in cell division, protein turnover, and glutamate transport. At least some evolutionary pathways to extreme radiation resistance are constrained by the temporally ordered appearance of specific alleles.
C1 [Harris, Dennis R.; Wood, Elizabeth A.; Goiffon, Reece J.; Klingele, Audrey J.; Eggington, Julie; Popelars, Michael C.; Li, Hao; Klugman, Sarit A.; Hamilton, Lindsay L.; Bane, Lukas B.; Cox, Michael M.] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA.
[Pollock, Steve V.; Battista, John R.] Louisiana State Univ, Dept Biol Sci, Baton Rouge, LA 70803 USA.
[Pollock, Steve V.; Battista, John R.] A&M Coll, Baton Rouge, LA 70803 USA.
[Cabot, Eric L.; Perna, Nicole T.] Univ Wisconsin, Genome Ctr, Madison, WI 53703 USA.
[Schackwitz, Wendy; Martin, Joel; Pennacchio, Len A.] DOE Joint Genome Inst, Walnut Creek, CA 94598 USA.
[Durfee, Timothy J.] DNASTAR Inc, Madison, WI 53705 USA.
[Middle, Christina M.; Norton, Jason E.; Albert, Thomas J.] Roche NimbleGen Inc, Madison, WI 53711 USA.
[Perna, Nicole T.] Univ Wisconsin, Genet Lab, Madison, WI 53706 USA.
RP Cox, MM (reprint author), Univ Wisconsin, Dept Biochem, 433 Babcock Dr, Madison, WI 53575 USA.
EM cox@biochem.wisc.edu; jbattis@lsu.edu
RI Goiffon, Reece/C-9686-2013
OI Goiffon, Reece/0000-0003-1622-7253
FU National Institutes of Health [GM067085]; U.S. Department of Energy
[DEFG0201ER63151, CSP2009.796601]
FX This work was supported by grant GM067085 from the National Institutes
of Health to M.M.C. and by U.S. Department of Energy grants
DEFG0201ER63151 and CSP2009.796601 to J.R.B.
NR 56
TC 51
Z9 53
U1 2
U2 15
PU AMER SOC MICROBIOLOGY
PI WASHINGTON
PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA
SN 0021-9193
J9 J BACTERIOL
JI J. Bacteriol.
PD AUG 15
PY 2009
VL 191
IS 16
BP 5240
EP 5252
DI 10.1128/JB.00502-09
PG 13
WC Microbiology
SC Microbiology
GA 475UJ
UT WOS:000268386600023
PM 19502398
ER
PT J
AU Li, MJ
Wu, ZL
Ma, Z
Schwartz, V
Mullins, DR
Dai, S
Overbury, SH
AF Li, Meijun
Wu, Zili
Ma, Zhen
Schwartz, Viviane
Mullins, David R.
Dai, Sheng
Overbury, Steven H.
TI CO oxidation on Au/FePO4 catalyst: Reaction pathways and nature of Au
sites
SO JOURNAL OF CATALYSIS
LA English
DT Article
DE Au catalyst; FePO4; Iron phosphate; CO adsorption; Catalytic CO
oxidation; Redox; FTIR; Raman spectroscopy; XANES; Mechanism
ID IRON PHOSPHATE CATALYSTS; SUPPORTED GOLD CATALYSTS; GAS SHIFT REACTION;
LOW-TEMPERATURE; CARBON-MONOXIDE; ISOBUTYRIC ACID; AU/TIO2 CATALYSTS;
INFRARED-SPECTROSCOPY; ROOM-TEMPERATURE; PARTICLE-SIZE
AB In situ FTIR spectroscopy coupled with downstream mass spectrometry has been used to clarify the pathways for room temperature (rt) CO oxidation over iron phosphate-supported Au catalyst. The charge state of Au on Au/FePO4 after calcination, reduction, or under reaction conditions was assessed by both FTIR spectroscopy (CO probing) and X-ray absorption near edge spectroscopy (XANES). Results from both approaches show that cationic gold species dominate the surface after pretreatment in O-2 at 200 degrees C. A portion of the cationic gold on Au/FePO4 can be reduced by the initial CO adsorption at rt, and subsequently repeated CO exposures do not reduce the remaining cationic Au. FIR and Raman results from cycled CO reduction and O-2 reoxidation of Au/FePO4 indicate that there are active structural oxygen species on the surface of Au/FePO4 that can be consumed by CO and then replenished by gaseous O-2 at rt. Au activates both CO and O-2 so that the FePO4 Support can undergo reduction (by CO) and reoxidation (by O-2) cycles. The results of CO oxidation with labeled O-18(2) suggest the operation of two parallel reaction pathways at rt: (1) a redox pathway in which FePO4 supplies active oxygen and (2) a direct pathway on metallic Au, via either Langmuir-Hinshelwood or Eley-Rideal mechanism, in which gas phase O-2 provides the active oxygen. (C) 2009 Elsevier Inc. All rights reserved.
C1 [Li, Meijun; Wu, Zili; Ma, Zhen; Schwartz, Viviane; Mullins, David R.; Dai, Sheng; Overbury, Steven H.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
RP Overbury, SH (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
EM overburysh@ornl.gov
RI Ma, Zhen/F-1348-2010; Wu, Zili/F-5905-2012; Overbury,
Steven/C-5108-2016; Dai, Sheng/K-8411-2015
OI Ma, Zhen/0000-0002-2391-4943; Wu, Zili/0000-0002-4468-3240; Overbury,
Steven/0000-0002-5137-3961; Dai, Sheng/0000-0002-8046-3931
FU US Department of Energy [DE-AC05-00OR22725, DE-AC02-98CH10886,
DE-FG02-05ER15688]; Oak Ridge National Laboratory
FX This work was sponsored by the Division of Chemical Sciences,
Geosciences, and Biosciences, Office of Basic Energy Sciences, US
Department of Energy, under Contract DE-AC05-00OR22725 with Oak Ridge
National Laboratory, managed and operated by UT-Battelle, LLC. A portion
of this research was done using facilities at the Center for Nanophase
Materials Sciences. XANES measurements were performed at the National
Synchrotron Light Source, Brook-haven National Laboratory supported by
the US Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Contract No. DE-AC02-98CH10886, and using facilities of
the Synchrotron Catalysis Consortium, supported by US Department of
Energy Grant No. DE-FG02-05ER15688.
NR 67
TC 41
Z9 41
U1 4
U2 78
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0021-9517
EI 1090-2694
J9 J CATAL
JI J. Catal.
PD AUG 15
PY 2009
VL 266
IS 1
BP 98
EP 105
DI 10.1016/j.jcat.2009.05.019
PG 8
WC Chemistry, Physical; Engineering, Chemical
SC Chemistry; Engineering
GA 488CN
UT WOS:000269326800012
ER
PT J
AU Baker, AH
Jessup, ER
Kolev, TV
AF Baker, A. H.
Jessup, E. R.
Kolev, Tz. V.
TI A simple strategy for varying the restart parameter in GMRES(m)
SO JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
LA English
DT Article
DE GMRES; Iterative methods; Krylov subspace; Restart parameter
ID NONSYMMETRIC LINEAR-SYSTEMS; CONVERGENCE; ALGORITHM
AB When solving a system of linear equations with the restarted GM RES method, a fixed restart parameter is typically chosen. We present numerical experiments that demonstrate the beneficial effects of changing the value of the restart parameter in each restart cycle on the total time to solution. We propose a simple strategy for varying the restart parameter and provide some heuristic explanations for its effectiveness based on analysis of the symmetric case. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Baker, A. H.; Kolev, Tz. V.] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA.
[Jessup, E. R.] Univ Colorado, Dept Comp Sci, Boulder, CO 80309 USA.
RP Baker, AH (reprint author), Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Box 808 L-560, Livermore, CA 94551 USA.
EM abaker@llnl.gov; jessup@cs.colorado.edu; tzanio@llnl.gov
NR 25
TC 16
Z9 19
U1 0
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0377-0427
J9 J COMPUT APPL MATH
JI J. Comput. Appl. Math.
PD AUG 15
PY 2009
VL 230
IS 2
BP 751
EP 761
DI 10.1016/j.cam.2009.01.009
PG 11
WC Mathematics, Applied
SC Mathematics
GA 465ED
UT WOS:000267563800038
ER
PT J
AU Matsui, H
Koike, M
Kondo, Y
Takegawa, N
Kita, K
Miyazaki, Y
Hu, M
Chang, SY
Blake, DR
Fast, JD
Zaveri, RA
Streets, DG
Zhang, Q
Zhu, T
AF Matsui, H.
Koike, M.
Kondo, Y.
Takegawa, N.
Kita, K.
Miyazaki, Y.
Hu, M.
Chang, S. -Y.
Blake, D. R.
Fast, J. D.
Zaveri, R. A.
Streets, D. G.
Zhang, Q.
Zhu, T.
TI Spatial and temporal variations of aerosols around Beijing in summer
2006: Model evaluation and source apportionment
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID AIR-QUALITY; PERFORMANCE; EMISSIONS; EPISODE; CHINA; SIMULATION;
PHOTOLYSIS; ALGORITHM; CHEMISTRY; POLLUTION
AB Regional aerosol model calculations were made using the Weather Research and Forecasting (WRF)-Community Multiscale Air Quality (CMAQ) and WRF-chem models to study spatial and temporal variations of aerosols around Beijing, China, in the summer of 2006, when the Campaigns of Air Quality Research in Beijing and Surrounding Region 2006 (CAREBeijing) intensive campaign was conducted. Model calculations captured temporal variations of primary ( such as elemental carbon (EC)) and secondary ( such as sulfate) aerosols observed in and around Beijing. The spatial distributions of aerosol optical depth observed by the MODIS satellite sensors were also reproduced over northeast China. Model calculations showed distinct differences in spatial distributions between primary and secondary aerosols in association with synoptic-scale meteorology. Secondary aerosols increased in air around Beijing on a scale of about 1000 x 1000 km(2) under an anticyclonic pressure system. This air mass was transported northward from the high anthropogenic emission area extending south of Beijing with continuous photochemical production. Subsequent cold front passage brought clean air from the north, and polluted air around Beijing was swept to the south of Beijing. This cycle was repeated about once a week and was found to be responsible for observed enhancements/reductions of aerosols at the intensive measurement sites. In contrast to secondary aerosols, the spatial distributions of primary aerosols (EC) reflected those of emissions, resulting in only slight variability despite the changes in synoptic-scale meteorology. In accordance with these results, source apportionment simulations revealed that primary aerosols around Beijing were controlled by emissions within 100 km around Beijing within the preceding 24 h, while emissions as far as 500 km and within the preceding 3 days were found to affect secondary aerosols.
C1 [Matsui, H.; Kondo, Y.; Takegawa, N.; Miyazaki, Y.] Univ Tokyo, Adv Sci & Technol Res Ctr, Meguro Ku, Tokyo 1538904, Japan.
[Matsui, H.; Koike, M.] Univ Tokyo, Grad Sch Sci, Dept Earth & Planetary Sci, Bunkyo Ku, Tokyo 1130033, Japan.
[Kita, K.] Ibaraki Univ, Grad Sch Sci, Dept Environm Sci, Mito, Ibaraki 3108512, Japan.
[Hu, M.; Zhu, T.] Peking Univ, Coll Environm Sci & Engn, State Key Lab Environm Simulat & Pollut Control, Beijing 100871, Peoples R China.
[Chang, S. -Y.] Chung Shan Med Univ, Dept Publ Hlth, Taichung 40201, Taiwan.
[Blake, D. R.] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA.
[Fast, J. D.; Zaveri, R. A.] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA.
[Streets, D. G.; Zhang, Q.] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA.
RP Matsui, H (reprint author), Univ Tokyo, Adv Sci & Technol Res Ctr, Meguro Ku, 4-6-1 Komaba, Tokyo 1538904, Japan.
EM matsui@atmos.rcast.u-tokyo.ac.jp; koike@eps.s.u-tokyo.ac.jp;
y.kondo@atmos.rcast.u-tokyo.ac.jp; takegawa@atmos.rcast.u-tokyo.ac.jp;
kita@mx.ibaraki.ac.jp; yuzom@pop.lowtem.hokudai.ac.jp; minhu@pku.edu.cn;
sychang@csmu.edu.tw; drblake@uci.edu; jerome.fast@pnl.gov;
rahul.zaveri@pnl.gov; dstreets@anl.gov; zhangq@anl.gov; tzhu@pku.edu.cn
RI Koike, Makoto/F-4366-2011; ZHU, TONG/H-6501-2011; Kondo,
Yutaka/D-1459-2012; Zhang, Qiang/D-9034-2012; Miyazaki,
Yuzo/C-6920-2010;
OI Zaveri, Rahul/0000-0001-9874-8807; Streets, David/0000-0002-0223-1350
FU Ministry of Education, Culture, Sports, Science, and Technology ( MEXT)
in Japan; Alliance for Global Sustainability ( AGS) project, University
of Tokyo; International Global Atmospheric Chemistry (IGAC) project
FX We are indebted to all of the CAREBeijing2006 campaign participants for
their cooperation and support. Special thanks are due to the staff and
students from the Peking University for leading and carrying out this
project. We would like to thankW. I. Gustafson, Jr. at PNNL for
providing useful comments onWRF- chem model calculations. This study was
supported by the Ministry of Education, Culture, Sports, Science, and
Technology (MEXT) in Japan. This study was also supported in part by the
Alliance for Global Sustainability ( AGS) project, University of Tokyo.
This study was conducted as a part of the Megacities Asia Task under the
framework of the International Global Atmospheric Chemistry (IGAC)
project.
NR 50
TC 45
Z9 45
U1 2
U2 53
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD AUG 15
PY 2009
VL 114
AR D00G13
DI 10.1029/2008JD010906
PG 22
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 484FC
UT WOS:000269028100001
ER
PT J
AU Qian, Y
Gong, DY
Fan, JW
Leung, LR
Bennartz, R
Chen, DL
Wang, WG
AF Qian, Yun
Gong, Daoyi
Fan, Jiwen
Leung, L. Ruby
Bennartz, Ralf
Chen, Deliang
Wang, Weiguo
TI Heavy pollution suppresses light rain in China: Observations and
modeling
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID ATMOSPHERIC WATER-VAPOR; CLIMATE-CHEMISTRY/AEROSOL MODEL; REGIONAL
CLIMATE; EAST-ASIA; NUMBER CONCENTRATION; SUMMER RAINFALL;
AIR-POLLUTION; ANTHROPOGENIC AEROSOLS; HYDROLOGICAL CYCLE; CONVECTIVE
CLOUDS
AB Long-term observational data reveal that both the frequency and amount of light rain have decreased in eastern China (EC) for 1956-2005 with high spatial coherency. This is different from the trend of total rainfall observed in EC, which decreases in northern EC and increases in southern EC. To examine the cause of the light rain trends, we analyzed the long-term variability of atmospheric water vapor and its correlation with light rain events. Results show very weak relationships between large-scale moisture transport and light rain in EC. Because of human activities, pollutant emission has increased dramatically in China for the last few decades, leading to a significant reduction in visibility between 1960 and 2000. Cloud-resolving model simulations over EC show that aerosols corresponding to polluted conditions can significantly increase the cloud droplet number concentration (CDNC) and reduce droplet sizes compared to pristine conditions. This can lead to a significant decline in raindrop concentration and delay raindrop formation because smaller cloud droplets are less efficient in the collision and coalescence processes. Together with weaker convection, the precipitation frequency and amount are significantly reduced in the polluted case in EC. Satellite data also reveal higher CDNC and smaller droplet size over polluted land in EC relative to pristine regions, which is consistent with the model results. Observational evidences and simulations results suggest that the significantly increased aerosol concentrations produced by air pollution are at least partly responsible for the decreased light rain events observed in China over the past 50 years.
C1 [Qian, Yun; Fan, Jiwen; Leung, L. Ruby; Wang, Weiguo] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA.
[Bennartz, Ralf] Univ Wisconsin, Dept Atmospher & Ocean Sci, Madison, WI 53706 USA.
[Chen, Deliang] Univ Gothenburg, Dept Earth Sci, SE-40530 Gothenburg, Sweden.
[Gong, Daoyi] Beijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China.
RP Qian, Y (reprint author), Pacific NW Natl Lab, Atmospher Sci & Global Change Div, 902 Battelle Blvd, Richland, WA 99352 USA.
EM yun.qian@pnl.gov
RI qian, yun/A-5056-2010; Fan, Jiwen/E-9138-2011; li,
dongsheng/B-2285-2012; qian, yun/E-1845-2011; Wang, Weiguo/B-4948-2009;
Chen, Deliang/A-5107-2013; Bennartz, Ralf/F-3760-2010
OI Chen, Deliang/0000-0003-0288-5618;
FU U. S. Department of Energy's Office of Science Biological and
Environmental Research; China Ministry of Science and Technology; U. S.
DOE by Battelle Memorial Institute [DE-AC06-76RLO1830]; [2006CB400505];
[GYHY200706010]
FX We thank William I. Gustafson Jr. for his internal review and
constructive comments. This research is sponsored by the U. S.
Department of Energy's Office of Science Biological and Environmental
Research under a bilateral agreement with the China Ministry of Science
and Technology on regional climate research. PNNL is operated for the U.
S. DOE by Battelle Memorial Institute under contract DE-AC06-76RLO1830.
This research was also partly supported by projects 2006CB400505 and
GYHY200706010. The ECWMF reanalysis data used in this study were
obtained from the ECMWF server available at http://data.ecmwf.
NR 89
TC 114
Z9 128
U1 1
U2 40
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD AUG 15
PY 2009
VL 114
AR D00K02
DI 10.1029/2008JD011575
PG 16
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 484FC
UT WOS:000269028100003
ER
PT J
AU Zhang, XS
Srinivasan, R
Bosch, D
AF Zhang, Xuesong
Srinivasan, Raghavan
Bosch, David
TI Calibration and uncertainty analysis of the SWAT model using Genetic
Algorithms and Bayesian Model Averaging
SO JOURNAL OF HYDROLOGY
LA English
DT Article
DE Optimization; Modeling; Basin; Uncertainty; SWAT
ID RAINFALL-RUNOFF MODELS; WATER ASSESSMENT-TOOL; GOODNESS-OF-FIT;
AUTOMATIC CALIBRATION; METROPOLIS ALGORITHM; GLOBAL OPTIMIZATION;
HYDROLOGIC-MODELS; CATCHMENT MODELS; CHAOHE BASIN; RIVER-BASIN
AB In this paper, the Genetic Algorithms (GA) and Bayesian Model Averaging (BMA) were used to simultaneously conduct calibration and uncertainty analysis for the Soil and Water Assessment Tool (SWAT), In this combined method, several SWAT models with different structures are first selected; next GA is used to calibrate each model using observed streamflow data; finally, BMA is applied to combine the ensemble predictions and provide uncertainty interval estimation. This method was tested in two contrasting basins, the Little River Experimental Basin in Georgia, USA, and the Yellow River Headwater Basin in China. The results obtained in the two case studies show that this combined method can provide deterministic predictions better than or comparable to the best calibrated model using GA. The 66.7% and 90% uncertainty intervals estimated by this method were analyzed. The differences between the percentage of coverage of observations and the corresponding expected coverage percentage are within 10% for both calibration and validation periods in these two test basins. This combined methodology provides a practical and flexible tool to attain reliable deterministic simulation and uncertainty analysis of SWAT. Published by Elsevier B.V.
C1 [Zhang, Xuesong] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA.
[Srinivasan, Raghavan] Texas A&M Univ, Spatial Sci Lab, Dept Ecosyst Sci & Management, College Stn, TX 77843 USA.
[Bosch, David] ARS, SE Watershed Res Lab, USDA, Tifton, GA 31793 USA.
RP Zhang, XS (reprint author), Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA.
EM Xuesongzhang2004@gmail.com
RI zhang, xuesong/B-7907-2009; Srinivasan, R/D-3937-2009
NR 60
TC 85
Z9 90
U1 6
U2 40
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-1694
EI 1879-2707
J9 J HYDROL
JI J. Hydrol.
PD AUG 15
PY 2009
VL 374
IS 3-4
BP 307
EP 317
DI 10.1016/j.jhydrol.2009.06.023
PG 11
WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources
SC Engineering; Geology; Water Resources
GA 494WU
UT WOS:000269851000011
ER
PT J
AU Honda, M
Wang, R
Kong, WP
Kanekiyo, M
Akahata, W
Xu, L
Matsuo, K
Natarajan, K
Robinson, H
Asher, TE
Price, DA
Douek, DC
Margulies, DH
Nabel, GJ
AF Honda, Mitsuo
Wang, Rui
Kong, Wing-Pui
Kanekiyo, Masaru
Akahata, Wataru
Xu, Ling
Matsuo, Kazuhiro
Natarajan, Kannan
Robinson, Howard
Asher, Tedi E.
Price, David A.
Douek, Daniel C.
Margulies, David H.
Nabel, Gary J.
TI Different Vaccine Vectors Delivering the Same Antigen Elicit CD8(+) T
Cell Responses with Distinct Clonotype and Epitope Specificity
SO JOURNAL OF IMMUNOLOGY
LA English
DT Article
ID HUMAN-IMMUNODEFICIENCY-VIRUS; MHC CLASS-I; RHESUS-MONKEYS; ENVELOPE
GLYCOPROTEIN; HLA-B27 SUBTYPE; AIDS VACCINE; HIV-1 GP120; DNA PRIME;
PEPTIDE; PROTECTION
AB Prime-boost immunization with gene-based vectors has been developed to generate more effective vaccines for AIDS, malaria, and tuberculosis. Although these vectors elicit potent T cell responses, the mechanisms by which they stimulate immunity are not well understood. In this study, we show that immunization by a single gene product, HIV-1 envelope, with alternative vector combinations elicits CD8(+) cells with different fine specificities and kinetics of mobilization. Vaccine-induced CD8(+) T cells recognized overlapping third V region loop peptides. Unexpectedly, two anchor variants bound H-2D(d) better than the native sequences, and clones with distinct specificities were elicited by alternative vectors. X-ray crystallography revealed major differences in solvent exposure of MHC-bound peptide epitopes, suggesting that processed HIV-1 envelope gave rise to MHC-I/peptide conformations recognized by distinct CD8(+) T cell populations. These findings suggest that different gene-based vectors generate peptides with alternative conformations within MHC-I that elicit distinct T cell responses after vaccination. The Journal of Immunology, 2009, 183: 2425-2434.
C1 [Honda, Mitsuo; Kong, Wing-Pui; Kanekiyo, Masaru; Akahata, Wataru; Xu, Ling; Asher, Tedi E.; Price, David A.; Douek, Daniel C.; Nabel, Gary J.] NIAID, Vaccine Res Ctr, NIH, Bethesda, MD 20892 USA.
[Honda, Mitsuo; Matsuo, Kazuhiro] Natl Inst Infect Dis, AIDS Res Ctr, Tokyo, Japan.
[Wang, Rui; Natarajan, Kannan; Margulies, David H.] NIAID, Mol Biol Sect, Immunol Lab, NIH, Bethesda, MD 20892 USA.
[Robinson, Howard] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Price, David A.] Cardiff Univ, Sch Med, Dept Med Microbiol & Immunol, Cardiff, S Glam, Wales.
RP Nabel, GJ (reprint author), NIAID, Vaccine Res Ctr, NIH, 40 Convent Dr,Bldg 40,Room 4502, Bethesda, MD 20892 USA.
EM gnabel@nih.gov
RI Margulies, David/H-7089-2013; Price, David/C-7876-2013;
OI Price, David/0000-0001-9416-2737; Margulies, David/0000-0001-8530-7375
FU U.S. Department of Energy; National Center for Research Resources of the
National Institutes of Health; Medical Research Council, United Kingdom
FX This work was supported by the intramural research program of the
Vaccine Research Center and the Laboratory, of Immunology, National
Institute of Allergy and Infections Diseases, National Institutes of
Health. Support for beamline X29 of the National Synchrotron Light
Source comes principally from the Offices of Biological and
Environmental Research and of Basic Energy Sciences of the U.S.
Department of Energy, and from the National Center for Research
Resources of the National Institutes of Health. D.A.P. is a Medical
Research Council (United Kingdom) Senior Clinical Fellow.
NR 51
TC 15
Z9 16
U1 0
U2 4
PU AMER ASSOC IMMUNOLOGISTS
PI BETHESDA
PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA
SN 0022-1767
J9 J IMMUNOL
JI J. Immunol.
PD AUG 15
PY 2009
VL 183
IS 4
BP 2425
EP 2434
DI 10.4049/jimmunol.0900581
PG 10
WC Immunology
SC Immunology
GA 482RN
UT WOS:000268906500029
PM 19620307
ER
PT J
AU Ricklin, D
Tzekou, A
Garcia, BL
Hammel, M
McWhorter, WJ
Sfyroera, G
Wu, YQ
Holers, VM
Herbert, AP
Barlow, PN
Geisbrecht, BV
Lambris, JD
AF Ricklin, Daniel
Tzekou, Apostolia
Garcia, Brandon L.
Hammel, Michal
McWhorter, William J.
Sfyroera, Georgia
Wu, You-Qiang
Holers, V. Michael
Herbert, Andrew P.
Barlow, Paul N.
Geisbrecht, Brian V.
Lambris, John D.
TI A Molecular Insight into Complement Evasion by the Staphylococcal
Complement Inhibitor Protein Family
SO JOURNAL OF IMMUNOLOGY
LA English
DT Article
ID SURFACE-PLASMON RESONANCE; X-RAY SOLUTION; HUMAN-FACTOR-H; ALTERNATIVE
PATHWAY; ACTIVATION PRODUCTS; BINDING PROTEIN; IMMUNE EVASION; AUREUS
PROTEIN; COMPONENT; C3D
AB Staphylococcus aureus possesses an impressive arsenal of complement evasion proteins that help the bacterium escape attack of the immune system. The staphylococcal complement inhibitor (SCIN) protein exhibits a particularly high potency and was previously shown to block complement by acting at the level of the C3 convertases. However, many details about the exact binding and inhibitory mechanism remained unclear. In this study, we demonstrate that SCIN directly binds with nanomolar affinity to a functionally important area of C3b that lies near the C terminus of its beta-chain. Direct competition of SCIN with factor B for C3b slightly decreased the formation of surface-bound convertase. However, the main inhibitory effect can be attributed to an entrapment of the assembled convertase in an inactive state. Whereas native C3 is still able to bind to the blocked convertase, no generation and deposition of C3b could be detected in the presence of SCIN. Furthermore, SCIN strongly competes with the binding of factor H to C3b and influences its regulatory activities: the SCIN-stabilized convertase was essentially insensitive to decay acceleration by factor H and the factor I- and H-mediated conversion of surface-bound C3b to iC3b was significantly reduced. By targeting a key area on C3b, SCIN is able to block several essential functions within the alternative pathway, which explains the high potency of the inhibitor. Our findings provide an important insight into complement evasion strategies by S. aureus and may act as a base for further functional studies. The Journal of Immunology, 2009, 183: 2565-2574.
C1 [Ricklin, Daniel; Tzekou, Apostolia; Sfyroera, Georgia; Wu, You-Qiang; Lambris, John D.] Univ Penn, Dept Pathol & Lab Med, Philadelphia, PA 19104 USA.
[Garcia, Brandon L.; McWhorter, William J.; Geisbrecht, Brian V.] Univ Missouri, Sch Biol Sci, Div Cell Biol & Biophys, Kansas City, MO 64110 USA.
[Hammel, Michal] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
[Holers, V. Michael] Univ Colorado, Sch Med, Dept Med, Denver, CO 80045 USA.
[Herbert, Andrew P.; Barlow, Paul N.] Univ Edinburgh, Sch Biol Sci, Edinburgh, Midlothian, Scotland.
[Herbert, Andrew P.; Barlow, Paul N.] Univ Edinburgh, Sch Chem, Edinburgh, Midlothian, Scotland.
RP Lambris, JD (reprint author), Univ Penn, Dept Pathol & Lab Med, 401 Stellar Chance,422 Curie Blvd, Philadelphia, PA 19104 USA.
EM Lambris@upenn.edu
RI Herbert, Andy/C-4755-2008; Herbert, Andy/F-6693-2010; Ricklin,
Daniel/F-5104-2011; Barlow, Paul/G-2853-2011;
OI Herbert, Andy/0000-0002-3417-4901; Herbert, Andy/0000-0002-4549-6965;
Ricklin, Daniel/0000-0001-6140-0233; Lambris, John/0000-0002-9370-5776
FU National Institutes of Health [AI071028, AI068730, AI30040, AI072106,
CA53615]; U.S. Department of Energy [DE-AC02-05CH11231]
FX This work was supported by Grants AI071028, AI068730, AI30040. AI072106,
and CA53615 front the National Institutes of Health, and in part by the
Office of Science, Office of Biological and Environmental Research, U.S.
Department of Energy, under Contract DE-AC02-05CH11231 for SIBLYS
beamline efforts.
NR 46
TC 32
Z9 34
U1 0
U2 1
PU AMER ASSOC IMMUNOLOGISTS
PI BETHESDA
PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA
SN 0022-1767
J9 J IMMUNOL
JI J. Immunol.
PD AUG 15
PY 2009
VL 183
IS 4
BP 2565
EP 2574
DI 10.4049/jimmunol.0901443
PG 10
WC Immunology
SC Immunology
GA 482RN
UT WOS:000268906500044
PM 19625656
ER
PT J
AU Burkes, DE
Fielding, RS
Porter, DL
Meyer, MK
Makenas, BJ
AF Burkes, Douglas E.
Fielding, Randall S.
Porter, Douglas L.
Meyer, Mitchell K.
Makenas, Bruce J.
TI A US perspective on fast reactor fuel fabrication technology and
experience. Part II: Ceramic fuels
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID FAST BREEDER-REACTORS; URANIUM MONONITRIDE; PLUTONIUM; HYDROGEN;
NITROGEN; AMMONIA; DIOXIDE; MIXTURE; PELLETS; SODIUM
AB This paper is Part II of a review focusing on the United States experience with oxide, carbide, and nitride fast reactor fuel fabrication. Over 60 years of research in fuel fabrication by government, national laboratories, industry, and academia has culminated in a foundation of research and resulted in significant improvements to the technologies employed to fabricate these fuel types. This part of the review documents the current state of fuel fabrication technologies in the United States for each of these fuel types, some of the challenges faced by previous researchers, and how these were overcome. Knowledge gained from reviewing previous investigations will aid both researchers and policy makers in forming future decisions relating to nuclear fuel fabrication technologies. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Burkes, Douglas E.; Fielding, Randall S.; Porter, Douglas L.; Meyer, Mitchell K.] Idaho Natl Lab, Nucl Fuels & Mat Div, Idaho Falls, ID 83415 USA.
[Makenas, Bruce J.] Fluor Hanford Co, Richland, WA 99354 USA.
RP Burkes, DE (reprint author), Idaho Natl Lab, Nucl Fuels & Mat Div, POB 1625, Idaho Falls, ID 83415 USA.
EM Douglas.Burkes@inl.gov
OI Meyer, Mitchell/0000-0002-1980-7862
FU US Department of Energy, Office of Nuclear Energy (NE), under DOE Idaho
Operations Office [DE-AC07-051D14517]
FX The authors wish to acknowledge the many scientists, engineers,
technicians, and support staff involved with the EBR-II and FFTF over
three decades. Their commitment, integrity, and knowledge has in no
small part inspired a new generation of scientists, engineers,
technicians, and support staff to continue the great and important work
they established, especially in such a dire time of need. The authors
would like to thank Ron B. Baker of Fluor Hanford for very helpful
discussions in the preparation of this paper. This work is supported by
the US Department of Energy, Office of Nuclear Energy (NE), under DOE
Idaho Operations Office Contract DE-AC07-051D14517.
NR 63
TC 10
Z9 10
U1 1
U2 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD AUG 15
PY 2009
VL 393
IS 1
BP 1
EP 11
DI 10.1016/j.jnucmat.2009.04.023
PG 11
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA 491MI
UT WOS:000269582700001
ER
PT J
AU Cockeram, BV
Smith, RW
Byun, TS
Snead, LL
AF Cockeram, B. V.
Smith, R. W.
Byun, T. S.
Snead, L. L.
TI The change in the hardness of LCAC, TZM, and ODS molybdenum in the
post-irradiated and annealed conditions
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID FAST-NEUTRON IRRADIATION; MO-5-PERCENT RE ALLOYS; CARBON ARC CAST; 300
DEGREES-C; TENSILE PROPERTIES; ELECTRICAL-RESISTIVITY;
MECHANICAL-PROPERTIES; DEFECT RECOVERY; WROUGHT LCAC; TEMPERATURE
AB Hardness measurements were performed on wrought Low Carbon Arc Cast (LCAC), TZM, and Oxide Dispersion Strengthened (ODS) molybdenum in the post-irradiated and post-irradiated + annealed condition to determine the recovery kinetics. Irradiations performed in the High Flux Isotope Reactor (HFIR) at nominally 300 degrees C and 600 degrees C to neutron fluence levels that range from 10.5 to 246 x 10(24) n/m(2) (E > 0.1 MeV) resulted in relatively large increases in hardness (77-109%), while small increases in hardness (<18%) were observed for irradiations at 870-1100 degrees C. The hardness recovery for ODS and LCAC irradiated at 300 degrees C and 600 degrees C were shown to be complete at 980 degrees C and approximate to 1100-1250 degrees C, respectively. Isothermal annealing at 700 degrees C was used to determine the activation energy for recovery of LCAC and ODS (3.70-4.88 eV +/- 0.28-0.77 eV), which is comparable to values reported in the literature for molybdenum vacancy self-diffusion. This suggests that recovery of LCAC and ODS is controlled by the solid-state diffusion of vacancies in the bulk, and that the finer grain size and particle size ODS does not affect this mechanism. TZM exhibited slower recovery kinetics, which can be explained by the solute atoms (titanium and zirconium) inhibiting vacancy diffusion. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Cockeram, B. V.; Smith, R. W.] Bechtel Bettis Inc, W Mifflin, PA 15122 USA.
[Byun, T. S.; Snead, L. L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RP Cockeram, BV (reprint author), Bechtel Bettis Inc, POB 79, W Mifflin, PA 15122 USA.
EM cockeram@bettis.gov
FU USDOE
FX This work was supported by USDOE. The authors are grateful for the
review and comments provided by J.E. Hack. The assistance of R.F. Luther
and A.J Mueller in providing some of the LCAC and ODS molybdenum
specimens used in this work is much appreciated. Thanks also to the
following ORNL personnel for their contributions in completing
irradiations and testing (A.L. Qualls, A.W. Williams, and J.L. Bailey).
Irradiations were carried out in the High Flux Isotope Reactor, a
Department of Energy Office of Science User Facility.
NR 61
TC 5
Z9 5
U1 1
U2 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD AUG 15
PY 2009
VL 393
IS 1
BP 12
EP 21
DI 10.1016/j.jnucmat.2009.04.025
PG 10
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA 491MI
UT WOS:000269582700002
ER
PT J
AU Li, MM
Sokolov, MA
Zinkle, SJ
AF Li, Meimei
Sokolov, M. A.
Zinkle, S. J.
TI Tensile and fracture toughness properties of neutron-irradiated CuCrZr
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID HARDENING CU-CR; COPPER-ALLOYS; HEAT-TREATMENTS; MECHANICAL-PROPERTIES;
CU-CO2SI ALLOYS; COMPONENTS; ITER
AB Tensile and fracture toughness properties of a precipitation-hardened CuCrZr alloy were investigated in two heat treatment conditions: solutionized, water quenched and aged (CuCrZr SAA), and hot isostatic pressed, solutionized, slow-cooled and aged (CuCrZr SCA). The second heat treatment simulated the manufacturing cycle for large components, and is directly relevant for the ITER divertor components. Specimens were neutron irradiated at similar to 80 degrees C to two iluences, 2 x 10(24) and 2 x 10(25) n/m(2) (E > 0.1 MeV), corresponding to displacement doses of 0.15 and 1.5 displacements per atom (dpa). Tensile and fracture toughness tests were carried out at room temperature. Significant irradiation hardening and plastic instability at yield occurred in both heat treatment conditions with a saturation dose of,.,0.1 dpa. Neutron irradiation slightly reduced fracture toughness in CuCrZr SAA and CuCrZr SCA. The fracture toughness of CuCrZr remained high up to 1.5 dpa (J(Q) > 200 kJ/m(2)) for both heat treatment conditions. Published by Elsevier B.V.
C1 [Li, Meimei; Sokolov, M. A.; Zinkle, S. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
RP Li, MM (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM mli@anl.gov
OI Zinkle, Steven/0000-0003-2890-6915
FU Office of Fusion Energy Sciences; US Department of Energy
[DE-AC05-00OR22725]
FX The research was sponsored by the Office of Fusion Energy Sciences, the
US Department of Energy under Contract DE-AC05-00OR22725 with Oak Ridge
National Laboratory, managed and operated by UT-Battelle, LLC. Dr Alan
Peacock at EFDA Close Support Unit in Garching, Germany provided the
materials. The authors would like to thank E.T. Manneschmidt, R. Swain
and D.A. McClintock and L.T. Gibson for their technical support.
NR 35
TC 8
Z9 8
U1 4
U2 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD AUG 15
PY 2009
VL 393
IS 1
BP 36
EP 46
DI 10.1016/j.jnucmat.2009.05.003
PG 11
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA 491MI
UT WOS:000269582700005
ER
PT J
AU O'Brien, RC
Ambrosi, RM
Bannister, NP
Howe, SD
Atkinson, HV
AF O'Brien, R. C.
Ambrosi, R. M.
Bannister, N. P.
Howe, S. D.
Atkinson, H. V.
TI Spark Plasma Sintering of simulated radioisotope materials within
tungsten cermets
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID WC-CO POWDER
AB A Spark Plasma Sintering (SPS) furnace was used to produce ceramic-metallic sinters (cermets) containing a simulated loading of radioisotope materials. CeO(2) was used to simulate loadings of PuO(2), UO(2) or AmO(2) within tungsten-based cermets due to the similar kinetic properties of these materials, in particular the respective melting points and Gibbs free energies. The work presented demonstrates the capability and suitability of the SPS process for the production of radioisotope encapsulates for nuclear fuels and other applications (including waste disposal and radioisotope power and heat source fabrication) where the mechanical capture of radioisotope materials is required. (C) 2009 Elsevier B.V. All rights reserved.
C1 [O'Brien, R. C.; Ambrosi, R. M.; Bannister, N. P.] Univ Leicester, Space Res Ctr, Leicester LE1 7RH, Leics, England.
[Howe, S. D.] Idaho Natl Lab, Ctr Space Nucl Res, Idaho Falls, ID 83415 USA.
[Atkinson, H. V.] Univ Leicester, Dept Engn, Leicester LE1 7RH, Leics, England.
RP O'Brien, RC (reprint author), Univ Leicester, Space Res Ctr, Univ Rd, Leicester LE1 7RH, Leics, England.
EM rco3@star.le.ac.uk
RI O'Brien, Robert/C-3355-2017
OI O'Brien, Robert/0000-0002-7479-6764
FU Idaho National Laboratory; Space Research Centre, University of
Leicester; Department of Physics and Astronomy, University of Leicester;
Department of Materials Science and Engineering, University of Idaho;
College of Engineering, Boise State University; Engineering and Physical
Sciences Research Council (EPSRC)
FX The Engineering and Physical Sciences Research Council (EPSRC) for
funding this research.
NR 11
TC 13
Z9 14
U1 3
U2 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD AUG 15
PY 2009
VL 393
IS 1
BP 108
EP 113
DI 10.1016/j.jnucmat.2009.05.012
PG 6
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA 491MI
UT WOS:000269582700014
ER
PT J
AU Valdez, JA
Usov, IO
Won, J
Tang, M
Dickerson, RM
Jarvinen, GD
Sickafus, KE
AF Valdez, J. A.
Usov, I. O.
Won, J.
Tang, M.
Dickerson, R. M.
Jarvinen, G. D.
Sickafus, K. E.
TI 10 MeV Au ion irradiation effects in an MgO-HfO2 ceramic-ceramic
(CERCER) composite
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID RADIATION-DAMAGE; NUCLEAR-WASTE; OXIDES; IMMOBILIZATION; TOLERANCE;
PLUTONIUM; ZIRCONIA
AB Room temperature ion irradiation damage studies were performed on a ceramic composite intended to emulate a dispersion nuclear fuel. The composite is composed of 90-mole% MgO and 10-mole% HfO2. The as-synthesized composite was found to consist of Mg2Hf5O12 (and some residual HfO2) particles embedded in an MgO matrix. X-ray diffraction revealed that nearly all of the initial HfO2 reacted with some MgO to form Mg2Hf5O12. Ion irradiations were performed using 10 MeV Au3+ ions at room temperature over a fluence range of 5 x 10(16)-5 x 10(20) Au/m(2). Irradiated samples were characterized using both grazing incidence X-ray diffraction (GIXRD) and transmission electron microscopy (TEM), the latter using both selected-area electron diffraction (SAED) and micro-diffraction (VD) on samples prepared in cross-sectional geometry. Both GIXRD and TEM electron diffraction measurements on a specimen irradiated to a fluence of 5 x 10(20) Au/cm(2), revealed that the initial rhombohedral Mg2Hf5O12 phase was transformed into a cubic-Mg2Hf5O12 phase. Finally, it is important to note that at the highest ion fluence used in this investigation (5 x 10(20) Au/m(2)), both the MgO matrix and the Mg2Hf5O12 second phase remained crystalline. Published by Elsevier B.V.
C1 [Valdez, J. A.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA.
RP Valdez, JA (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Mail Stop G755, Los Alamos, NM 87545 USA.
EM javaldez@lanl.gov
OI won, Jonghan/0000-0002-7612-1322
FU Los Alamos National Laboratory; Laboratory Directed Research and
Development (LDRD); US Department of Energy, Office of Basic Energy
Sciences, Division of Materials Sciences and Engineering
FX This work was supported and sponsored by a Los Alamos National
Laboratory, Laboratory Directed Research and Development (LDRD) Grant
and by the US Department of Energy, Office of Basic Energy Sciences,
Division of Materials Sciences and Engineering.
NR 31
TC 14
Z9 14
U1 1
U2 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD AUG 15
PY 2009
VL 393
IS 1
BP 126
EP 133
DI 10.1016/j.jnucmat.2009.05.019
PG 8
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA 491MI
UT WOS:000269582700017
ER
PT J
AU Landa, A
Soderlind, P
Turchi, PEA
Vitos, L
Ruban, A
AF Landa, A.
Soederlind, P.
Turchi, P. E. A.
Vitos, L.
Ruban, A.
TI Density-functional study of Zr-based actinide alloys: 2. U-Pu-Zr system
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID CONSTITUENT REDISTRIBUTION; PHASE-DIAGRAM; DELTA-PU; APPROXIMATION;
TEMPERATURE; TRANSITION; PRESSURES; PLUTONIUM; CERIUM; FUEL
AB Density-functional theory, previously used to describe phase equilibria in the U-Zr alloys [A. Landa, P. Soderlind, P.E.A. Turchi, L. Vitos, A. Ruban, J. Nucl. Mater. 385 (2009) 68[, is applied to study ground-state properties of the bcc U-Pu-Zr solid solutions. Calculated heats of formation of the Pu-U and Pu-Zr alloys are in a good agreement with CALPHAD assessments. We found that account for spin-orbit coupling is important for successful description of Pu-containing alloys. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Landa, A.; Soederlind, P.; Turchi, P. E. A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
[Vitos, L.; Ruban, A.] Royal Inst Technol, SE-10044 Stockholm, Sweden.
RP Landa, A (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
EM landa1@llnl.gov
RI Ruban, Andrei/B-7457-2012
FU US Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]
FX This work was performed under the auspices of the US Department of
Energy by Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344.
NR 42
TC 11
Z9 11
U1 1
U2 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
EI 1873-4820
J9 J NUCL MATER
JI J. Nucl. Mater.
PD AUG 15
PY 2009
VL 393
IS 1
BP 141
EP 145
DI 10.1016/j.jnucmat.2009.05.014
PG 5
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA 491MI
UT WOS:000269582700019
ER
PT J
AU Schenkel, T
Lo, CC
Weis, CD
Schuh, A
Persaud, A
Bokor, J
AF Schenkel, T.
Lo, C. C.
Weis, C. D.
Schuh, A.
Persaud, A.
Bokor, J.
TI Critical issues in the formation of quantum computer test structures by
ion implantation
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM
INTERACTIONS WITH MATERIALS AND ATOMS
LA English
DT Article; Proceedings Paper
CT 23rd International Conference on Atomic Collisions in Solids
CY AUG 17-22, 2008
CL Phalaborwa, SOUTH AFRICA
DE Ion implantation; Highly charged ions; Quantum computing
ID HIGHLY-CHARGED IONS; NUCLEAR-SPIN; ENERGY-LOSS; SILICON
AB The formation of quantum computer test structures in silicon by ion implantation enables the characterization of spin readout mechanisms with ensembles of dopant atoms and the development of single atom devices. We briefly review recent results in the characterization of spin dependent transport and single ion doping and then discuss the diffusion and segregation behaviour of phosphorus, antimony and bismuth ions from low fluence, low energy implantations as characterized through depth profiling by secondary ion mass spectrometry (SIMS). Both phosphorus and bismuth are found to segregate to the SiO(2)/Si interface during activation anneals, while antimony diffusion is found to be minimal. An effect of the ion charge state on the range of antimony ions, (121)Sb(25+), in SiO(2)/Si is also discussed. (C) 2009 Elsevier B. V. All rights reserved.
C1 [Schenkel, T.; Weis, C. D.; Schuh, A.; Persaud, A.] EO Lawrence Berkeley Natl Lab, Div Accelerator & Fus Res, Berkeley, CA 94720 USA.
[Lo, C. C.; Bokor, J.] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA.
RP Schenkel, T (reprint author), EO Lawrence Berkeley Natl Lab, Div Accelerator & Fus Res, Berkeley, CA 94720 USA.
EM T_Schenkel@lbl.gov
NR 17
TC 19
Z9 19
U1 0
U2 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-583X
J9 NUCL INSTRUM METH B
JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms
PD AUG 15
PY 2009
VL 267
IS 16
BP 2563
EP 2566
DI 10.1016/j.nimb.2009.05.061
PG 4
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Atomic, Molecular & Chemical; Physics, Nuclear
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 528DU
UT WOS:000272422400002
ER
PT J
AU Titov, AI
Karaseov, PA
Azarov, AY
Kucheyev, SO
AF Titov, A. I.
Karaseov, P. A.
Azarov, A. Yu.
Kucheyev, S. O.
TI Effects of the density of collision cascades: Separating contributions
from dynamic annealing and energy spikes
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM
INTERACTIONS WITH MATERIALS AND ATOMS
LA English
DT Article; Proceedings Paper
CT 23rd International Conference on Atomic Collisions in Solids
CY AUG 17-22, 2008
CL Phalaborwa, SOUTH AFRICA
DE Ion implantation; Cluster ions; Molecular effect; Collision cascades;
Silicon; Si
ID DAMAGE BUILDUP; SI; BOMBARDMENT; IONS
AB We present a quantitative model for the efficiency of the molecular effect in damage buildup in semiconductors. Our model takes into account only one mechanism of the dependence of damage buildup efficiency on the density of collision cascades: nonlinear energy spikes. In our three-dimensional analysis, the volume of each individual collision cascade is divided into small cubic cells, and the number of cells that have an average density of displacements above some threshold value is calculated. We assume that such cells experience a catastrophic crystalline-to-amorphous phase transition, while defects in the cells with lower displacement densities have perfect annihilation. For the two limiting cases of heavy (500 keV/atom (209)Bi) and light (40 keV/atom (14)N) ion bombardment of Si, theory predictions are in good agreement with experimental data for a threshold displacement density of 4.5 at.%. For intermediate density cascades produced by small 2.1 keV/amu PF(n) clusters, we show that dynamic annealing processes entirely dominate cascade density effects for PF(2) ions, while energy spikes begin contributing in the case of PF(4) cluster bombardment. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Titov, A. I.; Karaseov, P. A.; Azarov, A. Yu.] St Petersburg State Polytech Univ, Dept Phys Elect, St Petersburg 195251, Russia.
[Kucheyev, S. O.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
RP Kucheyev, SO (reprint author), Lawrence Livermore Natl Lab, POB 808,L-437, Livermore, CA 94550 USA.
EM kucheyev@llnl.gov
RI Karaseov, Platon/P-6861-2015; Titov, Andrey/A-4608-2017
OI Karaseov, Platon/0000-0003-2511-0188; Titov, Andrey/0000-0003-4933-9534
NR 12
TC 4
Z9 4
U1 0
U2 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-583X
J9 NUCL INSTRUM METH B
JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms
PD AUG 15
PY 2009
VL 267
IS 16
BP 2701
EP 2704
DI 10.1016/j.nimb.2009.05.033
PG 4
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Atomic, Molecular & Chemical; Physics, Nuclear
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 528DU
UT WOS:000272422400033
ER
PT J
AU King, BV
Moore, JF
Zinoviev, AV
Veryovkin, IV
Pellin, MJ
AF King, B. V.
Moore, J. F.
Zinoviev, A. V.
Veryovkin, I. V.
Pellin, M. J.
TI Sputtering of clusters from copper-gold alloys
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM
INTERACTIONS WITH MATERIALS AND ATOMS
LA English
DT Article; Proceedings Paper
CT 23rd International Conference on Atomic Collisions in Solids
CY AUG 17-22, 2008
CL Phalaborwa, SOUTH AFRICA
DE Sputtering; Clusters; SNMS; Photoionisation
AB Polycrystalline Cu, Cu(20)Au(80), Cu(40)Au(60), Cu(80)Au(20) and Au samples were bombarded with 15 keV Ar(+), and the resulting secondary neutral yield distribution was studied by non-resonant laser post-ionisation mass spectrometry. Neutral clusters containing up to 15 atoms were observed for the targets. The yield of neutral clusters, Cu(m)Au(n) (m), containing n atoms, Y(n), was found to follow a power in n, i.e. Y(n) proportional to n(-delta), where the exponent delta varied from 5.2 to 10.1. For a fixed n, the cluster yields showed a variation with number of copper atoms, m, much greater than expected for a binomial distribution suggesting that the clusters are not formed randomly above the surface and a component of preformed cluster emission occurs. In addition, the cluster compositions from the sputtered alloys were indicative of sputtering from a copper rich surface. (C) 2009 Elsevier B.V. All rights reserved.
C1 [King, B. V.] Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW 2308, Australia.
[Moore, J. F.; Zinoviev, A. V.; Veryovkin, I. V.; Pellin, M. J.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Moore, J. F.] MassThink LLC, Naperville, IL 60565 USA.
RP King, BV (reprint author), Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW 2308, Australia.
EM bruce.king@newcastle.edu.au
RI Pellin, Michael/B-5897-2008
OI Pellin, Michael/0000-0002-8149-9768
NR 10
TC 3
Z9 3
U1 0
U2 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-583X
J9 NUCL INSTRUM METH B
JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms
PD AUG 15
PY 2009
VL 267
IS 16
BP 2757
EP 2760
DI 10.1016/j.nimb.2009.05.067
PG 4
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Atomic, Molecular & Chemical; Physics, Nuclear
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 528DU
UT WOS:000272422400046
ER
PT J
AU Sideras-Haddad, E
Schenkel, T
Shrivastava, S
Makgato, T
Batra, A
Weis, CD
Persaud, A
Erasmus, R
Mwakikunga, B
AF Sideras-Haddad, E.
Schenkel, T.
Shrivastava, S.
Makgato, T.
Batra, A.
Weis, C. D.
Persaud, A.
Erasmus, R.
Mwakikunga, B.
TI Possible diamond-like nanoscale structures induced by slow
highly-charged ions on graphite (HOPG)
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM
INTERACTIONS WITH MATERIALS AND ATOMS
LA English
DT Article; Proceedings Paper
CT 23rd International Conference on Atomic Collisions in Solids
CY AUG 17-22, 2008
CL Phalaborwa, SOUTH AFRICA
DE Diamond; Graphite; Highly Charged Ions; Nanostructuring; Radiation
effects; Nanoscale materials
ID SURFACE MODIFICATION; SOLID-SURFACES; SILICON; BOMBARDMENT; IMPACT;
EMISSION; HCI
AB The interaction between slow highly-charged ions (SHCI) of different charge states from an electron-beam ion trap and highly-oriented pyrolytic graphite (HOPG) surfaces is studied in terms of modification of electronic states at single-ion impact nanosize areas. Results are presented from AFM/STM analysis of the induced-surface topological features combined with Raman spectroscopy. I-V characteristics for a number of different impact regions were measured with STM and the results argue for possible formation of diamond-like nanoscale structures at the impact sites. (C) 2009 Published by Elsevier B. V.
C1 [Sideras-Haddad, E.; Shrivastava, S.; Makgato, T.; Erasmus, R.; Mwakikunga, B.] Univ Witwatersrand, Sch Phys, ZA-2050 Wits, Johannesburg, South Africa.
[Schenkel, T.; Batra, A.; Weis, C. D.; Persaud, A.] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Sideras-Haddad, E.] iThemba LABS Accelerator Based Sci, Johannesburg, South Africa.
RP Sideras-Haddad, E (reprint author), Univ Witwatersrand, Sch Phys, ZA-2050 Wits, Johannesburg, South Africa.
EM haddade@physics.wits.ac.za
NR 23
TC 5
Z9 5
U1 1
U2 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-583X
J9 NUCL INSTRUM METH B
JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms
PD AUG 15
PY 2009
VL 267
IS 16
SI SI
BP 2774
EP 2777
DI 10.1016/j.nimb.2009.05.060
PG 4
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Atomic, Molecular & Chemical; Physics, Nuclear
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 528DU
UT WOS:000272422400050
ER
PT J
AU Arrington, J
AF Arrington, John
TI Unpolarized nucleon structure studies utilizing polarized
electromagnetic probes
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 18th Particles and Nuclei International Conference (PANIC08)
CY NOV 09-14, 2008
CL Eilat, ISRAEL
SP Weizmann Inst Sci, Hebrew Univ Jerusalem, Tel Aviv Univ, Israel Sci Fdn, IN2P3, Deutsch Elekronen Synchrotron, IN2P3/CNR, Fermilab, Elsevier, Int Union Pure & Appl Phys, Gesell Schweir Enforsch, Japan Proton Accelerator Res Complex, Thomas Jefferson Natl Accelerator Fac, OAK RIDGE NATL LAB, Los Alamos, TRIUMF, SLAC
DE nucleon structure; elastic electromagnetic form factors
ID FORM-FACTORS; ELECTRON-SCATTERING
AB By the mid-1980s, measurements of the nucleon form factors had reached a stage where only slow, incremental progress was possible using Unpolarized electron scattering. The development of high qnality polarized beams, polarized targets, and recoil polarimeters led to a renaissance in the experimental program. I provide an overview of the changes in the field in the last ten years, which were driven by the dramatically improved data made possible by a new family of tools to measure polarization observables.
C1 Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
RP Arrington, J (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
EM johna@anl.gov
RI Arrington, John/D-1116-2012
OI Arrington, John/0000-0002-0702-1328
NR 41
TC 0
Z9 0
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD AUG 15
PY 2009
VL 827
IS 1-4
BP 77C
EP 84C
DI 10.1016/j.nuclphysa.2009.05.021
PG 8
WC Physics, Nuclear
SC Physics
GA 488EW
UT WOS:000269333000010
ER
PT J
AU Vogelsang, W
AF Vogelsang, W.
TI QCD Spin Physics: Theoretical Overview
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 18th Particles and Nuclei International Conference (PANIC08)
CY NOV 09-14, 2008
CL Eilat, ISRAEL
SP Weizmann Inst Sci, Hebrew Univ Jerusalem, Tel Aviv Univ, Israel Sci Fdn, IN2P3, Deutsch Elekronen Synchrotron, IN2P3/CNR, Fermilab, Elsevier, Int Union Pure & Appl Phys, Gesell Schweir Enforsch, Japan Proton Accelerator Res Complex, Thomas Jefferson Natl Accelerator Fac, OAK RIDGE NATL LAB, Los Alamos, TRIUMF, SLAC
DE Nucleon spin structure; QCD; Parton distributions
ID DEEP-INELASTIC SCATTERING; FINAL-STATE INTERACTIONS; POLARIZED PARTON
DISTRIBUTIONS; ANTIQUARK FLAVOR ASYMMETRY; N-C LIMIT; SINGLE-SPIN;
TRANSVERSE-MOMENTUM; SPLITTING FUNCTIONS; HARD PROCESSES; DRELL-YAN
AB We give an overview of some of the current activities and results in QCD spin physics. We focus on the helicity structure of the nucleon, where we highlight the results of a recent first global analysis of the helicity parton distributions, and on single-transverse spin asymmetries.
C1 Brookhaven Natl Lab, Nucl Theory Grp, Upton, NY 11973 USA.
RP Vogelsang, W (reprint author), Brookhaven Natl Lab, Nucl Theory Grp, Upton, NY 11973 USA.
EM wvogelsang@bnl.gov
NR 85
TC 3
Z9 3
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD AUG 15
PY 2009
VL 827
IS 1-4
BP 110C
EP 117C
DI 10.1016/j.nuclphysa.2009.05.025
PG 8
WC Physics, Nuclear
SC Physics
GA 488EW
UT WOS:000269333000014
ER
PT J
AU Kharzeev, DE
AF Kharzeev, Dmitri E.
TI Hot and dense matter: from RHIC to LHC Theoretical overview
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 18th Particles and Nuclei International Conference (PANIC08)
CY NOV 09-14, 2008
CL Eilat, ISRAEL
SP Weizmann Inst Sci, Hebrew Univ Jerusalem, Tel Aviv Univ, Israel Sci Fdn, IN2P3, Deutsch Elekronen Synchrotron, IN2P3/CNR, Fermilab, Elsevier, Int Union Pure & Appl Phys, Gesell Schweir Enforsch, Japan Proton Accelerator Res Complex, Thomas Jefferson Natl Accelerator Fac, OAK RIDGE NATL LAB, Los Alamos, TRIUMF, SLAC
ID COLOR GLASS CONDENSATE; QUARK-GLUON PLASMA; WEINBERG-SALAM THEORY;
HEAVY-ION COLLISIONS; RENORMALIZATION-GROUP; ODD BUBBLES; QCD;
COLLABORATION; VIOLATION; EQUATION
AB Relativistic heavy ion physics studies the phenomena that occur when a very large amount of energy (in units of QCD scale Lambda(QCD)) is deposited into a large volume (in units of Lambda(-3)(QCD)), creating QC 4 an extended in space and time domain with an energy density that is large in units of Lambda(4)(QCD). This includes the mechanism by which the energy is deposited (likely a transformation of the colliding Lorentz-contracted "gluon walls" into the strong longitudinal color fields); approach to thermalization; and the static and dynamical properties of the created quark-gluon plasma. Of particular interest is the fate of symmetries (e.g. chiral SUL(3) X SUR(3), scale, and discrete P and CP invariances) in hot and dense QCD matter. At present, the program at RHIC has entered a stage where new discoveries are enabled by high precision of the measurements; moreover, an at-ray of new capabilities will soon be available due to the numerous and significant upgrades. Very importantly, we will soon have access to unprecedented energies of colliding ions at the LHC. In addition, future RHIC runs at low energies, FAIR at GSI and NICA at JINR will make possible the studies of QCD matter at high baryon density. I will describe the current status of theoretical knowledge about hot QCD, and the ways in which it may be expected to improve in the near future.
C1 [Kharzeev, Dmitri E.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
[Kharzeev, Dmitri E.] Yale Univ, Dept Phys, New Haven, CT 06520 USA.
RP Kharzeev, DE (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
EM kharzeev@bnl.gov
NR 67
TC 8
Z9 8
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD AUG 15
PY 2009
VL 827
IS 1-4
BP 118C
EP 127C
DI 10.1016/j.nuclphysa.2009.05.026
PG 10
WC Physics, Nuclear
SC Physics
GA 488EW
UT WOS:000269333000015
ER
PT J
AU Steinberg, P
AF Steinberg, Peter
TI Soft Physics from RHIC to the LHC
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 18th Particles and Nuclei International Conference (PANIC08)
CY NOV 09-14, 2008
CL Eilat, ISRAEL
SP Weizmann Inst Sci, Hebrew Univ Jerusalem, Tel Aviv Univ, Israel Sci Fdn, IN2P3, Deutsch Elekronen Synchrotron, IN2P3/CNR, Fermilab, Elsevier, Int Union Pure & Appl Phys, Gesell Schweir Enforsch, Japan Proton Accelerator Res Complex, Thomas Jefferson Natl Accelerator Fac, OAK RIDGE NATL LAB, Los Alamos, TRIUMF, SLAC
ID HEAVY-ION COLLISIONS; FLOW; DISTRIBUTIONS; ENERGIES
AB The RHIC program was intended to identify and study the quark-gluon plasma formed in the collision of heavy nuclei. The discovery of the "perfect liquid" is an essential step towards the understanding of the medium formed in these collisions. Much of data relevant to this was provided by the study of "soft" observables, which involve many particles of low momentum produced in nearly every event, rather than high momentum particles produced in rare events. The main results related to soft physics at RHIC are discussed, as well as their implications for the physics of the LHC heavy ion program.
C1 Brookhaven Natl Lab, Upton, NY 11973 USA.
RP Steinberg, P (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA.
EM peter.steinberg@bnl.gov
NR 32
TC 3
Z9 3
U1 0
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
EI 1873-1554
J9 NUCL PHYS A
JI Nucl. Phys. A
PD AUG 15
PY 2009
VL 827
IS 1-4
BP 128C
EP 136C
DI 10.1016/j.nuclphysa.2009.05.027
PG 9
WC Physics, Nuclear
SC Physics
GA 488EW
UT WOS:000269333000016
ER
PT J
AU Bazilevsky, A
AF Bazilevsky, Alexander
CA PHENIX Collaboration
TI Constraints on Gluon Polarization in the proton from PHENIX Double
Helicity Asymmetry Data
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 18th Particles and Nuclei International Conference (PANIC08)
CY NOV 09-14, 2008
CL Eilat, ISRAEL
SP Weizmann Inst Sci, Hebrew Univ Jerusalem, Tel Aviv Univ, Israel Sci Fdn, IN2P3, Deutsch Elekronen Synchrotron, IN2P3/CNR, Fermilab, Elsevier, Int Union Pure & Appl Phys, Gesell Schweir Enforsch, Japan Proton Accelerator Res Complex, Thomas Jefferson Natl Accelerator Fac, OAK RIDGE NATL LAB, Los Alamos, TRIUMF, SLAC
DE proton; spin; polarization; asymmetry
ID SPIN; SCATTERING
AB We present a simple approach to constrain the gluon polarization in the proton, Delta G, in the gluon momentum fraction range 0.02-0.3 from PHENIX latest results on double helicity asymmetry in pi(0) production from polarized proton-proton collisions at root s = 200 GeV at mid-rapidity.
C1 [Bazilevsky, Alexander] Brookhaven Natl Lab, Upton, NY 11973 USA.
RP Bazilevsky, A (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA.
EM shura@bnl.gov
NR 15
TC 0
Z9 0
U1 0
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD AUG 15
PY 2009
VL 827
IS 1-4
BP 207C
EP 209C
DI 10.1016/j.nuclphysa.2009.05.038
PG 3
WC Physics, Nuclear
SC Physics
GA 488EW
UT WOS:000269333000025
ER
PT J
AU Djalali, C
Wood, M
Nasseripour, R
Weygand, D
AF Djalali, C.
Wood, M.
Nasseripour, R.
Weygand, D.
CA CLAS Collaboration
TI Medium Modifications of Light Vector Mesons in Nuclei
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 18th Particles and Nuclei International Conference (PANIC08)
CY NOV 09-14, 2008
CL Eilat, ISRAEL
SP Weizmann Inst Sci, Hebrew Univ Jerusalem, Tel Aviv Univ, Israel Sci Fdn, IN2P3, Deutsch Elekronen Synchrotron, IN2P3/CNR, Fermilab, Elsevier, Int Union Pure & Appl Phys, Gesell Schweir Enforsch, Japan Proton Accelerator Res Complex, Thomas Jefferson Natl Accelerator Fac, OAK RIDGE NATL LAB, Los Alamos, TRIUMF, SLAC
DE medium modifications; vector mesons
AB There is tremendous interest both experimentally and theoretically in possible modification of the properties of vector mesons, such as a shift in their masses and/or broadening of their widths in dense nuclear matter. These effects can be related to partial restoration of chiral symmetry at high density or temperature. The light vector mesons (rho, omega, and phi) were photo-produced on (2)H, C, Ti, Fe, and Pb targets at the Thomas Jefferson National Laboratory using the CEBAF Large Acceptance Spectrometer (CLAS). The properties of the rho vector meson at normal nuclear densities and zero temperature were investigated via their rare leptonic decay to e(+)e(-). The rho meson mass distributions were extracted for each of the targets. With respect to the rho-meson mass, we obtain a small shift compatible with zero. Also, we measure widths consistent with standard nuclear many-body effects such as collisional broadening and Fermi motion.
C1 [Djalali, C.] Univ S Carolina, Columbia, SC 29208 USA.
[Wood, M.] Canisius Coll, Buffalo, NY 14208 USA.
[Nasseripour, R.] George Washington Univ, Washington, DC USA.
[Weygand, D.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA USA.
RP Djalali, C (reprint author), Univ S Carolina, Columbia, SC 29208 USA.
EM djalali@sc.edu
NR 14
TC 0
Z9 0
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD AUG 15
PY 2009
VL 827
IS 1-4
BP 246C
EP 248C
DI 10.1016/j.nuclphysa.2009.05.048
PG 3
WC Physics, Nuclear
SC Physics
GA 488EW
UT WOS:000269333000035
ER
PT J
AU Dunwoodie, W
AF Dunwoodie, W.
CA BaBar Collaboration
TI New States and Charmonium Spectroscopy at BABAR
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 18th Particles and Nuclei International Conference (PANIC08)
CY NOV 09-14, 2008
CL Eilat, ISRAEL
SP Weizmann Inst Sci, Hebrew Univ Jerusalem, Tel Aviv Univ, Israel Sci Fdn, IN2P3, Deutsch Elekronen Synchrotron, IN2P3/CNR, Fermilab, Elsevier, Int Union Pure & Appl Phys, Gesell Schweir Enforsch, Japan Proton Accelerator Res Complex, Thomas Jefferson Natl Accelerator Fac, OAK RIDGE NATL LAB, Los Alamos, TRIUMF, SLAC
DE charmed mesons; decays of bottom mesons; phenomenological quark models
AB Several charmonium-like states above D (D) over bar threshold have been discovered at the Belle and BABAR B-factories. Some are produced via Initial State Radiation (e.g. Y(4260) and Y(4350)), and some are observed in B meson decays (e.g. X(3872), Y(3940), and Z(4430)(-)). The Z(4430)(-) state has generated a great deal of interest, having minimum quark content (c (c) over bard (u) over bar) and, thus, representing the unequivocal manifestation of a four-quark meson state. Here we summarize recent BABAR results on the Y(4260), X(3872), Y(3940), and on a search for the Z(4430)(-).
C1 [Dunwoodie, W.] SLAC, Stanford, CA 94025 USA.
RP Dunwoodie, W (reprint author), SLAC, Stanford, CA 94025 USA.
NR 18
TC 3
Z9 3
U1 0
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD AUG 15
PY 2009
VL 827
IS 1-4
BP 291C
EP 293C
DI 10.1016/j.nuclphysa.2009.05.058
PG 3
WC Physics, Nuclear
SC Physics
GA 488EW
UT WOS:000269333000045
ER
PT J
AU Millener, DJ
AF Millener, D. J.
TI Structure of p-shell hypernuclei and the spin-dependence of YN
interactions from gamma-ray spectroscopy
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 18th Particles and Nuclei International Conference (PANIC08)
CY NOV 09-14, 2008
CL Eilat, ISRAEL
SP Weizmann Inst Sci, Hebrew Univ Jerusalem, Tel Aviv Univ, Israel Sci Fdn, IN2P3, Deutsch Elekronen Synchrotron, IN2P3/CNR, Fermilab, Elsevier, Int Union Pure & Appl Phys, Gesell Schweir Enforsch, Japan Proton Accelerator Res Complex, Thomas Jefferson Natl Accelerator Fac, OAK RIDGE NATL LAB, Los Alamos, TRIUMF, SLAC
DE Hypernuclei; Shell-model
ID LAMBDA; STATES
AB Shell-model calculations that include both Lambda and Sigma configurations with p-shell cores are used to interpret gamma-ray transitions in (7)(Lambda)Li, (9)(Lambda)Be, (10)(Lambda)B, (11)(Lambda)B, (12)(Lambda)C, (15)(Lambda)N, and (16)(Lambda)O observed with the Hyperball array of Ge detectors. It is shown that the data puts strong constraints on the spin dependence of the Lambda N effective interaction.
C1 Brookhaven Natl Lab, Upton, NY 11973 USA.
RP Millener, DJ (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA.
EM millener@bnl.gov
NR 21
TC 2
Z9 2
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD AUG 15
PY 2009
VL 827
IS 1-4
BP 297C
EP 302C
DI 10.1016/j.nuclphysa.2009.05.060
PG 6
WC Physics, Nuclear
SC Physics
GA 488EW
UT WOS:000269333000047
ER
PT J
AU Kishimoto, T
Hayakawa, T
Ajimura, S
Khanam, F
Itabashi, T
Matsuoka, K
Minami, S
Mitoma, Y
Sakaguchi, A
Shimizu, Y
Terai, K
Chrien, RE
Pile, P
Noumi, H
Sekimoto, M
Takahashi, H
Fukuda, T
Imoto, W
Mizoi, Y
AF Kishimoto, T.
Hayakawa, T.
Ajimura, S.
Khanam, F.
Itabashi, T.
Matsuoka, K.
Minami, S.
Mitoma, Y.
Sakaguchi, A.
Shimizu, Y.
Terai, K.
Chrien, R. E.
Pile, P.
Noumi, H.
Sekimoto, M.
Takahashi, H.
Fukuda, T.
Imoto, W.
Mizoi, Y.
TI Kaon-Nucleus Interaction Studied through the in-flight (K-, N) Reactions
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 18th Particles and Nuclei International Conference (PANIC08)
CY NOV 09-14, 2008
CL Eilat, ISRAEL
SP Weizmann Inst Sci, Hebrew Univ Jerusalem, Tel Aviv Univ, Israel Sci Fdn, IN2P3, Deutsch Elekronen Synchrotron, IN2P3/CNR, Fermilab, Elsevier, Int Union Pure & Appl Phys, Gesell Schweir Enforsch, Japan Proton Accelerator Res Complex, Thomas Jefferson Natl Accelerator Fac, OAK RIDGE NATL LAB, Los Alamos, TRIUMF, SLAC
DE Kaon-nucleus interaction; Kaon condensation; Neutron stars
ID DYNAMICAL MODEL; BOUND-STATES; ATOMS
AB We studied the (K) over bar -nucleus interaction by the (K-, N) reactions on C-12 and O-16. An appreciable strength observed in a bound region indicates that the (K) over bar -nuclear potential is strongly attractive. Potential depth was derived by comparing with the theoretical calculations. It is -190 MeV for the C-12(K-, n) -160 MeV for the C-12(K-, p), and -180 MeV for the O-16(K-, n) reaction and -160 MeV for the O-16(K-, p) respectively. Our data suggest that the (K) over bar -nucleus potential is sufficiently deep to realize kaon condensation in the core of neutron stars.
C1 [Kishimoto, T.; Hayakawa, T.; Ajimura, S.; Khanam, F.; Itabashi, T.; Matsuoka, K.; Minami, S.; Mitoma, Y.; Sakaguchi, A.; Shimizu, Y.; Terai, K.] Osaka Univ, Dept Phys, Osaka, Japan.
[Chrien, R. E.; Pile, P.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Noumi, H.; Sekimoto, M.; Takahashi, H.] KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan.
[Fukuda, T.; Imoto, W.; Mizoi, Y.] Osaka Electrocommun Univ, Neyagawa, Osaka 5728530, Japan.
RP Kishimoto, T (reprint author), Osaka Univ, Dept Phys, Osaka, Japan.
RI Mizoi, Yutaka/B-2112-2014
OI Mizoi, Yutaka/0000-0002-4749-0815
NR 18
TC 8
Z9 8
U1 0
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
EI 1873-1554
J9 NUCL PHYS A
JI Nucl. Phys. A
PD AUG 15
PY 2009
VL 827
IS 1-4
BP 321C
EP 323C
DI 10.1016/j.nuclphysa.2009.05.066
PG 3
WC Physics, Nuclear
SC Physics
GA 488EW
UT WOS:000269333000053
ER
PT J
AU Vogt, R
AF Vogt, Ramona
TI Understanding Heavy Flavor Production at RHIC
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 18th Particles and Nuclei International Conference (PANIC08)
CY NOV 09-14, 2008
CL Eilat, ISRAEL
SP Weizmann Inst Sci, Hebrew Univ Jerusalem, Tel Aviv Univ, Israel Sci Fdn, IN2P3, Deutsch Elekronen Synchrotron, IN2P3/CNR, Fermilab, Elsevier, Int Union Pure & Appl Phys, Gesell Schweir Enforsch, Japan Proton Accelerator Res Complex, Thomas Jefferson Natl Accelerator Fac, OAK RIDGE NATL LAB, Los Alamos, TRIUMF, SLAC
DE heavy flavor; higher-order calculations
ID CHARM CROSS-SECTION; QUARK-GLUON PLASMA; COLLISIONS
AB Accurate assessments of the charm and bottom cross sections and kinematic distributions in hadron-hadron collisions are needed in order to understand the behavior of heavy flavors in more complex collisions. Neither the charm nor bottom cross sections were measured at root S = 200 GeV before the startup of the Relativistic Heavy Ion Collider (RHIC). The RHIC detectors are capable of measuring the heavy flavor transverse momentum distributions to p(T) similar to 0, making estimates of the total heavy flavor cross section feasible at a collider. It is thus possible to obtain and compare the total heavy flavor cross sections at RHIC with those measured at other energies. The charm production data, in particular, can have a considerable spread in the measured cross sections, even at a single energy. In addition, the small charm mass can lead to large theoretical uncertainties. We assess the theoretical uncertainties on the heavy flavor (charm and bottom) hadroproduction cross section. We discuss the importance of the quark mass, the renormalization and factorization scales and the parton densities on the estimate of the uncertainty.
C1 [Vogt, Ramona] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
[Vogt, Ramona] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA.
RP Vogt, R (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
EM vogt@physics.ucdavis.edu
NR 23
TC 0
Z9 0
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD AUG 15
PY 2009
VL 827
IS 1-4
BP 454C
EP 459C
DI 10.1016/j.nuclphysa.2009.05.098
PG 6
WC Physics, Nuclear
SC Physics
GA 488EW
UT WOS:000269333000081
ER
PT J
AU Lipton, R
AF Lipton, Ronald
CA D0 Collaboration
TI B Baryon Spectroscopy at D0
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 18th Particles and Nuclei International Conference (PANIC08)
CY NOV 09-14, 2008
CL Eilat, ISRAEL
SP Weizmann Inst Sci, Hebrew Univ Jerusalem, Tel Aviv Univ, Israel Sci Fdn, IN2P3, Deutsch Elekronen Synchrotron, IN2P3/CNR, Fermilab, Elsevier, Int Union Pure & Appl Phys, Gesell Schweir Enforsch, Japan Proton Accelerator Res Complex, Thomas Jefferson Natl Accelerator Fac, OAK RIDGE NATL LAB, Los Alamos, TRIUMF, SLAC
DE B Baryon; Baryon mass
ID HEAVY BARYONS
AB We report on the observation of the Omega(-)(b) and Xi(-)(b) baryons with the D0 detector at the Fermilab Tevatron. The Xi(-)(b) was observed in the decay mode Xi(-)(b) -> J/Psi Xi(-) with a mass of 5.774 +/- 0.011 +/- 0.015 GeV/c(2). The Omega(-)(b) was observed in the analogous decay mode Omega(-)(b) -> J/Psi Omega(-) with a mass of 6.165 +/- 0.010 +/- 0.014 GeV/c(2).
C1 [Lipton, Ronald; D0 Collaboration] Fermilab Natl Accelerator Lab, Batavia, IL USA.
RP Lipton, R (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL USA.
NR 7
TC 0
Z9 0
U1 0
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD AUG 15
PY 2009
VL 827
IS 1-4
BP 484C
EP 486C
DI 10.1016/j.nuclphysa.2009.05.106
PG 3
WC Physics, Nuclear
SC Physics
GA 488EW
UT WOS:000269333000088
ER
PT J
AU Goodman, M
AF Goodman, Maury
TI Planned reactor and beam experiments on Neutrino Oscillations
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 18th Particles and Nuclei International Conference (PANIC08)
CY NOV 09-14, 2008
CL Eilat, ISRAEL
SP Weizmann Inst Sci, Hebrew Univ Jerusalem, Tel Aviv Univ, Israel Sci Fdn, IN2P3, Deutsch Elekronen Synchrotron, IN2P3/CNR, Fermilab, Elsevier, Int Union Pure & Appl Phys, Gesell Schweir Enforsch, Japan Proton Accelerator Res Complex, Thomas Jefferson Natl Accelerator Fac, OAK RIDGE NATL LAB, Los Alamos, TRIUMF, SLAC
DE Neutrino; Oscillations
AB Current and future neutrino oscillation experiments are discussed with an emphasis on those that will measure or further limit the neutrino oscillation parameter theta(13). Some nu(e) disappearance experiments are being planned at nuclear reactors, and more ambitious nu(mu) -> nu(e) appearance experiments are being planned using accelerator beams.
C1 Argonne Natl Lab, Argonne, IL 60439 USA.
RP Goodman, M (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM maury.goodman@anl.gov
NR 15
TC 1
Z9 1
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
EI 1873-1554
J9 NUCL PHYS A
JI Nucl. Phys. A
PD AUG 15
PY 2009
VL 827
IS 1-4
BP 518C
EP 523C
DI 10.1016/j.nuclphysa.2009.05.112
PG 6
WC Physics, Nuclear
SC Physics
GA 488EW
UT WOS:000269333000095
ER
PT J
AU Liebendorfer, M
Fischer, T
Hempel, M
Mezzacappa, A
Pagliara, G
Sagert, I
Schaffner-Bielich, J
Scheidegger, S
Thielemann, FK
Whitehouse, SC
AF Liebendoerfer, M.
Fischer, T.
Hempel, M.
Mezzacappa, A.
Pagliara, G.
Sagert, I.
Schaffner-Bielich, J.
Scheidegger, S.
Thielemann, F. -K.
Whitehouse, S. C.
TI Supernovae as Nuclear and Particle Physics Laboratories
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 18th Particles and Nuclei International Conference (PANIC08)
CY NOV 09-14, 2008
CL Eilat, ISRAEL
SP Weizmann Inst Sci, Hebrew Univ Jerusalem, Tel Aviv Univ, Israel Sci Fdn, IN2P3, Deutsch Elekronen Synchrotron, IN2P3/CNR, Fermilab, Elsevier, Int Union Pure & Appl Phys, Gesell Schweir Enforsch, Japan Proton Accelerator Res Complex, Thomas Jefferson Natl Accelerator Fac, OAK RIDGE NATL LAB, Los Alamos, TRIUMF, SLAC
DE supernovae: general; neutrinos; gravitational waves; stars: neutron;
equation of state: neutron star matter; Quark deconfinement: phase
transition
ID CORE-COLLAPSE SUPERNOVAE; EQUATION-OF-STATE; NEUTRINO TRANSPORT;
SIMULATIONS; PHASE; EXPLOSIONS; MECHANISM; DYNAMICS; MATTER; SHOCK
AB In the interior of supernovae, temperatures and densities exceed the range that is easily accessible by terrestrial experiments. With the improving sensitivities of neutrino and gravitational wave detectors, the chance of obtaining observations providing a deep view into the heart of a close-by supernova explosion is steadily increasing. Based on computational models we investigate the imprint of the nuclear equation of state on the emission of neutrinos and gravitational waves. If a QCD phase transition to quark matter occurs during the immediate postbounce accretion phase, a strong second shock front is formed at a radius of order 10 km. Neutronised hadronic outer layers of the protoneutron star fall into it, are shock-heated and lead to a rapid acceleration of the second shock wave. As soon as this shock reduces the electron degeneracy at the neutrinospheres, a sharp second neutrino burst is emitted, dominated by electron antineutrinos. Together with the abruptly increasing mean energies of mu- and tau-neutrinos it may serve as a clear signature of the phase transition of the protoneutron star core to a more compact state.
C1 [Liebendoerfer, M.; Fischer, T.; Scheidegger, S.; Thielemann, F. -K.; Whitehouse, S. C.] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland.
[Hempel, M.; Sagert, I.] Goethe Univ Frankfurt, Inst Theoret Phys, D-60438 Frankfurt, Germany.
[Mezzacappa, A.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA.
[Pagliara, G.; Schaffner-Bielich, J.] Heidelberg Univ, Inst Theoret Phys, D-69120 Heidelberg, Germany.
RP Liebendorfer, M (reprint author), Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland.
EM matthias.liebendoerfer@unibas.ch; schaffner@thphys.uni-heidelberg.de
RI Pagliara, Giuseppe/F-7650-2012; Mezzacappa, Anthony/B-3163-2017;
OI Mezzacappa, Anthony/0000-0001-9816-9741; Hempel,
Matthias/0000-0003-4676-4121; PAGLIARA, Giuseppe/0000-0003-3250-1398
NR 39
TC 2
Z9 2
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
EI 1873-1554
J9 NUCL PHYS A
JI Nucl. Phys. A
PD AUG 15
PY 2009
VL 827
IS 1-4
BP 573C
EP 578C
DI 10.1016/j.nuclphysa.2009.05.126
PG 6
WC Physics, Nuclear
SC Physics
GA 488EW
UT WOS:000269333000109
ER
PT J
AU Smith, ES
AF Smith, Elton S.
TI The 12 GeV JLab Upgrade Project
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 18th Particles and Nuclei International Conference (PANIC08)
CY NOV 09-14, 2008
CL Eilat, ISRAEL
SP Weizmann Inst Sci, Hebrew Univ Jerusalem, Tel Aviv Univ, Israel Sci Fdn, IN2P3, Deutsch Elekronen Synchrotron, IN2P3/CNR, Fermilab, Elsevier, Int Union Pure & Appl Phys, Gesell Schweir Enforsch, Japan Proton Accelerator Res Complex, Thomas Jefferson Natl Accelerator Fac, OAK RIDGE NATL LAB, Los Alamos, TRIUMF, SLAC
DE JLab 12 GeV Upgrade; electromagnetic interactions; gluonic excitations;
hybrid mesons; hadron structure
ID GENERALIZED PARTON DISTRIBUTIONS
AB The upgrade of the CEBAF Accelerator at Jefferson Lab to 12 GeV will deliver high luminosity and high quality beams, which will open unique opportunities for Studies of the quark and gluon structure of hadrons in the valence region. Such physics will be made accessible by substantial additions to the experimental equipment in combination with the increased energy reach of the upgraded machine. The emphasis of the talk will be on the program in a new experimental Hall D designed to search for gluonic excitations.
C1 Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA.
RP Smith, ES (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA.
EM elton@jlab.org
NR 5
TC 0
Z9 0
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD AUG 15
PY 2009
VL 827
IS 1-4
BP 599C
EP 604C
DI 10.1016/j.nuclphysa.2009.05.132
PG 6
WC Physics, Nuclear
SC Physics
GA 488EW
UT WOS:000269333000115
ER
PT J
AU Deshpande, A
AF Deshpande, Abhay
CA EIC Collaboration
TI Probing the Gluonic Structure Of Matter: Science of The Electron Ion
Collider
SO NUCLEAR PHYSICS A
LA English
DT Article; Proceedings Paper
CT 18th Particles and Nuclei International Conference (PANIC08)
CY NOV 09-14, 2008
CL Eilat, ISRAEL
SP Weizmann Inst Sci, Hebrew Univ Jerusalem, Tel Aviv Univ, Israel Sci Fdn, IN2P3, Deutsch Elekronen Synchrotron, IN2P3/CNR, Fermilab, Elsevier, Int Union Pure & Appl Phys, Gesell Schweir Enforsch, Japan Proton Accelerator Res Complex, Thomas Jefferson Natl Accelerator Fac, OAK RIDGE NATL LAB, Los Alamos, TRIUMF, SLAC
DE Spin; Nucleon's Spin; Gluon Spin; Gluon GPDs; Color Glass Condensate;
low-x; Electron Ion Collider (EIC); eRHIC; eLIC
AB In spite of the great stride we have made in over the past few decades, towards understanding the universe around us, we know surprisingly little about the fundamental structure of matter which makes the universe. How do quarks and gluons form the nucleons? How does the nucleon acquire its properties? A high energy high luminosity polarized electron-proton/ion collider will allow precision study of the fundamental structure of matter, with focus on the role partons play in forming and imparting properties to the nucleons and the nuclei including their internal dynamics. Such measurements are expected to address some of the most fundamental and universal aspects of QCD, the accepted theory of physics that relates to the interactions between quarks and gluons inside the nucleons and nuclei. Two proposals are being developed in the US: first, with the addition of an electron beam facility next to the Relativistic Heavy Ion Collider at Brookhaven National Laboratory and have e-A/p collisions, and the other, to add a nuclear beam facility to complement the existing CEBAF facility at Jefferson Laboratory. This is a brief overview of the science and the project.
C1 [Deshpande, Abhay] SUNY Stony Brook, Dept Phys, Stony Brook, NY 11794 USA.
[Deshpande, Abhay] Brookhaven Natl Lab, Res Ctr, RIKEN, Upton, NY 11973 USA.
RP Deshpande, A (reprint author), SUNY Stony Brook, Dept Phys, Stony Brook, NY 11794 USA.
EM abhay.deshpande@stonybrook.edu
NR 7
TC 0
Z9 0
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD AUG 15
PY 2009
VL 827
IS 1-4
BP 618C
EP 623C
DI 10.1016/j.nuclphysa.2009.05.136
PG 6
WC Physics, Nuclear
SC Physics
GA 488EW
UT WOS:000269333000119
ER
PT J
AU Ritchie, B
AF Ritchie, Burke
TI The electron's self photon
SO OPTICS COMMUNICATIONS
LA English
DT Article
ID EQUATION-OF-MOTION; LAMB SHIFT
AB Equations of motion (EOM's) are presented for the electron and photon. The electron EOM is the same as Dirac's equation with mass interpreted to be totally electromagnetic in nature. The photon EOM is considered here to be the EOM for the electron's self photon. The electron EOM and photon EOM together are presented as a single theory of the electron which is distinct from QED, in which separate matter and light theories are used for the electron and photon respectively.
A temporarily bound state is found for the point proton-electron-self-photon three-body combination which possibly represents a neutronic state. In support of this surmise the theory is used to calculate the neutronic state-proton mass difference, the lifetime of the neutronic state against electron emission, and the neutronic state's magnetic moment, This interpretation of the neutronic state suggests that the self photon and the neutrino share the same EOM and are possibly the same particle. (C) 2009 Elsevier B.V. All rights reserved.
C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
RP Ritchie, B (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA.
EM ritchie1@llnl.gov
FU Lawrence Livermore National Security, LLC, (LLNS) [DE-AC52-07NA27344]
FX dThe author is grateful to L. John Perkins for discussion and help with
the experimental beta spectrum. This work was performed under the
auspices of the Lawrence Livermore National Security, LLC, (LLNS) under
Contract No. DE-AC52-07NA27344.
NR 9
TC 2
Z9 2
U1 0
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0030-4018
J9 OPT COMMUN
JI Opt. Commun.
PD AUG 15
PY 2009
VL 282
IS 16
BP 3286
EP 3291
DI 10.1016/j.optcom.2009.04.053
PG 6
WC Optics
SC Optics
GA 476HS
UT WOS:000268430800015
ER
PT J
AU Lin, PT
Imre, A
Ocola, LE
Wessels, BW
AF Lin, Pao Tai
Imre, Alexandra
Ocola, Leonidas E.
Wessels, B. W.
TI Thin film ferroelectric photonic crystals and their application to
thermo-optic switches
SO OPTICS COMMUNICATIONS
LA English
DT Article
ID BATIO3; MICROCAVITIES; INDEX; LIGHT
AB Two-dimensional photonic crystals (PhC) using epitaxial ferroelectric, barium titanate (BTO) thin films as the dielectric medium were fabricated and their thermo-optical response measured and compared to theory. The nanopatterned PhC consists of a square array of air holes 300 nm deep, a period of 780 nm and area 200 x 200 mu m(2). The large refractive index of BTO leads to a high contrast structure that shows strong optical diffraction. Optical diffraction is analyzed along the < 1 0 > and < 1 1 > directions from phase grating measurements. The thermal tunability of BTO PhC is characterized from the attenuation of the first order diffraction. There is a 3 dB extinction ratio when the temperature increases by 120 degrees C, which corresponds to an increase of 0.05 in the BTO refractive index. Finite difference time domain (FDTD) technique is used to calculate the PhC band structure and the temperature dependence of the diffraction efficiency. The large change in the diffraction efficiency indicates that thermally tunable BTO PhCs may be useful as active ultra-compact photonic switches. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Lin, Pao Tai; Wessels, B. W.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA.
[Imre, Alexandra; Ocola, Leonidas E.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
[Wessels, B. W.] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA.
RP Wessels, BW (reprint author), Northwestern Univ, Dept Mat Sci & Engn, 2220 Campus Dr, Evanston, IL 60208 USA.
EM b-wessels@northwestern.edu
RI Wessels, Bruce/B-7541-2009; Joshi-Imre, Alexandra/A-2912-2010;
OI Joshi-Imre, Alexandra/0000-0002-4271-1623; Ocola,
Leonidas/0000-0003-4990-1064
FU National Science Foundation through ECS [0123469, ECCS-0801684]; US
Department of Energy; Office of Science; Office of Basic Energy Sciences
[DE-AC02-06CHI 1357]; NSF [DMR 0076097]
FX This work was supported by the National Science Foundation through ECS
Grant No. 0123469 and ECCS-0801684. Focused ion beam fabrication was
done at the Center for Nanoscale Materials (CNM) at Argonne National
Laboratory, supported by the US Department of Energy, Office of Science,
Office of Basic Energy Sciences, under Contract No. DE-AC02-06CHI 1357.
Use of the central facilities of the Materials Research Center at
Northwestern University funded by the NSF (Grant No. DMR 0076097) is
acknowledged.
NR 26
TC 2
Z9 3
U1 2
U2 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0030-4018
EI 1873-0310
J9 OPT COMMUN
JI Opt. Commun.
PD AUG 15
PY 2009
VL 282
IS 16
BP 3364
EP 3367
DI 10.1016/j.optcom.2009.03.063
PG 4
WC Optics
SC Optics
GA 476HS
UT WOS:000268430800027
ER
PT J
AU Decker, M
Ruther, M
Kriegler, CE
Zhou, J
Soukoulis, CM
Linden, S
Wegener, M
AF Decker, M.
Ruther, M.
Kriegler, C. E.
Zhou, J.
Soukoulis, C. M.
Linden, S.
Wegener, M.
TI Strong optical activity from twisted-cross photonic metamaterials
SO OPTICS LETTERS
LA English
DT Article
ID NEGATIVE-INDEX METAMATERIAL; REFRACTION
AB Following a recent theoretical suggestion and microwave experiments, we fabricate photonic metamaterials composed of pairs of twisted gold crosses using two successive electron-beam-lithography steps and intermediate planarization via a spin-on dielectric. The resulting two effective resonances of the coupled system lie in the 1-2 mu m wavelength regime and exhibit pronounced circular dichroism, while the circular polarization conversion is very small. In between the two resonances, we find a fairly broad spectral regime with strong optical activity, i.e., with a pure rotation of incident linear polarization. The measured optical transmittance spectra agree well with theory. (C) 2009 Optical Society of America
C1 [Decker, M.; Ruther, M.; Kriegler, C. E.; Linden, S.; Wegener, M.] Univ Karlsruhe TH, Inst Angew Phys, D-76128 Karlsruhe, Germany.
[Decker, M.; Ruther, M.; Kriegler, C. E.; Linden, S.; Wegener, M.] Univ Karlsruhe TH, DFG Ctr Funct Nanostruct, D-76128 Karlsruhe, Germany.
[Decker, M.; Ruther, M.; Linden, S.; Wegener, M.] Forschungszentrum Karlsruhe Helmholtz Gemeinschaf, Inst Nanotechnol, D-76021 Karlsruhe, Germany.
[Zhou, J.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA.
[Zhou, J.; Soukoulis, C. M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
[Zhou, J.; Soukoulis, C. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Soukoulis, C. M.] Res Ctr Crete, Dept Mat Sci & Technol, Iraklion 71110, Crete, Greece.
RP Decker, M (reprint author), Univ Karlsruhe TH, Inst Angew Phys, Kaiserstr 12, D-76128 Karlsruhe, Germany.
EM manuel.decker@physik.uni-karlsuhe.de
RI Soukoulis, Costas/A-5295-2008; Wegener, Martin/S-5456-2016; Zhou,
Jiangfeng/D-4292-2009;
OI Zhou, Jiangfeng/0000-0002-6958-3342; Decker, Manuel/0000-0002-9125-0851
FU European Commission [213390]; Bundesministerium fur Bildung and
Forschung (BMBF); Helmholtz-Hochschul-Nachwuchsgruppe [VH-NG-232]
FX The project PHOME acknowledges the financial support of the Future and
Emerging Technologies (FET) programme within the Seventh Framework
Programme for Research of the European Commission, under FET-Open grant
213390. The project METAMAT is supported by the Bundesministerium fur
Bildung and Forschung (BMBF). The research of S. L. is further supported
through a Helmholtz-Hochschul-Nachwuchsgruppe (VH-NG-232). The Ph.D.
education of M. D., M. R., and C. E. K. is embedded in the Karlsruhe
School of Optics & Photonics (KSOP).
NR 19
TC 159
Z9 162
U1 4
U2 48
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 0146-9592
J9 OPT LETT
JI Opt. Lett.
PD AUG 15
PY 2009
VL 34
IS 16
BP 2501
EP 2503
PG 3
WC Optics
SC Optics
GA 494LT
UT WOS:000269815400040
PM 19684829
ER
PT J
AU Abanov, A
Mineev-Weinstein, M
Zabrodin, A
AF Abanov, Ar
Mineev-Weinstein, M.
Zabrodin, A.
TI Multi-cut solutions of Laplacian growth
SO PHYSICA D-NONLINEAR PHENOMENA
LA English
DT Article
DE Laplacian growth; Harmonic moments; Viscous fingering domain; Interface;
Pattern; Dynamics
ID HELE-SHAW FLOWS; INTERFACE DYNAMICS; INTEGRABLE STRUCTURE; SECTOR
GEOMETRY; WEDGE; CORNER; CELL
AB A new class of solutions to Laplacian growth (LG) with zero surface tension is presented and shown to contain all other known solutions as special or limiting cases. These solutions, which are time-dependent conformal maps with branch cuts inside the unit circle, are governed by a nonlinear integral equation and describe oil fjords with non-parallel walls in viscous fingering experiments in Hele-Shaw cells. Integrals of motion for the multi-cut LG solutions in terms of singularities of the Schwarz function are found, and the dynamics of densities (jumps) on the cuts are derived. The subclass of these solutions with linear Cauchy densities on the cuts of the Schwarz function is of particular interest, because in this case the integral equation for the conformal map becomes linear. These solutions can also be of physical importance by representing oil/air interfaces, which form oil fjords with a constant opening angle, in accordance with recent experiments in a Hele-shaw cell. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Mineev-Weinstein, M.] Los Alamos Natl Lab, Div Appl Phys, Los Alamos, NM 87545 USA.
[Abanov, Ar] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA.
[Zabrodin, A.] Inst Biochem Phys, Moscow 119334, Russia.
[Zabrodin, A.] ITEP, Moscow 117218, Russia.
RP Mineev-Weinstein, M (reprint author), Los Alamos Natl Lab, Div Appl Phys, MS P365,X-1 Grp, Los Alamos, NM 87545 USA.
EM abanov@tamu.edu; mariner@lanl.gov; zabrodin@itep.ru
FU Welch Foundation [A-1678]; LANL [20070483ER]; RFBR [08-02-00287,
RFBR-06-0192054-CEa, Nsh-3035.2008.2]; NWO [047.017.015];
[NF PhD-0757992]
FX Ar. A is grateful to Welch Foundation (A-1678) for the partial support.
His work was also partially supported by NF PhD-0757992 grant. All
authors gratefully acknowledge a significant help from the project
20070483ER at the LDRD programs of LANL: the work of M.M-W. on this
problem was fully supported by this project, while two other authors
were partially supported by the same grant during their visits to LANL
in 2008. The work of A.Z. was also partially supported bygrants RFBR
08-02-00287, RFBR-06-0192054-CEa, Nsh-3035.2008.2 and NWO
047.017.015. A.Z. express his thanks to the Galileo Galilei Institute
for Theoretical Physics for the hospitality and the INFIN for partial
support during the completion of this work.
NR 35
TC 6
Z9 6
U1 2
U2 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0167-2789
J9 PHYSICA D
JI Physica D
PD AUG 15
PY 2009
VL 238
IS 17
BP 1787
EP 1796
DI 10.1016/j.physd.2009.06.001
PG 10
WC Mathematics, Applied; Physics, Multidisciplinary; Physics, Mathematical
SC Mathematics; Physics
GA 487SN
UT WOS:000269296000005
ER
PT J
AU Gao, TY
Collins, RE
Horton, JR
Zhang, X
Zhang, RG
Dhayalan, A
Tamas, R
Jeltsch, A
Cheng, XD
AF Gao, Tiyu
Collins, Robert E.
Horton, John R.
Zhang, Xing
Zhang, Rongguang
Dhayalan, Arunkumar
Tamas, Raluca
Jeltsch, Albert
Cheng, Xiaodong
TI The ankyrin repeat domain of Huntingtin interacting protein 14 contains
a surface aromatic cage, a potential site for methyl-lysine binding
SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS
LA English
DT Article
DE epigenetics; ankyrin repeats; methyl-lysine binding; Huntingtin
interacting protein 14; x-ray crystallography
ID PALMITOYL TRANSFERASE; STRUCTURAL BASIS; GENE REPRESSION; HISTONE
H3K4ME3; PHD FINGER; RECOGNITION; TRAFFICKING; HIP14; METHYLTRANSFERASE;
CHROMODOMAIN
C1 [Gao, Tiyu; Collins, Robert E.; Horton, John R.; Zhang, Xing; Cheng, Xiaodong] Emory Univ, Sch Med, Dept Biochem, Atlanta, GA 30322 USA.
[Zhang, Rongguang] Argonne Natl Lab, SBC CAT, Adv Photon Source, Argonne, IL 60439 USA.
[Dhayalan, Arunkumar; Tamas, Raluca; Jeltsch, Albert] Jacobs Univ Bremen, Biochem Lab, Sch Sci & Engn, D-28759 Bremen, Germany.
RP Cheng, XD (reprint author), Emory Univ, Sch Med, Dept Biochem, 1510 Clifton Rd, Atlanta, GA 30322 USA.
EM xcheng@emory.edu
RI Horton, John/F-2375-2010; Jeltsch, Albert/O-7404-2014
OI Jeltsch, Albert/0000-0001-6113-9290
FU National Institute of Health [GM068680, DK082678]
FX Grant sponsor: National Institute of Health grants; Grant numbers:
GM068680, DK082678.
NR 33
TC 10
Z9 11
U1 0
U2 1
PU WILEY-LISS
PI HOBOKEN
PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA
SN 0887-3585
J9 PROTEINS
JI Proteins
PD AUG 15
PY 2009
VL 76
IS 3
BP 772
EP 777
DI 10.1002/prot.22452
PG 6
WC Biochemistry & Molecular Biology; Biophysics
SC Biochemistry & Molecular Biology; Biophysics
GA 470GT
UT WOS:000267963900021
PM 19434754
ER
PT J
AU Liu, FX
Yang, FQ
Gao, YF
Jiang, WH
Guan, YF
Rack, PD
Sergic, O
Liaw, PK
AF Liu, F. X.
Yang, F. Q.
Gao, Y. F.
Jiang, W. H.
Guan, Y. F.
Rack, P. D.
Sergic, O.
Liaw, P. K.
TI Micro-scratch study of a magnetron-sputtered Zr-based metallic-glass
film
SO SURFACE & COATINGS TECHNOLOGY
LA English
DT Article
DE Scratch; Metallic-glass film; Critical load; Coefficient of friction;
Adhesion
ID AMORPHOUS-ALLOYS; ELASTIC-MODULUS; THIN-FILM; COATINGS; ADHESION;
BEHAVIOR; WEAR; INDENTATION; RESISTANCE; SUBSTRATE
AB Using the micro-scratch technique, the tribological behavior of ZrCuAlNi metallic-glass films on 316L stainless steel was studied. With the application of ramping load, the critical load of about 110 mN was determined, at which the coefficient of friction increased sharply and the indenter penetration depth reached the film thickness. No clear evidence of film debonding was found, which, together with the observation of multiple shear bands, indicated good adhesion and ductility of the metallic-glass film. When subjected to constant loads, the coefficient of friction increased rapidly once the critical load was passed. The scratch results and the scanning-electron microscopy observations demonstrated good adhesion between the film and the substrate, which may be due to the good interfacial bonding and low residual stress in the film. (C) 2009 Elsevier B.V. All fights reserved.
C1 [Liu, F. X.; Gao, Y. F.; Jiang, W. H.; Guan, Y. F.; Rack, P. D.; Liaw, P. K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
[Yang, F. Q.] Univ Kentucky, Dept Chem & Mat Engn, Lexington, KY 40506 USA.
[Gao, Y. F.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA.
[Rack, P. D.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Sergic, O.] CSM Instruments Inc, Needham, MA 02494 USA.
RP Liu, FX (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
EM fliu5@utk.edu
RI Gao, Yanfei/F-9034-2010;
OI Gao, Yanfei/0000-0003-2082-857X; Rack, Philip/0000-0002-9964-3254
NR 27
TC 19
Z9 19
U1 0
U2 24
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0257-8972
J9 SURF COAT TECH
JI Surf. Coat. Technol.
PD AUG 15
PY 2009
VL 203
IS 22
BP 3480
EP 3484
DI 10.1016/j.surfcoat.2009.05.017
PG 5
WC Materials Science, Coatings & Films; Physics, Applied
SC Materials Science; Physics
GA 471GT
UT WOS:000268044700023
ER
PT J
AU Viquez, OM
Lai, B
Ahn, JH
Does, MD
Valentine, HL
Valentine, WM
AF Viquez, Olga M.
Lai, Barry
Ahn, Jae Hee
Does, Mark D.
Valentine, Holly L.
Valentine, William M.
TI N,N-diethyldithiocarbamate promotes oxidative stress prior to myelin
structural changes and increases myelin copper content
SO TOXICOLOGY AND APPLIED PHARMACOLOGY
LA English
DT Article
DE Synchrotron X-ray fluorescence microscopy; N,N-diethyldithiocarbamate;
Multiexponential transverse relaxation; Myelinopathy; Copper; Superoxide
dismutase; Glutathione transferase; Heme oxygenase; Myelinopathy
ID X-RAY-FLUORESCENCE; PERIPHERAL-NERVE; CARBON-DISULFIDE; LIPID OXIDATION;
RELAXATION; ACCUMULATION; APOPTOSIS; INHIBITION; EXPRESSION; MICROPROBE
AB Dithiocarbamates are a commercially important class of compounds that can produce peripheral neuropathy in humans and experimental animals. Previous studies have supported a requirement for copper accumulation and enhanced lipid peroxidation in dithiocarbamate-mediated myelinopathy. The study presented here extends previous investigations in two areas. Firstly, although total copper levels have been shown to increase within the nerve it has not been determined whether copper is increased within the myelin compartment, the primary site of lesion development. Therefore, the distribution of copper in sciatic nerve was characterized using synchrotron X-ray fluorescence microscopy to determine whether the neurotoxic dithiocarbamate, N,N-diethyldithiocarbamate, increases copper levels in myelin. Secondly, because lipid peroxidation is an ongoing process in normal nerve and the levels of lipid peroxidation products produced by dithiocarbamate exposure demonstrated an unusual cumulative dose response in previous studies the biological impact of dithiocarbamate-mediated lipid peroxidation was evaluated. Experiments were performed to determine whether dithiocarbamate-mediated lipid peroxidation products elicit an antioxidant response through measuring the protein expression levels of three enzymes, superoxide dismutase 1, heme oxygenase 1, and glutathione transferase a, that are linked to the antioxidant response element promoter. To establish the potential of oxidative injury to contribute to myelin injury the temporal relationship of the antioxidant response to myelin injury was determined. Myelin structure in peripheral nerve was assessed using multi-exponential transverse relaxation measurements (MET(2)) as a function of exposure duration, and the temporal relationship of protein expression changes relative to the onset of changes in myelin integrity were determined. Initial assessments were also performed to explore the potential contribution of dithiocarbamate-mediated inhibition of proteasome function and inhibition of cuproenzyme activity to neurotoxicity, and also to assess the potential of dithiocarbamates to promote oxidative stress and injury within the central nervous system. These evaluations were performed using an established model for dithiocarbamate-mediated demyelination in the rat utilizing sciatic nerve, spinal cord and brain samples obtained from rats exposed to N,N-diethyldithiocarbamate (DEDC) by intra-abdominal pumps for periods of 2, 4, and 8 weeks and from non exposed controls. The data supported the ability of DEDC to increase copper within myelin and to enhance oxidative stress prior to structural changes detectable by MET2. Evidence was also obtained that the excess copper produced by DEDC in the central nervous system is redox active and promotes oxidative injury. (C) 2009 Elsevier Inc. All rights reserved.
C1 [Viquez, Olga M.; Ahn, Jae Hee; Valentine, Holly L.; Valentine, William M.] Vanderbilt Univ, Med Ctr, Dept Pathol, Ctr Mol Toxicol, Nashville, TN 37232 USA.
[Viquez, Olga M.; Ahn, Jae Hee; Valentine, Holly L.; Valentine, William M.] Vanderbilt Univ, Med Ctr, Ctr Mol Neurosci, Nashville, TN 37232 USA.
[Lai, Barry] Argonne Natl Lab, Adv Photon Source, Argonne, IL 61439 USA.
[Does, Mark D.] Vanderbilt Univ, Dept Biomed Engn, Nashville, TN 37240 USA.
[Does, Mark D.] Vanderbilt Univ, Med Ctr, Inst Imaging Sci, Nashville, TN 37232 USA.
RP Valentine, WM (reprint author), Vanderbilt Univ, Med Ctr, Dept Pathol, Ctr Mol Toxicol, C3320 MCN VUMC, Nashville, TN 37232 USA.
EM bill.valentine@vanderbilt.edu
RI Does, Mark/G-8975-2011
FU U.S. Department of Energy [DEAC02-06CH11357]; NIH [DK20539, DK58404];
NIEHS [ES06387]; HIH [EB001744]
FX Use of the Advanced Photon Source at Argonne National Laboratory was
supported by the U.S. Department of Energy, Office of Science, Office of
Basic Energy Sciences, under Contract No. DEAC02-06CH11357. Experiments
were supported in part through the use of the VUMC Research Resource
(sponsored by NIH Grants DK20539 and DK58404) and the Vanderbilt
University Institute of Imaging Science. This study was supported by
NIEHS Grant ES06387 and HIH Grant EB001744. The study sponsors did not
contribute to; study design or in the collection, analysis or
interpretation of data; in writing of the report; or in the decision to
submit the work for publication.
NR 40
TC 11
Z9 11
U1 1
U2 5
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0041-008X
J9 TOXICOL APPL PHARM
JI Toxicol. Appl. Pharmacol.
PD AUG 15
PY 2009
VL 239
IS 1
BP 71
EP 79
DI 10.1016/j.taap.2009.05.017
PG 9
WC Pharmacology & Pharmacy; Toxicology
SC Pharmacology & Pharmacy; Toxicology
GA 481MM
UT WOS:000268815600009
PM 19467251
ER
PT J
AU Yoon, M
Yang, SY
Zhang, ZY
AF Yoon, Mina
Yang, Shenyuan
Zhang, Zhenyu
TI Interaction between hydrogen molecules and metallofullerenes
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
DE charge exchange; density functional theory; fullerene compounds;
hydrogen neutral molecules; hydrogen storage; lanthanum compounds
ID AUGMENTED-WAVE METHOD; ENDOHEDRAL METALLOFULLERENES; CARBON NANOTUBES;
ELECTRON-GAS; STORAGE; C-60; ENERGY; CAGE; C-82; LA
AB Within first-principles density functional theory, we explore the feasibility of using metallofullerenes as efficient hydrogen storage media. In particular, we systematically investigate the interaction between hydrogen molecules and La encapsulated all-carbon fullerenes, C(n) (20 < n < 82), focusing on the role of transferred charges between the metal atoms and fullerenes on the affinity of hydrogen molecules to the metallofullerenes. Our calculations show that three electrons are transferred from La atom to fullerene cages, while the induced charges are mostly screened by the fullerene cages. We find the local enhancement of molecular hydrogen affinity to the fullerenes to be sensitively dependent on the local bonding properties, rather than on the global charging effects.
C1 [Yoon, Mina; Zhang, Zhenyu] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[Yoon, Mina] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany.
[Yoon, Mina; Zhang, Zhenyu] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
[Yang, Shenyuan] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Yoon, M (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
EM myoon@ornl.gov
RI Yoon, Mina/A-1965-2016
OI Yoon, Mina/0000-0002-1317-3301
FU DOE [DE-FG02-03ER46091]; NSF-FRG [DMR-0606485]
FX This work was supported in part by DOE (Grant No. DE-FG02-03ER46091, the
Division of Materials Sciences and Engineering, Office of Basic Energy
Sciences, and the Hydrogen Sorption Center of Excellence), and by the
NSF-FRG Grant No. DMR-0606485.
NR 31
TC 17
Z9 17
U1 3
U2 15
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD AUG 14
PY 2009
VL 131
IS 6
AR 064707
DI 10.1063/1.3197006
PG 5
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 484QB
UT WOS:000269060800034
PM 19691403
ER
PT J
AU DuBay, KH
Geissler, PL
AF DuBay, Kateri H.
Geissler, Phillip L.
TI Calculation of Proteins' Total Side-Chain Torsional Entropy and Its
Influence on Protein-Ligand Interactions
SO JOURNAL OF MOLECULAR BIOLOGY
LA English
DT Article
DE side-chain entropy; configurational entropy; side-chain fluctuations;
protein-ligand binding; protein thermodynamics
ID MOLECULAR-DYNAMICS SIMULATIONS; CALMODULIN-PEPTIDE COMPLEX;
MAGNETIC-RESONANCE RELAXATION; CONFORMATIONAL ENTROPY;
CRYSTAL-STRUCTURE; CONFIGURATIONAL ENTROPY; HIGH-RESOLUTION; BINDING
DOMAIN; NMR RELAXATION; RECOGNITION
AB Despite the high density within a typical protein fold, the ensemble of sterically permissible side-chain repackings is vast. Here, we examine the extent of this variability that survives energetic biases due to van der Waals interactions, hydrogen bonding, salt bridges, and solvation. Monte Carlo simulations of an atomistic model exhibit thermal fluctuations among a diverse set of side-chain arrangements, even with the peptide backbone, fixed in its crystallographic conformation. We have quantified the torsional entropy of this native-state ensemble, relative to that of a noninteracting reference system, for 12 small proteins. The reduction in entropy per rotatable bond due to each kind of interaction is remarkably consistent across this set of molecules. To assess the biophysical importance of these fluctuations, we have estimated side-chain entropy contributions to the binding affinity of several peptide ligands with calmodulin. Calculations for our fixed-backbone model correlate very wen with experimentally determined binding entropies over a range spanning more than 80 kJ/(mol.308 K). (C) 2009 Elsevier Ltd. All rights reserved.
C1 [Geissler, Phillip L.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA.
Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
RP Geissler, PL (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
EM geissler@berkeley.edu
RI DuBay, Kateri/E-8689-2011
FU U.S. Department of Energy [DE-AC02-05CH11231]; National Science
Foundation; Berkeley Fellowship
FX This work was supported by the Director, Office of Science, Office of
Basic Energy Sciences, Materials Sciences and Engineering Division, of
the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
K.H.D. was supported by a National Science Foundation Graduate Research
Fellowship and the Berkeley Fellowship.
NR 76
TC 22
Z9 22
U1 0
U2 7
PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
PI LONDON
PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND
SN 0022-2836
J9 J MOL BIOL
JI J. Mol. Biol.
PD AUG 14
PY 2009
VL 391
IS 2
BP 484
EP 497
DI 10.1016/j.jmb.2009.05.068
PG 14
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 486VE
UT WOS:000269227300019
PM 19481551
ER
PT J
AU Daniilidis, N
Lee, T
Clark, R
Narayanan, S
Haffner, H
AF Daniilidis, N.
Lee, T.
Clark, R.
Narayanan, S.
Haeffner, H.
TI Wiring up trapped ions to study aspects of quantum information
SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS
LA English
DT Article
ID ENTANGLEMENT; TELEPORTATION; STATE; REALIZATION; NETWORK; GATE
AB There has been much interest in developing methods for transferring quantum information. We discuss a way to transfer quantum information between two trapped ions through a wire. The motion of a trapped ion induces oscillating charges in the trap electrodes. By sending this current to the electrodes of a nearby second trap, the motions of ions in the two traps are coupled. We investigate the electrostatics of a setup where two separately trapped ions are coupled through an electrically floating wire. We also discuss experimental issues, including possible sources of decoherence.
C1 [Daniilidis, N.; Lee, T.; Clark, R.; Narayanan, S.; Haeffner, H.] Inst Quantenopt & Quanteninformat, Innsbruck, Austria.
[Lee, T.] CALTECH, Dept Phys, Pasadena, CA 91125 USA.
[Clark, R.] MIT, Ctr Ultracold Atoms, Cambridge, MA 02139 USA.
[Haeffner, H.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Haeffner, H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Daniilidis, N (reprint author), Inst Quantenopt & Quanteninformat, Innsbruck, Austria.
EM hhaeffner@berkeley.edu
RI Haeffner, Hartmut/D-8046-2012
OI Haeffner, Hartmut/0000-0002-5113-9622
FU Austrian Ministry of Science and Research (BMWF); European Union
FX We acknowledge support from the Austrian Ministry of Science and
Research (BMWF) via the START programme. ND is supported by the
Marie-Curie fellowship programme of the European Union.
NR 38
TC 19
Z9 19
U1 0
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-4075
J9 J PHYS B-AT MOL OPT
JI J. Phys. B-At. Mol. Opt. Phys.
PD AUG 14
PY 2009
VL 42
IS 15
AR 154012
DI 10.1088/0953-4075/42/15/154012
PG 6
WC Optics; Physics, Atomic, Molecular & Chemical
SC Optics; Physics
GA 471GF
UT WOS:000268043300013
ER
PT J
AU Trabert, E
AF Traebert, E.
TI Differential observations in spectroscopic measurements using electron
beam ion traps
SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS
LA English
DT Article
ID ATOMIC LIFETIME MEASUREMENTS; CHARGED TUNGSTEN IONS; MAGNETIC TRAPPING
MODE; EMISSION-LINE SPECTRA; X-RAY; NI-LIKE; FE-X; REGION; PLASMAS; EUV
AB In many atomic physics experiments in an electron beam ion trap, the technical system is used to provide a stationary environment for a cloud of highly charged ions which are then probed for properties such as excitation energies or magnetic sublevel population (via the polarization of the emitted light). However, there are also observations in which electron beam properties or ion trapping conditions are systematically varied to obtain atomic properties as well as measurements of the changes over time of the stored ions, their atomic states and their ensemble properties. Examples of such measurements that require a variation of the experiment parameters (hence 'differential' observations) are discussed.
C1 [Traebert, E.] Ruhr Univ Bochum, Fac Phys & Astron, Astron Inst, D-44780 Bochum, Germany.
[Traebert, E.] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA.
RP Trabert, E (reprint author), Ruhr Univ Bochum, Fac Phys & Astron, Astron Inst, D-44780 Bochum, Germany.
EM traebert@astro.rub.de
FU US Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]
FX This discussion draws on experiences from more than a decade of
collaboration with the Livermore EBIT group, the hospitality of which is
greatly appreciated. Peter Beiersdorfer (Livermore) also deserves thanks
for advice on the manuscript. ET acknowledges support by the Deutsche
Forschungsgemeinschaft (DFG). Some of this work was performed under the
auspices of the US Department of Energy by Lawrence Livermore National
Laboratory under contract DE-AC52-07NA27344.
NR 66
TC 1
Z9 1
U1 0
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-4075
J9 J PHYS B-AT MOL OPT
JI J. Phys. B-At. Mol. Opt. Phys.
PD AUG 14
PY 2009
VL 42
IS 15
AR 154019
DI 10.1088/0953-4075/42/15/154019
PG 7
WC Optics; Physics, Atomic, Molecular & Chemical
SC Optics; Physics
GA 471GF
UT WOS:000268043300020
ER
PT J
AU Abazov, VM
Abbott, B
Abolins, M
Acharya, BS
Adams, M
Adams, T
Aguilo, E
Ahsan, M
Alexeev, GD
Alkhazov, G
Alton, A
Alverson, G
Alves, GA
Ancu, LS
Andeen, T
Anzelc, MS
Aoki, M
Arnoud, Y
Arov, M
Arthaud, M
Askew, A
Asman, B
Atramentov, O
Avila, C
BackusMayes, J
Badaud, F
Bagby, L
Baldin, B
Bandurin, DV
Banerjee, S
Barberis, E
Barfuss, AF
Bargassa, P
Baringer, P
Barreto, J
Bartlett, JF
Bassler, U
Bauer, D
Beale, S
Bean, A
Begalli, M
Begel, M
Belanger-Champagne, C
Bellantoni, L
Bellavance, A
Benitez, JA
Beri, SB
Bernardi, G
Bernhard, R
Bertram, I
Besancon, M
Beuselinck, R
Bezzubov, VA
Bhat, PC
Bhatnagar, V
Blazey, G
Blessing, S
Bloom, K
Boehnlein, A
Boline, D
Bolton, TA
Boos, EE
Borissov, G
Bose, T
Brandt, A
Brock, R
Brooijmans, G
Bross, A
Brown, D
Bu, XB
Buchholz, D
Buehler, M
Buescher, V
Bunichev, V
Burdin, S
Burnett, TH
Buszello, CP
Calfayan, P
Calpas, B
Calvet, S
Cammin, J
Carrasco-Lizarraga, MA
Carrera, E
Carvalho, W
Casey, BCK
Castilla-Valdez, H
Chakrabarti, S
Chakraborty, D
Chan, KM
Chandra, A
Cheu, E
Cho, DK
Choi, S
Choudhary, B
Christoudias, T
Cihangir, S
Claes, D
Clutter, J
Cooke, M
Cooper, WE
Corcoran, M
Couderc, F
Cousinou, MC
Crepe-Renaudin, S
Cutts, D
Cwiok, M
Das, A
Davies, G
De, K
de Jong, SJ
De La Cruz-Burelo, E
DeVaughan, K
Deliot, F
Demarteau, M
Demina, R
Denisov, D
Denisov, SP
Desai, S
Diehl, HT
Diesburg, M
Dominguez, A
Dorland, T
Dubey, A
Dudko, LV
Duflot, L
Duggan, D
Duperrin, A
Dutt, S
Dyshkant, A
Eads, M
Edmunds, D
Ellison, J
Elvira, VD
Enari, Y
Eno, S
Escalier, M
Evans, H
Evdokimov, A
Evdokimov, VN
Facini, G
Ferapontov, AV
Ferbel, T
Fiedler, F
Filthaut, F
Fisher, W
Fisk, HE
Fortner, M
Fox, H
Fu, S
Fuess, S
Gadfort, T
Galea, CF
Garcia-Bellido, A
Gavrilov, V
Gay, P
Geist, W
Geng, W
Gerber, CE
Gershtein, Y
Gillberg, D
Ginther, G
Gomez, B
Goussiou, A
Grannis, PD
Greder, S
Greenlee, H
Greenwood, ZD
Gregores, EM
Grenier, G
Gris, P
Grivaz, JF
Grohsjean, A
Grunendahl, S
Grunewald, MW
Guo, F
Guo, J
Gutierrez, G
Gutierrez, P
Haas, A
Haefner, P
Hagopian, S
Haley, J
Hall, I
Hall, RE
Han, L
Harder, K
Harel, A
Hauptman, JM
Hays, J
Hebbeker, T
Hedin, D
Hegeman, JG
Heinson, AP
Heintz, U
Hensel, C
Heredia-De La Cruz, I
Herner, K
Hesketh, G
Hildreth, MD
Hirosky, R
Hoang, T
Hobbs, JD
Hoeneisen, B
Hohlfeld, M
Hossain, S
Houben, P
Hu, Y
Hubacek, Z
Huske, N
Hynek, V
Iashvili, I
Illingworth, R
Ito, AS
Jabeen, S
Jaffre, M
Jain, S
Jakobs, K
Jamin, D
Jesik, R
Johns, K
Johnson, C
Johnson, M
Johnston, D
Jonckheere, A
Jonsson, P
Juste, A
Kajfasz, E
Karmanov, D
Kasper, PA
Katsanos, I
Kaushik, V
Kehoe, R
Kermiche, S
Khalatyan, N
Khanov, A
Kharchilava, A
Kharzheev, YN
Khatidze, D
Kim, TJ
Kirby, MH
Kirsch, M
Klima, B
Kohli, JM
Konrath, JP
Kozelov, AV
Kraus, J
Kuhl, T
Kumar, A
Kupco, A
Kurca, T
Kuzmin, VA
Kvita, J
Lacroix, F
Lam, D
Lammers, S
Landsberg, G
Lebrun, P
Lee, WM
Leflat, A
Lellouch, J
Li, J
Li, L
Li, QZ
Lietti, SM
Lim, JK
Lincoln, D
Linnemann, J
Lipaev, VV
Lipton, R
Liu, Y
Liu, Z
Lobodenko, A
Lokajicek, M
Love, P
Lubatti, HJ
Luna-Garcia, R
Lyon, AL
Maciel, AKA
Mackin, D
Mattig, P
Magana-Villalba, R
Magerkurth, A
Mal, PK
Malbouisson, HB
Malik, S
Malyshev, VL
Maravin, Y
Martin, B
McCarthy, R
McGivern, CL
Meijer, MM
Melnitchouk, A
Mendoza, L
Menezes, D
Mercadante, PG
Merkin, M
Merritt, KW
Meyer, A
Meyer, J
Mitrevski, J
Mondal, NK
Moore, RW
Moulik, T
Muanza, GS
Mulhearn, M
Mundal, O
Mundim, L
Nagy, E
Naimuddin, M
Narain, M
Neal, HA
Negret, JP
Neustroev, P
Nilsen, H
Nogima, H
Novaes, SF
Nunnemann, T
Obrant, G
Ochando, C
Onoprienko, D
Orduna, J
Oshima, N
Osman, N
Osta, J
Otec, R
Garzon, GJOY
Owen, M
Padilla, M
Padley, P
Pangilinan, M
Parashar, N
Park, SJ
Park, SK
Parsons, J
Partridge, R
Parua, N
Patwa, A
Pawloski, G
Penning, B
Perfilov, M
Peters, K
Peters, Y
Petroff, P
Piegaia, R
Piper, J
Pleier, MA
Podesta-Lerma, PLM
Podstavkov, VM
Pogorelov, Y
Pol, ME
Polozov, P
Popov, AV
da Silva, WLP
Protopopescu, S
Qian, J
Quadt, A
Quinn, B
Rakitine, A
Rangel, MS
Ranjan, K
Ratoff, PN
Renkel, P
Rich, P
Rijssenbeek, M
Ripp-Baudot, I
Rizatdinova, F
Robinson, S
Rominsky, M
Royon, C
Rubinov, P
Ruchti, R
Safronov, G
Sajot, G
Sanchez-Hernandez, A
Sanders, MP
Sanghi, B
Savage, G
Sawyer, L
Scanlon, T
Schaile, D
Schamberger, RD
Scheglov, Y
Schellman, H
Schliephake, T
Schlobohm, S
Schwanenberger, C
Schwienhorst, R
Sekaric, J
Severini, H
Shabalina, E
Shamim, M
Shary, V
Shchukin, AA
Shivpuri, RK
Siccardi, V
Simak, V
Sirotenko, V
Skubic, P
Slattery, P
Smirnov, D
Snow, GR
Snow, J
Snyder, S
Soldner-Rembold, S
Sonnenschein, L
Sopczak, A
Sosebee, M
Soustruznik, K
Spurlock, B
Stark, J
Stolin, V
Stoyanova, DA
Strandberg, J
Strang, MA
Strauss, E
Strauss, M
Strohmer, R
Strom, D
Stutte, L
Sumowidagdo, S
Svoisky, P
Takahashi, M
Tanasijczuk, A
Taylor, W
Tiller, B
Titov, M
Tokmenin, VV
Torchiani, I
Tsybychev, D
Tuchming, B
Tully, C
Tuts, PM
Unalan, R
Uvarov, L
Uvarov, S
Uzunyan, S
van den Berg, PJ
Van Kooten, R
van Leeuwen, WM
Varelas, N
Varnes, EW
Vasilyev, IA
Verdier, P
Vertogradov, LS
Verzocchi, M
Vilanova, D
Vint, P
Vokac, P
Voutilainen, M
Wagner, R
Wahl, HD
Wang, MHLS
Warchol, J
Watts, G
Wayne, M
Weber, G
Weber, M
Welty-Rieger, L
Wenger, A
Wetstein, M
White, A
Wicke, D
Williams, MRJ
Wilson, GW
Wimpenny, SJ
Wobisch, M
Wood, DR
Wyatt, TR
Xie, Y
Xu, C
Yacoob, S
Yamada, R
Yang, WC
Yasuda, T
Yatsunenko, YA
Ye, Z
Yin, H
Yip, K
Yoo, HD
Youn, SW
Yu, J
Zeitnitz, C
Zelitch, S
Zhao, T
Zhou, B
Zhu, J
Zielinski, M
Zieminska, D
Zivkovic, L
Zutshi, V
Zverev, EG
AF Abazov, V. M.
Abbott, B.
Abolins, M.
Acharya, B. S.
Adams, M.
Adams, T.
Aguilo, E.
Ahsan, M.
Alexeev, G. D.
Alkhazov, G.
Alton, A.
Alverson, G.
Alves, G. A.
Ancu, L. S.
Andeen, T.
Anzelc, M. S.
Aoki, M.
Arnoud, Y.
Arov, M.
Arthaud, M.
Askew, A.
Asman, B.
Atramentov, O.
Avila, C.
BackusMayes, J.
Badaud, F.
Bagby, L.
Baldin, B.
Bandurin, D. V.
Banerjee, S.
Barberis, E.
Barfuss, A. -F.
Bargassa, P.
Baringer, P.
Barreto, J.
Bartlett, J. F.
Bassler, U.
Bauer, D.
Beale, S.
Bean, A.
Begalli, M.
Begel, M.
Belanger-Champagne, C.
Bellantoni, L.
Bellavance, A.
Benitez, J. A.
Beri, S. B.
Bernardi, G.
Bernhard, R.
Bertram, I.
Besancon, M.
Beuselinck, R.
Bezzubov, V. A.
Bhat, P. C.
Bhatnagar, V.
Blazey, G.
Blessing, S.
Bloom, K.
Boehnlein, A.
Boline, D.
Bolton, T. A.
Boos, E. E.
Borissov, G.
Bose, T.
Brandt, A.
Brock, R.
Brooijmans, G.
Bross, A.
Brown, D.
Bu, X. B.
Buchholz, D.
Buehler, M.
Buescher, V.
Bunichev, V.
Burdin, S.
Burnett, T. H.
Buszello, C. P.
Calfayan, P.
Calpas, B.
Calvet, S.
Cammin, J.
Carrasco-Lizarraga, M. A.
Carrera, E.
Carvalho, W.
Casey, B. C. K.
Castilla-Valdez, H.
Chakrabarti, S.
Chakraborty, D.
Chan, K. M.
Chandra, A.
Cheu, E.
Cho, D. K.
Choi, S.
Choudhary, B.
Christoudias, T.
Cihangir, S.
Claes, D.
Clutter, J.
Cooke, M.
Cooper, W. E.
Corcoran, M.
Couderc, F.
Cousinou, M. -C.
Crepe-Renaudin, S.
Cutts, D.
Cwiok, M.
Das, A.
Davies, G.
De, K.
de Jong, S. J.
De La Cruz-Burelo, E.
DeVaughan, K.
Deliot, F.
Demarteau, M.
Demina, R.
Denisov, D.
Denisov, S. P.
Desai, S.
Diehl, H. T.
Diesburg, M.
Dominguez, A.
Dorland, T.
Dubey, A.
Dudko, L. V.
Duflot, L.
Duggan, D.
Duperrin, A.
Dutt, S.
Dyshkant, A.
Eads, M.
Edmunds, D.
Ellison, J.
Elvira, V. D.
Enari, Y.
Eno, S.
Escalier, M.
Evans, H.
Evdokimov, A.
Evdokimov, V. N.
Facini, G.
Ferapontov, A. V.
Ferbel, T.
Fiedler, F.
Filthaut, F.
Fisher, W.
Fisk, H. E.
Fortner, M.
Fox, H.
Fu, S.
Fuess, S.
Gadfort, T.
Galea, C. F.
Garcia-Bellido, A.
Gavrilov, V.
Gay, P.
Geist, W.
Geng, W.
Gerber, C. E.
Gershtein, Y.
Gillberg, D.
Ginther, G.
Gomez, B.
Goussiou, A.
Grannis, P. D.
Greder, S.
Greenlee, H.
Greenwood, Z. D.
Gregores, E. M.
Grenier, G.
Gris, Ph.
Grivaz, J. -F.
Grohsjean, A.
Gruenendahl, S.
Gruenewald, M. W.
Guo, F.
Guo, J.
Gutierrez, G.
Gutierrez, P.
Haas, A.
Haefner, P.
Hagopian, S.
Haley, J.
Hall, I.
Hall, R. E.
Han, L.
Harder, K.
Harel, A.
Hauptman, J. M.
Hays, J.
Hebbeker, T.
Hedin, D.
Hegeman, J. G.
Heinson, A. P.
Heintz, U.
Hensel, C.
Heredia-De La Cruz, I.
Herner, K.
Hesketh, G.
Hildreth, M. D.
Hirosky, R.
Hoang, T.
Hobbs, J. D.
Hoeneisen, B.
Hohlfeld, M.
Hossain, S.
Houben, P.
Hu, Y.
Hubacek, Z.
Huske, N.
Hynek, V.
Iashvili, I.
Illingworth, R.
Ito, A. S.
Jabeen, S.
Jaffre, M.
Jain, S.
Jakobs, K.
Jamin, D.
Jesik, R.
Johns, K.
Johnson, C.
Johnson, M.
Johnston, D.
Jonckheere, A.
Jonsson, P.
Juste, A.
Kajfasz, E.
Karmanov, D.
Kasper, P. A.
Katsanos, I.
Kaushik, V.
Kehoe, R.
Kermiche, S.
Khalatyan, N.
Khanov, A.
Kharchilava, A.
Kharzheev, Y. N.
Khatidze, D.
Kim, T. J.
Kirby, M. H.
Kirsch, M.
Klima, B.
Kohli, J. M.
Konrath, J. -P.
Kozelov, A. V.
Kraus, J.
Kuhl, T.
Kumar, A.
Kupco, A.
Kurca, T.
Kuzmin, V. A.
Kvita, J.
Lacroix, F.
Lam, D.
Lammers, S.
Landsberg, G.
Lebrun, P.
Lee, W. M.
Leflat, A.
Lellouch, J.
Li, J.
Li, L.
Li, Q. Z.
Lietti, S. M.
Lim, J. K.
Lincoln, D.
Linnemann, J.
Lipaev, V. V.
Lipton, R.
Liu, Y.
Liu, Z.
Lobodenko, A.
Lokajicek, M.
Love, P.
Lubatti, H. J.
Luna-Garcia, R.
Lyon, A. L.
Maciel, A. K. A.
Mackin, D.
Maettig, P.
Magana-Villalba, R.
Magerkurth, A.
Mal, P. K.
Malbouisson, H. B.
Malik, S.
Malyshev, V. L.
Maravin, Y.
Martin, B.
McCarthy, R.
McGivern, C. L.
Meijer, M. M.
Melnitchouk, A.
Mendoza, L.
Menezes, D.
Mercadante, P. G.
Merkin, M.
Merritt, K. W.
Meyer, A.
Meyer, J.
Mitrevski, J.
Mondal, N. K.
Moore, R. W.
Moulik, T.
Muanza, G. S.
Mulhearn, M.
Mundal, O.
Mundim, L.
Nagy, E.
Naimuddin, M.
Narain, M.
Neal, H. A.
Negret, J. P.
Neustroev, P.
Nilsen, H.
Nogima, H.
Novaes, S. F.
Nunnemann, T.
Obrant, G.
Ochando, C.
Onoprienko, D.
Orduna, J.
Oshima, N.
Osman, N.
Osta, J.
Otec, R.
Otero y Garzon, G. J.
Owen, M.
Padilla, M.
Padley, P.
Pangilinan, M.
Parashar, N.
Park, S. -J.
Park, S. K.
Parsons, J.
Partridge, R.
Parua, N.
Patwa, A.
Pawloski, G.
Penning, B.
Perfilov, M.
Peters, K.
Peters, Y.
Petroff, P.
Piegaia, R.
Piper, J.
Pleier, M. -A.
Podesta-Lerma, P. L. M.
Podstavkov, V. M.
Pogorelov, Y.
Pol, M. -E.
Polozov, P.
Popov, A. V.
da Silva, W. L. Prado
Protopopescu, S.
Qian, J.
Quadt, A.
Quinn, B.
Rakitine, A.
Rangel, M. S.
Ranjan, K.
Ratoff, P. N.
Renkel, P.
Rich, P.
Rijssenbeek, M.
Ripp-Baudot, I.
Rizatdinova, F.
Robinson, S.
Rominsky, M.
Royon, C.
Rubinov, P.
Ruchti, R.
Safronov, G.
Sajot, G.
Sanchez-Hernandez, A.
Sanders, M. P.
Sanghi, B.
Savage, G.
Sawyer, L.
Scanlon, T.
Schaile, D.
Schamberger, R. D.
Scheglov, Y.
Schellman, H.
Schliephake, T.
Schlobohm, S.
Schwanenberger, C.
Schwienhorst, R.
Sekaric, J.
Severini, H.
Shabalina, E.
Shamim, M.
Shary, V.
Shchukin, A. A.
Shivpuri, R. K.
Siccardi, V.
Simak, V.
Sirotenko, V.
Skubic, P.
Slattery, P.
Smirnov, D.
Snow, G. R.
Snow, J.
Snyder, S.
Soeldner-Rembold, S.
Sonnenschein, L.
Sopczak, A.
Sosebee, M.
Soustruznik, K.
Spurlock, B.
Stark, J.
Stolin, V.
Stoyanova, D. A.
Strandberg, J.
Strang, M. A.
Strauss, E.
Strauss, M.
Stroehmer, R.
Strom, D.
Stutte, L.
Sumowidagdo, S.
Svoisky, P.
Takahashi, M.
Tanasijczuk, A.
Taylor, W.
Tiller, B.
Titov, M.
Tokmenin, V. V.
Torchiani, I.
Tsybychev, D.
Tuchming, B.
Tully, C.
Tuts, P. M.
Unalan, R.
Uvarov, L.
Uvarov, S.
Uzunyan, S.
van den Berg, P. J.
Van Kooten, R.
van Leeuwen, W. M.
Varelas, N.
Varnes, E. W.
Vasilyev, I. A.
Verdier, P.
Vertogradov, L. S.
Verzocchi, M.
Vilanova, D.
Vint, P.
Vokac, P.
Voutilainen, M.
Wagner, R.
Wahl, H. D.
Wang, M. H. L. S.
Warchol, J.
Watts, G.
Wayne, M.
Weber, G.
Weber, M.
Welty-Rieger, L.
Wenger, A.
Wetstein, M.
White, A.
Wicke, D.
Williams, M. R. J.
Wilson, G. W.
Wimpenny, S. J.
Wobisch, M.
Wood, D. R.
Wyatt, T. R.
Xie, Y.
Xu, C.
Yacoob, S.
Yamada, R.
Yang, W. -C.
Yasuda, T.
Yatsunenko, Y. A.
Ye, Z.
Yin, H.
Yip, K.
Yoo, H. D.
Youn, S. W.
Yu, J.
Zeitnitz, C.
Zelitch, S.
Zhao, T.
Zhou, B.
Zhu, J.
Zielinski, M.
Zieminska, D.
Zivkovic, L.
Zutshi, V.
Zverev, E. G.
CA D0 Collaboration
TI Search for Resonant Pair Production of Neutral Long-Lived Particles
Decaying to b(b)over-bar in p(p)over-bar Collisions at root s=1.96 TeV
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID HIGGS-BOSON
AB We report on a first search for resonant pair production of neutral long-lived particles (NLLP) which each decay to a b (b) over bar pair, using 3.6 fb(-1) of data recorded with the D0 detector at the Fermilab Tevatron collider. We search for pairs of displaced vertices in the tracking detector at radii in the range 1.6-20 cm from the beam axis. No significant excess is observed above background, and upper limits are set on the production rate in a hidden-valley benchmark model for a range of Higgs boson masses and NLLP masses and lifetimes.
C1 [Abazov, V. M.; Alexeev, G. D.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia.
[Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina.
[Alves, G. A.; Barreto, J.; Maciel, A. K. A.; Pol, M. -E.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil.
[Begalli, M.; Carvalho, W.; Malbouisson, H. B.; Mundim, L.; Nogima, H.; da Silva, W. L. Prado] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil.
[Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil.
[Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil.
[Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Taylor, W.] Univ Alberta, Edmonton, AB, Canada.
[Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Taylor, W.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada.
[Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada.
[Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Taylor, W.] McGill Univ, Montreal, PQ, Canada.
[Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China.
[Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia.
[Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic.
[Hubacek, Z.; Hynek, V.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic.
[Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic.
[Hoeneisen, B.] Univ San Francisco, Quito, Ecuador.
[Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, Clermont, France.
[Arnoud, Y.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, Inst Natl Polytech Grenoble,LPSC, Grenoble, France.
[Barfuss, A. -F.; Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Escalier, M.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France.
[Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.; Rangel, M. S.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France.
[Bernardi, G.; Huske, N.; Lellouch, J.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France.
[Bernardi, G.; Huske, N.; Lellouch, J.] Univ Paris 07, CNRS, IN2P3, LPNHE, Paris, France.
[Arthaud, M.; Bassler, U.; Besancon, M.; Couderc, F.; Deliot, F.; Grohsjean, A.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] SPP, CEA, Saclay, France.
[Brown, D.; Geist, W.; Greder, S.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France.
[Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France.
[Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France.
[Hebbeker, T.; Kirsch, M.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Inst Phys 3, Aachen, Germany.
[Buescher, V.; Hohlfeld, M.; Mundal, O.; Pleier, M. -A.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany.
[Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.] Univ Freiburg, Inst Phys, Freiburg, Germany.
[Hensel, C.; Meyer, J.; Park, S. -J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany.
[Fiedler, F.; Kuhl, T.; Weber, G.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany.
[Calfayan, P.; Haefner, P.; Nunnemann, T.; Sanders, M. P.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany.
[Maettig, P.; Schliephake, T.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany.
[Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India.
[Choudhary, B.; Dubey, A.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India.
[Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India.
[Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland.
[Kim, T. J.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea.
[Choi, S.] Sungkyunkwan Univ, Suwon, South Korea.
[Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Magana-Villalba, R.; Orduna, J.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico.
[Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] FOM, NIKHEF, Amsterdam, Netherlands.
[Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands.
[Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands.
[Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia.
[Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia.
[Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia.
[Asman, B.; Belanger-Champagne, C.] Stockholm Univ, S-10691 Stockholm, Sweden.
[Asman, B.; Belanger-Champagne, C.] Uppsala Univ, Uppsala, Sweden.
[Bertram, I.; Borissov, G.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster, England.
[Bauer, D.; Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Robinson, S.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England.
[Harder, K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester, Lancs, England.
[Cheu, E.; Das, A.; Johns, K.; Mal, P. K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA.
[Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA.
[Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA.
[Adams, T.; Blessing, S.; Carrera, E.; Duggan, D.; Hagopian, S.; Hoang, T.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA.
[Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Merritt, K. W.; Naimuddin, M.; Oshima, N.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Yamada, R.; Yasuda, T.; Ye, Z.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Adams, M.; Gerber, C. E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA.
[Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA.
[Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA.
[Evans, H.; Lammers, S.; Parua, N.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA.
[Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA.
[Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA.
[Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA.
[Baringer, P.; Bean, A.; Clutter, J.; McGivern, C. L.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA.
[Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.] Kansas State Univ, Manhattan, KS 66506 USA.
[Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA.
[Eno, S.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA.
[Boline, D.; Bose, T.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA.
[Alverson, G.; Barberis, E.; Facini, G.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA.
[Herner, K.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Abolins, M.; Benitez, J. A.; Brock, R.; Edmunds, D.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA.
[Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA.
[Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA.
[Haley, J.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA.
[Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA.
[Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Khatidze, D.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA.
[Cammin, J.; Demina, R.; Garcia-Bellido, A.; Harel, A.; Slattery, P.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA.
[Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA.
[Begel, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Snow, J.] Langston Univ, Langston, OK 73050 USA.
[Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA.
[Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA.
[Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA.
[Brandt, A.; De, K.; Kaushik, V.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA.
[Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA.
[Bargassa, P.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA.
[Buehler, M.; Hirosky, R.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA.
[BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA.
RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia.
RI Mundim, Luiz/A-1291-2012; Boos, Eduard/D-9748-2012; bu,
xuebing/D-1121-2012; Novaes, Sergio/D-3532-2012; Merkin,
Mikhail/D-6809-2012; Leflat, Alexander/D-7284-2012; Dudko,
Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Shivpuri, R K/A-5848-2010;
Gutierrez, Phillip/C-1161-2011; Mercadante, Pedro/K-1918-2012; Yip,
Kin/D-6860-2013; Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013;
Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Deliot,
Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek,
Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov,
Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae
Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Li, Liang/O-1107-2015
OI Mundim, Luiz/0000-0001-9964-7805; Novaes, Sergio/0000-0003-0471-8549;
Dudko, Lev/0000-0002-4462-3192; Yip, Kin/0000-0002-8576-4311; De,
Kaushik/0000-0002-5647-4489; Ancu, Lucian Stefan/0000-0001-5068-6723;
Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias,
Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Guo,
Jun/0000-0001-8125-9433; Li, Liang/0000-0001-6411-6107
FU DOE; NSF (USA); CEA; CNRS/IN2P3 (France); FASI; Rosatom; RFBR (Russia);
CNPq; FAPERJ; FAPESP; FUNDUNESP (Brazil); DAE; DST (India); Colciencias
(Colombia); CONACyT (Mexico); KRF; KOSEF (Korea); CONICET; UBACyT
(Argentina); FOM (The Netherlands); STFC; Royal Society (United
Kingdom); MSMT; GACR (Czech Republic); CRC Program; CFI; NSERC; BMBF;
DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden);
CAS; CNSF (China); Alexander von Humboldt Foundation (Germany)
FX We thank the staffs at Fermilab and collaborating institutions, and
acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3
(France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and
FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT
(Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM
(The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and
GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project
(Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research
Council (Sweden); CAS and CNSF (China); and the Alexander von Humboldt
Foundation (Germany).
NR 11
TC 27
Z9 27
U1 0
U2 4
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD AUG 14
PY 2009
VL 103
IS 7
AR 071801
DI 10.1103/PhysRevLett.103.071801
PG 7
WC Physics, Multidisciplinary
SC Physics
GA 484QZ
UT WOS:000269063300013
ER
PT J
AU Analytis, JG
Andrew, CMJ
Coldea, AI
McCollam, A
Chu, JH
McDonald, RD
Fisher, IR
Carrington, A
AF Analytis, J. G.
Andrew, C. M. J.
Coldea, A. I.
McCollam, A.
Chu, J. -H.
McDonald, R. D.
Fisher, I. R.
Carrington, A.
TI Fermi Surface of SrFe2P2 Determined by the de Haas-van Alphen Effect
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
AB We report measurements of the Fermi surface (FS) of the ternary iron-phosphide SrFe2P2 using the de Haas-van Alphen effect. The calculated FS of this compound is very similar to SrFe2As2, the parent compound of the high temperature superconductors. Our data show that the Fermi surface is composed of two electron and two hole sheets in agreement with band-structure calculations. Several of the sheets show strong c-axis warping emphasizing the importance of three dimensionality in the nonmagnetic state of the ternary pnictides. We find that the electron and hole pockets have a different topology, implying that this material does not satisfy a (pi, pi) nesting condition.
C1 [Analytis, J. G.; Chu, J. -H.; Fisher, I. R.] Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA.
[Analytis, J. G.; Chu, J. -H.; Fisher, I. R.] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA.
[Analytis, J. G.; Chu, J. -H.; Fisher, I. R.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA.
[Andrew, C. M. J.; Coldea, A. I.; Carrington, A.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England.
[McCollam, A.] Radboud Univ Nijmegen, High Field Magnet Lab, Fac Sci, NL-6500 GL Nijmegen, Netherlands.
[McDonald, R. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Analytis, JG (reprint author), Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA.
RI McDonald, Ross/H-3783-2013; McCollam, Alix/F-9697-2015; Coldea,
Amalia/C-1106-2013;
OI McDonald, Ross/0000-0002-0188-1087; Mcdonald, Ross/0000-0002-5819-4739
FU EPSRC,; Royal Society; EU 6th Framework [RII3-CT-2004-506239]; U.S. DOE,
Office of Basic Energy Sciences [DE-AC02-76SF00515]
FX The authors would like to thank E. A. Yelland for technical assistance.
Part of this work has been done with the financial support of EPSRC,
Royal Society and EU 6th Framework Contract No. RII3-CT-2004-506239.
Work at Stanford was supported by the U.S. DOE, Office of Basic Energy
Sciences under Contract No. DE-AC02-76SF00515.
NR 24
TC 64
Z9 64
U1 4
U2 26
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD AUG 14
PY 2009
VL 103
IS 7
AR 076401
DI 10.1103/PhysRevLett.103.076401
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 484QZ
UT WOS:000269063300047
PM 19792666
ER
PT J
AU Bosak, A
Hoesch, M
Krisch, M
Chernyshov, D
Pattison, P
Schulze-Briese, C
Winkler, B
Milman, V
Refson, K
Antonangeli, D
Farber, D
AF Bosak, A.
Hoesch, M.
Krisch, M.
Chernyshov, D.
Pattison, P.
Schulze-Briese, C.
Winkler, B.
Milman, V.
Refson, K.
Antonangeli, D.
Farber, D.
TI 3D Imaging of the Fermi Surface by Thermal Diffuse Scattering
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID X-RAY SCATTERING; FORCE-CONSTANTS; KOHN ANOMALIES; PHONONS;
APPROXIMATION; DEPENDENCE; ALUMINUM
AB We use thermal diffuse scattering of x rays to visualize the lens-shaped portions of the Fermi surface in metallic zinc. Our interpretation of the nature of the observed scattered intensity anomalies is supported by the incorporation of inelastic x-ray scattering measurements as well as ab initio calculations of the electronic structure and lattice dynamics. Our work demonstrates that thermal diffuse scattering complements well-established techniques and is a powerful tool in its own right for studying the shape of the Fermi surface through the associated electron-phonon coupling.
C1 [Bosak, A.; Hoesch, M.; Krisch, M.] European Synchrotron Radiat Facil, F-38043 Grenoble, France.
[Chernyshov, D.; Pattison, P.] Swiss Norwegian Beam Lines, F-38043 Grenoble, France.
[Pattison, P.] Ecole Polytech Fed Lausanne, Lab Cristallog, CH-1015 Lausanne, Switzerland.
[Schulze-Briese, C.] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland.
[Winkler, B.] Univ Frankfurt, D-60438 Frankfurt, Germany.
[Milman, V.] Accelrys, Cambridge CB4 0WN, England.
[Refson, K.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England.
[Antonangeli, D.] Univ Paris 6 & 7, CNRS, Inst Phys Globe, Inst Mineral & Phys Milieux Condenses,UMR 7590, F-75005 Paris, France.
[Farber, D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Farber, D.] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA.
RP Bosak, A (reprint author), European Synchrotron Radiat Facil, BP 220, F-38043 Grenoble, France.
RI Farber, Daniel/F-9237-2011; Chernyshov, Dmitry/B-2399-2008; Refson,
Keith/G-1407-2013; BOSAK, Alexei/J-7895-2013; Milman, Victor/M-6117-2015
OI Hoesch, Moritz/0000-0002-0114-2110; Refson, Keith/0000-0002-8715-5835;
Milman, Victor/0000-0003-2258-1347
NR 34
TC 6
Z9 6
U1 1
U2 13
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD AUG 14
PY 2009
VL 103
IS 7
AR 076403
DI 10.1103/PhysRevLett.103.076403
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 484QZ
UT WOS:000269063300049
PM 19792668
ER
PT J
AU Dorf, MA
Kaganovich, ID
Startsev, EA
Davidson, RC
AF Dorf, Mikhail A.
Kaganovich, Igor D.
Startsev, Edward A.
Davidson, Ronald C.
TI Enhanced Self-Focusing of an Ion Beam Pulse Propagating through a
Background Plasma along a Solenoidal Magnetic Field
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID TRANSPORT; FUSION; SHOCKS; LENS
AB It is shown that the application of a weak solenoidal magnetic field along the direction of ion beam propagation through a neutralizing background plasma can significantly enhance the beam self-focusing for the case where the beam radius is small compared to the collisionless electron skin depth. The enhanced focusing is provided by a strong radial self-electric field that is generated due to a local polarization of the magnetized plasma background by the moving ion beam. A positive charge of the ion beam pulse becomes overcompensated by the plasma electrons, which results in the radial focusing of the beam ions. The expression for the self-focusing force is derived analytically and compared with the results of numerical simulations.
C1 [Dorf, Mikhail A.; Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA.
RP Dorf, MA (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
FU U.S. Department of Energy
FX This research was supported by the U.S. Department of Energy.
NR 23
TC 10
Z9 10
U1 1
U2 5
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD AUG 14
PY 2009
VL 103
IS 7
AR 075003
DI 10.1103/PhysRevLett.103.075003
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 484QZ
UT WOS:000269063300032
PM 19792651
ER
PT J
AU Maingi, R
Osborne, TH
LeBlanc, BP
Bell, RE
Manickam, J
Snyder, PB
Menard, JE
Mansfield, DK
Kugel, HW
Kaita, R
Gerhardt, SP
Sabbagh, SA
Kelly, FA
AF Maingi, R.
Osborne, T. H.
LeBlanc, B. P.
Bell, R. E.
Manickam, J.
Snyder, P. B.
Menard, J. E.
Mansfield, D. K.
Kugel, H. W.
Kaita, R.
Gerhardt, S. P.
Sabbagh, S. A.
Kelly, F. A.
CA NSTX Res Team
TI Edge-Localized-Mode Suppression through Density-Profile Modification
with Lithium-Wall Coatings in the National Spherical Torus Experiment
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID GAS FUELING LOCATION; DIII-D TOKAMAK; COLLISIONALITY REGIME; NSTX
PLASMAS; HIGH-BETA; PEDESTAL; CONFINEMENT; OPERATION; STABILITY; PHYSICS
AB Reduction or elimination of edge localized modes (ELMs) while maintaining high confinement is essential for future fusion devices, e.g., the ITER. An ELM-free regime was recently obtained in the National Spherical Torus Experiment, following lithium (Li) evaporation onto the plasma-facing components. Edge stability calculations indicate that the pre-Li discharges were unstable to low-n peeling or ballooning modes, while broader pressure profiles stabilized the post-Li discharges. Normalized energy confinement increased by 50% post Li, with no sign of ELMs up to the global stability limit.
C1 [Maingi, R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Osborne, T. H.; Snyder, P. B.] Gen Atom Co, San Diego, CA USA.
[LeBlanc, B. P.; Bell, R. E.; Manickam, J.; Menard, J. E.; Mansfield, D. K.; Kugel, H. W.; Kaita, R.; Gerhardt, S. P.; Kelly, F. A.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
[Sabbagh, S. A.] Columbia Univ, New York, NY USA.
RP Maingi, R (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RI Sabbagh, Steven/C-7142-2011; Osborne, Tobias/D-3271-2014;
OI Menard, Jonathan/0000-0003-1292-3286
FU U.S. Department of Energy [DE-AC05-00OR22725, DE-AC02-09CH11466,
DE-FC02-04ER54698, DE-FG02-99ER54524]
FX This research was supported by the U.S. Department of Energy under
Contracts No. DE-AC05-00OR22725, No. DE-AC02-09CH11466, No.
DE-FC02-04ER54698, and No. DE-FG02-99ER54524. We thank L. E. Zakharov
for valuable discussions and acknowledge his prediction of ELM
suppression with lithium coatings (due to a different mechanism) in
advance of lithium experiments in the NSTX. The contribution of the NSTX
technical and neutral beam operations staff is also gratefully
acknowledged.
NR 31
TC 87
Z9 88
U1 4
U2 30
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD AUG 14
PY 2009
VL 103
IS 7
AR 075001
DI 10.1103/PhysRevLett.103.075001
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 484QZ
UT WOS:000269063300030
PM 19792649
ER
PT J
AU Nascimento, VB
Li, A
Jayasundara, DR
Xuan, Y
O'Neal, J
Pan, SH
Chien, TY
Hu, B
He, XB
Li, GR
Sefat, AS
McGuire, MA
Sales, BC
Mandrus, D
Pan, MH
Zhang, JD
Jin, R
Plummer, EW
AF Nascimento, V. B.
Li, Ang
Jayasundara, Dilushan R.
Xuan, Yi
O'Neal, Jared
Pan, Shuheng
Chien, T. Y.
Hu, Biao
He, X. B.
Li, Guorong
Sefat, A. S.
McGuire, M. A.
Sales, B. C.
Mandrus, D.
Pan, M. H.
Zhang, Jiandi
Jin, R.
Plummer, E. W.
TI Surface Geometric and Electronic Structures of BaFe2As2(001)
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID SUPERCONDUCTOR
AB BaFe2As2 exhibits properties that are characteristic of the parent compounds of the newly discovered iron (Fe)-based high-TC superconductors. By combining real-space imaging of scanning tunneling microscopy and spectroscopy (STM + STS) with momentum-space quantitative low-energy electron diffraction (LEED), we have identified the surface plane of cleaved BaFe2As2 crystals as the As terminated Fe-As layer-the plane where superconductivity occurs. LEED and STM + STS data on the BaFe2As2(001) surface indicate an ordered arsenic (As) terminated metallic surface without reconstruction or lattice distortion. It is surprising that STM images the different Fe-As orbitals associated with the orthorhombic structure, but not the As atoms in the surface plane.
C1 [Nascimento, V. B.; He, X. B.; Zhang, Jiandi; Jin, R.; Plummer, E. W.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA.
[Li, Ang; Jayasundara, Dilushan R.; Xuan, Yi; O'Neal, Jared; Pan, Shuheng] Univ Houston, Dept Phys, Houston, TX 77204 USA.
[Chien, T. Y.; Hu, Biao; Li, Guorong] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
[Li, Ang; Jayasundara, Dilushan R.; Xuan, Yi; O'Neal, Jared; Pan, Shuheng] Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA.
[Sefat, A. S.; McGuire, M. A.; Sales, B. C.; Mandrus, D.; Pan, M. H.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RP Nascimento, VB (reprint author), Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA.
EM vnascimento@lsu.edu
RI McGuire, Michael/B-5453-2009; Hu, Biao/A-8199-2012; He,
Xiaobo/G-5435-2012; Mandrus, David/H-3090-2014; Li, Guorong/C-3806-2015;
Li, An-Ping/B-3191-2012; Sefat, Athena/R-5457-2016
OI McGuire, Michael/0000-0003-1762-9406; Li, An-Ping/0000-0003-4400-7493;
Sefat, Athena/0000-0002-5596-3504
FU Division of Materials Science and Engineering, Basic Energy Sciences,
U.S. DOE; NSF and DOE [NSF-DMR-0451163]; NSF [DMR-0346826]; TcSUH;
Robert A. Welch Foundation
FX This effort was supported in part by the Division of Materials Science
and Engineering, Basic Energy Sciences, U.S. DOE (A. S., M. A. M., B. C.
S., D. M.). X. B. H., G. L., T. Y. C., and E. W. P. have received
support from NSF and DOE (DMS&E and NSF-DMR-0451163). J. Z. is supported
by NSF under grant No. DMR-0346826. This work is also partly supported
by the State of Texas through TcSUH and the Robert A. Welch Foundation.
We would also like to thank DMSE and Division of User Facilities for
work at CNMS.
NR 17
TC 43
Z9 43
U1 2
U2 38
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD AUG 14
PY 2009
VL 103
IS 7
AR 076104
DI 10.1103/PhysRevLett.103.076104
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 484QZ
UT WOS:000269063300046
PM 19792665
ER
PT J
AU Tsigutkin, K
Dounas-Frazer, D
Family, A
Stalnaker, JE
Yashchuk, VV
Budker, D
AF Tsigutkin, K.
Dounas-Frazer, D.
Family, A.
Stalnaker, J. E.
Yashchuk, V. V.
Budker, D.
TI Observation of a Large Atomic Parity Violation Effect in Ytterbium
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID ANAPOLE MOMENT; NONCONSERVATION; TRANSITION; THALLIUM; 6S(2)
AB Atomic parity violation has been observed in the 6s(2) (1)S(0) -> 5d6s (3)D(1) 408-nm forbidden transition of ytterbium. The parity-violating amplitude is found to be 2 orders of magnitude larger than in cesium, where the most precise experiments to date have been performed. This is in accordance with theoretical predictions and constitutes the largest atomic parity-violating amplitude yet observed. This also opens the way to future measurements of neutron distributions and anapole moments by comparing parity-violating amplitudes for various isotopes and hyperfine components of the transition.
C1 [Tsigutkin, K.; Dounas-Frazer, D.; Family, A.; Stalnaker, J. E.; Budker, D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Yashchuk, V. V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source Div, Berkeley, CA 94720 USA.
[Budker, D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA.
RP Tsigutkin, K (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
EM tsigutkin@berkeley.edu
RI Budker, Dmitry/F-7580-2016
OI Budker, Dmitry/0000-0002-7356-4814
FU NSF
FX The authors acknowledge helpful discussions with and important
contributions of M. A. Bouchiat, C.J. Bowers, E. D. Commins, B. P. Das,
D. DeMille, A. Dilip, S.J. Freedman, J.S. Guzman, G. Gwinner, D. F.
Kimball, M. G. Kozlov, S. M. Rochester, and M. Zolotorev. This work has
been supported by NSF.
NR 19
TC 80
Z9 80
U1 2
U2 15
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD AUG 14
PY 2009
VL 103
IS 7
AR 071601
DI 10.1103/PhysRevLett.103.071601
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 484QZ
UT WOS:000269063300011
PM 19792630
ER
PT J
AU Chen, JS
Hubbard, SS
Williams, KH
Pride, S
Li, L
Steefel, C
Slater, L
AF Chen, Jinsong
Hubbard, Susan S.
Williams, Kenneth H.
Pride, Steve
Li, Li
Steefel, Carl
Slater, Lee
TI A state-space Bayesian framework for estimating biogeochemical
transformations using time-lapse geophysical data
SO WATER RESOURCES RESEARCH
LA English
DT Article
ID INDUCED-POLARIZATION; ELECTRICAL SPECTROSCOPY; TRANSPORT; ROCK;
DISPERSION; MODEL
AB We develop a state-space Bayesian framework to combine time-lapse geophysical data with other types of information for quantitative estimation of biogeochemical parameters during bioremediation. We consider characteristics of end products of biogeochemical transformations as state vectors, which evolve under constraints of local environments through evolution equations, and consider time-lapse geophysical data as available observations, which could be linked to the state vectors through petrophysical models. We estimate the state vectors and their associated unknown parameters over time using Markov chain Monte Carlo sampling methods. To demonstrate the use of the state-space approach, we apply it to complex resistivity data collected during laboratory column biostimulation experiments that were poised to precipitate iron and zinc sulfides during sulfate reduction. We develop a petrophysical model based on sphere-shaped cells to link the sulfide precipitate properties to the time-lapse geophysical attributes and estimate volume fraction of the sulfide precipitates, fraction of the dispersed, sulfide-encrusted cells, mean radius of the aggregated clusters, and permeability over the course of the experiments. Results of the case study suggest that the developed state-space approach permits the use of geophysical data sets for providing quantitative estimates of end-product characteristics and hydrological feedbacks associated with biogeochemical transformations. Although tested here on laboratory column experiment data sets, the developed framework provides the foundation needed for quantitative field-scale estimation of biogeochemical parameters over space and time using direct, but often sparse wellbore data with indirect, but more spatially extensive geophysical data sets.
C1 [Chen, Jinsong; Hubbard, Susan S.; Williams, Kenneth H.; Pride, Steve; Li, Li; Steefel, Carl] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA.
[Slater, Lee] Rutgers State Univ, Dept Earth & Environm Sci, Newark, NJ 07102 USA.
RP Chen, JS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, MS 90-1116,1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM jchen@lbl.gov
RI Chen, Jinsong/A-1374-2009; Steefel, Carl/B-7758-2010; Hubbard,
Susan/E-9508-2010; Williams, Kenneth/O-5181-2014; Li, Li/A-6077-2008
OI Williams, Kenneth/0000-0002-3568-1155; Li, Li/0000-0002-1641-3710
FU U. S. Department of Energy, Biological and Environmental Research
Program [KP150401]
FX Funding for this study was provided by the U. S. Department of Energy,
Biological and Environmental Research Program under the LBNL Sustainable
Systems Subsurface Focus Area (KP150401). The authors wish to thank
Yuxin Wu from Lawrence Berkeley National Lab for the discussion
regarding the empirical models used in the study. We also thank the
associate editor Day- Lewis Fred, Kamini Singha, and two anonymous
reviewers for their valuable comments.
NR 34
TC 13
Z9 13
U1 1
U2 6
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0043-1397
J9 WATER RESOUR RES
JI Water Resour. Res.
PD AUG 14
PY 2009
VL 45
AR W08420
DI 10.1029/2008WR007698
PG 15
WC Environmental Sciences; Limnology; Water Resources
SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water
Resources
GA 484IK
UT WOS:000269037700002
ER
PT J
AU O'Rourke, JA
Nelson, RT
Grant, D
Schmutz, J
Grimwood, J
Cannon, S
Vance, CP
Graham, MA
Shoemaker, RC
AF O'Rourke, Jamie A.
Nelson, Rex T.
Grant, David
Schmutz, Jeremy
Grimwood, Jane
Cannon, Steven
Vance, Carroll P.
Graham, Michelle A.
Shoemaker, Randy C.
TI Integrating microarray analysis and the soybean genome to understand the
soybeans iron deficiency response
SO BMC GENOMICS
LA English
DT Article
ID SINGLE-FEATURE POLYMORPHISM; LOCAL COEXPRESSION DOMAINS;
ARABIDOPSIS-THALIANA; METABOLIC-RESPONSES; NEIGHBORING GENES; CHLOROSIS;
STRESS; ROOTS; ORGANIZATION; NUTRITION
AB Background: Soybeans grown in the upper Midwestern United States often suffer from iron deficiency chlorosis, which results in yield loss at the end of the season. To better understand the effect of iron availability on soybean yield, we identified genes in two near isogenic lines with changes in expression patterns when plants were grown in iron sufficient and iron deficient conditions.
Results: Transcriptional profiles of soybean (Glycine max, L. Merr) near isogenic lines Clark (PI548553, iron efficient) and IsoClark (PI547430, iron inefficient) grown under Fe-sufficient and Fe-limited conditions were analyzed and compared using the Affymetrix (R) GeneChip (R) Soybean Genome Array. There were 835 candidate genes in the Clark (PI548553) genotype and 200 candidate genes in the IsoClark (PI547430) genotype putatively involved in soybean's iron stress response. Of these candidate genes, fifty-eight genes in the Clark genotype were identified with a genetic location within known iron efficiency QTL and 21 in the IsoClark genotype. The arrays also identified 170 single feature polymorphisms (SFPs) specific to either Clark or IsoClark. A sliding window analysis of the microarray data and the 7X genome assembly coupled with an iterative model of the data showed the candidate genes are clustered in the genome. An analysis of 5' untranslated regions in the promoter of candidate genes identified 11 conserved motifs in 248 differentially expressed genes, all from the Clark genotype, representing 129 clusters identified earlier, confirming the cluster analysis results.
Conclusion: These analyses have identified the first genes with expression patterns that are affected by iron stress and are located within QTL specific to iron deficiency stress. The genetic location and promoter motif analysis results support the hypothesis that the differentially expressed genes are coregulated. The combined results of all analyses lead us to postulate iron inefficiency in soybean is a result of a mutation in a transcription factor(s), which controls the expression of genes required in inducing an iron stress response.
C1 [Nelson, Rex T.; Grant, David; Cannon, Steven; Graham, Michelle A.; Shoemaker, Randy C.] Iowa State Univ, Corn Insect & Crop Genet Res Unit, ARS, USDA, Ames, IA 50011 USA.
[O'Rourke, Jamie A.] Iowa State Univ, Dept Genet Dev & Cellular Biol, Ames, IA 50011 USA.
[Grant, David; Graham, Michelle A.; Shoemaker, Randy C.] Iowa State Univ, Dept Agron, Ames, IA 50011 USA.
[Schmutz, Jeremy; Grimwood, Jane] Stanford Univ, Sch Med, Dept Genet, Joint Genome Inst,Stanford Human Genome Ctr, Palo Alto, CA 94304 USA.
[Vance, Carroll P.] Univ Minnesota, ARS, USDA, Plant Sci Res Unit, St Paul, MN 55108 USA.
RP Shoemaker, RC (reprint author), Iowa State Univ, Corn Insect & Crop Genet Res Unit, ARS, USDA, Ames, IA 50011 USA.
EM utehawk@iastate.edu; rex.nelson@ars.usda.gov; dgrant@iastate.edu;
jeremy@shgc.stanford.edu; jane@shgc.stanford.edu;
steven.cannon@ars.usda.gov; carroll.vance@ars.usda.gov;
michelle.graham@ars.usda.gov; randy.shoemaker@ars.usda.gov
OI Grant, David/0000-0002-4611-6848
NR 50
TC 26
Z9 28
U1 3
U2 14
PU BIOMED CENTRAL LTD
PI LONDON
PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND
SN 1471-2164
J9 BMC GENOMICS
JI BMC Genomics
PD AUG 13
PY 2009
VL 10
AR 376
DI 10.1186/1471-2164-10-376
PG 17
WC Biotechnology & Applied Microbiology; Genetics & Heredity
SC Biotechnology & Applied Microbiology; Genetics & Heredity
GA 490OZ
UT WOS:000269511700002
PM 19678937
ER
PT J
AU Shubert, VA
Rednic, M
Pratt, ST
AF Shubert, V. Alvin
Rednic, Maria
Pratt, Stephen T.
TI Photodissociation of 2-Iodoethanol within the A Band
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID POTENTIAL-ENERGY SURFACES; METHYL-IODIDE; VIBRATIONAL-EXCITATION; ALKYL
IODIDES; 304 NM; DYNAMICS; CH3I; PHOTOFRAGMENTATION; RADICALS; ETHYLENE
AB The photodissociation of 2-iodoethanol was studied within the A (sigma* <- n) absorption band at several wavelengths between 253 and 298 nm, and the velocity distributions and angular distributions of the photofragments were characterized by using velocity-map ion imaging. The two dominant dissociation channels correspond to the production of the 2-hydroxyethyl radical, C2H4OH, and 1(P-2(3/2)) and I*(P-2(1/2)), and in both channels, approximately 50% of the available excess energy is partitioned into translational energy of the fragments. The branching fractions for the I and I* channels at 266 nm were determined by using a combination of (1) the translational energy distributions for the separate I and I* channels determined by two-photon resonant, three-photon ionization, (2) the distributions for the combined I + I* channels determined by single-photon ionization at 118 nm, and (3) the relative photoionization cross sections of I and I* at 118 nm. Evidence was observed for either the secondary decomposition of C2H4OH, the photodissociation of C2H4OH, or the dissociative ionization of the C2H4OH radicals produced in the I channel. These mechanisms are also discussed.
C1 [Shubert, V. Alvin; Rednic, Maria; Pratt, Stephen T.] Argonne Natl Lab, Argonne, IL 60439 USA.
RP Pratt, ST (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
RI Shubert, V. Alvin/C-6736-2011
FU U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences, Division of Chemical Sciences, Geosciences, and Biosciences
[DE-AC02-06CH11357]; Chicago/Argonne Strategic Collaborative Initiative
FX We would like to thank Professors L. J. Butler and H. Reisler for
helpful discussions regarding this study. We would also like to thank
Dr. S. J. Klippenstein for sharing his results on
C2H4OH. This work was supported by the U.S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences, Division of Chemical Sciences, Geosciences, and Biosciences
under Contract No. DE-AC02-06CH11357. M.R. was supported by funding
through the University of Chicago/Argonne Strategic Collaborative
Initiative.
NR 52
TC 7
Z9 7
U1 3
U2 13
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD AUG 13
PY 2009
VL 113
IS 32
BP 9057
EP 9064
DI 10.1021/jp903301g
PG 8
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 479LN
UT WOS:000268660900002
PM 19610650
ER
PT J
AU Martin, Z
Jimenez, I
Gomez, MA
Ade, HW
Kilcoyne, DA
Hernadez-Cruz, D
AF Martin, Zulima
Jimenez, Ignacio
Angeles Gomez, M.
Ade, Harald W.
Kilcoyne, David A.
Hernadez-Cruz, Daniel
TI Spectromicroscopy Study of Intercalation and Exfoliation in
Polypropylene/Montmorillonite Nanocomposites
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID COMPATIBILIZED POLYPROPYLENE-NANOCOMPOSITES; SILICATE NANOCOMPOSITES;
MECHANICAL-PROPERTIES; FUNCTIONALIZED POLYPROPYLENES; CLAY
NANOCOMPOSITES; ORGANOCLAYS; DISPERSION; MORPHOLOGY; EXTRUSION; POLYMERS
AB We present a combined study by X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and scanning transmission X-ray microscopy (STXM) of the successful formation of nanocomposites of polypropylene with montmorillonite by melt processing, providing a complete picture of the intercalation and exfoliation processes taking place. The nanocomposites contained 5 wt % of an organically modified montmorillonite, and different amounts of polypropylene-graft-maleic anhydride, used as a polar compatibilizer, Microscopy reveals a complex morphology, with partial intercalation/exfoliation, which depends on the concentration of compatibilizer. STXM spectromicroscopy provides direct information of the presence of different polymer components at the polymer-silicate interfaces and details on the intercalation mechanism.
C1 [Martin, Zulima; Angeles Gomez, M.] ICTP CSIC, Inst Ciencia & Tecnol Polimeros, Madrid 28006, Spain.
[Jimenez, Ignacio] ICMM CSIC, Inst Ciencia Mat Madrid, Madrid 28049, Spain.
[Ade, Harald W.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA.
[Kilcoyne, David A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Hernadez-Cruz, Daniel] McMaster Univ, Dept Chem, BIMR, Hamilton, ON L85 4M1, Canada.
RP Martin, Z (reprint author), ICTP CSIC, Inst Ciencia & Tecnol Polimeros, Juan Cierva 3, Madrid 28006, Spain.
EM zmartin@ictp.csic.es
RI Jimenez, Ignacio/F-7422-2010; Ade, Harald/E-7471-2011; GOMEZ-FATOU
RODRIGUEZ, MARIAN/C-9900-2012; Kilcoyne, David/I-1465-2013;
OI Jimenez, Ignacio/0000-0001-5605-3185; GOMEZ-FATOU RODRIGUEZ,
MARIAN/0000-0002-0212-0634; Hernandez Cruz, Daniel/0000-0003-4950-7155
FU EU FP6 programme [NMP3-CT-2005-515840]; Spanish MICINN
[MAT2006-13167-C01]; Universidad Rey Juan Carlos (URJC) of Madrid;
Director of the Office of Science, Department of Energy
[DE-AC02-05CH11231]; DOE [DE-FG02-98ER45737]
FX This work has been supported by the I3P-CSIC predoctoral program, and
has been partially financed by project FOREMOST (Contract No.
NMP3-CT-2005-515840) from the EU FP6 programme, and the Spanish MICINN
for national project (MAT2006-13167-C01). We are indebted to J.
Gonzalez-Casablanca and R. Castro from Universidad Rey Juan Carlos
(URJC) of Madrid for their assistance in the use of the TEM. We also
acknowledge the assistance of Sufal Swaraj and Benjamin Watts at the
BL-5.3.2 STXM of the ALS, which is supported by the Director of the
Office of Science, Department of Energy, under Contract No.
DE-AC02-05CH11231. Work at NCSU is supported by DOE Grant
DE-FG02-98ER45737.
NR 34
TC 19
Z9 19
U1 0
U2 10
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD AUG 13
PY 2009
VL 113
IS 32
BP 11160
EP 11165
DI 10.1021/jp9049999
PG 6
WC Chemistry, Physical
SC Chemistry
GA 479LO
UT WOS:000268661100016
PM 19719265
ER
PT J
AU Li, S
Cooper, VR
Thonhauser, T
Lundqvist, BI
Langreth, DC
AF Li, Shen
Cooper, Valentino R.
Thonhauser, T.
Lundqvist, Bengt I.
Langreth, David C.
TI Stacking Interactions and DNA Intercalation
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID DENSITY-FUNCTIONAL THEORY; DEOXYDINUCLEOSIDE PHOSPHATE COMPLEX;
GENERALIZED GRADIENT APPROXIMATION; ANTICANCER AGENT ELLIPTICINE;
BASE-PAIRS; PROFLAVINE; ETHIDIUM; BINDING; WATER; DATABASE
AB The relationship between stacking interactions and the intercalation of proflavine and ellipticine within DNA is investigated using a nonempirical van der Waals density functional for the correlation energy. Our results, employing a binary stack model, highlight fundamental, qualitative differences between base-pair-base-pair interactions and that of the stacked intercalator-base-pair system. The most notable result is the paucity of torque, which so distinctively defines the twist of DNA. Surprisingly, this model, when combined with a constraint on the twist of the surrounding base-pair steps to match the observed unwinding of the sugar-phosphate backbone, was sufficient for explaining the experimentally observed proflavine intercalator configuration. Our extensive mapping of the potential energy surface of base-pair-intercalator interactions call provide valuable information for future nonempirical studies of DNA intercalation dynamics.
C1 [Li, Shen; Cooper, Valentino R.; Thonhauser, T.; Langreth, David C.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA.
[Li, Shen] Fred Hutchinson Canc Res Ctr, Seattle, WA 98019 USA.
[Cooper, Valentino R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Thonhauser, T.] Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA.
[Lundqvist, Bengt I.] Chalmers, Dept Appl Phys, SE-41296 Gothenburg, Sweden.
RP Li, S (reprint author), Rutgers State Univ, Dept Phys & Astron, POB 849, Piscataway, NJ 08854 USA.
EM sl2@fhcrc.org
RI Lundqvist, Bengt/A-9013-2011; Cooper, Valentino /A-2070-2012
OI Cooper, Valentino /0000-0001-6714-4410
FU D.O.E., Division of Materials Sciences and Engineering;
[NSF-DMR-0456937]; [NSF-DMR-0801343]
FX We thank W. K. Olson for valuable discussions. This work was supported
in part by NSF-DMR-0456937 and NSF-DMR-0801343. Work at ORNL was
supported by D.O.E., Division of Materials Sciences and Engineering.
NR 52
TC 82
Z9 84
U1 5
U2 30
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD AUG 13
PY 2009
VL 113
IS 32
BP 11166
EP 11172
DI 10.1021/jp905765c
PG 7
WC Chemistry, Physical
SC Chemistry
GA 479LO
UT WOS:000268661100017
PM 19719266
ER
PT J
AU Nachimuthu, P
Kim, YJ
Kuchibhatla, SVNT
Yu, ZQ
Jiang, W
Engelhard, MH
Shutthanandan, V
Szanyi, J
Thevuthasan, S
AF Nachimuthu, P.
Kim, Y. J.
Kuchibhatla, S. V. N. T.
Yu, Z. Q.
Jiang, W.
Engelhard, M. H.
Shutthanandan, V.
Szanyi, Janos
Thevuthasan, S.
TI Growth and Characterization of Barium Oxide Nanoclusters on YSZ(111)
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID MOLECULAR-BEAM EPITAXY; NOX STORAGE/REDUCTION CATALYSTS; NSR CATALYSTS;
THIN-FILMS; BAO; STORAGE; MECHANISMS; ADSORPTION; DEPOSITION; SCIENCE
AB Barium oxide (BaO) was grown on a yttria-stabilized zirconia (YSZ) substrate by oxygen plasma-assisted molecular beam epitaxy. In situ reflection high-energy electron diffraction, ex situ X-ray diffraction (XRD), atomic force microscopy, and X-ray photoelectron spectroscopy (XPS) have confirmed that BaO grows as clusters on YSZ(111). During and following growth under ultrahigh vacuum conditions, we found BaO remained in single phase. When exposed to ambient conditions, the clusters transformed to BaCO3 and/or Ba(OH)(2) H2O. However, in a few attempts of BaO growth, XRD results show a fairly single-phase cubic BaO with a lattice constant of 0.5418(1) nm. XPS results show that exposing BaO clusters to ambient conditions resulted in the formation of BaCO3 on the surface and partly Ba(OH)(2) throughout the bulk. On the basis of the observations, it is concluded that the BaO nanoclusters grown on YSZ(111) are highly reactive in ambient conditions.
C1 [Nachimuthu, P.; Kuchibhatla, S. V. N. T.; Yu, Z. Q.; Jiang, W.; Engelhard, M. H.; Shutthanandan, V.; Szanyi, Janos; Thevuthasan, S.] Pacific NW Natl Lab, EMSL, Richland, WA 99352 USA.
[Kim, Y. J.] Hanbat Natl Univ, Dept Chem Technol, Taejon, South Korea.
[Yu, Z. Q.] Nanjing Normal Univ, Dept Chem, Nanjing, Peoples R China.
RP Nachimuthu, P (reprint author), Pacific NW Natl Lab, EMSL, Richland, WA 99352 USA.
EM Ponnusamy.Nachimuthu@pnl.gov
RI Engelhard, Mark/F-1317-2010;
OI Jiang, Weilin/0000-0001-8302-8313; Engelhard, Mark/0000-0002-5543-0812
FU Department of Energy (DOE) [DE-AC05-76RL01830]
FX The research was performed using the Environmental Molecular Sciences
Laboratory (EMSL), a national scientific user facility sponsored by the
Department of Energy (DOE), Office of Biological and Environmental
Research, located at the Pacific Northwest National Laboratory (PPNL).
PNNL is operated for the U.S. DOE by Battelle Memorial Institute under
Contract DE-AC05-76RL01830.
NR 32
TC 6
Z9 7
U1 2
U2 10
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD AUG 13
PY 2009
VL 113
IS 32
BP 14324
EP 14328
DI 10.1021/jp9020068
PG 5
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 479LQ
UT WOS:000268661300041
ER
PT J
AU Estrella, M
Barrio, L
Zhou, G
Wang, XQ
Wang, Q
Wen, W
Hanson, JC
Frenkel, AI
Rodriguez, JA
AF Estrella, Michael
Barrio, Laura
Zhou, Gong
Wang, Xianqin
Wang, Qi
Wen, Wen
Hanson, Jonathan C.
Frenkel, Anatoly I.
Rodriguez, Jose A.
TI In Situ Characterization of CuFe2O4 and Cu/Fe3O4 Water-Gas Shift
Catalysts
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID TIME-RESOLVED CHARACTERIZATION; METAL-OXIDES; REACTION-MECHANISM;
COPPER; CU; CELL; HYDROGEN; METHANOL; OXYGEN; CERIA
AB Mixtures of copper and iron oxides are used as industrial catalysts for the water-gas shift (WGS, CO + H2O -> H-2 + CO2). In-situ time-resolved X-ray diffraction, X-ray absorption fine structure, and atomic pair distribution function analysis were used to study the reduction of CuFe2O4 with CO and the behavior of CuFe2O4 and Cu/Fe2O3 catalysts under WGS reaction conditions. Metal <-> oxygen <-> metal interactions enhance the stability Of Cu2+ and Fe3+ in the CuFe2O4 lattice, and the mixed-metal oxide is much more difficult to reduce than CuO or Fe2O3. Furthermore, after heating mixtures of CuFe2O4/CuO in the presence of CO or CO/H2O, the cations of CuO migrate into octahedral sites of the CuFe2O4 lattice at temperatures (200-250 degrees C) in which CuO is not stable. Above 250 degrees C, copper leaves the oxide, the occupancy of the octahedral sites in CuFe2O4 decreases, and diffraction lines for metallic Cu appear. From 350 to 450 degrees C, there is a massive reduction of CuFe2O4 with the formation of metallic Cu and Fe3O4. At this point, the sample becomes catalytically active for the production of H-2 from the reaction of H2O with CO. Neutral Cu-0 (i.e., no Cu1+ or Cu2+ cations) is the active species in the catalysts, but interactions with the oxide support cannot be neglected. These studies illustrate the importance of in situ characterization when dealing with mixed-metal oxide WGS catalysts.
C1 [Estrella, Michael; Barrio, Laura; Zhou, Gong; Hanson, Jonathan C.; Rodriguez, Jose A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
[Wang, Xianqin] New Jersey Inst Technol, Chem Biol & Pharmaceut Engn Dept, Newark, NJ 07102 USA.
[Wang, Qi; Frenkel, Anatoly I.] Yeshiva Univ, Dept Phys, New York, NY 10016 USA.
[Wen, Wen] Chinese Acad Sci, Expt Div, Shanghai Synchrotron Radiat Facil, Shanghai Inst Appl Phys, Shanghai 201204, Peoples R China.
RP Rodriguez, JA (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
EM rodrigez@bnl.gov
RI Zhou, Gong/C-7085-2009; Estrella, Michael/G-3188-2010; Frenkel,
Anatoly/D-3311-2011; Wang, Qi/C-5478-2012; Barrio, Laura/A-9509-2008;
Hanson, jonathan/E-3517-2010;
OI Frenkel, Anatoly/0000-0002-5451-1207; Barrio, Laura/0000-0003-3496-4329;
Barrio, Laura/0000-0002-6919-6414
FU U.S. Department of Energy (DOE), Chemical Sciences Division
[DE-AC02-98CH10086]; Divisions of Materials and Chemical Sciences of
US-DOE; FONICIT [2000001547, G-2005000444]; U.S. DOE [DE-FG02-03ER15476,
DE-FG02-05ER15688]; Synchrotron Catalysis Consortium [X1813, X19A]
FX The work at BNL was financed by the U.S. Department of Energy (DOE),
Chemical Sciences Division (DE-AC02-98CH10086). The National Synchrotron
Light Source is Supported by the Divisions of Materials and Chemical
Sciences of US-DOE. FONICIT financed the work at IVIC (G-2000001547 and
G-2005000444). L.B. acknowledges funding by FP7 People program under the
project Marie Curie IOF-219674, A.I.F. and QW. acknowledge support by
the U.S. DOE Grant No. DE-FG02-03ER15476. Beamlines X1813 and X19A are
supported in part by the Synchrotron Catalysis Consortium under the U.S.
DOE Grant No. DE-FG02-05ER15688.
NR 66
TC 69
Z9 71
U1 5
U2 73
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD AUG 13
PY 2009
VL 113
IS 32
BP 14411
EP 14417
DI 10.1021/jp903818q
PG 7
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 479LQ
UT WOS:000268661300053
ER
PT J
AU Vijayakumar, M
Kerisit, S
Wang, CM
Nie, ZM
Rosso, KM
Yang, ZG
Graff, G
Liu, J
Hu, JZ
AF Vijayakumar, M.
Kerisit, Sebastien
Wang, Chongmin
Nie, Zimin
Rosso, Kevin M.
Yang, Zhenguo
Graff, Gordon
Liu, Jun
Hu, Jianzhi
TI Effect of Chemical Lithium Insertion into Rutile TiO2 Nanorods
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID ROOM-TEMPERATURE; LI-INSERTION; STRUCTURAL EVOLUTION;
ELECTRONIC-STRUCTURE; ELASTIC PROPERTIES; CRYSTAL-STRUCTURE;
TITANIUM-DIOXIDE; LITI2O4 SPINEL; ION INSERTION; ANATASE
AB Rutile TiO2 nanorods were synthesized by hydrolysis of TiCl4 followed by a hydrothermal method. Lithium insertion into the rutile nanorods was achieved by a chemical lithium insertion process. The structural evolution of nanostructured rutile upon lithium insertion was characterized by several experimental techniques, namely, XRD, TEM, SAED and Li-6 MAS NMR. The XRD and TEM studies indicate the formation of lithium titanate phase (LixTiO2) during lithium insertion. Additionally, SAED patterns show that the lithium titanate phase has cubic symmetry. Finally, high magnetic field (21.1 T) Li-6 MAS NMR reveals that the lithium titanate phase adopts two different structures depending on lithium content. Taken together, the four techniques consistently show that the insertion of lithium into rutile TiO2 nanorods causes two consecutive structural phase transformations to lithium titanate phases with spinel (Fd (3) over barm) and rocksalt (Fm (3) over barm) structures at x = 0.46 and 0.88, respectively. In addition, the broad line widths in the Li-6 MAS NMR spectrum of the rocksalt phase are indicative of a disordered structure. Density functional theory calculations of the rutile, spinel and rocksalt bulk phases as a function of lithium content corroborate the observed phase transformations. These phase transitions could account for the irreversible capacity loss of nanostructured rutile anodes observed in electrochemical cycling experiments.
C1 [Vijayakumar, M.; Kerisit, Sebastien; Wang, Chongmin; Nie, Zimin; Rosso, Kevin M.; Yang, Zhenguo; Graff, Gordon; Liu, Jun; Hu, Jianzhi] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Hu, JZ (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA.
EM Jianzhi.Hu@pnl.gov
RI Murugesan, Vijayakumar/C-6643-2011; Hu, Jian Zhi/F-7126-2012
OI Murugesan, Vijayakumar/0000-0001-6149-1702;
FU Laboratory-Directed Research and Development Program (LDRD) of the
Pacific Northwest National Laboratory (PNNL); Office of Basic Energy
Sciences (BES); U.S. Department of Energy (DOE); Battelle Memorial
Institute for the Department of Energy [DE-AC05-76RL01830]
FX This work is supported by the Laboratory-Directed Research and
Development Program (LDRD) of the Pacific Northwest National Laboratory
(PNNL) and by the Office of Basic Energy Sciences (BES), U.S. Department
of Energy (DOE). The TEM & NMR work was carried out at the Environmental
and Molecular Science Laboratory, a national scientific user facility
sponsored by the DOE's Office of Biological and Environmental Research
(BER). PNNL is a multiprogram laboratory operated by Battelle Memorial
Institute for the Department of Energy under Contract DE-AC05-76RL01830.
We thank Dr. Robert Heck for his help in editorial suggestions and
corrections.
NR 50
TC 36
Z9 37
U1 2
U2 40
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD AUG 13
PY 2009
VL 113
IS 32
BP 14567
EP 14574
DI 10.1021/jp904148z
PG 8
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 479LQ
UT WOS:000268661300076
ER
PT J
AU Kwon, AR
Neu, V
Matias, V
Hanisch, J
Huhne, R
Freudenberger, J
Holzapfel, B
Schultz, L
Fahler, S
AF Kwon, A. R.
Neu, V.
Matias, V.
Haenisch, J.
Huehne, R.
Freudenberger, J.
Holzapfel, B.
Schultz, L.
Faehler, S.
TI Tuning functional properties by plastic deformation
SO NEW JOURNAL OF PHYSICS
LA English
DT Article
ID B THIN-FILMS; MAGNETIC-PROPERTIES; ND; MULTILAYERS; DEPOSITION;
ANISOTROPY; TEXTURE
AB It is well known that a variation of lattice constants can strongly influence the functional properties of materials. Lattice constants can be influenced by external forces; however, most experiments are limited to hydrostatic pressure or biaxial stress. Here, we present an experimental approach that imposes a large uniaxial strain on epitaxially grown films in order to tune their functional properties. A substrate made of a ductile metal alloy covered with a biaxially oriented MgO layer is used as a template for growth of epitaxial films. By applying an external plastic strain, we break the symmetry within the substrate plane compared to the as-deposited state. The consequences of 2% plastic strain are examined for an epitaxial hard magnetic Nd2Fe14B film and are found to result in an elliptical distortion of the in-plane anisotropy below the spin-reorientation temperature. Our approach is a versatile method to study the influence of large plastic strain on various materials, as the MgO(001) layer used is a common substrate for epitaxial growth.
C1 [Kwon, A. R.; Neu, V.; Haenisch, J.; Huehne, R.; Freudenberger, J.; Holzapfel, B.; Schultz, L.; Faehler, S.] IFW Dresden, Inst Met Mat, D-01171 Dresden, Germany.
[Kwon, A. R.; Schultz, L.] Tech Univ Dresden, Dept Mech Engn, Inst Mat Sci, D-01062 Dresden, Germany.
[Matias, V.; Haenisch, J.] Los Alamos Natl Lab, Superconduct Technol Ctr, Los Alamos, NM 87545 USA.
RP Fahler, S (reprint author), IFW Dresden, Inst Met Mat, POB 270116, D-01171 Dresden, Germany.
EM s.faehler@ifw-dresden.de
RI Holzapfel, Bernhard/D-3669-2009; Schultz, Ludwig/B-3383-2010; Hanisch,
Jens/D-8503-2011; Huhne, Ruben/E-5017-2011;
OI Freudenberger, Jens/0000-0002-3432-886X
FU DFG [SFB 463]
FX We acknowledge H J Klaub for experimental support and financial support
by the DFG as a part of SFB 463: 'Rare earth transition metal compounds:
structure, magnetism and transport'.
NR 36
TC 5
Z9 5
U1 0
U2 6
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1367-2630
J9 NEW J PHYS
JI New J. Phys.
PD AUG 13
PY 2009
VL 11
AR 083013
DI 10.1088/1367-2630/11/8/083013
PG 10
WC Physics, Multidisciplinary
SC Physics
GA 483TT
UT WOS:000268991800002
ER
PT J
AU Manfrinetti, P
Provino, A
Gschneidner, KA
AF Manfrinetti, P.
Provino, A.
Gschneidner, K. A., Jr.
TI On the RMgSn rare earth compounds
SO JOURNAL OF ALLOYS AND COMPOUNDS
LA English
DT Article
DE Rare earth compounds; Rare earth magnesium stannides; Thermodynamic
properties; Melting points; Crystal structures
ID YPTAS STRUCTURE TYPE; SERIES
AB A new family of ternary rare earth compounds, RMgSn, has been synthesized and their crystal structures, formation thermodynamics and melting behavior have been studied. All of the rare earth elements (including Y) form the 1: 1: 1 equiatomic phase with Mg and Sn. These compounds crystallize with two different structure types: the RMgSn phases with the light R (R = La, Ce and Pr) adopt the orthorhombic TiNiSi structure type (an ordered derivative of the Co(2)Si-type structure, oP12, space group Prima), while the ones formed by the heavier R (R = Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm and Lu, plus Y) have the tetragonal CeScSi-type structure (an ordered derivative of the La(2)Sb-type structure, tI12, space group 14/mmm). The observed unit cell volume V(obs) and the mean atomic volume V(obs/n) (where n is the number of atoms in a unit cell) both decrease as expected due to the lanthanide contraction, but following different trends. The volume of formation (Delta V%) becomes more negative on going from La to Lu along the series. All phases have been found to form congruently (including YMgSn and probably LuMgSn). Their melting temperatures decrease from La to Lu, but with different slopes for the two different structure types. Relationships, between the volume of formation and also the melting points with the lanthanide contraction have been examined. The relationship between the former is anomalous compared to that observed for other R(x)M(y) series of compounds, while the latter relationship is consistent with previously published results. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Manfrinetti, P.; Provino, A.] Univ Genoa, Dipartimento Chim & Chim Ind, I-16146 Genoa, Italy.
[Manfrinetti, P.; Provino, A.] INFM, CNR, LAMIA Lab, I-16152 Genoa, Italy.
[Gschneidner, K. A., Jr.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA.
[Gschneidner, K. A., Jr.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA.
RP Manfrinetti, P (reprint author), Univ Genoa, Dipartimento Chim & Chim Ind, Via Dodecaneso 31, I-16146 Genoa, Italy.
EM chimfis@chimica.unige.it
FU Office of Basic Energy Sciences, Materials Sciences Division of the US
Department of Energy [DE-AC02-07CH11358]
FX A portion of this work was supported by the Office of Basic Energy
Sciences, Materials Sciences Division of the US Department of Energy
under Contract No, DE-AC02-07CH11358 with Iowa State University. The
authors are grateful to Prof. F. Merlo and Dott. M. Pani for helpful
discussion.
NR 16
TC 22
Z9 23
U1 1
U2 4
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0925-8388
J9 J ALLOY COMPD
JI J. Alloy. Compd.
PD AUG 12
PY 2009
VL 482
IS 1-2
BP 81
EP 85
DI 10.1016/j.jallcom.2009.03.178
PG 5
WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
Metallurgical Engineering
SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering
GA 469IY
UT WOS:000267891900025
ER
PT J
AU Botez, CE
Martinez, H
Tackett, RJ
Chianelli, RR
Zhang, JZ
Zhao, YS
AF Botez, Cristian E.
Martinez, Heber
Tackett, Ronald J.
Chianelli, Russell R.
Zhang, Jianzhong
Zhao, Yusheng
TI High-temperature crystal structures and chemical modifications in
RbH2PO4
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
ID PHASE-TRANSITIONS; HIGH-PRESSURE; D-MANNITOL; CSH2PO4; CONDUCTIVITY;
KH2PO4
AB We have used laboratory and synchrotron x-ray diffraction to investigate the structural and chemical changes undergone by polycrystalline RbH2PO4 upon heating within the 30-250 degrees C temperature interval. Our data show no evidence of the previously reported onset of partial polymerization at T = 96 degrees C (Park et al 2001 J. Phys.: Condens. Matter 13 9411) which was proposed as an explanation for the high-temperature proton conductivity enhancement in phosphate-based solid acids. Instead, we found that a tetragonal --> monoclinic polymorphic transition initiates at T approximate to 90 degrees C. The transition is complete at T approximate to 130 degrees C, and the new monoclinic RbH2PO4 polymorph is stable upon further heating to T = 200 degrees C. Moreover, its crystal structure is isomorphic to that of monoclinic CsH2PO4. This remarkable similarity suggests that the microscopic structures and dynamics responsible for the high-temperature superprotonic behavior of RbH2PO4 could be the same as those of its Cs-based counterpart.
C1 [Botez, Cristian E.; Martinez, Heber; Tackett, Ronald J.] Univ Texas El Paso, Dept Phys, El Paso, TX 79968 USA.
[Chianelli, Russell R.] Univ Texas El Paso, Dept Chem, El Paso, TX 79968 USA.
[Chianelli, Russell R.] Univ Texas El Paso, Mat Res Inst, El Paso, TX 79968 USA.
[Zhang, Jianzhong; Zhao, Yusheng] Los Alamos Natl Lab, Los Alamos Neutron Scattering Ctr, Los Alamos, NM 87545 USA.
RP Botez, CE (reprint author), Univ Texas El Paso, Dept Phys, 500 W Univ Ave, El Paso, TX 79968 USA.
EM cbotez@utep.edu
RI Lujan Center, LANL/G-4896-2012;
OI Zhang, Jianzhong/0000-0001-5508-1782
FU Texas Advanced Research Program [003661-0010-2007]; Research Corporation
[7749]; Donors of the American Chemical Society Petroleum Research Fund
[45854-GB10]; US Department of Energy, Office of Basic Energy Sciences
[DE-AC02-98CH10886]
FX CEB and HM and RJT would like to acknowledge support from the Texas
Advanced Research Program under Award no. 003661-0010-2007, the Research
Corporation under Award no. 7749, and the Donors of the American
Chemical Society Petroleum Research Fund under Research Grant no.
45854-GB10. Use of the National Synchrotron Light Source, Brookhaven
National Laboratory, was supported by the US Department of Energy,
Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.
NR 21
TC 12
Z9 12
U1 0
U2 7
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
J9 J PHYS-CONDENS MAT
JI J. Phys.-Condes. Matter
PD AUG 12
PY 2009
VL 21
IS 32
AR 325401
DI 10.1088/0953-8984/21/32/325401
PG 7
WC Physics, Condensed Matter
SC Physics
GA 474BU
UT WOS:000268258000007
PM 21693965
ER
PT J
AU Harrison, N
McDonald, RD
Mielke, CH
Bauer, ED
Ronning, F
Thompson, JD
AF Harrison, N.
McDonald, R. D.
Mielke, C. H.
Bauer, E. D.
Ronning, F.
Thompson, J. D.
TI Quantum oscillations in antiferromagnetic CaFe2As2 on the brink of
superconductivity
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
ID T-C SUPERCONDUCTOR; FERMI-SURFACE; 43 K; TEMPERATURE; COMPOUND
AB We report quantum oscillation measurements on CaFe2As2 under strong magnetic fields-recently reported to become superconducting under pressures of as little as a kilobar. The largest observed carrier pocket occupies less than 0.05% of the paramagnetic Brillouin zone volume-consistent with Fermi surface reconstruction caused by antiferromagnetism. On comparing several alkaline earth AFe(2)As(2) antiferromagnets (with A = Ca, Sr and Ba), the dependences of the Fermi surface cross-sectional area F-alpha and the effective mass m(alpha)* of the primary observed pocket on the antiferromagnetic/ structural transition temperature T-s are both found to be consistent with the case for quasiparticles in a conventional spin-density wave model. These findings suggest that the recently proposed strain-enhanced superconductivity in these materials occurs within a broadly conventional spin-density wave phase.
C1 [Harrison, N.; McDonald, R. D.; Mielke, C. H.; Bauer, E. D.; Ronning, F.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Harrison, N (reprint author), Los Alamos Natl Lab, MS E536, Los Alamos, NM 87545 USA.
RI Bauer, Eric/D-7212-2011; McDonald, Ross/H-3783-2013;
OI McDonald, Ross/0000-0002-0188-1087; Ronning, Filip/0000-0002-2679-7957;
Harrison, Neil/0000-0001-5456-7756; Bauer, Eric/0000-0003-0017-1937;
Mcdonald, Ross/0000-0002-5819-4739
FU National Science Foundation; State of Florida
FX This work is conduced under the auspices the US Department of Energy,
while the National HighMagnetic Field Laboratory, where the experiments
were conducted, is primarily funded by the National Science Foundation
and the State of Florida.
NR 42
TC 16
Z9 16
U1 2
U2 9
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
J9 J PHYS-CONDENS MAT
JI J. Phys.-Condes. Matter
PD AUG 12
PY 2009
VL 21
IS 32
AR 322202
DI 10.1088/0953-8984/21/32/322202
PG 4
WC Physics, Condensed Matter
SC Physics
GA 474BU
UT WOS:000268258000002
PM 21693960
ER
PT J
AU Park, YS
Widawsky, JR
Kamenetska, M
Steigerwald, ML
Hybertsen, MS
Nuckolls, C
Venkataraman, L
AF Park, Young S.
Widawsky, Jonathan R.
Kamenetska, Maria
Steigerwald, Michael L.
Hybertsen, Mark S.
Nuckolls, Colin
Venkataraman, Latha
TI Frustrated Rotations in Single-Molecule Junctions
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID CONDUCTANCE; CIRCUITS; AU
AB We compare the conductance of 1,4-bis(methylthio)benzene with that of 2,3,6,7-tetrahydrobenzo[1,2-b:4,5-b']dithiophene and the conductance of 1,4-bis(methylseleno)benzene with that of 2,3,6,7-tetrahydrobenzo[1,2-b:4,5-b']diselenophene and show explicitly that the orientation of an Au-S or Au-Se bond relative to the aromatic TT system controls electron transport through conjugated molecules. Specifically, we have found that the conduction pathway connects the Au electrodes to the aromatic pi-system via the chalcogen p lone pairs, and greater overlaps among these components lead to higher conductivity through the molecular junction.
C1 [Widawsky, Jonathan R.; Kamenetska, Maria; Venkataraman, Latha] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA.
[Park, Young S.; Steigerwald, Michael L.; Nuckolls, Colin] Columbia Univ, Dept Chem, New York, NY 10027 USA.
[Park, Young S.; Widawsky, Jonathan R.; Kamenetska, Maria; Nuckolls, Colin; Venkataraman, Latha] Columbia Univ, Ctr Electron Transport Mol Nanostruct, New York, NY 10027 USA.
[Hybertsen, Mark S.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
RP Venkataraman, L (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA.
EM lv2117@columbia.edu
OI Hybertsen, Mark S/0000-0003-3596-9754; Venkataraman,
Latha/0000-0002-6957-6089
FU NSF-NSEC [CHE-0641523]; NYSTAR; Columbia University; DOE
[DE-AC02-98CH10886]; NSF [CHE-0744185]; ACS PRF
FX This work was supported primarily by the NSF-NSEC (Award CHE-0641523),
by NYSTAR and the Columbia University RISE program, and in part by the
DOE (DE-AC02-98CH10886). L.V. thanks NSF (Career Award CHE-0744185) and
the ACS PRF.
NR 23
TC 53
Z9 53
U1 1
U2 26
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD AUG 12
PY 2009
VL 131
IS 31
BP 10820
EP +
DI 10.1021/ja903731m
PG 4
WC Chemistry, Multidisciplinary
SC Chemistry
GA 481JP
UT WOS:000268806500013
PM 19722660
ER
PT J
AU Joh, NH
Oberai, A
Yang, D
Whitelegge, JP
Bowie, JU
AF Joh, Nathan H.
Oberai, Amit
Yang, Duan
Whitelegge, Julian P.
Bowie, James U.
TI Similar Energetic Contributions of Packing in the Core of Membrane and
Water-Soluble Proteins
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID TRANSMEMBRANE HELIX; STABILITY; BACTERIORHODOPSIN; ASSOCIATION; RESIDUES
AB A major driving force for water-soluble protein folding is the hydrophobic effect, but membrane proteins cannot make use of this stabilizing contribution in the apolar core of the bilayer. It has been proposed that membrane proteins compensate by packing more efficiently. We therefore investigated packing contributions experimentally by observing the energetic and structural consequences of cavity creating mutations in the core of a membrane protein. We observed little difference in the packing energetics of water and membrane soluble proteins. Our results imply that other mechanisms are employed to stabilize the structure of membrane proteins.
C1 [Joh, Nathan H.; Oberai, Amit; Yang, Duan; Bowie, James U.] Univ Calif Los Angeles, Dept Chem & Biochem, UCLA DOE Ctr Genom & Prote, Inst Mol Biol, Los Angeles, CA 90095 USA.
[Whitelegge, Julian P.] Univ Calif Los Angeles, NPI Semel Inst, Pasarow Mass Spectrometry Lab, Los Angeles, CA 90095 USA.
RP Bowie, JU (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, UCLA DOE Ctr Genom & Prote, Inst Mol Biol, Los Angeles, CA 90095 USA.
EM bowie@mbi.ucla.edu
OI , /0000-0003-3221-9325
FU NIH [R01 GM063919, R01 GM081783]
FX The authors would like to thank members of the laboratory for helpful
comments on the manuscript. The work was supported by NIH Grants R01
GM063919 and R01 GM081783.
NR 20
TC 33
Z9 33
U1 0
U2 6
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD AUG 12
PY 2009
VL 131
IS 31
BP 10846
EP +
DI 10.1021/ja904711k
PG 3
WC Chemistry, Multidisciplinary
SC Chemistry
GA 481JP
UT WOS:000268806500026
PM 19603754
ER
PT J
AU Jian, X
Wasinger, EC
Lockard, JV
Chen, LX
He, C
AF Jian, Xing
Wasinger, Erik C.
Lockard, Jenny V.
Chen, Lin X.
He, Chuan
TI Highly Sensitive and Selective Gold(I) Recognition by a Metalloregulator
in Ralstonia metallidurans
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID MERR FAMILY; ESCHERICHIA-COLI; COPPER; CUER; RESISTANCE; REGULATORS;
COMPLEXES; AFFINITY; CRYSTAL; LIGANDS
AB A MerR family metalloregulatory protein CupR selectively responds to gold stress in Ralstonia metallidurans. A distorted trigonal geometry appears to be used by CupR to achieve the highly sensitive (K(d) similar to 10(-35) M) and selective recognition of gold (I).
C1 [Jian, Xing; He, Chuan] Univ Chicago, Dept Chem, Chicago, IL 60637 USA.
[Wasinger, Erik C.; Chen, Lin X.] Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA.
[Lockard, Jenny V.; Chen, Lin X.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA.
RP He, C (reprint author), Univ Chicago, Dept Chem, 929 E 57th St, Chicago, IL 60637 USA.
EM chuanhe@uchicago.edu
FU NSF CAREER Award [0544546]; U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences [DE-AC02-06CH11357,
DE-FG02-07EI215865]
FX We Would like to thank Dr. D. van der Lelie for providing the R.
metallidurans CH34 strain, Dr. L. Lan for help with experiments, and Dr.
E. I. Solomon for the use of copper(I) K-edge data from model complexes.
This work is Supported by an NSF CAREER Award (0544546 to C.H.) and by
the U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences under Contracts DE-AC02-06CH11357 (Argonne National Laboratory,
the Advanced Photon Source, L.X.C. and E.C.W.) and DE-FG02-07EI215865
(C.H.).
NR 22
TC 22
Z9 22
U1 3
U2 19
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD AUG 12
PY 2009
VL 131
IS 31
BP 10869
EP +
DI 10.1021/ja904279n
PG 4
WC Chemistry, Multidisciplinary
SC Chemistry
GA 481JP
UT WOS:000268806500035
PM 19606897
ER
PT J
AU Southon, PD
Liu, L
Fellows, EA
Price, DJ
Halder, GJ
Chapman, KW
Moubaraki, B
Murray, KS
Letard, JF
Kepert, CJ
AF Southon, Peter D.
Liu, Lang
Fellows, Elizabeth A.
Price, David J.
Halder, Gregory J.
Chapman, Karena W.
Moubaraki, Boujemaa
Murray, Keith S.
Letard, Jean-Francois
Kepert, Cameron J.
TI Dynamic Interplay between Spin-Crossover and Host-Guest Function in a
Nanoporous Metal-Organic Framework Material
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID COORDINATION POLYMERS; ROOM-TEMPERATURE; SOLID-STATE;
MAGNETIC-PROPERTIES; THIN-FILMS; TRANSITION; PRESSURE; CYANIDE;
BEHAVIOR; SYSTEM
AB The nanoporous metal-organic framework [Fe(pz)Ni(CN)(4)], 1 (where pz is pyrazine), exhibits hysteretic spin-crossover at ambient conditions and is robust to the adsorption and desorption of a wide range of small molecular guests, both gases (N(2), O(2), CO(2)) and vapors (methanol, ethanol, acetone, acetonitrile, and toluene). Through the comprehensive analysis of structure, host-guest properties, and spin-crossover behaviors, it is found that this pillared Hofmann system uniquely displays both guest-exchange-induced changes to spin-crossover and spin-crossover-induced changes to host-guest properties, with direct dynamic interplay between these two phenomena. Guest desorption and adsorption cause pronounced changes to the spin-crossover behavior according to a systematic trend in which larger guests stabilize the high-spin state and therefore depress the spin-crossover temperature of the host lattice. When stabilizing the alternate spin state of the host at any given temperature, these processes directly stimulate the spin-crossover process, providing a chemisensing function. Exploitation of the bistability of the host allows the modification of adsorption properties at a fixed temperature through control of the host spin state, with each state shown to display differing chemical affinities to guest sorption. Guest desorption then adsorption, and vice versa, can be used to switch between spin states in the bistable temperature region, adding a guest-dependent memory effect to this system.
C1 [Southon, Peter D.; Liu, Lang; Fellows, Elizabeth A.; Price, David J.; Kepert, Cameron J.] Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia.
[Halder, Gregory J.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Chapman, Karena W.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA.
[Moubaraki, Boujemaa; Murray, Keith S.] Monash Univ, Clayton, Vic 3800, Australia.
[Letard, Jean-Francois] Univ Bordeaux 1, CNRS, Lab Sci Mol, ICMCB,UPR 9048, F-33608 Pessac, France.
RP Kepert, CJ (reprint author), Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia.
EM c.kepert@chem.usyd.edu.au
RI Chapman, Karena/G-5424-2012; Southon, Peter/B-9475-2013; Halder,
Gregory/C-5357-2013;
OI Southon, Peter/0000-0001-8097-9340; Kepert, Cameron/0000-0002-6105-9706
NR 62
TC 225
Z9 225
U1 14
U2 89
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD AUG 12
PY 2009
VL 131
IS 31
BP 10998
EP 11009
DI 10.1021/ja902187d
PG 12
WC Chemistry, Multidisciplinary
SC Chemistry
GA 481JP
UT WOS:000268806500051
PM 19621892
ER
PT J
AU Tong, GJ
Hsiao, SC
Carrico, ZM
Francis, MB
AF Tong, Gary J.
Hsiao, Sonny C.
Carrico, Zachary M.
Francis, Matthew B.
TI Viral Capsid DNA Aptamer Conjugates as Multivalent Cell-Targeting
Vehicles
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID PROSTATE-CANCER CELLS; DRUG-DELIVERY; FOLATE RECEPTOR; CONTRAST AGENTS;
CLICK CHEMISTRY; SIRNA DELIVERY; TUMOR-CELLS; THERAPEUTICS; PROTEIN;
SURFACE
AB Nucleic acid aptamers offer significant potential as convenient and evolvable targeting groups for drug delivery. To attach them to the surface of a genome-free viral capsid carrier, an efficient oxidative coupling strategy has been developed. The method involves the periodate-mediated reaction of phenylene diamine substituted oligonucleotides with aniline groups installed on the outer surface of the capsid shells. Up to 60 DNA strands can be attached to each viral capsid with no apparent loss of base-pairing capabilities or protein stability. The ability of the capsids to bind specific cellular targets was demonstrated through the attachment of a 41-nucleotide sequence that targets a tyrosine kinase receptor on Jurkat T cells. After the installation of a fluorescent dye on the capsid interior, capsids bearing the cell-targeting sequence showed significant levels of binding to the cells relative to those of control samples. Colocalization experiments using confocal microscopy indicated that the capsids were endocytosed and trafficked to lysosomes for degradation. These observations suggest that aptamer-labeled capsids could be used for the targeted drug delivery of acid-labile prodrugs that would be preferentially released upon lysosomal acidification.
C1 [Francis, Matthew B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Francis, MB (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
EM francis@cchem.berkeley.edu
FU NIH [R01 GM072700]; DOD [BC061995]
FX The development of the coupling reaction described in this work was
supported by the NIH (R01 GM072700). Our studies of modified viral
capsids as targeted imaging agents are supported by the DOD Breast
Cancer Research Program (BC061995). Bryan C. Dickinson is gratefully
acknowledged for lending his cell imaging expertise, and we thank
Carolyn Bertozzi and her research group for cell culture assistance. The
Schultz laboratory is gratefully acknowledged for providing the plasmids
required to introduce paF using the amber codon suppression technique.
NR 57
TC 130
Z9 132
U1 8
U2 93
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD AUG 12
PY 2009
VL 131
IS 31
BP 11174
EP 11178
DI 10.1021/ja903857f
PG 5
WC Chemistry, Multidisciplinary
SC Chemistry
GA 481JP
UT WOS:000268806500070
PM 19603808
ER
PT J
AU Bel, G
Nemenman, I
AF Bel, Golan
Nemenman, Ilya
TI Ergodic and non-ergodic anomalous diffusion in coupled stochastic
processes
SO NEW JOURNAL OF PHYSICS
LA English
DT Article
ID NETWORKS; NOISE
AB Inspired by problems in biochemical kinetics, we study statistical properties of an overdamped Langevin process whose friction coefficient depends on the state of a similar, unobserved process. Integrating out the latter, we derive the long-time behavior of the mean square displacement. Anomalous diffusion is found. Since the diffusion exponent cannot be predicted using a simple scaling argument, anomalous scaling appears as well. We also find that the coupling can lead to ergodic or non-ergodic behavior of the studied process. We compare our theoretical predictions with numerical simulations and find an excellent agreement. The findings caution against treating biochemical systems coupled with unobserved dynamical degrees of freedom by means of standard, diffusive Langevin descriptions.
C1 [Bel, Golan] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA.
Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA.
RP Bel, G (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA.
EM golanbel@lanl.gov
RI Bel, Golan/C-6528-2008; BEL, GOLAN/F-1573-2012;
OI Bel, Golan/0000-0002-3307-9478; BEL, GOLAN/0000-0002-3307-9478;
Nemenman, Ilya/0000-0003-3024-4244
FU LANL Laboratory Directed Research and Development program
FX We thank E Barkai and A Zilman for stimulating discussions and LANL
Center for Nonlinear Studies for support and for striving to maintain an
island of sanity in the increasingly more complex environment. This work
was funded by LANL Laboratory Directed Research and Development program.
NR 31
TC 7
Z9 7
U1 0
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 1367-2630
J9 NEW J PHYS
JI New J. Phys.
PD AUG 12
PY 2009
VL 11
AR 083009
DI 10.1088/1367-2630/11/8/083009
PG 10
WC Physics, Multidisciplinary
SC Physics
GA 482JT
UT WOS:000268883100002
ER
PT J
AU Adolf, DB
Chambers, RS
Neidigk, MA
AF Adolf, Douglas B.
Chambers, Robert S.
Neidigk, Matthew A.
TI A simplified potential energy clock model for glassy polymers
SO POLYMER
LA English
DT Article
DE Nonlinear viscoelasticity; Potential energy clock; Yield
ID NONLINEAR VISCOELASTIC APPROACH; THERMODYNAMICALLY CONSISTENT;
FREE-VOLUME; KINETICS
AB The potential energy clock (PEC) model for glassy polymers derived previously was shown to predict accurately a broad range of responses including temperature-dependent yield in different modes of deformation, enthalpy relaxation, volume recovery, and aging of the yield stress. It was, however, somewhat difficult to parameterize and employ computationally, and these points may affect its implementation and use. To facilitate acceptance, the model has been greatly simplified by keeping only necessary terms and employing some approximations. The resulting simplified potential energy clock (SPEC) model is quite easily computed and parameterized, yet faithfully reproduces the predictions of the full potential energy clock model implying that experimental responses are still accurately predicted. Such comparisons between the new model, old model, and data are presented as well as new predictions for creep. Again, the predictions are in good agreement with the experimental data. (C) 2009 Elsevier Ltd. All rights reserved.
C1 [Adolf, Douglas B.] Sandia Natl Labs, Mfg Sci & Technol Ctr, Albuquerque, NM 87185 USA.
[Chambers, Robert S.; Neidigk, Matthew A.] Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87185 USA.
RP Adolf, DB (reprint author), Sandia Natl Labs, Mfg Sci & Technol Ctr, POB 5800, Albuquerque, NM 87185 USA.
EM dbadolf@sandia.gov; rschamb@sandia.gov; maneidi@sandia.gov
FU United States Department of Energy's National Nuclear Security
Administration [DE-AC04-94AL85000]
FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the United States Department of Energy's
National Nuclear Security Administration under contract
DE-AC04-94AL85000.
NR 23
TC 12
Z9 12
U1 1
U2 15
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0032-3861
EI 1873-2291
J9 POLYMER
JI Polymer
PD AUG 12
PY 2009
VL 50
IS 17
BP 4257
EP 4269
DI 10.1016/j.polymer.2009.06.068
PG 13
WC Polymer Science
SC Polymer Science
GA 482EF
UT WOS:000268866400014
ER
PT J
AU Sivasankar, S
Zhang, YX
Nelson, WJ
Chu, S
AF Sivasankar, Sanjeevi
Zhang, Yunxiang
Nelson, W. James
Chu, Steven
TI Characterizing the Initial Encounter Complex in Cadherin Adhesion
SO STRUCTURE
LA English
DT Article
ID CELL-ADHESION; CLASSICAL CADHERINS; C-CADHERIN; MECHANISM; CATENINS;
COOPERATIVITY; MORPHOGENESIS; CALCIUM; DOMAIN
AB Cadherins are Ca(2+)-dependent cell-cell adhesion proteins with an extracellular region of five domains (EC1 to EC5). Adhesion is mediated by "strand swapping" of a conserved tryptophan residue in position 2 between EC1 domains of opposing cadherins, but the formation of this structure is not well understood. Using single-molecule fluorescence resonance energy transfer and single-molecule force measurements with the atomic force microscope, we demonstrate that cadherins initially interact via EC1 domains without swapping tryptophan-2 to form a weak Ca(2+) dependent initial encounter complex that has 25% of the bond strength of a strand-swapped dimer. We suggest that cadherin dimerization proceeds via an induced fit mechanism where the monomers first form a tryptophan-2 independent initial encounter complex and then undergo subsequent conformational changes to form the final strand-swapped dimer.
C1 [Sivasankar, Sanjeevi] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Sivasankar, Sanjeevi; Chu, Steven] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Sivasankar, Sanjeevi; Chu, Steven] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA.
[Zhang, Yunxiang] Stanford Univ, Dept Phys, Stanford, CA 94305 USA.
[Nelson, W. James] Stanford Univ, Dept Biol, Stanford, CA 94305 USA.
[Nelson, W. James] Stanford Univ, Dept Mol & Cellular Physiol, Stanford, CA 94305 USA.
[Chu, Steven] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Chu, Steven] US DOE, Washington, DC 20585 USA.
RP Sivasankar, S (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
EM sivasank@iastate.edu; The.secretary@hq.doe.gov
OI Sivasankar, Sanjeevi/0000-0003-2593-0477
FU NSF; NASA; AFOSR; NIH [RO1 GM35527]
FX Work in the Chu lab is supported by grants from NSF, NASA, and AFOSR.
Work in the Nelson lab is supported by NIH RO1 GM35527. We thank Agilent
Technologies for their generous loan of an AFM 5500.
NR 27
TC 44
Z9 44
U1 0
U2 4
PU CELL PRESS
PI CAMBRIDGE
PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA
SN 0969-2126
J9 STRUCTURE
JI Structure
PD AUG 12
PY 2009
VL 17
IS 8
BP 1075
EP 1081
DI 10.1016/j.str.2009.06.012
PG 7
WC Biochemistry & Molecular Biology; Biophysics; Cell Biology
SC Biochemistry & Molecular Biology; Biophysics; Cell Biology
GA 486VR
UT WOS:000269229100008
PM 19646884
ER
PT J
AU Kung, Y
Doukov, TI
Seravalli, J
Ragsdale, SW
Drennan, CL
AF Kung, Yan
Doukov, Tzanko I.
Seravalli, Javier
Ragsdale, Stephen W.
Drennan, Catherine L.
TI Crystallographic Snapshots of Cyanide- and Water-Bound C-Clusters from
Bifunctional Carbon Monoxide Dehydrogenase/Acetyl-CoA Synthase
SO BIOCHEMISTRY
LA English
DT Article
ID X-RAY-STRUCTURE; CLOSTRIDIUM-THERMOACETICUM; ACTIVE-SITE; RESONANCE
RAMAN; RHODOSPIRILLUM-RUBRUM; CARBOXYDOTHERMUS-HYDROGENOFORMANS;
NI-4FE-5S CLUSTER; ENZYME COMPLEX; BINDING; NICKEL
AB Nickel-containing carbon monoxide dehydrogenases (CODHs) reversibly catalyze the oxidation of carbon monoxide to carbon dioxide and are of vital importance in the global carbon cycle. The unusual catalytic CODH C-cluster has been crystallographically characterized as either a NiFe(4)S(4) or a NiFe(4)S(5) metal center, the latter containing a fifth, additional Sulfide that bridges Ni and a unique Fe site. To determine whether this bridging sulfide is catalytically relevant and to further explore the mechanism of the C-cluster, we obtained crystal structures of the 310 kDa bifunctional CODH/acetyl-CoA synthase complex from Moorella thermoacetica bound both with I substrate H(2)O/OH(-) molecule and with a cyanide inhibitor. X-ray diffraction data were collected from native crystals and from identical crystals soaked in a solution containing potassium cyanide. In both structures, the substrate H(2)O/OH(-) molecule exhibits binding to the unique Fe site of the C-cluster. We also observe cyanide binding in a bent conformation to Ni of the C-cluster, adjacent the substrate H(2)O/OH(-) molecule. Importantly, the bridging sulfide is not present in either structure. As these forms of the C-cluster represent the coordination environment immediately before the reaction takes place, Our Findings do not support a fifth, bridging sulfide playing a catalytic role in the enzyme mechanism. The crystal Structures presented here, along with recent structures of CODHs from other organisms, have led LIS toward a unified mechanism for CO oxidation by the C-cluster, the catalytic center of an environmentally important enzyme.
C1 [Kung, Yan; Doukov, Tzanko I.; Drennan, Catherine L.] MIT, Dept Chem, Cambridge, MA 02139 USA.
[Drennan, Catherine L.] MIT, Dept Biol, Cambridge, MA 02139 USA.
[Drennan, Catherine L.] MIT, Howard Hughes Med Inst, Cambridge, MA 02139 USA.
[Doukov, Tzanko I.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA.
[Seravalli, Javier] Univ Nebraska, Dept Biochem, Lincoln, NE 68588 USA.
[Ragsdale, Stephen W.] Univ Michigan, Dept Biol Chem, Ann Arbor, MI 48109 USA.
RP Drennan, CL (reprint author), MIT, Dept Chem, Cambridge, MA 02139 USA.
EM cdrennan@mit.edu
FU NIH [GM69857, GM39451]; MIT Energy Initiative
FX This work is supported by NIH Grants GM69857 (C.L.D.) and GM39451
(S.W.R.) and the MIT Energy Initiative.
NR 60
TC 33
Z9 34
U1 0
U2 29
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0006-2960
J9 BIOCHEMISTRY-US
JI Biochemistry
PD AUG 11
PY 2009
VL 48
IS 31
BP 7432
EP 7440
DI 10.1021/bi900574h
PG 9
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 477MP
UT WOS:000268523500010
PM 19583207
ER
PT J
AU Derbyshire, ER
Fernhoff, NB
Deng, S
Marletta, MA
AF Derbyshire, Emily R.
Fernhoff, Nathaniel B.
Deng, Sarah
Marletta, Michael A.
TI Nucleotide Regulation of Soluble Guanylate Cyclase Substrate Specificity
SO BIOCHEMISTRY
LA English
DT Article
ID YC-1 BINDING-SITE; NITRIC-OXIDE; FUNCTIONAL-CHARACTERIZATION; ENZYME;
ACTIVATION; ADENYLYL; DOMAINS; ATP
AB Soluble guanylate cyclase (sGC) serves as a receptor for the signaling agent nitric oxide (NO). sGC synthesis of cGMP is regulated by NO, GTP, ATP, and allosteric activators such as YC-1. The guanylate cyclase activity and adenylate cyclase activity of full-length sGC and the sGC catalytic domain constructs (alpha 1(cat)beta 1(cat)) are reported here. ATP is it mixed-type inhibitor of cGMP production for both sGC and alpha 1(cat)beta 1(cat), indicating that the C-terminus of sGC contains an allosteric nucleotide binding site. YC-1 did not activate alpha 1(cat)beta 1(cat), or compete with ATP inhibition ofcGMP synthesis, which suggests that YC-1 and ATP bind to distinct sites. alpha 1(cat)beta 1(cat), and NO-stimulated sGC also synthesize cAMP, but this activity is inhibited by ATP via noncompetitive substrate inhibition and by GTP via mixed-type inhibition. Additionally, the adenylate cyclase activity of purified sGC was inhibited by PC12 lysate, suggesting that an intracellular small molecule or protein regulates this activity in vivo.
C1 [Marletta, Michael A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Mol & Cell Biol, Inst QB3, Berkeley, CA 94720 USA.
[Marletta, Michael A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem, Berkeley, CA 94720 USA.
[Marletta, Michael A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA.
[Deng, Sarah] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA.
[Marletta, Michael A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys Biosci, Berkeley, CA 94720 USA.
RP Marletta, MA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Mol & Cell Biol, Inst QB3, 570 Stanley Hall, Berkeley, CA 94720 USA.
EM marletta@berkeley.edu
FU National Institutes of Health [GM077365]
FX Funding was provided by National Institutes of Health Grant GM077365 to
M.A.M.
NR 28
TC 24
Z9 24
U1 3
U2 5
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0006-2960
J9 BIOCHEMISTRY-US
JI Biochemistry
PD AUG 11
PY 2009
VL 48
IS 31
BP 7519
EP 7524
DI 10.1021/bi900696x
PG 6
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 477MP
UT WOS:000268523500020
PM 19527054
ER
PT J
AU Jen-La Plante, I
Habas, SE
Yuhas, BD
Gargas, DJ
Mokari, T
AF Jen-La Plante, Ilan
Habas, Susan E.
Yuhas, Benjamin D.
Gargas, Daniel J.
Mokari, Taleb
TI Interfacing Metal Nanoparticles with Semiconductor Nanowires
SO CHEMISTRY OF MATERIALS
LA English
DT Article
ID SELECTIVE GROWTH; NANORODS; CDS; NANOSTRUCTURES; NANOCRYSTALS; BINARY;
HETEROSTRUCTURES; PHOTODEPOSITION; POINT; RODS
AB We demonstrate the overgrowth of Au on CdSe nanowires with control over An crystal morphology upon increasing addition of An precursor. Extending this overgrowth technique to catalytically active metals and binary metal systems (Pt, PtCo, and PtNi) exemplifies the broader range of these metal-semiconductor hybrid nanomaterials. Structural and compositional characterization was carried out by low- and high-resolution TEM, EDS analysis, and XRD. Magnetic characterization of the PtCo binary metal hybrid systems was conducted using SQUID magneto-metry. Changes in the optical properties of the decorated materials compared to the as-made CdSe nanowires confirm the presence of electronic coupling at the metal-semiconductor interface, an important material property for photocatalytic applications.
C1 [Jen-La Plante, Ilan; Habas, Susan E.; Mokari, Taleb] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Yuhas, Benjamin D.; Gargas, Daniel J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
RP Mokari, T (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
EM tmokari@lbl.gov
RI Jen-La Plante, Ilan/C-1500-2010; MOKARI, TALEB/F-1685-2012
FU U.S. Department of Energy [DE-AC02-05CH11231]
FX Work at the molecular Foundry was supported by the Director, Office of
Science, Office of Basic Energy Sciences. Division of Materials Sciences
and Engineering, U.S. Department of Energy, under Contract
DE-AC02-05CH11231. We thank Prof. Peidong Yang for useful discussion. We
thank Prof. Jeff Long for the use of tile SQUID magnetometer.
NR 30
TC 25
Z9 25
U1 3
U2 33
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0897-4756
J9 CHEM MATER
JI Chem. Mat.
PD AUG 11
PY 2009
VL 21
IS 15
BP 3662
EP 3667
DI 10.1021/cm900775w
PG 6
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA 477MN
UT WOS:000268523300026
ER
PT J
AU Maxwell, RM
Tompson, AFB
Kollet, S
AF Maxwell, Reed M.
Tompson, Andrew F. B.
Kollet, Stefan
TI A serendipitous, long-term infiltration experiment: Water and tritium
circulation beneath the CAMBRIC trench at the Nevada Test Site
SO JOURNAL OF CONTAMINANT HYDROLOGY
LA English
DT Article
DE Vadose zone; Heterogeneity; Isotopic ages; Parallel computer modeling
ID HETEROGENEOUS POROUS-MEDIA; RADIONUCLIDE MIGRATION; GROUNDWATER;
SIMULATION; TRANSPORT
AB Underground nuclear weapons testing at the Nevada Test Site introduced numerous radionuclides that may be used subsequently to characterize subsurface hydrologic transport processes in and climates. In 1965, a unique, 16-year pumping experiment designed to examine radionuclide migration away from the CAMBRIC nuclear test, conducted in the saturated zone beneath Frenchman Flat, Nevada. USA, gave rise to an unintended second experiment involving radionuclide infiltration through the vadose zone, as induced by seepage of pumping effluents beneath an unlined discharge trench. The combined experiments have been reanalyzed using a detailed, three-dimensional numerical model of transient, variably saturated flow and mass transport in a heterogeneous subsurface, tailored specifically for large-scale and efficient calculations. Simulations have been used to estimate tritium travel and residence times in various parts of the system for comparison with observations in wells. Model predictions of mass transport were able to clearly demonstrate radionuclide recycling behavior between the trench and pumping well previously suggested by isotopic age dating information; match travel time estimates for radionuclides moving between the trench. the water table, and monitoring and pumping wells; and provide more realistic ways in which to interpret the pumping well elution curves. Collectively, the results illustrate the utility of integrating detailed numerical modeling with diverse observational data in developing more accurate interpretations of contaminant migration processes. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Maxwell, Reed M.] Colorado Sch Mines, Dept Geol & Geol Engn, Golden, CO 80401 USA.
[Tompson, Andrew F. B.] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Sci Div, Livermore, CA 94550 USA.
[Kollet, Stefan] Univ Bonn, Inst Meteorol, D-5300 Bonn, Germany.
RP Maxwell, RM (reprint author), Colorado Sch Mines, Dept Geol & Geol Engn, Golden, CO 80401 USA.
EM rmaxwell@mines.edu
RI Maxwell, Reed/D-7980-2013
OI Maxwell, Reed/0000-0002-1364-4441
FU Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; U. S.
Department of Energy; National Nuclear Security Administration; Nevada
Site Office
FX The authors are grateful to G. Pawloski, J. Hunt and an anonymous
reviewer for comments that greatly improved the clarity and quality of
this manuscript. Portions of this work performed under the auspices of
the U.S. Department of Energy by Lawrence Livermore National Laboratory
under Contract DE-AC52-07NA27344. This work was funded by the
Underground Test Area Sub-Project, U. S. Department of Energy, National
Nuclear Security Administration, Nevada Site Office.
NR 39
TC 7
Z9 8
U1 0
U2 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0169-7722
J9 J CONTAM HYDROL
JI J. Contam. Hydrol.
PD AUG 11
PY 2009
VL 108
IS 1-2
BP 12
EP 28
DI 10.1016/j.jconhyd.2009.05.002
PG 17
WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources
SC Environmental Sciences & Ecology; Geology; Water Resources
GA 491LG
UT WOS:000269579700002
PM 19501933
ER
PT J
AU Wu, P
Winske, D
Gary, SP
Schwadron, NA
Lee, MA
AF Wu, P.
Winske, D.
Gary, S. P.
Schwadron, N. A.
Lee, M. A.
TI Energy dissipation and ion heating at the heliospheric termination shock
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
ID PERPENDICULAR BOW SHOCK; SOLAR-WIND; MAGNETIC-FIELDS; GYRATING IONS;
COLLISIONLESS; HELIOSHEATH; SIMULATIONS; VOYAGER-1; SPECTRUM
AB The Los Alamos hybrid simulation code is used to examine heating and the partition of dissipation energy at the perpendicular heliospheric termination shock in the presence of pickup ions. The simulations are one-dimensional in space but three-dimensional in field and velocity components, and are carried out for a range of values of pickup ion relative density. Results from the simulations show that because the solar wind ions are relatively cold upstream, the temperature of these ions is raised by a relatively larger factor than the temperature of the pickup ions. An analytic model for energy partition is developed on the basis of the Rankine-Hugoniot relations and a polytropic energy equation. The polytropic index gamma used in the Rankine-Hugoniot relations is varied to improve agreement between the model and the simulations concerning the fraction of downstream heating in the pickup ions as well as the compression ratio at the shock. When the pickup ion density is less than 20%, the polytropic index is about 5/3, whereas for pickup ion densities greater than 20%, the polytropic index tends toward 2.2, suggesting a fundamental change in the character of the shock, as seen in the simulations, when the pickup ion density is large. The model and the simulations both indicate for the upstream parameters chosen for Voyager 2 conditions that the pickup ion density is about 25% and the pickup ions gain the larger share ( approximately 90%) of the downstream thermal pressure, consistent with Voyager 2 observations near the shock.
C1 [Wu, P.; Winske, D.; Gary, S. P.] Los Alamos Natl Lab, Space Sci & Applicat ISR 1, Los Alamos, NM 87545 USA.
[Lee, M. A.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA.
[Wu, P.; Schwadron, N. A.] Boston Univ, Dept Astron, Boston, MA 02215 USA.
RP Wu, P (reprint author), Los Alamos Natl Lab, Space Sci & Applicat ISR 1, Mail Stop D466,Grp ISR 1, Los Alamos, NM 87545 USA.
EM nanopenny@gmail.com; winske@lanl.gov; pgary@lanl.gov; nathanas@bu.edu
FU National Aeronautics and Space Administration NASA; NSF-SHINE
[ATM-0550905]
FX The authors thank Gary Zank, Sandra Chapman, Joe Giacalone, Herb
Funsten, Jack Gosling, Chuck Goodrich, Harald Kucharek, John Richardson,
and Dave McComas for helpful discussions. The Los Alamos portion of this
work was performed under the auspices of the U. S. Department of Energy
DOE and was supported by the Solar and Heliospheric Physics SR& T
Program of the National Aeronautics and Space Administration NASA. The
Boston University portion is funded and supported by the NASA
Intersteller Boundary Explorer IBEX) mission, which is part of the
Goddard Space Flight Center GSFC) Explorer Program. We also acknowledge
support from an NSF-SHINE grant Dynamical Properties of Suprathermal
Ions in the 3-D Heliosphere, ATM-0550905).
NR 32
TC 25
Z9 25
U1 0
U2 1
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0148-0227
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD AUG 11
PY 2009
VL 114
AR A08103
DI 10.1029/2009JA014240
PG 15
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 484HJ
UT WOS:000269034600003
ER
PT J
AU Grubjesic, S
Seifert, S
Firestone, MA
AF Grubjesic, Simonida
Seifert, Soenke
Firestone, Millicent A.
TI Cytoskeleton Mimetic Reinforcement of a Self-Assembled N,N
'-Dialkylimidazolium Ionic Liquid Monomer by Copolymerization
SO MACROMOLECULES
LA English
DT Article
ID CUBIC PHASE; DIBLOCK COPOLYMER; AQUEOUS-SOLUTION; POLYMER; HYDROGELS;
ARCHITECTURE; VESICLE; NANOCAPSULES; ORGANIZATION; MESOPHASES
AB Preparation and photopolymerization of a decylmethylimidazolium ionic liquid (IL.) that possesses all acrylate counteranion ire described. This I L monomer self-assembles upon addition of water and can be copolymerized with poly(ethylene glycol) diacrylate (PEGDA) in the presence of it photoinitiator, forming a mechanically durable material that adopts a lamellar structure with in-plane hexagonally ordered pores, as evidenced by small-angle X-ray scattering (SAXS). Thermogravimetric analysis, the extent of polymerization, and solubility-swelling studies indicate the formation of a network copolymer of the IL monomer and the PEGDA. Additional evidence for the formation of a nanostructured copolymer is provided by evaluating the product formed by replacement of the IL monomer with the nonpolymerizable analogue, decylmethylimidazolium chloride. The results demonstrate the possibility of designing it self-assembled amiphiphilic bilayer architecture that is reinforced by polymerization and cross-linking.
C1 [Grubjesic, Simonida; Firestone, Millicent A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Seifert, Soenke] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA.
RP Firestone, MA (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM firestone@anl.gov
RI ID, BioCAT/D-2459-2012
FU United States Department of Energy [DE-AC02-06CH11357]
FX The authors thank Dr. Byeongdu Lee for valuable discussions on the SAXS
data and Professor Tom Irving and Dr. Liang Guo for rapid access and use
of the BioCAT, SAXS instrument. We also acknowledge Dr. Sungwon Lee for
assistance in rendering the POV ray images. This work was performed
under the auspices of the Office of Basic Energy Sciences, Division of
Materials Sciences, United States Department of Energy, under Contract
DE-AC02-06CH11357.
NR 38
TC 18
Z9 19
U1 0
U2 8
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0024-9297
J9 MACROMOLECULES
JI Macromolecules
PD AUG 11
PY 2009
VL 42
IS 15
BP 5461
EP 5470
DI 10.1021/ma900905k
PG 10
WC Polymer Science
SC Polymer Science
GA 477MO
UT WOS:000268523400014
ER
PT J
AU Wanakule, NS
Panday, A
Mullin, SA
Gann, E
Hexemer, A
Balsara, NP
AF Wanakule, Nisita S.
Panday, Ashoutosh
Mullin, Scott A.
Gann, Eliot
Hexemer, Alex
Balsara, Nitash P.
TI Ionic Conductivity of Block Copolymer Electrolytes in the Vicinity of
Order-Disorder and Order-Order Transitions
SO MACROMOLECULES
LA English
DT Article
ID RECHARGEABLE LITHIUM BATTERIES; ELECTRIC-FIELD ALIGNMENT; DIBLOCK
COPOLYMER; PHASE-BEHAVIOR; MICROPHASE SEPARATION; TRANSPORT-PROPERTIES;
TRIBLOCK COPOLYMERS; THIN-FILMS; POLYMER ELECTROLYTES; VARYING
SELECTIVITY
AB Order-order and order-disorder phase transitions in Mixtures of poly(styrene-block-ethylene oxide) (SEO) copolymers and lithium bis(trifluoromethysulfonimide) (LiTFSI), a common lithium Salt. used in polymer electrolytes, were studied using a combination of small-angle X-ray scattering (SAXS), birefringence, and ac impedance spectroscopy. The SEO/LiTFSI mixtures exhibit lamellar, hexagonally packed cylinders, and gyroid microphases. The molecular weight of the blocks and the salt concentration was adjusted to obtain order-order and order-disorder transition temperatures within the available experimental window. The ionic conductivities of the mixtures. normalized by the ionic conductivity of a 20 kg/mol homopolymer PEO sample at the salt concentration and temperature of interest, were independent of temperature, in spite of the presence of the above-mentioned phase transitions,
C1 [Wanakule, Nisita S.; Panday, Ashoutosh; Mullin, Scott A.; Balsara, Nitash P.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA.
[Panday, Ashoutosh; Mullin, Scott A.; Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy & Technol Div, Berkeley, CA 94720 USA.
[Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Gann, Eliot; Hexemer, Alex] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA.
RP Balsara, NP (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA.
RI Gann, Eliot/A-5246-2014
FU U.S. Department of Energy FreedomCAR; Vehicle Technologies Program;
National Science Foundation Graduate Research Fellowship; Director,
Office of Science; Office of Basic Energy Sciences; U.S. Department of
Energy [DE-AC0205CHI 1231]; National Science Foundation/Department of
Energy [CHE-0535644]; Officc of Basic Energy Sciences [DEAC02-06CH
11357]
FX This work was conducted within the Batteries for Advanced Transportation
Technologies (BAT-F) Program, supported by the U.S. Department of Energy
FreedomCAR and Vehicle Technologies Program. N.S.W. Was Supported by a
National Science Foundation Graduate Research Fellowship. The Advanced
Light Source is supported by the Director, Office of Science, Office of
Basic Energy Sciences, orthe U.S. Department of Energy under Contract
DE-AC0205CHI 1231. ChemMatCARS Sector 15 is principally supported by the
National Science Foundation/Department of Energy under Grant
CHE-0535644. Use of the Advanced Photon Source was supported by the U.S.
Department of Energy, Office of Science, Officc of Basic Energy
Sciences, under Contract DEAC02-06CH 11357. We thank Dr. Enrique Gomez
for helpful discussions.
NR 63
TC 78
Z9 78
U1 6
U2 70
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0024-9297
J9 MACROMOLECULES
JI Macromolecules
PD AUG 11
PY 2009
VL 42
IS 15
BP 5642
EP 5651
DI 10.1021/ma900401a
PG 10
WC Polymer Science
SC Polymer Science
GA 477MO
UT WOS:000268523400037
ER
PT J
AU He, LL
Smith, HL
Majewski, J
Fujimoto, CH
Cornelius, CJ
Perahia, D
AF He, Lilin
Smith, Hillary L.
Majewski, Jaroslaw
Fujimoto, Cy H.
Cornelius, Christopher J.
Perahia, Dvora
TI Interfacial Effects on Water Penetration into Ultrathin Ionomer Films:
An in Situ Study Using Neutron Reflectometry
SO MACROMOLECULES
LA English
DT Article
ID TOTAL REFLECTANCE SPECTROSCOPY; FIELD GRADIENT NMR; POLYMER-FILMS;
DIFFUSION MEASUREMENTS; MOISTURE ABSORPTION; RAY REFLECTIVITY; X-RAY;
MEMBRANES; THIN; POLYELECTROLYTE
AB Water penetration into thin sulfonated polyphenylene (sPP) ionomer Films was investigated as a function of time, ionic strength, and film thickness by neutron reflectometry (NR). Understanding the role interfacial effects have on transport across ionic membranes is critical to the design of new responsive thin layers for a variety of applications from fuel cell membranes to protective cloths and water purification. At steady state, a nonuniform distribution of water molecules was observed with a high concentration at the air-polymer interface. An excess of water was also found at the polymer-silicon interface. The mass uptake is initially linear with t(0.5) but crosses over to an anomalous process with extended exposure periods. A delay time for the onset of diffusion is observed and is interpreted in terms of interfacial barrier to diffusion.
C1 [He, Lilin; Perahia, Dvora] Clemson Univ, Dept Chem, Clemson, SC 29634 USA.
[Smith, Hillary L.; Majewski, Jaroslaw] Los Alamos Natl Lab, Lujan Neutron Scattering Ctr, Los Alamos, NM 87545 USA.
[Fujimoto, Cy H.; Cornelius, Christopher J.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Perahia, D (reprint author), Clemson Univ, Dept Chem, Clemson, SC 29634 USA.
EM dperahi@ces.clemson.edu
RI Lujan Center, LANL/G-4896-2012;
OI He, Lilin/0000-0002-9560-8101
FU DOE [DE-FG02-07ER46456, W7405-ENG-36]; UnitedStates Department of
Energy's National Nuclear Security Administration [DE-AC04-94AL85000];
Los Alamos National Laboratory and Lujan Center; DOE Office of Basic
Energy Science
FX We thank DOE for partial funding support under Contract
DE-FG02-07ER46456.T Sandia National Laboratories is a multiprogram
laboratory operated by Sandia Corporation,a Lockheed Martin Company, for
the UnitedStates Department of Energy's National Nuclear Security
Administration is acknowledged for support under DE-AC04-94AL85000. This
work was supported by Los Alamos National Laboratory and Lujan Center
under DOE Contract W7405-ENG-36, the DOE Office of Basic Energy Science.
NR 42
TC 6
Z9 6
U1 1
U2 13
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0024-9297
J9 MACROMOLECULES
JI Macromolecules
PD AUG 11
PY 2009
VL 42
IS 15
BP 5745
EP 5751
DI 10.1021/ma900973f
PG 7
WC Polymer Science
SC Polymer Science
GA 477MO
UT WOS:000268523400048
ER
PT J
AU Tung, SH
Xu, T
AF Tung, Shih-Huang
Xu, Ting
TI Templated Assembly of Block Copolymer toward Nonequilibrium
Nanostructures in Thin Films
SO MACROMOLECULES
LA English
DT Article
ID DIBLOCK COPOLYMERS; MICROPHASE SEPARATION; ARRAYS; LITHOGRAPHY;
MICROSTRUCTURE; SUPRAMOLECULES; GRAPHOEPITAXY; MORPHOLOGIES; ALIGNMENT;
FIELDS
AB We report a simple route to generate nonequilibrium nanostructures combining two known block copolymer (BCP) morphologies by first templating the spatial arrangement of BCP in thin films using a supramolecule. The BCP subsequently assembles within the morphological framework established by the supramolecule, leading to a templated, nonequilibrium nanostructures not accessible by the BCP alone. Thin Films with hexagonally packed cylindrical domains oriented normal to the surface were formed initially by the self-assembly of the diblock copolymer-based supramolecules, comprised of symmetric polystyrene-b-poly-(4-vinylpyridine) (PS-b-P4VP) with 3-pentadecylphenol (PDP) hydrogen-bonded to the 4VP. After selective removal of similar to 90% of the PDP and a brief solvent annealing in a chloroform atmosphere, symmetric PS-b-P4VP, containing a trace amount of PDP, self-assembled forming polygonal (dominantly hexagonal) microdomains oriented normal to the surface. This process reported should c applicable to the large library of copolymer-based supramolecules and enables the generation of novel nonequilibrium nanostructured morphologies. It also provides a new platform to study the pathway-dependent self-assembly in polymer thin films.
C1 [Tung, Shih-Huang; Xu, Ting] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
[Xu, Ting] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Xu, Ting] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Xu, T (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
EM tingxu@berkeley.edu
RI Tung, Shih-Huang/C-6832-2013;
OI Tung, Shih-Huang/0000-0002-6787-4955
FU Army Research Office at Department of Defense [W911NF-07-1-0653];
Division of Material Research, National Science Foundation(NSF-DMR)
[0805301]
FX We acknowledge Dr. Alexander Hexemer and Mr. Eliot Gann at ALS for
facilitating GISAXS experiments. We thank Mr. Kris Erickson and Prof.
Zettl in the Department of Physics, University of California, Berkeley,
for facilitating the ATR FT-IR experiments. This work was jointly
supported by the Short-term Innovative Research Grant from Army Research
Office at Department of Defense under Contract W911NF-07-1-0653 and the
Division of Material Research, National Science Foundation(NSF-DMR),
under Contract 0805301.
NR 35
TC 29
Z9 29
U1 1
U2 24
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0024-9297
J9 MACROMOLECULES
JI Macromolecules
PD AUG 11
PY 2009
VL 42
IS 15
BP 5761
EP 5765
DI 10.1021/ma900497j
PG 5
WC Polymer Science
SC Polymer Science
GA 477MO
UT WOS:000268523400050
ER
PT J
AU Aieta, NV
Stanis, RJ
Horan, JL
Yandrasits, MA
Cookson, DJ
Ingham, B
Toney, MF
Hamrock, SJ
Herring, AM
AF Aieta, Niccolo V.
Stanis, Ronald J.
Horan, James L.
Yandrasits, Michael A.
Cookson, David. J.
Ingham, Bridget
Toney, Michael F.
Hamrock, Steven J.
Herring, Andrew M.
TI Clipped Random Wave Morphologies and the Analysis of the SAXS of an
Ionomer Formed by Copolymerization of Tetrafluoroethylene and
CF2=CFO(CF2)(4)SO3H
SO MACROMOLECULES
LA English
DT Article
ID SMALL-ANGLE SCATTERING; PROTON-EXCHANGE MEMBRANES; FUEL-CELL
APPLICATIONS; POWER-LAW APPROACH; HYDRATED MORPHOLOGIES; NAFION
MEMBRANES; X-RAY; TRANSPORT; WATER; SWOLLEN
AB Using SAXS data, the microstructure of the ionomer formed by copolymerization of tetrafluoroethylene and CF2=CFO(CF2)(4)SO3H films has been approached by two methods: a numerical method (the unified fit approach) utilizing a simple model of spherical scattering objects to determine the radius of gyration of different scattering features of the ionomer films and by a graphical method, the clipped random wave approach (CRW), using the scattering data and a porosity parameter to generate a random wave which is clipped to produce a real-space image of the microstructure. We studied films with EW of 733, 825, 900,and 1082 in both the as-cast and annealed "dry" and boiled "wet" states. The results of the two data analysis techniques are in good size agreement with each other. In addition, the CRW model show striking similarities to the structure proposed in a recent dissipative particle dynamic models. This has been the first time to our knowledge that the CRW technique has been applied to a PFSA type ionomer.
C1 [Aieta, Niccolo V.; Stanis, Ronald J.; Horan, James L.; Herring, Andrew M.] Colorado Sch Mines, Dept Chem Engn, Golden, CO 80401 USA.
[Yandrasits, Michael A.; Hamrock, Steven J.] 3M Co, Fuel Cell Components Program 3M, St Paul, MN 55144 USA.
[Cookson, David. J.] Australian Synchrotron, Clayton, Vic 3168, Australia.
[Toney, Michael F.] Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA.
[Ingham, Bridget] Ind Res Ltd, Lower Hutt, New Zealand.
RP Herring, AM (reprint author), Colorado Sch Mines, Dept Chem Engn, Golden, CO 80401 USA.
EM aherring@mines.edu
RI Herring, Andy/E-7088-2010;
OI Herring, Andrew/0000-0001-7318-5999
FU National Science Foundation/Department of Energy [CHE-0535644]; U.S.
Department of Energy, Office of Science, Office of Basic Energy Sciences
[DE-AC02-06CH11357, DE-FC36-02AL67621]
FX ChemMatCARS Sector 15 is principally supported by the National Science
Foundation/Department of Energy tinder Grant CHE-0535644. Use of the
Advanced Photon Source was supported by the U.S. Department of Energy,
Office of Science, Office of Basic Energy Sciences, under Contract
DE-AC02-06CH11357. The work carried out here was directly supported by
the U.S. Department of Energy, Cooperative Agreement DE-FC36-02AL67621.
DOE support does not constitute an endorsement by DOE of the views
expressed in this paper. A.M.H. thanks 3M for a nontenured faculty
award.
NR 30
TC 16
Z9 16
U1 0
U2 11
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0024-9297
J9 MACROMOLECULES
JI Macromolecules
PD AUG 11
PY 2009
VL 42
IS 15
BP 5774
EP 5780
DI 10.1021/ma900719a
PG 7
WC Polymer Science
SC Polymer Science
GA 477MO
UT WOS:000268523400052
ER
PT J
AU Kozanecki, W
Bevan, AJ
Viaud, BF
Cai, Y
Fisher, AS
O'Grady, C
Lindquist, B
Roodman, A
Thompson, JM
Weaver, M
AF Kozanecki, W.
Bevan, A. J.
Viaud, B. F.
Cai, Y.
Fisher, A. S.
O'Grady, C.
Lindquist, B.
Roodman, A.
Thompson, J. M.
Weaver, M.
TI Interaction-point phase-space characterization using single-beam and
luminous-region measurements at PEP-II
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Luminous region; Phase space; Hourglass; Bunch length; Silicon detector
ID DETECTOR
AB We present an extensive experimental characterization of the e(+/-) phase space at the interaction point of the SLAC PEP-II B-Factory, that combines a detailed mapping of luminous-region observables using the BABAR detector, with stored-beam measurements by accelerator techniques. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Kozanecki, W.] Ctr Etud Saclay, SPP, IRFU, CEA, F-91191 Gif Sur Yvette, France.
[Bevan, A. J.] Univ London, Dept Phys, London E1 4NS, England.
[Viaud, B. F.] Univ Montreal, Montreal, PQ H3C 3J7, Canada.
[Cai, Y.; Fisher, A. S.; O'Grady, C.; Lindquist, B.; Roodman, A.; Thompson, J. M.; Weaver, M.] Stanford Univ, Stanford Linear Accelerator Ctr, Natl Accelerator Lab, Stanford, CA 94309 USA.
RP Kozanecki, W (reprint author), Ctr Etud Saclay, SPP, IRFU, CEA, F-91191 Gif Sur Yvette, France.
EM witold.kozanecki@cern.ch
FU DOE [DE-AC02-76SFO0515]; NSF (USA); NSERC (Canada); CEA; CNRS-IN2P3
(France); BMBF and DFG (Germany); INFN (Italy); FOM (The Netherlands);
NFR (Norway); MES (Russia); MEC (Spain); STFC (United Kingdom); Marie
Curie EIF (European Union); A.P. Sloan Foundation
FX The work reported here has greatly benefited from the insight,
encouragement and intellectual challenges from our accelerator
colleagues over the last several years: we would like to thank, in
particular, S. Ecklund, J. Seeman, M. Sullivan, U. Wienands and Y. Yan.
We are grateful for the excellent luminosity and machine conditions
provided by the PEP-II Operations team, as well as for the dedicated
efforts by our BABAR collaborators and by the computing organizations
that support the SLAC B-Factory program. The collaborating institutions
wish to thank SLAC for its support and kind hospitality. This work is
supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3
(France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands),
NFR (Norway), MES (Russia), MEC (Spain), and STFC (United Kingdom).
Individuals received support from the Marie Curie EIF (European Union)
and the A.P. Sloan Foundation.
NR 39
TC 6
Z9 6
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD AUG 11
PY 2009
VL 607
IS 2
BP 293
EP 321
DI 10.1016/j.nima.2009.05.046
PG 29
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 487PA
UT WOS:000269285700003
ER
PT J
AU Abat, E
Abdallah, JM
Addy, TN
Adragna, P
Aharrouche, M
Ahmad, A
Akesson, TPA
Aleksa, M
Alexa, C
Anderson, K
Anghinolfi, F
Antonaki, A
Arabidze, G
Arik, E
Baker, OK
Banfi, D
Baron, S
Beck, HP
Belhorma, B
Benchekroun, D
Benjamin, DP
Benslama, K
Kuutmann, EB
Bertelsen, H
Binet, S
Biscarat, C
Boldea, V
Bondarenko, VG
Boonekamp, M
Bosman, M
Bourdarios, C
Chromek, DB
Bychkov, V
Callahan, J
Calvet, D
Canneri, M
Garrido, MC
Caprini, M
Sas, LC
Carli, T
Carminati, L
Carvalho, J
Cascella, M
Castillo, MV
Catinaccio, A
Sforza, MC
Cavalli, D
Cavasinni, V
Cetin, SA
Chen, H
Cherkaoui, R
Chevallier, F
Ciobotaru, M
Citterio, M
Cleland, B
Cogneras, E
Muino, PC
Consonni, M
Constantinescu, S
Cornelissen, T
Radu, AC
Costa, G
Cwetanski, P
Da Silva, D
Dam, M
Danielsson, HO
Dannheim, D
Davidek, T
De, K
Defay, PO
Dekhissi, B
Del Peso, J
Delmastro, M
Del Prete, T
Derue, F
Di Ciaccio, L
Di Girolamo, B
Dita, S
Dittus, F
Djama, F
Djobava, T
Dobson, M
Dolgoshein, BA
Dotti, A
Drake, G
Dressnandt, N
Driouchi, C
Ebenstein, WL
Eerola, P
Efthymiopoulos, I
Egorov, K
Eifert, TF
El Kacimi, M
Etienvre, AI
Fabich, A
Fakhr-Edine, AI
Fanti, M
Farbin, A
Farthouat, P
Fassouliotis, D
Fayard, L
Febbraro, R
Fedin, OL
Fenyuk, A
Ferrari, R
Ferreira, BC
Ferrer, A
Filippini, G
Fournier, D
Francavilla, P
Francis, D
Froeschl, R
Froidevaux, D
Fullana, E
Gadomski, S
Gagnon, P
Gameiro, S
Garcia, R
Ghodbane, N
Giakoumopoulou, V
Giangiobbe, V
Giokaris, N
Glonti, G
Gollub, N
Gomes, A
Gomez, MD
Gorini, B
Goujdami, D
Grahn, KJ
Grenier, P
Grigalashvili, N
Grishkevich, Y
Gruwe, M
Guicheney, C
Gupta, A
Haeberli, C
Hajduk, Z
Hakobyan, H
Hance, M
Hansen, PH
Harvey, A
Correia, AH
Hervas, L
Higon, E
Hoffman, J
Hostachy, JY
Hruska, I
Hubaut, F
Hulsbergen, W
Hurwitz, M
Iconomidou-Fayard, L
Jen-La Plante, I
Johansson, PDC
Jon-And, K
Joos, M
Jorgensen, S
Kaczmarska, A
Kado, M
Karyukhin, A
Kataoka, M
Kayumov, F
Kazarov, A
Keener, PT
Kekelidze, GD
Kerschen, N
Khoriauli, G
Khramov, E
Khristachev, A
Khubua, J
Kittelmann, TH
Klinkby, E
Koffas, T
Kolos, S
Konovalov, SP
Kopikov, S
Korolkov, I
Kovalenko, S
Kowalski, TZ
Kruger, K
Kramarenko, V
Kudin, LG
Kulchitsky, Y
Lafaye, R
Laforge, B
Lampl, W
Lanni, F
Laplace, S
Le Bihan, AC
Lechowski, M
Ledroit-Guillon, F
Lehmann, G
Leitner, R
Lelas, D
Liang, Z
Liang, Z
Lichard, P
Lokajicek, M
Louchard, L
Loureiro, K
Lucotte, A
Luehring, F
Lundberg, B
Lund-Jensen, B
Ma, H
Mackeprang, R
Maio, A
Maleev, VP
Malek, F
Maneira, J
Mandelli, L
Mazzanti, M
Manousakis, A
Mapelli, L
Marques, C
Martin, F
Mazzanti, M
McFarlane, KW
Mchedlidze, G
McPherson, R
Meirosu, C
Meng, Z
Miagkov, A
Mialkovski, V
Milstead, D
Minashvili, I
Mindur, B
Mitsou, VA
Monnier, E
Morozov, SV
Mosidze, M
Mouraviev, SV
Munar, A
Nadtochi, AV
Negri, A
Nemecek, S
Nessi, M
Nesterov, SY
Newcomer, FM
Nikitine, I
Nikolic-Audit, I
Ogren, H
Oh, SH
Oleshko, SB
Olszowska, J
Onofre, A
Aranda, CP
Paganis, S
Pallin, D
Pantea, D
Paolone, V
Parsons, J
Pasqualucci, E
Passmore, MS
Patrichev, S
Peez, M
Reale, VP
Perini, L
Peshekhonov, VD
Petersen, J
Petersen, TC
Petti, R
Pilcher, J
Pina, J
Pinto, B
Podlyski, F
Poggioli, L
Poveda, J
Pralavorio, P
Pribyl, L
Price, MJ
Prieur, D
Puigdengoles, C
Puzo, P
Rajagopalan, S
Rembser, C
Ridel, M
Riu, I
Roda, C
Rohne, O
Romaniouk, A
Rousseau, D
Ruiz, A
Rusakovich, N
Rust, D
Ryabov, YF
Ryjov, V
Salto, O
Salvachua, B
Rios, CS
Santoni, C
Saraiva, JG
Sarri, F
Sauvage, G
Says, LP
Schaefer, M
Schegelsky, VA
Schlager, G
Schlereth, J
Schmitt, C
Schwemling, P
Schwindling, J
Seixas, JM
Seliverstov, DM
Serin, L
Shalanda, N
Shin, T
Shmeleva, A
Silva, J
Simion, S
Simonyan, M
Sloper, JE
Smirnov, SY
Smirnova, L
Solans, C
Solodkov, A
Solovianov, O
Soloviev, I
Sosnovtsev, VV
Spano, F
Speckmeyer, P
Stancu, S
Stanek, R
Starchenko, E
Straessner, A
Suchkov, SI
Suk, M
Szczygiel, RR
Tarrade, F
Tartarelli, F
Tas, P
Tayalati, Y
Teuscher, R
Thioye, M
Tikhomirov, VO
Tisserant, S
Tremblet, L
Tsiareshka, P
Unal, G
Unel, G
Usai, G
Valero, A
Valkar, S
Valls, JA
Van Berg, R
Vandelli, W
Vannucci, F
Vartapetian, A
Vassilakopoulos, VI
Vassilieva, L
Vazeille, F
Vetter-Cole, Y
Vichou, I
Vinogradov, V
Vivarelli, I
Volpi, M
Wang, C
Werner, P
Wheeler, S
Wiesmann, M
Wilkens, H
Williams, HH
Wingerter-Seez, I
Yasu, Y
Zaitsev, A
Zenin, A
Zenis, T
Zenonos, Z
Zhang, H
Zhou, N
AF Abat, E.
Abdallah, J. M.
Addy, T. N.
Adragna, P.
Aharrouche, M.
Ahmad, A.
Akesson, T. P. A.
Aleksa, M.
Alexa, C.
Anderson, K.
Anghinolfi, F.
Antonaki, A.
Arabidze, G.
Arik, E.
Baker, O. K.
Banfi, D.
Baron, S.
Beck, H. P.
Belhorma, B.
Benchekroun, D.
Benjamin, D. P.
Benslama, K.
Kuutmann, E. Bergeaas
Bertelsen, H.
Binet, S.
Biscarat, C.
Boldea, V.
Bondarenko, V. G.
Boonekamp, M.
Bosman, M.
Bourdarios, C.
Chromek, D. Burckhart
Bychkov, V.
Callahan, J.
Calvet, D.
Canneri, M.
Garrido, M. Capeans
Caprini, M.
Sas, L. Cardiel
Carli, T.
Carminati, L.
Carvalho, J.
Cascella, M.
Castillo, M. V.
Catinaccio, A.
Cavalli Sforza, M.
Cavalli, D.
Cavasinni, V.
Cetin, S. A.
Chen, H.
Cherkaoui, R.
Chevallier, F.
Ciobotaru, M.
Citterio, M.
Cleland, B.
Cogneras, E.
Muino, P. Conde
Consonni, M.
Constantinescu, S.
Cornelissen, T.
Radu, A. Corso
Costa, G.
Cwetanski, P.
Da Silva, D.
Dam, M.
Danielsson, H. O.
Dannheim, D.
Davidek, T.
De, K.
Defay, P. O.
Dekhissi, B.
Del Peso, J.
Delmastro, M.
Del Prete, T.
Derue, F.
Di Ciaccio, L.
Di Girolamo, B.
Dita, S.
Dittus, F.
Djama, F.
Djobava, T.
Dobson, M.
Dolgoshein, B. A.
Dotti, A.
Drake, G.
Dressnandt, N.
Driouchi, C.
Ebenstein, W. L.
Eerola, P.
Efthymiopoulos, I.
Egorov, K.
Eifert, T. F.
El Kacimi, M.
Etienvre, A. I.
Fabich, A.
Fakhr-Edine, A. I.
Fanti, M.
Farbin, A.
Farthouat, P.
Fassouliotis, D.
Fayard, L.
Febbraro, R.
Fedin, O. L.
Fenyuk, A.
Ferrari, R.
Ferreira, B. C.
Ferrer, A.
Filippini, G.
Fournier, D.
Francavilla, P.
Francis, D.
Froeschl, R.
Froidevaux, D.
Fullana, E.
Gadomski, S.
Gagnon, P.
Gameiro, S.
Garcia, R.
Ghodbane, N.
Giakoumopoulou, V.
Giangiobbe, V.
Giokaris, N.
Glonti, G.
Gollub, N.
Gomes, A.
Gomez, M. D.
Gorini, B.
Goujdami, D.
Grahn, K. J.
Grenier, P.
Grigalashvili, N.
Grishkevich, Y.
Gruwe, M.
Guicheney, C.
Gupta, A.
Haeberli, C.
Hajduk, Z.
Hakobyan, H.
Hance, M.
Hansen, P. H.
Harvey, A., Jr.
Correia, A. Henriques
Hervas, L.
Higon, E.
Hoffman, J.
Hostachy, J. Y.
Hruska, I.
Hubaut, F.
Hulsbergen, W.
Hurwitz, M.
Iconomidou-Fayard, L.
Jen-La Plante, I.
Johansson, P. D. C.
Jon-And, K.
Joos, M.
Jorgensen, S.
Kaczmarska, A.
Kado, M.
Karyukhin, A.
Kataoka, M.
Kayumov, F.
Kazarov, A.
Keener, P. T.
Kekelidze, G. D.
Kerschen, N.
Khoriauli, G.
Khramov, E.
Khristachev, A.
Khubua, J.
Kittelmann, T. H.
Klinkby, E.
Koffas, T.
Kolos, S.
Konovalov, S. P.
Kopikov, S.
Korolkov, I.
Kovalenko, S.
Kowalski, T. Z.
Krueger, K.
Kramarenko, V.
Kudin, L. G.
Kulchitsky, Y.
Lafaye, R.
Laforge, B.
Lampl, W.
Lanni, F.
Laplace, S.
Le Bihan, A. C.
Lechowski, M.
Ledroit-Guillon, F.
Lehmann, G.
Leitner, R.
Lelas, D.
Liang, Z.
Liang, Z.
Lichard, P.
Lokajicek, M.
Louchard, L.
Loureiro, K.
Lucotte, A.
Luehring, F.
Lundberg, B.
Lund-Jensen, B.
Ma, H.
Mackeprang, R.
Maio, A.
Maleev, V. P.
Malek, F.
Maneira, J.
Mandelli, L.
Mazzanti, M.
Manousakis, A.
Mapelli, L.
Marques, C.
Martin, F.
Mazzanti, M.
McFarlane, K. W.
Mchedlidze, G.
McPherson, R.
Meirosu, C.
Meng, Z.
Miagkov, A.
Mialkovski, V.
Milstead, D.
Minashvili, I.
Mindur, B.
Mitsou, V. A.
Monnier, E.
Morozov, S. V.
Mosidze, M.
Mouraviev, S. V.
Munar, A.
Nadtochi, A. V.
Negri, A.
Nemecek, S.
Nessi, M.
Nesterov, S. Y.
Newcomer, F. M.
Nikitine, I.
Nikolic-Audit, I.
Ogren, H.
Oh, S. H.
Oleshko, S. B.
Olszowska, J.
Onofre, A.
Aranda, C. Padilla
Paganis, S.
Pallin, D.
Pantea, D.
Paolone, V.
Parsons, J.
Pasqualucci, E.
Passmore, M. S.
Patrichev, S.
Peez, M.
Reale, V. Perez
Perini, L.
Peshekhonov, V. D.
Petersen, J.
Petersen, T. C.
Petti, R.
Pilcher, J.
Pina, J.
Pinto, B.
Podlyski, F.
Poggioli, L.
Poveda, J.
Pralavorio, P.
Pribyl, L.
Price, M. J.
Prieur, D.
Puigdengoles, C.
Puzo, P.
Rajagopalan, S.
Rembser, C.
Ridel, M.
Riu, I.
Roda, C.
Rohne, O.
Romaniouk, A.
Rousseau, D.
Ruiz, A.
Rusakovich, N.
Rust, D.
Ryabov, Y. F.
Ryjov, V.
Salto, O.
Salvachua, B.
Rios, C. Santamarina
Santoni, C.
Saraiva, J. G.
Sarri, F.
Sauvage, G.
Says, L. P.
Schaefer, M.
Schegelsky, V. A.
Schlager, G.
Schlereth, J.
Schmitt, C.
Schwemling, P.
Schwindling, J.
Seixas, J. M.
Seliverstov, D. M.
Serin, L.
Shalanda, N.
Shin, T.
Shmeleva, A.
Silva, J.
Simion, S.
Simonyan, M.
Sloper, J. E.
Smirnov, S. Yu.
Smirnova, L.
Solans, C.
Solodkov, A.
Solovianov, O.
Soloviev, I.
Sosnovtsev, V. V.
Spano, F.
Speckmeyer, P.
Stancu, S.
Stanek, R.
Starchenko, E.
Straessner, A.
Suchkov, S. I.
Suk, M.
Szczygiel, R. R.
Tarrade, F.
Tartarelli, F.
Tas, P.
Tayalati, Y.
Teuscher, R.
Thioye, M.
Tikhomirov, V. O.
Tisserant, S.
Tremblet, L.
Tsiareshka, P.
Unal, G.
Unel, G.
Usai, G.
Valero, A.
Valkar, S.
Valls, J. A.
Van Berg, R.
Vandelli, W.
Vannucci, F.
Vartapetian, A.
Vassilakopoulos, V. I.
Vassilieva, L.
Vazeille, F.
Vetter-Cole, Y.
Vichou, I.
Vinogradov, V.
Vivarelli, I.
Volpi, M.
Wang, C.
Werner, P.
Wheeler, S.
Wiesmann, M.
Wilkens, H.
Williams, H. H.
Wingerter-Seez, I.
Yasu, Y.
Zaitsev, A.
Zenin, A.
Zenis, T.
Zenonos, Z.
Zhang, H.
Zhou, N.
TI Study of the response of the ATLAS central calorimeter to pions of
energies from 3 to 9 GeV
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE ATLAS; Calorimetry; Test beam; Calibration; Simulation
AB A fully instrumented slice of the ATLAS central detector was exposed to test beams from the SPS (Super Proton Synchrotron) at CERN in 2004. in this paper, the response of the central calorimeters to pions with energies in the range between 3 and 9 GeV is presented. The linearity and the resolution of the combined calorimetry (electromagnetic and hadronic calorimeters) was measured and compared to the prediction of a detector simulation program using the toolkit Geant 4. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Aleksa, M.; Anghinolfi, F.; Baron, S.; Chromek, D. Burckhart; Garrido, M. Capeans; Sas, L. Cardiel; Carli, T.; Catinaccio, A.; Cornelissen, T.; Radu, A. Corso; Dam, M.; Danielsson, H. O.; Dannheim, D.; Delmastro, M.; Di Girolamo, B.; Dittus, F.; Dobson, M.; Efthymiopoulos, I.; Eifert, T. F.; Fabich, A.; Farthouat, P.; Francis, D.; Froeschl, R.; Froidevaux, D.; Gameiro, S.; Gollub, N.; Gruwe, M.; Correia, A. Henriques; Hervas, L.; Hulsbergen, W.; Joos, M.; Kataoka, M.; Koffas, T.; Krueger, K.; Le Bihan, A. C.; Lehmann, G.; Lichard, P.; Mackeprang, R.; Mapelli, L.; Meirosu, C.; Nessi, M.; Aranda, C. Padilla; Passmore, M. S.; Petersen, J.; Petersen, T. C.; Pribyl, L.; Rembser, C.; Rios, C. Santamarina; Schlager, G.; Sloper, J. E.; Speckmeyer, P.; Tremblet, L.; Unal, G.; Vandelli, W.; Werner, P.; Wiesmann, M.; Wilkens, H.] CERN, European Lab Particle Phys, CH-1211 Geneva 23, Switzerland.
[Abat, E.; Arik, E.; Cetin, S. A.] Bogazici Univ, Fac Sci, Dept Phys, TR-80815 Bebek, Turkey.
[Abdallah, J. M.; Bosman, M.; Cavalli Sforza, M.; Jorgensen, S.; Korolkov, I.; Puigdengoles, C.; Salto, O.; Volpi, M.] Univ Autonoma Barcelona, IFAE, ES-08193 Barcelona, Spain.
[Addy, T. N.; Harvey, A., Jr.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA.
[Adragna, P.] Univ Landon, London E1 4NS, England.
[Aharrouche, M.] Johannes Gutenberg Univ Mainz, Inst Phys, DE-55099 Mainz, Germany.
[Ahmad, A.; Thioye, M.] Dept Phys & Astron, Stony Brook, NY 11794 USA.
[Akesson, T. P. A.; Eerola, P.; Lundberg, B.] Lund Univ, Nat Vetenskapliga Fak, Inst Fys, SE-22100 Lund, Sweden.
[Alexa, C.; Boldea, V.; Caprini, M.; Constantinescu, S.; Dita, S.; Pantea, D.] Natl Inst Phys & Nucl Engn, Bucharest IFIN HH, R-077125 Bucharest, Romania.
[Anderson, K.; Gupta, A.; Hurwitz, M.; Jen-La Plante, I.; Pilcher, J.; Usai, G.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Antonaki, A.; Arabidze, G.; Fassouliotis, D.; Giakoumopoulou, V.; Giokaris, N.; Manousakis, A.] Univ Athens, Nucl & Particle Phys Dept Phys, GR-15771 Athens, Greece.
[Baker, O. K.] Yale Univ, Dept Phys, New Haven, CT 06520 USA.
[Banfi, D.; Carminati, L.; Consonni, M.; Fanti, M.; Mandelli, L.] Univ Milan, Dipartimento Fis, IT-20133 Milan, Italy.
[Banfi, D.; Carminati, L.; Consonni, M.; Fanti, M.; Mandelli, L.] Univ Milan, Ist Nazl Fis Nucl, IT-20133 Milan, Italy.
[Beck, H. P.; Cogneras, E.; Haeberli, C.] Univ Bern, High Energy Phys Lab, CH-3012 Bern, Switzerland.
[Belhorma, B.; Chevallier, F.; Hostachy, J. Y.; Ledroit-Guillon, F.; Lucotte, A.; Malek, F.; Schaefer, M.] Univ Grenoble 1, INPG, Lab Phys Subatom & Cosmol, CNRS,IN2P3, FR-38026 Grenoble, France.
[Benchekroun, D.] Univ Hassan 2, Fac Sci Ain Chock, Ma Casablanca, Morocco.
[Benjamin, D. P.; Ebenstein, W. L.; Klinkby, E.; Oh, S. H.; Wang, C.] Duke Univ, Dept Phys, Durham, NC 27708 USA.
[Benslama, K.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada.
[Kuutmann, E. Bergeaas; Jon-And, K.; Milstead, D.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden.
[Bertelsen, H.; Driouchi, C.; Hansen, P. H.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen O, Denmark.
[Binet, S.; Bourdarios, C.; Fayard, L.; Iconomidou-Fayard, L.; Kado, M.; Lechowski, M.; Lelas, D.; Poggioli, L.; Puzo, P.; Rousseau, D.; Serin, L.; Simion, S.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France.
[Biscarat, C.] CNRS, IN2P3, Ctr Calcul, Lyon, France.
[Bondarenko, V. G.; Dolgoshein, B. A.; Maleev, V. P.; Morozov, S. V.; Romaniouk, A.; Smirnov, S. Yu.; Sosnovtsev, V. V.; Suchkov, S. I.] MEPhI, RU-115409 Moscow, Russia.
[Boonekamp, M.; Etienvre, A. I.; Schwindling, J.] Ctr Etud Saclay, DAPNIA, DSM, CEA, F-91191 Gif Sur Yvette, France.
[Bychkov, V.; Glonti, G.; Grigalashvili, N.; Kekelidze, G. D.; Khoriauli, G.; Khramov, E.; Khubua, J.; Kulchitsky, Y.; Mialkovski, V.; Minashvili, I.; Peshekhonov, V. D.; Rusakovich, N.; Ryjov, V.; Tsiareshka, P.; Vinogradov, V.] Joint Inst Nucl Res Dubna, RU-141980 Moscow, Russia.
[Callahan, J.; Cwetanski, P.; Egorov, K.; Gagnon, P.; Luehring, F.; Ogren, H.; Rust, D.; Unal, G.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA.
[Calvet, D.; Defay, P. O.; Febbraro, R.; Filippini, G.; Ghodbane, N.; Guicheney, C.; Louchard, L.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Tayalati, Y.; Vazeille, F.] Univ Blaise Pascal Clermont Ferrand, CNRS, IN2P3, LPC, FR-63177 Aubiere, France.
[Canneri, M.; Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Roda, C.; Sarri, F.; Vivarelli, I.; Zenonos, Z.] Univ Pisa, Dipartimento Fis, IT-56127 Pisa, Italy.
[Canneri, M.; Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Roda, C.; Sarri, F.; Vivarelli, I.; Zenonos, Z.] Univ Pisa, INFN Pisa, IT-56127 Pisa, Italy.
[Carvalho, J.; Muino, P. Conde; Gomes, A.; Maio, A.; Maneira, J.; Marques, C.; Onofre, A.; Saraiva, J. G.; Silva, J.] Lab Instrumentacao & Fis Expt Particulas, PT-1000149 Lisbon, Portugal.
[Castillo, M. V.; Ferrer, A.; Higon, E.; Mitsou, V. A.; Ruiz, A.; Solans, C.; Valls, J. A.] Univ Valencia, Ctr Mixto, UVEG, CSIC,IFIC, ES-46071 Valencia, Spain.
[Cavalli, D.; Citterio, M.; Costa, G.; Mazzanti, M.; Perini, L.; Tartarelli, F.] Ist Nazl Fis Nucl, Sez Milano, IT-20133 Milan, Italy.
[Chen, H.; Lanni, F.; Ma, H.; Rajagopalan, S.; Tarrade, F.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
[Cherkaoui, R.] Univ Mohammed 5, Fac Sci, Mo Rabat, Morocco.
[Ciobotaru, M.; Kolos, S.; Stancu, S.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA.
[Cleland, B.; Kittelmann, T. H.; Paolone, V.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA.
[Da Silva, D.; Ferreira, B. C.; Seixas, J. M.] Univ Fed Rio de Janeiro, Inst Fis, BR-21945970 Rio De Janeiro, Brazil.
[Davidek, T.; Hruska, I.; Leitner, R.; Suk, M.; Tas, P.] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, CZ-18000 Prague 8, Czech Republic.
[De, K.; Farbin, A.; Vartapetian, A.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA.
[Dekhissi, B.] Univ Mohammed Premier, Lab Phys Theor & Phys Particules, Oujda, Morocco.
[Del Peso, J.; Garcia, R.; Peez, M.] Univ Autonoma Madrid, Fac Ciencias, Dept Fis Teor, ES-28049 Madrid, Spain.
[Derue, F.; Kaczmarska, A.; Laforge, B.; Nikolic-Audit, I.; Ridel, M.; Schwemling, P.; Vannucci, F.] Univ Paris 06, Lab Phys Nucl & Hautes Energies, CNRS, IN2P3, FR-75252 Paris 05, France.
[Derue, F.; Kaczmarska, A.; Laforge, B.; Nikolic-Audit, I.; Ridel, M.; Schwemling, P.; Vannucci, F.] Univ Paris 07, Lab Phys Nucl & Hautes Energies, CNRS, IN2P3, FR-75252 Paris 05, France.
[Di Ciaccio, L.; El Kacimi, M.; Lafaye, R.; Laplace, S.; Sauvage, G.; Simonyan, M.; Wingerter-Seez, I.] Univ Savoie, LAPP, CNRS, IN2P3, Annecy Le Vieux, France.
[Djama, F.; Hubaut, F.; Monnier, E.; Pralavorio, P.; Tisserant, S.; Zhang, H.] Univ Aix Marseille 2, Ctr Phys Particules Marseille, CNRS, IN2P3, F-13288 Marseille, France.
[Djobava, T.; Mchedlidze, G.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, GE-380086 Tbilisi, Rep of Georgia.
[Drake, G.; Fullana, E.; Salvachua, B.; Schlereth, J.; Stanek, R.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA.
[Dressnandt, N.; Hance, M.; Keener, P. T.; Martin, F.; Munar, A.; Newcomer, F. M.; Van Berg, R.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA.
[El Kacimi, M.; Fakhr-Edine, A. I.; Goujdami, D.] Univ Cadi Ayyad, Marrakech, Morocco.
[Fedin, O. L.; Kazarov, A.; Khristachev, A.; Kovalenko, S.; Kudin, L. G.; Nadtochi, A. V.; Nesterov, S. Y.; Oleshko, S. B.; Patrichev, S.; Ryabov, Y. F.; Schegelsky, V. A.; Seliverstov, D. M.; Soloviev, I.] Petersburg Nucl Phys Inst, RU-188300 Gatchina, Russia.
[Fenyuk, A.; Karyukhin, A.; Kopikov, S.; Miagkov, A.; Nikitine, I.; Solodkov, A.; Solovianov, O.; Starchenko, E.; Zaitsev, A.; Zenin, A.] Fed Agcy Atom Energy, IHEP, RU-142284 Protvino, Russia.
[Ferrari, R.; Negri, A.] Univ Pavia, Dipartimento Fis Nucl & Teor, IT-27100 Pavia, Italy.
[Ferrari, R.; Negri, A.] Univ Pavia, INFN Pavia, IT-27100 Pavia, Italy.
[Gadomski, S.; Gomez, M. D.; Riu, I.] Univ Geneva, Sect Phys, CH-1211 Geneva 4, Switzerland.
[Grahn, K. J.; Lund-Jensen, B.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden.
[Grenier, P.] Stanford Linear Accelerator Ctr, Natl Accelerator Lab, Stanford, CA 94309 USA.
[Grishkevich, Y.; Kramarenko, V.; Smirnova, L.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, RU-119991 Moscow, Russia.
[Hajduk, Z.; Olszowska, J.; Szczygiel, R. R.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland.
[Hakobyan, H.] Yerevan Phys Inst, AM-375036 Yrevan, Armenia.
[Hoffman, J.; Liang, Z.; Vetter-Cole, Y.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA.
[Johansson, P. D. C.; Kerschen, N.; Paganis, S.] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England.
[Kayumov, F.; Konovalov, S. P.; Mouraviev, S. V.; Shmeleva, A.; Tikhomirov, V. O.; Vassilieva, L.] Acad Sci, PN Lebedev Phys Inst, RU-117924 Moscow, Russia.
[Kowalski, T. Z.; Mindur, B.] Univ Sci & Technol, Fac Phys & Appl Comp Sci, AGH, PL-30059 Krakow, Poland.
[Kulchitsky, Y.; Shalanda, N.; Tsiareshka, P.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk 220072, Byelarus.
[Lampl, W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA.
[Liang, Z.; Meng, Z.] Acad Sinica, Inst Phys, Tw Taipei 11529, Taiwan.
[Liang, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China.
[Lokajicek, M.; Nemecek, S.] Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic.
[Lokajicek, M.; Nemecek, S.] Acad Sci Czech Republic, Inst Comp Sci, CZ-18221 Prague 8, Czech Republic.
[Loureiro, K.] Ohio State Univ, Columbus, OH 43210 USA.
[McPherson, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8W 3P6, Canada.
[Meng, Z.] Shandong Univ, Sch Phys, Jinan 250100, Shandong, Peoples R China.
[Parsons, J.; Reale, V. Perez; Spano, F.; Zhou, N.] Columbia Univ, Nevis Lab, Irvington, NY 10533 USA.
[Pasqualucci, E.] Univ Roma La Sapienza, Dipartimento Fis, IT-00185 Rome, Italy.
[Pasqualucci, E.] Univ Roma La Sapienza, INFN Roma 1, IT-00185 Rome, Italy.
[Petti, R.] Univ S Carolina, Columbia, SC 29208 USA.
[Pina, J.; Pinto, B.] LIP & IDMEC IST, Lisbon, Portugal.
[Poveda, J.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.
[Prieur, D.] Rutherford Appleton Lab, Sci & Technol Facil Council, Didcot OX11 0QX, Oxon, England.
[Rohne, O.] Univ Oslo, Dept Phys, NO-0316 Oslo, Norway.
[Schmitt, C.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany.
[Straessner, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01069 Dresden, Germany.
[Teuscher, R.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada.
[Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
[Wheeler, S.] Univ Alberta, Dept Phys, Ctr Particle Phys, Edmonton, AB T6G 2G7, Canada.
[Yasu, Y.] High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan.
[Zenis, T.] Comenius Univ, Fac Math Phys & Informat, SK-84248 Bratislava, Slovakia.
RP Aleksa, M (reprint author), CERN, European Lab Particle Phys, CH-1211 Geneva 23, Switzerland.
RI De, Kaushik/N-1953-2013; Mitsou, Vasiliki/D-1967-2009; Alexa,
Calin/F-6345-2010; Nemecek, Stanislav/C-3487-2012; Morozov,
Sergey/C-1396-2014; Szczygiel, Robert/B-5662-2011; Smirnova,
Lidia/D-8089-2012; Smirnov, Sergei/F-1014-2011; Kramarenko,
Victor/E-1781-2012; Delmastro, Marco/I-5599-2012; Cascella,
Michele/B-6156-2013; Pina, Joao /C-4391-2012; Conde Muino,
Patricia/F-7696-2011; Nemecek, Stanislav/G-5931-2014; Lokajicek,
Milos/G-7800-2014; Santamarina Rios, Cibran/K-4686-2014; Bosman,
Martine/J-9917-2014; Cavalli-Sforza, Matteo/H-7102-2015; Ferrer,
Antonio/H-2942-2015; Tikhomirov, Vladimir/M-6194-2015; Shmeleva,
Alevtina/M-6199-2015; kayumov, fred/M-6274-2015; Konovalov,
Serguei/M-9505-2015; Fullana Torregrosa, Esteban/A-7305-2016; Suchkov,
Sergey/M-6671-2015; vasilyeva, lidia/M-9569-2015; Maneira,
Jose/D-8486-2011; Mindur, Bartosz/A-2253-2017; Solodkov,
Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Karyukhin,
Andrey/J-3904-2014; Tartarelli, Giuseppe Francesco/A-5629-2016;
OI De, Kaushik/0000-0002-5647-4489; Mitsou, Vasiliki/0000-0002-1533-8886;
Morozov, Sergey/0000-0002-6748-7277; Smirnov,
Sergei/0000-0002-6778-073X; Delmastro, Marco/0000-0003-2992-3805;
Cascella, Michele/0000-0003-2091-2501; Pina, Joao /0000-0001-8959-5044;
Conde Muino, Patricia/0000-0002-9187-7478; Santamarina Rios,
Cibran/0000-0002-9810-1816; Bosman, Martine/0000-0002-7290-643X; Ferrer,
Antonio/0000-0003-0532-711X; Tikhomirov, Vladimir/0000-0002-9634-0581;
Fullana Torregrosa, Esteban/0000-0003-3082-621X; Maneira,
Jose/0000-0002-3222-2738; Mindur, Bartosz/0000-0002-5511-2611; Solodkov,
Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368;
Karyukhin, Andrey/0000-0001-9087-4315; Tartarelli, Giuseppe
Francesco/0000-0002-4244-502X; Gomes, Agostinho/0000-0002-5940-9893;
Maio, Amelia/0000-0001-9099-0009; Mendes Saraiva, Joao
Gentil/0000-0002-7006-0864; Beck, Hans Peter/0000-0001-7212-1096;
Carvalho, Joao/0000-0002-3015-7821; PAGANIS, STATHES/0000-0002-1950-8993
FU European Community [MRTN-CT-2006-035657]; GRICES; FCT, Portugal
FX A very important ingredient of the 2004 ATLAS CTB has been the mechanics
of the two calorimeters support and movement. We would like to
acknowledge Danilo Giugni, Simone Coelli and Giampiero Braga from INFN
Milano for the design, overview of the production and testing of the LAr
calorimeter support table. We wish to thank Claude Ferrari, Pierre
Gimenez, Yves Bonnet, Denis Gacon and Alain Pinget of CERN EN/MEF group
for the continuous mechanical support provided in the CERN SPS North Are
during the installation of the setup and the data taking. This work was
supported in part by the European Community, through the ARTEMIS
Research Training Network (Contract number MRTN-CT-2006-035657) and by
GRICES and FCT, Portugal.
NR 19
TC 10
Z9 10
U1 1
U2 16
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD AUG 11
PY 2009
VL 607
IS 2
BP 372
EP 386
DI 10.1016/j.nima.2009.05.158
PG 15
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 487PA
UT WOS:000269285700008
ER
PT J
AU Petri, M
Paul, ES
Nolan, PJ
Boston, AJ
Boston, HC
Cooper, RJ
Dimmock, MR
Gros, S
McGuirk, BM
Turk, G
Guinet, D
Lautesse, P
Meyer, M
Redon, N
Rosse, B
Schmitt, C
Stezowski, O
Bhattacharyya, S
De France, G
Mukherjee, G
Rejmund, F
Savajols, H
Scheurer, JN
Gal, J
Molnar, J
Nyako, BM
Timar, J
Zolnai, L
Juhasz, K
Astier, A
Deloncle, I
Porquet, MG
Prevost, A
Pucknell, VFE
Wadsworth, R
Joshi, P
La Rana, G
Moro, R
Trotta, M
Vardaci, E
Hackman, G
Ball, GC
AF Petri, M.
Paul, E. S.
Nolan, P. J.
Boston, A. J.
Boston, H. C.
Cooper, R. J.
Dimmock, M. R.
Gros, S.
McGuirk, B. M.
Turk, G.
Guinet, D.
Lautesse, Ph.
Meyer, M.
Redon, N.
Rosse, B.
Schmitt, Ch.
Stezowski, O.
Bhattacharyya, S.
De France, G.
Mukherjee, G.
Rejmund, F.
Savajols, H.
Scheurer, J. N.
Gal, J.
Molnar, J.
Nyako, B. M.
Timar, J.
Zolnai, L.
Juhasz, K.
Astier, A.
Deloncle, I.
Porquet, M. G.
Prevost, A.
Pucknell, V. F. E.
Wadsworth, R.
Joshi, P.
La Rana, G.
Moro, R.
Trotta, M.
Vardaci, E.
Hackman, G.
Ball, G. C.
TI The use of EXOGAM for in-beam spectroscopy of proton drip-line nuclei
with radioactive ion beams
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE EXOGAM array of HPGe detectors; DIAMANT array of CsI charged-particle
detectors; Radioactive ion beam; Linear polarisation; Segmented Clover
germanium detector
ID GAMMA-RAY SPECTROSCOPY; COMPTON POLARIMETER; SEGMENTED CLOVER; SPIRAL
BEAMS; DETECTOR; SPECTROMETER; CALIBRATION; REGION; VAMOS; ARRAY
AB One of the first fusion-evaporation experiments using radioactive ion beams was performed at GANIL in order to study proton-rich nuclei of the light rare-earth region. The low production cross-section of the exotic species of interest, in combination with the low intensity of the beam and its induced background, demanded the use of a highly efficient experimental setup. This consisted of the EXOGAM gamma-ray spectrometer coupled for the first time with both the DIAMANT charged-particle array and the VAMOS recoil spectrometer. in this report the experimental challenges of such studies will be discussed and the experimental achievements of the in-beam spectroscopy of proton drip-line nuclei using EXOGAM will be presented. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Petri, M.; Paul, E. S.; Nolan, P. J.; Boston, A. J.; Boston, H. C.; Cooper, R. J.; Dimmock, M. R.; Gros, S.; McGuirk, B. M.; Turk, G.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England.
[Guinet, D.; Lautesse, Ph.; Meyer, M.; Redon, N.; Rosse, B.; Schmitt, Ch.; Stezowski, O.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France.
[Bhattacharyya, S.; De France, G.; Mukherjee, G.; Rejmund, F.; Savajols, H.] GANIL, F-14076 Caen 5, France.
[Gal, J.; Molnar, J.; Nyako, B. M.; Timar, J.; Zolnai, L.] Hungarian Acad Sci, Inst Nucl Res, H-4001 Debrecen, Hungary.
[Scheurer, J. N.] Univ Bordeaux 1, CNRS, IN2P3, CEN Bordeaux Gradignan, F-33170 Gradignan, France.
[Juhasz, K.] Univ Debrecen, Dept Informat Technol, H-4010 Debrecen, Hungary.
[Astier, A.; Deloncle, I.; Porquet, M. G.; Prevost, A.] CNRS, IN2P3, CSNSM Orsay, F-91405 Orsay, France.
[Pucknell, V. F. E.] STFC, Daresbury Lab, Warrington WA4 4AD, Cheshire, England.
[Wadsworth, R.; Joshi, P.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England.
[La Rana, G.; Moro, R.; Trotta, M.; Vardaci, E.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy.
[Hackman, G.; Ball, G. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada.
RP Petri, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA.
EM MPetri@lbl.gov
RI Petri, Marina/H-4630-2016
OI Petri, Marina/0000-0002-3740-6106
FU United Kingdom Engineering and Physical Sciences Research Council; EU
[RII3-CT-2004-506065]; Hungarian Scientific Research Fund, OTKA [K72566]
FX This work was supported in part by the United Kingdom Engineering and
Physical Sciences Research Council and the EU through the EURONS project
under Contract no. RII3-CT-2004-506065. Partial support from the
Hungarian Scientific Research Fund, OTKA, under Contract no. K72566 is
also acknowledged.
NR 22
TC 5
Z9 5
U1 0
U2 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
EI 1872-9576
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD AUG 11
PY 2009
VL 607
IS 2
BP 412
EP 420
DI 10.1016/j.nima.2009.04.031
PG 9
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 487PA
UT WOS:000269285700012
ER
PT J
AU Ianakiev, KD
Alexandrov, BS
Littlewood, PB
Browne, MC
AF Ianakiev, K. D.
Alexandrov, B. S.
Littlewood, P. B.
Browne, M. C.
TI Temperature behavior of NaI(Tl) scintillation detectors
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE NaI(Tl); Inorganic scintillators; Two decay components; Temperature
dependence; Light yield; Linear dependence of light output; Temperature
redistribution; Light pulse; Temperature-dependent shape; Step response;
Rise-time compensation
ID MODEL
AB It is a familiar fact that the total measured light yield of NaI(Tl) detectors is a nonlinear function of temperature. Here we present new experimental data for the temperature behavior of doped NaI(Tl) scintillators that instead shows a linear dependence of the light output over a wide temperature range-including that for outdoor applications. The shape of the light pulse shows, in general, two decay processes: a single dominant process (one decay-time constant) above the room temperature and two processes (two decay-time constants) below the room temperature. We show that the redistribution of the intensities between the two processes is temperature dependent: the second (slow) decay component is negligible at room temperatures, but by -20 degrees C, it contributes up to 40% of the total light and has a duration of several microseconds. We discuss the profound effect this new understanding of the light output has on the pulse-height analysis instrumentation. We introduce a theoretical model to explain the experimental results. In addition, we describe a unique technique for correcting both amplitude and shape temperature changes inside the NaI(Tl) detector package. Published by Elsevier B.V.
C1 [Ianakiev, K. D.; Alexandrov, B. S.; Browne, M. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Alexandrov, B. S.] Univ New Mexico, Albuquerque, NM 87131 USA.
[Littlewood, P. B.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England.
RP Ianakiev, KD (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
EM ianakiev@lanl.gov
RI Cavendish, TCM/C-9489-2009; Littlewood, Peter/B-7746-2008; Alexandrov,
Boian/D-2488-2010;
OI Alexandrov, Boian/0000-0001-8636-4603; Ianakiev,
Kiril/0000-0002-5074-0715
NR 22
TC 14
Z9 14
U1 0
U2 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD AUG 11
PY 2009
VL 607
IS 2
BP 432
EP 438
DI 10.1016/j.nima.2009.02.019
PG 7
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 487PA
UT WOS:000269285700014
ER
PT J
AU Niles, JC
DeRisi, JL
Marletta, MA
AF Niles, Jacquin C.
DeRisi, Joseph L.
Marletta, Michael A.
TI Inhibiting Plasmodium falciparum growth and heme detoxification pathway
using heme-binding DNA aptamers
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
ID IN-VITRO SELECTION; RED-BLOOD-CELLS; MALARIA PARASITES;
FERRIPROTOPORPHYRIN IX; HEMOZOIN PRODUCTION; CYSTEINE PROTEASES; RNA
INTERFERENCE; GENE-EXPRESSION; CELLULAR UPTAKE; CHLOROQUINE
AB The human parasite Plasmodium falciparum enzymatically digests hemoglobin during its intra-erythrocytic developmental stages in acidic food vacuole compartments. The released heme is rapidly detoxified by polymerization into the chemically inert pigment, hemozoin. Several heme-binding anti-malarial compounds, such as chloroquine, efficiently inhibit this process, and this is believed to be the predominant mechanism by which these drugs induce parasite toxicity. In an effort to expand the biochemical tools available for exploration of this pathogen's basic biology, we chose this heme-detoxification pathway as a model system for exploring the suitability of DNA aptamers for modulating this essential parasite biochemical pathway. In this report, we demonstrate that heme-binding DNA aptamers efficiently inhibit in vitro hemozoin formation catalyzed by either a model lipid system or parasite-derived extracts just as or more potently than chloroquine. Furthermore, when parasites are grown in red cells loaded with heme-binding aptamers, their growth is significantly inhibited relative to parasites exposed to non-heme-binding DNA oligonucleotides. Both the timing of parasite-induced toxicity and the concentration of heme-binding aptamer required for inducing toxicity correlate well with the uptake of red cell cytosolic components by the parasite, and the requirement for compounds with similar in vitro hemozoin inhibitory potency to preconcentrate within the parasite before observing toxicity. Thus, these heme-binding aptamers recapitulate the in vitro hemozoin inhibition activity and induce parasite toxicity in a manner consistent with inhibition of this pathway. Altogether, these data demonstrate that aptamers can be versatile tools with applicability in functionally dissecting important P. falciparum-specific pathways both in vitro and in vivo.
C1 [Marletta, Michael A.] Univ Calif Berkeley, Inst QB3, Berkeley, CA 94720 USA.
[Niles, Jacquin C.; Marletta, Michael A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Marletta, Michael A.] Univ Calif Berkeley, Dept Mol & Cellular Biol, Berkeley, CA 94720 USA.
[Marletta, Michael A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys Biosci, Berkeley, CA 94720 USA.
[DeRisi, Joseph L.] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA.
[DeRisi, Joseph L.] Howard Hughes Med Inst, Chevy Chase, MD 20815 USA.
RP Marletta, MA (reprint author), Univ Calif Berkeley, Inst QB3, 570 Stanley Hall, Berkeley, CA 94720 USA.
EM marletta@berkeley.edu
FU National Institutes of Health Postdoctoral Fellowship; Howard Hughes
Medical Institute; Aldo DeBenedictis Fund
FX This work was supported by an National Institutes of Health Postdoctoral
Fellowship (J. C. N.), Howard Hughes Medical Institute (J. L. D), and
the Aldo DeBenedictis Fund (M. A. M).
NR 48
TC 15
Z9 15
U1 0
U2 9
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD AUG 11
PY 2009
VL 106
IS 32
BP 13266
EP 13271
DI 10.1073/pnas.0906370106
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 482IA
UT WOS:000268877300024
PM 19633187
ER
PT J
AU Jin, Y
Jock, RM
Cheng, H
He, Y
Mintarov, AM
Wang, Y
Kurdak, C
Merz, JL
Goldman, RS
AF Jin, Y.
Jock, R. M.
Cheng, H.
He, Y.
Mintarov, A. M.
Wang, Y.
Kurdak, C.
Merz, J. L.
Goldman, R. S.
TI Influence of N interstitials on the electronic properties of GaAsN
alloys
SO APPLIED PHYSICS LETTERS
LA English
DT Article
DE carrier density; carrier mobility; conduction bands; gallium arsenide;
gallium compounds; III-V semiconductors; impurity states; interstitials;
nuclear chemical analysis; Raman spectra; rapid thermal annealing;
semiconductor thin films; wide band gap semiconductors
ID NITROGEN INCORPORATION; GA(AS,N); LAYERS; TEMPERATURE
AB We have used rapid thermal annealing to investigate the influence of N interstitials on the electronic properties of GaAsN alloys. Nuclear reaction analysis reveals an annealing-induced decrease in the interstitial N concentration, while the total N composition remains constant. Corresponding signatures for the reduced interstitial N concentration are apparent in Raman spectra. Following annealing, both the room-T carrier concentration, n, and the mobility increase. At higher measurement-Ts, a thermally activated increase in n suggests the presence of a trap near GaAsN conduction band edge with activation energy 85 +/- 15 meV. The annealing-induced increase in n suggests the association of the trap with interstitial N.
C1 [Jin, Y.; Jock, R. M.; Goldman, R. S.] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA.
[Jin, Y.; Jock, R. M.; Cheng, H.; Kurdak, C.; Goldman, R. S.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA.
[He, Y.; Mintarov, A. M.; Merz, J. L.] Univ Notre Dame, Dept Elect Engn, Notre Dame, IN 46556 USA.
[Wang, Y.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Goldman, RS (reprint author), Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA.
EM rsgold@umich.edu
RI Goldman, Rachel/J-9091-2012
FU National Science Foundation through a Focused Research Group [DMR
0606406]; Intel Foundation, and the Center for Integrated
Nanotechnologies (CINT); U.S. Department of Energy (DOE)
[DE-AC02-06CH11357]
FX We gratefully acknowledge the support of the National Science Foundation
through a Focused Research Group (Grant No. DMR 0606406), monitored by
Dr. LaVerne Hess, the Intel Foundation, and the Center for Integrated
Nanotechnologies (CINT) jointly operated by Los Alamos and Sandia
National Laboratories for the U.S. Department of Energy (DOE). The use
of the Raman facilities of the Center for Nanoscale Materials was
supported by the U.S. DOE, under Contract No. DE-AC02-06CH11357.
NR 19
TC 16
Z9 16
U1 1
U2 17
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD AUG 10
PY 2009
VL 95
IS 6
AR 062109
DI 10.1063/1.3187915
PG 3
WC Physics, Applied
SC Physics
GA 484PZ
UT WOS:000269060600029
ER
PT J
AU Park, JW
Baek, SH
Bark, CW
Biegalski, MD
Eom, CB
AF Park, J. W.
Baek, S. H.
Bark, C. W.
Biegalski, M. D.
Eom, C. B.
TI Quasi-single-crystal (001) SrTiO3 templates on Si
SO APPLIED PHYSICS LETTERS
LA English
DT Article
DE annealing; buffer layers; elemental semiconductors; epitaxial layers;
etching; molecular beam epitaxial growth; semiconductor-insulator
boundaries; silicon; strontium compounds; surface morphology
ID THIN-FILMS; OXIDES; INSULATOR
AB The integration of multifunctional oxides on semiconductor devices requires the formation of single-crystal-like oxide templates directly on silicon. We report the fabrication of quasi-single-crystal (001) SrTiO3 templates on (001) Si by annealing 100 nm thick molecular beam epitaxy-grown epitaxial SrTiO3 films at 900 degrees C. The full width at half maximum of the (002) rocking curve is 0.006 degrees, which is much narrower than SrTiO3 bulk single crystals. An atomically smooth TiO2-terminated surface is obtained by buffered-HF etching, which allows us to create functional oxide heterointerfaces on Si. Epitaxial SrRuO3 thin films grown on the quasi-single-crystal SrTiO3 template exhibit a superior crystalline quality and surface morphology.
C1 [Park, J. W.; Baek, S. H.; Bark, C. W.; Eom, C. B.] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA.
[Biegalski, M. D.] Ctr Nanophase Mat Sci, Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA.
RP Eom, CB (reprint author), Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA.
EM eom@engr.wisc.edu
RI Baek, Seung-Hyub/B-9189-2013; Eom, Chang-Beom/I-5567-2014;
OI Bark, Chung Wung/0000-0002-9394-4240
FU National Science Foundation [DMR-0906443]; Korean government (MOEHRD)
[KRF-2007-357-D00116]; Scientific User Facilities Division; Office of
Basic Energy Sciences; U.S. Department of Energy
FX The authors would like to acknowledge the support by the National
Science Foundation through Grant No. DMR-0906443, Nanochip and IQE for
providing wafers to perform these experiments. This work was partially
supported by the Korea Research Foundation Grant funded by Korean
government (MOEHRD) (Grant No. KRF-2007-357-D00116). The research at
ORNL's Center for Nanophase Materials Sciences was sponsored by the
Scientific User Facilities Division, Office of Basic Energy Sciences,
U.S. Department of Energy.
NR 18
TC 18
Z9 18
U1 0
U2 18
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD AUG 10
PY 2009
VL 95
IS 6
AR 061902
DI 10.1063/1.3202398
PG 3
WC Physics, Applied
SC Physics
GA 484PZ
UT WOS:000269060600011
ER
PT J
AU Simonetti, F
Huang, L
Duric, N
AF Simonetti, F.
Huang, L.
Duric, N.
TI A multiscale approach to diffraction tomography of complex
three-dimensional objects
SO APPLIED PHYSICS LETTERS
LA English
DT Article
DE light diffraction; optical tomography
ID ULTRASOUND; CANCER
AB Tomography of complex three-dimensional objects with diffractive waves remains an open challenge due to the large number of scattering measurements required to obtain a stable solution to the inverse problem of reconstructing an image of the object from a set of independent scattering experiments. Here, this problem is addressed with a multiscale approach that is demonstrated experimentally using ultrasonic waves and which leads to high resolution images comparable to x-ray computerized tomography but without the limitations associated with ionizing radiation.
C1 [Simonetti, F.] Univ London Imperial Coll Sci Technol & Med, Dept Mech Engn, London SW7 2AZ, England.
[Huang, L.] Los Alamos Natl Lab, MS D443, Los Alamos, NM 87545 USA.
[Duric, N.] Wayne State Univ, Karmanos Canc Inst, Detroit, MI 48201 USA.
RP Simonetti, F (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Mech Engn, London SW7 2AZ, England.
EM f.simonetti@imperial.ac.uk
OI Simonetti, Francesco/0000-0001-8772-0323
FU U.S. DOE Laboratory-Directed Research and Development; U.K. Royal
Academy of Engineering/EPSRC; Michigan Economic Development Corporation
(MEDC) [MEDC 06-1-P1-0653]
FX This work was supported through the U.S. DOE Laboratory-Directed
Research and Development program at Los Alamos National Laboratory. F.
S. is supported by the U.K. Royal Academy of Engineering/EPSRC. N.D. is
supported by the Michigan Economic Development Corporation (MEDC) under
Grant No. MEDC 06-1-P1-0653.
NR 10
TC 5
Z9 5
U1 0
U2 1
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD AUG 10
PY 2009
VL 95
IS 6
AR 061904
DI 10.1063/1.3204021
PG 3
WC Physics, Applied
SC Physics
GA 484PZ
UT WOS:000269060600013
ER
PT J
AU Yang, SY
Martin, LW
Byrnes, SJ
Conry, TE
Basu, SR
Paran, D
Reichertz, L
Ihlefeld, J
Adamo, C
Melville, A
Chu, YH
Yang, CH
Musfeldt, JL
Schlom, DG
Ager, JW
Ramesh, R
AF Yang, S. Y.
Martin, L. W.
Byrnes, S. J.
Conry, T. E.
Basu, S. R.
Paran, D.
Reichertz, L.
Ihlefeld, J.
Adamo, C.
Melville, A.
Chu, Y. -H.
Yang, C. -H.
Musfeldt, J. L.
Schlom, D. G.
Ager, J. W., III
Ramesh, R.
TI Photovoltaic effects in BiFeO3
SO APPLIED PHYSICS LETTERS
LA English
DT Article
DE bismuth compounds; ferroelectric thin films; indium; photovoltaic
effects; polarisation; tin compounds
ID FILMS; FERROELECTRICS; POLARIZATION; DIODE
AB We report a photovoltaic effect in ferroelectric BiFeO3 thin films. The all-oxide heterostructures with SrRuO3 bottom and tin doped indium oxide top electrodes are characterized by open-circuit voltages similar to 0.8-0.9 V and external quantum efficiencies up to similar to 10% when illuminated with the appropriate light. Efficiencies are at least an order of magnitude larger than the maximum efficiency under sunlight (AM 1.5) thus far reported for ferroelectric-based devices. The dependence of the measured open-circuit voltage on film thickness suggests contributions to the large open-circuit voltage from both the ferroelectric polarization and band offsets at the BiFeO3/tin doped indium oxide interface.
C1 [Yang, S. Y.; Conry, T. E.; Basu, S. R.; Paran, D.; Ramesh, R.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
[Martin, L. W.; Byrnes, S. J.; Conry, T. E.; Reichertz, L.; Ager, J. W., III; Ramesh, R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Sci Mat, Berkeley, CA 94720 USA.
[Byrnes, S. J.; Yang, C. -H.; Ramesh, R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Ihlefeld, J.; Adamo, C.; Melville, A.; Schlom, D. G.] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA.
[Chu, Y. -H.] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan.
[Musfeldt, J. L.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA.
RP Yang, SY (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
EM lwmartin@lbl.gov
RI Ihlefeld, Jon/B-3117-2009; Ying-Hao, Chu/A-4204-2008; YANG,
CHAN-HO/C-2079-2011; Martin, Lane/H-2409-2011; Schlom,
Darrell/J-2412-2013;
OI Ying-Hao, Chu/0000-0002-3435-9084; Martin, Lane/0000-0003-1889-2513;
Schlom, Darrell/0000-0003-2493-6113; Byrnes, Steven/0000-0002-4023-8086;
Ager, Joel/0000-0001-9334-9751
FU U.S. Department of Energy [DE-AC02-05CH11231, FEG02-01ER45885]; National
Science Foundation [DMR-0820404]
FX The work at Berkeley is supported by the Helios Solar Energy Research
Center, which is supported by the Director, Office of Science, Office of
Basic Energy Sciences of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231. The work at Cornell is funded by the National
Science Foundation through Grant No. DMR-0820404. The work at Tennessee
is funded by the Materials Science Division, Office of Basic Energy
Sciences, U.S. Department of Energy under Contract No.
DE-FEG02-01ER45885. (S.Y.Y. and L. W. M. contributed equally to this
work.)
NR 23
TC 249
Z9 261
U1 27
U2 227
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD AUG 10
PY 2009
VL 95
IS 6
AR 062909
DI 10.1063/1.3204695
PG 3
WC Physics, Applied
SC Physics
GA 484PZ
UT WOS:000269060600051
ER
PT J
AU Staniszewski, Z
Ade, PAR
Aird, KA
Benson, BA
Bleem, LE
Carlstrom, JE
Chang, CL
Cho, HM
Crawford, TM
Crites, AT
de Haan, T
Dobbs, MA
Halverson, NW
Holder, GP
Holzapfel, WL
Hrubes, JD
Joy, M
Keisler, R
Lanting, TM
Lee, AT
Leitch, EM
Loehr, A
Lueker, M
McMahon, JJ
Mehl, J
Meyer, SS
Mohr, JJ
Montroy, TE
Ngeow, CC
Padin, S
Plagge, T
Pryke, C
Reichardt, CL
Ruhl, JE
Schaffer, KK
Shaw, L
Shirokoff, E
Spieler, HG
Stalder, B
Stark, AA
Vanderlinde, K
Vieira, JD
Zahn, O
Zenteno, A
AF Staniszewski, Z.
Ade, P. A. R.
Aird, K. A.
Benson, B. A.
Bleem, L. E.
Carlstrom, J. E.
Chang, C. L.
Cho, H. -M.
Crawford, T. M.
Crites, A. T.
de Haan, T.
Dobbs, M. A.
Halverson, N. W.
Holder, G. P.
Holzapfel, W. L.
Hrubes, J. D.
Joy, M.
Keisler, R.
Lanting, T. M.
Lee, A. T.
Leitch, E. M.
Loehr, A.
Lueker, M.
McMahon, J. J.
Mehl, J.
Meyer, S. S.
Mohr, J. J.
Montroy, T. E.
Ngeow, C. -C.
Padin, S.
Plagge, T.
Pryke, C.
Reichardt, C. L.
Ruhl, J. E.
Schaffer, K. K.
Shaw, L.
Shirokoff, E.
Spieler, H. G.
Stalder, B.
Stark, A. A.
Vanderlinde, K.
Vieira, J. D.
Zahn, O.
Zenteno, A.
TI GALAXY CLUSTERS DISCOVERED WITH A SUNYAEV-ZEL'DOVICH EFFECT SURVEY
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE cosmic microwave background; cosmology: observations; galaxies:
clusters: general
ID SOUTH-POLE TELESCOPE; SOURCE CATALOG; POWER SPECTRUM; CONSTRAINTS;
ENERGY; SCALE; MASS; ANISOTROPIES; COSMOLOGY; UNIVERSE
AB The South Pole Telescope (SPT) is conducting a Sunyaev-Zel'dovich (SZ) effect survey over large areas of the southern sky, searching for massive galaxy clusters to high redshift. In this preliminary study, we focus on a 40 deg(2) area targeted by the Blanco Cosmology Survey (BCS), which is centered roughly at right ascension 5(h)30(m), declination -53 degrees (J2000). Over two seasons of observations, this entire region has been mapped by the SPT at 95 GHz, 150 GHz, and 225 GHz. We report the four most significant SPT detections of SZ clusters in this field, three of which were previously unknown and, therefore, represent the first galaxy clusters discovered with an SZ survey. The SZ clusters are detected as decrements with greater than 5 sigma significance in the high-sensitivity 150 GHz SPT map. The SZ spectrum of these sources is confirmed by detections of decrements at the corresponding locations in the 95 GHz SPT map and nondetections at those locations in the 225 GHz SPT map. Multiband optical images from the BCS survey demonstrate significant concentrations of similarly colored galaxies at the positions of the SZ detections. Photometric redshift estimates from the BCS data indicate that two of the clusters lie at moderate redshift (z similar to 0.4) and two at high redshift (z greater than or similar to 0.8). One of the SZ detections was previously identified as a galaxy cluster in the optical as part of the Abell supplementary southern cluster catalog and in the X-ray using data from the ROSAT All-Sky Survey (RASS). Potential RASS counterparts (not previously identified as clusters) are also found for two of the new discoveries. These first four galaxy clusters are the most significant SZ detections from a subset of the ongoing SPT survey. As such, they serve as a demonstration that SZ surveys, and the SPT in particular, can be an effective means for finding galaxy clusters.
C1 [Staniszewski, Z.; Montroy, T. E.; Ruhl, J. E.] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA.
[Staniszewski, Z.; Montroy, T. E.; Ruhl, J. E.] Case Western Reserve Univ, Ctr Educ & Res Cosmol & Astrophys, Cleveland, OH 44106 USA.
[Ade, P. A. R.] Cardiff Univ, Dept Phys & Astron, Cardiff CF24 3YB, S Glam, Wales.
[Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Keisler, R.; Leitch, E. M.; McMahon, J. J.; Meyer, S. S.; Padin, S.; Pryke, C.; Schaffer, K. K.; Vanderlinde, K.; Vieira, J. D.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Benson, B. A.; Cho, H. -M.; Holzapfel, W. L.; Lee, A. T.; Lueker, M.; Mehl, J.; Plagge, T.; Reichardt, C. L.; Shirokoff, E.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Bleem, L. E.; Carlstrom, J. E.; Keisler, R.; Meyer, S. S.; Vieira, J. D.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA.
[Carlstrom, J. E.; Crawford, T. M.; Crites, A. T.; Leitch, E. M.; Meyer, S. S.; Padin, S.; Pryke, C.; Vanderlinde, K.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA.
[Carlstrom, J. E.; Chang, C. L.; McMahon, J. J.; Meyer, S. S.; Pryke, C.; Schaffer, K. K.; Vanderlinde, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[de Haan, T.; Dobbs, M. A.; Holder, G. P.; Lanting, T. M.; Shaw, L.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada.
[Halverson, N. W.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA.
[Halverson, N. W.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA.
[Joy, M.] NASA, George C Marshall Space Flight Ctr, Dept Space Sci, Huntsville, AL 35812 USA.
[Lee, A. T.; Spieler, H. G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA.
[Loehr, A.; Stalder, B.; Stark, A. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Mohr, J. J.; Ngeow, C. -C.; Zenteno, A.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA.
[Mohr, J. J.; Ngeow, C. -C.; Zenteno, A.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
[Zahn, O.] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Dept Phys, Berkeley, CA 94720 USA.
[Zahn, O.] Lawrence Berkeley Natl Labs, Berkeley, CA 94720 USA.
RP Staniszewski, Z (reprint author), Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA.
EM tcrawfor@kicp.uchicago.edu
RI Holzapfel, William/I-4836-2015;
OI Aird, Kenneth/0000-0003-1441-9518; Reichardt,
Christian/0000-0003-2226-9169; Stark, Antony/0000-0002-2718-9996
NR 53
TC 153
Z9 153
U1 0
U2 8
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD AUG 10
PY 2009
VL 701
IS 1
BP 32
EP 41
DI 10.1088/0004-637X/701/1/32
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 475ES
UT WOS:000268341800005
ER
PT J
AU Halverson, NW
Lanting, T
Ade, PAR
Basu, K
Bender, AN
Benson, BA
Bertoldi, F
Cho, HM
Chon, G
Clarke, J
Dobbs, M
Ferrusca, D
Gusten, R
Holzapfel, WL
Kovacs, A
Kennedy, J
Kermish, Z
Kneissl, R
Lee, AT
Lueker, M
Mehl, J
Menten, KM
Muders, D
Nord, M
Pacaud, F
Plagge, T
Reichardt, C
Richards, PL
Schaaf, R
Schilke, P
Schuller, F
Schwan, D
Spieler, H
Tucker, C
Weiss, A
Zahn, O
AF Halverson, N. W.
Lanting, T.
Ade, P. A. R.
Basu, K.
Bender, A. N.
Benson, B. A.
Bertoldi, F.
Cho, H. -M.
Chon, G.
Clarke, J.
Dobbs, M.
Ferrusca, D.
Guesten, R.
Holzapfel, W. L.
Kovacs, A.
Kennedy, J.
Kermish, Z.
Kneissl, R.
Lee, A. T.
Lueker, M.
Mehl, J.
Menten, K. M.
Muders, D.
Nord, M.
Pacaud, F.
Plagge, T.
Reichardt, C.
Richards, P. L.
Schaaf, R.
Schilke, P.
Schuller, F.
Schwan, D.
Spieler, H.
Tucker, C.
Weiss, A.
Zahn, O.
TI SUNYAEV-ZEL'DOVICH EFFECT OBSERVATIONS OF THE BULLET CLUSTER (1E
0657-56) WITH APEX-SZ
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE cosmic microwave background; cosmology: observations; galaxies:
clusters: individual (1E 0657-56)
ID GALAXY CLUSTERS; X-RAY; XMM-NEWTON; DATA REDUCTION; SOUTH-POLE; MASS;
GAS; BRIGHTNESS; 1E0657-56; FRACTION
AB We present observations of the Sunyaev-Zel'dovich effect (SZE) in the Bullet cluster (1E 0657-56) using the APEX-SZ instrument at 150 GHz with a resolution of 1'. The main results are maps of the SZE in this massive, merging galaxy cluster. The cluster is detected with 23 sigma significance within the central 1' radius of the source position. The SZE map has a broadly similar morphology to that in existing X-ray maps of this system, and we find no evidence for significant contamination of the SZE emission by radio or IR sources. In order to make simple quantitative comparisons with cluster gas models derived from X-ray observations, we fit our data to an isothermal elliptical beta model, despite the inadequacy of such a model for this complex merging system. With an X-ray-derived prior on the power-law index, beta = 1.04(-0.10)(+0.16), we find a core radius r(c) = 142 '' +/- 18 '', an axial ratio of 0.889 +/- 0.072, and a central temperature decrement of -771 +/- 71 mu K(CMB), including a +/- 5.5% flux calibration uncertainty. Combining the APEX-SZ map with a map of projected electron surface density from Chandra Xray observations, we determine the mass-weighted temperature of the cluster gas to be T(mg) = 10.8 +/- 0.9 keV, significantly lower than some previously reported X-ray spectroscopic temperatures. Under the assumption of an isothermal cluster gas distribution in hydrostatic equilibrium, we compute the gas mass fraction for prolate and oblate spheroidal geometries and find it to be consistent with previous results from X-ray and weak-lensing observations. This work is the first result from the APEX-SZ experiment, and represents the first reported scientific result from observations with a large array of multiplexed superconducting transition-edge sensor bolometers.
C1 [Halverson, N. W.; Bender, A. N.] Univ Colorado, Dept Astrophys & Planetary Sci, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA.
[Halverson, N. W.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA.
[Lanting, T.; Dobbs, M.; Kennedy, J.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada.
[Ade, P. A. R.; Tucker, C.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3YB, S Glam, Wales.
[Basu, K.; Bertoldi, F.; Nord, M.; Pacaud, F.; Schaaf, R.] Univ Bonn, Argelander Inst Astron, D-5300 Bonn, Germany.
[Benson, B. A.; Clarke, J.; Ferrusca, D.; Holzapfel, W. L.; Kermish, Z.; Lee, A. T.; Lueker, M.; Mehl, J.; Plagge, T.; Reichardt, C.; Richards, P. L.; Schwan, D.; Zahn, O.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Cho, H. -M.] Natl Inst Stand & Technol, Boulder, CO 80305 USA.
[Chon, G.; Guesten, R.; Kovacs, A.; Kneissl, R.; Menten, K. M.; Muders, D.; Nord, M.; Schilke, P.; Schuller, F.; Weiss, A.] Max Planck Inst Radioastron, D-53121 Bonn, Germany.
[Clarke, J.; Lee, A. T.; Spieler, H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Halverson, NW (reprint author), Univ Colorado, Dept Astrophys & Planetary Sci, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA.
RI Holzapfel, William/I-4836-2015; Kovacs, Attila/C-1171-2010;
OI Kovacs, Attila/0000-0001-8991-9088; Reichardt,
Christian/0000-0003-2226-9169; Tucker, Carole/0000-0002-1851-3918
FU National Science Foundation [AST-0138348, AST-0709497]; Director, Office
of Science, Office of High Energy and Nuclear Physics, of the U.S.
Department of Energy [DE-AC02-05CH11231]; Natural Sciences and
Engineering Research Council of Canada; Canadian Institute for Advanced
Research; MPG Berkeley-Munich; Alfred P. Sloan Research Fellowship
FX We thank the staff at the APEX telescope site, led by David Rabanus and
previously by Lars-Ake Nyman, for their dedicated and exceptional
support. We also thank LBNL engineers John Joseph and Chinh Vu for their
work on the readout electronics. APEX-SZ is funded by the National
Science Foundation under grants AST-0138348 and AST-0709497. Work at
LBNL is supported by the Director, Office of Science, Office of High
Energy and Nuclear Physics, of the U.S. Department of Energy under
contract no. DE-AC02-05CH11231. Work at McGill is supported by the
Natural Sciences and Engineering Research Council of Canada and the
Canadian Institute for Advanced Research. R. K. acknowledges partial
financial support from MPG Berkeley-Munich fund. N. W. H. acknowledges
support from an Alfred P. Sloan Research Fellowship.
NR 45
TC 43
Z9 43
U1 0
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD AUG 10
PY 2009
VL 701
IS 1
BP 42
EP 51
DI 10.1088/0004-637X/701/1/42
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 475ES
UT WOS:000268341800006
ER
PT J
AU Hainline, KN
Shapley, AE
Kornei, KA
Pettini, M
Buckley-Geer, E
Allam, SS
Tucker, DL
AF Hainline, Kevin N.
Shapley, Alice E.
Kornei, Katherine A.
Pettini, Max
Buckley-Geer, Elizabeth
Allam, Sahar S.
Tucker, Douglas L.
TI REST-FRAME OPTICAL SPECTRA OF THREE STRONGLY LENSED GALAXIES AT z
similar to 2
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE galaxies: abundances; galaxies: evolution; galaxies: high-redshift;
gravitational lensing
ID STAR-FORMING GALAXIES; LYMAN BREAK GALAXY; MASS-METALLICITY RELATION;
HIGH-REDSHIFT GALAXIES; DIGITAL SKY SURVEY; MS 1512-CB58; CHEMICAL
ABUNDANCES; PHYSICAL CONDITIONS; STARBURST GALAXIES; STELLAR POPULATION
AB We present Keck II NIRSPEC rest-frame optical spectra for three recently discovered lensed galaxies: the Cosmic Horseshoe (z = 2.38), the Clone (z = 2.00), and SDSS J090122.37+181432.3 (z = 2.26). The boost in signal-to-noise ratio (S/N) from gravitational lensing provides an unusually detailed view of the physical conditions in these objects. A full complement of high S/N rest-frame optical emission lines is measured, spanning from rest frame 3600 to 6800 angstrom, including robust detections of fainter lines such as H gamma, [S II]lambda 6717,6732, and in one instance [Ne III]lambda 3869. SDSS J090122.37+181432.3 shows evidence for active galactic nucleus activity, and therefore we focus our analysis on star-forming regions in the Cosmic Horseshoe and the Clone. For these two objects, we estimate a wide range of physical properties. Current lensing models for the Cosmic Horseshoe and the Clone allow us to correct the measured Ha luminosity and calculated star formation rate. Metallicities have been estimated with a variety of indicators, which span a range of values of 12 + log(O/H) = 8.3-8.8, between similar to 0.4 and similar to 1.5 of the solar oxygen abundance. Dynamical masses were computed from the Ha velocity dispersions and measured half-light radii of the reconstructed sources. A comparison of the Balmer lines enabled measurement of dust reddening coefficients. Variations in the line ratios between the different lensed images are also observed, indicating that the spectra are probing different regions of the lensed galaxies. In all respects, the lensed objects appear fairly typical of ultraviolet-selected star-forming galaxies at z similar to 2. The Clone occupies a position on the emission-line diagnostic diagram of [O III]/H beta versus [N II]/H alpha that is offset from the locations of z similar to 0 galaxies. Our new NIRSPEC measurements may provide quantitative insights into why high-redshift objects display such properties. From the [S II] line ratio, high electron densities (similar to 1000 cm(-3)) are inferred compared to local galaxies, and [O III]/[O II] line ratios indicate higher ionization parameters compared to the local population. Building on previous similar results at z similar to 2, these measurements provide further evidence (at high S/N) that star-forming regions are significantly different in high-redshift galaxies, compared to their local counterparts.
C1 [Hainline, Kevin N.; Shapley, Alice E.; Kornei, Katherine A.] Univ Calif Los Angeles, Dept Astron, Los Angeles, CA 90024 USA.
[Pettini, Max] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England.
[Buckley-Geer, Elizabeth; Allam, Sahar S.; Tucker, Douglas L.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
RP Hainline, KN (reprint author), Univ Calif Los Angeles, Dept Astron, 430 Portola Plaza, Los Angeles, CA 90024 USA.
OI Tucker, Douglas/0000-0001-7211-5729
FU David and Lucile Packard Foundation; Alfred P. Sloan Foundation
FX We thank Xin Liu, Anna Quider, Thomas Diehl, and Huan Lin for their
assistance. We acknowledge Lindsay King for kindly providing the
VLT/FORS2R-band image of the Cosmic Horseshoe. A. E. S. acknowledges
support from the David and Lucile Packard Foundation and the Alfred P.
Sloan Foundation. We wish to extend special thanks to those of Hawaiian
ancestry on whose sacred mountain we are privileged to be guests.
Without their generous hospitality, most of the observations presented
herein would not have been possible.
NR 62
TC 88
Z9 88
U1 0
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD AUG 10
PY 2009
VL 701
IS 1
BP 52
EP 65
DI 10.1088/0004-637X/701/1/52
PG 14
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 475ES
UT WOS:000268341800007
ER
PT J
AU Chan, CK
Liu, SM
Fryer, CL
Psaltis, D
Ozel, F
Rockefeller, G
Melia, F
AF Chan, Chi-Kwan
Liu, Siming
Fryer, Christopher L.
Psaltis, Dimitrios
Oezel, Feryal
Rockefeller, Gabriel
Melia, Fulvio
TI MHD SIMULATIONS OF ACCRETION ONTO Sgr A*: QUIESCENT FLUCTUATIONS,
OUTBURSTS, AND QUASIPERIODICITY
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE accretion, accretion disks; black hole physics; Galaxy: center;
instabilities; MHD; relativity
ID 3-DIMENSIONAL MAGNETOHYDRODYNAMIC SIMULATIONS; SUPERMASSIVE BLACK-HOLE;
X-RAY FLARE; ROSSBY-WAVE INSTABILITY; SAGITTARIUS-A; GALACTIC-CENTER;
SPECTRAL METHODS; ELECTRON ACCELERATION; HYDRODYNAMIC DISKS;
ANGULAR-MOMENTUM
AB High-resolution observations of Sgr A* have revealed a wide variety of phenomena, ranging from intense rapid flares to quasi-periodic oscillations (QPOs), making this object an ideal system to study the properties of low luminosity accreting black holes. In this paper, we use a pseudospectral algorithm to construct and evolve a three-dimensional magnetohydrodynamic (MHD) model of the accretion disk in Sgr A*. Assuming a hybrid thermal nonthermal emission scheme and calibrating the parameters by observations, we show that the MHD turbulence in the environment of Sgr A* can by itself only produce factor two fluctuations in luminosity. These fluctuations cannot explain the magnitude of flares observed in this system. However, we also demonstrate that external forcing of the accretion disk, which may be generated by the "clumpy material" raining down onto the disk from the large-scale flow, do produce outbursts qualitatively similar to those observed by XMM-Newton in X-rays and by ground- based facilities in the near infrared. Strong, but short-term QPOs emerge naturally in the simulated light curves. We attribute these to nonaxisymmetric density perturbations that emerge as the disk evolves back toward its quiescent state.
C1 [Chan, Chi-Kwan] Harvard Smithsonian Ctr Astrophys, Inst Theory & Computat, Cambridge, MA 02138 USA.
[Chan, Chi-Kwan; Fryer, Christopher L.; Psaltis, Dimitrios; Oezel, Feryal; Melia, Fulvio] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA.
[Liu, Siming] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland.
[Fryer, Christopher L.; Rockefeller, Gabriel] Los Alamos Natl Lab, Computat Comp Sci Div, Los Alamos, NM 87545 USA.
[Psaltis, Dimitrios; Oezel, Feryal; Melia, Fulvio] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA.
RP Chan, CK (reprint author), Harvard Smithsonian Ctr Astrophys, Inst Theory & Computat, 60 Garden St, Cambridge, MA 02138 USA.
RI liu, siming/B-5389-2011; Rockefeller, Gabriel/G-2920-2010
OI Rockefeller, Gabriel/0000-0002-9029-5097
FU U.S. Department of Energy at Los Alamos National Laboratory
[DE-AC52-06NA25396]; NSF [AST-0402502]; NASA ATP [NAG5-13374]
FX This work was carried out under the auspices of the National Nuclear
Security Administration of the U.S. Department of Energy at Los Alamos
National Laboratory under Contract No. DE-AC52-06NA25396. At the
University of Arizona, this research was supported by NSF grant
AST-0402502 and NASA ATP grant NAG5-13374. F. M. is grateful to the
University of Melbourne for its support (through a Sir Thomas Lyle
Fellowship and a Miegunyah Fellowship). The simulations were carried out
on the Space Simulator at Los Alamos National Laboratory and on a
Beowulf cluster in the Physics Department at the University of Arizona.
NR 74
TC 32
Z9 32
U1 0
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD AUG 10
PY 2009
VL 701
IS 1
BP 521
EP 534
DI 10.1088/0004-637X/701/1/521
PG 14
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 475ES
UT WOS:000268341800045
ER
PT J
AU Abbasi, R
Abdou, Y
Ackermann, M
Adams, J
Aguilar, J
Ahlers, M
Andeen, K
Auffenberg, J
Bai, X
Baker, M
Barwick, SW
Bay, R
Alba, JLB
Beattie, K
Beatty, JJ
Bechet, S
Becker, JK
Becker, KH
Benabderrahmane, ML
Berdermann, J
Berghaus, P
Berley, D
Bernardini, E
Bertrand, D
Besson, DZ
Bissok, M
Blaufuss, E
Boersma, DJ
Bohm, C
Bolmont, J
Boser, S
Botner, O
Bradley, L
Braun, J
Breder, D
Castermans, T
Chirkin, D
Christy, B
Clem, J
Cohen, S
Cowen, DF
D'Agostino, MV
Danninger, M
Day, CT
De Clercq, C
Demirors, L
Depaepe, O
Descamps, F
Desiati, P
de Vries-Uiterweerd, G
DeYoung, T
Diaz-Velez, JC
Dreyer, J
Dumm, JP
Duvoort, MR
Edwards, WR
Ehrlich, R
Eisch, J
Ellsworth, RW
Engdegard, O
Euler, S
Evenson, PA
Fadiran, O
Fazely, AR
Feusels, T
Filimonov, K
Finley, C
Foerster, MM
Fox, BD
Franckowiak, A
Franke, R
Gaisser, TK
Gallagher, J
Ganugapati, R
Gerhardt, L
Gladstone, L
Goldschmidt, A
Goodman, JA
Gozzini, R
Grant, D
Griesel, T
Gross, A
Grullon, S
Gunasingha, RM
Gurtner, M
Ha, C
Hallgren, A
Halzen, F
Han, K
Hanson, K
Hasegawa, Y
Heise, J
Helbing, K
Herquet, P
Hickford, S
Hill, GC
Hoffman, KD
Hoshina, K
Hubert, D
Huelsnitz, W
Hulss, JP
Hulth, PO
Hultqvist, K
Hussain, S
Imlay, RL
Inaba, M
Ishihara, A
Jacobsen, J
Japaridze, GS
Johansson, H
Joseph, JM
Kampert, KH
Kappes, A
Karg, T
Karle, A
Kelley, JL
Kenny, P
Kiryluk, J
Kislat, F
Klein, SR
Klepser, S
Knops, S
Kohnen, G
Kolanoski, H
Kopke, L
Kowalski, M
Kowarik, T
Krasberg, M
Kuehn, K
Kuwabara, T
Labare, M
Lafebre, S
Laihem, K
Landsman, H
Lauer, R
Leich, H
Lennarz, D
Lucke, A
Lundberg, J
Lunemann, J
Madsen, J
Majumdar, P
Maruyama, R
Mase, K
Matis, HS
McParland, CP
Meagher, K
Merck, M
Meszaros, P
Middell, E
Milke, N
Miyamoto, H
Mohr, A
Montaruli, T
Morse, R
Movit, SM
Munich, K
Nahnhauer, R
Nam, JW
Nieen, P
Nygren, DR
Odrowski, S
Olivas, A
Olivo, M
Ono, M
Panknin, S
Patton, S
Heros, CPD
Petrovic, J
Piegsa, A
Pieloth, D
Pohl, AC
Porrata, R
Potthoff, N
Price, PB
Prikockis, M
Przybylski, GT
Rawlins, K
Redl, P
Resconi, E
Rhode, W
Ribordy, M
Rizzo, A
Rodrigues, JP
Roth, P
Rothmaier, F
Rott, C
Roucelle, C
Rutledge, D
Ryckbosch, D
Sander, HG
Sarkar, S
Satalecka, K
Schlenstedt, S
Schmidt, T
Schneider, D
Schukraft, A
Schulz, O
Schunck, M
Seckel, D
Semburg, B
Seo, SH
Sestayo, Y
Seunarine, S
Silvestri, A
Slipak, A
Spiczak, GM
Spiering, C
Stamatikos, M
Stanev, T
Stephens, G
Stezelberger, T
Stokstad, RG
Stoufer, MC
Stoyanov, S
Strahler, EA
Straszheim, T
Sulanke, KH
Sullivan, GW
Swillens, Q
Taboada, I
Tarasova, O
Tepe, A
Ter-Antonyan, S
Terranova, C
Tilav, S
Tluczykont, M
Toale, PA
Tosi, D
Turcan, D
van Eijndhoven, N
Vandenbroucke, J
Van Overloop, A
Voigt, B
Walck, C
Waldenmaier, T
Walter, M
Wendt, C
Westerhoff, S
Whitehorn, N
Wiebusch, CH
Wiedemann, A
Wikstrom, G
Williams, DR
Wischnewski, R
Wissing, H
Woschnagg, K
Xu, XW
Yodh, G
Yoshida, S
AF Abbasi, R.
Abdou, Y.
Ackermann, M.
Adams, J.
Aguilar, J.
Ahlers, M.
Andeen, K.
Auffenberg, J.
Bai, X.
Baker, M.
Barwick, S. W.
Bay, R.
Alba, J. L. Bazo
Beattie, K.
Beatty, J. J.
Bechet, S.
Becker, J. K.
Becker, K. -H.
Benabderrahmane, M. L.
Berdermann, J.
Berghaus, P.
Berley, D.
Bernardini, E.
Bertrand, D.
Besson, D. Z.
Bissok, M.
Blaufuss, E.
Boersma, D. J.
Bohm, C.
Bolmont, J.
Boeser, S.
Botner, O.
Bradley, L.
Braun, J.
Breder, D.
Castermans, T.
Chirkin, D.
Christy, B.
Clem, J.
Cohen, S.
Cowen, D. F.
D'Agostino, M. V.
Danninger, M.
Day, C. T.
De Clercq, C.
Demiroers, L.
Depaepe, O.
Descamps, F.
Desiati, P.
de Vries-Uiterweerd, G.
DeYoung, T.
Diaz-Velez, J. C.
Dreyer, J.
Dumm, J. P.
Duvoort, M. R.
Edwards, W. R.
Ehrlich, R.
Eisch, J.
Ellsworth, R. W.
Engdegard, O.
Euler, S.
Evenson, P. A.
Fadiran, O.
Fazely, A. R.
Feusels, T.
Filimonov, K.
Finley, C.
Foerster, M. M.
Fox, B. D.
Franckowiak, A.
Franke, R.
Gaisser, T. K.
Gallagher, J.
Ganugapati, R.
Gerhardt, L.
Gladstone, L.
Goldschmidt, A.
Goodman, J. A.
Gozzini, R.
Grant, D.
Griesel, T.
Gross, A.
Grullon, S.
Gunasingha, R. M.
Gurtner, M.
Ha, C.
Hallgren, A.
Halzen, F.
Han, K.
Hanson, K.
Hasegawa, Y.
Heise, J.
Helbing, K.
Herquet, P.
Hickford, S.
Hill, G. C.
Hoffman, K. D.
Hoshina, K.
Hubert, D.
Huelsnitz, W.
Huelss, J. -P.
Hulth, P. O.
Hultqvist, K.
Hussain, S.
Imlay, R. L.
Inaba, M.
Ishihara, A.
Jacobsen, J.
Japaridze, G. S.
Johansson, H.
Joseph, J. M.
Kampert, K. -H.
Kappes, A.
Karg, T.
Karle, A.
Kelley, J. L.
Kenny, P.
Kiryluk, J.
Kislat, F.
Klein, S. R.
Klepser, S.
Knops, S.
Kohnen, G.
Kolanoski, H.
Koepke, L.
Kowalski, M.
Kowarik, T.
Krasberg, M.
Kuehn, K.
Kuwabara, T.
Labare, M.
Lafebre, S.
Laihem, K.
Landsman, H.
Lauer, R.
Leich, H.
Lennarz, D.
Lucke, A.
Lundberg, J.
Luenemann, J.
Madsen, J.
Majumdar, P.
Maruyama, R.
Mase, K.
Matis, H. S.
McParland, C. P.
Meagher, K.
Merck, M.
Meszaros, P.
Middell, E.
Milke, N.
Miyamoto, H.
Mohr, A.
Montaruli, T.
Morse, R.
Movit, S. M.
Muenich, K.
Nahnhauer, R.
Nam, J. W.
Nieen, P.
Nygren, D. R.
Odrowski, S.
Olivas, A.
Olivo, M.
Ono, M.
Panknin, S.
Patton, S.
Perez de los Heros, C.
Petrovic, J.
Piegsa, A.
Pieloth, D.
Pohl, A. C.
Porrata, R.
Potthoff, N.
Price, P. B.
Prikockis, M.
Przybylski, G. T.
Rawlins, K.
Redl, P.
Resconi, E.
Rhode, W.
Ribordy, M.
Rizzo, A.
Rodrigues, J. P.
Roth, P.
Rothmaier, F.
Rott, C.
Roucelle, C.
Rutledge, D.
Ryckbosch, D.
Sander, H. -G.
Sarkar, S.
Satalecka, K.
Schlenstedt, S.
Schmidt, T.
Schneider, D.
Schukraft, A.
Schulz, O.
Schunck, M.
Seckel, D.
Semburg, B.
Seo, S. H.
Sestayo, Y.
Seunarine, S.
Silvestri, A.
Slipak, A.
Spiczak, G. M.
Spiering, C.
Stamatikos, M.
Stanev, T.
Stephens, G.
Stezelberger, T.
Stokstad, R. G.
Stoufer, M. C.
Stoyanov, S.
Strahler, E. A.
Straszheim, T.
Sulanke, K. -H.
Sullivan, G. W.
Swillens, Q.
Taboada, I.
Tarasova, O.
Tepe, A.
Ter-Antonyan, S.
Terranova, C.
Tilav, S.
Tluczykont, M.
Toale, P. A.
Tosi, D.
Turcan, D.
van Eijndhoven, N.
Vandenbroucke, J.
Van Overloop, A.
Voigt, B.
Walck, C.
Waldenmaier, T.
Walter, M.
Wendt, C.
Westerhoff, S.
Whitehorn, N.
Wiebusch, C. H.
Wiedemann, A.
Wikstrom, G.
Williams, D. R.
Wischnewski, R.
Wissing, H.
Woschnagg, K.
Xu, X. W.
Yodh, G.
Yoshida, S.
CA IceCube Collaboration
TI FIRST NEUTRINO POINT-SOURCE RESULTS FROM THE 22 STRING ICECUBE DETECTOR
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE acceleration of particles; cosmic rays; neutrinos
ID HIGH-ENERGY NEUTRINOS; GAMMA-RAYS; TELESCOPES; ASTRONOMY
AB We present new results of searches for neutrino point sources in the northern sky, using data recorded in 2007-2008 with 22 strings of the IceCube detector (approximately one-fourth of the planned total) and 275.7 days of live time. The final sample of 5114 neutrino candidate events agrees well with the expected background of atmospheric muon neutrinos and a small component of atmospheric muons. No evidence of a point source is found, with the most significant excess of events in the sky at 2.2 sigma after accounting for all trials. The average upper limit over the northern sky for point sources of muon-neutrinos with E(-2) spectrum is E(2) Phi(v mu) < 1.4 x 10(-11) TeV cm(-2) s(-1), in the energy range from 3 TeV to 3 PeV, improving the previous best average upper limit by the AMANDA-II detector by a factor of 2.
C1 [Abbasi, R.; Aguilar, J.; Andeen, K.; Baker, M.; Berghaus, P.; Boersma, D. J.; Braun, J.; Chirkin, D.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Finley, C.; Ganugapati, R.; Gladstone, L.; Grullon, S.; Halzen, F.; Hanson, K.; Hill, G. C.; Hoshina, K.; Jacobsen, J.; Kappes, A.; Karle, A.; Kelley, J. L.; Krasberg, M.; Landsman, H.; Maruyama, R.; Merck, M.; Montaruli, T.; Morse, R.; Rodrigues, J. P.; Schneider, D.; Strahler, E. A.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.
[Abdou, Y.; Descamps, F.; de Vries-Uiterweerd, G.; Feusels, T.; Ryckbosch, D.; Van Overloop, A.] Univ Ghent, Dept Subatom & Radiat Phys, B-9000 Ghent, Belgium.
[Ackermann, M.; Alba, J. L. Bazo; Benabderrahmane, M. L.; Berdermann, J.; Bernardini, E.; Bolmont, J.; Boeser, S.; Franke, R.; Kislat, F.; Klepser, S.; Lauer, R.; Leich, H.; Majumdar, P.; Middell, E.; Nahnhauer, R.; Pieloth, D.; Satalecka, K.; Schlenstedt, S.; Spiering, C.; Sulanke, K. -H.; Tarasova, O.; Tluczykont, M.; Tosi, D.; Voigt, B.; Walter, M.; Wischnewski, R.] DESY, D-15735 Zeuthen, Germany.
[Adams, J.; Gross, A.; Han, K.; Hickford, S.; Seunarine, S.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand.
[Ahlers, M.; Sander, H. -G.; Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England.
[Auffenberg, J.; Becker, K. -H.; Breder, D.; Gurtner, M.; Helbing, K.; Kampert, K. -H.; Karg, T.; Potthoff, N.; Semburg, B.; Tepe, A.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany.
[Bai, X.; Clem, J.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Nieen, P.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA.
[Auffenberg, J.; Clem, J.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Nieen, P.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA.
[Barwick, S. W.; Nam, J. W.; Silvestri, A.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA.
[Bay, R.; D'Agostino, M. V.; Filimonov, K.; Gerhardt, L.; Kiryluk, J.; Klein, S. R.; Porrata, R.; Price, P. B.; Vandenbroucke, J.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Beattie, K.; Day, C. T.; Edwards, W. R.; Gerhardt, L.; Goldschmidt, A.; Joseph, J. M.; Kiryluk, J.; Klein, S. R.; Matis, H. S.; McParland, C. P.; Nygren, D. R.; Panknin, S.; Patton, S.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.; Stoufer, M. C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Beatty, J. J.; Kuehn, K.; Rott, C.; Stamatikos, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA.
[Beatty, J. J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA.
[Bechet, S.; Bertrand, D.; Labare, M.; Petrovic, J.; Swillens, Q.] Univ Libre Bruxelles, Fac Sci, B-1050 Brussels, Belgium.
[Becker, J. K.; Dreyer, J.; Milke, N.; Muenich, K.; Rhode, W.; Wiedemann, A.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany.
[Berley, D.; Blaufuss, E.; Christy, B.; Ehrlich, R.; Ellsworth, R. W.; Goodman, J. A.; Hoffman, K. D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Roth, P.; Schmidt, T.; Straszheim, T.; Sullivan, G. W.; Turcan, D.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA.
[Besson, D. Z.; Kenny, P.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA.
[Bissok, M.; Euler, S.; Huelss, J. -P.; Knops, S.; Laihem, K.; Lennarz, D.; Schukraft, A.; Schunck, M.; Wiebusch, C. H.; Wissing, H.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany.
[Bohm, C.; Danninger, M.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Nygren, D. R.; Seo, S. H.; Walck, C.; Wikstrom, G.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden.
[Botner, O.; Engdegard, O.; Hallgren, A.; Lundberg, J.; Olivo, M.; Perez de los Heros, C.; Pohl, A. C.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden.
[Bradley, L.; Cowen, D. F.; DeYoung, T.; Foerster, M. M.; Fox, B. D.; Grant, D.; Ha, C.; Lafebre, S.; Meszaros, P.; Prikockis, M.; Rutledge, D.; Slipak, A.; Toale, P. A.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA.
[Castermans, T.; Herquet, P.; Kohnen, G.] Univ Mons, B-7000 Mons, Belgium.
[Cohen, S.; Demiroers, L.; Ribordy, M.; Terranova, C.] Ecole Polytech Fed Lausanne, High Energy Phys Lab, CH-1015 Lausanne, Switzerland.
[Cowen, D. F.; Meszaros, P.; Movit, S. M.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA.
[De Clercq, C.; Depaepe, O.; Hubert, D.; Rizzo, A.] Vrije Univ Brussels, Dienst ELEM, B-1050 Brussels, Belgium.
[Duvoort, M. R.; Heise, J.; van Eijndhoven, N.] Univ Utrecht, SRON, Dept Phys & Astron, NL-3584 CC Utrecht, Netherlands.
[Fadiran, O.; Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA.
[Fazely, A. R.; Gunasingha, R. M.; Imlay, R. L.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA.
[Franckowiak, A.; Kolanoski, H.; Kowalski, M.; Lucke, A.; Mohr, A.; Panknin, S.; Waldenmaier, T.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany.
[Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA.
[Gozzini, R.; Griesel, T.; Koepke, L.; Kowarik, T.; Luenemann, J.; Piegsa, A.; Rothmaier, F.; Sander, H. -G.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany.
[Gross, A.; Odrowski, S.; Resconi, E.; Roucelle, C.; Schulz, O.; Sestayo, Y.] Max Planck Inst Kernphys, D-69177 Heidelberg, Germany.
[Hasegawa, Y.; Inaba, M.; Ishihara, A.; Mase, K.; Miyamoto, H.; Ono, M.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan.
[Madsen, J.; Spiczak, G. M.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA.
[Rawlins, K.] Univ Alaska, Dept Phys & Astron, Anchorage, AK 99508 USA.
[Taboada, I.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA.
[Williams, D. R.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA.
[Kappes, A.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA.
[Beatty, J. J.; Kuehn, K.; Rott, C.; Stamatikos, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA.
[Bohm, C.; Danninger, M.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Nygren, D. R.; Seo, S. H.; Walck, C.; Wikstrom, G.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden.
[Kappes, A.; Taboada, I.] Univ Erlangen Nurnberg, Inst Phys, D-91058 Erlangen, Germany.
[Pohl, A. C.] Kalmar Univ, Sch Pure & Appl Nat Sci, S-39182 Kalmar, Sweden.
RP Abbasi, R (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA.
EM jdumm@icecube.wisc.edu; cfinley@icecube.wisc.edu
RI Wiebusch, Christopher/G-6490-2012; Kowalski, Marek/G-5546-2012; Botner,
Olga/A-9110-2013; Hallgren, Allan/A-8963-2013; Tjus, Julia/G-8145-2012;
Auffenberg, Jan/D-3954-2014; Aguilar Sanchez, Juan Antonio/H-4467-2015;
Maruyama, Reina/A-1064-2013; Sarkar, Subir/G-5978-2011; Beatty,
James/D-9310-2011
OI Hubert, Daan/0000-0002-4365-865X; Benabderrahmane, Mohamed
Lotfi/0000-0003-4410-5886; Ter-Antonyan, Samvel/0000-0002-5788-1369;
Schukraft, Anne/0000-0002-9112-5479; Perez de los Heros,
Carlos/0000-0002-2084-5866; Wiebusch, Christopher/0000-0002-6418-3008;
Auffenberg, Jan/0000-0002-1185-9094; Aguilar Sanchez, Juan
Antonio/0000-0003-2252-9514; Maruyama, Reina/0000-0003-2794-512X;
Sarkar, Subir/0000-0002-3542-858X; Beatty, James/0000-0003-0481-4952
FU U. S. National Science Foundation-Office of Polar Program; U. S.
National Science Foundation-Physics Division; University of Wisconsin
Alumni Research Foundation; U. S. Department of Energy; National Energy
Research Scientific Computing Center; Louisiana Optical Network
Initiative (LONI); Swedish Research Council; Swedish Polar Research
Secretariat; Knut and Alice Wallenberg Foundation; German Ministry for
Education and Research (BMBF); Deutsche Forschungsgemeinschaft (DFG),
Germany; Fund for Scientific Research (FNRS-FWO); Flanders Institute to
encourage scientific and technological research in industry; Belgian
Federal Science Policy Office (Belspo); Netherlands Organisation for
Scientific Research (NWO); SNF (Switzerland); EU Marie Curie OIF
Program; Capes Foundation, Ministry of Education of Brazil
FX We acknowledge the support from the following agencies: U. S. National
Science Foundation-Office of Polar Program, U. S. National Science
Foundation-Physics Division, University of Wisconsin Alumni Research
Foundation, U. S. Department of Energy, and National Energy Research
Scientific Computing Center, the Louisiana Optical Network Initiative
(LONI) grid computing resources; Swedish Research Council, Swedish Polar
Research Secretariat, and Knut and Alice Wallenberg Foundation, Sweden;
German Ministry for Education and Research (BMBF), Deutsche
Forschungsgemeinschaft (DFG), Germany; Fund for Scientific Research
(FNRS-FWO), Flanders Institute to encourage scientific and technological
research in industry (IWT), Belgian Federal Science Policy Office
(Belspo); the Netherlands Organisation for Scientific Research (NWO); M.
Ribordy acknowledges the support of the SNF (Switzerland); A. Kappes and
A. Gross acknowledge support by the EU Marie Curie OIF Program; J. P.
Rodrigues acknowledges support by the Capes Foundation, Ministry of
Education of Brazil.
NR 28
TC 37
Z9 37
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD AUG 10
PY 2009
VL 701
IS 1
BP L47
EP L51
DI 10.1088/0004-637X/701/1/L47
PG 5
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 475EG
UT WOS:000268340600011
ER
PT J
AU Mueschke, NJ
Schilling, O
Youngs, DL
Andrews, MJ
AF Mueschke, Nicholas J.
Schilling, Oleg
Youngs, David L.
Andrews, Malcolm J.
TI Measurements of molecular mixing in a high-Schmidt-number
Rayleigh-Taylor mixing layer
SO JOURNAL OF FLUID MECHANICS
LA English
DT Article
ID SMALL-ATWOOD-NUMBER; NUMERICAL-SIMULATION; CHEMICAL-REACTION;
INSTABILITY; TURBULENCE; DENSITY; COMBUSTION; TRANSITION; FLOWS; MODEL
AB Molecular mixing measurements are reported for a high-Schmidt-number (Sc similar to 10(3)), small-Atwood-number (A approximate to 7.5 x 10(-4)) buoyancy-driven turbulent Rayleigh-Taylor (RT) mixing layer in a water channel facility. Salt was added to the top water stream to create the desired density difference. The degree of molecular mixing was measured as a function of time by monitoring a diffusion-limited chemical reaction between the two fluid streams. The pH of each stream was modified by the addition of acid or alkali such that a local neutralization reaction occurred as the two fluids molecularly mixed. The progress of this neutralization reaction was tracked by the addition of phenolphthalein - a pH-sensitive chemical indicator - to the acidic stream. Accurately calibrated backlit optical techniques were used to measure the average concentration of the Coloured chemical indicator. Comparisons of chemical product formation for pre-transitional buoyancy- and shear-driven mixing layers are given. It Is also shown that experiments performed at different equivalence ratios (acid/alkali concentrations) can be combined to obtain a mathematical relationship between the Coloured product formed and the density variance. This relationship was used to obtain high-fidelity quantitative measures of the degree of molecular mixing which are independent of probe resolution constraints. The dependence of molecular mixing on the Schmidt and Reynolds numbers is examined by comparing the current Sc similar to 10(3) measurements with previous Sc = 0.7 gas-phase and Pr = 7 (where Pr is the Prandtl number) liquid-phase measurements. This comparison indicates that the Schmidt number has a large effect on the quantity of mixed fluid at small Reynolds numbers Re(h) < 10(3). At larger Reynolds numbers, corresponding to later times in this experiment, all mixing parameters indicated a greater degree of molecular mixing and a decreased Schmidt number dependence. Implications for the development and quantitative assessment of turbulent transport and mixing models appropriate for RT instability-induced mixing are discussed.
C1 [Mueschke, Nicholas J.; Andrews, Malcolm J.] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA.
[Schilling, Oleg] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
[Youngs, David L.] Atom Weap Estab, Reading RG7 4PR, Berks, England.
[Andrews, Malcolm J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Andrews, MJ (reprint author), Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA.
EM mandrews@lanl.gov
OI Schilling, Oleg/0000-0002-0623-2940
FU US Department of Energy National Nuclear Security Administration
[DE-FG03-02NA00060]; Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]
FX This research was supported by the US Department of Energy National
Nuclear Security Administration under the Stewardship Science Academic
Alliances programme through DOE Research Grant #DE-FG03-02NA00060. This
work was also performed under the auspices of Lawrence Livermore
National Laboratory under contract no. DE-AC52-07NA27344.
NR 63
TC 15
Z9 15
U1 2
U2 10
PU CAMBRIDGE UNIV PRESS
PI NEW YORK
PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
SN 0022-1120
J9 J FLUID MECH
JI J. Fluid Mech.
PD AUG 10
PY 2009
VL 632
BP 17
EP 48
DI 10.1017/S0022112009006132
PG 32
WC Mechanics; Physics, Fluids & Plasmas
SC Mechanics; Physics
GA 484YX
UT WOS:000269088200003
ER
PT J
AU Yu, XG
Chen, SJ
Wang, XP
Chen, XT
Xue, ZL
AF Yu, Xianghua
Chen, Shu-Jian
Wang, Xiaoping
Chen, Xue-Tai
Xue, Zi-Ling
TI Synthesis and Characterization of Group 4 Amide Chloride and Amide Imide
Complexes
SO ORGANOMETALLICS
LA English
DT Article
ID CHEMICAL-VAPOR-DEPOSITION; ATOMIC LAYER DEPOSITION; ANIONIC PI-LIGANDS;
NITRIDE THIN-FILMS; X-RAY-STRUCTURE; SI-C BONDS; CRYSTAL-STRUCTURES;
METAL-COMPLEXES; TITANIUM COMPLEXES; MOLECULAR-STRUCTURE
AB Group 4 amide chloride complexes (Me(2)N)(2)Ht[N(SiMe(3))(2)]Cl (1b), [(Me(3)Si)(2)N](2)MCl(2)Li(THF)(3)Cl (M = Zr, 2a; Hf, 2b), and [(Me(3)Si)(2)MCl(2)MCl(2)(THF) (M = Zr, 3a; Hf, 3b) and their X-ray crystal structures are reported. An improved synthesis of {[(Me(3)Si)(2)N]Ti(mu-NSiMe(3))Cl}(2) (4) and its use to prepare amide imide {[(Me(3)Si)(2)N]Ti(mu-NSiMe(3))(NMe(2)}(2) (5) are also presented. X-ray crystal structures of 5 and previously reported complexes (Me(2)N)(2)Zr[N(SiMe(3))(2)]Cl (1a), [(Me(3)Si)(2)N](2)TiCl(2) (6), and [(Me(3)Si)(2)N]ZrCl(3)(THF)(2) (7) have been determined. Both 1a and 1b are dimers {[(Me(3)Si)(2)N](2)TiCl(2) (M = Zr, Hf) in the solid state.
C1 [Yu, Xianghua; Chen, Shu-Jian; Xue, Zi-Ling] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA.
[Wang, Xiaoping] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA.
[Chen, Xue-Tai] Nanjing Univ, Sch Chem & Chem Engn, Nanjing Natl Lab Microstruct, State Key Lab Coordinat Chem, Nanjing 210093, Peoples R China.
RP Xue, ZL (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA.
EM xue@utk.edu
RI Wang, Xiaoping/E-8050-2012
OI Wang, Xiaoping/0000-0001-7143-8112
NR 93
TC 11
Z9 11
U1 2
U2 5
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0276-7333
J9 ORGANOMETALLICS
JI Organometallics
PD AUG 10
PY 2009
VL 28
IS 15
BP 4269
EP 4275
DI 10.1021/om900070k
PG 7
WC Chemistry, Inorganic & Nuclear; Chemistry, Organic
SC Chemistry
GA 476PY
UT WOS:000268455900009
ER
PT J
AU Ahn, T
Coquard, L
Pietralla, N
Rainovski, G
Costin, A
Janssens, RVF
Lister, CJ
Carpenter, M
Zhu, S
Heyde, K
AF Ahn, T.
Coquard, L.
Pietralla, N.
Rainovski, G.
Costin, A.
Janssens, R. V. F.
Lister, C. J.
Carpenter, M.
Zhu, S.
Heyde, K.
TI Evolution of the one-phonon 2(1,ms)(+) mixed-symmetry state in N=80
isotones as a local measure for the proton-neutron quadrupole
interaction
SO PHYSICS LETTERS B
LA English
DT Article
DE Mixed-symmetry states; Coulomb excitation; Angular distribution;
Proton-neutron quadrupole interaction
ID STRUCTURAL CHARACTERISTICS; SHELL-MODEL; NUCLEI; SCATTERING; CE-142;
EXCITATIONS; ND-144
AB An inverse kinematics Coulomb excitation experiment was performed to obtain absolute E2 and M1 transition strengths in Xe-134. The measured transition strengths indicate that the 2(3)(+) state of Xe-134 is the dominant fragment of the one-phonon 2(1,ms)(+) mixed-symmetry state. Comparing the energy of the 2(1,ms)(+) mixed-symmetry state in Xe-134 to that of the 2(1,ms)(+) levels in the N = 80 isotonic chain indicates that the separation in energy between the fully-symmetric 2(1)(+) state and the 2(1,ms)(+) level increases as a function of the number of proton pairs Outside the Z = 50 shell closure. This behavior call be understood as resulting from the mixing of the basic components of a two-fluid quantum system. A phenomenological fit based on this concept was performed. It provides the first experimental estimate of the strength of the proton-neutron quadrupole interaction derived from nuclear collective states with symmetric and antisymmetric nature. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Ahn, T.] Yale Univ, Wright Nucl Struct Lab, New Haven, CT 06520 USA.
[Ahn, T.; Costin, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
[Ahn, T.; Coquard, L.; Pietralla, N.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany.
[Rainovski, G.] St Kliment Ohridski Univ Safia, Fac Phys, Sofia 1164, Bulgaria.
[Janssens, R. V. F.; Lister, C. J.; Carpenter, M.; Zhu, S.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Heyde, K.] Dept Subatom & Radiat Phys, B-9000 Ghent, Belgium.
RP Ahn, T (reprint author), Yale Univ, Wright Nucl Struct Lab, New Haven, CT 06520 USA.
EM tan.ahn@yale.edu
RI Carpenter, Michael/E-4287-2015; Ahn, Tan/C-9158-2016; Rainovski,
Georgi/A-3450-2008
OI Carpenter, Michael/0000-0002-3237-5734; Ahn, Tan/0000-0003-2249-7399;
Rainovski, Georgi/0000-0002-1729-0249
FU BGNSF [DO 02-219]; DFG; SFB [634, 393/2-1]; Helmholtz International
Center for FAIR; US Department of Energy, Office of Nuclear Physics
[DE-AC02-06CH11357, DE-FG02-91ER40609]; German-Bulgarian [D/06/05918,
DAAD-09]; FWO-Vlaanderen; Inter-University Attraction Poles Program,
Belgian State-Belgian Science Policy
FX We thank the technical staff of the ATLAS facility at Argonne National
Laboratory for its work in preparing and producing the 134Xe
beam for this experiment, C. Bauer for his assistance in calculating the
statistical tensors, and F. lachello for enlightening discussions oil
the interpretation of our results. G.R. acknowledges the support from
the BGNSF under contract DO 02-219. This work was supported by the DFG
under grant Nos. SFB 634 and Pi 393/2-1, by the Helmholtz International
Center for FAIR, by the US Department of Energy, Office of Nuclear
Physics, under contract No. DE-AC02-06CH11357 and No. DE-FG02-91ER40609
and is partially Supported by the German-Bulgarian exchange program
under grants D/06/05918 and DAAD-09. Financial support from the
FWO-Vlaanderen is acknowledged. This research was also performed in the
framework of the Brix network (IAP P6/23) funded by the Inter-University
Attraction Poles Program, Belgian State-Belgian Science Policy.
NR 30
TC 38
Z9 38
U1 0
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0370-2693
J9 PHYS LETT B
JI Phys. Lett. B
PD AUG 10
PY 2009
VL 679
IS 1
BP 19
EP 24
DI 10.1016/j.physletb.2009.06.066
PG 6
WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 487TS
UT WOS:000269299900005
ER
PT J
AU Johnson, SM
Williams, JR
AF Johnson, Scott M.
Williams, John R.
TI Sub-discretized surface model with application to contact mechanics in
multi-body simulation
SO POWDER TECHNOLOGY
LA English
DT Article; Proceedings Paper
CT 4th International Conference on Discrete Element Methods
CY AUG, 2007
CL Brisbane, AUSTRALIA
DE Discrete element modeling; Contact mechanics; Adhesion; Elasto-plastic;
Archard's model
ID GRANULAR INSULATOR SYSTEMS; SINGLE-ASPERITY CONTACTS; FORCE-DISPLACEMENT
MODEL; TANGENTIAL FORCE; ELASTIC SOLIDS; DETECTION ALGORITHM; ELEMENT
SIMULATION; FLOW SIMULATIONS; PARTICLE-SHAPE; ADHESION
AB The mechanics of contact between rough and imperfectly spherical adhesive powder grains are often complicated by a variety of factors, including several which vary over sub-grain length scales. These include several traction factors that vary spatially over the surface of the individual grains, including high energy electron and acceptor sites (electrostatic), hydrophobic and hydrophilic sites (electrostatic and capillary), surface energy (general adhesion), geometry (van der Waals and mechanical), and elasto-plastic deformation (mechanical). For mechanical deformation and reaction, coupled motions. such as twisting as well as surface roughness add an asymmetry to the contact force which with bending and sliding, invalidates assumptions for popular models of contact, such as the Hertzian and its derivatives [H. Hertz, Uber die Beruhrung fester elastische korper. journal fur die reine and angewandte Mathematik 1882; 92: 156-171; R.D. Mindlin, Compliance of elastic bodies in contact. Journal of Applied Mechanics 1949; 71: 259268; R.D. Mindlin, H. Deresiewicz, Elastic spheres in contact under varying oblique forces. Journal of Applied Mechanics 1953; 20: 269-286], for the non-adhesive case, and the JKR [K.L Johnson, K. Kendall, A.D. Roberts, Surface energy and the contact of elastic solids. Proceedings of the Royal Society of London 1971; 324: 301313] and DMT [B.V. Derjaguin, V.M. Muller, Y.P. Toporov, Effect of contact deformations on the adhesion of particles. Journal of Colloid and Interface Science 1975; 53: 314-326] models for adhesive contacts. Though several contact laws have been offered to ameliorate these drawbacks, they are often constrained to particular loading paths (most often normal loading) and are relatively complicated for computational implementation. This paper offers a simple and general computational method for augmenting contact law predictions in multi-body simulations through characterization of the contact surfaces using a hierarchically-defined surface sub-discretization. For the case of adhesive contact between powder grains in low-stress regimes, this technique can allow a variety of existing contact laws to be resolved across scales, allowing for moments and torques about the contact area as well as normal and tangential tractions to be resolved. This is especially useful for multi-body simulation applications where the modeler desires statistical distributions and calibration for parameters in contact laws commonly used for resolving near-surface contact mechanics. The approach is verified against analytical results for the case of rough, elastic spheres. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Johnson, Scott M.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
[Williams, John R.] MIT, Cambridge, MA 02139 USA.
RP Johnson, SM (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
EM johnson346@llnl.gov
NR 87
TC 3
Z9 3
U1 1
U2 17
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0032-5910
J9 POWDER TECHNOL
JI Powder Technol.
PD AUG 10
PY 2009
VL 193
IS 3
BP 319
EP 331
DI 10.1016/j.powtec.2009.03.006
PG 13
WC Engineering, Chemical
SC Engineering
GA 459HT
UT WOS:000267093000011
ER
PT J
AU Wunderlich, B
AF Wunderlich, Bernhard
TI Thermodynamics and properties of nanophases
SO THERMOCHIMICA ACTA
LA English
DT Article; Proceedings Paper
CT 10th Lahnwitz Seminar on Calorimetry
CY JUN 08-13, 2008
CL Rostock, GERMANY
DE Nanophase thermodynamics; Molecule type; Phase type; Phase size; Glass
transition; Order-disorder transition; Nanophase; Microphase;
Macrophase; Structure; Property
ID GLASS-TRANSITION REGION; SEMIFLEXIBLE MESOGEN
1-(4-HYDROXYPHENYL)-2-(2-METHYL-4-HYDROXYPHENYL)ETHANE;
TEMPERATURE-MODULATED CALORIMETRY; QUANTITATIVE THERMAL-ANALYSIS;
MOLECULE SINGLE-CRYSTALS; HEAT-CAPACITIES; MICROPHASE SEPARATION;
ALPHA-METHYLSTYRENE; POLY(AMINO ACID)S; PHASE
AB A large volume of today's research deals with nanophases of various types. The materials engineer, chemist. or physicist, however, when dealing with applications of nanophases is often unaware of the effect of the small size on structure and properties. The smallest nanophases reach the limit of phase definitions by approaching atomic dimensions. There, the required homogeneity of a phase is lost and undue property fluctuations destroy the usefulness of thermodynamic functions. In fact. it was not expected that a definite nanophase would exist below the size of a microphase. An effort is made in this review to identify macrophases, microphases, and nanophases. It is shown that nanophases should contain no bulk matter as defined by macrophases and also found in microphases. The structure and properties of nanophases, thus, must be different from macrophases and microphases. These changes may include different crystal and amorphous structures, and phase transitions of higher or of lower temperature. The phase properties are changing continuously when going from one surface to the opposite one. The discussion makes use of results from structure determination, calorimetry, molecular motion evaluations, and molecular dynamics simulations. Published by Elsevier B.V.
C1 [Wunderlich, Bernhard] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA.
[Wunderlich, Bernhard] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
RP Wunderlich, B (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA.
EM Wunderlich@CharterTN.net
NR 94
TC 9
Z9 9
U1 0
U2 13
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0040-6031
EI 1872-762X
J9 THERMOCHIM ACTA
JI Thermochim. Acta
PD AUG 10
PY 2009
VL 492
IS 1-2
SI SI
BP 2
EP 15
DI 10.1016/j.tca.2008.10.026
PG 14
WC Thermodynamics; Chemistry, Analytical; Chemistry, Physical
SC Thermodynamics; Chemistry
GA 479GE
UT WOS:000268646900002
ER
PT J
AU Liu, FD
Jones, KM
Xu, YQ
Nemeth, W
Lohr, J
Neilson, J
Romero, MJ
Al-Jassim, MM
Young, DL
AF Liu, Fude
Jones, Kim M.
Xu, Yueqin
Nemeth, William
Lohr, John
Neilson, Jeff
Romero, Manue J.
Al-Jassim, Mowafak M.
Young, David L.
TI Ultrahigh-Crystalline-Quality Silicon Pillars Formed by Millimeter-Wave
Annealing of Amorphous Silicon on Glass
SO ADVANCED MATERIALS
LA English
DT Article
ID FILM SOLAR-CELLS; ALUMINUM-INDUCED CRYSTALLIZATION; SI
AB Silicon pillars are formed by millisecond-long, single-pulse annealing of 110 GHz millimeter-wave radiation incident upon intrinsic amorphous silicon (a-Si) thin films deposited on glass by hot-wire chemical vapor deposition. The image was taken at a sample tilt angle of 52 degrees for a better 3D view.
C1 [Liu, Fude; Jones, Kim M.; Xu, Yueqin; Nemeth, William; Romero, Manue J.; Al-Jassim, Mowafak M.; Young, David L.] Natl Renewable Energy Lab, Natl Ctr Photovolta, Golden, CO 80401 USA.
[Lohr, John] Gen Atom Co, San Diego, CA 92121 USA.
[Neilson, Jeff] Lexam Res, Redwood City, CA 94062 USA.
RP Liu, FD (reprint author), Natl Renewable Energy Lab, Natl Ctr Photovolta, Golden, CO 80401 USA.
EM fude_liu@nrel.gov
RI Liu, Fude/E-9873-2010
FU U.S. Department of Energy [DE-AC36-99GO10337]
FX This work has been funded by the U.S. Department of Energy under
contract number DE-AC36-99GO10337. The authors thank A. Duda at NREL for
growing SiO2 layers.
NR 26
TC 4
Z9 4
U1 1
U2 9
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY
SN 0935-9648
J9 ADV MATER
JI Adv. Mater.
PD AUG 7
PY 2009
VL 21
IS 29
BP 3002
EP +
DI 10.1002/adma.200900157
PG 6
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 484ZV
UT WOS:000269090800009
ER
PT J
AU Garand, E
Yacovitch, TI
Neumark, DM
AF Garand, Etienne
Yacovitch, Tara I.
Neumark, Daniel M.
TI Slow photoelectron velocity-map imaging spectroscopy of C(3)O(-) and
C(3)S(-)
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
DE carbon compounds; electron affinity; electron detachment; ground states;
molecular configurations; molecule-photon collisions; negative ions;
photoelectron spectra; vibrational states
ID CARBON-SULFUR CLUSTERS; TRICARBON MONOXIDE; MICROWAVE-SPECTRUM;
ASTRONOMICAL IDENTIFICATION; LABORATORY DETECTION; CHAIN MOLECULE;
NEGATIVE-IONS; RESOLUTION; CCCO; CNS
AB High-resolution photodetachment spectra of C(3)O(-) and C(3)S(-) using slow photoelectron velocity-map imaging spectroscopy are reported. Well-resolved transitions to the neutral X approximate to (1)Sigma(+) state are seen for both species. The electron affinities of C(3)O and C(3)S are determined to be EA(C(3)O)=1.237 +/- 0.003 eV and EA(C(3)S)=1.5957 +/- 0.0010 eV, respectively. Several vibrational frequencies for gas phase C(3)O and C(3)S are determined for the first time. The long progression of bending modes observed in the spectra is consistent with electronic structure calculations predicting that the C(3)O(-) and C(3)S(-) have bent equilibrium geometries.
C1 [Garand, Etienne; Yacovitch, Tara I.; Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Neumark, Daniel M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA.
RP Neumark, DM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
EM dneumark@berkeley.edu
RI Neumark, Daniel/B-9551-2009;
OI Neumark, Daniel/0000-0002-3762-9473; Garand, Etienne/0000-0001-5062-5453
FU Air Force Office of Scientific Research [F49620-03-1-0085]; National
Science and Engineering Research Council of Canada (NSERC); Fonds
Quebecois de la Recherche sur la Nature et les Technologies (FQRNT)
FX This work was supported by the Air Force Office of Scientific Research
under Grant No. F49620-03-1-0085. E. G. thanks the National Science and
Engineering Research Council of Canada (NSERC) for a postgraduate
scholarship and T. Y. thanks the Fonds Quebecois de la Recherche sur la
Nature et les Technologies (FQRNT) for a master's scholarship.
NR 52
TC 3
Z9 3
U1 1
U2 7
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD AUG 7
PY 2009
VL 131
IS 5
AR 054312
DI 10.1063/1.3200927
PG 7
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 481KT
UT WOS:000268809800023
PM 19673567
ER
PT J
AU Perry, JJP
Harris, RM
Moiani, D
Olson, AJ
Tainer, JA
AF Perry, J. Jefferson P.
Harris, Rodney M.
Moiani, Davide
Olson, Arthur J.
Tainer, John A.
TI p38 alpha MAP Kinase C-Terminal Domain Binding Pocket Characterized by
Crystallographic and Computational Analyses
SO JOURNAL OF MOLECULAR BIOLOGY
LA English
DT Article
DE p38 alpha; MAP kinase insert; small-molecule inhibitor; leukotriene;
anisomycin
ID ACTIVATED PROTEIN-KINASE; DOCKING INTERACTIONS; AUTOMATED DOCKING;
CRYSTAL-STRUCTURE; STRUCTURAL BASIS; SUBSTRATE-SPECIFICITY; SIGNALING
SPECIFICITY; WERNER-SYNDROME; STRESS KINASE; CELL-LINE
AB The mitogen-activated protein (MAP) kinase protein family has a critical role in cellular signaling events, with MAP kinase p38 alpha acting in inflammatory processes and being an important drug discovery target. MAP kinase drug design efforts have focused on small-molecule inhibitors of the ATP catalytic site, which exhibit dose-limiting adverse effects. Therefore, characterizing other potential sites that bind substrates, inhibitors, or allosteric effectors is of great interest. Here, we present the crystal structure of human p38 alpha MAP kinase, which has a lead compound bound both in the active site and in the lipid-binding site of the C-terminal cap. This C-terminal cap is formed from an extension to the kinase fold, unique to the MAP kinase and cyclin-dependent kinase families and glycogen synthase kinase 3. Binding of this lead, 4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]pyridine, to wild-type p38 alpha induces movement of the C-terminal cap region, creating a hydrophobic pocket centered around residue Trp197. Computational analysis of this C-terminal domain pocket indicates notable flexibility for potentially binding different-shaped compounds, including lipids, oxidized arachidonic acid species such as leukotrienes, and small-molecule effectors. Furthermore, our structural results defining the open p38 alpha C-lobe pocket provide a detailed framework for the design of novel small molecules with affinities comparable to active-site binders: to bind and potentially modulate the shape and activity of p38 alpha in predetermined ways. Moreover, these results and analyses of p38 alpha suggest strategies for designing specific binding compounds applicable to other MAP kinases, as well as the cyclin-dependent kinase family and glycogen synthase kinase 3 beta that also utilize the C-terminal insert in their interactions. (c) 2009 Elsevier Ltd. All rights reserved.
C1 [Perry, J. Jefferson P.; Harris, Rodney M.; Moiani, Davide; Olson, Arthur J.; Tainer, John A.] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA.
[Perry, J. Jefferson P.] Amrita Univ, Sch Biotechnol, Kollam 690525, Kerala, India.
[Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Sci, Berkeley, CA 94720 USA.
RP Tainer, JA (reprint author), Scripps Res Inst, Dept Mol Biol, 10666 N Torrey Pines Rd, La Jolla, CA 92037 USA.
EM jat@scripps.edu
FU Stanford Synchrotron Radiation Laboratory staff; National Institutes of
Health [R24-CA095830, R01-GM069832]; [CA104660]
FX We gratefully acknowledge the support of the Stanford Synchrotron
Radiation Laboratory staff, and we would like to thank Hugo Villar
(Altoris, Inc.) and Dr. Steve Reed as well as members of the Tainer
Laboratory at The Scripps Research Institute for their comments. This
work was supported in part by grant CA104660 to John A. Tainer and
National Institutes of Health grants R24-CA095830 and ROI-GM069832 to
Art Olson.
NR 66
TC 24
Z9 26
U1 0
U2 2
PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
PI LONDON
PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND
SN 0022-2836
J9 J MOL BIOL
JI J. Mol. Biol.
PD AUG 7
PY 2009
VL 391
IS 1
BP 1
EP 11
DI 10.1016/j.jmb.2009.06.005
PG 11
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 479HX
UT WOS:000268651400001
PM 19501598
ER
PT J
AU Aaltonen, T
Adelman, J
Akimoto, T
Gonzalez, BA
Amerio, S
Amidei, D
Anastassov, A
Annovi, A
Antos, J
Apollinari, G
Apresyan, A
Arisawa, T
Artikov, A
Ashmanskas, W
Attal, A
Aurisano, A
Azfar, F
Azzurri, P
Badgett, W
Barbaro-Galtieri, A
Barnes, VE
Barnett, BA
Bartsch, V
Bauer, G
Beauchemin, PH
Bedeschi, F
Beecher, D
Behari, S
Bellettini, G
Bellinger, J
Benjamin, D
Beretvas, A
Beringer, J
Bhatti, A
Binkley, M
Bisello, D
Bizjak, I
Blair, RE
Blocker, C
Blumenfeld, B
Bocci, A
Bodek, A
Boisvert, V
Bolla, G
Bortoletto, D
Boudreau, J
Boveia, A
Brau, B
Bridgeman, A
Brigliadori, L
Bromberg, C
Brubaker, E
Budagov, J
Budd, HS
Budd, S
Burke, S
Burkett, K
Busetto, G
Bussey, P
Buzatu, A
Byrum, KL
Cabrera, S
Calancha, C
Campanelli, M
Campbell, M
Canelli, F
Canepa, A
Carls, B
Carlsmith, D
Carosi, R
Carrillo, S
Carron, S
Casal, B
Casarsa, M
Castro, A
Catastini, P
Cauz, D
Cavaliere, V
Cavalli-Sforza, M
Cerri, A
Cerrito, L
Chang, SH
Chen, YC
Chertok, M
Chiarelli, G
Chlachidze, G
Chlebana, F
Cho, K
Chokheli, D
Chou, JP
Choudalakis, G
Chuang, SH
Chung, K
Chung, WH
Chung, YS
Chwalek, T
Ciobanu, CI
Ciocci, MA
Clark, A
Clark, D
Compostella, G
Convery, ME
Conway, J
Cordelli, M
Cortiana, G
Cox, CA
Cox, DJ
Crescioli, F
Almenar, CC
Cuevas, J
Culbertson, R
Cully, JC
Dagenhart, D
Datta, M
Davies, T
de Barbaro, P
De Cecco, S
Deisher, A
De Lorenzo, G
Dell'Orso, M
Deluca, C
Demay, C
Demortier, L
Deng, J
Deninno, M
Derwent, PF
di Giovanni, GP
Dionisi, C
Di Ruzza, B
Dittmann, JR
D'Onofrio, M
Donati, S
Dong, P
Donini, J
Dorigo, T
Dube, S
Efron, J
Elagin, A
Erbacher, R
Errede, D
Errede, S
Eusebi, R
Fang, HC
Farrington, S
Fedorko, WT
Feild, RG
Feindt, M
Fernandez, JP
Ferrazza, C
Field, R
Flanagan, G
Forrest, R
Frank, MJ
Franklin, M
Freeman, JC
Furic, I
Gallinaro, M
Galyardt, J
Garberson, F
Garcia, JE
Garfinkel, AF
Genser, K
Gerberich, H
Gerdes, D
Gessler, A
Giagu, S
Giakoumopoulou, V
Giannetti, P
Gibson, K
Gimmell, JL
Ginsburg, CM
Giokaris, N
Giordani, M
Giromini, P
Giunta, M
Giurgiu, G
Glagolev, V
Glenzinski, D
Gold, M
Goldschmidt, N
Golossanov, A
Gomez, G
Gomez-Ceballos, G
Goncharov, M
Gonzalez, O
Gorelov, I
Goshaw, AT
Goulianos, K
Gresele, A
Grinstein, S
Grosso-Pilcher, C
Group, RC
Grundler, U
da Costa, JG
Gunay-Unalan, Z
Haber, C
Hahn, K
Hahn, SR
Halkiadakis, E
Han, BY
Han, JY
Happacher, F
Hara, K
Hare, D
Hare, M
Harper, S
Harr, RF
Harris, RM
Hartz, M
Hatakeyama, K
Hays, C
Heck, M
Heijboer, A
Heinrich, J
Henderson, C
Herndon, M
Heuser, J
Hewamanage, S
Hidas, D
Hill, CS
Hirschbuehl, D
Hocker, A
Hou, S
Houlden, M
Hsu, SC
Huffman, BT
Hughes, RE
Husemann, U
Hussein, M
Husemann, U
Huston, J
Incandela, J
Introzzi, G
Iori, M
Ivanov, A
James, E
Jayatilaka, B
Jeon, EJ
Jha, MK
Jindariani, S
Johnson, W
Jones, M
Joo, KK
Jun, SY
Jung, JE
Junk, TR
Kamon, T
Kar, D
Karchin, PE
Kato, Y
Kephart, R
Keung, J
Khotilovich, V
Kilminster, B
Kim, DH
Kim, HS
Kim, HW
Kim, JE
Kim, MJ
Kim, SB
Kim, SH
Kim, YK
Kimura, N
Kirsch, L
Klimenko, S
Knuteson, B
Ko, BR
Kondo, K
Kong, DJ
Konigsberg, J
Korytov, A
Kotwal, AV
Kreps, M
Kroll, J
Krop, D
Krumnack, N
Kruse, M
Krutelyov, V
Kubo, T
Kuhr, T
Kulkarni, NP
Kurata, M
Kwang, S
Laasanen, AT
Lami, S
Lammel, S
Lancaster, M
Lander, RL
Lannon, K
Lath, A
Latino, G
Lazzizzera, I
LeCompte, T
Lee, E
Lee, HS
Lee, SW
Leone, S
Lewis, JD
Lin, CS
Linacre, J
Lindgren, M
Lipeles, E
Lister, A
Litvintsev, DO
Liu, C
Liu, T
Lockyer, NS
Loginov, A
Loreti, M
Lovas, L
Lucchesi, D
Luci, C
Lueck, J
Lujan, P
Lukens, P
Lungu, G
Lyons, L
Lys, J
Lysak, R
MacQueen, D
Madrak, R
Maeshima, K
Makhoul, K
Maki, T
Maksimovic, P
Malde, S
Malik, S
Manca, G
Manousakis-Katsikakis, A
Margaroli, F
Marino, C
Marino, CP
Martin, A
Martin, V
Martinez, M
Martinez-Ballarin, R
Maruyama, T
Mastrandrea, P
Masubuchi, T
Mathis, M
Mattson, ME
Mazzanti, P
McFarland, KS
McIntyre, P
McNulty, R
Mehta, A
Mehtala, P
Menzione, A
Merkel, P
Mesropian, C
Miao, T
Miladinovic, N
Miller, R
Mills, C
Milnik, M
Mitra, A
Mitselmakher, G
Miyake, H
Moggi, N
Moon, CS
Moore, R
Morello, MJ
Morlock, J
Fernandez, PM
Mulmenstadt, J
Mukherjee, A
Muller, T
Mumford, R
Murat, P
Mussini, M
Nachtman, J
Nagai, Y
Nagano, A
Naganoma, J
Nakamura, K
Nakano, I
Napier, A
Necula, V
Nett, J
Neu, C
Neubauer, MS
Neubauer, S
Nielsen, J
Nodulman, L
Norman, M
Norniella, O
Nurse, E
Oakes, L
Oh, SH
Oh, YD
Oksuzian, I
Okusawa, T
Orava, R
Osterberg, K
Griso, SP
Palencia, E
Papadimitriou, V
Papaikonomou, A
Paramonov, AA
Parks, B
Pashapour, S
Patrick, J
Pauletta, G
Paulini, M
Paus, C
Peiffer, T
Pellett, DE
Penzo, A
Phillips, TJ
Piacentino, G
Pianori, E
Pinera, L
Pitts, K
Plager, C
Pondrom, L
Poukhov, O
Pounder, N
Prakoshyn, F
Pronko, A
Proudfoot, J
Ptohos, F
Pueschel, E
Punzi, G
Pursley, J
Rademacker, J
Rahaman, A
Ramakrishnan, V
Ranjan, N
Ray, J
Redondo, I
Renton, P
Renz, M
Rescigno, M
Richter, S
Rimondi, F
Ristori, L
Robson, A
Rodrigo, T
Rodriguez, T
Rogers, E
Rolli, S
Roser, R
Rossi, M
Rossin, R
Roy, P
Ruiz, A
Russ, J
Rusu, V
Saarikko, H
Safonov, A
Sakumoto, WK
Salto, O
Santi, L
Sarkar, S
Sartori, L
Sato, K
Savoy-Navarro, A
Schlabach, P
Schmidt, A
Schmidt, EE
Schmidt, MA
Schmidt, MP
Schmitt, M
Schwarz, T
Scodellaro, L
Scribano, A
Scuri, F
Sedov, A
Seidel, S
Seiya, Y
Semenov, A
Sexton-Kennedy, L
Sforza, F
Sfyrla, A
Shalhout, SZ
Shears, T
Shepard, PF
Shimojima, M
Shiraishi, S
Shochet, M
Shon, Y
Shreyber, I
Sidoti, A
Sinervo, P
Sisakyan, A
Slaughter, AJ
Slaunwhite, J
Sliwa, K
Smith, JR
Snider, FD
Snihur, R
Soha, A
Somalwar, S
Sorin, V
Spalding, J
Spreitzer, T
Squillacioti, P
Stanitzki, M
St Denis, R
Stelzer, B
Stelzer-Chilton, O
Stentz, D
Strologas, J
Strycker, GL
Stuart, D
Suh, JS
Sukhanov, A
Suslov, I
Suzuki, T
Taffard, A
Takashima, R
Takeuchi, Y
Tanaka, R
Tecchio, M
Teng, PK
Terashi, K
Thom, J
Thompson, AS
Thompson, GA
Thomson, E
Tipton, P
Ttito-Guzman, P
Tkaczyk, S
Toback, D
Tokar, S
Tollefson, K
Tomura, T
Tonelli, D
Torre, S
Torretta, D
Totaro, P
Tourneur, S
Trovato, M
Tsai, SY
Tu, Y
Turini, N
Ukegawa, F
Vallecorsa, S
van Remortel, N
Varganov, A
Vataga, E
Vazquez, F
Velev, G
Vellidis, C
Vidal, M
Vidal, R
Vila, I
Vilar, R
Vine, T
Vogel, M
Volobouev, I
Volpi, G
Wagner, P
Wagner, RG
Wagner, RL
Wagner, W
Wagner-Kuhr, J
Wakisaka, T
Wallny, R
Wang, SM
Warburton, A
Waters, D
Weinberger, M
Weinelt, J
Wester, WC
Whitehouse, B
Whiteson, D
Wicklund, AB
Wicklund, E
Wilbur, S
Williams, G
Williams, HH
Wilson, P
Winer, BL
Wittich, P
Wolbers, S
Wolfe, C
Wright, T
Wu, X
Wurthwein, F
Xie, S
Yagil, A
Yamamoto, K
Yamaoka, J
Yang, UK
Yang, YC
Yao, WM
Yeh, GP
Yoh, J
Yorita, K
Yoshida, T
Yu, GB
Yu, I
Yu, SS
Yun, JC
Zanello, L
Zanetti, A
Zhang, X
Zheng, Y
Zucchelli, S
AF Aaltonen, T.
Adelman, J.
Akimoto, T.
Gonzalez, B. Alvarez
Amerio, S.
Amidei, D.
Anastassov, A.
Annovi, A.
Antos, J.
Apollinari, G.
Apresyan, A.
Arisawa, T.
Artikov, A.
Ashmanskas, W.
Attal, A.
Aurisano, A.
Azfar, F.
Azzurri, P.
Badgett, W.
Barbaro-Galtieri, A.
Barnes, V. E.
Barnett, B. A.
Bartsch, V.
Bauer, G.
Beauchemin, P. -H.
Bedeschi, F.
Beecher, D.
Behari, S.
Bellettini, G.
Bellinger, J.
Benjamin, D.
Beretvas, A.
Beringer, J.
Bhatti, A.
Binkley, M.
Bisello, D.
Bizjak, I.
Blair, R. E.
Blocker, C.
Blumenfeld, B.
Bocci, A.
Bodek, A.
Boisvert, V.
Bolla, G.
Bortoletto, D.
Boudreau, J.
Boveia, A.
Brau, B.
Bridgeman, A.
Brigliadori, L.
Bromberg, C.
Brubaker, E.
Budagov, J.
Budd, H. S.
Budd, S.
Burke, S.
Burkett, K.
Busetto, G.
Bussey, P.
Buzatu, A.
Byrum, K. L.
Cabrera, S.
Calancha, C.
Campanelli, M.
Campbell, M.
Canelli, F.
Canepa, A.
Carls, B.
Carlsmith, D.
Carosi, R.
Carrillo, S.
Carron, S.
Casal, B.
Casarsa, M.
Castro, A.
Catastini, P.
Cauz, D.
Cavaliere, V.
Cavalli-Sforza, M.
Cerri, A.
Cerrito, L.
Chang, S. H.
Chen, Y. C.
Chertok, M.
Chiarelli, G.
Chlachidze, G.
Chlebana, F.
Cho, K.
Chokheli, D.
Chou, J. P.
Choudalakis, G.
Chuang, S. H.
Chung, K.
Chung, W. H.
Chung, Y. S.
Chwalek, T.
Ciobanu, C. I.
Ciocci, M. A.
Clark, A.
Clark, D.
Compostella, G.
Convery, M. E.
Conway, J.
Cordelli, M.
Cortiana, G.
Cox, C. A.
Cox, D. J.
Crescioli, F.
Almenar, C. Cuenca
Cuevas, J.
Culbertson, R.
Cully, J. C.
Dagenhart, D.
Datta, M.
Davies, T.
de Barbaro, P.
De Cecco, S.
Deisher, A.
De Lorenzo, G.
Dell'Orso, M.
Deluca, C.
Demay, C.
Demortier, L.
Deng, J.
Deninno, M.
Derwent, P. F.
di Giovanni, G. P.
Dionisi, C.
Di Ruzza, B.
Dittmann, J. R.
D'Onofrio, M.
Donati, S.
Dong, P.
Donini, J.
Dorigo, T.
Dube, S.
Efron, J.
Elagin, A.
Erbacher, R.
Errede, D.
Errede, S.
Eusebi, R.
Fang, H. C.
Farrington, S.
Fedorko, W. T.
Feild, R. G.
Feindt, M.
Fernandez, J. P.
Ferrazza, C.
Field, R.
Flanagan, G.
Forrest, R.
Frank, M. J.
Franklin, M.
Freeman, J. C.
Furic, I.
Gallinaro, M.
Galyardt, J.
Garberson, F.
Garcia, J. E.
Garfinkel, A. F.
Genser, K.
Gerberich, H.
Gerdes, D.
Gessler, A.
Giagu, S.
Giakoumopoulou, V.
Giannetti, P.
Gibson, K.
Gimmell, J. L.
Ginsburg, C. M.
Giokaris, N.
Giordani, M.
Giromini, P.
Giunta, M.
Giurgiu, G.
Glagolev, V.
Glenzinski, D.
Gold, M.
Goldschmidt, N.
Golossanov, A.
Gomez, G.
Gomez-Ceballos, G.
Goncharov, M.
Gonzalez, O.
Gorelov, I.
Goshaw, A. T.
Goulianos, K.
Gresele, A.
Grinstein, S.
Grosso-Pilcher, C.
Group, R. C.
Grundler, U.
da Costa, J. Guimaraes
Gunay-Unalan, Z.
Haber, C.
Hahn, K.
Hahn, S. R.
Halkiadakis, E.
Han, B. -Y.
Han, J. Y.
Happacher, F.
Hara, K.
Hare, D.
Hare, M.
Harper, S.
Harr, R. F.
Harris, R. M.
Hartz, M.
Hatakeyama, K.
Hays, C.
Heck, M.
Heijboer, A.
Heinrich, J.
Henderson, C.
Herndon, M.
Heuser, J.
Hewamanage, S.
Hidas, D.
Hill, C. S.
Hirschbuehl, D.
Hocker, A.
Hou, S.
Houlden, M.
Hsu, S. -C.
Huffman, B. T.
Hughes, R. E.
Husemann, U.
Hussein, M.
Husemann, U.
Huston, J.
Incandela, J.
Introzzi, G.
Iori, M.
Ivanov, A.
James, E.
Jayatilaka, B.
Jeon, E. J.
Jha, M. K.
Jindariani, S.
Johnson, W.
Jones, M.
Joo, K. K.
Jun, S. Y.
Jung, J. E.
Junk, T. R.
Kamon, T.
Kar, D.
Karchin, P. E.
Kato, Y.
Kephart, R.
Keung, J.
Khotilovich, V.
Kilminster, B.
Kim, D. H.
Kim, H. S.
Kim, H. W.
Kim, J. E.
Kim, M. J.
Kim, S. B.
Kim, S. H.
Kim, Y. K.
Kimura, N.
Kirsch, L.
Klimenko, S.
Knuteson, B.
Ko, B. R.
Kondo, K.
Kong, D. J.
Konigsberg, J.
Korytov, A.
Kotwal, A. V.
Kreps, M.
Kroll, J.
Krop, D.
Krumnack, N.
Kruse, M.
Krutelyov, V.
Kubo, T.
Kuhr, T.
Kulkarni, N. P.
Kurata, M.
Kwang, S.
Laasanen, A. T.
Lami, S.
Lammel, S.
Lancaster, M.
Lander, R. L.
Lannon, K.
Lath, A.
Latino, G.
Lazzizzera, I.
LeCompte, T.
Lee, E.
Lee, H. S.
Lee, S. W.
Leone, S.
Lewis, J. D.
Lin, C. -S.
Linacre, J.
Lindgren, M.
Lipeles, E.
Lister, A.
Litvintsev, D. O.
Liu, C.
Liu, T.
Lockyer, N. S.
Loginov, A.
Loreti, M.
Lovas, L.
Lucchesi, D.
Luci, C.
Lueck, J.
Lujan, P.
Lukens, P.
Lungu, G.
Lyons, L.
Lys, J.
Lysak, R.
MacQueen, D.
Madrak, R.
Maeshima, K.
Makhoul, K.
Maki, T.
Maksimovic, P.
Malde, S.
Malik, S.
Manca, G.
Manousakis-Katsikakis, A.
Margaroli, F.
Marino, C.
Marino, C. P.
Martin, A.
Martin, V.
Martinez, M.
Martinez-Ballarin, R.
Maruyama, T.
Mastrandrea, P.
Masubuchi, T.
Mathis, M.
Mattson, M. E.
Mazzanti, P.
McFarland, K. S.
McIntyre, P.
McNulty, R.
Mehta, A.
Mehtala, P.
Menzione, A.
Merkel, P.
Mesropian, C.
Miao, T.
Miladinovic, N.
Miller, R.
Mills, C.
Milnik, M.
Mitra, A.
Mitselmakher, G.
Miyake, H.
Moggi, N.
Moon, C. S.
Moore, R.
Morello, M. J.
Morlock, J.
Fernandez, P. Movilla
Muelmenstaedt, J.
Mukherjee, A.
Muller, Th.
Mumford, R.
Murat, P.
Mussini, M.
Nachtman, J.
Nagai, Y.
Nagano, A.
Naganoma, J.
Nakamura, K.
Nakano, I.
Napier, A.
Necula, V.
Nett, J.
Neu, C.
Neubauer, M. S.
Neubauer, S.
Nielsen, J.
Nodulman, L.
Norman, M.
Norniella, O.
Nurse, E.
Oakes, L.
Oh, S. H.
Oh, Y. D.
Oksuzian, I.
Okusawa, T.
Orava, R.
Osterberg, K.
Griso, S. Pagan
Palencia, E.
Papadimitriou, V.
Papaikonomou, A.
Paramonov, A. A.
Parks, B.
Pashapour, S.
Patrick, J.
Pauletta, G.
Paulini, M.
Paus, C.
Peiffer, T.
Pellett, D. E.
Penzo, A.
Phillips, T. J.
Piacentino, G.
Pianori, E.
Pinera, L.
Pitts, K.
Plager, C.
Pondrom, L.
Poukhov, O.
Pounder, N.
Prakoshyn, F.
Pronko, A.
Proudfoot, J.
Ptohos, F.
Pueschel, E.
Punzi, G.
Pursley, J.
Rademacker, J.
Rahaman, A.
Ramakrishnan, V.
Ranjan, N.
Ray, J.
Redondo, I.
Renton, P.
Renz, M.
Rescigno, M.
Richter, S.
Rimondi, F.
Ristori, L.
Robson, A.
Rodrigo, T.
Rodriguez, T.
Rogers, E.
Rolli, S.
Roser, R.
Rossi, M.
Rossin, R.
Roy, P.
Ruiz, A.
Russ, J.
Rusu, V.
Saarikko, H.
Safonov, A.
Sakumoto, W. K.
Salto, O.
Santi, L.
Sarkar, S.
Sartori, L.
Sato, K.
Savoy-Navarro, A.
Schlabach, P.
Schmidt, A.
Schmidt, E. E.
Schmidt, M. A.
Schmidt, M. P.
Schmitt, M.
Schwarz, T.
Scodellaro, L.
Scribano, A.
Scuri, F.
Sedov, A.
Seidel, S.
Seiya, Y.
Semenov, A.
Sexton-Kennedy, L.
Sforza, F.
Sfyrla, A.
Shalhout, S. Z.
Shears, T.
Shepard, P. F.
Shimojima, M.
Shiraishi, S.
Shochet, M.
Shon, Y.
Shreyber, I.
Sidoti, A.
Sinervo, P.
Sisakyan, A.
Slaughter, A. J.
Slaunwhite, J.
Sliwa, K.
Smith, J. R.
Snider, F. D.
Snihur, R.
Soha, A.
Somalwar, S.
Sorin, V.
Spalding, J.
Spreitzer, T.
Squillacioti, P.
Stanitzki, M.
St Denis, R.
Stelzer, B.
Stelzer-Chilton, O.
Stentz, D.
Strologas, J.
Strycker, G. L.
Stuart, D.
Suh, J. S.
Sukhanov, A.
Suslov, I.
Suzuki, T.
Taffard, A.
Takashima, R.
Takeuchi, Y.
Tanaka, R.
Tecchio, M.
Teng, P. K.
Terashi, K.
Thom, J.
Thompson, A. S.
Thompson, G. A.
Thomson, E.
Tipton, P.
Ttito-Guzman, P.
Tkaczyk, S.
Toback, D.
Tokar, S.
Tollefson, K.
Tomura, T.
Tonelli, D.
Torre, S.
Torretta, D.
Totaro, P.
Tourneur, S.
Trovato, M.
Tsai, S. -Y.
Tu, Y.
Turini, N.
Ukegawa, F.
Vallecorsa, S.
van Remortel, N.
Varganov, A.
Vataga, E.
Vazquez, F.
Velev, G.
Vellidis, C.
Vidal, M.
Vidal, R.
Vila, I.
Vilar, R.
Vine, T.
Vogel, M.
Volobouev, I.
Volpi, G.
Wagner, P.
Wagner, R. G.
Wagner, R. L.
Wagner, W.
Wagner-Kuhr, J.
Wakisaka, T.
Wallny, R.
Wang, S. M.
Warburton, A.
Waters, D.
Weinberger, M.
Weinelt, J.
Wester, W. C., III
Whitehouse, B.
Whiteson, D.
Wicklund, A. B.
Wicklund, E.
Wilbur, S.
Williams, G.
Williams, H. H.
Wilson, P.
Winer, B. L.
Wittich, P.
Wolbers, S.
Wolfe, C.
Wright, T.
Wu, X.
Wuerthwein, F.
Xie, S.
Yagil, A.
Yamamoto, K.
Yamaoka, J.
Yang, U. K.
Yang, Y. C.
Yao, W. M.
Yeh, G. P.
Yoh, J.
Yorita, K.
Yoshida, T.
Yu, G. B.
Yu, I.
Yu, S. S.
Yun, J. C.
Zanello, L.
Zanetti, A.
Zhang, X.
Zheng, Y.
Zucchelli, S.
CA CDF Collaboration
TI Search for a Fermiophobic Higgs Boson Decaying into Diphotons in pp
Collisions at s=1.96 TeV
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID ELECTROMAGNETIC CALORIMETER; STANDARD MODEL; ROOT-S; TEVATRON; PHOTONS;
PHYSICS; STATES
AB A search for a narrow diphoton mass resonance is presented based on data from 3.0 fb(-1) of integrated luminosity from pp collisions at s=1.96 TeV collected by the CDF experiment. No evidence of a resonance in the diphoton mass spectrum is observed, and upper limits are set on the cross section times branching fraction of the resonant state as a function of Higgs boson mass. The resulting limits exclude Higgs bosons with masses below 106 GeV/c(2) at a 95% Bayesian credibility level for one fermiophobic benchmark model.
C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland.
[Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland.
[Bussey, P.; Chang, S. H.; Chen, Y. C.; Cho, K.; Hou, S.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Mitra, A.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.; Yang, Y. C.; Yu, I.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan.
[Blair, R. E.; Byrum, K. L.; D'Onofrio, M.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece.
[Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; Martinez, M.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain.
[Dittmann, J. R.; Frank, M. J.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA.
[Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy.
[Castro, A.; Mussini, M.; Neu, C.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy.
[Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA.
[Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA.
[Dong, P.; Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA.
[Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA.
[Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA.
[Gonzalez, B. Alvarez; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain.
[Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA.
[Adelman, J.; Brubaker, E.; Canelli, F.; Fedorko, W. T.; Furic, I.; Grosso-Pilcher, C.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Antos, J.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia.
[Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia.
[Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia.
[Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.] Duke Univ, Durham, NC 27708 USA.
[Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Demay, C.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Ray, J.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Carrillo, S.; Field, R.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA.
[Annovi, A.; Cordelli, M.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[Clark, A.; Garcia, J. E.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland.
[Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St Denis, R.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland.
[Bizjak, I.; Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.] Harvard Univ, Cambridge, MA 02138 USA.
[Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Volobouev, I.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA.
[Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA.
[Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany.
[Bussey, P.; Chang, S. H.; Chen, Y. C.; Cho, K.; Hou, S.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Mitra, A.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Teng, P. K.; Tsai, S. -Y.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea.
[Bussey, P.; Chang, S. H.; Chen, Y. C.; Cho, K.; Hou, S.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Mitra, A.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Teng, P. K.; Tsai, S. -Y.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea.
[Bussey, P.; Chang, S. H.; Chen, Y. C.; Cho, K.; Hou, S.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Mitra, A.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Teng, P. K.; Tsai, S. -Y.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea.
[Anastassov, A.; Bussey, P.; Chang, S. H.; Chen, Y. C.; Cho, K.; Hou, S.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Mitra, A.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Teng, P. K.; Tsai, S. -Y.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea.
[Bussey, P.; Chang, S. H.; Chen, Y. C.; Cho, K.; Hou, S.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Mitra, A.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Teng, P. K.; Tsai, S. -Y.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea.
[Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England.
[Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England.
[Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambientale & Tecnol, E-28040 Madrid, Spain.
[Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Goncharov, M.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA.
[Beauchemin, P. -H.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada.
[Beauchemin, P. -H.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada.
[Beauchemin, P. -H.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada.
[Beauchemin, P. -H.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada.
[Amidei, D.; Buzatu, A.; Campbell, M.; Cully, J. C.; Gerdes, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA.
[Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA.
[Efron, J.; Hughes, R. E.; Lannon, K.; Parks, B.; Pursley, J.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA.
[Feild, R. G.; Loginov, A.; Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan.
[Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan.
[Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England.
[Amerio, S.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy.
[Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy.
[Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, LPNHE, IN2P3, CNRS UMR7585, F-75252 Paris, France.
[Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA.
[Azzurri, P.; Bedeschi, F.; Bellettini, G.; Bridgeman, A.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Sidoti, A.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy.
[Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Giunta, M.; Morello, M. J.; Punzi, G.] Univ Pisa, I-56127 Pisa, Italy.
[Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.; Volpi, G.] Univ Siena, I-56127 Pisa, Italy.
[Azzurri, P.; Ferrazza, C.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy.
[Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA.
[Apresyan, A.; Barnes, V. E.; Bolla, G.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA.
[Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA.
[Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA.
[De Cecco, S.; Dionisi, C.; Gallinaro, M.; Giagu, S.; Iori, M.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.] Ist Nazl Fis Nucl, Sez Rome 1, I-00185 Rome, Italy.
[Dionisi, C.; Giagu, S.; Iori, M.; Sarkar, S.] Univ Roma La Sapienza, I-00185 Rome, Italy.
[Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA.
[Annovi, A.; Elagin, A.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA.
[Cauz, D.; Di Ruzza, B.; Giordani, M.; Luci, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanello, L.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, Trieste, Italy.
[Cauz, D.; Di Ruzza, B.; Giordani, M.; Luci, C.; Pauletta, G.; Santi, L.; Totaro, P.; Zanello, L.] Univ Trieste Udine, Trieste, Italy.
[Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan.
[Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA.
[Arisawa, T.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan.
[Harr, R. F.; Karchin, P. E.; Kurata, M.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA.
[Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA.
[Husemann, U.; Martin, A.; Martin, V.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA.
[Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Husemann, U.; Hussein, M.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA.
RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland.
RI Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Xie,
Si/O-6830-2016; Canelli, Florencia/O-9693-2016; Scodellaro,
Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini,
Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan,
zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; vilar,
rocio/P-8480-2014; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose
/H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza,
Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Lysak,
Roman/H-2995-2014; Ruiz, Alberto/E-4473-2011; Moon,
Chang-Seong/J-3619-2014; Robson, Aidan/G-1087-2011; De Cecco,
Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; manca,
giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi,
Giovanni/J-4947-2012; Annovi, Alberto/G-6028-2012; Ivanov,
Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim,
Soo-Bong/B-7061-2014
OI Introzzi, Gianluca/0000-0002-1314-2580; Gorelov,
Igor/0000-0001-5570-0133; Xie, Si/0000-0003-2509-5731; Canelli,
Florencia/0000-0001-6361-2117; Gallinaro, Michele/0000-0003-1261-2277;
Turini, Nicola/0000-0002-9395-5230; Scodellaro,
Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694;
Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155;
unalan, zeynep/0000-0003-2570-7611; Lazzizzera,
Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462;
Muelmenstaedt, Johannes/0000-0003-1105-6678; Ruiz,
Alberto/0000-0002-3639-0368; Moon, Chang-Seong/0000-0001-8229-7829;
Punzi, Giovanni/0000-0002-8346-9052; Annovi,
Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643;
Warburton, Andreas/0000-0002-2298-7315;
NR 37
TC 25
Z9 25
U1 1
U2 8
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD AUG 7
PY 2009
VL 103
IS 6
AR 061803
DI 10.1103/PhysRevLett.103.061803
PG 8
WC Physics, Multidisciplinary
SC Physics
GA 481KP
UT WOS:000268809300010
ER
PT J
AU Abazov, VM
Abbott, B
Abolins, M
Acharya, BS
Adams, M
Adams, T
Aguilo, E
Ahsan, M
Alexeev, GD
Alkhazov, G
Alton, A
Alverson, G
Alves, GA
Ancu, LS
Andeen, T
Anzelc, MS
Aoki, M
Arnoud, Y
Arov, M
Arthaud, M
Askew, A
Asman, B
Atramentov, O
Avila, C
BackusMayes, J
Badaud, F
Bagby, L
Baldin, B
Bandurin, DV
Banerjee, S
Barberis, E
Barfuss, AF
Bargassa, P
Baringer, P
Barreto, J
Bartlett, JF
Bassler, U
Bauer, D
Beale, S
Bean, A
Begalli, M
Begel, M
Belanger-Champagne, C
Bellantoni, L
Bellavance, A
Benitez, JA
Beri, SB
Bernardi, G
Bernhard, R
Bertram, I
Besancon, M
Beuselinck, R
Bezzubov, VA
Bhat, PC
Bhatnagar, V
Blazey, G
Blessing, S
Bloom, K
Boehnlein, A
Boline, D
Bolton, TA
Boos, EE
Borissov, G
Bose, T
Brandt, A
Brock, R
Brooijmans, G
Bross, A
Brown, D
Bu, XB
Buchholz, D
Buehler, M
Buescher, V
Bunichev, V
Burdin, S
Burnett, TH
Buszello, CP
Calfayan, P
Calpas, B
Calvet, S
Cammin, J
Carrasco-Lizarraga, MA
Carrera, E
Carvalho, W
Casey, BCK
Castilla-Valdez, H
Chakrabarti, S
Chakraborty, D
Chan, KM
Chandra, A
Cheu, E
Cho, DK
Choi, S
Choudhary, B
Christoudias, T
Cihangir, S
Claes, D
Clutter, J
Cooke, M
Cooper, WE
Corcoran, M
Couderc, F
Cousinou, MC
Crepe-Renaudin, S
Cutts, D
Cwiok, M
Das, A
Davies, G
De, K
de Jong, SJ
De La Cruz-Burelo, E
DeVaughan, K
Deliot, F
Demarteau, M
Demina, R
Denisov, D
Denisov, SP
Desai, S
Diehl, HT
Diesburg, M
Dominguez, A
Dorland, T
Dubey, A
Dudko, LV
Duflot, L
Duggan, D
Duperrin, A
Dutt, S
Dyshkant, A
Eads, M
Edmunds, D
Ellison, J
Elvira, VD
Enari, Y
Eno, S
Escalier, M
Evans, H
Evdokimov, A
Evdokimov, VN
Facini, G
Ferapontov, AV
Ferbel, T
Fiedler, F
Filthaut, F
Fisher, W
Fisk, HE
Fortner, M
Fox, H
Fu, S
Fuess, S
Gadfort, T
Galea, CF
Garcia-Bellido, A
Gavrilov, V
Gay, P
Geist, W
Geng, W
Gerber, CE
Gershtein, Y
Gillberg, D
Ginther, G
Gomez, B
Goussiou, A
Grannis, PD
Greder, S
Greenlee, H
Greenwood, ZD
Gregores, EM
Grenier, G
Gris, P
Grivaz, JF
Grohsjean, A
Grunendahl, S
Grunewald, MW
Guo, F
Guo, J
Gutierrez, G
Gutierrez, P
Haas, A
Haefner, P
Hagopian, S
Haley, J
Hall, I
Hall, RE
Han, L
Harder, K
Harel, A
Hauptman, JM
Hays, J
Hebbeker, T
Hedin, D
Hegeman, JG
Heinson, AP
Heintz, U
Hensel, C
Heredia-De La Cruz, I
Herner, K
Hesketh, G
Hildreth, MD
Hirosky, R
Hoang, T
Hobbs, JD
Hoeneisen, B
Hohlfeld, M
Hossain, S
Houben, P
Hu, Y
Hubacek, Z
Huske, N
Hynek, V
Iashvili, I
Illingworth, R
Ito, AS
Jabeen, S
Jaffre, M
Jain, S
Jakobs, K
Jamin, D
Jesik, R
Johns, K
Johnson, C
Johnson, M
Johnston, D
Jonckheere, A
Jonsson, P
Juste, A
Kajfasz, E
Karmanov, D
Kasper, PA
Katsanos, I
Kaushik, V
Kehoe, R
Kermiche, S
Khalatyan, N
Khanov, A
Kharchilava, A
Kharzheev, YN
Khatidze, D
Kim, TJ
Kirby, MH
Kirsch, M
Klima, B
Kohli, JM
Konrath, JP
Kozelov, AV
Kraus, J
Kuhl, T
Kumar, A
Kupco, A
Kurca, T
Kuzmin, VA
Kvita, J
Lacroix, F
Lam, D
Lammers, S
Landsberg, G
Lebrun, P
Lee, WM
Leflat, A
Lellouch, J
Li, J
Li, L
Li, QZ
Lietti, SM
Lim, JK
Lincoln, D
Linnemann, J
Lipaev, VV
Lipton, R
Liu, Y
Liu, Z
Lobodenko, A
Lokajicek, M
Love, P
Lubatti, HJ
Luna-Garcia, R
Lyon, AL
Maciel, AKA
Mackin, D
Mattig, P
Magana-Villalba, R
Magerkurth, A
Mal, PK
Malbouisson, HB
Malik, S
Malyshev, VL
Maravin, Y
Martin, B
McCarthy, R
McGivern, CL
Meijer, MM
Melnitchouk, A
Mendoza, L
Menezes, D
Mercadante, PG
Merkin, M
Merritt, KW
Meyer, A
Meyer, J
Mitrevski, J
Mondal, NK
Moore, RW
Moulik, T
Muanza, GS
Mulhearn, M
Mundal, O
Mundim, L
Nagy, E
Naimuddin, M
Narain, M
Neal, HA
Negret, JP
Neustroev, P
Nilsen, H
Nogima, H
Novaes, SF
Nunnemann, T
Obrant, G
Ochando, C
Onoprienko, D
Orduna, J
Oshima, N
Osman, N
Osta, J
Otec, R
Garzon, GJOY
Owen, M
Padilla, M
Padley, P
Pangilinan, M
Parashar, N
Park, SJ
Park, SK
Parsons, J
Partridge, R
Parua, N
Patwa, A
Pawloski, G
Penning, B
Perfilov, M
Peters, K
Peters, Y
Petroff, P
Piegaia, R
Piper, J
Pleier, MA
Podesta-Lerma, PLM
Podstavkov, VM
Pogorelov, Y
Pol, ME
Polozov, P
Popov, AV
da Silva, WLP
Protopopescu, S
Qian, J
Quadt, A
Quinn, B
Rakitine, A
Rangel, MS
Ranjan, K
Ratoff, PN
Renkel, P
Rich, P
Rijssenbeek, M
Ripp-Baudot, I
Rizatdinova, F
Robinson, S
Rominsky, M
Royon, C
Rubinov, P
Ruchti, R
Safronov, G
Sajot, G
Sanchez-Hernandez, A
Sanders, MP
Sanghi, B
Savage, G
Sawyer, L
Scanlon, T
Schaile, D
Schamberger, RD
Scheglov, Y
Schellman, H
Schliephake, T
Schlobohm, S
Schwanenberger, C
Schwienhorst, R
Sekaric, J
Severini, H
Shabalina, E
Shamim, M
Shary, V
Shchukin, AA
Shivpuri, RK
Siccardi, V
Simak, V
Sirotenko, V
Skubic, P
Slattery, P
Smirnov, D
Snow, GR
Snow, J
Snyder, S
Soldner-Rembold, S
Sonnenschein, L
Sopczak, A
Sosebee, M
Soustruznik, K
Spurlock, B
Stark, J
Stolin, V
Stoyanova, DA
Strandberg, J
Strang, MA
Strauss, E
Strauss, M
Strohmer, R
Strom, D
Stutte, L
Sumowidagdo, S
Svoisky, P
Takahashi, M
Tanasijczuk, A
Taylor, W
Tiller, B
Titov, M
Tokmenin, VV
Torchiani, I
Tsybychev, D
Tuchming, B
Tully, C
Tuts, PM
Unalan, R
Uvarov, L
Uvarov, S
Uzunyan, S
van den Berg, PJ
Van Kooten, R
van Leeuwen, WM
Varelas, N
Varnes, EW
Vasilyev, IA
Verdier, P
Vertogradov, LS
Verzocchi, M
Vilanova, D
Vint, P
Vokac, P
Voutilainen, M
Wagner, R
Wahl, HD
Wang, MHLS
Warchol, J
Watts, G
Wayne, M
Weber, G
Weber, M
Welty-Rieger, L
Wenger, A
Wetstein, M
White, A
Wicke, D
Williams, MRJ
Wilson, GW
Wimpenny, SJ
Wobisch, M
Wood, DR
Wyatt, TR
Xie, Y
Xu, C
Yacoob, S
Yamada, R
Yang, WC
Yasuda, T
Yatsunenko, YA
Ye, Z
Yin, H
Yip, K
Yoo, HD
Youn, SW
Yu, J
Zeitnitz, C
Zelitch, S
Zhao, T
Zhou, B
Zhu, J
Zielinski, M
Zieminska, D
Zivkovic, L
Zutshi, V
Zverev, EG
AF Abazov, V. M.
Abbott, B.
Abolins, M.
Acharya, B. S.
Adams, M.
Adams, T.
Aguilo, E.
Ahsan, M.
Alexeev, G. D.
Alkhazov, G.
Alton, A.
Alverson, G.
Alves, G. A.
Ancu, L. S.
Andeen, T.
Anzelc, M. S.
Aoki, M.
Arnoud, Y.
Arov, M.
Arthaud, M.
Askew, A.
Asman, B.
Atramentov, O.
Avila, C.
BackusMayes, J.
Badaud, F.
Bagby, L.
Baldin, B.
Bandurin, D. V.
Banerjee, S.
Barberis, E.
Barfuss, A. -F.
Bargassa, P.
Baringer, P.
Barreto, J.
Bartlett, J. F.
Bassler, U.
Bauer, D.
Beale, S.
Bean, A.
Begalli, M.
Begel, M.
Belanger-Champagne, C.
Bellantoni, L.
Bellavance, A.
Benitez, J. A.
Beri, S. B.
Bernardi, G.
Bernhard, R.
Bertram, I.
Besancon, M.
Beuselinck, R.
Bezzubov, V. A.
Bhat, P. C.
Bhatnagar, V.
Blazey, G.
Blessing, S.
Bloom, K.
Boehnlein, A.
Boline, D.
Bolton, T. A.
Boos, E. E.
Borissov, G.
Bose, T.
Brandt, A.
Brock, R.
Brooijmans, G.
Bross, A.
Brown, D.
Bu, X. B.
Buchholz, D.
Buehler, M.
Buescher, V.
Bunichev, V.
Burdin, S.
Burnett, T. H.
Buszello, C. P.
Calfayan, P.
Calpas, B.
Calvet, S.
Cammin, J.
Carrasco-Lizarraga, M. A.
Carrera, E.
Carvalho, W.
Casey, B. C. K.
Castilla-Valdez, H.
Chakrabarti, S.
Chakraborty, D.
Chan, K. M.
Chandra, A.
Cheu, E.
Cho, D. K.
Choi, S.
Choudhary, B.
Christoudias, T.
Cihangir, S.
Claes, D.
Clutter, J.
Cooke, M.
Cooper, W. E.
Corcoran, M.
Couderc, F.
Cousinou, M. -C.
Crepe-Renaudin, S.
Cutts, D.
Cwiok, M.
Das, A.
Davies, G.
De, K.
de Jong, S. J.
De La Cruz-Burelo, E.
DeVaughan, K.
Deliot, F.
Demarteau, M.
Demina, R.
Denisov, D.
Denisov, S. P.
Desai, S.
Diehl, H. T.
Diesburg, M.
Dominguez, A.
Dorland, T.
Dubey, A.
Dudko, L. V.
Duflot, L.
Duggan, D.
Duperrin, A.
Dutt, S.
Dyshkant, A.
Eads, M.
Edmunds, D.
Ellison, J.
Elvira, V. D.
Enari, Y.
Eno, S.
Escalier, M.
Evans, H.
Evdokimov, A.
Evdokimov, V. N.
Facini, G.
Ferapontov, A. V.
Ferbel, T.
Fiedler, F.
Filthaut, F.
Fisher, W.
Fisk, H. E.
Fortner, M.
Fox, H.
Fu, S.
Fuess, S.
Gadfort, T.
Galea, C. F.
Garcia-Bellido, A.
Gavrilov, V.
Gay, P.
Geist, W.
Geng, W.
Gerber, C. E.
Gershtein, Y.
Gillberg, D.
Ginther, G.
Gomez, B.
Goussiou, A.
Grannis, P. D.
Greder, S.
Greenlee, H.
Greenwood, Z. D.
Gregores, E. M.
Grenier, G.
Gris, Ph.
Grivaz, J. -F.
Grohsjean, A.
Gruenendahl, S.
Gruenewald, M. W.
Guo, F.
Guo, J.
Gutierrez, G.
Gutierrez, P.
Haas, A.
Haefner, P.
Hagopian, S.
Haley, J.
Hall, I.
Hall, R. E.
Han, L.
Harder, K.
Harel, A.
Hauptman, J. M.
Hays, J.
Hebbeker, T.
Hedin, D.
Hegeman, J. G.
Heinson, A. P.
Heintz, U.
Hensel, C.
Heredia-De La Cruz, I.
Herner, K.
Hesketh, G.
Hildreth, M. D.
Hirosky, R.
Hoang, T.
Hobbs, J. D.
Hoeneisen, B.
Hohlfeld, M.
Hossain, S.
Houben, P.
Hu, Y.
Hubacek, Z.
Huske, N.
Hynek, V.
Iashvili, I.
Illingworth, R.
Ito, A. S.
Jabeen, S.
Jaffre, M.
Jain, S.
Jakobs, K.
Jamin, D.
Jesik, R.
Johns, K.
Johnson, C.
Johnson, M.
Johnston, D.
Jonckheere, A.
Jonsson, P.
Juste, A.
Kajfasz, E.
Karmanov, D.
Kasper, P. A.
Katsanos, I.
Kaushik, V.
Kehoe, R.
Kermiche, S.
Khalatyan, N.
Khanov, A.
Kharchilava, A.
Kharzheev, Y. N.
Khatidze, D.
Kim, T. J.
Kirby, M. H.
Kirsch, M.
Klima, B.
Kohli, J. M.
Konrath, J. -P.
Kozelov, A. V.
Kraus, J.
Kuhl, T.
Kumar, A.
Kupco, A.
Kurca, T.
Kuzmin, V. A.
Kvita, J.
Lacroix, F.
Lam, D.
Lammers, S.
Landsberg, G.
Lebrun, P.
Lee, W. M.
Leflat, A.
Lellouch, J.
Li, J.
Li, L.
Li, Q. Z.
Lietti, S. M.
Lim, J. K.
Lincoln, D.
Linnemann, J.
Lipaev, V. V.
Lipton, R.
Liu, Y.
Liu, Z.
Lobodenko, A.
Lokajicek, M.
Love, P.
Lubatti, H. J.
Luna-Garcia, R.
Lyon, A. L.
Maciel, A. K. A.
Mackin, D.
Maettig, P.
Magana-Villalba, R.
Magerkurth, A.
Mal, P. K.
Malbouisson, H. B.
Malik, S.
Malyshev, V. L.
Maravin, Y.
Martin, B.
McCarthy, R.
McGivern, C. L.
Meijer, M. M.
Melnitchouk, A.
Mendoza, L.
Menezes, D.
Mercadante, P. G.
Merkin, M.
Merritt, K. W.
Meyer, A.
Meyer, J.
Mitrevski, J.
Mondal, N. K.
Moore, R. W.
Moulik, T.
Muanza, G. S.
Mulhearn, M.
Mundal, O.
Mundim, L.
Nagy, E.
Naimuddin, M.
Narain, M.
Neal, H. A.
Negret, J. P.
Neustroev, P.
Nilsen, H.
Nogima, H.
Novaes, S. F.
Nunnemann, T.
Obrant, G.
Ochando, C.
Onoprienko, D.
Orduna, J.
Oshima, N.
Osman, N.
Osta, J.
Otec, R.
Otero y Garzon, G. J.
Owen, M.
Padilla, M.
Padley, P.
Pangilinan, M.
Parashar, N.
Park, S. -J.
Park, S. K.
Parsons, J.
Partridge, R.
Parua, N.
Patwa, A.
Pawloski, G.
Penning, B.
Perfilov, M.
Peters, K.
Peters, Y.
Petroff, P.
Piegaia, R.
Piper, J.
Pleier, M. -A.
Podesta-Lerma, P. L. M.
Podstavkov, V. M.
Pogorelov, Y.
Pol, M. -E.
Polozov, P.
Popov, A. V.
da Silva, W. L. Prado
Protopopescu, S.
Qian, J.
Quadt, A.
Quinn, B.
Rakitine, A.
Rangel, M. S.
Ranjan, K.
Ratoff, P. N.
Renkel, P.
Rich, P.
Rijssenbeek, M.
Ripp-Baudot, I.
Rizatdinova, F.
Robinson, S.
Rominsky, M.
Royon, C.
Rubinov, P.
Ruchti, R.
Safronov, G.
Sajot, G.
Sanchez-Hernandez, A.
Sanders, M. P.
Sanghi, B.
Savage, G.
Sawyer, L.
Scanlon, T.
Schaile, D.
Schamberger, R. D.
Scheglov, Y.
Schellman, H.
Schliephake, T.
Schlobohm, S.
Schwanenberger, C.
Schwienhorst, R.
Sekaric, J.
Severini, H.
Shabalina, E.
Shamim, M.
Shary, V.
Shchukin, A. A.
Shivpuri, R. K.
Siccardi, V.
Simak, V.
Sirotenko, V.
Skubic, P.
Slattery, P.
Smirnov, D.
Snow, G. R.
Snow, J.
Snyder, S.
Soeldner-Rembold, S.
Sonnenschein, L.
Sopczak, A.
Sosebee, M.
Soustruznik, K.
Spurlock, B.
Stark, J.
Stolin, V.
Stoyanova, D. A.
Strandberg, J.
Strang, M. A.
Strauss, E.
Strauss, M.
Stroehmer, R.
Strom, D.
Stutte, L.
Sumowidagdo, S.
Svoisky, P.
Takahashi, M.
Tanasijczuk, A.
Taylor, W.
Tiller, B.
Titov, M.
Tokmenin, V. V.
Torchiani, I.
Tsybychev, D.
Tuchming, B.
Tully, C.
Tuts, P. M.
Unalan, R.
Uvarov, L.
Uvarov, S.
Uzunyan, S.
van den Berg, P. J.
Van Kooten, R.
van Leeuwen, W. M.
Varelas, N.
Varnes, E. W.
Vasilyev, I. A.
Verdier, P.
Vertogradov, L. S.
Verzocchi, M.
Vilanova, D.
Vint, P.
Vokac, P.
Voutilainen, M.
Wagner, R.
Wahl, H. D.
Wang, M. H. L. S.
Warchol, J.
Watts, G.
Wayne, M.
Weber, G.
Weber, M.
Welty-Rieger, L.
Wenger, A.
Wetstein, M.
White, A.
Wicke, D.
Williams, M. R. J.
Wilson, G. W.
Wimpenny, S. J.
Wobisch, M.
Wood, D. R.
Wyatt, T. R.
Xie, Y.
Xu, C.
Yacoob, S.
Yamada, R.
Yang, W. -C.
Yasuda, T.
Yatsunenko, Y. A.
Ye, Z.
Yin, H.
Yip, K.
Yoo, H. D.
Youn, S. W.
Yu, J.
Zeitnitz, C.
Zelitch, S.
Zhao, T.
Zhou, B.
Zhu, J.
Zielinski, M.
Zieminska, D.
Zivkovic, L.
Zutshi, V.
Zverev, E. G.
CA D0 Collaboration
TI Search for Next-to-Minimal Supersymmetric Higgs Bosons in the h -> aa
->mu mu mu mu, mu mu tau tau Channels Using pp Collisions at s=1.96 TeV
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID LEP; DETECTOR
AB We report on a first search for production of the lightest neutral CP-even Higgs boson (h) in the next-to-minimal supersymmetric standard model, where h decays to a pair of neutral pseudoscalar Higgs bosons (a), using 4.2 fb(-1) of data recorded with the D0 detector at Fermilab. The a bosons are required to either both decay to mu(+)mu(-) or one to mu(+)mu(-) and the other to tau(+)tau(-). No significant signal is observed, and we set limits on its production as functions of M-a and M-h.
C1 [Abazov, V. M.; Alexeev, G. D.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia.
[Alves, G. A.; Barreto, J.; Maciel, A. K. A.; Pol, M. -E.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil.
[Begalli, M.; Carvalho, W.; Malbouisson, H. B.; Mundim, L.; Nogima, H.; da Silva, W. L. Prado] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil.
[Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil.
[Lietti, S. M.; Martin, B.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil.
[Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Taylor, W.] Univ Alberta, Edmonton, AB, Canada.
[Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Taylor, W.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada.
[Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada.
[Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Taylor, W.] McGill Univ, Montreal, PQ, Canada.
[Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China.
[Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia.
[Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic.
[Hubacek, Z.; Hynek, V.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic.
[Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic.
[Hoeneisen, B.] Univ San Francisco, Quito, Ecuador.
[Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, Clermont, France.
[Arnoud, Y.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, LPSC, CNRS, IN2P3,Inst Natl Polytech Grenoble, Grenoble, France.
[Barfuss, A. -F.; Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Escalier, M.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Univ Aix Marseille, CPPM, CNRS, IN2P3, Marseille, France.
[Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.; Rangel, M. S.] Univ Paris 11, LAL, IN2P3, CNRS, Orsay, France.
[Bernardi, G.; Huske, N.; Lellouch, J.] Univ Paris 06, LPNHE, IN2P3, CNRS, Paris, France.
[Bernardi, G.; Huske, N.; Lellouch, J.] Univ Paris 07, LPNHE, IN2P3, CNRS, Paris, France.
[Arthaud, M.; Bassler, U.; Besancon, M.; Couderc, F.; Deliot, F.; Grohsjean, A.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] SPP, CEA, Saclay, France.
[Alton, A.; Brown, D.; Geist, W.; Greder, S.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg, IPHC, CNRS, IN2P3, Strasbourg, France.
[Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, IPNL, CNRS, IN2P3, Villeurbanne, France.
[Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France.
[Hebbeker, T.; Kirsch, M.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Inst Phys A3, Aachen, Germany.
[Buescher, V.; Hohlfeld, M.; Mundal, O.; Pleier, M. -A.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany.
[Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.; Weber, M.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany.
[Hensel, C.; Park, S. -J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany.
[Fiedler, F.; Kuhl, T.; Weber, G.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany.
[Calfayan, P.; Haefner, P.; Nunnemann, T.; Sanders, M. P.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany.
[Maettig, P.; Schliephake, T.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany.
[Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India.
[Choudhary, B.; Dubey, A.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India.
[Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India.
[Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland.
[Kim, T. J.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea.
[Choi, S.] Sungkyunkwan Univ, Suwon, South Korea.
[Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico.
[Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands.
[Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] FOM Inst NIKHEF, Amsterdam, Netherlands.
[Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands.
[Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia.
[Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia.
[Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia.
[Asman, B.; Belanger-Champagne, C.] Stockholm Univ, S-10691 Stockholm, Sweden.
[Asman, B.; Belanger-Champagne, C.] Uppsala Univ, Uppsala, Sweden.
[Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster, England.
[Bauer, D.; Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Robinson, S.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England.
[Harder, K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Wyatt, T. R.; Yasuda, T.] Univ Manchester, Manchester, Lancs, England.
[Cheu, E.; Das, A.; Johns, K.; Mal, P. K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA.
[Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA.
[Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA.
[Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Carrera, E.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Hoang, T.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA.
[Alton, A.; Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Facini, G.; Fisher, W.; Fisk, H. E.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Merritt, K. W.; Naimuddin, M.; Oshima, N.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Weber, M.; Yamada, R.; Ye, Z.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Adams, M.; Gerber, C. E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA.
[Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA.
[Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA.
[Evans, H.; Lammers, S.; Parua, N.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA.
[Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA.
[Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA.
[Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA.
[Baringer, P.; Clutter, J.; McGivern, C. L.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA.
[Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.] Kansas State Univ, Manhattan, KS 66506 USA.
[Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA.
[Eno, S.; Ferbel, T.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA.
[Boline, D.; Bose, T.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA.
[Alverson, G.; Barberis, E.; Facini, G.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA.
[Alton, A.; Herner, K.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Abolins, M.; Benitez, J. A.; Brock, R.; Edmunds, D.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA.
[Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA.
[Haley, J.; Tully, C.] Princeton Univ, Princeton, NJ 08544 USA.
[Hobbs, J. D.; Iashvili, I.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA.
[Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Kharchilava, A.; Kumar, A.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA.
[Cammin, J.; Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Khatidze, D.; Skubic, P.; Slattery, P.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA.
[Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA.
[Begel, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Snow, J.] Langston Univ, Langston, OK 73050 USA.
[Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA.
[Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA.
[Brandt, A.; Cutts, D.; Enari, Y.; Khanov, A.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA.
[De, K.; Landsberg, G.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA.
[Kaushik, V.; Li, J.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA.
[Bargassa, P.; Corcoran, M.; Kehoe, R.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA.
[Buehler, M.; Hirosky, R.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA.
[BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Schlobohm, S.; Warchol, J.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA.
[Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina.
[Bloom, K.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.; Wagner, R.] Univ Nebraska, Lincoln, NE 68588 USA.
RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia.
RI Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco,
Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias,
Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015;
Li, Liang/O-1107-2015; Mundim, Luiz/A-1291-2012; Alves,
Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Boos,
Eduard/D-9748-2012; Novaes, Sergio/D-3532-2012; Leflat,
Alexander/D-7284-2012; Dudko, Lev/D-7127-2012; Shivpuri, R
K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Yip, Kin/D-6860-2013;
Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013; Ancu, Lucian
Stefan/F-1812-2010
OI Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias,
Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Guo,
Jun/0000-0001-8125-9433; Li, Liang/0000-0001-6411-6107; Mundim,
Luiz/0000-0001-9964-7805; Novaes, Sergio/0000-0003-0471-8549; Dudko,
Lev/0000-0002-4462-3192; Yip, Kin/0000-0002-8576-4311; De,
Kaushik/0000-0002-5647-4489; Ancu, Lucian Stefan/0000-0001-5068-6723
FU DOE; NSF (U.S.); CEA; CNRS/IN2P3; FASI, Rosatom; RFBR (Russia); CNPq;
FAPERJ; FAPESP; FUNDUNESP (Brazil); DAE; DST (India); Colciencias
(Colombia); CONACyT (Mexico); KRF; KOSEF (Korea); CONICET; UBACyT
(Argentina); FOM (The Netherlands); STFC; Royal Society (United
Kingdom); MSMT; GACR (Czech Republic); CRC Program; CFI, NSERC; WestGrid
Project (Canada); BMBF; DFG (Germany); SFI (Ireland); The Swedish
Research Council (Sweden); CAS; CNSF (China); Alexander von Humboldt
Foundation (Germany)
FX We thank the staffs at Fermilab and collaborating institutions, and
acknowledge support from the DOE and NSF (U.S.); CEA and CNRS/IN2P3
(France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and
FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT
(Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM
(The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and
GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project
(Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research
Council (Sweden); CAS and CNSF (China); and the Alexander von Humboldt
Foundation (Germany).
NR 23
TC 47
Z9 47
U1 0
U2 8
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD AUG 7
PY 2009
VL 103
IS 6
AR 061801
DI 10.1103/PhysRevLett.103.061801
PG 7
WC Physics, Multidisciplinary
SC Physics
GA 481KP
UT WOS:000268809300008
ER
PT J
AU Aguilar-Arevalo, AA
Anderson, CE
Bazarko, AO
Brice, SJ
Brown, BC
Bugel, L
Cao, J
Coney, L
Conrad, JM
Cox, DC
Curioni, A
Djurcic, Z
Finley, DA
Fleming, BT
Ford, R
Garcia, FG
Garvey, GT
Grange, J
Green, C
Green, JA
Hart, TL
Hawker, E
Imlay, R
Johnson, RA
Karagiorgi, G
Kasper, P
Katori, T
Kobilarcik, T
Kourbanis, I
Koutsoliotas, S
Laird, EM
Linden, SK
Link, JM
Liu, Y
Liu, Y
Louis, WC
Mahn, KBM
Marsh, W
Mauger, C
McGary, VT
McGregor, G
Metcalf, W
Meyers, PD
Mills, F
Mills, GB
Monroe, J
Moore, CD
Mousseau, J
Nelson, RH
Nienaber, P
Nowak, JA
Osmanov, B
Ouedraogo, S
Patterson, RB
Pavlovic, Z
Perevalov, D
Polly, CC
Prebys, E
Raaf, JL
Ray, H
Roe, BP
Russell, AD
Sandberg, V
Schirato, R
Schmitz, D
Shaevitz, MH
Shoemaker, FC
Smith, D
Soderberg, M
Sorel, M
Spentzouris, P
Spitz, J
Stancu, I
Stefanski, RJ
Sung, M
Tanaka, HA
Tayloe, R
Tzanov, M
de Water, RG
Wascko, MO
White, DH
Wilking, MJ
Yang, HJ
Zeller, GP
Zimmerman, ED
AF Aguilar-Arevalo, A. A.
Anderson, C. E.
Bazarko, A. O.
Brice, S. J.
Brown, B. C.
Bugel, L.
Cao, J.
Coney, L.
Conrad, J. M.
Cox, D. C.
Curioni, A.
Djurcic, Z.
Finley, D. A.
Fleming, B. T.
Ford, R.
Garcia, F. G.
Garvey, G. T.
Grange, J.
Green, C.
Green, J. A.
Hart, T. L.
Hawker, E.
Imlay, R.
Johnson, R. A.
Karagiorgi, G.
Kasper, P.
Katori, T.
Kobilarcik, T.
Kourbanis, I.
Koutsoliotas, S.
Laird, E. M.
Linden, S. K.
Link, J. M.
Liu, Y.
Liu, Y.
Louis, W. C.
Mahn, K. B. M.
Marsh, W.
Mauger, C.
McGary, V. T.
McGregor, G.
Metcalf, W.
Meyers, P. D.
Mills, F.
Mills, G. B.
Monroe, J.
Moore, C. D.
Mousseau, J.
Nelson, R. H.
Nienaber, P.
Nowak, J. A.
Osmanov, B.
Ouedraogo, S.
Patterson, R. B.
Pavlovic, Z.
Perevalov, D.
Polly, C. C.
Prebys, E.
Raaf, J. L.
Ray, H.
Roe, B. P.
Russell, A. D.
Sandberg, V.
Schirato, R.
Schmitz, D.
Shaevitz, M. H.
Shoemaker, F. C.
Smith, D.
Soderberg, M.
Sorel, M.
Spentzouris, P.
Spitz, J.
Stancu, I.
Stefanski, R. J.
Sung, M.
Tanaka, H. A.
Tayloe, R.
Tzanov, M.
Van de Water, R. G.
Wascko, M. O.
White, D. H.
Wilking, M. J.
Yang, H. J.
Zeller, G. P.
Zimmerman, E. D.
CA MiniBooNE Collaboration
TI Search for Muon Neutrino and Antineutrino Disappearance in MiniBooNE
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID PARTICLE-PRODUCTION; LSND EXPERIMENT; OSCILLATIONS; GEV/C; SIMULATION;
BERYLLIUM; PROTONS; MASS
AB The MiniBooNE Collaboration reports a search for nu(mu) and nu(mu) disappearance in the Delta m(2) region of 0.5-40 eV(2). These measurements are important for constraining models with extra types of neutrinos, extra dimensions, and CPT violation. Fits to the shape of the nu(mu) and nu(mu) energy spectra reveal no evidence for disappearance at the 90% confidence level (C.L.) in either mode. The test of nu(mu) disappearance probes a region below Delta m(2)=40 eV(2) never explored before.
C1 [Aguilar-Arevalo, A. A.] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico.
[Koutsoliotas, S.] Bucknell Univ, Lewisburg, PA 17837 USA.
[Hawker, E.; Johnson, R. A.; Raaf, J. L.] Univ Cincinnati, Cincinnati, OH 45221 USA.
[Hart, T. L.; Nelson, R. H.; Tzanov, M.; Wilking, M. J.; Zimmerman, E. D.] Univ Colorado, Boulder, CO 80309 USA.
[Bugel, L.; Coney, L.; Conrad, J. M.; Djurcic, Z.; Karagiorgi, G.; Mahn, K. B. M.; McGary, V. T.; Monroe, J.; Schmitz, D.; Shaevitz, M. H.; Sorel, M.; Zeller, G. P.] Columbia Univ, New York, NY 10027 USA.
[Smith, D.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA.
[Brice, S. J.; Brown, B. C.; Finley, D. A.; Ford, R.; Garcia, F. G.; Green, C.; Kasper, P.; Kobilarcik, T.; Kourbanis, I.; Marsh, W.; Mills, F.; Moore, C. D.; Prebys, E.; Russell, A. D.; Spentzouris, P.; Stefanski, R. J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Grange, J.; Mousseau, J.; Osmanov, B.; Ray, H.] Univ Florida, Gainesville, FL 32611 USA.
[Polly, C. C.] Univ Illinois, Urbana, IL 61801 USA.
[Cox, D. C.; Green, J. A.; Katori, T.; Polly, C. C.; Tayloe, R.] Indiana Univ, Bloomington, IN 47405 USA.
[Garvey, G. T.; Green, C.; Green, J. A.; Hawker, E.; Louis, W. C.; Mauger, C.; McGregor, G.; Mills, G. B.; Pavlovic, Z.; Ray, H.; Sandberg, V.; Schirato, R.; Van de Water, R. G.; White, D. H.; Zeller, G. P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Imlay, R.; Metcalf, W.; Nowak, J. A.; Ouedraogo, S.; Sung, M.; Wascko, M. O.] Louisiana State Univ, Baton Rouge, LA 70803 USA.
[Conrad, J. M.; Karagiorgi, G.; Katori, T.; McGary, V. T.] MIT, Cambridge, MA 02139 USA.
[Liu, Y.; Perevalov, D.; Stancu, I.] Univ Alabama, Tuscaloosa, AL 35487 USA.
[Cao, J.; Liu, Y.; Roe, B. P.; Yang, H. J.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Bazarko, A. O.; Laird, E. M.; Meyers, P. D.; Patterson, R. B.; Shoemaker, F. C.; Tanaka, H. A.] Princeton Univ, Princeton, NJ 08544 USA.
[Nienaber, P.] St Marys Univ, Winona, MN 55987 USA.
[Link, J. M.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA.
[Anderson, C. E.; Curioni, A.; Fleming, B. T.; Linden, S. K.; Soderberg, M.; Spitz, J.] Yale Univ, New Haven, CT 06520 USA.
RP Aguilar-Arevalo, AA (reprint author), Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico.
RI Cao, Jun/G-8701-2012; Link, Jonathan/L-2560-2013; Nowak,
Jaroslaw/P-2502-2016; Yang, Haijun/O-1055-2015;
OI Schirato, Richard/0000-0002-4216-0235; Spitz,
Joshua/0000-0002-6288-7028; Wascko, Morgan/0000-0002-8348-4447; Cao,
Jun/0000-0002-3586-2319; Link, Jonathan/0000-0002-1514-0650; Van de
Water, Richard/0000-0002-1573-327X; Katori, Teppei/0000-0002-9429-9482;
Nowak, Jaroslaw/0000-0001-8637-5433; Aguilar-Arevalo, Alexis
A./0000-0001-9279-3375
FU Fermilab, the Department of Energy; National Science Foundation; Los
Alamos National Laboratory for LDRD
FX We acknowledge the support of Fermilab, the Department of Energy, and
the National Science Foundation. We thank Los Alamos National Laboratory
for LDRD funding. We also acknowledge the use of Condor software in the
analysis the data.
NR 31
TC 45
Z9 45
U1 1
U2 1
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD AUG 7
PY 2009
VL 103
IS 6
AR 061802
DI 10.1103/PhysRevLett.103.061802
PG 5
WC Physics, Multidisciplinary
SC Physics
GA 481KP
UT WOS:000268809300009
PM 19792551
ER
PT J
AU Chen, XS
Sun, WM
Lu, XF
Wang, F
Goldman, T
AF Chen, Xiang-Song
Sun, Wei-Min
Lue, Xiao-Fu
Wang, Fan
Goldman, T.
TI Do Gluons Carry Half of the Nucleon Momentum?
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
AB We examine the conventional picture that gluons carry about half of the nucleon momentum in the asymptotic limit. We show that this large fraction is due to an unsuitable definition of the gluon momentum in an interacting theory. If defined in a gauge-invariant and consistent way, the asymptotic gluon momentum fraction is computed to be only about one-fifth. This result suggests that the asymptotic limit of the nucleon spin structure should also be reexamined. A possible experimental test of our finding is discussed in terms of novel parton distribution functions.
C1 [Chen, Xiang-Song] Huazhong Univ Sci & Technol, Dept Phys, Wuhan 430074, Peoples R China.
[Chen, Xiang-Song; Lue, Xiao-Fu] Sichuan Univ, Dept Phys, Chengdu 610064, Peoples R China.
[Chen, Xiang-Song; Sun, Wei-Min; Wang, Fan] Nanjing Univ, Dept Phys, CPNPC, Nanjing 210093, Peoples R China.
[Goldman, T.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RP Chen, XS (reprint author), Huazhong Univ Sci & Technol, Dept Phys, Wuhan 430074, Peoples R China.
FU China NSF [10875082, 10475057, 90503011]; U.S. DOE [DE-AC5206NA25396]
FX This work is supported in part by the China NSF under Grants No.
10875082, No. 10475057, and No. 90503011, and in part by the U.S. DOE
under Contract No. DE-AC5206NA25396.
NR 10
TC 65
Z9 65
U1 0
U2 5
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD AUG 7
PY 2009
VL 103
IS 6
AR 062001
DI 10.1103/PhysRevLett.103.062001
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 481KP
UT WOS:000268809300012
PM 19792554
ER
PT J
AU Couderc, E
Klein, S
AF Couderc, Elsa
Klein, Spencer
TI Coherent rho(0) Photoproduction in Bulk Matter at High Energies
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID PAIR PRODUCTION; CROSS-SECTIONS; RADIO; BREMSSTRAHLUNG; REGENERATION;
SCATTERING; NEUTRINOS; NUCLEI; PHOTON
AB The momentum transfer Delta k required for a photon to scatter from a target and emerge as a rho(0) decreases as the photon energy k rises. For k > 3x10(14) eV, Delta k is small enough that the interaction cannot be localized to a single nucleus. At still higher energies, photons may coherently scatter elastically from bulk matter and emerge as a rho(0), in a manner akin to kaon regeneration. Constructive interference from the different nuclei coherently raises the cross section and the interaction probability rises linearly with energy. At energies above 10(23) eV, coherent conversion is the dominant process; photons interact predominantly as rho(0). We compute the coherent scattering probabilities in slabs of lead, water, and rock, and discuss the implications of the increased hadronic interaction probabilities for photons on ultrahigh energy shower development.
C1 [Couderc, Elsa] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Couderc, Elsa] Ecole Normale Super, Dept Phys, F-75231 Paris, France.
[Klein, Spencer] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
RP Couderc, E (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
OI Couderc, Elsa/0000-0002-6565-4035
FU U.S. National Science Foundation; U.S. Department of Energy
[DEAC76SF00098]
FX We thank Volker Koch for useful comments. This work was funded by the
U.S. National Science Foundation and the U.S. Department of Energy under
Contract No. DEAC76SF00098.
NR 28
TC 8
Z9 8
U1 0
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD AUG 7
PY 2009
VL 103
IS 6
AR 062504
DI 10.1103/PhysRevLett.103.062504
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 481KP
UT WOS:000268809300016
PM 19792558
ER
PT J
AU Daughton, W
Roytershteyn, V
Albright, BJ
Karimabadi, H
Yin, L
Bowers, KJ
AF Daughton, W.
Roytershteyn, V.
Albright, B. J.
Karimabadi, H.
Yin, L.
Bowers, Kevin J.
TI Transition from collisional to kinetic regimes in large-scale
reconnection layers
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID FAST MAGNETIC RECONNECTION; MODEL
AB Using fully kinetic simulations with a Fokker-Planck collision operator, it is demonstrated that Sweet-Parker reconnection layers are unstable to plasmoids (secondary islands) for Lundquist numbers beyond S greater than or similar to 1000. The instability is increasingly violent at higher Lundquist numbers, both in terms of the number of plasmoids produced and the super-Alfveacutenic growth rate. A dramatic enhancement in the reconnection rate is observed when the half-thickness of the current sheet between two plasmoids approaches the ion inertial length. During this transition to kinetic scales, the reconnection electric field rapidly exceeds the runaway limit, resulting in the formation of electron-scale current layers that are unstable to the continual formation of new plasmoids.
C1 [Daughton, W.; Roytershteyn, V.; Albright, B. J.; Yin, L.; Bowers, Kevin J.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA.
[Karimabadi, H.] Univ Calif San Diego, La Jolla, CA 92093 USA.
RP Daughton, W (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA.
RI Daughton, William/L-9661-2013;
OI Albright, Brian/0000-0002-7789-6525; Yin, Lin/0000-0002-8978-5320;
Roytershteyn, Vadim/0000-0003-1745-7587
FU U.S. DOE; NASA Heliophysics Theory Program; NSF GEM [ATM 0802380]
FX We acknowledge support from the U.S. DOE through the LANL-LDRD Program.
Contributions from H. K. were supported by the NASA Heliophysics Theory
Program and NSF GEM grant ATM 0802380.
NR 20
TC 113
Z9 115
U1 1
U2 13
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD AUG 7
PY 2009
VL 103
IS 6
AR 065004
DI 10.1103/PhysRevLett.103.065004
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 481KP
UT WOS:000268809300035
PM 19792577
ER
PT J
AU Feist, J
Nagele, S
Pazourek, R
Persson, E
Schneider, BI
Collins, LA
Burgdoumlrfer, J
AF Feist, J.
Nagele, S.
Pazourek, R.
Persson, E.
Schneider, B. I.
Collins, L. A.
Burgdoumlrfer, J.
TI Probing Electron Correlation via Attosecond xuv Pulses in the Two-Photon
Double Ionization of Helium
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID DIFFERENTIAL CROSS-SECTIONS; PHOTO-DOUBLE-IONIZATION; COLLISIONS; STATE;
HE
AB Recent experimental developments of high-intensity, short-pulse extreme ultraviolet light sources are enhancing our ability to study electron-electron correlations. We perform time-dependent calculations to investigate the so-called "sequential" regime (h omega > 54.4 eV) in the two-photon double ionization of helium. We show that attosecond pulses allow us not only to probe but also to induce angular and energy correlations of the emitted electrons. The final momentum distribution reveals regions dominated by the Wannier ridge breakup scenario and by postcollision interaction.
C1 [Feist, J.; Nagele, S.; Pazourek, R.; Persson, E.; Burgdoumlrfer, J.] Vienna Univ Technol, Inst Theoret Phys, A-1040 Vienna, Austria.
[Schneider, B. I.] Natl Sci Fdn, Div Phys, Arlington, VA 22230 USA.
[Schneider, B. I.] NIST, Elect & Atom Phys Div, Gaithersburg, MD 20899 USA.
[Collins, L. A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RP Feist, J (reprint author), Vienna Univ Technol, Inst Theoret Phys, A-1040 Vienna, Austria.
EM johannes.feist@tuwien.ac.at
RI Nagele, Stefan/E-6938-2011; Feist, Johannes/J-7394-2012
OI Nagele, Stefan/0000-0003-1213-0294; Feist, Johannes/0000-0002-7972-0646
FU Alamos National Security, LLC for the National Nuclear Security
Administration of the U.S. Department of Energy [DE-AC52-06NA25396];
National Science Foundation [TGPHY090031]
FX Alamos National Security, LLC for the National Nuclear Security
Administration of the U.S. Department of Energy under Contract No.
DE-AC52-06NA25396. This research was supported in part by the National
Science Foundation through TeraGrid resources under Grant No.
TGPHY090031.
NR 33
TC 56
Z9 57
U1 0
U2 8
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD AUG 7
PY 2009
VL 103
IS 6
AR 063002
DI 10.1103/PhysRevLett.103.063002
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 481KP
UT WOS:000268809300018
PM 19792560
ER
PT J
AU Gezerlis, A
Gandolfi, S
Schmidt, KE
Carlson, J
AF Gezerlis, Alexandros
Gandolfi, S.
Schmidt, K. E.
Carlson, J.
TI Heavy-Light Fermion Mixtures at Unitarity
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
AB We investigate fermion pairing in the unitary regime for a mass ratio corresponding to a (6)Li-(40)K mixture using quantum Monte Carlo methods. The ground-state energy and the average light- and heavy-particle excitation spectrum for the unpolarized superfluid state are nearly independent of the mass ratio. In the majority light system, the polarized superfluid is close to the energy of a phase separated mixture of nearly fully polarized normal and unpolarized superfluid. For a majority of heavy particles, we find an energy minimum for a normal state with a ratio of similar to 3:1 heavy to light particles. A slight increase in attraction to k(F)a approximate to 2.5 yields a ground state energy of nearly zero for this ratio. A cold unpolarized system in a harmonic trap at unitarity should phase separate into three regions, with a shell of unpolarized superfluid in the middle.
C1 [Gezerlis, Alexandros; Carlson, J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Gezerlis, Alexandros] Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
[Gandolfi, S.] Scuola Int Super Studi Avanzati, SISSA, I-34014 Trieste, Italy.
[Gandolfi, S.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy.
[Schmidt, K. E.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA.
RP Gezerlis, A (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RI Gezerlis, Alexandros/O-9426-2014
OI Gezerlis, Alexandros/0000-0003-2232-2484
FU Nuclear Physics Office of the U.S. Department of Energy
[DE-AC52-06NA25396]; LDRD program at Los Alamos National Laboratory;
Institutional Computing Program; NERSC; NSF [PHY07-57703, PHY03-55014,
PHY07-01611]
FX The authors wish to thank A. Trombettoni, S. Giorgini, S. Pilati, S.
Reddy, D. Son, and H. T. C. Stoof for stimulating discussions. The work
of A. G. and J. C. is supported by the Nuclear Physics Office of the
U.S. Department of Energy under Contract No. DE-AC52-06NA25396 and by
the LDRD program at Los Alamos National Laboratory. Computing resources
were provided at LANL through the Institutional Computing Program and at
NERSC. Calculations by S.G. were partially performed on the BEN cluster
at ECT* in Trento, under a grant for supercomputing projects, and
partially on the HPC facility of SISSA/Democritos in Trieste. The work
of K.E.S. was supported in part by NSF Grant No. PHY07-57703. The work
of A.G. was supported in part by NSF Grants No. PHY03-55014 and No.
PHY07-01611.
NR 28
TC 40
Z9 40
U1 0
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD AUG 7
PY 2009
VL 103
IS 6
AR 060403
DI 10.1103/PhysRevLett.103.060403
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 481KP
UT WOS:000268809300003
PM 19792545
ER
PT J
AU Hagen, G
Papenbrock, T
Dean, DJ
AF Hagen, G.
Papenbrock, T.
Dean, D. J.
TI Solution of the Center-Of-Mass Problem in Nuclear Structure Calculations
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID COUPLED-CLUSTER THEORY; SHELL-MODEL; MOTION; SYSTEMS
AB The coupled-cluster wave function factorizes to a very good approximation into a product of an intrinsic wave function and a Gaussian for the center-of-mass coordinate. The width of the Gaussian is in general not identical to the oscillator length of the underlying single-particle basis. The quality of the separation can be verified by a simple procedure.
C1 [Hagen, G.; Papenbrock, T.; Dean, D. J.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA.
[Papenbrock, T.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
RP Hagen, G (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA.
RI Hagen, Gaute/I-6146-2012;
OI Hagen, Gaute/0000-0001-6019-1687; Dean, David/0000-0002-5688-703X;
Papenbrock, Thomas/0000-0001-8733-2849
FU U.S. Department of Energy [DE-AC05-00OR22725]; UT-Battelle, LLC (Oak
Ridge National Laboratory (ORNL)) [DE-FG02-96ER40963]; University of
Tennessee (UT) [DE-FC02-07ER41457]; UNEDF SciDAC Collaboration;
Institute for Computational Sciences (UT/ORNL); National Center for
Computational Sciences (ORNL)
FX This work was supported by the U.S. Department of Energy under Contract
No. DE-AC05-00OR22725 with UT-Battelle, LLC (Oak Ridge National
Laboratory (ORNL)), under Grant No. DE-FG02-96ER40963 (University of
Tennessee (UT)), and under DE-FC02-07ER41457 (UNEDF SciDAC
Collaboration). This research used computational resources of the
National Institute for Computational Sciences (UT/ORNL) and the National
Center for Computational Sciences (ORNL).
NR 35
TC 38
Z9 38
U1 0
U2 3
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD AUG 7
PY 2009
VL 103
IS 6
AR 062503
DI 10.1103/PhysRevLett.103.062503
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 481KP
UT WOS:000268809300015
PM 19792557
ER
PT J
AU Jacobs, K
Landahl, AJ
AF Jacobs, Kurt
Landahl, Andrew J.
TI Engineering Giant Nonlinearities in Quantum Nanosystems
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID PERSISTENT-CURRENT QUBIT; NANOMECHANICAL RESONATOR; CAVITY; COMPUTATION;
GENERATION; COMPLEXITY; PHOTONS; CIRCUIT; STATES
AB We describe a method to engineer giant nonlinearities in, and probes to measure nonlinear observables of, mesoscopic quantum resonators. This involves tailoring the Hamiltonian of a simple auxiliary system perturbatively coupled to the resonator, and has the potential to engineer a wide range of nonlinearities to high accuracy. We give a number of explicit examples, including a readily realizable two-qubit auxiliary system that creates an x(4) potential and a chi((3)) (Kerr) nonlinearity, valid to fifth order in the perturbative coupling.
C1 [Jacobs, Kurt] Univ Massachusetts, Dept Phys, Boston, MA 02125 USA.
[Jacobs, Kurt] Louisiana State Univ, Hearne Inst Theoret Phys, Baton Rouge, LA 70803 USA.
[Landahl, Andrew J.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Landahl, Andrew J.] Univ New Mexico, Dept Phys & Astron, Ctr Adv Studies, Albuquerque, NM 87131 USA.
RP Jacobs, K (reprint author), Univ Massachusetts, Dept Phys, Boston, MA 02125 USA.
RI Jacobs, Kurt/E-7049-2011
OI Jacobs, Kurt/0000-0003-0828-6421
FU NSF [PHY0555573, PHY-0653596, CCF- 0829944]; U.S. Department of Energy
[DEAC0494AL85000]
FX We thank Salman Habib for hospitality at the QUEST workshop in Santa Fe
that initiated the exchange of ideas leading to this work. K. J. is
supported by the Hearne Institute for Theoretical Physics, ARO, and
IARPA. A. J. L.' s work was supported by the Center for Advanced Studies
at UNM, and the NSF under Contracts No. PHY0555573, No. PHY-0653596, and
No. CCF- 0829944. A.J.L.' s work is currently supported by Sandia
National Laboratories, a multiprogram laboratory operated by Sandia
Corporation, a Lockheed- Martin Company, for the U.S. Department of
Energy under Contract No. DEAC0494AL85000.
NR 38
TC 34
Z9 34
U1 0
U2 6
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD AUG 7
PY 2009
VL 103
IS 6
AR 067201
DI 10.1103/PhysRevLett.103.067201
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 481KP
UT WOS:000268809300065
PM 19792606
ER
PT J
AU Kim, WJ
Sushkov, AO
Dalvit, DAR
Lamoreaux, SK
AF Kim, W. J.
Sushkov, A. O.
Dalvit, D. A. R.
Lamoreaux, S. K.
TI Measurement of the Short-Range Attractive Force between Ge Plates Using
a Torsion Balance
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID CASIMIR FORCE; MU-M
AB We have measured the short-range attractive force between crystalline Ge plates, and found contributions from both the Casimir force and an electrical force possibly generated by surface patch potentials. Using a model of surface patch effects that generates an additional force due to a distance dependence of the apparent contact potential, the electrical force was parametrized using data at distances where the Casimir force is relatively small. Extrapolating this model, to provide a correction to the measured force at distances less than 5 mu m, shows a residual force that is in agreement, within experimental uncertainty, with five models that have been used to calculate the Casimir force.
C1 [Kim, W. J.; Sushkov, A. O.; Lamoreaux, S. K.] Yale Univ, Dept Phys, New Haven, CT 06520 USA.
[Dalvit, D. A. R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RP Kim, WJ (reprint author), Yale Univ, Dept Phys, POB 208120, New Haven, CT 06520 USA.
FU Yale University
FX We acknowledge support from Yale University for the construction of the
experimental apparatus and data acquisition, and from Los Alamos LDRD
program. We thank G. Klimchitskaya for useful discussions.
NR 28
TC 52
Z9 52
U1 0
U2 1
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD AUG 7
PY 2009
VL 103
IS 6
AR 060401
DI 10.1103/PhysRevLett.103.060401
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 481KP
UT WOS:000268809300001
PM 19792543
ER
PT J
AU Lee, WS
Tanaka, K
Vishik, IM
Lu, DH
Moore, RG
Eisaki, H
Iyo, A
Devereaux, TP
Shen, ZX
AF Lee, W. S.
Tanaka, K.
Vishik, I. M.
Lu, D. H.
Moore, R. G.
Eisaki, H.
Iyo, A.
Devereaux, T. P.
Shen, Z. X.
TI Dependence of Band-Renormalization Effects on the Number of Copper Oxide
Layers in Tl-Based Copper Oxide Superconductors Revealed by
Angle-Resolved Photoemission Spectroscopy
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID LINE-SHAPE; BI2SR2CACU2O8+DELTA; TL2BA2CUO6+DELTA; DISPERSION; SPECTRA;
PHONON
AB Here we report the first angle-resolved photoemission measurement on nearly optimally doped multilayer Tl-based superconducting cuprates (Tl-2212 and Tl-1223) and a comparison study to single-layer (Tl-2201) compound. A "kink" in the band dispersion is found in all three compounds but exhibits different momentum dependence for the single-layer and multilayer compounds, reminiscent to that of Bi-based cuprates. This layer number dependent renormalization effect strongly implies that the spin-resonance mode is unlikely to be responsible for the dramatic renormalization effect near the antinodal region.
C1 [Lee, W. S.; Devereaux, T. P.; Shen, Z. X.] SLAC Natl Accelerator Lab, SIMES, Menlo Pk, CA 94025 USA.
[Tanaka, K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Vishik, I. M.; Shen, Z. X.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA.
[Lu, D. H.; Moore, R. G.; Shen, Z. X.] SLAC Natl Accelerator Lab, SSRL, Menlo Pk, CA 94025 USA.
[Eisaki, H.; Iyo, A.] Natl Inst Adv Ind Sci & Technol, Nanoelect Res Inst, Tsukuba, Ibaraki 3058568, Japan.
RP Lee, WS (reprint author), SLAC Natl Accelerator Lab, SIMES, Menlo Pk, CA 94025 USA.
FU DOE Office of Basic Energy Sciences; Division of Materials Sciences and
Engineering [DE-AC02-76SF00515]
FX SSRL is operated by the DOE Office of Basic Energy Sciences. This work
is supported by DOE Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering, with Contract No. DE-AC02-76SF00515.
NR 19
TC 8
Z9 8
U1 0
U2 7
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD AUG 7
PY 2009
VL 103
IS 6
AR 067003
DI 10.1103/PhysRevLett.103.067003
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 481KP
UT WOS:000268809300056
PM 19792598
ER
PT J
AU Liu, YH
Liu, CT
Wang, WH
Inoue, A
Sakurai, T
Chen, MW
AF Liu, Y. H.
Liu, C. T.
Wang, W. H.
Inoue, A.
Sakurai, T.
Chen, M. W.
TI Thermodynamic Origins of Shear Band Formation and the Universal Scaling
Law of Metallic Glass Strength
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID TEMPERATURE RISE; PLASTIC-FLOW; FRACTURE; COMPRESSION; ALLOY;
DEFORMATION; TRANSITION; PRESSURE
AB We report a universal scaling law, tau(y)=3R(T-g-RT)/V, that uncovers an inherent relationship of the yield strength tau(y) with the glass transition temperature T-g and molar volume V of metallic glasses. This equation is derived from fundamental thermodynamics and validated by various metallic glasses with well-defined yielding. The linearity between tau(y) and T-g demonstrates the intrinsic correlation between yielding and glass-liquid transition, which contributes to the basic understanding of the strength and deformation of glassy alloys.
C1 [Liu, Y. H.; Inoue, A.; Sakurai, T.; Chen, M. W.] Tohoku Univ, WPI Adv Inst Mat Res, Sendai, Miyagi 9808577, Japan.
[Liu, C. T.] Hong Kong Polytech Univ, Dept Mech Engn, Hung Hom Kowloon, Hong Kong, Peoples R China.
[Liu, C. T.] Oak Ridge Natl Lab, Div Met & Ceram, Oak Ridge, TN 37831 USA.
[Wang, W. H.] Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China.
RP Chen, MW (reprint author), Tohoku Univ, WPI Adv Inst Mat Res, Sendai, Miyagi 9808577, Japan.
EM mwchen@wpi-aimr.tohoku.ac.jp
RI LIU, Yanhui/B-1485-2009; Inoue, Akihisa/E-5271-2015; Chen,
Mingwei/A-4855-2010
OI Chen, Mingwei/0000-0002-2850-8872
FU JSPS; Global COE; Tohoku University; "World Premier International (WPI)
Center Initiative," MEXT, Japan; Division of Materials Science and
Engineering; Office of Basic Energy Sciences; U.S. Department of Energy;
Hong Kong Polytechnic University; NSFC [50731008]; MOST 973
[2007CB613904]
FX The work was sponsored by the "Grant-in-Aid for Young Scientists
Start-up," JSPS; Global COE Program "Materials Integration
(International Center of Education and Research), Tohoku University,"
and "World Premier International (WPI) Center Initiative," MEXT, Japan.
C. T. L. is jointly supported by the Division of Materials Science and
Engineering, Office of Basic Energy Sciences, U.S. Department of Energy
through contract with Oak Ridge National Laboratory and internal funding
from Hong Kong Polytechnic University. W. H. W. is supported by the NSFC
(50731008) and MOST 973 (2007CB613904).
NR 32
TC 81
Z9 84
U1 5
U2 51
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD AUG 7
PY 2009
VL 103
IS 6
AR 065504
DI 10.1103/PhysRevLett.103.065504
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 481KP
UT WOS:000268809300041
PM 19792583
ER
PT J
AU Seradjeh, B
Moore, JE
Franz, M
AF Seradjeh, B.
Moore, J. E.
Franz, M.
TI Exciton Condensation and Charge Fractionalization in a Topological
Insulator Film
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID SOLITONS; BILAYER
AB An odd number of gapless Dirac fermions is guaranteed to exist at a surface of a strong topological insulator. We show that in a thin-film geometry and under external bias, electron-hole pairs that reside in these surface states can condense to form a novel exotic quantum state which we propose to call "topological exciton condensate" (TEC). This TEC is similar in general terms to the exciton condensate recently argued to exist in a biased graphene bilayer, but with different topological properties. It exhibits a host of unusual properties including a stable zero mode and a fractional charge +/- e/2 carried by a singly quantized vortex in the TEC order parameter.
C1 [Seradjeh, B.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
[Moore, J. E.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Moore, J. E.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Franz, M.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada.
RP Seradjeh, B (reprint author), Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA.
RI Seradjeh, Babak/B-5273-2011; Moore, Joel/O-4959-2016
OI Moore, Joel/0000-0002-4294-5761
FU NSERC; CIfAR; NSF; ICMT; UIUC; Killam Foundation
FX Support for this work came from NSERC, CIfAR, NSF, ICMT at UIUC, and the
Killam Foundation. The authors also acknowledge The Banff International
Research Station where this collaboration was initiated.
NR 24
TC 157
Z9 160
U1 3
U2 50
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD AUG 7
PY 2009
VL 103
IS 6
AR 066402
DI 10.1103/PhysRevLett.103.066402
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 481KP
UT WOS:000268809300045
PM 19792587
ER
PT J
AU Green, DJ
Pagel, JM
Nemecek, ER
Lin, Y
Kenoyer, A
Pantelias, A
Hamlin, DK
Wilbur, DS
Fisher, DR
Rajendran, JG
Gopal, AK
Park, SI
Press, OW
AF Green, Damian J.
Pagel, John M.
Nemecek, Eneida R.
Lin, Yukang
Kenoyer, Aimee
Pantelias, Anastasia
Hamlin, Donald K.
Wilbur, D. Scott
Fisher, Darrell R.
Rajendran, Joseph G.
Gopal, Ajay K.
Park, Steven I.
Press, Oliver W.
TI Pretargeting CD45 enhances the selective delivery of radiation to
hematolymphoid tissues in nonhuman primates
SO BLOOD
LA English
DT Article
ID STREPTAVIDIN FUSION PROTEIN; B-CELL LYMPHOMAS; NON-HODGKINS-LYMPHOMA;
ANTI-CD45 MONOCLONAL-ANTIBODIES; TOTAL-BODY IRRADIATION;
MYELOID-LEUKEMIA; ANTIGEN EXPRESSION; RADIOIMMUNOTHERAPY; THERAPY;
XENOGRAFTS
AB Pretargeted radioimmunotherapy (PRIT) is designed to enhance the directed delivery of radionuclides to malignant cells. Through a series of studies in 19 nonhuman primates (Macaca fascicularis), the potential therapeutic advantage of anti-CD45 PRIT was evaluated. Anti-CD45 PRIT demonstrated a significant improvement in target-to-normal organ ratios of absorbed radiation compared with directly radiolabeled bivalent antibody ( conventional radioimmunotherapy [RIT]). Radio-DOTA-biotin administered 48 hours after anti-CD45 streptavidin fusion protein (FP) [BC8(scFv)(4)SA] produced markedly lower concentrations of radiation in nontarget tissues compared with conventional RIT. PRIT generated superior target: normal organ ratios in the blood, lung, and liver (10.3:1, 18.9:1, and 9.9:1, respectively) compared with the conventional RIT controls (2.6:1, 6.4:1, and 2.9:1, respectively). The FP demonstrated superior retention in target tissues relative to comparable directly radiolabeled bivalent anti-CD45 RIT. The time point of administration of the second step radiolabeled ligand (radio-DOTA-biotin) significantly impacted the biodistribution of radioactivity in target tissues. Rapid clearance of the FP from the circulation rendered unnecessary the addition of a synthetic clearing agent in this model. These results support proceeding to anti-CD45 PRIT clinical trials for patients with both leukemia and lymphoma. (Blood. 2009; 114: 1226-1235)
C1 [Green, Damian J.; Pagel, John M.; Lin, Yukang; Kenoyer, Aimee; Pantelias, Anastasia; Gopal, Ajay K.; Park, Steven I.; Press, Oliver W.] Fred Hutchinson Canc Res Ctr, Div Clin Res, Seattle, WA 98109 USA.
[Green, Damian J.; Pagel, John M.; Gopal, Ajay K.; Park, Steven I.; Press, Oliver W.] Univ Washington, Dept Med, Seattle, WA USA.
[Nemecek, Eneida R.] Oregon Hlth & Sci Univ, Dept Pediat, Portland, OR 97201 USA.
[Hamlin, Donald K.; Wilbur, D. Scott] Univ Washington, Dept Radiat Oncol, Seattle, WA 98195 USA.
[Fisher, Darrell R.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Rajendran, Joseph G.] Univ Washington, Dept Radiol, Seattle, WA 98195 USA.
RP Green, DJ (reprint author), Fred Hutchinson Canc Res Ctr, Div Clin Res, 1100 Fairview Ave N,MS D3-190, Seattle, WA 98109 USA.
EM dgreen@fhcrc.org
FU Lymphoma Research Foundation; National Institutes of Health [PO1
CA44991, RO1 CA109663, K23 CA100394]; American Society of Clinical
Oncology Young Investigator Award Program; Damon Runyan Cancer Research
Foundation; David and Patricia Giuliani, Mary and Geary Britton-Simmons,
James and Sherry Raisbeck, the Wyner-Stokes Foundation; Hext Family
Foundation
FX We thank the veterinary and research staff of the Washington National
Primate Research Center for their technical support.; This work was
supported by grants from the Lymphoma Research Foundation (D.J.G.,
O.W.P., J.M.P., A. K. G.), the National Institutes of Health ( grants
PO1 CA44991 and RO1 CA109663, O.W.P.; grant K23 CA100394, E. R. N), the
American Society of Clinical Oncology Young Investigator Award Program
(D.J.G.), and the Damon Runyan Cancer Research Foundation (J.M.P.) and
by gifts from David and Patricia Giuliani, Mary and Geary
Britton-Simmons, James and Sherry Raisbeck, the Wyner-Stokes Foundation,
and the Hext Family Foundation (O.W.P.)
NR 46
TC 19
Z9 20
U1 0
U2 2
PU AMER SOC HEMATOLOGY
PI WASHINGTON
PA 1900 M STREET. NW SUITE 200, WASHINGTON, DC 20036 USA
SN 0006-4971
J9 BLOOD
JI Blood
PD AUG 6
PY 2009
VL 114
IS 6
BP 1226
EP 1235
DI 10.1182/blood-2009-03-210344
PG 10
WC Hematology
SC Hematology
GA 480XI
UT WOS:000268770200016
PM 19515724
ER
PT J
AU Chen, X
Ballin, JD
Della-Maria, J
Tsai, MS
White, EJ
Tomkinson, AE
Wilson, GM
AF Chen, Xi
Ballin, Jeff D.
Della-Maria, Julie
Tsai, Miaw-Sheue
White, Elizabeth J.
Tomkinson, Alan E.
Wilson, Gerald M.
TI Distinct kinetics of human DNA ligases I, III alpha, III beta, and IV
reveal direct DNA sensing ability and differential physiological
functions in DNA repair
SO DNA REPAIR
LA English
DT Article
DE DNA ligases; Enzyme kinetics; Substrate recognition; Fluorescence
spectroscopy; Assay; Development
ID STRAND BREAK REPAIR; BASE-EXCISION-REPAIR; PROTEIN; IDENTIFICATION;
LIGATION; COMPLEX; BINDING; CELLS; RECOMBINATION; PURIFICATION
AB The three human LIG genes encode polypeptides that catalyze phosphodiester bond formation during DNA replication, recombination and repair. While numerous studies have identified protein partners of the human DNA ligases (hLigs), there has been little characterization of the catalytic Properties of these enzymes. In this study, we developed and optimized a fluorescence-based DNA ligation assay to characterize the activities of purified hLigs. Although hLigI joins DNA nicks, it has no detectable activity on linear duplex DNA substrates with short, cohesive single-strand ends. By contrast, hLigIII beta and the hLigIII alpha/XRCC1 and hLigIV/XRCC4 complexes are active on both nicked and linear duplex DNA substrates. Surprisingly, hLigIV/XRCC4, which is a key component of the major non-homologous end joining (NHEJ) pathway, is significantly less active than hLigIII on a linear duplex DNA substrate. Notably, hLigIV/XRCC4 molecules only catalyze a single ligation event in the absence or presence of ATP. The failure to catalyze subsequent ligation events reflects a defect in the enzyme-adenylation step of the next ligation reaction and suggests that, unless there is an in vivo mechanism to reactivate DNA ligase IV/XRCC4 following phosphodiester bond formation, the cellular NHEJ capacity will be determined by the number of adenylated DNA ligaseIV/XRCC4 molecules. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Ballin, Jeff D.; White, Elizabeth J.; Wilson, Gerald M.] Univ Maryland, Sch Med, Dept Biochem & Mol Biol, Baltimore, MD 21201 USA.
[Chen, Xi; Ballin, Jeff D.; Della-Maria, Julie; White, Elizabeth J.; Tomkinson, Alan E.; Wilson, Gerald M.] Univ Maryland, Sch Med, Marlene & Stewart Greenebaum Canc Ctr, Baltimore, MD 21201 USA.
[Chen, Xi; Della-Maria, Julie; Tomkinson, Alan E.] Univ Maryland, Sch Med, Dept Radiat & Oncol, Baltimore, MD 21201 USA.
[Tsai, Miaw-Sheue] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Canc & DNA Damage Responses, Berkeley, CA 94720 USA.
RP Wilson, GM (reprint author), Univ Maryland, Sch Med, Dept Biochem & Mol Biol, 108 N Greene St, Baltimore, MD 21201 USA.
EM gwils001@umaryland.edu
RI Ballin, Jeff/D-3752-2011
OI Ballin, Jeff/0000-0002-2712-130X
FU National Institutes of Health [GM47521, GM57479, ES012512, CA92584,
CA102428]
FX This work was supported by the National Institutes of Health [GM47521,
GM57479 and ES012512 to A.E.T., CA92584 to A.E.T. and M.-S.T., CA102428
to G.M.W.].
NR 37
TC 14
Z9 14
U1 2
U2 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1568-7864
J9 DNA REPAIR
JI DNA Repair
PD AUG 6
PY 2009
VL 8
IS 8
BP 961
EP 968
DI 10.1016/j.dnarep.2009.06.002
PG 8
WC Genetics & Heredity; Toxicology
SC Genetics & Heredity; Toxicology
GA 484DH
UT WOS:000269023000009
PM 19589734
ER
PT J
AU Brecht, SH
Hewett, DW
Larson, DJ
AF Brecht, Stephen H.
Hewett, Dennis W.
Larson, David J.
TI A magnetized, spherical plasma expansion in an inhomogeneous plasma:
Transition from super- to sub-Alfvenic
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
ID ION-CYCLOTRON INSTABILITY; HIGH-BETA-PLASMAS; SIMULATION; SPACE; FIELD;
WAVES
AB In this letter the transition of a strong 3-D collisionless shock into sub-Alfvenic waves is numerically. The transition occurs due to changes in the background plasma parameters. The Alfvenic speed eventually exceeds the shock speed; the shock does not run out of energy. At this velocity transition, the shock disassembles into two types of waves: the usual compressional Alfvenic wave and a left-hand polarized electromagnetic shear Alfvenic wave. This latter wave shows remarkable 3-D coherence, and preliminary analysis suggests that there are two possible sources of energy: one is coupling to the strong electromagnetic waves that exist within the collisionless shock and the other is the density and magnetic field gradients at the interface. Citation: Brecht, S. H., D. W. Hewett, and D. J. Larson (2009), A magnetized, spherical plasma expansion in an inhomogeneous plasma: Transition from super-to sub-Alfvenic, Geophys. Res. Lett., 36, L15105, doi: 10.1029/2009GL038393.
C1 [Brecht, Stephen H.; Hewett, Dennis W.; Larson, David J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
[Brecht, Stephen H.] Bay Area Res Corp, Orinda, CA 94563 USA.
RP Brecht, SH (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA.
EM hewett1@llnl.gov
OI Larson, David/0000-0003-0814-8555
FU Defense Threat Reduction Agency [DTRA IACRO 07-42261]; Lawrence
Livermore National Security, LLC, (LLNS) [DE-AC52-07NA27344]
FX The authors would like to acknowledge the assistance of Chester Eng and
that of Ellen Tarwater. This work was sponsored by the Defense Threat
Reduction Agency under DTRA IACRO 07-42261 and under the auspices of the
Lawrence Livermore National Security, LLC, (LLNS) under contract
DE-AC52-07NA27344.
NR 23
TC 4
Z9 4
U1 1
U2 4
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD AUG 6
PY 2009
VL 36
AR L15105
DI 10.1029/2009GL038393
PG 4
WC Geosciences, Multidisciplinary
SC Geology
GA 481OB
UT WOS:000268819900002
ER
PT J
AU Valiev, M
D'Auria, R
Tobias, DJ
Garrettt, BC
AF Valiev, Marat
D'Auria, Raffaella
Tobias, Douglas J.
Garrettt, Bruce C.
TI Interactions of Cl(-) and OH Radical in Aqueous Solution
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Letter
ID MINIMUM ENERGY PATHS; MOLECULAR CHLORINE; FULL EOMCCSDT; SIMULATIONS;
WATER; MECHANICS; CHEMISTRY; DYNAMICS; AIR
AB There is a considerable controversy surrounding the nature of the Cl(-)/OH complex in aqueous solution, which appears as a byproduct of the irradiation of salt solutions in nuclear reactor operation, radioactive waste storage, medicine, and environmental problems. In this work, we report results of combined quantum mechanical molecular mechanics calculations of ground-state free-energy surfaces and absorption spectrum through the CCSDT level of theory that are consistent with the experimental data and suggest that hemibonded HOCl(-) species may indeed exist in bulk aqueous solution.
C1 [Valiev, Marat; Garrettt, Bruce C.] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA.
[Valiev, Marat; Garrettt, Bruce C.] Pacific NW Natl Lab, Fundamental & Computat Sci Div, Richland, WA 99352 USA.
[D'Auria, Raffaella; Tobias, Douglas J.] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA.
[D'Auria, Raffaella; Tobias, Douglas J.] Univ Calif Irvine, AirUCI, Irvine, CA 92697 USA.
RP Valiev, M (reprint author), Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, POB 999, Richland, WA 99352 USA.
EM marat.valiev@pnl.gov
RI Tobias, Douglas/B-6799-2015
NR 20
TC 8
Z9 8
U1 1
U2 16
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD AUG 6
PY 2009
VL 113
IS 31
BP 8823
EP 8825
DI 10.1021/jp903625k
PG 3
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 476XD
UT WOS:000268479200001
PM 19591498
ER
PT J
AU Sharma, VK
Cabelli, D
AF Sharma, Virender K.
Cabelli, Diane
TI Reduction of Oxyiron(V) by Sulfite and Thiosulfate in Aqueous Solution
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID MIX PULSE-RADIOLYSIS; FERRATE(VI) OXIDATION; HYDROXYL RADICALS; FENTON
REACTION; RATE CONSTANTS; AMINO-ACIDS; VALENT IRON; MECHANISM; KINETICS;
OXYGEN
AB The reduction of oxyiron(V), Fe(v)O(4)(3-) by inorganic oxysulfur species (SO(3)(2-) and S(2)O(3)(2-)) has been anaerobically in alkaline medium by using a premix pulse radiolysis technique. Studies on the reactions of Fe(VI)O(4)(2-) with the two sulfur radicals were also carried out. The spectroscopic results demonstrated that sulfur radicals reduced Fe(VI)O(4)(2-) to Fe(V)O(4)(3-) which is subsequently reduced by oxysulfur species by a two-electron reduction step to Fe(III). The rate constants for reduction of Fe(VI)O(4)(2-) to Fe(V)O(4)(3-) by sulfite and thiosulfate radicals ((center dot)SO(3)(-) and S(4)O(6)(center dot 3-)) were found to be (1.9 +/- 0.3) x 10(8) and (7.5 +/- 0.8) x 10(7) M(-1) s(-1), respectively, However, the reactions of Fe(V)O(4)(3-) with the SO(3)(2-) and S(2)O(3)(2-) ions were separated by an order of magnitude, with SO(3)(2-) reacting at (3.9 +/- 0.3) x 10(4) M(-1) s(-1) while S(2)O(3)(2-) reacted with Fe(V) at (2.1 +/- 0.1) x 10(3) M(-1) s(-1) at pH 11.4.
C1 [Sharma, Virender K.] Florida Inst Technol, Dept Chem, Melbourne, FL 32901 USA.
[Cabelli, Diane] Brookhaven Natl Lab, Dept Chem, Long Isl City, NY 11973 USA.
RP Sharma, VK (reprint author), Florida Inst Technol, Dept Chem, 150 W Univ Blvd, Melbourne, FL 32901 USA.
EM vsharma@fit.edu
OI Sharma, Virender/0000-0002-5980-8675
FU USDOE [E-AC02-98CH10886]
FX A part of this work is supported Under contract DE-AC02-98CH10886 with
the USDOE and its Division of Chemical Sciences, Office of Basic Energy
Sciences. We thank Drs. J. Clayton Baum and Ria Yngard for useful
comments on the paper.
NR 53
TC 8
Z9 9
U1 2
U2 16
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD AUG 6
PY 2009
VL 113
IS 31
BP 8901
EP 8906
DI 10.1021/jp901994x
PG 6
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 476XD
UT WOS:000268479200012
PM 19603757
ER
PT J
AU Herranz, T
Deng, XY
Cabot, A
Guo, JG
Salmeron, M
AF Herranz, Tirma
Deng, Xingyi
Cabot, Andreu
Guo, Jingua
Salmeron, Miquel
TI Influence of the Cobalt Particle Size in the CO Hydrogenation Reaction
Studied by In Situ X-Ray Absorption Spectroscopy
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID FISCHER-TROPSCH SYNTHESIS; PLATINUM NANOPARTICLES; CO/SIO2 CATALYST;
REDUCIBILITY; NANOCRYSTALS; OXIDATION; BEHAVIOR; SUPPORT; SILICA; SHAPE
AB The influence of particle size in the carbon monoxide hydrogenation reaction has been studied using cobalt nanoparticles (NPs) with narrow size distribution prepared from colloidal chemistry. The surfactant covering the NPs after synthesis could be removed by heating to 200-270 degrees C in H(2). Soft X-ray absorption spectroscopy was performed using a gas flow cell under reaction conditions of H(2) and CO at atmospheric pressure. Flow of pure hydrogen at 350 degrees C removed the protecting surfactant layer and reduced the NPs from oxidized to metallic. The NPs remained metallic during the methanation reaction with their surface covered by CO. The methanation turnover frequency of silica-supported NPs was found to decrease with diameter below 10 nm, whereas the reaction activation energy was found to be independent of NP size. H-D exchange experiments indicated that it is the dissociation of H(2) that is responsible for the observed decrease in activity with size.
C1 [Herranz, Tirma; Deng, Xingyi; Cabot, Andreu; Salmeron, Miquel] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Sci Mat, Berkeley, CA 94720 USA.
[Guo, Jingua] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Salmeron, Miquel] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
RP Salmeron, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Sci Mat, Berkeley, CA 94720 USA.
EM MBSalmeron@lbl.gov
RI Herranz, Tirma/A-8656-2008; andreu, cabot/B-5683-2014;
OI Deng, Xingyi/0000-0001-9109-1443; cabot, andreu /0000-0002-7533-3251
FU Department of Energy [DE-AC02-05CH11231]; Ramon Areces Foundation from
Spain
FX We thank Prof. Paul Alivisatos for his support in the synthesis of
nanoparticles and careful reading of this paper. This work was supported
by the Director, Office of Science, Office of Basic Energy Sciences,
Chemical Sciences, Geosciences, and Bioscienccs Division, under the
Department of Energy Contract No. DE-AC02-05CH11231. Synthesis and
characterization of the nanoparticles was performed in the Molecular
Foundry and at the Advanced Light Source. T.H. acknowledges also
financial support from the Ramon Areces Foundation from Spain.
NR 43
TC 69
Z9 69
U1 3
U2 46
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD AUG 6
PY 2009
VL 113
IS 31
BP 10721
EP 10727
DI 10.1021/jp901602s
PG 7
WC Chemistry, Physical
SC Chemistry
GA 476XB
UT WOS:000268479000025
PM 19601588
ER
PT J
AU Bu, LT
Beckham, GT
Crowley, MF
Chang, CH
Matthews, JF
Bomble, YJ
Adney, WS
Himmel, ME
Nimlos, MR
AF Bu, Lintao
Beckham, Gregg T.
Crowley, Michael F.
Chang, Christopher H.
Matthews, James F.
Bomble, Yannick J.
Adney, William S.
Himmel, Michael E.
Nimlos, Mark R.
TI The Energy Landscape for the Interaction of the Family 1
Carbohydrate-Binding Module and the Cellulose Surface is Altered by
Hydrolyzed Glycosidic Bonds
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID REESEI CELLOBIOHYDROLASE-I; NEUTRON FIBER DIFFRACTION; SYNCHROTRON
X-RAY; TRICHODERMA-REESEI; MEMBRANE-PROTEINS; CRYSTAL-STRUCTURE;
FORCE-FIELD; DYNAMICS; DOMAINS; SIMULATIONS
AB A multiscale simulation model is used to construct potential and free energy surfaces for the carbohydrate-binding module [CBM] from an industrially important cellulase, Trichoderma reesei cellobiohydrolase 1, on the hydrophobic face of a coarse-grained cellulose 1 beta polymorph. We predict from computation that the CBM alone exhibits regions of stability on the hydrophobic face of cellulose every 5 and 10 angstrom, corresponding to a glucose unit and a cellobiose unit, respectively. In addition, we predict a new role for the CBM: specifically, that in the presence of hydrolyzed cellulose chain ends, the CBM exerts a thermodynamic driving force to translate away from the free cellulose chain ends. This suggests that the CBM is not only required for binding to cellulose, as has been known for two decades, but also that it has evolved to both assist the enzyme in recognizing a cellulose chain end and exert a driving force on the enzyme during processive hydrolysis of cellulose.
C1 [Bu, Lintao; Beckham, Gregg T.; Nimlos, Mark R.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA.
[Crowley, Michael F.; Matthews, James F.; Bomble, Yannick J.; Adney, William S.; Himmel, Michael E.] Natl Renewable Energy Lab, Chem & Biosci Ctr, Golden, CO 80401 USA.
[Chang, Christopher H.] Natl Renewable Energy Lab, Mat & Computat Sci Ctr, Golden, CO 80401 USA.
RP Nimlos, MR (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA.
EM mark.nimlos@nrel.gov
RI Chang, Christopher/A-1404-2012; crowley, michael/A-4852-2013
OI Chang, Christopher/0000-0003-3800-6021; crowley,
michael/0000-0001-5163-9398
FU National Renewable Energy Laboratory; U.S. Department of Energy
[DE-AC36-99GO10337]; DOE Office; Colorado School of Mines; National
Science Foundation
FX The work to develop the coarse-grained cellulose Surface model was
supported by the National Renewable Energy Laboratory Directed Research
& Development program and by the U.S. Department of Energy under
contract No. DE-AC36-99GO10337 with the National Renewable Energy
Laboratory. The work to model T. reesei CBM acting on the cellulose
surface model was supported by the DOE Office of the Biomass Program.
Computational resources for this research were supported in part by the
Golden Energy Computing Organization at the Colorado School of Mines
using resources acquired with financial assistance from the National
Science Foundation and the National Renewable Energy Laboratory. We
thank Professor Baron Peters of UCSB for helpful discussions.
NR 46
TC 59
Z9 59
U1 2
U2 30
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD AUG 6
PY 2009
VL 113
IS 31
BP 10994
EP 11002
DI 10.1021/jp904003z
PG 9
WC Chemistry, Physical
SC Chemistry
GA 476XB
UT WOS:000268479000055
PM 19594145
ER
PT J
AU Braun, GB
Lee, SJ
Laurence, T
Fera, N
Fabris, L
Bazan, GC
Moskovits, M
Reich, NO
AF Braun, Gary B.
Lee, Seung Joon
Laurence, Ted
Fera, Nick
Fabris, Laura
Bazan, Guillermo C.
Moskovits, Martin
Reich, Norbert O.
TI Generalized Approach to SERS-Active Nanomaterials via Controlled
Nanoparticle Linking, Polymer Encapsulation, and Small-Molecule Infusion
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID SURFACE-ENHANCED RAMAN; GOLD NANOPARTICLES; SCATTERING; SILVER;
SPECTROSCOPY; COLLOIDS; DNA; ADSORPTION; FILMS
AB Over the past decade the emphasis on single-molecule sensitivity of surface-enhanced Raman spectroscopy (SERS) has brought to prominence the special role played by so-called SERS hot spots, often times nanometerscale junctions between nanoparticles (NPs). In this report, molecular linkers are used to mediate the assembly of NPs to dimers and small clusters. When the SERS enhancement is optimized, the aggregation process is quenched by polymer and protein stabilizers that subsequently act as encapsulants resulting in SERS substates with unprecedented enhancement uniformity, reproducibility, and stability. The polymer-stabilized NP junctions were then imprinted with a variety of small molecules that permeated the polymer coat and displaced the linker from the hot spot. The average SERS enhancement of these SERS "nanocapsules" was found to be at least 300x greater than for single NPs, while the Raman/Rayleigh scattering ratio was 101 higher for linked NPs versus nonoptimized aggregates. Single-particle statistics showed that almost every nanocapsule produced intense SERS, suggesting that they are NT dimers and small clusters with the probe molecule resident in a hot spot. Nanocapsules were functionalized and shown to compete successfully with fluorescence imaging in multiplexed identification of cancer cell epitopes at the single-cell and single-nanotag level.
C1 [Braun, Gary B.; Lee, Seung Joon; Fera, Nick; Fabris, Laura; Moskovits, Martin; Reich, Norbert O.] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA.
[Laurence, Ted] Lawrence Livermore Natl Lab, Chem Mat Earth & Life Sci Directorate, Livermore, CA 94550 USA.
RP Moskovits, M (reprint author), Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA.
EM mmoskovits@ltsc.ucsb.cdu; reich@chem.ucsb.edu
RI Laurence, Ted/E-4791-2011; Braun, Gary/A-4913-2009; Bazan,
Guillermo/B-7625-2014
OI Laurence, Ted/0000-0003-1474-779X; Braun, Gary/0000-0002-6301-0228;
FU Institute for Collaborative Biotechnologies (ICB), from U.S. Army
Research Office [DAAD19-03-D-0004]; Lawrence Livermore National
Laboratories through a UCDRD; UC Discovery program; Tamarisc
Diagnostics; National Science Foundation [DMR-0080034, DMR-0216466]
FX This work was supported by funding from the Institute for Collaborative
Biotechnologies (ICB) through Grant No. DAAD19-03-D-0004 from U.S. Army
Research Office, from Lawrence Livermore National Laboratories through a
UCDRD grant. Funding from the UC Discovery program and Tamarisc
Diagnostics to N.R. is acknowledged. Extensive use of the MRL Central
Facilities at UCSB supported by the National Science Foundation under
Awards No. DMR-0080034 and DMR-0216466 for electron microscopy. We thank
Dr. Stanley M. Parsons (UCSB) for use of the Olympus epifluorescent
microscope.
NR 25
TC 101
Z9 101
U1 8
U2 87
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD AUG 6
PY 2009
VL 113
IS 31
BP 13622
EP 13629
DI 10.1021/jp903399p
PG 8
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 476WY
UT WOS:000268478700027
ER
PT J
AU Orendorff, CJ
Huber, DL
Bunker, BC
AF Orendorff, Christopher J.
Huber, Dale L.
Bunker, Bruce C.
TI Effects of Water and Temperature on Conformational Order in Model Nylon
Thin Films
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID OCTADECYLSILANE STATIONARY PHASES; LIGHT-EMITTING-DIODES;
RAMAN-SPECTROSCOPY; CHAIN CONFORMATION; SURFACE-PROPERTIES; INFRARED
SPECTRA; POLYAMIDES; PERFORMANCE; MEMBRANE; MONOLAYERS
AB Nylon 6,6 thin films have been examined by Raman spectroscopy to determine how chain conformation is influenced by environmental parameters such as exposure to water and temperature variations. The motivation for this work is to elucidate how interactions between water and the model polymers mediate polymer structures in applications such as the removal of salt from water in reverse osmosis membranes. Raman spectra show that model self-assembled monolayers containing Nylon 6,6 chains are semicrystalline under ambient conditions. The native chains adopt an unusual kinked and folded conformation related to that found in gamma-Nylon 6,6. The regular chain deformations allow adjacent tethered chains to maximize hydrogen-bonding between neighboring amide groups under the constraints imposed by Surface tethering. With increasing temperature, the films undergo a phase transition associated with the disruption of hydrogen bonds leading to structures containing more linear regions that are closer to the "all trans" case. Similar structural changes are observed on exposing the Nylon films to water. The salt content of the water does not appear to have a significant impact on the structure or phase transition in the Nylon 6,6. These results suggest that while inclusion of water has a profound effect on the polymer structure, either salt is excluded from the polymer or there is sufficient free volume within the films to accommodate hydrated ions without inducing further structural changes.
C1 [Orendorff, Christopher J.; Huber, Dale L.; Bunker, Bruce C.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Orendorff, CJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM corendo@sandia.gov
RI Huber, Dale/A-6006-2008
OI Huber, Dale/0000-0001-6872-8469
FU United States Department of Energy's National Nuclear Security
Administration [DE-AC04-94AL85000]
FX The authors are grateful to research support from Sandia National
Laboratories Laboratory Directed Research and Development program. The
authors thank J. A. Timlin, D. R. Tallant, and R. L. Simpson for their
technical assistance and L. M. G. Minear, C. A. Gresham, K. M. Alam, and
L. E. Martin for allowing us to use their spectroscopy facilities. The
authors also acknowledge Akzo Nobel for providing bulk silica materials.
Sandia is a multiprogram laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the United States Department of Energy's
National Nuclear Security Administration under Contract No.
DE-AC04-94AL85000.
NR 37
TC 11
Z9 11
U1 1
U2 8
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD AUG 6
PY 2009
VL 113
IS 31
BP 13723
EP 13731
DI 10.1021/jp901309y
PG 9
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 476WY
UT WOS:000268478700042
ER
PT J
AU Kumar, N
Neogi, S
Kent, PRC
Bandura, AV
Kubicki, JD
Wesolowski, DJ
Cole, D
Sofo, JO
AF Kumar, Nitin
Neogi, Sanghamitra
Kent, Paul R. C.
Bandura, Andrei V.
Kubicki, James D.
Wesolowski, David J.
Cole, David
Sofo, Jorge O.
TI Hydrogen Bonds and Vibrations of Water on (110) Rutile
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID MOLECULAR-DYNAMICS SIMULATIONS; TOTAL-ENERGY CALCULATIONS;
AUGMENTED-WAVE METHOD; NEUTRON-SCATTERING; LIQUID WATER; BASIS-SET;
ADSORPTION; SURFACE; 1ST-PRINCIPLES; TIO2(110)
AB We Study the relation between the hydrogen bonding and the vibrational frequency spectra of water on the (110) surface of rutile (alpha-TiO2) with three structural layers of adsorbed water, Using ab initio molecular dynamics simulations at 280, 300, and 320 K, we find strong, crystallographically controlled adsorption sites, in general agreement with synchrotron X-ray and classical molecular dynamics simulations. We demonstrate that these sites are produced by strong hydrogen bonds formed between the surface oxygen atoms and the sorbed water molecules. The strength of these bonds is manifested by substantial broadening of the stretching mode vibrational band. The overall vibrational spectrum obtained from our simulations is in good agreement with inelastic neutron scattering experiments. We correlate the vibrational spectrum with different bonds at the surface to transform these vibrational measurements into a spectroscopy of surface interactions.
C1 [Kumar, Nitin; Neogi, Sanghamitra; Sofo, Jorge O.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA.
[Kubicki, James D.] Penn State Univ, Dept Geosci, University Pk, PA 16802 USA.
[Sofo, Jorge O.] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA.
[Kent, Paul R. C.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA.
[Wesolowski, David J.; Cole, David] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37830 USA.
[Bandura, Andrei V.] St Petersburg State Univ, St Petersburg 198504, Russia.
RP Sofo, JO (reprint author), Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA.
EM sofo@psu.edu
RI Kent, Paul/A-6756-2008; Sofo, Jorge/J-4415-2012; Sofo,
Jorge/B-4344-2014; Bandura, Andrei/I-2702-2013; Neogi,
Sanghamitra/N-6870-2014; Kumar, Nitin/M-5778-2014; Kubicki,
James/I-1843-2012
OI Kent, Paul/0000-0001-5539-4017; Sofo, Jorge/0000-0003-4513-3694; Sofo,
Jorge/0000-0003-4513-3694; Bandura, Andrei/0000-0003-2816-0578; Neogi,
Sanghamitra/0000-0003-2743-1313; Kumar, Nitin/0000-0002-1064-1659;
Kubicki, James/0000-0002-9277-9044
FU U.S. Department of Energy, Office of Basic Energy Sciences, Geoscience
Research Program [DE-AC05-00OR22725]; Materials Simulation Center, a
Penn State Center for Nanoscale Science (MRSEC-NSF); Penn State
Materials Research Institute facility
FX This work was supported by a grant from the U.S. Department of Energy,
Office of Basic Energy Sciences, Geoscience Research Program to Oak
Ridge National Laboratory, which is operated by UT Battelle, LLC under
Contract No. DE-AC05-00OR22725 for the U.S. Department of Energy. This
research used resources of the National Center for Computational
Sciences and the Center for Nanophase Materials Sciences at ORNL, which
are sponsored by the respective facilities divisions of the DOE Offices
of Advanced Scientific Computing Research and Basic Energy Sciences.
This work was supported in part by the Materials Simulation Center, a
Penn State Center for Nanoscale Science (MRSEC-NSF) and Penn State
Materials Research Institute facility.
NR 52
TC 41
Z9 43
U1 2
U2 30
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD AUG 6
PY 2009
VL 113
IS 31
BP 13732
EP 13740
DI 10.1021/jp901665e
PG 9
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 476WY
UT WOS:000268478700043
ER
PT J
AU Stenger, PC
Wu, GH
Miller, CE
Chi, EY
Frey, SL
Lee, KYC
Majewski, J
Kjaer, K
Zasadzinski, JA
AF Stenger, Patrick C.
Wu, Guohui
Miller, Chad E.
Chi, Eva Y.
Frey, Shelli L.
Lee, Ka Yee C.
Majewski, Jaroslaw
Kjaer, Kristian
Zasadzinski, Joseph A.
TI X-Ray Diffraction and Reflectivity Validation of the Depletion
Attraction in the Competitive Adsorption of Lung Surfactant and Albumin
SO BIOPHYSICAL JOURNAL
LA English
DT Article
ID AIR-WATER-INTERFACE; GRAZING-INCIDENCE DIFFRACTION; LEAST-SQUARES
METHODS; PULMONARY SURFACTANT; HYDROPHILIC POLYMERS; LIPID MONOLAYERS;
PALMITIC ACID; SERUM-ALBUMIN; INACTIVATION; INHIBITION
AB Lung surfactant (LS) and albumin compete for the air-water interface when both are present in solution. Equilibrium favors LS because it has a lower equilibrium surface pressure, but the smaller albumin is kinetically favored by faster diffusion. Albumin at the interface creates an energy barrier to subsequent LS adsorption that can be overcome by the depletion attraction induced by polyethylene glycol (PEG) in solution. A combination of grazing incidence x-ray diffraction (GIXD), x-ray reflectivity (XR), and pressure-area isotherms provides molecular-resolution information on the location and configuration of LS, albumin, and polymer. XR shows an average electron density similar to that of albumin at low surface pressures, whereas GIRD shows a heterogeneous interface with coexisting LS and albumin domains at higher surface pressures. Albumin induces a slightly larger lattice spacing and greater molecular tilt, similar in effect to a small decrease in the surface pressure. XR shows that adding PEG to the LS-albumin subphase restores the characteristic LS electron density profile at the interface, and confirms that PEG is depleted near the interface. GIXD shows the same LS Bragg peaks and Bragg rods as on a pristine interface, but with a more compact lattice corresponding to a small increase in the surface pressure. These results confirm that albumin adsorption creates a physical barrier that inhibits LS adsorption, and that PEG in the subphase generates a depletion attraction between the LS aggregates and the interface that enhances LS adsorption without substantially altering the structure or properties of the LS monolayer.
C1 [Stenger, Patrick C.; Wu, Guohui; Zasadzinski, Joseph A.] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA.
[Chi, Eva Y.; Frey, Shelli L.; Lee, Ka Yee C.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA.
[Miller, Chad E.; Majewski, Jaroslaw] Los Alamos Natl Lab, Los Alamos, NM USA.
[Kjaer, Kristian] Riso Natl Lab, DK-4000 Roskilde, Denmark.
RP Zasadzinski, JA (reprint author), Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA.
EM gorilla@engineering.ucsb.edu
RI Lujan Center, LANL/G-4896-2012
FU National Institutes of Health [HL-66410, HL-51177, HL-080718]; National
Science Foundation graduate research fellowship; Los Alamos National
Laboratory [W7405-ENG-36]; Department of Energy Office of Basic
Engineering Sciences; Institute for Complex Adaptive Matter
FX This work was supported by National Institutes of Health grants
HL-66410, HL-51177, and HL-080718. P.C.S. was partially supported by a
National Science Foundation graduate research fellowship. J.M. and
C.E.M. were supported by the Los Alamos National Laboratory under
Department of Energy contract W7405-ENG-36 and by the Department of
Energy Office of Basic Engineering Sciences. C.E.M. acknowledges support
from the Los Alamos National Laboratory Director's Postdoctoral
Fellowship and the Institute for Complex Adaptive Matter.
NR 36
TC 12
Z9 13
U1 0
U2 9
PU CELL PRESS
PI CAMBRIDGE
PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA
SN 0006-3495
J9 BIOPHYS J
JI Biophys. J.
PD AUG 5
PY 2009
VL 97
IS 3
BP 777
EP 786
DI 10.1016/j.bpj.2009.05.017
PG 10
WC Biophysics
SC Biophysics
GA 482YK
UT WOS:000268926500012
PM 19651036
ER
PT J
AU Baker, RH
Morgan, J
Wang, XH
Boore, JL
Wilkinson, GS
AF Baker, Richard H.
Morgan, Jenna
Wang, Xianhui
Boore, Jeffrey L.
Wilkinson, Gerald S.
TI Genomic analysis of a sexually-selected character: EST sequencing and
microarray analysis of eye-antennal imaginal discs in the stalk-eyed fly
Teleopsis dalmanni (Diopsidae)
SO BMC GENOMICS
LA English
DT Article
ID BIASED GENE-EXPRESSION; CHROMOSOME MEIOTIC DRIVE; CELL-CYCLE
PROGRESSION; DROSOPHILA-MELANOGASTER; CYRTODIOPSIS-DALMANNI;
DEVELOPMENTAL EXPRESSION; TRANSPOSABLE ELEMENTS; FLIES DIOPSIDAE;
ORNAMENT SIZE; SEX
AB Background: Many species of stalk-eyed flies (Diopsidae) possess highly-exaggerated, sexually dimorphic eye-stalks that play an important role in the mating system of these flies. Eye-stalks are increasingly being used as a model system for studying sexual selection, but little is known about the genetic mechanisms producing variation in these ornamental traits. Therefore, we constructed an EST database of genes expressed in the developing eye-antennal imaginal disc of the highly dimorphic species Teleopsis dalmanni. We used this set of genes to construct microarray slides and compare patterns of gene expression between lines of flies with divergent eyespan.
Results: We generated 33,229 high-quality ESTs from three non-normalized libraries made from the developing eye-stalk tissue at different developmental stages. EST assembly and annotation produced a total of 7,066 clusters comprising 3,424 unique genes with significant sequence similarity to a protein in either Drosophila melanogaster or Anopheles gambiae. Comparisons of the transcript profiles at different stages reveal a developmental shift in relative expression from genes involved in anatomical structure formation, transcription, and cell proliferation at the larval stage to genes involved in neurological processes and cuticle production during the pupal stages. Based on alignments of the EST fragments to homologous sequences in Drosophila and Anopheles, we identified 20 putative gene duplication events in T. dalmanni and numerous genes undergoing significantly faster rates of evolution in T. dalmanni relative to the other Dipteran species. Microarray experiments identified over 350 genes with significant differential expression between flies from lines selected for high and low relative eyespan but did not reveal any primary biological process or pathway that is driving the expression differences.
Conclusion: The catalogue of genes identified in the EST database provides a valuable framework for a comprehensive examination of the genetic basis of eye-stalk variation. Several candidate genes, such as crooked legs, cdc2, CG31917 and CG11577, emerge from the analysis of gene duplication, protein evolution and microarray gene expression. Additional comparisons of expression profiles between, for example, males and females, and species that differ in eye-stalk sexual dimorphism, are now enabled by these resources.
C1 [Baker, Richard H.; Morgan, Jenna; Boore, Jeffrey L.] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA.
[Baker, Richard H.] Amer Museum Nat Hist, Sackler Inst Comparat Genom, New York, NY 10024 USA.
[Wang, Xianhui; Wilkinson, Gerald S.] Univ Maryland, Dept Biol, College Pk, MD 20742 USA.
[Boore, Jeffrey L.] Genome Project Solut, Hercules, CA 94547 USA.
RP Baker, RH (reprint author), Joint Genome Inst, Dept Energy, 2800 Mitchell Dr, Walnut Creek, CA 94598 USA.
EM rbaker@amnh.org; jlmorgan@lbl.gov; wangxh2006@gmail.com;
jlboore@GenomeProjectSolutions.com; wilkinso@umd.edu
RI Wilkinson, Gerald/E-4424-2011
OI Wilkinson, Gerald/0000-0001-7799-8444
FU NSF [DEB-0445047, DEB-0444886]
FX We are grateful to Peter Brokstein for substantial guidance and
expertise with EST annotation, Erin Kelleher, Jennifer Kuehl, Aaron
Lorsong, Marie Pitts and Jamie Walters for assistance with several
aspects of the work, and Alvaro Godinez for conducting microarray
hybridizations. We thank four anonymous reviewers for several valuable
comments on the manuscript. This work was supported by an NIH NRSA
fellowship to RHB and collaborative NSF grants to JLB (DEB-0445047) and
GSW (DEB-0444886).
NR 72
TC 13
Z9 13
U1 0
U2 7
PU BIOMED CENTRAL LTD
PI LONDON
PA CURRENT SCIENCE GROUP, MIDDLESEX HOUSE, 34-42 CLEVELAND ST, LONDON W1T
4LB, ENGLAND
SN 1471-2164
J9 BMC GENOMICS
JI BMC Genomics
PD AUG 5
PY 2009
VL 10
AR 361
DI 10.1186/1471-2164-10-361
PG 20
WC Biotechnology & Applied Microbiology; Genetics & Heredity
SC Biotechnology & Applied Microbiology; Genetics & Heredity
GA 490OP
UT WOS:000269510700001
PM 19656405
ER
PT J
AU Zhang, Q
Streets, DG
He, KB
AF Zhang, Qiang
Streets, David G.
He, Kebin
TI Satellite observations of recent power plant construction in Inner
Mongolia, China
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
ID OZONE MONITORING INSTRUMENT; TROPOSPHERIC NO2; EMISSIONS; RETRIEVAL;
INVENTORY; SPACE; ASIA
AB About 50% of the increase in China's NOx emissions since 2000 can be attributed to the construction of new power plants. We show that the newly added NOx emissions from new power plants in Inner Mongolia, China, were detected by the Ozone Monitoring Instrument (OMI) aboard NASA's Aura satellite. Increase rates of NO2 columns from OMI and NOx emissions from inventories are even in quantitative agreement in cases where new facilities are added to already-developed regions. This study confirms that the OMI products are quite capable of identifying the construction of large new emitting facilities through detection of their NOx emissions. Citation: Zhang, Q., D. G. Streets, and K. He (2009), Satellite observations of recent power plant construction in Inner Mongolia, China, Geophys. Res. Lett., 36, L15809, doi: 10.1029/2009GL038984.
C1 [Zhang, Qiang; Streets, David G.] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA.
[He, Kebin] Tsinghua Univ, Dept Environm Sci & Engn, Beijing 100084, Peoples R China.
RP Zhang, Q (reprint author), Argonne Natl Lab, Decis & Informat Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM zhangq@anl.gov
RI Zhang, Qiang/D-9034-2012;
OI Streets, David/0000-0002-0223-1350
FU National Aeronautics and Space Administration; China's National Basic
Research Program [2005CB422201]; China's National High Technology
Research and Development Program [2006AA06A305]; U.S. Department of
Energy [DE-AC02-06CH11357]
FX This research was supported by the National Aeronautics and Space
Administration's Program on Decision Support through Earth Science
Research Results. The work at Tsinghua University was supported by
China's National Basic Research Program (2005CB422201) and China's
National High Technology Research and Development Program
(2006AA06A305). KNMI-OMI data used in this paper were produced by KNMI
in the Netherlands in collaboration with NASA (www.temis.nl). The
NASA-OMI Level-3 Standard NO2 product was provided by the EOS
AURA Data Validation Center (http://avdc.gsfc.nasa.gov/). The OMI
project is managed by NIVR and KNMI in the Netherlands. We thank Andreas
Richter for providing the UB-OMI data and for his valuable comments. We
thank Lawrence Friedl (NASA) and Gregory Carmichael (University of Iowa)
for programmatic support. Argonne National Laboratory is operated by
UChicago Argonne, LLC, under contract DE-AC02-06CH11357 with the U.S.
Department of Energy.
NR 17
TC 36
Z9 37
U1 0
U2 19
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD AUG 5
PY 2009
VL 36
AR L15809
DI 10.1029/2009GL038984
PG 5
WC Geosciences, Multidisciplinary
SC Geology
GA 481NZ
UT WOS:000268819700003
ER
PT J
AU Gorensek, MB
Edwards, TB
AF Gorensek, Maximilian B.
Edwards, Thomas B.
TI Energy Efficiency Limits for a Recuperative Bayonet Sulfuric Acid
Decomposition Reactor for Sulfur Cycle Thermochemical Hydrogen
Production
SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
LA English
DT Article
AB A recuperative bayonet reactor design for the high-temperature sulfuric acid decomposition step in sulfur-based thermochemical hydrogen cycles was evaluated using pinch analysis in conjunction with statistical methods. The objective was to establish the minimum energy requirement. Taking hydrogen production via alkaline electrolysis with nuclear power as the benchmark, the acid decomposition step can consume no more than 450 kJ/(mol of SO(2)) for sulfur cycles to be competitive. The lowest value of the minimum heating target, 320.9 kJ/(mol of SO(2)), was found at the highest pressure (90 bar) and peak process temperature (900 degrees C) considered, and at a feed concentration of 42.5 mol % H(2)SO(4). This should be low enough for a practical water-splitting process, even including the additional energy required to concentrate the acid feed. Lower temperatures consistently gave higher minimum heating targets. The lowest peak process temperature that could meet the benchmark of 450 kJ/(mol of SO(2)) was 7.50 degrees C. If the decomposition reactor were to be heated indirectly by an advanced gas-cooled reactor heat source (50 degrees C temperature difference between the primary and secondary coolants, 25 degrees C minimum temperature difference between the secondary coolant and the process), then sulfur cycles using this concept could be: competitive with alkaline electrolysis provided that the primary heat source temperature is at least 825 degrees C. The bayonet design will not be practical if the (primary heat source) reactor outlet temperature is below 825 degrees C.
C1 [Gorensek, Maximilian B.; Edwards, Thomas B.] Savannah River Natl Lab, Computat Sci Directorate, Aiken, SC 29808 USA.
RP Gorensek, MB (reprint author), Savannah River Natl Lab, Computat Sci Directorate, Aiken, SC 29808 USA.
EM maximilian.gorensek@srnl.doe.gov
RI Gorensek, Maximilian/B-5298-2012;
OI Gorensek, Maximilian/0000-0002-4322-9062
FU U.S. Department of Energy [DE-A C09-08SR22470]; DOE Office of Nuclear
Energy (DOE-NE)
FX This work was performed under U.S. Department of Energy (DOE) Contract
DE-A C09-08SR22470. Funding was provided by the DOE Office of Nuclear
Energy (DOE-NE) under the Nuclear Hydrogen Initiative (NHI) program. Mr.
Carl Sink was NHI program manager, and Dr. Stephen Kung was program
manager for thermochemical cycles. This work was part of the HyS cycle
process development effort at Savannah River National Laboratory for
which Dr. William A. Summers was Principal Investigator.
NR 22
TC 7
Z9 7
U1 0
U2 2
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0888-5885
J9 IND ENG CHEM RES
JI Ind. Eng. Chem. Res.
PD AUG 5
PY 2009
VL 48
IS 15
BP 7232
EP 7245
DI 10.1021/ie900310r
PG 14
WC Engineering, Chemical
SC Engineering
GA 476XG
UT WOS:000268479500040
ER
PT J
AU Bussmann, E
Sun, J
Pohl, K
Kellogg, GL
AF Bussmann, E.
Sun, J.
Pohl, K.
Kellogg, G. L.
TI Palladium diffusion into bulk copper via the (100) surface
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article; Proceedings Paper
CT 6th International Workshop on LEEM/PEEM
CY SEP 07-11, 2008
CL Trieste, ITALY
ID CU(100); FILMS; PD; GROWTH; ALLOYS
AB Using low-energy electron microscopy, we measure the diffusion of Pd into bulk Cu at the Cu(100) surface. Interdiffusion is tracked by measuring the dissolution of the Cu(100)-c(2 x 2)-Pd surface alloy during annealing (T > 240 degrees C). The activation barrier for Pd diffusion from the surface alloy into the bulk is determined to be (1.8 +/- 0.6) eV. During annealing, we observe the growth of a new layer of Cu near step edges. Under this new Cu layer, dilute Pd remaining near the surface develops a layered structure similar to the Cu(3)Pd L1(2) bulk alloy phase.
C1 [Bussmann, E.; Kellogg, G. L.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Sun, J.; Pohl, K.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA.
[Sun, J.] Univ New Hampshire, Mat Sci Program, Durham, NH 03824 USA.
RP Bussmann, E (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
RI Sun, Jiebing/B-5678-2012
NR 21
TC 1
Z9 1
U1 0
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
J9 J PHYS-CONDENS MAT
JI J. Phys.-Condes. Matter
PD AUG 5
PY 2009
VL 21
IS 31
AR 314016
DI 10.1088/0953-8984/21/31/314016
PG 7
WC Physics, Condensed Matter
SC Physics
GA 469FE
UT WOS:000267880300017
PM 21828577
ER
PT J
AU El Gabaly, F
Bartelt, NC
Schmid, AK
AF El Gabaly, F.
Bartelt, N. C.
Schmid, A. K.
TI Preparing arrays of large atomically flat regions on single crystal
substrates
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article; Proceedings Paper
CT 6th International Workshop on LEEM/PEEM
CY SEP 07-11, 2008
CL Trieste, ITALY
ID SURFACE; NUCLEATION; SI(001); GROWTH; ENERGY; FILMS
AB We report a simple and general procedure to create arrays of atomically flat terraces on single crystal surfaces. Facets of three-dimensional (3D) metal islands formed after hetero-epitaxial growth are often flat and, through annealing or growth at elevated temperature, the formation of rather large (micron-scale) atomically flat-top facets can be promoted. We find that the step-free nature of top facets on such islands can be transferred to the substrate surface through room-temperature ion-sputter etching, followed by an annealing step. We use low-energy electron microscopy (LEEM) and Auger electron spectroscopy (AES) for in situ monitoring of the process steps while fabricating arrays of step-free surface regions on W(110), Ru(0001), Cu(100), and Fe(100) single crystals.
C1 [El Gabaly, F.; Bartelt, N. C.] Sandia Natl Labs, Livermore, CA 94550 USA.
[El Gabaly, F.; Schmid, A. K.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP El Gabaly, F (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA.
EM felgabaly@gmail.com
RI Bartelt, Norman/G-2927-2012
NR 25
TC 0
Z9 0
U1 1
U2 19
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
J9 J PHYS-CONDENS MAT
JI J. Phys.-Condes. Matter
PD AUG 5
PY 2009
VL 21
IS 31
AR 314019
DI 10.1088/0953-8984/21/31/314019
PG 7
WC Physics, Condensed Matter
SC Physics
GA 469FE
UT WOS:000267880300020
PM 21828580
ER
PT J
AU Flege, JI
Sutter, P
AF Flege, J. I.
Sutter, P.
TI Nanoscale analysis of Ru(0001) oxidation using low-energy and
photoemission electron microscopy
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article; Proceedings Paper
CT 6th International Workshop on LEEM/PEEM
CY SEP 07-11, 2008
CL Trieste, ITALY
ID ACTIVE CATALYTIC SURFACE; CO OXIDATION; RUTHENIUM; OXYGEN; REACTIVITY;
FILMS
AB CO oxidation over oxygen-rich Ru(0001) surfaces is one of the most studied catalytic oxidation reactions in surface science and of widespread interest as a model system for the redox chemistry of transition metal model catalysts. Here, we present an extensive low-energy electron microscopy (LEEM) and photoemission electron microscopy study of the oxidation of Ru(0001), which constitutes a crucial step in understanding the overall surface reaction. After characterizing the different surface nanoscale morphologies observed depending on the oxidation temperature, three distinct oxygen-rich phases are identified by dark-field microscopy and local valence-band spectroscopy. Furthermore, in situ LEEM allows us to follow the growth of single rutile oxide nuclei in real time and determine the relevant activation barriers that induce quasi-one-dimensional growth of oxide nanorods, whose growth rate is limited by O incorporation.
C1 [Flege, J. I.; Sutter, P.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
RP Flege, JI (reprint author), Univ Bremen, Inst Solid State Phys, D-28359 Bremen, Germany.
EM flege@ifp.uni-bremen.de
RI Flege, Jan Ingo/J-6354-2012
OI Flege, Jan Ingo/0000-0002-8346-6863
NR 18
TC 15
Z9 15
U1 2
U2 21
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
J9 J PHYS-CONDENS MAT
JI J. Phys.-Condes. Matter
PD AUG 5
PY 2009
VL 21
IS 31
AR 314018
DI 10.1088/0953-8984/21/31/314018
PG 6
WC Physics, Condensed Matter
SC Physics
GA 469FE
UT WOS:000267880300019
PM 21828579
ER
PT J
AU Santos, B
Loginova, E
Mascaraque, A
Schmid, AK
McCarty, KF
de la Figuera, J
AF Santos, B.
Loginova, E.
Mascaraque, A.
Schmid, A. K.
McCarty, K. F.
de la Figuera, J.
TI Structure and magnetism in ultrathin iron oxides characterized by low
energy electron microscopy
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article; Proceedings Paper
CT 6th International Workshop on LEEM/PEEM
CY SEP 07-11, 2008
CL Trieste, ITALY
ID VERWEY TRANSITION; EPITAXIAL-GROWTH; FILMS; RU(0001); SURFACE; FE3O4;
POLARIZATION; CHEMISTRY; FE
AB We have grown epitaxial films a few atomic layers thick of iron oxides on ruthenium. We characterize the growth by low energy electron microscopy. Using selected-area diffraction and intensity-versus-voltage spectroscopy, we detect two distinct phases which are assigned as wustite and magnetite. Spin-polarized low energy electron microscopy reveals magnetic domain patterns in the magnetite phase at room temperature.
C1 [Santos, B.; de la Figuera, J.] Univ Autonoma Madrid, E-28049 Madrid, Spain.
[Santos, B.; de la Figuera, J.] CSIC, Inst Quim Fis Rocasolano, E-28006 Madrid, Spain.
[Loginova, E.; McCarty, K. F.] Sandia Natl Labs, Livermore, CA 94550 USA.
[Mascaraque, A.] Univ Complutense Madrid, E-28040 Madrid, Spain.
[Schmid, A. K.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Santos, B (reprint author), Univ Autonoma Madrid, E-28049 Madrid, Spain.
EM juan.delafiguera@iqfr.csic.es
RI de la Figuera, Juan/E-7046-2010; McCarty, Kevin/F-9368-2012; Mascaraque,
Arantzazu/D-9504-2012
OI de la Figuera, Juan/0000-0002-7014-4777; McCarty,
Kevin/0000-0002-8601-079X; Mascaraque, Arantzazu/0000-0002-2614-2862
NR 40
TC 18
Z9 18
U1 0
U2 27
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
EI 1361-648X
J9 J PHYS-CONDENS MAT
JI J. Phys.-Condes. Matter
PD AUG 5
PY 2009
VL 21
IS 31
AR 314011
DI 10.1088/0953-8984/21/31/314011
PG 10
WC Physics, Condensed Matter
SC Physics
GA 469FE
UT WOS:000267880300012
PM 21828572
ER
PT J
AU Speckmann, M
Schmidt, T
Flege, JI
Sadowski, JT
Sutter, P
Falta, J
AF Speckmann, M.
Schmidt, Th
Flege, J. I.
Sadowski, J. T.
Sutter, P.
Falta, J.
TI Temperature dependent low energy electron microscopy study of Ge island
growth on bare and Ga terminated Si(112)
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article; Proceedings Paper
CT 6th International Workshop on LEEM/PEEM
CY SEP 07-11, 2008
CL Trieste, ITALY
ID SCANNING-TUNNELING-MICROSCOPY; SURFACTANT-MEDIATED EPITAXY;
MOLECULAR-BEAM EPITAXY; THIN-FILMS; NUCLEATION; GERMANIUM; KINETICS;
NANOSTRUCTURES; DIFFRACTION; ADSORPTION
AB The pre-adsorption of Ga on Si(112) leads to a drastic change of the morphology of subsequently grown Ge islands. In contrast to the case for Ge growth on bare Si(112), even nanowire growth can be achieved on Ga terminated Si(112). Employing low energy electron microscopy and low energy electron diffraction, the initial phase of Ge nucleation and Ge island growth was systematically analysed for growth temperatures between 420 and 610 degrees C, both on clean and on Ga terminated Si(112). In both cases the island density exhibits an Arrhenius-like behaviour, from which diffusion barrier heights of about 1.3 and 1.0 eV can be estimated for growth with and without Ga pre-adsorption, respectively. The Ge island shape on the bare Si(112) surface is found to be nearly circular over the whole temperature range, whereas the shapes of the Ge islands on the Ga terminated Si(112) become highly anisotropic for higher temperatures. Ge nanowires with sizes of up to 2 mu m along the [1 (1) over bar0] direction are observed.
C1 [Speckmann, M.; Schmidt, Th; Flege, J. I.; Falta, J.] Univ Bremen, Inst Solid State Phys, D-28359 Bremen, Germany.
[Flege, J. I.; Sadowski, J. T.; Sutter, P.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
RP Speckmann, M (reprint author), Univ Bremen, Inst Solid State Phys, Otto Hahn Allee 1, D-28359 Bremen, Germany.
EM mspeckmann@ifp.uni-bremen.de
RI Speckmann, Moritz/H-3097-2011; Flege, Jan Ingo/J-6354-2012; Falta,
Jens/F-4821-2016
OI Flege, Jan Ingo/0000-0002-8346-6863; Falta, Jens/0000-0002-4154-822X
NR 44
TC 3
Z9 3
U1 1
U2 7
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
J9 J PHYS-CONDENS MAT
JI J. Phys.-Condes. Matter
PD AUG 5
PY 2009
VL 21
IS 31
AR 314020
DI 10.1088/0953-8984/21/31/314020
PG 7
WC Physics, Condensed Matter
SC Physics
GA 469FE
UT WOS:000267880300021
PM 21828581
ER
PT J
AU Wang, JB
Zuo, XB
Yu, P
Byeon, IJL
Jung, JW
Wang, XX
Dyba, M
Seifert, S
Schwieters, CD
Qin, J
Gronenborn, AM
Wang, YX
AF Wang, Jinbu
Zuo, Xiaobing
Yu, Ping
Byeon, In-Ja L.
Jung, Jinwon
Wang, Xiaoxia
Dyba, Marzena
Seifert, Soenke
Schwieters, Charles D.
Qin, Jun
Gronenborn, Angela M.
Wang, Yun-Xing
TI Determination of Multicomponent Protein Structures in Solution Using
Global Orientation and Shape Restraints
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID INTEGRIN-LINKED KINASE; RESIDUAL DIPOLAR COUPLINGS;
NUCLEAR-MAGNETIC-RESONANCE; X-RAY-SCATTERING; SMALL-ANGLE SCATTERING;
BIOLOGICAL MACROMOLECULES; SECONDARY STRUCTURE; NMR; COMPLEXES;
SPECTROSCOPY
AB Determining architectures of multicomponent proteins or protein complexes in solution is a challenging problem. Here we report a methodology that simultaneously uses residual dipolar couplings (RDC) and the small-angle X-ray scattering (SAXS) restraints to mutually orient subunits and define the global shape of multicomponent proteins and protein complexes. Our methodology is implemented in an efficient algorithm and demonstrated using five examples. First, we demonstrate the general approach with simulated data for the HIV-1 protease, a globular homodimeric protein. Second, we use experimental data to determine the structures of the two-domain proteins L11 and gamma D-Crystallin, in which the linkers between the domains are relatively rigid. Finally, complexes with K(d) values in the high micro- to millimolar range (weakly associating proteins), such as a homodimeric GB1 variant, and with K(d) values in the nanomolar range (tightly bound), such as the heterodimeric complex of the ILK ankyrin repeat domain (ARD) and PINCH LIM1 domain, respectively, are evaluated. Furthermore, the proteins or protein complexes that were determined using this method exhibit better solution structures than those obtained by either NMR or X-ray crystallography alone as judged based on the pair-distance distribution functions (PDDF) calculated from experimental SAXS data and back-calculated from the structures.
C1 [Wang, Jinbu; Zuo, Xiaobing; Yu, Ping; Wang, Yun-Xing] NCI, Prot Nucle Acid Interact Sect, NIH, Frederick, MD 21702 USA.
[Yu, Ping; Dyba, Marzena] NCI, SAIC Frederick Inc, NIH, Frederick, MD 21702 USA.
[Byeon, In-Ja L.; Jung, Jinwon; Gronenborn, Angela M.] Univ Pittsburgh, Sch Med, Dept Biol Struct, Pittsburgh, PA 15261 USA.
[Seifert, Soenke] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA.
[Schwieters, Charles D.] NIH, Div Computat Biosci, Ctr Informat, Bethesda, MD 20892 USA.
[Wang, Xiaoxia; Qin, Jun] Lerner Res Inst, Struct Biol Program, Dept Mol Cardiol, Cleveland, OH 44195 USA.
[Dyba, Marzena] NCI, Struct Biophys Lab, NIH, Frederick, MD 21702 USA.
RP Wang, YX (reprint author), NCI, Prot Nucle Acid Interact Sect, NIH, Frederick, MD 21702 USA.
EM wangyu@ncifcrf.gov
RI Zuo, Xiaobing/F-1469-2010; Jung, Jinwon/F-6038-2010; Qin,
Jun/D-5559-2009;
OI Zuo, Xiaobing/0000-0002-0134-4804; Gronenborn, Angela
M/0000-0001-9072-3525; Jung, Jinwon/0000-0002-7981-3316
FU NCI of NIH; CIT Intramural Research Program of the NIH; NIH [GM082251,
HL58758, GM62823, N01-CO-12400]; National Cancer Institute
FX We thank Dr. Xinhua Ji for insightful discussions about the
crystallography of weakly associated multisubunit proteins and Dr. David
M. Tiede for useful discussion and allowing us using his software for
X-ray scattering 2D image processing. This project has been funded in
part with federal funds from an intramural grant from the NCI of NIH to
Y.X.W., the CIT Intramural Research Program of the NIH to C.D.S., and
NIH grants GM082251 and HL58758, GM62823 to A.M.G. and J.Q.,
respectively. This research was also supported in whole or in part with
federal funds from the National Cancer Institute, National Institues of
health, under under contract N01-CO-12400. This Research was supported
in part by the Intramural Research Program of the NIH, National Cancer
Institute, Center for Cancer Research.
NR 41
TC 31
Z9 31
U1 1
U2 22
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD AUG 5
PY 2009
VL 131
IS 30
BP 10507
EP 10515
DI 10.1021/ja902528f
PG 9
WC Chemistry, Multidisciplinary
SC Chemistry
GA 479FF
UT WOS:000268644400045
PM 19722627
ER
PT J
AU Rousseau, R
Schenter, GK
Fulton, JL
Linehan, JC
Engelhard, MH
Autrey, T
AF Rousseau, Roger
Schenter, Gregory K.
Fulton, John L.
Linehan, John C.
Engelhard, Mark H.
Autrey, Thomas
TI Defining Active Catalyst Structure and Reaction Pathways from ab Initio
Molecular Dynamics and Operando XAFS: Dehydrogenation of
Dimethylaminoborane by Rhodium Clusters
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID AMMONIA BORANE DEHYDROGENATION; CHEMICAL HYDROGEN STORAGE; N-H
COMPOUNDS; THERMAL-DECOMPOSITION; RELEASE; NMR; AMINOBORANES;
DIHYDROGEN; COMPLEXES; EFFICIENT
AB We present the results of a detailed operando XAFS and density functional theory (DFT)-based ab initio molecular dynamics (AIMD) investigation of a proposed mechanism of the dehydrogenation of dimethylaminoborane (DMAB) by a homogeneous Rh(4) cluster catalyst. Our AND simulations reveal that previously proposed Rh structures, based on XAFS measurements, are highly fluxional, exhibiting both metal cluster and ligand isomerizations and dissociation that can only be accounted for by examining a finite temperature ensemble. It is found that a fluxional species Rh(4)(H(2)BNMe(2))(8)(2+) is fully compatible with operando XAFS measurements, suggesting that this species may be the observed catalyst resting state. On the basis of this assignment, we propose a mechanism for catalytic DMAB dehydrogenation that exhibits an energy barrier of approximately 28 kcal/mol.
C1 [Rousseau, Roger; Schenter, Gregory K.; Fulton, John L.; Linehan, John C.; Autrey, Thomas] Pacific NW Natl Lab, Fundamental & Comp Sci Directorate, Richland, WA 99352 USA.
[Engelhard, Mark H.] Pacific NW Natl Lab, WR Wiley Environm Mol Sci Lab EMSL Sci Div, Richland, WA 99352 USA.
RP Rousseau, R (reprint author), Pacific NW Natl Lab, Fundamental & Comp Sci Directorate, Richland, WA 99352 USA.
EM roger.rousseau@pnl.gov
RI Engelhard, Mark/F-1317-2010; Rousseau, Roger/C-3703-2014; Schenter,
Gregory/I-7655-2014;
OI Schenter, Gregory/0000-0001-5444-5484; Engelhard,
Mark/0000-0002-5543-0812
FU U.S. DOE by Battelle [DEAC06-76RLO1830]; US Department of Energy - Basic
Energy Sciences [DE-AC02-06CH11357]; NSERC; University of Washington;
Simon Fraser University; Pacific Northwest National Laboratory
FX This work was supported by the U.S. Department of Energy Office of Basic
Energy Sciences, Chemical Sciences Division. Pacific Northwest National
Laboratory (PNNL) is operated for the U.S. DOE by Battelle under
contract no. DEAC06-76RLO1830. Computational resources were provided by
the National Energy Research Scientific Computing Center at Lawrence
Berkeley National Laboratory. XPS studies were performed using EMSL. a
national scientific user facility sponsored by the Department of
Energy's Office of Biological and Environmental Research located at
PNNL. PNC/XOR facilities at the Advanced Photon Source, and research at
these facilities, are supported by the US Department of Energy - Basic
Energy Sciences, a major facilities access grant from NSERC, the
University of Washington, Simon Fraser University, the Pacific Northwest
National Laboratory, and the Advanced Photon Source. Use of the Advanced
Photon Source is also supported by the U.S. Department of Energy, Office
of Science, Office of Basic Energy Sciences, under contract no.
DE-AC02-06CH11357.
NR 51
TC 45
Z9 45
U1 1
U2 28
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD AUG 5
PY 2009
VL 131
IS 30
BP 10516
EP 10524
DI 10.1021/ja901480u
PG 9
WC Chemistry, Multidisciplinary
SC Chemistry
GA 479FF
UT WOS:000268644400046
PM 19585992
ER
PT J
AU Joo, J
Pietryga, JM
McGuire, JA
Jeon, SH
Williams, DJ
Wang, HL
Klimov, VI
AF Joo, Jin
Pietryga, Jeffrey M.
McGuire, John A.
Jeon, Sea-Ho
Williams, Darrick J.
Wang, Hsing-Lin
Klimov, Victor I.
TI A Reduction Pathway in the Synthesis of PbSe Nanocrystal Quantum Dots
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID ULTRAFAST CARRIER DYNAMICS; SEMICONDUCTOR NANOCRYSTALS; CDSE
NANOCRYSTALS; NANOPARTICLE SUPERLATTICES; SURFACE-CHEMISTRY;
IDENTIFICATION; RECOMBINATION; EFFICIENCY; CONVERSION; KINETICS
AB Colloidal nanocrystal quantum dots (NODS) of narrow band gap materials are of substantial general interest because of their unparalleled potential as infrared fluorophores. While PbSe NODS are a promising class of infrared-active nanocrystals due to high emission quantum yields and a wide useful spectral range, typical synthetic methods are sensitive to a variety of factors, including the influence of solvent/ligand impurities that render reproducibility difficult. In this work, we specifically examine the effects of diphenylphosphine and 1,2-hexadecanediol, as surrogates for putative trioctylphosphine-based reducing impurities, on the synthesis of PbSe NODS. Specifically, we compare their influence on NOD size, chemical yield, and photoluminescence quantum yield. While both additives substantially increase the chemical yield of the synthesis, they demonstrate markedly different effects on emission quantum yield of the product NODS. We further examine the effects of reaction temperature and oleic acid concentration on the diol-assisted synthesis. Increased oleic acid concentration led to somewhat higher growth rates and larger NODS but at the expense of lower chemical yield. Temperature was found to have an even greater effect on growth rate and NOD size. Neither temperature nor oleic acid concentration was found to have noticeable effects on NOD emission quantum yield. Finally, we use numerical simulations to support the conjecture that the increased yield is likely a result of faster monomer formation, consistent with the activation of an additional reaction pathway by the reducing species.
C1 [Joo, Jin; Pietryga, Jeffrey M.; McGuire, John A.; Jeon, Sea-Ho; Wang, Hsing-Lin; Klimov, Victor I.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA.
[Williams, Darrick J.; Klimov, Victor I.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA.
RP Klimov, VI (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA.
EM klimov@lanl.gov
RI McGuire, John/C-3380-2015;
OI McGuire, John/0000-0002-0682-0953; Klimov, Victor/0000-0003-1158-3179
FU U.S. Department of Energy
FX This work was supported by the Chemical Sciences, Biosciences, and
Geosciences Division of the Office of Basic Energy Sciences, Office of
Science, U.S. Department of Energy. V.I.K. acknowledges the support of
the Center for Integrated Nanotechnologies, a U.S. Department of Energy
Office of Basic Energy Sciences Nanoscale Science Research Center.
NR 45
TC 70
Z9 70
U1 1
U2 49
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD AUG 5
PY 2009
VL 131
IS 30
BP 10620
EP 10628
DI 10.1021/ja903445f
PG 9
WC Chemistry, Multidisciplinary
SC Chemistry
GA 479FF
UT WOS:000268644400059
PM 19569687
ER
PT J
AU Partamies, N
Pulkkinen, TI
McPherron, RL
McWilliams, K
Bryant, CR
Tanskanen, E
Singer, HJ
Reeves, GD
Thomsen, MF
AF Partamies, N.
Pulkkinen, T. I.
McPherron, R. L.
McWilliams, K.
Bryant, C. R.
Tanskanen, E.
Singer, H. J.
Reeves, G. D.
Thomsen, M. F.
TI Statistical survey on sawtooth events, SMCs and isolated substorms
SO ADVANCES IN SPACE RESEARCH
LA English
DT Article
DE M-I coupling; Substorm; Steady magnetospheric convection; Sawtooth event
ID HIGH-LATITUDE CONVECTION; SOLAR-WIND; IONOSPHERE; FIELD
AB Solar wind driving can cause a variety of different responses in the magnetosphere. Strong and steady driving during geomagnetic storms may result in sawtooth events. Strong to moderate driving may be followed by either sawtooth events or steady magnetospheric convection (SMC) events. Lower solar wind energy input typically leads to the formation of isolated non-storm substorms. This study uses superposed epoch analysis to reveal the typical properties of these three event groups as well as their similarities and differences. We use IMF and solar wind parameters, as well as ground-based indices (AL, SYM-H, ASY-H, PCN) to examine the level of solar wind driving and its response in the magnetosphere. Our results show that sawtooth events are associated with the strongest ionospheric activity. The subgroups of events during constant solar wind E-gamma show that the key difference between the events is the average solar wind speed. Particularly, the high activity during sawtooth events is driven by high solar wind speed, while the lowest average speed during the SMCs may explain the lack of substorm activity during the steady convection periods. (C) 2009 COSPAR. Published by Elsevier Ltd. All rights reserved.
C1 [Partamies, N.; Pulkkinen, T. I.] Finnish Meteorol Inst, FI-00101 Helsinki, Finland.
[McPherron, R. L.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA.
[McWilliams, K.; Bryant, C. R.] Univ Saskatchewan, Dept Phys & Engn Phys, Saskatoon, SK S7N 5E2, Canada.
[Tanskanen, E.] Univ Bergen, Dept Phys & Technol, N-5007 Bergen, Norway.
[Singer, H. J.] NOAA, Space Weather Predict Ctr, Boulder, CO 80305 USA.
[Reeves, G. D.; Thomsen, M. F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Partamies, N (reprint author), Finnish Meteorol Inst, POB 503, FI-00101 Helsinki, Finland.
EM noora.partamies@fmi.fi
RI Pulkkinen, Tuija/D-8403-2012; Partamies, Noora/G-3408-2014; Reeves,
Geoffrey/E-8101-2011
OI Pulkkinen, Tuija/0000-0002-6317-381X; Partamies,
Noora/0000-0003-2536-9341; Reeves, Geoffrey/0000-0002-7985-8098
NR 26
TC 15
Z9 15
U1 0
U2 6
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0273-1177
EI 1879-1948
J9 ADV SPACE RES
JI Adv. Space Res.
PD AUG 4
PY 2009
VL 44
IS 3
BP 376
EP 384
DI 10.1016/j.asr.2009.03.013
PG 9
WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology &
Atmospheric Sciences
SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences
GA 475LO
UT WOS:000268360900011
ER
PT J
AU Holman, HYN
Wozei, E
Lin, Z
Comolli, LR
Ball, DA
Borglin, S
Fields, MW
Hazen, TC
Downing, KH
AF Holman, Hoi-Ying N.
Wozei, Eleanor
Lin, Zhang
Comolli, Luis R.
Ball, David A.
Borglin, Sharon
Fields, Matthew W.
Hazen, Terry C.
Downing, Kenneth H.
TI Real-time molecular monitoring of chemical environment in obligate
anaerobes during oxygen adaptive response
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE Desulfovibrio; hydrogen bond; synchrotron FTIR spectromicroscopy; oxygen
stress; cellular water
ID SULFATE-REDUCING BACTERIA; VIBRATIONAL PREDISSOCIATION SPECTROSCOPY;
DESULFOVIBRIO-VULGARIS HILDENBOROUGH; AQUEOUS CARBOXYLIC-ACIDS;
INFRARED-SPECTROSCOPY; WATER CLUSTERS; DESULFOBULBUS-PROPIONICUS;
SULFIDE OXIDATION; MICROBIAL MAT; ION
AB Determining the transient chemical properties of the intracellular environment can elucidate the paths through which a biological system adapts to changes in its environment, for example, the mechanisms that enable some obligate anaerobic bacteria to survive a sudden exposure to oxygen. Here we used high-resolution Fourier transform infrared (FTIR) spectromicroscopy to continuously follow cellular chemistry within living obligate anaerobes by monitoring hydrogen bond structures in their cellular water. We observed a sequence of well orchestrated molecular events that correspond to changes in cellular processes in those cells that survive, but only accumulation of radicals in those that do not. We thereby can interpret the adaptive response in terms of transient intracellular chemistry and link it to oxygen stress and survival. This ability to monitor chemical changes at the molecular level can yield important insights into a wide range of adaptive responses.
C1 [Holman, Hoi-Ying N.; Borglin, Sharon; Fields, Matthew W.; Hazen, Terry C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Virtual Inst Microbial Stress & Survival, Berkeley, CA 94720 USA.
[Fields, Matthew W.] Montana State Univ, Bozeman, MT 59717 USA.
RP Holman, HYN (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Virtual Inst Microbial Stress & Survival, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM hyholman@lbl.gov
RI Holman, Hoi-Ying/N-8451-2014; Borglin, Sharon/I-1013-2016; Hazen,
Terry/C-1076-2012
OI Holman, Hoi-Ying/0000-0002-7534-2625; Hazen, Terry/0000-0002-2536-9993
FU U.S. Department of Energy Office of Biological and Environmental
Research's Structural Biology Program [DE-AC02-05CH11231]
FX We thank Dr. K. McDonald and Ms. R. Zalpuri at the Robert D. Ogg
Electron Microscope Lab, UC Berkeley, and Dr. Z. Lee at the National
Center for Electron Microscopy, Lawrence Berkeley National Laboratory,
for technical assistance; Ms. D. Joyner for technical assistance; Drs.
H. Bechtel, Z. Hao, J. Jansson, C. Jansson, M. C. Martin, W. McKinney
and J. Zhou for discussion and comments on this work and the manuscript.
This work was supported by the U.S. Department of Energy Office of
Biological and Environmental Research's Structural Biology Program, and
Genomics: GTL Program through contract DE-AC02-05CH11231 with Lawrence
Berkeley National Laboratory.
NR 51
TC 23
Z9 25
U1 0
U2 14
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD AUG 4
PY 2009
VL 106
IS 31
BP 12599
EP 12604
DI 10.1073/pnas.0902070106
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 479NT
UT WOS:000268667600010
PM 19541631
ER
PT J
AU Wang, Q
Navarro, MVAS
Peng, G
Molinelli, E
Goh, SL
Judson, BL
Rajashankar, KR
Sondermann, H
AF Wang, Qi
Navarro, Marcos V. A. S.
Peng, Gary
Molinelli, Evan
Goh, Shih Lin
Judson, Bret L.
Rajashankar, Kanagalaghatta R.
Sondermann, Holger
TI Molecular mechanism of membrane constriction and tubulation mediated by
the F-BAR protein Pacsin/Syndapin
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE endocytosis; membrane trafficking; protein structure
ID SYNDAPIN-I; ENDOPLASMIC-RETICULUM; ACTIN CYTOSKELETON; CURVATURE;
ENDOCYTOSIS; DOMAIN; DYNAMIN; ENDOPHILIN; INVAGINATION; AMPHIPHYSIN
AB Peripheral membrane proteins of the Bin/amphiphysin/Rvs (BAR) and Fer-CIP4 homology-BAR (F-BAR) family participate in cellular membrane trafficking and have been shown to generate membrane tubules. The degree of membrane bending appears to be encoded in the structure and immanent curvature of the particular protein domains, with BAR and F-BAR domains inducing high-and low-curvature tubules, respectively. In addition, oligomerization and the formation of ordered arrays influences tubule stabilization. Here, the F-BAR domain-containing protein Pacsin was found to possess a unique activity, creating small tubules and tubule constrictions, in addition to the wide tubules characteristic for this subfamily. Based on crystal structures of the F-BAR domain of Pacsin and mutagenesis studies, vesiculation could be linked to the presence of unique structural features distinguishing it from other F-BAR proteins. Tubulation was suppressed in the context of the full-length protein, suggesting that Pacsin is autoinhibited in solution. The regulated deformation of membranes and promotion of tubule constrictions by Pacsin suggests a more versatile function of these proteins in vesiculation and endocytosis beyond their role as scaffold proteins.
C1 [Wang, Qi; Navarro, Marcos V. A. S.; Peng, Gary; Molinelli, Evan; Goh, Shih Lin; Sondermann, Holger] Cornell Univ, Dept Mol Med, Coll Vet Med, Ithaca, NY 14853 USA.
[Judson, Bret L.] Cornell Univ, Weill Inst Cell & Mol Biol, Ithaca, NY 14853 USA.
[Rajashankar, Kanagalaghatta R.] Argonne Natl Lab, NE Collaborat Access Team, Argonne, IL 60439 USA.
RP Sondermann, H (reprint author), Cornell Univ, Dept Mol Med, Coll Vet Med, Ithaca, NY 14853 USA.
EM hs293@cornell.edu
RI Wang, Qi/H-9399-2012; Navarro, Marcos/C-9141-2013
OI Wang, Qi/0000-0002-9703-1676;
FU NCRR NIH HHS [P41 RR001646, P41 RR015301, RR-01646, RR-15301]; NIBIB NIH
HHS [P30 EB009998]; NIGMS NIH HHS [DMR0225180]
NR 31
TC 101
Z9 104
U1 0
U2 15
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD AUG 4
PY 2009
VL 106
IS 31
BP 12700
EP 12705
DI 10.1073/pnas.0902974106
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 479NT
UT WOS:000268667600027
PM 19549836
ER
PT J
AU Hartman, NC
Nye, JA
Groves, JT
AF Hartman, Nina C.
Nye, Jeffrey A.
Groves, Jay T.
TI Cluster size regulates protein sorting in the immunological synapse
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE actin; mechanobiology; membrane; transport; receptor
ID T-CELL-RECEPTOR; SUPRAMOLECULAR ACTIVATION CLUSTER; BILAYER-MEMBRANES;
PATTERN-FORMATION; LIPID-BILAYERS; MICROCLUSTERS; ACTIN; IDENTIFICATION;
COSTIMULATION; TRANSLOCATION
AB During antigen recognition by T cells, signaling molecules on the T cell engage ligands on the antigen-presenting cell and organize into spatially distinctive patterns. These are collectively known as the immunological synapse (IS). Causal relationships between large-scale spatial organization and signal transduction have previously been established. Although it is known that receptor transport during IS formation is driven by actin polymerization, the mechanisms by which different proteins become spatially sorted remain unclear. These sorting processes contribute a facet of signal regulation; thus their elucidation is important for ultimately understanding signal transduction through the T cell receptor. Here we investigate protein cluster size as a sorting mechanism using the hybrid live T cell-supported membrane system. The clustering state of the co-stimulatory molecule lymphocyte function-associated antigen-1 (LFA-1) is modulated, either by direct antibody crosslinking or by crosslinking its intercellular adhesion molecule-1 ligand on the supported bilayer. In a mature IS, native LFA-1 generally localizes into a peripheral ring surrounding a central T cell receptor cluster. Higher degrees of LFA-1 clustering, induced by either method, result in progressively more central localization, with the most clustered species fully relocated to the central zone. These results demonstrate that cluster size directly influences protein spatial positioning in the T cell IS. We discuss a sorting mechanism, based on frictional coupling to the actin cytoskeleton, that is consistent with these observations and is, in principle, extendable to all cell surface proteins in the synapse.
C1 [Hartman, Nina C.; Groves, Jay T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem, Berkeley, CA 94720 USA.
[Nye, Jeffrey A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem Engn, Berkeley, CA 94720 USA.
[Groves, Jay T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Howard Hughes Med Inst, Berkeley, CA 94720 USA.
[Groves, Jay T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
[Groves, Jay T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Groves, JT (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem, Berkeley, CA 94720 USA.
EM jtgroves@lbl.gov
FU U. S. Department of Energy [DE-AC03-76SF00098]
FX This work was supported by the Chemical Sciences, Geosciences and
Biosciences Division, Office of Basic Energy Sciences, of the U. S.
Department of Energy under Contract No. DE-AC03-76SF00098. Patterned
substrates were made by B. L. Jackson and R. Petit in the University of
California, Berkeley, Microlab and Lawrence Berkeley National Laboratory
Molecular Foundry. The authors thank M. B. Forstner, M. Davis, B.
Lillemeier, Boryana Manz, J. P. Hickey, A. Smoligovets, E. Liu, L.
Mahadevan, R. Varma, T. Starr, and M. L. Dustin for helpful discussions,
reagents, and technical help.
NR 33
TC 75
Z9 76
U1 0
U2 10
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD AUG 4
PY 2009
VL 106
IS 31
BP 12729
EP 12734
DI 10.1073/pnas.0902621106
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 479NT
UT WOS:000268667600032
PM 19622735
ER
PT J
AU Leland, S
Nagarajan, P
Polyzos, A
Thomas, S
Samaan, G
Donnell, R
Marchetti, F
Venkatachalam, S
AF Leland, Shawn
Nagarajan, Prabakaran
Polyzos, Aris
Thomas, Sharon
Samaan, George
Donnell, Robert
Marchetti, Francesco
Venkatachalam, Sundaresan
TI Heterozygosity for a Bub1 mutation causes female-specific germ cell
aneuploidy in mice
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE fertility; maternal age; meiosis; oogenesis; spindle assembly checkpoint
ID SPINDLE-ASSEMBLY CHECKPOINT; SISTER-CHROMATID COHESION; MOUSE OOCYTES;
MAMMALIAN OOCYTES; METAPHASE-II; MEIOSIS-I; CHROMOSOME MISSEGREGATION;
KINETOCHORE LOCALIZATION; CENTROMERIC COHESION; MITOTIC SPINDLE
AB Aneuploidy, the most common chromosomal abnormality at birth and the main ascertained cause of pregnancy loss in humans, originates primarily from chromosome segregation errors during oogenesis. Here, we report that heterozygosity for a mutation in the mitotic checkpoint kinase gene, Bub1, induces aneuploidy in female germ cells of mice and that the effect increases with advancing maternal age. Analysis of Bub1 heterozygous oocytes showed that aneuploidy occurred primarily during the first meiotic division and involved premature sister chromatid separation. Furthermore, aneuploidy was inherited in zygotes and resulted in the loss of embryos after implantation. The incidence of aneuploidy in zygotes was sufficient to explain the reduced litter size in matings with Bub1 heterozygous females. No effects were seen in germ cells from heterozygous males. These findings show that Bub1 dysfunction is linked to inherited aneuploidy in female germ cells and may contribute to the maternal age-related increase in aneuploidy and pregnancy
C1 [Polyzos, Aris; Marchetti, Francesco] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA.
[Leland, Shawn; Nagarajan, Prabakaran; Thomas, Sharon; Samaan, George; Venkatachalam, Sundaresan] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA.
[Donnell, Robert] Univ Tennessee, Dept Pathobiol, Knoxville, TN 37996 USA.
RP Marchetti, F (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, MS977R250,1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM fmarchetti@lbl.gov; sundar@utk.edu
OI Marchetti, Francesco/0000-0002-9435-4867; Donnell, Robert
L./0000-0002-6778-954X
FU University of California, Lawrence Berkeley National Laboratory [DE-AC02
05CH11231]
FX We thank Drs. Bruce McKee, MaryAnn Handel, Andrew Wyrobek, and John
Mailhes for comments. Work performed in part under the auspices of the
U. S. Department of Energy by the University of California, Lawrence
Berkeley National Laboratory under contract DE-AC02 05CH11231. S. V. was
supported by the University of Tennessee start-up funds.
NR 51
TC 36
Z9 36
U1 0
U2 2
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD AUG 4
PY 2009
VL 106
IS 31
BP 12776
EP 12781
DI 10.1073/pnas.0903075106
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 479NT
UT WOS:000268667600040
PM 19617567
ER
PT J
AU Wu, GA
Jun, SR
Sims, GE
Kim, SH
AF Wu, Guohong Albert
Jun, Se-Ran
Sims, Gregory E.
Kim, Sung-Hou
TI Whole-proteome phylogeny of large dsDNA virus families by an
alignment-free method
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE alignment-free genome comparison; feature frequency profile; horizontal
gene transfer; whole-genome phylogeny; virus phylogeny
ID LARGE DNA VIRUSES; GENOME SEQUENCE; GENE GAIN; EVOLUTION; INFORMATION;
POXVIRUSES; CLASSIFICATION; CORONAVIRUS; CONFIDENCE; MIMIVIRUS
AB The vast sequence divergence among different virus groups has presented a great challenge to alignment-based sequence comparison among different virus families. Using an alignment-free comparison method, we construct the whole-proteome phylogeny for a population of viruses from 11 viral families comprising 142 large dsDNA eukaryote viruses. The method is based on the feature frequency profiles (FFP), where the length of the feature (l-mer) is selected to be optimal for phylogenomic inference. We observe that (i) the FFP phylogeny segregates the population into clades, the membership of each has remarkable agreement with current classification by the International Committee on the Taxonomy of Viruses, with one exception that the mimivirus joins the phycodnavirus family; (ii) the FFP tree detects potential evolutionary relationships among some viral families; (iii) the relative position of the 3 herpesvirus subfamilies in the FFP tree differs from gene alignment-based analysis; (iv) the FFP tree suggests the taxonomic positions of certain 'unclassified'' viruses; and (v) the FFP method identifies candidates for horizontal gene transfer between virus families.
C1 [Wu, Guohong Albert; Jun, Se-Ran; Sims, Gregory E.; Kim, Sung-Hou] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Wu, Guohong Albert; Sims, Gregory E.; Kim, Sung-Hou] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
RP Kim, SH (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
EM shkim@cchem.berkeley.edu
FU National Institutes of Health [GM62412]; Korean Ministry of Education,
Science and Technology [R31-2008-000-10086-0]
FX We thank Drs. B. Glausinger, L. Volkman, and M. Strand for their expert
advice. This work was supported by National Institutes of Health Grant
GM62412 and Korean Ministry of Education, Science and Technology World
Class University Project Grant R31-2008-000-10086-0.
NR 48
TC 32
Z9 32
U1 0
U2 5
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD AUG 4
PY 2009
VL 106
IS 31
BP 12826
EP 12831
DI 10.1073/pnas.0905115106
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 479NT
UT WOS:000268667600049
PM 19553209
ER
PT J
AU Bar, M
Repins, I
Contreras, MA
Weinhardt, L
Noufi, R
Heske, C
AF Baer, M.
Repins, I.
Contreras, M. A.
Weinhardt, L.
Noufi, R.
Heske, C.
TI Chemical and electronic surface structure of 20%-efficient Cu(In,Ga)Se-2
thin film solar cell absorbers
SO APPLIED PHYSICS LETTERS
LA English
DT Article
DE conduction bands; copper compounds; energy gap; Fermi level; indium
compounds; photoelectron spectra; semiconductor thin films; solar cells;
surface structure; ternary semiconductors; thin film devices
ID BAND ALIGNMENT; HETEROJUNCTION; CHALCOPYRITE; EFFICIENCY; INTERFACE;
CUINSE2
AB The chemical and electronic surface structure of 20%-efficient Cu(In,Ga)Se-2 thin film solar cell absorbers was investigated as a function of deposition process termination (i.e., ending the growth process in absence of either Ga or In). In addition to the expected In (Ga) enrichment, direct and inverse photoemission reveal a decreased Cu surface content and a larger surface band gap for the "In-terminated" absorber.
C1 [Baer, M.; Heske, C.] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA.
[Baer, M.] Helmholtz Zentrum Berlin Mat & Energie, D-14109 Berlin, Germany.
[Repins, I.; Contreras, M. A.; Noufi, R.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Weinhardt, L.] Univ Wurzburg, D-97074 Wurzburg, Germany.
RP Bar, M (reprint author), Univ Nevada, Dept Chem, 4505 Maryland Pkwy,POB 454003, Las Vegas, NV 89154 USA.
EM marcus.baer@helmholtz-berlin.de; heske@unlv.nevada.edu
RI Weinhardt, Lothar/G-1689-2013
FU National Renewable Energy Laboratory [XXL-5-44205-12]
FX We acknowledge funding by the National Renewable Energy Laboratory under
Subcontract No. XXL-5-44205-12.
NR 17
TC 32
Z9 34
U1 0
U2 28
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD AUG 3
PY 2009
VL 95
IS 5
AR 052106
DI 10.1063/1.3194153
PG 3
WC Physics, Applied
SC Physics
GA 481KQ
UT WOS:000268809400039
ER
PT J
AU Chen, SY
Yin, WJ
Yang, JH
Gong, XG
Walsh, A
Wei, SH
AF Chen, Shiyou
Yin, Wan-Jian
Yang, Ji-Hui
Gong, X. G.
Walsh, Aron
Wei, Su-Huai
TI Quaternary semiconductors with positive crystal field splitting:
Potential high-efficiency spin-polarized electron sources
SO APPLIED PHYSICS LETTERS
LA English
DT Article
DE ab initio calculations; aluminium compounds; cadmium compounds; copper
compounds; crystal field interactions; electron spin polarisation;
gallium arsenide; germanium compounds; ground states; II-VI
semiconductors; silicon compounds; space groups; ternary semiconductors;
tin compounds; valence bands; zinc compounds
ID PHOTOEMISSION; ALLOYS; STRAIN
AB Traditional high efficiency spin-polarized electron sources (SPES) consist mainly of binary or pseudobinary zinc-blende GaAs based materials, whereas their ternary analogs II-IV-V-2 (II=Zn, Cd, IV=Si, Ge, Sn, and V=As) as well as II-VI ternary analogs I-III-VI2 (I=Cu, Ag, III=Al, Ga, In, and VI=Se) have not drawn wide attention because their crystal field splitting Delta(CF) near the valence band maximum is either negative or close to zero in their ground state chalcopyrite structure. Using first-principles calculations, we show that some derivative quaternary I-III-II2-VI4 and II-IV-III2-V-4 compounds can have coherent ground state stannite or kesterite structures with large and positive Delta(CF) due to their increased chemical and structural flexibility. We propose that ZnSiAl2As4 and CdGeAl2As4 in the stannite structure, and ZnSnGa2As4 and CuAlCd2Se4 in the kesterite structure could be good candidate SPES materials with high polarization and quantum efficiency.
C1 [Chen, Shiyou; Yin, Wan-Jian; Yang, Ji-Hui; Gong, X. G.] Fudan Univ, Dept Phys, MOE Key Lab Computat Phys Sci, Shanghai 200433, Peoples R China.
[Chen, Shiyou; Yin, Wan-Jian; Yang, Ji-Hui; Gong, X. G.] Fudan Univ, Surface Sci Lab, Shanghai 200433, Peoples R China.
[Walsh, Aron; Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Chen, SY (reprint author), Fudan Univ, Dept Phys, MOE Key Lab Computat Phys Sci, Shanghai 200433, Peoples R China.
EM chensy@fudan.edu.cn
RI Walsh, Aron/A-7843-2008; gong, xingao /B-1337-2010; Yin,
Wanjian/F-6738-2013; gong, xingao/D-6532-2011
OI Walsh, Aron/0000-0001-5460-7033;
FU U. S. Department of Energy [DE-AC36- 08GO28308]
FX The work in Fudan is partially supported by the National Sciences
Foundation of China, the Basic Research Program of MOE and Shanghai, and
the Special Funds for Major State Basic Research. Computations were
performed in the Supercomputer Center of FU and CCS. The work at NREL is
funded by the U. S. Department of Energy under Contract No. DE-AC36-
08GO28308.
NR 13
TC 10
Z9 10
U1 2
U2 24
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0003-6951
EI 1077-3118
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD AUG 3
PY 2009
VL 95
IS 5
AR 052102
DI 10.1063/1.3193662
PG 3
WC Physics, Applied
SC Physics
GA 481KQ
UT WOS:000268809400035
ER
PT J
AU Kuchibhatla, SVNT
Hu, SY
Yu, ZQ
Shutthanandan, V
Li, YL
Nachimuthu, P
Jiang, W
Thevuthasan, S
Henager, CH
Sundaram, SK
AF Kuchibhatla, Satyanarayana V. N. T.
Hu, S. Y.
Yu, Z. Q.
Shutthanandan, V.
Li, Y. L.
Nachimuthu, P.
Jiang, W.
Thevuthasan, S.
Henager, C. H., Jr.
Sundaram, S. K.
TI Morphology, orientation relationship, and stability analysis of Cu2O
nanoclusters on SrTiO3 (100)
SO APPLIED PHYSICS LETTERS
LA English
DT Article
DE atomic force microscopy; chemical potential; copper compounds;
nanostructured materials; nanotechnology; nucleation; reflection high
energy electron diffraction; semiconductor growth; semiconductor
materials; strontium compounds; surface energy
ID GROWTH; FILMS
AB Reflection high energy electron diffraction, atomic force microscopy, and theoretical studies based on classical nucleation theory have been used to interpret the morphology, orientation relationship, and stability of Cu2O nanoclusters on SrTiO3 (100) (STO). We propose that the competing interfacial and elastic energies facilitate an in-plane rotation of the Cu2O clusters by 45 degrees with respect to the STO substrate and stabilize Cu2O clusters on STO(100) with an orientation relationship of (001)(Cu2)O//(001)(SrTiO3) and << 100 >> O-Cu2//<< 110 >>(SrTiO3). Our preliminary theoretical analysis also suggests that this particular orientation results in smaller critical nucleus sizes and lower nucleation barriers and also indicates a chemical potential (growth rate) dependence of the orientation relationship.
C1 [Kuchibhatla, Satyanarayana V. N. T.; Shutthanandan, V.; Nachimuthu, P.; Thevuthasan, S.] Pacific NW Natl Lab, EMSL, Richland, WA 99354 USA.
[Yu, Z. Q.] Nanjing Normal Univ, Dept Chem, Nanjing 210097, Peoples R China.
RP Kuchibhatla, SVNT (reprint author), Pacific NW Natl Lab, EMSL, Richland, WA 99354 USA.
EM satya@pnl.gov; theva@pnl.gov
OI HU, Shenyang/0000-0002-7187-3082; Jiang, Weilin/0000-0001-8302-8313;
Henager, Chuck/0000-0002-8600-6803
FU Department of Energy's Office of Biological and Environmental Research;
U.S. Department of Energy by Battelle Memorial Institute [DE-AC06-76RLO
1830]; PNNL [NA-22]
FX A portion of this research was performed using EMSL, a national
scientific user facility sponsored by the Department of Energy's Office
of Biological and Environmental Research located at Pacific Northwest
National Laboratory (PNNL). PNNL is operated for the U.S. Department of
Energy by Battelle Memorial Institute under Contract No. DE-AC06-76RLO
1830. This work was funded at PNNL by the Office of Defense Nuclear
Nonproliferation, Office of Nonproliferation Research and Development
(NA-22). Help from Dr. A. S. Lea and T. C. Droubay in analyzing the AFM
and RHEED data, respectively, is appreciated.
NR 13
TC 5
Z9 5
U1 1
U2 20
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD AUG 3
PY 2009
VL 95
IS 5
AR 053111
DI 10.1063/1.3193530
PG 3
WC Physics, Applied
SC Physics
GA 481KQ
UT WOS:000268809400075
ER
PT J
AU Ma, QL
Wang, SG
Zhang, J
Wang, Y
Ward, RCC
Wang, C
Kohn, A
Zhang, XG
Han, XF
AF Ma, Q. L.
Wang, S. G.
Zhang, J.
Wang, Yan
Ward, R. C. C.
Wang, C.
Kohn, A.
Zhang, X. -G.
Han, X. F.
TI Temperature dependence of resistance in epitaxial Fe/MgO/Fe magnetic
tunnel junctions
SO APPLIED PHYSICS LETTERS
LA English
DT Article
DE epitaxial layers; iron; magnesium compounds; magnetic tunnelling
ID ROOM-TEMPERATURE; LARGE MAGNETORESISTANCE; THIN-FILM; INTERFACE;
BARRIERS
AB The temperature dependence of resistance in parallel (P) and antiparallel (AP) configurations (R-P,R-AP) has been investigated in epitaxial Fe/MgO/Fe junctions with varying MgO barrier thicknesses t(MgO). R-AP exhibits a substantial decrease with increasing temperature for samples with t(MgO) ranging from 3.0 to 1.5 nm. In contrast, R-P is approximately temperature independent when t(MgO)=3.0 nm and increases with temperature when t(MgO)=2.1 and 1.5 nm. Possible origins of this temperature dependence of resistance, which include taking into account a spin independent term and consideration of spin-flip scattering, are discussed. We attribute the temperature dependence of R-P,R-AP to the misalignment of magnetic moments in the electrodes due to thermal excitations and its effect on the spin dependent tunneling.
C1 [Ma, Q. L.; Wang, S. G.; Zhang, J.; Wang, Yan; Han, X. F.] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, State Key Lab Magnetism, Beijing 100190, Peoples R China.
[Wang, S. G.; Ward, R. C. C.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England.
[Wang, C.; Kohn, A.] Univ Oxford, Dept Mat, Oxford OX1 3PH, England.
[Zhang, X. -G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci & Comp Sci, Oak Ridge, TN 37831 USA.
[Zhang, X. -G.] Oak Ridge Natl Lab, Div Math, Oak Ridge, TN 37831 USA.
RP Wang, SG (reprint author), Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, State Key Lab Magnetism, Beijing 100190, Peoples R China.
EM sgwang@aphy.iphy.ac.cn
RI Wang, Yan/G-8061-2011; Kohn, Amit/F-1559-2012; Wang,
Shouguo/C-3078-2014; Wang, Shouguo/D-5710-2016; wang, chao/E-2983-2016;
Zhang, Jia/A-7494-2016; Ma, Qinli/H-2508-2011
OI Wang, Yan/0000-0002-8648-2172; Wang, Shouguo/0000-0001-6130-7071; Wang,
Shouguo/0000-0002-4488-2645;
FU National Basic Research Program of China [2009CB929203]; State Key
Project of Fundamental Research of Ministry of Science and Technology
[2006CB932200]; National Natural Science Foundation [10874225, 50721001,
60871048]; NSFC-the Royal Society (U.K.); NSFC-Australia DEST; K. C.
Wong Education Foundation, Hong Kong; Engineering and Physical Sciences
Research Council of U. K.
FX The project is supported by the National Basic Research Program of China
(Grant No. 2009CB929203) and the State Key Project of Fundamental
Research of Ministry of Science and Technology (Grant No. 2006CB932200)
and National Natural Science Foundation (Grant Nos. 10874225, 50721001,
and 60871048). Partial support is from the joint projects of NSFC-the
Royal Society (U.K.), NSFC-Australia DEST, and K. C. Wong Education
Foundation, Hong Kong. S. G. W. is grateful to the Engineering and
Physical Sciences Research Council of U. K. for financial support.
NR 31
TC 23
Z9 24
U1 0
U2 17
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0003-6951
EI 1077-3118
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD AUG 3
PY 2009
VL 95
IS 5
AR 052506
DI 10.1063/1.3194150
PG 3
WC Physics, Applied
SC Physics
GA 481KQ
UT WOS:000268809400051
ER
PT J
AU Nie, ZH
Ren, Y
Terai, T
Wang, YD
Brown, DE
Kakeshita, T
AF Nie, Z. H.
Ren, Y.
Terai, T.
Wang, Y. D.
Brown, D. E.
Kakeshita, T.
TI Evidence for preferential rearrangements of martensite variants by
magnetic field in antiferromagnetic CoO crystal
SO APPLIED PHYSICS LETTERS
LA English
DT Article
DE antiferromagnetic materials; cobalt compounds; crystallography; magnetic
moments; magnetisation; martensitic structure; Neel temperature; shape
memory effects; texture; X-ray diffraction
ID INDUCED STRAIN; NICKEL-OXIDE; TOPOGRAPHY; DOMAINS; MOTION; PHASE
AB The synchrotron high-energy x-ray diffraction provides the direct crystallographic evidence for the magnetic-field-driven preferential rearrangements of martensite multivariants in antiferromagnetic CoO crystal. When a magnetic field was incrementally applied up to 6 T on the CoO single crystal cooled below the Neacuteel temperature, the martensite variants with the magnetization easy-axis parallel to the magnetic field direction (H) were consumed, while the variants with magnetic moments perpendicular to H were enhanced. The microscopic origin for the observation is discussed, which provides important information for understanding the magnetic-field-driven strain observed in the antiferromagnetic alloys, with a selection principle on martensite variants different from that found in the ferromagnetic shape memory alloys.
C1 [Nie, Z. H.; Wang, Y. D.] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China.
[Nie, Z. H.] Northeastern Univ, Minist Educ, Key Lab Anisotropy & Texture Mat, Shenyang 110004, Peoples R China.
[Ren, Y.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA.
[Terai, T.; Kakeshita, T.] Osaka Univ, Grad Sch Engn, Dept Mat Sci & Engn, Suita, Osaka 5650871, Japan.
[Brown, D. E.] Univ Illinois, Dept Phys, De Kalb, IL 60115 USA.
RP Wang, YD (reprint author), Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China.
EM ydwang@mail.neu.edu.cn
RI Nie, Zhihua/G-9459-2013; ran, shi/G-9380-2013; wang, yandong/G-9404-2013
OI Nie, Zhihua/0000-0002-2533-933X;
FU National Natural Science Foundation of China [50725102, 50531020];
Ministry of Education, Culture, Sports, Science and Technology, Japan;
U. S. Department of Energy; Office of Science; Office of Basic Energy
Science [DE-AC02-06CH11357]
FX This work is supported by the National Natural Science Foundation of
China (Grant Nos. 50725102 and 50531020) and The Global COE Program from
the Ministry of Education, Culture, Sports, Science and Technology,
Japan. Use of the Advanced Photon Source was supported by the U. S.
Department of Energy, Office of Science, Office of Basic Energy Science,
under Contract No. DE-AC02-06CH11357.
NR 20
TC 5
Z9 5
U1 2
U2 15
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD AUG 3
PY 2009
VL 95
IS 5
AR 051914
DI 10.1063/1.3195730
PG 3
WC Physics, Applied
SC Physics
GA 481KQ
UT WOS:000268809400026
ER
PT J
AU Si, WD
Lin, ZW
Jie, Q
Yin, WG
Zhou, J
Gu, GD
Johnson, PD
Li, Q
AF Si, Weidong
Lin, Zhi-Wei
Jie, Qing
Yin, Wei-Guo
Zhou, Juan
Gu, Genda
Johnson, P. D.
Li, Qiang
TI Enhanced superconducting transition temperature in FeSe0.5Te0.5 thin
films
SO APPLIED PHYSICS LETTERS
LA English
DT Article
DE iron compounds; lattice constants; magnetoresistance; pulsed laser
deposition; superconducting critical field; superconducting thin films;
superconducting transition temperature; transmission electron
microscopy; X-ray diffraction
AB We report magnetoresistive and structural measurements of superconducting FeSe0.5Te0.5 epitaxial thin films grown by pulsed laser deposition. Enhanced onset superconducting transition temperature (similar to 17 K) is observed in some of these films. Structural analysis by x-ray diffraction and high resolution transmission electron microscopy reveal that these films generally have significantly shorter out-of-plane lattice constant c than the bulk value, suggesting that the out-of-plane changes have a dominating impact on the superconducting transition in iron-based superconductors. Our data also indicate that the upper critical field H-c2(0) of those films may reach as high as 50 T.
C1 [Si, Weidong; Lin, Zhi-Wei; Jie, Qing; Yin, Wei-Guo; Zhou, Juan; Gu, Genda; Johnson, P. D.; Li, Qiang] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA.
RP Si, WD (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA.
EM wds@bnl.gov; qiangli@bnl.gov
RI Jie, Qing/H-3780-2011; Jie, Qing/N-8673-2013; Yin, Weiguo/A-9671-2014
OI Yin, Weiguo/0000-0002-4965-5329
FU U.S. Department of Energy [DE-AC02-98CH10886]
FX The authors thank Dr. D. Nykypanchuk, Dr. V. Solovyov, Dr. L. Wu, and
Dr. V. Vokov for their technical assistance. This work was supported by
the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.
NR 23
TC 76
Z9 77
U1 7
U2 42
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD AUG 3
PY 2009
VL 95
IS 5
AR 052504
DI 10.1063/1.3195076
PG 3
WC Physics, Applied
SC Physics
GA 481KQ
UT WOS:000268809400049
ER
PT J
AU Salinero, KK
Keller, K
Feil, WS
Feil, H
Trong, S
Di Bartolo, G
Lapidus, A
AF Salinero, Kennan Kellaris
Keller, Keith
Feil, William S.
Feil, Helene
Trong, Stephan
Di Bartolo, Genevieve
Lapidus, Alla
TI Metabolic analysis of the soil microbe Dechloromonas aromatica str. RCB:
indications of a surprisingly complex life-style and cryptic anaerobic
pathways for aromatic degradation
SO BMC GENOMICS
LA English
DT Article
ID COMAMONAS-TESTOSTERONI TA441; PSEUDOMONAS-AERUGINOSA; DENITRIFYING
BACTERIUM; ESCHERICHIA-COLI; STRAIN EBN1; PROTEIN SECRETION;
NITRIC-OXIDE; RHODOBACTER-CAPSULATUS; GENE-CLUSTER; BENZYLSUCCINATE
SYNTHASE
AB Background: Initial interest in Dechloromonas aromatica strain RCB arose from its ability to anaerobically degrade benzene. It is also able to reduce perchlorate and oxidize chlorobenzoate, toluene, and xylene, creating interest in using this organism for bioremediation. Little physiological data has been published for this microbe. It is considered to be a free-living organism.
Results: The a priori prediction that the D. aromatica genome would contain previously characterized "central" enzymes to support anaerobic aromatic degradation of benzene proved to be false, suggesting the presence of novel anaerobic aromatic degradation pathways in this species. These missing pathways include the benzylsuccinate synthase (bssABC) genes ( responsible for fumarate addition to toluene) and the central benzoyl-CoA pathway for monoaromatics. In depth analyses using existing TIGRfam, COG, and InterPro models, and the creation of de novo HMM models, indicate a highly complex lifestyle with a large number of environmental sensors and signaling pathways, including a relatively large number of GGDEF domain signal receptors and multiple quorum sensors. A number of proteins indicate interactions with an as yet unknown host, as indicated by the presence of predicted cell host remodeling enzymes, effector enzymes, hemolysin-like proteins, adhesins, NO reductase, and both type III and type VI secretory complexes. Evidence of biofilm formation including a proposed exopolysaccharide complex and exosortase (epsH) are also present. Annotation described in this paper also reveals evidence for several metabolic pathways that have yet to be observed experimentally, including a sulphur oxidation (soxFCDYZAXB) gene cluster, Calvin cycle enzymes, and proteins involved in nitrogen fixation in other species ( including RubisCo, ribulose-phosphate 3-epimerase, and nif gene families, respectively).
Conclusion: Analysis of the D. aromatica genome indicates there is much to be learned regarding the metabolic capabilities, and life-style, for this microbial species. Examples of recent gene duplication events in signaling as well as dioxygenase clusters are present, indicating selective gene family expansion as a relatively recent event in D. aromatica's evolutionary history. Gene families that constitute metabolic cycles presumed to create D. aromatica's environmental 'foot-print' indicate a high level of diversification between its predicted capabilities and those of its close relatives, A. aromaticum str EbN1 and Azoarcus BH72.
C1 [Salinero, Kennan Kellaris; Feil, William S.; Feil, Helene] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA.
[Keller, Keith] Lawrence Berkeley Natl Labs, Phys Biosci Div, Albany, CA 94710 USA.
[Trong, Stephan; Di Bartolo, Genevieve; Lapidus, Alla] DOE Joint Genome Inst, Genom Div, Walnut Creek, CA 94598 USA.
[Salinero, Kennan Kellaris] Yamana Sci & Technol, Washington, DC 20009 USA.
[Feil, William S.; Feil, Helene] Land Urban Wildlife, Concord, CA 94527 USA.
[Di Bartolo, Genevieve] Boards N More, Brentwood, CA 94513 USA.
RP Salinero, KK (reprint author), Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA.
EM kellarkv@nature.berkeley.edu; kkeller@lbl.gov;
bhfeil@nature.berkeley.edu; bhfeil@nature.berkeley.edu; trong1@llnl.gov;
gen.dibartolo@gmail.com; ALapidus@lbl.gov
RI Lapidus, Alla/I-4348-2013
OI Lapidus, Alla/0000-0003-0427-8731
FU US Department of Energy's Office of Science; University of California,
Lawrence Liver-more National Laborator [W-7405-Eng-48]; Lawrence
Berkeley National Laboratory [DE-AC02-05CH11231]; Los Alamos National
Laboratory [W-7405-ENG36]
FX KKS sincerely thanks Tanja Woyke for her very helpful suggestions and
direction for creation of the tables and figures, Patrick Chain for
helpful suggestions on the manuscript, Dan Kirshner for technical help
on computational work, Nandini Krishnamurthy for building an internally
clustered data-set of D. aromatica proteins as well as help with
computational tools, Ching Shang for ideas regarding biochemical
pathways, Paul Richardson for general support during the finishing phase
and Frank W. Larimer for a cogent and extremely helpful critique of the
manuscript. The genome finishing portion of this study was performed
under the auspices of the US Department of Energy's Office of Science,
Biological and Environmental Research Program, and by the University of
California, Lawrence Liver-more National Laboratory under Contract No.
W-7405-Eng-48, Lawrence Berkeley National Laboratory under Contract No.
DE-AC02-05CH11231 and Los Alamos National Laboratory under Contract No.
W-7405-ENG36. The majority of the annotation was done as an independent
project by KKS. Considerable intellectual support, computational and
data analysis tools were provided by Adam Arkin, Katherine Huang, Morgan
Price, Eric Alm, Dan Kirshner, and Kimmen Sjlander-sufficient gratitude
cannot be expressed for their generous help.
NR 96
TC 46
Z9 497
U1 10
U2 59
PU BIOMED CENTRAL LTD
PI LONDON
PA CURRENT SCIENCE GROUP, MIDDLESEX HOUSE, 34-42 CLEVELAND ST, LONDON W1T
4LB, ENGLAND
SN 1471-2164
J9 BMC GENOMICS
JI BMC Genomics
PD AUG 3
PY 2009
VL 10
AR 351
DI 10.1186/1471-2164-10-351
PG 23
WC Biotechnology & Applied Microbiology; Genetics & Heredity
SC Biotechnology & Applied Microbiology; Genetics & Heredity
GA 490OJ
UT WOS:000269510100001
PM 19650930
ER
PT J
AU Milsmann, C
Patra, GK
Bill, E
Weyhermuller, T
George, SD
Wieghardt, K
AF Milsmann, Carsten
Patra, Goutam Kumar
Bill, Eckhard
Weyhermueller, Thomas
George, Serena DeBeer
Wieghardt, Karl
TI Octahedral Monodithiolene Complexes of Iron: Characterization of S,S
'-Coordinated Dithiolate(1-) pi Radical Monoanions: A Spectroscopic and
Density Functional Theoretical Investigation
SO INORGANIC CHEMISTRY
LA English
DT Article
ID RAY-ABSORPTION SPECTROSCOPY; APPROXIMATE COULOMB POTENTIALS;
TRANSITION-METAL-COMPLEXES; PLANAR NICKEL-COMPLEXES; CORRELATED
AB-INITIO; AUXILIARY BASIS-SETS; GAUSSIAN-BASIS SETS;
ELECTRONIC-STRUCTURE; K-EDGE; SQUARE-PLANAR
AB The reaction of cis-[Fe-III(cyclam)Cl-2]Cl with 1 equiv of sodium N-diethyldithiocarbamate, toluene-3,4-dithiolate, and maleonitriledithiolate in methanol in the presence of triethylamine afforded the cations [Fe-III(cyclam)(Et(2)dtc)](2+) (1), [Fe-III(cyclam)(tdt)](+) (2), and [Fe-III(cyclam)(mnt)](+) (3), which were isolated as triflate, hexafluorophosphate, and tetrafluoroborate salt, respectively, using sodium triflate, potassium hexafluorophosphate, or sodium tetrafluoroborate as the source for the counteranion. Complexes 1, 2, and 3 possess an S = 1/2 ground state (low-spin ferric d(5)). These salts were characterized by X-ray crystallography, UV-vis, Mossbauer, and electron paramagnetic resonance spectroscopies. Cyclic voltammetry revealed that 2 and 3 are reversibly one-electron-reduced, generating neutral 2(red) and 3(red) respectively, and one-electron-oxidized, generating dicationic 2(ox) and 3(ox), respectively. Fe and S K-edge X-ray absorption spectroscopy (XAS) revealed that 2 (S = 1/2) and 2(ox) (S = 0) possess a low-spin ferric ion. Complexes 2 and 3 are S,S'-coordinated to a closed-shell dithiolate(2-) ligand, whereas 2(ox) and 3(ox) consist of a low-spin ferric ion antiferromagnetically coupled to a dithiolate(1-) pi radical ligand. They are singlet diradicals [Fe-III(cyclam)(dithiolate(center dot))](2+). The analysis of the sulfur K pre-edge transitions reveals significant multiplet effects in the spectra of 2 and 2(ox), which provide rare experimental evidence for a singlet diradical description for 2(ox). Mossbauer spectroscopy on frozen solutions of 2(red) clearly show the presence of a high-spin ferrous ion (S = 2). The experimentally established electronic structures of the three members of the electron transfer series [Fe(cyclam) (dithiolate)](2+,+,0) have been verified by broken symmetry density functional theoretical calculations, which have been calibrated against the experiment by calculating XAS and Mossbauer spectra.
C1 [Milsmann, Carsten; Bill, Eckhard; Weyhermueller, Thomas; Wieghardt, Karl] Max Planck Inst Bioanorgan Chem, D-45470 Mulheim, Germany.
[Patra, Goutam Kumar] Jadavpur Univ, Dept Chem, Vijoygarh Jyotish Ray Coll, Kolkata 700032, India.
[George, Serena DeBeer] Stanford Univ, Stanford Synchrotron Radiat Lightsource, SLAC, Stanford, CA 94309 USA.
RP Wieghardt, K (reprint author), Max Planck Inst Bioanorgan Chem, Stiftstr 34-36, D-45470 Mulheim, Germany.
EM wieghardt@mpi-muelheim.mpg.de
RI DeBeer, Serena/G-6718-2012; Weyhermuller, Thomas/G-6730-2012; Wieghardt,
Karl/B-4179-2014
OI Weyhermuller, Thomas/0000-0002-0399-7999;
FU Department of Science and Technology, Government of India
[SR/BY/C-1G/05]; National Institutes of Health [5 P41 RR001209];
National Center for Research Resources, Biomedical Technology Program;
Department of Energy, Office of Biological and Environmental Research
FX We thank Prof. Frank Neese for helpful discussions about the DFT
calculations and Dr. Stephen Sproules for assistance with XAS data
collection. C.M. gratefully acknowledges the Max-Planck Society for a
stipend. G.K.P. gratefully acknowledges the Department of Science and
Technology, Government of India, for giving him a BOYSCAST fellowship
(SR/BY/C-1G/05). The Structural Molecular Biology program is supported
by the National Institutes of Health (grant 5 P41 RR001209), National
Center for Research Resources, Biomedical Technology Program, and by the
Department of Energy, Office of Biological and Environmental Research.
NR 75
TC 15
Z9 15
U1 1
U2 11
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0020-1669
EI 1520-510X
J9 INORG CHEM
JI Inorg. Chem.
PD AUG 3
PY 2009
VL 48
IS 15
BP 7430
EP 7445
DI 10.1021/ic900936p
PG 16
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA 473AG
UT WOS:000268174800053
PM 19572498
ER
PT J
AU Juzeniene, A
Setlow, R
Porojnicu, A
Steindal, AH
Moan, J
AF Juzeniene, Asta
Setlow, Richard
Porojnicu, Alina
Steindal, Arnfinn Hykkerud
Moan, Johan
TI Development of different human skin colors: A review highlighting
photobiological and photobiophysical aspects
SO JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY
LA English
DT Review
DE Skin color; Solar radiation; Vitamin D; Skin cancer; Folates degradation
ID SEXUAL SELECTION HYPOTHESIS; GENE-CULTURE COEVOLUTION; VITAMIN-D
INSUFFICIENCY; HUMAN-EVOLUTION; POSITIVE SELECTION; HUMAN PIGMENTATION;
BREAST-CANCER; FOLIC-ACID; CARDIOVASCULAR-DISEASE; CUTANEOUS MELANOMA
AB Skin color has changed during human evolution. These changes may result from adaptations to solar ultraviolet radiation (protection of sweat glands, sunburn, skin cancer, vitamin D deficiency, defence against microorganisms, etc.), and/or sexual selection. Migration to areas with high levels of UV is associated with skin darkening, while migration to areas with low levels has led to skin lightening. However, other factors may have played roles. Temperature and food have probably been secondary determinants: heat exchange with the environment is dependent on ambient temperature, and a high intake of food rich in vitamin D allows a dark skin color to persist even at latitudes of low UV levels, as exemplified by Inuit's living at high latitudes. Future studies of human migration will show if skin lightening is a faster process and has a higher evolutionary impact than skin darkening. Maybe due to that some American Indians have kept a relatively light skin although they live under the equator.
The following hypotheses for skin darkening are reviewed: shielding of sweat glands and blood vessels in the skin, protection against skin cancer and overproduction of vitamin D, camouflage, adaptation to different ambient temperatures, defense against microorganisms, protection against folate photodestruction. Hypotheses for skin lightening are: sexual selection, adaptation to cold climates, enhancement of vitamin D photoproduction, and changing food habits leading to lower intake of vitamin D. The genetical processes behind some of the changes of skin color will be also briefly reviewed. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Juzeniene, Asta; Steindal, Arnfinn Hykkerud; Moan, Johan] Norwegian Radium Hosp, Oslo Univ Hosp, Inst Canc Res, Dept Radiat Biol, N-0310 Oslo, Norway.
[Setlow, Richard] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA.
[Porojnicu, Alina; Steindal, Arnfinn Hykkerud] Univ Tromso, Dept Chem, Ctr Theoret & Computat Chem, N-9037 Tromso, Norway.
[Moan, Johan] Univ Oslo, Inst Phys, N-0316 Oslo, Norway.
RP Juzeniene, A (reprint author), Norwegian Radium Hosp, Oslo Univ Hosp, Inst Canc Res, Dept Radiat Biol, N-0310 Oslo, Norway.
EM astajuzeniene@rr-research.no
RI Steindal, Arnfinn/A-7603-2008;
OI , Asta/0000-0001-9426-0062
FU Norwegian Cancer Society (Kreftforeningen)
FX We appreciate financial support of the Norwegian Cancer Society
(Kreftforeningen).
NR 146
TC 17
Z9 18
U1 4
U2 67
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 1011-1344
J9 J PHOTOCH PHOTOBIO B
JI J. Photochem. Photobiol. B-Biol.
PD AUG 3
PY 2009
VL 96
IS 2
BP 93
EP 100
DI 10.1016/j.jphotobiol.2009.04.009
PG 8
WC Biochemistry & Molecular Biology; Biophysics
SC Biochemistry & Molecular Biology; Biophysics
GA 475ZO
UT WOS:000268406700002
PM 19481954
ER
PT J
AU Huang, XJ
Miao, HJ
Steinbrener, J
Nelson, J
Shapiro, D
Stewart, A
Turner, J
Jacobsen, C
AF Huang, Xiaojing
Miao, Huijie
Steinbrener, Jan
Nelson, Johanna
Shapiro, David
Stewart, Andrew
Turner, Joshua
Jacobsen, Chris
TI Signal-to-noise and radiation exposure considerations in conventional
and diffraction x-ray microscopy
SO OPTICS EXPRESS
LA English
DT Article
ID COMPUTED-TOMOGRAPHY; BIOLOGICAL-MATERIALS; PHASE-CONTRAST; RESOLUTION;
TRANSMISSION; RECONSTRUCTION; SPECIMENS; IMAGES; YEAST; RATIO
AB Using a signal-to-noise ratio estimation based on correlations between multiple simulated images, we compare the dose efficiency of two soft x-ray imaging systems: incoherent brightfield imaging using zone plate optics in a transmission x-ray microscope (TXM), and x-ray diffraction microscopy (XDM) where an image is reconstructed from the far-field coherent diffraction pattern. In XDM one must computationally phase weak diffraction signals; in TXM one suffers signal losses due to the finite numerical aperture and efficiency of the optics. In simulations with objects representing isolated cells such as yeast, we find that XDM has the potential for delivering equivalent resolution images using fewer photons. This can be an important advantage for studying radiation-sensitive biological and soft matter specimens. (C) 2009 Optical Society of America
C1 [Huang, Xiaojing; Miao, Huijie; Steinbrener, Jan; Nelson, Johanna; Stewart, Andrew; Turner, Joshua; Jacobsen, Chris] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
[Shapiro, David] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA.
RP Huang, XJ (reprint author), SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
EM Chris.Jacobsen@stonybrook.edu
RI Huang, Xiaojing/K-3075-2012; Jacobsen, Chris/E-2827-2015; Nelson Weker,
Johanna/J-4159-2015
OI Huang, Xiaojing/0000-0001-6034-5893; Jacobsen,
Chris/0000-0001-8562-0353; Nelson Weker, Johanna/0000-0001-6856-3203
FU Division of Materials Sciences and Engineering, Office of Basic Energy
Sciences; Department of Energ [DE-FG02-07ER46128]; National Institute
for General Medical Services at the National Institutes for Health
[5R21EB6134]
FX We wish to thank the Division of Materials Sciences and Engineering,
Office of Basic Energy Sciences, at the Department of Energy for support
of x-ray diffraction microscopy methods and instrumentation development
under contract DE-FG02-07ER46128. We also wish to thank the National
Institute for General Medical Services at the National Institutes for
Health for support of the application of this method to biological
imaging under contract 5R21EB6134. Finally, we thank Janos Kirz, Stefano
Marchesini, and David Sayre for many helpful discussions in connection
with this paper.
NR 37
TC 25
Z9 26
U1 0
U2 13
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 1094-4087
J9 OPT EXPRESS
JI Opt. Express
PD AUG 3
PY 2009
VL 17
IS 16
BP 13541
EP 13553
DI 10.1364/OE.17.013541
PG 13
WC Optics
SC Optics
GA 481WQ
UT WOS:000268843700031
PM 19654762
ER
PT J
AU Evans, JW
Zawadzki, RJ
Jones, SM
Olivier, SS
Werner, JS
AF Evans, Julia W.
Zawadzki, Robert J.
Jones, Steven M.
Olivier, Scot S.
Werner, John S.
TI Error Budget Analysis for an Adaptive Optics Optical Coherence
Tomography System
SO OPTICS EXPRESS
LA English
DT Article
ID WAVE-FRONT CONTROL; HUMAN EYE; DEFORMABLE MIRRORS; HIGH-RESOLUTION;
FOURIER-TRANSFORM; SENSOR; PERFORMANCE; POPULATION; ABERRATION; ACCURATE
AB The combination of adaptive optics (AO) technology with optical coherence tomography (OCT) instrumentation for imaging the retina has proven to be a valuable tool for clinicians and researchers in understanding the healthy and diseased eye. The micrometer-isotropic resolution achieved by such a system allows imaging of the retina at a cellular level, however imaging of some cell types remains elusive. Improvement in contrast rather than resolution is needed and can be achieved through better AO correction of wavefront aberration. A common tool for assessing and ultimately improving AO system performance is the development of an error budget. Specifically, this is a list of the magnitude of the constituent residual errors of an optical system so that resources can be directed towards efficient performance improvement. Here we present an error budget developed for the UC Davis AO-OCT instrument indicating that bandwidth and controller errors are the limiting errors of our AO system, which should be corrected first to improve performance. We also discuss the scaling of error sources for different subjects and the need to improve the robustness of the system by addressing subject variability. (C) 2009 Optical Society of America
C1 [Evans, Julia W.; Zawadzki, Robert J.; Werner, John S.] Univ Calif Davis, Dept Ophthalmol & Visual Sci, Vis Sci & Adv Retinal Imaging Lab, Sacramento, CA 95817 USA.
[Evans, Julia W.; Jones, Steven M.; Olivier, Scot S.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Evans, JW (reprint author), Univ Calif Davis, Dept Ophthalmol & Visual Sci, Vis Sci & Adv Retinal Imaging Lab, Sacramento, CA 95817 USA.
EM evans74@llnl.gov
RI Zawadzki, Robert/E-7534-2011
OI Zawadzki, Robert/0000-0002-9574-156X
FU U. S. Department of Energy by Lawrence Livermore National Laboratory
[DE-AC5207NA27344]; National Eye Institute [EY 014743]; National Science
Foundation; Center for Biophotonics; NSF Science and Technology Center;
University of California,
FX The authors thank Lisa Poyneer for her helpful advice regarding errors
in reconstruction and the Fourier Transform Reconstructor. This work
performed under the auspices of the U. S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC5207NA27344.
This research was supported by the National Eye Institute (grant EY
014743). This work was supported by funding from the National Science
Foundation. The Center for Biophotonics, an NSF Science and Technology
Center, is managed by the University of California, Davis, under
Cooperative Agreement No. PHY 0120999. LLNL-JRNL-411655.
NR 30
TC 12
Z9 12
U1 1
U2 1
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 1094-4087
J9 OPT EXPRESS
JI Opt. Express
PD AUG 3
PY 2009
VL 17
IS 16
BP 13768
EP 13784
DI 10.1364/OE.17.013768
PG 17
WC Optics
SC Optics
GA 481WQ
UT WOS:000268843700053
PM 19654784
ER
PT J
AU Dong, JF
Zhou, JF
Koschny, T
Soukoulis, C
AF Dong, Jianfeng
Zhou, Jiangfeng
Koschny, Thomas
Soukoulis, Costas
TI Bi-layer cross chiral structure with strong optical activity and
negative refractive index
SO OPTICS EXPRESS
LA English
DT Article
ID CIRCULAR-DICHROISM; WIRE PAIRS; METAMATERIAL; FREQUENCIES; DEPENDENCE
AB The properties of periodic pairs of mutually twisted metallic (silver) crosses separated by dielectric layer have been investigated by numerical simulation. The results show that the exceptionally strong polarization rotation and circular dichroism, negative permeability and negative refractive index are found at the infrared communication wavelength (1.55 mu m). (C) 2009 Optical Society of America
C1 [Dong, Jianfeng] Ningbo Univ, Inst Opt Fiber Commun & Network Technol, Ningbo 315211, Zhejiang, Peoples R China.
[Dong, Jianfeng; Zhou, Jiangfeng; Koschny, Thomas; Soukoulis, Costas] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
[Dong, Jianfeng; Zhou, Jiangfeng; Koschny, Thomas; Soukoulis, Costas] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Zhou, Jiangfeng] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA.
[Zhou, Jiangfeng] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA.
[Koschny, Thomas; Soukoulis, Costas] Univ Crete, Inst Elect Struct & Laser, FORTH, Khania, Greece.
[Koschny, Thomas; Soukoulis, Costas] Univ Crete, Dept Mat Sci & Technol, Khania, Greece.
RP Dong, JF (reprint author), Ningbo Univ, Inst Opt Fiber Commun & Network Technol, Ningbo 315211, Zhejiang, Peoples R China.
EM dongjianfeng@nbu.edu.cn
RI Soukoulis, Costas/A-5295-2008; Zhou, Jiangfeng/D-4292-2009
OI Zhou, Jiangfeng/0000-0002-6958-3342
FU Wong Education Foundation, Hong Kong; National Basic Research Program
(973) of China [2004CB719805]; National Natural Science Foundation of
China [60777037]; K. C. Wong Magna Fund in Ningbo University; Department
of Energy (Basic Energy Sciences) [DE-AC02-07CH11358]; Department of
Navy; Office of the Naval Research [N00014-07-1-0359]; European
Community FET project PHOME [213390]; AFOSR under MURI [FA
9550-06-1-0337]
FX The author Jianfeng Dong gratefully acknowledges support of the W. C.
Wong Education Foundation, Hong Kong, the National Basic Research
Program (973) of China (Grant No. 2004CB719805) and the National Natural
Science Foundation of China (Grant No. 60777037). Work was partially
sponsored by K. C. Wong Magna Fund in Ningbo University. Work at Ames
Laboratory was supported by the Department of Energy (Basic Energy
Sciences) under Contract No. DE-AC02-07CH11358. This work was partially
supported by the Department of Navy, Office of the Naval Research (Grant
No. N00014-07-1-0359), European Community FET project PHOME (Contract
No. 213390) and AFOSR under MURI Grant No. FA 9550-06-1-0337.
NR 30
TC 55
Z9 63
U1 4
U2 21
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 1094-4087
J9 OPT EXPRESS
JI Opt. Express
PD AUG 3
PY 2009
VL 17
IS 16
BP 14172
EP 14179
DI 10.1364/OE.17.014172
PG 8
WC Optics
SC Optics
GA 481WQ
UT WOS:000268843700097
PM 19654828
ER
PT J
AU Huang, Z
French, D
Pao, HY
Jovanovic, I
AF Huang, Zun
French, Doug
Pao, Hsueh-Yuan
Jovanovic, Igor
TI Phase-sensitive multimodal optical parametric amplifier for beam angle
amplification
SO PHYSICS LETTERS A
LA English
DT Article
DE Three-wave mixing; Quantum phase amplifier
ID NOISE
AB The single-mode phase-sensitive parametric amplifier has been proposed as an approximation to an ideal quantum phase amplifier. We demonstrate numerically that a real, multimode parametric amplifier operated in the spatial domain, and realized by the use of three-wave mixing in nonlinear media, behaves similar to a single-mode quantum phase amplifier, but exhibits smaller phase gain. Constraints for operation in this regime are found to be consistent with small departures of phase from the ideal deamplification condition. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Huang, Zun; French, Doug; Jovanovic, Igor] Purdue Univ, Sch Nucl Engn, W Lafayette, IN 47907 USA.
[Pao, Hsueh-Yuan] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
RP Huang, Z (reprint author), 400 Cent Dr, W Lafayette, IN 47907 USA.
EM huang105@purdue.edu
NR 7
TC 3
Z9 3
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9601
J9 PHYS LETT A
JI Phys. Lett. A
PD AUG 3
PY 2009
VL 373
IS 32
BP 2894
EP 2896
DI 10.1016/j.physleta.2009.06.011
PG 3
WC Physics, Multidisciplinary
SC Physics
GA 478YN
UT WOS:000268624800017
ER
PT J
AU Hyldegaard, S
Forssen, C
Diget, CA
Alcorta, M
Barker, FC
Bastin, B
Borge, MJG
Boutami, R
Brandenburg, S
Buscher, J
Dendooven, P
Van Duppen, P
Eronen, T
Fox, S
Fulton, BR
Fynbo, HOU
Huikari, J
Huyse, M
Jeppesen, HB
Jokinen, A
Jonson, B
Jungmann, K
Kankainen, A
Kirsebom, O
Madurga, M
Moore, I
Navratil, P
Nilsson, T
Nyman, G
Onderwater, GJG
Penttila, H
Perajarvi, K
Raabe, R
Riisager, K
Rinta-Antila, S
Rogachevskiy, A
Saastamoinen, A
Sohani, M
Tengblad, O
Traykov, E
Vary, JP
Wang, Y
Wilhelmsen, K
Wilschut, HW
Aysto, J
AF Hyldegaard, S.
Forssen, C.
Diget, C. Aa.
Alcorta, M.
Barker, F. C.
Bastin, B.
Borge, M. J. G.
Boutami, R.
Brandenburg, S.
Buescher, J.
Dendooven, P.
Van Duppen, P.
Eronen, T.
Fox, S.
Fulton, B. R.
Fynbo, H. O. U.
Huikari, J.
Huyse, M.
Jeppesen, H. B.
Jokinen, A.
Jonson, B.
Jungmann, K.
Kankainen, A.
Kirsebom, O.
Madurga, M.
Moore, I.
Navratil, P.
Nilsson, T.
Nyman, G.
Onderwater, G. J. G.
Penttila, H.
Perajarvi, K.
Raabe, R.
Riisager, K.
Rinta-Antila, S.
Rogachevskiy, A.
Saastamoinen, A.
Sohani, M.
Tengblad, O.
Traykov, E.
Vary, J. P.
Wang, Y.
Wilhelmsen, K.
Wilschut, H. W.
Aysto, J.
TI Precise branching ratios to unbound C-12 states from N-12 and B-12
beta-decays
SO PHYSICS LETTERS B
LA English
DT Article
ID NUCLEAR SHELL-MODEL; EXCITED-STATES; RATES; PARTICLES; DETECTOR;
CURRENTS
AB Two complementary experimental techniques have been used to extract precise branching ratios to unbound states in C-12 from N-12 and B-12 beta-decays. In the first the three alpha-particles emitted after decay are measured in coincidence in separate detectors, while in the second method N-12 and B-12 are implanted in a detector and the summed energy of the three a-particles is measured directly. For the narrow states at 7.654 MeV (0(+)) and 12.71 MeV (1(+)) the resulting branching ratios are both smaller than previous measurements by a factor of similar or equal to 2. The experimental results are compared to no-core shell model calculations with realistic interactions from chiral perturbation theory, and inclusion of three-nucleon forces is found to give improved agreement. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Hyldegaard, S.; Fynbo, H. O. U.; Kirsebom, O.; Riisager, K.] Univ Aarhus, Dept Phys & Astron, DK-8000 Aarhus, Denmark.
[Forssen, C.; Jonson, B.; Nilsson, T.; Nyman, G.; Wilhelmsen, K.] Chalmers, S-41296 Gothenburg, Sweden.
[Alcorta, M.; Borge, M. J. G.; Boutami, R.; Madurga, M.; Tengblad, O.] CSIC, Inst Estructura Mat, E-28006 Madrid, Spain.
[Barker, F. C.] Australian Natl Univ, Dept Theoret Phys, Res Sch Phys Sci & Engn, Canberra, ACT 0200, Australia.
[Bastin, B.; Buescher, J.; Van Duppen, P.; Huyse, M.; Raabe, R.] Katholieke Univ Leuven, Inst Kern Stralingsfys, B-3001 Louvain, Belgium.
[Brandenburg, S.; Dendooven, P.; Onderwater, G. J. G.; Rogachevskiy, A.; Sohani, M.; Traykov, E.; Wilschut, H. W.] Univ Groningen, Kernfys Versneller Inst, NL-9747 AA Groningen, Netherlands.
[Diget, C. Aa.; Fox, S.; Fulton, B. R.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England.
[Eronen, T.; Huikari, J.; Jokinen, A.; Kankainen, A.; Moore, I.; Penttila, H.; Perajarvi, K.; Rinta-Antila, S.; Saastamoinen, A.; Wang, Y.; Aysto, J.] Univ Jyvaskyla, Dept Phys, FIN-40014 Jyvaskyla, Finland.
[Jeppesen, H. B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA.
[Navratil, P.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
[Vary, J. P.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
RP Fynbo, HOU (reprint author), Univ Aarhus, Dept Phys & Astron, DK-8000 Aarhus, Denmark.
EM fynbo@phys.au.dk
RI Jokinen, Ari/C-2477-2017; Forssen, Christian/C-6093-2008; Alcorta,
Martin/G-7107-2011; Jungmann, Klaus/A-7142-2010; Penttila,
Heikki/A-4420-2013; Nilsson, Thomas/B-7705-2009; jungmann,
klaus/H-1581-2013; Jonson, Bjorn/B-2816-2014; Kankainen,
Anu/K-3448-2014; Moore, Iain/D-7255-2014; Brandenburg,
Sytze/J-6282-2012; Tengblad, Olof/O-5852-2015; Diget, Christian
Aaen/D-8063-2016
OI Jokinen, Ari/0000-0002-0451-125X; Forssen,
Christian/0000-0003-3458-0480; Alcorta, Martin/0000-0002-6217-5004;
Nilsson, Thomas/0000-0002-6990-947X; jungmann,
klaus/0000-0003-0571-4072; Kankainen, Anu/0000-0003-1082-7602; Moore,
Iain/0000-0003-0934-8727; Brandenburg, Sytze/0000-0002-9887-1642; Diget,
Christian Aaen/0000-0002-9778-8759
FU Academy of Finland [44875]; Spanish Agency CICYT [FPA2005-02379]; MEC
Consolider project [CSD2007-00042]; Belgian IAP [P6/23]; FWO-Vlaanderen;
European Union sixth Framework Programme "EURONS" [506065]; Swedish
Research Council; Knut and Alice Wallenberg foundation; LLNL;
[DE-AC52-07NA27344]; [DE-FC-0207ER41457]; [DE-FG02-87ER40371]
FX This research was supported by the Academy of Finland (No. project
44875), by the Spanish Agency CICYT (No. FPA2005-02379) and the MEC
Consolider project CSD2007-00042, by the Belgian IAP P6/23 project and
FWO-Vlaanderen, by the European Union sixth Framework Programme "EURONS"
(No. 506065), by the Swedish Research Council and the Knut and Alice
Wallenberg foundation, by LLNL (Contract DE-AC52-07NA27344 and
DE-FC-0207ER41457) and by DE-FG02-87ER40371. The work at KVI was
performed as part of program 48 (TRI mu P) of the 'Stichting voor
Fundamenteel Onderzoek der Materie' (FOM). The calculations reported
here were performed at the LLNL LC facilities and as part of the Swedish
National Infrastructure for Computing (SNIC007-07-56) and at the Oak
Ridge Natinal Laboratory Jaguar facility under the auspices of a
DOE-INCITE award (David Dean, PI).
NR 33
TC 28
Z9 28
U1 0
U2 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0370-2693
EI 1873-2445
J9 PHYS LETT B
JI Phys. Lett. B
PD AUG 3
PY 2009
VL 678
IS 5
BP 459
EP 464
DI 10.1016/j.physletb.2009.06.064
PG 6
WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 480CE
UT WOS:000268708700007
ER
PT J
AU MaHam, A
Tang, ZW
Wu, H
Wang, J
Lin, YH
AF MaHam, Aihui
Tang, Zhiwen
Wu, Hong
Wang, Jun
Lin, Yuehe
TI Protein-Based Nanomedicine Platforms for Drug Delivery
SO SMALL
LA English
DT Review
DE drug-delivery systems; nanomedicine; protein cages; tumors
ID HEAT-SHOCK-PROTEIN; COWPEA MOSAIC-VIRUS; METASTATIC BREAST-CANCER;
ALBUMIN-BOUND PACLITAXEL; IN-VIVO EVALUATION; METHANOCOCCUS-JANNASCHII;
TUMOR VASCULATURE; CONTRAST AGENTS; BUILDING-BLOCKS; PHAGE DISPLAY
AB Protein-based nanomedicine platforms for drug delivery comprise naturally self-assembled protein subunits of the same protein or a combination of proteins making up a complete system. They are ideal for drug-delivery platforms due to their biocompatibility and biodegradability coupled with low toxicity. A variety of proteins have been used and characterized for drug-delivery systems, including the ferritin/apoferritin protein cage, plant-derived viral capsids, the small Heat shock protein (sHsp) cage, albumin, soy and whey protein, collagen, and gelatin. There are many different types and shapes that have been prepared to deliver drug molecules using protein-based platforms, including various protein cages, microspheres, nanoparticles, hydrogels, films, minirods, and minipellets. The protein cage is the most newly developed biomaterial for drug delivery and therapeutic applications. The uniform size, multifunctionality, and biodegradability push it to the frontier of drug delivery. In. this Review, the recent strategic development of drug delivery is discussed with emphasis on polymer-based, especially protein-based, nanomedicine platforms for drug delivery. The advantages and disadvantages are also discussed for each type of protein-based drug-delivery system.
C1 [MaHam, Aihui; Tang, Zhiwen; Wu, Hong; Wang, Jun; Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Lin, YH (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA.
EM Yuehe.Lin@pnl.gov
RI Tang, Xiaolei/B-8585-2011; Lin, Yuehe/D-9762-2011
OI Lin, Yuehe/0000-0003-3791-7587
FU Pacific Northwest National Laboratory (PNNL); U.S. Department of Energy
(DOE)'s Office of Biological and Environmental Research
[DE-AC05-76RL01830]
FX This work is supported by a laboratory-directed research and development
program at Pacific Northwest National Laboratory (PNNL). Part of the
research described in this paper was performed at the Environmental
Molecular Sciences Laboratory, a national scientific user facility
sponsored by the U.S. Department of Energy (DOE)'s Office of Biological
and Environmental Research and located at PNNL. PNNL is operated by
Battelle for DOE under Contract DE-AC05-76RL01830.
NR 137
TC 206
Z9 209
U1 18
U2 222
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY
SN 1613-6810
J9 SMALL
JI Small
PD AUG 3
PY 2009
VL 5
IS 15
BP 1706
EP 1721
DI 10.1002/smll.200801602
PG 16
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 482TP
UT WOS:000268911900001
PM 19572330
ER
PT J
AU Tepavcevic, S
Darling, SB
Dimitrijevic, NM
Rajh, T
Sibener, SJ
AF Tepavcevic, Sanja
Darling, Seth B.
Dimitrijevic, Nada M.
Rajh, Tijana
Sibener, Steven J.
TI Improved Hybrid Solar Cells via in situ UV Polymerization
SO SMALL
LA English
DT Article
DE conducting polymers; nanotubes; photoconductivity; self-assembly; solar
cells
ID TIO2 NANOTUBE-ARRAYS; CONJUGATED POLYMERS; THIN-FILMS; PHOTOVOLTAIC
DEVICES; MESOPOROUS TITANIA; ENERGY CONVERSION; MULTILAYER FILMS;
2,5-DIIODOTHIOPHENE; OLIGOTHIOPHENE; PERFORMANCE
AB One approach for making inexpensive inorganic-organic hybrid photovoltaic (PV) cells is to fill highly ordered TiO(2) nanotube (NT) arrays with solid organic hole conductors such as conjugated polymers. Here, a new in situ UV polymerization method for growing polythiophene (UV-PT) inside TiO(2) NTs is presented and compared to the conventional approach of infiltrating NTs with pre-synthesized polymer. A nanotubular TiO(2) substrate is immersed in a 2,5-diiodothiophene (DT) monomer precursor solution and then irradiated with UV light. The selective UV photodissociation of the C-I bond produces monomer radicals with intact pi-ring structure that further produce longer oligothiophene/PT molecules. Complete photoluminescence quenching upon UV irradiation suggests coupling between radicals created from DIT and at the TiO(2) surface via a charge transfer complex. Coupling with the TiO(2) surface improves UV-PT crystallinity and pi-pi stacking; flat photocurrent values show that charge recombination during hole transport through the polymer is negligible. A non-ideal, backside-illuminated setup under illumination of 620-nm light yields a photocurrent density of approximate to 5 mu A cm(2) - surprisingly much stronger than with comparable devices fabricated with polymer synthesized ex situ. Since in this backside architecture setup we illuminate the cell through the Ag top electrode, there is a possibility for Ag plasmon-enhanced solar energy conversion. By using this simple in situ UV polymerization method that couples the conjugated polymer to the TiO(2) surface, the absorption of sunlight can be improved and the charge carrier mobility of the photoactive layer can be enhanced.
C1 [Darling, Seth B.; Dimitrijevic, Nada M.; Rajh, Tijana] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
[Tepavcevic, Sanja; Sibener, Steven J.] Univ Chicago, Dept Chem, James Franck Inst, Chicago, IL 60637 USA.
[Dimitrijevic, Nada M.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
RP Darling, SB (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM darling@anl.gov
FU U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-AC02-06CH11357]; NSF-Materials Research Science and
Engineering Center at the University of Chicago
FX The authors thank D. Rosenmann for help with sputter deposition of Ti
and Ag layers and L. Richter for insightful discussions regarding the
spectroscopy of conjugated polymers. Use of the Center for Nanoscale
Materials was supported by the U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences, under contract no.
DE-AC02-06CH11357. This work was also partially funded by the
NSF-Materials Research Science and Engineering Center at the University
of Chicago.
NR 35
TC 49
Z9 49
U1 3
U2 33
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY
SN 1613-6810
J9 SMALL
JI Small
PD AUG 3
PY 2009
VL 5
IS 15
BP 1776
EP 1783
DI 10.1002/smll.200900093
PG 8
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 482TP
UT WOS:000268911900011
PM 19367599
ER
PT J
AU Chen, L
Graham, ME
Li, GH
Gentner, DR
Dimitrijevic, NM
Gray, KA
AF Chen, Le
Graham, Michael E.
Li, Gonghu
Gentner, Drew R.
Dimitrijevic, Nada M.
Gray, Kimberly A.
TI Photoreduction of CO2 by TiO2 nanocomposites synthesized through
reactive direct current magnetron sputter deposition
SO THIN SOLID FILMS
LA English
DT Article
DE Titanium dioxide; Carbon dioxide reduction; Sputtering; Transmission
electron microscopy
ID MIXED-PHASE TIO2; VISIBLE-LIGHT PHOTOCATALYSIS; CARBON-DIOXIDE;
THIN-FILMS; REDUCTION; TITANIA; ANATASE; SURFACE; DEGRADATION;
TEMPERATURE
AB The photoreduction Of CO2 into methane provides a carbon-neutral energy alternative to fossil fuels, but its feasibility requires improvements in the photo-efficiency of materials tailored to this reaction. We hypothesize that mixed phase TiO2 nano-materials with high interfacial densities are extremely active photocatalysts well suited to solar fuel production by reducing CO2 to methane and shifting to visible light response. Mixed phase TiO2 films were synthesized by direct current (DC) magnetron sputtering and characterized by X-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscope (SEM) and transmission electron microscope (TEM). Bundles of anatase-rutile nano-columns having high densities of two kinds of interfaces (those among the bundles and those between the columns) are fabricated. Films sputtered at a low deposition angle showed the highest methane yield, compared to TiO2 fabricated under other sputtering conditions and commercial standard Degussa P25 under UV irradiation. The yield of methane could be significantly increased (similar to 12% CO2 conversion) by increasing the CO2 to water ratio and temperature (<100 degrees C) as a combined effect. These films also displayed a light response strongly shifted into the visible range. This is explained by the creation of non-stoichiometric titania films having unique features that we can potentially tailor to the solar energy applications. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Chen, Le; Li, Gonghu; Gray, Kimberly A.] Northwestern Univ, Dept Civil & Environm Engn, Evanston, IL 60208 USA.
[Graham, Michael E.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA.
[Gentner, Drew R.] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA.
[Dimitrijevic, Nada M.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
[Dimitrijevic, Nada M.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
RP Gray, KA (reprint author), Northwestern Univ, Dept Civil & Environm Engn, Evanston, IL 60208 USA.
EM k-gray@northwestern.edu
RI Gray, Kimberly/B-6989-2009; Graham, Michael/B-7518-2009
FU US Department of Energy [DE-FG02-03ER15457/A003, DE-AC0206CH11358]
FX The financial support provided for this study from the US Department of
Energy (DE-FG02-03ER15457/A003 and DE-AC0206CH11358) is gratefully
acknowledged. We also thank researchers Dr. Zoran Saponjic and Dr.
Tijana Rajh of Argonne National Laboratory for their kind assistance on
EPR spectroscopy. The characterization (XRD, AFM, TEM and SEM) was
performed in the MRSEC and NUANCE center at Northwestern University.
NR 35
TC 47
Z9 49
U1 7
U2 38
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0040-6090
J9 THIN SOLID FILMS
JI Thin Solid Films
PD AUG 3
PY 2009
VL 517
IS 19
BP 5641
EP 5645
DI 10.1016/j.tsf.2009.02.075
PG 5
WC Materials Science, Multidisciplinary; Materials Science, Coatings &
Films; Physics, Applied; Physics, Condensed Matter
SC Materials Science; Physics
GA 467XD
UT WOS:000267775500009
ER
PT J
AU Fouad, OA
Rumaiz, AK
Shah, SI
AF Fouad, O. A.
Rumaiz, Abdul K.
Shah, S. Ismat
TI Reactive sputtering of titanium in Ar/CH4 gas mixture: Target poisoning
and film characteristics
SO THIN SOLID FILMS
LA English
DT Article
DE Reactive sputtering; Titanium carbide; X-ray diffraction; X-ray
photoelectron spectroscopy; Reactive sputtering model
ID THIN-FILMS; LASER DEPOSITION; MULTICOMPONENT; COATINGS
AB Reactive sputtering of titanium target in the presence of Ar/CH4 gas mixture has been investigated. With the addition of methane gas to above 1.5% of the process gas a transition from the metallic sputtering mode to the poison mode was observed as indicated by the change in cathode current. As the methane gas flow concentration increased up to 10%, the target was gradually poisoned. The hysteresis in the cathode current could be plotted by first increasing and then subsequently decreasing the methane concentration. X-ray diffraction and X-ray photoelectron spectroscopy analyses of the deposited films confirmed the formation of carbide phases and the transition of the process from the metallic to compound sputtering mode as the methane concentration in the sputtering gas is increased. The paper discusses a sputtering model that gives a rational explanation of the target poisoning phenomenon and shows an agreement between the experimental observations and calculated results. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Shah, S. Ismat] Univ Delaware, Dept Phys & Astron & Mat Sci & Engn, Newark, DE 19716 USA.
[Fouad, O. A.] CMRDI, Cairo 11421, Egypt.
[Rumaiz, Abdul K.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA.
RP Shah, SI (reprint author), Univ Delaware, Dept Phys & Astron & Mat Sci & Engn, Newark, DE 19716 USA.
EM ismat@udel.edu
RI Rumaiz, Abdul/J-5084-2012
FU Junior Scientist Development Visit Grants Program; U.S.-Egypt Joint
Board on Scientific and Technological Cooperation; Ministry of
Scientific Research, Egypt
FX This work was supported by the Junior Scientist Development Visit Grants
Program, U.S.-Egypt Joint Board on Scientific and Technological
Cooperation, Ministry of Scientific Research, Egypt.
NR 24
TC 20
Z9 20
U1 1
U2 8
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0040-6090
J9 THIN SOLID FILMS
JI Thin Solid Films
PD AUG 3
PY 2009
VL 517
IS 19
BP 5689
EP 5694
DI 10.1016/j.tsf.2009.02.119
PG 6
WC Materials Science, Multidisciplinary; Materials Science, Coatings &
Films; Physics, Applied; Physics, Condensed Matter
SC Materials Science; Physics
GA 467XD
UT WOS:000267775500016
ER
PT J
AU Shin, J
Goyal, A
Wee, SH
AF Shin, Junsoo
Goyal, Amit
Wee, Sung-Hun
TI Growth of epitaxial gamma-Al2O3 films on rigid single-crystal ceramic
substrates and flexible, single-crystal-like metallic substrates by
pulsed laser deposition
SO THIN SOLID FILMS
LA English
DT Article
DE Epitaxial oxide; gamma-Al2O3; Pulsed laser deposition; X-ray diffraction
ID GATE DIELECTRICS; THIN-FILMS; SILICON; SI
AB Epitaxial gamma-Al2O3 thin films were grown on diverse substrates using pulsed laser deposition. The high quality of epitaxial growth and cubic structure of gamma-Al2O3 films was confirmed by X-ray diffraction. SrTiO3 and MgO single crystal substrates were used to optimize the growth conditions for epitaxial gamma-Al2O3 film. Under the optimized conditions, epitaxial gamma-Al2O3 thin films were grown on flexible, single-crystal-like, metallic templates. These included untextured Hastelloy substrates with a biaxially textured MgO layer deposited using ion-beam-assisted-deposition and biaxially textured Ni-W metallic tapes with epitaxially grown and a biaxially textured. MgO buffer layer. These biaxially textured, gamma-Al2O3 films on flexible, single-crystal-like substrates are promising for subsequent epitaxial growth of various complex oxide films used for electrical, magnetic and electronic device applications. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Shin, Junsoo; Goyal, Amit; Wee, Sung-Hun] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
[Wee, Sung-Hun] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
RP Shin, J (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
EM jshin@ornl.gov
FU Oak Ridge Associated Universities; Laboratory Directed Research and
Development Program of Oak Ridge National Laboratory (ORNL); U. S.
Department of Energy
FX The authors thank V. Selvamanikcam at SuperPower Inc. for providing the
Hastelloy substrates with either IBAD MgO layers or with both IBAD MgO
layers and homoepitaxial MgO layers. J. Shin and S. H. Wee would like to
thank Oak Ridge Associated Universities for a postdoctoral fellowship.
Research sponsored by the Laboratory Directed Research and Development
Program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle,
LLC for the U. S. Department of Energy.
NR 16
TC 8
Z9 8
U1 2
U2 19
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0040-6090
J9 THIN SOLID FILMS
JI Thin Solid Films
PD AUG 3
PY 2009
VL 517
IS 19
BP 5710
EP 5714
DI 10.1016/j.tsf.2009.02.116
PG 5
WC Materials Science, Multidisciplinary; Materials Science, Coatings &
Films; Physics, Applied; Physics, Condensed Matter
SC Materials Science; Physics
GA 467XD
UT WOS:000267775500020
ER
PT J
AU Schwenzer, B
Neilson, JR
Sivula, K
Woo, C
Frehet, JMJ
Morse, DE
AF Schwenzer, Birgit
Neilson, James R.
Sivula, Kevin
Woo, Claire
Frehet, Jean M. J.
Morse, Daniel E.
TI Nanostructured p-type cobalt layered double hydroxide/n-type polymer
bulk heterojunction yields an inexpensive photovoltaic cell
SO THIN SOLID FILMS
LA English
DT Article
DE Biologically inspired inorganic material; Cobalt layered double
hydroxide; Inorganic p-type semiconductor; Organic/inorganic hybrid bulk
heterojunction solar cell; X-ray diffraction; Scanning electron
microscopy; Electrical properties and measurements
ID ORGANIC SOLAR-CELLS; SILICATEIN ALPHA; FILMS; PRECURSORS; CATALYSIS
AB A low-cost, environmentally benign method was used to prepare nanostructured thin films of Co(5)(OH)(8) (NO(3))(2)center dot 2H(2)O, a layered double hydroxide p-type semiconductor. When infilled with poly(3-butylthiophene) (P3BT), an n-type semiconducting polymer, the resulting hybrid bulk heterojunction yields a photovoltaic device. The indium-doped tin oxide/Co(5)(OH)(8)(NO(3))(2)center dot 2H(2)O/P3BT/Al cell described here is an unprecedented example of an optoelectronic device fabricated by a low-cost biologically inspired pathway independent of organic structure-directing agents. Under illumination, this proof-of-principle device yields an open circuit voltage of 1.38 V, a short circuit current of 9 mu A/cm(2), a fill factor of 26% and a power efficiency of 3.2.10(-3)%. While the open circuit voltage of this prototype cell is close to its theoretical maximum, potential sources of the observed low efficiency are identified, and a suggested path for improvement is discussed. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Schwenzer, Birgit; Neilson, James R.; Morse, Daniel E.] Univ Calif Santa Barbara, Inst Collaborat Biotechnol, Calif NanoSyst Inst, Santa Barbara, CA 93106 USA.
[Schwenzer, Birgit; Neilson, James R.; Morse, Daniel E.] Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA.
[Sivula, Kevin; Woo, Claire; Frehet, Jean M. J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Sivula, Kevin; Woo, Claire; Frehet, Jean M. J.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA.
[Sivula, Kevin; Woo, Claire; Frehet, Jean M. J.; Morse, Daniel E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94702 USA.
[Morse, Daniel E.] Univ Calif Santa Barbara, Dept Mol Cellular & Dev Biol, Santa Barbara, CA 93106 USA.
RP Morse, DE (reprint author), Univ Calif Santa Barbara, Inst Collaborat Biotechnol, Calif NanoSyst Inst, Santa Barbara, CA 93106 USA.
EM d_morse@lifesci.ucsb.edu
RI Neilson, James/E-8248-2010; sivula, kevin/I-2250-2013;
OI Schwenzer, Birgit/0000-0002-7872-1372; Sivula,
Kevin/0000-0002-8458-0270; Neilson, James/0000-0001-9282-5752; Frechet,
Jean /0000-0001-6419-0163
FU U.S. Department of Energy [DE-AC02-05CH11231, DEFG03-02ER46006];
Institute for Collaborative Biotechnologies [DAAD19-03-D-0004]; MRSEC
Program [DMR05-20415]; National Science Foundation; National Science
Foundation Graduate Research Fellowship
FX We thank Dr. Sean E. Shaheen at the National Renewable Energy
Laboratory, Golden, CO, for his help with the work function
measurements, and Dr. Frantisek Svec and Dr. Carine Edder for their
helpful suggestions. The authors acknowledge support by the Director,
Office of Science, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering, of the U.S. Department of Energy
under Contract No. DE-AC02-05CH11231 including work at the Molecular
Foundry, Lawrence Berkeley National Laboratory. This work was supported
in part by grants to D.E.M. from the U.S. Dept. of Energy
(DEFG03-02ER46006); the U.S. Army Research Office through grant
DAAD19-03-D-0004 to the Institute for Collaborative Biotechnologies; and
the MRSEC Program (award No. DMR05-20415) of the National Science
Foundation (UCSB Materials Research Laboratory). J.R.N. is supported by
a National Science Foundation Graduate Research Fellowship.
NR 34
TC 23
Z9 23
U1 3
U2 22
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0040-6090
J9 THIN SOLID FILMS
JI Thin Solid Films
PD AUG 3
PY 2009
VL 517
IS 19
BP 5722
EP 5727
DI 10.1016/j.tsf.2009.02.131
PG 6
WC Materials Science, Multidisciplinary; Materials Science, Coatings &
Films; Physics, Applied; Physics, Condensed Matter
SC Materials Science; Physics
GA 467XD
UT WOS:000267775500022
ER
PT J
AU Zhang, Y
Gable, CW
Zyvoloski, GA
Walter, LM
AF Zhang, Ye
Gable, Carl W.
Zyvoloski, George A.
Walter, Lynn M.
TI Hydrogeochemistry and gas compositions of the Uinta Basin: A
regional-scale overview
SO AAPG BULLETIN
LA English
DT Article
ID RIVER PETROLEUM SYSTEM; SAN-JUAN BASIN; FORMATION WATERS; GREEN RIVER;
ISOTOPIC COMPOSITION; ILLINOIS BASIN; MICHIGAN BASIN; NATURAL GASES;
NEW-MEXICO; UTAH
AB The geochemistry of formation fluids (water and hydrocarbon gases) in the Uinta Basin, Utah, is evaluated at the regional scale based on fluid sampling and compilation of past records. The deep formation water is dominated by Na-Cl type where halite dissolution has the greatest effects on water chemistry. Its distribution and composition is controlled by both the lithology of geological formations and regional hydrodynamics. The origin of the saline waters in the southeastern basin is interpreted to be a mix of ancient evaporatively concentrated seawater with meteoric water recharged in the geological past, which has experienced water-rock interactions. At the basin scale, three-dimensional mapping of the dissolved solid contents further reveals that (1) in the northern Uinta Basin bordering the Uinta Mountains, significant flushing of the deep basinal brines up to 6-km (3.7-mi) depth by meteoric water has occurred, and (2) in the central basin groundwater discharge areas along the Green River Valley, regional upwelling of saline waters from 2- to 3-km (1.2- to 1.8-mi) depth is occurring. Moreover, gas composition and water-gas stable isotope characteristics in the central to southeastern basin indicate the presence of a deep, thermogenic, and regionally continuous gas deposit. In particular, gases sampled in this region from the Wasatch Formation and Mesaverde Group indicate a similar source rock (type III kerogen of the deeply buried, thermally mature Mesaverde Group in the central to northern basin) as well as migration from the Natural Buttes gas field toward the southeastern basin. Evidence for biogenic methane formation is observed only in the upper Green River Formation in the central to northern Uinta Basin. Here, the organic-rich, immature Green River shales experience meteoric water invasions and formation fluid chemistry, and stable isotope compositions are diagnostic of microbial methanogenesis.
C1 [Zhang, Ye] Univ Wyoming, Dept Geol & Geophys, Laramie, WY 82071 USA.
[Gable, Carl W.] Los Alamos Natl Lab, Div Earth & Environm Sci, Computat Earth Sci Grp, Los Alamos, NM 87545 USA.
[Zyvoloski, George A.] Los Alamos Natl Lab, Computat Earth Sci Grp EES 16, Los Alamos, NM 87545 USA.
[Walter, Lynn M.] Univ Michigan, Dept Geol Sci, Ann Arbor, MI 48109 USA.
RP Zhang, Y (reprint author), Univ Wyoming, Dept Geol & Geophys, 1000 Univ Ave, Laramie, WY 82071 USA.
EM yzhang9@uwyo.edu; gable@lanl.gov; gaz@lanl.gov; lmwalter@umich.edu
RI Gable, Carl/B-4689-2011;
OI Gable, Carl/0000-0001-7063-0815
FU American Chemical Society Petroleum Research Fund [45596-AC2]
FX This research was supported by the American Chemical Society Petroleum
Research Fund (grant 45596-AC2). We gratefully acknowledge the help from
our industry partners in conducting the sampling campaigns: Ivan Sadlier
(Mcelvain Inc), Ken Curry (Beartooth Inc.), and Wendy Straatmann
(Dominion Gas). We also acknowledge the help of Kelly Umlauf and Donald
L. Mainfod in assisting the campaigns. The AAPG Editor thanks the
following reviewers for their work on this paper: Alexander A. Kitchka
and Mark W. Longman.
NR 74
TC 8
Z9 9
U1 0
U2 16
PU AMER ASSOC PETROLEUM GEOLOGIST
PI TULSA
PA 1444 S BOULDER AVE, PO BOX 979, TULSA, OK 74119-3604 USA
SN 0149-1423
J9 AAPG BULL
JI AAPG Bull.
PD AUG
PY 2009
VL 93
IS 8
BP 1087
EP 1118
DI 10.1306/05140909004
PG 32
WC Geosciences, Multidisciplinary
SC Geology
GA 486AI
UT WOS:000269167300005
ER
PT J
AU Parham, C
Zhong, Z
Connor, DM
Chapman, LD
Pisano, ED
AF Parham, Christopher
Zhong, Zhong
Connor, Dean M.
Chapman, L. Dean
Pisano, Etta D.
TI Design and Implementation of a Compact Low-Dose Diffraction Enhanced
Medical Imaging System
SO ACADEMIC RADIOLOGY
LA English
DT Article
DE Diffraction enhanced imaging; analyzer based imaging; low dose;
refraction; soft tissue; mammography
ID BREAST-CANCER SPECIMENS; COMPUTED-TOMOGRAPHY; DIGITAL MAMMOGRAPHY;
CONTRAST; CALCIFICATIONS; CARTILAGE; HISTOLOGY; CT
AB Rationale and Objectives. Diffraction-enhanced imaging (DEI) is a new x-ray imaging modality that differs from conventional radiography in its use of three physical mechanisms to generate contrast. DEI is able to generate contrast from x-ray absorption, refraction, and ultra-small-angle scatter rejection (extinction) to produce high-contrast images with a much lower radiation dose compared to conventional radiography.
Materials and Methods. A prototype DEI system was constructed using a 1-kW tungsten x-ray tube and a single silicon monochromator and analyzer crystal. The monochromator crystal was aligned to reflect the combined K alpha 1 (59.32 keV) and K alpha 2 (57.98 keV) characteristic emission lines of tungsten using a tube voltage of 160 kV. System performance and demonstration of contrast were evaluated using a nylon monofilament refraction phantom, full-thickness breast specimens, a human thumb, and a live mouse.
Results. Images acquired using this system successfully demonstrated all three DEI contrast mechanisms. Flux measurements acquired using this 1-kW prototype system demonstrated that this design can be scaled to use a more powerful 60-kW x-ray tube to generate similar images with an image time of approximately 30 seconds. This single-crystal pair design can be further modified to allow for an array of crystals to reduce clinical image times to <3 seconds.
Conclusions. This paper describes the design, construction, and performance of a new DEI system using a commercially available tungsten anode x-ray tube and includes the first high-quality low-dose diffraction-enhanced images of full-thickness human tissue specimens.
C1 [Parham, Christopher; Pisano, Etta D.] Univ N Carolina, Sch Med, Dept Radiol, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA.
[Parham, Christopher; Pisano, Etta D.] Univ N Carolina, Sch Med, Dept Biomed Engn, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA.
[Parham, Christopher; Pisano, Etta D.] Univ N Carolina, Biomed Res Imaging Ctr, Chapel Hill, NC 27599 USA.
[Zhong, Zhong; Connor, Dean M.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA.
[Chapman, L. Dean] Univ Saskatchewan, Coll Med, Dept Anat & Cell Biol, Saskatoon, SK S7N 0W0, Canada.
RP Parham, C (reprint author), Univ N Carolina, Sch Med, Dept Radiol, Lineberger Comprehens Canc Ctr, 4030 Bondurant Hall,Campus Box 7000, Chapel Hill, NC 27599 USA.
EM caparham@gmail.com
RI Chapman, Dean/I-6168-2013
OI Chapman, Dean/0000-0001-6590-4156
NR 27
TC 48
Z9 49
U1 1
U2 10
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 1076-6332
J9 ACAD RADIOL
JI Acad. Radiol.
PD AUG
PY 2009
VL 16
IS 8
BP 911
EP 917
DI 10.1016/j.acra.2009.02.007
PG 7
WC Radiology, Nuclear Medicine & Medical Imaging
SC Radiology, Nuclear Medicine & Medical Imaging
GA 474QE
UT WOS:000268298200002
PM 19375952
ER
PT J
AU Muehleman, C
Li, J
Connor, D
Parham, C
Pisano, E
Zhong, Z
AF Muehleman, Carol
Li, Jun
Connor, Dean
Parham, Christopher
Pisano, Etta
Zhong, Zhong
TI Diffraction-Enhanced Imaging of Musculoskeletal Tissues Using a
Conventional X-Ray Tube
SO ACADEMIC RADIOLOGY
LA English
DT Article
DE Diffraction-enhanced imaging; phase contrast imaging; cartilage imaging;
DEI; osteoarthritis; soft tissue imaging
ID ARTICULAR-CARTILAGE; SOFT-TISSUE; RADIOGRAPHY
AB Rationale and Objectives. In conventional projection radiography, cartilage and other soft tissues do not produce enough radiographic contrast to be distinguishable from each other. Diffraction-enhanced imaging (DEI) uses a monochromatic x-ray beam and a silicon crystal analyzer to produce images in which attenuation contrast is greatly enhanced and x-ray refraction at tissue boundaries can be detected. The aim of this study was to test the efficacy of conventional x-ray tube-based DEI for the detection of soft tissues in experimental samples.
Materials and Methods. Cadaveric human tali (normal and degenerated) and a knee and thumb were imaged with DEI using a conventional x-ray tube and DEI setup that included a double-silicon crystal monochromator and a silicon crystal analyzer positioned between the imaged object and the detector.
Results. Diffraction-enhanced images of the cadaveric tali allowed the visualization of cartilage and its specific level of degeneration for each specimen. There was a significant correlation between the grade of cartilage integrity as assessed on the tube diffraction-enhanced images and on their respective histologic sections (r = 0.977 P = .01). Images of the intact knee showed the articular cartilage edge of the femoral condyle, even when superimposed by the tibia. In the thumb image, it was possible to visualize articular cartilage, tendons, and other soft tissues.
Conclusion. DEI based on a conventional x-ray tube allows the visualization of skeletal and soft tissues simultaneously. Although more in-depth testing and optimization of the DEI setup must be carried out, these data demonstrate a proof of principle for further development of the technology for future clinical imaging.
C1 [Muehleman, Carol; Li, Jun] Rush Univ, Med Ctr, Dept Biochem, Chicago, IL 60612 USA.
[Connor, Dean; Zhong, Zhong] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA.
[Parham, Christopher; Pisano, Etta] Biomed Res Imaging Ctr, Chapel Hill, NC USA.
[Parham, Christopher; Pisano, Etta] Univ N Carolina, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA.
RP Muehleman, C (reprint author), Rush Univ, Med Ctr, Dept Biochem, 1735 Harrison St,Cohn Room 541, Chicago, IL 60612 USA.
EM carol_muehleman@rush.edu
FU NIAMS NIH HHS [R01 AR048292-05, R01 AR048292, R01 AR48292]
NR 15
TC 22
Z9 22
U1 0
U2 6
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 1076-6332
J9 ACAD RADIOL
JI Acad. Radiol.
PD AUG
PY 2009
VL 16
IS 8
BP 918
EP 923
DI 10.1016/j.acra.2009.04.006
PG 6
WC Radiology, Nuclear Medicine & Medical Imaging
SC Radiology, Nuclear Medicine & Medical Imaging
GA 474QE
UT WOS:000268298200003
PM 19580954
ER
PT J
AU Zhang, YY
Zou, GF
Doorn, SK
Htoon, H
Stan, L
Hawley, ME
Sheehan, CJ
Zhu, YT
Jia, QX
AF Zhang, Yingying
Zou, Guifu
Doorn, Stephen K.
Htoon, Han
Stan, Liliana
Hawley, Marilyn E.
Sheehan, Chris J.
Zhu, Yuntian
Jia, Quanxi
TI Tailoring the Morphology of Carbon Nanotube Arrays: From Spinnable
Forests to Undulating Foams
SO ACS NANO
LA English
DT Article
DE carbon nanotube; CNT array; carbon nanotube fiber; catalyst
pretreatment; spinnability; undulating structure
ID CHEMICAL-VAPOR-DEPOSITION; GROWTH; FIBERS; YARNS; FILM; PRETREATMENT;
COMPOSITES; DIAMETER; RIBBONS
AB Directly spinning carbon nanotube (CNT) fibers from vertically aligned CNT arrays is a promising way for the application of CNTs in the field of high-performance materials. However, most of the reported CNT arrays are not spinnable. In this work, by controlling catalyst pretreatment conditions, we demonstrate that the degree of spinnability of CNTs is closely related to the morphology of CNT arrays. Shortest catalyst pretreatment time led to CNT arrays with the best spinnability, while prolonged pretreatment resulted in coarsening of catalyst particles and nonspinnable CNTs. By controlling the coalescence of catalyst particles, we further demonstrate the growth of undulating CNT arrays with uniform and tunable waviness. The CNT arrays can be tuned from well-aligned, spinnable forests to uniformly wavy, foam-like films. To the best of our knowledge, this is the first systematical study on the correlation between catalyst pretreatment, CNT morphology, and CNT spinnability.
C1 [Zhang, Yingying; Zou, Guifu; Doorn, Stephen K.; Htoon, Han; Stan, Liliana; Hawley, Marilyn E.; Sheehan, Chris J.; Jia, Quanxi] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Zhu, Yuntian] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA.
RP Zhang, YY (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
EM yyzhang@lanl.gov; qxjia@lanl.gov
RI Zhu, Yuntian/B-3021-2008; Zhang, Yingying/A-7260-2009; ZOU,
GUIFU/C-8498-2011; Jia, Q. X./C-5194-2008;
OI Zhu, Yuntian/0000-0002-5961-7422; Zhang, Yingying/0000-0002-8448-3059;
Htoon, Han/0000-0003-3696-2896
FU U.S. Department of Energy (DOE)
FX We gratefully acknowledge the support of the U.S. Department of Energy
(DOE) through the LAN/LDRD Program.
NR 30
TC 54
Z9 55
U1 11
U2 74
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
J9 ACS NANO
JI ACS Nano
PD AUG
PY 2009
VL 3
IS 8
BP 2157
EP 2162
DI 10.1021/nn9003988
PG 6
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 485SS
UT WOS:000269145000018
PM 19640000
ER
PT J
AU Zaumseil, J
Ho, XN
Guest, JR
Wiederrecht, GP
Rogers, JA
AF Zaumseil, Jana
Ho, Xinning
Guest, Jeffrey R.
Wiederrecht, Gary P.
Rogers, John A.
TI Electroluminescence from Electrolyte-Gated Carbon Nanotube Field-Effect
Transistors
SO ACS NANO
LA English
DT Article
DE carbon nanotube; electroluminescence; field-effect transistor;
electrolyte gating; ambipolar
ID NETWORK TRANSISTORS; INFRARED-EMISSION; ALIGNED ARRAYS; SINGLE-WALL;
PERFORMANCE; DRIVEN; METAL
AB We demonstrate near-infrared electroluminescence from ambipolar, electrolyte-gated arrays of highly aligned single-walled carbon nanotubes (SWNT). Using electrolytes instead of traditional oxide dielectrics in carbon nanotube field-effect transistors (FET) facilitates injection and accumulation of high densities of holes and electrons at very low gate voltages with minimal current hysteresis. We observe numerous emission spots, each corresponding to individual nanotubes in the array. The positions of these spots indicate the meeting point of the electron and hole accumulation zones determined by the applied gate and source-drain voltages. The movement of emission spots with gate voltage yields information about relative band gaps, contact resistance, defects, and interaction between carbon nanotubes within the array. Introducing thin layers of HfO(2) and TiO(2) provides a means to modify exciton screening without fundamentally changing the current-voltage characteristics or electroluminescence yield of these devices.
C1 [Zaumseil, Jana; Guest, Jeffrey R.; Wiederrecht, Gary P.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
[Ho, Xinning; Rogers, John A.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA.
RP Zaumseil, J (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM jzaumseil@anl.gov
RI Guest, Jeffrey/B-2715-2009; Rogers, John /L-2798-2016;
OI Guest, Jeffrey/0000-0002-9756-8801; Zaumseil, Jana /0000-0002-2048-217X
FU U.S. Department of Energy [DE-FG02-07-ER46453, DE-FG02-07-ER46471]; U.S.
Department of Energy, office of Science, Office of Basic Energy Sciences
[DE-AC02-06CH11357]
FX Device fabrication and electron microscopy were carried out at the
Frederick Seitz Materials Research Laboratory Central Facilities,
University of Illinois, which are partially supported by the U.S.
Department of Energy under Grants DE-FG02-07-ER46453 and
DE-FG02-07-ER46471. Nanotube characterization (Raman, AFM) and device
measurements were performed at the Center for Nanoscale Materials,
Argonne National Laboratory. The Center for Nanoscale Materials is
supported by the U.S. Department of Energy, office of Science, Office of
Basic Energy Sciences, Contract DE-AC02-06CH11357.
NR 42
TC 36
Z9 36
U1 3
U2 48
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
J9 ACS NANO
JI ACS Nano
PD AUG
PY 2009
VL 3
IS 8
BP 2225
EP 2234
DI 10.1021/nn9005736
PG 10
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 485SS
UT WOS:000269145000027
PM 19634895
ER
PT J
AU Jiang, DE
Nobusada, K
Luo, WD
Whetten, RL
AF Jiang, De-en
Nobusada, Katsuyuki
Luo, Weidong
Whetten, Robert L.
TI Thiolated Gold Nanowires: Metallic versus Semiconducting
SO ACS NANO
LA English
DT Article
DE gold nanowires; thiolate; semiconducting; density functional theory;
band structure
ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; PROTECTED AU-25;
CRYSTAL-STRUCTURE; QUANTUM WIRES; BASIS-SET; AU-AG; CLUSTERS;
NANOCLUSTERS; COMPLEXES
AB Tremendous research efforts have been spent on thiolated gold nanoparticles and self-assembled monolayers of thiolate (RS-) on gold, but thiolated gold nanowires have received almost no attention. Here we computationally design two such one-dimensional nanosystems by creating a linear chain of Au icosahedra, fused together by either vertex sharing or face sharing. Then neighboring Au icosahedra are bridged by five thiolate groups for the vertex-sharing model and three RS-Au-SR motifs for the face-sharing model. We show that the vertex-sharing thiolated gold nanowire can be made either semiconducting or metallic by tuning the charge, while the face-sharing one is always metallic, We explain this difference between the two nanowires by examining their band structures and invoking a previously proposed electron-count rule. Implications of our findings for previous experimentation of gold nanowires are discussed, and a potential way to make thiolated gold nanowires is proposed.
C1 [Jiang, De-en] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
[Nobusada, Katsuyuki] Inst Mol Sci, Dept Theoret & Computat Mol Sci, Okazaki, Aichi 4448585, Japan.
[Luo, Weidong] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA.
[Luo, Weidong] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[Whetten, Robert L.] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA.
RP Jiang, DE (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
EM jiangd@ornl.gov
RI Jiang, De-en/D-9529-2011; Luo, Weidong/A-8418-2009
OI Jiang, De-en/0000-0001-5167-0731; Luo, Weidong/0000-0003-3829-1547
FU Office of Basic Energy Sciences, U.S. Department of Energy
[DE-ACOS-00OR22725]; Office of Science of the U.S. Department of Energy
[DE-AC02-05CH11231]; Ministry of Education, Culture, Sports, Science and
Technology of Japan [18066019]
FX This work was supported by Office of Basic Energy Sciences, U.S.
Department of Energy under Contract No, DE-ACOS-00OR22725 with
UT-Battelle, LLC. D.E.J. acknowledges useful discussions with X.Q. Chen
and V. Meunier. This research used resources of the National Energy
Research Scientific Computing Center, which is supported by the Office
of Science of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231. K.N. acknowledges the financial support of
Grant-in-Aid (No. 18066019) from the Ministry of Education, Culture,
Sports, Science and Technology of Japan.
NR 40
TC 27
Z9 27
U1 2
U2 26
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
J9 ACS NANO
JI ACS Nano
PD AUG
PY 2009
VL 3
IS 8
BP 2351
EP 2357
DI 10.1021/nn900498c
PG 7
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 485SS
UT WOS:000269145000041
PM 19603760
ER
PT J
AU Pereira, JH
Sapra, R
Volponi, JV
Kozina, CL
Simmons, B
Adams, PD
AF Pereira, Jose Henrique
Sapra, Rajat
Volponi, Joanne V.
Kozina, Carol L.
Simmons, Blake
Adams, Paul D.
TI Structure of endoglucanase Cel9A from the thermoacidophilic
Alicyclobacillus acidocaldarius
SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY
LA English
DT Article
ID CLOSTRIDIUM-THERMOCELLUM; CELLOBIOHYDROLASE CBHA; CATALYTIC MODULES;
CRYSTAL-STRUCTURE; CELLULASE; CRYSTALLIZATION; CELLULOLYTICUM;
HYDROLASES; SOFTWARE; COMPLEX
AB The production of biofuels using biomass is an alternative route to support the growing global demand for energy and to also reduce the environmental problems caused by the burning of fossil fuels. Cellulases are likely to play an important role in the degradation of biomass and the production of sugars for subsequent fermentation to fuel. Here, the crystal structure of an endoglucanase, Cel9A, from Alicyclobacillus acidocaldarius (Aa_Cel9A) is reported which displays a modular architecture composed of an N-terminal Ig-like domain connected to the catalytic domain. This paper describes the overall structure and the detailed contacts between the two modules. Analysis suggests that the interaction involving the residues Gln13 (from the Ig-like module) and Phe439 (from the catalytic module) is important in maintaining the correct conformation of the catalytic module required for protein activity. Moreover, the Aa_Cel9A structure shows three metal-binding sites that are associated with the thermostability and/or substrate affinity of the enzyme.
C1 [Pereira, Jose Henrique; Sapra, Rajat; Simmons, Blake; Adams, Paul D.] Joint BioEnergy Inst, Emeryville, CA 94608 USA.
[Pereira, Jose Henrique; Adams, Paul D.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
[Sapra, Rajat; Volponi, Joanne V.; Kozina, Carol L.; Simmons, Blake] Sandia Natl Labs, Livermore, CA 94551 USA.
[Adams, Paul D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA.
RP Adams, PD (reprint author), Joint BioEnergy Inst, Emeryville, CA 94608 USA.
EM pdadams@lbl.gov
RI Adams, Paul/A-1977-2013;
OI Adams, Paul/0000-0001-9333-8219; Simmons, Blake/0000-0002-1332-1810
FU US Department of Energy, Office of Science, Office of Biological and
Environmental Research [DE-AC02-05CH11231]; National Institutes of
Health, National Institute of General Medical Sciences
FX This work was part of the DOE Joint BioEnergy Institute
(http://www.jbei.org) supported by the US Department of Energy, Office
of Science, Office of Biological and Environmental Research through
contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory
and the US Department of Energy. We are grateful to the staff of the
Berkeley Center for Structural Biology at the Advanced Light Source of
Lawrence Berkeley National Laboratory. The Berkeley Center for
Structural Biology is supported in part by the National Institutes of
Health, National Institute of General Medical Sciences. The Advanced
Light Source is supported by the Director, Office of Science, Office of
Basic Energy Sciences of the US Department of Energy under Contract No.
DE-AC02-05CH11231. We also would like to thank Professor E. Schneider at
Humboldt-Universitat zu Berlin for the gift of the original gene
construct of Cel9A that was used to subclone the gene for expression of
the protein.
NR 19
TC 18
Z9 18
U1 0
U2 8
PU WILEY-BLACKWELL PUBLISHING, INC
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0907-4449
J9 ACTA CRYSTALLOGR D
JI Acta Crystallogr. Sect. D-Biol. Crystallogr.
PD AUG
PY 2009
VL 65
BP 744
EP 750
DI 10.1107/S0907444909012773
PN 8
PG 7
WC Biochemical Research Methods; Biochemistry & Molecular Biology;
Biophysics; Crystallography
SC Biochemistry & Molecular Biology; Biophysics; Crystallography
GA 472MT
UT WOS:000268136800002
PM 19622857
ER
PT J
AU Rodriguez, MA
O'Bryan, G
Andrzejewski, WJ
McElhanon, JR
AF Rodriguez, Mark A.
O'Bryan, Greg
Andrzejewski, William J.
McElhanon, James R.
TI 2-{(E)-[1-(2-Hydroxyethyl)-3,3-dimethyl-3H-indol-1-ium-2-yl]vinyl}-6-hyd
roxymethyl-4-nitrophenolate dihydrate
SO ACTA CRYSTALLOGRAPHICA SECTION E-STRUCTURE REPORTS ONLINE
LA English
DT Article
AB The title merocyanine-type molecule, C21H22N2O5 center dot 2H(2)O, crystallizes in a zwitterionic form and has an E configuration at the styryl C=C bond. The styryl part of the molecule and the indolium ring are slightly twisted and form a dihedral angle of 13.4 (1)degrees. The 1.274 (3) angstrom C-O bond length in the phenolate fragment is the longest among similar molecules. Hydrogen bonds between solvent water molecules, two hydroxyl groups and the phenolate O atom dictate the packing arrangement of molecules in the crystal and join the molecules into a two-dimensional polymeric network which propagates parallel to (001). Four water molecules and four hydroxy groups form a centrosymmetric homodromic cyclic motif of O-H center dot center dot center dot O hydrogen bonds. Another cyclic centrosymmetric motif is generated by four water molecules and two phenolate O atoms.
C1 [Rodriguez, Mark A.; Andrzejewski, William J.; McElhanon, James R.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[O'Bryan, Greg] Sandia Natl Labs, Livermore, CA 94551 USA.
RP Rodriguez, MA (reprint author), Sandia Natl Labs, POB 5800,MS 1411, Albuquerque, NM 87185 USA.
EM marodri@sandia.gov
NR 11
TC 0
Z9 0
U1 0
U2 3
PU WILEY-BLACKWELL
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 1600-5368
J9 ACTA CRYSTALLOGR E
JI Acta Crystallogr. Sect. E.-Struct Rep. Online
PD AUG
PY 2009
VL 65
BP O1906
EP U3400
DI 10.1107/S1600536809027238
PN 8
PG 12
WC Crystallography
SC Crystallography
GA 477HV
UT WOS:000268510800304
PM 21583596
ER
PT J
AU Olmsted, DL
Foiles, SM
Holm, EA
AF Olmsted, David L.
Foiles, Stephen M.
Holm, Elizabeth A.
TI Survey of computed grain boundary properties in face-centered cubic
metals: I. Grain boundary energy
SO ACTA MATERIALIA
LA English
DT Article
DE Grain boundary energy; Molecular statics simulations; Grain boundary
structure
ID SYMMETRICAL TILT BOUNDARIES; 5 MACROSCOPIC PARAMETERS; 001 TWIST
BOUNDARIES; FCC METALS; BCC METALS; MICROSTRUCTURAL EVOLUTION; 100
PLANES; SIMULATION; GROWTH; ALUMINUM
AB The energies of a set of 388 distinct grain boundaries have been calculated based on embedded-atom method interatomic potentials for Ni and Al. The boundaries considered are a complete catalog of the coincident site lattice boundaries constructible in a computational cell of a prescribed size. Correlations of the boundary energy with other boundary properties (disorientation angle, Sigma value, excess boundary volume and proximity of boundary normals to < 111 >) are examined. None of the usual geometric properties associated with grain boundary energy are useful predictors for this data set. The data set is incorporated as supplementary material to facilitate the search for more complex correlations. The energies or corresponding boundaries in Ni and Al are found to differ by approximately a scaling factor related to the Voigt average shear modulus or C(44). Crystallographically close boundaries have similar energies; hence a table of grain boundary energies could be used for interpolation. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
C1 [Olmsted, David L.; Foiles, Stephen M.; Holm, Elizabeth A.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Holm, EA (reprint author), Sandia Natl Labs, POB 5800,MS 1411, Albuquerque, NM 87185 USA.
EM Eaholm@sandia.gov
RI Albe, Karsten/F-1139-2011; Holm, Elizabeth/S-2612-2016;
OI Holm, Elizabeth/0000-0003-3064-5769; Foiles, Stephen/0000-0002-1907-454X
FU Department of Energy; Office of Basic Energy Sciences; Computational
Materials Science Network program
FX Sandia is a multi-program laboratory operated by Sandia Corporation. a
Lockheed Martin Company, for the United States Department of Energy's
National Nuclear Security Administration under Contract
DE-AC0494AL85000. We acknowledge partial support from the Department of
Energy, Office of Basic Energy Sciences both through the core program
and through the Computational Materials Science Network program.
NR 75
TC 176
Z9 179
U1 11
U2 111
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-6454
J9 ACTA MATER
JI Acta Mater.
PD AUG
PY 2009
VL 57
IS 13
BP 3694
EP 3703
DI 10.1016/j.actamat.2009.04.007
PG 10
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA 476CG
UT WOS:000268414100002
ER
PT J
AU Olmsted, DL
Holm, EA
Foiles, SM
AF Olmsted, David L.
Holm, Elizabeth A.
Foiles, Stephen M.
TI Survey of computed grain boundary properties in face-centered cubic
metals-II: Grain boundary mobility
SO ACTA MATERIALIA
LA English
DT Article
DE Grain boundary migration; MD-simulations; Grain boundary roughening
ID HIGH-PURITY LEAD; MOLECULAR-DYNAMICS; ROUGHENING TRANSITION; ATOMISTIC
SIMULATIONS; MIGRATION; ALUMINUM; MOTION; DEPENDENCE; BICRYSTALS;
CRYSTALS
AB The absolute grain boundary mobility of 388 nickel grain boundaries was calculated using a synthetic driving force molecular dynamics method; complete results appear in the supplementary materials. Over 255 of the boundaries, including most of the non-Sigma 3 highest mobility boundaries, moved by a coupled shear mechanism. The range of non-shearing boundary mobilities is from 40 to 400 m/s GPa. except for Sigma 3 incoherent twins which have mobilities of 200-2000 m/s GPa. Some boundaries, including all the < 1 1 1 > twist boundaries, are immobile within the resolution of the simulation. Boundary mobility is not correlated with scalar parameters such as disorientation angle. Sigma value, excess volume or boundary energy. Boundaries less than 15 degrees from each other in five-dimensional crystallographic space tend to have similar mobilities. Some boundaries move via a non-activated motion mechanism, which greatly increases low-temperature mobility. Thermal roughening of grain boundaries is widely observed, with estimated roughening temperatures substantially among boundaries. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
C1 [Olmsted, David L.; Holm, Elizabeth A.; Foiles, Stephen M.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Holm, EA (reprint author), Sandia Natl Labs, POB 5800,MS 1411, Albuquerque, NM 87185 USA.
EM Eaholm@sandia.gov
RI Albe, Karsten/F-1139-2011; Holm, Elizabeth/S-2612-2016;
OI Holm, Elizabeth/0000-0003-3064-5769; Foiles, Stephen/0000-0002-1907-454X
FU United States Department of Energy's National Nuclear Security
Administration [DE-AC0494AL85000]; Department of Energy; Office of Basic
Energy Sciences
FX Sandia is a multi-program laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the United States Department of Energy's
National Nuclear Security Administration Under contract
DE-AC0494AL85000. We acknowledge partial support from the Department of
Energy, Office of Basic Energy Sciences both through the core program
and through the Computational Materials Science Network program.
NR 39
TC 109
Z9 109
U1 6
U2 72
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-6454
J9 ACTA MATER
JI Acta Mater.
PD AUG
PY 2009
VL 57
IS 13
BP 3704
EP 3713
DI 10.1016/j.actamat.2009.04.015
PG 10
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA 476CG
UT WOS:000268414100003
ER
PT J
AU Nibur, KA
Somerday, BP
Balch, DK
San Marchi, C
AF Nibur, K. A.
Somerday, B. P.
Balch, D. K.
San Marchi, C.
TI The role of localized deformation in hydrogen-assisted crack propagation
in 21Cr-6Ni-9Mn stainless steel
SO ACTA MATERIALIA
LA English
DT Article
DE Hydrogen embrittlement; Stainless steel; Fracture toughness; Localized
plasticity
ID TEMPERATURE BRITTLE-FRACTURE; BEARING AUSTENITIC STEELS; PLANAR SLIP;
NITROGEN; EMBRITTLEMENT; MECHANISM; ALLOYS; METALS; SUSCEPTIBILITY;
DISLOCATIONS
AB Elastic-plastic fracture mechanics experiments were conducted on three heats of 21Cr-6Ni-9Mn austensitic stainless steel (two forgings and one annealed material), emphasizing the effects of high concentrations of thermally precharged hydrogen as well as crack-growth orientation and ferrite content. Hydrogen was the dominant variable ill this study, causing a reduction ill fracture initiation toughness of greater than 80% in the forgings independent of crack-growth orientation and ferrite content. Reflecting the fracture toughness measurements, hydrogen also caused dramatic changes in fractures modes. Microscopy evidencce indicated that fracture in hydrogen-precharged materials was governed by localized deformation. The impingement of deformation bands on obstacles such as boundaries or intersecting deformation bands caused stress concentrations, leading to void or microcrack formation at these sites. It is postulated that void or microcrack formation can be solely attributed to hydrogen-enhanced localized deformation without invoking any mechanism where hydrogen directly lowers the fracture resistance. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
C1 [Nibur, K. A.; Somerday, B. P.; Balch, D. K.; San Marchi, C.] Sandia Natl Labs, Livermore, CA 94550 USA.
RP Nibur, KA (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA.
EM kevinnibur@yahoo.com
FU U.S. Department of Energy [DE AC04-94AL85000]
FX The authors gratefully acknowledge support from the U.S. Department of
Energy (contract # DE AC04-94AL85000).
NR 48
TC 34
Z9 38
U1 5
U2 20
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-6454
EI 1873-2453
J9 ACTA MATER
JI Acta Mater.
PD AUG
PY 2009
VL 57
IS 13
BP 3795
EP 3809
DI 10.1016/j.actamat.2009.04.027
PG 15
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA 476CG
UT WOS:000268414100011
ER
PT J
AU Gali, A
Bei, H
George, EP
AF Gali, A.
Bei, H.
George, E. P.
TI Thermal stability of Cr-Cr3Si eutectic microstructures
SO ACTA MATERIALIA
LA English
DT Article
DE Interfaces; Segregation; Directional solidification; Coarsening;
Composites
ID DIRECTIONAL SOLIDIFICATION; LAMELLAR MICROSTRUCTURES; CELLULAR
PRECIPITATE; SELF-SIMILARITY; KINETICS; ALLOY; INSTABILITY; SURFACE;
GROWTH
AB The thermal stability of Cr-Cr3Si lamellar eutectic composites was investigated at temperatures up to 1400 degrees C. In drop-cast Cr-Cr3Si, coarsening was found to be interface controlled. The coarsening rate could be reduced by microalloying with Ce and Re, two elements which were chosen because they were expected to segregate to the Cr-Cr3Si interfaces. Similarly, directional solidification, whichc is also expected to lowere the Cr-Cr3Si interfacial energy, was found to dramatically decrease the coarsening rate. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
C1 [Gali, A.; Bei, H.; George, E. P.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[Gali, A.; George, E. P.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
RP George, EP (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
EM georgeep@ornl.gov
RI George, Easo/L-5434-2014;
OI Gali, Adam/0000-0002-3339-5470; Bei, Hongbin/0000-0003-0283-7990
FU Division of Materials Sciences and Engineering; US Department of Energy
FX This research was sponsored by the Division of Materials Sciences and
Engineering, US Department of Energy. The authors wish to thank Dr. E.A.
Kenik for help with EBSD analysis and Cecil Carmichael for help in
specimen preparation.
NR 31
TC 7
Z9 7
U1 0
U2 14
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-6454
J9 ACTA MATER
JI Acta Mater.
PD AUG
PY 2009
VL 57
IS 13
BP 3823
EP 3829
DI 10.1016/j.actamat.2009.04.041
PG 7
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA 476CG
UT WOS:000268414100013
ER
PT J
AU Saage, H
Kruger, M
Sturm, D
Heilmaier, M
Schneibel, JH
George, E
Heatherly, L
Somsen, C
Eggeler, G
Yang, Y
AF Saage, H.
Krueger, M.
Sturm, D.
Heilmaier, M.
Schneibel, J. H.
George, E.
Heatherly, L.
Somsen, Ch.
Eggeler, G.
Yang, Y.
TI Ductilization of Mo-Si solid solutions manufactured by powder metallurgy
SO ACTA MATERIALIA
LA English
DT Article
DE Mechanical alloying; Bending tests; Molybdenum silicides; Ductility;
Microstructure
ID MOLYBDENUM; ALLOYS; FRACTURE; SILICON
AB Mo-1.5 at.% Si alloys with additions of either Y2O3 or Zr were manufactured by mechanical alloying. The Y2O3 particles reduced the grain size and increased the room temperature strength, but did not alleviate the brittleness of previously investigated Mo-1.5 at.% Si without Y2O3. Additions of Zr, on the other hand, resulted not only in a fine grain size and an extremely high bend strength (similar to 2 GPa), but also in limited bend ductility at room temperature. Zr additions are seen to be beneficial for three reasons. First, Zr reduces the grain size. Second, Zr getters detrimental oxygen by forming ZrO2 particles (which in turn help to pin the grain boundaries). Third, in situ Auger analysis shows that the Zr reduces the concentration of Si segregated at the grain boundaries. This is thought to enhance the grain boundary cohesive strength and thus leads to the observed ductility. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
C1 [Saage, H.] Univ Appl Sci, Fac Mech Engn, D-84036 Landshut, Germany.
[Krueger, M.; Sturm, D.; Schneibel, J. H.] Otto VonGuericke Univ Magdegurg, Inst Werkstoff & Fugetech, D-39016 Magdeburg, Germany.
[Heilmaier, M.] Tech Univ Darmstadt, Fachbereich Mat Wissensch, D-64287 Darmstadt, Germany.
[George, E.; Heatherly, L.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[Somsen, Ch.; Eggeler, G.] Ruhr Univ Bochum, Inst Werkstoffe, D-44801 Bochum, Germany.
[Yang, Y.] Compatherm LLC, Madison, WI 53719 USA.
RP Saage, H (reprint author), Univ Appl Sci, Fac Mech Engn, D-84036 Landshut, Germany.
EM holger.saage@fh-landshut.de
RI Eggeler, Gunther/R-9833-2016;
OI Kruger, Manja/0000-0002-1122-7142
FU German Science Foundation (DFG); Division of Materials Sciences and
Engineering; US Department of Energy [DE-AC05-00OR22725]
FX The research was sponsored by the German Science Foundation (DFG) in the
frame of the research unit 727 "Beyond Nickelbase Superalloys". We are
grateful to P. Jehanno, M. Wining and H. Kestler for providing the
material used In this study. J.H.S. acknowledges support of this work by
the Division of Materials Sciences and Engineering, US Department of
Energy, under Contract DE-AC05-00OR22725 with UT-Battelle, LLC, and
Support through the Schiebold Guest Professorship during a 5-month stay
at the Unlversity of Magdeburg. Germany.
NR 19
TC 31
Z9 31
U1 0
U2 9
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-6454
EI 1873-2453
J9 ACTA MATER
JI Acta Mater.
PD AUG
PY 2009
VL 57
IS 13
BP 3895
EP 3901
DI 10.1016/j.actamat.2009.04.040
PG 7
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA 476CG
UT WOS:000268414100020
ER
PT J
AU Jia, N
Cong, ZH
Sun, X
Cheng, S
Nie, ZH
Ren, Y
Liaw, PK
Wang, YD
AF Jia, N.
Cong, Z. H.
Sun, X.
Cheng, S.
Nie, Z. H.
Ren, Y.
Liaw, P. K.
Wang, Y. D.
TI An in situ high-energy X-ray diffraction study of micromechanical
behavior of multiple phases in advanced high-strength steels
SO ACTA MATERIALIA
LA English
DT Article
DE High-energy X-ray diffraction; High-strength steels; Plastic
deformation; Dual Phases; Simulations
ID DUPLEX STAINLESS-STEEL; TRIP-ASSISTED STEELS; NEUTRON-DIFFRACTION;
MULTISCALE MECHANICS; RETAINED AUSTENITE; STRESS STATE; DEFORMATION;
TRANSFORMATION; MICROSTRUCTURE; POLYCRYSTALS
AB The micromechanical behavior of high-strength steels with multiple phases was characterized using the ill Situ high-energy X-ray diffraction technique. For the materials investigated, the {2 0 0} lattice strains of the Constituent phases (ferrite. bainite and martensite) with similar crystal structures were determined by separating their overlapped diffraction peaks and then examining the respective changes ill peak positions during deformation. Based oil those experimental data, the anisotropic elastic and plastic properties of the steels were simulated Using a self-consistent model for predicting the grain-to-grain and phase-to-phase interactions. The constitutive laws for describing the elastic and plastic behavior of each constituent phase were directly obtained by comparing the predicted lattice strain distributions with the measured ones. The transmission electron microscopy observations of the microstructure development verified the partitioning of plastic strains among different phases. The present investigations provide a fundamental Understanding of the stress partitioning of soft and hard phases, and the different work-hardening rates of the multiphase steels. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
C1 [Wang, Y. D.] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China.
[Jia, N.; Cong, Z. H.; Nie, Z. H.; Wang, Y. D.] Northeastern Univ, Key Lab Anisotropy & Texture Mat MOE, Shenyang 110004, Peoples R China.
[Sun, X.] Pacific NW Natl Lab, Computat Sci & Math Div, Richland, WA 99352 USA.
[Cheng, S.; Liaw, P. K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37966 USA.
[Ren, Y.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA.
RP Wang, YD (reprint author), Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China.
EM ydwang@mail.neu.edu.cn
RI Cheng, Sheng/D-9153-2013; Nie, Zhihua/G-9459-2013; ran, shi/G-9380-2013;
wang, yandong/G-9404-2013
OI Cheng, Sheng/0000-0003-1137-1926; Nie, Zhihua/0000-0002-2533-933X;
FU Battelle Memorial Institute for the US Department of Energy
[DE-AC05-76RL01830]; Department of Energy Office of FreedomCAR and
Vehicle Technologies; National Natural Science Foundation of China
[50671022]; program for ChangJiang Scholars and Innovative Research Team
in University [IRT0713]; National Ministry of Education of China.;
National Outstanding Young Scientist Investigation [50725102]; National
Science Foundation International Materials Institutes (IMI) Program
[DMR-0231320]; US Department of Energy, Office of Science laboratory
[DE-AC02-06CH 11357]
FX The Pacific Northwest National Laboratory is operated by the Battelle
Memorial Institute for the US Department of Energy under Contract No.
DE-AC05-76RL01830. This work was funded by the Department of Energy
Office of FreedomCAR and Vehicle Technologies under the Automotive
Lightweighting Materials Program managed by Dr. Joseph Carpenter, the
National Natural Science Foundation of China (Grant No. 50671022), the
program for ChangJiang Scholars and Innovative Research Team in
University (Grant No. IRT0713), and the key project supported by
National Ministry of Education of China. Y.D. Wang would like to
acknowledge the financial support by the National Outstanding Young
Scientist Investigation under Grant No. 50725102. S. Cheng and P.K. Liaw
are very grateful for the support of the National Science Foundation
International Materials Institutes (IMI) Program (DMR-0231320) with Dr.
C. Hubei- as the program direetor. The use of the Advanced Photon Source
was supported by the US Department of Energy, Office of Science
laboratory, under Contract No. DE-AC02-06CH 11357.
NR 27
TC 68
Z9 68
U1 4
U2 55
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-6454
J9 ACTA MATER
JI Acta Mater.
PD AUG
PY 2009
VL 57
IS 13
BP 3965
EP 3977
DI 10.1016/j.actamat.2009.05.002
PG 13
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA 476CG
UT WOS:000268414100028
ER
PT J
AU Bechtle, S
Kumar, M
Somerday, BP
Launey, ME
Ritchie, RO
AF Bechtle, S.
Kumar, M.
Somerday, B. P.
Launey, M. E.
Ritchie, R. O.
TI Grain-boundary engineering markedly reduces susceptibility to
intergranular hydrogen embrittlement in metallic materials
SO ACTA MATERIALIA
LA English
DT Article
DE Hydrogen embrittlement; Intergranular cracking; Grain-boundary
engineering; Special boundaries; Mechanical properties
ID FRACTURE; NICKEL; SEGREGATION; CRACKING; EVOLUTION; DIFFUSION;
CORROSION; DUCTILITY; NETWORKS; COPPER
AB The feasibility of using "grain-boundary engineering" techniques to reduce the susceptibility of a metallic material to intergranular embrittlement in the presence of hydrogen is examined. Using thermo mechanical processing, the fraction of "special" grain boundaries was increased from 46% to 75% (by length) in commercially pure nickel samples. In the presence of hydrogen concentrations between 1200 and 3400 appm, the high special fraction microstructure showed almost double the tensile ductility; also, the proportion of intergranular fracture was significantly lower and the J(c) fracture toughness values were some 20-30%, higher in comparison with the low special fraction microstructure. We attribute the reduction in the severity of hydrogen-induced intergranular embrittlement to the higher fraction of special grain boundaries, where the degree of hydrogen segregation at these boundaries is reduced. Published by Elsevier Ltd on behalf or Acta Materialia Inc.
C1 [Bechtle, S.; Ritchie, R. O.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
[Bechtle, S.] Tech Univ Hamburg, DE-21073 Hamburg, Germany.
[Kumar, M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Somerday, B. P.] Sandia Natl Labs, Livermore, CA 94551 USA.
[Launey, M. E.; Ritchie, R. O.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Ritchie, RO (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
EM roritchie@lbl.gov
RI Ritchie, Robert/A-8066-2008
OI Ritchie, Robert/0000-0002-0501-6998
FU US Department of Energy [DE-AC02-05CH11231]; Lawrence Livermore National
Laboratory [DE-AC52-07NA27344]; Sandia National Laboratories
[DE-AC04-94AL85000]
FX This work was supported by the US Department of Energy: at the Lawrence
Berkeley National Laboratory by the Office of Science, Office of Basic
Energy Sciences, Division of Materials Sciences and Engineering under
Contract No. DE-AC02-05CH11231, at the Lawrence Livermore National
Laboratory under Contract No. DE-AC52-07NA27344, and at Sandia National
Laboratories under Contract No. DE-AC04-94AL85000.
NR 31
TC 95
Z9 97
U1 7
U2 67
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-6454
J9 ACTA MATER
JI Acta Mater.
PD AUG
PY 2009
VL 57
IS 14
BP 4148
EP 4157
DI 10.1016/j.actamat.2009.05.012
PG 10
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA 479IN
UT WOS:000268653000018
ER
PT J
AU Ophus, C
Luber, EJ
Edelen, M
Lee, Z
Fischer, LM
Evoy, S
Lewis, D
Dahmen, U
Radmilovic, V
Mitlin, D
AF Ophus, C.
Luber, E. J.
Edelen, M.
Lee, Z.
Fischer, L. M.
Evoy, S.
Lewis, D.
Dahmen, U.
Radmilovic, V.
Mitlin, D.
TI Nanocrystalline-amorphous transitions in Al-Mo thin films: Bulk and
surface evolution
SO ACTA MATERIALIA
LA English
DT Article
DE Nanocomposite; Metallic glasses; Nanocrystalline materials; Surface
roughness; High-resolution electron microscopy
ID METALLIC GLASSES; ALLOYS; GROWTH; RANGE; MICROSTRUCTURE; TEXTURE; SYSTEM
AB We investigate the bulk and surface features of the crystalline-amorphous transitions in binary Al-Mo alloy thin films as a function of Mo composition using transmission electron microscopy, X-ray diffraction and atomic force microscopy analysis, as well as thermodynamic modeling. Of the alloys tested, the minimum in the root mean square (rms) surface roughness and correlation length occurs at the Al-32 at.% Mo composition, which corresponds to the maximum volume fraction of the amorphous phase and the minimum volume fraction of the body centered cubic nanocrystallites. The rms surface roughness of the 32 at.% Mo films is on the order of a single nanometer, compared with nearly 80 nm for the 50 at.% Mo film. A structure-zone map is constructed to relate the surface morphology of the films to their bulk microstructure. A thermodynamic model developed by Miedema and coworkers was used to predict the general trends observed in the microstructural evolution as a function of film composition. Published by Elsevier Ltd on behalf of Acta Materialia Inc.
C1 [Ophus, C.; Luber, E. J.; Mitlin, D.] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 2V4, Canada.
[Ophus, C.; Luber, E. J.; Fischer, L. M.; Evoy, S.; Mitlin, D.] Natl Inst Nanotechnol, Edmonton, AB, Canada.
[Edelen, M.; Lewis, D.] Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NJ USA.
[Lee, Z.; Dahmen, U.; Radmilovic, V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA.
[Fischer, L. M.; Evoy, S.] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 2V4, Canada.
RP Mitlin, D (reprint author), Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 2V4, Canada.
EM VRRadmilovic@lbl.gov; dmitlin@ualberta.ca
RI Fischer, Lee/I-3980-2012; Lee, Zonghoon/G-1474-2011; Ophus,
Colin/H-2350-2013; Mitlin , David /M-5328-2016;
OI Lee, Zonghoon/0000-0003-3246-4072; Mitlin , David /0000-0002-7556-3575;
Evoy, Stephane/0000-0003-4587-3502; Luber, Erik/0000-0003-1623-0102;
Ophus, Colin/0000-0003-2348-8558
FU US Department of Energy [DE-AC02-05CH112]; NSERC; NRC NINT funds
FX The authors would like to recognize the Chris Harrower's help with AFM
and the help of Steve Launspach for aid on both AFM and XRD. Two of the
authors (MCE and DJL) would like to recognize Rensselaer Polytechnic
Institute for support of the thermodynamic modeling portion of this
work. This work was partially supported by the Director, Office of
Energy Research, Office of Basic Energy Sciences, Materials Sciences
Division, US Department of Energy under Contract # DE-AC02-05CH112. This
work was also partially supported by an NSERC Discovery Grant (DM),
Alberta Ingenuity (CO, EL, DM), and by NRC NINT funds (DM).
NR 33
TC 8
Z9 9
U1 3
U2 14
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-6454
J9 ACTA MATER
JI Acta Mater.
PD AUG
PY 2009
VL 57
IS 14
BP 4296
EP 4303
DI 10.1016/j.actamat.2009.05.029
PG 8
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA 479IN
UT WOS:000268653000033
ER
PT J
AU Liss, KD
Garbe, U
Li, HJ
Schambron, T
Almer, JD
Yan, K
AF Liss, Klaus-Dieter
Garbe, Ulf
Li, Huijun
Schambron, Thomas
Almer, Jonathan D.
Yan, Kun
TI In Situ Observation of Dynamic Recrystallization in the Bulk of
Zirconium Alloy
SO ADVANCED ENGINEERING MATERIALS
LA English
DT Article
ID LABORATORY EXPERIMENTS
C1 [Liss, Klaus-Dieter; Garbe, Ulf; Li, Huijun; Yan, Kun] Australian Nucl Sci & Technol Org, Menai, NSW 2234, Australia.
[Schambron, Thomas; Yan, Kun] Univ Wollongong, Fac Engn, Wollongong, NSW 2522, Australia.
[Almer, Jonathan D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RP Liss, KD (reprint author), Australian Nucl Sci & Technol Org, BMP 1, Menai, NSW 2234, Australia.
EM kdl@ansto.gov.au
RI Liss, Klaus-Dieter/E-8548-2011
OI Liss, Klaus-Dieter/0000-0003-4323-0343
FU Commonwealth of Australia under the National Collaborative Research
Infrastructure Strategy; U.S. Department of Energy [DE-AC02-06CH11357]
FX This Work Was supported by the Australian Synchrotron Research Program,
which is funded by the Commonwealth of Australia under the National
Collaborative Research Infrastructure Strategy. The experimentalists
especially thank the XOR beamline members and the APS user office for
support. Use of the APS Was supported by the U.S. Department of Energy
under contract DE-AC02-06CH11357.
NR 16
TC 21
Z9 22
U1 0
U2 5
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY
SN 1438-1656
J9 ADV ENG MATER
JI Adv. Eng. Mater.
PD AUG
PY 2009
VL 11
IS 8
BP 637
EP 640
DI 10.1002/adem.200900094
PG 4
WC Materials Science, Multidisciplinary
SC Materials Science
GA 495ZY
UT WOS:000269937900004
ER
PT J
AU Tong, M
Sriram, V
Minor, A
Yang, JM
AF Tong, Michael
Sriram, Vinay
Minor, Andrew
Yang, Jenn-Ming
TI In Situ and Ex Situ Nanomechanical Analysis of Reactive Nanolayer Solder
Joints
SO ADVANCED ENGINEERING MATERIALS
LA English
DT Article
ID MECHANICAL-PROPERTIES; FOILS; MICROSTRUCTURE; ALLOY
C1 [Tong, Michael; Sriram, Vinay; Yang, Jenn-Ming] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA.
[Minor, Andrew] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
[Minor, Andrew] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA.
RP Tong, M (reprint author), Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA.
EM mtong@seas.ucla.edu
FU NSF/NIRT [CMS-0506841]; U.S. Department of Energy [DE-AC02-05CH11231]
FX The authors would like to thank the support of NSF/NIRT under Contract
No. CMS-0506841. Dr. Ken Chong is the program monitor. Work performed at
the National Center for Electron Microscopy, Lawrence Berkeley National
Laboratory, was supported by the Office of Science, Office of Basic
Energy Sciences, of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231.
NR 17
TC 1
Z9 1
U1 1
U2 5
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY
SN 1438-1656
J9 ADV ENG MATER
JI Adv. Eng. Mater.
PD AUG
PY 2009
VL 11
IS 8
BP 645
EP 649
DI 10.1002/adem.200900102
PG 5
WC Materials Science, Multidisciplinary
SC Materials Science
GA 495ZY
UT WOS:000269937900006
ER
PT J
AU Xu, HB
Hubbard, CR
An, K
Feng, ZL
Wang, XL
Qu, J
AF Xu, Hanbing
Hubbard, Camden R.
An, Ke
Feng, Zhili
Wang, Xun-Li
Qu, Jun
TI Neutron Diffraction Measurement of Residual Stresses in Friction Stir
Processed Nanocomposite Surface Layer
SO ADVANCED ENGINEERING MATERIALS
LA English
DT Article
ID MATRIX COMPOSITES; ALUMINUM-ALLOY; MICROSTRUCTURE; WELDS; 6061-T6
C1 [Xu, Hanbing; Hubbard, Camden R.; Feng, Zhili; Qu, Jun] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[An, Ke; Wang, Xun-Li] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA.
RP Xu, HB (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA.
EM qujn@ornl.gov
RI Wang, Xun-Li/C-9636-2010; Feng, Zhili/H-9382-2012; An, Ke/G-5226-2011;
OI Wang, Xun-Li/0000-0003-4060-8777; Feng, Zhili/0000-0001-6573-7933; An,
Ke/0000-0002-6093-429X; Qu, Jun/0000-0001-9466-3179
FU U.S. Department of Energy [DE-AC05-00OR22725]
FX Research sponsored by the Laboratory Directed Research and Development
Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC,
for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.
NR 15
TC 4
Z9 4
U1 1
U2 10
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY
SN 1438-1656
J9 ADV ENG MATER
JI Adv. Eng. Mater.
PD AUG
PY 2009
VL 11
IS 8
BP 650
EP 653
DI 10.1002/adem.200900065
PG 4
WC Materials Science, Multidisciplinary
SC Materials Science
GA 495ZY
UT WOS:000269937900007
ER
PT J
AU Drummond, LA
Galiano, V
Migallon, V
Penades, J
AF Drummond, L. Anthony
Galiano, Vicente
Migallon, Violeta
Penades, Jose
TI Interfaces for parallel numerical linear algebra libraries in high level
languages
SO ADVANCES IN ENGINEERING SOFTWARE
LA English
DT Article
DE Parallel software; ScaLAPACK; Python interfaces; Numerical experiments;
Performance
ID PYTHON
AB In many high performance engineering and scientific applications there is a need to use parallel software libraries. Researchers behind these applications find it difficult to understand the interfaces to these libraries because they carry arguments that are related to the parallel environment and performance in addition to arguments related to the problem at hand. In this paper we introduce the use of high level user interfaces for ScaLAPACK. Concretely, a Python-based interface to ScaLAPACK is proposed. Numerical experiments comparing traditional programming practices with our proposed approach are presented. These experiments evaluate not only the performance of the Python interfaces but also how user friendlier they are, compared to the original calls, and show that PyScaLAPACK does not hinder the performance deliverance of ScaLAPACK. Finally, an example of a real scientific application code, whose functionality can be prototyped or extended with the use of PyScaLAPACK, is presented. (C) 2009 Elsevier Ltd. All rights reserved.
C1 [Migallon, Violeta; Penades, Jose] Univ Alicante, Dept Ciencia Computac & Inteligencia Artificial, Alicante 03071, Spain.
[Galiano, Vicente] Univ Miguel Hernandez, Dept Fis Arquitectura Computadores, Alicante 03202, Spain.
[Drummond, L. Anthony] Lawrence Berkeley Natl Lab, Berkeley, CA 94703 USA.
RP Penades, J (reprint author), Univ Alicante, Dept Ciencia Computac & Inteligencia Artificial, Alicante 03071, Spain.
EM jpenades@dccia.ua.es
RI Penades, Jose/E-3634-2015
OI Penades, Jose/0000-0001-9278-484X
FU Spanish Ministry of Science and Education [TIN2008-06570-C04-04];
Universidad de Alicante [VIGROB-020]
FX This research was partially supported by the Spanish Ministry of Science
and Education under Grant Number TIN2008-06570-C04-04, and by
Universidad de Alicante under Grant Number VIGROB-020. We thank the
referees for their comments and questions, which led to improvements of
our presentation.
NR 25
TC 3
Z9 3
U1 0
U2 5
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0965-9978
EI 1873-5339
J9 ADV ENG SOFTW
JI Adv. Eng. Softw.
PD AUG
PY 2009
VL 40
IS 8
BP 652
EP 658
DI 10.1016/j.advengsoft.2008.11.014
PG 7
WC Computer Science, Interdisciplinary Applications; Computer Science,
Software Engineering; Engineering, Multidisciplinary
SC Computer Science; Engineering
GA 449OD
UT WOS:000266339000013
ER
PT J
AU Anton, SR
Inman, DJ
Park, G
AF Anton, Steven R.
Inman, Daniel J.
Park, Gyuhae
TI Reference-Free Damage Detection Using Instantaneous Baseline
Measurements
SO AIAA JOURNAL
LA English
DT Article
ID WAFER ACTIVE SENSORS; EMBEDDED PIEZOELECTRIC ELEMENTS;
REINFORCED-CONCRETE STRUCTURES; LAMB WAVES; OPTIMAL PLACEMENT; HEALTH;
PLATES; DELAMINATION; DIAGNOSIS; ARRAY
AB A novel method of guided wave-based structural health monitoring is developed in which no direct baseline data are required to identify structural damage. Conventional wave propagation structural health monitoring techniques involve the comparison of structural response data to a prerecorded baseline or reference measurement taken while the structure is in pristine condition. The need to compare new data to a prerecorded baseline can present several complications, including data management issues and difficulty in accommodating the effects of varying environmental and operational conditions on the data. To address the complications associated with baseline comparison, this new method accomplishes reference-free damage detection by acquiring what is referred to as an instantaneous baseline measurement for analysis. The instantaneous baseline technique is validated through both analytical and experimental testing. Analytical tests show that the instantaneous baseline method is able to correctly identify simulated damage. It is found experimentally that nonpermanent damage in the form of removable putty as well as permanent damage in the form of corrosion and cuts are all identifiable in thin aluminum plate test structures without direct comparison to baseline data when implementing the instantaneous baseline method.
C1 [Anton, Steven R.; Inman, Daniel J.] Virginia Polytech Inst & State Univ, Dept Mech Engn, Ctr Intelligent Mat Syst & Struct, Blacksburg, VA 24061 USA.
[Park, Gyuhae] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Anton, SR (reprint author), Virginia Polytech Inst & State Univ, Dept Mech Engn, Ctr Intelligent Mat Syst & Struct, 310 Durham Hall, Blacksburg, VA 24061 USA.
NR 34
TC 27
Z9 28
U1 2
U2 5
PU AMER INST AERONAUT ASTRONAUT
PI RESTON
PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA
SN 0001-1452
J9 AIAA J
JI AIAA J.
PD AUG
PY 2009
VL 47
IS 8
BP 1952
EP 1964
DI 10.2514/1.43252
PG 13
WC Engineering, Aerospace
SC Engineering
GA 478RV
UT WOS:000268606900013
ER
PT J
AU Gibbs, GV
Wallace, AF
Cox, DF
Downs, RT
Ross, NL
Rosso, KM
AF Gibbs, G. V.
Wallace, A. F.
Cox, D. F.
Downs, R. T.
Ross, N. L.
Rosso, K. M.
TI Bonded interactions in silica polymorphs, silicates, and siloxane
molecules
SO AMERICAN MINERALOGIST
LA English
DT Review
DE Bonded interactions; electron density distributions; silica; coesite;
quartz; stishovite; cristobalite; siloxane
ID ELECTRON-DENSITY DISTRIBUTIONS; CRITICAL-POINT PROPERTIES;
CHEMICAL-BOND; EARTH MATERIALS; CHARGE-DENSITY; SIO BOND; X-RAY;
LOCALIZATION FUNCTION; FRAMEWORK STRUCTURES; POPULATION ANALYSIS
AB Experimental model electron density distributions obtained for the silica polymorphs coesite and stishovite are comparable with electron density distributions calculated for various silicates and siloxane molecules. The Si-O bond lengths and Si-O-Si angles calculated with First-principles density functional theory methods as a function of pressure are also comparable with the bond lengths and angles observed for coesite and quartz within the experimental error. The similarity of the topological properties of the Si-O bonded interactions and the experimental and the geometry-optimized structures for the silica polymorphs provide a basis for understanding the properties and crystal chemistry of silica. The agreement supports the argument that the bulk of the structural and physical properties of the silica polymorphs are intrinsic properties of molecular-like coordination polyhedra such that the silica polymorphs can be pictured as "supermolecules" of silica bound by virtually the same forces that bind the Si and O atoms in simple siloxane molecules. The topology of the electron density distribution is consistent with the assertion that the Si-O bonded interaction arises from the net electrostatic attraction exerted on the nuclei by the electron density accumulated between the Si and O atoms. The correlation between the Si-O bond length and Si-O-Si angle is ascribed to the progressive local concentration of the electron density in the nonbonded lone pair region of the O atom rather than to a bonded interaction that involves the d-orbitals on Si.
The accumulation of deformation electron density, del rho(r), in the bonded and nonbonded regions of the Si-O bond, the close proximity of the bond critical point, r(c), of the bond with the nodal surface of the Laplacian and the negative value of the total energy density are taken as evidence that the bond has a nontrivial component of shared character. For M-O bonded interactions for first and second row metal atoms bonded to O, del(2)rho(r(c)) is positive and increases linearly as rho(r(c)) and G(r(c))/rho(r(c)) both increase and as the value of H(r(c)) decreases; the greater the shared character of the interaction, the larger the values of both del(2)rho(r(c)) and G(r(c))/rho(r(c)). In addition, a mapping of del(2)rho(r) serves to highlight those Lewis base domains that are susceptible to electrophilic attack by H, like the O atoms in coesite involved in bent Si-O-Si angles; the narrower the angle, the greater the affinity for H. On the basis of the net charges conferred on the Si and O atoms and the bonded radii of the two atoms, the Si-O bond for stishovite, with six-coordinated Si and three-coordinated O, is indicated to be more ionic in character than that in quartz with four-coordinated Si and two-coordinated O. Unlike the conclusion reached for ionic and crystal radii, it is the bonded radius of the O atom that increases with the increasing coordination number of Si, not the radius of the Si atom. The modeling of the electron density distributions for quartz, coesite, and beryl as a function of pressure suggests that the shared character of the bonded interactions in these minerals increases slightly with increasing pressure. The insight provided by the calculations and the modeling of the electron density distributions and the structures of the silica polymorphs bodes well for future Earth materials studies that are expected to improve and clarify our understanding of the connection between properties and structure within the framework of quantum mechanical observables, to find new and improved uses for the materials and to enhance our understanding of crystal chemistry and chemical reactions of materials in their natural environment at the atomic level.
C1 [Gibbs, G. V.; Wallace, A. F.; Ross, N. L.] Virginia Tech, Dept Geosci, Blacksburg, VA 24061 USA.
[Cox, D. F.] Virginia Tech, Dept Chem Engn, Blacksburg, VA 24061 USA.
[Downs, R. T.] Univ Arizona, Dept Geosci, Tucson, AZ 85721 USA.
[Rosso, K. M.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA.
[Rosso, K. M.] Pacific NW Natl Lab, WR Wiley Environm Mol Sci Lab, Richland, WA 99352 USA.
RP Gibbs, GV (reprint author), Virginia Tech, Dept Geosci, Blacksburg, VA 24061 USA.
EM ggibbs@vt.edu
RI Wallace, Adam/A-9976-2012
FU National Science Foundation; U.S. Department of Energy [EAR-0609885,
FAR-0609906, DE-FG02-97ER14751]; Office of Basic Energy Sciences,
Geoscience Division and computational facilities; Environmental
Molecular Sciences Laboratory (EMSL); Pacific Northwest National
Laboratory (PNNL); U.S. DOE Office ofBiological and Environmental
Research [DEAC06-76RLO 1830]
FX The National Science Foundation and the U.S. Department of Energy are
thanked for supporting this study with Grants EAR-0609885 (N.L.R. and
G.VG.), FAR-0609906(R.T.D.). and DE-FG02-97ER14751 (D.F.C.). K.M.R.
acknowledges agrant from the U.S. Department of Energy (DOE). Office of
Basic Energy Sciences, Geoscience Division and computational facilities
and support from the Environmental Molecular Sciences Laboratory (EMSL)
at the Pacific Northwest National Laboratory (PNNL). The computations
were performed in part at the EMSL at PNNL. The EMSL is a national
scientific user facility sponsored by the U.S. DOE Office ofBiological
and Environmental Research. PNNL is operated by Battelle for the DOE
under contract DEAC06-76RLO 1830. G.V.G. owes a debt to his good friend
and colleague Richard Bader for forging his elegant theory on the
topology of electron density distributions and in particularly for his
patience in responding to his many entails seeking advice and help in
understanding the science. we are pleased to acknowledge Mauro Prencipe
of the University of Torino for reviewing the manuscript and for making
several important suggestions that clearly improved the manuscript. We
also thank a second reviewer who urged that we make a statement at the
beginning of the manuscript, giving the reader an overview of the
contents of the paper. It was a good idea and we thank the reviewer for
the suggestion. Color in figures courtesy of MSA Color Fund.
NR 111
TC 17
Z9 17
U1 5
U2 35
PU MINERALOGICAL SOC AMER
PI CHANTILLY
PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA
SN 0003-004X
J9 AM MINERAL
JI Am. Miner.
PD AUG-SEP
PY 2009
VL 94
IS 8-9
BP 1085
EP 1102
DI 10.2138/am.2009.3215
PG 18
WC Geochemistry & Geophysics; Mineralogy
SC Geochemistry & Geophysics; Mineralogy
GA 485AR
UT WOS:000269093200001
ER
PT J
AU Zhu, ML
Bendiak, B
Clowers, B
Hill, HH
AF Zhu, Maolei
Bendiak, Brad
Clowers, Brian
Hill, Herbert H., Jr.
TI Ion mobility-mass spectrometry analysis of isomeric carbohydrate
precursor ions
SO ANALYTICAL AND BIOANALYTICAL CHEMISTRY
LA English
DT Article
DE Carbohydrate isomers; Separation; Precursor ions; Tandem mass
spectrometry; Ion mobility spectrometry
ID ELECTROSPRAY-IONIZATION; SEPARATION; GLYCOSYLATION; DISACCHARIDES;
DIFFERENTIATION; TIME; OLIGOSACCHARIDES; IDENTIFICATION; HETEROGENEITY;
EMBRYOGENESIS
AB The rapid separation of isomeric precursor ions of oligosaccharides prior to their analysis by mass spectrometry to the nth power (MS (n) ) was demonstrated using an ambient pressure ion mobility spectrometer (IMS) interfaced with a quadrupole ion trap. Separations were not limited to specific types of isomers; representative isomers differing solely in the stereochemistry of sugars, in their anomeric configurations, and in their overall branching patterns and linkage positions could be resolved in the millisecond time frame. Physical separation of precursor ions permitted independent mass spectra of individual oligosaccharide isomers to be acquired to at least MS(3), the number of stages of dissociation limited only practically by the abundance of specific product ions. IMS-MS (n) analysis was particularly valuable in the evaluation of isomeric oligosaccharides that yielded identical sets of product ions in tandem mass spectrometry experiments, revealing pairs of isomers that would otherwise not be known to be present in a mixture if evaluated solely by MS dissociation methods alone. A practical example of IMS-MS(n) analysis of a set of isomers included within a single high-performance liquid chromatography fraction of oligosaccharides released from bovine submaxillary mucin is described.
C1 [Zhu, Maolei; Hill, Herbert H., Jr.] Washington State Univ, Dept Chem, Pullman, WA 99163 USA.
[Bendiak, Brad] Univ Colorado Denver, Hlth Sci Ctr, Dept Cellular & Dev Biol, Aurora, CO 80045 USA.
[Bendiak, Brad] Univ Colorado Denver, Hlth Sci Ctr, Biomol Struct Program, Aurora, CO 80045 USA.
[Clowers, Brian] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Hill, HH (reprint author), Washington State Univ, Dept Chem, Pullman, WA 99163 USA.
EM hhhill@wsu.edu
FU NIH [5R21RR02004602]; NSF [CHE0137986]
FX This work was supported by a grant from NIH (#5R21RR02004602). Partial
support of the preliminary studies was also from an NSF grant
(CHE0137986). Thermo Finnigan provided the LCQ Deca quadrupole ion trap
mass spectrometer that made this study possible.
NR 32
TC 58
Z9 58
U1 2
U2 33
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 1618-2642
J9 ANAL BIOANAL CHEM
JI Anal. Bioanal. Chem.
PD AUG
PY 2009
VL 394
IS 7
BP 1853
EP 1867
DI 10.1007/s00216-009-2865-y
PG 15
WC Biochemical Research Methods; Chemistry, Analytical
SC Biochemistry & Molecular Biology; Chemistry
GA 470SP
UT WOS:000268000600016
PM 19562326
ER
PT J
AU Li, N
Tang, H
Gai, HW
Dong, XL
Wang, Q
Yeung, ES
AF Li, Nan
Tang, Hui
Gai, Hongwei
Dong, Xiuling
Wang, Qi
Yeung, Edward S.
TI Determination of protein surface excess on a liquid/solid interface by
single-molecule counting
SO ANALYTICAL AND BIOANALYTICAL CHEMISTRY
LA English
DT Article
DE Single-molecule imaging; Protein adsorption; Hydrophilic/hydrophobic
surface; Surface excess
ID BOVINE SERUM-ALBUMIN; SILICA-WATER INTERFACE; FLUORESCENCE MICROSCOPY;
CAPILLARY-ELECTROPHORESIS; NEUTRON REFLECTION; SOLID-SURFACES;
LONG-RANGE; ADSORPTION-KINETICS; SOLUTION PH; LYSOZYME
AB Determination of protein surface excess is an important way of evaluating the properties of biomaterials and the characteristics of biosensors. A single-molecule counting method is presented that uses a standard fluorescence microscope to measure coverage of a liquid/solid interface by adsorbed proteins. The extremely low surface excess of lysozyme and bovine serum albumin (BSA), in a bulk concentration range from 0.3 nmol L(-1) (0.02 mu g mL(-1)) to 3 nmol L(-1) (0.2 mu g mL(-1)), were measured by recording the counts of spatially isolated single molecules on either hydrophilic (glass) or hydrophobic (polydimethylsiloxane, PDMS) surfaces at different pH. The differences observed in amounts of adsorbed proteins under different experimental conditions can be qualitatively explained by the combined interactions of electrostatic and hydrophobic forces. This, in turn, implies that single- molecule counting is an effective way of measuring surface coverage at a liquid/solid interface.
C1 [Gai, Hongwei] Hunan Univ, Coll Chem & Chem Engn, Changsha 410082, Hunan, Peoples R China.
[Yeung, Edward S.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA.
[Yeung, Edward S.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
[Wang, Qi] Dalian Med Univ, Hosp Affiliated 2, Dalian 116023, Peoples R China.
[Dong, Xiuling] Dalian Third Municipal Hosp, Dalian 116033, Peoples R China.
[Gai, Hongwei] Hunan Univ, State Key Lab Chemobiosensing & Chemometr, Changsha 410082, Hunan, Peoples R China.
[Li, Nan; Tang, Hui; Gai, Hongwei; Yeung, Edward S.] Hunan Univ, Ctr Biomed Engn, Changsha 410082, Hunan, Peoples R China.
RP Gai, HW (reprint author), Hunan Univ, Coll Chem & Chem Engn, A202, Changsha 410082, Hunan, Peoples R China.
EM gaihw@hnu.cn
FU Natural Science Foundation of China (NSFC) [20705007, 30570479,
30670532]; Hunan University "985" Fund
FX The authors are grateful to the Natural Science Foundation of China
(NSFC, 20705007, 30570479, 30670532) and the Hunan University "985" Fund
for financial support.
NR 47
TC 4
Z9 4
U1 1
U2 16
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 1618-2642
J9 ANAL BIOANAL CHEM
JI Anal. Bioanal. Chem.
PD AUG
PY 2009
VL 394
IS 7
BP 1879
EP 1885
DI 10.1007/s00216-009-2888-4
PG 7
WC Biochemical Research Methods; Chemistry, Analytical
SC Biochemistry & Molecular Biology; Chemistry
GA 470SP
UT WOS:000268000600018
PM 19543884
ER
PT J
AU Stewart, ME
Yao, JM
Maria, J
Gray, SK
Rogers, JA
Nuzzo, RG
AF Stewart, Matthew E.
Yao, Jimin
Maria, Joana
Gray, Stephen K.
Rogers, John A.
Nuzzo, Ralph G.
TI Multispectral Thin Film Biosensing and Quantitative Imaging Using 3D
Plasmonic Crystals
SO ANALYTICAL CHEMISTRY
LA English
DT Article
ID NANOSCALE OPTICAL BIOSENSOR; SUBWAVELENGTH HOLE ARRAYS; SELF-ASSEMBLED
MONOLAYERS; RESONANCE SPECTROSCOPY; REAL-TIME; DISTANCE-DEPENDENCE;
METAL NANOPARTICLES; MEDICAL DIAGNOSTICS; SPR BIOSENSORS; SURFACE
AB This work provides plasmortic crystal platforms for quantitative imaging mode biosensing and multispectral immunoassays, establishing and validating both the optical and equilibrium bases for their operation. We investigated the distance-dependent refractive index sensitivity of full 3D plasmonic crystals to thin polymeric films formed using layer by layer (LbL) assembly of polyelectrolytes as a model system. LbL was also used to determine the preferred gold thickness and plasmonic crystal design rules (nanowell diameter and periodicity) for improved thin-film sensitivity, and full 3D finite-difference time-domain (FDTD) calculations were used to quantitatively model and confirm the experimentally observed thin film sensitivities. The integrated multispectral response of the crystals increases approximately linearly with film thickness for values <70 nm, which enables the use of molecular rulers with known thicknesses (such as self-assembled monolayers of alkanethiols on gold) to calibrate these optics for quantitative detection and speciation of surface binding events in a multiplexed imaging format. The utility of these sensors and multispectral analysis for applications in quantitative biosensing was further demonstrated by measuring the equilibrium response curve of an antibody/antigen pair (rabbit antigoat IgG/goat IgG) at increasing antigen concentrations. Fitting the integrated response to a langmuir isotherm yielded a calculated binding constant on the order of similar to 10(7) M-1, which is in agreement with the affinity constants reported in the literature for anti-IgG/IgG binding pairs and provides intrinsic detection limits of similar to 400 pM for such unamplified assays.
C1 [Stewart, Matthew E.; Rogers, John A.; Nuzzo, Ralph G.] Univ Illinois, Urbana, IL 61801 USA.
[Yao, Jimin; Maria, Joana; Rogers, John A.; Nuzzo, Ralph G.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA.
[Gray, Stephen K.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
RP Nuzzo, RG (reprint author), Univ Illinois, 600 S Mathews Ave, Urbana, IL 61801 USA.
EM r-nuzzo@illinois.edu
RI Rogers, John /L-2798-2016
FU U.S. Department of Energy [DEFG02-91-ER45439, DE-FG02-07ER46453,
DE-FG02-07ER46471]; U.S. Department of Energy, Office of Science, Office
of Basic Energy Sciences [DE-AC02-06CH11357]
FX M.E.S. and J.Y. contributed equally to this work. The authors
acknowledge the support of the U.S. Department of Energy (Grant
DEFG02-91-ER45439). This work was carried out in part in the Frederick
Seitz Materials Research Laboratory Central Facilities, University of
Illinois, which are partially supported by the U.S. Department of Energy
under Grants DE-FG02-07ER46453 and DE-FG02-07ER46471. The work at
Argonne National Laboratory was supported by the U.S. Department of
Energy, Office of Science, Office of Basic Energy Sciences, under
Contract No. DE-AC02-06CH11357. We also thank Christopher R. Anderton
for assisting with the layer by layer assembly and taking spectral
measurements.
NR 78
TC 31
Z9 31
U1 1
U2 33
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0003-2700
J9 ANAL CHEM
JI Anal. Chem.
PD AUG 1
PY 2009
VL 81
IS 15
BP 5980
EP 5989
DI 10.1021/ac900819j
PG 10
WC Chemistry, Analytical
SC Chemistry
GA 476PV
UT WOS:000268455600006
PM 19591455
ER
PT J
AU Wang, GF
Driskell, JD
Porter, MD
Lipert, RJ
AF Wang, Gufeng
Driskell, Jeremy D.
Porter, Marc D.
Lipert, Robert J.
TI Control of Antigen Mass Transport via Capture Substrate Rotation:
Binding Kinetics and Implications on Immunoassay Speed and Detection
Limits
SO ANALYTICAL CHEMISTRY
LA English
DT Article
ID ANTIBODY-BINDING; FORCE MICROSCOPY; GOLD SURFACES; DIFFUSION; BIOSENSOR;
PROTEIN; LIMITATION; MONOLAYERS; MODEL; SHEAR
AB In conventional heterogeneous immunoassays, assay speed is usually limited by the rate of mass transport, i.e., diffusion of antigen to an antibody-coated surface. We previously demonstrated that assay speed can be significantly increased, without losing analytical sensitivity, by rapidly rotating the capture substrate, which decreases the thickness of the diffusion layer. In this work, we raised the rotation speed and observed that the capture of antigens deviates from the mass transport-limited assumption. To examine this issue, a general equation was derived for the rate of immuno-reaction on a rotating capture surface that takes into account both diffusion and the rate of reaction between antigen and antibody, which applies over a wide range of rotation rates. Results show that by vigorously rotating the substrate, the binding of antigens reaches a regime of intermediate binding kinetics, for which mass transport is comparable to the reaction rate. With this general solution, we are able to determine the two important binding kinetics parameters: the diffusion coefficient and the reaction rate constant. Then, using porcine parvovirus as an example, we use these parameters to investigate the limit of the assay speed and the limit of detection achievable on a practical time scale through numerical simulations of the kinetic binding curves for various assay conditions.
C1 [Lipert, Robert J.] Iowa State Univ, Inst Phys Res & Technol, Ames Lab, US DOE, Ames, IA 50011 USA.
Iowa State Univ, Dept Chem, Ames, IA 50011 USA.
RP Lipert, RJ (reprint author), Iowa State Univ, Inst Phys Res & Technol, Ames Lab, US DOE, Ames, IA 50011 USA.
EM blipert@ameslab.gov
RI Wang, Gufeng/B-3972-2011; Lipert, Robert/A-8571-2009;
OI Driskell, Jeremy/0000-0001-5082-898X
FU USDA-NADC; University of Utah Nano Institute of Utah; Institute for
Combinatorial Discovery, Iowa State University; U.S. Department of
Energy [DE-AC02-07CH11358]
FX The authors wish to thank Dr. Julia Ridpath and co-workers at USDA-NADC
for providing the viruses used in this study. This work was funded
through a grant from the USDA-NADC and by a grant from the University of
Utah Nano Institute of Utah and by the Institute for Combinatorial
Discovery, Iowa State University. The Ames Laboratory is operated by
Iowa State University under U.S. Department of Energy Contract
DE-AC02-07CH11358.
NR 34
TC 12
Z9 12
U1 2
U2 17
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0003-2700
J9 ANAL CHEM
JI Anal. Chem.
PD AUG 1
PY 2009
VL 81
IS 15
BP 6175
EP 6185
DI 10.1021/ac900704t
PG 11
WC Chemistry, Analytical
SC Chemistry
GA 476PV
UT WOS:000268455600029
PM 19572706
ER
PT J
AU Lopez-Ferrer, D
Hixson, KK
Smallwood, H
Squier, TC
Petritis, K
Smith, RD
AF Lopez-Ferrer, Daniel
Hixson, Kim K.
Smallwood, Heather
Squier, Thomas C.
Petritis, Konstantinos
Smith, Richard D.
TI Evaluation of a High-Intensity Focused Ultrasound-Immobilized Trypsin
Digestion and O-18-Labeling Method for Quantitative Proteomics
SO ANALYTICAL CHEMISTRY
LA English
DT Article
ID MASS-SPECTROMETRY; EXPRESSION PROTEOMICS; LIQUID-CHROMATOGRAPHY; SAMPLE;
PROTEINS; IDENTIFICATION; ENHANCEMENT; EFFICIENCY; EXCHANGE; MODEL
AB A new method that uses immobilized trypsin concomitant with ultrasonic irradiation results in ultrarapid digestion and more thorough O-18 labeling for quantitative protein comparisons. The method was reproducible and provided effective digestions within < 1 min with lower amounts of enzyme, compared to traditional methods. This method was demonstrated for digestion of both simple and complex protein mixtures, including bovine serum albumin, a global proteome extract from the bacteria Shewanella oneidensis, and mouse plasma, as well as O-18 labeling of complex protein mixtures, validating this method for differential proteomic measurements. This approach is simple, reproducible, cost-effective, rapid, and well suited for automation.
C1 [Lopez-Ferrer, Daniel; Smallwood, Heather; Squier, Thomas C.; Petritis, Konstantinos; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA.
[Hixson, Kim K.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA.
RP Smith, RD (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999,MSIN-K8-98, Richland, WA 99352 USA.
EM rds@pnl.gov
RI Petritis, Konstantinos/F-2156-2010; Smith, Richard/J-3664-2012
OI Smith, Richard/0000-0002-2381-2349
FU NIH National Center for Research Resources [RR018522]; NIH National
Cancer Institute [R21 CA12619-01]; U.S. Department of Energy
[DE-AC05-76RLO1830]
FX The authors thank Dr. Tyler Heibeck, Dr. Weijun Qian, Dr. Matthew
Monroe, Angela Norbeck, and Penny Colton for their helpful assistance
and suggestions. Moreover, the EMSL High-Throughput Proteomics group for
technical assistance in the mass spectrometry portion of this work.
Portions of this work were supported by the NIH National Center for
Research Resources (RR018522), NIH National Cancer Institute (R21
CA12619-01), and the Pacific Northwest National Laboratory's (PNNL)
Laboratory Directed Research and Development Program. PNNL is operated
for the U.S. Department of Energy by Battelle, under Contract No.
DE-AC05-76RLO1830.
NR 26
TC 28
Z9 28
U1 0
U2 7
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0003-2700
J9 ANAL CHEM
JI Anal. Chem.
PD AUG 1
PY 2009
VL 81
IS 15
BP 6272
EP 6277
DI 10.1021/ac802540s
PG 6
WC Chemistry, Analytical
SC Chemistry
GA 476PV
UT WOS:000268455600041
PM 19555078
ER
PT J
AU Shvartsburg, AA
Smith, RD
Wilks, A
Koehl, A
Ruiz-Alonso, D
Boyle, B
AF Shvartsburg, Alexandre A.
Smith, Richard D.
Wilks, Ashley
Koehl, Andrew
Ruiz-Alonso, David
Boyle, Billy
TI Ultrafast Differential Ion Mobility Spectrometry at Extreme Electric
Fields in Multichannel Microchips
SO ANALYTICAL CHEMISTRY
LA English
DT Article
ID ASYMMETRIC WAVE-FORMS; MASS-SPECTROMETRY; ATMOSPHERIC-PRESSURE; DRIFT
GAS; ORGANIC-COMPOUNDS; PEAK-CAPACITY; FAIMS-MS; TEMPERATURE;
RESOLUTION; SEPARATION
AB The maximum electric field intensity (E) in field asymmetric waveform ion mobility spectrometry (FAIMS) analyses was doubled to E > 60 kV/cm. In earlier devices with > 0.5 mm gaps, such strong fields cause electrical breakdown for nearly all gases at ambient pressure. As the Paschen curves are sublinear, thinner gaps permit higher E: here, we established 61 kV/cm in N(2) using microchips with 35 mu m gaps. As FAIMS efficiency is exceptionally sensitive to E, such values can in theory accelerate analyses at equal resolution by over an order of magnitude. Here we demonstrate FAIMS filtering in similar to 20 mu s or similar to 1% of the previously needed time, with a resolving power of about half that for "macroscopic" units but sufficing for many applications. Microscopic gaps enable concurrent ion processing in multiple (here, 47) channels, which greatly relaxes the charge capacity constraints of planar FAIMS designs. These chips were integrated with a beta-radiation ion source and charge detector. The separation performance is in line with first-principles modeling that accounts for high-field and anisotropic ion diffusion. By extending FAIMS operation into the previously inaccessible field range, the present instrument advances the capabilities for research into ion transport and expands options for separation of hard-to-resolve species.
C1 [Shvartsburg, Alexandre A.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA.
[Wilks, Ashley; Koehl, Andrew; Ruiz-Alonso, David; Boyle, Billy] Owlstone Ltd, Cambridge CB4 0GD, England.
RP Shvartsburg, AA (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999, Richland, WA 99352 USA.
RI Smith, Richard/J-3664-2012
OI Smith, Richard/0000-0002-2381-2349
FU Battelle Independent RD program; NIH NCRR; PNNL LDRD
FX Portions of this work were supported by the Battelle Independent R&D
program, NIH NCRR, and PNNL LDRD-funded Initiative for Explosives
Detection. We thank Drs. E. G. Nazarov and L. Jamieson for their data on
DMMP ions and Drs. K. Tang and D. Toutoungi for insightful discussions.
NR 49
TC 50
Z9 52
U1 4
U2 35
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0003-2700
J9 ANAL CHEM
JI Anal. Chem.
PD AUG 1
PY 2009
VL 81
IS 15
BP 6489
EP 6495
DI 10.1021/ac900892u
PG 7
WC Chemistry, Analytical
SC Chemistry
GA 476PV
UT WOS:000268455600067
PM 19583243
ER
PT J
AU Lyczkowski, RW
Alevriadou, BR
Horner, M
Panchal, CB
Shroff, SG
AF Lyczkowski, Robert W.
Alevriadou, B. Rita
Horner, Marc
Panchal, Chandrakant B.
Shroff, Sanjeev G.
TI Application of Multiphase Computational Fluid Dynamics to Analyze
Monocyte Adhesion
SO ANNALS OF BIOMEDICAL ENGINEERING
LA English
DT Article
DE U937 cells; Wall shear stress; Atherosclerosis; Monolayer; Population
balance; Bell model
ID SHEAR-STRESS GRADIENTS; BACKWARD-FACING STEP; 3-DIMENSIONAL FLOW MODEL;
CELL-ADHESION; E-SELECTIN; VASCULAR ENDOTHELIUM; LEUKOCYTE ADHESION;
MATHEMATICAL-MODEL; TEMPORAL GRADIENTS; CORONARY-ARTERY
AB Study of the mechanisms of monocyte adhesion initiating atheroslerotic lesions has engaged investigators for decades. Single-phase computational fluid dynamics (CFD) analyses fail to account for particulate migration. Consequently, inconsistencies arise when correlating adhesion with wall shear stress (WSS). The purpose of this paper is to present, to our knowledge, the first computational analysis of in vitro U937 monocyte-like human cell adhesion data using a coupled multiphase CFD-population balance adhesion model. The CFD model incorporates multiphase non-Newtonian hemodynamic models to compute the spatial distributions of freely flowing monocytes and WSSs in control volumes adjacent to the wall. Measurements of monocyte adhesion onto an E-selectin-coated flow model that included an idealized stenosis and an abrupt expansion were available from the literature. In this study, we develop a new monolayer population balance adhesion model, based on the widely accepted mechanism of ligand-receptor binding, coupled to the CFD results. The monolayer population balance model accounts for the interactions of freely flowing, rolling, and adhering monocytes with surfaces via first-order reactions, transport of rolling cells in the monolayer, and the concept of a WSS detachment threshold, clearly evident in the adhesion experiments. The new paradigm of coupling the multiphase hemodynamic CFD model with the proposed adhesion model is illustrated by determining and interpreting the model parameters for experimental datasets having Reynolds numbers of 100 and 140. The coupled multiphase CFD adhesion model is able to simultaneously predict the spatial variations in freely flowing monocytes, their adherent number density, and carrier fluid WSSs adjacent to ligand-coated flow cell surfaces.
C1 [Lyczkowski, Robert W.; Panchal, Chandrakant B.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA.
[Alevriadou, B. Rita] Ohio State Univ, Dept Biomed Engn, Columbus, OH 43210 USA.
[Horner, Marc] ANSYS Inc, Evanston, IL 60201 USA.
[Shroff, Sanjeev G.] Univ Pittsburgh, Dept Bioengn, Pittsburgh, PA 15219 USA.
[Alevriadou, B. Rita] Ohio State Univ, Dept Internal Med, Columbus, OH 43210 USA.
RP Lyczkowski, RW (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM rlyczkowski@anl.gov
RI Alevriadou, Barbara/E-2628-2011
FU McGinnis Chair Endowed Funds (SGS)
FX The authors would like to thank Dr. Monica Hinds, Oregon Health and
Science University Biomedical Engineering, for providing us with the
original cell adhesion data from her Ph. D. work. This research was
partially supported by the McGinnis Chair Endowed Funds (SGS).
NR 72
TC 9
Z9 9
U1 2
U2 20
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0090-6964
J9 ANN BIOMED ENG
JI Ann. Biomed. Eng.
PD AUG
PY 2009
VL 37
IS 8
BP 1516
EP 1533
DI 10.1007/s10439-009-9729-7
PG 18
WC Engineering, Biomedical
SC Engineering
GA 469JO
UT WOS:000267894100003
PM 19521774
ER
PT J
AU Hudson, NH
Ougouag, AM
Rahnema, F
Gougar, H
AF Hudson, Nathanael H.
Ougouag, Abderrafi M.
Rahnema, Farzad
Gougar, Hans
TI A Pebble Bed Reactor cross section methodology
SO ANNALS OF NUCLEAR ENERGY
LA English
DT Article
AB A method is presented for the evaluation of microscopic cross sections for the Pebble Bed Reactor (PBR) neutron diffusion computational models during convergence to an equilibrium (asymptotic) fuel cycle. This method considers the isotopics within a core spectral zone and the leakages from such a zone as they arise during reactor operation. The randomness of the spatial distribution of fuel grains within the fuel pebbles and that of the fuel and moderator pebbles within the core, the double heterogeneity of the fuel, and the indeterminate burnup of the spectral zones all pose a unique challenge for the computation of the local microscopic cross sections. As prior knowledge of the equilibrium composition and leakage is not available, it is necessary to repeatedly re-compute the group constants with updated zone information. A method is presented to account for local spectral zone composition and leakage effects without resorting to frequent spectrum code calls. Fine group data are pre-computed for a range of isotopic states. Microscopic cross sections and zone nuclide number densities are used to construct fine group macroscopic cross sections, which, together with fission spectra, flux modulation factors, and zone buckling, are used in the solution of the slowing down balance to generate a new or updated spectrum. The microscopic cross-sections are then re-collapsed with the new spectrum for the local spectral zone. This technique is named the Spectral History Correction (SHC) method. it is found that this method accurately recalculates local broad group microscopic cross sections. Significant improvement in the core eigen-value, flux, and power peaking factor is observed when the local cross sections are corrected for the effects of the spectral zone composition and leakage in two-dimensional PBR test problems. (C) 2009 Elsevier Ltd. All rights reserved.
C1 [Hudson, Nathanael H.; Rahnema, Farzad] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Nucl & Radiol Engn Program, Atlanta, GA 30332 USA.
[Hudson, Nathanael H.; Rahnema, Farzad] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Med Phys Program, Atlanta, GA 30332 USA.
[Ougouag, Abderrafi M.; Gougar, Hans] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
RP Rahnema, F (reprint author), Georgia Inst Technol, George W Woodruff Sch Mech Engn, Nucl & Radiol Engn Program, Atlanta, GA 30332 USA.
EM farzad@gatech.edu
OI Ougouag, Abderrafi/0000-0003-4436-380X
NR 15
TC 1
Z9 2
U1 0
U2 4
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0306-4549
J9 ANN NUCL ENERGY
JI Ann. Nucl. Energy
PD AUG
PY 2009
VL 36
IS 8
BP 1138
EP 1150
DI 10.1016/j.anucene.2009.04.013
PG 13
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA 489KU
UT WOS:000269419800018
ER
PT J
AU Ganapol, BD
Kornreich, DE
AF Ganapol, Barry D.
Kornreich, Drew E.
TI Three-dimensional transport theory: An analytical solution for the
internal beam searchlight problem, II
SO ANNALS OF NUCLEAR ENERGY
LA English
DT Article
ID RADIATIVE-TRANSFER
AB Multidimensional semi-analytical particle transport benchmarks to provide highly accurate standards of assessment are few and far between. Because of a well-established 1D theory for the analytical solution of the transport equation, it is sometimes possible however, to "bootstrap" 1D solutions to give more comprehensive solution representations. Here, we propose the internal searchlight problem in a half space, designated ISLP/HS, as a multidimensional benchmark to be constructed from 1D solutions. This is a variation of the usual SLP/HS where a source emits within the half space rather than striking its surface. Our primary interest is in the exiting intensity at the free surface established through a new Fn formulation. The benchmark features true 2/3D particle transport through integration of a point kernel to simulate 2/3D source emission. In this way, we accommodate a solid or hollow cylindrical source and a general line source in addition to the standard point, ring and disk sources featured in previous investigations. (C) 2009 Elsevier Ltd. All rights reserved.
C1 [Ganapol, Barry D.] Univ Arizona, Dept Mech & Aerosp Engn, Tucson, AZ 85721 USA.
[Kornreich, Drew E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Ganapol, BD (reprint author), Univ Arizona, Dept Mech & Aerosp Engn, Tucson, AZ 85721 USA.
EM ganapol@cowboy.ame.arizona.edu; drewek@lanl.gov
NR 10
TC 4
Z9 4
U1 0
U2 0
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0306-4549
J9 ANN NUCL ENERGY
JI Ann. Nucl. Energy
PD AUG
PY 2009
VL 36
IS 8
BP 1242
EP 1255
DI 10.1016/j.anucene.2009.01.021
PG 14
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA 489KU
UT WOS:000269419800030
ER
PT J
AU Bedaque, PF
D'Incao, JP
AF Bedaque, Paulo F.
D'Incao, Jose P.
TI Superfluid phases of the three-species fermion gas
SO ANNALS OF PHYSICS
LA English
DT Article
DE Cold gases; Atomic traps; Many-body physics; Efimov effect; Three-body
problem; Fermion gas
ID RESONANTLY-INTERACTING PARTICLES; LARGE SCATTERING LENGTH; 3-BODY
RECOMBINATION; ATOMS; STATES
AB We discuss the zero temperature phase diagram of a dilute gas with three fermionic species. We make use of solvable limits to conjecture the behavior of the system in the "unitary" regions. The physics of the Thomas-Efimov effect plays a role in these considerations. We find a rich phase diagram with superfluid, gapless superfluid and inhomogeneous phases with different symmetry breaking patterns. We then discuss one particular possible experimental implementation in a system of Li-6 atoms and the possible phases arising in this system as an external magnetic field is varied across three overlapping Feshbach resonances. We also suggest how to experimentally distinguish the different phases. (c) 2009 Elsevier Inc. All rights reserved.
C1 [Bedaque, Paulo F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Bedaque, Paulo F.] Univ Maryland, College Pk, MD 20742 USA.
[D'Incao, Jose P.] Kansas State Univ, Dept Phys, Manhattan, KS 66506 USA.
RP Bedaque, PF (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
EM bedaque@umd.edu; jpdincao@jila.colorado.edu
RI D'Incao, Jose/B-1289-2010
NR 36
TC 22
Z9 22
U1 1
U2 2
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0003-4916
EI 1096-035X
J9 ANN PHYS-NEW YORK
JI Ann. Phys.
PD AUG
PY 2009
VL 324
IS 8
BP 1763
EP 1768
DI 10.1016/j.aop.2009.02.005
PG 6
WC Physics, Multidisciplinary
SC Physics
GA 473EC
UT WOS:000268187800010
ER
PT J
AU Zhang, YB
Monchy, S
Greenberg, B
Mergeay, M
Gang, O
Taghavi, S
van der Lelie, D
AF Zhang, Yian-Biao
Monchy, Sebastien
Greenberg, Bill
Mergeay, Max
Gang, Oleg
Taghavi, Safiyh
van der Lelie, Daniel
TI ArsR arsenic-resistance regulatory protein from Cupriavidus
metallidurans CH34
SO ANTONIE VAN LEEUWENHOEK INTERNATIONAL JOURNAL OF GENERAL AND MOLECULAR
MICROBIOLOGY
LA English
DT Article; Proceedings Paper
CT Symposium on Work with Strain CH34
CY APR, 2008
CL Belgian Nucl Res Ctr, Mol, BELGIUM
HO Belgian Nucl Res Ctr
DE Cupriavidus metallidurans CH34; Arsenic resistance; ArsR; Gene
expression; Metal binding
ID AUREUS PLASMID PI258; HEAVY-METALS; OPERON; REDUCTION; KINETICS; GENES
AB The Cupriavidus metallidurans CH34 arsR gene, which is part of the arsRIC (2) BC (1) HP operon, and its putative arsenic-resistance regulatory protein were identified and characterized. The arsenic-induced transcriptome of C. metallidurans CH34 showed that the genes most upregulated in the presence of arsenate were all located within the ars operon, with none of the other numerous heavy metal resistance systems present in CH34 being induced. A transcriptional fusion between the luxCDABE operon and the arsR promoter/operator (P/O) region was used to confirm the in vivo induction of the ars operon by arsenite and arsenate. The arsR gene was cloned into expression vectors allowing for the overexpression of the ArsR protein as either his-tagged or untagged protein. The ability of the purified ArsR proteins to bind to the ars P/O region was analyzed in vitro by gel mobility shift assays. ArsR showed an affinity almost exclusively to its own ars P/O region. Dissociation of ArsR and its P/O region was metal dependent, and based on decreasing degrees of dissociation three groups of heavy metals could be distinguished: As(III), Bi(III), Co(II), Cu(II), Ni(II); Cd(II); Pb(II) and Zn(II), while no dissociation was observed in the presence of As(V).
C1 [Zhang, Yian-Biao; Monchy, Sebastien; Greenberg, Bill; Taghavi, Safiyh; van der Lelie, Daniel] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA.
[Gang, Oleg] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
[Monchy, Sebastien; Mergeay, Max] CEN SCK, Microbiol Lab, Ctr Studies Nucl Energy, B-2400 Mol, Belgium.
RP van der Lelie, D (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA.
EM vdlelied@bnl.gov
RI Mergeay, Max/H-2003-2011
NR 17
TC 21
Z9 21
U1 0
U2 16
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0003-6072
J9 ANTON LEEUW INT J G
JI Antonie Van Leeuwenhoek
PD AUG
PY 2009
VL 96
IS 2
BP 161
EP 170
DI 10.1007/s10482-009-9313-z
PG 10
WC Microbiology
SC Microbiology
GA 476WW
UT WOS:000268478500005
PM 19238575
ER
PT J
AU Taghavi, S
Lesaulnier, C
Monchy, S
Wattiez, R
Mergeay, M
van der Lelie, D
AF Taghavi, Safiyh
Lesaulnier, Celine
Monchy, Sebastien
Wattiez, Ruddy
Mergeay, Max
van der Lelie, Daniel
TI Lead(II) resistance in Cupriavidus metallidurans CH34: interplay between
plasmid and chromosomally-located functions
SO ANTONIE VAN LEEUWENHOEK INTERNATIONAL JOURNAL OF GENERAL AND MOLECULAR
MICROBIOLOGY
LA English
DT Article; Proceedings Paper
CT Symposium on Work with Strain CH34
CY APR, 2008
CL Belgian Nucl Res Ctr, Mol, BELGIUM
HO Belgian Nucl Res Ctr
DE Cupriavidus metallidurans CH34; Lead (II) resistance; pbrUTRABCD operon;
zntA; pbrR(2) cadA pbrC(2); Gene expression
ID P-TYPE ATPASES; RALSTONIA-METALLIDURANS; HEAVY-METALS;
ALCALIGENES-EUTROPHUS; STRAIN CH34; GENES; COORDINATION; PROTEIN
AB Proteome and transcriptome analysis, combined with mutagenesis, were used to better understand the response of Cupriavidus metallidurans CH34 against lead(II). Structural Pb(II)-resistance genes of the pMOL30-encoded pbrUTRABCD operon formed the major line of defense against Pb(II). However, several general stress response mechanisms under the control of alternative sigma factors such as sigma 24/rpoK, sigma 32/rpoH and sigma 28/fliA were also induced. In addition, the expression of the pbrR (2) cadA pbrC (2) operon of the CMGI-1 region and the chromosomally encoded zntA were clearly induced in the presence of Pb(II), although their respective gene products were not detected via proteomics. After inactivation of the pbrA, pbrB or pbrD genes, the expression of the pbrR (2) cadA pbrC (2) operon went up considerably. This points towards synergistic interactions between pbrUTRABCD and pbrR (2) cadA pbrC (2) to maintain a low intracellular Pb(II) concentration, where pbrR (2) cadA pbrC (2) gene functions can complement and compensate for the mutations in the pbrA and pbrD genes. This role of zntA and cadA to complement for the loss of pbrA was further confirmed by mutation analysis. The pbrBa center dot Tn(Km2) mutation resulted in the most significant decrease of Pb(II) resistance, indicating that Pb(II) sequestration, avoiding re-entry of this toxic metal ion, forms a critical step in the pbr-encoded Pb(II) resistance mechanism.
C1 [Taghavi, Safiyh; Lesaulnier, Celine; Monchy, Sebastien; van der Lelie, Daniel] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA.
[Monchy, Sebastien; Mergeay, Max] CEN SCK, Belgian Ctr Nucl Energy, B-2400 Mol, Belgium.
[Wattiez, Ruddy] Univ Mons, Serv Chim Biol, B-7000 Mons, Belgium.
RP van der Lelie, D (reprint author), Brookhaven Natl Lab, Dept Biol, Bldg 463, Upton, NY 11973 USA.
EM vdlelied@bnl.gov
RI Mergeay, Max/H-2003-2011
NR 29
TC 29
Z9 30
U1 5
U2 8
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0003-6072
J9 ANTON LEEUW INT J G
JI Antonie Van Leeuwenhoek
PD AUG
PY 2009
VL 96
IS 2
BP 171
EP 182
DI 10.1007/s10482-008-9289-0
PG 12
WC Microbiology
SC Microbiology
GA 476WW
UT WOS:000268478500006
PM 18953667
ER
PT J
AU Van der Auwera, GA
Krol, JE
Suzuki, H
Foster, B
Van Houdt, R
Brown, CJ
Mergeay, M
Top, EM
AF Van der Auwera, Geraldine A.
Krol, Jaroslaw E.
Suzuki, Haruo
Foster, Brian
Van Houdt, Rob
Brown, Celeste J.
Mergeay, Max
Top, Eva M.
TI Plasmids captured in C. metallidurans CH34: defining the PromA family of
broad-host-range plasmids
SO ANTONIE VAN LEEUWENHOEK INTERNATIONAL JOURNAL OF GENERAL AND MOLECULAR
MICROBIOLOGY
LA English
DT Article; Proceedings Paper
CT Symposium on Work with Strain CH34
CY APR, 2008
CL Belgian Nucl Res Ctr, Mol, BELGIUM
HO Belgian Nucl Res Ctr
DE Plasmid; Horizontal gene transfer; Broad host range; Transposon
ID COMPLETE NUCLEOTIDE-SEQUENCE; GENETIC ORGANIZATION; DEGRADING BACTERIUM;
MOBILIZING PLASMIDS; WHEAT RHIZOSPHERE; ESCHERICHIA-COLI; POLLUTED
SOILS; DNA; EVOLUTION; TRANSPOSONS
AB The self-transmissible, broad-host-range (BHR) plasmid pMOL98 was previously isolated from polluted soil using a triparental plasmid capture approach and shown to possess a replicon similar to that of the BHR plasmids pSB102 and pIPO2. Here, complete sequence analysis and comparative genomics reveal that the 55.5 kb nucleotide sequence of pMOL98 shows extensive sequence similarity and synteny with the BHR plasmid family that now includes pIPO2, pSB102, pTER331, and pMRAD02. They share a plasmid backbone comprising replication, partitioning and conjugative transfer functions. Comparison of the variable accessory regions of these plasmids shows that the majority of natural transposons, as well as the mini-transposon used to mark the plasmids, are inserted in the parA locus. The transposon unique to pMOL98 appears to have inserted from the chromosome of the recipient strain used in the plasmid capture procedure. This demonstrates the necessity for careful screening of plasmids and host chromosomes to avoid mis-interpretation of plasmid genome content. The presence of very similar BHR plasmids with different accessory genes in geographically distinct locations suggests an important role in horizontal gene exchange and bacterial adaptation for this recently defined plasmid group, which we propose to name "PromA".
C1 [Van der Auwera, Geraldine A.; Krol, Jaroslaw E.; Suzuki, Haruo; Brown, Celeste J.; Top, Eva M.] Univ Idaho, Dept Biol Sci, Moscow, ID 83844 USA.
[Van der Auwera, Geraldine A.] Harvard Univ, Sch Med, Dept Microbiol & Mol Genet, Boston, MA 02115 USA.
[Foster, Brian] DOE Joint Genome Inst, Walnut Creek, CA USA.
[Van Houdt, Rob; Mergeay, Max] CEN SCK, Belgian Ctr Nucl Energy, B-2400 Mol, Belgium.
RP Top, EM (reprint author), Univ Idaho, Dept Biol Sci, POB 443051, Moscow, ID 83844 USA.
EM evatop@uidaho.edu
RI Van der Auwera, Geraldine/B-2097-2010; Mergeay, Max/H-2003-2011; Van der
Auwera, Geraldine/N-7486-2013; Van Houdt, Rob/B-8599-2011
OI Van Houdt, Rob/0000-0002-7459-496X
NR 48
TC 27
Z9 27
U1 1
U2 7
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0003-6072
J9 ANTON LEEUW INT J G
JI Antonie Van Leeuwenhoek
PD AUG
PY 2009
VL 96
IS 2
BP 193
EP 204
DI 10.1007/s10482-009-9316-9
PG 12
WC Microbiology
SC Microbiology
GA 476WW
UT WOS:000268478500008
PM 19259779
ER
PT J
AU Van Houdt, R
Monchy, S
Leys, N
Mergeay, M
AF Van Houdt, Rob
Monchy, Sebastien
Leys, Natalie
Mergeay, Max
TI New mobile genetic elements in Cupriavidus metallidurans CH34, their
possible roles and occurrence in other bacteria
SO ANTONIE VAN LEEUWENHOEK INTERNATIONAL JOURNAL OF GENERAL AND MOLECULAR
MICROBIOLOGY
LA English
DT Article; Proceedings Paper
CT Symposium on Work with Strain CH34
CY APR, 2008
CL Belgian Nucl Res Ctr, Mol, BELGIUM
HO Belgian Nucl Res Ctr
DE Genomic islands; Tn4371; Tyrosine-based site-specific recombinase;
Integrase; Heavy metals; Chemolithotrophy; Transposon; Annotation;
Synteny
ID ALCALIGENES-EUTROPHUS CH34; COMPLETE NUCLEOTIDE-SEQUENCE; CATABOLIC
TRANSPOSON TN5271; RALSTONIA-METALLIDURANS; PSEUDOMONAS-AERUGINOSA;
GENOME SEQUENCE; SP-NOV.; LINEAR ALKYLBENZENESULFONATE; METAL
RESISTANCE; HEAVY-METALS
AB Cupriavidus metallidurans strain CH34 is a beta-Proteobacterium that thrives in low concentrations of heavy metals. The genetic determinants of resistance to heavy metals are located on its two chromosomes, and are particularly abundant in the two megaplasmids, pMOL28 and pMOL30. We explored the involvement of mobile genetic elements in acquiring these and others traits that might be advantageous in this strain using genome comparison of Cupriavidus/Ralstonia strains and related beta-Proteobacteria. At least eleven genomic islands were identified on the main replicon, three on pMOL28 and two on pMOL30. Multiple islands contained genes for heavy metal resistance or other genetic determinants putatively responding to harsh environmental conditions. However, cryptic elements also were noted. New mobile genetic elements (or variations of known ones) were identified through synteny analysis, allowing the detection of mobile genetic elements outside the bias of a selectable marker. Tn4371-like conjugative transposons involved in chemolithotrophy and degradation of aromatic compounds were identified in strain CH34, while similar elements involved in heavy metal resistance were found in Delftia acidovorans SPH-1 and Bordetella petrii DSM12804. We defined new transposons, viz., Tn6048 putatively involved in the response to heavy metals and Tn6050 carrying accessory genes not classically associated with transposons. Syntenic analysis also revealed new transposons carrying metal response genes in Burkholderia xenovorans LB400, and other bacteria. Finally, other putative mobile elements, which were previously unnoticed but apparently common in several bacteria, were also revealed. This was the case for triads of tyrosine-based site-specific recombinases and for an int gene paired with a putative repressor and associated with chromate resistance.
C1 [Van Houdt, Rob; Monchy, Sebastien; Leys, Natalie; Mergeay, Max] CEN SCK, Microbiol Unit, B-2400 Mol, Belgium.
[Monchy, Sebastien] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA.
RP Mergeay, M (reprint author), CEN SCK, Microbiol Unit, Boeretang 200, B-2400 Mol, Belgium.
EM mmergeay@sckcen.be
RI Mergeay, Max/H-2003-2011; Van Houdt, Rob/B-8599-2011
OI Van Houdt, Rob/0000-0002-7459-496X
NR 75
TC 33
Z9 33
U1 3
U2 17
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0003-6072
J9 ANTON LEEUW INT J G
JI Antonie Van Leeuwenhoek
PD AUG
PY 2009
VL 96
IS 2
BP 205
EP 226
DI 10.1007/s10482-009-9345-4
PG 22
WC Microbiology
SC Microbiology
GA 476WW
UT WOS:000268478500009
PM 19390985
ER
PT J
AU Diels, L
Van Roy, S
Taghavi, S
Van Houdt, R
AF Diels, Ludo
Van Roy, Sandra
Taghavi, Safyih
Van Houdt, Rob
TI From industrial sites to environmental applications with Cupriavidus
metallidurans
SO ANTONIE VAN LEEUWENHOEK INTERNATIONAL JOURNAL OF GENERAL AND MOLECULAR
MICROBIOLOGY
LA English
DT Article; Proceedings Paper
CT Symposium on Work with Strain CH34
CY APR, 2008
CL Belgian Nucl Res Ctr, Mol, BELGIUM
HO Belgian Nucl Res Ctr
DE Anaerobic reactors; Bioavailability; Biosensors; Cupriavidus
metallidurans; Heavy metals; Heavy metal resistance
ID ALCALIGENES-EUTROPHUS CH34; MEMBRANE BIOFILM REACTOR; HEAVY-METALS;
CHLORINATED AROMATICS; RESISTANCE; BACTERIA; SOIL; PLASMIDS;
BIOREMEDIATION; PHYTOTOXICITY
AB Cupriavidus metallidurans CH34 and related strains are adapted to metal contaminated environments. A strong resistance to environmental stressors and adaptation make it ideal strains for survival in decreasing biodiversity conditions and for bioaugmentation purposes in environmental applications. The soil bacterium C. metallidurans is able to grow chemolithoautotrophically on hydrogen and carbon dioxide allowing a strong resilience under conditions lacking organic matter. The biofilm growth on soil particles allows coping with starvation or bad conditions of pH, temperature and pollutants. Its genomic capacity of two megaplasmids encoding several heavy metal resistance operons allowed growth in heavy metal contaminated habitats. In addition its specific siderophores seem to play a role in heavy metal sequestration besides their role in the management of bioavailable iron. Efflux ATPases and RND systems pump the metal cations to the membrane surface where polysaccharides serve as heavy metal binding and nucleation sites for crystallisation of metal carbonates. These polysaccharides contribute also to flotation under specific conditions in a soil-heavy metals-bacteria suspension mixture. An inoculated moving bed sand filter was constructed to treat heavy metal contaminated water and to remove the metals in the form of biomass mixed with metal carbonates. A membrane based contactor allowed to use the bacteria as well in a versatile wastewater treatment system and to grow homogeneously formed heavy metal carbonates. Its behaviour toward heavy metal binding and flotation was combined in a biometal sludge reactor to extract and separate heavy metals from metal contaminated soils. Finally its metal-induced heavy metal resistance allowed constructing whole cell heavy metal biosensors which, after contact with contaminated soil, waste, solids, minerals and ashes, were induced in function of the bioavailable concentration (Cd, Zn, Cu, Cr, Co, Ni, Tl, Pb and Hg) in the solids and allowed to investigate the speciation of immobilization of those metals.
C1 [Diels, Ludo; Van Roy, Sandra] Vlaamse Instelling Technol Onderzoek, BU Separat & Convers Technol, Flemish Inst Technol Res, B-2400 Mol, Belgium.
[Taghavi, Safyih] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA.
[Van Houdt, Rob] CEN SCK, Microbiol Unit, Belgian Nucl Res Ctr, B-2400 Mol, Belgium.
RP Diels, L (reprint author), Vlaamse Instelling Technol Onderzoek, BU Separat & Convers Technol, Flemish Inst Technol Res, Boeretang 200, B-2400 Mol, Belgium.
EM ludo.diels@vito.be
RI Van Houdt, Rob/B-8599-2011
OI Van Houdt, Rob/0000-0002-7459-496X
NR 49
TC 23
Z9 23
U1 1
U2 30
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0003-6072
J9 ANTON LEEUW INT J G
JI Antonie Van Leeuwenhoek
PD AUG
PY 2009
VL 96
IS 2
BP 247
EP 258
DI 10.1007/s10482-009-9361-4
PG 12
WC Microbiology
SC Microbiology
GA 476WW
UT WOS:000268478500011
PM 19582590
ER
PT J
AU Buric, MP
Chen, KP
Falk, J
Woodruff, SD
AF Buric, Michael P.
Chen, Kevin P.
Falk, Joel
Woodruff, Steven D.
TI Improved sensitivity gas detection by spontaneous Raman scattering
SO APPLIED OPTICS
LA English
DT Article
ID PHOTONIC BANDGAP FIBERS; CRYSTAL FIBER; CORE; AIR
AB Accurate, real-time measurement of the dilute constituents of a gaseous mixture poses a significant challenge usually relegated to mass spectrometry. Here, spontaneous Raman backscattering is used to detect low pressure molecular gases. Rapid detection of gases in the similar to 100 parts in 10(6) (ppm) range is described. Improved sensitivity is brought about by use of a hollow-core, photonic bandgap fiber gas cell in the backscattering configuration to increase collection efficiency and an image-plane aperture to greatly reduce silica-Raman background noise. Spatial and spectral properties of the silica noise were examined with a two-dimensional CCD detector array. (C) 2009 Optical Society of America
C1 [Buric, Michael P.; Chen, Kevin P.; Falk, Joel; Woodruff, Steven D.] Natl Energy Technol Lab, Morgantown, WV 26507 USA.
[Buric, Michael P.; Chen, Kevin P.; Falk, Joel] Univ Pittsburgh, Dept Elect & Comp Engn, Pittsburgh, PA 15261 USA.
RP Falk, J (reprint author), Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA.
EM falk@engr.pitt.edu
FU Department of Energy, National Energy Technology Laboratory research in
Energy Systems and Dynamics under Research and Development Support (RDS)
[DE-AC26-04NT41817]; National Science Foundation (NSF) [0639234]
FX This technical effort was performed by support of the Department of
Energy, National Energy Technology Laboratory research in Energy Systems
and Dynamics under Research and Development Support (RDS) contract
DE-AC26-04NT41817 and from a National Science Foundation (NSF) grant
0639234. The authors thank Bruce Kang of West Virginia University for
the loan of the two-dimensional detector array.
NR 16
TC 25
Z9 25
U1 0
U2 10
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 1559-128X
EI 2155-3165
J9 APPL OPTICS
JI Appl. Optics
PD AUG 1
PY 2009
VL 48
IS 22
BP 4424
EP 4429
DI 10.1364/AO.48.004424
PG 6
WC Optics
SC Optics
GA 490BC
UT WOS:000269470800025
PM 19649047
ER
PT J
AU Ma, ZX
Holden, T
Wang, ZMM
Salamo, GJ
Yu, PY
Mao, SS
AF Ma, Zhixun
Holden, Todd
Wang, Zhiming M.
Salamo, Gregory J.
Yu, Peter Y.
Mao, Samuel S.
TI Lateral and vertical ordered one-dimensional InGaAs/GaAs quantum
structures
SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING
LA English
DT Article
ID X-RAY-DIFFRACTION; DOT CHAINS; SELF-ORGANIZATION; EPITAXIAL-GROWTH;
WIRES; STRAIN; GAAS; GAAS(100); ISLANDS; (IN,GA)AS/GAAS(100)
AB Lateral and vertical ordered one-dimensional quantum structures, i.e. InGaAs/GaAs(001) quantum dot chains and quantum wires, have been obtained using molecular beam epitaxy. It was found that the InGaAs wires or dot chains sit on two-dimensional wetting layers and run along the [-110] direction, as the result of anisotropic strain and in-plane adatom diffusion. This anisotropic nature produces a model system for studying the electronic properties of one-, two-, and three-dimensional quantum confinements and related optical responses. The strain anisotropy is of importance in determining the electronic states of the quantum structures and the surrounding strained barrier. The strain-induced effects, such as change of band-gap and splitting of heavy-light hole states, were studied experimentally and theoretically. Optical anisotropy of these quantum structures is also discussed.
C1 [Ma, Zhixun; Yu, Peter Y.; Mao, Samuel S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Holden, Todd] CUNY Queensborough Community Coll, Dept Phys, New York, NY 11364 USA.
[Wang, Zhiming M.; Salamo, Gregory J.] Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA.
RP Ma, ZX (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
EM zxma@lbl.gov
RI Wang, Zhiming/B-6320-2009; Wang, Zhiming/Q-1031-2015
FU National Science Foundation and the Department of Energy
FX The authors wish to acknowledge the National Science Foundation and the
Department of Energy for a financial support.
NR 55
TC 2
Z9 2
U1 0
U2 9
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0947-8396
J9 APPL PHYS A-MATER
JI Appl. Phys. A-Mater. Sci. Process.
PD AUG
PY 2009
VL 96
IS 2
BP 307
EP 315
DI 10.1007/s00339-009-5204-4
PG 9
WC Materials Science, Multidisciplinary; Physics, Applied
SC Materials Science; Physics
GA 459IO
UT WOS:000267095400004
ER
PT J
AU Ren, F
Xiao, XH
Cai, GX
BoWang, J
Jiang, CZ
AF Ren, Feng
Xiao, Xiang Heng
Cai, Guang Xu
BoWang, Jian
Jiang, Chang Zhong
TI Engineering embedded metal nanoparticles with ion beam technology
SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING
LA English
DT Article
ID ELECTRON-IRRADIATION; MAGNETIC-PROPERTIES; PLASMON RESONANCE;
CANCER-THERAPY; IMPLANTATION; SILICA; NANOCLUSTERS; SIO2; GLASS;
CRYSTALLIZATION
AB In this paper, we summarize our recent results of study on how to engineer the embedded metal nanoparticles in silica by ion implantation and ion irradiation technologies, including controlling the size, distribution and morphology of nanoparticles. The optical properties of the tailored nanoparticle composites are studied. Thermal annealing, electron beam irradiation, and chemical erosion are used to study the stability of these embedded nanoparticles by ex situ or in situ transmission electron microscopy observation.
C1 [Ren, Feng; Xiao, Xiang Heng; Cai, Guang Xu; BoWang, Jian; Jiang, Chang Zhong] Wuhan Univ, Key Lab Acoust & Photon Mat & Devices, Minist Educ, Wuhan 430072, Peoples R China.
[Ren, Feng; Xiao, Xiang Heng; Cai, Guang Xu; BoWang, Jian; Jiang, Chang Zhong] Wuhan Univ, Dept Phys, Wuhan 430072, Peoples R China.
[Ren, Feng] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Ren, F (reprint author), Wuhan Univ, Key Lab Acoust & Photon Mat & Devices, Minist Educ, Wuhan 430072, Peoples R China.
EM FRen@lbl.gov; czjiang@whu.edu.cn
RI Ren, Feng/F-9778-2014; Jiang, Changzhong/O-6273-2014;
OI Ren, Feng/0000-0002-9557-5995; xiao, xiangheng/0000-0001-9111-1619
FU National Natural Science Foundation of China [10435060, 10775109];
Specialized Research Fund for the Doctoral Program of Higher Education
[20050486054, 20070486069]; Young Chenguang Project of Wuhan City
[200850731371]
FX This work was partially supported by the National Natural Science
Foundation of China ( Nos. 10435060 and 10775109), by the Specialized
Research Fund for the Doctoral Program of Higher Education ( Nos.
20050486054, 20070486069), and by Young Chenguang Project of Wuhan City
( No. 200850731371).
NR 46
TC 24
Z9 25
U1 3
U2 16
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0947-8396
J9 APPL PHYS A-MATER
JI Appl. Phys. A-Mater. Sci. Process.
PD AUG
PY 2009
VL 96
IS 2
BP 317
EP 325
DI 10.1007/s00339-009-5205-3
PG 9
WC Materials Science, Multidisciplinary; Physics, Applied
SC Materials Science; Physics
GA 459IO
UT WOS:000267095400005
ER
PT J
AU Liu, D
Fina, M
Ren, L
Mao, SS
AF Liu, Deang
Fina, Michael
Ren, Li
Mao, Samuel S.
TI Enhanced luminance of organic light-emitting diodes with metal
nanoparticle electron injection layer
SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING
LA English
DT Article
ID CONJUGATED POLYMER; EMISSION; DEVICES
AB Improvement of the performance of organic light-emitting diodes (OLEDs) was achieved by implementing Magnesium-Nickel nanoparticles at the cathode-organic interface using pulsed laser deposition technique. The small geometry of Mg-Ni nanoparticles acts to enhance the localized electric field around them, thus increasing electron injection through tunneling, from the cathode to the organic layer. Improved current and luminance characteristics were demonstrated for both small molecule and polymer-based OLEDs when the nanoparticle layer was incorporated.
C1 [Liu, Deang; Fina, Michael; Ren, Li; Mao, Samuel S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Mao, SS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
EM ssmao@lbl.gov
FU US Department of Energy, Office of Energy Efficiency and Renewable
Energy [DE-AC02-05CH11231]
FX This research has been supported by the US Department of Energy, Office
of Energy Efficiency and Renewable Energy, under contract No.
DE-AC02-05CH11231.
NR 15
TC 16
Z9 17
U1 0
U2 13
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0947-8396
J9 APPL PHYS A-MATER
JI Appl. Phys. A-Mater. Sci. Process.
PD AUG
PY 2009
VL 96
IS 2
BP 353
EP 356
DI 10.1007/s00339-009-5199-x
PG 4
WC Materials Science, Multidisciplinary; Physics, Applied
SC Materials Science; Physics
GA 459IO
UT WOS:000267095400010
ER
PT J
AU Ma, ZX
Yu, KM
Walukiewicz, W
Yu, PY
Mao, SS
AF Ma, Zhixun
Yu, Kin Man
Walukiewicz, Wladek
Yu, Peter Y.
Mao, Samuel S.
TI Strain relaxation of CdTe films growing on lattice-mismatched substrates
SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING
LA English
DT Article
ID MOLECULAR-BEAM-EPITAXY; SEMICONDUCTOR RADIATION DETECTORS; PULSED-LASER
DEPOSITION; HOT-WALL EPITAXY; THIN-FILMS; GROWTH; EVOLUTION
AB We have deposited CdTe films by laser-assisted epitaxy approach and investigated the influence of substrate and film thickness on the film properties. Grown on Si(001), GaAs(001), and quartz substrates; the CdTe films exhibit preferential orientation along the cubic CdTe(111) direction. When the films are thin (< 500 nm), a blueshift of the band gap and splitting of valence bands were observed. These results are attributed to the existence of residual strains induced by mismatch of the film lattice constant with that of the substrate, and by their difference in thermal expansion coefficients. The bulk band-gap energy of 1.5 eV was achieved on the surface of thick CdTe films grown on Si(001) substrate, indicating that strain was almost completely relaxed in this case. Our results demonstrate that by a proper selection of substrate and film thickness it is possible to grow film semiconductors with band gap approaching those of bulk crystals.
C1 [Ma, Zhixun; Yu, Kin Man; Walukiewicz, Wladek; Yu, Peter Y.; Mao, Samuel S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Yu, Peter Y.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
RP Mao, SS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
EM ssmao@lbl.gov
RI Schaff, William/B-5839-2009; Yu, Kin Man/J-1399-2012
OI Yu, Kin Man/0000-0003-1350-9642
FU U. S. Department of Energy [NNSA/NA-22, DE-AC02-05CH11231]
FX This research has been supported by the U. S. Department of Energy,
NNSA/NA-22, under Contract No. DE-AC02-05CH11231.
NR 20
TC 4
Z9 4
U1 0
U2 3
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0947-8396
J9 APPL PHYS A-MATER
JI Appl. Phys. A-Mater. Sci. Process.
PD AUG
PY 2009
VL 96
IS 2
BP 379
EP 384
DI 10.1007/s00339-009-5195-1
PG 6
WC Materials Science, Multidisciplinary; Physics, Applied
SC Materials Science; Physics
GA 459IO
UT WOS:000267095400015
ER
PT J
AU Johnson, TJ
Su, YF
Valentine, NB
Kreuzer-Martin, HW
Wahl, KL
Williams, SD
Clowers, BH
Wunschel, DS
AF Johnson, Timothy J.
Su, Yin-Fong
Valentine, Nancy B.
Kreuzer-Martin, Helen W.
Wahl, Karen L.
Williams, Stephen D.
Clowers, Brian H.
Wunschel, David S.
TI The Infrared Spectra of Bacillus Bacteria Part I: Vegetative Bacillus
versus Sporulated Cells and the Contributions of Phospholipids to
Vegetative Infrared Spectra
SO APPLIED SPECTROSCOPY
LA English
DT Article
DE Infrared; Signatures; Bacteria; Bacillus; Endospores
ID FLIGHT MASS-SPECTROMETRY; RESONANCE RAMAN-SPECTRA; ARTIFICIAL
NEURAL-NETWORKS; FT-IR; RAPID IDENTIFICATION; STATISTICAL-ANALYSIS;
DIPICOLINIC ACID; FATTY-ACIDS; PHOTOACOUSTIC-SPECTROSCOPY; CALCIUM
DIPICOLINATE
AB This paper highlights the distinctions between (he infrared (IR) absorption spectra or vegetative versus sporulated Bacillus bacteria. It is observed that there are unique signatures clearly associated with either the sporulated or vegetative state and that vegetative cells (or cell debris) can contribute to the spore spectra. A distinct feature at similar to 1739 cm(-1) appears to be unique to vegetative cell spectra and can also be used as an indicator of vegetative cells or cell debris in the spore spectra. The data indicate that the band arises from a lipid-soluble species such as an ester or phospholipid carbonyl bond and are consistent with it being either phosphatidyl glycerol (PG) or phosphatidylethanolamine (PE), two major classes of phospholipids found in vegetative cells of Bacillus species. A companion work discusses bands associated with the sporulated state.
C1 [Johnson, Timothy J.; Su, Yin-Fong; Valentine, Nancy B.; Kreuzer-Martin, Helen W.; Wahl, Karen L.; Clowers, Brian H.; Wunschel, David S.] Pacific NW Natl Lab, Richland, WA 99354 USA.
[Williams, Stephen D.] Appalachian State Univ, AR Smith Dept Chem, Boone, NC 28608 USA.
RP Johnson, TJ (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99354 USA.
EM Timothy.Johnson@pnl.gov
RI Wunschel, David/F-3820-2010
FU U.S. Department of Energy; Battelle Memorial Institute [DE-AC06-76RLO
1830]; DOE's [NA-22]
FX We thank two anonymous reviewers who aided in making this a stronger
paper. PNNL is operated for the U.S. Department of Energy by the
Battelle Memorial Institute under contract DE-AC06-76RLO 1830. This work
was supported by DOE's NA-22 nuclear non-proliferation program and we
are grateful for their continuing support. We thank B.J. Schnelle for
stimulating discussions.
NR 85
TC 11
Z9 11
U1 0
U2 9
PU SOC APPLIED SPECTROSCOPY
PI FREDERICK
PA 201B BROADWAY ST, FREDERICK, MD 21701 USA
SN 0003-7028
J9 APPL SPECTROSC
JI Appl. Spectrosc.
PD AUG
PY 2009
VL 63
IS 8
BP 899
EP 907
PG 9
WC Instruments & Instrumentation; Spectroscopy
SC Instruments & Instrumentation; Spectroscopy
GA 483PR
UT WOS:000268980300006
PM 19678986
ER
PT J
AU Johnson, TJ
Williams, SD
Valentine, NB
Su, YF
AF Johnson, Timothy J.
Williams, Stephen D.
Valentine, Nancy B.
Su, Yin-Fong
TI The Infrared Spectra of Bacillus Bacteria Part II: Sporulated
Bacillus-The Effect of Vegetative Cells and Contributions of Calcium
Dipicolinate Trihydrate, CaDP center dot 3H(2)O
SO APPLIED SPECTROSCOPY
LA English
DT Article
DE Infrared; Signatures; Bacteria; Bacillus; Endospores
ID FT-IR SPECTROSCOPY; ENHANCED RAMAN-SPECTROSCOPY; FLIGHT
MASS-SPECTROMETRY; STATISTICAL-ANALYSIS; RAPID IDENTIFICATION; NITRATE
LIGANDS; TRANSFORM; SPORES; SUBTILIS; CLASSIFICATION
AB Our previous paper showed that certain infrared (IR) peaks, e.g., the peak at 1739 cm(-1), are due to varying (trace) amounts of vegetative cells amongst the Bacillus spores and that these and other vegetative bands are associated with lipid-soluble compounds, likely an ester or phospholipid. This work investigates the infrared spectra of eight different sporulated Bacillus bacteria. For the endospores it is observed that peaks at 1441, 1277, and 1015 cm(-1) along with a distinct quartet of peaks at 766, 725, 701, and 659 cm-1 are clearly associated with calcium dipicolinate trihydrate, CaDP center dot 3H(2)O. It is emphasized that the spore peaks, especially the quartet, arise from the calcium dipicolinate trihydrate and not from dipicolinic acid or other dipicolinate hydrate salts. The CaDP center dot 3H(2)O infrared peaks and the effects of hydration are studied using quantum chemistry in the PQS software package. The quartet is associated with many modes including contributions from the Ca2+ counterion and hydration waters including Ca-O-H bends, H2O-Ca-O torsions, and O-C-O bends. The 1441 and 1015 cm(-1) modes are planar pyridine modes with the 1441 cm(-1) mode primarily a ring C-N stretch and the 1015 cm(-1) mode primarily a ring C-C stretch.
C1 [Johnson, Timothy J.; Valentine, Nancy B.; Su, Yin-Fong] Pacific NW Natl Lab, Richland, WA 99354 USA.
[Williams, Stephen D.] Appalachian State Univ, AR Smith Dept Chem, Boone, NC 28608 USA.
RP Johnson, TJ (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99354 USA.
EM Timothy.Johnson@pnl.gov
FU U.S. Department of Energy [DE-AC06-76RLO 1830]; DOE's [NA-22]
FX PNNL is operated for the U.S. Department of Energy by the Battelle
Memorial Institute under contract DE-AC06-76RLO 1830. This work was
supported under the DOE's NA-22 nuclear non-proliferation program and we
are very grateful for their continuing Support.
NR 80
TC 10
Z9 10
U1 3
U2 10
PU SOC APPLIED SPECTROSCOPY
PI FREDERICK
PA 5320 SPECTRUM DRIVE SUITE C, FREDERICK, MD 21703 USA
SN 0003-7028
J9 APPL SPECTROSC
JI Appl. Spectrosc.
PD AUG
PY 2009
VL 63
IS 8
BP 908
EP 915
PG 8
WC Instruments & Instrumentation; Spectroscopy
SC Instruments & Instrumentation; Spectroscopy
GA 483PR
UT WOS:000268980300007
PM 19678987
ER
PT J
AU Davidson, ME
Kerepesi, LA
Soto, A
Chan, VT
AF Davidson, Molly E.
Kerepesi, Laura A.
Soto, Armando
Chan, Victor T.
TI D-Serine exposure resulted in gene expression changes implicated in
neurodegenerative disorders and neuronal dysfunction in male Fischer 344
rats
SO ARCHIVES OF TOXICOLOGY
LA English
DT Article
DE D-Serine; N-methyl-D-aspartate (NMDA) receptor; Transcriptomic
profiling; Pathway analysis; Neuronal dysfunction
ID METHYL-D-ASPARTATE; N-TERMINAL KINASE; GROWTH-FACTOR-I; IONOTROPIC
GLUTAMATE RECEPTORS; NUCLEOSOME REMODELING FACTOR; WNT SIGNALING
PATHWAY; TRANSCRIPTION FACTOR; C-JUN; HIPPOCAMPAL-NEURONS;
NMDA-RECEPTORS
AB d-Serine, an endogenous amino acid, is involved in many physiological processes through its interaction with the glycine binding site of the N-methyl-d-aspartate (NMDA) receptor. It has important roles in development, learning, and cell death signaling. Recent evidence suggests that decreased function of the NMDA receptor is related to the etiology of schizophrenia, and the use of d-serine as add-on therapy is beneficial in alleviating the symptoms of treatment-refractory schizophrenia. The NMDA receptor also plays a major role in neuronal cell death and neurodegeneration mediated by excitatory amino acid toxicity in ischemia, epilepsy, and trauma. Due to its co-activator function, d-serine can markedly potentiate NMDA-mediated excitotoxicity. To investigate potential adverse effects of d-serine treatment, we investigated gene expression changes in the forebrain of male F-344 rats treated with a single intraperitoneal injection of d-serine (5, 20, 50, 200, or 500 mg/kg) at 96 h post-treatment. Gene expression profiling using Affymetrix Rat Genome 230 2.0 arrays revealed that d-serine treatment resulted in up- and down-regulation of 134 and 52 genes, respectively, based on the common genes identified using three statistical methods, i.e. t test (p < 0.01 over two consecutive doses), ANOVA (with adjusted Bonferonni correction for multiple testing) and significance analysis of microarray (SAM). Self organized map (SOM) clustering analysis of the differentially expressed genes showed two clusters, one with all 134 up-regulated probe sets and the other with all 52 down-regulated probe sets. The dose-response pattern of the down-regulated cluster showed nearly a perfect mirror image of that of the up-regulated one. Gene ontology analysis revealed that pathways implicated in neuronal functions and/or neurodegenerative disorders are over-represented among the differentially expressed genes. Specifically, genes involved in vesicle-mediated transport, endocytosis, ubiquitin conjugation pathway, regulation of actin filament polymerization/depolymerization, focal adhesion, Wnt signaling, and insulin signaling were up-regulated, while genes involved in RNA metabolism/splicing/processing and Notch signaling were down-regulated. Consistent with this finding, pathway analysis using GenMAPP showed a significant number of differentially expressed genes in these pathways. In addition, the GenMAPP result also showed activation of the signaling pathways of several proinflammatory cytokines (including IL-2, IL-3, IL-5, IL-6 and TNF-alpha), which might suggest the onset of neuroinflammation. Biological association network analysis showed that several nuclear factors implicated in transcription regulation (including Taf1, Max, Myc, and Hnf4a) are highly connected to a large number of up-regulated genes. While the transcript levels of these transcription factors were not changed, their connections to Ddx3x, a gene involved in mRNA processing and translation initiation, raise the possibility that they may be up-regulated at the post-transcriptional level. The observation that Ubqln1 and Ube2d, two differentially expressed genes involved in ubiquitin-mediated proteolysis and implicated in neurodegenerative disorders, are highly connected in this network suggests a role of ubiquitination proteasome pathway in response to d-serine exposure.
This finding is consistent with the result of gene ontology analysis and suggests that d-serine treatment might result in damage to cellular proteins and subsequent up-regulation of ubiquitination proteasome pathway to clar these damaged proteins. In summary, d-serine exposure resulted in perturbation of a number of pathways implicated in neuronal functions and neurodegenerative disorders. However, activation of cellular response to counter the toxic effects of d-serine might be hindered due to the down-regulation of such important cellular machinery like RNA metabolism, splicing and processing. Consequently, cell damage might be further exacerbated. Taken together, these findings highlight the potential impacts of d-serine exposure on neuronal functions.
C1 [Davidson, Molly E.; Soto, Armando; Chan, Victor T.] USAF, Appl Biotechnol Branch, Res Lab,Human Effectiveness Directorate, Area B Wright Patterson AFB, Dayton, OH 45433 USA.
[Kerepesi, Laura A.] Battelle Mem Inst, Columbus, OH 43201 USA.
[Davidson, Molly E.] Oak Ridge Inst Sci & Educ, Columbus, OH 43201 USA.
RP Chan, VT (reprint author), USAF, Appl Biotechnol Branch, Res Lab,Human Effectiveness Directorate, Area B Wright Patterson AFB, 711th Human Performance Wing,Bldg 837,2729 R St, Dayton, OH 45433 USA.
EM Molly.Davidson@wpafb.af.mil; victor.chan@wpafb.af.mil
NR 98
TC 16
Z9 18
U1 1
U2 4
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0340-5761
J9 ARCH TOXICOL
JI Arch. Toxicol.
PD AUG
PY 2009
VL 83
IS 8
BP 747
EP 762
DI 10.1007/s00204-009-0405-3
PG 16
WC Toxicology
SC Toxicology
GA 477UB
UT WOS:000268543300002
PM 19212759
ER
PT J
AU Dieckmann, J
McKenney, K
Brodrick, J
AF Dieckmann, John
McKenney, Kurtis
Brodrick, James
TI Energy-Efficient Dehumidification
SO ASHRAE JOURNAL
LA English
DT Editorial Material
C1 [Dieckmann, John; McKenney, Kurtis] TIAX, Cambridge, MA USA.
[Brodrick, James] US DOE, Bldg Technol Program, Washington, DC USA.
RP Dieckmann, J (reprint author), TIAX, Cambridge, MA USA.
NR 4
TC 4
Z9 4
U1 0
U2 1
PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC,
PI ATLANTA
PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA
SN 0001-2491
J9 ASHRAE J
JI ASHRAE J.
PD AUG
PY 2009
VL 51
IS 8
BP 78
EP 80
PG 3
WC Thermodynamics; Construction & Building Technology; Engineering,
Mechanical
SC Thermodynamics; Construction & Building Technology; Engineering
GA 480KH
UT WOS:000268732900018
ER
PT J
AU Tasca, LAM
Kneib, JP
Iovino, A
Le Fevre, O
Kovac, K
Bolzonella, M
Lilly, SJ
Abraham, RG
Cassata, P
Cucciati, O
Guzzo, L
Tresse, L
Zamorani, G
Capak, P
Garilli, B
Scodeggio, M
Sheth, K
Zucca, E
Carollo, CM
Contini, T
Mainieri, V
Renzini, A
Bardelli, S
Bongiorno, A
Caputi, K
Coppa, G
de la Torre, S
de Ravel, L
Franzetti, P
Kampczyk, P
Knobel, C
Koekemoer, AM
Lamareille, F
Le Borgne, JF
Le Brun, V
Maier, C
Mignoli, M
Pello, R
Peng, Y
Montero, EP
Ricciardelli, E
Silverman, JD
Vergani, D
Tanaka, M
Abbas, U
Bottini, D
Cappi, A
Cimatti, A
Ilbert, O
Leauthaud, A
Maccagni, D
Marinoni, C
McCracken, HJ
Memeo, P
Meneux, B
Oesch, P
Porciani, C
Pozzetti, L
Scaramella, R
Scarlata, C
AF Tasca, L. A. M.
Kneib, J. -P.
Iovino, A.
Le Fevre, O.
Kovac, K.
Bolzonella, M.
Lilly, S. J.
Abraham, R. G.
Cassata, P.
Cucciati, O.
Guzzo, L.
Tresse, L.
Zamorani, G.
Capak, P.
Garilli, B.
Scodeggio, M.
Sheth, K.
Zucca, E.
Carollo, C. M.
Contini, T.
Mainieri, V.
Renzini, A.
Bardelli, S.
Bongiorno, A.
Caputi, K.
Coppa, G.
de la Torre, S.
de Ravel, L.
Franzetti, P.
Kampczyk, P.
Knobel, C.
Koekemoer, A. M.
Lamareille, F.
Le Borgne, J. -F.
Le Brun, V.
Maier, C.
Mignoli, M.
Pello, R.
Peng, Y.
Montero, E. Perez
Ricciardelli, E.
Silverman, J. D.
Vergani, D.
Tanaka, M.
Abbas, U.
Bottini, D.
Cappi, A.
Cimatti, A.
Ilbert, O.
Leauthaud, A.
Maccagni, D.
Marinoni, C.
McCracken, H. J.
Memeo, P.
Meneux, B.
Oesch, P.
Porciani, C.
Pozzetti, L.
Scaramella, R.
Scarlata, C.
TI The zCOSMOS redshift survey: the role of environment and stellar mass in
shaping the rise of the morphology-density relation from z similar to 1
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Review
DE galaxies: fundamental parameters; cosmology: large-scale structure of
universe; galaxies: distances and redshifts; galaxies: structure;
galaxies: evolution; Galaxy: formation
ID HUBBLE-SPACE-TELESCOPE; EVOLUTION SURVEY COSMOS; VLT DEEP SURVEY;
STAR-FORMATION HISTORY; DIGITAL SKY SURVEY; BRIGHTEST CLUSTER GALAXIES;
BAND OPTICAL-PROPERTIES; DARK-MATTER HALOES; 1ST EPOCH DATA; SPHEROIDAL
GALAXIES
AB Context. For more than two decades we have known that galaxy morphological segregation is present in the Local Universe. It is important to see how this relation evolves with cosmic time.
Aims. To investigate how galaxy assembly took place with cosmic time, we explore the evolution of the morphology-density relation up to redshift z similar to 1 using about 10 000 galaxies drawn from the zCOSMOS Galaxy Redshift Survey. Taking advantage of accurate HST/ACS morphologies from the COSMOS survey, of the well-characterised zCOSMOS 3D environment, and of a large sample of galaxies with spectroscopic redshift, we want to study here the evolution of the morphology-density relation up to z similar to 1 and its dependence on galaxy luminosity and stellar mass. The multi-wavelength coverage of the field also allows a first study of the galaxy morphological segregation dependence on colour. We further attempt to disentangle between processes that occurred early in the history of the Universe or late in the life of galaxies.
Methods. The zCOSMOS field benefits of high-resolution imaging in the F814W filter from the Advanced Camera for Survey (ACS). We use standard morphology classifiers, optimised for being robust against band-shifting and surface brightness dimming, and a new, objective, and automated method to convert morphological parameters into early, spiral, and irregular types. We use about 10 000 galaxies down to I(AB) = 22.5 with a spectroscopic sampling rate of 33% to characterise the environment of galaxies up to z similar to 1 from the 100 kpc scales of galaxy groups up to the 100 Mpc scales of the cosmic web. The evolution of the morphology-density relation in different environments is then studied for luminosity and stellar-mass selected, volume-limited samples of galaxies. The trends are described and related to the various physical processes that could play a relevant role in the build-up of the morphology-density relation.
Results. We confirm that the morphological segregation is present up to z similar to 1 for luminosity-selected, volume-limited samples. The behaviour of the morphology-density relation gets flatter at fixed masses expecially above 10(10.6) M(circle dot). We suggest the existence of a critical mass above which the physical processes governing galaxy stellar mass also determine the shaping of the galaxy more than its environment. We finally show that at a fixed morphology there is still a residual variation in galaxy colours with density.
Conclusions. The observed evolution with redshift of the morphology-density relation offers an opportunity to trace the effect of nature and nurture as a function of environment. Even though it is based mainly on a biased view, the environmental dependence of the morphological evolution for luminosity-selected, volume-limited samples seems to indicate that nurture is in play. On the other hand, the lack of evolution observed for early-type and spiral galaxies that are more massive than 10(10.8) M(circle dot) independents of the environment indicates that nature has imprinted these properties early in the life of these galaxies. We conclude that the relative contribution of nature and nurture in different environments strongly depends on the mass of galaxies, consistent with a downsizing scenario.
C1 [Tasca, L. A. M.; Kneib, J. -P.; Le Fevre, O.; Cassata, P.; Cucciati, O.; Tresse, L.; de la Torre, S.; de Ravel, L.; Le Brun, V.; Abbas, U.; Ilbert, O.] Univ Aix Marseille, CNRS, Lab Astrophys Marseille, F-13388 Marseille 13, France.
[Tasca, L. A. M.; Garilli, B.; Scodeggio, M.; de la Torre, S.; Franzetti, P.; Bottini, D.; Maccagni, D.; Memeo, P.] IASF, INAF, I-20133 Milan, Italy.
[Iovino, A.; Guzzo, L.; de la Torre, S.] INAF Osservatorio Astron Brera, I-20121 Milan, Italy.
[Kovac, K.; Lilly, S. J.; Carollo, C. M.; Caputi, K.; Kampczyk, P.; Knobel, C.; Maier, C.; Peng, Y.; Silverman, J. D.; Oesch, P.] ETH, Inst Astron, CH-8093 Zurich, Switzerland.
[Bolzonella, M.; Zamorani, G.; Zucca, E.; Bardelli, S.; Coppa, G.; Mignoli, M.; Vergani, D.; Cappi, A.; Pozzetti, L.] INAF Osservatorio Astron Bologna, I-40127 Bologna, Italy.
[Abraham, R. G.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada.
[Cassata, P.] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA.
[Capak, P.; Lamareille, F.; Le Borgne, J. -F.; Scarlata, C.] CALTECH, Pasadena, CA 91125 USA.
[Sheth, K.] Spitzer Sci Ctr, Pasadena, CA 91125 USA.
[Contini, T.; Pello, R.; Montero, E. Perez] Univ Toulouse, CNRS, Lab Astrophys Toulouse Tarbes, F-31400 Toulouse, France.
[Mainieri, V.; Tanaka, M.] European So Observ, D-85748 Garching, Germany.
[Renzini, A.] INAF Osservatorio Astron Padova, Padua, Italy.
[Bongiorno, A.; Meneux, B.] Max Planck Inst Extraterr Phys, D-84571 Garching, Germany.
[Koekemoer, A. M.] Space Telescope Sci Inst, Baltimore, MD 21218 USA.
[Montero, E. Perez] CSIC, Inst Astrofis Andalucia, E-18080 Granada, Spain.
[Ricciardelli, E.] Univ Padua, Dipartemento Astron, I-35122 Padua, Italy.
[Abbas, U.] INAF Osservatorio Astron Torino, I-10025 Pino Torinese, Torino, Italy.
[Cimatti, A.] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy.
[Leauthaud, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA.
[Marinoni, C.] Ctr Phys Theor, Marseille, France.
[McCracken, H. J.] Univ Paris 06, CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France.
[Meneux, B.] Univ Sternwarte, D-81679 Munich, Germany.
[Porciani, C.] Argelander Inst Astron, D-53121 Bonn, Germany.
[Scaramella, R.] Osservatorio Roma, INAF, Monte Porzio Catone, RM, Italy.
RP Tasca, LAM (reprint author), Univ Aix Marseille, CNRS, Lab Astrophys Marseille, 38 Rue Frederic Joliot Curie, F-13388 Marseille 13, France.
EM lida.tasca@oamp.fr
RI Pello, Roser/G-4754-2010; Le Fevre, Olivier/G-7389-2011; Kneib,
Jean-Paul/A-7919-2015; Cappi, Alberto/O-9391-2015; Zucca,
Elena/O-9396-2015; Bolzonella, Micol/O-9495-2015; Mignoli,
Marco/O-9426-2015; Bardelli, Sandro/O-9369-2015;
OI Scodeggio, Marco/0000-0002-2282-5850; Kneib,
Jean-Paul/0000-0002-4616-4989; Cappi, Alberto/0000-0002-9200-7167;
Zucca, Elena/0000-0002-5845-8132; Bolzonella, Micol/0000-0003-3278-4607;
Mignoli, Marco/0000-0002-9087-2835; Bardelli,
Sandro/0000-0002-8900-0298; Bongiorno, Angela/0000-0002-0101-6624;
Scaramella, Roberto/0000-0003-2229-193X; Koekemoer,
Anton/0000-0002-6610-2048; Iovino, Angela/0000-0001-6958-0304; bottini,
dario/0000-0001-6917-041X; Pozzetti, Lucia/0000-0001-7085-0412;
Franzetti, Paolo/0000-0002-6986-0127; Vergani,
Daniela/0000-0003-0898-2216; Oesch, Pascal/0000-0001-5851-6649; Garilli,
Bianca/0000-0001-7455-8750
FU INAF [PRIN-INAF 2007, ASI/COFIS/WP3110I/026/07/0]; French National
Computing Centre (CINES)
FX L. T. acknowledge support from CNES. We thank CNES and PNC for support
to the COSMOS project. This work has been partially supported by INAF
grant PRIN-INAF 2007 and by the grant ASI/COFIS/WP3110I/026/07/0. This
work benefited from support from the French National Computing Centre
(CINES), for providing part of the necessary computational resources.
NR 112
TC 94
Z9 97
U1 0
U2 3
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD AUG
PY 2009
VL 503
IS 2
BP 379
EP 398
DI 10.1051/0004-6361/200912213
PG 20
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 493HE
UT WOS:000269726200008
ER
PT J
AU Ulmer, MP
Adami, C
Neto, GBL
Durret, F
Covone, G
Ilbert, O
Cypriano, ES
Allam, SS
Kron, RG
Mahoney, WA
Gavazzi, R
AF Ulmer, M. P.
Adami, C.
Neto, G. B. Lima
Durret, F.
Covone, G.
Ilbert, O.
Cypriano, E. S.
Allam, S. S.
Kron, R. G.
Mahoney, W. A.
Gavazzi, R.
TI Cluster and cluster galaxy evolution history from IR to X-ray
observations of the young cluster RX J1257.2+4738 at z=0.866
SO ASTRONOMY & ASTROPHYSICS
LA English
DT Article
DE galaxies: clusters: individual: RX J1257.2+4738; galaxies: clusters:
general; Galaxy: evolution
ID SPITZER-SPACE-TELESCOPE; ACTIVE GALACTIC NUCLEI; BRIGHT SHARC SURVEY;
VLT-DEEP-SURVEY; STAR-FORMATION; PHOTOMETRIC REDSHIFTS; SUPERCLUSTER;
DENSITY; GAS
AB Context. The cosmic time around the z similar to 1 redshift range appears crucial in the cluster and galaxy evolution, since it is probably the epoch of the first mature galaxy clusters. Our knowledge of the properties of the galaxy populations in these clusters is limited because only a handful of z similar to 1 clusters are presently known.
Aims. In this framework, we report the discovery of a z similar to 0.87 cluster and study its properties at various wavelengths. Methods. We gathered X-ray and optical data (imaging and spectroscopy), and near and far infrared data (imaging) in order to confirm the cluster nature of our candidate, to determine its dynamical state, and to give insight on its galaxy population evolution.
Results. Our candidate structure appears to be a massive z similar to 0.87 dynamically young cluster with an atypically high X-ray temperature as compared to its X-ray luminosity. It exhibits a significant percentage (similar to 90%) of galaxies that are also detected in the 24 mu m band.
Conclusions. The cluster RXJ1257.2+4738 appears to be still in the process of collapsing. Its relatively high temperature is probably the consequence of significant energy input into the intracluster medium besides the regular gravitational infall contribution. A significant part of its galaxies are red objects that are probably dusty with on-going star formation.
C1 [Ulmer, M. P.; Adami, C.; Ilbert, O.] LAM, F-13388 Marseille 13, France.
[Ulmer, M. P.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA.
[Neto, G. B. Lima; Cypriano, E. S.] Univ Sao Paulo, Inst Astron Geofis & Atmosf C, BR-05508090 Sao Paulo, Brazil.
[Durret, F.; Gavazzi, R.] Univ Paris 06, CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France.
[Covone, G.] Univ Naples Federico 2, Dipartimento Sci Fis, I-80131 Naples, Italy.
[Covone, G.] INAF Observatorio Astron Capodimonte, I-80131 Naples, Italy.
[Ilbert, O.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA.
[Cypriano, E. S.] UCL, Dept Phys & Astron, London WC1E 6BT, England.
[Allam, S. S.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Kron, R. G.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA.
[Mahoney, W. A.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA.
RP Ulmer, MP (reprint author), LAM, Pole Etoile Site Chateau Gombert,38 Rue Frederic, F-13388 Marseille 13, France.
EM christophe.adami@oamp.fr
RI Cypriano, Eduardo/C-7293-2012; 7, INCT/H-6207-2013; Astrofisica,
Inct/H-9455-2013; Lima Neto, Gastao/J-6117-2014; Covone,
Giovanni/J-6040-2012
OI Covone, Giovanni/0000-0002-2553-096X
FU CNES and PNG; CNRS/INSU; CAPES/COFECUB French-Brazilian cooperation;
CNPq; FAPESPNASA [O78144X//NAS8-03060, GO7-8144X//NAS8-03060, 1306461
NASA NMO710076]
FX The authors thank the referee for useful remarks. We are grateful to the
CFHT and Terapix teams. We acknowledge financial support from CNES and
PNG, CNRS/INSU, and from the CAPES/COFECUB French-Brazilian cooperation.
G.B.L.N. acknowledges support from the CNPq and FAPESP. M. P. U.
acknowledges the support of NASA grants GO78144X//NAS8-03060,
GO7-8144X//NAS8-03060, and Agmt.# 1306461 NASA NMO710076. We thank the
groups and many individuals responsible for the successful launch and
operation of Chandra, XMM-Newton, and Spitzer and for helping us set up
our observations. We wish to thank Alberto Noriega-Crespo for assistance
with the MIPS post pipeline data reduction. Last but not least, we thank
Emeric Le Floc'h for useful discussions.
NR 43
TC 9
Z9 9
U1 0
U2 0
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0004-6361
J9 ASTRON ASTROPHYS
JI Astron. Astrophys.
PD AUG
PY 2009
VL 503
IS 2
BP 399
EP 408
DI 10.1051/0004-6361/200811021
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 493HE
UT WOS:000269726200009
ER
PT J
AU Gorham, PW
Allison, P
Barwick, SW
Beatty, JJ
Besson, DZ
Binns, WR
Chen, C
Chen, P
Clem, JM
Connolly, A
Dowkontt, PF
DuVernois, MA
Field, RC
Goldstein, D
Goodhue, A
Hast, C
Hebert, CL
Hoover, S
Israel, MH
Kowalski, J
Learned, JG
Liewer, KM
Link, JT
Lusczek, E
Matsuno, S
Mercurio, BC
Miki, C
Miocinovic, P
Nam, J
Naudet, CJ
Nichol, RJ
Palladino, K
Reil, K
Romero-Wolf, A
Rosen, M
Ruckman, L
Saltzberg, D
Seckel, D
Varner, GS
Walz, D
Wang, Y
Williams, C
Wu, F
AF Gorham, P. W.
Allison, P.
Barwick, S. W.
Beatty, J. J.
Besson, D. Z.
Binns, W. R.
Chen, C.
Chen, P.
Clem, J. M.
Connolly, A.
Dowkontt, P. F.
DuVernois, M. A.
Field, R. C.
Goldstein, D.
Goodhue, A.
Hast, C.
Hebert, C. L.
Hoover, S.
Israel, M. H.
Kowalski, J.
Learned, J. G.
Liewer, K. M.
Link, J. T.
Lusczek, E.
Matsuno, S.
Mercurio, B. C.
Miki, C.
Miocinovic, P.
Nam, J.
Naudet, C. J.
Nichol, R. J.
Palladino, K.
Reil, K.
Romero-Wolf, A.
Rosen, M.
Ruckman, L.
Saltzberg, D.
Seckel, D.
Varner, G. S.
Walz, D.
Wang, Y.
Williams, C.
Wu, F.
CA ANITA Collaboration
TI The Antarctic Impulsive Transient Antenna ultra-high energy neutrino
detector: Design, performance, and sensitivity for the 2006-2007 balloon
flight
SO ASTROPARTICLE PHYSICS
LA English
DT Article
DE Neutrinos; Ultra-high energy cosmic rays; Askaryan effect; Long-duration
balloon payload
ID EXTENSIVE AIR-SHOWERS; COHERENT RADIO EMISSION; COSMIC RAYS; LIGHT
TRANSMISSION; RUNAWAY BREAKDOWN; PULSES; ICE; CHARGE; RADIATION;
SPECTRUM
AB We present a comprehensive report on the experimental details of the Antarctic Impulsive Transient Antenna (ANITA) long-duration balloon payload, including the design philosophy and realization, physics simulations, performance of the instrument during its first Antarctic flight completed in January of 2007, and expectations for the limiting neutrino detection sensitivity. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Gorham, P. W.; Allison, P.; Hebert, C. L.; Kowalski, J.; Learned, J. G.; Link, J. T.; Matsuno, S.; Miki, C.; Miocinovic, P.; Romero-Wolf, A.; Rosen, M.; Ruckman, L.; Varner, G. S.] Univ Hawaii, Dept Phys & Astron, Manoa, HI 96822 USA.
[Barwick, S. W.; Goldstein, D.; Nam, J.; Wu, F.] Univ Calif Irvine, Irvine, CA 92697 USA.
[Beatty, J. J.; Mercurio, B. C.; Palladino, K.; Williams, C.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA.
[Besson, D. Z.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA.
[Binns, W. R.; Dowkontt, P. F.; Israel, M. H.] Washington Univ, Dept Phys, St Louis, MO 63130 USA.
[Chen, C.; Chen, P.; Field, R. C.; Hast, C.; Reil, K.; Walz, D.] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA.
[Clem, J. M.; Seckel, D.] Univ Delaware, Dept Phys, Newark, DE 19716 USA.
[Connolly, A.; Nichol, R. J.] UCL, Dept Phys, London, England.
[Goodhue, A.; Hoover, S.; Saltzberg, D.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA.
[DuVernois, M. A.; Lusczek, E.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA.
[Liewer, K. M.; Naudet, C. J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
[Nam, J.; Wang, Y.] Natl Taiwan Univ, Dept Phys, Taipei, Taiwan.
RP Gorham, PW (reprint author), Univ Hawaii, Dept Phys & Astron, Manoa, HI 96822 USA.
EM gorham@phys.hawaii.edu
RI Nichol, Ryan/C-1645-2008; Vieregg, Abigail/D-2287-2012; Connolly,
Amy/J-3958-2013; Beatty, James/D-9310-2011;
OI Beatty, James/0000-0003-0481-4952; Lusczek,
Elizabeth/0000-0003-4680-965X
NR 64
TC 56
Z9 56
U1 0
U2 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0927-6505
J9 ASTROPART PHYS
JI Astropart Phys.
PD AUG
PY 2009
VL 32
IS 1
BP 8
EP 41
DI 10.1016/j.astropartphys.2009.05.003
PG 34
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 505MZ
UT WOS:000270699200002
ER
PT J
AU Abbasi, RU
Abu-Zayyad, T
Al-Seady, M
Allen, M
Amann, JF
Archbold, G
Belov, K
Belz, JW
Bergman, DR
Blake, SA
Brusova, OA
Burt, GW
Cannon, C
Cao, Z
Deng, W
Fedorova, Y
Findlay, J
Finley, CB
Gray, RC
Hanlon, WF
Hoffman, CM
Holzscheiter, MH
Hughes, G
Huntemeyer, P
Ivanov, D
Jones, BF
Jui, CCH
Kim, K
Kirn, MA
Loh, EC
Maestas, MM
Manago, N
Marek, LJ
Martens, K
Matthews, JAJ
Matthews, JN
Moore, SA
O'Neill, A
Painter, CA
Perera, L
Reil, K
Riehle, R
Roberts, MD
Rodriguez, D
Sasaki, M
Schnetzer, SR
Scott, LM
Sinnis, G
Smith, JD
Snow, R
Sokolsky, P
Springer, RW
Stokes, BT
Stratton, SR
Thomas, JR
Thomas, SB
Thomson, GB
Tupa, D
Wiencke, LR
Zech, A
Zhangh, BK
Zhang, X
Zhang, Y
AF Abbasi, R. U.
Abu-Zayyad, T.
Al-Seady, M.
Allen, M.
Amann, J. F.
Archbold, G.
Belov, K.
Belz, J. W.
Bergman, D. R.
Blake, S. A.
Brusova, O. A.
Burt, G. W.
Cannon, C.
Cao, Z.
Deng, W.
Fedorova, Y.
Findlay, J.
Finley, C. B.
Gray, R. C.
Hanlon, W. F.
Hoffman, C. M.
Holzscheiter, M. H.
Hughes, G.
Huentemeyer, P.
Ivanov, D.
Jones, B. F.
Jui, C. C. H.
Kim, K.
Kirn, M. A.
Loh, E. C.
Maestas, M. M.
Manago, N.
Marek, L. J.
Martens, K.
Matthews, J. A. J.
Matthews, J. N.
Moore, S. A.
O'Neill, A.
Painter, C. A.
Perera, L.
Reil, K.
Riehle, R.
Roberts, M. D.
Rodriguez, D.
Sasaki, M.
Schnetzer, S. R.
Scott, L. M.
Sinnis, G.
Smith, J. D.
Snow, R.
Sokolsky, P.
Springer, R. W.
Stokes, B. T.
Stratton, S. R.
Thomas, J. R.
Thomas, S. B.
Thomson, G. B.
Tupa, D.
Wiencke, L. R.
Zech, A.
Zhangh, B. K.
Zhang, X.
Zhang, Y.
CA High Resolution Fly's Eye Collabor
TI Measurement of the flux of ultra high energy cosmic rays by the stereo
technique
SO ASTROPARTICLE PHYSICS
LA English
DT Article
DE Cosmic rays; Spectrum; GZK cut-off; Air fluorescence technique; Stereo
reconstruction
ID FLUORESCENCE YIELD; AIR FLUORESCENCE; HIRES EXPERIMENT; FLYS EYE;
SPECTRUM; DETECTOR
AB The High Resolution Fly's Eye (HiRes) experiment has measured the flux of ultrahigh energy cosmic rays using the stereoscopic air fluorescence technique. The HiRes experiment consists of two detectors that observe cosmic ray showers via the fluorescence light they emit. HiRes data can be analyzed in monocular mode, where each detector is treated separately, or in stereoscopic mode where they are considered together. Using the monocular mode the HiRes collaboration measured the cosmic ray spectrum and made the first observation of the Greisen-Zatsepin-Kuzmin cutoff. In this paper we present the cosmic ray spectrum measured by the stereoscopic technique. Good agreement is found with the monocular spectrum in all details. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Abbasi, R. U.; Abu-Zayyad, T.; Al-Seady, M.; Allen, M.; Archbold, G.; Belov, K.; Belz, J. W.; Blake, S. A.; Brusova, O. A.; Burt, G. W.; Cannon, C.; Cao, Z.; Deng, W.; Fedorova, Y.; Findlay, J.; Gray, R. C.; Hanlon, W. F.; Huentemeyer, P.; Jones, B. F.; Jui, C. C. H.; Kim, K.; Loh, E. C.; Maestas, M. M.; Martens, K.; Matthews, J. N.; Moore, S. A.; Reil, K.; Riehle, R.; Roberts, M. D.; Rodriguez, D.; Smith, J. D.; Snow, R.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Thomas, J. R.; Thomas, S. B.; Wiencke, L. R.] Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA.
[Abbasi, R. U.; Abu-Zayyad, T.; Al-Seady, M.; Allen, M.; Archbold, G.; Belov, K.; Belz, J. W.; Blake, S. A.; Brusova, O. A.; Burt, G. W.; Cannon, C.; Cao, Z.; Deng, W.; Fedorova, Y.; Findlay, J.; Gray, R. C.; Hanlon, W. F.; Huentemeyer, P.; Jones, B. F.; Jui, C. C. H.; Kim, K.; Loh, E. C.; Maestas, M. M.; Martens, K.; Matthews, J. N.; Moore, S. A.; Reil, K.; Riehle, R.; Roberts, M. D.; Rodriguez, D.; Smith, J. D.; Snow, R.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Thomas, J. R.; Thomas, S. B.; Wiencke, L. R.] Univ Utah, High Energy Astrophys Inst, Salt Lake City, UT 84112 USA.
[Amann, J. F.; Hoffman, C. M.; Holzscheiter, M. H.; Marek, L. J.; Painter, C. A.; Sinnis, G.; Tupa, D.] Los Alamos Natl Lab, Los Alamos, NM USA.
[Kirn, M. A.] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA.
[Belov, K.; Bergman, D. R.; Hughes, G.; Ivanov, D.; Perera, L.; Schnetzer, S. R.; Scott, L. M.; Stokes, B. T.; Stratton, S. R.; Thomson, G. B.; Zech, A.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ USA.
[Manago, N.; Sasaki, M.] Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba, Japan.
[Finley, C. B.; O'Neill, A.; Zhang, X.] Columbia Univ, Dept Phys, New York, NY 10027 USA.
[Finley, C. B.; O'Neill, A.; Zhang, X.] Nevis Lab, New York, NY USA.
[Cao, Z.; Zhang, Y.] Inst High Energy Phys, Beijing 100039, Peoples R China.
[Matthews, J. A. J.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA.
RP Cao, Z (reprint author), Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA.
EM ps@physics.utah.edu
RI Martens, Kai/A-4323-2011; Belov, Konstantin/D-2520-2013;
OI Tupa, Dale/0000-0002-6265-5016
FU US NSF [PHY9321949, PHY-9322298, PHY-9904048, PHY-9974537, PHY0098826,
PHY-0140688, PHY-0245428, PHY-0305516, PHY0307098]; DOE [FG0392ER40732]
FX This work is supported by US NSF Grants Numbers PHY9321949, PHY-9322298,
PHY-9904048, PHY-9974537, PHY0098826, PHY-0140688, PHY-0245428,
PHY-0305516, PHY0307098, and by the DOE Grant Number FG0392ER40732. We
gratefully acknowledge the contributions from the technical staffs of
our home institutions. The cooperation of Colonel E. Fischer, Colonel G.
Harter, and Colonel G. Olsen, the US Army, and the Dugway Proving Ground
staff is greatly appreciated.
NR 25
TC 78
Z9 78
U1 0
U2 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0927-6505
J9 ASTROPART PHYS
JI Astropart Phys.
PD AUG
PY 2009
VL 32
IS 1
BP 53
EP 60
DI 10.1016/j.astropartphys.2009.06.001
PG 8
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 505MZ
UT WOS:000270699200005
ER
PT J
AU Schreiner, PA
Reichenbacher, J
Goodman, MC
AF Schreiner, P. A.
Reichenbacher, J.
Goodman, M. C.
TI Interpretation of the underground muon charge ratio
SO ASTROPARTICLE PHYSICS
LA English
DT Article
DE Underground cosmic ray muons; Muon charge ratio; Meson charge ratio
ID ATMOSPHERIC NEUTRINO FLUX; SEA-LEVEL; STOPPING POWER; SPECTRUM; RANGE;
TEV
AB The MINOS experiment has observed a rise in the underground muon charge ratio r(mu) = mu(+)/mu(-). This ratio can be related to the atmospheric production ratios of pi(+)/pi(-) and K(+)/K(-). Our analysis indicates that the relevant variable for studying the charge ratio is E(mu)(surface) cos theta, rather than E(mu)(surface). We compare a simple energy dependent parameterization of the rise in the charge ratio with more detailed previously published Monte Carlo simulations and an analytical calculation. We also estimate the size of two previously neglected effects in this context: the charge sign dependency of the dE/dx in rock, and the energy dependence of heavy primaries on the derived K(+)/K(-) ratio. Published by Elsevier B.V.
C1 [Schreiner, P. A.; Reichenbacher, J.; Goodman, M. C.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA.
[Schreiner, P. A.] Benedictine Univ, Dept Phys, Lisle, IL 60532 USA.
RP Goodman, MC (reprint author), Argonne Natl Lab, Div High Energy Phys, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM maury.goodman@anl.gov
FU US Department of Energy and Benedictine University
FX This work was supported by the US Department of Energy and Benedictine
University. We would like to thank V. Naumov for introducing us to the
issues involved in the predicted rise of the charge ratio. We thank Tom
Gaisser, Morihiro Honda, Paolo Lipari and Teresa Montaruli for
discussions on the ratio simulations. We acknowledge the help and
insight of Giles Barr, Thomas Fields, Jeff de Jong and Alec Habig. We
are grateful to Geoff Bodwin and Stanley Wojcicki for their
contributions in understanding issues involving energy loss. We thank
Eric Beall, Gavril Giurgiu, Eric Grashorn, Andrew Hoffman, Sue Kasahara,
Stuart Mufson, Brian Rebel and Keith Ruddick for their many
contributions. And the support of the entire MINOS collaboration has
been invaluable.
NR 37
TC 9
Z9 9
U1 0
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0927-6505
J9 ASTROPART PHYS
JI Astropart Phys.
PD AUG
PY 2009
VL 32
IS 1
BP 61
EP 71
DI 10.1016/j.astropartphys.2009.06.002
PG 11
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 505MZ
UT WOS:000270699200006
ER
PT J
AU Acciari, VA
Aliu, E
Arlen, T
Bautista, M
Beilicke, M
Benbow, W
Bottcher, M
Bradbury, SM
Bugaev, V
Butt, Y
Butt, Y
Byrum, K
Cannon, A
Cesarini, A
Chow, YC
Ciupik, L
Cogan, P
Colin, P
Cui, W
Daniel, M
Dickherber, R
Ergin, T
Falcone, A
Fegan, SJ
Finley, JP
Fortin, P
Fortson, L
Furniss, A
Gall, D
Gillanders, GH
Grube, J
Guenette, R
Gyuk, G
Hanna, D
Hays, E
Holder, J
Horan, D
Hui, CM
Humensky, TB
Kaaret, P
Karlsson, N
Kieda, D
Kildea, J
Konopelko, A
Krawczynski, H
Krennrich, F
Lang, MJ
LeBohec, S
Maier, G
McCann, A
McCutcheon, M
Millis, J
Moriarty, P
Mukherjee, R
Nagai, T
Ong, RA
Otte, AN
Pandel, D
Perkins, JS
Perkins, JS
Pohl, M
Quinn, J
Ragan, K
Reyes, LC
Reynolds, PT
Roache, E
Rose, HJ
Schroedter, M
Sembroski, GH
Smith, AW
Steele, D
Stroh, M
Swordy, S
Theiling, M
Toner, JA
Varlotta, A
Vassiliev, VV
Wagner, RG
Wakely, SP
Ward, JE
Weekes, TC
Weinstein, A
White, RJ
Williams, DA
Wissel, S
Wood, M
Zitzer, B
AF Acciari, V. A.
Aliu, E.
Arlen, T.
Bautista, M.
Beilicke, M.
Benbow, W.
Boettcher, M.
Bradbury, S. M.
Bugaev, V.
Butt, Y.
Butt, Y.
Byrum, K.
Cannon, A.
Cesarini, A.
Chow, Y. C.
Ciupik, L.
Cogan, P.
Colin, P.
Cui, W.
Daniel, M.
Dickherber, R.
Ergin, T.
Falcone, A.
Fegan, S. J.
Finley, J. P.
Fortin, P.
Fortson, L.
Furniss, A.
Gall, D.
Gillanders, G. H.
Grube, J.
Guenette, R.
Gyuk, G.
Hanna, D.
Hays, E.
Holder, J.
Horan, D.
Hui, C. M.
Humensky, T. B.
Kaaret, P.
Karlsson, N.
Kieda, D.
Kildea, J.
Konopelko, A.
Krawczynski, H.
Krennrich, F.
Lang, M. J.
LeBohec, S.
Maier, G.
McCann, A.
McCutcheon, M.
Millis, J.
Moriarty, P.
Mukherjee, R.
Nagai, T.
Ong, R. A.
Otte, A. N.
Pandel, D.
Perkins, J. S.
Perkins, J. S.
Pohl, M.
Quinn, J.
Ragan, K.
Reyes, L. C.
Reynolds, P. T.
Roache, E.
Rose, H. Joachim
Schroedter, M.
Sembroski, G. H.
Smith, A. W.
Steele, D.
Stroh, M.
Swordy, S.
Theiling, M.
Toner, J. A.
Varlotta, A.
Vassiliev, V. V.
Wagner, R. G.
Wakely, S. P.
Ward, J. E.
Weekes, T. C.
Weinstein, A.
White, R. J.
Williams, D. A.
Wissel, S.
Wood, M.
Zitzer, B.
TI MULTIWAVELENGTH OBSERVATIONS OF LS I+61 degrees 303 WITH VERITAS, SWIFT,
AND RXTE
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE binaries: general; gamma rays: observations; X-rays: binaries
ID X-RAY BINARY; ENERGY GAMMA-RAYS; MICROQUASAR LS-I+61-303;
TIMING-EXPLORER; RADIO; TELESCOPE; SPECTRUM; LSI+61-DEGREES-303;
+61-DEGREES-303; LS-I-+61-303
AB We present results from a long-term monitoring campaign on the TeV binary LSI +61 degrees 303 with VERITAS at energies above 500 GeV, and in the 2-10 keV hard X-ray bands with RXTE and Swift, sampling nine 26.5 day orbital cycles between 2006 September and 2008 February. The binary was observed by VERITAS to be variable, with all integrated observations resulting in a detection at the 8.8 sigma (2006/2007) and 7.3 sigma (2007/2008) significance level for emission above 500 GeV. The source was detected during active periods with flux values ranging from 5% to 20% of the Crab Nebula, varying over the course of a single orbital cycle. Additionally, the observations conducted in the 2007-2008 observing season show marginal evidence (at the 3.6 sigma significance level) for TeV emission outside the apastron passage of the compact object around the Be star. Contemporaneous hard X-ray observations with RXTE and Swift show large variability with flux values typically varying between 0.5 and 3.0 x 10(-11) erg cm(-2) s(-1) over a single orbital cycle. The contemporaneous X-ray and TeV data are examined and it is shown that the TeV sampling is not dense enough to detect a correlation between the two bands.
C1 [Acciari, V. A.; Moriarty, P.] Galway Mayo Inst Technol, Dept Life & Phys Sci, Galway, Ireland.
[Aliu, E.; Holder, J.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA.
[Aliu, E.; Holder, J.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA.
[Arlen, T.; Chow, Y. C.; Fegan, S. J.; Ong, R. A.; Vassiliev, V. V.; Weinstein, A.; Wood, M.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA.
[Bautista, M.; Cogan, P.; Guenette, R.; Hanna, D.; McCann, A.; McCutcheon, M.; Ragan, K.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada.
[Beilicke, M.; Bugaev, V.; Dickherber, R.; Krawczynski, H.] Washington Univ, Dept Phys, St Louis, MO 63130 USA.
[Benbow, W.; Kildea, J.; Perkins, J. S.; Perkins, J. S.; Roache, E.; Theiling, M.; Weekes, T. C.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA.
[Boettcher, M.] Ohio Univ, Inst Astrophys, Dept Phys & Astron, Athens, OH 45701 USA.
[Bradbury, S. M.; Daniel, M.; Rose, H. Joachim; White, R. J.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England.
[Butt, Y.; Butt, Y.; Ergin, T.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Byrum, K.; Smith, A. W.; Wagner, R. G.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Cannon, A.; Grube, J.; Quinn, J.; Ward, J. E.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland.
[Cesarini, A.; Gillanders, G. H.; Lang, M. J.; Toner, J. A.] Natl Univ Ireland, Sch Phys, Galway, Ireland.
[Ciupik, L.; Fortson, L.; Gyuk, G.; Karlsson, N.; Steele, D.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA.
[Colin, P.; Hui, C. M.; Kildea, J.; LeBohec, S.] Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA.
[Cui, W.; Finley, J. P.; Gall, D.; Sembroski, G. H.; Varlotta, A.; Zitzer, B.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA.
[Falcone, A.; Stroh, M.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA.
[Fortin, P.; Mukherjee, R.] Columbia Univ Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA.
[Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA.
[Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA.
[Hays, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Horan, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France.
[Humensky, T. B.; Swordy, S.; Wakely, S. P.; Wissel, S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Kaaret, P.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
[Konopelko, A.] Pittsburg State Univ, Dept Phys, Pittsburg, KS 66762 USA.
[Krennrich, F.; Nagai, T.; Pohl, M.; Schroedter, M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Millis, J.] Anderson Univ, Dept Phys, Anderson, IN 46012 USA.
[Reyes, L. C.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Reynolds, P. T.] Cork Inst Technol, Dept Appl Phys & Instrumentat, Cork, Ireland.
RP Acciari, VA (reprint author), Galway Mayo Inst Technol, Dept Life & Phys Sci, Dublin Rd, Galway, Ireland.
EM awsmith@hep.anl.gov
RI Hays, Elizabeth/D-3257-2012; Daniel, Michael/A-2903-2010;
OI Cui, Wei/0000-0002-6324-5772; Daniel, Michael/0000-0002-8053-7910;
Cesarini, Andrea/0000-0002-8611-8610; Ward, John E/0000-0003-1973-0794
FU U. S. Department of Energy; U. S. National Science Foundation;
Smithsonian Institution; NSERC in Canada; Science Foundation Ireland;
PPARC; U. S. Department of Energy Office of Science laboratory
[DE-AC02-06CH11357]
FX The submitted manuscript has been created by UChicago Argonne, LLC,
Operator of Argonne National Laboratory ("Argonne"). Argonne, a U. S.
Department of Energy Office of Science laboratory, is operated under
Contract No. DE-AC02-06CH11357. The U. S. Government retains for itself,
and others acting on its behalf, a paid-up nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare derivative
works, distribute copies to the public, and perform publicly and display
publicly, by or on behalf of the Government.
NR 48
TC 23
Z9 23
U1 0
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD AUG 1
PY 2009
VL 700
IS 2
BP 1034
EP 1041
DI 10.1088/0004-637X/700/2/1034
PG 8
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 471ZU
UT WOS:000268098100017
ER
PT J
AU Abdo, AA
Ackermann, M
Ajello, M
Atwood, WB
Baldini, L
Ballet, J
Barbiellini, G
Bastieri, D
Battelino, M
Baughman, BM
Bechtol, K
Bellazzini, R
Berenji, B
Bloom, ED
Bogaert, G
Borgland, AW
Bregeon, J
Brez, A
Brigida, M
Bruel, P
Burnett, TH
Caliandro, GA
Cameron, RA
Camilo, F
Caraveo, PA
Casandjian, JM
Cecchi, C
Charles, E
Chekhtman, A
Chen, AW
Cheung, CC
Chiang, J
Ciprini, S
Cognard, I
Cohen-Tanugi, J
Cominsky, LR
Conrad, J
Cutini, S
Demorest, P
Dermer, CD
de Angelis, A
de Luca, A
de Palma, F
Digel, SW
Dormody, M
Silva, EDE
Drell, PS
Dubois, R
Dumora, D
Espinoza, C
Farnier, C
Favuzzi, C
Focke, WB
Frailis, M
Freire, PCC
Fukazawa, Y
Funk, S
Fusco, P
Gargano, F
Gasparrini, D
Gehrels, N
Germani, S
Giebels, B
Giglietto, N
Giordano, F
Glanzman, T
Godfrey, G
Grenier, IA
Grondin, MH
Grove, JE
Guillemot, L
Guiriec, S
Hanabata, Y
Harding, AK
Hayashida, M
Hays, E
Hughes, RE
Johannesson, G
Johnson, AS
Johnson, RP
Johnson, TJ
Johnson, WN
Johnston, S
Kamae, T
Katagiri, H
Kataoka, J
Kawai, N
Kerr, M
Kiziltan, B
Knodlseder, J
Komin, N
Kramer, M
Kuehn, F
Kuss, M
Lande, J
Latronico, L
Lee, SH
Lemoine-Goumard, M
Longo, F
Loparco, F
Lott, B
Lovellette, MN
Lubrano, P
Lyne, AG
Makeev, A
Manchester, RN
Marelli, M
Mazziotta, MN
McConville, W
McEnery, JE
McLaughlin, MA
Meurer, C
Michelson, PF
Mitthumsiri, W
Mizuno, T
Moiseev, AA
Monte, C
Monzani, ME
Morselli, A
Moskalenko, IV
Murgia, S
Nolan, PL
Noutsos, A
Nuss, E
Ohsugi, T
Omodei, N
Orlando, E
Ormes, JF
Ozaki, M
Paneque, D
Panetta, JH
Parent, D
Pepe, M
Pesce-Rollins, M
Piron, F
Porter, TA
Raino, S
Rando, R
Ransom, SM
Razzano, M
Reimer, A
Reimer, O
Reposeur, T
Ritz, S
Rochester, LS
Rodriguez, AY
Romani, RW
Ryde, F
Sadrozinski, HFW
Sanchez, D
Parkinson, PMS
Sgro, C
Sierpowska-Bartosik, A
Siskind, EJ
Smith, DA
Smith, PD
Spandre, G
Spinelli, P
Stappers, BW
Starck, JL
Strickman, MS
Suson, DJ
Tajima, H
Takahashi, H
Takahashi, T
Tanaka, T
Thayer, JB
Thayer, JG
Theureau, G
Thompson, DJ
Thorsett, SE
Tibaldo, L
Torres, DF
Tosti, G
Tramacere, A
Uchiyama, Y
Usher, TL
Van Etten, A
Vilchez, N
Vitale, V
Waite, AP
Wallace, E
Watters, K
Weltevrede, P
Wood, KS
Ylinen, T
Ziegler, M
AF Abdo, A. A.
Ackermann, M.
Ajello, M.
Atwood, W. B.
Baldini, L.
Ballet, J.
Barbiellini, G.
Bastieri, D.
Battelino, M.
Baughman, B. M.
Bechtol, K.
Bellazzini, R.
Berenji, B.
Bloom, E. D.
Bogaert, G.
Borgland, A. W.
Bregeon, J.
Brez, A.
Brigida, M.
Bruel, P.
Burnett, T. H.
Caliandro, G. A.
Cameron, R. A.
Camilo, F.
Caraveo, P. A.
Casandjian, J. M.
Cecchi, C.
Charles, E.
Chekhtman, A.
Chen, A. W.
Cheung, C. C.
Chiang, J.
Ciprini, S.
Cognard, I.
Cohen-Tanugi, J.
Cominsky, L. R.
Conrad, J.
Cutini, S.
Demorest, P.
Dermer, C. D.
de Angelis, A.
de Luca, A.
de Palma, F.
Digel, S. W.
Dormody, M.
do Couto E Silva, E.
Drell, P. S.
Dubois, R.
Dumora, D.
Espinoza, C.
Farnier, C.
Favuzzi, C.
Focke, W. B.
Frailis, M.
Freire, P. C. C.
Fukazawa, Y.
Funk, S.
Fusco, P.
Gargano, F.
Gasparrini, D.
Gehrels, N.
Germani, S.
Giebels, B.
Giglietto, N.
Giordano, F.
Glanzman, T.
Godfrey, G.
Grenier, I. A.
Grondin, M. -H.
Grove, J. E.
Guillemot, L.
Guiriec, S.
Hanabata, Y.
Harding, A. K.
Hayashida, M.
Hays, E.
Hughes, R. E.
Johannesson, G.
Johnson, A. S.
Johnson, R. P.
Johnson, T. J.
Johnson, W. N.
Johnston, S.
Kamae, T.
Katagiri, H.
Kataoka, J.
Kawai, N.
Kerr, M.
Kiziltan, B.
Knoedlseder, J.
Komin, N.
Kramer, M.
Kuehn, F.
Kuss, M.
Lande, J.
Latronico, L.
Lee, S. -H.
Lemoine-Goumard, M.
Longo, F.
Loparco, F.
Lott, B.
Lovellette, M. N.
Lubrano, P.
Lyne, A. G.
Makeev, A.
Manchester, R. N.
Marelli, M.
Mazziotta, M. N.
McConville, W.
McEnery, J. E.
McLaughlin, M. A.
Meurer, C.
Michelson, P. F.
Mitthumsiri, W.
Mizuno, T.
Moiseev, A. A.
Monte, C.
Monzani, M. E.
Morselli, A.
Moskalenko, I. V.
Murgia, S.
Nolan, P. L.
Noutsos, A.
Nuss, E.
Ohsugi, T.
Omodei, N.
Orlando, E.
Ormes, J. F.
Ozaki, M.
Paneque, D.
Panetta, J. H.
Parent, D.
Pepe, M.
Pesce-Rollins, M.
Piron, F.
Porter, T. A.
Raino, S.
Rando, R.
Ransom, S. M.
Razzano, M.
Reimer, A.
Reimer, O.
Reposeur, T.
Ritz, S.
Rochester, L. S.
Rodriguez, A. Y.
Romani, R. W.
Ryde, F.
Sadrozinski, H. F. -W.
Sanchez, D.
Parkinson, P. M. Saz
Sgro, C.
Sierpowska-Bartosik, A.
Siskind, E. J.
Smith, D. A.
Smith, P. D.
Spandre, G.
Spinelli, P.
Stappers, B. W.
Starck, J. -L.
Strickman, M. S.
Suson, D. J.
Tajima, H.
Takahashi, H.
Takahashi, T.
Tanaka, T.
Thayer, J. B.
Thayer, J. G.
Theureau, G.
Thompson, D. J.
Thorsett, S. E.
Tibaldo, L.
Torres, D. F.
Tosti, G.
Tramacere, A.
Uchiyama, Y.
Usher, T. L.
Van Etten, A.
Vilchez, N.
Vitale, V.
Waite, A. P.
Wallace, E.
Watters, K.
Weltevrede, P.
Wood, K. S.
Ylinen, T.
Ziegler, M.
TI PULSED GAMMA-RAYS FROM PSR J2021+3651 WITH THE FERMI LARGE AREA
TELESCOPE
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE gamma rays: observations; pulsars: general; pulsars: individual (PSR
J2021+3651)
ID SPACE-TELESCOPE; YOUNG PULSARS; RADIO PULSARS; LIGHT CURVES; SLOT GAPS;
EMISSION; CATALOG; MODEL; POLARIZATION; RADIATION
AB We report the detection of pulsed gamma-rays from the young, spin-powered radio pulsar PSR J2021+3651 using data acquired with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (formerly GLAST). The light curve consists of two narrow peaks of similar amplitude separated by 0.468 +/- 0.002 in phase. The first peak lags the maximum of the 2 GHz radio pulse by 0.162 +/- 0.004 +/- 0.01 in phase. The integral gamma-ray photon flux above 100 MeV is (56 +/- 3 +/- 11) x 10(-8) cm(-2) s(-1). The photon spectrum is well described by an exponentially cut-off power law of the form dF/dE = kE(-Gamma)e((-E/Ec)), where the energy E is expressed in GeV. The photon index is Gamma = 1.5 +/- 0.1 +/- 0.1 and the exponential cut-off is E-c = 2.4 +/- 0.3 +/- 0.5 GeV. The first uncertainty is statistical and the second is systematic. The integral photon flux of the bridge is approximately 10% of the pulsed emission, and the upper limit on off-pulse gamma-ray emission from a putative pulsar wind nebula is < 10% of the pulsed emission at the 95% confidence level. Radio polarization measurements yield a rotation measure of RM = 524 +/- 4 rad m(-2) but a poorly constrained magnetic geometry. Re-analysis of Chandra X-ray Observatory data enhanced the significance of the weak X-ray pulsations, and the first peak is roughly phase aligned with the first gamma-ray peak. We discuss the emission region and beaming geometry based on the shape and spectrum of the gamma-ray light curve combined with radio and X-ray measurements, and the implications for the pulsar distance. Gamma-ray emission from the polar cap region seems unlikely for this pulsar.
C1 [Abdo, A. A.; Chekhtman, A.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA.
[Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Cameron, R. A.; Charles, E.; Chiang, J.; Digel, S. W.; do Couto E Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Lee, S. -H.; Michelson, P. F.; Mitthumsiri, W.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Van Etten, A.; Waite, A. P.; Watters, K.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA.
[Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Cameron, R. A.; Charles, E.; Chiang, J.; Digel, S. W.; do Couto E Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lee, S. -H.; Michelson, P. F.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Van Etten, A.; Waite, A. P.; Watters, K.] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94305 USA.
[Atwood, W. B.; Dormody, M.; Johnson, R. P.; Porter, T. A.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Thorsett, S. E.; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA.
[Atwood, W. B.; Dormody, M.; Johnson, R. P.; Porter, T. A.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Thorsett, S. E.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA.
[Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Omodei, N.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy.
[Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Komin, N.; Starck, J. -L.] Univ Paris Diderot, CNRS, CEA, IRFU,Lab AIM,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France.
[Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy.
[Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy.
[Bastieri, D.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy.
[Bastieri, D.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy.
[Battelino, M.; Conrad, J.; Ryde, F.; Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden.
[Baughman, B. M.; Hughes, R. E.; Kuehn, F.; Smith, P. D.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA.
[Bogaert, G.; Bruel, P.; Giebels, B.; Sanchez, D.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France.
[Brigida, M.; Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy.
[Brigida, M.; Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy.
[Burnett, T. H.; Kerr, M.; Tramacere, A.; Wallace, E.] Univ Washington, Dept Phys, Seattle, WA 98195 USA.
[Camilo, F.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA.
[Caraveo, P. A.; Chen, A. W.; Marelli, M.] Ist Astrofis Spaziale & Fis Cosm, INAF, I-20133 Milan, Italy.
[Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy.
[Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-60123 Perugia, Italy.
[Chekhtman, A.; Makeev, A.] George Mason Univ, Fairfax, VA 22030 USA.
[Cheung, C. C.; Gehrels, N.; Harding, A. K.; Hays, E.; Johnson, T. J.; McConville, W.; McEnery, J. E.; Ritz, S.; Thompson, D. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Cognard, I.; Theureau, G.] CNRS, UMR 6115, LPCE, F-45071 Orleans 02, France.
[Cognard, I.; Theureau, G.] INSU, CNRS, Observ Paris, Stn Radioastron Nancay, F-18330 Nancay, France.
[Cohen-Tanugi, J.; Farnier, C.; Guiriec, S.; Komin, N.; Piron, F.] Univ Montpellier 2, Lab Phys Theor & Astroparticules, CNRS, IN2P3, Montpellier, France.
[Cominsky, L. R.] Sonoma State Univ, Dept Phys & Astron, Rohnert Pk, CA 94928 USA.
[Conrad, J.; Meurer, C.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden.
[Cutini, S.; Gasparrini, D.] Sci Data Ctr, Agenzia Spaziale Italiana ASI, I-00044 Frascati, Roma, Italy.
[Demorest, P.; Ransom, S. M.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA.
[de Angelis, A.; Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy.
[de Angelis, A.; Frailis, M.] Grp Coll Udine, Sez Trieste, Ist Nazl Fis Nucl, I-33100 Udine, Italy.
[de Luca, A.] IUSS, I-27100 Pavia, Italy.
[Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] CEN Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France.
[Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France.
[Espinoza, C.; Kramer, M.; Lyne, A. G.; Stappers, B. W.] Univ Manchester, Jodrell Bank, Ctr Astrophys, Sch Phys & Astron, Manchester M13 9PL, Lancs, England.
[Freire, P. C. C.] Arecibo Observ, Arecibo, PR 00612 USA.
[Fukazawa, Y.; Hanabata, Y.; Katagiri, H.; Mizuno, T.; Takahashi, H.] Hiroshima Univ, Dept Phys Sci, Higashihiroshima 7398526, Japan.
[Fukazawa, Y.; Hanabata, Y.; Katagiri, H.; Mizuno, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Higashihiroshima 7398526, Japan.
[Gehrels, N.; Johnson, T. J.; Ritz, S.] Univ Maryland, College Pk, MD 20742 USA.
[Johnston, S.; Manchester, R. N.; Weltevrede, P.] CSIRO, Australia Telescope Natl Facil, Epping, NSW 1710, Australia.
[Kataoka, J.] Tokyo Inst Technol, Dept Phys, Meguro, Tokyo 1528551, Japan.
[Kawai, N.] RIKEN, Inst Phys & Chem Res, Cosm Radiat Lab, Wako, Saitama 3510198, Japan.
[Kawai, N.; Kiziltan, B.] Univ Calif Santa Cruz, Lick Observ, UCO, Santa Cruz, CA 95064 USA.
[Knoedlseder, J.; Vilchez, N.] UPS, CNRS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse, France.
[McLaughlin, M. A.] W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA.
[Moiseev, A. A.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA.
[Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy.
[Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany.
[Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA.
[Ozaki, M.; Takahashi, T.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan.
[Rodriguez, A. Y.; Sierpowska-Bartosik, A.; Torres, D. F.] CSIC, Inst Ciencies Espai, IEEC, Barcelona 08193, Spain.
[Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA.
[Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA.
[Torres, D. F.] ICREA, Barcelona, Spain.
[Tramacere, A.] CIFS, I-10133 Turin, Italy.
[Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-10133 Turin, Italy.
[Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden.
RP Abdo, AA (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA.
EM guillemo@cenbg.in2p3.fr; kerrm@u.washington.edu; smith@cenbg.in2p3.fr
RI Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Reimer,
Olaf/A-3117-2013; Funk, Stefan/B-7629-2015; Johannesson,
Gudlaugur/O-8741-2015; Gargano, Fabio/O-8934-2015; Loparco,
Francesco/O-8847-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario
/O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016;
Starck, Jean-Luc/D-9467-2011; Thompson, David/D-2939-2012; Rando,
Riccardo/M-7179-2013; Harding, Alice/D-3160-2012; Gehrels,
Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012;
lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Nolan,
Patrick/A-5582-2009; Kuss, Michael/H-8959-2012; giglietto,
nicola/I-8951-2012; Tosti, Gino/E-9976-2013; Ozaki,
Masanobu/K-1165-2013; Komin, Nukri/J-6781-2015;
OI Tramacere, Andrea/0000-0002-8186-3793; Baldini,
Luca/0000-0002-9785-7726; Marelli, Martino/0000-0002-8017-0338; Reimer,
Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080; Johannesson,
Gudlaugur/0000-0003-1458-7036; Gargano, Fabio/0000-0002-5055-6395;
Loparco, Francesco/0000-0002-1173-5673; Moskalenko,
Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres,
Diego/0000-0002-1522-9065; Rando, Riccardo/0000-0001-6992-818X; Sgro',
Carmelo/0000-0001-5676-6214; Starck, Jean-Luc/0000-0003-2177-7794;
Thompson, David/0000-0001-5217-9135; lubrano,
pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553;
giglietto, nicola/0000-0002-9021-2888; Giordano,
Francesco/0000-0002-8651-2394; Thorsett, Stephen/0000-0002-2025-9613;
SPINELLI, Paolo/0000-0001-6688-8864; De Angelis,
Alessandro/0000-0002-3288-2517; Frailis, Marco/0000-0002-7400-2135;
Caraveo, Patrizia/0000-0003-2478-8018; Komin, Nukri/0000-0003-3280-0582;
Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577;
Pesce-Rollins, Melissa/0000-0003-1790-8018; De Luca,
Andrea/0000-0001-6739-687X; Ransom, Scott/0000-0001-5799-9714; Cutini,
Sara/0000-0002-1271-2924; Berenji, Bijan/0000-0002-4551-772X;
Gasparrini, Dario/0000-0002-5064-9495
NR 42
TC 31
Z9 31
U1 0
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD AUG 1
PY 2009
VL 700
IS 2
BP 1059
EP 1066
DI 10.1088/0004-637X/700/2/1059
PG 8
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 471ZU
UT WOS:000268098100020
ER
PT J
AU Yanny, B
Newberg, HJ
Johnson, JA
Lee, YS
Beers, TC
Bizyaev, D
Brewington, H
Fiorentin, PR
Harding, P
Malanushenko, E
Malanushenko, V
Oravetz, D
Pan, K
Simmons, A
Snedden, S
AF Yanny, Brian
Newberg, Heidi Jo
Johnson, Jennifer A.
Lee, Young Sun
Beers, Timothy C.
Bizyaev, Dmitry
Brewington, Howard
Fiorentin, Paola Re
Harding, Paul
Malanushenko, Elena
Malanushenko, Viktor
Oravetz, Dan
Pan, Kaike
Simmons, Audrey
Snedden, Stephanie
TI TRACING SAGITTARIUS STRUCTURE WITH SDSS AND SEGUE IMAGING AND
SPECTROSCOPY
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE Galaxy: halo; Galaxy: kinematics and dynamics; Galaxy: structure; stars:
abundances
ID DIGITAL SKY SURVEY; RR-LYRAE STARS; GLOBULAR-CLUSTER NGC-5466; SURVEY
COMMISSIONING DATA; COLD STELLAR STREAM; MILKY-WAY; DWARF GALAXY;
GALACTIC HALO; TIDAL STREAMS; SURVEY VIEW
AB We show that the Sagittarius dwarf tidal stream can be traced with very red K/M-giant stars, selected from Sloan Digital Sky Survey (SDSS) photometry. A subset of these stars are spectroscopically confirmed with SEGUE and SDSS spectra, and the distance scale of 2MASS and SDSS M giants is calibrated to the RR Lyrae distance scale. The absolute magnitude of the K/M-giant stars at the tip of the giant branch is M(g0) = -1.0. The line-of-sight velocities of the M giant and blue horizontal-branch (BHB) stars that are spatially coincident with the Sgr dwarf tidal stream are consistent with those of previous authors, reinforcing the need for new models that can explain all of the Sgr tidal debris stream observations. We estimate stellar densities along the tidal tails that can be used to help constrain future models. The K/M giant, BHB, and F-turnoff stars in the lower surface brightness tidal stream that is adjacent to the main leading Sgr dwarf tidal tail have velocities and metallicities that are similar to those of the stars in the leading tidal tail. The ratio of K/M giants to BHBs and BHBs to F-turnoff stars are also similar for both branches of the leading tidal tail. We show that there is an additional low-metallicity tidal stream near the Sgr trailing tidal tail.
C1 [Yanny, Brian] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Newberg, Heidi Jo] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA.
[Johnson, Jennifer A.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA.
[Lee, Young Sun; Beers, Timothy C.] Michigan State Univ, Dept Phys & Astron, CSCE, E Lansing, MI 48824 USA.
[Lee, Young Sun; Beers, Timothy C.] Michigan State Univ, JINA, E Lansing, MI 48824 USA.
[Bizyaev, Dmitry; Brewington, Howard; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Dan; Pan, Kaike; Simmons, Audrey; Snedden, Stephanie] Apache Point Observ, Sunspot, NM 88349 USA.
[Fiorentin, Paola Re] Univ Ljubljana, Dept Phys, Ljubljana 1000, Slovenia.
[Fiorentin, Paola Re] Max Planck Inst Astron, D-69117 Heidelberg, Germany.
[Harding, Paul] Case Western Reserve Univ, Dept Astron, Cleveland, OH 44106 USA.
RP Yanny, B (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA.
EM paola.refiorentin@fmf.uni-lj.si
NR 43
TC 78
Z9 80
U1 0
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD AUG 1
PY 2009
VL 700
IS 2
BP 1282
EP 1298
DI 10.1088/0004-637X/700/2/1282
PG 17
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 471ZU
UT WOS:000268098100036
ER
PT J
AU Nobili, S
Fadeyev, V
Aldering, G
Amanullah, R
Barbary, K
Burns, MS
Dawson, KS
Deustua, SE
Faccioli, L
Fruchter, AS
Goldhaber, G
Goobar, A
Hook, I
Howell, DA
Kim, AG
Knop, RA
Lidman, C
Meyers, J
Nugent, PE
Pain, R
Panagia, N
Perlmutter, S
Rubin, D
Spadafora, AL
Strovink, M
Suzuki, N
Swift, H
AF Nobili, S.
Fadeyev, V.
Aldering, G.
Amanullah, R.
Barbary, K.
Burns, M. S.
Dawson, K. S.
Deustua, S. E.
Faccioli, L.
Fruchter, A. S.
Goldhaber, G.
Goobar, A.
Hook, I.
Howell, D. A.
Kim, A. G.
Knop, R. A.
Lidman, C.
Meyers, J.
Nugent, P. E.
Pain, R.
Panagia, N.
Perlmutter, S.
Rubin, D.
Spadafora, A. L.
Strovink, M.
Suzuki, N.
Swift, H.
CA Supernova Cosmology Project
TI CONSTRAINING DUST AND COLOR VARIATIONS OF HIGH-z SNe USING NICMOS ON THE
HUBBLE SPACE TELESCOPE
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE cosmology: observations; cosmological parameters; supernovae: general
ID HIGH-REDSHIFT SUPERNOVAE; IA SUPERNOVAE; LEGACY SURVEY; K-CORRECTIONS;
DARK ENERGY; SPECTRA; UNIVERSE; 2000CX; OMEGA(LAMBDA); SPECTROSCOPY
AB We present data from the Supernova Cosmology Project for five high redshift Type Ia supernovae (SNe Ia) that were obtained using the NICMOS infrared camera on the Hubble Space Telescope. We add two SNe from this sample to a rest-frame I-band Hubble diagram, doubling the number of high redshift supernovae on this diagram. This I-band Hubble diagram is consistent with a flat universe (Omega(M), Omega(A)) = (0.29, 0.71). A homogeneous distribution of large grain dust in the intergalactic medium (replenishing dust) is incompatible with the data and is excluded at the 5 sigma confidence level, if the SN host galaxy reddening is corrected assuming R(V) = 1.75. We use both optical and infrared observations to compare photometric properties of distant SNe Ia with those of nearby objects. We find generally good agreement with the expected color evolution for all SNe except the highest redshift SN in our sample (SN 1997ek at z = 0.863) which shows a peculiar color behavior. We also present spectra obtained from ground-based telescopes for type identification and determination of redshift.
C1 [Nobili, S.; Amanullah, R.; Goobar, A.] Stockholm Univ, Dept Phys, Albanova Univ Ctr, S-10691 Stockholm, Sweden.
[Fadeyev, V.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA.
[Aldering, G.; Amanullah, R.; Barbary, K.; Dawson, K. S.; Faccioli, L.; Goldhaber, G.; Kim, A. G.; Meyers, J.; Nugent, P. E.; Perlmutter, S.; Rubin, D.; Spadafora, A. L.; Strovink, M.; Suzuki, N.; Swift, H.] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Amanullah, R.; Faccioli, L.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.
[Amanullah, R.; Goobar, A.] Stockholm Univ, Oskar Klein Ctr, S-10691 Stockholm, Sweden.
[Barbary, K.; Goldhaber, G.; Meyers, J.; Perlmutter, S.; Rubin, D.; Strovink, M.; Swift, H.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Burns, M. S.] Colorado Coll, Colorado Springs, CO 80903 USA.
[Deustua, S. E.; Fruchter, A. S.; Panagia, N.] Space Telescope Sci Inst, Baltimore, MD 21218 USA.
[Hook, I.] Univ Oxford, Subdept Astrophys, Oxford OX1 3RH, England.
[Howell, D. A.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H8, Canada.
[Lidman, C.] European So Observ, Santiago 19, Chile.
[Pain, R.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France.
[Pain, R.] Univ Paris 07, CNRS, IN2P3, LPNHE, Paris, France.
RP Nobili, S (reprint author), Stockholm Univ, Dept Phys, Albanova Univ Ctr, S-10691 Stockholm, Sweden.
EM serena@physto.se
RI Perlmutter, Saul/I-3505-2015;
OI Perlmutter, Saul/0000-0002-4436-4661; Meyers, Joshua/0000-0002-2308-4230
FU NASA [GO-07850, NAS 5-26555]; U. S. Department of Energy
[AC02-05CH11231]
FX We thank Daniel Sauer for sharing his models with us. Financial support
for this work was provided by NASA through program GO-07850 from the
Space Telescope Science Institute, which is operated by AURA, Inc.,
under NASA contract NAS 5-26555. This work was also supported in part by
the Director, Office of Science, Office of High Energy and Nuclear
Physics, of the U. S. Department of Energy under Contract No.
AC02-05CH11231. Some of the data presented herein were obtained at the
W. M. Keck Observatory, which is operated as a scientific partnership
among the California Institute of Technology, the University of
California, and the National Aeronautics and Space Administration. The
authors wish to recognize and acknowledge the very significant cultural
role and reverence that the summit of Mauna Kea has always had within
the indigenous Hawaiian community. We are most fortunate to have the
opportunity to conduct observations from this mountain. Based in part on
observations collected at the ESO La Silla Observatory (ESO program
60.A-0586).
NR 50
TC 6
Z9 6
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD AUG 1
PY 2009
VL 700
IS 2
BP 1415
EP 1427
DI 10.1088/0004-637X/700/2/1415
PG 13
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 471ZU
UT WOS:000268098100042
ER
PT J
AU Abdo, AA
Allen, BT
Aune, T
Berley, D
Chen, C
Christopher, GE
DeYoung, T
Dingus, BL
Ellsworth, RW
Gonzalez, MM
Goodman, JA
Hays, E
Hoffman, CM
Huntemeyer, PH
Kolterman, BE
Linnemann, JT
McEnery, JE
Morgan, T
Mincer, AI
Nemethy, P
Pretz, J
Ryan, JM
Parkinson, PMS
Shoup, A
Sinnis, G
Smith, AJ
Vasileiou, V
Walker, GP
Williams, DA
Yodh, GB
AF Abdo, A. A.
Allen, B. T.
Aune, T.
Berley, D.
Chen, C.
Christopher, G. E.
DeYoung, T.
Dingus, B. L.
Ellsworth, R. W.
Gonzalez, M. M.
Goodman, J. A.
Hays, E.
Hoffman, C. M.
Huentemeyer, P. H.
Kolterman, B. E.
Linnemann, J. T.
McEnery, J. E.
Morgan, T.
Mincer, A. I.
Nemethy, P.
Pretz, J.
Ryan, J. M.
Parkinson, P. M. Saz
Shoup, A.
Sinnis, G.
Smith, A. J.
Vasileiou, V.
Walker, G. P.
Williams, D. A.
Yodh, G. B.
TI MILAGRO OBSERVATIONS OF MULTI-TeV EMISSION FROM GALACTIC SOURCES IN THE
FERMI BRIGHT SOURCE LIST
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE gamma rays: observations; pulsars: general; supernova remnants
ID FALSE-DISCOVERY RATE; GAMMA-RAY EMISSION; PULSAR; TELESCOPE; NEBULA;
PULSATIONS; CATALOG; GEMINGA; GALAXY; PLANE
AB We present the result of a search of the Milagro sky map for spatial correlations with sources from a subset of the recent Fermi Bright Source List (BSL). The BSL consists of the 205 most significant sources detected above 100 MeV by the Fermi Large Area Telescope. We select sources based on their categorization in the BSL, taking all confirmed or possible Galactic sources in the field of view of Milagro. Of the 34 Fermi sources selected, 14 are observed by Milagro at a significance of 3 standard deviations or more. We conduct this search with a new analysis which employs newly optimized gamma-hadron separation and utilizes the full eight-year Milagro data set. Milagro is sensitive to gamma rays with energy from 1 to 100 TeV with a peak sensitivity from 10 to 50 TeV depending on the source spectrum and declination. These results extend the observation of these sources far above the Fermi energy band. With the new analysis and additional data, multi-TeV emission is definitively observed associated with the Fermi pulsar, J2229.0+6114, in the Boomerang pulsar wind nebula (PWN). Furthermore, an extended region of multi-TeV emission is associated with the Fermi pulsar, J0634.0+1745, the Geminga pulsar.
C1 [Abdo, A. A.; Linnemann, J. T.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
[Allen, B. T.; Chen, C.; Yodh, G. B.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA.
[Aune, T.; Parkinson, P. M. Saz; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA.
[Berley, D.; Goodman, J. A.; Smith, A. J.; Vasileiou, V.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA.
[Christopher, G. E.; Kolterman, B. E.; Mincer, A. I.; Nemethy, P.] NYU, Dept Phys, New York, NY 10003 USA.
[DeYoung, T.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA.
[Dingus, B. L.; Hoffman, C. M.; Pretz, J.; Sinnis, G.; Walker, G. P.] Los Alamos Natl Lab, Grp P 23, Los Alamos, NM 87545 USA.
[Ellsworth, R. W.] George Mason Univ, Dept Phys & Astron, Fairfax, VA 22030 USA.
[Gonzalez, M. M.] Univ Nacl Autonoma Mexico, Inst Astron, Mexico City 04510, DF, Mexico.
[Hays, E.; McEnery, J. E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Huentemeyer, P. H.] Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA.
[Morgan, T.; Ryan, J. M.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA.
[Shoup, A.] Ohio State Univ, Lima, OH 45804 USA.
[Vasileiou, V.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA.
Univ Maryland Baltimore Cty, Baltimore, MD 21228 USA.
RP Abdo, AA (reprint author), Michigan State Univ, Dept Phys & Astron, 3245 BioMed Phys Sci Bldg, E Lansing, MI 48824 USA.
RI McEnery, Julie/D-6612-2012; Saz Parkinson, Pablo Miguel/I-7980-2013;
Hays, Elizabeth/D-3257-2012;
OI Dingus, Brenda/0000-0001-8451-7450
FU National Science Foundation [PHY-0245234, 0302000, 0400424, 0504201,
0601080, ATM-0002744]; US Department of Energy (Office of High-Energy
Physics and Office of Nuclear Physics); Los Alamos National Laboratory;
University of California; Institute of Geophysics and Planetary Physics
FX We gratefully acknowledge Scott Delay and Michael Schneider for their
dedicated efforts in the construction and maintenance of the Milagro
experiment. This work has been supported by the National Science
Foundation (under grants PHY-0245234, -0302000, -0400424, -0504201,
-0601080, and ATM-0002744), the US Department of Energy (Office of
High-Energy Physics and Office of Nuclear Physics), Los Alamos National
Laboratory, the University of California, and the Institute of
Geophysics and Planetary Physics.
NR 30
TC 88
Z9 89
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD AUG 1
PY 2009
VL 700
IS 2
BP L127
EP L131
DI 10.1088/0004-637X/700/2/L127
PG 5
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 472UJ
UT WOS:000268157500016
ER
PT J
AU Newberg, HJ
Yanny, B
Willett, BA
AF Newberg, Heidi Jo
Yanny, Brian
Willett, Benjamin A.
TI DISCOVERY OF A NEW, POLAR-ORBITING DEBRIS STREAM IN THE MILKY WAY
STELLAR HALO
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE Galaxy: halo; Galaxy: structure; Stars: kinematics
ID DIGITAL SKY SURVEY; GALACTIC GLOBULAR-CLUSTERS; TIDAL TAILS;
HORIZONTAL-BRANCH; SAGITTARIUS; STARS; IDENTIFICATION; FIELD
AB We show that there is a low-metallicity tidal stream that runs along l = 143 degrees in the South Galactic Cap, about 34 kpc from the Sun, discovered from the Sloan Extension for Galactic Understanding and Exploration stellar velocities. Since the most concentrated detections are in the Cetus constellation, and the orbital path is nearly polar, we name it the Cetus Polar Stream (CPS). Although it is spatially coincident with the Sgr dwarf trailing tidal tail at b = -70 degrees, the metallicities ([Fe/H] = -2.1), ratio of blue straggler to blue horizontal branch stars, and velocities of the CPS stars differ from Sgr. Some CPS stars may contaminate previous samples of Sgr dwarf tidal debris. The unusual globular cluster NGC 5824 is located along an orbit fitted to the CPS, with the correct radial velocity.
C1 [Newberg, Heidi Jo; Willett, Benjamin A.] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA.
[Yanny, Brian] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
RP Newberg, HJ (reprint author), Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA.
FU National Science Foundation [AST 06-06618]
FX This work was supported by the National Science Foundation, grant AST
06-06618. We acknowledge several important suggestions from the
anonymous referee. This Letter utilized data from the SDSS and SDSS-II
databases (http://www.sdss.org).
NR 20
TC 55
Z9 56
U1 0
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD AUG 1
PY 2009
VL 700
IS 2
BP L61
EP L64
DI 10.1088/0004-637X/700/2/L61
PG 4
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 472UJ
UT WOS:000268157500001
ER
PT J
AU Kuranz, CC
Drake, RP
Grosskopf, MJ
Robey, HF
Remington, BA
Hansen, JF
Blue, BE
Knauer, J
AF Kuranz, C. C.
Drake, R. P.
Grosskopf, M. J.
Robey, H. F.
Remington, B. A.
Hansen, J. F.
Blue, B. E.
Knauer, J.
TI Image processing of radiographs in 3D Rayleigh-Taylor decelerating
interface experiments
SO ASTROPHYSICS AND SPACE SCIENCE
LA English
DT Article; Proceedings Paper
CT 7th International Conference on High Energy Density Laboratory
Astrophysics
CY APR 11-15, 2008
CL St Louis, MO
SP HEDLA, Amer Phys Soc
DE Supernovae; Hydrodynamic instabilities; Laboratory astrophysics
ID INSTABILITY; HYDRODYNAMICS; RELEVANT; SCALE; LASER
AB This paper discusses high-energy-density laboratory astrophysics experiments exploring the Rayleigh-Taylor instability under conditions similar to the blast wave driven, outermost layer in a core-collapse supernova. The planar blast wave is created in an experimental target using the Omega laser. The blast wave crosses an unstable interface with a seed perturbation machined onto it. The perturbation consists of a 3D "egg crate" pattern and, in some cases, an additional longer wavelength mode is added to this 3D, single-mode pattern. The main diagnostic of this experiment is x-ray radiography. This paper explores an image processing technique to improve the identification and characterization of structure in the radiographic data.
C1 [Kuranz, C. C.; Drake, R. P.; Grosskopf, M. J.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Robey, H. F.; Remington, B. A.; Hansen, J. F.] Lawrence Livermore Natl Lab, Livermore, CA USA.
[Blue, B. E.] Gen Atom Co, San Diego, CA USA.
[Knauer, J.] Univ Rochester, Rochester, NY USA.
RP Kuranz, CC (reprint author), Univ Michigan, Ann Arbor, MI 48109 USA.
EM ckuranz@umich.edu
OI Drake, R Paul/0000-0002-5450-9844
NR 18
TC 3
Z9 3
U1 1
U2 5
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0004-640X
J9 ASTROPHYS SPACE SCI
JI Astrophys. Space Sci.
PD AUG
PY 2009
VL 322
IS 1-4
BP 49
EP 55
DI 10.1007/s10509-008-9967-4
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 461TA
UT WOS:000267293200009
ER
PT J
AU Grosskopf, MJ
Drake, RP
Kuranz, CC
Miles, AR
Hansen, JF
Plewa, T
Hearn, N
Arnett, D
Wheeler, JC
AF Grosskopf, M. J.
Drake, R. P.
Kuranz, C. C.
Miles, A. R.
Hansen, J. F.
Plewa, T.
Hearn, N.
Arnett, D.
Wheeler, J. C.
TI Modeling of multi-interface, diverging, hydrodynamic experiments for the
National Ignition Facility
SO ASTROPHYSICS AND SPACE SCIENCE
LA English
DT Article; Proceedings Paper
CT 7th International Conference on High Energy Density Laboratory
Astrophysics
CY APR 11-15, 2008
CL St Louis, MO
SP HEDLA, Amer Phys Soc
DE Supernovae; Hydrodynamic instabilities; Laboratory astrophysics
ID DECELERATING INTERFACE; TAYLOR INSTABILITY; SUPERNOVAE; EXPLOSIONS;
DIMENSIONS; BEHAVIOR; SYSTEM; LASER
AB The National Ignition Facility (NIF) will soon provide experiments with far more than ten times the energy than has been previously available on laser facilities. In the context of supernova-relevant hydrodynamics, this will enable experiments in which hydrodynamic instabilities develop from multiple, coupled interfaces in a diverging explosion. This paper discusses the design of such blast-wave-driven explosions in which the relative masses of the layers are scaled to those within the star. It reports scaling simulations with CALE to model the global dynamics of such an experiment. CALE is a hybrid, Arbitrary Lagrangian-Eulerian code. The simulations probed the instability growth and multi-interface interactions in mass-scaled systems using different materials. The simulations assist in the target design process and in developing an experiment that can be diagnosed.
C1 [Grosskopf, M. J.; Drake, R. P.; Kuranz, C. C.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Miles, A. R.; Hansen, J. F.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Plewa, T.] Florida State Univ, Tallahassee, FL 32306 USA.
[Hearn, N.] Univ Chicago, Chicago, IL 60637 USA.
[Arnett, D.] Univ Arizona, Tucson, AZ 85721 USA.
[Wheeler, J. C.] Univ Texas Austin, Austin, TX 78712 USA.
RP Grosskopf, MJ (reprint author), Univ Michigan, Ann Arbor, MI 48109 USA.
EM mikegros@umich.edu
RI Plewa, Tomasz/C-1470-2010;
OI Plewa, Tomasz/0000-0002-1762-2565; Drake, R Paul/0000-0002-5450-9844
NR 18
TC 5
Z9 5
U1 0
U2 3
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0004-640X
J9 ASTROPHYS SPACE SCI
JI Astrophys. Space Sci.
PD AUG
PY 2009
VL 322
IS 1-4
BP 57
EP 63
DI 10.1007/s10509-008-9953-x
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 461TA
UT WOS:000267293200010
ER
PT J
AU Michaut, C
Falize, E
Cavet, C
Bouquet, S
Koenig, M
Vinci, T
Reighard, A
Drake, RP
AF Michaut, C.
Falize, E.
Cavet, C.
Bouquet, S.
Koenig, M.
Vinci, T.
Reighard, A.
Drake, R. P.
TI Classification of and recent research involving radiative shocks
SO ASTROPHYSICS AND SPACE SCIENCE
LA English
DT Article; Proceedings Paper
CT 7th International Conference on High Energy Density Laboratory
Astrophysics
CY APR 11-15, 2008
CL St Louis, MO
SP HEDLA, Amer Phys Soc
DE Radiative shocks; High-power lasers; Cooling function
ID ASTROPHYSICS; HYDRODYNAMICS; SIMULATION; STABILITY; ACCRETION;
SUPERNOVA; CRITERIA; WAVES
AB Radiative shocks (RS) occur in astrophysical systems and in high-energy density laboratory experiments. Aided by three dimensionless parameters, we propose a classification of RS into four types, integrating previous work that has focused independently on optical depth and on Mach number. Specific terms, such as a cooling function, a radiative flux, or radiative energy and pressure must be added to the Euler equations in order to model these various kinds of shocks. We examine how these terms correspond to the radiative classification regimes. In astrophysics, observed RS arise generally in optically thin material. Thus, radiation escapes without interaction with the surrounding gas, except perhaps to ionize it, and the energy loss in such shocks can be modeled by a cooling function I >. In this case only the post-shock region is structured by the radiation cooling. We found the analytical solution for hydrodynamic equations including I > ae rho (epsilon) P (zeta) x (theta) for arbitrary values of epsilon, zeta, theta. This is a completely new result. An application of this calculation for the accretion shock in cataclysmic variables of polar type is given in astrophysical terms. We also draw a parallel between RS experiments performed using the LULI2000 laser facility, in France and the Omega laser Facility, in USA. RS developed in these laboratories are more or less optically thick. These high-Mach number RS present a radiative precursor.
C1 [Michaut, C.; Falize, E.; Cavet, C.; Bouquet, S.] Univ Paris Diderot, CNRS, Observ Paris, LUTH, F-92190 Meudon, France.
[Falize, E.; Bouquet, S.; Vinci, T.] CEA DIF, Dept Phys Theor & Appl, F-91297 Arpajon, France.
[Koenig, M.; Vinci, T.] Univ Paris 06, CNRS, Ecole Polytech, LULI, F-91128 Palaiseau, France.
[Reighard, A.; Drake, R. P.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA.
[Reighard, A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Michaut, C (reprint author), Univ Paris Diderot, CNRS, Observ Paris, LUTH, F-92190 Meudon, France.
EM Claire.Michaut@obspm.fr
RI Koenig, Michel/A-2167-2012;
OI Drake, R Paul/0000-0002-5450-9844
NR 38
TC 23
Z9 24
U1 0
U2 6
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0004-640X
EI 1572-946X
J9 ASTROPHYS SPACE SCI
JI Astrophys. Space Sci.
PD AUG
PY 2009
VL 322
IS 1-4
BP 77
EP 84
DI 10.1007/s10509-008-9966-5
PG 8
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 461TA
UT WOS:000267293200013
ER
PT J
AU Rosen, PA
Foster, JM
Wilde, BH
Hartigan, P
Blue, BE
Hansen, JF
Sorce, C
Williams, RJR
Coker, R
Frank, A
AF Rosen, P. A.
Foster, J. M.
Wilde, B. H.
Hartigan, P.
Blue, B. E.
Hansen, J. F.
Sorce, C.
Williams, R. J. R.
Coker, R.
Frank, A.
TI Laboratory experiments to study supersonic astrophysical flows
interacting with clumpy environments
SO ASTROPHYSICS AND SPACE SCIENCE
LA English
DT Article; Proceedings Paper
CT 7th International Conference on High Energy Density Laboratory
Astrophysics
CY APR 11-15, 2008
CL St Louis, MO
SP HEDLA, Amer Phys Soc
DE Laboratory astrophysics; Supersonic astrophysical flows; Shocked clumps;
Omega laser
ID INTERSTELLAR CLOUDS; HYDRODYNAMIC INTERACTION; SUPERNOVA-REMNANTS;
SHOCK-WAVES; NOVA LASER; SIMULATION; JETS
AB A wide variety of objects in the universe drive supersonic outflows through the interstellar medium which is often highly clumpy. These inhomogeneities affect the morphology of the shocks that are generated. The hydrodynamics are difficult to model as the problem is inherently 3D and the clumps are subject to a variety of fluid instabilities as they are accelerated and destroyed by the shock. Over the last two years, we have been carrying out experiments at the University of Rochester's Omega laser to address the interaction of a dense-plasma jet with a localised density perturbation. More recently, we have turned our attention to the interaction of a shock wave with a spherical particle. We use a 1.6-mm diameter, 1.2-mm length Omega hohlraum to drive a composite plastic ablator (which includes bromine to prevent M-band radiation from preheating the experiment). The ablator acts as a "piston" driving a shock into 0.3 g cm(-3) foam containing a 0.5-mm diameter sapphire sphere. We radiograph along two orthogonal lines of sight, using nickel or zinc pinhole-apertured X-ray backlighters, to study the subsequent hydrodynamics. We present initial experimental results and two-dimensional simulations of the experiment.
C1 [Rosen, P. A.; Foster, J. M.; Williams, R. J. R.] AWE Aldermaston, Reading RG7 4PR, Berks, England.
[Wilde, B. H.; Coker, R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Hartigan, P.] Rice Univ, Houston, TX 77251 USA.
[Blue, B. E.] Gen Atom Co, San Diego, CA 92186 USA.
[Hansen, J. F.; Sorce, C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Frank, A.] Univ Rochester, Rochester, NY 14627 USA.
RP Rosen, PA (reprint author), AWE Aldermaston, Reading RG7 4PR, Berks, England.
EM paula.rosen@awe.co.uk
RI Williams, Robin/H-1637-2011
OI Williams, Robin/0000-0002-0486-0580
NR 19
TC 5
Z9 5
U1 0
U2 2
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0004-640X
J9 ASTROPHYS SPACE SCI
JI Astrophys. Space Sci.
PD AUG
PY 2009
VL 322
IS 1-4
BP 101
EP 105
DI 10.1007/s10509-008-9897-1
PG 5
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 461TA
UT WOS:000267293200017
ER
PT J
AU Hall, IM
Durmaz, T
Mancini, RC
Bailey, JE
Rochau, GA
Rosenberg, MJ
Cohen, DH
Golovkin, IE
MacFarlane, JJ
Sherril, ME
Abdallah, J
Heeter, RF
Foord, ME
Glenzer, SH
Scott, HA
AF Hall, I. M.
Durmaz, T.
Mancini, R. C.
Bailey, J. E.
Rochau, G. A.
Rosenberg, M. J.
Cohen, D. H.
Golovkin, I. E.
MacFarlane, J. J.
Sherril, M. E.
Abdallah, J.
Heeter, R. F.
Foord, M. E.
Glenzer, S. H.
Scott, H. A.
TI Modelling, design and diagnostics for a photoionised plasma experiment
SO ASTROPHYSICS AND SPACE SCIENCE
LA English
DT Article; Proceedings Paper
CT 7th International Conference on High Energy Density Laboratory
Astrophysics
CY APR 11-15, 2008
CL St Louis, MO
SP HEDLA, Amer Phys Soc
DE Photoionised plasma; Laboratory Astrophysics; Hydrodynamic simulation;
Atomic-kinetic modelling; Plasma spectroscopy
ID CODE
AB Photoionised plasmas are common in astrophysical environments and new high resolution spectra from such sources have been recorded in recent years by the Chandra and XMM-Newton satellites. These provide a wealth of spectroscopic information and have motivated recent efforts aimed at obtaining a detailed understanding of the atomic-kinetic and radiative characteristics of photoionised plasmas. The Z-pinch facility at the Sandia National Laboratories is the most powerful terrestrial source of X-rays and provides an opportunity to produce photoionised plasmas in a well characterised radiation environment. We present modelling work and experimental design considerations for a forthcoming experiment at Sandia in which X-rays from a collapsing Z-pinch will be used to photoionise low density neon contained in a gas cell. View factor calculations were used to evaluate the radiation environment at the gas cell; the hydrodynamic characteristics of the gas cell were examined using the Helios-CR code, in particular looking at the heating, temperature and ionisation of the neon and the absorption of radiation. Emission and absorption spectra were also computed, giving estimates of spectra likely to be observed experimentally.
C1 [Hall, I. M.; Durmaz, T.; Mancini, R. C.] Univ Nevada, Reno, NV 89557 USA.
[Bailey, J. E.; Rochau, G. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Rosenberg, M. J.; Cohen, D. H.] Swarthmore Coll, Swarthmore, PA 19081 USA.
[Sherril, M. E.; Abdallah, J.] Los Alamos Natl Lab, Los Alamos, NM USA.
[Heeter, R. F.; Foord, M. E.; Glenzer, S. H.; Scott, H. A.] Lawrence Livermore Natl Lab, Livermore, CA USA.
RP Hall, IM (reprint author), Univ Nevada, Reno, NV 89557 USA.
EM ihall@unr.edu
OI Cohen, David/0000-0003-2995-4767
NR 9
TC 8
Z9 8
U1 0
U2 7
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0004-640X
J9 ASTROPHYS SPACE SCI
JI Astrophys. Space Sci.
PD AUG
PY 2009
VL 322
IS 1-4
BP 117
EP 121
DI 10.1007/s10509-008-9930-4
PG 5
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 461TA
UT WOS:000267293200020
ER
PT J
AU Saumon, D
AF Saumon, D.
TI To see the inside of a planet in a drop of deuterium
SO ASTROPHYSICS AND SPACE SCIENCE
LA English
DT Article; Proceedings Paper
CT 7th International Conference on High Energy Density Laboratory
Astrophysics
CY APR 11-15, 2008
CL St Louis, MO
SP HEDLA, Amer Phys Soc
DE Jupiter; Saturn; Equation of state; Hydrogen; Helium; Exoplanets
ID EQUATION-OF-STATE; GIANT PLANETS; SHOCK COMPRESSION; JUPITER; SATURN;
TRANSITION; EXOPLANETS; INTERIORS; HYDROGEN; HELIUM
AB We briefly review the close connection between research on the equation of state of dense hydrogen and helium and models of the structure of Jupiter, Saturn and exoplanets and how they inform the process of planet formation. Recent progress in equation of state experiments and theory is high lighted.
C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Saumon, D (reprint author), Los Alamos Natl Lab, POB 1663,MS F663, Los Alamos, NM 87545 USA.
EM dsaumon@lanl.gov
NR 28
TC 0
Z9 0
U1 1
U2 2
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0004-640X
J9 ASTROPHYS SPACE SCI
JI Astrophys. Space Sci.
PD AUG
PY 2009
VL 322
IS 1-4
BP 123
EP 127
DI 10.1007/s10509-008-9948-7
PG 5
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 461TA
UT WOS:000267293200021
ER
PT J
AU Ryutov, DD
Remington, BA
AF Ryutov, D. D.
Remington, B. A.
TI Using the Rayleigh-Taylor instability for in situ measurements of
thermal conductivity of warm dense matter
SO ASTROPHYSICS AND SPACE SCIENCE
LA English
DT Article; Proceedings Paper
CT 7th International Conference on High Energy Density Laboratory
Astrophysics
CY APR 11-15, 2008
CL St Louis, MO
SP HEDLA, Amer Phys Soc
DE Warm dense matter; Thermal conductivity; Equation of state
AB The Rayleigh-Taylor (RT) instability of a material with stratified density, temperature, and composition is considered. The variation of composition gives rise to the appearance of modes whose growth rate is directly related to the finite thermal conductivity. It is suggested that this effect could be used for in situ measurements of thermal conductivity of warm dense matter. Expressions for the RT growth rate for the general equation of state are derived and the modes most suitable for measurements are identified. A desired perturbation can be introduced by machining the package or by using masks during the surface deposition process. To visualize the evolution of the embedded perturbation, higher-Z tracers can be used. A concept for a laser-driven experiment where this approach could be realized is presented.
C1 [Ryutov, D. D.; Remington, B. A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
RP Ryutov, DD (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
EM ryutov1@llnl.gov
NR 13
TC 1
Z9 1
U1 3
U2 5
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0004-640X
J9 ASTROPHYS SPACE SCI
JI Astrophys. Space Sci.
PD AUG
PY 2009
VL 322
IS 1-4
BP 141
EP 146
DI 10.1007/s10509-009-9980-2
PG 6
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 461TA
UT WOS:000267293200024
ER
PT J
AU Martinez, D
Presura, R
Wright, S
Plechaty, C
Neff, S
Wanex, L
Ampleford, DJ
AF Martinez, David
Presura, Radu
Wright, Sandra
Plechaty, Chris
Neff, Stephan
Wanex, Lucas
Ampleford, David J.
TI Generation of shear flow in conical wire arrays with a center wire
SO ASTROPHYSICS AND SPACE SCIENCE
LA English
DT Article; Proceedings Paper
CT 7th International Conference on High Energy Density Laboratory
Astrophysics
CY APR 11-15, 2008
CL St Louis, MO
SP HEDLA, Amer Phys Soc
DE Shear flow; Kelvin-Helmholtz instability; Conical wire array; Z-pinch
ID STELLAR OUTFLOWS; JETS; INSTABILITIES; ASTROPHYSICS; MODEL
AB At the Nevada Terawatt Facility we investigated the generation of a sheared plasma flow using conical wire arrays with an additional wire located on the axis of the pinch. The additional center wire generates axial current carrying plasma that serves as a target for the plasma accelerated from the outer wires, generating a sheared plasma flow which leads to the growth of the Kelvin-Helmholtz instability. These experiments were conducted on Zebra, a 2 TW pulse power device capable of delivering a 1 MA current in 100 ns. This paper will focus on the implosion dynamics that lead to shear flow and the development of the Kelvin Helmholtz instability.
C1 [Martinez, David; Presura, Radu; Wright, Sandra; Plechaty, Chris; Neff, Stephan; Wanex, Lucas] Univ Nevada, Reno, NV 89557 USA.
[Ampleford, David J.] Sandia Natl Labs, Albuquerque, NM 87108 USA.
RP Martinez, D (reprint author), Univ Nevada, Reno, NV 89557 USA.
EM dmartine@unr.nevada.edu
NR 23
TC 7
Z9 7
U1 1
U2 3
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0004-640X
EI 1572-946X
J9 ASTROPHYS SPACE SCI
JI Astrophys. Space Sci.
PD AUG
PY 2009
VL 322
IS 1-4
BP 205
EP 208
DI 10.1007/s10509-008-9947-8
PG 4
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 461TA
UT WOS:000267293200034
ER
PT J
AU Sotnikov, VI
Ivanov, VV
Presura, R
Yassin, E
Kindel, J
Leboeuf, JN
Onishchenko, OG
Oliver, BV
Jones, B
Mehlhorn, TA
Deeney, C
AF Sotnikov, V. I.
Ivanov, V. V.
Presura, R.
Yassin, E.
Kindel, J.
Leboeuf, J. N.
Onishchenko, O. G.
Oliver, B. V.
Jones, B.
Mehlhorn, T. A.
Deeney, C.
TI Investigation of flute instability in application to laboratory
astrophysics and Z-pinch experiments
SO ASTROPHYSICS AND SPACE SCIENCE
LA English
DT Article; Proceedings Paper
CT 7th International Conference on High Energy Density Laboratory
Astrophysics
CY APR 11-15, 2008
CL St Louis, MO
SP HEDLA, Amer Phys Soc
DE Flute instability; High beta plasma; Nonlinear wave dynamics; Laboratory
astrophysics experiments; Z-pinches
ID MODE-INSTABILITY; MAGNETIC-FIELD; DUSTY PLASMAS; DRIFT WAVES;
LARGE-SCALE; DYNAMICS; GENERATION; CURVATURE; FLOWS
AB Interaction of plasma flows with magnetic fields can lead to excitation of flute-like oscillations. These oscillations can also be excited in Z-pinch plasmas. We have developed understanding of nonlinear dynamics of compressible flute mode turbulence with spatial scales comparable to the ion Larmor radius in a high beta plasma, when these modes become electromagnetic and in the presence of a non-uniform magnetic field. It is shown that the flute waves are responsible for generation of large scale structures of streamer and zonal flow types as well as Kolmogorov type spectra in the short scale region. The relevance of the obtained results to laboratory astrophysics and Z-pinch experiments is discussed.
C1 [Sotnikov, V. I.; Ivanov, V. V.; Presura, R.; Yassin, E.; Kindel, J.] Univ Nevada, Reno, NV 89557 USA.
[Leboeuf, J. N.] JNL Sci, Casa Grande, AZ 85294 USA.
[Onishchenko, O. G.] Inst Phys Earth, Moscow 123995, Russia.
[Oliver, B. V.; Jones, B.; Mehlhorn, T. A.] Sandia Natl Labs, Albuquerque, NM 87123 USA.
[Deeney, C.] Dept Energy, Washington, DC 20585 USA.
RP Sotnikov, VI (reprint author), Univ Nevada, Reno, NV 89557 USA.
EM sotnikov@physics.unr.edu
NR 18
TC 1
Z9 1
U1 0
U2 4
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0004-640X
J9 ASTROPHYS SPACE SCI
JI Astrophys. Space Sci.
PD AUG
PY 2009
VL 322
IS 1-4
BP 209
EP 213
DI 10.1007/s10509-009-9998-5
PG 5
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 461TA
UT WOS:000267293200035
ER
PT J
AU Pavlopoulos, GA
Moschopoulos, CN
Hooper, SD
Schneider, R
Kossida, S
AF Pavlopoulos, Georgios A.
Moschopoulos, Charalampos N.
Hooper, Sean D.
Schneider, Reinhard
Kossida, Sophia
TI jClust: a clustering and visualization toolbox
SO BIOINFORMATICS
LA English
DT Article
ID NETWORKS; PROTEINS; COMPLEX
AB jClust is a user-friendly application which provides access to a set of widely used clustering and clique finding algorithms. The toolbox allows a range of filtering procedures to be applied and is combined with an advanced implementation of the Medusa interactive visualization module. These implemented algorithms are k-Means, Affinity propagation, Bron-Kerbosch, MULIC, Restricted neighborhood search cluster algorithm, Markov clustering and Spectral clustering, while the supported filtering procedures are haircut, outside-inside, best neighbors and density control operations. The combination of a simple input. le format, a set of clustering and filtering algorithms linked together with the visualization tool provides a powerful tool for data analysis and information extraction.
C1 [Pavlopoulos, Georgios A.; Schneider, Reinhard] Struct & Computat Biol Unit, Heidelberg, Germany.
[Moschopoulos, Charalampos N.; Kossida, Sophia] Acad Athens, Biomed Res Fdn, Bioinformat & Med Informat Team, GR-11527 Athens, Greece.
[Hooper, Sean D.] Genome Biol Program, Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA.
RP Pavlopoulos, GA (reprint author), Struct & Computat Biol Unit, EMBL Meyerhofstr 1, Heidelberg, Germany.
EM pavlopou@embl.de; rschneid@embl.de; skossida@bioacademy.gr
RI Schneider, Reinhard/C-5441-2009;
OI Pavlopoulos, Georgios/0000-0002-4577-8276
NR 16
TC 12
Z9 12
U1 1
U2 3
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 1367-4803
J9 BIOINFORMATICS
JI Bioinformatics
PD AUG 1
PY 2009
VL 25
IS 15
BP 1994
EP 1996
DI 10.1093/bioinformatics/btp330
PG 3
WC Biochemical Research Methods; Biotechnology & Applied Microbiology;
Computer Science, Interdisciplinary Applications; Mathematical &
Computational Biology; Statistics & Probability
SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology;
Computer Science; Mathematical & Computational Biology; Mathematics
GA 472CP
UT WOS:000268107100032
PM 19454618
ER
PT J
AU Shabalovskaya, SA
Rondelli, GC
Undisz, AL
Anderegg, JW
Burleigh, TD
Rettenmayr, ME
AF Shabalovskaya, Svetlana A.
Rondelli, Gianni C.
Undisz, Andreas L.
Anderegg, James W.
Burleigh, Thomas D.
Rettenmayr, Markus E.
TI The electrochemical characteristics of native Nitinol surfaces
SO BIOMATERIALS
LA English
DT Article
DE Nitinol; Ti based surface oxides; Ni ion release; Corrosion;
Hemocompatibility; Fibrinogen
ID DRUG-ELUTING STENTS; NI-TI ALLOY; SHAPE-MEMORY ALLOYS; BARE-METAL
STENTS; CORROSION-RESISTANCE; BIOCOMPATIBILITY; TITANIUM; NICKEL;
HEMOCOMPATIBILITY; IMPLANTS
AB The present study explored the avenues for the improvement of native Nitinol surfaces for implantation obtained using traditional procedures such as mechanical polishing, chemical etching, electropolishing and heat treatments for a better understanding of their electrochemical behavior and associated surface stability, conductivity, reactivity and biological responses. The corrosion resistance (cyclic potential polarization, open circuit potential and polarization resistance) of Nitinol disc and wire samples were evaluated for various surface states in strain-free and strained wire conditions. The surface response to tension strain was studied in situ. Surface chemistry and structure were explored using XPS and Auger spectroscopy and photoelectrochemical methods, respectively. It was found that the polarization resistance of the Nitinol surfaces varied in a range from 100 k Omega to 10 M Omega cm(2) and the open circuit potentials from -440 mV to -55 mV. The surfaces prepared in chemical solutions showed consistent corrosion resistance in strain-free and strained states, but mechanically polished and heat treated samples were prone to pitting. Nitinol surface oxides are semiconductors with the band gaps of either 3.0 eV (rutile) or 3.4 eV (amorphous). The conductivity of semiconducting Nitinol surfaces relevant to their biological performances is discussed in terms of oxide stoichiometry and variable Ni content. Such biological characteristics of Nitinol surfaces as Ni release, fibrinogen adsorption and platelets behavior are re-examined based on the analysis of the results of the present study. (C) 2009 Elsevier Ltd. All rights reserved.
C1 [Shabalovskaya, Svetlana A.; Anderegg, James W.] Iowa State Univ, Ames Lab DOE, Ames, IA 50011 USA.
[Shabalovskaya, Svetlana A.; Undisz, Andreas L.; Rettenmayr, Markus E.] Univ Jena, Inst Mat Sci & Technol Met Mat, D-07743 Jena, Germany.
[Rondelli, Gianni C.] CNR, Inst Energy & Interphases, I-20133 Milan, Italy.
[Burleigh, Thomas D.] New Mexico Inst Min & Technol, Dept Met & Mat, Socorro, NM 87801 USA.
RP Shabalovskaya, SA (reprint author), Iowa State Univ, Ames Lab DOE, Ames, IA 50011 USA.
EM shabalov@ameslab.gov
FU Occlutech GmbH
FX The authors would like to acknowledge the partial sponsorship from
Occlutech GmbH during the period of the preparation of the manuscript as
well as to thank Memry Corporation and, in particular, McD Schetky and
Paul Adler for providing the material for the studies. The help of V.
Koissin in the preparation of certain illustrations to the manuscript is
also very much appreciated. This manuscript has been also authored by
Iowa State University of Science and Technology under Contract No.
DE-AC02-07CH11358 with the U.S. Department of Energy.
NR 60
TC 77
Z9 79
U1 4
U2 47
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0142-9612
EI 1878-5905
J9 BIOMATERIALS
JI Biomaterials
PD AUG
PY 2009
VL 30
IS 22
BP 3662
EP 3671
DI 10.1016/j.biomaterials.2009.03.034
PG 10
WC Engineering, Biomedical; Materials Science, Biomaterials
SC Engineering; Materials Science
GA 461OM
UT WOS:000267277400004
PM 19345407
ER
PT J
AU Riss, PJ
Hooker, JM
Alexoff, D
Kim, SW
Fowler, JS
Rosch, F
AF Riss, Patrick J.
Hooker, Jacob M.
Alexoff, David
Kim, Sung-Won
Fowler, Joanna S.
Roesch, Frank
TI [C-11]PR04.MZ, a promising DAT ligand for low concentration imaging:
Synthesis, efficient C-11-O-methylation and initial small animal PET
studies
SO BIOORGANIC & MEDICINAL CHEMISTRY LETTERS
LA English
DT Article
DE Dopamine transporter; MicroPET; Carbon-11; Test-block; O-methylation
ID RADIOLIGANDS; TRIFLATE; COCAINE; BINDING; SITES; BRAIN
AB PR04.MZ was designed as a highly selective dopamine transporter inhibitor, derived from natural cocaine. Its binding pro. le indicates that [C-11]PR04.MZ may be suited as a PET radiolig and for the non-invasive exploration of striatal and extrastriatal DAT populations. As a key feature, its structural design facilitates both, labelling with fluorine-18 at its terminally fluorinated butynyl moiety and carbon-11 at its methyl ester function. The present report concerns the efficient [C-11]MeI mediated synthesis of [C-11]PR04. MZ from an O-desmethyl precursor trifluoroacetic acid salt with Rb2CO3 in DMF in up to 95 +/- 5% labelling yield. A preliminary mu PET-experiment demonstrates the reversible, highly specific binding of [C-11]PR04. MZ in the brain of a male Sprague-Dawley rat. (C) 2009 Elsevier Ltd. All rights reserved.
C1 [Riss, Patrick J.; Hooker, Jacob M.; Alexoff, David; Kim, Sung-Won; Fowler, Joanna S.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA.
[Riss, Patrick J.; Roesch, Frank] Johannes Gutenberg Univ Mainz, Inst Nucl Chem, D-55128 Mainz, Germany.
RP Riss, PJ (reprint author), Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA.
EM riss@uni-mainz.de
OI Hooker, Jacob/0000-0002-9394-7708
NR 11
TC 6
Z9 6
U1 0
U2 0
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0960-894X
J9 BIOORG MED CHEM LETT
JI Bioorg. Med. Chem. Lett.
PD AUG 1
PY 2009
VL 19
IS 15
BP 4343
EP 4345
DI 10.1016/j.bmcl.2009.05.090
PG 3
WC Chemistry, Medicinal; Chemistry, Organic
SC Pharmacology & Pharmacy; Chemistry
GA 469LQ
UT WOS:000267900900076
PM 19525112
ER
PT J
AU Ching, J
Brown, M
Burian, S
Chen, F
Cionco, R
Hanna, A
Hultgren, T
McPherson, T
Sailor, D
Taha, H
Williams, D
AF Ching, Jason
Brown, Michael
Burian, Steven
Chen, Fei
Cionco, Ron
Hanna, Adel
Hultgren, Torrin
McPherson, Timothy
Sailor, David
Taha, Haider
Williams, David
TI NATIONAL URBAN DATABASE AND ACCESS PORTAL TOOL
SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY
LA English
DT Article
ID OZONE AIR-QUALITY; CANOPY PARAMETERIZATION; MODELING SYSTEM; MM5;
IMPLEMENTATION; SENSITIVITY; IMPACTS; BASIN
AB Based on the need for advanced treatments of high-resolution urban morphological features (e. g., buildings and trees) in meteorological, dispersion, air quality, and human-exposure modeling systems for future urban applications, a new project was launched called the National Urban Database and Access Portal Tool (NUDAPT). NUDAPT is sponsored by the U. S. Environmental Protection Agency (U. S. EPA) and involves collaborations and contributions from many groups, including federal and state agencies, and from private and academic institutions here and in other countries. It is designed to produce and provide gridded fields of urban canopy parameters for various new and advanced descriptions of model physics to improve urban simulations, given the availability of new high-resolution data of buildings, vegetation, and land use. Additional information, including gridded anthropogenic heating (AH) and population data, is incorporated to further improve urban simulations and to encourage and facilitate decision support and application linkages to human exposure models. An important core-design feature is the utilization of Web portal technology to enable NUDAPT to be a "community" based system. This Web-based portal technology will facilitate the customizing of data handling and retrievals (www.nudapt.org). This article provides an overview of NUDAPT and several example applications.
C1 [Ching, Jason] US EPA, Atmospher Modeling Div, Natl Exposure Res Lab, Off Res & Dev, Res Triangle Pk, NC 27711 USA.
[Brown, Michael; McPherson, Timothy] Los Alamos Natl Lab, Los Alamos, NM USA.
[Burian, Steven] Univ Utah, Salt Lake City, UT USA.
[Chen, Fei] Natl Ctr Atmospher Res, Boulder, CO 80307 USA.
[Hanna, Adel] Univ N Carolina, Inst Environm, Chapel Hill, NC USA.
[Hultgren, Torrin] Comp Sci Corp, Res Triangle Pk, NC 27709 USA.
[Sailor, David] Portland State Univ, Portland, OR 97207 USA.
[Taha, Haider] Altostratus Inc, Martinez, CA USA.
[Williams, David] US EPA, Kansas City, KS USA.
RP Ching, J (reprint author), US EPA, Atmospher Modeling Div, Natl Exposure Res Lab, Off Res & Dev, MS E243-04, Res Triangle Pk, NC 27711 USA.
EM ching.jason@epa.gov
RI Chen, Fei/B-1747-2009; Sailor, David/E-6308-2014;
OI Sailor, David/0000-0003-1720-8214; Brown, Michael
J./0000-0002-8069-0835; Burian, Steven/0000-0003-0523-4968
NR 33
TC 38
Z9 41
U1 1
U2 13
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0003-0007
EI 1520-0477
J9 B AM METEOROL SOC
JI Bull. Amer. Meteorol. Soc.
PD AUG
PY 2009
VL 90
IS 8
BP 1157
EP 1168
DI 10.1175/2009BAMS2675.1
PG 12
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 500AK
UT WOS:000270269100009
ER
PT J
AU Johnson, JA
Benmore, CJ
Stankovich, S
Ruoff, RS
AF Johnson, J. A.
Benmore, C. J.
Stankovich, S.
Ruoff, R. S.
TI A neutron diffraction study of nano-crystalline graphite oxide
SO CARBON
LA English
DT Article
ID TOTAL SCATTERING; BEHAVIOR
AB The structure of graphite oxide has been studied by neutron diffraction and is found to be nano-crystalline, the diffraction pattern being a mixture of Bragg and diffuse scattering. Three strong Bragg peaks were found in the structure factor from which the layer spacing was calculated and found to be consistent with different structural regions within the graphite oxide, specifically regions of graphitic-like flat hexagons and regions containing oxidized chain-like structures. The neutron scattering pair distribution function is compared to four previously published low energy Monte Carlo structural models of GO. (C) 2009 Elsevier Ltd. All rights reserved.
C1 [Johnson, J. A.] Univ Tennessee, Inst Space, MSE, Tullahoma, TN 37388 USA.
[Johnson, J. A.; Benmore, C. J.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Stankovich, S.] Northwestern Univ, Evanston, IL USA.
[Ruoff, R. S.] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA.
[Ruoff, R. S.] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA.
RP Johnson, JA (reprint author), Univ Tennessee, Inst Space, MSE, 411 BH Goethert Pkwy, Tullahoma, TN 37388 USA.
EM jjohnson@utsi.edu
RI Ruoff, Rodney/B-7605-2009; Ruoff, Rodney/K-3879-2015; Johnson,
Jacqueline/P-4844-2014;
OI Johnson, Jacqueline/0000-0003-0830-9275; Benmore,
Chris/0000-0001-7007-7749
FU DOE [DE-AC02-06CH11357]; DARPA iMINT; The University of Texas at Austin
FX Dr. J. Paci is thanked for providing the atomic coordinates of the
models in Ref. [23]. The experiments at Argonne National Laboratory were
supported by the US. DOE under contract number DE-AC02-06CH11357. RSR
appreciates support from the DARPA iMINT and The University of Texas at
Austin.
NR 24
TC 9
Z9 10
U1 0
U2 17
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0008-6223
J9 CARBON
JI Carbon
PD AUG
PY 2009
VL 47
IS 9
BP 2239
EP 2243
DI 10.1016/j.carbon.2009.04.016
PG 5
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA 470HG
UT WOS:000267965200019
ER
PT J
AU Atwater, MA
Phillips, J
Doorn, SK
Luhrs, CC
Fernandez, Y
Menendez, JA
Leseman, ZC
AF Atwater, Mark A.
Phillips, Jonathan
Doorn, Stephen K.
Luhrs, Claudia C.
Fernandez, Y.
Menendez, J. A.
Leseman, Zayd C.
TI The production of carbon nanofibers and thin films on palladium
catalysts from ethylene-oxygen mixtures
SO CARBON
LA English
DT Article
ID MONOXIDE-HYDROGEN MIXTURES; CHEMICAL-VAPOR-DEPOSITION; NICKEL-CATALYSTS;
FILAMENTOUS CARBON; IRON-NICKEL; RAMAN-SPECTROSCOPY; GROWTH; NANOTUBES;
PLATINUM; SEEDS
AB The characteristics of carbonaceous materials deposited in fuel rich ethylene-oxygen mixtures on three types of palladium: foil, sputtered film, and nanopowder, are reported. It was found that the form of palladium has a dramatic influence on the morphology of the deposited carbon. In particular, on sputtered film and powder, tight 'weaves' of sub-micron filaments formed quickly In contrast, on foils under identical conditions, the dominant morphology is carbon thin films with basal planes oriented parallel to the substrate surface. Temperature, gas flow rate, reactant flow ratio (C(2)H(4):O(2)), and residence time (position) were found to influence both growth rate and type for all three forms of Pd. X-ray diffraction, high resolution transmission electron microscopy, temperature-programmed oxidation, and Raman spectroscopy were used to assess the crystallinity of the as-deposited carbon, and it was determined that transmission electron microscopy and X-ray diffraction were the most reliable methods for determining crystallinity. The dependence of growth on reactor position, and the fact that no growth was observed in the absence of oxygen support the postulate that the carbon deposition proceeds by combustion generated radical species. (C) 2009 Elsevier Ltd. All rights reserved.
C1 [Phillips, Jonathan; Doorn, Stephen K.] Univ New Mexico, Los Alamos Natl Labs, Los Alamos, NM 87545 USA.
[Atwater, Mark A.; Phillips, Jonathan; Luhrs, Claudia C.; Leseman, Zayd C.] Univ New Mexico, Albuquerque, NM 87131 USA.
[Fernandez, Y.; Menendez, J. A.] CSIC, Inst Nacl Carbon, E-33080 Oviedo, Spain.
RP Phillips, J (reprint author), Univ New Mexico, Los Alamos Natl Labs, MSE549, Los Alamos, NM 87545 USA.
EM jphillips@lanl.gov
RI Phillips, Jonathan/D-3760-2011; Fernandez Diez, Yolanda/D-5959-2013;
Menendez, J. Angel/K-8820-2014
OI Fernandez Diez, Yolanda/0000-0002-0034-6154; Menendez, J.
Angel/0000-0003-3117-3337
NR 26
TC 13
Z9 13
U1 0
U2 12
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0008-6223
J9 CARBON
JI Carbon
PD AUG
PY 2009
VL 47
IS 9
BP 2269
EP 2280
DI 10.1016/j.carbon.2009.04.019
PG 12
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA 470HG
UT WOS:000267965200023
ER
PT J
AU Fingland, BR
Ribeiro, FH
Miller, JT
AF Fingland, Bradley R.
Ribeiro, Fabio H.
Miller, Jeffrey T.
TI Simultaneous Measurement of X-ray Absorption Spectra and Kinetics: A
Fixed-bed, Plug-flow Operando Reactor
SO CATALYSIS LETTERS
LA English
DT Article
DE Operando measurements; XAS measurements
ID WATER-GAS SHIFT; METHANOL SYNTHESIS; HIGH-PRESSURE; INSITU CELL;
CATALYSTS; SPECTROSCOPY; TEMPERATURE
AB An inexpensive fixed-bed, plug-flow operando reactor is described in which X-ray absorbance and kinetic data can be measured simultaneously. Pt L(3) (11.56 keV) XANES and EXAFS data were obtained on a 1.5% Pt/silica catalyst in borosilicate glass reactors of different diameters, 3-6 mm, and thicknesses, 0.3-1.2 mm, some of which are capable of operation at pressures up to about 40 atm. Additionally, polyimide tubular reactors with low absorbance can be used for lower energy edges of the 3d transition metals, or fluorescence detection for low concentration or highly absorbing supports. With the polyimide reactor, however, the pressure is limited to similar to 3.5 atm and the reaction temperature to about 300 A degrees C. To validate the reactor, the rate and activation energies for the water-gas shift reaction on 2% Pd, 13.7% Zn on Al(2)O(3) catalyst were within 15% of those obtained in a standard laboratory reactor, which is within laboratory reproducibility. In addition, the Pd K edge (24.35 keV) XANES and EXAFS data on pre-reduced catalyst were identical to that previously determined on a regular cell. The EXAFS data show that the degree of Pd-Zn alloy formation changes with reaction temperature demonstrating the importance of characterizing the catalyst under reaction conditions.
C1 [Fingland, Bradley R.; Ribeiro, Fabio H.] Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA.
[Miller, Jeffrey T.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
RP Ribeiro, FH (reprint author), Purdue Univ, Sch Chem Engn, 480 Stadium Mall Dr, W Lafayette, IN 47907 USA.
EM fabio@purdue.edu; millerjt@anl.gov
RI ID, MRCAT/G-7586-2011;
OI Ribeiro, Fabio/0000-0001-7752-461X
FU US Department of Energy, Office of Basic Energy Sciences
[DE-FG02-03ER15408]; US Department of Energy, Office of Science, Office
of Basic Energy Sciences [DE-AC02-06CH11357]; MRCAT; Department of
Energy
FX Support for this research was provided by the US Department of Energy,
Office of Basic Energy Sciences, Grant no. DE-FG02-03ER15408. Use of the
Advanced Photon Source was supported by the US Department of Energy,
Office of Science, Office of Basic Energy Sciences, under Contract no.
DE-AC02-06CH11357, and MRCAT (Sector 10) operations are supported by the
Department of Energy and the MRCAT member institutions.
NR 15
TC 16
Z9 16
U1 3
U2 30
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1011-372X
J9 CATAL LETT
JI Catal. Lett.
PD AUG
PY 2009
VL 131
IS 1-2
BP 1
EP 6
DI 10.1007/s10562-009-0026-8
PG 6
WC Chemistry, Physical
SC Chemistry
GA 474OV
UT WOS:000268294700001
ER
PT J
AU Ren, Y
Ma, Z
Qian, LP
Dai, S
He, HY
Bruce, PG
AF Ren, Yu
Ma, Zhen
Qian, Linping
Dai, Sheng
He, Heyong
Bruce, Peter G.
TI Ordered Crystalline Mesoporous Oxides as Catalysts for CO Oxidation
SO CATALYSIS LETTERS
LA English
DT Article
DE Mesoporous metal oxides; Ordered; CO oxidation; Hard template;
Crystalline
ID CUO-CEO2 CATALYSTS; CO3O4; SILICA; WALLS; PROPERTY; NANORODS;
NANOCRYSTALS; STRATEGY; CEO2; NIO
AB Crystalline mesoporous metal oxides have attracted considerable attention recently, but their catalytic applications have rarely been studied. In this work, a series of crystalline three-dimensional mesoporous metal oxides (i.e., CeO(2), Co(3)O(4), Cr(2)O(3), CuO, Fe(2)O(3), beta-MnO(2), Mn(2)O(3), Mn(3)O(4), NiO, and NiCoMnO(4)) were prepared using the mesoporous silica KIT-6 as a hard template. These ordered mesoporous metal oxides with highly crystalline walls were characterized by PXRD, TEM, N(2) adsorption and evaluated as CO oxidation catalysts. These mesoporous materials, except for mesoporous Fe(2)O(3), exhibit much higher catalytic activities than their bulk counterparts. In particular, mesoporous Co(3)O(4), beta-MnO(2), and NiO show appreciable CO oxidation activity below 0 A degrees C, and the catalytic activities of mesoporous beta-MnO(2), and NiO are even higher than those of their nanoparticulate counterparts with large surface areas. beta-MnO(2) is particularly interesting because it combines low cost and low toxicity with high activity (T (50) = 39 A degrees C).
C1 [Ren, Yu; Bruce, Peter G.] Univ St Andrews, EastChem & Sch Chem, St Andrews KY16 9ST, Fife, Scotland.
[Ma, Zhen; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
[Qian, Linping; He, Heyong] Fudan Univ, Dept Chem, Shanghai 200433, Peoples R China.
[Qian, Linping; He, Heyong] Fudan Univ, Shanghai Key Lab Mol Catalysis & Innovat Mat, Shanghai 200433, Peoples R China.
RP Bruce, PG (reprint author), Univ St Andrews, EastChem & Sch Chem, Purdie Bldg, St Andrews KY16 9ST, Fife, Scotland.
EM yr8@st-andrews.ac.uk; zmu@ornl.gov; lpqian@fudan.edu.cn; dais@ornl.gov;
heyonghe@fudan.edu.cn; p.g.bruce@st-andrews.ac.uk
RI Ren, David Yu/A-6191-2011; Ma, Zhen/F-1348-2010; Ren, Yu/F-7262-2010;
Dai, Sheng/K-8411-2015
OI Ma, Zhen/0000-0002-2391-4943; Ren, Yu/0000-0001-8572-5489; Dai,
Sheng/0000-0002-8046-3931
FU EPSRC; SUPERGEN program; EU; Office of Basic Energy Sciences, U.S. DOE
[DE-AC05-00OR22725]; Science & Technology Commission of Shanghai
Municipality [08DZ2270500]
FX Y. R. thanks EaStCHEM for a studentship. P. G. B. is indebted to the
EPSRC including the SUPERGEN program and the EU for financial support.
S. D. thanks the Office of Basic Energy Sciences, U.S. DOE ( Contract
DE-AC05-00OR22725). H. H. thanks Science & Technology Commission of
Shanghai Municipality (08DZ2270500).
NR 40
TC 100
Z9 103
U1 9
U2 138
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1011-372X
J9 CATAL LETT
JI Catal. Lett.
PD AUG
PY 2009
VL 131
IS 1-2
BP 146
EP 154
DI 10.1007/s10562-009-9931-0
PG 9
WC Chemistry, Physical
SC Chemistry
GA 474OV
UT WOS:000268294700020
ER
PT J
AU Himmel, ME
AF Himmel, Michael E.
TI Corn stover conversion to biofuels: DOE's preparation for readiness in
2012
SO CELLULOSE
LA English
DT Editorial Material
C1 Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Himmel, ME (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.
EM Mike_Himmel@nrel.gov
NR 0
TC 3
Z9 3
U1 0
U2 4
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0969-0239
J9 CELLULOSE
JI Cellulose
PD AUG
PY 2009
VL 16
IS 4
BP 531
EP 534
DI 10.1007/s10570-009-9335-8
PG 4
WC Materials Science, Paper & Wood; Materials Science, Textiles; Polymer
Science
SC Materials Science; Polymer Science
GA 469HH
UT WOS:000267886600001
ER
PT J
AU Aden, A
Foust, T
AF Aden, Andy
Foust, Thomas
TI Technoeconomic analysis of the dilute sulfuric acid and enzymatic
hydrolysis process for the conversion of corn stover to ethanol
SO CELLULOSE
LA English
DT Article
DE Bioenergy; Economic analysis; Bioethanol; Corn stover
AB Technoeconomic analysis has been used to guide the research and development of lignocellulosic biofuels production processes for over two decades. Such analysis has served to identify the key technical barriers for these conversion processes so that research can be targeted most effectively on the pertinent challenges. The tools and methodology used to develop conceptual conversion processes and analyze their economics are presented here. In addition, the current process design and economic results are described for dilute acid pretreatment followed by enzymatic hydrolysis and fermentation. Modeled ethanol costs of $1.33/gallon (in consistent year 2007 dollars) are being targeted for this commercial scale corn stover conversion process in 2012. State of technology models, which take actual research results and project them to commercial scale, estimate an ethanol cost of $2.43/gallon at present. In order to further reduce costs, process improvements must be made in several areas, including pretreatment, enzymatic hydrolysis, and fermentation. As the biomass industry develops, new fuels and new feedstocks are being researched. Technoeconomic analysis will play a key role in process development and targeting of technical and economic barriers for these new fuels and feedstocks.
C1 [Aden, Andy; Foust, Thomas] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA.
RP Aden, A (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 1617 Cole Blvd, Golden, CO 80401 USA.
EM andy_aden@nrel.gov
FU U.S. Department of Energy Office [DE-AC36-99GO10337]
FX This work was supported by the U.S. Department of Energy Office of the
Biomass Program under contract No. DE-AC36-99GO10337 with the National
Renewable Energy Laboratory (NREL).
NR 30
TC 144
Z9 149
U1 4
U2 49
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0969-0239
J9 CELLULOSE
JI Cellulose
PD AUG
PY 2009
VL 16
IS 4
BP 535
EP 545
DI 10.1007/s10570-009-9327-8
PG 11
WC Materials Science, Paper & Wood; Materials Science, Textiles; Polymer
Science
SC Materials Science; Polymer Science
GA 469HH
UT WOS:000267886600002
ER
PT J
AU Foust, TD
Aden, A
Dutta, A
Phillips, S
AF Foust, Thomas D.
Aden, Andy
Dutta, Abhijit
Phillips, Steven
TI An economic and environmental comparison of a biochemical and a
thermochemical lignocellulosic ethanol conversion processes
SO CELLULOSE
LA English
DT Article
DE Biofuel; Biochemical; Thermochemical; Biomass; Feedstock; Ethanol; Corn
stover; Gasification; Catalyst; Fuel synthesis; Pretreatment; Enzymatic
hydrolysis; Fermentation; Energy efficiency; Emission; Inhibitor;
Recycle; Mixed alcohol
ID BIOMASS-DERIVED SYNGAS; TRANSPORTATION FUELS; CORN STOVER; GASIFICATION;
PYROLYSIS; CATALYST; FERMENTATION; TECHNOLOGIES; ALCOHOLS; BIOFUELS
AB With the world's focus on rapidly deploying second generation biofuels technologies, there exists today a good deal of interest in how yields, economics, and environmental impacts of the various conversion processes of lignocellulosic biomass to transportation fuels compare. Although there is a good deal of information regarding these conversion processes, this information is typically very difficult to use on a comparison basis because different underlying assumptions, such as feedstock costs, plant size, co-product credits or assumed state of technology, have been utilized. In this study, a rigorous comparison of different biomass to transportation fuels conversion processes was performed with standard underlying economic and environmental assumptions so that exact comparisons can be made. This study looked at promising second-generation conversion processes utilizing biochemical and thermochemical gasification technologies on both a current and an achievable state of technology in 2012. The fundamental finding of this study is that although the biochemical and thermochemical processes to ethanol analyzed have their individual strengths and weaknesses, the two processes have very comparable yields, economics, and environmental impacts. Hence, this study concludes that based on this analysis there is not a distinct economic or environmental impact difference between biochemical and thermochemical gasification processes for second generation ethanol production.
C1 [Foust, Thomas D.; Aden, Andy; Dutta, Abhijit; Phillips, Steven] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA.
RP Foust, TD (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA.
EM thomas_foust@nrel.gov
RI Langholtz, Matthew/B-9416-2012
OI Langholtz, Matthew/0000-0002-8153-7154
FU US DOE Office of the Biomass Program
FX The work was supported by the US DOE Office of the Biomass Program.
NR 52
TC 64
Z9 65
U1 6
U2 46
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0969-0239
J9 CELLULOSE
JI Cellulose
PD AUG
PY 2009
VL 16
IS 4
BP 547
EP 565
DI 10.1007/s10570-009-9317-x
PG 19
WC Materials Science, Paper & Wood; Materials Science, Textiles; Polymer
Science
SC Materials Science; Polymer Science
GA 469HH
UT WOS:000267886600003
ER
PT J
AU Wolfrum, EJ
Sluiter, AD
AF Wolfrum, Edward J.
Sluiter, Amie D.
TI Improved multivariate calibration models for corn stover feedstock and
dilute-acid pretreated corn stover
SO CELLULOSE
LA English
DT Article
DE Near-infrared; Biomass; Compositional analysis; Chemometrics;
Multivariate; Calibration model; Corn stover
ID COMPOSITIONAL ANALYSIS
AB We have studied rapid calibration models to predict the composition of a variety of biomass feedstocks by correlating near-infrared (NIR) spectroscopic data to compositional data produced using traditional wet chemical analysis techniques. The rapid calibration models are developed using multivariate statistical analysis of the spectroscopic and wet chemical data. This work discusses the latest versions of the NIR calibration models for corn stover feedstock and dilute-acid pretreated corn stover. Measures of the calibration precision and uncertainty are presented. No statistically significant differences (p = 0.05) are seen between NIR calibration models built using different mathematical pretreatments. Finally, two common algorithms for building NIR calibration models are compared; no statistically significant differences (p = 0.05) are seen for the major constituents glucan, xylan, and lignin, but the algorithms did produce different predictions for total extractives. A single calibration model combining the corn stover feedstock and dilute-acid pretreated corn stover samples gave less satisfactory predictions than the separate models.
C1 [Wolfrum, Edward J.; Sluiter, Amie D.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO USA.
RP Wolfrum, EJ (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO USA.
EM ed_wolfrum@nrel.gov
OI Wolfrum, Edward/0000-0002-7361-8931
FU US Department of Energy [DE-AC36-99GO10337]
FX This work was supported by the US Department of Energy under Contract
No. DE-AC36-99GO10337 with the National Renewable Energy Laboratory.
NR 12
TC 32
Z9 32
U1 3
U2 18
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0969-0239
J9 CELLULOSE
JI Cellulose
PD AUG
PY 2009
VL 16
IS 4
BP 567
EP 576
DI 10.1007/s10570-009-9320-2
PG 10
WC Materials Science, Paper & Wood; Materials Science, Textiles; Polymer
Science
SC Materials Science; Polymer Science
GA 469HH
UT WOS:000267886600004
ER
PT J
AU Wolfrum, EJ
Lorenz, AJ
deLeon, N
AF Wolfrum, Edward J.
Lorenz, Aaron J.
deLeon, Natalia
TI Correlating detergent fiber analysis and dietary fiber analysis data for
corn stover collected by NIRS
SO CELLULOSE
LA English
DT Article
DE Detergent fiber analysis; Corn stover; NDF; ADF; Compositional analysis;
Dietary fiber analysis
ID MAIZE; LIGNIN; NUTRITION; QUALITY
AB There exist large amounts of detergent fiber analysis data [neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL)] for many different potential cellulosic ethanol feedstocks, since these techniques are widely used for the analysis of forages. Researchers working in the area of cellulosic ethanol are interested in the structural carbohydrates in a feedstock (principally glucan and xylan), which are typically determined by acid hydrolysis of the structural fraction after multiple extractions of the biomass. These so-called dietary fiber analysis methods are significantly more involved than detergent fiber analysis methods. The purpose of this study was to determine whether it is feasible to correlate detergent fiber analysis values to glucan and xylan content determined by dietary fiber analysis methods for corn stover. In the detergent fiber analysis literature cellulose is often estimated as the difference between ADF and ADL, while hemicellulose is often estimated as the difference between NDF and ADF. Examination of a corn stover dataset containing both detergent fiber analysis data and dietary fiber analysis data predicted using near infrared spectroscopy shows that correlations between structural glucan measured using dietary fiber techniques and cellulose estimated using detergent techniques, and between structural xylan measured using dietary fiber techniques and hemicellulose estimated using detergent techniques are high, but are driven largely by the underlying correlation between total extractives measured by fiber analysis and NDF/ADF. That is, detergent analysis data is correlated to dietary fiber analysis data for structural carbohydrates, but only indirectly; the main correlation is between detergent analysis data and solvent extraction data produced during the dietary fiber analysis procedure.
C1 [Wolfrum, Edward J.] Natl Bioenergy Ctr, Natl Renewable Energy Lab, Golden, CO USA.
[Lorenz, Aaron J.; deLeon, Natalia] Univ Wisconsin, Dept Agron, Madison, WI 53706 USA.
RP Wolfrum, EJ (reprint author), Natl Bioenergy Ctr, Natl Renewable Energy Lab, Golden, CO USA.
EM ed_wolfrum@nrel.gov
OI Wolfrum, Edward/0000-0002-7361-8931
NR 17
TC 25
Z9 26
U1 4
U2 22
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0969-0239
J9 CELLULOSE
JI Cellulose
PD AUG
PY 2009
VL 16
IS 4
BP 577
EP 585
DI 10.1007/s10570-009-9318-9
PG 9
WC Materials Science, Paper & Wood; Materials Science, Textiles; Polymer
Science
SC Materials Science; Polymer Science
GA 469HH
UT WOS:000267886600005
ER
PT J
AU Liu, YS
Zeng, YN
Luo, YH
Xu, Q
Himmel, ME
Smith, SJ
Ding, SY
AF Liu, Yu-San
Zeng, Yining
Luo, Yonghua
Xu, Qi
Himmel, Michael E.
Smith, Steve J.
Ding, Shi-You
TI Does the cellulose-binding module move on the cellulose surface?
SO CELLULOSE
LA English
DT Article
DE Cellulose; Carbohydrate-binding module (CBM); Single molecule
spectroscopy
ID HAND-OVER-HAND; QUANTUM DOTS; LIVING CELLS; PROTEINS; CDSE; DNA;
LOCALIZATION; SPECTROSCOPY; MECHANISM; DIFFUSION
AB Exoglucanases are key enzymes required for the efficient hydrolysis of crystalline cellulose. It has been proposed that exoglucanases hydrolyze cellulose chains in a processive manner to produce primarily cellobiose. Usually, two functional modules are involved in the processive mechanism: a catalytic module and a carbohydrate-binding module (CBM). In this report, single molecule tracking techniques were used to analyze the molecular motion of CBMs labeled with quantum dots (QDs) and bound to cellulose crystals. By tracking the single QD, we observed that the family 2 CBM from Acidothermus cellulolyticus (AcCBM2) exhibited linear motion along the long axis of the cellulose fiber. This apparent movement was observed consistently when different concentrations (25 mu M to 25 nM) of AcCBM2 were used. Although the mechanism of AcCBM2 motion remains unknown, single-molecule spectroscopy has been demonstrated to be a promising tool for acquiring new fundamental understanding of cellulase action.
C1 [Liu, Yu-San; Zeng, Yining; Luo, Yonghua; Xu, Qi; Himmel, Michael E.; Ding, Shi-You] Natl Renewable Energy Lab, Chem & Biosci Ctr, Golden, CO 80401 USA.
[Smith, Steve J.] S Dakota Sch Mines, Dept Elect Engn & Phys, Rapid City, SD 57701 USA.
RP Ding, SY (reprint author), Natl Renewable Energy Lab, Chem & Biosci Ctr, Golden, CO 80401 USA.
EM shi.you.ding@nrel.gov
RI Luo, Y/H-6294-2012; Ding, Shi-You/O-1209-2013
FU US Department of Energy; Office of Energy Efficiency and Renewable
Energy Biomass Program; DOE Office of Science; Office of Biological and
Environmental Research; DOE Bioenergy Research Center
FX The authors thank Dr. Haw Yang and his group at University of California
at Berkeley for valuable discussions. The authors gratefully acknowledge
the US Department of Energy, Office of Energy Efficiency and Renewable
Energy Biomass Program for support of the work to develop quantum dot
conjugates and support from the DOE Office of Science, Office of
Biological and Environmental Research through the BioEnergy Science
Center (BESC), a DOE Bioenergy Research Center, for the work on single
molecule visualization and analysis.
NR 34
TC 24
Z9 24
U1 2
U2 23
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0969-0239
J9 CELLULOSE
JI Cellulose
PD AUG
PY 2009
VL 16
IS 4
BP 587
EP 597
DI 10.1007/s10570-009-9306-0
PG 11
WC Materials Science, Paper & Wood; Materials Science, Textiles; Polymer
Science
SC Materials Science; Polymer Science
GA 469HH
UT WOS:000267886600006
ER
PT J
AU Hess, JR
Kenney, KL
Wright, CT
Perlack, R
Turhollow, A
AF Hess, J. Richard
Kenney, Kevin L.
Wright, Christopher T.
Perlack, Robert
Turhollow, Anthony
TI Corn stover availability for biomass conversion: situation analysis
SO CELLULOSE
LA English
DT Article
DE Feedstock logistics; Corn stover; Harvesting; Collection; Storage;
Preprocessing; Transportation
ID REMOVAL; STORAGE; HARVEST
AB As biorefining conversion technologies become commercial, feedstock availability, supply system logistics, and biomass material attributes are emerging as major barriers to the availability of corn stover for biorefining. While systems do exist to supply corn stover as feedstock to biorefining facilities, stover material attributes affecting physical deconstruction, such as densification and post-harvest material stability, challenge the cost-effectiveness of present-day feedstock logistics systems. In addition, the material characteristics of corn stover create barriers with any supply system design in terms of equipment capacity/efficiency, dry matter loss, and capital use efficiency. However, analysis of a conventional large square bale corn stover feedstock supply system concludes that (1) where other agronomic factors are not limiting, corn stover can be accessed and supplied to a biorefinery using existing bale-based technologies, (2) technologies and new supply system designs are necessary to overcome biomass bulk density and moisture material property challenges, and (3) major opportunities to improve conventional bale biomass feedstock supply systems include improvements in equipment efficiency and capacity and reducing biomass losses in harvesting, collection, and storage. Finally, the backbone of an effective stover supply system design is the optimization of intended and minimization of unintended material property changes as the corn stover passes through the individual supply system processes from the field to the biorefinery conversion processes.
C1 [Hess, J. Richard; Kenney, Kevin L.; Wright, Christopher T.] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
[Perlack, Robert; Turhollow, Anthony] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RP Hess, JR (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA.
EM JRichard.Hess@inl.gov
FU US Department of Energy Office of Energy Efficiency and Renewable Energy
[DE-AC07-05ID14517]
FX This work was supported by the US Department of Energy Office of Energy
Efficiency and Renewable Energy, under DOE Idaho Operations Office
Contract DE-AC07-05ID14517.
NR 29
TC 27
Z9 27
U1 0
U2 22
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0969-0239
J9 CELLULOSE
JI Cellulose
PD AUG
PY 2009
VL 16
IS 4
BP 599
EP 619
DI 10.1007/s10570-009-9323-z
PG 21
WC Materials Science, Paper & Wood; Materials Science, Textiles; Polymer
Science
SC Materials Science; Polymer Science
GA 469HH
UT WOS:000267886600007
ER
PT J
AU Templeton, DW
Sluiter, AD
Hayward, TK
Hames, BR
Thomas, SR
AF Templeton, David W.
Sluiter, Amie D.
Hayward, Tammy K.
Hames, Bonnie R.
Thomas, Steven R.
TI Assessing corn stover composition and sources of variability via NIRS
SO CELLULOSE
LA English
DT Article
DE Zea mays L.; Corn stover; Maize stover; Biomass; Crop residue; Biomass
conversion feedstock; Lignocellulosic biorefinery; Compositional
analysis; Compositional variability; Near infrared reflectance
spectroscopy; NIRS; Biorefinery; Biofuels
ID BIOFUELS; FEEDSTOCK; REMOVAL; CROP
AB Corn stover, the above-ground, non-grain portion of the crop, is a large, currently available source of biomass that potentially could be collected as a biofuels feedstock. Biomass conversion process economics are directly affected by the overall biochemical conversion yield, which is assumed to be proportional to the carbohydrate content of the feedstock materials used in the process. Variability in the feedstock carbohydrate levels affects the maximum theoretical biofuels yield and may influence the optimum pretreatment or saccharification conditions. The aim of this study is to assess the extent to which commercial hybrid corn stover composition varies and begin to partition the variation among genetic, environmental, or annual influences. A rapid compositional analysis method using near-infrared spectroscopy/partial least squares multivariate modeling (NIR/PLS) was used to evaluate compositional variation among 508 commercial hybrid corn stover samples collected from 47 sites in eight Corn Belt states after the 2001, 2002, and 2003 harvests. The major components of the corn stover, reported as average (standard deviation) % dry weight, whole biomass basis, were glucan 31.9 (2.0), xylan 18.9 (1.3), solubles composite 17.9 (4.1), and lignin (corrected for protein) 13.3 (1.1). We observed wide variability in the major corn stover components. Much of the variation observed in the structural components (on a whole biomass basis) is due to the large variation found in the soluble components. Analysis of variance (ANOVA) showed that the harvest year had the strongest effect on corn stover compositional variation, followed by location and then variety. The NIR/PLS rapid analysis method used here is well suited to testing large numbers of samples, as tested in this study, and will support feedstock improvement and biofuels process research.
C1 [Templeton, David W.; Sluiter, Amie D.; Hayward, Tammy K.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA.
RP Templeton, DW (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 1617 Cole Blvd,MS 3323, Golden, CO 80401 USA.
EM david.templeton@nrel.gov
FU US Department of Energy; Office of the Biomass Program
FX This research was supported by the US Department of Energy, Office of
the Biomass Program. The authors thank the corn stover providers from
the University of Minnesota Agricultural Extension (including Dr. Dale
Hicks, Tom Hoverstad, and Steve Quiring), Monsanto Corporation
(including Diane Freeman, Brad Krohn, Matt Kraus, Brad Miller, Dale
Sorensen, and a host of others), and the University of Wisconsin
(including Drs. Joe Lauer and Jim Coors). We thank Rick Kenney of Hazen
Research, Inc., (Golden, CO) for extensive sample preparation. We thank
Charnelle Clarke, Cheryl Jurich, Jonathan Meuser, Ryan Ness, Chris
Parks, Chris Roth, Justin Sluiter, Jeff Wolfe, and Millie Zuccarello for
preparing samples and/or collecting NIR spectra. We thank Ed Wolfrum,
Danny Inman, Julie Tuttle, Sara Havig, Dan
NR 22
TC 47
Z9 48
U1 2
U2 30
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0969-0239
J9 CELLULOSE
JI Cellulose
PD AUG
PY 2009
VL 16
IS 4
BP 621
EP 639
DI 10.1007/s10570-009-9325-x
PG 19
WC Materials Science, Paper & Wood; Materials Science, Textiles; Polymer
Science
SC Materials Science; Polymer Science
GA 469HH
UT WOS:000267886600008
ER
PT J
AU Park, S
Johnson, DK
Ishizawa, CI
Parilla, PA
Davis, MF
AF Park, Sunkyu
Johnson, David K.
Ishizawa, Claudia I.
Parilla, Philip A.
Davis, Mark F.
TI Measuring the crystallinity index of cellulose by solid state C-13
nuclear magnetic resonance
SO CELLULOSE
LA English
DT Article
DE Cellulose; Crystallinity index; Subtraction; Solid state NMR; X-ray
diffraction
ID X-RAY-DIFFRACTION; NMR; FIBERS
AB The crystallinity index of cellulose is an important parameter to establish because of the effect this property has on the utilization of cellulose as a material and as a feedstock for biofuels production. However, it has been found that the crystallinity index varies significantly depending on the choice of instrument and data analysis technique applied to the measurement. We introduce in this study a simple and straightforward method to evaluate the crystallinity index of cellulose. This novel method was developed using solid state C-13 NMR and subtraction of the spectrum of a standard amorphous cellulose. The crystallinity indexes of twelve different celluloses were measured and the values from this method were compared with the values obtained by other existing methods, including methods based on X-ray diffraction. An interesting observation was that the hydration of the celluloses increased their crystallinity indexes by about 5%, suggesting that addition of water increased cellulose order for all the cellulose samples studied.
C1 [Davis, Mark F.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA.
[Parilla, Philip A.] Natl Renewable Energy Lab, Natl Ctr Photovolta, Golden, CO 80401 USA.
[Park, Sunkyu; Johnson, David K.; Ishizawa, Claudia I.] Natl Renewable Energy Lab, Chem & Biosci Ctr, Golden, CO 80401 USA.
RP Davis, MF (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 1617 Cole Blvd, Golden, CO 80401 USA.
EM sunkyu_park@ncsu.edu; david.johnson@nrel.gov; Cishizawa@yahoo.com;
parilla.phillip@nrel.gov; mark.davis@nrel.gov
RI Johnson, David/G-4959-2011;
OI Johnson, David/0000-0003-4815-8782; davis, mark/0000-0003-4541-9852
NR 14
TC 97
Z9 98
U1 3
U2 34
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0969-0239
EI 1572-882X
J9 CELLULOSE
JI Cellulose
PD AUG
PY 2009
VL 16
IS 4
BP 641
EP 647
DI 10.1007/s10570-009-9321-1
PG 7
WC Materials Science, Paper & Wood; Materials Science, Textiles; Polymer
Science
SC Materials Science; Polymer Science
GA 469HH
UT WOS:000267886600009
ER
PT J
AU Elander, RT
Dale, BE
Holtzapple, M
Ladisch, MR
Lee, YY
Mitchinson, C
Saddler, JN
Wyman, CE
AF Elander, Richard T.
Dale, Bruce E.
Holtzapple, Mark
Ladisch, Michael R.
Lee, Y. Y.
Mitchinson, Colin
Saddler, John N.
Wyman, Charles E.
TI Summary of findings from the Biomass Refining Consortium for Applied
Fundamentals and Innovation (CAFI): corn stover pretreatment
SO CELLULOSE
LA English
DT Article
DE Ammonia fiber expansion; Ammonia recycle percolation pretreatment; CAFI;
Controlled pH pretreatment; Corn stover; Dilute sulfuric acid
pretreatment; Enzymatic hydrolysis; Lime pretreatment; Pretreatment;
Sulfur dioxide pretreatment
ID COMPARATIVE SUGAR RECOVERY; ENZYMATIC-HYDROLYSIS; HOT-WATER;
TECHNOLOGIES; OPTIMIZATION
AB The Biomass Refining Consortium for Applied Fundamentals and Innovation, with members from Auburn University, Dartmouth College, Michigan State University, the National Renewable Energy Laboratory, Purdue University, Texas A&M University, the University of British Columbia, and the University of California at Riverside, has developed comparative data on the conversion of corn stover to sugars by several leading pretreatment technologies. These technologies include ammonia fiber expansion pretreatment, ammonia recycle percolation pretreatment, dilute sulfuric acid pretreatment, flowthrough pretreatment (hot water or dilute acid), lime pretreatment, controlled pH hot water pretreatment, and sulfur dioxide steam explosion pretreatment. Over the course of two separate USDA- and DOE-funded projects, these pretreatment technologies were applied to two different corn stover batches, followed by enzymatic hydrolysis of the remaining solids from each pretreatment technology using identical enzyme preparations, enzyme loadings, and enzymatic hydrolysis assays. Identical analytical methods and a consistent material balance methodology were employed to develop comparative sugar yield data for each pretreatment and subsequent enzymatic hydrolysis. Although there were differences in the profiles of sugar release, with the more acidic pretreatments releasing more xylose directly in the pretreatment step than the alkaline pretreatments, the overall glucose and xylose yields (monomers + oligomers) from combined pretreatment and enzymatic hydrolysis process steps were very similar for all of these leading pretreatment technologies. Some of the water-only and alkaline pretreatment technologies resulted in significant amounts of residual xylose oligomers still remaining after enzymatic hydrolysis that may require specialized enzyme preparations to fully convert xylose oligomers to monomers.
C1 [Elander, Richard T.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Dale, Bruce E.] Michigan State Univ, E Lansing, MI 48824 USA.
[Holtzapple, Mark] Texas A&M Univ, College Stn, TX 77843 USA.
[Ladisch, Michael R.] Purdue Univ, W Lafayette, IN 47907 USA.
[Lee, Y. Y.] Auburn Univ, Auburn, AL 36849 USA.
[Mitchinson, Colin] Genencor Inc, Danisco Div, Palo Alto, CA 94304 USA.
[Saddler, John N.] Univ British Columbia, Vancouver, BC V6T 1Z4, Canada.
[Wyman, Charles E.] Univ Calif Riverside, Riverside, CA 92507 USA.
RP Elander, RT (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.
EM richard.elander@nrel.gov
RI Saddler, Jack (John)/A-9103-2013
FU Unites States Department of Agriculture Initiative for Future
Agricultural and Food Systems Program [00-52104-9663]; United States
Department of Energy Office of the Biomass Program [DE-FG36-04GO14017];
Natural Resources Canada; University of British Columbia in the second
CAFI project
FX The authors wish to acknowledge the Unites States Department of
Agriculture Initiative for Future Agricultural and Food Systems Program
(contract number 00-52104-9663) and the United States Department of
Energy Office of the Biomass Program (contract number DE-FG36-04GO14017)
for funding the collaborative research projects of the CAFI team. In
addition, support by Natural Resources Canada allowed participation by
the University of British Columbia in the second CAFI project. The
authors also recognize Tim Eggeman of Neoterics International, who (via
contract with the National Renewable Energy Laboratory) has provided the
process engineering and economic analysis expertise in support of all
CAFI projects to date. We also wish to recognize the true collaborative
spirit of the CAFI team that makes such projects possible and
pleasurable and thank the many undergraduate and graduate students, post
doctoral candidates, technicians, and others on the CAFI Team for their
vital role in developing this information.
NR 18
TC 53
Z9 56
U1 3
U2 34
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0969-0239
J9 CELLULOSE
JI Cellulose
PD AUG
PY 2009
VL 16
IS 4
BP 649
EP 659
DI 10.1007/s10570-009-9308-y
PG 11
WC Materials Science, Paper & Wood; Materials Science, Textiles; Polymer
Science
SC Materials Science; Polymer Science
GA 469HH
UT WOS:000267886600010
ER
PT J
AU Naran, R
Black, S
Decker, SR
Azadi, P
AF Naran, Radnaa
Black, Stuart
Decker, Stephen R.
Azadi, Parastoo
TI Extraction and characterization of native heteroxylans from delignified
corn stover and aspen
SO CELLULOSE
LA English
DT Article
DE Biomass; Biomass delignification; Plant cell wall; Glucuronoxylan;
Hardwood xylan; Corn stover xylan; Xylan acetylation; Endoxylanase;
Homo- and-heteronuclear NMR-spectroscopy; MALDI-TOF MS
ID CELL-WALL POLYSACCHARIDES; MASS-SPECTROMETRY; MAIZE COLEOPTILES; BRAN;
HEMICELLULOSES; MONOCOTYLEDONS; UNIQUE; XYLAN; ACIDS
AB Dimethylsulfoxide-solubilized polysaccharides from delignified corn stover and aspen were characterized. The biomass was delignified by two different techniques; a standard acid chlorite and a pulp and paper QPD technique comprising chelation (Q), peroxide (P), and acid-chlorite (D). Major polysaccharides in all fractions were diversely substituted xylan. Xylan acetylation was intact after chlorite delignification and, as expected, xylan from QPD-delignified fraction was de-acetylated by the alkaline peroxide step. The study of DMSO-extractable xylans from chlorite-delignified biomass revealed major differences in native acetylation patterns between corn stover and aspen xylan. Xylan from cell walls of corn stover contains 2-O- and 3-O-mono-acetylated xylan and [MeGlcA-alpha-(1 -> 2)][3-OAc]-xylp units. In addition, aspen xylan also contains 2,3-di-O-acetylated xylose. 1,4-beta-d-xylp residues substituted with MeGlcA at O-2 position are absent in chlorite-delignified aspen xylan. Sugar composition in accord with NMR-spectroscopic data indicated that corn stover xylan is arabinosylated while aspen xylan is not. We have shown that corn stover xylan has similar structure with xylans from other plants of Poales order. No evidence was found to indicate the presence of 1,4-beta-d-[MeGlcA-alpha-(1 -> 2)][Ara-alpha-(1 -> 3)]-xylp in corn stover xylan fractions.
C1 [Naran, Radnaa; Azadi, Parastoo] Univ Georgia, Complex Carbohydrate Res Ctr, Athens, GA 30602 USA.
[Black, Stuart; Decker, Stephen R.] Natl Renewable Energy Lab, Chem & Biosci Ctr, Golden, CO 80401 USA.
RP Azadi, P (reprint author), Univ Georgia, Complex Carbohydrate Res Ctr, 315 Riverbend Rd, Athens, GA 30602 USA.
EM azadi@ccrc.uga.edu
FU United States Department of Energy Office of the Biomass Program
FX The authors would like to thank Dr Nyamdari Batbayar for his helpful
discussions of NMR-spectroscopic interpretations and reading of the
manuscript; and Dr John Glushka for NMR-technical assistance. This work
was supported by the United States Department of Energy Office of the
Biomass Program.
NR 30
TC 40
Z9 41
U1 1
U2 33
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0969-0239
J9 CELLULOSE
JI Cellulose
PD AUG
PY 2009
VL 16
IS 4
BP 661
EP 675
DI 10.1007/s10570-009-9324-y
PG 15
WC Materials Science, Paper & Wood; Materials Science, Textiles; Polymer
Science
SC Materials Science; Polymer Science
GA 469HH
UT WOS:000267886600011
ER
PT J
AU Ishizawa, CI
Jeoh, T
Adney, WS
Himmel, ME
Johnson, DK
Davis, MF
AF Ishizawa, Claudia I.
Jeoh, Tina
Adney, William S.
Himmel, Michael E.
Johnson, David K.
Davis, Mark F.
TI Can delignification decrease cellulose digestibility in acid pretreated
corn stover?
SO CELLULOSE
LA English
DT Article
DE Lignin; Pretreatment; Corn stover; Accessibility; Digestibility;
Trichoderma reesei
ID DILUTE-SULFURIC-ACID; NUCLEAR-MAGNETIC-RESONANCE; ENZYMATIC-HYDROLYSIS;
TRICHODERMA-REESEI; MIXED HARDWOOD; LIGNIN; WOOD; ADSORPTION;
SACCHARIFICATION; FERMENTATION
AB It has previously been shown that the improved digestibility of dilute acid pretreated corn stover is at least partially due to the removal of xylan and the consequent increase in accessibility of the cellulose to cellobiohydrolase enzymes. We now report on the impact that lignin removal has on the accessibility and digestibility of dilute acid pretreated corn stover. Samples of corn stover were subjected to dilute sulfuric acid pretreatment with and without simultaneous (partial) lignin removal. In addition, some samples were completely delignified after the pretreatment step using acidified sodium chlorite. The accessibility and digestibility of the samples were tested using a fluorescence-labeled cellobiohydrolase (Trichoderma reesei Cel7A) purified from a commercial cellulase preparation. Partial delignification of corn stover during dilute acid pretreatment was shown to improve cellulose digestibility by T. reesei Cel7A; however, decreasing the lignin content below 5% (g g(-1)) by treatment with acidified sodium chlorite resulted in a dramatic reduction in cellulose digestibility. Importantly, this effect was found to be enhanced in samples with lower xylan contents suggesting that the near complete removal of xylan and lignin may cause aggregation of the cellulose microfibrils resulting in decreased cellulase accessibility.
C1 [Ishizawa, Claudia I.; Jeoh, Tina; Adney, William S.; Himmel, Michael E.; Johnson, David K.] Natl Renewable Energy Lab, Chem & Biosci Ctr, Golden, CO 80401 USA.
[Davis, Mark F.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA.
RP Johnson, DK (reprint author), Natl Renewable Energy Lab, Chem & Biosci Ctr, 1617 Cole Blvd, Golden, CO 80401 USA.
EM cishizawa@yahoo.com; tjeoh@ucdavis.edu; bill.adney@nrel.gov;
mike.himmel@nrel.gov; david.johnson@nrel.gov; mark.davis@nrel.gov
RI Johnson, David/G-4959-2011;
OI Johnson, David/0000-0003-4815-8782; davis, mark/0000-0003-4541-9852
FU United States Department of Energy; Office of the Biomass Program
FX The authors thank Stuart Black for preparing the clean fractionation
process samples, Dan Schell for providing the pilot-scale vertical
reactor samples and the United States Department of Energy, Office of
the Biomass Program for funding this work.
NR 35
TC 73
Z9 76
U1 4
U2 41
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0969-0239
J9 CELLULOSE
JI Cellulose
PD AUG
PY 2009
VL 16
IS 4
BP 677
EP 686
DI 10.1007/s10570-009-9313-1
PG 10
WC Materials Science, Paper & Wood; Materials Science, Textiles; Polymer
Science
SC Materials Science; Polymer Science
GA 469HH
UT WOS:000267886600012
ER
PT J
AU Jovanovic, I
Magnuson, JK
Collart, F
Robbertse, B
Adney, WS
Himmel, ME
Baker, SE
AF Jovanovic, Iva
Magnuson, Jon K.
Collart, Frank
Robbertse, Barbara
Adney, William S.
Himmel, Michael E.
Baker, Scott E.
TI Fungal glycoside hydrolases for saccharification of lignocellulose:
outlook for new discoveries fueled by genomics and functional studies
SO CELLULOSE
LA English
DT Article
DE Fungi; Cellulase; Genomics
ID CARBOHYDRATE-BINDING MODULES; ACID-SEQUENCE SIMILARITIES;
TRICHODERMA-REESEI; CELLOBIOHYDROLASE-I; FUSARIUM-GRAMINEARUM;
CLASSIFICATION; FUMIGATUS; SECRETOME; PEPTIDES; PROTEINS
AB Genome sequencing of a variety of fungi is a major initiative currently supported by the Department of Energy's Joint Genome Institute. Encoded within the genomes of many fungi are upwards of 200+ enzymes called glycoside hydrolases (GHs). GHs are known for their ability to hydrolyze the polysaccharide components of lignocellulosic biomass. Production of ethanol and "next generation" biofuels from lignocellulosic biomass represents a sustainable route to biofuels production. However, this process has to become more economical before large scale operations are put into place. Identifying and characterizing GHs with improved properties for biomass degradation is a key factor for the development of cost effective processes to convert biomass to fuels and chemicals. With the recent explosion in the number of GH encoding genes discovered by fungal genome sequencing projects, it has become apparent that improvements in GH gene annotation processes have to be developed. This will enable more informed and efficient decision making with regard to selection and utilization of these important enzymes in bioprocess that produce fuels and chemicals from lignocellulosic feedstocks.
C1 [Jovanovic, Iva; Magnuson, Jon K.; Baker, Scott E.] Pacific NW Natl Lab, Energy & Environm Directorate, Chem & Biol Proc Dev, Richland, WA 99352 USA.
[Collart, Frank] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA.
[Robbertse, Barbara] Oregon State Univ, Dept Bot & Plant Pathol, Corvallis, OR 97331 USA.
[Adney, William S.; Himmel, Michael E.] Natl Renewable Energy Lab, Golden, CO USA.
RP Baker, SE (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Chem & Biol Proc Dev, 902 Battelle Blvd, Richland, WA 99352 USA.
EM Scott.baker@pnl.gov
OI Collart, Frank/0000-0001-6942-4483
FU DOE Energy Efficiency and Renewable Energy Office; Biomass Program; DOE
Office of Science Office of Biological; Environmental Research Genomics:
GTL Annotation Program
FX This work was funded by the DOE Energy Efficiency and Renewable Energy
Office of the Biomass Program and DOE Office of Science Office of
Biological and Environmental Research Genomics: GTL Annotation Program.
NR 38
TC 14
Z9 14
U1 0
U2 11
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0969-0239
J9 CELLULOSE
JI Cellulose
PD AUG
PY 2009
VL 16
IS 4
BP 687
EP 697
DI 10.1007/s10570-009-9307-z
PG 11
WC Materials Science, Paper & Wood; Materials Science, Textiles; Polymer
Science
SC Materials Science; Polymer Science
GA 469HH
UT WOS:000267886600013
ER
PT J
AU Adney, WS
Jeoh, T
Beckham, GT
Chou, YC
Baker, JO
Michener, W
Brunecky, R
Himmel, ME
AF Adney, William S.
Jeoh, Tina
Beckham, Gregg T.
Chou, Yat-Chen
Baker, John O.
Michener, William
Brunecky, Roman
Himmel, Michael E.
TI Probing the role of N-linked glycans in the stability and activity of
fungal cellobiohydrolases by mutational analysis
SO CELLULOSE
LA English
DT Article
DE Cellobiohydrolase (Cel7); Cellulase; N-linked glycosylation; Penicillium
funiculosum; Trichoderma reesei; Glycoforms; Site-directed mutagenesis
ID TRICHODERMA-REESEI CELLULASES; PENICILLIUM-FUNICULOSUM;
TALAROMYCES-EMERSONII; FILAMENTOUS FUNGUS; CELLULOSE; SUBSTRATE;
GLYCOSYLATION; HYDROLYSIS; STRAIN; CEL7A
AB The filamentous fungi Trichoderma reesei and Penicillium funiculosum produce highly effective enzyme mixtures that degrade the cellulose and hemicellulose components of plant cell walls. Many fungal species produce a glycoside hydrolase family 7 (Cel7A) cellobiohydrolase, a class of enzymes that catalytically process from the reducing end of cellulose. A direct amino acid comparison of these two enzymes shows that they not only have high amino acid homology, but also contain analogous N-linked glycosylation sites on the catalytic domain. We have previously shown (Jeoh et al. in Biotechnol Biofuels, 1:10, 2008) that expression of T. reesei cellobiohydrolase I in a commonly used industrial expression host, Aspergillus niger var. awamori, results in an increase in the amount of N-linked glycosylation of the enzyme, which negatively affects crystalline cellulose degradation activity as well as thermal stability. This complementary study examines the significance of individual N-linked glycans on the surface of the catalytic domain of Cel7A cellobiohydrolases from T. reesei and P. funiculosum by genetically adding or removing N-linked glycosylation motifs using site directed mutagenesis. Modified enzymes, expressed in A. niger var. awamori, were tested for activity and thermal stability. It was concluded that N-linked glycans in peptide loops that form part of the active site tunnel have the greatest impact on both thermal stability and enzymatic activity on crystalline cellulose for both the T. reesei and P. funiculosum Cel7A enzymes. Specifically, for the Cel7A T. reesei enzyme expressed in A. niger var. awamori, removal of the N384 glycosylation site yields a mutant with 70% greater activity after 120 h compared to the heterologously expressed wild type T. reesei enzyme. In addition, similar activity improvements were found to be associated with the addition of a new glycosylation motif at N194 in P. funiculosum. This mutant also exhibits 70% greater activity after 120 h compared to the wild type P. funiculosum enzyme expressed in A. niger var. awamori. Overall, this study demonstrates that "tuning" enzyme glycosylation for expression from heterologous expression hosts is essential for generating engineered enzymes with optimal stability and activity.
C1 [Adney, William S.; Jeoh, Tina; Baker, John O.; Brunecky, Roman; Himmel, Michael E.] Natl Renewable Energy Lab, Chem & Biosci Ctr, Golden, CO 80401 USA.
RP Adney, WS (reprint author), Natl Renewable Energy Lab, Chem & Biosci Ctr, 1617 Cole Blvd, Golden, CO 80401 USA.
EM bill.adney@nrel.gov
FU DOE Office of the Biomass Program
FX This work was funded by the DOE Office of the Biomass Program.
NR 27
TC 35
Z9 37
U1 7
U2 30
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0969-0239
J9 CELLULOSE
JI Cellulose
PD AUG
PY 2009
VL 16
IS 4
BP 699
EP 709
DI 10.1007/s10570-009-9305-1
PG 11
WC Materials Science, Paper & Wood; Materials Science, Textiles; Polymer
Science
SC Materials Science; Polymer Science
GA 469HH
UT WOS:000267886600014
ER
PT J
AU Selig, MJ
Adney, WS
Himmel, ME
Decker, SR
AF Selig, Michael J.
Adney, William S.
Himmel, Michael E.
Decker, Stephen R.
TI The impact of cell wall acetylation on corn stover hydrolysis by
cellulolytic and xylanolytic enzymes
SO CELLULOSE
LA English
DT Article
DE Lignocellulose; Acetyl; Pretreatment; Cellulase; Xylanase; Acetyl xylan
esterase
ID TRICHODERMA-REESEI; ENZYMATIC-HYDROLYSIS; PRETREATMENT TECHNOLOGIES;
ETHANOL-PRODUCTION; ACID PRETREATMENT; ASPERGILLUS-NIGER; XYLAN;
ESTERASES; BIOMASS; LIGNIN
AB Analysis of variously pretreated corn stover samples showed neutral to mildly acidic pretreatments were more effective at removing xylan from corn stover and more likely to maintain the acetyl to xylopyranosyl ratios present in untreated material than were alkaline treatments. Retention of acetyl groups in the residual solids resulted in greater resistance to hydrolysis by endoxylanase alone, although the synergistic combination of endoxylanase and acetyl xylan esterase enzymes permitted higher xylan conversions to be observed. Acetyl xylan esterase alone did little to improve hydrolysis by cellulolytic enzymes, although a direct relationship was observed between the enzymatic removal of acetyl groups and improvements in the enzymatic conversion of xylan present in substrates. In all cases, effective xylan conversions were found to significantly improve glucan conversions achievable by cellulolytic enzymes. Additionally, acetyl and xylan removal not only enhanced the respective initial rates of xylan and glucan conversion, but also the overall extents of conversion. This work emphasizes the necessity for xylanolytic enzymes during saccharification processes and specifically for the optimization of acetyl esterase and xylanase synergies when biomass processes include milder pretreatments, such as hot water or sulfite steam explosion.
C1 [Selig, Michael J.; Adney, William S.; Himmel, Michael E.; Decker, Stephen R.] Natl Renewable Energy Lab, Chem & Biosci Ctr, Golden, CO 80401 USA.
RP Selig, MJ (reprint author), Natl Renewable Energy Lab, Chem & Biosci Ctr, 1617 Cole Blvd, Golden, CO 80401 USA.
EM michael_selig@nrel.gov
FU U.S. Department of Energy Office [DE-AC36-99GO10337]; National Renewable
Energy Laboratory (NREL)
FX This work was supported by the U.S. Department of Energy Office of the
Biomass Program under contract No. DE-AC36-99GO10337 with the National
Renewable Energy Laboratory (NREL).
NR 39
TC 61
Z9 63
U1 4
U2 52
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0969-0239
J9 CELLULOSE
JI Cellulose
PD AUG
PY 2009
VL 16
IS 4
BP 711
EP 722
DI 10.1007/s10570-009-9322-0
PG 12
WC Materials Science, Paper & Wood; Materials Science, Textiles; Polymer
Science
SC Materials Science; Polymer Science
GA 469HH
UT WOS:000267886600015
ER
PT J
AU Knoshaug, EP
Franden, MA
Stambuk, BU
Zhang, M
Singh, A
AF Knoshaug, Eric P.
Franden, Mary Ann
Stambuk, Boris U.
Zhang, Min
Singh, Arjun
TI Utilization and transport of l-arabinose by non-Saccharomyces yeasts
SO CELLULOSE
LA English
DT Article
DE Non-conventional yeast; L-Arabinose utilization; Sugar transport;
Mutagenesis
ID ENZYMATIC-HYDROLYSIS; GALACTOSE TRANSPORT; XYLOSE TRANSPORT; FERMENTING
YEAST; CARBON-SOURCES; CEREVISIAE; FERMENTATION; ETHANOL; METABOLISM;
STRAINS
AB l-Arabinose is one of the sugars found in hemicellulose, a major component of plant cell walls. The ability to convert l-arabinose to ethanol would improve the economics of biomass to ethanol fermentations. One of the limitations for l-arabinose fermentation in the current engineered Saccharomyces cerevisiae strains is poor transport of the sugar. To better understand l-arabinose transport and use in yeasts and to identify a source for efficient l-arabinose transporters, 165 non-Saccharomyces yeast strains were studied. These yeast strains were arranged into six groups based on the minimum time required to utilize 20 g/L of l-arabinose. Initial transport rates of l-arabinose were determined for several species and a more comprehensive transport study was done in four selected species. Detailed transport kinetics in Arxula adeninivorans suggested both low and high affinity components while Debaryomyces hansenii var. fabryii, Kluyveromyces marxianus and Pichia guilliermondii possessed a single component, high affinity active transport systems.
C1 [Knoshaug, Eric P.; Franden, Mary Ann; Stambuk, Boris U.; Zhang, Min; Singh, Arjun] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA.
RP Knoshaug, EP (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 1617 Cole Blvd, Golden, CO 80401 USA.
EM eric_knoshaug@nrel.gov
FU United States Department of Energy's Office of the Biomass Program; Corn
Refiners Association; National Corn Growers Association
FX This work was funded by the United States Department of Energy's Office
of the Biomass Program, the Corn Refiners Association, and the National
Corn Growers Association. We thank C. Kurtzman for providing some of the
strains used in this study.
NR 29
TC 11
Z9 11
U1 2
U2 11
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0969-0239
J9 CELLULOSE
JI Cellulose
PD AUG
PY 2009
VL 16
IS 4
BP 729
EP 741
DI 10.1007/s10570-009-9319-8
PG 13
WC Materials Science, Paper & Wood; Materials Science, Textiles; Polymer
Science
SC Materials Science; Polymer Science
GA 469HH
UT WOS:000267886600017
ER
PT J
AU Pienkos, PT
Zhang, M
AF Pienkos, Philip T.
Zhang, Min
TI Role of pretreatment and conditioning processes on toxicity of
lignocellulosic biomass hydrolysates
SO CELLULOSE
LA English
DT Article
DE Lignocellulose; Inhibitors; Pretreatment; Conditioning; Hydrolysate;
Biofuel
ID ETHANOLOGENIC ESCHERICHIA-COLI; SOFTWOOD PINUS-RADIATA;
ION-EXCHANGE-RESINS; SACCHAROMYCES-CEREVISIAE; PICHIA-STIPITIS;
FERMENTATION INHIBITORS; DEGRADATION-PRODUCTS; ACETIC-ACID;
ENZYMATIC-HYDROLYSIS; XYLOSE FERMENTATION
AB The Department of Energy's Office of the Biomass Program has set goals of making ethanol cost competitive by 2012 and replacing 30% of 2004 transportation supply with biofuels by 2030. Both goals require improvements in conversions of cellulosic biomass to sugars as well as improvements in fermentation rates and yields. Current best pretreatment processes are reasonably efficient at making the cellulose/hemicellulose/lignin matrix amenable to enzymatic hydrolysis and fermentation, but they release a number of toxic compounds into the hydrolysate which inhibit the growth and ethanol productivity of fermentation organisms. Conditioning methods designed to reduce the toxicity of hydrolysates are effective, but add to process costs and tend to reduce sugar yields, thus adding significantly to the final cost of production. Reducing the cost of cellulosic ethanol production will likely require enhanced understanding of the source and mode of action of hydrolysate toxic compounds, the means by which some organisms resist the actions of these compounds, and the methodology and mechanisms for conditioning hydrolysate to reduce toxicity. This review will provide an update on the state of knowledge in these areas and can provide insights useful for the crafting of hypotheses for improvements in pretreatment, conditioning, and fermentation organisms.
C1 [Pienkos, Philip T.; Zhang, Min] Natl Renewable Energy Lab, Golden, CO USA.
RP Pienkos, PT (reprint author), Natl Renewable Energy Lab, Golden, CO USA.
EM philip.pienkos@nrel.gov
FU DOE Office of the Biomass Program
FX The work was funded by the DOE Office of the Biomass Program.
NR 86
TC 122
Z9 124
U1 3
U2 42
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0969-0239
J9 CELLULOSE
JI Cellulose
PD AUG
PY 2009
VL 16
IS 4
BP 743
EP 762
DI 10.1007/s10570-009-9309-x
PG 20
WC Materials Science, Paper & Wood; Materials Science, Textiles; Polymer
Science
SC Materials Science; Polymer Science
GA 469HH
UT WOS:000267886600018
ER
PT J
AU Chen, XB
AF Chen Xiaobo
TI Titanium Dioxide Nanomaterials and Their Energy Applications
SO CHINESE JOURNAL OF CATALYSIS
LA English
DT Review
DE titanium dioxide; nanomaterial; doping; sensitizing; photocatalysis;
photovoltaics; solar water splitting
ID SENSITIZED SOLAR-CELLS; LOW-TEMPERATURE SYNTHESIS; SIZED TIO2 PARTICLES;
S-DOPED TIO2; OXIDE NANOTUBE ARRAYS; METAL-ION DOPANTS; VISIBLE-LIGHT;
PHOTOCATALYTIC ACTIVITY; ANATASE TIO2; NANOCRYSTALLINE TITANIA
AB Here we briefly introduce the synthesis, properties, modifications, and energy applications of titanium dioxide nanomaterials. This introduction surveys their synthetic methods (sol/sol-gel, hydro/solvo-thermal, oxidation, deposition, sonochemical, and microwave-assisted approaches), their structural and thermodynamic properties, their modifications (doping and sensitizing), and their applications in photocatalysis, photovoltaics and solar water splitting.
C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Chen, XB (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
EM XChen3@lbl.gov
RI Dom, Rekha/B-7113-2012
NR 177
TC 48
Z9 49
U1 14
U2 134
PU SCIENCE PRESS
PI BEIJING
PA 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA
SN 0253-9837
J9 CHINESE J CATAL
JI Chin. J. Catal.
PD AUG
PY 2009
VL 30
IS 8
BP 839
EP 851
PG 13
WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical
SC Chemistry; Engineering
GA 498NW
UT WOS:000270149200019
ER
PT J
AU Masanet, E
Sathaye, J
AF Masanet, Eric
Sathaye, Jayant
TI Challenges and opportunities in accounting for non-energy use CO2
emissions: an editorial comment
SO CLIMATIC CHANGE
LA English
DT Editorial Material
C1 [Masanet, Eric; Sathaye, Jayant] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA.
RP Sathaye, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA.
EM JASathaye@lbl.gov
RI Masanet, Eric /I-5649-2012
NR 24
TC 1
Z9 2
U1 1
U2 3
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0165-0009
EI 1573-1480
J9 CLIMATIC CHANGE
JI Clim. Change
PD AUG
PY 2009
VL 95
IS 3-4
BP 395
EP 403
DI 10.1007/s10584-009-9636-9
PG 9
WC Environmental Sciences; Meteorology & Atmospheric Sciences
SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences
GA 474AT
UT WOS:000268255300007
ER
PT J
AU Marland, G
Marland, E
AF Marland, Gregg
Marland, Eric
TI Trading permanent and temporary carbon emissions credits
SO CLIMATIC CHANGE
LA English
DT Editorial Material
C1 [Marland, Gregg] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA.
[Marland, Eric] Appalachian State Univ, Dept Math Sci, Boone, NC 28606 USA.
RP Marland, G (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA.
EM marlandgh@ornl.gov; marlandes@appstate.edu
NR 5
TC 4
Z9 4
U1 1
U2 7
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0165-0009
J9 CLIMATIC CHANGE
JI Clim. Change
PD AUG
PY 2009
VL 95
IS 3-4
BP 465
EP 468
DI 10.1007/s10584-009-9624-0
PG 4
WC Environmental Sciences; Meteorology & Atmospheric Sciences
SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences
GA 474AT
UT WOS:000268255300012
ER
PT J
AU Caldwell, P
Chin, HNS
Bader, DC
Bala, G
AF Caldwell, Peter
Chin, Hung-Neng S.
Bader, David C.
Bala, Govindasamy
TI Evaluation of a WRF dynamical downscaling simulation over California
SO CLIMATIC CHANGE
LA English
DT Article
ID WESTERN UNITED-STATES; REGIONAL CLIMATE MODEL; LAND-SURFACE SCHEME; PART
I; PACIFIC-NORTHWEST; CHANGE SCENARIOS; PRECIPITATION; US; RESOLUTION;
PREDICTION
AB This paper presents results from a 40 year Weather Research and Forecasting (WRF) based dynamical downscaling experiment performed at 12 km horizontal grid spacing, centered on the state of California, and forced by a 1A degrees x 1.25A degrees finite-volume current-climate Community Climate System Model ver. 3 (CCSM3) simulation. In-depth comparisons between modeled and observed regional-average precipitation, 2 m temperature, and snowpack are performed. The regional model reproduces the spatial distribution of precipitation quite well, but substantially overestimates rainfall along windward slopes. This is due to strong overprediction of precipitation intensity; precipitation frequency is actually underpredicted by the model. Moisture fluxes impinging on the coast seem to be well-represented over California, implying that precipitation bias is caused by processes internal to WRF. Positive-definite moisture advection and use of the Grell cumulus parameterization result in some decrease in precipitation bias, but other sources are needed to explain the full bias magnitude. Surface temperature is well simulated in all seasons except summer, when overly-dry soil moisture results in a several degree warm bias in both CCSM3 and WRF. Additionally, coastal temperatures appear to be too warm due to a coastal sea surface temperature bias inherited from CCSM3. Modeled snowfall/snowmelt agrees quite well with observations, but snow water equivalent is found to be much too low due to monthly reinitialization of all regional model fields from CCSM3 values.
C1 [Caldwell, Peter; Chin, Hung-Neng S.; Bader, David C.; Bala, Govindasamy] Lawrence Livermore Natl Lab, Livermore, CA 94566 USA.
RP Caldwell, P (reprint author), Lawrence Livermore Natl Lab, L-103,POB 808, Livermore, CA 94566 USA.
EM caldwell19@llnl.gov
RI Bader, David/H-6189-2011; Caldwell, Peter/K-1899-2014
OI Bader, David/0000-0003-3210-339X;
FU U.S. Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]
FX We thank NOAA's Earth Science Research Lab/Physical Sciences Division,
D. P. Lettenmeier at the University of Washington, the National Climatic
Data Center, the PRISM group at Oregon State University, and the
National Snow and Ice Data Center for making their datasets available to
us online. Thanks also go to Art Mirin for supplying CCSM3 data, Ruby
Leung for supplying the code necessary to create boundary conditions
from GCM data, and Tapash Das for statewide climatological analysis of
the CCSM3 output. Thanks also to Reed Maxwell for useful discussions.
This work performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344 as part of its Laboratory Directed Research and
Development Program.
NR 50
TC 93
Z9 96
U1 1
U2 33
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0165-0009
EI 1573-1480
J9 CLIMATIC CHANGE
JI Clim. Change
PD AUG
PY 2009
VL 95
IS 3-4
BP 499
EP 521
DI 10.1007/s10584-009-9583-5
PG 23
WC Environmental Sciences; Meteorology & Atmospheric Sciences
SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences
GA 474AT
UT WOS:000268255300015
ER
PT J
AU Sacks, DB
Van den Berghe, G
Kirkman, S
Kost, G
Ng, R
Sandberg, S
AF Sacks, David B.
Van den Berghe, Greet
Kirkman, Sue
Kost, Gerald
Ng, Ron
Sandberg, Sverre
TI Tight Glucose Control in Critically Ill Patients: Should Glucose Meters
Be Used?
SO CLINICAL CHEMISTRY
LA English
DT Editorial Material
C1 [Sacks, David B.] Harvard Univ, Brigham & Womens Hosp, Sch Med, Dept Pathol, Boston, MA 02115 USA.
[Van den Berghe, Greet] Catholic Univ Louvain, Dept Intens Care Med, B-3000 Louvain, Belgium.
[Van den Berghe, Greet] Catholic Univ Louvain, Div Acute Med Sci, B-3000 Louvain, Belgium.
[Kirkman, Sue] Amer Diabet Assoc, Alexandria, VA USA.
[Kost, Gerald] Univ Calif Davis, Pathol & Lab Med, Sch Med, Davis, CA 95616 USA.
[Kost, Gerald] Lawrence Livermore Natl Lab, Natl Inst Biomed Imaging & BioEngn, Point Of Care Technol Ctr, NIH, Davis, CA USA.
[Ng, Ron] Abbott Diabet Care, Clin Res, Alameda, CA USA.
[Sandberg, Sverre] Haukeland Hosp, Lab Clin Biochem, N-5021 Bergen, Norway.
[Sandberg, Sverre] Haukeland Hosp, Norwegian Porphyria Ctr, N-5021 Bergen, Norway.
[Sandberg, Sverre] Norwegian Qual Improvement Primary Care Labs NOKL, Bergen, Norway.
RP Sacks, DB (reprint author), Harvard Univ, Brigham & Womens Hosp, Sch Med, Dept Pathol, Boston, MA 02115 USA.
OI Sacks, David/0000-0003-3100-0735
NR 0
TC 6
Z9 6
U1 0
U2 4
PU AMER ASSOC CLINICAL CHEMISTRY
PI WASHINGTON
PA 2101 L STREET NW, SUITE 202, WASHINGTON, DC 20037-1526 USA
SN 0009-9147
J9 CLIN CHEM
JI Clin. Chem.
PD AUG
PY 2009
VL 55
IS 8
BP 1580
EP 1583
DI 10.1373/clinchem.2009.131318
PG 4
WC Medical Laboratory Technology
SC Medical Laboratory Technology
GA 477ZM
UT WOS:000268557500024
PM 19556440
ER
PT J
AU Achyuthan, KE
McClain, JL
Raj, D
AF Achyuthan, Komandoor E.
McClain, Jaime L.
Raj, Dominic
TI Orthogonal, Spectroscopic High Throughput Screening of Laccase-Catalyzed
p-Cresol Oxidation
SO COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING
LA English
DT Article
DE Laccase; p-cresol; spectroscopy; absorption; fluorescence; high
throughput screening
ID PERFORMANCE LIQUID-CHROMATOGRAPHY; TRAMETES-VERSICOLOR;
HORSERADISH-PEROXIDASE; ASCORBATE PEROXIDASE; PHENOLIC-COMPOUNDS;
HYDROGEN-PEROXIDE; FUNGAL LACCASES; DEGRADATION; ASSAYS; FLUORESCENCE
AB There is considerable interest in the oxidative fate of phenols such as p-cresol as environmental pollutants and uremic toxins. We supply a menu of spectroscopic options for the high throughput screening of laccase oxidation of p-cresol through multiple modes of detection. Laccase activity was monitored kinetically at pH 4.5 by absorption changes at 250 nm, 274 nm or 297 nm, and in endpoint mode by the bathochromic shift in absorption to 326 nm in 50 mM NaOH. Laccase oxidation of p-cresol was also detected by product fluorescence at 425 nm after excitation at 262 nm or 322 nm in 50 mM NaOH. We optimized the kinetic parameters for p-cresol oxidation (pH optimum 4.5-5.1; 37 degrees C; Km = 2.2 mM) resulting in laccase limits of detection and quantitation of 25 pg/mu L and 75 pg/mu L, respectively (similar to 360 pM; 25 ppb). The sensitivity for p-cresol was similar to previously reported values. The small (similar to 20%) decrease in signal strength after six cycles of excitation over a 3 h period was attributed to photobleaching or photodegradation of the emitter and not due to fluorescence decay (photoinstability). Halide inhibition was characteristic of laccases (IC(50) = 25 mM NaCl). A unique advantage of our assay is that laccase catalysis could be interrogated using multi-mode absorption or fluorescence under acidic or basic conditions, in real time or endpoint modes. Orthogonal interrogation facilitates ratiometric analysis enabling high specificity while minimizing interferences during compound library screening. The phenolic alcohol p-cresol may be a model for monolignol oxidation. Our studies might find applications in biofuels, to triage dialysis patients, or for the environmental bioremediation of phenols.
C1 [Achyuthan, Komandoor E.] Sandia Natl Labs, Biosensors & Nanomat Dept, Albuquerque, NM 87185 USA.
[Achyuthan, Komandoor E.] Joint BioEnergy Inst, Emeryville, CA USA.
[Raj, Dominic] Univ New Mexico, Albuquerque, NM 87131 USA.
RP Achyuthan, KE (reprint author), Sandia Natl Labs, Biosensors & Nanomat Dept, POB 5800,MS 1425, Albuquerque, NM 87185 USA.
EM kachyut@sandia.gov
FU Sandia Corporation, a Lockheed Martin Company [DE-AC04-94AL85000];
Defense Threat Reduction Agency - Joint Science and Technology Office (
DTRAJSTO) [MIPRG089XR076, AA07CBT008]; Laboratory Directed Research and
Development ( LDRD) [125859]; DOE Joint BioEnergy Institute; U.S.
Department of Energy, Office of Science, Office of Biological and
Environmental Research [DE-AC02-05CH11231]; Lawrence Berkeley National
Laboratory; U.S. Department of Energy
FX Sandia is a multi-program laboratory operated by Sandia Corporation, a
Lockheed Martin Company for the United States Department of Energy's
National Nuclear Security Administration under contract #
DE-AC04-94AL85000. Komandoor Achyuthan thanks the Defense Threat
Reduction Agency - Joint Science and Technology Office ( DTRAJSTO) for
partially supporting these investigations under contract #
MIPRG089XR076, AA07CBT008 and a Laboratory Directed Research and
Development ( LDRD) project # 125859 awarded to Komandoor Achyuthan. A
portion of this work was also funded by the DOE Joint BioEnergy
Institute (http://www.jbei.org) supported by the U.S. Department of
Energy, Office of Science, Office of Biological and Environmental
Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley
National Laboratory and the U.S. Department of Energy.
NR 43
TC 2
Z9 2
U1 0
U2 10
PU BENTHAM SCIENCE PUBL LTD
PI SHARJAH
PA EXECUTIVE STE Y26, PO BOX 7917, SAIF ZONE, 1200 BR SHARJAH, U ARAB
EMIRATES
SN 1386-2073
J9 COMB CHEM HIGH T SCR
JI Comb. Chem. High Throughput Screen
PD AUG
PY 2009
VL 12
IS 7
BP 678
EP 689
PG 12
WC Biochemical Research Methods; Chemistry, Applied; Pharmacology &
Pharmacy
SC Biochemistry & Molecular Biology; Chemistry; Pharmacology & Pharmacy
GA 482UT
UT WOS:000268915000005
PM 19531019
ER
PT J
AU Lu, TF
Law, CK
Yoo, CS
Chen, JH
AF Lu, Tianfeng
Law, Chung K.
Yoo, Chun Sang
Chen, Jacqueline H.
TI Dynamic stiffness removal for direct numerical simulations
SO COMBUSTION AND FLAME
LA English
DT Article
DE Dynamic stiffness removal; Quasi-steady-state approximation; Partial
equilibrium approximation; Direct numerical simulation; Mechanism
reduction
ID CHEMICAL KINETIC MECHANISMS; IGNITION FRONT PROPAGATION; GLOBAL REDUCED
MECHANISMS; N-HEPTANE OXIDATION; METHANE-AIR FLAMES; TEMPERATURE
INHOMOGENEITIES; ASYMPTOTIC STRUCTURE; ADAPTIVE CHEMISTRY; CONSTANT
VOLUME; SOOT FORMATION
AB A systematic approach was developed to derive non-stiff reduced mechanisms for direct numerical simulations (DNS) with explicit integration solvers. The stiffness reduction was achieved through on-the-fly elimination of short time-scales induced by two features of fast chemical reactivity, namely quasi-steady-state (QSS) species and partial-equilibrium (PE) reactions. The sparse algebraic equations resulting from QSS and PE approximations were utilized such that the efficiency of the dynamic stiffness reduction is high compared with general methods of time-scale reduction based on Jacobian decomposition. Using the dimension reduction Strategies developed in Our previous work, a reduced mechanism with 52 species was first derived from a detailed mechanism with 561 species. The reduced mechanism was validated for ignition and extinction applications Over the parameter range of equivalence ratio between 0.5 and 1.5, pressure between 10 and 50 atm, and initial temperature between 700 and 1600 K for ignition, and worst-case errors of approximately 30% were observed. The reduced mechanism with dynamic stiffness removal was then applied in homogeneous and 1-D ignition applications, as well as a 2-D direct numerical simulation of ignition with temperature inhomogeneities at constant volume with integration time-steps of 5-10 ns. The integration was numerically stable and good accuracy was achieved. Published by Elsevier Inc. on behalf of The Combustion Institute.
C1 [Lu, Tianfeng; Law, Chung K.] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA.
[Yoo, Chun Sang; Chen, Jacqueline H.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA.
RP Lu, TF (reprint author), Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA.
EM tlu@engr.uconn.edu
RI Yoo, Chun Sang/E-5900-2010; Law, Chung /E-1206-2013; Lu,
Tianfeng/D-7455-2014
OI Yoo, Chun Sang/0000-0003-1094-4016; Lu, Tianfeng/0000-0001-7536-1976
FU Air Force Office of Scientific Research; Division of Chemical Sciences,
Geosciences, and Biosciences, Office of Basic Energy Sciences of the
U.S. Department of Energy; U.S. Department of Energy SciDAC; Sandia
Corporation, a Lockheed Martin Company, for the U.S. Department of
Energy [DE-AC04-94AL85000]
FX The work at Princeton University was supported by the Air Force Office
of Scientific Research under the technical monitoring of Dr. Julian M.
Tishkoff. The work at Sandia National Laboratories (SNL) was supported
by the Division of Chemical Sciences, Geosciences, and Biosciences,
Office of Basic Energy Sciences of the U.S. Department of Energy, and
the U.S. Department of Energy SciDAC Program. SNL is a multi-program
laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the U.S. Department of Energy under contract DE-AC04-94AL85000.
NR 55
TC 38
Z9 38
U1 1
U2 16
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 0010-2180
J9 COMBUST FLAME
JI Combust. Flame
PD AUG
PY 2009
VL 156
IS 8
BP 1542
EP 1551
DI 10.1016/j.combustflame.2009.02.013
PG 10
WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary;
Engineering, Chemical; Engineering, Mechanical
SC Thermodynamics; Energy & Fuels; Engineering
GA 474MR
UT WOS:000268288700004
ER
PT J
AU Moelans, N
Wendler, F
Nestler, B
AF Moelans, Nele
Wendler, Frank
Nestler, Britta
TI Comparative study of two phase-field models for grain growth
SO COMPUTATIONAL MATERIALS SCIENCE
LA English
DT Article
DE Grain growth; Phase-field modeling; Grain boundary migration; Numerical
simulation; Microstructure; Model validation
ID VERTEX DYNAMICS SIMULATION; COMPUTER-SIMULATION; MICROSTRUCTURE
EVOLUTION; TEXTURE EVOLUTION; BOUNDARIES; SOLIDIFICATION; COMPONENTS;
METALS; SYSTEM
AB There exist different phase-field models for the simulation of grain growth in polycrystalline structures. In this paper, the model formulation, application and simulation results are compared for two of these approaches. First, we derive relations between the parameters in both models that represent the same set of grain boundary energies and mobilities. Then, simulation results obtained with both models, using equivalent model parameters, are compared for grain structures in 2D and 3D. The evolution of the individual grains, grain boundaries and triple junction angles is followed in detail. Moreover, the simulation results obtained with both approaches are compared using analytical theories and previous simulation results as benchmarks. We find that both models give essentially the same results, except for differences in the structure near small shrinking grains which are most often locally and temporary for large grain structures. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Moelans, Nele] Katholieke Univ Leuven, Dept Met & Mat Engn, B-3001 Louvain, Belgium.
[Moelans, Nele] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94551 USA.
[Wendler, Frank; Nestler, Britta] Karlsruhe Univ Appl Sci, Inst Computat Engn, D-76133 Karlsruhe, Germany.
RP Moelans, N (reprint author), Katholieke Univ Leuven, Dept Met & Mat Engn, Kasteelpk Arenberg 44,Bus 2450, B-3001 Louvain, Belgium.
EM Nele.Moelans@mtm.kuleuven.be
RI Moelans, Nele/A-3165-2013
OI Moelans, Nele/0000-0003-3361-2954
FU Research Foundation - Flanders (FWO-Vlaanderen); German Federal Ministry
of Education and Research (BMBF) [FKZ 1708X06]
FX NM is postdoctoral fellow of the Research Foundation - Flanders
(FWO-Vlaanderen). FW and BN acknowledge the financial support of the
German Federal Ministry of Education and Research (BMBF) under Grant No.
FKZ 1708X06.
NR 34
TC 28
Z9 28
U1 1
U2 24
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0927-0256
J9 COMP MATER SCI
JI Comput. Mater. Sci.
PD AUG
PY 2009
VL 46
IS 2
BP 479
EP 490
DI 10.1016/j.commatsci.2009.03.037
PG 12
WC Materials Science, Multidisciplinary
SC Materials Science
GA 491SH
UT WOS:000269599200031
ER
PT J
AU Padgett, CW
Gutt, KJ
Whiteside, TS
AF Padgett, C. W.
Gutt, K. J.
Whiteside, T. S.
TI Computational studies on the mechanical properties of diamond
nanotoroids
SO COMPUTATIONAL MATERIALS SCIENCE
LA English
DT Article
DE Mechanical properties; Carbon nanotubes; Diamond nanorods; Molecular
dynamics; Toroids
ID CARBON NANOTUBES
AB Diamond nanotoroids are a new class of carbon nanostructures with interesting theoretical properties and are ideal for studying the elastic and plastic deformation behavior of diamond nanorods. Various sizes of diamond nanotoroids, along with a carbon nanotube, a carbon nanotube toroid, and a diamond nanorod were simulated using molecular dynamics. We tested these compounds for stability and compared our calculated values for the ultimate tensile strength and the Young's modulus over a range of strain rates to those reported in the literature and attempted to explain any discrepancies found between our results and those reported. The results of these simulations suggest the tensile strength of diamond nanotoroids would be many times stronger than conventional materials and this novel material has potential for use in many demanding applications. Published by Elsevier B.V.
C1 [Padgett, C. W.; Gutt, K. J.] Armstrong Atlantic State Univ, Savannah, GA 31419 USA.
[Whiteside, T. S.] Savannah River Natl Lab, Aiken, SC 29808 USA.
RP Padgett, CW (reprint author), Armstrong Atlantic State Univ, Savannah, GA 31419 USA.
EM Clifford.Padgett@Armstrong.edu
NR 13
TC 4
Z9 4
U1 2
U2 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0927-0256
J9 COMP MATER SCI
JI Comput. Mater. Sci.
PD AUG
PY 2009
VL 46
IS 2
BP 491
EP 494
DI 10.1016/j.commatsci.2009.03.036
PG 4
WC Materials Science, Multidisciplinary
SC Materials Science
GA 491SH
UT WOS:000269599200032
ER
PT J
AU Elvidge, CD
Sutton, PC
Ghosh, T
Tuttle, BT
Baugh, KE
Bhaduri, B
Bright, E
AF Elvidge, Christopher D.
Sutton, Paul C.
Ghosh, Tilottama
Tuttle, Benjamin T.
Baugh, Kimberly E.
Bhaduri, Budhendra
Bright, Edward
TI A global poverty map derived from satellite data
SO COMPUTERS & GEOSCIENCES
LA English
DT Article
DE Poverty; DMSP; Nighttime lights; World development indicators
ID POPULATION; EMISSIONS
AB A global poverty map has been produced at 30 arcsec resolution using a poverty index calculated by dividing population count (LandScan 2004) by the brightness of satellite observed lighting (DMSP nighttime lights). Inputs to the LandScan product include satellite-derived land cover and topography, plus human settlement outlines derived from high-resolution imagery. The poverty estimates have been calibrated using national level poverty data from the World Development Indicators (WDI) 2006 edition. The total estimate of the numbers of individuals living in poverty is 2.2 billion, slightly under the WDI estimate of 2.6 billion. We have demonstrated a new class of poverty map that should improve over time through the inclusion of new reference data for calibration of poverty estimates and as improvements are made in the satellite observation of human activities related to economic activity and technology access. Published by Elsevier Ltd.
C1 [Elvidge, Christopher D.] NOAA, Natl Geophys Data Ctr, US Dept Commerce, Boulder, CO 80205 USA.
[Sutton, Paul C.; Ghosh, Tilottama; Tuttle, Benjamin T.] Univ Denver, Dept Geog, Denver, CO 80208 USA.
[Ghosh, Tilottama; Tuttle, Benjamin T.; Baugh, Kimberly E.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.
[Bhaduri, Budhendra; Bright, Edward] Oak Ridge Natl Lab, US Dept Energy, Oak Ridge, TN 37831 USA.
RP Elvidge, CD (reprint author), NOAA, Natl Geophys Data Ctr, US Dept Commerce, 325 Broadway, Boulder, CO 80205 USA.
EM chris.elvidge@noaa.gov; psutton@du.edu
RI Sutton, Paul/A-6764-2013; Elvidge, Christopher/C-3012-2009
OI Sutton, Paul/0000-0001-6972-3256;
FU NASA carbon cycle research program
FX This study was funded in part by the NASA carbon cycle research program.
NR 24
TC 71
Z9 78
U1 7
U2 49
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0098-3004
J9 COMPUT GEOSCI-UK
JI Comput. Geosci.
PD AUG
PY 2009
VL 35
IS 8
BP 1652
EP 1660
DI 10.1016/j.cageo.2009.01.009
PG 9
WC Computer Science, Interdisciplinary Applications; Geosciences,
Multidisciplinary
SC Computer Science; Geology
GA 484ED
UT WOS:000269025500010
ER
PT J
AU Miles, LG
Lance, SL
Isberg, SR
Moran, C
Glenn, TC
AF Miles, Lee G.
Lance, Stacey L.
Isberg, Sally R.
Moran, Chris
Glenn, Travis C.
TI Cross-species amplification of microsatellites in crocodilians:
assessment and applications for the future
SO CONSERVATION GENETICS
LA English
DT Article
DE Crocodile; Crocodilian; Microsatellites; Cross-species amplification
ID CROCODYLUS-MORELETII; CAIMAN-LATIROSTRIS; DIVERSITY; LOCI; CONSERVATION;
GENOMES
AB Microsatellite DNA loci have emerged as the dominant genetic tool for addressing questions associated with genetic diversity in many wildlife species, including crocodilians. Despite their usefulness, their isolation and development can be costly, as well as labour intensive, limiting their wider use in many crocodilian species. In this study, we investigate the cross-species amplification success of 82 existing microsatellites previously isolated for the saltwater crocodile (Crocodylus porosus) in 18 non-target crocodilian species; Alligator sinensis, Caiman crocodylus, Caiman latirostris, Caiman yacare, Melanosuchus niger, Paleosuchus palpebrosus, Crocodylus acutus, Mecistops cataphractus, Crocodylus intermedius, Crocodylus johnstoni, Crocodylus mindorensis, Crocodylus moreletii, Crocodylus niloticus, Crocodylus novaeguineae, Crocodylus palustis, Crocodylus rhombifer, Crocodylus siamensis, and Osteolaemus tetraspis. Our results show a high level of microsatellites cross-amplification making available polymorphic markers for a range of crocodilian species previously lacking informative genetic markers.
C1 [Miles, Lee G.; Isberg, Sally R.; Moran, Chris] Univ Sydney, Fac Vet Sci, Sydney, NSW 2006, Australia.
[Lance, Stacey L.; Glenn, Travis C.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA.
[Isberg, Sally R.] Porosus Pty Ltd, Palmerston, NT 0831, Australia.
[Glenn, Travis C.] Univ Georgia, Dept Environm Hlth Sci, Athens, GA 30602 USA.
RP Miles, LG (reprint author), Univ Sydney, Fac Vet Sci, Room 513,RMC Gunn Bldg, Sydney, NSW 2006, Australia.
EM l.miles@usyd.edu.au
RI Glenn, Travis/A-2390-2008; Lance, Stacey/K-9203-2013
OI Lance, Stacey/0000-0003-2686-1733
FU Rural Industries Research and Development Corporation [US-139A]
FX Acknowledgements This research was supported by Rural Industries
Research and Development Corporation grant US-139A to the University of
Sydney. All research took place at the University of Sydney, Australia,
and the Savannah River Ecology Laboratory (SREL), of the University of
Georgia, USA. We thank Dr. Kent Vliet, Dr. Robert Godshalk, Mitch Eaton
and Matthew Shirley who kindly provided us with many of the crocodilian
DNA samples included in this investigation.
NR 24
TC 11
Z9 13
U1 3
U2 30
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 1566-0621
J9 CONSERV GENET
JI Conserv. Genet.
PD AUG
PY 2009
VL 10
IS 4
BP 935
EP 954
DI 10.1007/s10592-008-9601-6
PG 20
WC Biodiversity Conservation; Genetics & Heredity
SC Biodiversity & Conservation; Genetics & Heredity
GA 459LN
UT WOS:000267104000013
ER
PT J
AU Miles, LG
Isberg, SR
Moran, C
Hagen, C
Glenn, TC
AF Miles, Lee G.
Isberg, Sally R.
Moran, Chris
Hagen, Cris
Glenn, Travis C.
TI 253 Novel polymorphic microsatellites for the saltwater crocodile
(Crocodylus porosus)
SO CONSERVATION GENETICS
LA English
DT Article
DE Estuarine crocodile; Reptile; SSRs; Primers; Tetra-nucleotide repeats;
Tri-nucleotide repeats; Di-nucleotide repeats; Enrichment
ID CAIMAN-LATIROSTRIS; AMPLIFICATION; DIVERSITY; LOCI; PCR
AB Genomic elucidation and mapping of novel organisms requires the generation of large genetic resources. In this study, 253 novel and polymorphic microsatellite loci were isolated and characterized for the saltwater crocodile (Crocodylus porosus) by constructing libraries enriched for microsatellite DNA. All markers were evaluated on animals obtained from Darwin Crocodile Farm in the Northern Territory, Australia, and are intended for future use in the construction of a genetic-linkage map for the saltwater crocodile. The 253 loci yielded an average of 4.12 alleles per locus, and those selected for mapping had an average polymorphic information content (PIC) of 0.425.
C1 [Miles, Lee G.; Isberg, Sally R.; Moran, Chris] Univ Sydney, Fac Vet Sci, Sydney, NSW 2006, Australia.
[Hagen, Cris; Glenn, Travis C.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA.
[Isberg, Sally R.] Porosus Pty Ltd, Palmerston, NT 0831, Australia.
[Glenn, Travis C.] Univ Georgia, Dept Environm Hlth Sci, Athens, GA 30602 USA.
RP Miles, LG (reprint author), Univ Sydney, Fac Vet Sci, Room 513,RMC Gunn Bldg, Sydney, NSW 2006, Australia.
EM l.miles@usyd.edu.au
RI Glenn, Travis/A-2390-2008
NR 19
TC 11
Z9 12
U1 0
U2 12
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 1566-0621
EI 1572-9737
J9 CONSERV GENET
JI Conserv. Genet.
PD AUG
PY 2009
VL 10
IS 4
BP 963
EP 980
DI 10.1007/s10592-008-9600-7
PG 18
WC Biodiversity Conservation; Genetics & Heredity
SC Biodiversity & Conservation; Genetics & Heredity
GA 459LN
UT WOS:000267104000016
ER
PT J
AU Vary, LB
Lance, SL
Hagen, C
Tsyusko, O
Glenn, TC
Sakai, AK
Weller, SG
AF Vary, Laura B.
Lance, Stacey L.
Hagen, Cris
Tsyusko, Olga
Glenn, Travis C.
Sakai, Ann K.
Weller, Stephen G.
TI Characterization of microsatellite loci from the Malagasy endemic, Tina
striata Radlk. (Sapindaceae)
SO CONSERVATION GENETICS
LA English
DT Article
DE Tina striata; Madagascar; Sapindaceae; Microsatellites; Dioecy; Monoecy;
Outcrossing
AB We isolated and characterized 12 polymorphic microsatellite loci in the Malagasy endemic, Tina striata Radlk. (Sapindaceae). The number of alleles per locus ranged from 2 to 6 (N = 28 individuals). Polymorphic information content ranged from 0.132 to 0.767 and observed heterozygosity from 0.154 to 0.800. These markers will be valuable in estimating outcrossing rates and genetic variation in populations of T. striata, and aid in the conservation of populations of T. striata and other closely related species in the Malagasy Sapindaceae.
C1 [Vary, Laura B.; Sakai, Ann K.; Weller, Stephen G.] Univ Calif Irvine, Dept Ecol & Evolutionary Biol, Irvine, CA 92697 USA.
[Lance, Stacey L.; Hagen, Cris; Tsyusko, Olga; Glenn, Travis C.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA.
[Lance, Stacey L.; Glenn, Travis C.] Univ Georgia, Coll Publ Hlth, Athens, GA 30602 USA.
RP Vary, LB (reprint author), Univ Calif Irvine, Dept Ecol & Evolutionary Biol, 5205 McGaugh Hall, Irvine, CA 92697 USA.
EM lvary@uci.edu
RI Glenn, Travis/A-2390-2008; Lance, Stacey/K-9203-2013
OI Lance, Stacey/0000-0003-2686-1733
FU National Science Foundation Graduate Research Fellowship; University of
California-Irvine
FX This work was funded in part by a National Science Foundation Graduate
Research Fellowship awarded to LBV, and funds from the University of
California-Irvine to AKS. We thank Sven Buerki for supplying additional
DNA material, Felipe Barreto and Steve Lockton for their advice and help
in the lab, Brandon Gaut for use of lab material and equipment, and
Lalao Andriamahefarivo, Patrice Antilahimena, the staff of the Missouri
Botanical Garden's Madagascar Office and the staff of the Parc Botanique
et Zoologique de Tsimbazaza for help with permits and fieldwork in
Madagascar.
NR 7
TC 1
Z9 1
U1 0
U2 1
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 1566-0621
J9 CONSERV GENET
JI Conserv. Genet.
PD AUG
PY 2009
VL 10
IS 4
BP 1113
EP 1115
DI 10.1007/s10592-008-9721-z
PG 3
WC Biodiversity Conservation; Genetics & Heredity
SC Biodiversity & Conservation; Genetics & Heredity
GA 459LN
UT WOS:000267104000049
ER
PT J
AU Lance, SL
Hagen, C
Glenn, TC
Brumfield, RT
Stryjewski, KF
Graves, GR
AF Lance, Stacey L.
Hagen, Cris
Glenn, Travis C.
Brumfield, Robb T.
Stryjewski, Katherine Faust
Graves, Gary R.
TI Fifteen polymorphic microsatellite loci from Jamaican streamertail
hummingbirds (Trochilus)
SO CONSERVATION GENETICS
LA English
DT Article
DE Black-billed streamertail; Hummingbird; Jamaica; Microsatellite; PCR
primers; SSR; STR; Red-billed streamertail; Trochilus polytmus;
Trochilus scitulus
AB We isolated and characterized 15 microsatellite loci from the endemic Jamaican streamertail hummingbird Trochilus polytmus. Loci were screened in 12 individuals of both T. polytmus and its sister species T. scitulus, also a Jamaican endemic. The number of alleles per locus ranged from 2 to 10, observed heterozygosity ranged from 0 to 1, and the probability of identity values ranged from 0.038 to 0.663. These new loci provide tools for characterizing the narrow hybrid zone between the two species.
C1 [Brumfield, Robb T.; Stryjewski, Katherine Faust] Louisiana State Univ, Museum Nat Sci, Baton Rouge, LA 70803 USA.
[Lance, Stacey L.; Glenn, Travis C.] Univ Georgia, Dept Environm Hlth Sci, Athens, GA 30602 USA.
[Lance, Stacey L.; Hagen, Cris] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA.
[Brumfield, Robb T.; Stryjewski, Katherine Faust] Louisiana State Univ, Dept Biol Sci, Baton Rouge, LA 70803 USA.
[Graves, Gary R.] Smithsonian Inst, Natl Museum Nat Hist, Dept Vertebrate Zool, MRC 116, Washington, DC 20013 USA.
RP Brumfield, RT (reprint author), Louisiana State Univ, Museum Nat Sci, 119 Foster Hall, Baton Rouge, LA 70803 USA.
EM brumfld@lsu.edu
RI Glenn, Travis/A-2390-2008; Lance, Stacey/K-9203-2013; Brumfield,
Robb/K-6108-2015
OI Lance, Stacey/0000-0003-2686-1733; Brumfield, Robb/0000-0003-2307-0688
NR 11
TC 6
Z9 6
U1 1
U2 6
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 1566-0621
J9 CONSERV GENET
JI Conserv. Genet.
PD AUG
PY 2009
VL 10
IS 4
BP 1195
EP 1198
DI 10.1007/s10592-008-9748-1
PG 4
WC Biodiversity Conservation; Genetics & Heredity
SC Biodiversity & Conservation; Genetics & Heredity
GA 459LN
UT WOS:000267104000068
ER
PT J
AU Gallagher, DT
Smith, NN
Kim, SK
Robinson, H
Reddy, PT
AF Gallagher, D. Travis
Smith, N. Natasha
Kim, Sook-Kyung
Robinson, Howard
Reddy, Prasad T.
TI Protein Crystal Engineering of YpAC-IV Using a Strategy of Excess Charge
Reduction
SO CRYSTAL GROWTH & DESIGN
LA English
DT Article
ID CATALYTIC DOMAIN; ADENYLYL-CYCLASE; CRYSTALLIZATION; SOLUBILITY;
REFINEMENT; INTEGRASE
AB The class IV adenylyl cyclase from Yersinia pestis has been engineered by site-specific mutagenesis to facilitate crystallization at neutral pH, The wild-type enzyme crystallized only below pH 5, consistent with the observation of a carboxyl-carboxylate H bond in a crystal contact in the refined structure 2FJT. On the basis of that unliganded structure at 1.9 angstrom resolution, two different approaches were tested with the goal of producing a higher-pH crystal needed tor inhibitor complexation and mechanistic studies. In one approach, Asp 19, which forms the growth-limiting dicarboxyl contact in wild-type triclinic crystals. was modified to Ala and Asn in hopes of relieving the acid-dependence of that crystal form. In the other approach, wild-type residues Met 18, Glu 25, and Asp 55 were (individually) changed to lysine to reduce the protein's excess negative charge in hopes of enabling growth of new, higher-pH forms. These three sites were selected based on their high solvent exposure and lack of intraprotein interactions. The D19A and D19N mutants had reduced solubility and did not crystallize. The other three mutants all crystallized, producing several new forms at neutral pH. One of these forms, with the D55K mutant, enabled a product complex at 0.16 nm resolution. Structure 3GHX. This Structure Shows Why the new crystal Form required the mutation in order to grow at neutral pH. This approach could be useful in other cases where excess negative charge inhibits the crystallization of low-pI proteins.
C1 [Gallagher, D. Travis; Smith, N. Natasha; Reddy, Prasad T.] Natl Inst Stand & Technol, Div Biochem Sci, Gaithersburg, MD 20899 USA.
[Kim, Sook-Kyung] Korea Res Inst Stand & Sci, Ctr Bioanal, Taejon, South Korea.
[Robinson, Howard] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA.
RP Gallagher, DT (reprint author), Natl Inst Stand & Technol, Div Biochem Sci, Gaithersburg, MD 20899 USA.
EM ga