FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Ramalho, G Pena, MT AF Ramalho, G. Pena, M. T. TI Electromagnetic form factors of the Delta in an S-wave approach SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article ID PION-PROTON BREMSSTRAHLUNG; BARYON MAGNETIC-MOMENTS; QCD SUM-RULES; QUARK-SOLITON MODEL; LATTICE QCD; DECUPLET; SCATTERING; NUCLEON; DELTA++(1232); TRANSITION AB Without any further adjusting of parameters, a relativistic constituent quark model, successful in the description of the data for the nucleon elastic form factors and of the dominant contribution for the nucleon to Delta electromagnetic transition, is used here to predict the dominant electromagnetic form factors of the Delta baryon. The model is based on a simple Delta wavefunction corresponding to a quark-diquark system in an S-state. The results for E0 and M1 are consistent both with experimental results and lattice calculations. The remaining form factors E2 and M3 vanish, given the symmetric structure taken for Delta. C1 [Ramalho, G.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Ramalho, G.; Pena, M. T.] Ctr Fis Teor & Particulas, P-1049001 Lisbon, Portugal. [Pena, M. T.] Univ Tecn Lisboa, Dept Phys, Inst Super Tecn, P-1049001 Lisbon, Portugal. RP Ramalho, G (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RI Pena, Teresa/M-4683-2013; OI Pena, Teresa/0000-0002-3529-2408; Ramalho, Gilberto/0000-0002-9930-659X FU Jefferson Science Associates; US DOE [DE-AC05-06OR23177]; portuguese Fundacao para a Ciencia e Tecnologia (FCT) [SFRH/BPD/26886/2006] FX The authors are grateful to Franz Gross for his proposal to initiate the study of the baryons within the covariant spectator formalism, to Constantia Alexandrou for providing us the lattice data of [39, 49], to Alfred Stadler for advice during the writing of the text and to Marc Vanderhaeghen for having called our attention to an error present in a previous version. GR would like to thank to Ross Young for helpful discussions. This work was partially support by Jefferson Science Associates, LLC under US DOE contract no DE-AC05-06OR23177. GR was supported by the portuguese Fundacao para a Ciencia e Tecnologia (FCT) under the grant SFRH/BPD/26886/2006. NR 66 TC 20 Z9 21 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD AUG PY 2009 VL 36 IS 8 AR 085004 DI 10.1088/0954-3899/36/8/085004 PG 13 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 470BE UT WOS:000267945900005 ER PT J AU Vary, JP Popescu, S Stoica, S Navratil, P AF Vary, J. P. Popescu, S. Stoica, S. Navratil, P. TI A no-core shell model for Ca-48, Sc-48 and Ti-48 SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article ID MONTE-CARLO CALCULATIONS; DOUBLE-BETA DECAY; LIGHT-NUCLEI; OPERATOR APPROACH AB We report the first no-core shell model results for Ca-48, Sc-48 and Ti-48 with derived and modified two-body Hamiltonians. We use an oscillator basis with a limited (h) over bar Omega range around 45/A(1/3) - 25/A(2/3) = 10.5 MeV and a limited model space up to 1 (h) over bar Omega. No single- particle energies are used. We find that the charge dependence of the bulk binding energy of eight A = 48 nuclei is reasonably described with an effective Hamiltonian derived from the CD - Bonn interaction while there is an overall underbinding by about 0.4 MeV/nucleon. However, the resulting spectra exhibit deficiencies that are anticipated due to (1) basis space limitations and/or the absence of effective many-body interactions and (2) the absence of genuine three-nucleon interactions. We then introduce additive isospin-dependent central terms plus a tensor force to our Hamiltonian and achieve accurate binding energies and reasonable spectra for all three nuclei. The resulting no-core shell model opens a path for applications to the double-beta (beta beta) decay process. C1 [Vary, J. P.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Vary, J. P.; Navratil, P.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Popescu, S.; Stoica, S.] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest 76900, Romania. [Stoica, S.] Horia Hulubei Fdn, Magurele 077125, Romania. RP Vary, JP (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. FU USDOE [DE-FG-02 87ER40371]; Division of Nuclear Physics; NSF [INT0070789] FX We thank Vesselin Gueorguiev, Christian Forssen and Mihai Horoi for useful discussions. This work was partly performed under the auspices of the US Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract no. W7405- Eng- 48. This work was also supported in part by USDOE grant DE-FG-02 87ER40371, Division of Nuclear Physics. This work was also supported in part by NSF grant INT0070789. NR 61 TC 6 Z9 6 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD AUG PY 2009 VL 36 IS 8 AR 085103 DI 10.1088/0954-3899/36/8/085103 PG 16 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 470BE UT WOS:000267945900013 ER PT J AU Babic, B Gulicovski, J Gajic-Krstajic, L Elezovic, N Radmilovic, VR Krstajic, NV Vracar, LM AF Babic, B. Gulicovski, J. Gajic-Krstajic, Lj. Elezovic, N. Radmilovic, V. R. Krstajic, N. V. Vracar, Lj. M. TI Kinetic study of the hydrogen oxidation reaction on sub-stoichiometric titanium oxide-supported platinum electrocatalyst in acid solution SO JOURNAL OF POWER SOURCES LA English DT Article DE Titanium sub-oxide; Hydrogen oxidation reaction; Kinetic equation; Mechanism ID MEMBRANE FUEL-CELLS; PT-RU; EVOLUTION; ELECTRODE; CO; CARBON; H-2; ELECTROOXIDATION; SPECTROSCOPY; MIXTURES AB The kinetics and mechanism of the hydrogen oxidation reaction were studied in 0.5 mol dm(-3) HClO(4) solution on an electrode based on titanium oxide with Magneli phase structure-supported platinum electrocatalyst applied on rotation Au disk electrode. Pt catalyst was prepared by impregnation method from 2-propanol solution of Pt(NH(3))(2)(NO(2))(2) and sub-stoichiometric titanium oxide powder. Sub-stiochiometric titanium oxide Support was characterized by X-ray diffraction and BET techniques. The synthesized catalyst was analyzed by TEM technique. Based on Tafel-Heyrovsky-Volmer mechanism the corresponding kinetic equations were derived to describe the hydrogen oxidation current-potential behavior on RDE over the entire potential region. The polarization RIDE curves were fitted with derived polarization equations according to proposed model. The fitting shows that the HOR on Pt proceeds most likely via the Tafel-Volmer (TV) pathway in the lower potential region, while the Heyrovsky-Volmer (HV) pathway is operative in the higher potential region. It is pointed out that Tafel equation that has been frequently used for the kinetics analysis in the HOR, can not reproduce the polarization curves measured with high mass-transport rates. Polarization measurements on RDE revealed that the Pt catalyst deposited on titanium suboxide support showed equal specific activity for the HOR compared to conventional carbon-supported Pt fuel cell catalyst. (C) 2008 Elsevier B.V. All rights reserved. C1 [Krstajic, N. V.; Vracar, Lj. M.] Univ Belgrade, Fac Technol & Met, Belgrade, Serbia. [Babic, B.; Gulicovski, J.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Gajic-Krstajic, Lj.] Inst Tech Sci SASA, Belgrade, Serbia. [Elezovic, N.] Ctr Multidisciplinary Res, Belgrade, Serbia. [Radmilovic, V. R.] LBLN Univ Calif, Natl Ctr Electron Microscopy, Berkeley, CA USA. RP Krstajic, NV (reprint author), Univ Belgrade, Fac Technol & Met, Belgrade, Serbia. EM nedeljko@tmf.bg.ac.yu RI Gajic-Krstajic, Ljiljana/F-9983-2010 OI Gajic-Krstajic, Ljiljana/0000-0001-8996-7477 FU Ministry of Science and Technological Development, Republic of Serbia [142038]; US Department of Energy [DE-AC02-05CH11231] FX This work is financially supported by the Ministry of Science and Technological Development, Republic of Serbia, under contact no. 142038. V. Radmilovit acknowledges support by the US Department of Energy under contract #DE-AC02-05CH11231. NR 30 TC 11 Z9 11 U1 0 U2 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD AUG 1 PY 2009 VL 193 IS 1 BP 99 EP 106 DI 10.1016/j.jpowsour.2008.11.142 PG 8 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 465DG UT WOS:000267561400014 ER PT J AU Dadfarnia, M Somerday, BP Sofronis, P Robertson, IM Stalheim, D AF Dadfarnia, Mohsen Somerday, Brian P. Sofronis, Petros Robertson, Ian M. Stalheim, Douglas TI Interaction of Hydrogen Transport and Material Elastoplasticity in Pipeline Steels SO JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME LA English DT Article; Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition CY NOV 05-10, 2006 CL Chicago, IL SP ASME DE hydrogen embrittlement; diffusion; plasticity; low- or medium-strength steels; pipeline ID BLUNTING CRACK-TIP; NICKEL-BASE ALLOYS; VOID GROWTH; FRACTURE; MICROMECHANICS; EMBRITTLEMENT; PLASTICITY; DECOHESION; STRESS; METALS AB The technology of large scale hydrogen transmission from central production facilities to refueling stations and stationary power sites is at present undeveloped. Among the problems that confront the implementation of this technology is the deleterious effect of hydrogen on structural material properties, in particular, at gas pressures of the order of 15 MPa, which are the suggested magnitudes by economic studies for efficient transport. In order to understand the hydrogen embrittlement conditions of the pipeline materials, we simulate hydrogen diffusion through the surfaces of an axial crack on the internal wall of a vessel coupled with material deformation under plane strain small scale yielding conditions. The calculation of the hydrogen accumulation ahead of the crack tip accounts for stress-driven transient diffusion of hydrogen and trapping at microstructural defects whose density evolves dynamically with deformation. The results are analyzed to correlate for a given material system the time after which hydrogen transport takes place under steady state conditions with the level of load in terms of the applied stress intensity factor at the crack tip and the size of the domain used for the simulation of the diffusion. [DOI: 10.1115/1.3027497] C1 [Dadfarnia, Mohsen; Sofronis, Petros] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA. [Somerday, Brian P.] Sandia Natl Labs, Livermore, CA 94551 USA. [Robertson, Ian M.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Stalheim, Douglas] DGS Met Solut Inc, Vancouver, WA 98684 USA. RP Sofronis, P (reprint author), Univ Illinois, Dept Mech Sci & Engn, 1206 W Green St, Urbana, IL 61801 USA. EM sofronis@uiuc.edu OI Dadfarnia, Mohsen/0000-0002-5218-971X NR 32 TC 8 Z9 8 U1 4 U2 14 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0094-9930 J9 J PRESS VESS-T ASME JI J. Press. Vessel Technol.-Trans. ASME PD AUG PY 2009 VL 131 IS 4 AR 041404 DI 10.1115/1.3027497 PG 13 WC Engineering, Mechanical SC Engineering GA 470OE UT WOS:000267984200012 ER PT J AU Lam, PS Sindelar, RL Duncan, AJ Adams, TM AF Lam, P. S. Sindelar, R. L. Duncan, A. J. Adams, T. M. TI Literature Survey of Gaseous Hydrogen Effects on the Mechanical Properties of Carbon and Low Alloy Steels SO JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME LA English DT Article AB A compendium of mechanical properties of carbon and low alloy steels following hydrogen exposure has been assembled from literature sources. The property sets include yield strength, ultimate tensile strength, uniform elongation, reduction in area, threshold stress intensity factor, fracture toughness, and fatigue crack growth. These properties are from literature sources under a variety of test methods and conditions. The collection of literature data is by no means complete, but the diversity of data and dependency of results on test method are sufficient to warrant a design and implementation of a standardized test program. The program would be needed to enable a defensible demonstration of structural integrity of a pressurized hydrogen system. It is essential that the environmental variables be well-defined (e. g., the applicable hydrogen gas pressure range and the test strain rate) and the specimen preparation be realistically consistent (such as the techniques to charge hydrogen and to maintain the hydrogen concentration in the specimens). [DOI: 10.1115/1.3141435] C1 [Lam, P. S.; Sindelar, R. L.; Duncan, A. J.; Adams, T. M.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Lam, PS (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. NR 25 TC 8 Z9 8 U1 1 U2 8 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0094-9930 J9 J PRESS VESS-T ASME JI J. Press. Vessel Technol.-Trans. ASME PD AUG PY 2009 VL 131 IS 4 AR 041408 DI 10.1115/1.3141435 PG 14 WC Engineering, Mechanical SC Engineering GA 470OE UT WOS:000267984200016 ER PT J AU Lam, PS AF Lam, Poh-Sang TI Untitled SO JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME LA English DT Editorial Material C1 Savannah River Natl Lab, Aiken, SC USA. RP Lam, PS (reprint author), Savannah River Natl Lab, Aiken, SC USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0094-9930 J9 J PRESS VESS-T ASME JI J. Press. Vessel Technol.-Trans. ASME PD AUG PY 2009 VL 131 IS 4 AR 040301 PG 2 WC Engineering, Mechanical SC Engineering GA 470OE UT WOS:000267984200001 ER PT J AU Ren, WJ Swindeman, R AF Ren, Weiju Swindeman, Robert TI A Review on Current Status of Alloys 617 and 230 for Gen IV Nuclear Reactor Internals and Heat Exchangers SO JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME LA English DT Review ID CREEP; EMBRITTLEMENT; STEELS; MICROSTRUCTURE; INCONEL-617; BEHAVIOR; HELIUM AB Alloys 617 and 230 are currently identified as two leading candidate metallic materials in the down selection for applications at temperatures above 760 degrees C in the Gen IV nuclear reactor systems. Qualifying the materials requires significant information related to codification, mechanical behavior modeling, metallurgical stability, environmental resistance, and many other aspects. In the present paper, material requirements for the Gen IV nuclear reactor systems are discussed; available information regarding the two alloys for the intended applications are reviewed and analyzed; and further R&D activities are suggested. In the United States the major requirement for qualifying the materials is to satisfy the ASME Subsection NH, with adequate considerations for NRC, ASME NQA-1, and Section XI. In comparison, Alloy 617 is more studied with larger existing databases in air and helium, while Alloy 230 may have highly desired potentials but needs more exploration. To provide a sound technical basis for the material selection decision, more data should be generated to characterize behaviors of both alloys in creep, loading rate sensitivity, fatigue, creep-fatigue, crack resistance, toughness, product form dependency, and metallurgical stability. [DOI: 10.1115/1.3121522] C1 [Ren, Weiju] Oak Ridge Natl Lab, Met Sci & Technol Div, Oak Ridge, TN 37831 USA. [Swindeman, Robert] Cromtech, Oak Ridge, TN 37831 USA. RP Ren, WJ (reprint author), Oak Ridge Natl Lab, Met Sci & Technol Div, MS-6155,Bldg 4500-S, Oak Ridge, TN 37831 USA. EM renw@ornl.gov; rswindeman@comcast.net FU U.S. Department of Energy, Office of Nuclear Energy Science and Technology [DE-AC05-00OR22725]; Oak Ridge National Laboratory FX This work is sponsored by the U. S. Department of Energy, Office of Nuclear Energy Science and Technology under Contract No. DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed by UT-Battelle, LLC. NR 68 TC 16 Z9 16 U1 1 U2 22 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0094-9930 J9 J PRESS VESS-T ASME JI J. Press. Vessel Technol.-Trans. ASME PD AUG PY 2009 VL 131 IS 4 AR 044002 DI 10.1115/1.3121522 PG 15 WC Engineering, Mechanical SC Engineering GA 470OE UT WOS:000267984200020 ER PT J AU Heibeck, TH Ding, SJ Opresko, LK Zhao, R Schepmoes, AA Yang, F Tolmachev, AV Monroe, ME Camp, DG Smith, RD Wiley, HS Qian, WJ AF Heibeck, Tyler H. Ding, Shi-Jian Opresko, Lee K. Zhao, Rui Schepmoes, Athena A. Yang, Feng Tolmachev, Aleksey V. Monroe, Matthew E. Camp, David G., II Smith, Richard D. Wiley, H. Steven Qian, Wei-Jun TI An Extensive Survey of Tyrosine Phosphorylation Revealing New Sites in Human Mammary Epithelial Cells SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE LC-MS/MS; phosphotyrosine; phosphoproteomics; HMEC; phosphorylation; immunoprecipitation ID TANDEM MASS-SPECTROMETRY; GROWTH-FACTOR RECEPTOR; FOCAL ADHESION KINASE; PROTEIN-PHOSPHORYLATION; SIGNAL-TRANSDUCTION; DOCKING PROTEIN; CANCER-CELLS; PATHWAY; NETWORKS; INTEGRIN AB Protein tyrosine phosphorylation represents a central regulatory mechanism in cell signaling. Here, we present an extensive survey of tyrosine phosphorylation sites in a normal-derived human mammary epithelial cell (HMEC) line by applying antiphosphotyrosine peptide immunoaffinity purification coupled with high sensitivity capillary liquid chromatography tandem mass spectrometry. A total of 481 tyrosine phosphorylation sites (covered by 716 unique peptides) from 285 proteins were confidently identified in HMEC following the analysis of both the basal condition and acute stimulation with epidermal growth factor (EGF). The estimated false discovery rate was 1.0% as determined by searching against a scrambled database. Comparison of these data with existing literature showed significant agreement for previously reported sites. However, we observed 281 sites that were not previously reported for HMEC cultures and 29 of which have not been reported for any human cell or tissue system. The analysis showed that a majority of highly phosphorylated proteins were relatively low-abundance. Large differences in phosphorylation stoichiometry for sites within the same protein were also observed, raising the possibility of more important functional roles for such highly phosphorylated pTyr sites. By mapping to major signaling networks, such as the EGF receptor and insulin growth factor-1 receptor signaling pathways, many known proteins involved in these pathways were revealed to be tyrosine phosphorylated, which provides interesting targets for future hypothesis-driven and targeted quantitative studies involving tyrosine phosphorylation in HMEC or other human systems. C1 [Qian, Wei-Jun] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Qian, WJ (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999,MSIN K8-98, Richland, WA 99352 USA. EM weijun.qian@pnl.gov RI Qian, Weijun/C-6167-2011; Smith, Richard/J-3664-2012; OI Smith, Richard/0000-0002-2381-2349; Wiley, Steven/0000-0003-0232-6867 FU Pacific Northwest National Laboratory Biomolecular Systems Initiative LDRD program; NIH [R01 DK074795, RR018522]; Environmental Molecular Science Laboratory; U.S. Department of Energy (DOE) [DE-AC05-76RLO-1830] FX This work was supported in part by the Pacific Northwest National Laboratory Biomolecular Systems Initiative LDRD program, NIH R01 DK074795, the NIH National Center for Research Resources RR018522, and the Environmental Molecular Science Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy (DOE) Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle Memorial Institute for the DOE under Contract No. DE-AC05-76RLO-1830. NR 60 TC 38 Z9 85 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 EI 1535-3907 J9 J PROTEOME RES JI J. Proteome Res. PD AUG PY 2009 VL 8 IS 8 BP 3852 EP 3861 DI 10.1021/pr900044c PG 10 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 479LV UT WOS:000268661800008 PM 19534553 ER PT J AU Zangar, RC Daly, DS White, AM Servoss, SL Tan, RM Collett, JR AF Zangar, R. C. Daly, D. S. White, A. M. Servoss, S. L. Tan, R. M. Collett, J. R. TI ProMAT Calibrator: A Tool for Reducing Experimental Bias in Antibody Microarrays SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE bioinformatics; antibody array; calibration; ProMAT; microarray; GFP ID PROTEIN; ELISA; VALIDATION AB Our research group has been developing enzyme-linked immunosorbent assays (ELISA) microarray technology for the rapid and quantitative evaluation of biomarker panels. Studies using antibody microarrays are susceptible to systematic bias from the various steps in the experimental process, and these biases can mask biologically significant differences. For this reason, we have developed a calibration system that can identify and reduce systematic bias due to processing factors. Specifically, we developed a sandwich ELISA for green fluorescent protein (GFP) that is included on each chip. The GFP antigen is spiked into each biological sample or standard mixture and the resulting signal is used for calibration between chips. We developed ProMAT Calibrator, an open-source bioinformatics tool, for the rapid visualization and interpretation of the calibrator data and, if desired, data normalization. We demonstrate that data normalization using this system markedly reduces bias from processing factors. Equally useful, this calibrator system can help reveal the source of the bias, thereby facilitating the elimination of the underlying problem. ProMAT Calibrator can be downloaded at http://www.pnl.gov/statistics/ProMAT. C1 [Zangar, R. C.; Daly, D. S.; White, A. M.; Servoss, S. L.; Tan, R. M.; Collett, J. R.] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Zangar, RC (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM richard.zangar@pnl.gov FU National Cancer institute [U01 CA117378]; National Institute of Biomedical Imaging and Bioengineering [R01 EB006177] FX This work was supported by the National Cancer institute by grant U01 CA117378 and the National Institute of Biomedical Imaging and Bioengineering by grant R01 EB006177. NR 10 TC 13 Z9 13 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 J9 J PROTEOME RES JI J. Proteome Res. PD AUG PY 2009 VL 8 IS 8 BP 3937 EP 3943 DI 10.1021/pr900247n PG 7 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 479LV UT WOS:000268661800016 PM 19618941 ER PT J AU Bell, NS Tallant, DR AF Bell, Nelson S. Tallant, D. R. TI Ripening and growth of zinc oxide nanorods from nanoparticles in 1,4 butanediol solvent SO JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY LA English DT Article DE Zinc oxide; Ripening; Glycol; Nanoparticle; Nanorod ID SOL-GEL PROCESS; ZNO NANOPARTICLES; SEMICONDUCTOR CLUSTERS; HYDROTHERMAL SYNTHESIS; NANOSTRUCTURED ZNO; POLYOL MEDIUM; METAL-OXIDES; NANOCRYSTALS; PARTICLES; KINETICS AB Zinc oxide nanorod formation in 1,4-butanediol was studied as a function of time and temperature using TEM and UV-Vis absorption spectra. Nanorod morphologies are formed by annealing of dilute nanodots, initially formed by sol-gel reaction in 1,4-butanediol. The nanorod morphology is unusual in the termination of the c-axis facets, with one end perpendicular to the a facets (flat) and the other faceted into a six-sided point. Ripening of nanodots proceeds via the Lifshitz-Slyozov-Wagner model of diffusion limited coarsening, and annealing at elevated temperature leads a transition to nanorod morphologies. Nanoparticle dissolution and shape development affect the axial ratio of the growing nanorods. Evidence of oriented attachment was not observed in the ripening study. The use of 1,4-butanediol allows for higher temperature reaction than in alcohols, without the use of pressure vessels. C1 [Bell, Nelson S.; Tallant, D. R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Bell, NS (reprint author), Sandia Natl Labs, POB 5800-1411, Albuquerque, NM 87185 USA. EM nsbell@sandia.gov FU United States Department of Energy National Nuclear Security Administration [DE-AX04-934AL85000]; Sandia National Laboratories LDRD program FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company for the United States Department of Energy National Nuclear Security Administration under contract DE-AX04-934AL85000. Funding for this work was provided by Sandia National Laboratories LDRD program. Thanks go to Tom Headley and Ping Lu for TEM images, and to Jeff Schroeder for measurement of particle dimensions. NR 48 TC 11 Z9 11 U1 4 U2 9 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0928-0707 J9 J SOL-GEL SCI TECHN JI J. Sol-Gel Sci. Technol. PD AUG PY 2009 VL 51 IS 2 BP 158 EP 168 DI 10.1007/s10971-009-1967-5 PG 11 WC Materials Science, Ceramics SC Materials Science GA 462PE UT WOS:000267367300005 ER PT J AU Evans, MJ Lee, MH Holland, GP Daemen, LL Sankey, OF Haussermann, U AF Evans, Michael J. Lee, Myeong H. Holland, Gregory P. Daemen, Luke L. Sankey, Otto F. Haeussermann, Ulrich TI Vibrational properties of the gallium monohydrides SrGaGeH, BaGaSiH, BaGaGeH, and BaGaSnH SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Metal hydrides; INS spectroscopy; Zintl phases ID INELASTIC NEUTRON-SCATTERING; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; POLYANIONIC HYDRIDES; CRYSTAL-STRUCTURE; RAMAN-SCATTERING; METALS; HYDROGEN; SPECTRA; SRALSIH AB Vibrational properties of the gallium monohydrides SrGaGeH, BaGaSiH, BaGaGeH, and BaGaSnH (AeGaTtH) have been investigated by means of inelastic neutron scattering (INS) and first principles calculations. The compounds contain separated Ga-H units being part of a two dimensional polyanionic layer, [TtGaH](2)-(Tt = Si, Ge, Sn). The INS spectra show internal Ga-H bending and stretching modes at frequencies around 900 and 1200cm(-1), respectively. While the stretching mode is virtually invariant with respect to the variable chemical environment of the Ga-H unit, the bending mode frequency varies and is highest for BaGaSiH and lowest for BaGaSnH. The stretching mode is a direct measure of the Ga-H bond strength, whereas the bending mode reflects indirectly the strength of alkaline earth metal-hydrogen interaction. Accordingly, the terminal Ga-H bond in solid state AeGaTtH is distinct, but-compared to molecular gallium hydrides-very weak. (C) 2009 Elsevier Inc. All rights reserved. C1 [Evans, Michael J.; Holland, Gregory P.; Haeussermann, Ulrich] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. [Lee, Myeong H.; Sankey, Otto F.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. [Daemen, Luke L.] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. RP Haussermann, U (reprint author), Arizona State Univ, Dept Chem & Biochem, POB 871604, Tempe, AZ 85287 USA. EM Ulrich.Haussermann@asu.edu RI Lee, Myeong/F-7932-2010; Lujan Center, LANL/G-4896-2012 FU National Science Foundation [DMR-0638826]; Department of Energy's Office of Basic Energy Sciences; DOE [DE-AC52-06NA25396, DE-FG02-05ER46235] FX This work has been supported by National Science Foundation Grant DMR-0638826 and has made use of the Manuel Lujan, Jr. Neutron Scattering Center at Los Alamos National Laboratory, which is funded by the Department of Energy's Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, under DOE Contract DE-AC52-06NA25396. Additionally, the ASU Magnetic Resonance Research Center and partial support from DOE through Grant DE-FG02-05ER46235 are acknowledged. NR 35 TC 9 Z9 9 U1 1 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 J9 J SOLID STATE CHEM JI J. Solid State Chem. PD AUG PY 2009 VL 182 IS 8 BP 2068 EP 2073 DI 10.1016/j.jssc.2009.05.023 PG 6 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 484SA UT WOS:000269066400012 ER PT J AU Salvador, JR Yang, J Shi, X Wang, H Wereszczak, AA AF Salvador, James R. Yang, J. Shi, X. Wang, H. Wereszczak, A. A. TI Transport and mechanical property evaluation of (AgSbTe)(1-x)(GeTe)(x) (x=0.80, 0.82, 0.85, 0.87, 0.90) SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Thermoelectrics; Powder processing; Transport measurements; Mechanical properties; Chalcogenides ID THERMOELECTRIC-MATERIALS; FIGURE; MERIT; AGPBMSBTE2+M; CONVERSION; GETE AB (AgSbTe2)(1-x)(GeTe)(x) (known collectively by the acronym of their constituent elements as TAGS-x, where x designates the mole fraction of GeTe) materials, despite being described over 40 years ago, have only recently been studied in greater detail from a fundamental standpoint. We have prepared a series of samples with composition (AgSbTe2)(1-x)(GeTe)(x) (x = 0.80, 0.82. 0.85, 0.87 and 0.90). Cast ingots of the above compositions were ground and consolidated by spark plasma sintering (SPS). Sintering conditions, specifically high applied pressures of 65 MPa and slow heating rates, were identified as important variables that lead to samples with low porosity and good mechanical strength. The resulting ingots were cut for high temperature electrical, thermal transport and mechanical property evaluation. TAGS-85 was found to have the highest ZT of all samples investigated (ZT = 1.36 at 700 K) as a result of its very low value of thermal conductivity. Hall effect measurements performed from 5 to 300 K found these materials to have complex multi-band transport characteristics. (C) 2009 Elsevier Inc. All rights reserved. C1 [Salvador, James R.; Yang, J.] GM R&D Ctr, Mat & Proc Lab, Warren, MI 48090 USA. [Shi, X.] Optimal Inc, Plymouth Township, MI 48170 USA. [Wang, H.; Wereszczak, A. A.] Oak Ridge Natl Lab, High Temp Mat Lab, Oak Ridge, TN 37831 USA. RP Salvador, JR (reprint author), GM R&D Ctr, Mat & Proc Lab, Warren, MI 48090 USA. EM james.salvador@gm.cm RI Yang, Jihui/A-3109-2009; shi, xun/B-4499-2009; Wang, Hsin/A-1942-2013; Wereszczak, Andrew/I-7310-2016 OI shi, xun/0000-0002-3806-0303; Wang, Hsin/0000-0003-2426-9867; Wereszczak, Andrew/0000-0002-8344-092X FU Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Transportation Technologies [DE-FC26-04NT42278]; Department of Energy [DEAC05000OR22725] FX J.R.S., X.S. and J.Y. would like to thank Drs. J.F. Herbst and M.W. Verbrugge for their continued support and encouragement. The work is supported by GM and by DOE under corporate agreement DE-FC26-04NT42278, by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Transportation Technologies as part of the High Temperature Materials Laboratory User Program at Oak Ridge National Laboratory managed by the UT-Battelle LLC, for the Department of Energy under contract DEAC05000OR22725. NR 30 TC 38 Z9 39 U1 5 U2 51 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 J9 J SOLID STATE CHEM JI J. Solid State Chem. PD AUG PY 2009 VL 182 IS 8 BP 2088 EP 2095 DI 10.1016/j.jssc.2009.05.024 PG 8 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 484SA UT WOS:000269066400015 ER PT J AU McGuire, MA Singh, DJ Sefat, AS Sales, BC Mandrus, D AF McGuire, Michael A. Singh, David J. Sefat, Athena S. Sales, Brian C. Mandrus, David TI Suppression of spin density wave by isoelectronic substitution in PrFe1-xRuxAsO SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Iron arsenide; Oxypnictide; Spin density wave; Superconductivity; PrFeAsO; FeAs; 1111 ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; CRYSTAL-STRUCTURE; STRUCTURAL DATA; PHASE-DIAGRAM; EARTH; METAL AB We have studied the effects of the isoelectronic substitution of Ru for Fe in polycrystalline samples of the spin density wave (SDW) material PrFeAsO. Crystal structures from powder X-ray diffraction at room temperature and transport properties from 2 to 300K are reported. The SDW is completely suppressed upon Ru substitution. The distortion of the tetrahedral coordination environment of the transition metal site increases as the Ru concentration increases, which may be related to the absence of superconductivity above 2 K. Band structure calculations show that the larger size of Ru 4d orbitals is primarily responsible for the suppression of magnetism as Ru is substituted into the Fe layer. The experimental results indicate that long-ranged magnetic order of Pr moments is suppressed at Ru concentrations as low as 10%. (C) 2009 Elsevier Inc. All rights reserved. C1 [McGuire, Michael A.; Singh, David J.; Sefat, Athena S.; Sales, Brian C.; Mandrus, David] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP McGuire, MA (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM McGuireMA@ornl.gov RI McGuire, Michael/B-5453-2009; Singh, David/I-2416-2012; Mandrus, David/H-3090-2014; Sefat, Athena/R-5457-2016 OI McGuire, Michael/0000-0003-1762-9406; Sefat, Athena/0000-0002-5596-3504 FU U.S. DOE [DE-AC05-00OR22725] FX Research sponsored by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences. Part of this research performed by Eugene P. Wigner Fellows at ORNL, managed by UT-Battelle, LLC, for the U.S. DOE under Contract DE-AC05-00OR22725. NR 36 TC 33 Z9 33 U1 0 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 J9 J SOLID STATE CHEM JI J. Solid State Chem. PD AUG PY 2009 VL 182 IS 8 BP 2326 EP 2331 DI 10.1016/j.jssc.2009.06.011 PG 6 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 484SA UT WOS:000269066400049 ER PT J AU Ramey, VH Wang, HW Nogales, E AF Ramey, Vincent H. Wang, Hong-Wei Nogales, Eva TI Ab initio reconstruction of helical samples with heterogeneity, disorder and coexisting symmetries SO JOURNAL OF STRUCTURAL BIOLOGY LA English DT Article DE Single particle reconstruction; Helical structures; Dam1 complex; Heterogeneity ID KINETOCHORE-MICROTUBULE INTERFACE; YEAST DASH COMPLEX; ELECTRON-MICROSCOPY; RING COMPLEX; F-ACTIN; FLAGELLAR FILAMENT; IMAGES; RESOLUTION; CRYOMICROSCOPY; MICROGRAPHS AB We describe modifications of the single particle helical reconstruction approach devised for the analysis of a sample that could not be processed with existing methods due to its variable and short range helical order. The added steps of reference-free two-dimensional image classification and alignment, and automated microtubule removal from images, have particular application to proteins or protein complexes that assemble around microtubules. The method was successfully applied to the Dam1 complex, an essential component of the yeast kinetochore that couples replicated chromosomes to spindle microtubules during mitosis. Because of its novel mode of binding, which does not involve a footprint on the microtubule lattice, new steps to deal with the disorder and heterogeneity of the Dam1 complex assembly were required to gain structural information about this complex both routinely and efficiently. (C) 2009 Elsevier Inc. All rights reserved. C1 [Nogales, Eva] Univ Calif Berkeley, Howard Hughes Med Inst, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Wang, Hong-Wei] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06520 USA. [Wang, Hong-Wei; Nogales, Eva] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA USA. [Ramey, Vincent H.] Univ Calif Berkeley, Biophys Grad Program, Berkeley, CA 94720 USA. RP Nogales, E (reprint author), Univ Calif Berkeley, Howard Hughes Med Inst, Dept Mol & Cell Biol, 708C Stanley Hall,QB3, Berkeley, CA 94720 USA. EM enogales@lbl.gov FU US National Institutes of Health; National Institute of General Medical Sciences of the US National Institutes of Health; Biomedicine chair from the BBVA Foundation FX We thank Patricia Grob for her useful discussions of helical symmetry, Niko Grigorieff for extremely valuable suggestions and experience, Edward Egelman for generously supplying his programs, and Andres Leschziner for a wealth of useful image processing scripts. We are thankful to Georjana Barnes, David Drubin and Stefan Westermann for our ongoing collaboration on the Dam1 complex studies. This work was supported by training grants from the US National Institutes of Health, as well as by a grant from the National Institute of General Medical Sciences of the US National Institutes of Health and by a Biomedicine chair from the BBVA Foundation to E.N. E.N is a Howard Hughes Medical Institute Investigator. NR 42 TC 10 Z9 11 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1047-8477 J9 J STRUCT BIOL JI J. Struct. Biol. PD AUG PY 2009 VL 167 IS 2 BP 97 EP 105 DI 10.1016/j.jsb.2009.05.002 PG 9 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 473HG UT WOS:000268196300001 PM 19447181 ER PT J AU Pereira, JH Kim, SH AF Pereira, Jose Henrique Kim, Sung-Hou TI Structure of human Brn-5 transcription factor in complex with CRH gene promoter SO JOURNAL OF STRUCTURAL BIOLOGY LA English DT Article DE Transcription factors; Brn-5 protein; POU family; Protein-DNA complex; Crystal structure ID OCT-1 POU DOMAIN; DNA-BINDING SPECIFICITY; CRYSTAL-STRUCTURE; RECOGNITION; FLEXIBILITY; PROTEINS; DIFFRACTION; VERSATILITY; SUBDOMAINS; MUTATIONS AB The Brn-5 protein, highly expressed in human brain, belongs to the POU family; a class of transcription factors involved in a wide variety of biological processes ranging from programming of embryonic stem cells to cellular housekeeping. This functional diversity is conferred by two DNA-binding subdomains that can assume several configurations due to a bipartite arrangement of POU-specific (POUS) and POU-homeo (POU(H)) subdomains separated by a linker region. The crystal structure of human Brn-5 transcription factor in complex with corticotrophin-releasing hormone (CRH) gene promoter reveals an unexpected recognition mode of the protein to its cognate DNA. Moreover, the structure also shows the role of the linker in allowing diverse configurations that can be assumed by the two subdomains. (C) 2009 Elsevier Inc. All rights reserved. C1 [Kim, Sung-Hou] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Kim, SH (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM shkim@cchem.berkeley.edu FU U.S. National Institutes of Health [GM62412]; National Research Council of Brazil (CNPq) [200969/2005-6]; Korea Science and Engineering Foundation [M1064102000106N410200110]; Korean Research Foundation [KRF-2008-220-C00040]; Korean Ministry of Education, Science, and Technology [R31-2008-000-10086-0, SC-3300] FX We are grateful to Dr. Ursula Schulze-Gahmen for purification information, Sharleen Zhou for N-terminal sequencing of Brn-5, and Drs. Kyeong Kyu Kim and Rosalind Kim for their advice, and to the staff at the Advanced Light Source of Lawrence Berkeley National Laboratory. This work was supported by grants from the U.S. National Institutes of Health (GM62412), the National Research Council of Brazil (CNPq) (200969/2005-6), the Korea Science and Engineering Foundation (M1064102000106N410200110), a Korean Research Foundation (KRF-2008-220-C00040), and the Korean Ministry of Education, Science, and Technology (R31-2008-000-10086-0 and SC-3300 from Stem Cell Research Center). NR 31 TC 3 Z9 3 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1047-8477 J9 J STRUCT BIOL JI J. Struct. Biol. PD AUG PY 2009 VL 167 IS 2 BP 159 EP 165 DI 10.1016/j.jsb.2009.05.003 PG 7 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 473HG UT WOS:000268196300008 PM 19450691 ER PT J AU Alkhatib, MH Hayes, DG Urban, VS AF Alkhatib, Mayson H. Hayes, Douglas G. Urban, Volker S. TI Characterization of Microemulsion Systems Formed by a Mixed 1,3-Dioxolane Ethoxylate/Octyl Glucoside Surfactant System SO JOURNAL OF SURFACTANTS AND DETERGENTS LA English DT Article DE Microemulsions; Acid-cleavable surfactant; Glucoside surfactant; Mixed surfactant systems; Nonionic surfactant mixture; Phase diagrams; Small-angle neutron scattering ID ALKYL POLYGLUCOSIDE MICROEMULSIONS; ANGLE NEUTRON-SCATTERING; OCTYL MONOGLUCOSIDE; PHASE-BEHAVIOR; NONIONIC SURFACTANTS; MICROSTRUCTURE; SOLUBILIZATION; GERANIOL; OIL AB The phase behavior of microemulsion systems containing water (or 1.0 wt% NaCl(aq)), isooctane, and the binary surfactant system consisting of n-octyl-beta-D-glucopyranoside, C(8)beta G(1), and the acid-cleavable alkyl ethoxylate, 4-CH(3)O (CH(2)CH(2)O)(7.2), 2-(CH(2))(12)CH(3), 2-(CH(2))CH(3), 1,3-dioxolane, or "cyclic ketal" ("CK-2,13"), was determined. Large temperature-insensitive one, two, and three-phase microemulsion-phase regions were obtained when equal masses of the two surfactants were employed, suggesting that C(8)beta G(1) reduces the temperature sensitivity of CK-2,13's ethoxylate group. Addition of C(8)beta G(1) to CK-2,13 greatly improves the latter's low efficiency, evidenced by the formation of a three-phase microemulsion system for surfactant concentrations at low fractions of total surfactants for systems with equal mass ratios of water to oil and CK-2,13 to C(8)beta G(1). Analysis of the phase diagrams also suggests that CK-2,13 and C(8)beta G(1) impart hydrophobic and hydrophilic character, respectively, to the surfactant mixture, and that addition of salt further increases the hydrophilicity of C(8)beta G(1), presumably because of the salting-in of the latter. Analysis of small-angle neutron scattering data revealed that the mixed surfactant system formed spherical oil-in-water microemulsions, and that increasing the CK-2,13 fraction among the surfactants reduced the critical microemulsion concentration but slightly increased the nanodroplet size. C1 [Hayes, Douglas G.] Univ Tennessee, Dept Biosyst Engn & Soil Sci, Knoxville, TN 37996 USA. [Alkhatib, Mayson H.] Univ Alabama, Biotechnol Sci & Engn Program, Huntsville, AL 35899 USA. [Hayes, Douglas G.] Univ Alabama, Dept Chem & Mat Engn, Huntsville, AL 35899 USA. [Urban, Volker S.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Hayes, DG (reprint author), Univ Tennessee, Dept Biosyst Engn & Soil Sci, 2506 EJ Chapman Dr, Knoxville, TN 37996 USA. EM dhayes1@utk.edu RI Alkhatib, Mayson/I-1325-2012; Urban, Volker/N-5361-2015 OI Alkhatib, Mayson/0000-0002-3729-5303; Urban, Volker/0000-0002-7962-3408 FU National Science Foundation [BES-0437507]; Office of Biological and Environmental Research; US Department of Energy [DE-AC05-00OR22725] FX This work was supported by National Science Foundation grant BES-0437507. The research work performed at Oak Ridge National Laboratory's Center for Structural Molecular Biology ( CSMB) was supported by the Office of Biological and Environmental Research, using facilities supported by the US Department of Energy, managed by UT-Battelle, LLC under contract No. DE-AC05-00OR22725. NR 31 TC 5 Z9 5 U1 0 U2 5 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1097-3958 J9 J SURFACTANTS DETERG JI J. Surfactants Deterg. PD AUG PY 2009 VL 12 IS 3 BP 277 EP 283 DI 10.1007/s11743-009-1122-x PG 7 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 457KG UT WOS:000266926300012 ER PT J AU Balke, N Bdikin, I Kalinin, SV Kholkin, AL AF Balke, Nina Bdikin, Igor Kalinin, Sergei V. Kholkin, Andrei L. TI Electromechanical Imaging and Spectroscopy of Ferroelectric and Piezoelectric Materials: State of the Art and Prospects for the Future SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Review ID SCANNING FORCE MICROSCOPY; LEAD-ZIRCONATE-TITANATE; NONLINEAR DIELECTRIC MICROSCOPY; PBZRXTI1-XO3 THIN-FILMS; PROBE MICROSCOPY; SINGLE-CRYSTALS; PHASE-TRANSITION; BATIO3 CERAMICS; RELAXOR FERROELECTRICS; POLARIZATION FATIGUE AB Piezoresponse force microscopy (PFM) has emerged as a powerful and versatile tool for probing nanoscale phenomena in ferroelectric materials on the nanometer and micrometer scales. In this review, we summarize the fundamentals and recent advances in PFM, and describe the nanoscale electromechanical properties of several important ferroelectric ceramic materials widely used in memory and microelectromechanical systems applications. Probing static and dynamic polarization behavior of individual grains in PZT films and ceramics is discussed. Switching spectroscopy PFM is introduced as a useful tool for studying defects and interfaces in ceramic materials. The results on local switching and domain pinning behavior, as well as nanoscale fatigue and imprint mapping are presented. Probing domain structures and polarization dynamics in polycrystalline relaxors (PMN-PT, PLZT, doped BaTiO3) are briefly outlined. Finally, applications of PFM to dimensionally confined ferroelectrics are demonstrated. The potential of PFM for studying local electromechanical phenomena in polycrystalline ferroelectrics where defects and other inhomogeneities are essential for the interpretation of their macroscopic properties is illustrated. C1 [Kholkin, Andrei L.] Univ Aveiro, Dept Ceram & Glass Engn, P-3810193 Aveiro, Portugal. [Kholkin, Andrei L.] Univ Aveiro, CICECO, P-3810193 Aveiro, Portugal. [Balke, Nina; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Bdikin, Igor] Univ Aveiro, Dept Mech Engn, P-3810193 Aveiro, Portugal. [Bdikin, Igor] Univ Aveiro, TEMA, P-3810193 Aveiro, Portugal. RP Kholkin, AL (reprint author), Univ Aveiro, Dept Ceram & Glass Engn, P-3810193 Aveiro, Portugal. EM kholkin@ua.pt RI Kholkin, Andrei/G-5834-2010; Kalinin, Sergei/I-9096-2012; Bdikin, Igor/J-4898-2013; Research Unit, TEMA/H-9264-2012; Division, Nanotechnology/O-2342-2013; Balke, Nina/Q-2505-2015 OI Kholkin, Andrei/0000-0003-3432-7610; Kalinin, Sergei/0000-0001-5354-6152; Bdikin, Igor/0000-0001-6318-1425; Balke, Nina/0000-0001-5865-5892 FU Division of scientific user facilities, US DOE; Humboldt foundation; Portuguese Foundation for Science and Technology (FCT); EU [NMP3-CT-2006-032616]; [PTDC/FIS/81442/2006] FX The work is supported in part (S. V. K.) by Division of scientific user facilities, US DOE. N. B. acknowledges continuous support of Humboldt foundation. Portuguese Foundation for Science and Technology (FCT) is acknowledged for the financial support via the FCT project PTDC/FIS/81442/2006. Thanks are also due to EU funded project "Multiceral" (NMP3-CT-2006-032616). NR 251 TC 156 Z9 156 U1 23 U2 270 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 EI 1551-2916 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD AUG PY 2009 VL 92 IS 8 BP 1629 EP 1647 DI 10.1111/j.1551-2916.2009.03240.x PG 19 WC Materials Science, Ceramics SC Materials Science GA 480AS UT WOS:000268704600001 ER PT J AU McCarthy, BP Pederson, LR Williford, RE Zhou, XD AF McCarthy, Benjamin P. Pederson, Larry R. Williford, Ralph E. Zhou, Xiao-Dong TI Low-Temperature Densification of Lanthanum Strontium Manganite (La1-xSrxMnO3+delta), x=0.0-0.20 SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID OXIDE FUEL-CELLS; OXYGEN TRACER DIFFUSION; OXIDATION-REDUCTION BEHAVIOR; SR-DOPED LAMNO3; DEFECT CHEMISTRY; SHRINKAGE BEHAVIOR; MASS-TRANSPORT; PEROVSKITES; NONSTOICHIOMETRY; SIMS AB Intermediate-stage sintering of lanthanum strontium manganite (LSM, where Sr=0.00, 0.05, 0.10, 0.15, and 0.20) was shown in dilatometry studies to be accelerated when subjected to alternating flows of air and nitrogen. The extent of rate enhancement decreased with increased Sr content, and decreased with increased temperature, which coincides with diminished oxygen nonstoichiometry. Shrinkage rates were further shown to be sensitive to the difference in oxygen content in the alternating gas flows. Baseline air sintering rates were measured using stepwise isothermal dilatometry, from which kinetic parameters were calculated using the Makipirtti-Meng model. Activation energies for sintering in air were determined to be 255 +/- 26, 258 +/- 28, 308 +/- 32, 373 +/- 37, and 417 +/- 41 kJ/mol for Sr=0.0, 0.05, 0.10, 0.15, and 0.20, respectively. A diffusion-based model is proposed that is consistent with trends in accelerated shrinkage versus temperature. Transient cation vacancy gradients, which lead to higher cation mobility, were calculated from established oxygen diffusivities and oxygen nonstoichiometry as a function of temperature and time. A potential application of this approach is the processing of LSM-based cathode-side contact pastes in solid oxide fuel cells. C1 [McCarthy, Benjamin P.; Pederson, Larry R.; Williford, Ralph E.; Zhou, Xiao-Dong] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. RP Pederson, LR (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. EM larry.pederson@pnl.gov FU U.S. Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory under the Solid State Energy Conversion Alliance (SECA) Coal-Based Systems program; U.S. Department of Energy [AC06 76RLO 1830] FX The authors gratefully acknowledge support from the U.S. Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory under the Solid State Energy Conversion Alliance (SECA) Coal-Based Systems program (Dr. Paul Tortora, contract manager), and helpful discussions with B. J. Koeppel, P. Singh, E. V. Stephens, and J. W. Stevenson. Pacific Northwest National Laboratory (PNNL) is operated by Battelle for the U.S. Department of Energy under Contract AC06 76RLO 1830. NR 52 TC 6 Z9 7 U1 5 U2 18 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD AUG PY 2009 VL 92 IS 8 BP 1672 EP 1678 DI 10.1111/j.1551-2916.2009.03082.x PG 7 WC Materials Science, Ceramics SC Materials Science GA 480AS UT WOS:000268704600005 ER PT J AU McCloy, JS Korenstein, R Zelinski, B AF McCloy, John S. Korenstein, Ralph Zelinski, Brian TI Effects of Temperature, Pressure, and Metal Promoter on the Recrystallized Structure and Optical Transmission of Chemical Vapor Deposited Zinc Sulfide SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID SCANNING ELECTRON-MICROSCOPE; POLYCRYSTALLINE CVD ZNS; STACKING-FAULTS; GRAIN-GROWTH; CRYSTALS; TRANSFORMATION; EQUILIBRIA; DIFFUSION; NANOBELTS; DEFECTS AB Structural changes from processing in polytype-rich zinc sulfide (ZnS) are complex and poorly understood. In this study, recrystallization was induced in chemical vapor deposited ZnS by annealing and hot isostatic pressing (HIPping). Samples were characterized using optical microscopy, SEM, TEM, electron diffraction, polycrystalline and powder X-ray diffraction, and transmission spectroscopy. Recrystallization was found to reduce the hexagonality and increase the {111} texture of as-deposited ZnS. Changes in hexagonality and texture can occur independently of each other. HIPped ZnS with superior transmission exhibits both a change in texture and a reduction in hexagonal content. Reduction in hexagonality, alone, was not sufficient to improve optical transmission from the visible to the infrared. For the first time, the effects of pressure, temperature, and the presence of platinum on recrystallization during commercial ZnS HIPping are separated and identified. Platinum was found to actively promote recrystallization and silver demonstrated a similar effect. Several theories focusing on the unique polytypic nature of ZnS are offered to explain the changes in structure and properties occurring during recrystallization. These findings contribute to a broader understanding of the nature of order-disorder and martensitic phase transformations in ceramic materials. C1 Raytheon Co, Andover, MA 02139 USA. Raytheon Co, Tucson, AZ 85706 USA. RP McCloy, JS (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM john.mccloy@pnl.gov RI McCloy, John/D-3630-2013 OI McCloy, John/0000-0001-7476-7771 NR 55 TC 21 Z9 22 U1 2 U2 19 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD AUG PY 2009 VL 92 IS 8 BP 1725 EP 1731 DI 10.1111/j.1551-2916.2009.03123.x PG 7 WC Materials Science, Ceramics SC Materials Science GA 480AS UT WOS:000268704600014 ER PT J AU Wereszczak, AA Johanns, KE Jadaan, OM AF Wereszczak, Andrew A. Johanns, Kurt E. Jadaan, Osama M. TI Hertzian Ring Crack Initiation in Hot-Pressed Silicon Carbides SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID BRITTLE MATERIALS; FRACTURE; INDENTATION; INDENTERS; NITRIDE; DAMAGE; GLASS AB The use of Hertzian indentation to measure ring crack initiation force (RCIF) distributions in four hot-pressed silicon carbide (SiC) ceramics is described. Three diamond indenter diameters were used with each SiC; the RCIF in each test was identified with the aid of an acoustic emission system; and two-parameter Weibull RCIF distributions were determined for all 12 combinations. RCIF testing was found to be an effective discriminator of contact damage initiation and response. It consistently produced the same ranking of RCIF between the four SiCs, with all three different indenter diameters, which is noteworthy because Knoop hardness and fracture toughness measurements were only subtly different or equivalent for the four SiCs. However, because RCIF, like hardness, is a characteristic response of a target material to an applied indentation condition (e.g., a function of indenter diameter) and not a material property, the implications and possible limitations should be acknowledged when using RCIF to discriminate the target material response. C1 [Wereszczak, Andrew A.; Johanns, Kurt E.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Jadaan, Osama M.] Univ Wisconsin Platteville, Coll Engn Math & Sci, Platteville, WI 53818 USA. RP Wereszczak, AA (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM wereszczakaa@ornl.gov RI Wereszczak, Andrew/I-7310-2016 OI Wereszczak, Andrew/0000-0002-8344-092X FU U. S. Army Tank-Automotive Research, Development and Engineering Center [DE-AC-00OR22725] FX Research sponsored by Work For Others sponsor U. S. Army Tank-Automotive Research, Development and Engineering Center, under contract DE-AC-00OR22725 with UT-Battelle, LLC. NR 24 TC 8 Z9 8 U1 0 U2 2 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD AUG PY 2009 VL 92 IS 8 BP 1788 EP 1795 DI 10.1111/j.1551-2916.2009.03146.x PG 8 WC Materials Science, Ceramics SC Materials Science GA 480AS UT WOS:000268704600023 ER PT J AU Zhao, Q Soyk, MW Schieffer, GM Fuhrer, K Gonin, MM Houk, RS Badman, ER AF Zhao, Qin Soyk, Matthew W. Schieffer, Gregg M. Fuhrer, Katrin Gonin, Marc M. Houk, R. S. Badman, Ethan R. TI An Ion Trap-Ion Mobility-Time of Flight Mass Spectrometer with Three Ion Sources for Ion/Ion Reactions SO JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY LA English DT Article ID ELECTRON-TRANSFER DISSOCIATION; COLLISION-INDUCED DISSOCIATION; ELECTROSPRAYED UBIQUITIN IONS; SURFACE-INDUCED DISSOCIATION; PROTON-TRANSFER REACTIONS; SINGLY CHARGED ANIONS; NATIVE CYTOCHROME-C; GAS-PHASE PROTEINS; STRUCTURAL TRANSITIONS; CAPTURE DISSOCIATION AB This instrument combines the capabilities of ion/ion reactions with ion mobility (IM) and time-of-flight (TOF) measurements for conformation Studies and top-down analysis of large biomolecules. Ubiquitin ions from either of two electrospray ionization (ESI) sources are stored in a three dimensional (3D) ion trap (IT) and reacted with negative ions from atmospheric sampling glow discharge ionization (ASGDI). The proton transfer reaction products are then separated by IM and analyzed via a TOF mass analyzer. In this way, ubiquitin +7 ions are converted to lower charge states down to +1; the ions in lower charge states tend to be in compact conformations with cross sections down to similar to 880 angstrom(2). The duration and magnitude of the ion ejection Pulse on the IT exit and the entrance voltage on the IM drift tube can affect the measured distribution of conformers for ubiquitin +7 and +6. Alternatively, protein ions are fragmented by collision-induced dissociation (CID) in the IT, followed by ion/ion reactions to reduce the charge states of the CID product ions, thus simplifying assignment of charge states and fragments using the mobility-resolved tandem mass spectrum. Instrument characteristics and the use of a new ion trap controller and software modifications to control the entire instrument are described. (J Am Soc Mass Spectrom 2009, 20, 1549-1561) (C) 2009 American Society for Mass Spectrometry C1 [Zhao, Qin; Soyk, Matthew W.; Schieffer, Gregg M.; Badman, Ethan R.] Iowa State Univ, Dept Chem, Ames, IA USA. [Houk, R. S.] Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA USA. [Fuhrer, Katrin; Gonin, Marc M.] Tofwerk AG, Thun, Switzerland. RP Badman, ER (reprint author), Hoffmann La Roche Inc, Nonclin Safety, 340 Kingsland St, Nutley, NJ 07110 USA. EM ethan.badman@roche.com RI Guo, Henry/E-9618-2011 NR 73 TC 17 Z9 17 U1 1 U2 16 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1044-0305 J9 J AM SOC MASS SPECTR JI J. Am. Soc. Mass Spectrom. PD AUG PY 2009 VL 20 IS 8 BP 1549 EP 1561 DI 10.1016/j.jasms.2009.04.014 PG 13 WC Chemistry, Analytical; Chemistry, Physical; Spectroscopy SC Chemistry; Spectroscopy GA 480MV UT WOS:000268739900020 PM 19493684 ER PT J AU Miller, NL Dale, LL Brush, CF Vicuna, SD Kadir, TN Dogrul, EC Chung, FI AF Miller, Norman L. Dale, Larry L. Brush, Charles F. Vicuna, Sebastian D. Kadir, Tariq N. Dogrul, Emin C. Chung, Francis I. TI Drought Resilience of the California Central Valley Surface-Ground-Water-Conveyance System(1) SO JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION LA English DT Article DE drought simulation; surface-ground-water response; pumping ID CLIMATE-CHANGE IMPACTS; UNITED-STATES; MANAGEMENT; UNCERTAINTY; HYDROLOGY; RESOURCES; MODEL AB A series of drought simulations were performed for the California Central Valley using computer applications developed by the California Department of Water Resources and historical datasets representing a range of droughts from mild to severe for time periods lasting up to 60 years. Land use, agricultural cropping patterns, and water demand were held fixed at the 2003 level and water supply was decreased by amounts ranging between 25 and 50%, representing light to severe drought types. Impacts were examined for four hydrologic subbasins, the Sacramento Basin, the San Joaquin Basin, the Tulare Basin, and the Eastside Drainage. Results suggest the greatest impacts are in the San Joaquin and Tulare Basins, regions that are heavily irrigated and are presently overdrafted in most years. Regional surface water diversions decrease by as much as 70%. Stream-to-aquifer flows and aquifer storage declines were proportional to drought severity. Most significant was the decline in ground water head for the severe drought cases, where results suggest that under these scenarios the water table is unlikely to recover within the 30-year model-simulated future. However, the overall response to such droughts is not as severe as anticipated and the Sacramento Basin may act as ground-water insurance to sustain California during extended dry periods. C1 [Miller, Norman L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Climate Sci Dept, Berkeley, CA 94720 USA. [Miller, Norman L.] Univ Calif Berkeley, Dept Geog, Berkeley, CA 94720 USA. [Dale, Larry L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Energy Anal Dept, Berkeley, CA 94720 USA. [Brush, Charles F.; Kadir, Tariq N.; Dogrul, Emin C.; Chung, Francis I.] Dept Water Resources, Bay Delta Off, Modeling Support Branch, Sacramento, CA 94236 USA. [Vicuna, Sebastian D.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. RP Miller, NL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Climate Sci Dept, Calif 90-1116,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM nlmiller@lbl.gov RI Miller, Norman/E-6897-2010 FU California Energy Commission [500-02-004]; California Department of Water Resources [DE-AC03-76F00098] FX This project was supported through a grant provided by the California Energy Commission, 500-02-004, and by the California Department of Water Resources. Work for the Department of Energy is under contract DE-AC03-76F00098. NR 31 TC 7 Z9 8 U1 2 U2 32 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1093-474X J9 J AM WATER RESOUR AS JI J. Am. Water Resour. Assoc. PD AUG PY 2009 VL 45 IS 4 BP 857 EP 866 DI 10.1111/j.1752-1688.2009.00329.x PG 10 WC Engineering, Environmental; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA 477PV UT WOS:000268531900004 ER PT J AU Schwede, DB Dennis, RL Bitz, MA AF Schwede, Donna B. Dennis, Robin L. Bitz, Mary Ann TI The Watershed Deposition Tool: A Tool for Incorporating Atmospheric Deposition in Water-Quality Analyses(1) SO JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION LA English DT Article DE atmospheric deposition; nitrogen loading; management tool; Total Maximum Daily Load; watershed analysis ID NORTHEASTERN UNITED-STATES; IMPACTING MODEL PERFORMANCE; DRY DEPOSITION; COASTAL WATERS; WET DEPOSITION; VERSION 4.5; NITROGEN; EQUATIONS; VIRGINIA; FORESTS AB A tool for providing the linkage between air and water-quality modeling needed for determining the Total Maximum Daily Load (TMDL) and for analyzing related nonpoint-source impacts on watersheds has been developed. Using gridded output of atmospheric deposition from the Community Multiscale Air Quality (CMAQ) model, the Watershed Deposition Tool (WDT) calculates average per unit area and total deposition to selected watersheds and subwatersheds. CMAQ estimates the wet and dry deposition for all of its gaseous and particulate chemical species, including ozone, sulfur species, nitrogen species, secondary organic aerosols, and hazardous air pollutants at grid scale sizes ranging from 4 to 36 km. An overview of the CMAQ model is provided. The somewhat specialized format of the CMAQ files is not easily imported into standard spatial analysis tools. The WDT provides a graphical user interface that allows users to visualize CMAQ gridded data and perform further analyses on selected watersheds or simply convert CMAQ gridded data to a shapefile for use in other programs. Shapefiles for the 8-digit (cataloging unit) hydrologic unit code polygons for the United States are provided with the WDT; however, other user-supplied closed polygons may be used. An example application of the WDT for assessing the contributions of different source categories to deposition estimates, the contributions of wet and dry deposition to total deposition, and the potential reductions in total nitrogen deposition to the Albemarle-Pamlico basin stemming from future air emissions reductions is used to illustrate the WDT capabilities. C1 [Schwede, Donna B.; Dennis, Robin L.] US EPA, Natl Exposure Res Lab, Atmospher Modeling & Anal Div, Res Triangle Pk, NC 27711 USA. [Bitz, Mary Ann] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. RP Schwede, DB (reprint author), US EPA, Natl Exposure Res Lab, Atmospher Modeling & Anal Div, Res Triangle Pk, NC 27711 USA. EM schwede.donna@epa.gov NR 47 TC 20 Z9 20 U1 1 U2 7 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1093-474X J9 J AM WATER RESOUR AS JI J. Am. Water Resour. Assoc. PD AUG PY 2009 VL 45 IS 4 BP 973 EP 985 DI 10.1111/j.1752-1688.2009.00340.x PG 13 WC Engineering, Environmental; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA 477PV UT WOS:000268531900012 ER PT J AU Andrejczuk, M Grabowski, WW Malinowski, SP Smolarkiewicz, PK AF Andrejczuk, Miroslaw Grabowski, Wojciech W. Malinowski, Szymon P. Smolarkiewicz, Piotr K. TI Numerical Simulation of Cloud-Clear Air Interfacial Mixing: Homogeneous versus Inhomogeneous Mixing SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID CONVECTIVE CLOUDS; DROPLET SPECTRA; CUMULUS CLOUDS; BOUNDARY-LAYER; ENTRAINMENT; MICROPHYSICS; EVOLUTION; MODEL; TURBULENCE; SCALES AB This note presents an analysis of several dozens of direct numerical simulations of the cloud-clear air mixing in a setup of decaying moist turbulence with bin microphysics. The goal is to assess the instantaneous relationship between the homogeneity of mixing and the ratio of the time scales of droplet evaporation and turbulent homogenization. Such a relationship is important for developing improved microphysical parameterizations for large-eddy simulation of clouds. The analysis suggests a robust relationship for the range of time scale ratios between 0.5 and 10. Outside this range, the scatter of numerical data is significant, with smaller and larger time scale ratios corresponding to mixing scenarios that approach the extremely inhomogeneous and homogeneous limits, respectively. This is consistent with the heuristic argument relating the homogeneity of mixing to the time scale ratio. C1 [Grabowski, Wojciech W.] NCAR, MMM, Boulder, CO 80307 USA. [Andrejczuk, Miroslaw] Los Alamos Natl Lab, Los Alamos, NM USA. [Malinowski, Szymon P.] Univ Warsaw, Inst Geophys, Warsaw, Poland. RP Grabowski, WW (reprint author), NCAR, MMM, POB 3000, Boulder, CO 80307 USA. EM grabow@ncar.ucar.edu RI Malinowski, Szymon/A-5237-2010 OI Malinowski, Szymon/0000-0003-4987-7017 FU Los Alamos National Laboratory's Directed Research and Development [20080126DR]; NOAA [NA05OAR4310107, NA08OAR4310543]; Polish Ministry of Science and Higher Education (SPM); DOE [DEFG0208ER64535] FX This work was partially supported by the Los Alamos National Laboratory's Directed Research and Development Project 20080126DR (MA), the NOAA awards NA05OAR4310107 and NA08OAR4310543 (WWG), the Polish Ministry of Science and Higher Education (SPM), and the DOE award DEFG0208ER64535 (PKS). NR 36 TC 34 Z9 34 U1 0 U2 9 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 J9 J ATMOS SCI JI J. Atmos. Sci. PD AUG PY 2009 VL 66 IS 8 BP 2493 EP 2500 DI 10.1175/2009JAS2956.1 PG 8 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 480QK UT WOS:000268751700024 ER PT J AU Yang, SM Heo, JW Lee, HN Song, TK Yoon, JG AF Yang, S. M. Heo, J. W. Lee, H. N. Song, T. K. Yoon, J. -G. TI Quantitative Analysis of the Nucleation and Growth of Ferroelectric Domains in Epitaxial Pb(Zr,Ti)O-3 Thin Films SO JOURNAL OF THE KOREAN PHYSICAL SOCIETY LA English DT Article; Proceedings Paper CT 7th Korea-Japan Conference on Ferroelectrics CY AUG 06-09, 2008 CL Cheju Natl Univ, Jeju, SOUTH KOREA HO Cheju Natl Univ DE Ferroelectric; Domain; Switching; PZT; Piezoresponse force microscopy ID WALL MOTION; CAPACITORS AB We determined simultaneously. the domain wall speed (v) and the nucleation rate (N) of ferroelectric (FE) domains in 100 nm-thick epitaxial PbZr0.2Ti0.8O3 capacitors from successive domain evolution images tinder various applied electric fields by using piezoresponse force microscopy. We found that, at a given E-app, the v and the N values decreased as the switching process proceeded. The averaged domain wall speed < v > was confirmed to follow the Merz's law, < v > proportional to exp[-(E-0/E-app)], with an activation field Eo of about 700 kV/cm. Moreover, we found that the nucleation process played a more important role in the FE domain switching at higher fields while domain wall motion mainly contributed to the switching at lower fields. C1 [Yang, S. M.; Heo, J. W.] Seoul Natl Univ, Dept Phys & Astron, ReCOE, Seoul 151747, South Korea. [Yang, S. M.; Heo, J. W.] Seoul Natl Univ, Dept Phys & Astron, FPRD, Seoul 151747, South Korea. [Lee, H. N.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Song, T. K.] Changwon Natl Univ, Sch Nano & Adv Mat Engn, Chang Won 641773, South Korea. [Yoon, J. -G.] Univ Suwon, Dept Phys, Hwaseong 445743, South Korea. RP Yang, SM (reprint author), Seoul Natl Univ, Dept Phys & Astron, ReCOE, Seoul 151747, South Korea. EM jgyoon@suwon.ac.kr RI Lee, Ho Nyung/K-2820-2012; Yang, Sang Mo/Q-2455-2015 OI Lee, Ho Nyung/0000-0002-2180-3975; Yang, Sang Mo/0000-0003-1809-2938 NR 24 TC 7 Z9 7 U1 0 U2 7 PU KOREAN PHYSICAL SOC PI SEOUL PA 635-4, YUKSAM-DONG, KANGNAM-KU, SEOUL 135-703, SOUTH KOREA SN 0374-4884 EI 1976-8524 J9 J KOREAN PHYS SOC JI J. Korean Phys. Soc. PD AUG PY 2009 VL 55 IS 2 SI SI BP 820 EP 824 PN 1 PG 5 WC Physics, Multidisciplinary SC Physics GA 483YX UT WOS:000269010700017 ER PT J AU Gupta, S Lin, J Ashby, P Pruitt, L AF Gupta, Shikha Lin, Jeremy Ashby, Paul Pruitt, Lisa TI A fiber reinforced poroelastic model of nanoindentation of porcine costal cartilage: A combined experimental and finite element approach SO JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS LA English DT Article ID INTRINSIC MECHANICAL-PROPERTIES; ARTICULAR-CARTILAGE; UNCONFINED COMPRESSION; ELASTIC-MODULUS; COLLAGEN-FIBERS; INDENTATION EXPERIMENTS; BIPHASIC INDENTATION; SOFT-TISSUES; BONE; LOAD AB Nanoindentation has shown promise as a mechanical characterization tool for orthopaedic biomaterials since it can probe the properties of small, heterogeneous, irregularly shaped tissue volumes in physiological environments. However, the majority of nanoindentation analyses have been limited to the determination of linear elastic and viscoelastic properties. Since biomaterials possess complex nonlinear, hydrated, time-dependent constitutive behavior, the objective of the present study is to explore the ability of nanoindentation to determine physiologically relevant material properties using a fibril reinforced poroelastic (FRPE) model. A further goal is to ascertain the sensitivity of nanoindentation load-displacement curves to different FRPE parameters, including the elastic properties of the nonfibrillar matrix, the composition and distribution of fibers, and nonlinearity in the fluid permeability. Porcine costal cartilage specimens are experimentally tested with nanoindentation load relaxation experiments at two different loading depths and loading rates. The FRPE material properties are extracted from comparisons to finite element simulations. The study demonstrates the behavior of the model in nanoindentation is distinct from bulk indentation; the static response of the nanoindentation is determined almost exclusively by the elastic properties of the nonfibrillar matrix and the volume fraction of fibers, while the transient response is dominated by the fluid permeability of the tissue. The FRPE model can accurately describe the time-dependent mechanical behavior of costal cartilage in nanoindentation, with good agreement between experimental and numerical curve fits (R-2 = 0.98 +/- 0.01) at multiple indentation depths and indentation rates. (C) 2009 Published by Elsevier Ltd C1 [Gupta, Shikha] Univ Calif Berkeley, Med Polymers & Biomat Grp, Dept Appl Sci & Technol, Berkeley, CA 94720 USA. [Lin, Jeremy] Univ Calif San Francisco, Dept Restorat Dent, San Francisco, CA 94143 USA. [Ashby, Paul] Univ Calif Berkeley, Lawrence Berkeley Lab, Imaging & Manipulat Nanostruct Facil, Berkeley, CA 94720 USA. [Pruitt, Lisa] Univ Calif San Francisco, Dept Orthopaed Surg, San Francisco, CA 94110 USA. [Pruitt, Lisa] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. RP Pruitt, L (reprint author), Univ Calif Berkeley, Med Polymers & Biomat Lab, 5134 Etcheverry Hall, Berkeley, CA 94720 USA. EM lpruitt@me.berkeley.edu FU Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231]; National Science Foundation FX The authors would like to thank Lampros Kourtis and Katy Keenan from Dr. Dennis Carter's lab in Stanford and the Clift laboratory in Bath for generously providing the ABAQUS user subroutine for the evolving fluid-flow boundary condition, Michael Hoang for assistance with sample preparation, Cheng Li for help with indentation, and Amy Walters for help with histology. Portions of this work were performed at the Molecular Foundry, Lawrence Berkeley National Laboratory, which is supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. This work was supported in part by a Grants-in-Aid research award from Sigma Xi and a Graduate Research Fellowship from the National Science Foundation. NR 67 TC 25 Z9 25 U1 1 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1751-6161 EI 1878-0180 J9 J MECH BEHAV BIOMED JI J. Mech. Behav. Biomed. Mater. PD AUG PY 2009 VL 2 IS 4 BP 326 EP 338 DI 10.1016/j.jmbbm.2008.09.003 PG 13 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA 456HB UT WOS:000266833700004 PM 19627839 ER PT J AU Kruzic, JJ Kim, DK Koester, KJ Ritchie, RO AF Kruzic, J. J. Kim, D. K. Koester, K. J. Ritchie, R. O. TI Indentation techniques for evaluating the fracture toughness of biomaterials and hard tissues SO JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS LA English DT Article ID CRACK-OPENING DISPLACEMENTS; ELASTIC-PLASTIC INDENTATION; HUMAN CORTICAL BONE; VICKERS INDENTATION; MECHANICAL-PROPERTIES; RESISTANCE-CURVE; RADIAL FRACTURE; PALMQVIST CRACK; ACUTE PROBES; CUBE-CORNER AB Indentation techniques for assessing fracture toughness are attractive due to the simplicity and expediency of experiments, and because they potentially allow the characterization of both local and bulk fracture properties. Unfortunately, rarely have such techniques been proven to give accurate fracture toughness values. This is a concern, as such techniques are seeing increasing usage in the study of biomaterials and biological hard tissues. Four available indentation techniques are considered in the present article: the Vickers indentation fracture (VIF) test, the cube corner indentation fracture (CCIF) test, the Vickers crack opening displacement (VCOD) test and the interface indentation fracture (IIF) test. Each technique is discussed in terms of its suitability for assessing the absolute and relative toughness of materials or material interfaces based on the published literature on the topic. In general, the VIF and CCIF techniques are found to be poor for quantitatively evaluating toughness of any brittle material, and the large errors involved (similar to +/- 50%) make their applicability as comparative techniques limited. Indeed, indentation toughness values must differ by at least by a factor of three to conclude a significant difference in actual toughness. Additionally, new experimental results are presented on using the CCIF test to evaluate the fracture resistance of human cortical bone. Those new results indicate that inducing cracking is difficult, and that the cracks that do form are embedded in the plastic zone of the indent, invalidating the use of linear elastic fracture mechanics based techniques for evaluating the toughness associated with those cracks. The VCOD test appears to be a good quantitative method for some glasses, but initial results suggest there may be problems associated with applying this technique to other brittle materials. Finally, the IIF technique should only be considered a comparative or semi-quantitative technique for comparing material interfaces and/or the neighboring materials. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Kruzic, J. J.] Oregon State Univ, Sch Mech Ind & Mfg Engn, Corvallis, OR 97331 USA. [Kim, D. K.] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Taejon 305701, South Korea. [Koester, K. J.; Ritchie, R. O.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Ritchie, R. O.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Kruzic, JJ (reprint author), Oregon State Univ, Sch Mech Ind & Mfg Engn, Corvallis, OR 97331 USA. EM jamie.kruzic@oregonstate.edu RI Ritchie, Robert/A-8066-2008; Kruzic, Jamie/M-3558-2014; OI Ritchie, Robert/0000-0002-0501-6998; Kruzic, Jamie/0000-0002-9695-1921; Kim, Do Kyung/0000-0001-9092-9427 FU Department of Energy [DE-AC02-05CH11231]; SBS Foundation; Korea Research Foundation [a/c KRF-2005-005-J09701] FX ROR acknowledges support from the Director, office of Science, Office of Basic Energy Science, Division of Materials Sciences and Engineering of the Department of Energy under Contract No. DE-AC02-05CH11231. DKK would like to thank the SBS Foundation and Korea Research Foundation (a/c#KRF-2005-005-J09701) for supporting his sabbatical leave in Berkeley where the experimental part of this study was performed. NR 45 TC 77 Z9 78 U1 0 U2 37 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1751-6161 J9 J MECH BEHAV BIOMED JI J. Mech. Behav. Biomed. Mater. PD AUG PY 2009 VL 2 IS 4 BP 384 EP 395 DI 10.1016/j.jmbbm.2008.10.008 PG 12 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA 456HB UT WOS:000266833700010 PM 19627845 ER PT J AU Tonks, MR Bingert, JF Bronkhorst, CA Harstad, EN Tortorelli, DA AF Tonks, Michael R. Bingert, John F. Bronkhorst, Curt A. Harstad, Eric N. Tortorelli, Daniel A. TI Two stochastic mean-field polycrystal plasticity methods SO JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS LA English DT Article DE Polycrystal plasticity; Stochastic models; Texture modeling; Mean-field models; Crystal plasticity finite element analysis ID TEXTURE EVOLUTION; TAYLOR MODEL; STRAIN; CRYSTALS; LOCALIZATION; DEFORMATIONS; SIMULATION; METALS AB In this work, we develop two mean-field polycrystal plasticity models in which the crystal velocity gradients L(c) are approximated stochastically. Through comprehensive CPFEM analyses of an idealized tantalum polycrystal, we verify that the L(c) tend to follow a normal distribution and surmise that this is due to the crystal interactions. We draw on these results to develop the stochastic Taylor model (STM) and the stochastic no-constraints model (SNCM), which differ in the manner in which the crystal strain rates D(c) = 1/2(L(c) + L(cT)) are prescribed. Calibration and validation of the models are performed using data from tantalum compression experiments. Both models predict the compression textures more accurately than the fully constrained model (FCM), and the SNCM predicts them more accurately than the STM. The STM is extremely computationally efficient, only slightly more expensive than the FCM, while the SNCM is three times more computationally expensive than the STM. Published by Elsevier Ltd. C1 [Tonks, Michael R.] Idaho Natl Lab, Basic Fuels Modeling Grp, Idaho Falls, ID 83415 USA. [Bingert, John F.; Bronkhorst, Curt A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Harstad, Eric N.] Sandia Natl Labs, Albuquerque, NM 87117 USA. [Tortorelli, Daniel A.] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA. RP Tonks, MR (reprint author), Idaho Natl Lab, Basic Fuels Modeling Grp, Idaho Falls, ID 83415 USA. EM michael.tonks@inl.gov RI Bronkhorst, Curt/B-4280-2011 OI Bronkhorst, Curt/0000-0002-2709-1964 FU DoD/DoE Joint Munitions Technology Development Program; DoE Advanced Simulation and Computing Program FX This work was supported by the DoD/DoE Joint Munitions Technology Development Program and the DoE Advanced Simulation and Computing Program. NR 31 TC 3 Z9 3 U1 1 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-5096 J9 J MECH PHYS SOLIDS JI J. Mech. Phys. Solids PD AUG PY 2009 VL 57 IS 8 BP 1230 EP 1253 DI 10.1016/j.jmps.2009.04.013 PG 24 WC Materials Science, Multidisciplinary; Mechanics; Physics, Condensed Matter SC Materials Science; Mechanics; Physics GA 475GG UT WOS:000268346000006 ER PT J AU Kano, M Kohama, Y Graf, D Balakirev, F Sefat, AS Mcguire, MA Sales, BC Mandrus, D Tozer, SW AF Kano, Mika Kohama, Yoshimitsu Graf, David Balakirev, Fedor Sefat, Athena S. Mcguire, Michael A. Sales, Brian C. Mandrus, David Tozer, Stanley W. TI Anisotropy of the Upper Critical Field in a Co-Doped BaFe2As2 Single Crystal SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN LA English DT Article DE Ba(Fe,Co)(2)As-2; superconductivity; upper critical field; resistivity; anisotropy ID SUPERCONDUCTIVITY AB The temperature dependence of the upper critical magnetic field (H-c2) in a BaFe1.84Co0.16As2 single crystal was determined via resistivity, for the inter-plane (H perpendicular to ab) and in-plane (H parallel to ab) directions in pulsed and static magnetic fields of up to 60 T. Suppressing superconductivity in a pulsed magnetic field at He-3 temperatures permits us to construct an H-c2-T phase diagram from quantitative H-c2(0) values and determine its behavior in low temperatures. H-c2(0) with H parallel to ab [H-c2 parallel to(0)] and H perpendicular to ab [H-c2 perpendicular to(0)] are similar to 55 and similar to 50 T respectively. These values are similar to 1.2-1.4 times larger than the weak-coupling Pauli paramagnetic limit (H-p = 1.84T(c)), indicating that enhanced paramagnetic limiting is essential and this superconductor is unconventional. While H-c2 parallel to ab is saturated at low temperature, H-c2 with H perpendicular to ab (H-c2 perpendicular to) exhibits almost linear temperature dependence towards T = 0 K which results in reduced anisotropy of H-c2 in low temperature. The anisotropy of H-c2 was similar to 3.4 near T-c, and decreases rapidly with lower temperatures reaching similar to 1.1 at T = 0.7 K. C1 [Kano, Mika; Graf, David; Tozer, Stanley W.] Natl High Magnet Field Lab, Tallahassee, FL USA. [Kohama, Yoshimitsu; Balakirev, Fedor] Los Alamos Natl Lab, MPA NHMFL, Los Alamos, NM 87545 USA. [Kohama, Yoshimitsu] Tokyo Inst Technol, Mat & Struct Lab, Midori Ku, Yokohama, Kanagawa 2268503, Japan. [Sefat, Athena S.; Mcguire, Michael A.; Sales, Brian C.; Mandrus, David] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37931 USA. RP Kano, M (reprint author), Natl High Magnet Field Lab, Tallahassee, FL USA. EM kano@magnet.fsu.edu RI McGuire, Michael/B-5453-2009; Mandrus, David/H-3090-2014; Sefat, Athena/R-5457-2016 OI McGuire, Michael/0000-0003-1762-9406; Sefat, Athena/0000-0002-5596-3504 FU Division of Materials Sciences and Engineering, Office of Basic Energy sciences, U.S. Department of Energy FX Research at ORNL sponsored by the Division of Materials Sciences and Engineering, Office of Basic Energy sciences, U.S. Department of Energy. NR 26 TC 78 Z9 79 U1 0 U2 14 PU PHYSICAL SOC JAPAN PI TOKYO PA YUSHIMA URBAN BUILDING 5F, 2-31-22 YUSHIMA, BUNKYO-KU, TOKYO, 113-0034, JAPAN SN 0031-9015 J9 J PHYS SOC JPN JI J. Phys. Soc. Jpn. PD AUG PY 2009 VL 78 IS 8 AR 084719 DI 10.1143/JPSJ.78.084719 PG 5 WC Physics, Multidisciplinary SC Physics GA 488GZ UT WOS:000269338700047 ER PT J AU Davidson, MW AF Davidson, Michael W. TI Ernst Abbe Microscopy SO LABMEDICINE LA English DT Biographical-Item C1 [Davidson, Michael W.] Univ Florida, Opt Microscopy Div, Natl High Magnet Field Lab, Gainesville, FL 32611 USA. [Davidson, Michael W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Davidson, MW (reprint author), Univ Florida, Opt Microscopy Div, Natl High Magnet Field Lab, Gainesville, FL 32611 USA. NR 1 TC 0 Z9 0 U1 1 U2 4 PU AMER SOC CLINICAL PATHOLOGY PI CHICAGO PA 2100 W HARRISON ST, CHICAGO, IL 60612 USA SN 0007-5027 J9 LABMEDICINE JI Labmedicine PD AUG PY 2009 VL 40 IS 8 BP 502 EP 503 DI 10.1309/LM6YL3SHMCK6DUSM PG 2 WC Medical Laboratory Technology SC Medical Laboratory Technology GA 477QS UT WOS:000268534200012 ER PT J AU Atcher, RW AF Atcher, Robert W. TI Managing the unmanageable SO LANCET ONCOLOGY LA English DT Editorial Material C1 Univ New Mexico, Biosci Div, Univ Calif Los Alamos Natl Lab, Albuquerque, NM 87131 USA. RP Atcher, RW (reprint author), Univ New Mexico, Biosci Div, Univ Calif Los Alamos Natl Lab, Albuquerque, NM 87131 USA. EM ratcher@msn.com OI Atcher, Robert/0000-0003-4656-2247 NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1470-2045 J9 LANCET ONCOL JI Lancet Oncol. PD AUG PY 2009 VL 10 IS 8 BP 745 EP 746 PG 2 WC Oncology SC Oncology GA 479YH UT WOS:000268697700008 PM 19647197 ER PT J AU Hancock, JM Mallon, AM Beck, T Gkoutos, GV Mungall, C Schofield, PN AF Hancock, John M. Mallon, Ann-Marie Beck, Tim Gkoutos, Georgios V. Mungall, Chris Schofield, Paul N. TI Mouse, man, and meaning: bridging the semantics of mouse phenotype and human disease SO MAMMALIAN GENOME LA English DT Editorial Material ID FUNCTIONAL GENOMICS; ONTOLOGY; DATABASE; EMPRESS; TOOL; MUTAGENESIS; INTEGRATION; RESOURCE; SCREENS; WEB AB Now that the laboratory mouse genome is sequenced and the annotation of its gene content is improving, the next major challenge is the annotation of the phenotypic associations of mouse genes. This requires the development of systematic phenotyping pipelines that use standardized phenotyping procedures which allow comparison across laboratories. It also requires the development of a sophisticated informatics infrastructure for the description and interchange of phenotype data. Here we focus on the current state of the art in the description of data produced by systematic phenotyping approaches using ontologies, in particular, the EQ (Entity-Quality) approach, and what developments are required to facilitate the linking of phenotypic descriptions of mutant mice to human diseases. C1 [Hancock, John M.; Mallon, Ann-Marie; Beck, Tim] MRC, Bioinformat Grp, Harwell OX11 0RD, Oxon, England. [Gkoutos, Georgios V.] Univ Cambridge, Dept Genet, Cambridge CB2 3EH, England. [Mungall, Chris] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Schofield, Paul N.] Univ Cambridge, Dept Physiol Dev & Neurosci, Cambridge CB2 3DY, England. RP Hancock, JM (reprint author), MRC, Bioinformat Grp, Harwell OX11 0RD, Oxon, England. EM j.hancock@har.mrc.ac.uk RI Hancock, John/A-2442-2009 OI Hancock, John/0000-0003-2991-2217 FU Biotechnology and Biological Sciences Research Council; Medical Research Council [, MC_U142684171] NR 24 TC 14 Z9 14 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0938-8990 J9 MAMM GENOME JI Mamm. Genome PD AUG PY 2009 VL 20 IS 8 BP 457 EP 461 DI 10.1007/s00335-009-9208-3 PG 5 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity GA 504ZY UT WOS:000270658400001 PM 19649761 ER PT J AU Elder, JB Kamp, RWV Wiersma, BJ AF Elder, James B. Kamp, Rodney W. Vande Wiersma, Bruce J. TI REMOTE UT Ultrasonic Testing of Buried High-Level Radioactive Waste Storage Tanks SO MATERIALS EVALUATION LA English DT Article C1 [Elder, James B.; Kamp, Rodney W. Vande; Wiersma, Bruce J.] Savannah River Natl Lab, Savannah River Nucl Solut, Mat Sci & Technol, Aiken, SC 29808 USA. RP Elder, JB (reprint author), Savannah River Natl Lab, Savannah River Nucl Solut, Mat Sci & Technol, Savannah River Site,Bldg 730-A, Aiken, SC 29808 USA. EM james.elder@srnl.doe.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC NONDESTRUCTIVE TEST PI COLUMBUS PA 1711 ARLINGATE LANE PO BOX 28518, COLUMBUS, OH 43228-0518 USA SN 0025-5327 J9 MATER EVAL JI Mater. Eval. PD AUG PY 2009 VL 67 IS 8 BP 888 EP 894 PG 7 WC Materials Science, Characterization & Testing SC Materials Science GA 488NB UT WOS:000269355400002 ER PT J AU Zubelewicz, A AF Zubelewicz, Aleksander TI Metal behavior at extreme loading rates SO MECHANICS OF MATERIALS LA English DT Article ID DEFORMATION; CRITERIA AB At extreme loading rates some metals exhibit behavior that is characteristic of a thermodynamically open system. This openness results from a rapid movement of dislocations carrying energy between distant material points. In such instances, metals form organized meso-structures such as dislocation cells and/or coarse slip bands. With an average dislocation velocity approaching critical velocity, the material experiences a mesoscale dynamic excitation that in turn causes further rearrangement of the material's microstructure. It is shown that voids play a stabilizing role in metals. The analysis suggests that void nucleation and growth impedes the process of defect (dislocation) selforganization. (C) 2009 Elsevier Ltd. All rights reserved. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Zubelewicz, A (reprint author), Los Alamos Natl Lab, Div Theoret, MS B216, Los Alamos, NM 87545 USA. EM alek@lanl.gov NR 12 TC 2 Z9 2 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-6636 J9 MECH MATER JI Mech. Mater. PD AUG PY 2009 VL 41 IS 8 BP 969 EP 974 DI 10.1016/j.mechmat.2009.02.002 PG 6 WC Materials Science, Multidisciplinary; Mechanics SC Materials Science; Mechanics GA 464NY UT WOS:000267513200007 ER PT J AU Williams, PT AF Williams, Paul T. TI Relationship of Incident Glaucoma versus Physical Activity and Fitness in Male Runners SO MEDICINE AND SCIENCE IN SPORTS AND EXERCISE LA English DT Article DE EPIDEMIOLOGY; CARDIORESPIRATORY FITNESS; PREVENTION; EYE DISEASE ID OPEN-ANGLE GLAUCOMA; INDUCED OCULAR HYPOTENSION; 7-YEAR FOLLOW-UP; INTRAOCULAR-PRESSURE; DIABETES-MELLITUS; CARDIORESPIRATORY FITNESS; VIGOROUS EXERCISE; BODY-WEIGHT; RISK-FACTOR; HYPERTENSION AB WILLIAMS, P. T. Relationship of Incident Glaucoma versus Physical Activity and Fitness in Male Runners. Med. Sci. Sports Exerc.. Vol. 41, No. 8 pp. 1566-1572, 2009. Purpose: To assess the dose-response relationship of vigorous physical activity (running distance. km.d(-1)) or cardiorespiratory fitness (meters-per-second pace during a 10-km footrace) to the risk for incident glaucoma. Design: Prospective epidemiologic cohort study. Methods: Participant-reported, physician-diagnosed incident glaucoma was compared with distance run per week and 10-km footrace performance in a cohort of 29,854 male runners without diabetes followed prospectively for 7.7 yr. The survival analyses were adjusted for age. hypertension, current and past cigarette use, and intakes of meat, fish, fruit, and alcohol. Results: Two hundred incident glaucoma cases were reported during follow-tip. The risk for reported glaucoma decreased 37% per meter per second increment in a 10-km race performance (P = 0.005). Relative to the least fit men (i.e., slowest, <= 3.5 m.s(-1)), the risk for incident-reported glaucoma declined 29% in those who ran 3.6-4.0 m.s(-1) (P = 0.06) 54% for those who rail 4.1-4.5 m.s(-1) (P = 0.001), 51% for those who ran 4.6-5.0 m.s(-1) (P = 0.04), and glaucoma wag nonexistent among tire 781 men who exceeded 5.0 m.s(-1) (P = 0.03). The risk for incident, reported glaucoma decreased 5% per kilometer per day run at baseline (P = 0.04), which remained significant when adjusted for the 10-km race performance (5% reduction per kilometer per day, P = 0.04). and both body mass index and race performance (P = 0.04). Baseline hypertension was unrelated to the incident glaucoma. Conclusions: These data provide preliminary evidence that vigorous physical activity may reduce glaucoma risk, which, in the absence of medical record validation. could represent ocular hypertension in addition to frank glaucoma. Additional follow-up With validation is needed to identify the type of glaucoma affected. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Donner Lab, Berkeley, CA 94720 USA. RP Williams, PT (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Donner Lab, Berkeley, CA 94720 USA. EM ptwilliams@lbl.gov FU Institute of Aging [AG032004]; National Heart Lung and Blood Institute of the National Institutes of Health (NIH) [HL-72110]; Ernest Orlando Lawrence Berkeley National Laboratory [DE-AC03-76SF00098] FX This research was supported in part by grants AG032004 from the Institute of Aging and HL-72110 from the National Heart Lung and Blood Institute of the National Institutes of Health (NIH) and was conducted at the Ernest Orlando Lawrence Berkeley National Laboratory (Department of Energy DE-AC03-76SF00098 to the University of California). Conflict of interest: None, except for the support of NIH grants. Contribution of author: Created the National Runners' Health Study, data analysis, wrote the paper, and is guarantor of the study. I wish to thank Kathryn Hoffman for her assistance in data collection. The results of the present study do not constitute endorsement by ACSM. NR 40 TC 13 Z9 17 U1 2 U2 6 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0195-9131 J9 MED SCI SPORT EXER JI Med. Sci. Sports Exerc. PD AUG PY 2009 VL 41 IS 8 BP 1566 EP 1572 DI 10.1249/MSS.0b013e31819e420f PG 7 WC Sport Sciences SC Sport Sciences GA 472IL UT WOS:000268123700005 PM 19568204 ER PT J AU Dougherty, LM Cerreta, EK Gray, GT Trujillo, CP Lopez, MF Vecchio, KS Kusinski, GJ AF Dougherty, L. M. Cerreta, E. K. Gray, G. T., III Trujillo, C. P. Lopez, M. F. Vecchio, K. S. Kusinski, G. J. TI Mechanical Behavior and Microstructural Development of Low-Carbon Steel and Microcomposite Steel Reinforcement Bars Deformed under Quasi-Static and Dynamic Shear Loading SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID TRANSMISSION ELECTRON-MICROSCOPY; CHANNEL ANGULAR EXTRUSION; INTERSTITIAL-FREE STEEL; 316L STAINLESS-STEEL; ADIABATIC SHEAR; TEXTURE DEVELOPMENT; BAND FORMATION; DEFORMATION; EVOLUTION; LOCALIZATION AB Reinforcement bars of microcomposite (MC) steel, composed of lath martensite and minor amounts of retained austenite, possess improved strength and corrosion characteristics over low-carbon (LC) steel rebar; however, their performance under shear loading has not previously been investigated at the microstructural level. In this study, LC and MC steel cylinders were compression tested, and specimens machined into a forced-shear geometry were subjected to quasi-static and dynamic shear loading to determine their shear behavior as a function of the strain and strain rate. The as-received and sheared microstructures were examined using optical microscopy (OM), scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD). Higher-resolution microstructural examinations were performed using transmission electron microscopy (TEM). The influence of the starting microstructure on the shear behavior was found to depend strongly on the strain rate; the MC steel exhibited not only greater strain-rate sensitivity than the LC steel but also a greater resistance to shear localization with load. In both steels, despite differences in the starting microstructure, post-mortem observations were consistent with a continuous mechanism operating within adiabatic shear bands (ASBs), in which subgrains rotated into highly misoriented grains containing a high density of dislocations. C1 [Dougherty, L. M.] Los Alamos Natl Lab, WCM 1, Los Alamos, NM 87545 USA. [Dougherty, L. M.; Cerreta, E. K.; Gray, G. T., III; Trujillo, C. P.; Lopez, M. F.] Los Alamos Natl Lab, MST 8, Los Alamos, NM 87545 USA. [Vecchio, K. S.] Univ Calif San Diego, Nanoengn Dept, La Jolla, CA 92093 USA. [Kusinski, G. J.] Chevron Energy Technol Co, Richmond, CA 94802 USA. [Kusinski, G. J.] MMFX Technol Corp, Irvine, CA 92606 USA. RP Dougherty, LM (reprint author), Los Alamos Natl Lab, WCM 1, POB 1663, Los Alamos, NM 87545 USA. EM lmdough@lanl.gov RI Vecchio, Kenneth/F-6300-2011 OI Vecchio, Kenneth/0000-0003-0217-6803 NR 42 TC 6 Z9 6 U1 1 U2 22 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD AUG PY 2009 VL 40A IS 8 BP 1835 EP 1850 DI 10.1007/s11661-009-9869-2 PG 16 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 466OE UT WOS:000267670700009 ER PT J AU Yamamoto, Y Santella, ML Brady, MP Bei, H Maziasz, PJ AF Yamamoto, Y. Santella, M. L. Brady, M. P. Bei, H. Maziasz, P. J. TI Effect of Alloying Additions on Phase Equilibria and Creep Resistance of Alumina-Forming Austenitic Stainless Steels SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID COAL POWER-PLANTS; SCALE FORMATION; PRECIPITATION; TEMPERATURE; BEHAVIOR AB The high-temperature creep properties of a series of alumina-forming austenitic (AFA) stainless steels based on Fe-20Ni-(12-14)Cr-(2.5-4)Al-(0.2-3.3)Nb-0.1C (weight percent) were studied. Computational thermodynamics were used to aid in the interpretation of data on microstructural stability, phase equilibria, and creep resistance. Phases of MC (M: mainly Nb), M(23)C(6) (M: mainly Cr), B2 [beta-(Ni,Fe)Al], and Laves [Fe(2)(Mo,Nb)] were observed after creep-rupture testing at 750 A degrees C and 170 MPa; this was generally consistent with the thermodynamic calculations. The creep resistance increased with increasing Nb additions up to 1 wt pct in the 2.5 and 3 Al wt pct alloy series, due to the stabilization of nanoscale MC particles relative to M(23)C(6). Additions of Nb greater than 1 wt pct decreased creep resistance in the alloy series due to stabilization of the Laves phase and increased amounts of undissolved, coarse MC, which effectively reduced the precipitation of nanoscale MC particles. The additions of Al also increased the creep resistance moderately due to the increase in the volume fraction of B2 phase precipitates. Calculations suggested that optimum creep resistance would be achieved at approximately 1.5 wt pct Nb in the 4 wt pct Al alloy series. C1 [Yamamoto, Y.; Santella, M. L.; Brady, M. P.; Bei, H.; Maziasz, P. J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Yamamoto, Y.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Yamamoto, Y (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM bradymp@ornl.gov RI Brady, Michael/A-8122-2008; OI Brady, Michael/0000-0003-1338-4747; Maziasz, Philip/0000-0001-8207-334X; Bei, Hongbin/0000-0003-0283-7990 FU USDOE [DE-AC05-00OR22725] FX The authors thank E. P. George, C. T. Liu, and J.H. Schneibel for helpful comments on this manuscript. This work was funded by the United States Department of Energy (USDOE) Fossil Energy Advanced Research Materials program. The Oak Ridge National Laboratory is managed by UT-Battelle, LLC (Oak Ridge, TN), for the USDOE under Contract No. DE-AC05-00OR22725. The authors also acknowledge the SHaRE User Facility at the Oak Ridge National Laboratory, sponsored by the USDOE Office of Basic Energy Sciences, Division of Scientific User Facilities. NR 27 TC 39 Z9 41 U1 0 U2 16 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD AUG PY 2009 VL 40A IS 8 BP 1868 EP 1880 DI 10.1007/s11661-009-9886-1 PG 13 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 466OE UT WOS:000267670700012 ER PT J AU Hoche, D Muller, S Rapin, G Shinn, M Remdt, E Gubisch, M Schaaf, P AF Hoeche, Daniel Mueller, Sven Rapin, Gerd Shinn, Michelle Remdt, Elvira Gubisch, Maik Schaaf, Peter TI Marangoni Convection during Free Electron Laser Nitriding of Titanium SO METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE LA English DT Article ID LEVEL SET METHOD; THERMAL TRANSPORT REGIMES; SURFACE MELTING PROCESSES; POOL TRANSPORT; TINX COATINGS; 2-PHASE FLOW; DYNAMICS; NITROGEN; VAPORIZATION; NITRIDATION AB Pure titanium was treated by free electron laser (FEL) radiation in a nitrogen atmosphere. As a result, nitrogen diffusion occurs and a TiN coating was synthesized. Local gradients of interfacial tension due to the local heating lead to a Marangoni convection, which determines the track properties. Because of the experimental inaccessibility of time-dependent occurrences, finite element calculations were performed, to determine the physical processes such as heat transfer, melt flow, and mass transport. In order to calculate the surface deformation of the gas-liquid interface, the level set approach was used. The equations were modified and coupled with heat-transfer and diffusion equations. The process was characterized by dimensionless numbers such as the Reynolds, Peclet, and capillary numbers, to obtain more information about the acting forces and the coating development. Moreover, the nitrogen distribution was calculated using the corresponding transport equation. The simulations were compared with cross-sectional micrographs of the treated titanium sheets and checked for their validity. Finally, the process presented is discussed and compared with similar laser treatments. C1 [Hoeche, Daniel; Mueller, Sven] Univ Gottingen, Inst Phys 2, D-37077 Gottingen, Germany. [Rapin, Gerd] Inst Numer & Angew Math, D-37083 Gottingen, Germany. [Shinn, Michelle] Thomas Jefferson Natl Accelerator Facil, Free Electron Laser Grp, Newport News, VA 23606 USA. [Remdt, Elvira; Gubisch, Maik; Schaaf, Peter] Tech Univ Ilmenau, Inst Werkstofftech, FG Werkstoff Elektrotech, D-98684 Ilmenau, Germany. RP Hoche, D (reprint author), Univ Gottingen, Inst Phys 2, D-37077 Gottingen, Germany. EM dhoeche@uni-goettingen.dez RI Hoche, Daniel/G-8556-2013; Schaaf, Peter/B-4934-2009 OI Hoche, Daniel/0000-0002-7719-6684; Schaaf, Peter/0000-0002-8802-6621 FU Deutsche Forschungsgemeinschaft (Bonn, Germany) [DFG Scha-632/4]; United States Department of Energy, the Office of Naval Research (Arlington, VA); Commonwealth of Virginia, and the Laser Processing Consortium (Newport News, VA) FX This work is supported by the Deutsche Forschungsgemeinschaft (Bonn, Germany), under Grant No. DFG Scha-632/4. The Jefferson Lab (Newport News, VA) is supported by the United States Department of Energy, the Office of Naval Research (Arlington, VA), the Commonwealth of Virginia, and the Laser Processing Consortium (Newport News, VA). The authors gratefully acknowledge Kevin Jordan and Joseph F. Gubeli III for their assistance at the FEL Program. NR 38 TC 11 Z9 16 U1 0 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5615 J9 METALL MATER TRANS B JI Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci. PD AUG PY 2009 VL 40 IS 4 BP 497 EP 507 DI 10.1007/s11663-009-9243-1 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 477CY UT WOS:000268496400008 ER PT J AU Zhang, ZT Sohn, IR Pettit, FS Meier, GH Sridhar, S AF Zhang, Z. T. Sohn, I. R. Pettit, F. S. Meier, G. H. Sridhar, S. TI Investigation of the Effect of Alloying Elements and Water Vapor Contents on the Oxidation and Decarburization of Transformation-Induced Plasticity Steels SO METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE LA English DT Article ID ASSISTED MULTIPHASE STEELS/; TRIP STEELS; SURFACE SEGREGATION; MAGNETIC-PROPERTIES; AIDED STEEL; AL; SI; ANTIMONY; BEHAVIOR; SILICON AB The present research deals with an investigation of the effect of alloying element additions (Si, P, and Sb) and water vapor content (P(H2O)/P(H2) = 0.01 to 0.13) on the oxidation and decarburization behavior of transformation-induced plasticity ( TRIP) steels in a gas mixture of 95 vol pct argon and 5 vol pct hydrogen/steam, by thermogravimetry (TG). The oxidation proceeds primarily as an internal oxidation front in the TRIP steels, but a thin external scale on the order of a micrometer thickness exists and is comprised primarily of fayalite ((Mn,Fe)(2)SiO(4)) and ((MnO)(x)(FeO)(1-x). The oxidation products are distributed near the surface and along grain boundaries. A comparison between calculated and measured oxidation curves indicated that the oxidation and decarburization are independent. The results for TRIP steels, both with and without an Sb addition, indicate that increasing Si and P contents accelerate, whereas Sb addition suppresses, both decarburization and oxidation rates. Water vapor content has no obvious effect on decarburization but has a pronounced effect on oxidation, and decreasing water vapor content decreases the oxidation rates. C1 [Zhang, Z. T.] Peking Univ, Coll Engn, Dept Energy & Resources Engn, Beijing 100871, Peoples R China. [Zhang, Z. T.; Sridhar, S.] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA. [Meier, G. H.; Sridhar, S.] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Sohn, I. R.] POSCO, Tech Res Labs, Jeonnam 545090, South Korea. [Pettit, F. S.; Meier, G. H.] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15260 USA. RP Zhang, ZT (reprint author), Peking Univ, Coll Engn, Dept Energy & Resources Engn, Beijing 100871, Peoples R China. EM sridhars@andrew.cmu.edu RI Zhang, Zuotai/B-1030-2012 OI Zhang, Zuotai/0000-0002-3580-6018 FU POSCO (Jeonnam, Korea) FX The financial support from POSCO (Jeonnam, Korea) is acknowledged. T. L. Baum is acknowledged for her technical help during discussions during TG and SEM measurements. Special thanks are also extended to B. Webler, J. Nakano, and C. Thorning for instructive discussions. W. Jennings, Materials Science and Engineering, Case Western Reserve University (Cleveland, OH), is gratefully acknowledged for his help on AES and XPS analysis. NR 32 TC 17 Z9 17 U1 2 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5615 J9 METALL MATER TRANS B JI Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci. PD AUG PY 2009 VL 40 IS 4 BP 567 EP 584 DI 10.1007/s11663-009-9255-x PG 18 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 477CY UT WOS:000268496400014 ER PT J AU Taheri, ML Browning, ND Lewellen, J AF Taheri, Mitra L. Browning, Nigel D. Lewellen, John TI Symposium on Ultrafast Electron Microscopy and Ultrafast Science SO MICROSCOPY AND MICROANALYSIS LA English DT Editorial Material C1 [Taheri, Mitra L.] Drexel Univ, Philadelphia, PA 19104 USA. [Browning, Nigel D.] Univ Calif Davis, Davis, CA USA. [Browning, Nigel D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Lewellen, John] Naval Postgrad Sch, Adv Proton Source, Monterey, CA USA. RP Taheri, ML (reprint author), Drexel Univ, Philadelphia, PA 19104 USA. RI Taheri, Mitra/F-1321-2011; OI Browning, Nigel/0000-0003-0491-251X NR 0 TC 4 Z9 4 U1 0 U2 2 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1431-9276 J9 MICROSC MICROANAL JI Microsc. microanal. PD AUG PY 2009 VL 15 IS 4 BP 271 EP 271 DI 10.1017/S1431927609090771 PG 1 WC Materials Science, Multidisciplinary; Microscopy SC Materials Science; Microscopy GA 476ET UT WOS:000268422000001 PM 19575827 ER PT J AU Reed, BW Armstrong, MR Browning, ND Campbell, GH Evans, JE LaGrange, T Masiel, DJ AF Reed, B. W. Armstrong, M. R. Browning, N. D. Campbell, G. H. Evans, J. E. LaGrange, T. Masiel, D. J. TI The Evolution of Ultrafast Electron Microscope Instrumentation SO MICROSCOPY AND MICROANALYSIS LA English DT Article; Proceedings Paper CT Annual Meeting on Microscopy and Microanalysis CY AUG, 2008 CL Albuquerque, NM DE transmission electron microscopy; in situ electron microscopy; dynamic transmission electron microscopy; ultrafast transmission electron microscopy; time resolution; coherence ID FIELD-EMISSION; IN-SITU; DIFFRACTION; TEM; CRYSTALLOGRAPHY AB Extrapolating from a brief survey of the literature, we outline a vision for the future development of time-resolved electron probe instruments that could offer levels of performance and flexibility that push the limits of physical possibility. This includes a discussion of the electron beam parameters (brightness and ernittance) that limit performance, the identification of a dimensionless invariant figure of merit for pulsed electron guns (the number of electrons per lateral coherence area, per pulse), and calculations of how this figure of merit determines the trade-off of spatial against temporal resolution for different imaging modes. Modern photonics' ability to control its fundamental particles at the quantum level, while enjoying extreme flexibility and a very large variety of operating modes, is held up as an example and a goal. We argue that this goal may be approached by combining ideas already in the literature, suggesting the need for large-scale collaborative development of next-generation time-resolved instruments. C1 [Reed, B. W.; Armstrong, M. R.; Browning, N. D.; Campbell, G. H.; Evans, J. E.; LaGrange, T.; Masiel, D. J.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94551 USA. [Browning, N. D.; Masiel, D. J.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. RP Reed, BW (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94551 USA. EM reed12@llnl.gov RI Campbell, Geoffrey/F-7681-2010; Reed, Bryan/C-6442-2013; OI Browning, Nigel/0000-0003-0491-251X NR 40 TC 47 Z9 47 U1 2 U2 43 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1431-9276 J9 MICROSC MICROANAL JI Microsc. microanal. PD AUG PY 2009 VL 15 IS 4 BP 272 EP 281 DI 10.1017/S1431927609090394 PG 10 WC Materials Science, Multidisciplinary; Microscopy SC Materials Science; Microscopy GA 476ET UT WOS:000268422000002 PM 19575828 ER PT J AU Berger, JA Hogan, JT Greco, MJ Schroeder, WA Nicholls, AW Browning, ND AF Berger, Joel A. Hogan, John T. Greco, Michael J. Schroeder, W. Andreas Nicholls, Alan W. Browning, Nigel D. TI DC Photoelectron Gun Parameters for Ultrafast Electron Microscopy SO MICROSCOPY AND MICROANALYSIS LA English DT Article; Proceedings Paper CT Annual Meeting on Microscopy and Microanalysis CY AUG, 2008 CL Albuquerque, NM DE ultrafast; electron microscopy; photoemission; emittance ID X-RAY; FEMTOSECOND; DIFFRACTION; EMISSION; PULSES; ACCELERATION; DYNAMICS; CLUSTERS; METALS; PURE AB We present a characterization of the performance of an ultrashort laser pulse driven DC photoelectron gun based on the thermionic emission gun design of Togawa et al. [Togawa, K., Shintake, T., Inagaki, T., Onoe, K. & Tanaka, T. (2007). Phys Rev Spec Top-AC 10, 020703]. The gun design intrinsically provides adequate optical access and accommodates the generation of similar to 1 mm(2) electron beams while contributing negligible divergent effects at the anode aperture. Both single-photon (with up to 20,000 electrons/pulse) and two-photon photoemission are observed from Ta and Cu(100) photocathodes driven by the harmonics (similar to 4 ps pulses at 261 nm and similar to 200 fs pulses at 532 nm, respectively) of a high-power femtosecond Yb:KGW laser. The results, including the dependence of the photoemission efficiency on the polarization state of the drive laser radiation, are consistent with expectations. The implications of these observations and other physical limitations for the development of a dynamic transmission electron microscope with sub-1 nm . ps space-time resolution are discussed. C1 [Berger, Joel A.; Hogan, John T.; Greco, Michael J.; Schroeder, W. Andreas] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [Nicholls, Alan W.] Univ Illinois, Res Resources Ctr, Chicago, IL 60607 USA. [Browning, Nigel D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Browning, Nigel D.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. RP Schroeder, WA (reprint author), Univ Illinois, Dept Phys, M-C 273,845 W Taylor St, Chicago, IL 60607 USA. EM andreas@uic.edu OI Browning, Nigel/0000-0003-0491-251X NR 50 TC 5 Z9 5 U1 2 U2 11 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1431-9276 J9 MICROSC MICROANAL JI Microsc. microanal. PD AUG PY 2009 VL 15 IS 4 BP 298 EP 313 DI 10.1017/S1431927609090266 PG 16 WC Materials Science, Multidisciplinary; Microscopy SC Materials Science; Microscopy GA 476ET UT WOS:000268422000005 PM 19575831 ER PT J AU Rodenbeck, CT Knudson, RT AF Rodenbeck, Christopher T. Knudson, Richard T. TI Single-supply, TTL-level Gate Switching and Radiation Hardening by Design Using E-PHEMTs SO MICROWAVE JOURNAL LA English DT Article C1 [Rodenbeck, Christopher T.; Knudson, Richard T.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Rodenbeck, CT (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 6 TC 0 Z9 0 U1 0 U2 0 PU HORIZON HOUSE PUBLICATIONS INC PI NORWOOD PA 685 CANTON ST, NORWOOD, MA 02062 USA SN 0192-6225 J9 MICROWAVE J JI Microw. J. PD AUG PY 2009 BP 20 EP + PG 5 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 489HB UT WOS:000269409700002 ER PT J AU Bearinger, JP Stone, G Dugan, LC El Dasher, B Stockton, C Conway, JW Kuenzler, T Hubbell, JA AF Bearinger, Jane P. Stone, Gary Dugan, Lawrence C. El Dasher, Bassem Stockton, Cheryl Conway, James W. Kuenzler, Tobias Hubbell, Jeffrey A. TI Porphyrin-based Photocatalytic Nanolithography A NEW FABRICATION TOOL FOR PROTEIN ARRAYS SO MOLECULAR & CELLULAR PROTEOMICS LA English DT Article ID DIP-PEN NANOLITHOGRAPHY; THIN-FILMS; ANTIBODY MICROARRAYS; IMPRINT LITHOGRAPHY; BLOCK-COPOLYMERS; OXIDE SURFACES; CELL-ADHESION; COMB POLYMERS; RGD PEPTIDES; NANOARRAYS AB Nanoarray fabrication is a multidisciplinary endeavor encompassing materials science, chemical engineering, and biology. We formed nanoarrays via a new technique, porphyrin-based photocatalytic nanolithography. The nanoarrays, with controlled features as small as 200 nm, exhibited regularly ordered patterns and may be appropriate for (a) rapid and parallel proteomics screening of immobilized biomolecules, (b) protein-protein interactions, and/or (c) biophysical and molecular biology studies involving spatially dictated ligand placement. We demonstrated protein immobilization utilizing nanoarrays fabricated via photocatalytic nanolithography on silicon substrates where the immobilized proteins are surrounded by a non-fouling polymer background. Molecular & Cellular Proteomics 8: 1823-1831, 2009. C1 [Bearinger, Jane P.; Stone, Gary; Dugan, Lawrence C.; El Dasher, Bassem; Stockton, Cheryl] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Conway, James W.] Stanford Univ, Stanford Nanofabricat Facil, Stanford, CA 94305 USA. [Kuenzler, Tobias] ETH Honggerberg, Surface Sci & Technol Lab, CH-8093 Zurich, Switzerland. [Hubbell, Jeffrey A.] Ecole Polytech Fed Lausanne, Inst Bioengn, CH-1015 Lausanne, Switzerland. [Hubbell, Jeffrey A.] Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, CH-1015 Lausanne, Switzerland. RP Bearinger, JP (reprint author), Lawrence Livermore Natl Lab, L-211,7000 E Ave, Livermore, CA 94550 USA. EM bearinger1@llnl.gov RI Hubbell, Jeffrey/A-9266-2008 OI Hubbell, Jeffrey/0000-0003-0276-5456 FU National Institutes of Health [R21 EB003991] FX This work was supported, in whole or in part, by National Institutes of Health Grant R21 EB003991. This work was partially performed under the auspices of the United States Department of Energy by Lawrence Livermore National Laboratory under Contracts W-7405-Eng-48 and DE-AC52-07NA27344. NR 54 TC 2 Z9 2 U1 1 U2 10 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 1535-9476 J9 MOL CELL PROTEOMICS JI Mol. Cell. Proteomics PD AUG PY 2009 VL 8 IS 8 BP 1823 EP 1831 DI 10.1074/mcp.M800585-MCP200 PG 9 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 483IX UT WOS:000268958700005 PM 19406753 ER PT J AU Babu, M Butland, G Diaz-Mejia, JJ Hu, P Pu, S Moreno-Hagelsieb, G Janga, SC Wodak, S Emili, A Greenblatt, J AF Babu, M. Butland, G. Diaz-Mejia, J. J. Hu, P. Pu, S. Moreno-Hagelsieb, G. Janga, S. C. Wodak, S. Emili, A. Greenblatt, J. TI Protein Complexes and Functional Pathways in S. cerevisiae and E. coli SO MOLECULAR & CELLULAR PROTEOMICS LA English DT Meeting Abstract C1 [Babu, M.; Diaz-Mejia, J. J.; Hu, P.; Janga, S. C.; Emili, A.; Greenblatt, J.] Univ Toronto, Banting & Best Dept Med Res, Toronto, ON, Canada. [Wodak, S.; Emili, A.; Greenblatt, J.] Univ Toronto, Dept Mol Genet, Toronto, ON, Canada. [Butland, G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Diaz-Mejia, J. J.; Moreno-Hagelsieb, G.] Wilfrid Laurier Univ, Dept Biol, Waterloo, ON N2L 3C5, Canada. [Pu, S.; Wodak, S.] Hosp Sick Children, Toronto, ON M5G 1X8, Canada. NR 0 TC 0 Z9 0 U1 0 U2 3 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 1535-9476 J9 MOL CELL PROTEOMICS JI Mol. Cell. Proteomics PD AUG PY 2009 BP S27 EP S27 PG 1 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 483CH UT WOS:000268939000039 ER PT J AU Du, X Rorie, J Chowdhury, S Adkins, J Anderson, G Smith, R AF Du, X. Rorie, J. Chowdhury, S. Adkins, J. Anderson, G. Smith, R. TI Identification of Protein-Protein Interactions Using Chemical Cross-linking and CID and ETD Tandem Mass Spectrometry SO MOLECULAR & CELLULAR PROTEOMICS LA English DT Meeting Abstract C1 [Du, X.; Rorie, J.] Univ N Carolina Charlotte, Charlotte, NC USA. [Chowdhury, S.; Adkins, J.; Anderson, G.; Smith, R.] Pacific NW Natl Lab, Richland, WA 99352 USA. RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 NR 2 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 1535-9476 J9 MOL CELL PROTEOMICS JI Mol. Cell. Proteomics PD AUG PY 2009 BP S33 EP S33 PG 1 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 483CH UT WOS:000268939000049 ER PT J AU Spalding, KL Bergmann, O Bernard, S Druid, H Buchholz, B Arner, PA Frisen, J AF Spalding, K. L. Bergmann, O. Bernard, S. Druid, H. Buchholz, B. Arner, P. A. Frisen, J. TI Age Determination in the Adult Human Brain and Body Using Bomb-Carbon SO MOLECULAR & CELLULAR PROTEOMICS LA English DT Meeting Abstract C1 [Spalding, K. L.; Bergmann, O.; Frisen, J.] Karolinska Inst, Dept Cell & Mol Biol, Stockholm, Sweden. [Druid, H.] Karolinska Inst, Dept Forens Med, Stockholm, Sweden. [Arner, P. A.] Karolinska Inst, Dept Med, Stockholm, Sweden. [Bernard, S.] Univ Lyon, Inst Camille Jordan, Lyon, France. [Buchholz, B.] Lawrence Livermore Natl Lab, Livermore, CA USA. NR 0 TC 0 Z9 0 U1 1 U2 5 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 1535-9476 J9 MOL CELL PROTEOMICS JI Mol. Cell. Proteomics PD AUG PY 2009 BP S43 EP S43 PG 1 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 483CH UT WOS:000268939000067 ER PT J AU Li, J Zimmerman, LJ Park, BH Tabb, DL Liebler, DC Zhang, B AF Li, Jing Zimmerman, Lisa J. Park, Byung-Hoon Tabb, David L. Liebler, Daniel C. Zhang, Bing TI Network-assisted protein identification and data interpretation in shotgun proteomics SO MOLECULAR SYSTEMS BIOLOGY LA English DT Article DE clique; data interpretation; protein identification; protein interaction network; shotgun proteomics ID YEAST SACCHAROMYCES-CEREVISIAE; BREAST-CANCER; LIQUID-CHROMATOGRAPHY; IDENTIFYING PROTEINS; EXPRESSION PROFILES; FUNCTIONAL MODULES; MASS-SPECTROMETRY; TOPOISOMERASE-I; COMPLEXES; ANNOTATION AB Protein assembly and biological interpretation of the assembled protein lists are critical steps in shotgun proteomics data analysis. Although most biological functions arise from interactions among proteins, current protein assembly pipelines treat proteins as independent entities. Usually, only individual proteins with strong experimental evidence, that is, confident proteins, are reported, whereas many possible proteins of biological interest are eliminated. We have developed a clique-enrichment approach (CEA) to rescue eliminated proteins by incorporating the relationship among proteins as embedded in a protein interaction network. In several data sets tested, CEA increased protein identification by 8-23% with an estimated accuracy of 85%. Rescued proteins were supported by existing literature or transcriptome profiling studies at similar levels as confident proteins and at a significantly higher level than abandoned ones. Applying CEA on a breast cancer data set, rescued proteins coded by well-known breast cancer genes. In addition, CEA generated a network view of the proteins and helped show the modular organization of proteins that may underpin the molecular mechanisms of the disease. Molecular Systems Biology 5: 303; published online 18 August 2009; doi: 10.1038/msb.2009.54 C1 [Li, Jing; Tabb, David L.; Liebler, Daniel C.; Zhang, Bing] Vanderbilt Univ, Sch Med, Dept Biomed Informat, Nashville, TN 37232 USA. [Park, Byung-Hoon] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Zimmerman, Lisa J.; Tabb, David L.; Liebler, Daniel C.] Vanderbilt Univ, Sch Med, Dept Biochem, Nashville, TN 37232 USA. RP Zhang, B (reprint author), Vanderbilt Univ, Sch Med, Dept Biomed Informat, 2209 Garland Ave, Nashville, TN 37232 USA. EM bing.zhang@vanderbilt.edu OI Liebler, Daniel/0000-0002-7873-3031; Tabb, David/0000-0001-7223-578X FU National Institutes of Health (NIH)/National Cancer Institute (NCI) [R01 CA126218]; NCI [1U24CA126479] FX We thank Dr Whiteaker and Dr Kislinger for making the mouse organ data set and the mouse breast cancer data set available, respectively. This work was conducted, in part, using the resources of the Advanced Computing Center for Research and Education at Vanderbilt University, Nashville, TN. This work was supported by the National Institutes of Health (NIH)/National Cancer Institute (NCI) through grant R01 CA126218 and the NCI Clinical Proteomic Technologies Assessment for Cancer program through grant 1U24CA126479. NR 51 TC 33 Z9 33 U1 0 U2 8 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1744-4292 J9 MOL SYST BIOL JI Mol. Syst. Biol. PD AUG PY 2009 VL 5 AR 303 DI 10.1038/msb.2009.54 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 566RG UT WOS:000275390100003 PM 19690572 ER PT J AU Sahlen, M Viana, PTP Liddle, AR Romer, AK Davidson, M Hosmer, M Lloyd-Davies, E Sabirli, K Collins, CA Freeman, PE Hilton, M Hoyle, B Kay, ST Mann, RG Mehrtens, N Miller, CJ Nichol, RC Stanford, SA West, MJ AF Sahlen, Martin Viana, Pedro T. P. Liddle, Andrew R. Romer, A. Kathy Davidson, Michael Hosmer, Mark Lloyd-Davies, Ed Sabirli, Kivanc Collins, Chris A. Freeman, Peter E. Hilton, Matt Hoyle, Ben Kay, Scott T. Mann, Robert G. Mehrtens, Nicola Miller, Christopher J. Nichol, Robert C. Stanford, S. Adam West, Michael J. CA XCS Collaboration TI The XMM Cluster Survey: forecasting cosmological and cluster scaling-relation parameter constraints SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Review DE methods: statistical; galaxies: clusters: general; cosmological parameters; cosmology: observations; cosmology: theory; X-rays: galaxies: clusters ID X-RAY-CLUSTERS; DIGITAL SKY SURVEY; LUMINOSITY-TEMPERATURE RELATION; GAS MASS FRACTION; MICROWAVE BACKGROUND ANISOTROPIES; RELAXED GALAXY CLUSTERS; PROBE WMAP OBSERVATIONS; DARK-MATTER HALOES; POWER-SPECTRUM; HIGH-REDSHIFT AB We forecast the constraints on the values of Sigma(8), (m) and cluster scaling-relation parameters which we expect to obtain from the XMM Cluster Survey (XCS). We assume a flat Lambda cold dark matter Universe and perform a Monte Carlo Markov Chain analysis of the evolution of the number density of galaxy clusters that takes into account a detailed simulated selection function. Comparing our current observed number of clusters shows good agreement with predictions. We determine the expected degradation of the constraints as a result of self-calibrating the luminosity-temperature relation (with scatter), including temperature measurement errors, and relying on photometric methods for the estimation of galaxy cluster redshifts. We examine the effects of systematic errors in scaling relation and measurement error assumptions. Using only (T, z) self-calibration, we expect to measure (m) to +/- 0.03 (and (Lambda) to the same accuracy assuming flatness), and Sigma(8) to +/- 0.05, also constraining the normalization and slope of the luminosity-temperature relation to +/- 6 and +/- 13 per cent (at 1 Sigma), respectively, in the process. Self-calibration fails to jointly constrain the scatter and redshift evolution of the luminosity-temperature relation significantly. Additional archival and/or follow-up data will improve on this. We do not expect measurement errors or imperfect knowledge of their distribution to degrade constraints significantly. Scaling-relation systematics can easily lead to cosmological constraints 2 Sigma or more away from the fiducial model. Our treatment is the first exact treatment to this level of detail, and introduces a new 'smoothed ML' (Maximum Likelihood) estimate of expected constraints. C1 [Sahlen, Martin; Liddle, Andrew R.; Romer, A. Kathy; Hosmer, Mark; Lloyd-Davies, Ed; Mehrtens, Nicola] Univ Sussex, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Viana, Pedro T. P.] Univ Porto, Fac Ciencias, Dept Matemat Aplicada, P-4169007 Oporto, Portugal. [Davidson, Michael; Mann, Robert G.] Univ Edinburgh, Inst Astron, SUPA, Edinburgh EH9 9HJ, Midlothian, Scotland. [Collins, Chris A.] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. [Hilton, Matt] Univ KwaZulu Natal, Sch Math Sci, Astrophys & Cosmol Res Unit, ZA-4000 Durban, South Africa. [Hilton, Matt] S African Astron Observ, ZA-7935 Cape Town, South Africa. [Hoyle, Ben; Nichol, Robert C.] Univ Portsmouth, ICG, Portsmouth PO1 2EG, Hants, England. [Miller, Christopher J.] Natl Opt Astron Observ, Cerro Tololo Inter Amer Observ, Tucson, AZ 85719 USA. [Stanford, S. Adam] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Stanford, S. Adam] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94551 USA. [West, Michael J.] Gemini Observ, La Serena, Chile. [West, Michael J.] European So Observ, Santiago 19, Chile. [Viana, Pedro T. P.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. [Sabirli, Kivanc; Freeman, Peter E.] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15217 USA. [Kay, Scott T.] Univ Manchester, Sch Phys & Astron, Ctr Astrophys, Jodrell Bank, Manchester M13 9PL, Lancs, England. RP Sahlen, M (reprint author), Univ Sussex, Ctr Astron, Brighton BN1 9QH, E Sussex, England. EM m.sahlen@sussex.ac.uk RI Hilton, Matthew James/N-5860-2013; OI hoyle, ben/0000-0002-2571-1357; Viana, Pedro/0000-0003-1572-8531; Sahlen, Martin/0000-0003-0973-4804 FU Swedish Galo Foundation; Gunvor & Josef Aner Foundation; C. E. Levin Foundation; Sir Richard Stapley Educational Trust; POCTI [POCI2010, CTE-AST/58888/2004]; PPARC/STFC; RAS Hosie Bequest; XMM; NASA-LTSA [NAG-11634]; Lawrence Livermore National Laboratory [W-7405-Eng-48]; HEFCE; STFC FX MS was partially supported by the Swedish Galo, Gunvor & Josef Aner and C. E. Levin foundations and the Sir Richard Stapley Educational Trust. PTPV acknowledges the support of POCI2010 through the project POCTI/CTE-AST/58888/2004. AKR, EL-D, MH and NM were supported by PPARC/STFC, and MD in part by the RAS Hosie Bequest. MS, MD, KS and MH acknowledge additional financial support from their respective universities. AKR and KS acknowledge financial support from the XMM and Chandra guest observer programmes and from the NASA-LTSA award NAG-11634. The work by SAS was performed under the auspices of the U.S. Department of Energy, National Nuclear Security Administration by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. This work is based on data obtained by XMM-Newton, an ESA science mission funded by contributions from ESA member states and from NASA. The research made use of the NASA/GSFC-supported xspec software, and was conducted in co-operation with SGI/Intel utilizing the Altix 4700 supercomputer (COSMOS), also funded by HEFCE and STFC. We are grateful to Ronald Cools and the NINES group at KU Leuven for making the numerical integration package cubpack available to us. We thank Ben Maughan and Jochen Weller for useful discussions. NR 153 TC 38 Z9 38 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD AUG 1 PY 2009 VL 397 IS 2 BP 577 EP 607 DI 10.1111/j.1365-2966.2009.14923.x PG 31 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 472AJ UT WOS:000268100700001 ER PT J AU Weissmuller, J Newman, RC Jin, HJ Hodge, AM Kysar, JW AF Weissmueller, Joerg Newman, Roger C. Jin, Hai-Jun Hodge, Andrea M. Kysar, Jeffrey W. TI Nanoporous Metals by Alloy Corrosion: Formation and Mechanical Properties SO MRS BULLETIN LA English DT Article ID SILVER-GOLD ALLOYS; STRESS-CHARGE RESPONSE; CU-AU ALLOYS; SURFACE-STRESS; NITRIC-ACID; ANODIC-DISSOLUTION; NOBLE-METAL; SELECTIVE DISSOLUTION; YOUNGS MODULUS; ALUMINUM FOAMS AB Nanoporous metals prepared by the corrosion of an alloy can take the form of monolithic, millimeter-sized bodies containing approximately 10(15) nanoscale ligaments per cubic millimeter. The ligament size can reach down to the very limits of stability of nanoscale objects. The processes by which nanoporous metals are formed have continued to be fascinating, even though their study in relation to surface treatment, metal refinement, and failure mechanisms can be traced back to ancient times. In fact, the prospect of using alloy corrosion as a means of making nanomaterials for fundamental studies and functional applications has led to a revived interest in the process. The quite distinct mechanical properties of nanoporous metals are one of the focus points of this interest, as relevant studies probe the deformation behavior of crystals at the lower end of the size scale. Furthermore, the coupling of bulk stress and strain to the forces acting along the surface of nanoporous metals provide unique opportunities for controlling the mechanical behavior through external variables such as the electrical or chemical potentials. C1 [Weissmueller, Joerg; Jin, Hai-Jun] Forschungszentrum Karlsruhe, Inst Nanotechnol, D-76021 Karlsruhe, Germany. [Weissmueller, Joerg] Univ Saarland, Dept Tech Phys, D-6600 Saarbrucken, Germany. [Weissmueller, Joerg] Karlsruhe Inst Technol, Karlsruhe, Germany. [Weissmueller, Joerg] Univ Dundee, Dundee DD1 4HN, Scotland. [Weissmueller, Joerg] Inst New Mat, Saarbrucken, Germany. [Newman, Roger C.] Univ Toronto, Dept Chem Engn & Appl Chem, Toronto, ON M5S 1A1, Canada. [Newman, Roger C.] Univ Manchester, Inst Sci & Technol, Manchester M13 9PL, Lancs, England. [Hodge, Andrea M.] Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA. [Hodge, Andrea M.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Hodge, Andrea M.] Univ So Calif, Mat Nanotechnol Grp, Los Angeles, CA 90089 USA. [Kysar, Jeffrey W.] Columbia Univ, Dept Mech Engn, New York, NY 10027 USA. RP Weissmuller, J (reprint author), Forschungszentrum Karlsruhe, Inst Nanotechnol, POB 3640, D-76021 Karlsruhe, Germany. EM Joerg.Weissmueller@int.fzk.de; roger.newman@utoronto.ca; haijun.jin@int.fzk.de; ahodge@usc.edu; jk2079@columbia.edu RI Weissmuller, Jorg/C-3967-2009 OI Weissmuller, Jorg/0000-0002-8958-4414 FU National Science Foundation [CMMI-0826093] FX JWK is grateful to the National Science Foundation CMMI-0826093 for support. NR 100 TC 138 Z9 142 U1 14 U2 110 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0883-7694 EI 1938-1425 J9 MRS BULL JI MRS Bull. PD AUG PY 2009 VL 34 IS 8 BP 577 EP 586 DI 10.1557/mrs2009.157 PG 10 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 485GZ UT WOS:000269110500012 ER PT J AU Kim, N Kim, J Uram, TD AF Kim, Namgon Kim, JongWon Uram, Thomas D. TI A hybrid multicast connectivity solution for multi-party collaborative environments SO MULTIMEDIA TOOLS AND APPLICATIONS LA English DT Article DE Application-layer multicast; Multicast connectivity; UDP multicast tunneling protocol; Multicast island; Advanced collaboration environment AB In multi-party collaborative environments, a group of users can share multiple media streams via IP multicasting. However, despite of the efficiency of IP multicast, it is not widely available and alternative application-layer multicast approaches are introduced. Application-layer multicast is advantageous, however, it incurs additional processing delays. In this paper, we present a new hybrid-style application-layer multicast solution that satisfies both network efficiency and easy deployment. We achieve this goal by connecting multicast islands through UDP tunnels employing UMTP (UDP multicast tunneling protocol). We also design a MPROBE protocol to remove multicast loop among multicast island in real Internet. We verify the feasibility of the proposed solution by implementing a prototype tool, AG Connector, that works on Access Grid multi-party collaborative environment. C1 [Kim, Namgon; Kim, JongWon] GIST Networked Media Lab, Kwangju 500712, South Korea. [Uram, Thomas D.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Kim, J (reprint author), GIST Networked Media Lab, 1 Oryong Dong, Kwangju 500712, South Korea. EM ngkim@nm.gist.ac.kr; jongwon@nm.gist.ac.kr; turam@mcs.anl.gov FU Ministry of Knowledge Economy, Korea [IITA-2009-C1090-0902-0006]; US. Department of Energy [W-31-109-Eng-38] FX This research was supported by the Ministry of Knowledge Economy, Korea, under the Information Technology Research Center support program supervised by the Institute of Information Technology Advancement (grant number IITA-2009-C1090-0902-0006). We thank the Futures Laboratory and Access Grid team at Argonne National Laboratory and The University of Chicago for their support. Thomas Uram's and Namgon Kim's effort has been provided in part by the US. Department of Energy under Contract W-31-109-Eng-38. Also, we would like to appreciate JaeSeung Kwak and JeongHoon Moon at Korea Institute of Science and Technology Information (KISTI) for interesting comments, encouragements, and feedbacks. NR 24 TC 2 Z9 2 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1380-7501 J9 MULTIMED TOOLS APPL JI Multimed. Tools Appl. PD AUG PY 2009 VL 44 IS 1 BP 17 EP 37 DI 10.1007/s11042-009-0266-z PG 21 WC Computer Science, Information Systems; Computer Science, Software Engineering; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA 457KJ UT WOS:000266926600002 ER PT J AU Eom, D Prezzi, D Rim, KT Zhou, H Lefenfeld, M Xiao, S Nuckolls, C Hybertsen, MS Heinz, TF Flynn, GW AF Eom, Daejin Prezzi, Deborah Rim, Kwang Taeg Zhou, Hui Lefenfeld, Michael Xiao, Shengxiong Nuckolls, Colin Hybertsen, Mark S. Heinz, Tony F. Flynn, George W. TI Structure and Electronic Properties of Graphene Nanoislands on Co(0001) SO NANO LETTERS LA English DT Article ID SCANNING TUNNELING SPECTROSCOPY; MONOLAYER GRAPHITE; SURFACE; NI(111); CARBON; STATES; FILMS AB We have grown well-ordered graphene adlayers on the lattice-matched Co(0001) surface, Low-temperature scanning tunneling microscopy measurements demonstrate an on-top registry of the carbon atoms with respect to the Co(0001) surface. The tunneling conductance spectrum shows that the electronic structure is substantially altered from that of isolated graphene, implying a strong coupling between graphene and cobalt states. Calculations using density functional theory confirm that structures with on-top registry have the lowest energy and provide clear evidence for strong electronic coupling between the graphene pi-states and Co d-states at the interface. C1 [Hybertsen, Mark S.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Eom, Daejin; Prezzi, Deborah; Heinz, Tony F.; Flynn, George W.] Columbia Univ, Nanoscale Sci & Engn Ctr, New York, NY 10027 USA. [Eom, Daejin; Rim, Kwang Taeg; Lefenfeld, Michael; Xiao, Shengxiong; Nuckolls, Colin; Flynn, George W.] Columbia Univ, Dept Chem, New York, NY 10027 USA. [Eom, Daejin; Zhou, Hui; Heinz, Tony F.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Eom, Daejin; Zhou, Hui; Heinz, Tony F.] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA. [Prezzi, Deborah] INFM CNR S3 Natl Res Ctr, I-41100 Modena, Italy. RP Hybertsen, MS (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM mhyberts@bnl.gov; tfh3@columbia.edu; gwfl@columbia.edu RI Prezzi, Deborah/E-8403-2010; bartelsdoe, ludwig/F-8008-2011; Xiao, Shengxiong/C-6156-2009; Heinz, Tony/K-7797-2015; OI Prezzi, Deborah/0000-0002-7294-7450; Xiao, Shengxiong/0000-0002-9151-9558; Heinz, Tony/0000-0003-1365-9464; Hybertsen, Mark S/0000-0003-3596-9754 FU U.S. Department of Energy [DE-FG02-88-ER13937, DE-FG02-03ER 15463, DE-AC02-98CH 10886]; National Science Foundation [CHE-06-41523, CHE-07-01483]; New York State Office of Science, Technology, and Academic Research (NYSTAR); Fondazione Cassa di Risparmio di Modena FX This work was supported by the U.S. Department of Energy (DE-FG02-88-ER13937 to G.W.F., DE-FG02-03ER 15463 to T.F.H., and DE-AC02-98CH 10886 to M.S.H.), by the National Science Foundation through the NSEC Program (CHE-06-41523), by the New York State Office of Science, Technology, and Academic Research (NYSTAR), and by the "Fondazione Cassa di Risparmio di Modena" (to D.P.). Computing time was provided by CINECA and the Center for Functional Nanomaterials at Brookhaven National Laboratory. Equipment and material support was provided by the National Science Foundation through Grant CHE-07-01483 (to G.W.F.). NR 36 TC 153 Z9 154 U1 10 U2 98 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD AUG PY 2009 VL 9 IS 8 BP 2844 EP 2848 DI 10.1021/nl900927f PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 481HB UT WOS:000268797200008 PM 19630380 ER PT J AU Jamshidi, A Neale, SL Yu, K Pauzauskie, PJ Schuck, PJ Valley, JK Hsu, HY Ohta, AT Wu, MC AF Jamshidi, Arash Neale, Steven L. Yu, Kyoungsik Pauzauskie, Peter J. Schuck, Peter James Valley, Justin K. Hsu, Hsan-Yin Ohta, Aaron T. Wu, Ming C. TI NanoPen: Dynamic, Low-Power, and Light-Actuated Patterning of Nanoparticles SO NANO LETTERS LA English DT Article ID DIP-PEN NANOLITHOGRAPHY; OPTOELECTRONIC TWEEZERS; SEMICONDUCTOR; MANIPULATION; ARRAYS; LITHOGRAPHY; INTEGRATION; SILICON; FUSION AB We introduce NanoPen, a novel technique for low optical power intensity, flexible, real-time reconfigurable, and large-scale light-actuated patterning of single or multiple nanoparticles, such as metallic spherical nanocrystals, and one-dimensional nanostructures, such as carbon nanotubes. NanoPen is capable of dynamically patterning nanoparticles over an area of thousands of square micrometers with light intensities <10 W/cm(2) (using a commercial projector) within seconds. Various arbitrary nanoparticle patterns and arrays (including a 10 x 10 array covering a 0.025 mm(2) area) are demonstrated using this capability. One application of NanoPen is presented through the creation of surface-enhanced Raman spectroscopy hot-spots by patterning gold nanoparticles of 90 nm diameter with enhancement factors exceeding 10(7) and picomolar concentration sensitivities. C1 [Jamshidi, Arash; Neale, Steven L.; Yu, Kyoungsik; Valley, Justin K.; Hsu, Hsan-Yin; Ohta, Aaron T.; Wu, Ming C.] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Pauzauskie, Peter J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Wu, MC (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. EM wu@eecs.berkeley.edu RI Yu, Kyoungsik/C-7207-2009; Yu, Kyoungsik/C-2078-2011; Neale, Steven/D-1937-2009; Pauzauskie, Peter/A-1316-2014 OI Neale, Steven/0000-0002-4588-276X; FU DARPA SERS ST Fundamentals [FA9550-08-1-0257]; National Institutes of Health [PN2 EY018228]; Lawrence Livermore National Laboratory FX This work was supported in part by DARPA SERS S&T Fundamentals #FA9550-08-1-0257 (Dr. Dennis Polla) and the National Institutes of Health through the NTH Roadmap for Medical Research (Grant #PN2 EY018228). The authors thank Professor Peidong Yang, Professor Luke P. Lee, Dr. Yeonho Choi, Amit Lakhani, and Tae Joon Seok for valuable discussions and comments. P.J.P. thanks the Lawrence Livermore National Laboratory for support through the Lawrence postdoctoral fellowship. NR 40 TC 48 Z9 51 U1 0 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD AUG PY 2009 VL 9 IS 8 BP 2921 EP 2925 DI 10.1021/nl901239a PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 481HB UT WOS:000268797200021 PM 19588985 ER PT J AU Amini, S Cordoba, JM Daemen, L McGhie, AR Ni, CY Hultman, L Oden, M Barsoum, MW AF Amini, Shahram Cordoba, Jose M. Daemen, Luke McGhie, Andrew R. Ni, Chaoying Hultman, Lars Oden, Magnus Barsoum, Michel W. TI On the Stability of Mg Nanograins to Coarsening after Repeated Melting SO NANO LETTERS LA English DT Article ID NANOSTRUCTURED MATERIALS; ALUMINUM NANOPARTICLES; GOLD PARTICLES; SIZE; NANOCRYSTALS; TEMPERATURE; COMPOSITE; BEHAVIOR AB Herein we report on the extraordinary thermal stability of similar to 35 nm Mg-nanograins that constitute the matrix of a Ti2AlC-Mg composite that has previously been shown to have excellent mechanical properties. The microstructure is so stable that heating the composite three times to 700 degrees C, which is 50 degrees C over the melting point of Mg, not only resulted in the repeated melting of the Mg, but surprisingly and within the resolution of our differential scanning calorimeter, did not lead to any coarsening. The reduction in the Mg melting point due to the nanograins was similar to 50 degrees C. X-ray diffraction and neutron spectroscopy results suggest that thin, amorphous, and/or poorly crystallized rutile, anatase, and/or magnesia layers separate the Mg nanograins and prevent them from coarsening. Clearly that layer is thin enough, and thus mechanically robust enough, to survive the melting and solidification stresses encountered during cycling. Annealing in hydrogen at 250 degrees C for 20 h, also did not seem to alter the grain size significantly. C1 [Amini, Shahram; Barsoum, Michel W.] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Hultman, Lars] Linkoping Univ, Dept Phys, IFM, Thin Film Phys Div, S-58183 Linkoping, Sweden. [Daemen, Luke] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. [McGhie, Andrew R.] Univ Penn, Res Struct Matter Lab, Philadelphia, PA 19104 USA. [Ni, Chaoying] Univ Delaware, Dept Mat Sci & Engn, Newark, DE 19716 USA. RP Amini, S (reprint author), Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. EM Shahram@Drexel.Edu RI Oden, Magnus/E-9662-2010; Ni, Chaoying/B-7300-2012; Lujan Center, LANL/G-4896-2012; Cordoba, Jose/B-1029-2011 OI Oden, Magnus/0000-0002-2286-5588; Cordoba, Jose/0000-0003-1699-7928 FU NSF [SGER 0736218]; ARO [DAAD49-03-1-0213]; Swedish Foundation for Strategic Research, SSF; Department of Energy's Office of Basic Energy Sciences [DE-AC52-06NA25396] FX This work was supported by the Metals Division of NSF (SGER 0736218) and ARO (DAAD49-03-1-0213) and the Swedish Foundation for Strategic Research, SSF. M.W.B. would also like to acknowledge the financial support of the Wheatley Scholar of the Lujan Center at Los Alamos National Laboratory, which is funded by the Department of Energy's Office of Basic Energy Sciences under DOE Contract DE-AC52-06NA25396. NR 27 TC 7 Z9 7 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD AUG PY 2009 VL 9 IS 8 BP 3082 EP 3086 DI 10.1021/nl9015683 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 481HB UT WOS:000268797200049 PM 19606848 ER PT J AU Dueber, JE Wu, GC Malmirchegini, GR Moon, TS Petzold, CJ Ullal, AV Prather, KLJ Keasling, JD AF Dueber, John E. Wu, Gabriel C. Malmirchegini, G. Reza Moon, Tae Seok Petzold, Christopher J. Ullal, Adeeti V. Prather, Kristala L. J. Keasling, Jay D. TI Synthetic protein scaffolds provide modular control over metabolic flux SO NATURE BIOTECHNOLOGY LA English DT Article ID ESCHERICHIA-COLI; ISOPRENOID PRODUCTION; BIFUNCTIONAL ENZYME; MEVALONATE PATHWAY; TYROSINE KINASE; GENE FUSION; 1,3-PROPANEDIOL; SUBSTRATE; COMPLEX; EXPRESSION AB Engineered metabolic pathways constructed from enzymes heterologous to the production host often suffer from flux imbalances, as they typically lack the regulatory mechanisms characteristic of natural metabolism. In an attempt to increase the effective concentration of each component of a pathway of interest, we built synthetic protein scaffolds that spatially recruit metabolic enzymes in a designable manner. Scaffolds bearing interaction domains from metazoan signaling proteins specifically accrue pathway enzymes tagged with their cognate peptide ligands. The natural modularity of these domains enabled us to optimize the stoichiometry of three mevalonate biosynthetic enzymes recruited to a synthetic complex and thereby achieve 77-fold improvement in product titer with low enzyme expression and reduced metabolic load. One of the same scaffolds was used to triple the yield of glucaric acid, despite high titers (0.5 g/I) without the synthetic complex. These strategies should prove generalizeable to other metabolic pathways and programmable for fine-tuning pathway flux. C1 [Dueber, John E.; Wu, Gabriel C.; Malmirchegini, G. Reza; Keasling, Jay D.] Univ Calif Berkeley, Calif Inst Quantitat Biomed Res QB3, Berkeley, CA 94720 USA. [Dueber, John E.; Wu, Gabriel C.; Keasling, Jay D.] Univ Calif Berkeley, SynBERC, Berkeley, CA 94720 USA. [Moon, Tae Seok; Prather, Kristala L. J.] MIT, Dept Chem Engn, Cambridge, MA 02139 USA. [Moon, Tae Seok; Prather, Kristala L. J.] MIT, SynBERC, Cambridge, MA 02139 USA. [Petzold, Christopher J.; Keasling, Jay D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Petzold, Christopher J.; Keasling, Jay D.] Joint BioEnergy Inst, Emeryville, CA USA. [Ullal, Adeeti V.; Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. RP Dueber, JE (reprint author), Univ Calif Berkeley, Calif Inst Quantitat Biomed Res QB3, Berkeley, CA 94720 USA. EM jdueber@berkeley.edu RI Keasling, Jay/J-9162-2012 OI Keasling, Jay/0000-0003-4170-6088 FU UC Berkeley; QB3 Institute; National Science Foundation (NSF); Synthetic Biology Engineering Research Center [EEC-0540879]; NSF [CBET-0756801]; Bill and Melinda Gates Foundation; Joint BioEnergy Institute; Office of Naval Research Young Investigator Program [N000140510656] FX We thank A. Arkin, J. Dietrich, E. Dueber, L. Katz, and W. Whitaker for comments and discussion during the preparation of the manuscript. We also thank members of the Dueber and Keasling labs for experimental help and discussions. This work was supported by funding from UC Berkeley QB3 Institute (J. E. D.), National Science Foundation (NSF) Synthetic Biology Engineering Research Center grant no. EEC-0540879 (J. E. D., J. D. K, K. L. J. P., T. S. M.), NSF grant no. CBET-0756801 (J. E. D.), the Bill and Melinda Gates Foundation (J. D. K), Joint BioEnergy Institute (J. D. K.), the Office of Naval Research Young Investigator Program grant no. N000140510656 (K. L. J. P. and T. S. M.). NR 38 TC 471 Z9 501 U1 28 U2 275 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1087-0156 J9 NAT BIOTECHNOL JI Nat. Biotechnol. PD AUG PY 2009 VL 27 IS 8 BP 753 EP U107 DI 10.1038/nbt.1557 PG 9 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 480YY UT WOS:000268774500026 PM 19648908 ER PT J AU Phillips, CM Meng, XD Zhang, L Chretien, JH Urnov, FD Dernburg, AF AF Phillips, Carolyn M. Meng, Xiangdong Zhang, Lei Chretien, Jacqueline H. Urnov, Fyodor D. Dernburg, Abby F. TI Identification of chromosome sequence motifs that mediate meiotic pairing and synapsis in C. elegans SO NATURE CELL BIOLOGY LA English DT Article ID CAENORHABDITIS-ELEGANS; X-CHROMOSOME; RECOMBINATION; MEIOSIS; PROTEINS; COMPLEX; GENOME; MECHANISMS; MAP AB Caenorhabditis elegans chromosomes contain specialized regions called pairing centres, which mediate homologous pairing and synapsis during meiosis. Four related proteins, ZIM-1, 2, 3 and HIM-8, associate with these sites and are required for their essential functions. Here we show that short sequence elements enriched in the corresponding chromosome regions selectively recruit these proteins in vivo. In vitro analysis using SELEX indicates that the binding specificity of each protein arises from a combination of two zinc fingers and an adjacent domain. Insertion of a cluster of recruiting motifs into a chromosome lacking its endogenous pairing centre is sufficient to restore homologous pairing, synapsis, crossover recombination and segregation. These findings help to illuminate how chromosome sites mediate essential aspects of meiotic chromosome dynamics. C1 [Phillips, Carolyn M.; Chretien, Jacqueline H.; Dernburg, Abby F.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Meng, Xiangdong; Zhang, Lei; Urnov, Fyodor D.] Sangamo BioSci, Pt Richmond Tech Ctr, Richmond, CA 94804 USA. [Chretien, Jacqueline H.; Dernburg, Abby F.] Howard Hughes Med Inst, Chevy Chase, MD USA. [Dernburg, Abby F.] Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA USA. RP Dernburg, AF (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 470 Stanley Hall,MC 3220, Berkeley, CA 94720 USA. EM afdernburg@lbl.gov RI Phillips, Carolyn/E-8305-2011; OI Phillips, Carolyn/0000-0002-6228-6468; Dernburg, Abby/0000-0001-8037-1079 FU NSF; Burroughs Wellcome Career Award [1000950]; NIH [R01 GM065591] FX This work was supported by an NSF Predoctoral Fellowship (C. M. P.) and by Burroughs Wellcome Career Award 1000950 and NIH R01 GM065591 (A. F. D.). We are grateful to Anne Villeneuve for SYP-1 antibodies, Barbara Meyer, Kevin Corbett and Ed Rebar for valuable suggestions, to members of the Meyer lab for assistance with the extrachromosomal array assay and to members of the Dernburg lab and anonymous referees for helpful comments on the manuscript. NR 30 TC 59 Z9 64 U1 0 U2 12 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1465-7392 J9 NAT CELL BIOL JI Nat. Cell Biol. PD AUG PY 2009 VL 11 IS 8 BP 934 EP U66 DI 10.1038/ncb1904 PG 26 WC Cell Biology SC Cell Biology GA 478MU UT WOS:000268593200006 PM 19620970 ER PT J AU Rodier, F Coppe, JP Patil, CK Hoeijmakers, WAM Munoz, DP Raza, SR Freund, A Campeau, E Davalos, AR Campisi, J AF Rodier, Francis Coppe, Jean-Philippe Patil, Christopher K. Hoeijmakers, Wieteke A. M. Munoz, Denise P. Raza, Saba R. Freund, Adam Campeau, Eric Davalos, Albert R. Campisi, Judith TI Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion SO NATURE CELL BIOLOGY LA English DT Article ID ONCOGENE-INDUCED SENESCENCE; CELLULAR SENESCENCE; TUMOR SUPPRESSION; HUMAN FIBROBLASTS; GROWTH-FACTOR; HUMAN-CELLS; CANCER; P53; TUMORIGENESIS; TELOMERES AB Cellular senescence suppresses cancer by stably arresting the proliferation of damaged cells(1). Paradoxically, senescent cells also secrete factors that alter tissue microenvironments(2). The pathways regulating this secretion are unknown. We show that damaged human cells develop persistent chromatin lesions bearing hallmarks of DNA double-strand breaks (DSBs), which initiate increased secretion of inflammatory cytokines such as interleukin-6 (IL-6). Cytokine secretion occurred only after establishment of persistent DNA damage signalling, usually associated with senescence, not after transient DNA damage responses (DDRs). Initiation and maintenance of this cytokine response required the DDR proteins ATM, NBS1 and CHK2, but not the cell-cycle arrest enforcers p53 and pRb. ATM was also essential for IL-6 secretion during oncogene-induced senescence and by damaged cells that bypass senescence. Furthermore, DDR activity and IL-6 were elevated in human cancers, and ATM-depletion suppressed the ability of senescent cells to stimulate IL-6-dependent cancer cell invasiveness. Thus, in addition to orchestrating cell-cycle checkpoints and DNA repair, a new and important role of the DDR is to allow damaged cells to communicate their compromised state to the surrounding tissue. C1 [Rodier, Francis; Coppe, Jean-Philippe; Patil, Christopher K.; Hoeijmakers, Wieteke A. M.; Raza, Saba R.; Freund, Adam; Campeau, Eric; Davalos, Albert R.; Campisi, Judith] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Rodier, Francis; Munoz, Denise P.; Campisi, Judith] Buck Inst Age Res, Novato, CA 94545 USA. [Freund, Adam] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. RP Campisi, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM jcampisi@lbl.gov RI Hoeijmakers, Wieteke/E-4022-2012 FU National Institutes of Health [AG017242, AG025708]; CABCRP [11IB-0153]; Larry L. Hillblom Foundation; Netherlands Organization for International Cooperation in Higher Education [HSP-TP 06/78]; Dutch Cancer Society; Department of Energy [DE-AC03-76SF00098] FX We thank C. Beausejour (grant CIHR # MPO-79317) for help in the design of a modified lentiviral expression system, R. Teachenor, V. Chu and G. Tang for valuable technical assistance, and P. Desprez for insightful comments on the manuscript. This work was supported by National Institutes of Health grants AG017242 (J.C.) and AG025708 (Buck Institute), a CABCRP grant 11IB-0153 (A. R. D.), a Larry L. Hillblom Foundation fellowship (C. K. P.), the Netherlands Organization for International Cooperation in Higher Education (Nuffic, HSP-TP 06/78), the Dutch Cancer Society (W. A. M. H.), and the Department of Energy under contract DE-AC03-76SF00098 to the University of California. NR 31 TC 591 Z9 604 U1 5 U2 56 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1465-7392 J9 NAT CELL BIOL JI Nat. Cell Biol. PD AUG PY 2009 VL 11 IS 8 BP 973 EP U142 DI 10.1038/ncb1909 PG 15 WC Cell Biology SC Cell Biology GA 478MU UT WOS:000268593200011 PM 19597488 ER PT J AU Kawakami, T Tsujimoto, Y Kageyama, H Chen, XQ Fu, CL Tassel, C Kitada, A Suto, S Hirama, K Sekiya, Y Makino, Y Okada, T Yagi, T Hayashi, N Yoshimura, K Nasu, S Podloucky, R Takano, M AF Kawakami, T. Tsujimoto, Y. Kageyama, H. Chen, Xing-Qiu Fu, C. L. Tassel, C. Kitada, A. Suto, S. Hirama, K. Sekiya, Y. Makino, Y. Okada, T. Yagi, T. Hayashi, N. Yoshimura, K. Nasu, S. Podloucky, R. Takano, M. TI Spin transition in a four-coordinate iron oxide SO NATURE CHEMISTRY LA English DT Article ID SQUARE-PLANAR COORDINATION; LOWER MANTLE; TUNNELING MAGNETORESISTANCE; CROSSOVER; SYSTEM; DIFFRACTION; FERROMAGNET; EXCHANGE; STATE AB Spin transition has attracted the interest of researchers in various fields since the early 1930s, with thousands of examples now recognized, including those in minerals and biomolecules. However, so far the metal centres in which it has been found to occur are almost always octahedral six-coordinate 3d(4) to 3d(7) metals, such as Fe(II). A five-coordinate centre is only rarely seen. Here we report that under pressure SrFe(II)O(2), which features a four-fold square-planar coordination, exhibits a transition from high spin (S = 2) to intermediate spin (S = 1). This is accompanied by a transition from an antiferromagnetic insulating state to a ferromagnetic so-called half-metallic state: only half of the spin-down (d(xz),d(yz)) states are filled. These results highlight the square-planar coordinated iron oxides as a new class of magnetic and electric materials. C1 [Tsujimoto, Y.; Kageyama, H.; Tassel, C.; Kitada, A.; Yoshimura, K.] Kyoto Univ, Grad Sch Sci, Dept Chem, Sakyo Ku, Kyoto 6068502, Japan. [Kawakami, T.] Nihon Univ, Inst Quantum Sci, Chiyoda Ku, Tokyo 1018308, Japan. [Chen, Xing-Qiu; Fu, C. L.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Suto, S.; Hirama, K.; Sekiya, Y.; Makino, Y.] Nihon Univ, Grad Sch Quantum Sci & Technol, Chiyoda Ku, Tokyo 1018308, Japan. [Okada, T.; Yagi, T.] Univ Tokyo, Inst Solid State Phys, Chiba 2778581, Japan. [Hayashi, N.] Kyoto Univ, Grad Sch Human & Environm Studies, Sakyo Ku, Kyoto 6068501, Japan. [Nasu, S.] Kyoto Univ, Inst Chem Res, Kyoto 6110011, Japan. [Podloucky, R.] Univ Vienna, Inst Phys Chem, Vienna, Austria. [Takano, M.] Kyoto Univ, Inst Integrated Cell Mat Sci, Sakyo Ku, Kyoto 6060801, Japan. RP Kageyama, H (reprint author), Kyoto Univ, Grad Sch Sci, Dept Chem, Sakyo Ku, Kyoto 6068502, Japan. EM kage@kuchem.kyoto-u.ac.jp RI Kageyama, Hiroshi/A-4602-2010; Tsujimoto, Yoshihiro/H-6034-2012; Tassel, Cedric/L-5051-2014; Kitada, Atsushi/H-5819-2015 OI Tsujimoto, Yoshihiro/0000-0003-2140-3362; Kitada, Atsushi/0000-0002-4387-8687 FU Science Research on Priority Areas (Novel States of Matter Induced by Frustration); Ministry of Education, Culture, Sports, Science and Technology of Japan; UT-Battelle; US Department of Energy; University of Vienna through University Focus Research Area Materials Science FX This work was supported by Science Research on Priority Areas (Novel States of Matter Induced by Frustration) and also partly by the Ministry of Education, Culture, Sports, Science and Technology of Japan. Research at Oak Ridge National Laboratory was sponsored by the Division of Materials Sciences and Engineering, US Department of Energy, under contract with UT-Battelle. This research used resources of the National Energy Research Computing Center, which is supported by the Office of Science of the US Department of Energy. This work was supported by the University of Vienna through the University Focus Research Area Materials Science (Multi-scale Simulations of Materials Properties and Processes in Materials). NR 36 TC 52 Z9 53 U1 5 U2 53 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1755-4330 J9 NAT CHEM JI Nat. Chem. PD AUG PY 2009 VL 1 IS 5 BP 371 EP 376 DI 10.1038/NCHEM.289 PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA 483VP UT WOS:000268997200016 PM 21378890 ER PT J AU Fan, ZY Razavi, H Do, JW Moriwaki, A Ergen, O Chueh, YL Leu, PW Ho, JC Takahashi, T Reichertz, LA Neale, S Yu, K Wu, M Ager, JW Javey, A AF Fan, Zhiyong Razavi, Haleh Do, Jae-won Moriwaki, Aimee Ergen, Onur Chueh, Yu-Lun Leu, Paul W. Ho, Johnny C. Takahashi, Toshitake Reichertz, Lothar A. Neale, Steven Yu, Kyoungsik Wu, Ming Ager, Joel W. Javey, Ali TI Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates SO NATURE MATERIALS LA English DT Article ID SENSITIZED SOLAR-CELLS; NANOTUBES; NANOWIRES; SINGLE AB Solar energy represents one of the most abundant and yet least harvested sources of renewable energy. In recent years, tremendous progress has been made in developing photovoltaics that can be potentially mass deployed(1-3). Of particular interest to cost-effective solar cells is to use novel device structures and materials processing for enabling acceptable efficiencies(4-6). In this regard, here, we report the direct growth of highly regular, single-crystalline nanopillar arrays of optically active semiconductors on aluminium substrates that are then configured as solar-cell modules. As an example, we demonstrate a photovoltaic structure that incorporates three-dimensional, single-crystalline n-CdS nanopillars, embedded in polycrystalline thin films of p-CdTe, to enable high absorption of light and efficient collection of the carriers. Through experiments and modelling, we demonstrate the potency of this approach for enabling highly versatile solar modules on both rigid and flexible substrates with enhanced carrier collection efficiency arising from the geometric configuration of the nanopillars. C1 [Fan, Zhiyong; Razavi, Haleh; Do, Jae-won; Moriwaki, Aimee; Ergen, Onur; Chueh, Yu-Lun; Leu, Paul W.; Ho, Johnny C.; Takahashi, Toshitake; Neale, Steven; Yu, Kyoungsik; Wu, Ming; Javey, Ali] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Fan, Zhiyong; Razavi, Haleh; Do, Jae-won; Moriwaki, Aimee; Ergen, Onur; Chueh, Yu-Lun; Leu, Paul W.; Ho, Johnny C.; Takahashi, Toshitake; Reichertz, Lothar A.; Ager, Joel W.; Javey, Ali] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Fan, Zhiyong; Razavi, Haleh; Do, Jae-won; Moriwaki, Aimee; Ergen, Onur; Chueh, Yu-Lun; Leu, Paul W.; Ho, Johnny C.; Takahashi, Toshitake; Neale, Steven; Yu, Kyoungsik; Wu, Ming; Javey, Ali] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA. RP Javey, A (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. EM ajavey@eecs.berkeley.edu RI Yu, Kyoungsik/C-7207-2009; Yu, Kyoungsik/C-2078-2011; Fan, Zhiyong/C-4970-2012; Ho, Johnny/K-5275-2012; Neale, Steven/D-1937-2009; Leu, Paul/B-9989-2008; Javey, Ali/B-4818-2013; Chueh, Yu-Lun/E-2053-2013 OI Ager, Joel/0000-0001-9334-9751; Fan, Zhiyong/0000-0002-5397-0129; Ho, Johnny/0000-0003-3000-8794; Neale, Steven/0000-0002-4588-276X; Leu, Paul/0000-0002-1599-7144; Chueh, Yu-Lun/0000-0002-0155-9987 FU Berkeley Sensor and Actuator Center; Office of Science; Office of Basic Energy Sciences of the US Department of Energy [DE-AC02-05CH11231] FX We acknowledge G. F. Brown and J. Wu for help with simulations. This work was financially supported by Berkeley Sensor and Actuator Center. J. C. H. acknowledges an Intel Graduate Fellowship. All fabrication was carried out in the Berkeley Microfabrication Laboratory. The solar-cell experimental characterization was done at LBNL, and was supported by the Helios Solar Energy Research Center, which is supported by the Director, Office of Science, Office of Basic Energy Sciences of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 30 TC 657 Z9 661 U1 38 U2 346 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD AUG PY 2009 VL 8 IS 8 BP 648 EP 653 DI 10.1038/NMAT2493 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 474ML UT WOS:000268288000017 PM 19578336 ER PT J AU Hura, GL Menon, AL Hammel, M Rambo, RP Poole, FL Tsutakawa, SE Jenney, FE Classen, S Frankel, KA Hopkins, RC Yang, SJ Scott, JW Dillard, BD Adams, MWW Tainer, JA AF Hura, Greg L. Menon, Angeli L. Hammel, Michal Rambo, Robert P. Poole, Farris L., II Tsutakawa, Susan E. Jenney, Francis E., Jr. Classen, Scott Frankel, Kenneth A. Hopkins, Robert C. Yang, Sung-jae Scott, Joseph W. Dillard, Bret D. Adams, Michael W. W. Tainer, John A. TI Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS) SO NATURE METHODS LA English DT Article ID ARCHAEON PYROCOCCUS-FURIOSUS; CRYSTAL-STRUCTURE; BIOLOGICAL MACROMOLECULES; SUPEROXIDE REDUCTASE; ANGSTROM RESOLUTION; PROTEIN; CLASSIFICATION; CONFORMATIONS; RUBREDOXIN; MECHANISM AB We present an efficient pipeline enabling high-throughput analysis of protein structure in solution with small angle X-ray scattering (SAXS). Our SAXS pipeline combines automated sample handling of microliter volumes, temperature and anaerobic control, rapid data collection and data analysis, and couples structural analysis with automated archiving. We subjected 50 representative proteins, mostly from Pyrococcus furiosus, to this pipeline and found that 30 were multimeric structures in solution. SAXS analysis allowed us to distinguish aggregated and unfolded proteins, define global structural parameters and oligomeric states for most samples, identify shapes and similar structures for 25 unknown structures, and determine envelopes for 41 proteins. We believe that high-throughput SAXS is an enabling technology that may change the way that structural genomics research is done. C1 [Tsutakawa, Susan E.; Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Hura, Greg L.; Hammel, Michal; Rambo, Robert P.; Classen, Scott; Frankel, Kenneth A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Menon, Angeli L.; Poole, Farris L., II; Jenney, Francis E., Jr.; Hopkins, Robert C.; Yang, Sung-jae; Scott, Joseph W.; Dillard, Bret D.; Adams, Michael W. W.] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA. [Jenney, Francis E., Jr.] Georgia Campus Philadelphia Coll Osteopath Med, Suwanee, GA USA. [Tainer, John A.] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA. [Tainer, John A.] Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA. RP Tainer, JA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. EM adams@bmb.uga.edu; jat@scripps.edu FU Integrated Diffraction Analysis Technologies (IDAT); [DE-AC02-05CH11231] FX This research is part of the Molecular Assemblies: Genes and Genomes Integrated Efficiently (MAGGIE) project supported by the US Department of Energy (DOE; DE-FG0207ER64326) and benefited from allocation of supercomputer time at the National Energy Research Scientific Computing Center (NERSC). Support for advancement of SAXS technologies at the Lawrence Berkeley National Laboratory SIBYLS beamline of the Advanced Light Source came from the DOE program Integrated Diffraction Analysis Technologies (IDAT) under contract DE-AC02- 05CH11231 with the DOE. We thank I. Wilson and M. Knuth (the Scripps Research Institute) for providing protein samples from their Joint Center for Structural Genomics (JCSG). NR 42 TC 301 Z9 304 U1 8 U2 71 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1548-7091 J9 NAT METHODS JI Nat. Methods PD AUG PY 2009 VL 6 IS 8 BP 606 EP U83 DI 10.1038/nmeth.1353 PG 9 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 477CA UT WOS:000268493700023 PM 19620974 ER PT J AU Pelton, M Sader, JE Burgin, J Liu, MZ Guyot-Sionnest, P Gosztola, D AF Pelton, Matthew Sader, John E. Burgin, Julien Liu, Mingzhao Guyot-Sionnest, Philippe Gosztola, David TI Damping of acoustic vibrations in gold nanoparticles SO NATURE NANOTECHNOLOGY LA English DT Article ID METAL NANOPARTICLES; SPECTROSCOPY; EXCITATION; MECHANISM; NANORODS AB Studies of acoustic vibrations in nanometre-scale particles can provide fundamental insights into the mechanical properties of materials because it is possible to precisely characterize and control the crystallinity and geometry of such nanostructures(1-4). Metal nanoparticles are of particular interest because they allow the use of ultrafast laser pulses to generate and probe high-frequency acoustic vibrations, which have the potential to be used in a variety of sensing applications. So far, the decay of these vibrations has been dominated by dephasing due to variations in nanoparticle size(5). Such inhomogeneities can be eliminated by performing measurements on single nanoparticles deposited on a substrate(6-9), but unknown interactions between the nanoparticles and the substrate make it difficult to interpret the results of such experiments. Here, we show that the effects of inhomogeneous damping can be reduced by using bipyramidal gold nanoparticles with highly uniform sizes(10). The inferred homogeneous damping is due to the combination of damping intrinsic to the nanoparticles and the surrounding solvent; the latter is quantitatively described by a parameter-free model. C1 [Pelton, Matthew; Liu, Mingzhao; Gosztola, David] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Sader, John E.] Univ Melbourne, Dept Math & Stat, Melbourne, Vic 3010, Australia. [Burgin, Julien; Liu, Mingzhao; Guyot-Sionnest, Philippe] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. RP Pelton, M (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM pelton@anl.gov RI Liu, Mingzhao/A-9764-2011; Gosztola, David/D-9320-2011; Pelton, Matthew/H-7482-2013; Burgin, Julien/K-3773-2013 OI Liu, Mingzhao/0000-0002-0999-5214; Gosztola, David/0000-0003-2674-1379; Pelton, Matthew/0000-0002-6370-8765; Burgin, Julien/0000-0001-8648-3346 FU US Department of Energy [DE-AC02-06CH11357]; US National Science Foundation [CHE-0718718]; Australian Research Council FX Work at the Center for Nanoscale Materials was supported by the US Department of Energy (contract no. DE-AC02-06CH11357). J.B. was fully supported and M.Z.L, was partially supported by the US National Science Foundation (grant no. CHE-0718718). J.E.S. acknowledges support from the Australian Research Council Grants Scheme. NR 20 TC 95 Z9 95 U1 5 U2 59 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD AUG PY 2009 VL 4 IS 8 BP 492 EP 495 DI 10.1038/NNANO.2009.192 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 483DO UT WOS:000268942400011 PM 19662009 ER PT J AU Berweger, S Neacsu, CC Mao, YB Zhou, HJ Wong, SS Raschke, MB AF Berweger, Samuel Neacsu, Catalin C. Mao, Yuanbing Zhou, Hongjun Wong, Stanislaus S. Raschke, Markus B. TI Optical nanocrystallography with tip-enhanced phonon Raman spectroscopy SO NATURE NANOTECHNOLOGY LA English DT Article ID BATIO3; MICROSCOPY; SCATTERING AB Conventional phonon Raman spectroscopy is a powerful experimental technique for the study of crystalline solids(1-5) that allows crystallography, phase and domain identification(6,7) on length scales down to similar to 1 mu m. Here we demonstrate the extension of tip-enhanced Raman spectroscopy to optical crystallography on the nanoscale by identifying intrinsic ferroelectric domains of individual BaTiO3 nanocrystals through selective probing of different transverse optical phonon modes in the system. The technique is generally applicable for most crystal classes, and for example, structural inhomogeneities, phase transitions, ferroic order and related finite-size effects occurring on nanometre length scales can be studied with simultaneous symmetry selectivity, nanoscale sensitivity and chemical specificity. C1 [Berweger, Samuel; Neacsu, Catalin C.; Raschke, Markus B.] Univ Washington, Dept Chem, Seattle, WA 98195 USA. [Berweger, Samuel; Neacsu, Catalin C.; Raschke, Markus B.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Mao, Yuanbing; Zhou, Hongjun; Wong, Stanislaus S.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Wong, Stanislaus S.] Brookhaven Natl Lab, Condensed Matter & Mat Sci Dept, Upton, NY 11973 USA. RP Berweger, S (reprint author), Univ Washington, Dept Chem, Seattle, WA 98195 USA. EM raschke@chem.washington.edu RI Zhou, Hongjun/A-1304-2011; Raschke, Markus/F-8023-2013 FU NSF-IGERT; National Science Foundation [CHE 0748226] FX S. Berweger acknowledges support from the University of Washington Center for Nanotechnology with funding from NSF-IGERT, Funding from the National Science Foundation (NSF CAREER grant CHE 0748226) is gratefully acknowledged. NR 31 TC 60 Z9 60 U1 7 U2 50 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 EI 1748-3395 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD AUG PY 2009 VL 4 IS 8 BP 496 EP 499 DI 10.1038/NNANO.2009.190 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 483DO UT WOS:000268942400012 PM 19662010 ER PT J AU Canfield, PC AF Canfield, Paul C. TI A cook's tale SO NATURE PHYSICS LA English DT Editorial Material C1 [Canfield, Paul C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Canfield, Paul C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Canfield, PC (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM canfield@ameslab.gov RI Canfield, Paul/H-2698-2014 NR 0 TC 1 Z9 1 U1 0 U2 3 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 J9 NAT PHYS JI Nat. Phys. PD AUG PY 2009 VL 5 IS 8 BP 529 EP 530 DI 10.1038/nphys1357 PG 2 WC Physics, Multidisciplinary SC Physics GA 485OD UT WOS:000269132100002 ER PT J AU Zhao, J Adroja, DT Yao, DX Bewley, R Li, SL Wang, XF Wu, G Chen, XH Hu, JP Dai, PC AF Zhao, Jun Adroja, D. T. Yao, Dao-Xin Bewley, R. Li, Shiliang Wang, X. F. Wu, G. Chen, X. H. Hu, Jiangping Dai, Pengcheng TI Spin waves and magnetic exchange interactions in CaFe2As2 SO NATURE PHYSICS LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; IRON-PNICTIDES AB Antiferromagnetism is relevant to high-temperature (high-T-c) superconductivity because copper oxide and iron arsenide superconductors arise from electron- or hole-doping of their antiferromagnetic parent compounds(1-6). There are two broad classes of explanation for antiferromagnetism: in the 'local moment' picture, appropriate for the insulating copper oxides(1), antiferromagnetic interactions are well described by a Heisenberg Hamiltonian(7,8); whereas in the 'itinerant model', suitable for metallic chromium, antiferromagnetic order arises from quasiparticle excitations of a nested Fermi surface(9,10). There has been contradictory evidence regarding the microscopic origin of the antiferromagnetic order in iron arsenide materials(5,6), with some favouring a localized picture(11-15) and others supporting an itinerant point of view(16-20). More importantly, there has not even been agreement about the simplest effective ground-state Hamiltonian necessary to describe the antiferromagnetic order(21-25). Here, we use inelastic neutron scattering to map spin-wave excitations in CaFe2As2 (refs 26, 27), a parent compound of the iron arsenide family of superconductors. We find that the spin waves in the entire Brillouin zone can be described by an effective three-dimensional local-moment Heisenberg Hamiltonian, but the large in-plane anisotropy cannot. Therefore, magnetism in the parent compounds of iron arsenide superconductors is neither purely local nor purely itinerant, rather it is a complicated mix of the two. C1 [Zhao, Jun; Li, Shiliang; Dai, Pengcheng] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Adroja, D. T.; Bewley, R.] Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. [Yao, Dao-Xin; Hu, Jiangping] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Li, Shiliang; Dai, Pengcheng] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China. [Wang, X. F.; Wu, G.; Chen, X. H.] Univ Sci & Technol China, Dept Phys, Hefei 230026, Anhui, Peoples R China. [Wang, X. F.; Wu, G.; Chen, X. H.] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China. [Dai, Pengcheng] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RP Dai, PC (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM daip@ornl.gov RI Li, Shiliang/B-9379-2009; Zhao, Jun/A-2492-2010; Dai, Pengcheng /C-9171-2012; Wang, Xiangfeng/I-2848-2014; Hu, Jiangping/A-9154-2010; hu, jiangping /C-3320-2014 OI Zhao, Jun/0000-0002-0421-8934; Dai, Pengcheng /0000-0002-6088-3170; Wang, Xiangfeng/0000-0001-9845-1659; Hu, Jiangping/0000-0003-4480-1734; FU US National Science Foundation [DMR-0756568]; US Department of Energy; Division of Materials Science; DOE [DE-FG02-05ER46202]; Chinese Academy of Sciences; Natural Science Foundation of China, the Chinese Academy of Sciences and the Ministry of Science and Technology of China FX We thank A. T. Boothroyd, T. Perring, D. Singh and A. Nevidomskyy for helpful discussions. This work is supported by the US National Science Foundation through DMR-0756568 and by the US Department of Energy, Division of Materials Science, Basic Energy Sciences, through DOE DE-FG02-05ER46202. This work is also supported in part by the US Department of Energy, Division of Scientific User Facilities, Basic Energy Sciences. The work at the Institute of Physics, Chinese Academy of Sciences, is supported by the Chinese Academy of Sciences. The work at USTC is supported by the Natural Science Foundation of China, the Chinese Academy of Sciences and the Ministry of Science and Technology of China. NR 29 TC 277 Z9 280 U1 7 U2 79 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 J9 NAT PHYS JI Nat. Phys. PD AUG PY 2009 VL 5 IS 8 BP 555 EP 560 DI 10.1038/NPHYS1336 PG 6 WC Physics, Multidisciplinary SC Physics GA 485OD UT WOS:000269132100013 ER PT J AU Boros, E Fedzhora, L Kantor, PB Saeger, K Stroud, P AF Boros, E. Fedzhora, L. Kantor, P. B. Saeger, K. Stroud, P. TI A Large-Scale Linear Programming Model for Finding Optimal Container Inspection Strategies SO NAVAL RESEARCH LOGISTICS LA English DT Article DE container inspection; sensor sequencing; linear programming ID DATA FUSION AB Cargo ships arriving at US ports are inspected for unauthorized materials. Because opening and manually inspecting every container is costly and time-consuming, tests are applied to decide whether a container should be opened. By utilizing a polyhedral description of decision trees, we develop a large-scale linear programming model for sequential container inspection that determines an optimal inspection strategy under various limitations, improving on earlier approaches in several ways: (a) we consider mixed strategies and multiple thresholds for each sensor, which provide more effective inspection strategies; (b) our model can accommodate realistic limitations (budget, sensor capacity, time limits, etc.), as well as multiple container types; (c) our model is computationally more tractable allowing us to solve cases that were prohibitive in preceding models, and making it possible to analyze the potential impact of new sensor technologie. (C) 2009 Wiley Periodicals, Inc. Naval Research Logistics 56: 404-420, 2009 C1 [Boros, E.; Fedzhora, L.] Rutgers State Univ, RUTCOR, Piscataway, NJ 08854 USA. [Kantor, P. B.] Rutgers State Univ, SCILS, New Brunswick, NJ 08901 USA. [Saeger, K.; Stroud, P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Boros, E (reprint author), Rutgers State Univ, RUTCOR, Piscataway, NJ 08854 USA. EM boros@rutcor.rutgers.edu RI Saeger, Kevin/O-8619-2016; OI Saeger, Kevin/0000-0002-3639-5302; Boros, Endre/0000-0001-8206-3168 FU National Science Foundation [NSFSES 05-18543]; Office of Naval Research [N00014-05-1-0237] FX The authors are thankful for the partial support by the National Science Foundation (grant NSFSES 05-18543) and the Office of Naval Research (grant N00014-05-1-0237). NR 7 TC 21 Z9 21 U1 0 U2 4 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0894-069X J9 NAV RES LOG JI Nav. Res. Logist. PD AUG PY 2009 VL 56 IS 5 BP 404 EP 420 DI 10.1002/nav.20349 PG 17 WC Operations Research & Management Science SC Operations Research & Management Science GA 473EY UT WOS:000268190000002 ER PT J AU Healy, MJ Olinger, RD Young, RJ Taylor, SE Caudell, T Larson, KW AF Healy, Michael J. Olinger, Richard D. Young, Robert J. Taylor, Shawn E. Caudell, Thomas Larson, Kurt W. TI Applying category theory to improve the performance of a neural architecture SO NEUROCOMPUTING LA English DT Article DE Category theory; Mathematical semantics; ART 1; Stack intervals; Multispectral imaging ID SPECIFICATION; NETWORKS; SYSTEMS AB A recently developed mathematical semantic theory explains the relationship between knowledge and its representation in connectionist systems. The semantic theory is based upon category theory, the mathematical theory of structure. A product of its explanatory capability is a set of principles to guide the design of future neural architectures and enhancements to existing designs. We claim that this mathematical semantic approach to network design is an effective basis for advancing the state of the art. We offer two experiments to support this claim. One of these involves multispectral imaging using data from a satellite camera. (C) 2009 Elsevier B.V. All rights reserved. C1 [Healy, Michael J.; Olinger, Richard D.; Taylor, Shawn E.; Caudell, Thomas] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA. [Young, Robert J.; Caudell, Thomas] Univ New Mexico, Dept Comp Sci, Albuquerque, NM 87131 USA. [Larson, Kurt W.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Healy, MJ (reprint author), 13544 23rd Pl NE, Seattle, WA 98125 USA. EM mjhealy@ece.unm.edu; rolinger6@comcast.net; ryoung@cs.unm.edu; shawnt@unm.edu; tpc@ece.unm.edu; kwlarso@sandia.gov FU Sandia National Laboratories, Albuquerque, New Mexico [238984]; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported in part by Sandia National Laboratories, Albuquerque, New Mexico, under Contract no. 238984. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 28 TC 4 Z9 4 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0925-2312 J9 NEUROCOMPUTING JI Neurocomputing PD AUG PY 2009 VL 72 IS 13-15 BP 3158 EP 3173 DI 10.1016/j.neucom.2009.03.008 PG 16 WC Computer Science, Artificial Intelligence SC Computer Science GA 480KP UT WOS:000268733700043 ER PT J AU Fiandaca, MS Varenika, V Eberling, J McKnight, T Bringas, J Pivirotto, P Beyer, J Hadaczek, P Bowers, W Park, J Federoff, H Forsayeth, J Bankiewicz, KS AF Fiandaca, Massimo S. Varenika, Vanja Eberling, Jamie McKnight, Tracy Bringas, John Pivirotto, Phillip Beyer, Janine Hadaczek, Piotr Bowers, William Park, John Federoff, Howard Forsayeth, John Bankiewicz, Krystof S. TI Real-time MR imaging of adeno-associated viral vector delivery to the primate brain SO NEUROIMAGE LA English DT Article DE Adeno-associated virus; Gadolinium; Liposomes; Thalamus; Putamen; Corona radiata ID CONVECTION-ENHANCED DELIVERY; GENE-THERAPY VECTOR; PARKINSONIAN MONKEYS; RAT-BRAIN; AAV-HAADC; VIRUS; LIPOSOMES; STRIATUM; INFUSION; STEM AB We are developing a method for real-time magnetic resonance imaging (MRI) visualization of convection-enhanced delivery (CED) of adeno-associated vital vectors (AAV) to the primate brain. By including gadolinium-loaded liposomes (GDL) with AAV, we can track the convective movement of vital particles by continuous monitoring of distribution of Surrogate GDL. In order to validate this approach, we infused two AAV (AAV1-GFP and AAV2-hAADC) into three different regions of non-human primate brain (corona radiata, putamen, and thalamus). The procedure was tolerated well by all three animals in the study. The distribution of GFP determined by immunohistochemistry in both brain regions correlated closely with distribution of GDL determined by MRI. Co-distribution was weaker with AAV2-hAADC, although in vivo PET scanning with FMT for AADC activity correlated well with immunohistochemistry of AADC. Although this is a relatively small study, it appears that AAV1 correlates better with MRI-monitored delivery than does AAV2. It seems likely that the difference in distribution may be due to differences in tissue specificity of the two serotypes. (C) 2009 Elsevier Inc. All rights reserved. C1 [Fiandaca, Massimo S.; Varenika, Vanja; Eberling, Jamie; Bringas, John; Pivirotto, Phillip; Beyer, Janine; Hadaczek, Piotr; Forsayeth, John; Bankiewicz, Krystof S.] Univ Calif San Francisco, Dept Neurol Surg, San Francisco, CA 94103 USA. [Eberling, Jamie] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Funct Imaging, Berkeley, CA 94720 USA. [McKnight, Tracy] Univ Calif San Francisco, Dept Radiol, San Francisco, CA 94103 USA. [Bowers, William] Univ Rochester, Rochester, NY USA. [Park, John] Univ Calif San Francisco, Dept Hematol Oncol, San Francisco, CA 94103 USA. [Federoff, Howard] Georgetown Univ, Washington, DC USA. RP Bankiewicz, KS (reprint author), Univ Calif San Francisco, Dept Neurol Surg, 1855 Folsom St,Room 226, San Francisco, CA 94103 USA. EM Krystof.Bankiewicz@ucsf.edu FU NINDS NIH HHS [U54 NS045309, U54 NS045309-010007, R01 NS050156-03, R01 NS050156] NR 46 TC 53 Z9 54 U1 1 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1053-8119 J9 NEUROIMAGE JI Neuroimage PD AUG PY 2009 VL 47 BP T27 EP T35 DI 10.1016/j.neuroimage.2008.11.012 PG 9 WC Neurosciences; Neuroimaging; Radiology, Nuclear Medicine & Medical Imaging SC Neurosciences & Neurology; Radiology, Nuclear Medicine & Medical Imaging GA 487FX UT WOS:000269257400006 PM 19095069 ER PT J AU Firestone, RB AF Firestone, R. B. TI Nuclear Data Sheets for A=25 SO NUCLEAR DATA SHEETS LA English DT Review ID NEUTRON-RICH NUCLEI; HIGH-SPIN STATES; ENERGY-LEVELS; EXCITED-STATES; BETA-DECAY; GAMMA-DECAY; HALF-LIVES; LIFETIME MEASUREMENTS; MAGNESIUM ISOTOPES; BRANCHING RATIOS AB This evaluation of A=25 has been updated from previous evaluations published in 1998En04, 1990En08, and 1978En02. Coverage includes properties of adopted levels and gamma rays, decay-scheme data (energies, intensities and placement of radiations), and cross reference entries. The following tables continue the tradition of showing the systematic relationships between levels in A=23. These assignments are based on spectroscopic factors and energy differences where Delta E(x)=E(X)((25)Al)-E(x)((25)Mg). C1 Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Firestone, RB (reprint author), Lawrence Berkeley Natl Lab, Div Nucl Sci, MS 88R0192,1 Cyclotron Rd, Berkeley, CA 94720 USA. OI Firestone, Richard/0000-0003-3833-5546 NR 159 TC 16 Z9 16 U1 0 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD AUG PY 2009 VL 110 IS 8 BP 1691 EP 1743 DI 10.1016/j.nds.2009.06.001 PG 53 WC Physics, Nuclear SC Physics GA 477MK UT WOS:000268523000001 ER PT J AU De Frenne, D AF De Frenne, D. TI Nuclear Data Sheets for A=102 SO NUCLEAR DATA SHEETS LA English DT Review ID GAMMA-RAY SPECTROSCOPY; ELECTRIC MONOPOLE TRANSITIONS; FIRST EXCITED-STATES; NEUTRON-RICH NUCLEI; A-SIMILAR-TO-100 FISSION FRAGMENTS; GAMOW-TELLER STRENGTH; DECAY HALF-LIVES; HIGH-SPIN STATES; BETA-DECAY; IN-BEAM AB The 1998 evaluation on mass A=102 (1998De15) has been revised, taking into account all data available before december 2008. Detailed experimental information is presented from the neutron rich nucleus Rb-102 to the neutron deficient Sn-102 nucleus. No information on excited states of Rb-102 is available and very scarce for Sr-102 Especially new (HI,xn gamma) data sets for several nuclides have been evaluated and new and more accurate data for gamma intensities and multipolarities obtained. For Ru-102 very precise new data of the Budapest (n,gamma) collaboration have been included. A new and very elaborated decay scheme for In-102 is obtained. Isomerism in Y-102 and Nb-102 needs further investigation due to conflicting results. C1 [De Frenne, D.] Univ Ghent, Vakgrp Subatomaire Stralingsfys, B-9000 Ghent, Belgium. [De Frenne, D.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. RP De Frenne, D (reprint author), Univ Ghent, Vakgrp Subatomaire Stralingsfys, Proeftuinstr 86, B-9000 Ghent, Belgium. NR 236 TC 35 Z9 35 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 EI 1095-9904 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD AUG PY 2009 VL 110 IS 8 BP 1745 EP + DI 10.1016/j.nds.2009.06.002 PG 170 WC Physics, Nuclear SC Physics GA 477MK UT WOS:000268523000002 ER PT J AU Baylor, LR Combs, SK Foust, CR Jernigan, TC Meitner, SJ Parks, PB Caughman, JB Fehling, DT Maruyama, S Qualls, AL Rasmussen, DA Thomas, CE AF Baylor, L. R. Combs, S. K. Foust, C. R. Jernigan, T. C. Meitner, S. J. Parks, P. B. Caughman, J. B. Fehling, D. T. Maruyama, S. Qualls, A. L. Rasmussen, D. A. Thomas, C. E. TI Pellet fuelling, ELM pacing and disruption mitigation technology development for ITER SO NUCLEAR FUSION LA English DT Article ID DIII-D TOKAMAK; INJECTION AB Plasma fuelling with pellet injection, pacing of edge localized modes (ELMs) by small frequent pellets and disruption mitigation with gas jets or injected solid material are some of the most important technological capabilities needed for successful operation of ITER. Tools are being developed at the Oak Ridge National Laboratory that can be employed on ITER to provide the necessary core pellet fuelling and the mitigation of ELMs and disruptions. Here we present progress on the development of the technology to provide reliable high throughput inner wall pellet fuelling, pellet ELM pacing with high frequency small pellets and disruption mitigation with gas jets and shattered pellets. Examples of how these tools can be employed on ITER are discussed. C1 [Baylor, L. R.; Combs, S. K.; Foust, C. R.; Jernigan, T. C.; Meitner, S. J.; Caughman, J. B.; Fehling, D. T.; Qualls, A. L.; Rasmussen, D. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Parks, P. B.] Gen Atom Co, San Diego, CA 92186 USA. [Thomas, C. E.] Third Dimens Technol LLC, Knoxville, TN 37920 USA. RP Baylor, LR (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM baylorlr@ornl.gov RI Caughman, John/R-4889-2016 OI Caughman, John/0000-0002-0609-1164 FU US Department of Energy [DE-AC05-00OR22725, DE-FG02-04ER54758] FX This work was supported by the Oak Ridge National Laboratory managed by UT-Battelle, LLC, for the US Department of Energy under Contract No DE-AC05-00OR22725 and also supported under contract DE-FG02-04ER54758. This report was prepared as an account of work by or for the ITER Organization. The Members of the Organization are the People's Republic of China, the European Atomic Energy Community, the Republic of India, Japan, the Republic of Korea, the Russian Federation and the United States of America. The views and opinions expressed herein do not necessarily reflect those of the Members or any agency thereof. Dissemination of the information in this paper is governed by the applicable terms of the ITER Joint Implementation Agreement. NR 26 TC 26 Z9 26 U1 2 U2 9 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD AUG PY 2009 VL 49 IS 8 AR 085013 DI 10.1088/0029-5515/49/8/085013 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 483BM UT WOS:000268936800013 ER PT J AU Becoulet, M Huysmans, G Garbet, X Nardon, E Howell, D Garofalo, A Schaffer, M Evans, T Shaing, K Cole, A Park, JK Cahyna, P AF Becoulet, M. Huysmans, G. Garbet, X. Nardon, E. Howell, D. Garofalo, A. Schaffer, M. Evans, T. Shaing, K. Cole, A. Park, J. -K. Cahyna, P. TI Physics of penetration of resonant magnetic perturbations used for Type I edge localized modes suppression in tokamaks SO NUCLEAR FUSION LA English DT Article ID TOROIDAL-MOMENTUM DISSIPATION; ERROR-FIELD; PLASMA AB Non-linear reduced MHD modelling of the toroidally rotating plasma response to resonant magnetic perturbations (RMPs) is presented for DIII-D and ITER-like typical parameter and RMP coils. The non-linear cylindrical reduced MHD code was adapted to take into account toroidal rotation and plasma braking mechanisms such as resonant one (similar to j x B) and the neoclassical toroidal viscosity (NTV) calculated for low collisionality regimes ('1/nu' and 'nu'). Counter toroidal rotation by NTV is predicted for ITER with the proposed RMP coils in 1/nu-limit. Resonant braking is localized near resonant surfaces and is weak compared with NTV in the 1/nu regime for typical DIII-D and ITER parameters. Toroidal rotation leads to the effective screening of RMPs that is larger for stronger rotation and lower resistivity, resulting mainly in central islands screening. Non-resonant helical harmonics (q not equal m/n) in RMP spectrum are not influenced by plasma rotation, and hence penetrate and are important in NTV mechanism. C1 [Becoulet, M.; Huysmans, G.; Garbet, X.] IRFM, CEA, F-13108 St Paul Les Durance, France. [Nardon, E.; Howell, D.] Culham Sci Ctr, Euratom UKAEA Fus Assoc, Abingdon OX14 3DB, Oxon, England. [Garofalo, A.; Schaffer, M.; Evans, T.] Gen Atom Co, San Diego, CA 92186 USA. [Shaing, K.; Cole, A.] Univ Wisconsin, Madison, WI 53706 USA. [Shaing, K.] Natl Cheng Kung Univ, Plasma & Space Sci Ctr, Tainan 70101, Taiwan. [Shaing, K.] Natl Cheng Kung Univ, Dept Phys, Tainan 70101, Taiwan. [Park, J. -K.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Cahyna, P.] ASCR, Vvi, Assoc EURATOM IPPCR, Inst Plasma Phys, Prague 18200, Czech Republic. RP Becoulet, M (reprint author), IRFM, CEA, F-13108 St Paul Les Durance, France. RI Cahyna, Pavel/G-9116-2014 FU EURATOM and CEA FX This work, supported by the European Communities under the contract of Association between EURATOM and CEA, was carried out within the framework of the European Fusion Development Agreement. The views and opinions expressed herein do not necessarily reflect those of the European Commission. NR 24 TC 56 Z9 56 U1 2 U2 14 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD AUG PY 2009 VL 49 IS 8 AR 085011 DI 10.1088/0029-5515/49/8/085011 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 483BM UT WOS:000268936800011 ER PT J AU Budny, RV AF Budny, R. V. TI Comparisons of predicted plasma performance in ITER H-mode plasmas with various mixes of external heating SO NUCLEAR FUSION LA English DT Article ID DENSITY PEAKING; TRANSPORT MODEL; ASDEX UPGRADE; CONFINEMENT; JET; TOKAMAK; COLLISIONALITY; ABSORPTION; STABILITY; PEDESTAL AB Performance in H-mode DT plasmas in ITER with various choices of heating systems are predicted and compared. Combinations of external heating by negative ion neutral beam injection (NNBI), ion cyclotron range of frequencies and electron cyclotron heating are assumed. Scans with a range of physics assumptions about boundary temperatures in the edge pedestal, alpha ash transport and toroidal momentum transport are used to indicate effects of uncertainties. Time-dependent integrated modelling with the PTRANSP code is used to predict profiles of heating, beam torque and plasma profiles. The GLF23 model is used to predict temperature profiles. Either GLF23 or the assumption of a constant ratio for chi(phi)/chi(i) is used to predict toroidal rotation profiles driven by the beam torques. Large differences for the core temperatures are predicted with different mixes of the external heating during the density and current ramp-up phase, but the profiles are similar during the flat-top phase. With chi(phi)/chi(i) = 0.5, the predicted toroidal rotation is relatively slow and the flow shear implied by the pressure, toroidal rotation and neoclassical poloidal rotation are not sufficient to cause significant changes in the energy transport or steady state temperature profiles. The GLF23-predicted toroidal rotation is faster by a factor of six, and significant flow shear effects are predicted. Heating mixes with more NNBI power are predicted to have up to 20% higher fusion power during steady state phases. This advantage is decisive in some cases where the physics assumptions are close to marginal or critical values. L-mode plasmas are predicted having QDT similar or equal to 2-4. C1 Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Budny, RV (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM budny@princeton.edu FU US Department of Energy [DE-AC02-09CH11466] FX The author wishes to thank the PTRANSP development teams at PPPL, Lehigh, GA and LNL. This research was supported by the US Department of Energy under contract number DE-AC02-09CH11466. NR 45 TC 36 Z9 37 U1 0 U2 6 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD AUG PY 2009 VL 49 IS 8 AR 085008 DI 10.1088/0029-5515/49/8/085008 PG 14 WC Physics, Fluids & Plasmas SC Physics GA 483BM UT WOS:000268936800008 ER PT J AU Burrell, KH Osborne, TH Snyder, PB West, WP Fenstermacher, ME Groebner, RJ Gohil, P Leonard, AW Solomon, WM AF Burrell, K. H. Osborne, T. H. Snyder, P. B. West, W. P. Fenstermacher, M. E. Groebner, R. J. Gohil, P. Leonard, A. W. Solomon, W. M. TI Edge pedestal control in quiescent H-mode discharges in DIII-D using co-plus counter-neutral beam injection SO NUCLEAR FUSION LA English DT Article ID D-TOKAMAK; COLLISIONALITY REGIME; STABILITY; ROTATION; OPERATION; PLASMAS; JT-60U; ELMS AB We have made two significant discoveries in our recent studies of quiescent H-mode (QH-mode) plasmas in DIII-D. First, we have found that we can control the edge pedestal density and pressure by altering the edge particle transport through changes in the edge toroidal rotation. This allows us to adjust the edge operating point to be close to, but below the ELM stability boundary, maintaining the ELM-free state while allowing up to a factor of two increase in edge pressure. The ELM boundary is significantly higher in more strongly shaped plasmas, which broadens the operating space available for QH-mode and leads to improved core performance. Second, for the first time on any tokamak, we have created QH-mode plasmas with strong edge co-rotation; previous QH-modes in all tokamaks had edge counter-rotation. This result demonstrates that counter-NBI and edge-counter rotation are not essential conditions for QH-mode. Both these investigations benefited from the edge stability predictions based on peeling-ballooning mode theory. The broadening of the ELM-stable region with plasma shaping is predicted by that theory. The theory has also been extended to provide a model for the edge harmonic oscillation that enhances edge transport in the QH-mode. Many of the features of that theory agree with the experimental results reported either previously or in this paper. One notable example is the prediction that co-rotating QH-mode is possible provided sufficient shear in the edge rotation can be created. C1 [Burrell, K. H.; Osborne, T. H.; Snyder, P. B.; West, W. P.; Groebner, R. J.; Gohil, P.; Leonard, A. W.] Gen Atom Co, San Diego, CA 92186 USA. [Fenstermacher, M. E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Solomon, W. M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Burrell, KH (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. OI Solomon, Wayne/0000-0002-0902-9876 FU US Department of Energy [DE-FC02-04ER54698, DE-AC52-07NA27344, DE-AC02-76CH03073] FX This work was supported by the US Department of Energy under DE-FC02-04ER54698, DE-AC52-07NA27344 and DE-AC02-76CH03073. NR 20 TC 42 Z9 42 U1 0 U2 21 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD AUG PY 2009 VL 49 IS 8 AR 085024 DI 10.1088/0029-5515/49/8/085024 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 483BM UT WOS:000268936800024 ER PT J AU Degrassie, JS Groebner, RJ Burrell, KH Solomon, WM AF deGrassie, J. S. Groebner, R. J. Burrell, K. H. Solomon, W. M. TI Intrinsic toroidal velocity near the edge of DIII-D H-mode plasmas SO NUCLEAR FUSION LA English DT Article ID NEUTRAL-BEAM INJECTION; RADIAL ELECTRIC-FIELD; ION ORBIT LOSS; D TOKAMAK; MOMENTUM TRANSPORT; TCV TOKAMAK; ROTATION; PEDESTAL; JT-60U; COLLISIONALITY AB The intrinsic toroidal velocity, V(phi), in DIII-D (Luxon 2002 Nucl. Fusion 42 614) H-modes is measured to be nonzero in the pedestal region, in the direction of the plasma current, co-I(p). Intrinsic, or spontaneous, velocity is that which arises with no known external momentum injection. This intrinsic velocity is measured to scale roughly linearly with the local ion temperature, T(i), V(phi) similar to T(i), in the pedestal and in the edge region just inside the pedestal. With either co-I(p), or counter-I(p) neutral beam injected torque, the pedestal velocity is accelerated in the direction of the torque; it is not a fixed boundary condition. A simple model of thermal ion orbit loss predicts the sign of V(phi), a relevant magnitude for V(phi), and the approximate scaling V(phi) similar to T(i). This model for a boundary condition on the intrinsic toroidal velocity gives a result of approximate diamagnetic form, V(phi) similar to epsilon(p)T(i)/LB(theta), where L is a scale length, B(theta) the poloidal magnetic field and epsilon(p) a small numerical parameter. This model is a local calculation of velocity, an approximation to the inherently nonlocal region of the pedestal where the thermal ion banana width is comparable to the pedestal width. In this model we also assume that the loss cone in velocity space is empty; no collisions are considered. A recent particle simulation of the pedestal region of a DIII-D NBI-driven H-mode discharge that includes collisions indicates that thermal ion orbit loss results in a co-I(p) velocity just inside the last closed flux surface (Chang and Ku 2008 Phys. Plasmas 15 062510-1). Thus, we do not expect that nonlocality nor finite collisionality wash out the effect. Inside the pedestal our model shows that thermal ion orbit loss is negligible. In this region of the edge we also measure a similar scaling for the intrinsic velocity several pedestal widths inside the pedestal location, V(phi) similar to T(i). One mechanism that could maintain the T(i) scaling inwards from the pedestal is the model of an inward momentum pinch velocity proportional to the gradient of T(i). C1 [deGrassie, J. S.; Groebner, R. J.; Burrell, K. H.] Gen Atom Co, San Diego, CA 92186 USA. [Solomon, W. M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Degrassie, JS (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. EM degrassie@fusion.gat.com OI Solomon, Wayne/0000-0002-0902-9876 NR 64 TC 58 Z9 58 U1 2 U2 3 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD AUG PY 2009 VL 49 IS 8 AR 085020 DI 10.1088/0029-5515/49/8/085020 PG 14 WC Physics, Fluids & Plasmas SC Physics GA 483BM UT WOS:000268936800020 ER PT J AU Delgado-Aparicio, L Stutman, D Tritz, K Finkenthal, M Kaye, S Bell, R Kaita, R LeBlanc, B Levinton, F Menard, J Paul, S Smith, D Yuh, H AF Delgado-Aparicio, L. Stutman, D. Tritz, K. Finkenthal, M. Kaye, S. Bell, R. Kaita, R. LeBlanc, B. Levinton, F. Menard, J. Paul, S. Smith, D. Yuh, H. TI Impurity transport studies in NSTX neutral beam heated H-mode plasmas SO NUCLEAR FUSION LA English DT Article ID X-RAY ARRAYS; INVERSION TECHNIQUE; TOKAMAKS; DIAGNOSTICS; DISCHARGES; PROFILE; PHYSICS AB The first experimental assessment of low-Z impurity transport in a neutral beam heated, high-confinement H-mode plasma sustained in a low-field, low-aspect ratio spherical tokamak, was performed at the National Spherical Torus Experiment (NSTX). The injected impurities penetrate to the core on a hundred millisecond time scale, indicating a low core particle diffusivity (less than or similar to 1 m(2) s(-1)) in good agreement with the values predicted by neoclassical transport theory. In addition, a fixed q-profile magnetic field scan that showed reduced impurity penetration at high fields is also reported. This result suggests that anomalous ion particle transport associated with turbulent long-wavelength electrostatic instabilities must be largely suppressed in the NSTX core. C1 [Delgado-Aparicio, L.; Stutman, D.; Tritz, K.; Finkenthal, M.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Kaye, S.; Bell, R.; Kaita, R.; LeBlanc, B.; Menard, J.; Paul, S.; Smith, D.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Levinton, F.; Yuh, H.] NOVA Photon Inc, Princeton, NJ 08543 USA. RP Delgado-Aparicio, L (reprint author), Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. EM delgapa@pha.jhu.edu RI Stutman, Dan/P-4048-2015; OI Menard, Jonathan/0000-0003-1292-3286 FU United States DoE [DE-FG02-99ER5452]; PPPL DoE [DE-AC02-76CH03073] FX The authors would like to acknowledge the assistance of D. McCune, E. A. Feibush and R. G. Andre of the PPPL Computational Plasma Physics Group and that of the technical and engineering teems at both The Johns Hopkins University and PPPL. This work was supported by the United States DoE grant No DE-FG02-99ER5452 at The Johns Hopkins University and PPPL DoE contract No DE-AC02-76CH03073. NR 31 TC 15 Z9 15 U1 0 U2 7 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD AUG PY 2009 VL 49 IS 8 AR 085028 DI 10.1088/0029-5515/49/8/085028 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 483BM UT WOS:000268936800028 ER PT J AU Groebner, RJ Leonard, AW Snyder, PB Osborne, TH Maggi, CF Fenstermacher, ME Petty, CC Owen, LW AF Groebner, R. J. Leonard, A. W. Snyder, P. B. Osborne, T. H. Maggi, C. F. Fenstermacher, M. E. Petty, C. C. Owen, L. W. TI Progress towards a predictive model for pedestal height in DIII-D SO NUCLEAR FUSION LA English DT Article ID ITER SHAPE DISCHARGES; H-MODE; TRANSPORT MODELS; ASDEX-UPGRADE; CONFINEMENT; STABILITY; PLASMAS; PHYSICS; DEPENDENCE; DYNAMICS AB Recent DIII-D pedestal studies provide improved characterization of pedestal scaling for comparison with models. A new pedestal model accurately predicts the maximum achieved pedestal width and height in type I ELMing discharges over a large range of DIII-D operational space, including ITER demonstration discharges. The model is a combination of the peeling-ballooning theory for the MHD stability limits on the pedestal with a simple pedestal width scaling in which the width is proportional to the square root of the pedestal poloidal beta. Width scalings based on the ion toroidal or poloidal gyroradius are much poorer descriptions of DIII-D data. A mass scaling experiment in H and D provides support for a poloidal beta scaling and is not consistent with an ion poloidal gyroradius scaling. Studies of pedestal evolution during the inter-ELM cycle provide evidence that both the pedestal width and height increase during pedestal buildup. Model studies with a 1D kinetic neutrals calculation show that the temporal increase in density width cannot be explained in terms of increased neutral penetration depth. These studies show a correlation of pedestal width with both the square root of the pedestal poloidal beta and the square root of the pedestal ion temperature during the pedestal buildup. C1 [Groebner, R. J.; Leonard, A. W.; Snyder, P. B.; Osborne, T. H.; Petty, C. C.] Gen Atom Co, San Diego, CA 92186 USA. [Maggi, C. F.] EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany. [Fenstermacher, M. E.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Owen, L. W.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Groebner, RJ (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. EM groebner@fusion.gat.com FU US Department of Energy [DE-FC02-04ER54698, DE-AC52-07NA27344, DE-AX05-00OR22725] FX This work was supported in part by the US Department of Energy under DE-FC02-04ER54698, DE-AC52-07NA27344 and DE-AX05-00OR22725. NR 44 TC 37 Z9 37 U1 1 U2 2 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD AUG PY 2009 VL 49 IS 8 AR 085037 DI 10.1088/0029-5515/49/8/085037 PG 14 WC Physics, Fluids & Plasmas SC Physics GA 483BM UT WOS:000268936800037 ER PT J AU Kessel, CE Campbell, D Gribov, Y Saibene, G Ambrosino, G Budny, RV Casper, T Cavinato, M Fujieda, H Hawryluk, R Horton, LD Kavin, A Kharyrutdinov, R Koechl, F Leuer, J Loarte, A Lomas, PJ Luce, T Lukash, V Mattei, M Nunes, I Parail, V Polevoi, A Portone, A Sartori, R Sips, ACC Thomas, PR Welander, A Wesley, J AF Kessel, C. E. Campbell, D. Gribov, Y. Saibene, G. Ambrosino, G. Budny, R. V. Casper, T. Cavinato, M. Fujieda, H. Hawryluk, R. Horton, L. D. Kavin, A. Kharyrutdinov, R. Koechl, F. Leuer, J. Loarte, A. Lomas, P. J. Luce, T. Lukash, V. Mattei, M. Nunes, I. Parail, V. Polevoi, A. Portone, A. Sartori, R. Sips, A. C. C. Thomas, P. R. Welander, A. Wesley, J. TI Development of ITER 15 MA ELMy H-mode inductive scenario SO NUCLEAR FUSION LA English DT Article ID CURRENT DRIVE; TRANSPORT; TOKAMAKS; CONFINEMENT; SIMULATIONS; CONSUMPTION; HYBRID AB The poloidal field (PF) coil system on ITER, which provides both feedforward and feedback control of plasma position, shape, and current, is a critical element for achieving mission performance. Analysis of PF capabilities has focused on the 15 MA Q = 10 scenario with a 300-500 s flattop burn phase. The operating space available for the 15 MA ELMy H-mode plasma discharges in ITER and upgrades to the PF coils or associated systems to establish confidence that ITER mission objectives can be reached have been identified. Time dependent self-consistent free-boundary calculations were performed to examine the impact of plasma variability, discharge programming and plasma disturbances. Based on these calculations a new reference scenario was developed based upon a large bore initial plasma, early divertor transition, low level heating in L-mode and a late H-mode onset. Static equilibrium analyses for this scenario, which determine PF coil currents to produce a given plasma configuration, indicate that the original PF coil limitations do not allow low l(i) (<0.8) operation or plasmas with lower flux consumption, and the flattop burn durations were predicted to be less than the desired 400 s. This finding motivates the expansion of the operating space, considering several upgrade options to the PF coils. Analysis was also carried out to examine the feedback current reserve required in the central solenoid and PF coils during a series of disturbances, heating and current drive sources for saving volt-seconds in rampup, a feasibility assessment of the 17 MA scenario was undertaken, and the rampdown phase of the discharge is discussed. Results of the studies show that the new scenario and modified PF system will allow a wide range of 15 MA 300-500 s operation and more limited but finite 17 MA operation. C1 [Kessel, C. E.; Budny, R. V.; Hawryluk, R.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Campbell, D.; Gribov, Y.; Loarte, A.; Polevoi, A.] Cadarache, ITER Org, F-13108 St Paul Les Durance, France. [Saibene, G.; Cavinato, M.; Portone, A.; Sartori, R.; Thomas, P. R.] FUS ENERGY, Barcelona 08019, Spain. [Ambrosino, G.] Univ Naples Federico 2, EURATOM Assoc, ENEA, CREATE,DIMET, I-80138 Naples, Italy. [Casper, T.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Fujieda, H.] Japan Atom Energy Agcy, Naka, Ibaraki 3110193, Japan. [Horton, L. D.; Sips, A. C. C.] Max Planck Inst Plasma Phys, EURATOM Assoc, D-85748 Garching, Germany. [Kavin, A.] DV Efremov Res & Sci Inst Electrophys Apparat, St Petersburg, Russia. [Kharyrutdinov, R.] TRINITI, Troitsk, M Reg, Russia. [Koechl, F.] Assoc EURATOM OAW ATI, Vienna, Austria. [Leuer, J.; Luce, T.; Welander, A.; Wesley, J.] Gen Atom Co, San Diego, CA USA. [Lomas, P. J.; Parail, V.] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Lukash, V.] Kurchatov Inst, Russian Res Ctr, Nucl Fus Inst, Moscow, Russia. [Mattei, M.] Univ Reggio Calabria, Assoc Euratom ENEA CREATE, DIMET, Reggio Di Calabria, Italy. [Nunes, I.] Ctr Fusao Nucl, Euratom IST Fus Assoc, Lisbon, Portugal. RP Kessel, CE (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM ckessel@pppl.gov RI Nunes, Isabel/D-1627-2017; OI Ambrosino, Giuseppe/0000-0002-2549-2772; Nunes, Isabel/0000-0003-0542-1982; Mattei, Massimiliano/0000-0001-7951-6584 FU DoE [DE-AC02-76CH03073] FX This paper was prepared as an account of work by or for the ITER Organization. The members of the Organization are the People's Republic of China, the European Atomic Energy Community, the Republic of India, Japan, the Republic of Korea, the Russian Federation and the United States of America. The views and opinions expressed herein do not necessarily reflect those of the members or any agency thereof. Dissemination of the information in this paper is governed by the applicable terms of the ITER Joint Implementation Agreement. For PPPL, work supported by DoE contract DE-AC02-76CH03073. NR 27 TC 36 Z9 36 U1 0 U2 4 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD AUG PY 2009 VL 49 IS 8 AR 085034 DI 10.1088/0029-5515/49/8/085034 PG 19 WC Physics, Fluids & Plasmas SC Physics GA 483BM UT WOS:000268936800034 ER PT J AU Rudakov, DL Litnovsky, A West, WP Yu, JH Boedo, JA Bray, BD Brezinsek, S Brooks, NH Fenstermacher, ME Groth, M Hollmann, EM Huber, A Hyatt, AW Krasheninnikov, SI Lasnier, CJ McLean, AG Moyer, RA Pigarov, AY Philipps, V Pospieszczyk, A Smirnov, RD Sharpe, JP Solomon, WM Watkins, JG Wong, CPC AF Rudakov, D. L. Litnovsky, A. West, W. P. Yu, J. H. Boedo, J. A. Bray, B. D. Brezinsek, S. Brooks, N. H. Fenstermacher, M. E. Groth, M. Hollmann, E. M. Huber, A. Hyatt, A. W. Krasheninnikov, S. I. Lasnier, C. J. McLean, A. G. Moyer, R. A. Pigarov, A. Yu. Philipps, V. Pospieszczyk, A. Smirnov, R. D. Sharpe, J. P. Solomon, W. M. Watkins, J. G. Wong, C. P. C. TI Dust studies in DIII-D and TEXTOR SO NUCLEAR FUSION LA English DT Article ID MATERIALS EVALUATION SYSTEM; D TOKAMAK; PLASMA OPERATION; FUSION DEVICES; CARBON DUST; D DIVERTOR; HIGH-SPEED; WALL; SPECTROSCOPY; PARTICLES AB Studies of naturally occurring and artificially introduced carbon dust are conducted in DIII-D and TEXTOR. In DIII-D, dust does not present operational concerns except immediately after entry vents. Submicrometre sized dust is routinely observed using Mie scattering from a Nd: Yag laser. The source is strongly correlated with the presence of type I edge localized modes (ELMs). Larger size (0.005-1 mm diameter) dust is observed by optical imaging, showing elevated dust levels after entry vents. Inverse dependence of the dust velocity on the inferred dust size is found from the imaging data. Heating of the dust particles by the neutral beam injection (NBI) and acceleration of dust particles by the plasma flows are observed. Energetic plasma disruptions produce significant amounts of dust; on the other hand, large flakes or debris falling into the plasma may induce a disruption. Migration of pre-characterized carbon dust is studied in DIII-D and TEXTOR by introducing micrometre-size particles into plasma discharges. In DIII-D, a sample holder filled with 30-40 mg of dust is inserted in the lower divertor and exposed, via sweeping of the strike points, to the diverted plasma flux of high-power ELMing H-mode discharges. After a brief dwell (similar to 0.1 s) of the outer strike point on the sample holder, part of the dust penetrates into the core plasma, raising the core carbon density by a factor of 2-3 and resulting in a twofold increase in the radiated power. In TEXTOR, instrumented dust holders with 1-45 mg of dust are exposed in the scrape-off-layer 0-2 cm radially outside of the last closed flux surface in discharges heated with 1.4 MW of NBI. Launched in this configuration, the dust perturbed the edge plasma, as evidenced by a moderate increase in the edge carbon content, but did not penetrate into the core plasma. C1 [Rudakov, D. L.; Yu, J. H.; Boedo, J. A.; Hollmann, E. M.; Krasheninnikov, S. I.; McLean, A. G.; Moyer, R. A.; Pigarov, A. Yu.; Smirnov, R. D.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Litnovsky, A.; Brezinsek, S.; Huber, A.; Philipps, V.; Pospieszczyk, A.] Forschungszentrum Julich, EURATOM Assoc, Inst Energieforsch Plasmaphys, D-52425 Julich, Germany. [West, W. P.; Bray, B. D.; Brooks, N. H.; Hyatt, A. W.; Wong, C. P. C.] Gen Atom Co, San Diego, CA 92186 USA. [Fenstermacher, M. E.; Groth, M.; Lasnier, C. J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [McLean, A. G.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Sharpe, J. P.] Idaho Natl Lab, Fus Safety Program, Idaho Falls, ID 83415 USA. [Solomon, W. M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Watkins, J. G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Rudakov, DL (reprint author), Univ Calif San Diego, La Jolla, CA 92093 USA. EM rudkov@fusion.gat.com RI Smirnov, Roman/B-9916-2011; Groth, Mathias/G-2227-2013; Brezinsek, Sebastijan/B-2796-2017; OI Smirnov, Roman/0000-0002-9114-5330; Brezinsek, Sebastijan/0000-0002-7213-3326; Solomon, Wayne/0000-0002-0902-9876 FU US Department of Energy [DE-FG02-07ER54917, DE-FC02-04ER54698, DE-AC52-07NA27344, DE-AC02-76CH03073, DE-AC04-94AL85000, DE-AC05-00OR22725] FX This work was supported in part by the US Department of Energy under DE-FG02-07ER54917, DE-FC02-04ER54698, DE-AC52-07NA27344, DE-AC02-76CH03073, DE-AC04-94AL85000 and DE-AC05-00OR22725. The authors would like to thank Dr N. Ashikawa for providing the spherical graphite dust used in the latest dust injection experiment in DIII-D. NR 38 TC 37 Z9 37 U1 1 U2 7 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD AUG PY 2009 VL 49 IS 8 AR 085022 DI 10.1088/0029-5515/49/8/085022 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 483BM UT WOS:000268936800022 ER PT J AU Sips, ACC Casper, TA Doyle, EJ Giruzzi, G Gribov, Y Hobirk, J Hogeweij, GMD Horton, LD Hubbard, AE Hutchinson, I Ide, S Isayama, A Imbeaux, F Jackson, GL Kamada, Y Kessel, C Kochl, F Lomas, P Litaudon, X Luce, TC Marmar, E Mattei, M Nunes, I Oyama, N Parail, V Portone, A Saibene, G Sartori, R Stober, JK Suzuki, T Wolfe, SM AF Sips, A. C. C. Casper, T. A. Doyle, E. J. Giruzzi, G. Gribov, Y. Hobirk, J. Hogeweij, G. M. D. Horton, L. D. Hubbard, A. E. Hutchinson, I. Ide, S. Isayama, A. Imbeaux, F. Jackson, G. L. Kamada, Y. Kessel, C. Kochl, F. Lomas, P. Litaudon, X. Luce, T. C. Marmar, E. Mattei, M. Nunes, I. Oyama, N. Parail, V. Portone, A. Saibene, G. Sartori, R. Stober, J. K. Suzuki, T. Wolfe, S. M. CA C-Mod Team ASDEX Upgrade Team DIII-D Team JET EFDA Contributors TI Experimental studies of ITER demonstration discharges SO NUCLEAR FUSION LA English DT Article ID HEATING ASSISTED STARTUP; JT-60U AB Key parts of the ITER scenarios are determined by the capability of the proposed poloidal field (PF) coil set. They include the plasma breakdown at low loop voltage, the current rise phase, the performance during the flat top (FT) phase and a ramp down of the plasma. The ITER discharge evolution has been verified in dedicated experiments. New data are obtained from C-Mod, ASDEX Upgrade, DIII-D, JT-60U and JET. Results show that breakdown for E-axis < 0.23-0.33 V m(-1) is possible unassisted (ohmic) for large devices like JET and attainable in devices with a capability of using ECRH assist. For the current ramp up, good control of the plasma inductance is obtained using a full bore plasma shape with early X-point formation. This allows optimization of the flux usage from the PF set. Additional heating keeps l(i)(3) < 0.85 during the ramp up to q(95) = 3. A rise phase with an H-mode transition is capable of achieving l(i)(3) < 0.7 at the start of the FT. Operation of the H-mode reference scenario at q(95) similar to 3 and the hybrid scenario at q(95) = 4-4.5 during the FT phase is documented, providing data for the l(i) (3) evolution after the H-mode transition and the li (3) evolution after a back-transition to L-mode. During the ITER ramp down it is important to remain diverted and to reduce the elongation. The inductance could be kept <= 1.2 during the first half of the current decay, using a slow I-p ramp down, but still consuming flux from the transformer. Alternatively, the discharges can be kept in H-mode during most of the ramp down, requiring significant amounts of additional heating. C1 [Sips, A. C. C.; Hobirk, J.; Horton, L. D.; Stober, J. K.; ASDEX Upgrade Team] EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany. [Casper, T. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Doyle, E. J.] Univ Calif Los Angeles, Dept Phys, Los Angeles, CA 90095 USA. [Doyle, E. J.] Univ Calif Los Angeles, PSTI, Los Angeles, CA 90095 USA. [Giruzzi, G.; Imbeaux, F.; Litaudon, X.] IRFM, CEA, F-13108 St Paul Les Durance, France. [Gribov, Y.] ITER IO, F-13108 St Paul Les Durance, France. [Hogeweij, G. M. D.] FOM, EURATOM Assoc, Inst Plasma Phys Rijnhuizen, Nieuwegein, Netherlands. [Hubbard, A. E.; Hutchinson, I.; Marmar, E.; Wolfe, S. M.; C-Mod Team] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Ide, S.; Isayama, A.; Kamada, Y.; Oyama, N.; Suzuki, T.] Japan Atom Energy Agcy, Naka, Ibaraki 3110193, Japan. [Jackson, G. L.; Luce, T. C.; DIII-D Team] Gen Atom Co, San Diego, CA USA. [Kessel, C.] Princeton Univ, Plasma Phys Lab, Princeton, NJ USA. [Kochl, F.] OAW ATI, EURATOM Assoc, Vienna, Austria. [Lomas, P.; Parail, V.] Culham Sci Ctr, EURATOM UKAEA Fus Assoc, Abingdon OX14 3DB, Oxon, England. [Mattei, M.] Univ Naples 2, ENEA, EURATOM Assoc, CREATE,DIAM, Aversa, CE, Italy. [Nunes, I.] Ctr Fusao Nucl, Euratom IST Fus Assoc, Lisbon, Portugal. [Portone, A.; Saibene, G.; Sartori, R.] FUS ENERGY, Barcelona 08019, Spain. [JET EFDA Contributors] Culham Sci Ctr, JET EFDA, Abingdon OX14 3DB, Oxon, England. RP Sips, ACC (reprint author), EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany. EM george.sips@jet.efda.org RI Hutchinson, Ian/D-1136-2009; Imbeaux, Frederic/A-7614-2013; Nunes, Isabel/D-1627-2017; OI Hutchinson, Ian/0000-0003-4276-6576; Nunes, Isabel/0000-0003-0542-1982; Mattei, Massimiliano/0000-0001-7951-6584 FU US Department of Energy [DE-FC02-99ER545512]; LLNL [DE-AC52-07NA27344]; UCLA [DE-FG03-01ER54615]; GA [DE-FC02-04ER54698] FX For DIII-D, the work presented is supported by the US Department of Energy under DE-AC52-07NA27344 (LLNL), DE-FG03-01ER54615 (UCLA) and DE-FC02-04ER54698 (GA).; For Alcator C-Mod, the work presented is supported by the US Department of Energy under DE-FC02-99ER545512. NR 26 TC 37 Z9 37 U1 0 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD AUG PY 2009 VL 49 IS 8 AR 085015 DI 10.1088/0029-5515/49/8/085015 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 483BM UT WOS:000268936800015 ER PT J AU Snyder, PB Aiba, N Beurskens, M Groebner, RJ Horton, LD Hubbard, AE Hughes, JW Huysmans, GTA Kamada, Y Kirk, A Konz, C Leonard, AW Lonnroth, J Maggi, CF Maingi, R Osborne, TH Oyama, N Pankin, A Saarelma, S Saibene, G Terry, JL Urano, H Wilson, HR AF Snyder, P. B. Aiba, N. Beurskens, M. Groebner, R. J. Horton, L. D. Hubbard, A. E. Hughes, J. W. Huysmans, G. T. A. Kamada, Y. Kirk, A. Konz, C. Leonard, A. W. Loennroth, J. Maggi, C. F. Maingi, R. Osborne, T. H. Oyama, N. Pankin, A. Saarelma, S. Saibene, G. Terry, J. L. Urano, H. Wilson, H. R. TI Pedestal stability comparison and ITER pedestal prediction SO NUCLEAR FUSION LA English DT Article ID H-MODE PEDESTAL; TOKAMAK EDGE PLASMAS; MAGNETOHYDRODYNAMIC STABILITY; TRANSPORT BARRIER; LOCALIZED MODES; MHD STABILITY; ELMS; ENERGY; INSTABILITIES; DYNAMICS AB The pressure at the top of the edge transport barrier (or 'pedestal height') strongly impacts fusion performance, while large edge localized modes (ELMs), driven by the free energy in the pedestal region, can constrain material lifetimes. Accurately predicting the pedestal height and ELM behavior in ITER is an essential element of prediction and optimization of fusion performance. Investigation of intermediate wavelength MHD modes (or 'peeling ballooning' modes) has led to an improved understanding of important constraints on the pedestal height and the mechanism for ELMs. The combination of high-resolution pedestal diagnostics, including substantial recent improvements, and a suite of highly efficient stability codes, has made edge stability analysis routine on several major tokamaks, contributing both to understanding, and to experimental planning and performance optimization. Here we present extensive comparisons of observations to predicted edge stability boundaries on several tokamaks, both for the standard (Type I) ELM regime, and for small ELM and ELM-free regimes. We further discuss a new predictive model for the pedestal height and width (EPED1), developed by self-consistently combining a simple width model with peeling-ballooning stability calculations. This model is tested against experimental measurements, and used in initial predictions of the pedestal height for ITER. C1 [Snyder, P. B.; Groebner, R. J.; Leonard, A. W.; Osborne, T. H.] Gen Atom Co, San Diego, CA 92186 USA. [Aiba, N.; Kamada, Y.; Oyama, N.; Urano, H.] JAEA, Fus Res & Dev Directorate, Ibaraki, Japan. [Beurskens, M.; Kirk, A.; Loennroth, J.; Saarelma, S.] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon, Oxon, England. [Horton, L. D.; Konz, C.; Maggi, C. F.] EURATOM, Max Planck Inst Plasmaphys, Garching, Germany. [Hubbard, A. E.; Hughes, J. W.; Terry, J. L.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Huysmans, G. T. A.] Cadarache, CEA, EURATOM Assoc, St Paul Les Durance, France. [Maingi, R.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Pankin, A.] Lehigh Univ, Dept Phys, Bethlehem, PA 18015 USA. [Saibene, G.] EFDA Close Support Unit Garching, Garching, Germany. [Wilson, H. R.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. RP Snyder, PB (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. EM snyder@fusion.gat.com FU US Department of Energy [DE-FG03-95ER54309, DE-AC05-00OR22725, DE-FG02-92ER54141, DE-FC02-99ER54512] FX This work was supported in part by the US Department of Energy under DE-FG03-95ER54309, DE-AC05-00OR22725, DE-FG02-92ER54141 and DE-FC02-99ER54512. The work involves contributions from many members of the ITPA Pedestal and Edge Physics group, and the larger pedestal physics community. This report was prepared as an account of work by or for the ITER Organization. The Members of the Organization are the People's Republic of China, the European Atomic Energy Community, the Republic of India, Japan, the Republic of Korea, the Russian Federation and the United States of America. The views and opinions expressed herein do not necessarily reflect those of the Members or any agency thereof. NR 41 TC 103 Z9 103 U1 5 U2 18 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD AUG PY 2009 VL 49 IS 8 AR 085035 DI 10.1088/0029-5515/49/8/085035 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 483BM UT WOS:000268936800035 ER PT J AU Solomon, WM Burrell, KH Garofalo, AM Cole, AJ Budny, RV Degrassie, JS Heidbrink, WW Jackson, GL Lanctot, MJ Nazikian, R Reimerdes, H Strait, EJ Van Zeeland, MA AF Solomon, W. M. Burrell, K. H. Garofalo, A. M. Cole, A. J. Budny, R. V. deGrassie, J. S. Heidbrink, W. W. Jackson, G. L. Lanctot, M. J. Nazikian, R. Reimerdes, H. Strait, E. J. Van Zeeland, M. A. CA DIII-D Rotation Phys Task Force TI Advances in understanding the generation and evolution of the toroidal rotation profile on DIII-D SO NUCLEAR FUSION LA English DT Article ID C-MOD PLASMAS; MOMENTUM-TRANSPORT; TOKAMAK DISCHARGES; PARTICLE LOSS; HIGH-BETA; ICRF; SIMULATIONS; CONFINEMENT; TURBULENCE; JT-60U AB Recent experiments using DIII-D's capability to vary the injected torque at constant power have focused on developing the physics basis for understanding rotation through the detailed study of momentum sources, sinks and transport. Non-resonant magnetic braking has generally been considered a sink of momentum; however, recent results from DIII-D suggest that it may also act as a source. The torque applied by the field depends on the rotation relative to a non-zero 'offset' rotation. Therefore, at low initial rotation, the application of non-resonant magnetic fields can actually result in a spin-up of the plasma. Direct evidence of the effect of reverse shear Alfven eigenmodes on plasma rotation has been observed, which has been explained through a redistribution of the fast ions and subsequent modification to the neutral beam torque profile. An effective momentum source has been identified by varying the input torque from neutral beam injection at fixed beta(N), until the plasma rotation across the entire profile is essentially zero. This torque profile is largest near the edge, but is still non-negligible in the core, qualitatively consistent with models for a so-called 'residual stress'. Perturbative studies of the rotation using combinations of co- and counter-neutral beams have uncovered the existence of a momentum pinch in DIII-D H-mode plasmas, which is quantitatively similar to theoretical predictions resulting from consideration of low-k turbulence. C1 [Solomon, W. M.; Budny, R. V.; Nazikian, R.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Burrell, K. H.; Garofalo, A. M.; deGrassie, J. S.; Jackson, G. L.; Strait, E. J.; Van Zeeland, M. A.] Gen Atom Co, San Diego, CA 92186 USA. [Cole, A. J.] Univ Wisconsin, Madison, WI 53706 USA. [Heidbrink, W. W.] Univ Calif Irvine, Irvine, CA 92697 USA. [Lanctot, M. J.; Reimerdes, H.] Columbia Univ, New York, NY 10027 USA. RP Solomon, WM (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM wsolomon@pppl.gov RI Lanctot, Matthew J/O-4979-2016; OI Lanctot, Matthew J/0000-0002-7396-3372; Solomon, Wayne/0000-0002-0902-9876 FU US Department of Energy [DE-AC02-76CH03073, DE-FC02-04ER54698, DE-FG02-89ER53296, SC-G903402, DE-FG02-89ER53297, DE-FG02-92ER54139] FX This work was supported by the US Department of Energy under DE-AC02-76CH03073, DE-FC02-04ER54698, DE-FG02-89ER53296, SC-G903402, DE-FG02-89ER53297 and DE-FG02-92ER54139. The authors would like to thank P. H. Diamond, T. S. Hahm and R. E. Waltz for useful discussions. NR 56 TC 48 Z9 48 U1 1 U2 9 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD AUG PY 2009 VL 49 IS 8 AR 085005 DI 10.1088/0029-5515/49/8/085005 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 483BM UT WOS:000268936800005 ER PT J AU Harkonen, J Anbinderis, P Anbinderis, T Bates, R de Boer, W Borchi, E Bruzzi, M Buttar, C Chen, W Cindro, V Czellar, S Eremin, V Furgeri, A Gaubas, E Heijne, E Ilyashenko, I Kalesinskas, V Krause, M Li, Z Luukka, P Mandic, I Menichelli, D Mikuz, M Militaru, O Mueller, S Niinikoski, TO O'Shea, V Parkes, C Piotrzkowski, K Pirollo, S Pusa, P Raisanen, J Rouby, X Tuominen, E Tuovinen, E Vaitkus, J Verbitskaya, E Vayrynen, S Zavrtanik, M AF Haerkoenen, J. Anbinderis, P. Anbinderis, T. Bates, R. de Boer, W. Borchi, E. Bruzzi, M. Buttar, C. Chen, W. Cindro, V. Czellar, S. Eremin, V. Furgeri, A. Gaubas, E. Heijne, E. Ilyashenko, I. Kalesinskas, V. Krause, M. Li, Z. Luukka, P. Mandic, I. Menichelli, D. Mikuz, M. Militaru, O. Mueller, S. Niinikoski, T. O. O'Shea, V. Parkes, C. Piotrzkowski, K. Pirollo, S. Pusa, P. Raeisaenen, J. Rouby, X. Tuominen, E. Tuovinen, E. Vaitkus, J. Verbitskaya, E. Vaeyrynen, S. Zavrtanik, M. TI Development of cryogenic tracking detectors for very high luminosity experiments SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 10th International Workshop on Radiation Imaging Detectors CY JUN 29-JUL 03, 2008 CL Helsinki, FINLAND SP PPANaly, Univ Helsinki, Planmed, Tieteellisten Seurain Valtuuskunta DE Detectors; Radiation hardness; Cryogenic ID TRANSIENT CURRENT; SILICON AB Experimental results and simulations of Charge Collection Efficiency (CCE) of Current Injected Detectors (CIDs) are focused. CID is a concept where the current is limited by the space charge. The injected carriers will be trapped by the deep levels. This induces a stable electric field through the entire bulk regardless of the irradiation fluence the detector has been exposed. Our results show that the CCE of CIDs is about two times higher than of regular detectors when irradiated up to 1 X 10(16) cm(-2). The higher CCE is achieved already at -50 degrees C temperatures. (C) 2009 Elsevier B.V. All rights reserved. C1 [Haerkoenen, J.; Czellar, S.; Luukka, P.; Tuominen, E.; Tuovinen, E.] Univ Helsinki, Helsinki Inst Phys, FI-00014 Helsinki, Finland. [Anbinderis, P.; Anbinderis, T.; Gaubas, E.; Kalesinskas, V.; Vaitkus, J.] Vilnius State Univ, Inst Mat Sci & Appl Res, Vilnius, Lithuania. [Bates, R.; Buttar, C.; O'Shea, V.; Parkes, C.] Univ Glasgow, Dept Phys & Astron, Glasgow, Lanark, Scotland. [de Boer, W.; Furgeri, A.; Krause, M.; Mueller, S.] Univ Karlsruhe, IEKP, D-76128 Karlsruhe, Germany. [Borchi, E.; Bruzzi, M.; Menichelli, D.; Pirollo, S.] Univ Florence, Dipartimento Energet, I-50139 Florence, Italy. [Chen, W.; Li, Z.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Cindro, V.; Mandic, I.; Mikuz, M.; Zavrtanik, M.] Jozef Stefan Inst, Expt Particle Phys Dept, Ljubljana 1001, Slovenia. [Eremin, V.; Ilyashenko, I.; Verbitskaya, E.] Russian Acad Sci, AF Ioffe Physicotech Inst, St Petersburg 196140, Russia. [Heijne, E.; Niinikoski, T. O.] CERN, Geneva, Switzerland. [Militaru, O.; Piotrzkowski, K.; Rouby, X.] Univ Catholique Louvain, FNYU, B-1348 Louvain, Belgium. [Pusa, P.] Univ Liverpool, Dept Phys, Liverpool L69 7ZE, Merseyside, England. [Raeisaenen, J.; Vaeyrynen, S.] Univ Helsinki, Dept Phys, Div Mat Phys, FI-00014 Helsinki, Finland. RP Harkonen, J (reprint author), Univ Helsinki, Helsinki Inst Phys, POB 64, FI-00014 Helsinki, Finland. EM jaakko.haerkoenen@cern.ch; v.oshea@physics.gla.ac.uk; petteri.pusa@cern.ch RI Buttar, Craig/D-3706-2011; O'Shea, Val/G-1279-2010; Verbitskaya, Elena/D-1521-2014; Bruzzi, Mara/K-1326-2015; Tuominen, Eija/A-5288-2017; OI O'Shea, Val/0000-0001-7183-1205; Bruzzi, Mara/0000-0001-7344-8365; Tuominen, Eija/0000-0002-7073-7767; Luukka, Panja/0000-0003-2340-4641 NR 12 TC 1 Z9 1 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD AUG 1 PY 2009 VL 607 IS 1 BP 41 EP 44 DI 10.1016/j.nima.2009.03.116 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 483SI UT WOS:000268987900012 ER PT J AU Vabre, A Gmar, M Lazaro, D Legoupil, S Coutier, O Dazin, A Lee, WK Fezzaa, K AF Vabre, A. Gmar, M. Lazaro, D. Legoupil, S. Coutier, O. Dazin, A. Lee, W. K. Fezzaa, K. TI Synchrotron ultra-fast X-ray imaging of a cavitating flow in a Venturi profile SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 10th International Workshop on Radiation Imaging Detectors CY JUN 29-JUL 03, 2008 CL Helsinki, FINLAND SP PPANalyt, Univ Helsinki, Planmed, Tieteellisten Seurain Valtuuskunta DE Cavitation; Venturi; X-ray ultra-fast imaging; Synchrotron applications AB Cavitation consists of successive vaporization and condensation processes in a liquid flow, due to a large pressure decrease usually associated with sudden flow acceleration. This phenomenon occurs typically in pumps and naval propellers, on the blades' suction side and/or in periphery of the rotor. it is associated with performance decrease, blade erosion, vibrations that may lead to damage, and noise due to vapor collapse close to the solid walls. Therefore, a general understanding of the mechanisms that govern flow vaporization and condensation is of the utmost importance to reduce or at least to control these effects. A major issue is to estimate velocity fields in both phases, i.e. liquid and vapor. These combined measurements are missing in the literature. We propose a method of ultra-fast X-ray imaging to cope this lack. This method is based on X-ray absorption and phase-contrast enhancement. This technique can simultaneously measure the flow velocities of both liquid and vapor phases at kHz frequency. For the X-ray measurements, a dedicated Venturi shape canal has been designed for the experiments. The design is based on a known two-phase flows hydraulic set-up. The studied cavitation occurs downstream from the Venturi profile. The experiments were carried out at the Advanced Photon Source (APS) at Argonne National Laboratory. These experiments have confirmed the advantages of ultra-fast X-ray imaging for the visualization of liquid-vapor interfaces. Also, the feasibility of estimating velocity field in the flow is acknowledged. (C) 2009 Elsevier B.V. All rights reserved. C1 [Vabre, A.; Gmar, M.; Lazaro, D.; Legoupil, S.] CEA LIST, F-91191 Gif Sur Yvette, France. [Coutier, O.; Dazin, A.] ENSAM Lille, LML, F-59000 Lille, France. [Lee, W. K.; Fezzaa, K.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Gmar, M (reprint author), CEA LIST, F-91191 Gif Sur Yvette, France. EM mehdi.gmar@cea.fr RI GMAR, Mehdi/D-3265-2009 NR 14 TC 9 Z9 12 U1 2 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD AUG 1 PY 2009 VL 607 IS 1 BP 215 EP 217 DI 10.1016/j.nima.2009.03.192 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 483SI UT WOS:000268987900062 ER PT J AU Kharzeev, D Levin, E Nardi, M Tuchin, K AF Kharzeev, Dmitri Levin, Eugene Nardi, Marzia Tuchin, Kirill TI J/psi production in heavy ion collisions and gluon saturation SO NUCLEAR PHYSICS A LA English DT Article DE High energy QCD; Color glass condensate; Gluon saturation; Space-time picture at high energy; Glauber approach ID COLOR GLASS CONDENSATE; HADRON-NUCLEUS COLLISIONS; OPEN CHARM PRODUCTION; ENERGY PA-COLLISIONS; J-PSI-SUPPRESSION; HIGH-DENSITY QCD; QUARK PRODUCTION; SMALL-X; RENORMALIZATION-GROUP; SEMIHARD PROCESSES AB We calculate the inclusive J/psi production in heavy ion collisions including the effects of gluon saturation in the wave functions of the colliding nuclei. We argue that the dominant production mechanism in proton-nucleus and nucleus-nucleus collisions for heavy nuclei is different from the one in hadron-hadron interactions. We find that the rapidity distribution of primary J/psi production is more peaked around midrapidity than the analogous distribution in elementary pp collisions. We discuss the consequences of this fact on the experimentally observed J/psi suppression in Au-Au collisions at RHIC energies. (C) 2009 Elsevier B.V. All rights reserved. C1 [Tuchin, Kirill] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Kharzeev, Dmitri] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Levin, Eugene] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Phys, HEP Dept, IL-69978 Tel Aviv, Israel. [Nardi, Marzia] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Tuchin, Kirill] RIKEN, BNL, Res Ctr, Upton, NY 11973 USA. RP Tuchin, K (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. EM tuchin@iastate.edu NR 81 TC 21 Z9 21 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD AUG 1 PY 2009 VL 826 IS 3-4 BP 230 EP 255 DI 10.1016/j.nuclphysa.2009.06.016 PG 26 WC Physics, Nuclear SC Physics GA 476GZ UT WOS:000268428300003 ER PT J AU Radulescu, G Mueller, DE Wagner, JC AF Radulescu, Georgeta Mueller, Donald E. Wagner, John C. TI SENSITIVITY AND UNCERTAINTY ANALYSIS OF COMMERCIAL REACTOR CRITICALS FOR BURNUP CREDIT SO NUCLEAR TECHNOLOGY LA English DT Article DE burnup credit; commercial reactor criticals; sensitivity and uncertainty analysis AB This paper provides insights into the neutronic similarities between a representative high-capacity rail-transport cask containing typical pressurized water reactor (PWR) spent nuclear fuel assemblies and critical reactor state-points, referred to as commercial reactor critical (CRC) state-points. Forty CRC state-points from five PWRs were analyzed, and the characteristics of CRC state-points that may be applicable for validation of burnup-credit criticality safety calculations for spent fuel transport/storage/disposal systems were identified. The study employed cross-section sensitivity and uncertainty analysis methods developed at Oak Ridge National Laboratory and the TSUNAMI set of tools in the SCALE code system as a means to investigate neutronic similarity on an integral and nuclide-reaction-specific level. The results indicate that except for the fresh-fuel-core configuration, all analyzed CRC state-points are either highly similar, similar, or marginally similar to the representative high-capacity cask containing spent nuclear fuel assemblies with burnups ranging from 10 to 60 GWd/t U in terms of their shared uncertainty in k(eff) due to cross-section uncertainties. On a nuclide-reaction-specific level, the CRC state-points provide significant coverage, in terms of neutronic similarity, for most of the actinides and fission products relevant to burnup credit. Hence, in principle, the evaluated CRC state-points could serve as part of a set of benchmark experiments for determining a bias and bias uncertainty to be applied to the calculated keff of a spent fuel transport/storage/disposal system to correct for approximations in computational methods and errors and uncertainties in nuclear data. Note, however, that an evaluation to quantify the uncertainties associated with various CRC modeling parameters (e.g., fuel isotopic compositions, physical characteristics of reactor core components, and reactor operating history information), which has relevance to the use of these critical configurations for bias determination, was not performed as part of this study. C1 [Radulescu, Georgeta; Mueller, Donald E.; Wagner, John C.] Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Radulescu, G (reprint author), Oak Ridge Natl Lab, Nucl Sci & Technol Div, POB 2008,Bldg 5700, Oak Ridge, TN 37831 USA. EM radulescug@ornl.gov RI Wagner, John/K-3644-2015; OI Wagner, John/0000-0003-0257-4502; Radulescu, Georgeta/0000-0001-7664-1718 NR 29 TC 4 Z9 4 U1 0 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD AUG PY 2009 VL 167 IS 2 BP 268 EP 287 PG 20 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 475PJ UT WOS:000268371800003 ER PT J AU Baker, KL AF Baker, Kevin L. TI X-ray wavefront analysis and phase reconstruction with a two-dimensional shearing interferometer SO OPTICAL ENGINEERING LA English DT Article DE shearing interferometer; x-ray; phase grating; wavefront gradient AB We present the design and simulations of the expected performance of a novel 2-D x-ray shearing interferometer. This interferometer uses crossed phase gratings in a single plane, and is capable of operation over a wide range of energies extending from several hundred electron volts to tens of kiloelectron volts by varying the grating material and thickness. This interferometer is insensitive to vibrations and, unlike Moire deflectometers implemented in the hard x-ray regime, recovers the full 2-D phase profile of the x-ray beam rather than the gradient in only one dimension. (C) 2009 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3205036] C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Baker, KL (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave L-210, Livermore, CA 94550 USA. EM baker7@llnl.gov FU U. S. Department of Energy by Lawrence Livermore National Laboratory [W-7405-Eng-48, DE-AC52-07NA27344] FX This work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory in part under contract W-7405-Eng-48 and in part under contract DE-AC52-07NA27344. NR 13 TC 6 Z9 6 U1 0 U2 1 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 J9 OPT ENG JI Opt. Eng. PD AUG PY 2009 VL 48 IS 8 AR 086501 DI 10.1117/1.3205036 PG 5 WC Optics SC Optics GA 504ED UT WOS:000270596700021 ER PT J AU Ikeda, Y Kobayashi, N Kondo, S Yasui, C Kuzmenko, PJ Tokoro, H Terada, H AF Ikeda, Yuji Kobayashi, Naoto Kondo, Sohei Yasui, Chikako Kuzmenko, Paul J. Tokoro, Hitoshi Terada, Hiroshi TI Zinc sulfide and zinc selenide immersion gratings for astronomical high-resolution spectroscopy: evaluation of internal attenuation of bulk materials in the short near-infrared region SO OPTICAL ENGINEERING LA English DT Article DE attenuation; spectrographs; gratings; infrared; astronomy ID LASER WINDOW MATERIALS; ABSORPTION-EDGE; LATTICE EDGE; ECHELLE; SPECTROGRAPH; PERFORMANCE; TELESCOPE; SILICON AB We measure the internal attenuation of bulk crystals of chemical vapor deposition zinc selenide (CVD-ZnS), chemical vapor deposition zinc sulfide (CVD-ZnSe), Si, and GaAs in the short near-infrared (sNIR) region to evaluate the possibility of astronomical immersion gratings with those high refractive index materials. We confirm that multispectral grade CVD-ZnS and CVD-ZnSe are best suited for the immersion gratings, with the smallest internal attenuation of alpha(att) = 0.01 to 0.03 cm(-1) among the major candidates. The measured attenuation is roughly in proportion to lambda(-2), suggesting it is dominated by bulk scattering due to the polycrystalline grains rather than by absorption. The total transmittance in the immersion grating is estimated to be at least >80%, even for the spectral resolution of R = 300,000. Two potential problems, the scattered light by the bulk material and the degradation of the spectral resolution due to the gradient illumination in the diffracted beam, are investigated and found to be negligible for usual astronomical applications. Since the remaining problem, the difficulty of cutting grooves on CVD-ZnS and CVD-ZnSe, has recently been overcome by the nanoprecision fly-cutting technique, ZnS and ZnSe immersion gratings for astronomy can be technically realized. (C) 2009 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3206734] C1 [Ikeda, Yuji] Photocoding, Kanagawa 2291104, Japan. [Kobayashi, Naoto; Kondo, Sohei; Yasui, Chikako] Univ Tokyo, Inst Astron, Tokyo 1810015, Japan. [Kuzmenko, Paul J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Tokoro, Hitoshi] Nanoopton Res Inst Inc, Gifu 5012697, Japan. [Terada, Hiroshi] Subaru Telescope, Hilo, HI 96720 USA. RP Ikeda, Y (reprint author), Photocoding, 3-16-8-101 Higashi Hashimoto, Kanagawa 2291104, Japan. EM ikeda@photocoding.com FU KAKENHI [16684001, 20340042]; Japan Society for the Promotion of Science (JSPS); NAOJ [FY2007]; Space Instrument Basic Development; Institute of Space and Astronautical Science (ISAS); Japan Aerospace Explanation Agency (JAXA) FX We would like to thank A. Tokunaga for fruitful suggestions and comments throughout this study. Most measurements were carried out at the Advanced Technology Center (ATC) of the National Astronomical Observatory of Japan (NAOJ). We feel most grateful to all the staff of ATC, especially to K. Mitsui for supporting our measurements kindly. This work was supported by KAKENHI (16684001) Grant-in-Aid for Young Scientists (A) and KAKENHI (20340042) Grant-in-Aid for Scientific Research (B) by the Japan Society for the Promotion of Science (JSPS). It is also supported by the Grant for Collaborative Basic Development (FY2007) and General Funds by NAOJ, and the Grant for the Space Instrument Basic Development (FY2007) by Institute of Space and Astronautical Science (ISAS), Japan Aerospace Explanation Agency (JAXA). A portion of this work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Authors Kondo and Yasui are financially supported by the JSPS fellowship. NR 37 TC 9 Z9 10 U1 0 U2 4 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 EI 1560-2303 J9 OPT ENG JI Opt. Eng. PD AUG PY 2009 VL 48 IS 8 AR 084001 DI 10.1117/1.3206734 PG 9 WC Optics SC Optics GA 504ED UT WOS:000270596700005 ER PT J AU McKinney, WR Kirschman, JL MacDowell, AA Warwick, T Yashchuk, VV AF McKinney, Wayne R. Kirschman, Jonathan L. MacDowell, Alastair A. Warwick, Tony Yashchuk, Valeriy V. TI Optimal tuning and calibration of bendable mirrors with slope-measuring profilers SO OPTICAL ENGINEERING LA English DT Article DE X-ray; mirror; synchrotron radiation; adaptive optics; elliptical bender; long trace profiler; LTP; surface slope measurement ID X-RAY MIRRORS; SPECIFICATION; CURVATURE; ELLIPSES AB We describe a technique to optimally tune and calibrate bendable X-ray optics for submicron focusing. The focusing is divided between two elliptically cylindrical reflecting elements, a Kirkpatrick-Baez pair. Each optic is shaped by applying unequal bending couples to each end of a flat mirror. The developed technique allows optimal tuning of these systems using surface slope data obtained with a slope-measuring instrument, the long trace profiler. Because of the near linearity of the problem, the minimal set of data necessary for the tuning of each bender consists of only three slope traces measured before and after a single adjustment of each bending couple. The data are analyzed with software realizing a method of regression analysis with experimentally found characteristic functions of the benders. The resulting approximation to the functional dependence of the desired shape provides nearly final settings. Moreover, the characteristic functions of the benders found in the course of tuning can be used for retuning to a new desired shape without removal from the beamline and remeasuring. We perform a ray trace using profiler data for the finally tuned optics, predicting the performance to be expected during use of the optics on the beamline. (C) 2009 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3204235] C1 [McKinney, Wayne R.; Kirschman, Jonathan L.; MacDowell, Alastair A.; Warwick, Tony; Yashchuk, Valeriy V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP McKinney, WR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd,M-S 2R0400, Berkeley, CA 94720 USA. EM WRMcKinney@lbl.gov RI MacDowell, Alastair/K-4211-2012; McKinney, Wayne/F-2027-2014 OI McKinney, Wayne/0000-0003-2586-3139 FU U. S. Department of Energy [DE-AC02-05CH11231] FX The authors are grateful to Amparo Rommeveaux and Howard Padmore for useful discussions. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, Material Science Division, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory. NR 21 TC 20 Z9 20 U1 0 U2 1 PU SPIE-SOC PHOTOPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 J9 OPT ENG JI Opt. Eng. PD AUG PY 2009 VL 48 IS 8 AR 083601 DI 10.1117/1.3204235 PG 8 WC Optics SC Optics GA 504ED UT WOS:000270596700004 ER PT J AU Shah, RC Johnson, RP Shimada, T Flippo, KA Fernandez, JC Hegelich, BM AF Shah, Rahul C. Johnson, Randall P. Shimada, Tsutomu Flippo, Kirk A. Fernandez, Juan C. Hegelich, B. M. TI High-temporal contrast using low-gain optical parametric amplification SO OPTICS LETTERS LA English DT Article ID POLARIZED WAVE GENERATION; SYSTEMS; PULSES; PHASE; LASER AB We demonstrate the use of low-gain optical parametric amplification (OPA) as a means of improving temporal contrast to a detection-limited level 10(-10). 250 mu J, 500 fs pulses of 1053 nm are frequency doubled and subsequently restored to the original wavelength by OPA with >10% efficiency. (C) 2009 Optical Society of America C1 [Shah, Rahul C.; Johnson, Randall P.; Shimada, Tsutomu; Flippo, Kirk A.; Fernandez, Juan C.; Hegelich, B. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Johnson, RP (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM rpjohnson@lanl.gov RI Flippo, Kirk/C-6872-2009; Fernandez, Juan/H-3268-2011; Hegelich, Bjorn/J-2689-2013 OI Flippo, Kirk/0000-0002-4752-5141; Fernandez, Juan/0000-0002-1438-1815; FU U.S. Department of Energy (DOE); Los Alamos National Laboratory Directed Research and Development FX Authors acknowledge support of U.S. Department of Energy (DOE) and Los Alamos National Laboratory Directed Research and Development. We acknowledge assistance of Trident and P-24 staff. NR 11 TC 64 Z9 66 U1 1 U2 10 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD AUG 1 PY 2009 VL 34 IS 15 BP 2273 EP 2275 PG 3 WC Optics SC Optics GA 489FQ UT WOS:000269405900010 PM 19649068 ER PT J AU Deacon, RM DuPont, JN Kiely, CJ Marder, AR Tortorelli, PF AF Deacon, R. M. DuPont, J. N. Kiely, C. J. Marder, A. R. Tortorelli, P. F. TI Evaluation of the Corrosion Resistance of Fe-Al-Cr Alloys in Simulated Low NO (x) Environments SO OXIDATION OF METALS LA English DT Article DE Iron-aluminum-chromium alloys; Oxidation/sulfidation; Coal combustion ID IRON-ALUMINUM-ALLOYS; SULFIDATION BEHAVIOR; BASE ALLOYS; BREAKAWAY OXIDATION; H2S-H2 ATMOSPHERES; FECRAL ALLOYS; SULFUR; PRESSURES; ADDITIONS; 1173-K AB Due to their excellent corrosion resistance, iron aluminum alloys are currently being considered for use as weld claddings in fossil fuel fired power plants. The susceptibility to hydrogen cracking of these alloys at higher aluminum concentrations has led researchers to examine the effect of chromium additions on the corrosion resistance of lower aluminum alloys. In this work, three iron aluminum alloys were exposed to simulated coal combustion environments at 500 and 700 A degrees C for short (100 h) and long (5000 h) isothermal durations. Scanning electron microscopy was used to analyze the corrosion products. All alloys exhibited excellent corrosion resistance during short term exposures. For longer test times, increasing the aluminum concentration improved alloy corrosion resistance. The addition of chromium to the binary iron aluminum alloy prevented the formation iron sulfide and resulted in slower corrosion kinetics. A general classification of the scales developed on these alloys is presented. C1 [Deacon, R. M.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Tortorelli, P. F.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Deacon, R. M.; DuPont, J. N.; Kiely, C. J.; Marder, A. R.] Lehigh Univ, Dept Mat Sci & Engn, Bethlehem, PA 18015 USA. RP Deacon, RM (reprint author), Johns Hopkins Univ, Appl Phys Lab, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA. EM ryan.deacon@jhuapl.edu RI Tortorelli, Peter/E-2433-2011 FU Department of Energy through the National Energy Technology Laboratory [DE-FG26-04NT42169] FX This work was supported by the Department of Energy through the National Energy Technology Laboratory through grant number DE-FG26-04NT42169. The authors wish to thank Dr. Vinod Sikka of Oak Ridge National Laboratory for preparation of the alloys used in this study. NR 36 TC 0 Z9 0 U1 0 U2 7 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0030-770X J9 OXID MET JI Oxid. Met. PD AUG PY 2009 VL 72 IS 1-2 BP 67 EP 86 DI 10.1007/s11085-009-9148-z PG 20 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 460WW UT WOS:000267223400003 ER PT J AU Deacon, RM DuPont, JN Kiely, CJ Marder, AR Tortorelli, PF AF Deacon, R. M. DuPont, J. N. Kiely, C. J. Marder, A. R. Tortorelli, P. F. TI Evaluation of the Corrosion Resistance of Fe-Al-Cr Alloys in Simulated Low NO (x) Environments SO OXIDATION OF METALS LA English DT Article DE Iron-aluminum-chromium alloys; Oxidation-sulfidation; Scanning transmission electron microscopy; Electron microprobe analysis ID HIGH-TEMPERATURE; OXIDATION-SULFIDATION; H2S-H2 ATMOSPHERES; IRON ALUMINIDES; BASE ALLOYS; BEHAVIOR; CHROMIUM; KINETICS; SCALES; INTERDIFFUSION AB The first part of this manuscript presented SEM analysis of corrosion products formed on iron-aluminum-chromium alloys that were exposed to a simulated low NO (x) combustion environments. In Part II, results from electron microprobe analysis (EMPA) and scanning transmission electron microscopy (STEM) analyses of select as-corroded coupons from the long tem tests are discussed. Despite the formation of thick iron sulfide films one of the alloys, EMPA did not detect any measurable depletion of aluminum near the surface of this alloy. STEM analysis revealed that chromium was able to form chromium sulfides only on the higher aluminum content alloys, thereby preventing the formation of deleterious iron sulfides and reducing the overall corrosive attack on this alloy. Also observed in the STEM analysis was the encapsulation of external iron sulfide products with a thin layer of aluminum oxide, which may serve as a secondary layer of corrosion protection in these regions. C1 [Deacon, R. M.; DuPont, J. N.; Kiely, C. J.; Marder, A. R.] Lehigh Univ, Dept Mat Sci & Engn, Bethlehem, PA 18015 USA. [Tortorelli, P. F.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Deacon, RM (reprint author), Johns Hopkins Univ, Appl Phys Lab, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA. EM ryan.deacon@jhuapl.edu RI Tortorelli, Peter/E-2433-2011 FU Department of Energy through the National Energy Technology Laboratory [DE-FG26-04NT42169] FX This work was supported by the Department of Energy through the National Energy Technology Laboratory through grant number DE-FG26-04NT42169. The authors wish to thank Dr. Vinod Sikka of Oak Ridge National Laboratory for preparation of the alloys used in this study. Dave Ackland of Lehigh University and Masashi Watanabe of Lawrence Berkeley National Laboratory are also gratefully acknowledged for their assistance with the STEM work. NR 37 TC 4 Z9 5 U1 0 U2 1 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0030-770X J9 OXID MET JI Oxid. Met. PD AUG PY 2009 VL 72 IS 1-2 BP 87 EP 107 DI 10.1007/s11085-009-9150-5 PG 21 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 460WW UT WOS:000267223400004 ER PT J AU Hou, PY Izumi, T Gleeson, B AF Hou, P. Y. Izumi, T. Gleeson, B. TI Sulfur Segregation at Al2O3/gamma-Iei plus gamma'-Ni3Al Interfaces: Effects of Pt, Cr and Hf Additions SO OXIDATION OF METALS LA English DT Article DE Oxidation; Alumina; Adhesion; Nickel-aluminide; Sulfur; Segregation; Platinum; Hafnium ID HIGH-TEMPERATURE OXIDATION; THERMAL BARRIER COATINGS; ALUMINIDE DIFFUSION COATINGS; CYCLIC OXIDATION; BOND COATINGS; ALLOYS; BEHAVIOR; NI; PLATINUM; SURFACE AB The interfacial chemistry that developed as a result Al2O3-scale growth on gamma-Iei + gamma'-Ni3Al alloys at 1150 A degrees C was studied using scanning Auger microscopy after the oxide layer was scratched to spall under ultra-high vacuum. The extent of scale spallation was used to evaluate semi-quantitatively the interfacial strength. The alloys investigated were primarily gamma' in structure, containing 22 at.% Al plus further additions of Pt, Cr and/or Hf. In the case of the binary gamma + gamma' alloy, it was found that a sub-monolayer of sulfur segregated at the alloy/scale interface. Platinum reduced and hafnium eliminated sulfur segregation, but chromium enhanced it through Cr-S co-segregation, even on Pt- and Hf-containing alloys. Platinum also segregated slightly at the alloy/scale interface. The interface strength was a strong function of the sulfur content. Beyond the effect of eliminating S segregation, Pt and Hf both showed additional beneficial effects on alumina scale adhesion. C1 [Hou, P. Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Izumi, T.; Gleeson, B.] Iowa State Univ, Ames, IA USA. RP Hou, PY (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM pyhou@lbl.gov; izumiisu@hotmail.com; bgleeson@engr.pitt.edu FU Molecular Foundry, Lawrence Berkeley National Laboratory; Office of Science; Office of Basic Energy Sciences; U.S. Department of Energy [DE-AC02-05CH11231, DE-AC02-06CH11357]; Force Office of Sponsored Research [MEANS-2, FA9550-05-1-0173]; Office of Naval Research [N00014-07-1-0122] FX Portions of this work were performed at the Molecular Foundry, Lawrence Berkeley National Laboratory, which is supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract DE-AC02-05CH11231. Research at LBNL was sponsored by the above DOE office under contract DE-AC02-06CH11357 and by the Air Force Office of Sponsored Research under the MEANS-2 Program (Grant No. FA9550-05-1-0173). Research at Iowa State was supported by the Office of Naval Research under contract N00014-07-1-0122, with Dr. David Shifler being the Program Manager. NR 52 TC 17 Z9 17 U1 2 U2 29 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0030-770X J9 OXID MET JI Oxid. Met. PD AUG PY 2009 VL 72 IS 1-2 BP 109 EP 124 DI 10.1007/s11085-009-9149-y PG 16 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 460WW UT WOS:000267223400005 ER PT J AU Singh, DJ Du, MH Zhang, L Subedi, A An, J AF Singh, D. J. Du, M. -H. Zhang, L. Subedi, A. An, J. TI Electronic structure, magnetism and superconductivity of layered iron compounds SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT 21st International Symposium on Superconductivity CY OCT 27-29, 2008 CL Tsukuba, JAPAN SP Int Superconductiv Technol Ctr DE Band structure; Fermi surface; Magnetism; Superconductivity ID FIELDS; PHASE; ORDER AB The layered iron superconductors are discussed using electronic structure calculations. The four families of compounds discovered so far, including Fe (Se, Te) have closely related electronic structures. The Fermi surface consists of disconnected hole and electron cylinders and additional hole sections that depend on the specific material. This places the materials in proximity to itinerant magnetism, both due to the high density of states and due to nesting. Comparison of density functional results and experiment provides strong evidence for itinerant spin fluctuations, which are discussed in relation to Superconductivity. It is proposed that the intermediate phase between the structural transition and the SDW transition in the oxy-pnictides is a nematic phase. (C) 2009 Elsevier B.V. All rights reserved. C1 [Singh, D. J.; Du, M. -H.; Zhang, L.; Subedi, A.; An, J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Subedi, A.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [An, J.] Wuhan Univ Technol, Wuhan 430070, Peoples R China. RP Singh, DJ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM singhdj@ornl.gov RI Du, Mao-Hua/B-2108-2010; Zhang, Lijun/F-7710-2011; Singh, David/I-2416-2012 OI Du, Mao-Hua/0000-0001-8796-167X; NR 35 TC 13 Z9 13 U1 0 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD AUG-OCT PY 2009 VL 469 IS 15-20 BP 886 EP 889 DI 10.1016/j.physc.2009.05.091 PG 4 WC Physics, Applied SC Physics GA 496ZC UT WOS:000270018200007 ER PT J AU Baenitz, M Luders, K Maurer, D Barisic, N Cho, Y Li, Y Yu, G Zhao, X Greven, M AF Baenitz, M. Lueders, K. Maurer, D. Barisic, N. Cho, Y. Li, Y. Yu, G. Zhao, X. Greven, M. TI Vortex dynamics in single crystal Hg-1201 SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT 21st International Symposium on Superconductivity CY OCT 27-29, 2008 CL Tsukuba, JAPAN SP Int Superconductiv Technol Ctr DE High-T(c) superconductors; Flux creep; Pinning; Vortex dynamics ID HGBA2CUO4+DELTA AB Anisotropic Superconducting materials often show an enhanced pinning along their crystallographic ab-planes. To obtain information about such a behavior of the high-T(c) system Hg-1201 (HgBa(2)CuO(4)) Magnetic investigations on a single crystal are performed for the two field orientations, parallel to the c-axis and parallel to the ab-planes. The dependence of the ac magnetization on temperature, magnetic field and frequency is determined. Compared to former results on powder samples of this system no indication of a second peak in the imaginary part of the susceptibility chi '' is found. It seems to be shifted to higher temperatures overlapping now with the first peak. The corresponding irreversibility lines for both orientations, parallel to c and parallel to ab, are determined and discussed within the framework of a "diffusion" model. (C) 2009 Elsevier B.V. All rights reserved. C1 [Lueders, K.; Maurer, D.] Free Univ Berlin, Fachbereich Phys, D-14195 Berlin, Germany. [Baenitz, M.] Max Planck Inst Chem Phys Feter Stoffe, D-01187 Dresden, Germany. [Barisic, N.; Cho, Y.; Zhao, X.] Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. [Barisic, N.] Univ Stuttgart, Inst Phys 1, D-70550 Stuttgart, Germany. [Cho, Y.] Pusan Natl Univ, Team Nano Fus Technol BK21, Miryang 627706, South Korea. [Li, Y.; Yu, G.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Zhao, X.] Jilin Univ, Coll Chem, State Key Lab Inorgan Synth & Preparat Chem, Changchun 130012, Peoples R China. [Greven, M.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. RP Luders, K (reprint author), Free Univ Berlin, Fachbereich Phys, Arnimallee 14, D-14195 Berlin, Germany. EM lueders@physik.fu-berlin.de RI Yu, Guichuan/K-4025-2014; Barisic, Neven/E-4246-2015; Baenitz, Michael/E-4085-2016; OI Cho, Yong Chan/0000-0003-3976-8343 NR 14 TC 1 Z9 1 U1 1 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD AUG-OCT PY 2009 VL 469 IS 15-20 BP 1126 EP 1128 DI 10.1016/j.physc.2009.05.203 PG 3 WC Physics, Applied SC Physics GA 496ZC UT WOS:000270018200070 ER PT J AU Sansonetti, CJ Andrew, KL Cowan, RD AF Sansonetti, Craig J. Andrew, Kenneth L. Cowan, Robert D. TI Spectrum and energy levels of doubly ionized cesium (Cs III) SO PHYSICA SCRIPTA LA English DT Article ID TRANSITION PROBABILITIES; CONFIGURATIONS; WAVELENGTHS; LINES; XE; BA; IV AB The spectrum of doubly ionized cesium (Cs III) has been observed in the region 330-25000 angstrom, and the experimentally determined energy levels have been revised and extended. One thousand and ten spectral lines have been classified as transitions among 75 odd and 98 even parity levels, most of which are newly located. Most levels of the configurations 5s(2)5p(5), 5s5p(6) and 5s(2)5p(4)(5d, 6s, 6d, 7s, 5g, 6p and 4f) have been found and are theoretically interpreted including the most important configuration interactions. Low-lying levels of the 5s(2)5p(4)(7d, 7p and 5f) configurations and a few levels of other configurations have also been located. The Cs III ionization energy is found to be 267 736 +/- 30 cm(-1). C1 [Sansonetti, Craig J.] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. [Andrew, Kenneth L.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Cowan, Robert D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Sansonetti, CJ (reprint author), Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. EM craig.sansonetti@nist.gov NR 26 TC 4 Z9 4 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0031-8949 J9 PHYS SCRIPTA JI Phys. Scr. PD AUG PY 2009 VL 80 IS 2 AR 025303 DI 10.1088/0031-8949/80/02/025303 PG 39 WC Physics, Multidisciplinary SC Physics GA 480WI UT WOS:000268767300010 ER PT J AU Schmidt, T Flege, JI Speckmann, M Clausen, T Gangopadhyay, S Locatelli, A Mentes, TO Heun, S Guo, FZ Sutter, P Falta, J AF Schmidt, Th. Flege, J. I. Speckmann, M. Clausen, T. Gangopadhyay, S. Locatelli, A. Mentes, T. O. Heun, S. Guo, F. Z. Sutter, P. Falta, J. TI From nanoislands to nanowires: germanium on gallium-terminated silicon surfaces SO PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE LA English DT Article; Proceedings Paper CT 9th Biennial Conference on High Resolution X-Ray Diffraction and Imaging CY SEP 15-19, 2008-2009 CL Linz, AUSTRIA ID GE ISLANDS; SI SURFACES; SI(113); MICROSCOPY AB The influence of Ga pre-adsorption on Si(111), Si(113) and Si(112) surfaces on Ge growth has been investigated by low-energy electron diffraction and microscopy as well as X-ray photoemission spectroscopy. On Si(111), step edges and substrate domain boundaries are decorated with Ga at high deposition temperatures, enabling selective growth and alignment of three-dimensional Ge islands on a chemically modulated surface. On Si(113), a morphological modulation is achieved by Ga saturation, as the Si substrate decomposes into an ordered array of (112) and (115) facets. This results in the growth of Ge islands aligned at the facets. These islands exhibit an anisotropy, as they are elongated along [110]. Ga pre-adsorption on Si(112) smoothens the initially faceted bare surface, and subsequent Ge growth leads to the formation of nanoscale Ge wires. The results are discussed in terms of surface chemistry, as well as diffusion and strain relaxation anisotropy. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Schmidt, Th.; Flege, J. I.; Speckmann, M.; Clausen, T.; Gangopadhyay, S.; Falta, J.] Univ Bremen, Inst Solid State Phys, D-28359 Bremen, Germany. [Locatelli, A.; Mentes, T. O.; Heun, S.] Sincrotrone Trieste SCpA, I-34012 Trieste, Italy. [Guo, F. Z.] SPring 8 JASRI, Mikazuki, Hyogo 6795198, Japan. [Sutter, P.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Schmidt, T (reprint author), Univ Bremen, Inst Solid State Phys, Otto Hahn Allee 1, D-28359 Bremen, Germany. EM tschmidt@ifp.uni-bremen.de RI Heun, Stefan/B-4406-2011; Speckmann, Moritz/H-3097-2011; Flege, Jan Ingo/J-6354-2012; Falta, Jens/F-4821-2016; OI Heun, Stefan/0000-0003-1989-5679; Flege, Jan Ingo/0000-0002-8346-6863; Falta, Jens/0000-0002-4154-822X; Mentes, Tevfik Onur/0000-0003-0413-9272; Locatelli, Andrea/0000-0002-8072-7343 NR 24 TC 3 Z9 3 U1 0 U2 6 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1862-6300 J9 PHYS STATUS SOLIDI A JI Phys. Status Solidi A-Appl. Mat. PD AUG PY 2009 VL 206 IS 8 BP 1718 EP 1722 DI 10.1002/pssa.200881602 PG 5 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 486ZY UT WOS:000269241200008 ER PT J AU Chantler, CT Laming, JM Silver, JD Dietrich, DD Mokler, PH Finch, EC Rosner, SD AF Chantler, C. T. Laming, J. M. Silver, J. D. Dietrich, D. D. Mokler, P. H. Finch, E. C. Rosner, S. D. TI Hydrogenic Lamb shift in Ge31+ and the fine-structure Lamb shift SO PHYSICAL REVIEW A LA English DT Review ID RELATIVISTIC HEAVY-IONS; HELIUM-LIKE IONS; X-RAY-IRRADIATION; CONFIGURATION-INTERACTION CALCULATIONS; BEAM-FOIL SPECTROSCOPY; ARGON RECOIL IONS; ATOMIC-COLLISIONS; PRECISION-MEASUREMENT; ELECTRON-CAPTURE; QUANTUM ELECTRODYNAMICS AB Using x-ray diffraction and beam-foil spectroscopy, we have determined precise wavelengths for Lyman alpha(1) and Lyman alpha(2) in hydrogenic germanium of 1.166 993 8 +/- 33 +/- 169 and 1.172 433 6 +/- 39 +/- 170 angstrom. Hydrogenic germanium Ge31+ 1s-2p(3/2) and 1s-2p(1/2) Lamb shifts are measured to be 66 080 +/- 237 +/- 1121 and 67 169 +/- 281 +/- 1237 cm(-1), respectively. This 14 ppm measurement of the wavelengths thus provides a 1.8% measurement of the 2p-1s Lamb shift and is an improvement by a factor of 3 over previous work. Fitting the full two-dimensional dispersion relation, including Balmer and Lyman series, limits random and systematic correlation of parameters. Dominant systematics are due to diffraction parameters including crystal thickness and alignment, differential Doppler shifts due to the variable location of spectral emission downstream of the beam-foil target, and dielectronic, 2s-1s, and 4f-2p satellites. Models developed are applicable to all relativistic plasma modeling in beam-foil spectroscopy at accelerators. The technique also reports the germanium 2p(3/2)-2p(1/2) fine structure as 397 617 +/- 251 +/- 512 cm(-1), representing a 0.14% measurement of the fine structure and a 71% measurement of the QED contribution to the hydrogenic germanium fine structure, an improvement of a factor of 6 over previous work. We also report a precise measurement of heliumlike resonances and fine structure. C1 [Chantler, C. T.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Laming, J. M.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Silver, J. D.] Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England. [Dietrich, D. D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Mokler, P. H.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Mokler, P. H.] Gesell Schwerionenforsch GSI, D-6100 Darmstadt, Germany. [Finch, E. C.] Trinity Coll Dublin, Dept Pure & Appl Phys, Dublin, Ireland. [Rosner, S. D.] Univ Western Ontario, London, ON N6H 3K7, Canada. RP Chantler, CT (reprint author), Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. EM chantler@unimelb.edu.au RI Chantler, Christopher/D-4744-2013 OI Chantler, Christopher/0000-0001-6608-0048 NR 122 TC 16 Z9 16 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD AUG PY 2009 VL 80 IS 2 AR 022508 DI 10.1103/PhysRevA.80.022508 PG 28 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 492ES UT WOS:000269638200080 ER PT J AU Gidofalvi, G Mazziotti, DA AF Gidofalvi, Gergely Mazziotti, David A. TI Direct calculation of excited-state electronic energies and two-electron reduced density matrices from the anti-Hermitian contracted Schrodinger equation SO PHYSICAL REVIEW A LA English DT Article ID IRREDUCIBLE BRILLOUIN CONDITIONS; DETERMINING QUANTUM ENERGIES; WAVE-FUNCTIONS; CONFIGURATION-INTERACTION; APPROXIMATE SOLUTION; CUMULANT EXPANSION; LOWER-ORDER; BASIS-SETS; GEOMETRY; SYSTEMS AB Direct calculation of the ground-state two-electron reduced density matrix (2-RDM) and its energy has recently been achieved for many-electron atoms and molecules by solving the anti-Hermitian part of the contracted Schrodinger equation (ACSE) [D. A. Mazziotti, Phys. Rev. Lett. 97, 143002 (2006)]. In this paper the ACSE method is extended to computing the 2-RDMs and energies of excited states without the many-electron wave function. The contracted Schrodinger equation (CSE) is an important ingredient for excited-state 2-RDM methods because it is a stationary-state condition for both ground and excited states. We develop the theoretical framework for the ACSE as a stationary-state condition through its connections to the CSE and the Schrodinger equation. As in previous ground-state calculations, the indeterminacy of the ACSE is removed by reconstructing its 3-RDM as a functional of its 2-RDM through a cumulant theory for RDMs [D. A. Mazziotti, Chem. Phys. Lett. 289, 419 (1998)]. We calculate the initial 2-RDM from a multiconfiguration self-consistent-field calculation that includes multireference electron correlation, which can be especially important for excited states. The excited-state ACSE method is applied to computing absolute excited-state energies and vertical excitation energies of the molecules HF, H(2)O, and N(2) as well as ground and excited potential-energy curves of HF. Comparisons are made to traditional multireference methods as well as full configuration interaction. Computed excited-state 2-RDMs nearly satisfy necessary N-representability conditions. C1 [Gidofalvi, Gergely; Mazziotti, David A.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Gidofalvi, Gergely; Mazziotti, David A.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Gidofalvi, Gergely] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Gidofalvi, G (reprint author), Univ Chicago, Dept Chem, 5735 S Ellis Ave, Chicago, IL 60637 USA. EM damazz@uchicago.edu FU NSF [0644888]; Henry-Camille Dreyfus Foundation; David-Lucile Packard Foundation; Microsoft FX A. M. expresses his appreciation to Dudley Herschbach, Herschel Rabitz, and Alexander Mazziotti for their support and encouragement. G. G. acknowledges support from the Argonne National Laboratory. D. A. M. gratefully acknowledges the NSF (Grant No. 0644888), the Henry-Camille Dreyfus Foundation, the David-Lucile Packard Foundation, and Microsoft for their support. NR 80 TC 26 Z9 27 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD AUG PY 2009 VL 80 IS 2 AR 022507 DI 10.1103/PhysRevA.80.022507 PG 11 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 492ES UT WOS:000269638200079 ER PT J AU Hu, SX Collins, LA Schneider, BI AF Hu, S. X. Collins, L. A. Schneider, B. I. TI Attosecond photoelectron microscopy of H-2(+) SO PHYSICAL REVIEW A LA English DT Article ID DEPENDENT SCHRODINGER-EQUATION; LASER-PULSES; ELECTRON-CORRELATION; DOUBLE-IONIZATION; IONIZED CLUSTERS; MOLECULES; FIELD; DISSOCIATION; DYNAMICS; HYDROGEN AB We present a numerical study of the ultrafast ionization dynamics of H-2(+) exposed to attosecond extreme ultraviolet (xuv) pulses that goes beyond the Born-Openheimer approximation. The four-dimensional, time-dependent Schrodinger equation was solved using a generalization of the finite-element discrete-variable-representation/real-space-product technique used in our previous calculations to include the dynamical motion of the nuclei. This has enabled us to expose the target to any polarized light at arbitrary angles with respect to the molecular axis. Calculations have been performed at different angles and photon energies ((h) over bar omega = 50 eV up to 630 eV) to investigate the energy and orientation dependence of the photoionization probability. A strong orientation dependence of the photoionization probability of H-2(+) was found at a photon energy of (h) over bar omega = 50 eV. At this energy, we found that the ionization probability is three times larger in the perpendicular polarization than in the parallel case. These observations are explained by the different geometric "cross sections" seen by the photoejected electron as it leaves the molecule. This ionization anisotropy vanishes at the higher-photon energy of (h) over bar omega >= 170 eV. When these higher-energy xuv pulses are polarized perpendicular to the internuclear axis, a "double-slit-like" interference pattern is observed. However, we find that the diffraction angle only approaches the classical formula phi(n)= sin(-1) (n lambda(e)/R-0), where n is the diffraction order, lambda(e) is the released electron wavelength, and R-0 is the internuclear distance, when n lambda(e) becomes less than 65% of R-0. These results illustrate the possibility of employing attosecond pulses to perform photoelectron microscopy of molecules. C1 [Hu, S. X.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Collins, L. A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Schneider, B. I.] Natl Sci Fdn, Off Cyberinfrastruct, Arlington, VA 22230 USA. [Schneider, B. I.] Natl Sci Fdn, Div Phys, Arlington, VA 22230 USA. RP Hu, SX (reprint author), Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA. EM shu@lle.rochester.edu RI Hu, Suxing/A-1265-2007 OI Hu, Suxing/0000-0003-2465-3818 FU U.S. Department of Energy [DE-FC52-08NA28302, DE-AC52-06NA25396]; University of Rochester; New York State Energy Research and Development Authority FX This work was supported by the U.S. Department of Energy, Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302, the University of Rochester, and the New York State Energy Research and Development Authority. S. X. H is grateful for the support from the Laboratory for Laser Energetics at the University of Rochester. The Los Alamos National Laboratory (LANL) is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. Calculations performed under Institutional Computing at LANL on the Coyote and Lobo platforms. NR 53 TC 35 Z9 35 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD AUG PY 2009 VL 80 IS 2 AR 023426 DI 10.1103/PhysRevA.80.023426 PG 8 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 492ES UT WOS:000269638200137 ER PT J AU Messina, R Dalvit, DAR Neto, PAM Lambrecht, A Reynaud, S AF Messina, Riccardo Dalvit, Diego A. R. Maia Neto, Paulo A. Lambrecht, Astrid Reynaud, Serge TI Dispersive interactions between atoms and nonplanar surfaces SO PHYSICAL REVIEW A LA English DT Article ID ROUGH DIELECTRIC SURFACES; ELECTROMAGNETIC-WAVES; QUANTUM ELECTRODYNAMICS; VANDERWAALS FORCES; GENERAL-THEORY; CASIMIR FORCE; SCATTERING; MIRRORS AB We calculate the dispersive force between a ground-state atom and a nonplanar surface. We present explicit results for a corrugated surface, derived from the scattering approach at first order in the corrugation amplitude. A variety of analytical results in different limiting cases, including the van der Waals and Casimir-Polder regimes, is derived. We compute numerically the exact first-order dispersive potential for arbitrary separation distances and corrugation wavelengths for a rubidium atom on top of a silicon or gold corrugated surface. We discuss in detail the inadequacy of the proximity force approximation, and present a simple but adequate approximation for computing the potential. C1 [Messina, Riccardo; Lambrecht, Astrid; Reynaud, Serge] UPMC, CNRS, ENS, Lab Kastler Brossel, F-75252 Paris 05, France. [Messina, Riccardo] Univ Palermo, Dipartimento Sci Fis & Astron, I-90123 Palermo, Italy. [Messina, Riccardo] CNSIM, I-90123 Palermo, Italy. [Dalvit, Diego A. R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Maia Neto, Paulo A.] Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio de Janeiro, Brazil. RP Messina, R (reprint author), UPMC, CNRS, ENS, Lab Kastler Brossel, Case 74,Campus Jussieu, F-75252 Paris 05, France. RI Messina, Riccardo/F-4750-2012; Fluidos Complexos, INCT/H-9172-2013; Reynaud, Serge/J-8061-2014; Lambrecht, Astrid/K-1208-2014 OI Reynaud, Serge/0000-0002-1494-696X; Lambrecht, Astrid/0000-0002-5193-1222 FU Ministero dell'Universita e della Ricerca Scientifica e Tecnologica; Comitato Regionale di Ricerche Nucleari e di Struttura della Materia; CNPq; CAPES; FAPERJ; French Carnot Institute LETI; U.S. Department of Energy; NSF [PHY05-51164] FX We are grateful to James Babb for providing us with the dynamic polarizability data for rubidium. R. M. acknowledges partial financial support by Ministero dell'Universita e della Ricerca Scientifica e Tecnologica and by Comitato Regionale di Ricerche Nucleari e di Struttura della Materia. P.A.M.N. thanks CNPq, CAPES, and FAPERJ for financial support, and ENS for a visiting professor position. A. L. acknowledges financial support from the French Carnot Institute LETI. D. A. R. D acknowledges financial support from the U.S. Department of Energy through the LANL/LDRD Program. Part of this work was carried out at the Kavli Institute for Theoretical Physics, with support from NSF Grant No. PHY05-51164. NR 61 TC 39 Z9 39 U1 1 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9926 EI 2469-9934 J9 PHYS REV A JI Phys. Rev. A PD AUG PY 2009 VL 80 IS 2 AR 022119 DI 10.1103/PhysRevA.80.022119 PG 10 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 492ES UT WOS:000269638200031 ER PT J AU Piazza, F Collins, LA Smerzi, A AF Piazza, F. Collins, L. A. Smerzi, A. TI Vortex-induced phase-slip dissipation in a toroidal Bose-Einstein condensate flowing through a barrier SO PHYSICAL REVIEW A LA English DT Article ID SUPERFLUID-HELIUM; TRANSITION; HE-4; GAS AB We study superfluid dissipation due to phase slips for a Bose-Einstein condensate flowing through a repulsive barrier inside a torus. The barrier is adiabatically raised across the annulus, while the condensate flows with a finite quantized angular momentum. At a critical height, a vortex moves from the inner region and reaches the barrier to eventually circulate around the annulus. At a higher critical height, an antivortex also enters into the torus from the outer region. Both vortex and antivortex decrease the total angular momentum by leaving behind a 2 pi phase slip. When they collide and annihilate or orbit along the same loop, the condensate suffers a global 2 pi phase slip, and the total angular momentum decreases by one quantum. In hydrodynamic regime, the instability sets in when the local superfluid velocity equals the sound speed inside the barrier region. C1 [Piazza, F.; Smerzi, A.] Univ Trent, Dipartimento Fis, I-38050 Povo, Italy. [Collins, L. A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Piazza, F.; Smerzi, A.] Univ Trent, CNR, INFM BEC Ctr, I-38050 Povo, Italy. RP Piazza, F (reprint author), Univ Trent, Dipartimento Fis, I-38050 Povo, Italy. RI Piazza, Francesco/H-3840-2012 OI Piazza, Francesco/0000-0003-1332-6627 FU (U.S.) Department of Energy [DE-AC52-06NA25396] FX We would like to thank B. Schneider, F. Dalfovo, L. Pitaevskii, and S. Stringari for helpful discussions and Dr. S. Hu for assistance with the 3D GPE program. We acknowledge useful exchanges with W. Phillips, S. Muniz, A. Ramanathan, K. Helmerson, and P. Clade. The Los Alamos National Security, LLC for the National Nuclear Security Administration of the (U.S.) Department of Energy under Contract No. DE-AC52-06NA25396. NR 36 TC 33 Z9 33 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD AUG PY 2009 VL 80 IS 2 AR 021601 DI 10.1103/PhysRevA.80.021601 PG 4 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 492ES UT WOS:000269638200003 ER PT J AU Sau, JD Leslie, SR Stamper-Kurn, DM Cohen, ML AF Sau, Jay D. Leslie, S. R. Stamper-Kurn, D. M. Cohen, Marvin L. TI Theory of domain formation in inhomogeneous ferromagnetic dipolar condensates within the truncated Wigner approximation SO PHYSICAL REVIEW A LA English DT Article ID BOSE-EINSTEIN CONDENSATE; DYNAMICS; SPIN-1 AB Recent experimental studies of Rb-87 spinor Bose Einstein condensates have shown the existence of a magnetic field driven quantum phase transition accompanied by structure formation on the ferromagnetic side of the transition. In this theoretical study we examine the dynamics of the unstable modes following the transition within the framework of the semiclassical truncated Wigner approximation. In the process we present a systematic study of the effects of the trap, nonlinearities, finite temperature, and dipole-dipole interactions. Starting from an initial state which includes quantum fluctuations, we attempt to make quantitative comparisons with recent experimental data on this system by combining results presented here with those presented previously [S. Leslie, J. Guzman, M. Vengalattore, J. D. Sau, M. L. Cohen, and D. M. Stamper-Kurn, Phys. Rev. A 79, 043631 (2009)]. In the process we estimate the contribution of quantum zero-point fluctuations to the domain formation with quantitative accuracy and find discrepancies between the calculations and experiments at the quantitative level, despite the qualitative agreement between theory and experiment. We discuss the possible origins of these discrepancies. Finally, using the strong anisotropy of the trap, we propose ways to observe directly the effects of dipole-dipole interactions on the spinor condensate dynamics. C1 [Sau, Jay D.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Sau, Jay D.; Stamper-Kurn, D. M.; Cohen, Marvin L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Leslie, S. R.; Stamper-Kurn, D. M.; Cohen, Marvin L.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Sau, JD (reprint author), Univ Maryland, Dept Phys, College Pk, MD 20742 USA. EM jaydsau@umd.edu RI Stamper-Kurn, Dan/B-5442-2015; Leslie, Sabrina/M-3626-2016 OI Stamper-Kurn, Dan/0000-0002-4845-5835; FU NSF; U.S Department of Energy [DE-AC02-05CH11231]; DARPA's OLE Program; LDRD Program at LBNL; NSERC FX This work was supported by the NSF, the U.S Department of Energy under Contract No. DE-AC02-05CH11231, DARPA's OLE Program, and the LDRD Program at LBNL. S. R. L. acknowledges support from the NSERC. Computational resources have been provided by NSF through TeraGrid resources at SDSC, DOE at the NERSC, TACC, Indiana University. NR 26 TC 24 Z9 24 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD AUG PY 2009 VL 80 IS 2 AR 023622 DI 10.1103/PhysRevA.80.023622 PG 11 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 492ES UT WOS:000269638200159 ER PT J AU Wu, Y Qi, YY Yan, J Wang, JG Li, Y Buenker, RJ Kato, D Krstic, PS AF Wu, Y. Qi, Y. Y. Yan, J. Wang, J. G. Li, Y. Buenker, R. J. Kato, D. Krstic, P. S. TI Low-energy electron capture in collisions of C3+ with He SO PHYSICAL REVIEW A LA English DT Article ID CORRELATED MOLECULAR CALCULATIONS; GAUSSIAN-BASIS SETS; CHARGE-TRANSFER; ATOMIC-HYDROGEN; CI CALCULATIONS; PLASMA RECOMBINATION; MATRIX-ELEMENTS; DIVERTOR PLASMA; IONS; HELIUM AB Charge transfer processes due to collisions of ground-state C3+ (1s(2)2s S-2) ions with He atoms are studied using the quantum-mechanical molecular-orbital close-coupling method for energies in the range 10(-4)-2 x 10(3) eV/u. The ab initio adiabatic potentials and radial couplings utilized in the calculations are obtained from the multireference single- and double-excitation configuration interaction approach. Total and state-selective single-electron capture cross sections and rate coefficients are calculated and compared with the available experimental and theoretical data. A good agreement is found between the measured cross sections and the present calculations. However, the previous calculations of total rate coefficients using the Landau-Zener model are one to two orders of magnitude smaller than the present results. C1 [Wu, Y.; Qi, Y. Y.; Yan, J.; Wang, J. G.] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China. [Qi, Y. Y.] Jiaxing Univ, Sch Elect Engn, Jiaxing 314001, Peoples R China. [Li, Y.; Buenker, R. J.] Berg Univ Wuppertal, Fachbereich Math & Nat Wissensch C, D-42097 Wuppertal, Germany. [Kato, D.] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan. [Krstic, P. S.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Wu, Y (reprint author), Inst Appl Phys & Computat Math, POB 8009, Beijing 100088, Peoples R China. FU National Natural Science Foundation of China [10604011, 10734140, 10008803, 10878008]; National Key Laboratory of Computational Physics Foundation [9140C6904030808]; JSPS-China FX The authors would like to thank Professor R. K. Janev for helpful discussions. This work was partly supported by the National Natural Science Foundation of China (Grants No. 10604011, No. 10734140, No. 10008803, and No. 10878008) and the National Key Laboratory of Computational Physics Foundation (Grant No. 9140C6904030808). Y. W. would also like to acknowledge support from the JSPS-China core- university program. NR 43 TC 1 Z9 1 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD AUG PY 2009 VL 80 IS 2 AR 022715 DI 10.1103/PhysRevA.80.022715 PG 7 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 492ES UT WOS:000269638200106 ER PT J AU Abbamonte, P Reed, JP Joe, YI Gan, Y Casa, D AF Abbamonte, P. Reed, J. P. Joe, Y. I. Gan, Yu Casa, D. TI Implicit spatial averaging in inversion of inelastic x-ray scattering data SO PHYSICAL REVIEW B LA English DT Article DE graphite; X-ray scattering ID SCIENCE AB Inelastic x-ray scattering (IXS) is now a widely used technique for studying the dynamics of electrons in condensed matter. We previously posed a solution to the phase problem for IXS [P. Abbamonte , Phys. Rev. Lett. 92, 237401 (2004)] that allows explicit reconstruction of the density propagator of a system. The propagator represents, physically, the response of the system to an idealized, point perturbation, so provides direct, real-time images of electron motion with attosecond time resolution and A degrees-scale spatial resolution. Here we show that the images generated by our procedure, as it was originally posed, are spatial averages over all source locations. Within an idealized, atomiclike model, we show that in most cases a simple relationship to the complete, unaveraged response can still be determined. We illustrate this concept for recent IXS measurements of single-crystal graphite. C1 [Abbamonte, P.; Reed, J. P.; Joe, Y. I.; Gan, Yu] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. [Abbamonte, P.; Reed, J. P.; Joe, Y. I.; Gan, Yu] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Casa, D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Abbamonte, P (reprint author), Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. RI Casa, Diego/F-9060-2016 FU U.S. Department of Energy [DE-FG02-07ER46459, DE-AC0206CH11357] FX We thank David Cahill, Gerard C. L. Wong, and Robert Coridan for helpful discussions, and Xiaoqian Zhang for a careful reading of the manuscript. This work was funded by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy under Grant No. DE-FG02-07ER46459. Use of the Advanced Photon Source was supported by DOE under Contract No. DE-AC0206CH11357. NR 18 TC 7 Z9 7 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 5 AR 054302 DI 10.1103/PhysRevB.80.054302 PG 6 WC Physics, Condensed Matter SC Physics GA 492EU UT WOS:000269638500035 ER PT J AU Analytis, JG McDonald, RD Chu, JH Riggs, SC Bangura, AF Kucharczyk, C Johannes, M Fisher, IR AF Analytis, James G. McDonald, Ross D. Chu, Jiun-Haw Riggs, Scott C. Bangura, Alimamy F. Kucharczyk, Chris Johannes, Michelle Fisher, I. R. TI Quantum oscillations in the parent pnictide BaFe2As2: Itinerant electrons in the reconstructed state SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetic materials; barium compounds; Fermi surface; ground states; high-temperature superconductors; iron compounds; magnetic superconductors AB We report quantum-oscillation measurements that enable the direct observation of the Fermi surface of the low-temperature ground state of BaFe2As2. From these measurements we characterize the low-energy excitations, revealing that the Fermi surface is reconstructed in the antiferromagnetic state, but leaving itinerant electrons in its wake. The present measurements are consistent with a conventional band folding picture of the antiferromagnetic ground state, placing important limits on the topology and size of the Fermi surface. C1 [Analytis, James G.; Chu, Jiun-Haw; Kucharczyk, Chris; Fisher, I. R.] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Analytis, James G.; Chu, Jiun-Haw; Kucharczyk, Chris; Fisher, I. R.] Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [McDonald, Ross D.; Riggs, Scott C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Bangura, Alimamy F.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Johannes, Michelle] USN, Res Lab, Ctr Computat Mat Sci, Washington, DC 20375 USA. [Analytis, James G.; Chu, Jiun-Haw; Kucharczyk, Chris; Fisher, I. R.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. RP Analytis, JG (reprint author), Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. RI McDonald, Ross/H-3783-2013; OI McDonald, Ross/0000-0002-0188-1087; Mcdonald, Ross/0000-0002-5819-4739; Kucharczyk, Christopher/0000-0002-4712-839X FU Department of Energy; Office of Basic Energy Sciences [DE-AC02-76SF00515]; EPSRC [EP/F038836/1]; NSF; state of Florida FX The authors would like to thank Nigel Hussey, Antony Carrington, and Igor Mazin for useful comments on this work before publication. This work is supported by the Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515 and partly funded by EPSRC under Grant No. EP/F038836/1. Work performed at the NHMFL was primarily funded by NSF and the state of Florida. NR 23 TC 80 Z9 80 U1 2 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 6 AR 064507 DI 10.1103/PhysRevB.80.064507 PG 5 WC Physics, Condensed Matter SC Physics GA 492EX UT WOS:000269638800063 ER PT J AU Andersson, DA Watanabe, T Deo, C Uberuaga, BP AF Andersson, D. A. Watanabe, T. Deo, C. Uberuaga, B. P. TI Role of di-interstitial clusters in oxygen transport in UO2+x from first principles SO PHYSICAL REVIEW B LA English DT Article DE density functional theory; diffusion; interstitials; Monte Carlo methods; uranium compounds ID GENERALIZED GRADIENT APPROXIMATION; TEMPERATURE-ACCELERATED DYNAMICS; TOTAL-ENERGY CALCULATIONS; FINDING SADDLE-POINTS; AUGMENTED-WAVE METHOD; URANIUM-DIOXIDE; ELECTRONIC-STRUCTURE; SELF-DIFFUSION; BASIS-SET; DEFECTS AB Using density functional theory, we examine a recently discovered structure for di-interstitial oxygen clusters in UO2+x in which three oxygen ions share one lattice site. This di-interstitial cluster exhibits a fast diffusion pathway; the migration barrier for these clusters is approximately half of that for mono-interstitials. Using kinetic Monte Carlo, we calculate the diffusivity of oxygen with and without the di-interstitial mechanism as a function of x and find that oxygen transport is significantly increased for higher values of x when the di-interstitial mechanism is included, agreeing much more closely with experimental data. These results emphasize the importance of clustering phenomena in UO2+x and have implications for the evolution of UO2+x. C1 [Andersson, D. A.; Uberuaga, B. P.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Watanabe, T.] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. [Deo, C.] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Nucl & Radiol Engn Program, Atlanta, GA 30332 USA. RP Andersson, DA (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RI Watanabe, Taku/C-7137-2011 OI Watanabe, Taku/0000-0002-7948-7573 FU DOE Nuclear Energy Fuel Cycle Research and Development (FCRD); Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program; Fuels Integrated Performance and Safety Code (IPSC) [LA0915090108]; OBES Division of Chemical Sciences [W-7405]; Seaborg Institiute at Los Alamos National Laboratory; Los Alamos National Security, LLC; National Nuclear Security Administration of the U. S. DOE [DE-AC52 06NA25396]; DOE NERI-C [DEFG07-14891] FX Work at Los Alamos National Laboratory was funded by DOE Nuclear Energy Fuel Cycle Research and Development (FCRD) Campaign, Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program, Fuels Integrated Performance and Safety Code (IPSC) project under the AFCI Modeling and Simulation work package No. LA0915090108 as well as OBES Division of Chemical Sciences under Contract No. W-7405. D. A. A. also acknowledges support from the Seaborg Institiute at Los Alamos National Laboratory. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U. S. DOE under Contract No. DE-AC52 06NA25396. C. D. was supported by DOE NERI-C (Grant No. DEFG07-14891). NR 43 TC 38 Z9 38 U1 4 U2 26 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 6 AR 060101 DI 10.1103/PhysRevB.80.060101 PG 4 WC Physics, Condensed Matter SC Physics GA 492EX UT WOS:000269638800001 ER PT J AU Berdiyorov, GR Yu, SH Xiao, ZL Peeters, FM Hua, J Imre, A Kwok, WK AF Berdiyorov, G. R. Yu, S. H. Xiao, Z. L. Peeters, F. M. Hua, J. Imre, A. Kwok, W. K. TI Effect of sample geometry on the phase boundary of a mesoscopic superconducting loop SO PHYSICAL REVIEW B LA English DT Article DE electrical resistivity; Ginzburg-Landau theory; mesoscopic systems; nanostructured materials; niobium; numerical analysis; phase diagrams; superconducting materials ID SURFACE SUPERCONDUCTIVITY; CYLINDER; ANTIVORTICES; QUANTIZATION; STATES; LEADS; FIELD; RINGS AB We studied the effect of sample geometry on the evolution of the superconducting state in nanoscale Nb circular and square loops by transport measurements. A multistage resistive transition with temperature is found for both samples, which is related to the effect of contact leads made from the same superconducting material. The H-T phase diagrams close to T(c0) show clear periodic oscillations on top of a parabolic background, i.e., Little-Parks effect. However, the amplitude of the oscillations decreases faster in the circular loop compared to the one in the square sample. Numerical simulations are conducted within the nonlinear Ginzburg-Landau theory to show the effect of sample geometry on the nucleation of superconductivity in superconducting loop structures. C1 [Berdiyorov, G. R.; Peeters, F. M.] Univ Antwerp, Dept Fys, B-2020 Antwerp, Belgium. [Berdiyorov, G. R.; Yu, S. H.; Xiao, Z. L.; Hua, J.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Xiao, Z. L.; Hua, J.; Imre, A.; Kwok, W. K.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Imre, A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Berdiyorov, GR (reprint author), Univ Antwerp, Dept Fys, Groenenborgerlaan 171, B-2020 Antwerp, Belgium. EM zxiao@niu.edu; francois.peeters@ua.ac.be RI Joshi-Imre, Alexandra/A-2912-2010; YU, SUHONG/G-7532-2015; CMT, UAntwerpen Group/A-5523-2016 OI Joshi-Imre, Alexandra/0000-0002-4271-1623; YU, SUHONG/0000-0003-2554-6520; FU National Science Foundation (NSF) [DMR0605748]; U. S. Department of Energy [DE-AC02-06CH11357, DE-FG02-06ER46334]; Flemish Science Foundation; Belgian Science Policy (IAP); FWO-Vlaanderen FX This material is based on research supported by the National Science Foundation (NSF) under Grant No. DMR0605748 and the U. S. Department of Energy Contract No. DE-AC02-06CH11357. The sample fabrication work was supported by the U. S. Department of Energy Award No. DE-FG02-06ER46334. The electron-beam and FIB patternings were performed at Argonne's Center for Nanoscale Materials (CNM). The theoretical part of the work is supported by the Flemish Science Foundation (FWO-VI) and the Belgian Science Policy (IAP). G. R. B. acknowledges support from FWO-Vlaanderen. NR 33 TC 10 Z9 10 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 6 AR 064511 DI 10.1103/PhysRevB.80.064511 PG 6 WC Physics, Condensed Matter SC Physics GA 492EX UT WOS:000269638800067 ER PT J AU Biswas, RR Balatsky, A AF Biswas, Rudro R. Balatsky, Alexander TI Quasiparticle interference and Landau level spectroscopy in graphene in the presence of a strong magnetic field SO PHYSICAL REVIEW B LA English DT Article DE electronic density of states; graphene; Landau levels; quasiparticles; scanning tunnelling spectroscopy AB We present a calculation of the modulation in the local density of electronic states caused by an impurity in graphene in the presence of an external magnetic field. We focus on the spatial Fourier transform (FT) of this modulation around the impurity. The FT due to the low-energy quasiparticles is found to be nonzero over the reciprocal lattice (with a three-site basis) corresponding to graphene. At these lattice spots the FT exhibits well-defined features at wave vectors that are multiples of the inverse cyclotron orbit diameter and is cut off at the wave vector corresponding to the energy of observation. Scanning tunneling spectroscopy on graphene and the energy-resolved FT fingerprint obtained therefrom may be used to observe the quasiparticle interference of Dirac particles in graphene in the presence of magnetic field. C1 [Biswas, Rudro R.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Biswas, Rudro R.; Balatsky, Alexander] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Balatsky, Alexander] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Biswas, RR (reprint author), Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. EM rrbiswas@physics.harvard.edu FU US DOE [DE-AC52-06NA25396]; LANL [UCOP-27-2009] FX We acknowledge useful discussions with V. Brar, M. Crommie, H. Dahal, B. I. Halperin, J. Lau, S. Sachdev, T. Wehling, N. C. Yeh, and Y. Zhang. We are particularly grateful to H. Manoharan and L. Mattos for useful discussions and for sharing their preliminary STM data with us. This work was performed, in part, at the CINT, a US DOEBES facility at LANL (Ref. 15) (administered using US DOE Contract No. DE-AC52-06NA25396). This work was also supported by UCOP-27-2009 funds at LANL. R. R. B. would also like to acknowledge support from the Harvard University Physics Department. NR 12 TC 5 Z9 5 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 8 AR 081412 DI 10.1103/PhysRevB.80.081412 PG 4 WC Physics, Condensed Matter SC Physics GA 492FC UT WOS:000269639300032 ER PT J AU Canfield, PC Bud'ko, SL Ni, N Yan, JQ Kracher, A AF Canfield, P. C. Bud'ko, S. L. Ni, Ni Yan, J. Q. Kracher, A. TI Decoupling of the superconducting and magnetic/structural phase transitions in electron-doped BaFe2As2 SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetic materials; barium compounds; cobalt; copper; doping; magnetic transitions; nickel; solid-state phase transformations; superconducting materials; superconducting transitions; valency AB Study and comparison of over 30 examples of electron-doped BaFe2As2 for transition metal (TM)=Co, Ni, Cu, and (Co/Cu mixtures) have led to an understanding that the suppression of the structural/antiferromagnetic phase transition to low-enough temperature in these compounds is a necessary condition for superconductivity but not a sufficient one. Whereas the structural/antiferromagnetic transitions are suppressed by the number of TM dopant ions (or changes in the c axis) the superconducting dome exists over a limited range of values of the number of valence electrons added by doping (or values of the a/c ratio). By choosing which combination of dopants is used we can change the relative positions of the upper phase lines and the superconducting dome, even to the extreme limit of suppressing the upper structural and magnetic phase transitions without the stabilization of a lower-temperature superconducting dome. C1 [Canfield, P. C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Canfield, PC (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RI Canfield, Paul/H-2698-2014 FU Department of Energy, Basic Energy Sciences [DE-AC02-07CH11358] FX We would like to thank N. H. Sung for help in the samples growth. Work at the Ames Laboratory was supported by the Department of Energy, Basic Energy Sciences under Contract No. DE-AC02-07CH11358. NR 16 TC 146 Z9 146 U1 0 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 6 AR 060501 DI 10.1103/PhysRevB.80.060501 PG 4 WC Physics, Condensed Matter SC Physics GA 492EX UT WOS:000269638800010 ER PT J AU Choi, HJ Louie, SG Cohen, ML AF Choi, Hyoung Joon Louie, Steven G. Cohen, Marvin L. TI Prediction of superconducting properties of CaB2 using anisotropic Eliashberg theory SO PHYSICAL REVIEW B LA English DT Article DE ab initio calculations; calcium compounds; density functional theory; electron-phonon interactions; Fermi surface; pseudopotential methods; specific heat; strong-coupling superconductors; superconducting energy gap; superconducting materials; superconducting transition temperature ID TOTAL-ENERGY; MGB2; PSEUDOPOTENTIALS; DIBORIDES; SYSTEMS AB Superconducting properties of hypothetical simple hexagonal CaB2 are studied using the fully anisotropic Eliashberg formalism based on electronic and phononic structures and electron-phonon interactions, which are obtained from ab initio pseudopotential density-functional calculations. The superconducting transition temperature T-c, the superconducting energy gap Delta(k) on the Fermi surface, and the specific heat are obtained and compared with corresponding properties of MgB2. Our results suggest that CaB2 will have a higher T-c and a stronger two-gap nature, with a larger Delta(k) in the sigma bands but a smaller Delta(k) in the pi bands than MgB2. C1 [Choi, Hyoung Joon] Yonsei Univ, Dept Phys & IPAP, Seoul 120749, South Korea. [Louie, Steven G.; Cohen, Marvin L.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Louie, Steven G.; Cohen, Marvin L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Sci Mat, Berkeley, CA 94720 USA. RP Choi, HJ (reprint author), Yonsei Univ, Dept Phys & IPAP, Seoul 120749, South Korea. EM h.j.choi@yonsei.ac.kr RI Choi, Hyoung Joon/N-8933-2015 OI Choi, Hyoung Joon/0000-0001-8565-8597 FU KRF [KRF2007-314-C00075]; KOSEF [R012007-000-20922-0]; NSF [DMR07-05941]; Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division; U. S. Department of Energy [DE-AC02-05CH11231]; KISTI [KSC-2008S02-0004] FX This work was supported by the KRF (Grant No. KRF2007-314-C00075), by the KOSEF under Grant No. R012007-000-20922-0, by NSF under Grant No. DMR07-05941, and by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U. S. Department of Energy under Contract No. DE-AC02-05CH11231. Computational resources have been provided by KISTI Supercomputing Center (Project No. KSC-2008S02-0004 ), NSF through TeraGrid resources at SDSC, and DOE at Lawrence Berkeley National Laboratory's NERSC facility. NR 37 TC 9 Z9 9 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 6 AR 064503 DI 10.1103/PhysRevB.80.064503 PG 4 WC Physics, Condensed Matter SC Physics GA 492EX UT WOS:000269638800059 ER PT J AU Chui, ST Novosad, V Bader, SD AF Chui, S. T. Novosad, V. Bader, S. D. TI Finite frequency response of small magnetic structures under an external static field SO PHYSICAL REVIEW B LA English DT Article DE magnetic structure; magnetisation reversal; spin waves; surface states AB We apply the Holstein-Primakoff and Bogoliubov transformations to compute the spin-wave states of small magnetic structures including the effect of the dipolar interaction. We found that as the film gets thicker, states with a significant q=0 component, are hybridized with states with higher Fourier components. In the presence of a static magnetic field opposite to the magnetization direction, surface states that are responsible for magnetization reversal are coupled to the extended states. The response function is increased by an order of magnitude. This suggests an intriguing scenario for assisted switching of the magnetization with an additional external ac field. C1 [Chui, S. T.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Chui, S. T.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Novosad, V.; Bader, S. D.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Chui, ST (reprint author), Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. RI Novosad, Valentyn/C-2018-2014; Novosad, V /J-4843-2015 FU U. S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357, DE-FG02-07ER46360] FX This work was supported by the U. S. Department of Energy, Office of Basic Energy Sciences under Contracts No. DE-AC02-06CH11357 (at Argonne) and No. DE-FG02-07ER46360 (at UD). NR 9 TC 1 Z9 1 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 5 AR 054419 DI 10.1103/PhysRevB.80.054419 PG 6 WC Physics, Condensed Matter SC Physics GA 492EU UT WOS:000269638500056 ER PT J AU Demsar, J Kabanov, VV Alexandrov, AS Lee, HJ Bauer, ED Sarrao, JL Taylor, AJ AF Demsar, J. Kabanov, V. V. Alexandrov, A. S. Lee, H. J. Bauer, E. D. Sarrao, J. L. Taylor, A. J. TI Hot electron relaxation in the heavy-fermion Yb1-xLuxAl3 compound using femtosecond optical pump-probe spectroscopy SO PHYSICAL REVIEW B LA English DT Article DE aluminium alloys; ballistic transport; doping; energy gap; excited states; heavy fermion systems; high-speed optical techniques; hot carriers; Kondo effect; lutetium alloys; time resolved spectra; ytterbium alloys ID ENERGY RELAXATION; DYNAMICS; YBAL3; AG AB Femtosecond time-resolved optical spectroscopy was used to systematically study photoexcited carrier relaxation dynamics in the intermediate-valence heavy-fermion system Yb1-xLuxAl3 (0 < x < 1). Given the demonstrated sensitivity of this experimental technique to the presence of the low-energy gaps in the charge excitation spectrum, the aim of this work was to study the effect of dilution of the Kondo lattice on its low-energy electronic structure. The results imply that in Yb1-xLuxAl3 the hybridization gap, resulting from hybridization of local moments and conduction electrons, persists up to 30% doping. Interestingly, below some characteristic, doping dependent temperature T-*(x) the relaxation-time divergence, governed by the relaxation bottleneck due to the presence of the indirect hybridization gap, is truncated. This observation is attributed to the competing ballistic transport of hot electrons out of the probed volume at low temperatures. The derived theoretical model accounts for both the functional form of relaxation dynamics below T-*(x), as well as the doping dependence of the low-temperature relaxation rate in Yb1-xLuxAl3. C1 [Demsar, J.; Kabanov, V. V.] Univ Konstanz, Phys Dept & Zukunftskolleg, D-78457 Constance, Germany. [Demsar, J.] Univ Konstanz, Ctr Appl Photon, D-78457 Constance, Germany. [Demsar, J.; Kabanov, V. V.] Jozef Stefan Inst, Complex Matter Dept, SI-1000 Ljubljana, Slovenia. [Alexandrov, A. S.] Univ Loughborough, Dept Phys, Loughborough LE11 3TU, Leics, England. [Lee, H. J.; Bauer, E. D.; Sarrao, J. L.; Taylor, A. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Demsar, J (reprint author), Univ Konstanz, Phys Dept & Zukunftskolleg, D-78457 Constance, Germany. RI Bauer, Eric/D-7212-2011; Demsar, Jure/B-5578-2008; Demsar, Jure/F-7243-2016; OI Demsar, Jure/0000-0003-4551-7444; Bauer, Eric/0000-0003-0017-1937 FU Alexander von Humboldt Foundation; Zukunftskolleg and Center for Applied Photonics at the University of Konstanz; Laboratory Directed Research and Development program at Los Alamos National Laboratory; Center for Integrated Nanotechnologies at LANL FX This work was supported by the Alexander von Humboldt Foundation, Zukunftskolleg and Center for Applied Photonics at the University of Konstanz, the Laboratory Directed Research and Development program at Los Alamos National Laboratory, and the Center for Integrated Nanotechnologies at LANL. NR 25 TC 8 Z9 8 U1 3 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 8 AR 085121 DI 10.1103/PhysRevB.80.085121 PG 6 WC Physics, Condensed Matter SC Physics GA 492FC UT WOS:000269639300056 ER PT J AU Diallo, SO Azuah, RT Kirichek, O Taylor, JW Glyde, HR AF Diallo, S. O. Azuah, R. T. Kirichek, O. Taylor, J. W. Glyde, H. R. TI Limits on Bose-Einstein condensation in confined solid He-4 SO PHYSICAL REVIEW B LA English DT Article DE Bose-Einstein condensation; neutron diffraction; solid helium; superfluidity ID SUPERSOLID HELIUM; TRANSITION; PHASE; STATE AB We report neutron-scattering measurements of the Bose-Einstein condensate (BEC) fraction, n(0), in solid helium that has a large surface to volume (S/V) ratio. Rittner and Reppy observed large superfluid fractions, rho(S)/rho, in large S/V samples with rho(S)/rho approximately proportional to S/V, up to rho(S)/rho=20% at S/V=150 cm(-1). Our goal is to reveal whether there is BEC associated with these large rho(S)/rho. Our solid volume is 100 cm(3) of commercial grade helium at 41 bars pressure (T-c similar or equal to 200 mK) in a cell that has S/V=40 cm(-1) that cannot be quenched rapidly. We find no evidence for BEC or algebraic off diagonal long-range order with n(0)=0.0 +/- 0.3% at 65 mK. C1 [Diallo, S. O.; Glyde, H. R.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Diallo, S. O.] US DOE, Ames Lab, Ames, IA 50011 USA. [Azuah, R. T.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Azuah, R. T.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Kirichek, O.; Taylor, J. W.] Rutherford Appleton Lab, ISIS Spallat Neutron Source, Didcot OX11 0QX, Oxon, England. RP Diallo, SO (reprint author), Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. RI Kirichek, Oleg/C-2660-2013; Diallo, Souleymane/B-3111-2016 OI Diallo, Souleymane/0000-0002-3369-8391 FU U. S. DOE, Office of Science [DE-FG02-03ER46038] FX We thank Richard Down for valuable technical assistance at ISIS. This work was supported by the U. S. DOE, Office of Science (Grant No. DE-FG02-03ER46038). NR 37 TC 12 Z9 12 U1 2 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 6 AR 060504 DI 10.1103/PhysRevB.80.060504 PG 4 WC Physics, Condensed Matter SC Physics GA 492EX UT WOS:000269638800013 ER PT J AU Feibelman, PJ AF Feibelman, Peter J. TI Onset of three-dimensional Ir islands on a graphene/Ir(111) template SO PHYSICAL REVIEW B LA English DT Article DE adsorbed layers; density functional theory; discontinuous metallic thin films; graphene; iridium; metal clusters ID INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; ELECTRON-GAS; BASIS-SET; SURFACES; METALS AB In agreement with observation, local-density approximation (LDA) optimization of one- and two-layer clusters of Ir atoms, adsorbed periodically on a graphene/Ir(111) moireacute, shows that the two-layer clusters only become favorable energetically once the clusters comprise as many as 26 adatoms. Heretofore it was known that the LDA predicts smaller islands to grow flat. In showing that the LDA captures the transition to three dimensionality, the present results support its use broadly to analyze Ir island formation on the graphene-covered metal. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Feibelman, PJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. FU U.S. Department of Energy [DE-AC04-94AL85000] FX This work was supported by the Office of Basic Energy Sciences, Division of Materials Science and Engineering, DOE. Sandia is operated by the Lockheed Martin Co. for the National Nuclear Security Administration, U.S. Department of Energy under Contract No. DE-AC04-94AL85000. VASP was developed at T. U. Wien's Institut fur Theoretische Physik. NR 23 TC 30 Z9 30 U1 2 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 8 AR 085412 DI 10.1103/PhysRevB.80.085412 PG 4 WC Physics, Condensed Matter SC Physics GA 492FC UT WOS:000269639300091 ER PT J AU Fishman, RS Okamoto, S Shum, WW Miller, JS AF Fishman, Randy S. Okamoto, Satoshi Shum, William W. Miller, Joel S. TI Giant antiferromagnetically coupled moments in a molecule-based magnet with interpenetrating lattices SO PHYSICAL REVIEW B LA English DT Article DE magnetic anisotropy; magnetic moments; metamagnetism; molecular magnetism; organic compounds; paramagnetic-antiferromagnetic transitions ID METAMAGNETIC PHASE; BUILDING-BLOCKS; 3-D; MONOCATION; DIAGRAM; STATE AB The molecule-based magnet [Ru(2)(O(2)CMe)(4)](3)[Cr(CN)(6)] contains two interpenetrating sublattices that behave like giant antiferromagnetically coupled moments with strong anisotropy. Because the sublattice moments only weakly depend on field, the volume of magnetically correlated clusters can be directly estimated from the field and temperature dependence of the magnetization while a polycrystalline sample undergoes a metamagnetic transition between antiferromagnetic and paramagnetic states. C1 [Fishman, Randy S.; Okamoto, Satoshi] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Shum, William W.; Miller, Joel S.] Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA. RP Fishman, RS (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Okamoto, Satoshi/G-5390-2011; Fishman, Randy/C-8639-2013 OI Okamoto, Satoshi/0000-0002-0493-7568; FU U.S. Department of Energy; U.S. National Science Foundation [0553573] FX We would like to acknowledge useful conversations with Bruce Gaulin. This research was sponsored by the Division of Materials Science and Engineering of the U.S. Department of Energy and by the U.S. National Science Foundation (Grant No. 0553573). NR 23 TC 9 Z9 9 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 6 AR 064401 DI 10.1103/PhysRevB.80.064401 PG 5 WC Physics, Condensed Matter SC Physics GA 492EX UT WOS:000269638800030 ER PT J AU Glennon, JJ Tang, R Buhro, WE Loomis, RA Bussian, DA Htoon, H Klimov, VI AF Glennon, J. J. Tang, R. Buhro, W. E. Loomis, R. A. Bussian, D. A. Htoon, H. Klimov, V. I. TI Exciton localization and migration in individual CdSe quantum wires at low temperatures SO PHYSICAL REVIEW B LA English DT Article DE cadmium compounds; electronic density of states; excitons; II-VI semiconductors; photoluminescence; semiconductor quantum wires; wide band gap semiconductors ID ENERGY-TRANSFER; CDS1-XSEX ALLOYS; STATES; DOTS; PHOTOLUMINESCENCE; CONFINEMENT; NANOWIRES; ELECTRON; DISORDER AB Low-temperature (< 40 K) photoluminescence (PL) spectra of individual CdSe nanocrystal quantum wires exhibit narrow (< 5 meV) isolated peaks spanning a range < 50 meV. We attribute these features to emission of excitons localized in shallow (a few meV deep) tight potential minima superimposed on longer-scale and larger-amplitude variations of the potential energy. Spectrally resolved PL dynamics reveal decreasing exciton-decay rates with decreasing emission energy. These observations are consistent with exciton relaxation within a manifold of localization sites characterized by an exponential density of states. C1 [Glennon, J. J.; Tang, R.; Buhro, W. E.; Loomis, R. A.] Washington Univ, Dept Chem, St Louis, MO 63130 USA. [Glennon, J. J.; Tang, R.; Buhro, W. E.; Loomis, R. A.] Washington Univ, Ctr Mat Innovat, St Louis, MO 63130 USA. [Bussian, D. A.; Htoon, H.; Klimov, V. I.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Bussian, D. A.; Htoon, H.; Klimov, V. I.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Glennon, JJ (reprint author), Washington Univ, Dept Chem, 1 Brookings Dr,CB 1134, St Louis, MO 63130 USA. EM loomis@wustl.edu; klimov@lanl.gov RI Tang, Rui/B-6556-2013; OI Klimov, Victor/0000-0003-1158-3179; Htoon, Han/0000-0003-3696-2896 FU David and Lucile Packard Foundation; National Science Foundation [CHE-0518427]; Center for Materials Innovation at Washington University; Chemical Sciences, Biosciences, and Geosciences Division of the Office of Basic Energy Sciences, Office of Science; U. S. Department of Energy (DOE) FX This work was supported by the David and Lucile Packard Foundation, the National Science Foundation (Grant No. CHE-0518427), the Center for Materials Innovation at Washington University, and the Chemical Sciences, Biosciences, and Geosciences Division of the Office of Basic Energy Sciences, Office of Science, U. S. Department of Energy (DOE). Single-NQW measurements were conducted at the Center for Integrated Nanotechnologies (CINT) operated jointly for DOE by Los Alamos and Sandia National Laboratories as part of the CINT user program. NR 23 TC 20 Z9 20 U1 1 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 8 AR 081303 DI 10.1103/PhysRevB.80.081303 PG 4 WC Physics, Condensed Matter SC Physics GA 492FC UT WOS:000269639300013 ER PT J AU Gorria, P Martinez-Blanco, D Perez, MJ Blanco, JA Hernando, A Laguna-Marco, MA Haskel, D Souza-Neto, N Smith, RI Marshall, WG Garbarino, G Mezouar, M Fernandez-Martinez, A Chaboy, J Barquin, LF Castrillon, JAR Moldovan, M Alonso, JIG Zhang, JH Llobet, A Jiang, JS AF Gorria, Pedro Martinez-Blanco, David Perez, Maria J. Blanco, Jesus A. Hernando, Antonio Laguna-Marco, Maria A. Haskel, Daniel Souza-Neto, N. Smith, Ronald I. Marshall, William G. Garbarino, Gaston Mezouar, Mohamed Fernandez-Martinez, Alejandro Chaboy, Jess Fernandez Barquin, L. Rodriguez Castrillon, J. A. Moldovan, M. Garcia Alonso, J. I. Zhang, Jianzhong Llobet, Anna Jiang, J. S. TI Stress-induced large Curie temperature enhancement in Fe64Ni36 Invar alloy SO PHYSICAL REVIEW B LA English DT Article DE Curie temperature; ferromagnetic materials; high-pressure effects; high-temperature effects; Invar; iron alloys; lattice constants; magnetisation; magnetoelastic effects; neutron diffraction; nickel alloys; stress effects; X-ray diffraction ID FE-NI ALLOYS; MAGNETIC-PROPERTIES; SOLID-SOLUTIONS; NICKEL ALLOYS; PRESSURE; IRON; TRANSFORMATION; TRANSITION; DEPENDENCE; EXPANSION AB We have succeeded in increasing up to 150 K the Curie temperature in the Fe64Ni36 invar alloy by means of a severe mechanical treatment followed by a heating up to 1073 K. The invar behavior is still present as revealed by the combination of magnetic measurements with neutron and x-ray techniques under extreme conditions, such as high temperature and high pressure. The proposed explanation is based in a selective induced microstrain around the Fe atoms, which causes a slight increase in the Fe-Fe interatomic distances, thus reinforcing ferromagnetic interactions due to the strong magnetoelastic coupling in these invar compounds. C1 [Gorria, Pedro; Martinez-Blanco, David; Perez, Maria J.; Blanco, Jesus A.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Hernando, Antonio] UCM ADIF CSIC, Inst Magnetismo Aplicado, Madrid 28230, Spain. [Laguna-Marco, Maria A.; Haskel, Daniel; Souza-Neto, N.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Smith, Ronald I.; Marshall, William G.] Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. [Garbarino, Gaston; Mezouar, Mohamed] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Fernandez-Martinez, Alejandro] Univ Grenoble, LGIT, F-38041 Grenoble, France. [Fernandez-Martinez, Alejandro] CNRS, F-38041 Grenoble, France. [Fernandez-Martinez, Alejandro] Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France. [Chaboy, Jess] Univ Zaragoza, CSIC, Inst Ciencia Mat Aragon, E-50009 Zaragoza, Spain. [Fernandez Barquin, L.] Univ Cantabria, Fac Ciencias, CITIMAC, E-39005 Santander, Spain. [Rodriguez Castrillon, J. A.; Moldovan, M.; Garcia Alonso, J. I.] Univ Oviedo, Dept Phys & Analyt Chem, E-33006 Oviedo, Spain. [Zhang, Jianzhong; Llobet, Anna] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. [Jiang, J. S.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Gorria, P (reprint author), Univ Oviedo, Dept Fis, Calvo Sotelo S-N, E-33007 Oviedo, Spain. RI Llobet, Anna/B-1672-2010; Souza-Neto, Narcizo/G-1303-2010; Fernandez-Martinez, Alejandro/B-4042-2010; Laguna-Marco, M. A./G-8042-2011; Fernandez Barquin, Luis/L-1925-2014; Blanco, Jesus/L-6508-2014; Garbarino, Gaston/D-1807-2013; Hernando, Antonio/E-2105-2015; Alonso, Jose/H-6795-2015; Moldovan, Mariella/A-4294-2008; Gorria, Pedro/B-4924-2008; OI Souza-Neto, Narcizo/0000-0002-7474-8017; Fernandez-Martinez, Alejandro/0000-0001-5073-9629; Laguna-Marco, M. A./0000-0003-4069-0395; Fernandez Barquin, Luis/0000-0003-4722-3722; Blanco, Jesus/0000-0002-8054-1442; Alonso, Jose/0000-0002-8356-3866; Moldovan, Mariella/0000-0001-6697-4252; Gorria, Pedro/0000-0002-1908-2953; Zhang, Jianzhong/0000-0001-5508-1782 FU FEDER; Spanish MICINN [MAT2008-06542-C04]; U. S. Department of Energy, Office of Science [DE-AC02-06CH11357, DE-AC52-06NA25396] FX We thank ISIS, Lujan Neutron Scattering Center at LAN-SCE, APS and ESRF for the allocation of neutron and synchrotron beam time, and the SCT at the University of Oviedo for the high-resolution XRD facility. This work was partially supported by FEDER and the Spanish MICINN (Grant No. MAT2008-06542-C04). M. A. L-M acknowledges MICINN for Postdoctoral grant. Work at Argonne & Los Alamos National Laboratories was supported by the U. S. Department of Energy, Office of Science, under Contracts No. DE-AC02-06CH11357 and No. DE-AC52-06NA25396, respectively. NR 50 TC 44 Z9 44 U1 1 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 6 AR 064421 DI 10.1103/PhysRevB.80.064421 PG 6 WC Physics, Condensed Matter SC Physics GA 492EX UT WOS:000269638800050 ER PT J AU Grobis, M Yamachika, R Wachowiak, A Lu, XH Crommie, MF AF Grobis, M. Yamachika, R. Wachowiak, A. Lu, Xinghua Crommie, M. F. TI Phase separation and charge transfer in a K-doped C-60 monolayer on Ag(001) SO PHYSICAL REVIEW B LA English DT Article ID ELECTRONIC-STRUCTURE; METAL-SURFACES; THIN-FILMS; C60; SUPERCONDUCTIVITY; PHOTOEMISSION; SPECTROSCOPY; ORIENTATION; FULLERIDES; AG(111) AB We have performed a scanning tunneling microscopy and spectroscopy study of potassium-doped C-60 monolayers (KxC60) on Ag(001) in the regime of x approximate to 1. Low-temperature annealing (640 K) leads to the formation of two well-ordered KxC60 phases that exhibit differing levels of electron charge transfer. Further annealing (710 K) distills out the higher electron-doped phase from the lower electron-doped phase, leaving behind a third C-60 phase completely devoid of K. Spectroscopic measurements indicate that the electron-doping level of the higher electron-doped KC60 phase is anomalously large. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Grobis, M (reprint author), Hitachi GST, San Jose, CA 95135 USA. RI Lu, Xinghua/F-2655-2010 FU U.S. Department of Energy [DE-AC03-76SF0098] FX This work was supported by the Director, Office of Energy Research, Office of Basic Energy Science, Division of Material Sciences and Engineering, U.S. Department of Energy under Contract No. DE-AC03-76SF0098. NR 40 TC 7 Z9 7 U1 1 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 7 AR 073410 DI 10.1103/PhysRevB.80.073410 PG 4 WC Physics, Condensed Matter SC Physics GA 492EY UT WOS:000269638900022 ER PT J AU Haraldsen, JT Barnes, T Sinclair, JW Thompson, JR Sacci, RL Turner, JFC AF Haraldsen, J. T. Barnes, T. Sinclair, J. W. Thompson, J. R. Sacci, R. L. Turner, J. F. C. TI Magnetic properties of a Heisenberg coupled-trimer molecular magnet: General results and application to spin-1/2 vanadium clusters SO PHYSICAL REVIEW B LA English DT Article AB We report predictions for the energy eigenstates and inelastic neutron-scattering excitations of an isotropic Heisenberg hexamer consisting of general spin S and S' trimers. Specializing to spin-1/2 ions, we give analytic results for the energy excitations, magnetic susceptibility, and inelastic neutron-scattering intensities for this hexamer system. To examine this model further, we compare these calculations to the measured magnetic susceptibility of a vanadium material, which is considered to be well-defined magnetically as an isolated S=1/2 V4+ trimer model. Using our model, we determine the amount of intertrimer coupling that can be accommodated by the measured susceptibility and predict the inelastic neutron-scattering spectrum for comparison with future measurements. C1 [Haraldsen, J. T.; Barnes, T.; Sinclair, J. W.; Thompson, J. R.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Haraldsen, J. T.; Thompson, J. R.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Barnes, T.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Sacci, R. L.; Turner, J. F. C.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Sacci, R. L.] Univ Victoria, Dept Chem, Victoria, BC V8W 2Y2, Canada. [Turner, J. F. C.] Univ Sussex, Dept Chem, Brighton BN1 9RH, E Sussex, England. RP Haraldsen, JT (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RI Sinclair, John/E-7692-2011; Haraldsen, Jason/B-9809-2012 OI Haraldsen, Jason/0000-0002-8641-5412 FU Division of Material Science and Engineering and the Division of Physics FX We thank the Joint Institute for Neutron Sciences for funding and support of this research. We would like to thank Marshall Luban and Jon Woodward for useful discussions. The research at Oak Ridge National Laboratory was sponsored by the Division of Material Science and Engineering and the Division of Physics. NR 19 TC 6 Z9 6 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 6 AR 064406 DI 10.1103/PhysRevB.80.064406 PG 7 WC Physics, Condensed Matter SC Physics GA 492EX UT WOS:000269638800035 ER PT J AU Hemmida, M von Nidda, HAK Buttgen, N Loidl, A Alexander, LK Nath, R Mahajan, AV Berger, RF Cava, RJ Singh, Y Johnston, DC AF Hemmida, M. von Nidda, H. -A. Krug Buettgen, N. Loidl, A. Alexander, L. K. Nath, R. Mahajan, A. V. Berger, R. F. Cava, R. J. Singh, Yogesh Johnston, D. C. TI Vortex dynamics and frustration in two-dimensional triangular chromium lattices SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetic materials; frustration; hydrogen compounds; lithium compounds; Neel temperature; paramagnetic resonance; sodium compounds; spin dynamics ID HEISENBERG-ANTIFERROMAGNET; MAGNETIC-PROPERTIES; EXCHANGE INTEGRALS; PHASE-TRANSITIONS; XY-MODEL; LICRO2; NACRO2; ORDER; SYSTEMS; OXIDES AB The spin dynamics of the two-dimensional (2D) triangular lattice antiferromagnets HCrO(2), LiCrO(2), and NaCrO(2) is investigated by electron spin resonance. In these oxides, on approaching the Neacuteel temperature T(N) from above, the divergence of the temperature dependent linewidth is well described in terms of a Berezinskii-Kosterlitz-Thouless scenario due to magnetic vortex-antivortex pairing. A refined analysis suggests analogies to the melting scenario of a 2D triangular lattice described by Nelson, Halperin, and Young. C1 [Hemmida, M.; von Nidda, H. -A. Krug; Buettgen, N.; Loidl, A.] Univ Augsburg, Ctr Elect Correlat & Magnetism, D-86135 Augsburg, Germany. [Alexander, L. K.; Nath, R.; Mahajan, A. V.] Indian Inst Technol, Dept Phys, Bombay 400076, Maharashtra, India. [Nath, R.; Singh, Yogesh; Johnston, D. C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Nath, R.; Singh, Yogesh; Johnston, D. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Berger, R. F.; Cava, R. J.] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. RP Hemmida, M (reprint author), Univ Augsburg, Ctr Elect Correlat & Magnetism, D-86135 Augsburg, Germany. RI Alexander, Libu/A-9989-2010; Nath, Ramesh/C-9345-2011; singh, yogesh/F-7160-2016; Loidl, Alois/L-8199-2015 OI Alexander, Libu/0000-0003-2524-8224; Loidl, Alois/0000-0002-5579-0746 FU DFG [SFB 484]; DAAD FX We are grateful to A. P. Kampf, T. Kopp, A. Krimmel, A. Skroblies, and D. V. Zakharov for fruitful discussions. This work was supported by DFG within SFB 484 (Augsburg). M. H. was partially supported by DAAD. NR 36 TC 22 Z9 22 U1 3 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 5 AR 054406 DI 10.1103/PhysRevB.80.054406 PG 5 WC Physics, Condensed Matter SC Physics GA 492EU UT WOS:000269638500043 ER PT J AU Hoffmann, A May, SJ te Velthuis, SGE Park, S Fitzsimmons, MR Campillo, G Gomez, ME AF Hoffmann, A. May, S. J. te Velthuis, S. G. E. Park, S. Fitzsimmons, M. R. Campillo, G. Gomez, M. E. TI Magnetic depth profile of a modulation-doped La1-xCaxMnO3 exchange-biased system SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetic materials; calcium compounds; ferromagnetic materials; lanthanum compounds; magnetic multilayers; magnetic thin films; magnetisation ID THIN-FILMS; MULTILAYERS; MANGANITES; DEPENDENCE; ANISOTROPY; PHYSICS AB Recent magnetometry measurements in modulation-doped La1-xCaxMnO3 suggested that a net magnetization extends from the ferromagnetic layers into the adjacent antiferromagnet layers. Here we test this hypothesis by polarized neutron reflectometry, which allows us to determine the depth resolved magnetization profile. From fits to the reflectivity data we find that the additional magnetization does not occur at the ferromagnetic/antiferromagnetic interfaces, but rather in a thin region of the first antiferromagnetic layer adjacent to the interface with the substrate. C1 [Hoffmann, A.; May, S. J.; te Velthuis, S. G. E.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Hoffmann, A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Park, S.; Fitzsimmons, M. R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Park, S.] Pusan Natl Univ, Dept Phys, Pusan 609735, South Korea. [Campillo, G.; Gomez, M. E.] Univ Valle, Dept Phys, Cali 25360, Colombia. [Campillo, G.] Univ Antioquia, Inst Fis, Medellin 1226, Colombia. RP Hoffmann, A (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM hoffmann@anl.gov RI May, Steven/D-8563-2011; Hoffmann, Axel/A-8152-2009; Lujan Center, LANL/G-4896-2012; Campillo, Gloria/A-8299-2013; te Velthuis, Suzanne/I-6735-2013 OI May, Steven/0000-0002-8097-1549; Hoffmann, Axel/0000-0002-1808-2767; te Velthuis, Suzanne/0000-0002-1023-8384 FU U. S. Department of Energy-Basic Energy Science [DEAC0206CH1357]; Argonne National Laboratory [DEAC5206NA25396]; COLCIENCIAS [043-2005]; KOSEF [R01-2008-000-21092-0, KRF-2006-005J02803] FX This work was supported by the U. S. Department of Energy-Basic Energy Science under Contract No. DEAC0206CH1357 at Argonne National Laboratory and DEAC5206NA25396 at Los Alamos National Laboratory and by COLCIENCIAS under the Excellence Center for Novel Materials, Contract No. 043-2005. S. P. was supported from KOSEF (R01-2008-000-21092-0) and (KRF-2006-005J02803) NR 32 TC 5 Z9 6 U1 1 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 5 AR 052403 DI 10.1103/PhysRevB.80.052403 PG 4 WC Physics, Condensed Matter SC Physics GA 492EU UT WOS:000269638500009 ER PT J AU Kim, JK Kim, KS McChesney, JL Rotenberg, E Hwang, HN Hwang, CC Yeom, HW AF Kim, J. K. Kim, K. S. McChesney, J. L. Rotenberg, E. Hwang, H. N. Hwang, C. C. Yeom, H. W. TI Two-dimensional electron gas formed on the indium-adsorbed Si(111)root 3 x root 3-Au surface SO PHYSICAL REVIEW B LA English DT Article ID PHASE; TRANSITION; WAVE; SI(111)-(ROOT-3X-ROOT-3)R30-DEGREES-AU; RECONSTRUCTION; AU AB Electronic structure of the In-adsorbed Si(111)root 3 x root 3-Au surface was investigated by core-level and angle-resolved photoelectron spectroscopy. On the Si(111)root 3 x root 3-Au surface, In adsorbates were reported to remove the characteristic domain-wall network and produce a very well-ordered root 3 x root 3 surface phase. Detailed band dispersions and Fermi surfaces were mapped for the pristine and In-dosed Si(111)root 3 x root 3-Au surfaces. After the In adsorption, the surface bands shift toward a higher binding energy, increasing substantially the electron filling of the metallic band along with a significant sharpening of the spectral features. The resulting Fermi surface indicates the formation of a perfect isotropic two-dimensional electron-gas system filled with 0.3 electrons. This band structure agrees well with that expected, in a recent density-functional theory calculation, for the conjugate-honeycomb trimer model of the pristine Si(111)root 3 x root 3-Au surface. Core-level spectra indicate that In adsorbates interact mostly with Si surface atoms. The possible origins of the electronic structure modification by In adsorbates are discussed. The importance of the domain wall and the indirect role of In adsorbates are emphasized. This system provides an interesting playground for the study of two-dimensional electron gas on solid surfaces. C1 [Kim, J. K.; Kim, K. S.; Yeom, H. W.] Yonsei Univ, Ctr Atom Wires, Seoul 120749, South Korea. [Kim, J. K.; Kim, K. S.; Yeom, H. W.] Yonsei Univ, Inst Phys & Appl Phys, Seoul 120749, South Korea. [McChesney, J. L.; Rotenberg, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Hwang, H. N.; Hwang, C. C.] POSTECH, Pohang Accelerator Lab, Beamline Res Div, Pohang 790784, Kyungbuk, South Korea. RP Yeom, HW (reprint author), Yonsei Univ, Ctr Atom Wires, Seoul 120749, South Korea. EM yeom@yonsei.ac.kr RI Rotenberg, Eli/B-3700-2009; McChesney, Jessica/K-8911-2013 OI Rotenberg, Eli/0000-0002-3979-8844; McChesney, Jessica/0000-0003-0470-2088 FU MOST; BK 21 program FX This work was supported by MOST through Center for Atomic Wires and Layers of the CRi program. J. K. K. and K. S. K. were partly supported by the BK 21 program. HWY is grateful to M. H. Kang for enlightening discussion and encouragement. NR 34 TC 27 Z9 27 U1 1 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 7 AR 075312 DI 10.1103/PhysRevB.80.075312 PG 7 WC Physics, Condensed Matter SC Physics GA 492EY UT WOS:000269638900064 ER PT J AU Kurmaev, EZ McLeod, JA Buling, A Skorikov, NA Moewes, A Neumann, M Korotin, MA Izyumov, YA Ni, N Canfield, PC AF Kurmaev, E. Z. McLeod, J. A. Buling, A. Skorikov, N. A. Moewes, A. Neumann, M. Korotin, M. A. Izyumov, Yu. A. Ni, N. Canfield, P. C. TI Contribution of Fe 3d states to the Fermi level of CaFe2As2 SO PHYSICAL REVIEW B LA English DT Article DE calcium compounds; core levels; density functional theory; Fermi level; high-temperature superconductors; iron compounds; valence bands; X-ray photoelectron spectra; X-ray spectra ID ELECTRONIC-STRUCTURE; SUPERCONDUCTOR; SPECTRA AB We present density functional theory (DFT) calculations and soft x-ray spectra (soft x-ray spectroscopy and x-ray photoelectron spectra) measurements of single-crystal CaFe2As2. The experimental valence-band spectra are consistent with our DFT calculations. Both theory and experiment show that the Fe 3d states dominate the Fermi level and hybridize with Ca 3d states. The simple shape of x-ray photoelectron Fe 2p core level spectrum (without any satellite structure typical for correlated systems) suggests that the Fe 3d electrons are weakly or at most moderately correlated. C1 [Kurmaev, E. Z.; Skorikov, N. A.; Korotin, M. A.; Izyumov, Yu. A.] Russian Acad Sci, Inst Met Phys, Ural Div, Ekaterinburg 620219, Russia. [McLeod, J. A.; Moewes, A.] Univ Saskatchewan, Dept Phys & Engn Phys, Saskatoon, SK S7N 5E2, Canada. [Buling, A.; Neumann, M.] Univ Osnabruck, Dept Phys, D-49069 Osnabruck, Germany. [Ni, N.; Canfield, P. C.] Iowa State Univ, Dept Phys & Astron, Ames Lab, Ames, IA 50011 USA. [Ni, N.; Canfield, P. C.] Iowa State Univ, US DOE, Ames, IA 50011 USA. RP Kurmaev, EZ (reprint author), Russian Acad Sci, Inst Met Phys, Ural Div, Ekaterinburg 620219, Russia. EM john.mcleod@usask.ca RI Skorikov, Nikolay/A-6728-2012; Korotin, Michael/J-3252-2013; Kurmaev, Ernst/J-4254-2013; Izyumov, Yuri/K-3449-2013; Canfield, Paul/H-2698-2014; Buling, Anna/H-4992-2016 OI Skorikov, Nikolay/0000-0002-3771-8708; Korotin, Michael/0000-0002-9603-8374; Kurmaev, Ernst/0000-0003-4625-4930; Izyumov, Yuri/0000-0002-0956-035X; Buling, Anna/0000-0001-9167-012X FU Research Council of the President of the Russian Federation [NSH1929.2008.2, NSH-1941.2008.2]; Russian Science Foundation for Basic Research [08-02-00148]; Natural Sciences and Engineering Research Council of Canada (NSERC); Canada Research Chair program; Department of Energy, Basic Energy Sciences [DE-AC02-07CH11358] FX We acknowledge support of the Research Council of the President of the Russian Federation (Grant Nos. NSH1929.2008.2 and NSH-1941.2008.2), the Russian Science Foundation for Basic Research (Project No. 08-02-00148), the Natural Sciences and Engineering Research Council of Canada (NSERC), and the Canada Research Chair program. P. C. C. acknowledges useful discussions with S. L. Bud'ko and G. D. Samolyuk. Work at the Ames Laboratory was supported by the Department of Energy, Basic Energy Sciences under Contract No. DE-AC02-07CH11358. NR 33 TC 22 Z9 22 U1 0 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 5 AR 054508 DI 10.1103/PhysRevB.80.054508 PG 6 WC Physics, Condensed Matter SC Physics GA 492EU UT WOS:000269638500065 ER PT J AU Lany, S Zunger, A AF Lany, Stephan Zunger, Alex TI Polaronic hole localization and multiple hole binding of acceptors in oxide wide-gap semiconductors SO PHYSICAL REVIEW B LA English DT Article DE density functional theory; HF calculations; II-VI semiconductors; indium compounds; localised states; polarons; tin compounds; wide band gap semiconductors; zinc compounds ID ZNO; ENERGY AB Acceptor-bound holes in oxides often localize asymmetrically at one out of several equivalent oxygen ligands. Whereas Hartree-Fock (HF) theory overly favors such symmetry-broken polaronic hole localization in oxides, standard local-density (LD) calculations suffer from spurious delocalization among several oxygen sites. These opposite biases originate from the opposite curvatures of the energy as a function of the fractional occupation number n, i.e., d(2)E/dn(2)< 0 in HF and d(2)E/dn(2)>0 in LD. We recover the correct linear behavior, d(2)E/dn(2)=0, that removes the (de)localization bias by formulating a generalized Koopmans condition. The correct description of oxygen hole localization reveals that the cation-site nominal single acceptors in ZnO, In2O3, and SnO2 can bind multiple holes. C1 [Lany, Stephan; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Lany, S (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. RI Zunger, Alex/A-6733-2013; OI Lany, Stephan/0000-0002-8127-8885 FU U. S. Department of Energy; Office of Energy Efficiency and Renewable Energy [DE-AC36-08GO28308] FX This work was funded by the U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy under Contract No. DE-AC36-08GO28308 to NREL. The use of MPP capabilities at the National Energy Research Scientific Computing Center is gratefully acknowledged. NR 33 TC 171 Z9 171 U1 5 U2 59 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 8 AR 085202 DI 10.1103/PhysRevB.80.085202 PG 5 WC Physics, Condensed Matter SC Physics GA 492FC UT WOS:000269639300058 ER PT J AU Li, HF Tian, W Zarestky, JL Kreyssig, A Ni, N Bud'ko, SL Canfield, PC Goldman, AI McQueeney, RJ Vaknin, D AF Li, Haifeng Tian, Wei Zarestky, Jerel L. Kreyssig, Andreas Ni, Ni Bud'ko, Sergey L. Canfield, Paul C. Goldman, Alan I. McQueeney, Robert J. Vaknin, David TI Magnetic and lattice coupling in single-crystal SrFe2As2: A neutron scattering study SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetic materials; high-temperature superconductors; iron compounds; magnetic hysteresis; magnetic superconductors; magnetic transition temperature; neutron diffraction; order-disorder transformations; remanence; strontium compounds; superconducting transition temperature ID SUPERCONDUCTIVITY AB A detailed elastic neutron scattering study of the structural and magnetic phase transitions in single-crystal SrFe2As2 reveals that the orthorhombic (O)-tetragonal (T) and the antiferromagnetic transitions coincide at T-O=T-N=(201.5 +/- 0.25) K. The observation of coexisting O-T phases over a finite temperature range at the transition and the sudden onset of the O distortion provide strong evidences that the structural transition is first order. The simultaneous appearance and disappearance within 0.5 K upon cooling and within 0.25 K upon warming, respectively, indicate that the magnetic and structural transitions are intimately coupled. We find that the hysteresis in the transition temperature extends over a 1-2 K range. Based on the observation of a remnant orthorhombic phase at temperatures higher than T-O, we suggest that the T-O transition may be an order-disorder transition. C1 [Li, Haifeng] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Li, HF (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RI Li, Haifeng/F-9743-2013; Tian, Wei/C-8604-2013; Canfield, Paul/H-2698-2014; McQueeney, Robert/A-2864-2016; Vaknin, David/B-3302-2009 OI Tian, Wei/0000-0001-7735-3187; McQueeney, Robert/0000-0003-0718-5602; Vaknin, David/0000-0002-0899-9248 FU U.S. Department of Energy [DE-AC02-07CH11358] FX Ames Laboratory is supported by the U.S. Department of Energy under Contract No. DE-AC02-07CH11358. NR 33 TC 20 Z9 20 U1 2 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 5 AR 054407 DI 10.1103/PhysRevB.80.054407 PG 5 WC Physics, Condensed Matter SC Physics GA 492EU UT WOS:000269638500044 ER PT J AU Lloveras, P Castan, T Porta, M Planes, A Saxena, A AF Lloveras, Pol Castan, Teresa Porta, Marcel Planes, Antoni Saxena, Avadh TI Glassy behavior in martensites: Interplay between elastic anisotropy and disorder in zero-field-cooling/field-cooling simulation experiments SO PHYSICAL REVIEW B LA English DT Article DE ferroelastic transitions; free energy; Ginzburg-Landau theory; glass transition; iron alloys; martensitic transformations; nickel alloys; palladium alloys; titanium alloys ID FE-PD ALLOYS; SPIN-GLASS; STRAIN; TRANSFORMATIONS AB We study the combined effect of elastic anisotropy and disorder on the microstructure and thermodynamic behavior in alloys undergoing a martensitic transformation. Within a Ginzburg-Landau free-energy framework we find the region in the parameter space where a ferroelastic glassy state exists without twinning. We find that such a glassy state is of kinetic origin rather than due to geometrical frustration. The glassy behavior is characterized by simulating zero-field-cooling/field-cooling curves for different values of anisotropy and disorder. Finally, we discuss experimental implications for Fe-Pd and Ni-Ti alloys. C1 [Lloveras, Pol; Castan, Teresa; Porta, Marcel; Planes, Antoni] Univ Barcelona, Dept Estructura & Constituents Mat, E-08028 Barcelona, Catalonia, Spain. [Lloveras, Pol; Castan, Teresa; Porta, Marcel; Planes, Antoni; Saxena, Avadh] Univ Barcelona, Inst Nanociencia & Nanotecnol, E-08028 Barcelona, Catalonia, Spain. [Porta, Marcel; Saxena, Avadh] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Lloveras, P (reprint author), Univ Barcelona, Dept Estructura & Constituents Mat, E-08028 Barcelona, Catalonia, Spain. RI Lloveras, Pol/M-3775-2014; Planes, Antoni/O-1904-2015; OI Lloveras, Pol/0000-0003-4133-2223; Planes, Antoni/0000-0001-5213-5714; Porta Tena, Marcel/0000-0001-7582-9671 FU CICyT (Spain) [MAT2007-61200]; DURSI (Catalonia) [2005SGR00969]; U.S. Department of Energy; DGICyT (Spain) FX This work was supported by CICyT (Spain) under Project No. MAT2007-61200, DURSI (Catalonia) under Project No. 2005SGR00969, and the U.S. Department of Energy. P.Ll. acknowledges support from DGICyT (Spain). NR 20 TC 24 Z9 26 U1 1 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 5 AR 054107 DI 10.1103/PhysRevB.80.054107 PG 7 WC Physics, Condensed Matter SC Physics GA 492EU UT WOS:000269638500028 ER PT J AU Loginova, E Nie, S Thurmer, K Bartelt, NC McCarty, KF AF Loginova, Elena Nie, Shu Thuermer, Konrad Bartelt, Norman C. McCarty, Kevin F. TI Defects of graphene on Ir(111): Rotational domains and ridges SO PHYSICAL REVIEW B LA English DT Article DE electron microscopy; graphene; impurities; low energy electron diffraction; materials preparation; scanning tunnelling microscopy ID MONOLAYER GRAPHITE; 111 SURFACE; CARBON; RU(0001); OVERLAYERS; PT(111); LEED; DECOMPOSITION; SPECTROSCOPY; MICROSCOPY AB We use low-energy electron microscopy (LEEM), low-energy electron diffraction (LEED), and scanning tunneling microscopy (STM) to study different orientations of single-layer graphene sheets on Ir(111). The most-abundant orientation has previously been characterized in the literature. Using selective-area LEED we find three other variants, which are rotated 14 degrees, 18.5 degrees, and 30 degrees with respect to the most common variant. The similar to 30 degrees-rotated structure is also studied by STM. We propose that all four variants are moireacute structures that can be classified using simple geometric rules involving periodic and quasiperiodic structural motifs. In addition, LEEM reveals that linear defects form in the graphene sheets during cooling from the synthesis temperature. STM shows that these defects are ridges, suggesting that the graphene sheets delaminate locally as the Ir substrate contracts. C1 [Loginova, Elena; Nie, Shu; Thuermer, Konrad; Bartelt, Norman C.; McCarty, Kevin F.] Sandia Natl Labs, Livermore, CA 94550 USA. RP McCarty, KF (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM mccarty@sandia.gov RI McCarty, Kevin/F-9368-2012; Bartelt, Norman/G-2927-2012; Thurmer, Konrad/L-4699-2013 OI McCarty, Kevin/0000-0002-8601-079X; Thurmer, Konrad/0000-0002-3078-7372 FU U. S. DOE [DE-AC04-94AL85000] FX The authors thank P. J. Feibelman for helpful discussion. This work was supported by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the U. S. DOE under Contract No. DE-AC04-94AL85000. NR 39 TC 120 Z9 123 U1 8 U2 73 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 8 AR 085430 DI 10.1103/PhysRevB.80.085430 PG 8 WC Physics, Condensed Matter SC Physics GA 492FC UT WOS:000269639300109 ER PT J AU Mun, ED Bud'ko, SL Ni, N Thaler, AN Canfield, PC AF Mun, Eun Deok Bud'ko, Sergey L. Ni, Ni Thaler, Alex N. Canfield, Paul C. TI Thermoelectric power and Hall coefficient measurements on Ba(Fe1-xTx)(2)As-2 (T=Co and Cu) SO PHYSICAL REVIEW B LA English DT Article DE band structure; barium compounds; cobalt compounds; copper compounds; doping; Fermi surface; Hall effect; high-temperature superconductors; iron compounds; solid-state phase transformations; thermoelectric power ID SUPERCONDUCTIVITY; METALS AB Temperature-dependent thermoelectric power (TEP) data on Ba(Fe1-xTMx)(2)As-2 (TM=Co and Cu), complemented by the Hall coefficient data on the samples from the same batches, have been measured. For Co doping we clearly see a change in the temperature-dependent TEP and Hall coefficient data when the sample is doped to sufficient e (the number of extra electrons associated with the TM doping) so as to stabilize low-temperature superconductivity. Remarkably, a similar change is found in the Cu-doped samples at comparable e value, even though these compounds do not superconduct. These changes possibly point to a significant modification of the Fermi surface/band structure of Ba(Fe1-xTMx)(2)As-2 at small electron doping, that in the case of Co doping is just before, and probably allows for, the onset of superconductivity. These data further suggest that suppression of the structural/magnetic phase transition and the establishment of a proper e value are each necessary but, individually, not sufficient conditions for superconductivity. C1 [Mun, Eun Deok] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Mun, ED (reprint author), Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. RI Canfield, Paul/H-2698-2014; Thaler, Alexander/J-5741-2014 OI Thaler, Alexander/0000-0001-5066-8904 FU U. S. Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358] FX We thank Adam Kaminski and Makariy A. Tanatar for useful discussions. We acknowledge Florence Rullier-Albenque for pointing out the full import of Ref. 19. Work at the Ames Laboratory was supported by the U. S. Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358. NR 21 TC 65 Z9 65 U1 0 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 5 AR 054517 DI 10.1103/PhysRevB.80.054517 PG 6 WC Physics, Condensed Matter SC Physics GA 492EU UT WOS:000269638500074 ER PT J AU Olheiser, TA Shi, Z Lawrie, DD Giannetta, RW Schlueter, JA AF Olheiser, Tyson A. Shi, Zane Lawrie, David D. Giannetta, Russell W. Schlueter, John A. TI Interplane penetration depth and coherent transport in organic superconductors SO PHYSICAL REVIEW B LA English DT Article DE d-wave superconductivity; impurity scattering; organic superconductors; penetration depth (superconductivity); superconducting energy gap ID INFRARED CONDUCTIVITY; ORDER-PARAMETER; BEDT-TTF; C-13 NMR; TEMPERATURE; STATE; KAPPA-(BEDT-TTF)(2)CU(NCS)(2); SCATTERING; ANISOTROPY; MECHANISM AB Measurements of the interlayer penetration depth lambda(perpendicular to) have been performed on single crystals of the organic superconductors kappa-(ET)(2)Cu[N(CN)(2)]Br and kappa-(ET)(2)Cu(NCS)(2). We find that lambda(perpendicular to)(0)approximate to 130 mu m for both materials. The normalized superfluid density rho(perpendicular to)=[lambda(perpendicular to)(0)/lambda(perpendicular to)(T)](2) may be fit equally well to a power law 1-rho(perpendicular to)similar to T-n with n=1.3-1.5 or to the form 1-rho(perpendicular to)=alpha(T-2/T-C)/(T+T-*), consistent with a d-wave pairing state with impurity scattering. The data imply coherent transport between conducting planes, in agreement with recent magnetoresistive measurements [J. Singleton, P. A. Goddard, A. Ardavan, N. Harrison, S. J. Blundell, J. A. Schlueter, and A. M. Kini, Phys. Rev. Lett. 88, 037001 (2002)] and in contrast to the copper oxides. C1 [Olheiser, Tyson A.; Shi, Zane; Lawrie, David D.; Giannetta, Russell W.] Univ Illinois, Loomis Lab Phys, Urbana, IL 61801 USA. [Schlueter, John A.] Argonne Natl Lab, Chem & Mat Sci Div, Argonne, IL 60439 USA. RP Giannetta, RW (reprint author), Univ Illinois, Loomis Lab Phys, Urbana, IL 61801 USA. EM russg@illinois.edu FU NSF [DMR 05-03882]; UChicago Argonne, LLC; Operator of Argonne National Laboratory ("Argonne" ); U. S. Department of Energy Office of Science Laboratory [DE-AC02-06CH11357] FX The authors wish to thank A. Carrington and R. Prozorov for a careful reading of the paper. Research at the University of Illinois was supported by NSF Grant No. DMR 05-03882. Work at Argonne was supported by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne" ). Argonne, a U. S. Department of Energy Office of Science Laboratory, is operated under Contract No. DE-AC02-06CH11357. NR 54 TC 2 Z9 2 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 5 AR 054519 DI 10.1103/PhysRevB.80.054519 PG 6 WC Physics, Condensed Matter SC Physics GA 492EU UT WOS:000269638500076 ER PT J AU Ott, RT Mendelev, MI Besser, MF Kramer, MJ Almer, J Sordelet, DJ AF Ott, R. T. Mendelev, M. I. Besser, M. F. Kramer, M. J. Almer, J. Sordelet, D. J. TI Strain dependence of peak widths of reciprocal- and real-space distribution functions of metallic glasses from in situ x-ray scattering and molecular dynamics simulations SO PHYSICAL REVIEW B LA English DT Article DE copper alloys; elastic deformation; metallic glasses; molecular dynamics method; X-ray scattering; zirconium alloys ID AMORPHOUS SOLIDS; STRUCTURAL DEFECTS; DEFORMATION; MODEL AB We have examined the relationship between the variance in the atomic-level hydrostatic pressure, <>(1/2), and the widths of the first peaks in the reciprocal- and real-space distribution functions for elastically deformed metallic glasses. In situ synchrotron x-ray scattering studies performed on a binary Cu(64.5)Zr(35.5) glass subject to uniaxial loading reveal that the width of the first peak in the reduced-pair distribution function is dependent on the different elastic responses of the partial-pair correlations. Molecular dynamics (MD) simulations of the same binary glass, as well as a single-component glass, subject to hydrostatic deformation show that the widths of the first peaks in the partial-pair distribution functions are affected by length-scale-dependent changes in the relative atomic separation in the first nearest-neighbor shell. Moreover, the MD simulations show that the strain dependencies of the partial-pair peak widths do not necessarily match the strain-dependence of <>(1/2). The results suggest that the widths of the peaks in the reciprocal- and real-space functions are not solely dependent on <>(1/2) but rather are also affected by the atomic rearrangements associated with elastic deformation. C1 [Ott, R. T.; Mendelev, M. I.; Besser, M. F.; Kramer, M. J.; Sordelet, D. J.] US DOE, Ames Lab, Ames, IA 50011 USA. [Kramer, M. J.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Almer, J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Ott, RT (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. FU Office of Basic Energy Sciences; United States Department of Energy [DE-AC02-07CH11358]; Advanced Photon Source [DE-AC02-06CH11357] FX The authors gratefully acknowledge D. Srolovitz (Yeshiva University) for the helpful discussions. This work was supported by the Office of Basic Energy Sciences, United States Department of Energy as follows: efforts at the Ames Laboratory were supported under Contract No. DE-AC02-07CH11358 and use of the Advanced Photon Source was supported under Contract No. DE-AC02-06CH11357. NR 27 TC 3 Z9 3 U1 3 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 6 AR 064101 DI 10.1103/PhysRevB.80.064101 PG 14 WC Physics, Condensed Matter SC Physics GA 492EX UT WOS:000269638800016 ER PT J AU Rao, GVS Ocadlik, S Reedyk, M Petrovic, C AF Rao, G. V. Sudhakar Ocadlik, S. Reedyk, M. Petrovic, C. TI Low-frequency excitation in the optical properties of superconducting CeCoIn5 SO PHYSICAL REVIEW B LA English DT Article DE cerium alloys; cobalt alloys; energy gap; heavy fermion superconductors; indium alloys; infrared spectra; Kramers-Kronig relations; optical conductivity ID POINT-CONTACT SPECTROSCOPY; URU2SI2 AB The far-infrared optical response of CeCoIn5, a superconducting heavy fermion metal with a T-C of 2.3 K, was investigated from 5-40 cm(-1) at temperatures from 0.5-2.5 K using a polarizing interferometer and a He-3 cryostat. A strong absorption feature is revealed at low temperatures which appears to be a gap in the density of states, reminiscent of the energy gap seen in the hidden order state in URu2Si2. The depth of the spectral structure decreases with increasing temperature from 0.5 to 2.5 K indicating that the characteristic temperature for this behavior is close to the superconducting T-C. A peak in the superconducting state Kramers-Kronig-derived optical conductivity occurs just above the gap at 1.5 meV. C1 [Rao, G. V. Sudhakar; Ocadlik, S.; Reedyk, M.] Brock Univ, Dept Phys, St Catharines, ON L2S 3A1, Canada. [Petrovic, C.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RP Rao, GVS (reprint author), Brock Univ, Dept Phys, St Catharines, ON L2S 3A1, Canada. RI Petrovic, Cedomir/A-8789-2009 OI Petrovic, Cedomir/0000-0001-6063-1881 FU U. S. Department of Energy by Brookhaven Science Associates [DE-Ac02-98CH10886]; Natural Sciences and Engineering Research Council of Canada FX We are grateful to T. Timusk for a critical reading of our manuscript and very helpful comments. A portion of this work was carried out at Brookhaven National Laboratory which is operated for the U. S. Department of Energy by Brookhaven Science Associates (Grant No. DE-Ac02-98CH10886). Work at Brock was supported by the Natural Sciences and Engineering Research Council of Canada. NR 33 TC 4 Z9 4 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 6 AR 064512 DI 10.1103/PhysRevB.80.064512 PG 5 WC Physics, Condensed Matter SC Physics GA 492EX UT WOS:000269638800068 ER PT J AU Sewall, SL Franceschetti, A Cooney, RR Zunger, A Kambhampati, P AF Sewall, Samuel L. Franceschetti, Alberto Cooney, Ryan R. Zunger, Alex Kambhampati, Patanjali TI Direct observation of the structure of band-edge biexcitons in colloidal semiconductor CdSe quantum dots SO PHYSICAL REVIEW B LA English DT Article DE biexcitons; cadmium compounds; colloids; high-speed optical techniques; II-VI semiconductors; liquid semiconductors; pseudopotential methods; semiconductor quantum dots; wide band gap semiconductors ID EXCITON FINE-STRUCTURE; CARRIER MULTIPLICATION; OPTICAL GAIN; NANOCRYSTALS; SPECTROSCOPY; EMISSION; STATES AB We report on the electronic structure of the band-edge biexciton in colloidal CdSe quantum dots using femtosecond spectroscopy and atomistic many-body pseudopotential calculations. Time-resolved spectroscopy shows that optical transitions between excitonic and biexcitonic states are distinct for absorptive and emissive transitions, leading to a larger Stokes shift for the biexciton than for the single exciton. The calculations explain the experimental results by showing that there is a previously unobserved electronic substructure to the band-edge biexciton which yields two distinct families of transitions. C1 [Franceschetti, Alberto; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Sewall, Samuel L.; Cooney, Ryan R.; Kambhampati, Patanjali] McGill Univ, Dept Chem, Montreal, PQ H3A 2K6, Canada. RP Franceschetti, A (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM alberto_franceschetti@nrel.gov; alex_zunger@nrel.gov; pat.kambhampati@mcgill.ca RI Zunger, Alex/A-6733-2013 NR 29 TC 51 Z9 51 U1 1 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 8 AR 081310 DI 10.1103/PhysRevB.80.081310 PG 4 WC Physics, Condensed Matter SC Physics GA 492FC UT WOS:000269639300020 ER PT J AU Tulk, CA Klug, DD Chakoumakos, BC Yang, L AF Tulk, Chris A. Klug, Dennis D. Chakoumakos, Bryan C. Yang, Ling TI Intercage guest correlations and guest clusters in high-pressure clathrate hydrates SO PHYSICAL REVIEW B LA English DT Article DE electron density; high-pressure effects; organic compounds; X-ray diffraction ID METHANE-HYDRATE; DIFFRACTION; KRYPTON; ARGON AB The positions of guest atoms in high-pressure hexagonal Kr clathrate hydrate have been determined. Additionally, the large cage guests of the initial cubic form show a displacement of similar to 0.7 A degrees from the large cage center and exhibit reduced cage-to-cage correlations in guest positions; similar disorder likely carries over to the high-pressure form. Based on size and electron density maps, up to three atoms are located in the large cage of the high-pressure hexagonal form, where two Kr atoms are 2.25 A degrees above/below the cage center and one on a ring with a radius 1.70 A degrees from the cage center. C1 [Tulk, Chris A.; Chakoumakos, Bryan C.; Yang, Ling] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Klug, Dennis D.] Natl Res Council Canada, Steacie Inst Mol Sci, Ottawa, ON K1A 0R6, Canada. [Yang, Ling] Oak Ridge Natl Lab, Ctr Nanophased Mat Sci, Oak Ridge, TN 37831 USA. RP Tulk, CA (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RI Chakoumakos, Bryan/A-5601-2016; Tulk, Chris/R-6088-2016 OI Chakoumakos, Bryan/0000-0002-7870-6543; Tulk, Chris/0000-0003-3400-3878 FU Division of Materials Sciences; U. S. D. O. E. [DEAC0500OR22725] FX Oak Ridge National Laboratory is supported by the Division of Materials Sciences, U. S. D. O. E. (Contract No. DEAC0500OR22725 with UT-Battelle, LLC). The authors would like to thank J. M. Simonson, J. Horita, and D. Cole for providing laboratory space in the Chemical Sciences Division at Oak Ridge National Laboratory. NR 28 TC 4 Z9 4 U1 1 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 5 AR 052101 DI 10.1103/PhysRevB.80.052101 PG 4 WC Physics, Condensed Matter SC Physics GA 492EU UT WOS:000269638500001 ER PT J AU Wang, F Vishwanath, A AF Wang, Fa Vishwanath, Ashvin TI Z(2) spin-orbital liquid state in the square lattice Kugel-Khomskii model SO PHYSICAL REVIEW B LA English DT Article DE ground states; iron compounds; lattice theory; liquid theory; manganese compounds; Monte Carlo methods; scandium compounds; spin-orbit interactions; variational techniques; wave functions ID HUBBARD-MODEL; GROUND-STATE; SYSTEMS; INSULATOR; GAP AB We argue for the existence of a liquid ground state in a class of square lattice models of orbitally degenerate insulators. Starting with the SU(4)-symmetric Kugel-Khomskii model, we utilize a Majorana Fermion representation of spin-orbital operators to access unusual phases. Variational wave functions of candidate liquid phases are thus obtained, whose properties are evaluated using variational Monte Carlo. These states are disordered and are found to have excellent energetics and ground state overlap (>40%) when compared with exact diagonalization on 16-site clusters. We conclude that these are spin-orbital liquid ground states with emergent nodal fermions and Z(2) gauge fields. Connections to spin-3/2 cold-atom systems and properties in the absence of SU(4) symmetry are briefly discussed. C1 [Wang, Fa; Vishwanath, Ashvin] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Wang, Fa; Vishwanath, Ashvin] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Wang, F (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Wang, Fa/D-3817-2015 OI Wang, Fa/0000-0002-6220-5349 FU NSF [DMR0645691] FX We acknowledge support from NSF under Grant No. DMR0645691 and discussions with M. Hermele. NR 29 TC 30 Z9 30 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 6 AR 064413 DI 10.1103/PhysRevB.80.064413 PG 9 WC Physics, Condensed Matter SC Physics GA 492EX UT WOS:000269638800042 ER PT J AU Wei, QM Lian, J Boatner, LA Wang, LM Ewing, RC AF Wei, Qiangmin Lian, Jie Boatner, L. A. Wang, L. M. Ewing, R. C. TI Propagation of ripples on pyrochlore induced by ion beam bombardment SO PHYSICAL REVIEW B LA English DT Article DE cadmium compounds; electron microscopy; focused ion beam technology; ion-surface impact; shock wave effects ID SPUTTERED AMORPHOUS SOLIDS; EQUILIBRIUM TOPOGRAPHY; SURFACE; EROSION; INSTABILITY; MORPHOLOGY AB The morphological evolution of ripples formed on the surface of Cd2Nb2O7 pyrochlore single crystals by focused ion beam bombardment was investigated using in situ electron microscopy. At high ion fluences and off-normal bombardment angles, faceted surface ripples with a "terracelike" structure were observed. The ripple propagation direction was oriented along the projected ion beam direction at incident angles ranging from 35 to 65 degrees under high-dose ion bombardment. One side of the terrace was found to be perpendicular to the incident ion beam direction, while the other side was parallel to the ion beam. The terrace propagation velocity and direction were determined and interpreted on the basis of this asymmetric structure. A model based on the propagation of a shock wave that effectively "self-selects" a stable slope was developed in order to explain the observed faceted ripple formation. C1 [Wei, Qiangmin; Wang, L. M.; Ewing, R. C.] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. [Lian, Jie] Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, Troy, NY 12180 USA. [Boatner, L. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Wang, L. M.; Ewing, R. C.] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. [Ewing, R. C.] Univ Michigan, Dept Geol Sci, Ann Arbor, MI 48109 USA. RP Wang, LM (reprint author), Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. EM lmwang@umich.edu RI Lian, Jie/A-7839-2010; Boatner, Lynn/I-6428-2013 OI Boatner, Lynn/0000-0002-0235-7594 FU U.S. Department of Energy [DE-FG02-02ER46005, DE-FG02-97ER45656, DE-AC0500OR22725] FX This work was supported by the Office of Basic Energy Sciences of the U.S. Department of Energy through Grant No. DE-FG02-02ER46005 and No. DE-FG02-97ER45656 Research at Oak Ridge National Laboratory is sponsored by the Division of Materials Sciences and Engineering, U.S. Department of Energy under Contract No. DE-AC0500OR22725 with UT-Battelle, LLC. NR 35 TC 15 Z9 15 U1 2 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 8 AR 085413 DI 10.1103/PhysRevB.80.085413 PG 8 WC Physics, Condensed Matter SC Physics GA 492FC UT WOS:000269639300092 ER PT J AU Yoshida, T Zhou, XJ Hussain, Z Shen, ZX Fujimori, A Eisaki, H Uchida, S AF Yoshida, T. Zhou, X. J. Hussain, Z. Shen, Z. -X. Fujimori, A. Eisaki, H. Uchida, S. TI Underlying Fermi surface of Sr14-xCaxCu24O41 in two-dimensional momentum space observed by angle-resolved photoemission spectroscopy SO PHYSICAL REVIEW B LA English DT Article DE calcium compounds; charge density waves; crystallisation; Fermi surface; high-temperature superconductors; photoelectron spectra; strontium compounds; superconducting energy gap ID SUPERCONDUCTIVITY; LADDER; SR14CU24O41 AB We have performed an angle-resolved photoemission study of the two-leg ladder system Sr14-xCaxCu24O41 with x=0 and 11. "Underlying Fermi surfaces" determined from low-energy spectral-weight mapping indicates the quasi-one-dimensional nature of the electronic structure. Energy gap caused by the charge-density wave has been observed for x=0 and the gap tends to close with Ca substitution. The absence of a quasiparticle peak even in x=11 is in contrast to the two-dimensional high-T-c cuprates, implying strong carrier localization related to the hole crystallization. C1 [Yoshida, T.; Fujimori, A.; Uchida, S.] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Zhou, X. J.] Chinese Acad Sci, Natl Lab Superconduct, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100080, Peoples R China. [Hussain, Z.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Shen, Z. -X.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Shen, Z. -X.] Stanford Univ, Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA. [Eisaki, H.] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058568, Japan. RP Yoshida, T (reprint author), Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. FU Ministry of Education, Science, Culture, Sports and Technology; U. S. D. O. E. [DE-FG03-01ER45876, DE-AC03-76SF00098]; Department of Energy's Office of Basic Energy Science, Division of Materials Science FX This work was supported by a Grant-in-Aid for Scientific Research in Priority Area " Invention of Anomalous Quantum Materials," a Grant-in-Aid for Young Scientists from the Ministry of Education, Science, Culture, Sports and Technology, and the U. S. D. O. E. under Contracts No. DE-FG03-01ER45876 and No. DE-AC03-76SF00098. ALS is operated by the Department of Energy's Office of Basic Energy Science, Division of Materials Science. NR 17 TC 5 Z9 5 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 5 AR 052504 DI 10.1103/PhysRevB.80.052504 PG 4 WC Physics, Condensed Matter SC Physics GA 492EU UT WOS:000269638500016 ER PT J AU Zhai, H Wang, F Lee, DH AF Zhai, Hui Wang, Fa Lee, Dung-Hai TI Antiferromagnetically driven electronic correlations in iron pnictides and cuprates SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetic materials; electron correlations; Fermi surface; high-temperature superconductors; Hubbard model; iron compounds; renormalisation; strongly correlated electron systems ID RESOLVED PHOTOEMISSION-SPECTROSCOPY; NODELESS SUPERCONDUCTING GAPS; 2-DIMENSIONAL HUBBARD-MODEL; D-WAVE SUPERCONDUCTIVITY; RENORMALIZATION-GROUP; BA0.6K0.4FE2AS2; INSTABILITY; MECHANISM; INSULATOR; SYSTEMS AB The iron pnictides and the cuprates represent two families of materials, where strong antiferromagnetic correlation drives three other distinct ordering tendencies: (1) superconducting pairing, (2) Fermi-surface distortion, and (3) orbital-current order. We propose that (1)-(3) and the antiferromagnetic correlation are the hallmarks of a class of strongly correlated materials to which the cuprates and pnictides belong. In this paper, we present the results of the functional renormalization-group studies to support the above claim. In addition, we show that as a function of the interlayer hopping parameter, the double-layer Hubbard model nicely interpolates between the cuprate and the iron pnictide physics. Finally, as a check, we will present the renormalization-group study of a ladder version of the iron pnictide and compare the results to those of the two-dimensional model. C1 [Zhai, Hui; Wang, Fa; Lee, Dung-Hai] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Zhai, Hui; Lee, Dung-Hai] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Zhai, H (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Zhai, Hui/H-9496-2012; Wang, Fa/D-3817-2015 OI Zhai, Hui/0000-0001-8118-6027; Wang, Fa/0000-0002-6220-5349 FU DOE [DE-AC02-05CH11231] FX D. H. L. was supported by DOE Grant No. DE-AC02-05CH11231. NR 89 TC 86 Z9 86 U1 0 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 6 AR 064517 DI 10.1103/PhysRevB.80.064517 PG 17 WC Physics, Condensed Matter SC Physics GA 492EX UT WOS:000269638800073 ER PT J AU Zhang, LJ Singh, DJ AF Zhang, Lijun Singh, D. J. TI Electronic structure and thermoelectric properties of layered PbSe-WSe2 materials SO PHYSICAL REVIEW B LA English DT Article ID BAND-STRUCTURE; PBSE; PBTE; FIGURE; MERIT; SYSTEMS; SUPERLATTICES; POWER AB The first members of the series of intergrowth PbSe-WSe2 compounds are investigated using first-principles electronic-structure calculations and Boltzmann transport theory. These materials are moderate band-gap semiconductors. The valence-band edges are primarily derived from PbSe-derived states while the conduction bands have mixed PbSe-WSe2 character. The transport calculations show that high thermopowers are attainable at moderate to high p-type doping levels, consistent with good thermoelectric performance at temperatures from 300 to 1000 K. C1 [Zhang, Lijun; Singh, D. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Zhang, LJ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Zhang, Lijun/F-7710-2011; Singh, David/I-2416-2012 FU Department of Energy; ORNL LDRD; S3TEC EFRC FX We are grateful to M. H. Du for helpful discussions and to David Johnson and Qiyin Lin for helpful discussions and for making available republications data. The crystal-structure figure was produced with the XCRYSDEN program. 48 This work was supported by the Department of Energy, Vehicle Technologies, Propulsion Materials Program, the ORNL LDRD program, and the S3TEC EFRC. NR 48 TC 36 Z9 38 U1 3 U2 67 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 7 AR 075117 DI 10.1103/PhysRevB.80.075117 PG 8 WC Physics, Condensed Matter SC Physics GA 492EY UT WOS:000269638900039 ER PT J AU Zhang, LX Yan, YF Wei, SH AF Zhang, Lixin Yan, Yanfa Wei, Su-Huai TI Enhancing dopant solubility via epitaxial surfactant growth SO PHYSICAL REVIEW B LA English DT Article ID INITIO MOLECULAR-DYNAMICS; P-TYPE ZNO; ZNSE; SEMICONDUCTORS; ENHANCEMENT; DIFFUSION AB A general concept for enhancing dopant solubility via epitaxial surfactant growth is proposed. The key of the concept is to find the appropriate surfactants that generate high (low) levels that can transfer electrons (holes) to dopant acceptor (donor) levels in p-type (n-type) doping, thus significantly lowering the formation energy of dopants. Using first-principles density-functional calculations, our concept explains excellently the recently discovered dual-surfactant effect of Sb and H on enhancing Zn doping in epitaxially grown GaP(100) thin film and suggests that sole surfactant Te can also induce enhancement of N solubility in ZnSe(100) film. We also proposed the surfactants for enhancing p-type doing of ZnO with epitaxial growth with (000 (1) over bar) surface. General rules for selecting surfactants for enhancing both p-type and n-type dopings are provided. C1 [Zhang, Lixin; Yan, Yanfa; Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Zhang, LX (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. FU U.S. DOE [DE-AC36-08GO28308] FX The work is supported by the U.S. DOE under Contract No. DE-AC36-08GO28308 with NREL. NR 29 TC 14 Z9 15 U1 2 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 7 AR 073305 DI 10.1103/PhysRevB.80.073305 PG 4 WC Physics, Condensed Matter SC Physics GA 492EY UT WOS:000269638900011 ER PT J AU Zu, XT Yang, L Gao, F Peng, SM Heinisch, HL Long, XG Kurtz, RJ AF Zu, X. T. Yang, L. Gao, F. Peng, S. M. Heinisch, H. L. Long, X. G. Kurtz, R. J. TI Properties of helium defects in bcc and fcc metals investigated with density functional theory SO PHYSICAL REVIEW B LA English DT Article DE ab initio calculations; density functional theory; helium; interstitials ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; POSITRON-ANNIHILATION; BASIS-SET; MIGRATION; BEHAVIOR; IRON AB The relative stability of single He defects in bcc and fcc metals is investigated using ab initio calculations based on density functional theory. The results indicate that the tetrahedral position is energetically more favorable for a He interstitial than the octahedral site in bcc metals, but the relative stability of He defects in fcc metals varies, depending on local environments. The He formation energies in bcc Fe and fcc Ni at the tetrahedral and octahedral positions with and without spin polarization are investigated. It is of interest to find that the magnetism of host atoms does not directly affect the relative stabilities of He in interstitial sites in bcc Fe and fcc Ni. C1 [Zu, X. T.; Yang, L.] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. [Gao, F.; Heinisch, H. L.; Kurtz, R. J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Peng, S. M.; Long, X. G.] China Acad Engn Phys, Inst Nucl Phys & Chem, Mianyang 621900, Peoples R China. RP Zu, XT (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. EM xiaotaozu@yahoo.com; fei.gao@pnl.gov RI Gao, Fei/H-3045-2012 FU U. S. Department of Energy/Office of Fusion Energy Science [DE-AC06-76RLO 1830] FX The authors ( F. G., H. L. H., and R. J.K. ) are grateful for support by the U. S. Department of Energy/Office of Fusion Energy Science under Contract No. DE-AC06-76RLO 1830. NR 21 TC 68 Z9 70 U1 3 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG PY 2009 VL 80 IS 5 AR 054104 DI 10.1103/PhysRevB.80.054104 PG 6 WC Physics, Condensed Matter SC Physics GA 492EU UT WOS:000269638500025 ER PT J AU Abelev, BI Aggarwal, MM Ahammed, Z Anderson, BD Arkhipkin, D Averichev, GS Balewski, J Barannikova, O Barnby, LS Baudot, J Baumgart, S Beavis, DR Bellwied, R Benedosso, F Betancourt, MJ Betts, RR Bhasin, A Bhati, AK Bichsel, H Bielcik, J Bielcikova, J Biritz, B Bland, LC Bombara, M Bonner, BE Botje, M Bouchet, J Braidot, E Brandin, AV Bruna, E Bueltmann, S Burton, TP Bystersky, M Cai, XZ Caines, H Sanchez, MCD Catu, O Cebra, D Cendejas, R Cervantes, MC Chajecki, Z Chaloupka, P Chattopadhyay, S Chen, HF Chen, JH Chen, JY Cheng, J Cherney, M Chikanian, A Choi, KE Christie, W Clarke, RF Codrington, MJM Corliss, R Cormier, TM Cosentino, MR Cramer, JG Crawford, HJ Das, D Dash, S Daugherity, M De Silva, LC Dedovich, TG DePhillips, M Derevschikov, AA de Souza, RD Didenko, L Djawotho, P Dogra, SM Dong, X Drachenberg, JL Draper, JE Du, F Dunlop, JC Mazumdar, MRD Edwards, WR Efimov, LG Elhalhuli, E Elnimr, M Emelianov, V Engelage, J Eppley, G Erazmus, B Estienne, M Eun, L Fachini, P Fatemi, R Fedorisin, J Feng, A Filip, P Finch, E Fine, V Fisyak, Y Gagliardi, CA Gaillard, L Ganti, MS Gangadharan, DR Garcia-Solis, EJ Geromitsos, A Geurts, F Ghazikhanian, V Ghosh, P Gorbunov, YN Gordon, A Grebenyuk, O Grosnick, D Grube, B Guertin, SM Guimaraes, KSFF Gupta, A Gupta, N Guryn, W Haag, B Hallman, TJ Hamed, A Harris, JW He, W Heinz, M Heppelmann, S Hippolyte, B Hirsch, A Hjort, E Hoffman, AM Hoffmann, GW Hofman, DJ Hollis, RS Huang, HZ Humanic, TJ Igo, G Iordanova, A Jacobs, P Jacobs, WW Jakl, P Jena, C Jin, F Jones, CL Jones, PG Joseph, J Judd, EG Kabana, S Kajimoto, K Kang, K Kapitan, J Keane, D Kechechyan, A Kettler, D Khodyrev, VY Kikola, DP Kiryluk, J Kisiel, A Klein, SR Knospe, AG Kocoloski, A Koetke, DD Kopytine, M Korsch, W Kotchenda, L Kouchpil, V Kravtsov, P Kravtsov, VI Krueger, K Krus, M Kuhn, C Kumar, L Kurnadi, P Lamont, MAC Landgraf, JM LaPointe, S Lauret, J Lebedev, A Lednicky, R Lee, CH Lee, JH Leight, W LeVine, MJ Li, N Li, C Li, Y Lin, G Lindenbaum, SJ Lisa, MA Liu, F Liu, J Liu, L Ljubicic, T Llope, WJ Longacre, RS Love, WA Lu, Y Ludlam, T Ma, GL Ma, YG Mahapatra, DP Majka, R Mall, OI Mangotra, LK Manweiler, R Margetis, S Markert, C Matis, HS Matulenko, YA McShane, TS Meschanin, A Milner, R Minaev, NG Mioduszewski, S Mischke, A Mitchell, J Mohanty, B Morozov, DA Munhoz, MG Nandi, BK Nattrass, C Nayak, TK Nelson, JM Netrakanti, PK Ng, MJ Nogach, LV Nurushev, SB Odyniec, G Ogawa, A Okada, H Okorokov, V Olson, D Pachr, M Page, BS Pal, SK Pandit, Y Panebratsev, Y Panitkin, SY Pawlak, T Peitzmann, T Perevoztchikov, V Perkins, C Peryt, W Phatak, SC Planinic, M Pluta, J Poljak, N Poskanzer, AM Potukuchi, BVKS Prindle, D Pruneau, C Pruthi, NK Putschke, J Raniwala, R Raniwala, S Ray, RL Redwine, R Reed, R Ridiger, A Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Rose, A Roy, C Ruan, L Russcher, MJ Sahoo, R Sakrejda, I Sakuma, T Salur, S Sandweiss, J Sarsour, M Schambach, J Scharenberg, RP Schmitz, N Seger, J Selyuzhenkov, I Seyboth, P Shabetai, A Shahaliev, E Shao, M Sharma, M Shi, SS Shi, XH Sichtermann, EP Simon, F Singaraju, RN Skoby, MJ Smirnov, N Snellings, R Sorensen, P Sowinski, J Spinka, HM Srivastava, B Stadnik, A Stanislaus, TDS Staszak, D Strikhanov, M Stringfellow, B Suaide, AAP Suarez, MC Subba, NL Sumbera, M Sun, XM Sun, Y Sun, Z Surrow, B Symons, TJM de Toledo, AS Takahashi, J Tang, AH Tang, Z Tarnowsky, T Thein, D Thomas, JH Tian, J Timmins, AR Timoshenko, S Tlusty, D Tokarev, M Trainor, TA Tram, VN Trattner, AL Trentalange, S Tribble, RE Tsai, OD Ulery, J Ullrich, T Underwood, DG Van Buren, G van Leeuwen, M Vander Molen, AM Vanfossen, JA Varma, R Vasconcelos, GMS Vasilevski, IM Vasiliev, AN Videbaek, F Vigdor, SE Viyogi, YP Vokal, S Voloshin, SA Wada, M Waggoner, WT Walker, M Wang, F Wang, G Wang, JS Wang, Q Wang, X Wang, XL Wang, Y Webb, G Webb, JC Westfall, GD Whitten, C Wieman, H Wissink, SW Witt, R Wu, Y Xie, W Xu, N Xu, QH Xu, Y Xu, Z Yang, Y Yepes, P Yoo, IK Yue, Q Zawisza, M Zbroszczyk, H Zhan, W Zhang, S Zhang, WM Zhang, XP Zhang, Y Zhang, ZP Zhao, Y Zhong, C Zhou, J Zoulkarneev, R Zoulkarneeva, Y Zuo, JX AF Abelev, B. I. Aggarwal, M. M. Ahammed, Z. Anderson, B. D. Arkhipkin, D. Averichev, G. S. Balewski, J. Barannikova, O. Barnby, L. S. Baudot, J. Baumgart, S. Beavis, D. R. Bellwied, R. Benedosso, F. Betancourt, M. J. Betts, R. R. Bhasin, A. Bhati, A. K. Bichsel, H. Bielcik, J. Bielcikova, J. Biritz, B. Bland, L. C. Bombara, M. Bonner, B. E. Botje, M. Bouchet, J. Braidot, E. Brandin, A. V. Bruna, E. Bueltmann, S. Burton, T. P. Bystersky, M. Cai, X. Z. Caines, H. Sanchez, M. Calderon de la Barca Catu, O. Cebra, D. Cendejas, R. Cervantes, M. C. Chajecki, Z. Chaloupka, P. Chattopadhyay, S. Chen, H. F. Chen, J. H. Chen, J. Y. Cheng, J. Cherney, M. Chikanian, A. Choi, K. E. Christie, W. Clarke, R. F. Codrington, M. J. M. Corliss, R. Cormier, T. M. Cosentino, M. R. Cramer, J. G. Crawford, H. J. Das, D. Dash, S. Daugherity, M. De Silva, L. C. Dedovich, T. G. DePhillips, M. Derevschikov, A. A. de Souza, R. Derradi Didenko, L. Djawotho, P. Dogra, S. M. Dong, X. Drachenberg, J. L. Draper, J. E. Du, F. Dunlop, J. C. Mazumdar, M. R. Dutta Edwards, W. R. Efimov, L. G. Elhalhuli, E. Elnimr, M. Emelianov, V. Engelage, J. Eppley, G. Erazmus, B. Estienne, M. Eun, L. Fachini, P. Fatemi, R. Fedorisin, J. Feng, A. Filip, P. Finch, E. Fine, V. Fisyak, Y. Gagliardi, C. A. Gaillard, L. Ganti, M. S. Gangadharan, D. R. Garcia-Solis, E. J. Geromitsos, A. Geurts, F. Ghazikhanian, V. Ghosh, P. Gorbunov, Y. N. Gordon, A. Grebenyuk, O. Grosnick, D. Grube, B. Guertin, S. M. Guimaraes, K. S. F. F. Gupta, A. Gupta, N. Guryn, W. Haag, B. Hallman, T. J. Hamed, A. Harris, J. W. He, W. Heinz, M. Heppelmann, S. Hippolyte, B. Hirsch, A. Hjort, E. Hoffman, A. M. Hoffmann, G. W. Hofman, D. J. Hollis, R. S. Huang, H. Z. Humanic, T. J. Igo, G. Iordanova, A. Jacobs, P. Jacobs, W. W. Jakl, P. Jena, C. Jin, F. Jones, C. L. Jones, P. G. Joseph, J. Judd, E. G. Kabana, S. Kajimoto, K. Kang, K. Kapitan, J. Keane, D. Kechechyan, A. Kettler, D. Khodyrev, V. Yu. Kikola, D. P. Kiryluk, J. Kisiel, A. Klein, S. R. Knospe, A. G. Kocoloski, A. Koetke, D. D. Kopytine, M. Korsch, W. Kotchenda, L. Kouchpil, V. Kravtsov, P. Kravtsov, V. I. Krueger, K. Krus, M. Kuhn, C. Kumar, L. Kurnadi, P. Lamont, M. A. C. Landgraf, J. M. LaPointe, S. Lauret, J. Lebedev, A. Lednicky, R. Lee, C. -H. Lee, J. H. Leight, W. LeVine, M. J. Li, N. Li, C. Li, Y. Lin, G. Lindenbaum, S. J. Lisa, M. A. Liu, F. Liu, J. Liu, L. Ljubicic, T. Llope, W. J. Longacre, R. S. Love, W. A. Lu, Y. Ludlam, T. Ma, G. L. Ma, Y. G. Mahapatra, D. P. Majka, R. Mall, O. I. Mangotra, L. K. Manweiler, R. Margetis, S. Markert, C. Matis, H. S. Matulenko, Yu. A. McShane, T. S. Meschanin, A. Milner, R. Minaev, N. G. Mioduszewski, S. Mischke, A. Mitchell, J. Mohanty, B. Morozov, D. A. Munhoz, M. G. Nandi, B. K. Nattrass, C. Nayak, T. K. Nelson, J. M. Netrakanti, P. K. Ng, M. J. Nogach, L. V. Nurushev, S. B. Odyniec, G. Ogawa, A. Okada, H. Okorokov, V. Olson, D. Pachr, M. Page, B. S. Pal, S. K. Pandit, Y. Panebratsev, Y. Panitkin, S. Y. Pawlak, T. Peitzmann, T. Perevoztchikov, V. Perkins, C. Peryt, W. Phatak, S. C. Planinic, M. Pluta, J. Poljak, N. Poskanzer, A. M. Potukuchi, B. V. K. S. Prindle, D. Pruneau, C. Pruthi, N. K. Putschke, J. Raniwala, R. Raniwala, S. Ray, R. L. Redwine, R. Reed, R. Ridiger, A. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Rose, A. Roy, C. Ruan, L. Russcher, M. J. Sahoo, R. Sakrejda, I. Sakuma, T. Salur, S. Sandweiss, J. Sarsour, M. Schambach, J. Scharenberg, R. P. Schmitz, N. Seger, J. Selyuzhenkov, I. Seyboth, P. Shabetai, A. Shahaliev, E. Shao, M. Sharma, M. Shi, S. S. Shi, X. -H. Sichtermann, E. P. Simon, F. Singaraju, R. N. Skoby, M. J. Smirnov, N. Snellings, R. Sorensen, P. Sowinski, J. Spinka, H. M. Srivastava, B. Stadnik, A. Stanislaus, T. D. S. Staszak, D. Strikhanov, M. Stringfellow, B. Suaide, A. A. P. Suarez, M. C. Subba, N. L. Sumbera, M. Sun, X. M. Sun, Y. Sun, Z. Surrow, B. Symons, T. J. M. de Toledo, A. Szanto Takahashi, J. Tang, A. H. Tang, Z. Tarnowsky, T. Thein, D. Thomas, J. H. Tian, J. Timmins, A. R. Timoshenko, S. Tlusty, D. Tokarev, M. Trainor, T. A. Tram, V. N. Trattner, A. L. Trentalange, S. Tribble, R. E. Tsai, O. D. Ulery, J. Ullrich, T. Underwood, D. G. Van Buren, G. van Leeuwen, M. Vander Molen, A. M. Vanfossen, J. A., Jr. Varma, R. Vasconcelos, G. M. S. Vasilevski, I. M. Vasiliev, A. N. Videbaek, F. Vigdor, S. E. Viyogi, Y. P. Vokal, S. Voloshin, S. A. Wada, M. Waggoner, W. T. Walker, M. Wang, F. Wang, G. Wang, J. S. Wang, Q. Wang, X. Wang, X. L. Wang, Y. Webb, G. Webb, J. C. Westfall, G. D. Whitten, C., Jr. Wieman, H. Wissink, S. W. Witt, R. Wu, Y. Xie, W. Xu, N. Xu, Q. H. Xu, Y. Xu, Z. Yang, Y. Yepes, P. Yoo, I. -K. Yue, Q. Zawisza, M. Zbroszczyk, H. Zhan, W. Zhang, S. Zhang, W. M. Zhang, X. P. Zhang, Y. Zhang, Z. P. Zhao, Y. Zhong, C. Zhou, J. Zoulkarneev, R. Zoulkarneeva, Y. Zuo, J. X. CA STAR Collaboration TI Pion interferometry in Au plus Au and Cu plus Cu collisions at s(NN)=62.4 and 200 GeV SO PHYSICAL REVIEW C LA English DT Article ID HEAVY-ION COLLISIONS; QUARK-GLUON PLASMA; RELATIVISTIC NUCLEAR COLLISIONS; INTENSITY INTERFEROMETRY; FINITE TEMPERATURE; SUPERDENSE MATTER; CORRELATION RADII; IDENTICAL PIONS; ENERGY; DEPENDENCE AB We present a systematic analysis of two-pion interferometry in Au+Au collisions at s(NN)=62.4 GeV and Cu+Cu collisions at s(NN)=62.4 and 200 GeV using the STAR detector at the Relativistic Heavy Ion Collider (RHIC). The multiplicity and transverse momentum dependences of the extracted correlation lengths (radii) are studied. The scaling with charged particle multiplicity of the apparent system volume at final interaction is studied for the RHIC energy domain. The multiplicity scaling of the measured correlation radii is found to be independent of colliding system and collision energy. C1 [Abelev, B. I.; Barannikova, O.; Betts, R. R.; Garcia-Solis, E. J.; Hofman, D. J.; Hollis, R. S.; Iordanova, A.; Suarez, M. C.] Univ Illinois, Chicago, IL 60607 USA. [Krueger, K.; Spinka, H. M.; Underwood, D. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Barnby, L. S.; Bombara, M.; Burton, T. P.; Elhalhuli, E.; Gaillard, L.; Jones, P. G.; Nelson, J. M.; Timmins, A. R.] Univ Birmingham, Birmingham, W Midlands, England. [Beavis, D. R.; Bland, L. C.; Christie, W.; DePhillips, M.; Didenko, L.; Dunlop, J. C.; Fachini, P.; Fine, V.; Fisyak, Y.; Gordon, A.; Guryn, W.; Hallman, T. J.; Lamont, M. A. C.; Landgraf, J. M.; Lauret, J.; Lebedev, A.; Lee, J. H.; LeVine, M. J.; Ljubicic, T.; Longacre, R. S.; Love, W. A.; Ludlam, T.; Ogawa, A.; Okada, H.; Panitkin, S. Y.; Perevoztchikov, V.; Ruan, L.; Sorensen, P.; Tang, A. H.; Ullrich, T.; Van Buren, G.; Videbaek, F.; Xu, Z.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Sanchez, M. Calderon de la Barca; Cebra, D.; Das, D.; Draper, J. E.; Haag, B.; Mall, O. I.; Reed, R.; Romero, J. L.] Univ Calif Davis, Davis, CA 95616 USA. [Biritz, B.; Cendejas, R.; Gangadharan, D. R.; Ghazikhanian, V.; Guertin, S. M.; Huang, H. Z.; Igo, G.; Kurnadi, P.; Staszak, D.; Trentalange, S.; Tsai, O. D.; Wang, G.; Whitten, C., Jr.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [de Souza, R. Derradi; Takahashi, J.; Vasconcelos, G. M. S.] Univ Estadual Campinas, Sao Paulo, Brazil. [Cherney, M.; Gorbunov, Y. N.; McShane, T. S.; Seger, J.; Waggoner, W. T.] Creighton Univ, Omaha, NE 68178 USA. [Bielcik, J.; Bielcikova, J.; Bystersky, M.; Chaloupka, P.; Jakl, P.; Kapitan, J.; Kouchpil, V.; Krus, M.; Pachr, M.; Sumbera, M.; Tlusty, D.] Acad Sci Czech Republic, Inst Nucl Phys, CZ-25068 Rez, Czech Republic. [Averichev, G. S.; Dedovich, T. G.; Efimov, L. G.; Fedorisin, J.; Kechechyan, A.; Panebratsev, Y.; Rogachevskiy, O. V.; Shahaliev, E.; Stadnik, A.; Tokarev, M.; Vokal, S.] Joint Inst Nucl Res Dubna, Lab High Energy, Dubna, Russia. [Arkhipkin, D.; Filip, P.; Lednicky, R.; Vasilevski, I. M.; Zoulkarneev, R.; Zoulkarneeva, Y.] Joint Inst Nucl Res Dubna, Particle Phys Lab, Dubna, Russia. [Dash, S.; Jena, C.; Mahapatra, D. P.; Phatak, S. C.; Viyogi, Y. P.] Inst Phys, Bhubaneswar 751005, Orissa, India. [Nandi, B. K.; Varma, R.] Indian Inst Technol, Bombay 400076, Maharashtra, India. [He, W.; Jacobs, W. W.; Page, B. S.; Selyuzhenkov, I.; Sowinski, J.; Vigdor, S. E.; Wissink, S. W.] Indiana Univ, Bloomington, IN 47408 USA. [Baudot, J.; Estienne, M.; Hippolyte, B.; Kuhn, C.; Shabetai, A.] Inst Rech Subatom, Strasbourg, France. [Bhasin, A.; Dogra, S. M.; Gupta, A.; Gupta, N.; Mangotra, L. K.; Potukuchi, B. V. K. S.] Univ Jammu, Jammu 180001, India. [Anderson, B. D.; Bouchet, J.; Chen, J. H.; Joseph, J.; Keane, D.; Kopytine, M.; Margetis, S.; Pandit, Y.; Subba, N. L.; Vanfossen, J. A., Jr.; Zhang, W. M.] Kent State Univ, Kent, OH 44242 USA. [Fatemi, R.; Korsch, W.; Webb, G.] Univ Kentucky, Lexington, KY 40506 USA. [Sun, Z.; Wang, J. S.; Yang, Y.; Zhan, W.] Inst Modern Phys, Lanzhou, Peoples R China. [Dong, X.; Edwards, W. R.; Grebenyuk, O.; Hjort, E.; Jacobs, P.; Kikola, D. P.; Kiryluk, J.; Klein, S. R.; Matis, H. S.; Odyniec, G.; Olson, D.; Poskanzer, A. M.; Ritter, H. G.; Rose, A.; Sakrejda, I.; Salur, S.; Sichtermann, E. P.; Sun, X. M.; Symons, T. J. M.; Thomas, J. H.; Tram, V. N.; Wieman, H.; Xu, N.; Zhang, X. P.; Zhang, Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Balewski, J.; Betancourt, M. J.; Corliss, R.; Hoffman, A. M.; Jones, C. L.; Kocoloski, A.; Leight, W.; Milner, R.; Redwine, R.; Sakuma, T.; Surrow, B.; Walker, M.] MIT, Cambridge, MA 02139 USA. [Schmitz, N.; Seyboth, P.; Simon, F.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Vander Molen, A. M.; Westfall, G. D.] Michigan State Univ, E Lansing, MI 48824 USA. [Brandin, A. V.; Emelianov, V.; Kotchenda, L.; Kravtsov, P.; Okorokov, V.; Ridiger, A.; Strikhanov, M.; Timoshenko, S.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Lindenbaum, S. J.] CUNY City Coll, New York, NY 10031 USA. [Benedosso, F.; Botje, M.; Braidot, E.; Mischke, A.; Peitzmann, T.; Russcher, M. J.; Snellings, R.; van Leeuwen, M.] NIKHEF, Amsterdam, Netherlands. [Benedosso, F.; Botje, M.; Braidot, E.; Mischke, A.; Peitzmann, T.; Russcher, M. J.; Snellings, R.; van Leeuwen, M.] Univ Utrecht, Amsterdam, Netherlands. [Chajecki, Z.; Humanic, T. J.; Kisiel, A.; Lisa, M. A.] Ohio State Univ, Columbus, OH 43210 USA. [Bueltmann, S.] Old Dominion Univ, Norfolk, VA 23529 USA. [Aggarwal, M. M.; Bhati, A. K.; Kumar, L.; Pruthi, N. K.] Panjab Univ, Chandigarh 160014, India. [Eun, L.; Heppelmann, S.] Penn State Univ, University Pk, PA 16802 USA. [Derevschikov, A. A.; Khodyrev, V. Yu.; Kravtsov, V. I.; Matulenko, Yu. A.; Meschanin, A.; Minaev, N. G.; Morozov, D. A.; Nogach, L. V.; Nurushev, S. B.; Vasiliev, A. N.] Inst High Energy Phys, Protvino, Russia. [Hirsch, A.; Netrakanti, P. K.; Scharenberg, R. P.; Skoby, M. J.; Srivastava, B.; Stringfellow, B.; Tarnowsky, T.; Ulery, J.; Wang, F.; Wang, Q.; Xie, W.] Purdue Univ, W Lafayette, IN 47907 USA. [Choi, K. E.; Grube, B.; Lee, C. -H.; Yoo, I. -K.] Pusan Natl Univ, Pusan 609735, South Korea. [Raniwala, R.; Raniwala, S.] Univ Rajasthan, Jaipur 302004, Rajasthan, India. [Bonner, B. E.; Eppley, G.; Geurts, F.; Liu, J.; Llope, W. J.; Mitchell, J.; Roberts, J. B.; Yepes, P.; Zhou, J.] Rice Univ, Houston, TX 77251 USA. [Cosentino, M. R.; Guimaraes, K. S. F. F.; Munhoz, M. G.; Suaide, A. A. P.; de Toledo, A. Szanto] Univ Sao Paulo, Sao Paulo, Brazil. [Chen, H. F.; Li, C.; Lu, Y.; Shao, M.; Sun, Y.; Tang, Z.; Wang, X. L.; Xu, Y.; Zhang, Z. P.; Zhao, Y.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Xu, Q. H.] Shandong Univ, Jinan 250100, Shandong, Peoples R China. [Cai, X. Z.; Jin, F.; Ma, G. L.; Ma, Y. G.; Shi, X. -H.; Tian, J.; Zhang, S.; Zhong, C.; Zuo, J. X.] Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Erazmus, B.; Geromitsos, A.; Kabana, S.; Roy, C.; Sahoo, R.] SUBATECH, Nantes, France. [Cervantes, M. C.; Clarke, R. F.; Codrington, M. J. M.; Djawotho, P.; Drachenberg, J. L.; Gagliardi, C. A.; Hamed, A.; Mioduszewski, S.; Sarsour, M.; Tribble, R. E.] Texas A&M Univ, College Stn, TX 77843 USA. [Daugherity, M.; Hoffmann, G. W.; Kajimoto, K.; Markert, C.; Ray, R. L.; Schambach, J.; Thein, D.; Wada, M.] Univ Texas Austin, Austin, TX 78712 USA. [Cheng, J.; Kang, K.; Li, Y.; Wang, X.; Wang, Y.; Yue, Q.] Tsinghua Univ, Beijing 100084, Peoples R China. [Witt, R.] USN Acad, Annapolis, MD 21402 USA. [Ahammed, Z.; Chattopadhyay, S.; Mazumdar, M. R. Dutta; Ganti, M. S.; Ghosh, P.; Mohanty, B.; Nayak, T. K.; Pal, S. K.; Singaraju, R. N.] Ctr Variable Energy Cyclotron, Kolkata 700064, India. [Pawlak, T.; Peryt, W.; Pluta, J.; Zawisza, M.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Bichsel, H.; Cramer, J. G.; Kettler, D.; Prindle, D.; Trainor, T. A.] Univ Washington, Seattle, WA 98195 USA. [Bellwied, R.; Cormier, T. M.; De Silva, L. C.; Elnimr, M.; LaPointe, S.; Pruneau, C.; Sharma, M.; Voloshin, S. A.] Wayne State Univ, Detroit, MI 48201 USA. [Chen, J. Y.; Feng, A.; Li, N.; Liu, F.; Liu, L.; Shi, S. S.; Wu, Y.] CCNU HZNU, Inst Particle Phys, Wuhan 430079, Peoples R China. [Baumgart, S.; Bruna, E.; Caines, H.; Catu, O.; Chikanian, A.; Du, F.; Finch, E.; Harris, J. W.; Heinz, M.; Knospe, A. G.; Lin, G.; Majka, R.; Nattrass, C.; Putschke, J.; Sandweiss, J.; Smirnov, N.] Yale Univ, New Haven, CT 06520 USA. [Planinic, M.; Poljak, N.] Univ Zagreb, HR-10002 Zagreb, Croatia. [Crawford, H. J.; Engelage, J.; Judd, E. G.; Ng, M. J.; Perkins, C.; Trattner, A. L.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Grosnick, D.; Koetke, D. D.; Manweiler, R.; Stanislaus, T. D. S.; Webb, J. C.] Valparaiso Univ, Valparaiso, IN 46383 USA. RP Abelev, BI (reprint author), Univ Illinois, Chicago, IL 60607 USA. RI Yang, Yanyun/B-9485-2014; Cosentino, Mauro/L-2418-2014; Barnby, Lee/G-2135-2010; Sumbera, Michal/O-7497-2014; Mischke, Andre/D-3614-2011; Takahashi, Jun/B-2946-2012; Planinic, Mirko/E-8085-2012; Yoo, In-Kwon/J-6222-2012; Peitzmann, Thomas/K-2206-2012; Witt, Richard/H-3560-2012; Voloshin, Sergei/I-4122-2013; Pandit, Yadav/I-2170-2013; Lednicky, Richard/K-4164-2013; Strikhanov, Mikhail/P-7393-2014; Lee, Chang-Hwan/B-3096-2015; Dogra, Sunil /B-5330-2013; Fornazier Guimaraes, Karin Silvia/H-4587-2016; Chaloupka, Petr/E-5965-2012; Nattrass, Christine/J-6752-2016; Derradi de Souza, Rafael/M-4791-2013; Suaide, Alexandre/L-6239-2016; Inst. of Physics, Gleb Wataghin/A-9780-2017; Okorokov, Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013 OI Yang, Yanyun/0000-0002-5982-1706; Cosentino, Mauro/0000-0002-7880-8611; Barnby, Lee/0000-0001-7357-9904; Sumbera, Michal/0000-0002-0639-7323; Takahashi, Jun/0000-0002-4091-1779; Peitzmann, Thomas/0000-0002-7116-899X; Pandit, Yadav/0000-0003-2809-7943; Strikhanov, Mikhail/0000-0003-2586-0405; Lee, Chang-Hwan/0000-0003-3221-1171; Fornazier Guimaraes, Karin Silvia/0000-0003-0578-9533; Nattrass, Christine/0000-0002-8768-6468; Derradi de Souza, Rafael/0000-0002-2084-7001; Suaide, Alexandre/0000-0003-2847-6556; Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900 FU US DOE Office of Science; US NSF; Sloan Foundation; DFG; RA, RPL, and EMN of France; STFC and EPSRC of the United Kingdom; FAPESP of Brazil; Russian Ministry of Science and Technology; NNSFC, CAS, MoST, and MoE of China; IRP and GA of the Czech Foundation; [CNRS/IN2P3]; [N202 01331/0489] FX We thank the RHIC Operations Group and RCF at BNL, and the NERSC Center at LBNL and the resources provided by the Open Science Grid consortium for their support. This work was supported in part by the Offices of NP and HEP within the US DOE Office of Science, the US NSF, the Sloan Foundation, the DFG cluster of excellence "Origin and Structure of the Universe," CNRS/IN2P3, RA, RPL, and EMN of France, STFC and EPSRC of the United Kingdom, FAPESP of Brazil, the Russian Ministry of Science and Technology, the NNSFC, CAS, MoST, and MoE of China, IRP and GA of the Czech Foundation. We thank Polish State Committee for Scientific Research, grant: N202 01331/0489. NR 71 TC 46 Z9 47 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2009 VL 80 IS 2 AR 024905 DI 10.1103/PhysRevC.80.024905 PG 12 WC Physics, Nuclear SC Physics GA 492FN UT WOS:000269640400051 ER PT J AU Adare, A Afanasiev, S Aidala, C Ajitanand, NN Akiba, Y Al-Bataineh, H Alexander, J Al-Jamel, A Aoki, K Aphecetche, L Armendariz, R Aronson, SH Asai, J Atomssa, ET Averbeck, R Awes, TC Azmoun, B Babintsev, V Bai, M Baksay, G Baksay, L Baldisseri, A Barish, KN Barnes, PD Bassalleck, B Basye, AT Bathe, S Batsouli, S Baublis, V Bauer, F Baumann, C Bazilevsky, A Belikov, S Bennett, R Berdnikov, A Berdnikov, Y Bickley, AA Bjorndal, MT Boissevain, JG Borel, H Boyle, K Brooks, ML Brown, DS Bucher, D Buesching, H Bumazhnov, V Bunce, G Burward-Hoy, JM Butsyk, S Camacho, CM Campbell, S Chai, JS Chang, BS Chang, WC Charvet, JL Chen, CH Chernichenko, S Chiba, J Chi, CY Chiu, M Choi, IJ Choudhury, RK Chujo, T Chung, P Churyn, A Cianciolo, V Citron, Z Cleven, CR Cobigo, Y Cole, BA Comets, MP Connors, M Constantin, P Csanad, M Csorgo, T Dahms, T Dairaku, S Das, K David, G Deaton, MB Dehmelt, K Delagrange, H Denisov, A d'Enterria, D Deshpande, A Desmond, EJ Dietzsch, O Dion, A Donadelli, M Drachenberg, JL Drapier, O Drees, A Drees, KA Dubey, AK Durum, A Dutta, D Dzhordzhadze, V Efremenko, YV Egdemir, J Ellinghaus, F Emam, WS Engelmore, T Enokizono, A En'yo, H Espagnon, B Esumi, S Eyser, KO Fadem, B Fields, DE Finger, M Finger, M Fleuret, F Fokin, SL Forestier, B Fraenkel, Z Frantz, JE Franz, A Frawley, AD Fujiwara, K Fukao, Y Fung, SY Fusayasu, T Gadrat, S Garishvili, I Gastineau, F Germain, M Glenn, A Gong, H Gonin, M Gosset, J Goto, Y de Cassagnac, RG Grau, N Greene, SV Perdekamp, MG Gunji, T Gustafsson, HA Hachiya, T Henni, AH Haegemann, C Haggerty, JS Hagiwara, MN Hamagaki, H Han, R Harada, H Hartouni, EP Haruna, K Harvey, M Haslum, E Hasuko, K Hayano, R Heffner, M Hemmick, TK Hester, T Heuser, JM He, X Hiejima, H Hill, JC Hobbs, R Hohlmann, M Holmes, M Holzmann, W Homma, K Hong, B Horaguchi, T Hornback, D Huang, S Hur, MG Ichihara, T Ichimiya, R Ikeda, Y Imai, K Imrek, J Inaba, M Inoue, Y Isenhower, D Isenhower, L Ishihara, M Isobe, T Issah, M Isupov, A Ivanischev, D Jacak, BV Jia, J Jin, J Jinnouchi, O Johnson, BM Joo, KS Jouan, D Kajihara, F Kametani, S Kamihara, N Kamin, J Kaneta, M Kang, JH Kanou, H Kapustinsky, J Kawagishi, T Kawall, D Kazantsev, AV Kelly, S Kempel, T Khanzadeev, A Kijima, KM Kikuchi, J Kim, BI Kim, DH Kim, DJ Kim, E Kim, SH Kim, YS Kinney, E Kiriluk, K Kiss, A Kistenev, E Kiyomichi, A Klay, J Klein-Boesing, C Kochenda, L Kochetkov, V Komkov, B Konno, M Koster, J Kotchetkov, D Kozlov, A Kral, A Kravitz, A Kroon, PJ Kubart, J Kunde, GJ Kurihara, N Kurita, K Kurosawa, M Kweon, MJ Kwon, Y Kyle, GS Lacey, R Lai, YS Lai, YS Lajoie, JG Layton, D Lebedev, A Le Bornec, Y Leckey, S Lee, DM Lee, KB Lee, MK Lee, T Leitch, MJ Leite, MAL Lenzi, B Liebing, P Lim, H Liska, T Litvinenko, A Liu, H Liu, MX Li, X Li, XH Love, B Lynch, D Maguire, CF Makdisi, YI Malakhov, A Malik, MD Manko, VI Mannel, E Mao, Y Masek, L Masui, H Matathias, F McCain, MC McCumber, M McGaughey, PL Means, N Meredith, B Miake, Y Mikes, P Miki, K Miller, TE Milov, A Mioduszewski, S Mishra, GC Mishra, M Mitchell, JT Mitrovski, M Mohanty, AK Morino, Y Morreale, A Morrison, DP Moss, JM Moukhanova, TV Mukhopadhyay, D Murata, J Nagamiya, S Nagata, Y Nagle, JL Naglis, M Nagy, MI Nakagawa, I Nakamiya, Y Nakamura, T Nakano, K Newby, J Nguyen, M Niita, T Norman, BE Nouicer, R Nyanin, AS Nystrand, J O'Brien, E Oda, SX Ogilvie, CA Ohnishi, H Ojha, ID Okada, H Okada, K Oka, M Omiwade, OO Onuki, Y Oskarsson, A Otterlund, I Ouchida, M Ozawa, K Pak, R Pal, D Palounek, APT Pantuev, V Papavassiliou, V Park, J Park, WJ Pate, SF Pei, H Peng, JC Pereira, H Peresedov, V Peressounko, DY Pinkenburg, C Pisani, RP Purschke, ML Purwar, AK Qu, H Rak, J Rakotozafindrabe, A Ravinovich, I Read, KF Rembeczki, S Reuter, M Reygers, K Riabov, V Riabov, Y Roach, D Roche, G Rolnick, SD Romana, A Rosati, M Rosendahl, SSE Rosnet, P Rukoyatkin, P Ruzicka, P Rykov, VL Ryu, SS Sahlmueller, B Saito, N Sakaguchi, T Sakai, S Sakashita, K Sakata, H Samsonov, V Sato, HD Sato, S Sato, T Sawada, S Sedgwick, K Seele, J Seidl, R Semenov, AY Semenov, V Seto, R Sharma, D Shea, TK Shein, I Shevel, A Shibata, TA Shigaki, K Shimomura, M Shohjoh, T Shoji, K Shukla, P Sickles, A Silva, CL Silvermyr, D Silvestre, C Sim, KS Singh, BK Singh, CP Singh, V Skutnik, S Slunecka, M Smith, WC Soldatov, A Soltz, RA Sondheim, WE Sorensen, SP Sourikova, IV Staley, F Stankus, PW Stenlund, E Stepanov, M Ster, A Stoll, SP Sugitate, T Suire, C Sukhanov, A Sullivan, JP Sziklai, J Tabaru, T Takagi, S Takagui, EM Taketani, A Tanabe, R Tanaka, KH Tanaka, Y Tanida, K Tannenbaum, MJ Taranenko, A Tarjan, P Themann, H Thomas, TL Togawa, M Toia, A Tojo, J Tomasek, L Tomita, Y Torii, H Towell, RS Tram, VN Tserruya, I Tsuchimoto, Y Tuli, SK Tydesjo, H Tyurin, N Vale, C Valle, H Van Hecke, HW Veicht, A Velkovska, J Vertesi, R Vinogradov, AA Virius, M Vrba, V Vznuzdaev, E Wagner, M Walker, D Wang, XR Watanabe, Y Wei, F Wessels, J White, SN Willis, N Winter, D Woody, CL Wysocki, M Xie, W Yamaguchi, YL Yamaura, K Yang, R Yanovich, A Yasin, Z Ying, J Yokkaichi, S Young, GR Younus, I Yushmanov, IE Zajc, WA Zaudtke, O Zhang, C Zhou, S Zimanyi, J Zolin, L AF Adare, A. Afanasiev, S. Aidala, C. Ajitanand, N. N. Akiba, Y. Al-Bataineh, H. Alexander, J. Al-Jamel, A. Aoki, K. Aphecetche, L. Armendariz, R. Aronson, S. H. Asai, J. Atomssa, E. T. Averbeck, R. Awes, T. C. Azmoun, B. Babintsev, V. Bai, M. Baksay, G. Baksay, L. Baldisseri, A. Barish, K. N. Barnes, P. D. Bassalleck, B. Basye, A. T. Bathe, S. Batsouli, S. Baublis, V. Bauer, F. Baumann, C. Bazilevsky, A. Belikov, S. Bennett, R. Berdnikov, A. Berdnikov, Y. Bickley, A. A. Bjorndal, M. T. Boissevain, J. G. Borel, H. Boyle, K. Brooks, M. L. Brown, D. S. Bucher, D. Buesching, H. Bumazhnov, V. Bunce, G. Burward-Hoy, J. M. Butsyk, S. Camacho, C. M. Campbell, S. Chai, J. -S. Chang, B. S. Chang, W. C. Charvet, J. -L. Chen, C. -H. Chernichenko, S. Chiba, J. Chi, C. Y. Chiu, M. Choi, I. J. Choudhury, R. K. Chujo, T. Chung, P. Churyn, A. Cianciolo, V. Citron, Z. Cleven, C. R. Cobigo, Y. Cole, B. A. Comets, M. P. Connors, M. Constantin, P. Csanad, M. Csorgo, T. Dahms, T. Dairaku, S. Das, K. David, G. Deaton, M. B. Dehmelt, K. Delagrange, H. Denisov, A. d'Enterria, D. Deshpande, A. Desmond, E. J. Dietzsch, O. Dion, A. Donadelli, M. Drachenberg, J. L. Drapier, O. Drees, A. Drees, K. A. Dubey, A. K. Durum, A. Dutta, D. Dzhordzhadze, V. Efremenko, Y. V. Egdemir, J. Ellinghaus, F. Emam, W. S. Engelmore, T. Enokizono, A. En'yo, H. Espagnon, B. Esumi, S. Eyser, K. O. Fadem, B. Fields, D. E. Finger, M., Jr. Finger, M. Fleuret, F. Fokin, S. L. Forestier, B. Fraenkel, Z. Frantz, J. E. Franz, A. Frawley, A. D. Fujiwara, K. Fukao, Y. Fung, S. -Y. Fusayasu, T. Gadrat, S. Garishvili, I. Gastineau, F. Germain, M. Glenn, A. Gong, H. Gonin, M. Gosset, J. Goto, Y. de Cassagnac, R. Granier Grau, N. Greene, S. V. Perdekamp, M. Grosse Gunji, T. Gustafsson, H. -A Hachiya, T. Henni, A. Hadj Haegemann, C. Haggerty, J. S. Hagiwara, M. N. Hamagaki, H. Han, R. Harada, H. Hartouni, E. P. Haruna, K. Harvey, M. Haslum, E. Hasuko, K. Hayano, R. Heffner, M. Hemmick, T. K. Hester, T. Heuser, J. M. He, X. Hiejima, H. Hill, J. C. Hobbs, R. Hohlmann, M. Holmes, M. Holzmann, W. Homma, K. Hong, B. Horaguchi, T. Hornback, D. Huang, S. Hur, M. G. Ichihara, T. Ichimiya, R. Ikeda, Y. Imai, K. Imrek, J. Inaba, M. Inoue, Y. Isenhower, D. Isenhower, L. Ishihara, M. Isobe, T. Issah, M. Isupov, A. Ivanischev, D. Jacak, B. V. Jia, J. Jin, J. Jinnouchi, O. Johnson, B. M. Joo, K. S. Jouan, D. Kajihara, F. Kametani, S. Kamihara, N. Kamin, J. Kaneta, M. Kang, J. H. Kanou, H. Kapustinsky, J. Kawagishi, T. Kawall, D. Kazantsev, A. V. Kelly, S. Kempel, T. Khanzadeev, A. Kijima, K. M. Kikuchi, J. Kim, B. I. Kim, D. H. Kim, D. J. Kim, E. Kim, S. H. Kim, Y. -S. Kinney, E. Kiriluk, K. Kiss, A. Kistenev, E. Kiyomichi, A. Klay, J. Klein-Boesing, C. Kochenda, L. Kochetkov, V. Komkov, B. Konno, M. Koster, J. Kotchetkov, D. Kozlov, A. Kral, A. Kravitz, A. Kroon, P. J. Kubart, J. Kunde, G. J. Kurihara, N. Kurita, K. Kurosawa, M. Kweon, M. J. Kwon, Y. Kyle, G. S. Lacey, R. Lai, Y. -S. Lai, Y. S. Lajoie, J. G. Layton, D. Lebedev, A. Le Bornec, Y. Leckey, S. Lee, D. M. Lee, K. B. Lee, M. K. Lee, T. Leitch, M. J. Leite, M. A. L. Lenzi, B. Liebing, P. Lim, H. Liska, T. Litvinenko, A. Liu, H. Liu, M. X. Li, X. Li, X. H. Love, B. Lynch, D. Maguire, C. F. Makdisi, Y. I. Malakhov, A. Malik, M. D. Manko, V. I. Mannel, E. Mao, Y. Masek, L. Masui, H. Matathias, F. McCain, M. C. McCumber, M. McGaughey, P. L. Means, N. Meredith, B. Miake, Y. Mikes, P. Miki, K. Miller, T. E. Milov, A. Mioduszewski, S. Mishra, G. C. Mishra, M. Mitchell, J. T. Mitrovski, M. Mohanty, A. K. Morino, Y. Morreale, A. Morrison, D. P. Moss, J. M. Moukhanova, T. V. Mukhopadhyay, D. Murata, J. Nagamiya, S. Nagata, Y. Nagle, J. L. Naglis, M. Nagy, M. I. Nakagawa, I. Nakamiya, Y. Nakamura, T. Nakano, K. Newby, J. Nguyen, M. Niita, T. Norman, B. E. Nouicer, R. Nyanin, A. S. Nystrand, J. O'Brien, E. Oda, S. X. Ogilvie, C. A. Ohnishi, H. Ojha, I. D. Okada, H. Okada, K. Oka, M. Omiwade, O. O. Onuki, Y. Oskarsson, A. Otterlund, I. Ouchida, M. Ozawa, K. Pak, R. Pal, D. Palounek, A. P. T. Pantuev, V. Papavassiliou, V. Park, J. Park, W. J. Pate, S. F. Pei, H. Peng, J. -C. Pereira, H. Peresedov, V. Peressounko, D. Yu. Pinkenburg, C. Pisani, R. P. Purschke, M. L. Purwar, A. K. Qu, H. Rak, J. Rakotozafindrabe, A. Ravinovich, I. Read, K. F. Rembeczki, S. Reuter, M. Reygers, K. Riabov, V. Riabov, Y. Roach, D. Roche, G. Rolnick, S. D. Romana, A. Rosati, M. Rosendahl, S. S. E. Rosnet, P. Rukoyatkin, P. Ruzicka, P. Rykov, V. L. Ryu, S. S. Sahlmueller, B. Saito, N. Sakaguchi, T. Sakai, S. Sakashita, K. Sakata, H. Samsonov, V. Sato, H. D. Sato, S. Sato, T. Sawada, S. Sedgwick, K. Seele, J. Seidl, R. Semenov, A. Yu. Semenov, V. Seto, R. Sharma, D. Shea, T. K. Shein, I. Shevel, A. Shibata, T. -A. Shigaki, K. Shimomura, M. Shohjoh, T. Shoji, K. Shukla, P. Sickles, A. Silva, C. L. Silvermyr, D. Silvestre, C. Sim, K. S. Singh, B. K. Singh, C. P. Singh, V. Skutnik, S. Slunecka, M. Smith, W. C. Soldatov, A. Soltz, R. A. Sondheim, W. E. Sorensen, S. P. Sourikova, I. V. Staley, F. Stankus, P. W. Stenlund, E. Stepanov, M. Ster, A. Stoll, S. P. Sugitate, T. Suire, C. Sukhanov, A. Sullivan, J. P. Sziklai, J. Tabaru, T. Takagi, S. Takagui, E. M. Taketani, A. Tanabe, R. Tanaka, K. H. Tanaka, Y. Tanida, K. Tannenbaum, M. J. Taranenko, A. Tarjan, P. Themann, H. Thomas, T. L. Togawa, M. Toia, A. Tojo, J. Tomasek, L. Tomita, Y. Torii, H. Towell, R. S. Tram, V. -N. Tserruya, I. Tsuchimoto, Y. Tuli, S. K. Tydesjo, H. Tyurin, N. Vale, C. Valle, H. van Hecke, H. W. Veicht, A. Velkovska, J. Vertesi, R. Vinogradov, A. A. Virius, M. Vrba, V. Vznuzdaev, E. Wagner, M. Walker, D. Wang, X. R. Watanabe, Y. Wei, F. Wessels, J. White, S. N. Willis, N. Winter, D. Woody, C. L. Wysocki, M. Xie, W. Yamaguchi, Y. L. Yamaura, K. Yang, R. Yanovich, A. Yasin, Z. Ying, J. Yokkaichi, S. Young, G. R. Younus, I. Yushmanov, I. E. Zajc, W. A. Zaudtke, O. Zhang, C. Zhou, S. Zimanyi, J. Zolin, L. CA PHENIX Collaboration TI Photon-hadron jet correlations in p plus p and Au plus Au collisions at s(NN)=200 GeV SO PHYSICAL REVIEW C LA English DT Article ID HEAVY-ION COLLISIONS; TRANSVERSE-MOMENTUM; ENERGY-LOSS; PHENIX; DETECTORS; PARTICLES; EVENTS AB We report the observation at the Relativistic Heavy Ion Collider of suppression of back-to-back correlations in the direct photon+jet channel in Au+Au relative to p+p collisions. Two-particle correlations of direct photon triggers with associated hadrons are obtained by statistical subtraction of the decay photon-hadron (gamma-h) background. The initial momentum of the away-side parton is tightly constrained, because the parton-photon pair exactly balance in momentum at leading order in perturbative quantum chromodynamics, making such correlations a powerful probe of the in-medium parton energy loss. The away-side nuclear suppression factor, I-AA, in central Au+Au collisions, is 0.32 +/- 0.12(stat)+/- 0.09(syst) for hadrons of 3 < p(T)(h)< 5 in coincidence with photons of 5 < p(T)(gamma)< 15 GeV/c. The suppression is comparable to that observed for high-p(T) single hadrons and dihadrons. The direct photon associated yields in p+p collisions scale approximately with the momentum balance, z(T)equivalent to p(T)(h)/p(T)(gamma), as expected for a measurement of the away-side parton fragmentation function. We compare to Au+Au collisions for which the momentum balance dependence of the nuclear modification should be sensitive to the path-length dependence of parton energy loss. C1 [Adare, A.; Bickley, A. A.; Ellinghaus, F.; Glenn, A.; Kelly, S.; Kinney, E.; Kiriluk, K.; Nagle, J. L.; Seele, J.; Wysocki, M.] Univ Colorado, Boulder, CO 80309 USA. [Chang, W. C.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Mishra, M.; Singh, B. K.; Singh, C. P.; Singh, V.; Tuli, S. K.] Banaras Hindu Univ, Dept Phys, Varanasi 221005, Uttar Pradesh, India. [Choudhury, R. K.; Dutta, D.; Mohanty, A. K.; Shukla, P.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Bai, M.; Drees, K. A.; Makdisi, Y. I.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. [Aronson, S. H.; Azmoun, B.; Bazilevsky, A.; Belikov, S.; Buesching, H.; Bunce, G.; David, G.; Desmond, E. J.; Franz, A.; Haggerty, J. S.; Harvey, M.; Johnson, B. M.; Kistenev, E.; Kroon, P. J.; Lynch, D.; Makdisi, Y. I.; Milov, A.; Mioduszewski, S.; Mitchell, J. T.; Morrison, D. P.; Nouicer, R.; O'Brien, E.; Pak, R.; Pinkenburg, C.; Pisani, R. P.; Purschke, M. L.; Sakaguchi, T.; Sato, S.; Shea, T. K.; Sickles, A.; Sourikova, I. V.; Stoll, S. P.; Sukhanov, A.; Tannenbaum, M. J.; White, S. N.; Woody, C. L.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Barish, K. N.; Bathe, S.; Bauer, F.; Dzhordzhadze, V.; Emam, W. S.; Eyser, K. O.; Fung, S. -Y.; Hester, T.; Kotchetkov, D.; Li, X. H.; Morreale, A.; Rolnick, S. D.; Sedgwick, K.; Seto, R.; Xie, W.; Yasin, Z.] Univ Calif Riverside, Riverside, CA 92521 USA. [Finger, M., Jr.; Finger, M.; Kubart, J.; Masek, L.; Mikes, P.; Slunecka, M.] Charles Univ Prague, CR-11636 Prague 1, Czech Republic. [Li, X.; Zhou, S.] CIAE, Beijing, Peoples R China. [Gunji, T.; Hamagaki, H.; Hayano, R.; Horaguchi, T.; Isobe, T.; Kajihara, F.; Kametani, S.; Kurihara, N.; Morino, Y.; Oda, S. X.; Ozawa, K.; Sakaguchi, T.] Univ Tokyo, Grad Sch Sci, Ctr Nucl Study, Bunkyo Ku, Tokyo 1130033, Japan. [Aidala, C.; Batsouli, S.; Bjorndal, M. T.; Chi, C. Y.; Chiu, M.; Cole, B. A.; d'Enterria, D.; Engelmore, T.; Frantz, J. E.; Grau, N.; Jia, J.; Jin, J.; Kravitz, A.; Lai, Y. -S.; Lai, Y. S.; Mannel, E.; Matathias, F.; Winter, D.; Zajc, W. A.; Zhang, C.] Columbia Univ, New York, NY 10027 USA. [Kral, A.; Liska, T.; Virius, M.] Czech Tech Univ, Prague 16636 6, Czech Republic. [Baldisseri, A.; Borel, H.; Charvet, J. -L.; Cobigo, Y.; Gosset, J.; Pereira, H.; Silvestre, C.; Staley, F.] CEA Saclay, F-91191 Gif Sur Yvette, France. [Imrek, J.; Tarjan, P.; Vertesi, R.] Univ Debrecen, H-4010 Debrecen, Hungary. [Csanad, M.; Kiss, A.; Nagy, M. I.] Eotvos Lorand Univ, ELTE, H-1117 Budapest, Hungary. [Baksay, G.; Baksay, L.; Dehmelt, K.; Hohlmann, M.; Rembeczki, S.] Florida Inst Technol, Melbourne, FL 32901 USA. [Das, K.; Frawley, A. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Cleven, C. R.; He, X.; Mishra, G. C.; Qu, H.; Ying, J.] Georgia State Univ, Atlanta, GA 30303 USA. [Enokizono, A.; Hachiya, T.; Harada, H.; Haruna, K.; Homma, K.; Kijima, K. M.; Nakamiya, Y.; Nakamura, T.; Ouchida, M.; Sakata, H.; Shigaki, K.; Sugitate, T.; Torii, H.; Tsuchimoto, Y.; Yamaura, K.] Hiroshima Univ, Higashihiroshima 7398526, Japan. [Babintsev, V.; Bumazhnov, V.; Chernichenko, S.; Churyn, A.; Denisov, A.; Durum, A.; Kochetkov, V.; Semenov, V.; Shein, I.; Soldatov, A.; Tyurin, N.; Yanovich, A.] Inst High Energy Phys, State Res Ctr Russian Federat, IHEP Protvino, RU-142281 Protvino, Russia. [Chiu, M.; Perdekamp, M. Grosse; Hiejima, H.; Koster, J.; Layton, D.; McCain, M. C.; Meredith, B.; Peng, J. -C.; Seidl, R.; Veicht, A.; Yang, R.] Univ Illinois, Urbana, IL 61801 USA. [Kubart, J.; Masek, L.; Mikes, P.; Ruzicka, P.; Tomasek, L.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague 18221 8, Czech Republic. [Belikov, S.; Constantin, P.; Grau, N.; Hill, J. C.; Kempel, T.; Lajoie, J. G.; Lebedev, A.; Ogilvie, C. A.; Pei, H.; Rak, J.; Rosati, M.; Semenov, A. Yu.; Skutnik, S.; Vale, C.; Wei, F.] Iowa State Univ, Ames, IA 50011 USA. [Afanasiev, S.; Finger, M., Jr.; Finger, M.; Isupov, A.; Litvinenko, A.; Malakhov, A.; Peresedov, V.; Rukoyatkin, P.; Slunecka, M.; Zolin, L.] Joint Inst Nucl Res, RU-141980 Dubna, Moscow Region, Russia. [Chai, J. -S.; Hur, M. G.; Kim, Y. -S.] KAERI, Cyclotron Applicat Lab, Seoul, South Korea. [Chiba, J.; Nagamiya, S.; Sato, S.; Sawada, S.; Tanaka, K. H.] High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. [Csorgo, T.; Ster, A.; Sziklai, J.; Zimanyi, J.] Hungarian Acad Sci MTA KFKI RMKI, KFKI Res Inst Particle & Nucl Phys, H-1525 Budapest 114, Hungary. [Hong, B.; Kim, B. I.; Kweon, M. J.; Lee, K. B.; Park, W. J.; Sim, K. S.] Korea Univ, Seoul 136701, South Korea. [Fokin, S. L.; Kazantsev, A. V.; Manko, V. I.; Moukhanova, T. V.; Nyanin, A. S.; Peressounko, D. Yu.; Vinogradov, A. A.; Yushmanov, I. E.] Russian Res Ctr, Kurchatov Inst, Moscow, Russia. [Aoki, K.; Dairaku, S.; Fukao, Y.; Imai, K.; Okada, H.; Saito, N.; Sato, H. D.; Shoji, K.; Togawa, M.; Wagner, M.] Kyoto Univ, Kyoto 6068502, Japan. [Atomssa, E. T.; d'Enterria, D.; Drapier, O.; Fleuret, F.; Gonin, M.; de Cassagnac, R. Granier; Rakotozafindrabe, A.; Romana, A.; Tram, V. -N.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Enokizono, A.; Hartouni, E. P.; Heffner, M.; Klay, J.; Newby, J.; Soltz, R. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Barnes, P. D.; Boissevain, J. G.; Brooks, M. L.; Burward-Hoy, J. M.; Butsyk, S.; Camacho, C. M.; Constantin, P.; Kapustinsky, J.; Kunde, G. J.; Lee, D. M.; Leitch, M. J.; Liu, M. X.; McGaughey, P. L.; Moss, J. M.; Norman, B. E.; Palounek, A. P. T.; Purwar, A. K.; Sondheim, W. E.; Sullivan, J. P.; van Hecke, H. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Forestier, B.; Gadrat, S.; Roche, G.; Rosnet, P.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, F-63177 Aubiere, France. [Gustafsson, H. -A; Haslum, E.; Nystrand, J.; Oskarsson, A.; Otterlund, I.; Rosendahl, S. S. E.; Stenlund, E.; Tydesjo, H.] Lund Univ, Dept Phys, SE-22100 Lund, Sweden. [Aidala, C.; Kawall, D.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Baumann, C.; Bucher, D.; Klein-Boesing, C.; Reygers, K.; Sahlmueller, B.; Wessels, J.; Zaudtke, O.] Univ Munster, Inst Kernphys, D-48149 Munster, Germany. [Fadem, B.] Muhlenberg Coll, Allentown, PA 18104 USA. [Joo, K. S.; Kim, D. H.] Myongji Univ, Yongin 449728, Kyonggido, South Korea. [Fusayasu, T.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan. [Bassalleck, B.; Fields, D. E.; Haegemann, C.; Hobbs, R.; Malik, M. D.; Rak, J.; Thomas, T. L.; Younus, I.] Univ New Mexico, Albuquerque, NM 87131 USA. [Al-Bataineh, H.; Al-Jamel, A.; Armendariz, R.; Brown, D. S.; Kyle, G. S.; Liu, H.; Papavassiliou, V.; Pate, S. F.; Stepanov, M.; Wang, X. R.] New Mexico State Univ, Las Cruces, NM 88003 USA. [Awes, T. C.; Batsouli, S.; Cianciolo, V.; Efremenko, Y. V.; Read, K. F.; Silvermyr, D.; Stankus, P. W.; Young, G. R.; Zhang, C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Comets, M. P.; Espagnon, B.; Jouan, D.; Le Bornec, Y.; Suire, C.; Willis, N.] Univ Paris 11, IPN Orsay, CNRS, IN2P3, F-91406 Orsay, France. [Han, R.; Mao, Y.] Peking Univ, Beijing, Peoples R China. [Baublis, V.; Ivanischev, D.; Khanzadeev, A.; Kochenda, L.; Komkov, B.; Riabov, V.; Riabov, Y.; Samsonov, V.; Shevel, A.; Vznuzdaev, E.] PNPI, RU-188300 Gatchina, Leningrad Reg, Russia. [Akiba, Y.; Aoki, K.; Asai, J.; En'yo, H.; Fujiwara, K.; Fukao, Y.; Goto, Y.; Hachiya, T.; Hasuko, K.; Heuser, J. M.; Horaguchi, T.; Ichihara, T.; Ichimiya, R.; Imai, K.; Inoue, Y.; Ishihara, M.; Kajihara, F.; Kametani, S.; Kamihara, N.; Kanou, H.; Kiyomichi, A.; Kurita, K.; Kurosawa, M.; Mao, Y.; Murata, J.; Nakagawa, I.; Nakano, K.; Ohnishi, H.; Okada, H.; Onuki, Y.; Rykov, V. L.; Saito, N.; Sakashita, K.; Sato, H. D.; Shibata, T. -A.; Shoji, K.; Taketani, A.; Tanida, K.; Togawa, M.; Tojo, J.; Torii, H.; Tsuchimoto, Y.; Wagner, M.; Watanabe, Y.; Yokkaichi, S.] RIKEN Nishina Ctr Accelerator Based Sci, Wako, Saitama 3510198, Japan. [Akiba, Y.; Asai, J.; Bunce, G.; Deshpande, A.; En'yo, H.; Fields, D. E.; Goto, Y.; Perdekamp, M. Grosse; Ichihara, T.; Jinnouchi, O.; Kamihara, N.; Kaneta, M.; Kawall, D.; Liebing, P.; Nakagawa, I.; Okada, K.; Oka, M.; Saito, N.; Tabaru, T.; Taketani, A.; Tanida, K.; Watanabe, Y.; Xie, W.; Yokkaichi, S.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Inoue, Y.; Kurita, K.; Murata, J.] Rikkyo Univ, Dept Phys, Tokyo 1718501, Japan. [Berdnikov, A.; Berdnikov, Y.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Dietzsch, O.; Donadelli, M.; Leite, M. A. L.; Lenzi, B.; Silva, C. L.; Takagui, E. M.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. [Kim, E.; Lee, T.; Lim, H.; Park, J.] Seoul Natl Univ, Syst Elect Lab, Seoul, South Korea. [Ajitanand, N. N.; Alexander, J.; Chung, P.; Holzmann, W.; Issah, M.; Lacey, R.; Mitrovski, M.; Shevel, A.; Taranenko, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Averbeck, R.; Bennett, R.; Boyle, K.; Butsyk, S.; Campbell, S.; Chen, C. -H.; Citron, Z.; Connors, M.; Dahms, T.; Deshpande, A.; Dion, A.; Drees, A.; Egdemir, J.; Frantz, J. E.; Gong, H.; Hemmick, T. K.; Jacak, B. V.; Kamin, J.; Leckey, S.; Matathias, F.; McCumber, M.; Means, N.; Milov, A.; Nguyen, M.; Pantuev, V.; Purwar, A. K.; Reuter, M.; Sickles, A.; Themann, H.; Toia, A.; Walker, D.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Aphecetche, L.; Delagrange, H.; Gastineau, F.; Germain, M.; Henni, A. Hadj] Univ Nantes, CNRS, IN2P3, Ecole Mines Nantes,SUBATECH, Nantes, France. [Dzhordzhadze, V.; Garishvili, I.; Glenn, A.; Hornback, D.; Kwon, Y.; Read, K. F.; Sorensen, S. P.] Univ Tennessee, Knoxville, TN 37996 USA. [Horaguchi, T.; Kamihara, N.; Kanou, H.; Nakano, K.; Sakashita, K.; Shibata, T. -A.] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. [Chujo, T.; Esumi, S.; Ikeda, Y.; Inaba, M.; Kawagishi, T.; Konno, M.; Masui, H.; Miake, Y.; Miki, K.; Nagata, Y.; Niita, T.; Sakai, S.; Sato, S.; Sato, T.; Shimomura, M.; Shohjoh, T.; Takagi, S.; Tanabe, R.; Tomita, Y.] Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 305, Japan. [Chujo, T.; Greene, S. V.; Holmes, M.; Huang, S.; Love, B.; Maguire, C. F.; Miller, T. E.; Mukhopadhyay, D.; Ojha, I. D.; Pal, D.; Roach, D.; Valle, H.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Kametani, S.; Kikuchi, J.; Sakaguchi, T.; Yamaguchi, Y. L.] Waseda Univ, Adv Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1620044, Japan. [Dubey, A. K.; Fraenkel, Z.; Kozlov, A.; Naglis, M.; Ravinovich, I.; Sharma, D.; Tserruya, I.] Weizmann Inst Sci, IL-76100 Rehovot, Israel. [Chang, B. S.; Choi, I. J.; Kang, J. H.; Kim, D. J.; Kim, S. H.; Kwon, Y.; Lee, M. K.; Ryu, S. S.] Yonsei Univ, IPAP, Seoul 120749, South Korea. [Basye, A. T.; Deaton, M. B.; Drachenberg, J. L.; Hagiwara, M. N.; Isenhower, D.; Isenhower, L.; Omiwade, O. O.; Smith, W. C.; Towell, R. S.] Abilene Christian Univ, Abilene, TX 79699 USA. [Aidala, C.; Batsouli, S.; Bjorndal, M. T.; Chi, C. Y.; Chiu, M.; Cole, B. A.; d'Enterria, D.; Engelmore, T.; Frantz, J. E.; Grau, N.; Jia, J.; Jin, J.; Kravitz, A.; Lai, Y. -S.; Lai, Y. S.; Mannel, E.; Matathias, F.; Winter, D.; Zajc, W. A.; Zhang, C.] Nevis Labs, Irvington, NY 10533 USA. RP Adare, A (reprint author), Univ Colorado, Boulder, CO 80309 USA. EM jacak@skipper.physics.sunysb.edu RI Taketani, Atsushi/E-1803-2017; Semenov, Vitaliy/E-9584-2017; Durum, Artur/C-3027-2014; Sorensen, Soren /K-1195-2016; Yokkaichi, Satoshi/C-6215-2017; seto, richard/G-8467-2011; Csanad, Mate/D-5960-2012; Wei, Feng/F-6808-2012; Csorgo, Tamas/I-4183-2012; YANG, BOGEUM/I-8251-2012; Tomasek, Lukas/G-6370-2014; Dahms, Torsten/A-8453-2015; En'yo, Hideto/B-2440-2015; Hayano, Ryugo/F-7889-2012; HAMAGAKI, HIDEKI/G-4899-2014 OI Taketani, Atsushi/0000-0002-4776-2315; Sullivan, John/0000-0002-9067-1531; Sorensen, Soren /0000-0002-5595-5643; Tomasek, Lukas/0000-0002-5224-1936; Dahms, Torsten/0000-0003-4274-5476; Hayano, Ryugo/0000-0002-1214-7806; FU Office of Science of the Department of Energy; National Science Foundation; Renaissance Technologies LLC; Abilene Christian University Research Council; Research Foundation of SUNY; Dean of the College of Arts and Sciences, Vanderbilt University (USA); Ministry of Education, Culture, Sports, Science, and Technology; Japan Society for the Promotion of Science (Japan); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (Brazil); Natural Science Foundation of China (People's Republic of China); Ministry of Education, Youth and Sports (Czech Republic); Centre National de la Recherche Scientifique; Commissariat a l'Energie Atomique; Institut National de Physique Nucleaire et de Physique des Particules (France); Ministry of Industry, Science and Tekhnologies; Bundesministerium fur Bildung und Forschung; Deutscher Akademischer Austausch Dienst; Alexander von Humboldt Stiftung (Germany); Hungarian National Science Fund; OTKA (Hungary); Department of Atomic Energy (India); Israel Science Foundation (Israel); Korea Research Foundation and Korea Science and Engineering Foundation (Korea); Ministry of Education and Science; Russia Academy of Sciences, Federal Agency of Atomic Energy (Russia); Wallenberg Foundation (Sweden); US Civilian Research and Development Foundation for the Independent States of the Former Soviet Union; US-Hungarian Fulbright Foundation for Educational Exchange,; US-Israel Binational Science Foundation FX We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of the other PHENIX participating institutions for their vital contributions. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, a sponsored research grant from Renaissance Technologies LLC, Abilene Christian University Research Council, Research Foundation of SUNY, and Dean of the College of Arts and Sciences, Vanderbilt University (USA), Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science (Japan), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (Brazil), Natural Science Foundation of China (People's Republic of China), Ministry of Education, Youth and Sports (Czech Republic), Centre National de la Recherche Scientifique, Commissariat a l'Energie Atomique, and Institut National de Physique Nucleaire et de Physique des Particules (France), Ministry of Industry, Science and Tekhnologies, Bundesministerium fur Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and Alexander von Humboldt Stiftung (Germany), Hungarian National Science Fund, OTKA (Hungary), Department of Atomic Energy (India), Israel Science Foundation (Israel), Korea Research Foundation and Korea Science and Engineering Foundation ( Korea), Ministry of Education and Science, Russia Academy of Sciences, Federal Agency of Atomic Energy (Russia), VR and the Wallenberg Foundation (Sweden), the US Civilian Research and Development Foundation for the Independent States of the Former Soviet Union, the US-Hungarian Fulbright Foundation for Educational Exchange, and the US-Israel Binational Science Foundation. NR 51 TC 42 Z9 42 U1 6 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2009 VL 80 IS 2 AR 024908 DI 10.1103/PhysRevC.80.024908 PG 14 WC Physics, Nuclear SC Physics GA 492FN UT WOS:000269640400054 ER PT J AU Afanasiev, S Aidala, C Ajitanand, NN Akiba, Y Alexander, J Al-Jamel, A Aoki, K Aphecetche, L Armendariz, R Aronson, SH Averbeck, R Awes, TC Azmoun, B Babintsev, V Baldisseri, A Barish, KN Barnes, PD Bassalleck, B Bathe, S Batsouli, S Baublis, V Bauer, F Bazilevsky, A Belikov, S Bennett, R Berdnikov, Y Bjorndal, MT Boissevain, JG Borel, H Boyle, K Brooks, ML Brown, DS Bucher, D Buesching, H Bumazhnov, V Bunce, G Burward-Hoy, JM Butsyk, S Campbell, S Chai, JS Chernichenko, S Chiba, J Chi, CY Chiu, M Choi, IJ Chujo, T Cianciolo, V Cleven, CR Cobigo, Y Cole, BA Comets, MP Constantin, P Csanad, M Csorgo, T Dahms, T Das, K David, G Delagrange, H Denisov, A d'Enterria, D Deshpande, A Desmond, EJ Dietzsch, O Dion, A Drachenberg, JL Drapier, O Drees, A Dubey, AK Durum, A Dzhordzhadze, V Efremenko, YV Egdemir, J Enokizono, A En'yo, H Espagnon, B Esumi, S Fields, DE Fleuret, F Fokin, SL Forestier, B Fraenkel, Z Frantz, JE Franz, A Frawley, AD Fukao, Y Fung, SY Gadrat, S Gastineau, F Germain, M Glenn, A Gonin, M Gosset, J Goto, Y de Cassagnac, RG Grau, N Greene, SV Perdekamp, MG Gunji, T Gustafsson, HA Hachiya, T Henni, AH Haggerty, JS Hagiwara, MN Hamagaki, H Harada, H Hartouni, EP Haruna, K Harvey, M Haslum, E Hasuko, K Hayano, R Heffner, M Hemmick, TK Heuser, JM He, X Hiejima, H Hill, JC Hobbs, R Holmes, M Holzmann, W Homma, K Hong, B Horaguchi, T Hur, MG Ichihara, T Imai, K Inaba, M Isenhower, D Isenhower, L Ishihara, M Isobe, T Issah, M Isupov, A Jacak, BV Jia, J Jin, J Jinnouchi, O Johnson, BM Joo, KS Jouan, D Kajihara, F Kametani, S Kamihara, N Kaneta, M Kang, JH Kawagishi, T Kazantsev, AV Kelly, S Khanzadeev, A Kim, DJ Kim, E Kim, YS Kinney, E Kiss, A Kistenev, E Kiyomichi, A Klein-Boesing, C Kochenda, L Kochetkov, V Komkov, B Konno, M Kotchetkov, D Kozlov, A Kroon, PJ Kunde, GJ Kurihara, N Kurita, K Kweon, MJ Kwon, Y Kyle, GS Lacey, R Lajoie, JG Lebedev, A Le Bornec, Y Leckey, S Lee, DM Lee, MK Leitch, MJ Leite, MAL Lim, H Litvinenko, A Liu, MX Li, XH Maguire, CF Makdisi, YI Malakhov, A Malik, MD Manko, VI Masui, H Matathias, F McCain, MC McGaughey, PL Miake, Y Mignerey, A Miller, TE Milov, A Mioduszewski, S Mishra, GC Mitchell, JT Morrison, DP Moss, JM Moukhanova, TV Mukhopadhyay, D Murata, J Nagamiya, S Nagata, Y Nagle, JL Naglis, M Nakamura, T Newby, J Nguyen, M Norman, BE Nouicer, R Nyanin, AS Nystrand, J O'Brien, E Ogilvie, CA Ohnishi, H Ojha, ID Okada, H Okada, K Omiwade, OO Oskarsson, A Otterlund, I Ozawa, K Pak, R Pal, D Palounek, APT Pantuev, V Papavassiliou, V Park, J Park, WJ Pate, SF Pei, H Peng, JC Pereira, H Peresedov, V Peressounko, DY Pinkenburg, C Pisani, RP Purschke, ML Purwar, AK Qu, H Rak, J Ravinovich, I Read, KF Reuter, M Reygers, K Riabov, V Riabov, Y Roche, G Romana, A Rosati, M Rosendahl, SSE Rosnet, P Rukoyatkin, P Rykov, VL Ryu, SS Sahlmueller, B Saito, N Sakaguchi, T Sakai, S Samsonov, V Sato, HD Sato, S Sawada, S Semenov, V Seto, R Sharma, D Shea, TK Shein, I Shibata, TA Shigaki, K Shimomura, M Shohjoh, T Shoji, K Sickles, A Silva, CL Silvermyr, D Sim, KS Singh, CP Singh, V Skutnik, S Smith, WC Soldatov, A Soltz, RA Sondheim, WE Sorensen, SP Sourikova, IV Staley, F Stankus, PW Stenlund, E Stepanov, M Ster, A Stoll, SP Sugitate, T Suire, C Sullivan, JP Sziklai, J Tabaru, T Takagi, S Takagui, EM Taketani, A Tanaka, KH Tanaka, Y Tanida, K Tannenbaum, MJ Taranenko, A Tarjan, P Thomas, TL Togawa, M Tojo, J Torii, H Towell, RS Tram, VN Tserruya, I Tsuchimoto, Y Tuli, SK Tydesjo, H Tyurin, N Vale, C Valle, H van Hecke, HW Velkovska, J Vertesi, R Vinogradov, AA Vznuzdaev, E Wagner, M Wang, XR Watanabe, Y Wessels, J White, SN Willis, N Winter, D Woody, CL Wysocki, M Xie, W Yanovich, A Yokkaichi, S Young, GR Younus, I Yushmanov, IE Zajc, WA Zaudtke, O Zhang, C Zimanyi, J Zolin, L AF Afanasiev, S. Aidala, C. Ajitanand, N. N. Akiba, Y. Alexander, J. Al-Jamel, A. Aoki, K. Aphecetche, L. Armendariz, R. Aronson, S. H. Averbeck, R. Awes, T. C. Azmoun, B. Babintsev, V. Baldisseri, A. Barish, K. N. Barnes, P. D. Bassalleck, B. Bathe, S. Batsouli, S. Baublis, V. Bauer, F. Bazilevsky, A. Belikov, S. Bennett, R. Berdnikov, Y. Bjorndal, M. T. Boissevain, J. G. Borel, H. Boyle, K. Brooks, M. L. Brown, D. S. Bucher, D. Buesching, H. Bumazhnov, V. Bunce, G. Burward-Hoy, J. M. Butsyk, S. Campbell, S. Chai, J. -S. Chernichenko, S. Chiba, J. Chi, C. Y. Chiu, M. Choi, I. J. Chujo, T. Cianciolo, V. Cleven, C. R. Cobigo, Y. Cole, B. A. Comets, M. P. Constantin, P. Csanad, M. Csorgo, T. Dahms, T. Das, K. David, G. Delagrange, H. Denisov, A. d'Enterria, D. Deshpande, A. Desmond, E. J. Dietzsch, O. Dion, A. Drachenberg, J. L. Drapier, O. Drees, A. Dubey, A. K. Durum, A. Dzhordzhadze, V. Efremenko, Y. V. Egdemir, J. Enokizono, A. En'yo, H. Espagnon, B. Esumi, S. Fields, D. E. Fleuret, F. Fokin, S. L. Forestier, B. Fraenkel, Z. Frantz, J. E. Franz, A. Frawley, A. D. Fukao, Y. Fung, S. -Y. Gadrat, S. Gastineau, F. Germain, M. Glenn, A. Gonin, M. Gosset, J. Goto, Y. de Cassagnac, R. Granier Grau, N. Greene, S. V. Perdekamp, M. Grosse Gunji, T. Gustafsson, H. -A Hachiya, T. Henni, A. Hadj Haggerty, J. S. Hagiwara, M. N. Hamagaki, H. Harada, H. Hartouni, E. P. Haruna, K. Harvey, M. Haslum, E. Hasuko, K. Hayano, R. Heffner, M. Hemmick, T. K. Heuser, J. M. He, X. Hiejima, H. Hill, J. C. Hobbs, R. Holmes, M. Holzmann, W. Homma, K. Hong, B. Horaguchi, T. Hur, M. G. Ichihara, T. Imai, K. Inaba, M. Isenhower, D. Isenhower, L. Ishihara, M. Isobe, T. Issah, M. Isupov, A. Jacak, B. V. Jia, J. Jin, J. Jinnouchi, O. Johnson, B. M. Joo, K. S. Jouan, D. Kajihara, F. Kametani, S. Kamihara, N. Kaneta, M. Kang, J. H. Kawagishi, T. Kazantsev, A. V. Kelly, S. Khanzadeev, A. Kim, D. J. Kim, E. Kim, Y. -S. Kinney, E. Kiss, A. Kistenev, E. Kiyomichi, A. Klein-Boesing, C. Kochenda, L. Kochetkov, V. Komkov, B. Konno, M. Kotchetkov, D. Kozlov, A. Kroon, P. J. Kunde, G. J. Kurihara, N. Kurita, K. Kweon, M. J. Kwon, Y. Kyle, G. S. Lacey, R. Lajoie, J. G. Lebedev, A. Le Bornec, Y. Leckey, S. Lee, D. M. Lee, M. K. Leitch, M. J. Leite, M. A. L. Lim, H. Litvinenko, A. Liu, M. X. Li, X. H. Maguire, C. F. Makdisi, Y. I. Malakhov, A. Malik, M. D. Manko, V. I. Masui, H. Matathias, F. McCain, M. C. McGaughey, P. L. Miake, Y. Mignerey, A. Miller, T. E. Milov, A. Mioduszewski, S. Mishra, G. C. Mitchell, J. T. Morrison, D. P. Moss, J. M. Moukhanova, T. V. Mukhopadhyay, D. Murata, J. Nagamiya, S. Nagata, Y. Nagle, J. L. Naglis, M. Nakamura, T. Newby, J. Nguyen, M. Norman, B. E. Nouicer, R. Nyanin, A. S. Nystrand, J. O'Brien, E. Ogilvie, C. A. Ohnishi, H. Ojha, I. D. Okada, H. Okada, K. Omiwade, O. O. Oskarsson, A. Otterlund, I. Ozawa, K. Pak, R. Pal, D. Palounek, A. P. T. Pantuev, V. Papavassiliou, V. Park, J. Park, W. J. Pate, S. F. Pei, H. Peng, J. -C. Pereira, H. Peresedov, V. Peressounko, D. Yu. Pinkenburg, C. Pisani, R. P. Purschke, M. L. Purwar, A. K. Qu, H. Rak, J. Ravinovich, I. Read, K. F. Reuter, M. Reygers, K. Riabov, V. Riabov, Y. Roche, G. Romana, A. Rosati, M. Rosendahl, S. S. E. Rosnet, P. Rukoyatkin, P. Rykov, V. L. Ryu, S. S. Sahlmueller, B. Saito, N. Sakaguchi, T. Sakai, S. Samsonov, V. Sato, H. D. Sato, S. Sawada, S. Semenov, V. Seto, R. Sharma, D. Shea, T. K. Shein, I. Shibata, T. -A. Shigaki, K. Shimomura, M. Shohjoh, T. Shoji, K. Sickles, A. Silva, C. L. Silvermyr, D. Sim, K. S. Singh, C. P. Singh, V. Skutnik, S. Smith, W. C. Soldatov, A. Soltz, R. A. Sondheim, W. E. Sorensen, S. P. Sourikova, I. V. Staley, F. Stankus, P. W. Stenlund, E. Stepanov, M. Ster, A. Stoll, S. P. Sugitate, T. Suire, C. Sullivan, J. P. Sziklai, J. Tabaru, T. Takagi, S. Takagui, E. M. Taketani, A. Tanaka, K. H. Tanaka, Y. Tanida, K. Tannenbaum, M. J. Taranenko, A. Tarjan, P. Thomas, T. L. Togawa, M. Tojo, J. Torii, H. Towell, R. S. Tram, V. -N. Tserruya, I. Tsuchimoto, Y. Tuli, S. K. Tydesjo, H. Tyurin, N. Vale, C. Valle, H. van Hecke, H. W. Velkovska, J. Vertesi, R. Vinogradov, A. A. Vznuzdaev, E. Wagner, M. Wang, X. R. Watanabe, Y. Wessels, J. White, S. N. Willis, N. Winter, D. Woody, C. L. Wysocki, M. Xie, W. Yanovich, A. Yokkaichi, S. Young, G. R. Younus, I. Yushmanov, I. E. Zajc, W. A. Zaudtke, O. Zhang, C. Zimanyi, J. Zolin, L. CA PHENIX Collaboration TI Systematic studies of elliptic flow measurements in Au plus Au collisions at s(NN)=200 GeV SO PHYSICAL REVIEW C LA English DT Article ID QUARK-GLUON PLASMA; COLOR GLASS CONDENSATE; CENTRALITY DEPENDENCE; NUCLEAR COLLISIONS; ANISOTROPIC FLOW; PHENIX; ENERGY; COLLABORATION; MULTIPLICITY; PERSPECTIVE AB We present inclusive charged hadron elliptic flow (v(2)) measured over the pseudorapidity range vertical bar eta vertical bar < 0.35 in Au+Au collisions at s(NN)=200 GeV. Results for v(2) are presented over a broad range of transverse momentum (p(T)=0.2-8.0 GeV/c) and centrality (0-60%). To study nonflow effects that are correlations other than collective flow, as well as the fluctuations of v(2), we compare two different analysis methods: (1) the event-plane method from two independent subdetectors at forward (vertical bar eta vertical bar=3.1-3.9) and beam (vertical bar eta vertical bar>6.5) pseudorapidities and (2) the two-particle cumulant method extracted using correlations between particles detected at midrapidity. The two event-plane results are consistent within systematic uncertainties over the measured p(T) and in centrality 0-40%. There is at most a 20% difference in the v(2) between the two event-plane methods in peripheral (40-60%) collisions. The comparisons between the two-particle cumulant results and the standard event-plane measurements are discussed. C1 [Afanasiev, S.; Isupov, A.; Litvinenko, A.; Malakhov, A.; Peresedov, V.; Zolin, L.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Singh, C. P.; Singh, V.; Tuli, S. K.] Banaras Hindu Univ, Dept Phys, Varanasi 221005, Uttar Pradesh, India. [Aronson, S. H.; Azmoun, B.; Bazilevsky, A.; Belikov, S.; Buesching, H.; Bunce, G.; David, G.; Desmond, E. J.; Franz, A.; Haggerty, J. S.; Harvey, M.; Johnson, B. M.; Kistenev, E.; Kroon, P. J.; Makdisi, Y. I.; Mioduszewski, S.; Mitchell, J. T.; Morrison, D. P.; Nouicer, R.; O'Brien, E.; Pak, R.; Pinkenburg, C.; Pisani, R. P.; Purschke, M. L.; Sato, S.; Shea, T. K.; Sourikova, I. V.; Stoll, S. P.; Tannenbaum, M. J.; White, S. N.; Woody, C. L.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Barish, K. N.; Bathe, S.; Bauer, F.; Fung, S. -Y.; Kotchetkov, D.; Li, X. H.; Seto, R.; Xie, W.] Univ Calif Riverside, Riverside, CA 92521 USA. [Gunji, T.; Hamagaki, H.; Hayano, R.; Isobe, T.; Kajihara, F.; Kametani, S.; Kurihara, N.; Ozawa, K.; Sakaguchi, T.] Univ Tokyo, Grad Sch Sci, Ctr Nucl Study, Bunkyo Ku, Tokyo 1130033, Japan. [Kelly, S.; Kinney, E.; Nagle, J. L.; Wysocki, M.] Univ Colorado, Boulder, CO 80309 USA. [Aidala, C.; Batsouli, S.; Bjorndal, M. T.; Chi, C. Y.; Chiu, M.; Cole, B. A.; d'Enterria, D.; Frantz, J. E.; Jia, J.; Jin, J.; Winter, D.; Zajc, W. A.; Zhang, C.] Columbia Univ, New York, NY 10027 USA. [Baldisseri, A.; Borel, H.; Cobigo, Y.; Gosset, J.; Pereira, H.; Staley, F.] CEA Saclay, F-91191 Gif Sur Yvette, France. [Tarjan, P.; Vertesi, R.] Univ Debrecen, H-4010 Debrecen, Hungary. [Csanad, M.; Kiss, A.] Eotvos Lorand Univ, ELTE, H-1117 Budapest, Hungary. [Das, K.; Frawley, A. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Cleven, C. R.; He, X.; Mishra, G. C.; Qu, H.] Georgia State Univ, Atlanta, GA 30303 USA. [Enokizono, A.; Hachiya, T.; Harada, H.; Haruna, K.; Homma, K.; Nakamura, T.; Shigaki, K.; Sugitate, T.; Tsuchimoto, Y.] Hiroshima Univ, Higashihiroshima 7398526, Japan. [Babintsev, V.; Bumazhnov, V.; Chernichenko, S.; Denisov, A.; Durum, A.; Kochetkov, V.; Semenov, V.; Shein, I.; Soldatov, A.; Tyurin, N.; Yanovich, A.] Inst High Energy Phys, State Res Ctr Russian Federat, IHEP Protvino, RU-142281 Protvino, Russia. [Perdekamp, M. Grosse; Hiejima, H.; McCain, M. C.; Peng, J. -C.] Univ Illinois, Urbana, IL 61801 USA. [Belikov, S.; Constantin, P.; Grau, N.; Hill, J. C.; Lajoie, J. G.; Lebedev, A.; Ogilvie, C. A.; Pei, H.; Rak, J.; Rosati, M.; Skutnik, S.; Vale, C.] Iowa State Univ, Ames, IA 50011 USA. [Chai, J. -S.; Hur, M. G.; Kim, Y. -S.] Cyclotron Applicat Lab, KAERI, Seoul, South Korea. [Chiba, J.; Nagamiya, S.; Sato, S.; Sawada, S.; Tanaka, K. H.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 3050801, Japan. [Csorgo, T.; Ster, A.; Sziklai, J.; Zimanyi, J.] Hungarian Acad Sci MTA KFKI RMKI, KFKI Res Inst Particle & Nucl Phys, H-1525 Budapest 114, Hungary. [Hong, B.; Kweon, M. J.; Park, W. J.; Sim, K. S.] Korea Univ, Seoul 136701, South Korea. [Fokin, S. L.; Kazantsev, A. V.; Manko, V. I.; Moukhanova, T. V.; Nyanin, A. S.; Peressounko, D. Yu.; Vinogradov, A. A.; Yushmanov, I. E.] Russian Res Ctr, Kurchatov Inst, Moscow, Russia. [Aoki, K.; Fukao, Y.; Imai, K.; Okada, H.; Saito, N.; Sato, H. D.; Shoji, K.; Togawa, M.; Wagner, M.] Kyoto Univ, Kyoto 6068502, Japan. [Drapier, O.; Fleuret, F.; Gonin, M.; de Cassagnac, R. Granier; Romana, A.; Tram, V. -N.] Ecole Polytech, Lab Leprince Ringuet, CNRS, IN2P3, F-91128 Palaiseau, France. [Hartouni, E. P.; Heffner, M.; Newby, J.; Soltz, R. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Barnes, P. D.; Boissevain, J. G.; Brooks, M. L.; Burward-Hoy, J. M.; Kunde, G. J.; Lee, D. M.; Leitch, M. J.; Liu, M. X.; McGaughey, P. L.; Moss, J. M.; Norman, B. E.; Palounek, A. P. T.; Sondheim, W. E.; Sullivan, J. P.; van Hecke, H. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Forestier, B.; Gadrat, S.; Roche, G.; Rosnet, P.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, F-63177 Aubiere, France. [Gustafsson, H. -A; Haslum, E.; Nystrand, J.; Oskarsson, A.; Otterlund, I.; Rosendahl, S. S. E.; Stenlund, E.; Tydesjo, H.] Lund Univ, Dept Phys, SE-22100 Lund, Sweden. [Mignerey, A.] Univ Maryland, College Pk, MD 20742 USA. [Bucher, D.; Klein-Boesing, C.; Reygers, K.; Sahlmueller, B.; Wessels, J.; Zaudtke, O.] Univ Munster, Inst Kernphys, D-48149 Munster, Germany. [Joo, K. S.] Myongji Univ, Yongin 449728, Kyonggido, South Korea. [Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan. [Bassalleck, B.; Fields, D. E.; Hobbs, R.; Malik, M. D.; Thomas, T. L.; Younus, I.] Univ New Mexico, Albuquerque, NM 87131 USA. [Al-Jamel, A.; Armendariz, R.; Brown, D. S.; Kyle, G. S.; Papavassiliou, V.; Pate, S. F.; Stepanov, M.; Wang, X. R.] New Mexico State Univ, Las Cruces, NM 88003 USA. [Awes, T. C.; Cianciolo, V.; Efremenko, Y. V.; Read, K. F.; Silvermyr, D.; Stankus, P. W.; Young, G. R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Comets, M. P.; Espagnon, B.; Jouan, D.; Le Bornec, Y.; Suire, C.; Willis, N.] Univ Paris 11, CNRS, IN2P3, IPN Orsay, F-91406 Orsay, France. [Baublis, V.; Khanzadeev, A.; Kochenda, L.; Komkov, B.; Riabov, V.; Riabov, Y.; Samsonov, V.; Vznuzdaev, E.] PNPI, RU-188300 Gatchina, Leningrad Reg, Russia. [Akiba, Y.; Aoki, K.; En'yo, H.; Fukao, Y.; Goto, Y.; Hachiya, T.; Hasuko, K.; Heuser, J. M.; Horaguchi, T.; Ichihara, T.; Imai, K.; Ishihara, M.; Kajihara, F.; Kamihara, N.; Kiyomichi, A.; Kurita, K.; Murata, J.; Ohnishi, H.; Okada, H.; Rykov, V. L.; Saito, N.; Sato, H. D.; Shibata, T. -A.; Shoji, K.; Taketani, A.; Tanida, K.; Togawa, M.; Tojo, J.; Torii, H.; Tsuchimoto, Y.; Wagner, M.; Watanabe, Y.; Yokkaichi, S.] RIKEN Nishina Ctr Accelerator Based Sci, Wako, Saitama 3510198, Japan. [Akiba, Y.; Bunce, G.; Deshpande, A.; En'yo, H.; Fields, D. E.; Goto, Y.; Perdekamp, M. Grosse; Ichihara, T.; Jinnouchi, O.; Kaneta, M.; Okada, K.; Saito, N.; Tabaru, T.; Taketani, A.; Tanida, K.; Watanabe, Y.; Xie, W.; Yokkaichi, S.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Kurita, K.; Murata, J.] Rikkyo Univ, Dept Phys, Toshima Ku, Tokyo 1718501, Japan. [Berdnikov, Y.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Dietzsch, O.; Leite, M. A. L.; Silva, C. L.; Takagui, E. M.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. [Kim, E.; Lim, H.; Park, J.] Seoul Natl Univ, Syst Elect Lab, Seoul, South Korea. [Ajitanand, N. N.; Alexander, J.; Holzmann, W.; Issah, M.; Lacey, R.; Taranenko, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Averbeck, R.; Bennett, R.; Boyle, K.; Butsyk, S.; Campbell, S.; Dahms, T.; Deshpande, A.; Dion, A.; Drees, A.; Egdemir, J.; Hemmick, T. K.; Jacak, B. V.; Leckey, S.; Matathias, F.; Milov, A.; Nguyen, M.; Pantuev, V.; Purwar, A. K.; Reuter, M.; Sickles, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Aphecetche, L.; Delagrange, H.; Gastineau, F.; Germain, M.; Henni, A. Hadj] Univ Nantes, CNRS, IN2P3, Ecole Mines Nantes,SUBATECH, F-44307 Nantes, France. [Dzhordzhadze, V.; Glenn, A.; Read, K. F.; Sorensen, S. P.] Univ Tennessee, Knoxville, TN 37996 USA. [Horaguchi, T.; Kamihara, N.; Shibata, T. -A.] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. [Esumi, S.; Inaba, M.; Kawagishi, T.; Konno, M.; Masui, H.; Miake, Y.; Nagata, Y.; Sakai, S.; Sato, S.; Shimomura, M.; Shohjoh, T.; Takagi, S.] Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 305, Japan. [Chujo, T.; Greene, S. V.; Holmes, M.; Maguire, C. F.; Miller, T. E.; Mukhopadhyay, D.; Ojha, I. D.; Pal, D.; Valle, H.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Kametani, S.; Sakaguchi, T.] Waseda Univ, Adv Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1620044, Japan. [Dubey, A. K.; Fraenkel, Z.; Kozlov, A.; Naglis, M.; Ravinovich, I.; Sharma, D.; Tserruya, I.] Weizmann Inst Sci, IL-76100 Rehovot, Israel. [Choi, I. J.; Kang, J. H.; Kim, D. J.; Kwon, Y.; Lee, M. K.; Ryu, S. S.] Yonsei Univ, IPAP, Seoul 120749, South Korea. [Drachenberg, J. L.; Hagiwara, M. N.; Isenhower, D.; Isenhower, L.; Omiwade, O. O.; Smith, W. C.; Towell, R. S.] Abilene Christian Univ, Abilene, TX 79699 USA. RP Afanasiev, S (reprint author), Joint Inst Nucl Res, RU-141980 Dubna, Russia. EM jacak@skipper.physics.sunysb.edu RI Sorensen, Soren /K-1195-2016; Yokkaichi, Satoshi/C-6215-2017; Taketani, Atsushi/E-1803-2017; Mignerey, Alice/D-6623-2011; seto, richard/G-8467-2011; Csanad, Mate/D-5960-2012; Csorgo, Tamas/I-4183-2012; YANG, BOGEUM/I-8251-2012; Dahms, Torsten/A-8453-2015; En'yo, Hideto/B-2440-2015; Hayano, Ryugo/F-7889-2012; HAMAGAKI, HIDEKI/G-4899-2014; Durum, Artur/C-3027-2014; Semenov, Vitaliy/E-9584-2017; OI Sorensen, Soren /0000-0002-5595-5643; Taketani, Atsushi/0000-0002-4776-2315; Dahms, Torsten/0000-0003-4274-5476; Hayano, Ryugo/0000-0002-1214-7806; Sullivan, John/0000-0002-9067-1531 NR 52 TC 59 Z9 60 U1 4 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2009 VL 80 IS 2 AR 024909 DI 10.1103/PhysRevC.80.024909 PG 25 WC Physics, Nuclear SC Physics GA 492FN UT WOS:000269640400055 ER PT J AU Esbensen, H AF Esbensen, H. TI Coulomb dissociation of C-15 and radiative neutron capture on C-14 SO PHYSICAL REVIEW C LA English DT Article ID HALO NUCLEI; BREAKUP AB The semiclassical, dynamical description of diffraction dissociation of weakly bound nuclei is applied to analyze the decay-energy spectra of C-15 that have been measured at 68 MeV/nucleon on a Pb target. The optical potentials that are used to describe the nuclear interaction of C-15 with the target nucleus are realistic because the fits to the two measured spectra, one with a small and one with a very large acceptance angle, are consistent and of similar quality. The cross section for the radiative neutron capture on C-14 to the 1/2(+) ground state of C-15 is deduced from the analysis. When combined with an estimated contribution from the capture to the 5/2(+) excited state of C-15, an excellent agreement with a recent direct capture measurement is achieved. C1 Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Esbensen, H (reprint author), Argonne Natl Lab, Div Phys, 9700 S Cass Ave, Argonne, IL 60439 USA. FU US Department of Energy [DE-AC02-06CH11357] FX The author is grateful to F. Nunes for discussions and to T. Nakamura for providing the data and information about the experiment. This work was supported by the US Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. NR 27 TC 15 Z9 15 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2009 VL 80 IS 2 AR 024608 DI 10.1103/PhysRevC.80.024608 PG 8 WC Physics, Nuclear SC Physics GA 492FN UT WOS:000269640400041 ER PT J AU Hagen, G Papenbrock, T Dean, DJ Hjorth-Jensen, M Asokan, BV AF Hagen, G. Papenbrock, T. Dean, D. J. Hjorth-Jensen, M. Asokan, B. Velamur TI Ab initio computation of neutron-rich oxygen isotopes SO PHYSICAL REVIEW C LA English DT Article ID CHIRAL LAGRANGIANS; COUPLED-CLUSTER; NUCLEAR-FORCES; PARTICLE STABILITY; 2-NUCLEON SYSTEM; O-16; SEARCH; FIELD; O-28 AB We compute the binding energy of neutron-rich oxygen isotopes and employ the coupled-cluster method and chiral nucleon-nucleon interactions at next-to-next-to-next-to-leading order with two different cutoffs. We obtain rather well-converged results in model spaces consisting of up to 21 oscillator shells. For interactions with a momentum cutoff of 500 MeV, we find that O-28 is stable with respect to O-24, while calculations with a momentum cutoff of 600 MeV result in a slightly unbound O-28. The theoretical error estimates due to the omission of the three-nucleon forces and the truncation of excitations beyond three-particle-three-hole clusters indicate that the stability of O-28 cannot be ruled out from ab initio calculations, and that three-nucleon forces and continuum effects play the dominant role in deciding this question. C1 [Hagen, G.; Papenbrock, T.; Dean, D. J.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Papenbrock, T.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Hjorth-Jensen, M.] Univ Oslo, Dept Phys, N-0316 Oslo, Norway. [Hjorth-Jensen, M.] Univ Oslo, Ctr Math Applicat, N-0316 Oslo, Norway. [Asokan, B. Velamur] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Hagen, G (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RI Hjorth-Jensen, Morten/B-1417-2008; Hagen, Gaute/I-6146-2012; OI Hagen, Gaute/0000-0001-6019-1687; Dean, David/0000-0002-5688-703X; Papenbrock, Thomas/0000-0001-8733-2849 FU US Department of Energy [DE-AC05-00OR22725, DE-FC02-07ER41457, DE-FG02-96ER40963] FX We thank P. Fallon, R. Furnstahl, K. Jones, M. Ploszajczak, A. Schiller, and A. Taube for useful discussions. This work was supported by the US Department of Energy under Contract Nos. DE-AC05-00OR22725 with UT-Battelle, LLC (Oak Ridge National Laboratory), and DE-FC02-07ER41457 (SciDAC UNEDF), and under Grant No. DE-FG02-96ER40963 (University of Tennessee). This research used computational resources of the National Institute for Computational Sciences (UT/ORNL) and the National Center for Computational Sciences (ORNL). NR 50 TC 42 Z9 42 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2009 VL 80 IS 2 AR 021306 DI 10.1103/PhysRevC.80.021306 PG 5 WC Physics, Nuclear SC Physics GA 492FN UT WOS:000269640400006 ER PT J AU Julia-Diaz, B Kamano, H Lee, TSH Matsuyama, A Sato, T Suzuki, N AF Julia-Diaz, B. Kamano, H. Lee, T. -S. H. Matsuyama, A. Sato, T. Suzuki, N. TI Dynamical coupled-channels analysis of H-1(e,e(')pi)N reactions SO PHYSICAL REVIEW C LA English DT Article ID NUCLEON RESONANCE REGION; MESON PRODUCTION; MODEL AB We have performed a dynamical coupled-channels analysis of available p(e,e(')pi)N data in the region of W <= 1.6 GeV and Q(2)<= 1.45 (GeV/c)(2). The channels included are gamma N-*, pi N, eta N, and pi pi N that has pi Delta, rho N, and sigma N components. With the hadronic parameters of the model determined in our previous investigations of pi N ->pi N, pi pi N reactions, we have found that the available data in the considered W <= 1.6 GeV region can be fitted well by only adjusting the bare gamma N-*-> N-* helicity amplitudes for the lowest N-* states in P-33, P-11, S-11, and D-13 partial waves. The sensitivity of the resulting parameters to the amount of data included in the analysis is investigated. The importance of coupled-channels effect on the p(e,e(')pi)N cross sections is demonstrated. The meson cloud effect, as required by the unitarity conditions, on the gamma N-*-> N-* form factors are also examined. Necessary future developments, both experimentally and theoretically, are discussed. C1 [Julia-Diaz, B.; Kamano, H.; Lee, T. -S. H.; Matsuyama, A.; Sato, T.; Suzuki, N.] Thomas Jefferson Natl Accelerator Facil, EBAC, Newport News, VA 23606 USA. [Julia-Diaz, B.] Univ Barcelona, Dept Estructura & Constituents Mat, E-08028 Barcelona, Spain. [Julia-Diaz, B.] Univ Barcelona, Inst Ciencies Cosmos, E-08028 Barcelona, Spain. [Lee, T. -S. H.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Matsuyama, A.] Shizuoka Univ, Dept Phys, Shizuoka 4228529, Japan. [Sato, T.; Suzuki, N.] Osaka Univ, Dept Phys, Osaka 5600043, Japan. RP Julia-Diaz, B (reprint author), Thomas Jefferson Natl Accelerator Facil, EBAC, Newport News, VA 23606 USA. RI Julia-Diaz, Bruno/E-5825-2010 OI Julia-Diaz, Bruno/0000-0002-0145-6734 FU US Department of Energy, Office of Nuclear Physics Division [DE-AC02-06CH11357, DE-AC05-06OR23177, DE-AC02-05CH11231]; Japan Society for the Promotion of Science [20540270, 2007-0042, FIS2008-1661] FX We would like to thank Dr. K. Park for sending the structure function data from CLAS. This work is supported by the US Department of Energy, Office of Nuclear Physics Division, under Contract No. DE-AC02-06CH11357, and Contract No. DE-AC05-06OR23177, under which Jefferson Science Associates operates Jefferson Lab, by the Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research( C) 20540270, and by a CPAN Consolider INGENIO CSD 2007-0042 contract and Grant No. FIS2008-1661 ( Spain). This work used resources of the National Energy Research Scientific Computing Center that is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 21 TC 44 Z9 44 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2009 VL 80 IS 2 AR 025207 DI 10.1103/PhysRevC.80.025207 PG 9 WC Physics, Nuclear SC Physics GA 492FN UT WOS:000269640400062 ER PT J AU Kawano, T Talou, P Lynn, JE Chadwick, MB Madland, DG AF Kawano, T. Talou, P. Lynn, J. E. Chadwick, M. B. Madland, D. G. TI Calculation of nuclear reaction cross sections on excited nuclei with the coupled-channels method SO PHYSICAL REVIEW C LA English DT Article ID HAUSER-FESHBACH THEORY; COMPOUND-NUCLEUS; MODEL-CALCULATIONS; REACTION-RATES; FORMULA; SCATTERING; NEUTRONS AB We calculate nuclear cross sections on excited nuclei in the fast neutron energy range. We partition the whole process into two contributions: the direct reaction part and the compound nuclear reactions. A coupled-channels method is used for calculating the direct transition of the nucleus from the initial excited state, which is a member of the ground-state rotational band, to the final ground and excited low-lying levels. This process is strongly affected by the channel coupling. The compound nuclear reactions on the excited state are calculated with the statistical Hauser-Feshbach model, with the transmission coefficients obtained from the coupled-channels calculation. The calculations are performed for a strongly deformed nucleus (169)Tm, and selected cross sections for the ground and first excited states are compared. The calculation is also made for actinides to investigate possible modification to the fission cross section when the target is excited. It is shown that both the level coupling for the entrance channel, and the different target spin, change the fission cross section. C1 [Kawano, T.; Talou, P.; Lynn, J. E.; Chadwick, M. B.; Madland, D. G.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Kawano, T (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. EM kawano@lanl.gov FU US Department of Energy [DE-AC52-06NA25396] FX This work was carried out under the auspices of the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. NR 47 TC 11 Z9 11 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2009 VL 80 IS 2 AR 024611 DI 10.1103/PhysRevC.80.024611 PG 9 WC Physics, Nuclear SC Physics GA 492FN UT WOS:000269640400044 ER PT J AU Lane, GJ Dracoulis, GD Byrne, AP Hughes, RO Watanabe, H Kondev, FG Chiara, CJ Carpenter, MP Janssens, RVF Lauritsen, T Lister, CJ McCutchan, EA Seweryniak, D Zhu, S Chowdhury, P Stefanescu, I AF Lane, G. J. Dracoulis, G. D. Byrne, A. P. Hughes, R. O. Watanabe, H. Kondev, F. G. Chiara, C. J. Carpenter, M. P. Janssens, R. V. F. Lauritsen, T. Lister, C. J. McCutchan, E. A. Seweryniak, D. Zhu, S. Chowdhury, P. Stefanescu, I. TI Decay of a K-pi=21/2(-), 17-ms isomer in Ta-185 SO PHYSICAL REVIEW C LA English DT Article ID QUASI-PARTICLE STATES; NEUTRON-RICH TA-185; HIGH-K ISOMERS; HALF-LIFE; IDENTIFICATION; ISOTOPES; NUCLEI; LINE AB High-spin states in the neutron-rich nucleus Ta-185, populated in the decay of a long-lived, three-quasiparticle state, have been studied using deep-inelastic reactions with Xe-136 ions and a W-186 target. The lifetime of the isomer has been measured as 17(2) ms and the spin and parity determined to be K-pi=21/2(-), leading to a pi 7/2(+)[404]nu 3/2(-)[512]11/2(+)[615] configuration assignment. The isomer decays into the rotational band built upon the pi 9/2(-)[514] intrinsic state via K-forbidden transitions with reduced hindrances of 52 and 71. The pi 9/2(-)[514] state is itself an isomer with a lifetime of 17(3) ns. It decays via K-allowed E1 transitions to states in the pi 7/2(+)[404] band with strengths that are similar to equivalent transitions in the lighter tantalum isotopes. C1 [Lane, G. J.; Dracoulis, G. D.; Byrne, A. P.; Hughes, R. O.; Watanabe, H.] Australian Natl Univ, Dept Nucl Phys, Res Sch Phys & Engn, Canberra, ACT 0200, Australia. [Kondev, F. G.; Chiara, C. J.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Carpenter, M. P.; Janssens, R. V. F.; Lauritsen, T.; Lister, C. J.; McCutchan, E. A.; Seweryniak, D.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Chowdhury, P.] Univ Massachusetts, Dept Phys, Lowell, MA 01854 USA. [Stefanescu, I.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. RP Lane, GJ (reprint author), Australian Natl Univ, Dept Nucl Phys, Res Sch Phys & Engn, GPO Box 4, Canberra, ACT 0200, Australia. EM Gregory.Lane@anu.edu.au RI Lane, Gregory/A-7570-2011; Carpenter, Michael/E-4287-2015 OI Lane, Gregory/0000-0003-2244-182X; Carpenter, Michael/0000-0002-3237-5734 FU Australian Government Access [06/07-H-04]; Australian Research Council [DP0345844]; US DOE, Office of Nuclear Physics [DE-AC02-06CH11357, DEFG0294ER40848] FX We are grateful to R. B. Turkentine for making the target. Lane, Dracoulis, and Hughes acknowledge travel support from the Australian Government Access to Major Research Facilites Program Grant 06/07-H-04. This research was supported by a Discovery Projects grant (DP0345844) from the Australian Research Council and by the US DOE, Office of Nuclear Physics, under Contract DE-AC02-06CH11357 and Grant DEFG0294ER40848. NR 27 TC 9 Z9 9 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2009 VL 80 IS 2 AR 024321 DI 10.1103/PhysRevC.80.024321 PG 7 WC Physics, Nuclear SC Physics GA 492FN UT WOS:000269640400031 ER PT J AU Lee, HY Couder, M Couture, A Falahat, S Gorres, J Lamm, L LeBlanc, PJ O'Brien, S Palumbo, A Stech, E Strandberg, E Tan, W Ugalde, C Wiescher, M AF Lee, H. Y. Couder, M. Couture, A. Falahat, S. Goerres, J. Lamm, L. LeBlanc, P. J. O'Brien, S. Palumbo, A. Stech, E. Strandberg, E. Tan, W. Ugalde, C. Wiescher, M. TI Cross-section measurement of the F-18(alpha,p)Ne-21 reaction and possible implication for neutron production in explosive helium burning SO PHYSICAL REVIEW C LA English DT Article ID R-PROCESS; NUCLEOSYNTHESIS; ASTROPHYSICS; NUCLEI; FITS AB At the high temperature and density conditions of hot or explosive helium burning, the F-18(alpha,p)Ne-21 reaction may compete successfully with the F-18(beta(+)nu) decay. This suggests Ne-21(alpha,n) as an alternative neutron source in the r-process. We have determined the total cross section of the F-18(alpha,p)Ne-21 reaction by studying the time-reverse reaction Ne-21(p,alpha)F-18. Using the activation technique, the total reaction yield was measured in the proton beam energy range of 2.3-4.0 MeV, which corresponds to energies of 0.5-2.1 MeV in the F-18+alpha system. The resulting yield curve was analyzed in terms of the thick target formalism and the R-matrix theory. The reaction rate was deduced experimentally for the first time for the temperature of 0.1 < T-9 < 1. The experimental reaction rate was compared with Hauser-Feshbach predictions. The astrophysical implications of the new rate are discussed. C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. Univ Notre Dame, Joint Inst Nucl Phys, Notre Dame, IN 46556 USA. [Falahat, S.] Max Planck Inst Chem, D-55128 Mainz, Germany. RP Lee, HY (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM hylee@anl.gov RI Tan, Wanpeng/A-4687-2008; Couder, Manoel/B-1439-2009 OI Tan, Wanpeng/0000-0002-5930-1823; Couder, Manoel/0000-0002-0636-744X FU National Science Foundation NSF [0434844]; Joint Institute for Nuclear Astrophysics JINA [PHY02-16783]; US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357] FX The authors thank J. Kaiser, B. Mulder, and J. Lingle for their great assistance during the experiment. Special thanks to H.-W. Becker (Ruhr-Universitat Bochum) for the hospitality and support during target implantations. The authors acknowledge A. Heger, T. Elliot, and H. Schatz for providing the input for pre-supernovae and helping network calculations. This work was supported by the National Science Foundation NSF Grant 0434844 and the Joint Institute for Nuclear Astrophysics JINA PHY02-16783. H.Y.L. acknowledges support from the US Department of Energy, Office of Nuclear Physics, under Contract DE-AC02-06CH11357. NR 40 TC 2 Z9 2 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2009 VL 80 IS 2 AR 025805 DI 10.1103/PhysRevC.80.025805 PG 8 WC Physics, Nuclear SC Physics GA 492FN UT WOS:000269640400073 ER PT J AU Lisetskiy, AF Kruse, MKG Barrett, BR Navratil, P Stetcu, I Vary, JP AF Lisetskiy, A. F. Kruse, M. K. G. Barrett, B. R. Navratil, P. Stetcu, I. Vary, J. P. TI Effective operators from exact many-body renormalization SO PHYSICAL REVIEW C LA English DT Article ID SHELL-MODEL; NUCLEI AB We construct effective two-body Hamiltonians and E2 operators for the p shell by performing 16h Omega ab initio no-core shell model (NCSM) calculations for A=5 and A=6 nuclei and explicitly projecting the many-body Hamiltonians and E2 operator onto the 0h Omega space. We then separate the effective E2 operator into one-body and two-body contributions employing the two-body valence cluster approximation. We analyze the convergence of proton and neutron valence one-body contributions with increasing model space size and explore the role of valence two-body contributions. We show that the constructed effective E2 operator can be parametrized in terms of one-body effective charges giving a good estimate of the NCSM result for heavier p-shell nuclei. C1 [Lisetskiy, A. F.; Kruse, M. K. G.; Barrett, B. R.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Lisetskiy, A. F.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Navratil, P.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Stetcu, I.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Vary, J. P.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Lisetskiy, AF (reprint author), Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. EM lisetsky@physics.arizona.edu FU NSF [PHY0244389, PHY0555396]; US DOE/SC/NP [SCW0498]; US Department of Energy [DE-FC02-07ER41457, DE-FG02-87ER40371, DE-FC02-09ER41582]; LLNL [DE-AC52-07NA27344]; GSI Helmholzzentrum fur Schwerionenforschung Darmstadt, Germany; Alexander von Humboldt Stiftung FX We thank the Department of Energy's Institute for Nuclear Theory at the University of Washington for its hospitality and the Department of Energy for partial support during the completion of this work. B. R. B., A. F. L., and M. K. G. K. acknowledge partial support of this work from NSF Grants PHY0244389 and PHY0555396; P. N. acknowledges support in part by the US DOE/SC/NP ( Work Proposal N. SCW0498) and US Department of Energy Grant DE-FC02-07ER41457; prepared by LLNL under Contract No. DE-AC52-07NA27344. J. P. V. acknowledges support from US Department of Energy Grants DE-FG02-87ER40371,DE-FC02-07ER41457, and DE-FC02-09ER41582; B. R. B. thanks the GSI Helmholzzentrum fur Schwerionenforschung Darmstadt, Germany, for its hospitality during the preparation of this manuscript and the Alexander von Humboldt Stiftung for its support. NR 21 TC 22 Z9 22 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2009 VL 80 IS 2 AR 024315 DI 10.1103/PhysRevC.80.024315 PG 9 WC Physics, Nuclear SC Physics GA 492FN UT WOS:000269640400025 ER PT J AU Randrup, J Vogt, R AF Randrup, Jorgen Vogt, Ramona TI Calculation of fission observables through event-by-event simulation SO PHYSICAL REVIEW C LA English DT Article ID THERMAL-NEUTRON FISSION; NUCLEAR-MASS FORMULA; FRAGMENTS; ENERGY; EMISSION; MULTIPLICITY; DEFORMATIONS; PU-239; U-235; U235 AB The increased interest in more exclusive fission observables has demanded more detailed models. We present here a new computational model, FREYA, that aims to meet this need by producing large samples of complete fission events from which any observable of interest can then be extracted consistently, including arbitrary correlations. The various model assumptions are described and the potential utility of the model is illustrated by means of several novel correlation observables. C1 [Randrup, Jorgen] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Vogt, Ramona] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94551 USA. [Vogt, Ramona] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. RP Randrup, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. FU US Department of Energy [DE-AC02-05CH11231, DE-AC52-07NA27344]; National Science Foundation [PHY-0555660] FX We wish to acknowledge helpful discussions with D. A. Brown, D. Gogny, E. Ormand, P. Moller, E. B. Norman, J. Pruet, W. J. Swiatecki, P. Talou, and W. Younes. This work was supported by the Director, Of. ce of Energy Research, Of. ce of High Energy and Nuclear Physics, Nuclear Physics Division of the US Department of Energy under Contract Nos. DE-AC02-05CH11231 (JR) and DE-AC52-07NA27344 (RV) and by the National Science Foundation, Grant NSF PHY-0555660 (RV). NR 25 TC 42 Z9 42 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2009 VL 80 IS 2 AR 024601 DI 10.1103/PhysRevC.80.024601 PG 11 WC Physics, Nuclear SC Physics GA 492FN UT WOS:000269640400034 ER PT J AU Scielzo, ND Caldwell, S Savard, G Clark, JA Deibel, CM Fallis, J Gulick, S Lascar, D Levand, AF Li, G Mintz, J Norman, EB Sharma, KS Sternberg, M Sun, T Van Schelt, J AF Scielzo, N. D. Caldwell, S. Savard, G. Clark, J. A. Deibel, C. M. Fallis, J. Gulick, S. Lascar, D. Levand, A. F. Li, G. Mintz, J. Norman, E. B. Sharma, K. S. Sternberg, M. Sun, T. Van Schelt, J. TI Double-beta-decay Q values of Te-130, Te-128, and Te-120 SO PHYSICAL REVIEW C LA English DT Article ID PRECISION MASS-SPECTROMETRY; PENNING TRAP; NEUTRINO MASS; RAMSEY METHOD; ELECTRON; LIMITS; GE-76; IONS AB The double-beta-decay Q values of Te-130, Te-128, and Te-120 have been determined from parent-daughter mass differences measured with the Canadian Penning Trap mass spectrometer. The Xe-132-Xe-129 mass difference, which is precisely known, was also determined to confirm the accuracy of these results. The Te-130 Q value was found to be 2527.01 +/- 0.32 keV, which is 3.3 keV lower than the 2003 Atomic Mass Evaluation recommended value and is consistent with another recent Penning trap measurement. The Te-128 and Te-120 Q values were found to be 865.87 +/- 1.31 and 1714.81 +/- 1.25 keV, respectively. For Te-120, this reduction in uncertainty of nearly a factor of 8 opens up the possibility of using this isotope for sensitive searches for neutrinoless double-electron capture and electron capture with beta(+) emission. C1 [Scielzo, N. D.] Lawrence Livermore Natl Lab, Phys Sci Directorate, Livermore, CA 94550 USA. [Caldwell, S.; Savard, G.; Clark, J. A.; Deibel, C. M.; Lascar, D.; Levand, A. F.; Li, G.; Sternberg, M.; Sun, T.; Van Schelt, J.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Caldwell, S.; Savard, G.; Sternberg, M.; Van Schelt, J.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Deibel, C. M.] Michigan State Univ, Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA. [Fallis, J.; Sharma, K. S.] Univ Manitoba, Dept Phys & Astron, Winnipeg, MB R3T 2N2, Canada. [Gulick, S.; Li, G.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Lascar, D.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Mintz, J.; Norman, E. B.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. RP Scielzo, ND (reprint author), Lawrence Livermore Natl Lab, Phys Sci Directorate, Livermore, CA 94550 USA. FU US Department of Energy [DE-AC52-07NA27344]; Argonne National Laboratory [DE-AC0206CH11357]; Northwestern University [DE-FG02-98ER41086]; NSERC, Canada FX We thank John Greene for help making the tellurium powder targets. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, Argonne National Laboratory under Contract DE-AC0206CH11357, and Northwestern University under Contract DE-FG02-98ER41086. This work was supported by NSERC, Canada, under Application Number 216974. NR 40 TC 57 Z9 57 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2009 VL 80 IS 2 AR 025501 DI 10.1103/PhysRevC.80.025501 PG 5 WC Physics, Nuclear SC Physics GA 492FN UT WOS:000269640400066 ER PT J AU Semkova, V Reimer, P Altzitzoglou, T Plompen, AJM Quetel, C Sudar, S Vogl, J Koning, AJ Qaim, SM Smith, DL AF Semkova, V. Reimer, P. Altzitzoglou, T. Plompen, A. J. M. Quetel, C. Sudar, S. Vogl, J. Koning, A. J. Qaim, S. M. Smith, D. L. TI Neutron activation cross sections on lead isotopes SO PHYSICAL REVIEW C LA English DT Article ID NUCLEAR-DATA SHEETS; OPTICAL-MODEL; INELASTIC-SCATTERING; EXCITATION-FUNCTIONS; DATA LIBRARIES; LESS-THAN; PB; ELEMENTS; RATIOS; REGION AB The cross sections for the reactions (204)Pb(n,n(')gamma)(204)Pb(m), (204)Pb(n,2n)(203)Pb, (204)Pb(n,2n)(203)Pb(m1), (204)Pb(n,3n)(202)Pb(m), (206)Pb(n,3n)(204)Pb(m), (206)Pb(n,alpha)(203)Hg, and (208)Pb(n,p)(208)Tl were determined at the IRMM van de Graaff laboratory in the neutron energy range from 14 to 21 MeV. Both natural and enriched samples were irradiated with neutrons produced via the (3)H(d,n)(4)He reaction. The induced activities were determined by gamma-ray spectrometry using a HPGe detector in a low-background shield. Neutron fluences were determined with the well-known cross section of the (27)Al(n,alpha)(24)Na reaction. Enriched samples were essential to determine the cross sections for the reactions with (204)Pb(m) and (206)Pb(m) isomers in the final state. Accurate results for reactions with (204,206)Pb as target nuclei with natural lead samples were enabled through a precise measurement of the isotopic ratios. For a first investigation of the consequences of the present data for nuclear reaction models they were confronted with calculations based on global parameter systematics in a phenomenological and in a microscopic approach and with parameters selected to reproduce the available data. The TALYS code was used for the former two calculations involving parameter systematics while the STAPRE code was used for the latter calculation. C1 [Semkova, V.; Reimer, P.; Altzitzoglou, T.; Plompen, A. J. M.; Quetel, C.; Sudar, S.; Vogl, J.] Inst Reference Mat & Measurements, Joint Res Ctr, European Commiss, B-2440 Geel, Belgium. [Koning, A. J.] Nucl Res & Consultancy Grp NRG, NL-1755 ZG Petten, Netherlands. [Qaim, S. M.] Forschungszentrum Julich, Inst Nukl Chem, D-52425 Julich, Germany. [Smith, D. L.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Semkova, V (reprint author), Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, BU-1784 Sofia, Bulgaria. EM Arjan.Plompen@ec.europa.eu RI Vogl, Jochen/A-5960-2009; OI Reimer, Peter/0000-0002-3187-2536 FU Commission of the European Communities FX The authors thank the Van de Graaff operators for the irradiation conditions that made this work possible and A. Moens for the preparation of the samples. P. R. and V. S. are grateful to the Commission of the European Communities for financial support. NR 85 TC 9 Z9 9 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2009 VL 80 IS 2 AR 024610 DI 10.1103/PhysRevC.80.024610 PG 12 WC Physics, Nuclear SC Physics GA 492FN UT WOS:000269640400043 ER PT J AU Simpson, GS Urban, W Genevey, J Orlandi, R Pinston, JA Scherillo, A Smith, AG Smith, JF Ahmad, I Greene, JP AF Simpson, G. S. Urban, W. Genevey, J. Orlandi, R. Pinston, J. A. Scherillo, A. Smith, A. G. Smith, J. F. Ahmad, I. Greene, J. P. TI Two-quasiparticle isomers and bands of Nd-154,Nd-156 and Sm-156,Sm-158,Sm-160 SO PHYSICAL REVIEW C LA English DT Article ID EXCITED-STATES; HIGH-SPIN; FISSION FRAGMENTS; GE DETECTORS; NUCLEI; IDENTIFICATION; TRANSITIONS; ND-152; CF-252 AB The decay of a new 3.2-mu s, (4(-)) isomeric state at 1298.0 keV has been observed using gamma-ray spectroscopy at the Lohengrin mass spectrometer of the Institut Laue-Langevin. By comparison with theoretical calculations this state was assigned a nu 5/2[642]circle times nu 3/2[521] dominant configuration. Prompt gamma-ray data from a spontaneous fission experiment have also been analyzed allowing the observation of a collective band on top of this isomeric state, the identification of a new band on top of the previously reported (5(-)) isomer of Nd-156 and the extension of collective bands on top of (5(-)) isomers of the neighboring Sm-156,Sm-158 nuclei. Quasiparticle rotor model calculations reported in this work correctly predict the energies and decay patterns of these bands. A new (5(-)) isomer in Sm-160 has also been observed. The calculations predict nu 5/2[642]circle times nu 5/2[523] dominant configurations for all these (5(-)) isomers. C1 [Simpson, G. S.; Genevey, J.; Pinston, J. A.] Univ Grenoble 1, Inst Natl Polytech Grenoble, CNRS, LPSC,IN2P3, F-38026 Grenoble, France. [Urban, W.] Univ Warsaw, Fac Phys, PL-00681 Warsaw, Poland. [Urban, W.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble 9, France. [Orlandi, R.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Scherillo, A.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Smith, A. G.; Smith, J. F.] Univ Manchester, Dept Phys & Astron, Manchester M13 9PL, Lancs, England. [Ahmad, I.; Greene, J. P.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Simpson, GS (reprint author), Univ Grenoble 1, Inst Natl Polytech Grenoble, CNRS, LPSC,IN2P3, F-38026 Grenoble, France. EM simpson@lpsc.in2p3.fr FU Department of Energy; Office of Nuclear Physics [DE-AC02-06CH11357] FX This work was supported by the Department of Energy, Office of Nuclear Physics, under contract no. DE-AC02-06CH11357. NR 23 TC 18 Z9 18 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2009 VL 80 IS 2 AR 024304 DI 10.1103/PhysRevC.80.024304 PG 12 WC Physics, Nuclear SC Physics GA 492FN UT WOS:000269640400014 ER PT J AU Zhu, S Janssens, RVF Fornal, B Freeman, SJ Honma, M Broda, R Carpenter, MP Deacon, AN Jackson, E Kay, BP Lauritsen, T Lister, CJ Mantica, PF Otsuka, T Seweryniak, D Smith, JF Steppenbeck, D Wang, X AF Zhu, S. Janssens, R. V. F. Fornal, B. Freeman, S. J. Honma, M. Broda, R. Carpenter, M. P. Deacon, A. N. Jackson, E. Kay, B. P. Lauritsen, T. Lister, C. J. Mantica, P. F. Otsuka, T. Seweryniak, D. Smith, J. F. Steppenbeck, D. Wang, X. TI High-lying, non-yrast shell structure in Ti-52 SO PHYSICAL REVIEW C LA English DT Article ID RICH CR ISOTOPES; MODEL; NUCLEI; N=32 AB Gamma rays from Ti-52 have been studied with Gammasphere and the Fragment Mass Analyzer using reactions induced by a Ca-48 beam on a Be-9 target. The data have been used in combination with information from deep-inelastic reactions of Ca-48 beams on a thick U-238 target at an energy about 25% above the Coulomb barrier. The Ti-52 level scheme was expanded considerably, and the lifetimes of some of the identified states were determined for the first time. The excitation of two protons and two neutrons outside the Ca-48 core provide new tests of effective interactions in the full pf-shell model space. The positive-parity states in Ti-52 were compared to theoretical predictions obtained with the GXPF1A, FPD6, and KB3G effective interactions. The comparisons favor, to a degree, the results computed with the GXPF1A interaction. C1 [Zhu, S.; Janssens, R. V. F.; Carpenter, M. P.; Jackson, E.; Lauritsen, T.; Lister, C. J.; Seweryniak, D.; Wang, X.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Fornal, B.; Broda, R.] Polish Acad Sci, Inst Phys Nucl, PL-31342 Krakow, Poland. [Freeman, S. J.; Deacon, A. N.; Kay, B. P.; Smith, J. F.; Steppenbeck, D.] Univ Manchester, Sch Phys & Astron, Schuster Lab, Manchester M13 9PL, Lancs, England. [Honma, M.] Univ Aizu, Ctr Math Sci, Fukushima 9658580, Japan. [Mantica, P. F.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Mantica, P. F.] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA. [Otsuka, T.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. [Otsuka, T.] RIKEN, Wako, Saitama 3510198, Japan. [Wang, X.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. RP Zhu, S (reprint author), Argonne Natl Lab, Div Phys, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Freeman, Sean/B-1280-2010; Kay, Benjamin/F-3291-2011; OTSUKA, TAKAHARU/G-5072-2014; Carpenter, Michael/E-4287-2015 OI Freeman, Sean/0000-0001-9773-4921; Kay, Benjamin/0000-0002-7438-0208; Carpenter, Michael/0000-0002-3237-5734 FU US Department of Energy [DE-AC0206CH11357]; UK Science and Technology Facilities Council; US National Science Foundation [PHY-01-01253, PHY-0456463]; Polish Scientific Committee [2PO3B-074-18]; STFC postdoctoral fellowship FX This work was supported by the US Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC0206CH11357, by the UK Science and Technology Facilities Council, by US National Science Foundation Grants No. PHY-01-01253, and PHY-0456463, and by Polish Scientific Committee Grant No. 2PO3B-074-18. A. N. D. acknowledges receipt of an STFC postdoctoral fellowship. The authors thank the ATLAS operating staff for the efficient running of the accelerator and John Greene for preparing the targets used in the measurement. NR 38 TC 9 Z9 9 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG PY 2009 VL 80 IS 2 AR 024318 DI 10.1103/PhysRevC.80.024318 PG 11 WC Physics, Nuclear SC Physics GA 492FN UT WOS:000269640400028 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burke, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cordelli, M Cortiana, G Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF Di Canto, A Di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Garosi, P Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hays, C Heck, M Heijboer, A Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, DD Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Hussein, M Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lucchesi, D Luci, C Lueck, J Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Mondragon, MN Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mulmensta, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Rutherford, B Saarikko, H Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spreitzer, T Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wurthwein, F Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burke, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cordelli, M. Cortiana, G. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. Di Canto, A. Di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Garosi, P. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heijboer, A. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Hussein, M. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. -S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lucchesi, D. Luci, C. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Mondragon, M. N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Mulmensta, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Rutherford, B. Saarikko, H. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spreitzer, T. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wuerthwein, F. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Production of psi(2S) mesons in p(p)over-bar collisions at 1.96 TeV SO PHYSICAL REVIEW D LA English DT Article ID HEAVY-QUARKONIUM; HADROPRODUCTION; J/PSI AB We have measured the differential cross section for the inclusive production of psi(2S) mesons decaying to mu(+)mu(-) that were produced in prompt or B-decay processes from p (p) over bar collisions at 1.96 TeV. These measurements have been made using a data set from an integrated luminosity of 1.1 fb(-1) collected by the CDF II detector at Fermilab. For events with transverse momentum p(T)(psi(2S)) > 2 GeV/c and rapidity vertical bar y(psi(2S))vertical bar < 0.6 we measure the integrated inclusive cross section sigma(p (p) over bar -> psi(2S)X) center dot Br(psi(2S) -> mu(+)mu(-) to be 3.29 +/- 0.04(stat) +/- 0.32(syst) nb. C1 [Aaltonen, T.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Ciobanu, C. I.; Di Giovanni, G. P.; Hou, S.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Cabrera, S.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Frank, M. J.; Hewamanage, S.] Baylor Univ, Waco, TX 76798 USA. [Bromberg, C.; Deninno, M.; Jha, M. K.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Brigliadori, L.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Cox, C. A.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Wuerthwein, F.] Univ Calif San Diego, San Diego, CA 92093 USA. [Brau, B.; Bridgeman, A.; Garberson, F.; Hill, C. S.; Incandela, J.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jang, D.; Jun, S. Y.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Budagov, J.; Canepa, A.; Fedorko, W. T.; Grosso-Pilcher, C.; Ketchum, W.; Kim, Y. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budd, H. S.; Chokheli, D.; Glagolev, V.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Calancha, C.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Busetto, G.; Canepa, A.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carron, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Buzatu, A.; Davies, T.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes] Harvard Univ, Cambridge, MA 02138 USA. [Brigliadori, L.; Burke, S.; Carlsmith, D.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Gibson, K.; Giurgiu, G.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D. D.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. Seoul Natl Univ, Seoul 151742, South Korea. Sungkyunkwan Univ, Suwon 440746, South Korea. Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. Chonnam Natl Univ, Taejon 305806, South Korea. Chonnam Natl Univ, Kwangju 500757, South Korea. Chonbuk Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.] UCL, London WC1E 6BT, England. [Campanelli, M.; Fernandez, J. P.; Gonzalez, O.] Ctr Invest Energet Medioambient & Tecnol, Madrid 28040, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Goncharov, M.; Hahn, K.; Henderson, C.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Byrum, K. L.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Byrum, K. L.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P. -H.; Byrum, K. L.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Beauchemin, P. -H.; Byrum, K. L.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Canelli, F.; Cully, J. C.; Gerdes, D.] Univ Michigan, Ann Arbor, MI 48109 USA. [Brubaker, E.; Campbell, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Compostella, G.; Donini, J.; Dorigo, T.] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.] Univ Padua, I-35131 Padua, Italy. [Chen, Y. C.; Hou, S.] Univ Paris 06, CNRS, IN2P3, LPNHE,UMR7585, F-75252 Paris, France. [Carls, B.; Heijboer, A.; Heinrich, J.; Keung, J.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Carrillo, S.; Chiarelli, G.; Dell'Orso, M.; Di Canto, A.; Giannetti, P.; Giunta, M.; Introzzi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Dell'Orso, M.; Di Canto, A.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.] Univ Siena, I-56127 Pisa, Italy. [Boveia, A.; Hartz, M.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bortoletto, D.; Boudreau, J.; Flanagan, G.; Garfinkel, A. F.; Jones, M.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Bolla, G.; Budd, S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Dionisi, C.; Gallinaro, M.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Dionisi, C.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Kamon, T.; Khotilovich, V.] Texas A&M Univ, College Stn, TX 77843 USA. [Di Ruzza, B.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy. [Di Ruzza, B.] Univ Trieste Udine, I-33100 Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carosi, R.; Chung, W. H.; Herndon, M.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Kim, H. W.; Kim, J. E.] Yale Univ, New Haven, CT 06520 USA. [Chang, S. H.; Cho, K.; Conway, J.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, S. B.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Conway, J.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, S. B.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Conway, J.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, S. B.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Conway, J.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, S. B.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Conway, J.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, S. B.] Chonnam Natl Univ, Kwangju 500757, South Korea. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Canelli, Florencia/O-9693-2016; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Xie, Si/O-6830-2016 OI Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Canelli, Florencia/0000-0001-6361-2117; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Xie, Si/0000-0003-2509-5731 FU U.S. Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A.P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean Science and Engineering Foundation; Korean Research Foundation; Science and Technology Facilities Council; Royal Society, U.K.; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; Slovak RD Agency; Academy of Finland FX This work was supported by the U.S. Department of Energy and the National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, U.K.; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland. NR 18 TC 37 Z9 37 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2009 VL 80 IS 3 AR 031103 DI 10.1103/PhysRevD.80.031103 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 492FU UT WOS:000269641100003 ER PT J AU Aoki, S Chiu, TW Fukaya, H Hashimoto, S Hsieh, TH Kaneko, T Matsufuru, H Noaki, J Onogi, T Shintani, E Yamada, N AF Aoki, S. Chiu, T. W. Fukaya, H. Hashimoto, S. Hsieh, T. H. Kaneko, T. Matsufuru, H. Noaki, J. Onogi, T. Shintani, E. Yamada, N. CA JLQCD TWQCD Collaborations TI Pion form factors from two-flavor lattice QCD with exact chiral symmetry SO PHYSICAL REVIEW D LA English DT Article ID MASSLESS QUARKS; GAUGE-THEORIES; ONE LOOP; EXPANSION AB We calculate pion vector and scalar form factors in two-flavor lattice QCD and study the chiral behavior of the vector and scalar radii < r(2)>(V,S). Numerical simulations are carried out on a 16(3) x 32 lattice at a lattice spacing of 0.12 fm with quark masses down to similar to m(s)/6, where m(s) is the physical strange quark mass. Chiral symmetry, which is essential for a direct comparison with chiral perturbation theory (ChPT), is exactly preserved in our calculation at finite lattice spacing by employing the overlap quark action. We utilize the so-called all-to-all quark propagator in order to calculate the scalar form factor including the contributions of disconnected diagrams and to improve statistical accuracy of the form factors. A detailed comparison with ChPT reveals that the next-to-next-to-leading-order contributions to the radii are essential to describe their chiral behavior in the region of quark mass from m(s)/6 to m(s)/2. Chiral extrapolation based on two-loop ChPT yields < r(2)>(V) = 0.409(23)(37) fm(2) and < r(2)>(S) = 0.617(79)(66) fm(2), which are consistent with phenomenological analysis. We also present our estimates of relevant low-energy constants. C1 [Aoki, S.] Univ Tsukuba, Grad Sch Pure & Appl Sci, Ibaraki 3058571, Japan. [Aoki, S.] Brookhaven Natl Lab, Riken BNL Res Ctr, Upton, NY 11973 USA. [Chiu, T. W.] Natl Taiwan Univ, Ctr Theoret Sci, Dept Phys, Taipei 10617, Taiwan. [Chiu, T. W.] Natl Taiwan Univ, Ctr Quantum Sci & Engn, Taipei 10617, Taiwan. [Fukaya, H.] Nagoya Univ, Dept Phys, Nagoya, Aichi 4648602, Japan. [Hashimoto, S.; Kaneko, T.; Noaki, J.; Yamada, N.] KEK, High Energy Accelerator Res Org, Ctr Theory, Tsukuba, Ibaraki 3050801, Japan. [Hashimoto, S.; Kaneko, T.; Yamada, N.] Grad Univ Adv Studies Sokendai, Sch High Energy Accelerator Sci, Tsukuba, Ibaraki 3050801, Japan. [Hsieh, T. H.] Acad Sinica, Res Ctr Appl Sci, Taipei 115, Taiwan. [Matsufuru, H.] KEK, High Energy Accelerator Res Org, Ctr Res Comp, Tsukuba, Ibaraki 3050801, Japan. [Onogi, T.; Shintani, E.] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan. RP Aoki, S (reprint author), Univ Tsukuba, Grad Sch Pure & Appl Sci, Ibaraki 3058571, Japan. RI Hsieh, Tung-Han/E-1740-2011; Shintani, Eigo/C-8623-2016; OI Chiu, Ting-Wai/0000-0002-7371-1132 NR 60 TC 33 Z9 33 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2009 VL 80 IS 3 AR 034508 DI 10.1103/PhysRevD.80.034508 PG 20 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 492FU UT WOS:000269641100065 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Cahn, RN Jacobsen, RG Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Gary, JW Liu, F Long, O Shen, BC Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Wilson, MG Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Ulmer, KA Wagner, SR Ayad, R Soffer, A Toki, WH Wilson, RJ Altenburg, DD Feltresi, E Hauke, A Jasper, H Karbach, M Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Mader, WF Nogowski, R Schubert, KR Schwierz, R Volk, A Bernard, D Bonneaud, GR Latour, E Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Adametz, A Marks, J Schenk, S Uwer, U Klose, V Lacker, HM Bard, DJ Dauncey, PD Nash, JA Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Arnaud, N Bequilleux, J D'Orazio, A Davier, M da Costa, JF Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK George, KA Di Lodovico, F Sacco, R Sigamani, M Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Schott, G Alwyn, KE Bailey, D Barlow, RJ Chia, YM Edgar, CL Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Li, X Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L Hamon, O Leruste, P Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S Escalier, M Esteve, L Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Gabareen, AM Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Pan, Y Pierini, M Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Garra Tico, J. Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Cahn, R. N. Jacobsen, R. G. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Wilson, M. G. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Ulmer, K. A. Wagner, S. R. Ayad, R. Soffer, A. Toki, W. H. Wilson, R. J. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Karbach, M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Mader, W. F. Nogowski, R. Schubert, K. R. Schwierz, R. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Klose, V. Lacker, H. M. Bard, D. J. Dauncey, P. D. Nash, J. A. Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. da Costa, J. Firmino Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. George, K. A. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Schott, G. Alwyn, K. E. Bailey, D. Barlow, R. J. Chia, Y. M. Edgar, C. L. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Li, X. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. Hamon, O. Leruste, Ph. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Escalier, M. Esteve, L. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Gabareen, A. M. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Pierini, M. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BaBar Collaboration TI Search for b -> u transitions in B-0 -> (DK)-K-0*(0) decays SO PHYSICAL REVIEW D LA English DT Article ID CP-VIOLATION; MODES; GAMMA AB We present a study of the decays B-0 -> (DK)-K-0*(0) and B-0 -> (D) over bar K-0*(0) and K*(0) -> K+pi(-). The D-0 and the (D) over bar (0) mesons are reconstructed in the final states f = K+pi(-), K+pi(-)pi(0), K+pi(-)pi(+)pi(-), and their charge conjugates. Using a sample of 465 x 10(6) B (B) over bar pairs collected with the BABAR detector at the PEP-II asymmetric-energy e(+)e(-) collider at SLAC, we measure the ratio R-ADS = [Gamma((B) over bar -> [f] (K) over bar (0)) + Gamma(B-0 -> [(f) over bar K-D*(0))]/[Gamma((B) over bar (0) -> [(f) over bar (D)(K)over bar>*(0))] + Gamma(B-0 -> [f](D)K*(0))] for the three final states. We do not find significant evidence for a signal and set the following limits at 95% probability: R-ADS (K pi) < 0.244, R-ADS (K pi pi(0)) < 0.181, and R-ADs (K pi pi pi)<0.391. From the combination of these three results, we find that the ratio r(S) between the b -> u and the b -> c amplitudes lies in the range [0.07,0.41] at 95% probability. C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Garra Tico, J.; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Cahn, R. N.; Jacobsen, R. G.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, H.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Mader, W. F.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Clarke, C. K.; George, K. A.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Schott, G.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Li, X.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [Raven, G.; Snoek, H. L.] NIKHEF, Natl Inst Nucl Phys & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Escalier, M.; Esteve, L.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, Irfu, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gabareen, A. M.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.; Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Valencia, IFIC, E-46071 Valencia, Spain. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Pierini, M.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.] Univ Paris 06, CNRS, IN2P3, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Sanchez, P. del Amo; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.] Univ Paris 07, CNRS, IN2P3, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Jackson, G.; Anulli, F.; Baracchini, E.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Sordini, V.; Baracchini, E.; del Re, D.; Di Marco, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Polci, F.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI dong, liaoyuan/A-5093-2015; Rizzo, Giuliana/A-8516-2015; Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Neri, Nicola/G-3991-2012; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Della Ricca, Giuseppe/B-6826-2013; Negrini, Matteo/C-8906-2014; Patrignani, Claudia/C-5223-2009; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014 OI Sciacca, Crisostomo/0000-0002-8412-4072; Adye, Tim/0000-0003-0627-5059; Lafferty, George/0000-0003-0658-4919; Faccini, Riccardo/0000-0003-2613-5141; Cavoto, Gianluca/0000-0003-2161-918X; Wilson, Robert/0000-0002-8184-4103; Strube, Jan/0000-0001-7470-9301; Chen, Chunhui /0000-0003-1589-9955; Ebert, Marcus/0000-0002-3014-1512; Paoloni, Eugenio/0000-0001-5969-8712; Corwin, Luke/0000-0001-7143-3821; Bettarini, Stefano/0000-0001-7742-2998; Cibinetto, Gianluigi/0000-0002-3491-6231; dong, liaoyuan/0000-0002-4773-5050; Pacetti, Simone/0000-0002-6385-3508; Covarelli, Roberto/0000-0003-1216-5235; Rizzo, Giuliana/0000-0003-1788-2866; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Hamel de Monchenault, Gautier/0000-0002-3872-3592; Lanceri, Livio/0000-0001-8220-3095; Neri, Nicola/0000-0002-6106-3756; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Della Ricca, Giuseppe/0000-0003-2831-6982; Negrini, Matteo/0000-0003-0101-6963; Patrignani, Claudia/0000-0002-5882-1747; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300 FU European Union; A. P. Sloan Foundation FX We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare ( Italy), the Foundation for Fundamental Research on Matter ( The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Educacio ' n y Ciencia ( Spain), and the Science and Technology Facilities Council ( United Kingdom). Individuals have received support from the Marie- Curie IEF program (European Union) and the A. P. Sloan Foundation. NR 21 TC 46 Z9 46 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2009 VL 80 IS 3 AR 031102 DI 10.1103/PhysRevD.80.031102 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 492FU UT WOS:000269641100002 ER PT J AU Belikov, AV Hooper, D AF Belikov, Alexander V. Hooper, Dan TI How dark matter reionized the Universe SO PHYSICAL REVIEW D LA English DT Article ID INTERGALACTIC MEDIUM; DENSITY; IMPACT; ANNIHILATIONS; EVOLUTION; PHYSICS; DECAYS AB Although empirical evidence indicates that the Universe's gas had become ionized by redshift z approximate to 6, the mechanism by which this transition occurred remains unclear. In this article, we explore the possibility that dark matter annihilations may have played the dominant role in this process. Energetic electrons produced in these annihilations can scatter with the cosmic microwave background to generate relatively low energy gamma rays, which ionize and heat gas far more efficiently than higher energy prompt photons. In contrast to previous studies, we find that viable dark matter candidates with electroweak scale masses can naturally provide the dominant contribution to the reionization of the Universe. Intriguingly, we find that dark matter candidates capable of producing the recent cosmic ray positron excesses observed by PAMELA (or the electrons spectrum measured by the Fermi Gamma Ray Space Telescope) are also predicted to lead to the full reionization of the Universe by z similar to 6. C1 [Belikov, Alexander V.; Hooper, Dan] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Hooper, Dan] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. RP Belikov, AV (reprint author), Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. OI Belikov, Alexander/0000-0002-5649-0913 FU US Department of Energy, [DE-FG02-95ER40896]; NASA [NAG5-10842] FX We would like to thank Nick Gnedin and Aravind Natarajan for very helpful discussions. This work has been supported by the US Department of Energy, including Grant No. DE-FG02-95ER40896, and by NASA Grant No. NAG5-10842. NR 55 TC 45 Z9 46 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2009 VL 80 IS 3 AR 035007 DI 10.1103/PhysRevD.80.035007 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 492FU UT WOS:000269641100072 ER PT J AU Bernard, C Detar, C Di Pierro, M El-Khadra, AX Evans, RT Freeland, ED Gamiz, E Gottlieb, S Heller, UM Hetrick, JE Kronfeld, AS Laiho, J Levkova, L Mackenzie, PB Okamoto, M Oktay, MB Simone, JN Sugar, R Toussaint, D Van de Water, RS AF Bernard, C. DeTar, C. Di Pierro, M. El-Khadra, A. X. Evans, R. T. Freeland, E. D. Gamiz, E. Gottlieb, Steven Heller, U. M. Hetrick, J. E. Kronfeld, A. S. Laiho, J. Levkova, L. Mackenzie, P. B. Okamoto, M. Oktay, M. B. Simone, J. N. Sugar, R. Toussaint, D. Van de Water, R. S. CA Fermilab Lattice MILC Collaboratio TI Visualization of semileptonic form factors from lattice QCD SO PHYSICAL REVIEW D LA English DT Article ID TWISTED BOUNDARY-CONDITIONS; BRANCHING FRACTIONS; DECAYS; HEAVY AB Comparisons of lattice-QCD calculations of semileptonic form factors with experimental measurements often display two sets of points, one each for lattice QCD and experiment. Here we propose to display the output of a lattice-QCD analysis as a curve and error band. This is justified, because lattice-QCD results rely in part on fitting, both for the chiral extrapolation and to extend lattice-QCD data over the full physically allowed kinematic domain. To display an error band, correlations in the fit parameters must be taken into account. For the statistical error, the correlation comes from the fit. To illustrate how to address correlations in the systematic errors, we use the Becirevic-Kaidalov parametrization of the D pi l nu and D -> Kl nu form factors, and an analyticity-based fit for the B -> pi l nu form factor f(+). C1 [Bernard, C.; Laiho, J.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [DeTar, C.; Levkova, L.; Oktay, M. B.] Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA. [Di Pierro, M.] Depaul Univ, Sch Comp Sci Telecommun & Informat Syst, Chicago, IL 60604 USA. [El-Khadra, A. X.; Evans, R. T.; Gamiz, E.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Freeland, E. D.] Sch Art Inst Chicago, Liberal Arts Dept, Chicago, IL USA. [Gottlieb, Steven] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Heller, U. M.] Amer Phys Soc, New York, NY USA. [Hetrick, J. E.] Univ Pacific, Dept Phys, Stockton, CA 95211 USA. [Kronfeld, A. S.; Mackenzie, P. B.; Okamoto, M.; Simone, J. N.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Sugar, R.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Toussaint, D.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Van de Water, R. S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Bernard, C (reprint author), Washington Univ, Dept Phys, St Louis, MO 63130 USA. RI Gamiz, Elvira/E-8009-2016; OI Gamiz, Elvira/0000-0001-5125-2687; Simone, James/0000-0001-8515-3337; Heller, Urs M./0000-0002-2780-5584; Hetrick, James/0000-0002-0740-2251 FU U. S. Department of Energy [DE-FC02-06ER41446, DE-FG0291ER40661, DE-FG02-91ER40677, DE-FG02-91ER40628, DE-FG02-04ER41298, DE-AC02-08CH10886, DE-AC02-07CH11359]; National Science Foundation [PHY-0555243, PHY-0757333, PHY-0703296, PHY-0555235, PHY-0757035]; Universities Research Associates FX We would like to thank Ian Shipsey for encouraging us to think carefully about the correlations in the systematic errors. We would like to thank Laurenz Widhalm for providing the Belle data in numerical form [ 24], and Shipsey for the BABAR and CLEO D-decay data [ 27 29]. Computations for this work were carried out in part on facilities of the USQCD Collaboration, which are funded by the Office of Science of the United States Department of Energy. This work was supported in part by the U. S. Department of Energy under Grants No. DE-FC02-06ER41446 ( C. D., L. L., M. B. O.), No. DE-FG0291ER40661 ( S. G.), No. DE-FG02-91ER40677 ( A. X. EK., R. T. E., E. G.), No. DE-FG02-91ER40628 ( C. B., J. L.), and No. DE-FG02-04ER41298 ( D. T.); by the National Science Foundation under Grants No. PHY-0555243, No. PHY-0757333, No. PHY-0703296 ( C. D., L. L., M. B. O.), No. PHY-0555235 ( J. L.), and No. PHY-0757035 ( R. S.); and by Universities Research Associates ( R. T. E., E. G.). This manuscript has been coauthored by an employee of Brookhaven Science Associates, LLC, under Contract No. DE-AC02-08CH10886 with the U. S. Department of Energy. Fermilab is operated by Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the U. S. Department of Energy. NR 39 TC 21 Z9 21 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2009 VL 80 IS 3 AR 034026 DI 10.1103/PhysRevD.80.034026 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 492FU UT WOS:000269641100048 ER PT J AU Bilgici, E Flachi, A Itou, E Kurachi, M Lin, CJD Matsufuru, H Ohki, H Onogi, T Yamazaki, T AF Bilgici, Erek Flachi, Antonino Itou, Etsuko Kurachi, Masafumi Lin, C. -J. David Matsufuru, Hideo Ohki, Hiroshi Onogi, Tetsuya Yamazaki, Takeshi TI New scheme for the running coupling constant in gauge theories using Wilson loops SO PHYSICAL REVIEW D LA English DT Article ID DYNAMICAL SYMMETRY-BREAKING; QUENCHED LATTICE QCD; CHIRAL HIERARCHIES; TECHNICOLOR THEORIES; PHASE-TRANSITION; FLAVORS; COMPUTATION; HYPERCOLOR; SCALE; SU(2) AB We propose a new renormalization scheme of the running coupling constant in general gauge theories using the Wilson loops. The renormalized coupling constant is obtained from the Creutz ratio in lattice simulations and the corresponding perturbative coefficient at the leading order. The latter can be calculated by adopting the zeta-function resummation techniques. We perform a benchmark test of our scheme in quenched QCD with the plaquette gauge action. The running of the coupling constant is determined by applying the step-scaling procedure. Using several methods to improve the statistical accuracy, we show that the running coupling constant can be determined in a wide range of energy scales with a relatively small number of gauge configurations. C1 [Bilgici, Erek] Graz Univ, Inst Phys, A-8010 Graz, Austria. [Flachi, Antonino; Ohki, Hiroshi; Onogi, Tetsuya] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan. [Itou, Etsuko] Kogakuin Univ, Acad Support Ctr, Nakanomachi Hachioji 1920015, Japan. [Kurachi, Masafumi] Los Alamos Natl Lab, Theoret Div T, Los Alamos, NM 87544 USA. [Lin, C. -J. David] Natl Chiao Tung Univ, Inst Phys, Hsinchu 300, Taiwan. [Lin, C. -J. David] Natl Ctr Theoret Sci, Div Phys, Hsinchu 300, Taiwan. [Matsufuru, Hideo] KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. [Ohki, Hiroshi] Kyoto Univ, Dept Phys, Kyoto 6068501, Japan. [Yamazaki, Takeshi] Univ Tsukuba, Ctr Computat Sci, Tsukuba, Ibaraki 3058577, Japan. RP Bilgici, E (reprint author), Graz Univ, Inst Phys, A-8010 Graz, Austria. EM erek.bilgici@uni-graz.at; flachi@yukawa.kyoto-u.ac.jp; itou@yukawa.kyoto-u.ac.jp; kurachi@lanl.gov; dlin@mail.nctu.edu.tw; hideo.matsufuru@kek.jp; ohki@yukawa.kyoto-u.ac.jp; onogi@yukawa.kyoto-u.ac.jp; yamazaki@ccs.tsukuba.ac.jp RI Flachi, Antonino/I-3512-2013 OI Flachi, Antonino/0000-0001-6579-2414 NR 53 TC 24 Z9 24 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2009 VL 80 IS 3 AR 034507 DI 10.1103/PhysRevD.80.034507 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 492FU UT WOS:000269641100064 ER PT J AU Brambilla, N Vairo, A Tormo, XGI Soto, J AF Brambilla, Nora Vairo, Antonio Garcia i Tormo, Xavier Soto, Joan TI QCD static energy at next-to-next-to-next-to leading-logarithmic accuracy SO PHYSICAL REVIEW D LA English DT Article ID PRODUCTION NEAR-THRESHOLD; QUANTUM CHROMODYNAMICS; ULTRASOFT CONTRIBUTION; PERTURBATION-THEORY; HEAVY-QUARKONIUM; WAVE-FUNCTIONS; BETA-FUNCTION; ORDER; MASS; RENORMALIZATION AB We compute the static energy of QCD at short distances at next-to-next-to-next-to-leading logarithmic accuracy in terms of the three-loop singlet potential. By comparing our results with lattice data we extract the value of the unknown piece of the three-loop singlet potential. C1 [Brambilla, Nora; Vairo, Antonio] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany. [Brambilla, Nora; Vairo, Antonio] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Brambilla, Nora; Vairo, Antonio] Ist Nazl Fis Nucl, I-20133 Milan, Italy. [Garcia i Tormo, Xavier] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Soto, Joan] Univ Barcelona, Dept Estructura & Constituents Mat, E-08028 Barcelona, Catalonia, Spain. [Soto, Joan] Univ Barcelona, Inst Ciencies Cosmos, E-08028 Barcelona, Catalonia, Spain. RP Brambilla, N (reprint author), Tech Univ Munich, Dept Phys, D-85748 Garching, Germany. RI Brambilla, Nora/O-9943-2015; Soto, Joan/F-5021-2016 OI Soto, Joan/0000-0001-5521-0900 FU MECINFN; RTN Flavianet [MRTN-CT-2006-035482]; CPAN [FPA2007-60275/, FPA2007-66665-C02-01/MEC]; ConsoliderIngenio 2010 program ( Spain) [CSD2007-00042]; CIRIT [2005SGR00564]; U. S. Department of Energy; Division of High Energy Physics [DE-AC02-06CH11357]; DFG FX We thank A. Pineda for many clarifications. N. B., J. S., and A. V. acknowledge financial support from the MECINFN exchange program (Italy-Spain) and the RTN Flavianet under Contract No. MRTN-CT-2006-035482 (EU). J. S. acknowledge financial support from the FPA2007-60275/ and FPA2007-66665-C02-01/MEC Grants, from the CPAN CSD2007-00042 ConsoliderIngenio 2010 program ( Spain), and the 2005SGR00564 CIRIT Grant ( Catalonia). The work of X. G. T. was supported in part by the U. S. Department of Energy, Division of High Energy Physics, under Contract No. DE-AC02-06CH11357. The research of N. B. and A. V. was partially supported by the DFG cluster of excellence "Origin and Structure of the Universe''[39].. NR 38 TC 35 Z9 35 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2009 VL 80 IS 3 AR 034016 DI 10.1103/PhysRevD.80.034016 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 492FU UT WOS:000269641100038 ER PT J AU Carlson, J White, M Padmanabhan, N AF Carlson, Jordan White, Martin Padmanabhan, Nikhil TI Critical look at cosmological perturbation theory techniques SO PHYSICAL REVIEW D LA English DT Article ID FRIEDMAN-LEMAITRE COSMOLOGIES; N-BODY SIMULATIONS; GRAVITATIONAL-INSTABILITY; POWER SPECTRUM; NONLINEAR EVOLUTION; LAGRANGIAN THEORY; ZELDOVICH APPROXIMATION; LINEAR REGIME; DARK-ENERGY; EXPANSIONS AB Recently, a number of analytic prescriptions for computing the nonlinear matter power spectrum have appeared in the literature. These typically involve resummation or closure prescriptions which do not have a rigorous error control, thus they must be compared with numerical simulations to assess their range of validity. We present a direct side-by-side comparison of several of these analytic approaches, using a suite of high-resolution N-body simulations as a reference, and discuss some general trends. All of the analytic results correctly predict the behavior of the power spectrum at the onset of nonlinearity, and improve upon a pure linear theory description at very large scales. All of these theories fail at sufficiently small scales. At low redshift the dynamic range in scale where perturbation theory is both relevant and reliable can be quite small. We also compute for the first time the two-loop contribution to standard perturbation theory for cold dark matter models, finding improved agreement with simulations at large redshift. At low redshifts however the two-loop term is larger than the one-loop term on quasilinear scales, indicating a breakdown of the perturbation expansion. Finally, we comment on possible implications of our results for future studies. A software package implementing the methods presented here is available at http://mwhite.berkeley.edu/Copter. C1 [Carlson, Jordan] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [White, Martin] Univ Calif Berkeley, Dept Phys & Astron, Berkeley, CA 94720 USA. [Padmanabhan, Nikhil] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. RP Carlson, J (reprint author), Univ Calif Berkeley, Dept Phys, 366 LeConte Hall, Berkeley, CA 94720 USA. EM jwgcarlson@berkeley.edu; mwhite@berkeley.edu; NPadmanabhan@lbl.gov RI Padmanabhan, Nikhil/A-2094-2012; White, Martin/I-3880-2015 OI White, Martin/0000-0001-9912-5070 NR 57 TC 111 Z9 111 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2009 VL 80 IS 4 AR 043531 DI 10.1103/PhysRevD.80.043531 PG 17 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 492FX UT WOS:000269641400046 ER PT J AU Davoudiasl, H AF Davoudiasl, Hooman TI Dark matter with time-varying leptophilic couplings SO PHYSICAL REVIEW D LA English DT Article ID HIERARCHY; DIMENSION; ENERGIES AB Two general problems arise when interpreting the recent cosmic ray data as signals of dark matter (DM) annihilation: (i) the required cross section is too large by O(100), and (ii) the annihilation products seem to be mostly leptonic. We propose to address these two problems by assuming that the couplings of DM to leptons grow with time. This can be achieved by a dynamic localization of DM in extra dimensions. A possible outcome of this proposal is a time (redshift) dependent annihilation signal, in terms of strength and dominant final states. C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Davoudiasl, H (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM hooman@bnl.gov NR 33 TC 7 Z9 7 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2009 VL 80 IS 4 AR 043502 DI 10.1103/PhysRevD.80.043502 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 492FX UT WOS:000269641400017 ER PT J AU de Florian, D Sassot, R Stratmann, M Vogelsang, W AF de Florian, Daniel Sassot, Rodolfo Stratmann, Marco Vogelsang, Werner TI Extraction of spin-dependent parton densities and their uncertainties SO PHYSICAL REVIEW D LA English DT Review ID TO-LEADING-ORDER; DEEP-INELASTIC-SCATTERING; POLARIZED QUARK DISTRIBUTIONS; ANTIQUARK FLAVOR ASYMMETRY; HYPERON SEMILEPTONIC DECAYS; TARGET MASS CORRECTIONS; VECTOR BOSON PRODUCTION; N-C LIMIT; SPLITTING FUNCTIONS; QCD CORRECTIONS AB We discuss techniques and results for the extraction of the nucleon's spin-dependent parton distributions and their uncertainties from data for polarized deep-inelastic lepton-nucleon and proton-proton scattering by means of a global QCD analysis. Computational methods are described that significantly increase the speed of the required calculations to a level that allows one to perform the full analysis consistently at next-to-leading order accuracy. We examine how the various data sets help to constrain different aspects of the quark, antiquark, and gluon helicity distributions. Uncertainty estimates are performed using both the Lagrange multiplier and the Hessian approaches. We use the extracted parton distribution functions and their estimated uncertainties to predict spin asymmetries for high-transverse momentum pion and jet production in polarized proton-proton collisions at 500 GeV center-of-mass system energy at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory, as well as for W boson production. C1 [de Florian, Daniel; Sassot, Rodolfo] Univ Buenos Aires, Dept Fis, RA-1428 Buenos Aires, DF, Argentina. [Stratmann, Marco] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany. [Stratmann, Marco] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany. [Vogelsang, Werner] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP de Florian, D (reprint author), Univ Buenos Aires, Dept Fis, Ciudad Univ,Pabellon 1, RA-1428 Buenos Aires, DF, Argentina. EM deflo@df.uba.ar; sassot@df.uba.ar; marco@ribf.riken.jp; vogelsan@quark.phy.bnl.gov RI de Florian, Daniel/B-6902-2011 OI de Florian, Daniel/0000-0002-3724-0695 NR 159 TC 169 Z9 170 U1 3 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2009 VL 80 IS 3 AR 034030 DI 10.1103/PhysRevD.80.034030 PG 26 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 492FU UT WOS:000269641100052 ER PT J AU Draper, P Liu, T Wagner, CEM AF Draper, Patrick Liu, Tao Wagner, Carlos E. M. TI Prospects for MSSM Higgs boson searches at the Fermilab Tevatron SO PHYSICAL REVIEW D LA English DT Article ID SUPERSYMMETRIC STANDARD MODEL; EXPLICIT CP VIOLATION; BENCHMARK SCENARIOS; COMPUTATIONAL TOOL; HADRON COLLIDERS; MASS; UNIFICATION; PHENOMENOLOGY; PHYSICS; LHC AB We analyze the Tevatron reach for neutral Higgs bosons in the minimal supersymmetric standard model, using current exclusion limits on the standard model Higgs. We study four common benchmark scenarios for the soft supersymmetry-breaking parameters of the minimal supersymmetric standard model, including cases where the Higgs decays differ significantly from the standard model, and provide projections for the improvements in luminosity and efficiency required for the Tevatron to probe sizeable regions of the (m(A), tan beta) plane. C1 [Draper, Patrick; Liu, Tao; Wagner, Carlos E. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Wagner, Carlos E. M.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Draper, Patrick; Wagner, Carlos E. M.] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. RP Draper, P (reprint author), Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. FU U.S. Department of Energy (DOE) [DE-AC02-06CH11357, DE-FG02-90ER40560, DE-FGO2-96ER40956]; Fermi-McCormick FX Work at ANL is supported in part by the U.S. Department of Energy (DOE), Division of HEP, Contract No. DE-AC02-06CH11357. Work at EFI is supported in part by the DOE through Grant No. DE-FG02-90ER40560. T. L. is also supported by Fermi-McCormick. This work was supported in part by the DOE under Task TeV Contract No. DE-FGO2-96ER40956. NR 54 TC 14 Z9 14 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2009 VL 80 IS 3 AR 035025 DI 10.1103/PhysRevD.80.035025 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 492FU UT WOS:000269641100090 ER PT J AU Hidaka, Y Pisarski, RD AF Hidaka, Yoshimasa Pisarski, Robert D. TI Hard thermal loops, to quadratic order, in the background of a spatial 't Hooft loop SO PHYSICAL REVIEW D LA English DT Review ID QUARK-GLUON PLASMA; HOT GAUGE-THEORIES; 3-LOOP FREE-ENERGY; YANG-MILLS THEORY; FINITE-TEMPERATURE; PHASE-TRANSITION; POLYAKOV LOOP; INTERFACE TENSION; DOMAIN-WALLS; WILSON LOOP AB We compute the simplest hard thermal loops for a spatial 't Hooft loop in the deconfined phase of a SU(N) gauge theory. We expand to quadratic order about a constant background field A(0) = Q/g, where Q is a diagonal, color matrix and g is the gauge coupling constant. We analyze the problem in sufficient generality that the techniques developed can be applied to compute transport properties in a "semi"-quark gluon plasma. Notably, computations are done using the double line notation at finite N. The quark self-energy is a Q-dependent thermal mass squared similar to g(2)T(2), where T is the temperature, times the same hard thermal loop as at Q = 0. The gluon self-energy involves two pieces: a Q-dependent Debye mass squared, similar to g(2)T(2), times the same hard thermal loop as for Q = 0, plus a new hard thermal loop similar to g(2)T(3), due to the color electric field generated by a spatial 't Hooft loop. C1 [Hidaka, Yoshimasa] Kyoto Univ, Dept Phys, Sakyo Ku, Kyoto 6068502, Japan. [Pisarski, Robert D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Hidaka, Y (reprint author), Kyoto Univ, Dept Phys, Sakyo Ku, Kyoto 6068502, Japan. FU U.S. Department of Energy [DE-AC02-98CH10886]; Alexander von Humboldt Foundation; Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan FX This research of R. D. P. was supported by the U.S. Department of Energy under Cooperative Research Agreement No. DE-AC02-98CH10886. R. D. P. also thanks the Alexander von Humboldt Foundation for their support. This research of Y. H. was supported by the Grant-in-Aid for the Global COE Program "The Next Generation of Physics, Spun from Universality and Emergence" from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. We thank M. Creutz, K. Hubner, F. Karsch, O. Kaczmarek, C. P. Korthals Altes, P. Petreczky, C. Pica, R. Venugopalan, and L. Yaffe for discussions. We especially thank P. Cvitanovic for his detailed comments on Sec. II. NR 139 TC 28 Z9 28 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2009 VL 80 IS 3 AR 036004 DI 10.1103/PhysRevD.80.036004 PG 24 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 492FU UT WOS:000269641100096 ER PT J AU Kharzeev, DE Warringa, HJ AF Kharzeev, Dmitri E. Warringa, Harmen J. TI Chiral magnetic conductivity SO PHYSICAL REVIEW D LA English DT Article ID HEAVY-ION COLLISIONS; SYMMETRY BREAKING; PARITY VIOLATION; ODD BUBBLES; HOT QCD; FIELD; CONDENSATE; INSTANTONS; ANOMALIES AB Gluon field configurations with nonzero topological charge generate chirality, inducing P- and CP-odd effects. When a magnetic field is applied to a system with nonzero chirality, an electromagnetic current is generated along the direction of the magnetic field. The induced current is equal to the chiral magnetic conductivity times the magnetic field. In this article we will compute the chiral magnetic conductivity of a high-temperature plasma for nonzero frequencies. This allows us to discuss the effects of time-dependent magnetic fields, such as produced in heavy ion collisions, on chirally asymmetric systems. C1 [Kharzeev, Dmitri E.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Warringa, Harmen J.] Goethe Univ Frankfurt, Inst Theoret Phys, D-60438 Frankfurt, Germany. RP Kharzeev, DE (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM kharzeev@bnl.gov; warringa@th.physik.uni-frankfurt.de FU U. S. Department of Energy. [DE-AC02-98CH10886]; Alexander von Humboldt Foundation; ExtreMe Matter Institute EMMI [HA216/EMMI] FX We are grateful to Kenji Fukushima, Larry McLerran, Dirk Rischke, and Andreas Schmitt for discussions. This manuscript has been authored under Contract No. # DE-AC02-98CH10886 with the U. S. Department of Energy. The work of H. J. W. was supported partly by the Alexander von Humboldt Foundation and partly by the ExtreMe Matter Institute EMMI in the framework of the Helmholtz Alliance Program of the Helmholtz Association (HA216/EMMI). NR 56 TC 133 Z9 135 U1 3 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2009 VL 80 IS 3 AR 034028 DI 10.1103/PhysRevD.80.034028 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 492FU UT WOS:000269641100050 ER PT J AU Mardon, J Nomura, Y Thaler, J AF Mardon, Jeremy Nomura, Yasunori Thaler, Jesse TI Cosmic signals from the hidden sector SO PHYSICAL REVIEW D LA English DT Article ID DYNAMICAL SUPERSYMMETRY BREAKING; DARK-MATTER; COSMOLOGICAL CONSTRAINTS; SYMMETRY-BREAKING; AXION; SUPERGRAVITY; GRAVITINO; ENERGIES; PHYSICS; DECAY AB Cosmologically long-lived, composite states arise as natural dark matter candidates in theories with a strongly interacting hidden sector at a scale of 10-100 TeV. Light axionlike states, with masses in the 1 MeV-10 GeV range, are also generic, and can decay via Higgs couplings to light standard model particles. Such a scenario is well motivated in the context of very low-energy supersymmetry breaking, where ubiquitous cosmological problems associated with the gravitino are avoided. We investigate the astrophysical and collider signatures of this scenario, assuming that dark matter decays into the axionlike states via dimension six operators, and we present an illustrative model exhibiting these features. We conclude that the recent data from PAMELA, FERMI, and H. E. S. S. points to this setup as a compelling paradigm for dark matter. This has important implications for future diffuse gamma ray measurements and collider searches. C1 [Mardon, Jeremy] Univ Calif Berkeley, Dept Phys, Ctr Theoret Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. RP Mardon, J (reprint author), Univ Calif Berkeley, Dept Phys, Ctr Theoret Phys, Berkeley, CA 94720 USA. OI Thaler, Jesse/0000-0002-2406-8160; Nomura, Yasunori/0000-0002-1497-1479 FU Director, Office of Science, Office of High Energy and Nuclear Physics, of the US Department of Energy [DE-AC02-05CH11231]; National Science Foundation [PHY-0457315, PHY-0555661]; Alfred P. Sloan Foundation; Miller Institute for Basic Research in Science FX This work was supported in part by the Director, Office of Science, Office of High Energy and Nuclear Physics, of the US Department of Energy under Contract DE-AC02-05CH11231, and in part by the National Science Foundation under grant PHY-0457315. The work of Y.N. was supported in part by the National Science Foundation under grant PHY-0555661 and the Alfred P. Sloan Foundation. J.T. is supported by the Miller Institute for Basic Research in Science. NR 99 TC 53 Z9 53 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2009 VL 80 IS 3 AR 035013 DI 10.1103/PhysRevD.80.035013 PG 22 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 492FU UT WOS:000269641100078 ER PT J AU Martin, SP Younkin, JE AF Martin, Stephen P. Younkin, James E. TI Radiative corrections to stoponium annihilation decays SO PHYSICAL REVIEW D LA English DT Article ID SUPERSYMMETRIC ELECTROWEAK BARYOGENESIS; BOUND-STATE PRODUCTION; PHASE-TRANSITION; HADRON COLLIDERS; QCD CORRECTIONS; QUARKONIUM; MSSM; SQUARKONIUM; HIGGS AB The lighter top squark in supersymmetry can live long enough to form hadronic bound states if it has no kinematically allowed two-body decays that conserve flavor. In this case, scalar stoponium may be observable through its diphoton decay mode at the CERN Large Hadron Collider, enabling a uniquely precise measurement of the top-squark mass. The viability of the signal depends crucially on the branching ratio to diphotons. We compute the next-to-leading-order QCD radiative corrections to stoponium annihilation decays to hadrons, photons, and Higgs scalar bosons. We find that the effect of these corrections is to significantly decrease the predicted branching ratio to the important diphoton channel. We also find a greatly improved renormalization-scale dependence of the diphoton branching ratio prediction. C1 [Martin, Stephen P.; Younkin, James E.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Martin, Stephen P.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Martin, SP (reprint author), No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. FU National Science Foundation [PHY-0757325] FX This work was supported in part by National Science Foundation Grant No. PHY-0757325. NR 65 TC 19 Z9 19 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2009 VL 80 IS 3 AR 035026 DI 10.1103/PhysRevD.80.035026 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 492FU UT WOS:000269641100091 ER PT J AU Osipenko, M Ripani, M Ricco, G Avakian, H De Vita, R Adams, G Amaryan, MJ Ambrozewicz, P Anghinolfi, M Asryan, G Bagdasaryan, H Baillie, N Ball, JP Baltzell, NA Barrow, S Battaglieri, M Bedlinskiy, I Bektasoglu, M Bellis, M Benmouna, N Berman, BL Biselli, AS Blaszczyk, L Bonner, BE Bouchigny, S Boiarinov, S Bradford, R Branford, D Briscoe, WJ Brooks, WK Bultmann, S Burkert, VD Butuceanu, C Calarco, JR Careccia, SL Carman, DS Cazes, A Ceccopieri, F Chen, S Cole, PL Collins, P Coltharp, P Corvisiero, P Crabb, D Crede, V Cummings, JP Dashyan, N De Masi, R De Sanctis, E Degtyarenko, PV Denizli, H Dennis, L Deur, A Dharmawardane, KV Dhuga, KS Dickson, R Djalali, C Dodge, GE Donnelly, J Doughty, D Drozdov, V Dugger, M Dytman, S Dzyubak, OP Egiyan, H Egiyan, KS El Fassi, L Elouadrhiri, L Eugenio, P Fatemi, R Fedotov, G Feldman, G Feuerbach, RJ Funsten, H Garcon, M Gavalian, G Gilfoyle, GP Giovanetti, KL Girod, FX Goetz, JT Golovach, E Gonenc, A Gordon, CIO Gothe, RW Griffioen, KA Guidal, M Guillo, M Guler, N Guo, L Gyurjyan, V Hadjidakis, C Hafidi, K Hakobyan, H Hakobyan, RS Hanretty, C Hardie, J Hassall, N Heddle, D Hersman, FW Hicks, K Hleiqawi, I Holtrop, M Hyde-Wright, CE Ilieva, Y Ilyichev, A Ireland, DG Ishkhanov, BS Isupov, EL Ito, MM Jenkins, D Jo, HS Joo, K Juengst, HG Kalantarians, N Kellie, JD Khandaker, M Kim, W Klein, A Klein, FJ Klimenko, AV Kossov, M Krahn, Z Kramer, LH Kubarovsky, V Kuhn, J Kuhn, SE Kuleshov, SV Lachniet, J Laget, JM Langheinrich, J Lawrence, D Li, J Livingston, K Lu, HY MacCormick, M Markov, N Mattione, P McAleer, S McCracken, M McKinnon, B McNabb, JWC Mecking, BA Mehrabyan, S Melone, JJ Mestayer, MD Meyer, CA Mibe, T Mikhailov, K Minehart, R Mirazita, M Miskimen, R Mokeev, V Moriya, K Morrow, SA Moteabbed, M Mueller, J Munevar, E Mutchler, GS Nadel-Turonski, P Napolitano, J Nasseripour, R Niccolai, S Niculescu, G Niculescu, I Niczyporuk, BB Niroula, MR Niyazov, RA Nozar, M O'Rielly, GV Ostrovidov, AI Park, K Pasyuk, E Paterson, C Pereira, SA Philips, SA Pierce, J Pivnyuk, N Pocanic, D Pogorelko, O Polli, E Popa, I Pozdniakov, S Preedom, BM Price, JW Prok, Y Protopopescu, D Qin, LM Raue, BA Riccardi, G Ritchie, BG Rosner, G Rossi, P Rubin, PD Sabatie, F Salamanca, J Salgado, C Santoro, JP Sapunenko, V Schumacher, RA Serov, VS Sharabian, YG Shvedunov, NV Skabelin, AV Smith, ES Smith, LC Sober, DI Sokhan, D Stavinsky, A Stepanyan, SS Stepanyan, S Stokes, BE Stoler, P Strakovsky, II Strauch, S Taiuti, M Tedeschi, DJ Thoma, U Tkabladze, A Tkachenko, S Todor, L Trentadue, L Tur, C Ungaro, M Vineyard, MF Vlassov, AV Watts, DP Weinstein, LB Weygand, DP Williams, M Wolin, E Wood, MH Yegneswaran, A Zana, L Zhang, J Zhao, B Zhao, ZW AF Osipenko, M. Ripani, M. Ricco, G. Avakian, H. De Vita, R. Adams, G. Amaryan, M. J. Ambrozewicz, P. Anghinolfi, M. Asryan, G. Bagdasaryan, H. Baillie, N. Ball, J. P. Baltzell, N. A. Barrow, S. Battaglieri, M. Bedlinskiy, I. Bektasoglu, M. Bellis, M. Benmouna, N. Berman, B. L. Biselli, A. S. Blaszczyk, L. Bonner, B. E. Bouchigny, S. Boiarinov, S. Bradford, R. Branford, D. Briscoe, W. J. Brooks, W. K. Bueltmann, S. Burkert, V. D. Butuceanu, C. Calarco, J. R. Careccia, S. L. Carman, D. S. Cazes, A. Ceccopieri, F. Chen, S. Cole, P. L. Collins, P. Coltharp, P. Corvisiero, P. Crabb, D. Crede, V. Cummings, J. P. Dashyan, N. De Masi, R. De Sanctis, E. Degtyarenko, P. V. Denizli, H. Dennis, L. Deur, A. Dharmawardane, K. V. Dhuga, K. S. Dickson, R. Djalali, C. Dodge, G. E. Donnelly, J. Doughty, D. Drozdov, V. Dugger, M. Dytman, S. Dzyubak, O. P. Egiyan, H. Egiyan, K. S. El Fassi, L. Elouadrhiri, L. Eugenio, P. Fatemi, R. Fedotov, G. Feldman, G. Feuerbach, R. J. Funsten, H. Garcon, M. Gavalian, G. Gilfoyle, G. P. Giovanetti, K. L. Girod, F. X. Goetz, J. T. Golovach, E. Gonenc, A. Gordon, C. I. O. Gothe, R. W. Griffioen, K. A. Guidal, M. Guillo, M. Guler, N. Guo, L. Gyurjyan, V. Hadjidakis, C. Hafidi, K. Hakobyan, H. Hakobyan, R. S. Hanretty, C. Hardie, J. Hassall, N. Heddle, D. Hersman, F. W. Hicks, K. Hleiqawi, I. Holtrop, M. Hyde-Wright, C. E. Ilieva, Y. Ilyichev, A. Ireland, D. G. Ishkhanov, B. S. Isupov, E. L. Ito, M. M. Jenkins, D. Jo, H. S. Joo, K. Juengst, H. G. Kalantarians, N. Kellie, J. D. Khandaker, M. Kim, W. Klein, A. Klein, F. J. Klimenko, A. V. Kossov, M. Krahn, Z. Kramer, L. H. Kubarovsky, V. Kuhn, J. Kuhn, S. E. Kuleshov, S. V. Lachniet, J. Laget, J. M. Langheinrich, J. Lawrence, D. Li, Ji Livingston, K. Lu, H. Y. MacCormick, M. Markov, N. Mattione, P. McAleer, S. McCracken, M. McKinnon, B. McNabb, J. W. C. Mecking, B. A. Mehrabyan, S. Melone, J. J. Mestayer, M. D. Meyer, C. A. Mibe, T. Mikhailov, K. Minehart, R. Mirazita, M. Miskimen, R. Mokeev, V. Moriya, K. Morrow, S. A. Moteabbed, M. Mueller, J. Munevar, E. Mutchler, G. S. Nadel-Turonski, P. Napolitano, J. Nasseripour, R. Niccolai, S. Niculescu, G. Niculescu, I. Niczyporuk, B. B. Niroula, M. R. Niyazov, R. A. Nozar, M. O'Rielly, G. V. Ostrovidov, A. I. Park, K. Pasyuk, E. Paterson, C. Pereira, S. Anefalos Philips, S. A. Pierce, J. Pivnyuk, N. Pocanic, D. Pogorelko, O. Polli, E. Popa, I. Pozdniakov, S. Preedom, B. M. Price, J. W. Prok, Y. Protopopescu, D. Qin, L. M. Raue, B. A. Riccardi, G. Ritchie, B. G. Rosner, G. Rossi, P. Rubin, P. D. Sabatie, F. Salamanca, J. Salgado, C. Santoro, J. P. Sapunenko, V. Schumacher, R. A. Serov, V. S. Sharabian, Y. G. Shvedunov, N. V. Skabelin, A. V. Smith, E. S. Smith, L. C. Sober, D. I. Sokhan, D. Stavinsky, A. Stepanyan, S. S. Stepanyan, S. Stokes, B. E. Stoler, P. Strakovsky, I. I. Strauch, S. Taiuti, M. Tedeschi, D. J. Thoma, U. Tkabladze, A. Tkachenko, S. Todor, L. Trentadue, L. Tur, C. Ungaro, M. Vineyard, M. F. Vlassov, A. V. Watts, D. P. Weinstein, L. B. Weygand, D. P. Williams, M. Wolin, E. Wood, M. H. Yegneswaran, A. Zana, L. Zhang, J. Zhao, B. Zhao, Z. W. CA CLAS Collaboration TI Measurement of semi-inclusive pi(+) electroproduction off the proton SO PHYSICAL REVIEW D LA English DT Article ID DEEP-INELASTIC-SCATTERING; TARGET FRAGMENTATION REGION; TRANSVERSE-MOMENTUM; PARTON DISTRIBUTIONS; AZIMUTHAL ASYMMETRY; PION ELECTROPRODUCTION; CHARGED HADRONS; HARD PROCESSES; LEADING ORDER; CROSS-SECTION AB Semi-inclusive pi(+) electroproduction on protons has been measured with the CLAS detector at Jefferson Lab. The measurement was performed on a liquid-hydrogen target using a 5.75 GeV electron beam. The complete five-fold differential cross sections were measured over a wide kinematic range including the complete range of azimuthal angles between hadronic and leptonic planes, phi, enabling us to separate the phi-dependent terms. Our measurements of the phi-independent term of the cross section at low Bjorken x were found to be in fairly good agreement with pQCD calculations. Indeed, the conventional current fragmentation calculation can account for almost all of the observed cross section, even at small pi(+) momentum. The measured center-of-momentum spectra are in qualitative agreement with high-energy data, which suggests a surprising numerical similarity between the spectator diquark fragmentation in the present reaction and the antiquark fragmentation measured in e(+)e(-) collisions. We have observed that the two phi-dependent terms of the cross section are small. Within our precision the cos2 phi term is compatible with zero, except for the low-z region, and the measured cos phi term is much smaller in magnitude than the sum of the Cahn and Berger effects. C1 [Osipenko, M.; Ripani, M.; Ricco, G.; De Vita, R.; Anghinolfi, M.; Battaglieri, M.; Corvisiero, P.; Drozdov, V.; Taiuti, M.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [El Fassi, L.; Hafidi, K.] Argonne Natl Lab, Argonne, IL 60439 USA. [Ball, J. P.; Collins, P.; Dugger, M.; Pasyuk, E.; Ritchie, B. G.] Arizona State Univ, Tempe, AZ 85287 USA. [Price, J. W.] Calif State Univ Dominguez Hills, Carson, CA 90747 USA. [Bellis, M.; Bradford, R.; Dickson, R.; Feuerbach, R. J.; Funsten, H.; Krahn, Z.; Kuhn, J.; Lachniet, J.; McCracken, M.; McNabb, J. W. C.; Meyer, C. A.; Moriya, K.; Schumacher, R. A.; Todor, L.; Williams, M.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Hakobyan, R. S.; Klein, F. J.; Sober, D. I.] Catholic Univ Amer, Washington, DC 20064 USA. [De Masi, R.; Garcon, M.; Girod, F. X.; Laget, J. M.; Morrow, S. A.; Sabatie, F.] CEA Saclay, Serv Phys Nucl, F-91191 Gif Sur Yvette, France. [Doughty, D.; Hardie, J.] Christopher Newport Univ, Newport News, VA 23606 USA. [Baillie, N.; Butuceanu, C.; Egiyan, H.; Funsten, H.; Griffioen, K. A.] Coll William & Mary, Williamsburg, VA 23187 USA. [Branford, D.; Sokhan, D.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Biselli, A. S.] Fairfield Univ, Fairfield, CT 06824 USA. [Ambrozewicz, P.; Gonenc, A.; Kramer, L. H.; Moteabbed, M.; Nasseripour, R.; Raue, B. A.] Florida Int Univ, Miami, FL 33199 USA. [Cole, P. L.; Salamanca, J.] Idaho State Univ, Pocatello, ID 83209 USA. [Barrow, S.; Blaszczyk, L.; Chen, S.; Coltharp, P.; Crede, V.; Dennis, L.; Eugenio, P.; Hanretty, C.; McAleer, S.; Ostrovidov, A. I.; Riccardi, G.; Stokes, B. E.] Florida State Univ, Tallahassee, FL 32306 USA. [Ceccopieri, F.; Trentadue, L.] Ist Nazl Fis Nucl, Grp Coll Parma, I-43100 Parma, Italy. [De Sanctis, E.; Mirazita, M.; Pereira, S. Anefalos; Polli, E.; Rossi, P.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Bouchigny, S.; Guidal, M.; Hadjidakis, C.; Jo, H. S.; MacCormick, M.; Morrow, S. A.; Niccolai, S.] Inst Phys Nucl, F-91406 Orsay, France. [Bedlinskiy, I.; Boiarinov, S.; Cazes, A.; Kossov, M.; Mikhailov, K.; Pivnyuk, N.; Pogorelko, O.; Pozdniakov, S.; Serov, V. S.; Stavinsky, A.; Vlassov, A. V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Thoma, U.] Univ Bonn, Inst Strahlen & Kernphys, D-53115 Bonn, Germany. [Giovanetti, K. L.; Niculescu, G.; Niculescu, I.] James Madison Univ, Harrisonburg, VA 22807 USA. [Kim, W.; Park, K.; Stepanyan, S. S.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Skabelin, A. V.] MIT, Cambridge, MA 02139 USA. [Osipenko, M.; Drozdov, V.; Fedotov, G.; Golovach, E.; Ishkhanov, B. S.; Isupov, E. L.; Mokeev, V.; Shvedunov, N. V.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119899, Russia. [Ilyichev, A.] Phys Belarusian State Univ, Natl Sci & Educ Ctr Particle & High Energy, Minsk 220040, Byelarus. [Khandaker, M.; Salgado, C.] Norfolk State Univ, Norfolk, VA 23504 USA. [Hicks, K.; Hleiqawi, I.; Mibe, T.; Niculescu, G.] Ohio Univ, Athens, OH 45701 USA. [Amaryan, M. J.; Bagdasaryan, H.; Bektasoglu, M.; Bueltmann, S.; Careccia, S. L.; Dharmawardane, K. V.; Dodge, G. E.; Gavalian, G.; Guler, N.; Hyde-Wright, C. E.; Juengst, H. G.; Kalantarians, N.; Klein, A.; Klimenko, A. V.; Kuhn, S. E.; Lachniet, J.; Niroula, M. R.; Qin, L. M.; Tkachenko, S.; Weinstein, L. B.; Zhang, J.] Old Dominion Univ, Norfolk, VA 23529 USA. [Adams, G.; Bellis, M.; Biselli, A. S.; Cummings, J. P.; Kubarovsky, V.; Kuhn, J.; Li, Ji; Napolitano, J.; Niyazov, R. A.; Stoler, P.; Ungaro, M.] Rensselaer Polytech Inst, New York, NY 12180 USA. [Bonner, B. E.; Mattione, P.; Mutchler, G. S.] Rice Univ, Houston, TX 77005 USA. [Benmouna, N.; Berman, B. L.; Briscoe, W. J.; Dhuga, K. S.; Feldman, G.; Ilieva, Y.; Munevar, E.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, I.; O'Rielly, G. V.; Philips, S. A.; Popa, I.; Strakovsky, I. I.; Strauch, S.; Tkabladze, A.] George Washington Univ, Washington, DC 20052 USA. [Avakian, H.; Boiarinov, S.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Cole, P. L.; Degtyarenko, P. V.; Deur, A.; Doughty, D.; Egiyan, H.; Elouadrhiri, L.; Guo, L.; Gyurjyan, V.; Hardie, J.; Heddle, D.; Ito, M. M.; Joo, K.; Kramer, L. H.; Laget, J. M.; Mecking, B. A.; Mestayer, M. D.; Mokeev, V.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; Nozar, M.; Raue, B. A.; Santoro, J. P.; Sapunenko, V.; Sharabian, Y. G.; Smith, E. S.; Stepanyan, S.; Thoma, U.; Weygand, D. P.; Wolin, E.; Yegneswaran, A.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Vineyard, M. F.] Union Coll, Schenectady, NY 12308 USA. [Brooks, W. K.; Kuleshov, S. V.] Univ Tecn Federico Santa Maria, Valparaiso, Chile. [Ceccopieri, F.; Trentadue, L.] Univ Parma, I-43100 Parma, Italy. [Goetz, J. T.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Joo, K.; Markov, N.; Ungaro, M.; Zhao, B.] Univ Connecticut, Storrs, CT 06269 USA. [Donnelly, J.; Gordon, C. I. O.; Hassall, N.; Ireland, D. G.; Kellie, J. D.; Livingston, K.; McKinnon, B.; Melone, J. J.; Paterson, C.; Protopopescu, D.; Rosner, G.; Watts, D. P.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Lawrence, D.; Miskimen, R.] Univ Massachusetts, Amherst, MA 01003 USA. [Calarco, J. R.; Gavalian, G.; Hersman, F. W.; Holtrop, M.; Protopopescu, D.; Zana, L.] Univ New Hampshire, Durham, NH 03824 USA. [Denizli, H.; Dytman, S.; Mehrabyan, S.; Mueller, J.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Gilfoyle, G. P.; Rubin, P. D.; Vineyard, M. F.] Univ Richmond, Richmond, VA 23173 USA. [Baltzell, N. A.; Cazes, A.; Djalali, C.; Dzyubak, O. P.; Gothe, R. W.; Guillo, M.; Langheinrich, J.; Lu, H. Y.; Nasseripour, R.; Preedom, B. M.; Strauch, S.; Tedeschi, D. J.; Tur, C.; Wood, M. H.; Zhao, Z. W.] Univ S Carolina, Columbia, SC 29208 USA. [Crabb, D.; Fatemi, R.; Minehart, R.; Pierce, J.; Pocanic, D.; Prok, Y.; Smith, L. C.] Univ Virginia, Charlottesville, VA 22901 USA. [Jenkins, D.; Santoro, J. P.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. [Asryan, G.; Bagdasaryan, H.; Dashyan, N.; Egiyan, K. S.; Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. RP Osipenko, M (reprint author), Ist Nazl Fis Nucl, Via Dodecaneso 33, I-16146 Genoa, Italy. RI Meyer, Curtis/L-3488-2014; Sabatie, Franck/K-9066-2015; Osipenko, Mikhail/N-8292-2015; Zhang, Jixie/A-1461-2016; Drozdov, Vadim/E-5456-2012; Ireland, David/E-8618-2010; Bektasoglu, Mehmet/A-2074-2012; Lu, Haiyun/B-4083-2012; Protopopescu, Dan/D-5645-2012; riccardi, gabriele/A-9269-2012; Ishkhanov, Boris/E-1431-2012; Zhao, Bo/J-6819-2012; Brooks, William/C-8636-2013; Kuleshov, Sergey/D-9940-2013; Zana, Lorenzo/H-3032-2012; Isupov, Evgeny/J-2976-2012; Schumacher, Reinhard/K-6455-2013 OI Meyer, Curtis/0000-0001-7599-3973; Sabatie, Franck/0000-0001-7031-3975; Osipenko, Mikhail/0000-0001-9618-3013; Sapunenko, Vladimir/0000-0003-1877-9043; Ireland, David/0000-0001-7713-7011; Zhao, Bo/0000-0003-3171-5335; Brooks, William/0000-0001-6161-3570; Kuleshov, Sergey/0000-0002-3065-326X; Schumacher, Reinhard/0000-0002-3860-1827 FU Deutsche Forschungsgemeinschaft; Korean Science and Engineering Foundation. Jefferson Science Associates (JSA); Jefferson Science Associates (JSA) operates the Thomas Jefferson National Accelerator Facility for the United States Department of Energy [DE-AC0584ER40150] FX National Science Foundation, an Emmy Noether grant from the Deutsche Forschungsgemeinschaft and the Korean Science and Engineering Foundation. Jefferson Science Associates (JSA) operates the Thomas Jefferson National Accelerator Facility for the United States Department of Energy under Contract No. DE-AC0584ER40150. NR 74 TC 49 Z9 49 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2009 VL 80 IS 3 AR 032004 DI 10.1103/PhysRevD.80.032004 PG 33 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 492FU UT WOS:000269641100011 ER PT J AU Ramalho, G Tsushima, K Gross, F AF Ramalho, G. Tsushima, K. Gross, Franz TI Relativistic quark model for the Omega(-) electromagnetic form factors SO PHYSICAL REVIEW D LA English DT Article ID BARYON MAGNETIC-MOMENTS; BOUND-STATE APPROACH; QCD SUM-RULES; DECUPLET BARYONS; SKYRME MODEL; ELECTRIC QUADRUPOLE; OCTUPOLE MOMENTS; LATTICE QCD; HYPERONS; NUCLEON AB We compute the Omega(-) electromagnetic form factors and the decuplet baryon magnetic moments using a quark model application of the covariant spectator theory. Our predictions for the Omega(-) electromagnetic form factors can be tested in the future by lattice QCD simulations at the physical strange quark mass. C1 [Ramalho, G.; Tsushima, K.] Thomas Jefferson Natl Accelerator Facil, EBAC Theory Ctr, Newport News, VA 23606 USA. [Ramalho, G.] Ctr Fis Teor Particulas, P-1049001 Lisbon, Portugal. [Gross, Franz] Coll William & Mary, Williamsburg, VA 23185 USA. RP Ramalho, G (reprint author), Thomas Jefferson Natl Accelerator Facil, EBAC Theory Ctr, Newport News, VA 23606 USA. OI Ramalho, Gilberto/0000-0002-9930-659X FU Jefferson Science Associates [DE-AC05-06OR23177]; Portuguese Fundacao para a Ciencia e Tecnologia (FCT) [SFRH/BPD/26886/2006]; European Union FX G. R. thanks David Richard, Huey-Wen Lin, Christopher Thomas, and Nilmani Mathur for helpful discussions. This work was partially supported by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. G. R. was supported by the Portuguese Fundacao para a Ciencia e Tecnologia (FCT) under Grant No. SFRH/BPD/26886/2006. This work has been supported in part by the European Union (HadronPhysics2 Project "Study of Strongly Interacting Matter''). NR 75 TC 35 Z9 35 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2009 VL 80 IS 3 AR 033004 DI 10.1103/PhysRevD.80.033004 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 492FU UT WOS:000269641100016 ER PT J AU Slatyer, TR Padmanabhan, N Finkbeiner, DP AF Slatyer, Tracy R. Padmanabhan, Nikhil Finkbeiner, Douglas P. TI CMB constraints on WIMP annihilation: Energy absorption during the recombination epoch SO PHYSICAL REVIEW D LA English DT Article ID RAY POSITRON FRACTION; DARK-MATTER; COSMIC-RAYS; COSMOLOGICAL DISTANCES; PAIR PRODUCTION; CROSS-SECTIONS; GAMMA-RAYS; ELECTRONS; IMPACT; BREMSSTRAHLUNG AB We compute in detail the rate at which energy injected by dark matter (DM) annihilation heats and ionizes the photon-baryon plasma at z similar to 1000, and provide accurate fitting functions over the relevant redshift range for a broad array of annihilation channels and DM masses. The resulting perturbations to the ionization history can be constrained by measurements of the CMB temperature and polarization angular power spectra. We show that models which fit recently measured excesses in 10-1000 GeV electron and positron cosmic rays are already close to the 95% confidence limits from WMAP. The recently launched Planck satellite will be capable of ruling out a wide range of DM explanations for these excesses. In models of dark matter with Sommerfeld-enhanced annihilation, where <> rises with decreasing WIMP velocity until some saturation point, the WMAP5 constraints imply that the enhancement must be close to saturation in the neighborhood of the Earth. C1 [Slatyer, Tracy R.; Finkbeiner, Douglas P.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Padmanabhan, Nikhil] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. [Finkbeiner, Douglas P.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Slatyer, TR (reprint author), Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. EM tslatyer@fas.harvard.edu; NPadmanabhan@lbl.gov; dfinkbeiner@cfa.harvard.edu RI Padmanabhan, Nikhil/A-2094-2012 NR 70 TC 221 Z9 221 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG PY 2009 VL 80 IS 4 AR 043526 DI 10.1103/PhysRevD.80.043526 PG 16 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 492FX UT WOS:000269641400041 ER PT J AU Nisoli, C AF Nisoli, Cristiano TI Spiraling solitons: A continuum model for dynamical phyllotaxis of physical systems SO PHYSICAL REVIEW E LA English DT Article DE nonlinear dynamical systems; pattern formation; self-adjusting systems; solitons ID SPHERES AB A protean topological soliton has recently been shown to emerge in systems of repulsive particles in cylindrical geometries, whose statics is described by the number-theoretical objects of phyllotaxis. Here, we present a minimal and local continuum model that can explain many of the features of the phyllotactic soliton, such as locked speed, screw shift, energy transport, and-for Wigner crystal on a nanotube-charge transport. The treatment is general and should apply to other spiraling systems. Unlike, e.g., sine-Gordon-like systems, our soliton can exist between nondegenerate structures and its dynamics extends to the domains it separates; we also predict pulses, both static and dynamic. Applications include charge transport in Wigner Crystals on nanotubes or A- to B-DNA transitions. C1 [Nisoli, Cristiano] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Nisoli, Cristiano] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Nisoli, C (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. OI Nisoli, Cristiano/0000-0003-0053-1023 FU U.S. Department of Energy [DE-AC52-06NA25396] FX The author would like to thank Vincent Crespi and Paul Lammert (Penn State University, University Park) for useful discussions and Ryan Kalas and Nicole Jeffery (Los Alamos National Laboratory) for helping with the manuscript. This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. NR 25 TC 5 Z9 5 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD AUG PY 2009 VL 80 IS 2 AR 026110 DI 10.1103/PhysRevE.80.026110 PG 8 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 492EQ UT WOS:000269637900020 PM 19792203 ER PT J AU Reichhardt, C Reichhardt, CJ AF Reichhardt, C. Reichhardt, C. J. Olson TI Pattern switching and polarizability for colloids in optical-trap arrays SO PHYSICAL REVIEW E LA English DT Article DE colloidal crystals; martensitic transformations; phase diagrams; radiation pressure ID HYDRODYNAMIC INTERACTIONS; SUPERCONDUCTING FILMS; LATTICES; CRYSTALS; DEFECTS AB We show that colloidal molecular crystal states interacting with a periodic substrate, such as an optical-trap array, and a rotating external field can undergo a rapid pattern switching in which the orientation of the crystal changes. In some cases, a martensiticlike symmetry switching occurs. It is also possible to create a polarized state where the colloids in each substrate minimum develop a director field which smoothly rotates with the external drive, similar to liquid-crystal behavior. These results open the possibility for creating different types of devices using photonic band-gap materials, and should be generalizable to a variety of other condensed matter systems with multiple particle trapping. C1 [Reichhardt, C.; Reichhardt, C. J. Olson] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Reichhardt, C (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. OI Reichhardt, Cynthia/0000-0002-3487-5089 FU NNSA of the U.S. DOE at LANL; [DEAC52-06NA25396] FX This work was carried out under the auspices of the NNSA of the U.S. DOE at LANL under Contract No. DEAC52-06NA25396. NR 40 TC 10 Z9 10 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD AUG PY 2009 VL 80 IS 2 AR 022401 DI 10.1103/PhysRevE.80.022401 PG 4 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 492EP UT WOS:000269637800122 PM 19792182 ER PT J AU Rygg, JR Frenje, JA Li, CK Seguin, FH Petrasso, RD Meyerhofer, DD Stoeckl, C AF Rygg, J. R. Frenje, J. A. Li, C. K. Seguin, F. H. Petrasso, R. D. Meyerhofer, D. D. Stoeckl, C. TI Electron-ion thermal equilibration after spherical shock collapse SO PHYSICAL REVIEW E LA English DT Article DE fusion reactors; ignition; plasma inertial confinement; plasma production ID CONFINEMENT-FUSION PLASMAS; STRONGLY COUPLED PLASMA; RHO-R; OMEGA; COMPRESSION; IGNITION AB A comprehensive set of dual nuclear product observations provides a snapshot of imploding inertial confinement fusion capsules at the time of shock collapse, shortly before the final stages of compression. The collapse of strong convergent shocks at the center of spherical capsules filled with D-2 and He-3 gases induces D-D and D-He-3 nuclear production. Temporal and spectral diagnostics of products from both reactions are used to measure shock timing, temperature, and capsule areal density. The density and temperature inferred from these measurements are used to estimate the electron-ion thermal coupling and demonstrate a lower electron-ion relaxation rate for capsules with lower initial gas density. C1 [Rygg, J. R.; Frenje, J. A.; Li, C. K.; Seguin, F. H.; Petrasso, R. D.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Meyerhofer, D. D.; Stoeckl, C.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. RP Rygg, JR (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. FU U.S. Department of Energy Office of Inertial Confinement Fusion [DE-FG03-03NA00058, DE-AC52-07NA27344]; Laboratory for Laser Energetics [412160-001G]; Cooperative Agreement [DE-FC52-92SF19460]; University of Rochester FX The authors express their gratitude to the OMEGA engineers and operations crew who supported these experiments. This work was supported in part by the U.S. Department of Energy Office of Inertial Confinement Fusion (Grant No. DE-FG03-03NA00058); the Laboratory for Laser Energetics (Subcontract No. 412160-001G) under Cooperative Agreement No. DE-FC52-92SF19460, University of Rochester; New York State Energy Research and Development Authority; and performed in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 35 TC 8 Z9 9 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD AUG PY 2009 VL 80 IS 2 AR 026403 DI 10.1103/PhysRevE.80.026403 PN 2 PG 8 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 492EQ UT WOS:000269637900081 PM 19792264 ER PT J AU Agapov, I Burkhardt, H Schulte, D Latina, A Blair, GA Malton, S Resta-Lopez, J AF Agapov, I. Burkhardt, H. Schulte, D. Latina, A. Blair, G. A. Malton, S. Resta-Lopez, J. TI Tracking studies of the Compact Linear Collider collimation system SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB A collimation system performance study includes several types of computations performed by different codes. Optics calculations are performed with codes such as MADX, tracking studies including additional effects such as wakefields, halo and tail generation, and dynamical machine alignment are done with codes such as PLACET, and energy deposition can be studied with BDSIM. More detailed studies of hadron production in the beam halo interaction with collimators are better performed with GEANT4 and FLUKA. A procedure has been developed that allows one to perform a single tracking study using several codes simultaneously. In this paper we study the performance of the Compact Linear Collider collimation system using such a procedure. C1 [Agapov, I.; Burkhardt, H.; Schulte, D.] CERN, CH-1211 Geneva 23, Switzerland. [Latina, A.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Blair, G. A.; Malton, S.] Royal Holloway Univ London, John Adams Inst, Egham TW20 0EX, Surrey, England. [Resta-Lopez, J.] John Adams Inst Oxford, Oxford OX1 3RH, England. RP Agapov, I (reprint author), CERN, CH-1211 Geneva 23, Switzerland. FU STFC LC-ABD Collaboration; Commission of European Communities under the 6th Framework Programme Structuring the European Research Area [RIDS-011899] FX This work was supported in part by the STFC LC-ABD Collaboration and by the Commission of European Communities under the 6th Framework Programme Structuring the European Research Area, Contract No. RIDS-011899. NR 21 TC 7 Z9 7 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD AUG PY 2009 VL 12 IS 8 AR 081001 DI 10.1103/PhysRevSTAB.12.081001 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 487UP UT WOS:000269302500007 ER PT J AU Aiba, M Fartoukh, S Franchi, A Giovannozzi, M Kain, V Lamont, M Tomas, R Vanbavinckhove, G Wenninger, J Zimmermann, F Calaga, R Morita, A AF Aiba, M. Fartoukh, S. Franchi, A. Giovannozzi, M. Kain, V. Lamont, M. Tomas, R. Vanbavinckhove, G. Wenninger, J. Zimmermann, F. Calaga, R. Morita, A. TI First beta-beating measurement and optics analysis for the CERN Large Hadron Collider SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB Proton beams were successfully steered through the entire ring of the CERN Large Hadron Collider (LHC) on September the 10th of 2008. A reasonable lifetime was achieved for the counterclockwise beam, namely beam 2, after the radiofrequency capture of the particle bunch was established. This provided the unique opportunity of acquiring turn-by-turn betatron oscillations for a maximum of 90 turns right at injection. Transverse coupling was not corrected and chromaticity was estimated to be large. Despite this largely constrained scenario, reliable optics measurements have been accomplished. These measurements together with the application of new algorithms for the reconstruction of optics errors have led to the identification of a dominant error source. C1 [Aiba, M.; Fartoukh, S.; Franchi, A.; Giovannozzi, M.; Kain, V.; Lamont, M.; Tomas, R.; Vanbavinckhove, G.; Wenninger, J.; Zimmermann, F.] CERN, CH-1211 Geneva 23, Switzerland. [Calaga, R.] BNL, Upton, NY 11973 USA. [Morita, A.] KEK, Tsukuba, Ibaraki 3050801, Japan. RP Aiba, M (reprint author), CERN, CH-1211 Geneva 23, Switzerland. EM rogelio.tomas@cern.ch NR 29 TC 9 Z9 10 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD AUG PY 2009 VL 12 IS 8 AR 081002 DI 10.1103/PhysRevSTAB.12.081002 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 487UP UT WOS:000269302500008 ER PT J AU Bassi, G Ellison, JA Heinemann, K Warnock, R AF Bassi, Gabriele Ellison, James A. Heinemann, Klaus Warnock, Robert TI Microbunching instability in a chicane: Two-dimensional mean field treatment SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB We study the microbunching instability in a bunch compressor by a parallel code with some improved numerical algorithms. The two-dimensional charge/current distribution is represented by a Fourier series, with coefficients determined through Monte Carlo sampling over an ensemble of tracked points. This gives a globally smooth distribution with low noise. The field equations are solved accurately in the lab frame using retarded potentials and a novel choice of integration variables that eliminates singularities. We apply the scheme with parameters for the first bunch compressor system of FERMI@Elettra, with emphasis on the amplification of a perturbation at a particular wavelength and the associated longitudinal bunch spectrum. Gain curves are in rough agreement with those of the linearized Vlasov system at intermediate wavelengths, but show some deviation at the smallest wavelengths treated and show the breakdown of a coasting beam assumption at long wavelengths. The linearized Vlasov system is discussed in some detail. A new 2D integral equation is derived which reduces to a well-known 1D integral equation in the coasting beam case. C1 [Bassi, Gabriele] Univ Liverpool, Dept Phys, Liverpool L69 7ZE, Merseyside, England. [Bassi, Gabriele] Cockcroft Inst, Daresbury WA4 4AD, Cheshire, England. [Ellison, James A.; Heinemann, Klaus] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA. [Warnock, Robert] Stanford Univ, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Warnock, Robert] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Bassi, G (reprint author), Univ Liverpool, Dept Phys, Liverpool L69 7ZE, Merseyside, England. EM g.bassi@dl.ac.uk; ellison@math.unm.edu; heineman@math.unm.edu; warnock@slac.stanford.edu FU U.S. Department of Energy [AC02-76SF00515, DE-FG-99ER41104] FX We gratefully acknowledge the help of T. Thomas at UNM HPC, and thank R. Ryne and P. Spentzouris for an account on NERSC. M. Venturini made valuable comments on the integral equation. This work has been partially supported by U.S. Department of Energy Contracts No. AC02-76SF00515 and No. DE-FG-99ER41104. NR 35 TC 5 Z9 5 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD AUG PY 2009 VL 12 IS 8 AR 080704 DI 10.1103/PhysRevSTAB.12.080704 PG 24 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 487UP UT WOS:000269302500004 ER PT J AU Lumpkin, AH Sereno, NS Berg, WJ Borland, M Li, Y Pasky, SJ AF Lumpkin, A. H. Sereno, N. S. Berg, W. J. Borland, M. Li, Y. Pasky, S. J. TI Characterization and mitigation of coherent-optical-transition-radiation signals from a compressed electron beam SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID BUNCH COMPRESSOR AB The Advanced Photon Source (APS) injector complex includes an option for rf photocathode (PC) gun beam injection into the 450-MeV S-band linac. At the 150-MeV point, a four-dipole chicane was used to compress the micropulse bunch length from a few ps to sub-0.5 ps (FWHM). Noticeable enhancements of the optical transition radiation (OTR) signal sampled after the APS chicane were then observed as has been reported in the Linac Coherent Light Source (LCLS) injector commissioning. A far-infrared (FIR) coherent transition radiation detector and interferometer were used to monitor the bunch compression process and correlate the appearance of localized spikes of OTR signal (5 to 10 times brighter than adjacent areas) within the beam-image footprint. We have performed spectral-dependency measurements at 375 MeV with a series of bandpass filters centered in 50-nm increments from 400 to 700 nm and with an imaging spectrometer and observed a broadband enhancement in these spikes. Mitigation concepts of the observed coherent OTR, which exhibits an intensity enhancement in the red part of the visible spectrum as compared to incoherent OTR, are described. C1 [Lumpkin, A. H.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Sereno, N. S.; Berg, W. J.; Borland, M.; Li, Y.; Pasky, S. J.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Lumpkin, AH (reprint author), Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. FU Argonne Accelerator Institute; U.S. Department of Energy, Office of Science, Office of High Energy Physics [DE-AC02-06CH11357] FX The authors acknowledge support from M. Wendt of Fermilab and R. Gerig, K.- J. Kim, and H. Weerts of the Argonne Accelerator Institute. They acknowledge S. Shoaf (ANL) for controls support and K. Nemeth (ANL) for estimating the laser-electron interaction. They also acknowledge discussions on COTR with D. Dowell, H. Loos, J. Frisch, and Z. Huang of LCLS and with R. Fiorito of the University of Maryland and D. Rule of NSWC. This work was supported by U.S. Department of Energy, Office of Science, Office of High Energy Physics, under Contract No. DE-AC02-06CH11357. NR 25 TC 17 Z9 17 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD AUG PY 2009 VL 12 IS 8 AR 080702 DI 10.1103/PhysRevSTAB.12.080702 PG 10 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 487UP UT WOS:000269302500002 ER PT J AU Montag, C Fischer, W AF Montag, Christoph Fischer, Wolfram TI Head-on beam-beam compensation investigation in an electron-ion collider using weak-strong simulations SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB The luminosity of the ring-ring version of the proposed electron-ion collider eRHIC is limited by the beam-beam effect on the electrons. Once the beam-beam limit is reached, the luminosity no longer increases linearly with the bunch intensity of the ion beam, but begins to saturate and even drops again if the beam-beam tuneshift is increased further. To overcome this limitation we investigate a compensation scheme with an electron lens acting on the electron beam. Using weak-strong simulations we find a possible luminosity increase of about a factor 2. C1 [Montag, Christoph; Fischer, Wolfram] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Montag, C (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. NR 29 TC 3 Z9 3 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD AUG PY 2009 VL 12 IS 8 AR 084001 DI 10.1103/PhysRevSTAB.12.084001 PG 11 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 487UP UT WOS:000269302500010 ER PT J AU Poole, BR Blackfield, DT Camacho, JF AF Poole, B. R. Blackfield, D. T. Camacho, J. F. TI Transient self-amplified Cerenkov radiation with a short pulse electron beam SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID COHERENT SPONTANEOUS EMISSION; MASER AMPLIFIER; HIGH-POWER; NONLINEAR-ANALYSIS; WAVE-DISPERSION; CHERENKOV MASER; SUPERRADIANCE; OPERATION; GUIDE; BUNCH AB An analytic and numerical examination of the slow wave Cerenkov free electron maser is presented. We consider the steady-state amplifier configuration as well as operation in the self-amplified spontaneous emission (SASE) regime. The linear theory is extended to include electron beams that have a parabolic radial density inhomogeneity. Closed form solutions for the dispersion relation and modal structure of the electromagnetic field are determined in this inhomogeneous case. To determine the steady-state response, a macroparticle approach is used to develop a set of coupled nonlinear ordinary differential equations for the amplitude and phase of the electromagnetic wave, which are solved in conjunction with the particle dynamical equations to determine the response when the system is driven as an amplifier with a time harmonic source. We then consider the case in which a fast rise time electron beam is injected into a dielectric loaded waveguide. In this case, radiation is generated by SASE, with the instability seeded by the leading edge of the electron beam. A pulse of radiation is produced, slipping behind the leading edge of the beam due to the disparity between the group velocity of the radiation and the beam velocity. Short pulses of microwave radiation are generated in the SASE regime and are investigated using particle-in-cell (PIC) simulations. The nonlinear dynamics are significantly more complicated in the transient SASE regime when compared with the steady-state amplifier model due to the slippage of the radiation with respect to the beam. As strong self-bunching of the electron beam develops due to SASE, short pulses of superradiant emission develop with peak powers significantly larger than the predicted saturated power based on the steady-state amplifier model. As these superradiant pulses grow, their pulse length decreases and forms a series of solitonlike pulses. Comparisons between the linear theory, macroparticle model, and PIC simulations are made in the appropriate regimes. C1 [Poole, B. R.; Blackfield, D. T.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Camacho, J. F.] NumerEx LLC, Albuquerque, NM 87106 USA. RP Poole, BR (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM poole1@llnl.gov; blackfield1@llnl.gov; Frank.Camacho@kirtland.af.mil FU U.S. Department of Energy by the Lawrence Livermore National Laboratory [DE-AC5207NA27344] FX The authors would like to thank Dr. George J. Caporaso for helpful discussions on FEL theory and Dr. John R. Harris for discussions on longitudinal beam dynamics. This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract No. DE-AC5207NA27344. NR 28 TC 1 Z9 1 U1 2 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD AUG PY 2009 VL 12 IS 8 AR 080705 DI 10.1103/PhysRevSTAB.12.080705 PG 14 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 487UP UT WOS:000269302500005 ER PT J AU Savage, ME Stoltzfus, BS AF Savage, M. E. Stoltzfus, B. S. TI High reliability low jitter 80 kV pulse generator SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB Switching can be considered to be the essence of pulsed power. Time accurate switch/trigger systems with low inductance are useful in many applications. This article describes a unique switch geometry coupled with a low-inductance capacitive energy store. The system provides a fast-rising high voltage pulse into a low impedance load. It can be challenging to generate high voltage (more than 50 kilovolts) into impedances less than 10 Omega, from a low voltage control signal with a fast rise time and high temporal accuracy. The required power amplification is large, and is usually accomplished with multiple stages. The multiple stages can adversely affect the temporal accuracy and the reliability of the system. In the present application, a highly reliable and low jitter trigger generator was required for the Z pulsed-power facility [M. E. Savage, L. F. Bennett, D. E. Bliss, W. T. Clark, R. S. Coats, J. M. Elizondo, K. R. LeChien, H. C. Harjes, J. M. Lehr, J. E. Maenchen, D. H. McDaniel, M. F. Pasik, T. D. Pointon, A. C. Owen, D. B. Seidel, D. L. Smith, B. S. Stoltzfus, K. W. Struve, W. A. Stygar, L. K. Warne, and J. R. Woodworth, 2007 IEEE Pulsed Power Conference, Albuquerque, NM (IEEE, Piscataway, NJ, 2007), p. 979]. The large investment in each Z experiment demands low prefire probability and low jitter simultaneously. The system described here is based on a 100 kV DC-charged high-pressure spark gap, triggered with an ultraviolet laser. The system uses a single optical path for simultaneously triggering two parallel switches, allowing lower inductance and electrode erosion with a simple optical system. Performance of the system includes 6 ns output rise time into 5: 6 Omega, 550 ps one-sigma jitter measured from the 5 V trigger to the high voltage output, and misfire probability less than 10(-4). The design of the system and some key measurements will be shown in the paper. We will discuss the design goals related to high reliability and low jitter. While reliability is usually important, and is coupled with jitter, reliability is seldom given more than a qualitative analysis (if any at all). We will show how reliability of the system was calculated, and results of a jitter-reliability tradeoff study. We will describe the behavior of sulfur hexafluoride as the insulating gas in the mildly nonuniform field geometry at pressures of 300 to 500 kPa. We will show the resistance of the arc channels, and show the performance comparisons with normal two-channel operation, and single channel operation. C1 [Savage, M. E.; Stoltzfus, B. S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Savage, ME (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to thank Dr. D. E. Bliss and Dr. J. R. Woodworth for generous and invaluable advice on the optical system. D. Spencer and P. Wakeland did an outstanding job designing the mechanical components for the deployed system and the prototype. The authors are also indebted to Dr. J. E. Maenchen for having the foresight to allow the development work to be conducted, and to Dr. W. A. Stygar for continual encouragement of the effort. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 55 TC 7 Z9 8 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD AUG PY 2009 VL 12 IS 8 AR 080401 DI 10.1103/PhysRevSTAB.12.080401 PG 13 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA V25IT UT WOS:000208472400001 ER PT J AU Talman, R Chao, AW AF Talman, Richard Chao, Alexander W. TI Orlov, Tarasov, and the Robinson sum rule SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB A paper proving a result now commonly known as "Robinson sum rule'' was published by Orlov and Tarasov {J. Exp. Theor. Phys. 34, 651 (1958) [Sov. Phys. JETP 34, 339 (1958)]} at about the same time that Robinson himself published the result [Phys. Rev. 111, 373 (1958)]. We assigned ourselves the task of reviewing this work, as narrowly as possible, in hopes of understanding how it should be considered in view of the existing attribution. The chronology of the work is reviewed and the degree to which the two works were independent and have qualitatively different content is considered. C1 [Talman, Richard] Cornell Univ, Cornell Lab Elementary Particle Phys, Ithaca, NY 14853 USA. [Chao, Alexander W.] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. RP Talman, R (reprint author), Cornell Univ, Cornell Lab Elementary Particle Phys, Ithaca, NY 14853 USA. NR 19 TC 1 Z9 1 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD AUG PY 2009 VL 12 IS 8 AR 084901 DI 10.1103/PhysRevSTAB.12.084901 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 487UP UT WOS:000269302500012 ER PT J AU Wheatley, V Samtaney, R Pullin, DI AF Wheatley, V. Samtaney, R. Pullin, D. I. TI The Richtmyer-Meshkov instability in magnetohydrodynamics SO PHYSICS OF FLUIDS LA English DT Article ID TAYLOR INSTABILITY AB In ideal magnetohydrodynamics (MHD), the Richtmyer-Meshkov instability can be suppressed by the presence of a magnetic field. The interface still undergoes some growth, but this is bounded for a finite magnetic field. A model for this flow has been developed by considering the stability of an impulsively accelerated, sinusoidally perturbed density interface in the presence of a magnetic field that is parallel to the acceleration. This was accomplished by analytically solving the linearized initial value problem in the framework of ideal incompressible MHD. To assess the performance of the model, its predictions are compared to results obtained from numerical simulation of impulse driven linearized, shock driven linearized, and nonlinear compressible MHD for a variety of cases. It is shown that the analytical linear model collapses the data from the simulations well. The predicted interface behavior well approximates that seen in compressible linearized simulations when the shock strength, magnetic field strength, and perturbation amplitude are small. For such cases, the agreement with interface behavior that occurs in nonlinear simulations is also reasonable. The effects of increasing shock strength, magnetic field strength, and perturbation amplitude on both the flow and the performance of the model are investigated. This results in a detailed exposition of the features and behavior of the MHD Richtmyer-Meshkov flow. For strong shocks, large initial perturbation amplitudes, and strong magnetic fields, the linear model may give a rough estimate of the interface behavior, but it is not quantitatively accurate. In all cases examined the accuracy of the model is quantified and the flow physics underlying any discrepancies is examined. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3194303] C1 [Wheatley, V.] Univ Adelaide, Sch Mech Engn, Adelaide, SA 5005, Australia. [Samtaney, R.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Pullin, D. I.] CALTECH, Grad Aeronaut Labs, Pasadena, CA 91125 USA. RP Wheatley, V (reprint author), Univ Adelaide, Sch Mech Engn, Adelaide, SA 5005, Australia. RI Wheatley, Vincent/D-9627-2013 OI Wheatley, Vincent/0000-0002-7287-7659 FU Accelerated Strategic Computing Initiative (ASCI/ASAP); DOE [7405-ENG-48]; U.S. DOE [AC02-09CH11466] FX V. Wheatley and D. I. Pullin were supported by the Academic Strategic Alliances Program of the Accelerated Strategic Computing Initiative (ASCI/ASAP) under Subcontract No. B341492 of DOE Contract No. W-7405-ENG-48. R. Samtaney was supported by U.S. DOE Contract No. DE-AC02-09CH11466. NR 14 TC 11 Z9 11 U1 1 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 J9 PHYS FLUIDS JI Phys. Fluids PD AUG PY 2009 VL 21 IS 8 AR 082102 DI 10.1063/1.3194303 PG 13 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 502KA UT WOS:000270456500009 ER PT J AU Borovsky, JE Gary, SP AF Borovsky, Joseph E. Gary, S. Peter TI On shear viscosity and the Reynolds number of magnetohydrodynamic turbulence in collisionless magnetized plasmas: Coulomb collisions, Landau damping, and Bohm diffusion SO PHYSICS OF PLASMAS LA English DT Review ID SOLAR-WIND TURBULENCE; FIELD ELECTRON-TRANSPORT; KINETIC ALFVEN WAVES; LOW-FREQUENCY WAVES; PARALLEL BOW SHOCK; MHD TURBULENCE; INTERPLANETARY TURBULENCE; HYDROMAGNETIC TURBULENCE; INTERSTELLAR TURBULENCE; SPACECRAFT OBSERVATIONS AB For a collisionless plasma, the magnetic field B enables fluidlike behavior in the directions perpendicular to B; however, fluid behavior alongy may fail. The magnetic field also introduces an Alfven-wave nature to flows perpendicular to B. All Alfven waves are subject to Landau damping, which introduces a flow dissipation (viscosity) in collisionless plasmas. For three magnetized plasmas (the solar wind, the Earth's magnetosheath, and the Earth's plasma sheet), shear viscosity by Landau damping, Bohm diffusion, and by Coulomb collisions are investigated. For magnetohydrodynamic turbulence in those three plasmas, integral-scale Reynolds numbers are estimated, Kolmogorov dissipation scales are calculated, and Reynolds-number scaling is discussed. Strongly anisotropic Kolmogorov k(-5/3) and mildly anisotropic Kraichnan k(-3/2) turbulences are both considered and the effect of the degree of wavevector anisotropy on quantities such as Reynolds numbers and spectral-transfer rates are calculated. For all three plasmas, Braginskii shear viscosity is much weaker than shear viscosity due to Landau damping, which is somewhat weaker than Bohm diffusion. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3155134] C1 [Borovsky, Joseph E.; Gary, S. Peter] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Borovsky, JE (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. NR 176 TC 12 Z9 12 U1 4 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2009 VL 16 IS 8 AR 082307 DI 10.1063/1.3155134 PG 22 WC Physics, Fluids & Plasmas SC Physics GA 498IW UT WOS:000270133500017 ER PT J AU Chen, CD Patel, PK Hey, DS Mackinnon, AJ Key, MH Akli, KU Bartal, T Beg, FN Chawla, S Chen, H Freeman, RR Higginson, DP Link, A Ma, TY MacPhee, AG Stephens, RB Van Woerkom, LD Westover, B Porkolab, M AF Chen, C. D. Patel, P. K. Hey, D. S. Mackinnon, A. J. Key, M. H. Akli, K. U. Bartal, T. Beg, F. N. Chawla, S. Chen, H. Freeman, R. R. Higginson, D. P. Link, A. Ma, T. Y. MacPhee, A. G. Stephens, R. B. Van Woerkom, L. D. Westover, B. Porkolab, M. TI Bremsstrahlung and K alpha fluorescence measurements for inferring conversion efficiencies into fast ignition relevant hot electrons SO PHYSICS OF PLASMAS LA English DT Article ID LASER-PLASMA INTERACTIONS; SOLID INTERACTIONS; FUSION IGNITION; PULSE; TRANSPORT; TARGET; RAYS AB The Bremsstrahlung and K-shell emission from 1 x 1 x 1 mm(3) planar targets irradiated by a short-pulse 3 x 10(18) - 8 x 10(19) W/cm(2) laser were measured. The Bremsstrahlung was measured using a filter stack spectrometer with spectral discrimination up to 500 keV. K-shell emission was measured using a single photon counting charge coupled device. From Monte Carlo modeling of the target emission, conversion efficiencies into 1-3 MeV electrons of 3%-12%, representing 20%-40% total conversion efficiencies, were inferred for intensities up to 8 x 10(19) W/cm(2). Comparisons to scaling laws using synthetic energy spectra generated from the intensity distribution of the focal spot imply slope temperatures less than the ponderomotive potential of the laser. Resistive transport effects may result in potentials of a few hundred kV in the first few tens of microns in the target. This would lead to higher total conversion efficiencies than inferred from Monte Carlo modeling but lower conversion efficiencies into 1-3 MeV electrons. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3183693] C1 [Chen, C. D.; Porkolab, M.] MIT, Plasma Sci Fus Ctr, Cambridge, MA 02139 USA. [Patel, P. K.; Hey, D. S.; Mackinnon, A. J.; Key, M. H.; Chen, H.; Ma, T. Y.; MacPhee, A. G.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Akli, K. U.; Stephens, R. B.] Gen Atom Co, San Diego, CA 92121 USA. [Bartal, T.; Beg, F. N.; Chawla, S.; Higginson, D. P.; Ma, T. Y.; Westover, B.] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. [Freeman, R. R.; Link, A.; Van Woerkom, L. D.] Ohio State Univ, Coll Math & Phys Sci, Columbus, OH 43210 USA. RP Chen, CD (reprint author), MIT, Plasma Sci Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RI Patel, Pravesh/E-1400-2011; Ma, Tammy/F-3133-2013; MacKinnon, Andrew/P-7239-2014; Higginson, Drew/G-5942-2016 OI Ma, Tammy/0000-0002-6657-9604; MacKinnon, Andrew/0000-0002-4380-2906; Higginson, Drew/0000-0002-7699-3788 FU U.S. Department of Energy [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 (Authorization Review No. LLNL-JRNL-415191). NR 38 TC 43 Z9 44 U1 2 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2009 VL 16 IS 8 AR 082705 DI 10.1063/1.3183693 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 498IW UT WOS:000270133500035 ER PT J AU Cohen, BI Williams, EA Berger, RL Pesme, D Riconda, C AF Cohen, B. I. Williams, E. A. Berger, R. L. Pesme, D. Riconda, C. TI Stimulated Brillouin backscattering and ion acoustic wave secondary instability (vol 16, 032701, 2009) SO PHYSICS OF PLASMAS LA English DT Correction C1 [Cohen, B. I.; Williams, E. A.; Berger, R. L.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Pesme, D.] Ecole Polytech, Ctr Phys Theor, F-91128 Palaiseau, France. [Riconda, C.] Univ Paris 06, CEA, CNRS, Ecole Polytech,PAPD LULI, F-94200 Ivry, France. RP Cohen, BI (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. NR 5 TC 3 Z9 3 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2009 VL 16 IS 8 AR 089902 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 498IW UT WOS:000270133500070 ER PT J AU Guttenfelder, W Anderson, DT Anderson, FSB Canik, JM Likin, KM Talmadge, JN AF Guttenfelder, W. Anderson, D. T. Anderson, F. S. B. Canik, J. M. Likin, K. M. Talmadge, J. N. TI Edge turbulence measurements in electron-heated Helically Symmetric Experiment plasmas SO PHYSICS OF PLASMAS LA English DT Article ID TEMPERATURE-FLUCTUATIONS; GYROKINETIC SIMULATIONS; COMPARING SIMULATION; ANOMALOUS TRANSPORT; CHAPTER 2; TOKAMAKS; STELLARATORS; CONFINEMENT; MODEL; HSX AB This paper presents edge measurements utilizing Langmuir probes to characterize plasma turbulence in the Helically Symmetric Experiment (HSX) [F. S. B. Anderson et al., Fusion Technol. 27, 273 (1995)]. Normalized density and potential fluctuations exhibit strong intensities but are comparable to mixing length estimates using measured correlation lengths. The correlation lengths are isotropic with respect to radial and poloidal directions and follow local (gyro-Bohm) drift wave expectations. These observations are common to measurements in both the optimized quasihelically symmetric (QHS) configuration, as well as a configuration where the symmetry is degraded intentionally. The resulting turbulent particle flux in higher density QHS discharges is in good quantitative agreement with transport analysis using three-dimensional neutral gas simulations. The measured turbulence characteristics are compared to a quasilinear trapped electron mode (TEM) drift wave model [H. Nordman, J. Weiland, and A. Jarmen, Nucl. Fusion 30, 983 (1990)] that has been used to predict the anomalous transport in HSX. While quantitative differences exist (factors of 2-3), there is a general consistency between the turbulence measurements and the TEM drift wave model. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3205884] C1 [Guttenfelder, W.; Anderson, D. T.; Anderson, F. S. B.; Likin, K. M.; Talmadge, J. N.] Univ Wisconsin, Dept Elect & Comp Engn, Madison, WI 53706 USA. [Canik, J. M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Guttenfelder, W (reprint author), Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. EM w.guttenfelder@warwick.ac.uk OI Canik, John/0000-0001-6934-6681 FU U.S. Department of Energy [DE-FG02-93ER54222] FX This work was supported by the U.S. Department of Energy under Contract No. DE-FG02-93ER54222. NR 56 TC 3 Z9 3 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2009 VL 16 IS 8 AR 082508 DI 10.1063/1.3205884 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 498IW UT WOS:000270133500026 ER PT J AU Krommes, JA AF Krommes, John A. TI Comment on "Guiding center plasma models in three dimensions" [Phys. Plasmas 15, 092112 (2008)] SO PHYSICS OF PLASMAS LA English DT Editorial Material ID NONLINEAR GYROKINETIC THEORY; EQUATIONS; MOTION; FIELD AB Recent assertions that guiding-center theory breaks down at second order for three-dimensional magnetic fields with nonzero, torsion are argued to be incorrect. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3206670] C1 Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Krommes, JA (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM krommes@princeton.edu NR 17 TC 7 Z9 7 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2009 VL 16 IS 8 AR 084701 DI 10.1063/1.3206670 PG 2 WC Physics, Fluids & Plasmas SC Physics GA 498IW UT WOS:000270133500065 ER PT J AU Ku, LP Boozer, AH AF Ku, Long-Poe Boozer, Allen H. TI Nonaxisymmetric shaping of tokamaks preserving quasiaxisymmetry SO PHYSICS OF PLASMAS LA English DT Article ID STELLARATOR; STABILITY; PHYSICS; CONFIGURATIONS; EQUILIBRIA; PROGRESS; PLASMAS; DESIGN; LIMITS AB If quasiaxisymmetry is preserved, nonaxisymmetric shaping can be used to design tokamaks that do not require current drive, are resilient to disruptions, and have robust plasma stability without feedback. Suggestions for addressing the critical issues of tokamaks can only be validated when presented with sufficient specificity that validating experiments can be designed. The purpose of this paper is to provide that specificity for nonaxisymmetric shaping. Whether nonaxisymmetric shaping is essential, or just an alternative strategy, to the success of tokamak fusion systems can only be assessed after axisymmetric alternatives are suggested and subjected to a similar study. Sequences of three-field-period quasiaxisymmetric plasmas are studied. These sequences address the questions: (1) What can be achieved at various levels of nonaxisymmetric shaping? (2) What simplifications to the coils can be achieved by going to a larger aspect ratio? (3) What range of shaping can be achieved in a single experimental facility? The sequences of plasmas found in this study provide a set of interesting and potentially important configurations. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3207010] C1 [Ku, Long-Poe] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Boozer, Allen H.] Columbia Univ, New York, NY 10027 USA. RP Ku, LP (reprint author), Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. EM lpku@pppl.gov; ahb17@columbia.edu FU U.S. Department of Energy [ER54333]; Princeton Plasma Physics Laboratory [DE-AC02-09CH11466] FX This work was supported by U.S. Department of Energy through the Grant No. ER54333 to Columbia University and the Contract No. DE-AC02-09CH11466 to Princeton Plasma Physics Laboratory. NR 31 TC 5 Z9 5 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2009 VL 16 IS 8 AR 082506 DI 10.1063/1.3207010 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 498IW UT WOS:000270133500024 ER PT J AU Park, JK Boozer, AH Menard, JE Gerhardt, SP Sabbagh, SA AF Park, Jong-Kyu Boozer, Allen H. Menard, Jonathan E. Gerhardt, Stefan P. Sabbagh, Steve A. TI Shielding of external magnetic perturbations by torque in rotating tokamak plasmas SO PHYSICS OF PLASMAS LA English DT Article ID TOROIDAL-MOMENTUM DISSIPATION; ERROR FIELD AMPLIFICATION; RESISTIVE WALL MODES; DIII-D; HIGH-BETA; STABILIZATION; PHYSICS; NSTX AB The imposition of a nonaxisymmetric magnetic perturbation on a rotating tokamak plasma requires energy and toroidal torque. Fundamental electrodynamics implies that the torque is essentially limited and must be consistent with the external response of a plasma equilibrium (f) over right arrow=(j) over right arrow x (B) over right arrow. Here magnetic measurements on National Spherical Torus Experiment device are used to derive the energy and the torque, and these empirical evaluations are compared with theoretical calculations based on perturbed scalar pressure equilibria (f) over right arrow=(del) over right arrowp coupled with the theory of nonambipolar transport. The measurement and the theory are consistent within acceptable uncertainties, but can be largely inconsistent when the torque is comparable to the energy. This is expected since the currents associated with the torque are ignored in scalar pressure equilibria, but these currents tend to shield the perturbation. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3206668] C1 [Park, Jong-Kyu; Menard, Jonathan E.; Gerhardt, Stefan P.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Boozer, Allen H.; Sabbagh, Steve A.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. RP Park, JK (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RI Sabbagh, Steven/C-7142-2011; OI Menard, Jonathan/0000-0003-1292-3286 FU DOE [DE-AC02-76CH03073, DE-FG02-03ERS496] FX This work was supported by DOE Contract Nos. DE-AC02-76CH03073 (PPPL) and DE-FG02-03ERS496 (CU). NR 28 TC 15 Z9 15 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD AUG PY 2009 VL 16 IS 8 AR 082512 DI 10.1063/1.3206668 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 498IW UT WOS:000270133500030 ER PT J AU Schlossberg, DJ Mckee, GR Fonck, RJ Burrell, KH Gohil, P Groebner, RJ Shafer, MW Solomon, WM Wang, G AF Schlossberg, D. J. McKee, G. R. Fonck, R. J. Burrell, K. H. Gohil, P. Groebner, R. J. Shafer, M. W. Solomon, W. M. Wang, G. TI Dependence of the low to high confinement mode transition power threshold and turbulence flow shear on injected torque SO PHYSICS OF PLASMAS LA English DT Article ID L-H TRANSITION; BEAM EMISSION-SPECTROSCOPY; VELOCITY SHEAR; DIII-D; FLUCTUATION MEASUREMENTS; TRANSPORT; TOKAMAK; PLASMA; SUPPRESSION; PHYSICS AB The power required to induce a bifurcation from a low-confinement mode to a high-confinement mode in DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] plasmas is found to depend sensitively on the injected neutral beam torque and consequent toroidal rotation. Plasmas exhibit a factor of 2-4 reduction in this power threshold, dependent on ion del B drift direction. Correlated with this change, turbulence velocity measurements near 0.950 species known as the "Fusarium solani species complex". Members of this complex have diverse biological properties including the ability to cause disease on >100 genera of plants and opportunistic infections in humans. The current research analyzed the most extensively studied member of this complex, N. haematococca mating population VI (MPVI). Several genes controlling the ability of individual isolates of this species to colonize specific habitats are located on supernumerary chromosomes. Optical mapping revealed that the sequenced isolate has 17 chromosomes ranging from 530 kb to 6.52 Mb and that the physical size of the genome, 54.43 Mb, and the number of predicted genes, 15,707, are among the largest reported for ascomycetes. Two classes of genes have contributed to gene expansion: specific genes that are not found in other fungi including its closest sequenced relative, Fusarium graminearum; and genes that commonly occur as single copies in other fungi but are present as multiple copies in N. haematococca MPVI. Some of these additional genes appear to have resulted from gene duplication events, while others may have been acquired through horizontal gene transfer. The supernumerary nature of three chromosomes, 14, 15, and 17, was confirmed by their absence in pulsed field gel electrophoresis experiments of some isolates and by demonstrating that these isolates lacked chromosome-specific sequences found on the ends of these chromosomes. These supernumerary chromosomes contain more repeat sequences, are enriched in unique and duplicated genes, and have a lower G+C content in comparison to the other chromosomes. Although the origin(s) of the extra genes and the supernumerary chromosomes is not known, the gene expansion and its large genome size are consistent with this species' diverse range of habitats. Furthermore, the presence of unique genes on supernumerary chromosomes might account for individual isolates having different environmental niches. C1 [Coleman, Jeffrey J.; Rounsley, Steve D.; Rodriguez-Carres, Marianela; Wasmann, Catherine C.; White, Gerard J.; Napoli, Carolyn A.; Barker, Bridget M.; Kroken, Scott; Zamora, Jorge; Temporini, Esteban; VanEtten, Hans D.] Univ Arizona, Dept Plant Sci, Tucson, AZ 85721 USA. [Coleman, Jeffrey J.] Massachusetts Gen Hosp, Boston, MA 02114 USA. [Rounsley, Steve D.] Univ Arizona, Inst BIO5, Tucson, AZ USA. [Rodriguez-Carres, Marianela] Duke Univ, Dept Biol, Durham, NC USA. [Kuo, Alan; Salamov, Asaf; Shapiro, Harris; Pangilinan, Jasmyn; Lindquist, Erika; Grigoriev, Igor V.] Energy Joint Genome Inst, US Dept, Walnut Creek, CA USA. [Grimwood, Jane; Schmutz, Jeremy] Stanford Human Genome Ctr, Joint Genome Inst, Palo Alto, CA USA. [Grimwood, Jane; Schmutz, Jeremy] Hudson Alpha Inst Biotechnol, Hudson Alpha Genome Sequencing Ctr, Huntsville, AL USA. [Taga, Masatoki] Okayama Univ, Dept Biol, Okayama, Japan. [Zhou, Shiguo; Schwartz, David C.; Lamers, Casey] Univ Wisconsin, Lab Mol & Computat Genom, Madison, WI USA. [Freitag, Michael] Oregon State Univ, Dept Biochem & Biophys, Corvallis, OR 97331 USA. [Freitag, Michael] Oregon State Univ, Ctr Genome Res & Biocomp, Corvallis, OR 97331 USA. [Ma, Li-jun] Broad Inst, Cambridge, MA USA. [Danchin, Etienne G. J.; Henrissat, Bernard; Coutinho, Pedro M.] Univ Aix Marseille 1, CNRS, Architecture & Fonct Macromol Biol, Marseille, France. [Danchin, Etienne G. J.; Henrissat, Bernard; Coutinho, Pedro M.] Univ Aix Marseille 2, CNRS, Architecture & Fonct Macromol Biol, F-13284 Marseille 07, France. [Danchin, Etienne G. J.] Ctr Rech, Inst Natl Rech Agron, Sophia Antipolis, France. [Nelson, David R.] Univ Tennessee, Dept Mol Sci, Memphis, TN USA. [Straney, Dave] Univ Maryland, Dept Mol Genet & Cell Biol, College Pk, MD 20742 USA. [Gribskov, Michael] Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA. [Rep, Martijn] Univ Amsterdam, Amsterdam, Netherlands. [Molnar, Istvan] Univ Arizona, SW Ctr Nat Prod Res & Commercializat, Off Arid Lands Studies, Tucson, AZ USA. [Rensing, Christopher] Univ Arizona, Dept Soil Water & Environm Sci, Tucson, AZ USA. [Kennell, John C.] St Louis Univ, Dept Biol, St Louis, MO 63103 USA. [Farman, Mark L.] Univ Kentucky, Dept Plant Pathol, Lexington, KY 40546 USA. [Selker, Eric U.] Univ Oregon, Inst Mol Biol, Eugene, OR 97403 USA. [Geiser, David M.] Penn State Univ, Fusarium Res Ctr, Dept Plant Pathol, University Pk, PA 16802 USA. [Covert, Sarah F.] Univ Georgia, Warnell Sch Forestry & Nat Resources, Athens, GA 30602 USA. [Temporini, Esteban] Vilmorin Inc, Tucson, AZ USA. RP Coleman, JJ (reprint author), Univ Arizona, Dept Plant Sci, Tucson, AZ 85721 USA. EM vanetten@ag.arizona.edu RI Henrissat, Bernard/J-2475-2012; Danchin, Etienne/A-6648-2008; Zhou, Shiguo/B-3832-2011; Rensing, Christopher/D-3947-2011; Geiser, David/J-9950-2013; Molnar, Istvan/A-5863-2008; Taga, Masatoki/B-2089-2011; Coleman, Jeffrey/E-2981-2015; OI Danchin, Etienne/0000-0003-4146-5608; Zhou, Shiguo/0000-0001-7421-2506; Rensing, Christopher/0000-0002-5012-7953; Molnar, Istvan/0000-0002-3627-0454; Gribskov, Michael/0000-0002-1718-0242; Ma, Li-Jun/0000-0002-2733-3708; Barker, Bridget/0000-0002-3439-4517; Coleman, Jeffrey/0000-0001-8579-1996; Nelson, David/0000-0003-0583-5421 FU US Department of Energy's Office of Science; Biological and Environmental Research Program; University of California, Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Los Alamos National Laboratory [DE-AC02-06NA25396] FX This work was performed under the auspices of the US Department of Energy's Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under Contract DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and Los Alamos National Laboratory under Contract DE-AC02-06NA25396. Personnel at these laboratories were involved in all aspects of this research. The sequence of Nectria haematococca is available at http://www.jgi.doe.gov/nectria. Partial support for personnel was also obtained from NRA/USDA grant 2008-00645. NR 102 TC 158 Z9 221 U1 7 U2 49 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-7404 J9 PLOS GENET JI PLoS Genet. PD AUG PY 2009 VL 5 IS 8 AR e1000618 DI 10.1371/journal.pgen.1000618 PG 14 WC Genetics & Heredity SC Genetics & Heredity GA 516HS UT WOS:000271533500032 PM 19714214 ER PT J AU Geller, SF Guerin, KI Visel, M Pham, A Lee, ES Dror, AA Avraham, KB Hayashi, T Ray, CA Reh, TA Bermingham-McDonogh, O Triffo, WJ Bao, SW Isosomppi, J Vastinsalo, H Sankila, EM Flannery, JG AF Geller, Scott F. Guerin, Karen I. Visel, Meike Pham, Aaron Lee, Edwin S. Dror, Amiel A. Avraham, Karen B. Hayashi, Toshinori Ray, Catherine A. Reh, Thomas A. Bermingham-McDonogh, Olivia Triffo, William J. Bao, Shaowen Isosomppi, Juha Vastinsalo, Hanna Sankila, Eeva-Marja Flannery, John G. TI CLRN1 Is Nonessential in the Mouse Retina but Is Required for Cochlear Hair Cell Development SO PLOS GENETICS LA English DT Article ID SYNDROME TYPE-III; PROTEIN HARMONIN USH1C; USHER-SYNDROME TYPE-1; CGMP-PHOSPHODIESTERASE; PHENOTYPIC VARIABILITY; PHOTORECEPTOR CELLS; MOLECULAR LINKS; GENE-EXPRESSION; BETA-SUBUNIT; HEARING-LOSS AB Mutations in the CLRN1 gene cause Usher syndrome type 3 (USH3), a human disease characterized by progressive blindness and deafness. Clarin 1, the protein product of CLRN1, is a four-transmembrane protein predicted to be associated with ribbon synapses of photoreceptors and cochlear hair cells, and recently demonstrated to be associated with the cytoskeleton. To study Clrn1, we created a Clrn1 knockout (KO) mouse and characterized the histological and functional consequences of Clrn1 deletion in the retina and cochlea. Clrn1 KO mice do not develop a retinal degeneration phenotype, but exhibit progressive loss of sensory hair cells in the cochlea and deterioration of the organ of Corti by 4 months. Hair cell stereocilia in KO animals were longer and disorganized by 4 months, and some Clrn1 KO mice exhibited circling behavior by 5-6 months of age. Clrn1 mRNA expression was localized in the retina using in situ hybridization (ISH), laser capture microdissection (LCM), and RT-PCR. Retinal Clrn1 transcripts were found throughout development and adulthood by RTPCR, although expression peaked at P7 and declined to undetectable levels in adult retina by ISH. LCM localized Clrn1 transcripts to the retinas inner nuclear layer, and WT levels of retinal Clrn1 expression were observed in photoreceptor-less retinas. Examination of Clrn1 KO mice suggests that CLRN1 is unnecessary in the murine retina but essential for normal cochlear development and function. This may reflect a redundancy in the mouse retina not present in human retina. In contrast to mouse KO models of USH1 and USH2, our data indicate that Clrn1 expression in the retina is restricted to the Muller glia. This is a novel finding, as most retinal degeneration associated proteins are expressed in photoreceptors, not in glia. If CLRN1 expression in humans is comparable to the expression pattern observed in mice, this is the first report of an inner retinal protein that, when mutated, causes retinal degeneration. C1 [Geller, Scott F.; Guerin, Karen I.; Visel, Meike; Pham, Aaron; Lee, Edwin S.; Bao, Shaowen; Flannery, John G.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. [Dror, Amiel A.; Avraham, Karen B.] Tel Aviv Univ, Sackler Sch Med, Dept Human Mol Genet & Biochem, IL-69978 Tel Aviv, Israel. [Hayashi, Toshinori; Ray, Catherine A.; Reh, Thomas A.; Bermingham-McDonogh, Olivia] Univ Washington, Sch Med, Dept Biol Struct, Seattle, WA 98195 USA. [Triffo, William J.] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA USA. [Isosomppi, Juha; Vastinsalo, Hanna; Sankila, Eeva-Marja] Univ Helsinki, Biomedicum Helsinki, Folkhalsan Inst Genet, Helsinki, Finland. [Isosomppi, Juha; Vastinsalo, Hanna; Sankila, Eeva-Marja] Univ Helsinki, Dept Med Genet, Helsinki, Finland. [Sankila, Eeva-Marja] Helsinki Univ Eye Hosp, Helsinki, Finland. RP Geller, SF (reprint author), Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. EM drgeller@gmail.com; flannery@berkeley.edu FU Foundation Fighting Blindness; European Commission [LSHG-CT-20054-512063, EUMODIC 037188]; Hope for Vision FX The authors gratefully acknowledge financial support for this work: Foundation Fighting Blindness (JGF), European Commission FP6 Integrated Projects EuroHear LSHG-CT-20054-512063 and EUMODIC 037188 (KBA), and Hope for Vision (TAR and OBMcD). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 72 TC 19 Z9 19 U1 1 U2 5 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-7390 J9 PLOS GENET JI PLoS Genet. PD AUG PY 2009 VL 5 IS 8 AR e1000607 DI 10.1371/journal.pgen.1000607 PG 18 WC Genetics & Heredity SC Genetics & Heredity GA 516HS UT WOS:000271533500022 PM 19680541 ER PT J AU Li, SW Tang, XH Seetharaman, J Yang, CY Gu, Y Zhang, J Du, HL Shih, JWK Hew, CL Sivaraman, J Xia, NS AF Li, Shaowei Tang, Xuhua Seetharaman, J. Yang, Chunyan Gu, Ying Zhang, Jun Du, Hailian Shih, J. Wai Kuo Hew, Choy-Leong Sivaraman, J. Xia, Ningshao TI Dimerization of Hepatitis E Virus Capsid Protein E2s Domain Is Essential for Virus-Host Interaction SO PLOS PATHOGENS LA English DT Article ID PHOTOREALISTIC MOLECULAR GRAPHICS; AUTOMATED STRUCTURE SOLUTION; DENSITY MODIFICATION; RECEPTOR-BINDING; ANTIGENICITY; DIVERSITY; RESOLVE; SYSTEM; SITES; SOLVE AB Hepatitis E virus (HEV), a non-enveloped, positive-stranded RNA virus, is transmitted in a faecal-oral manner, and causes acute liver diseases in humans. The HEV capsid is made up of capsomeres consisting of homodimers of a single structural capsid protein forming the virus shell. These dimers are believed to protrude from the viral surface and to interact with host cells to initiate infection. To date, no structural information is available for any of the HEV proteins. Here, we report for the first time the crystal structure of the HEV capsid protein domain E2s, a protruding domain, together with functional studies to illustrate that this domain forms a tight homodimer and that this dimerization is essential for HEV-host interactions. In addition, we also show that the neutralizing antibody recognition site of HEV is located on the E2s domain. Our study will aid in the development of vaccines and, subsequently, specific inhibitors for HEV. C1 [Li, Shaowei; Yang, Chunyan; Gu, Ying; Zhang, Jun; Du, Hailian; Shih, J. Wai Kuo; Xia, Ningshao] Xiamen Univ, Natl Inst Diagnost & Vaccine Dev Infect Dis, Sch Life Sci, Xiamen, Peoples R China. [Li, Shaowei; Tang, Xuhua; Zhang, Jun; Hew, Choy-Leong; Sivaraman, J.; Xia, Ningshao] Xiamen Univ, Xiamen NUS Joint Lab Biomed Sci, Xiamen, Peoples R China. [Tang, Xuhua; Hew, Choy-Leong; Sivaraman, J.] Natl Univ Singapore, Dept Biol Sci, Singapore 117548, Singapore. [Seetharaman, J.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Li, SW (reprint author), Xiamen Univ, Natl Inst Diagnost & Vaccine Dev Infect Dis, Sch Life Sci, Xiamen, Peoples R China. EM dbsjayar@nus.edu.sg; nsxia@xmu.edu.cn RI Gu, Y/G-4686-2010; Xia, NS/G-4647-2010; Sivaraman, J/H-8028-2012; Hew, Choy Leong/I-1501-2012; Zhang, Jun/G-4598-2010 OI Hew, Choy Leong/0000-0002-9441-0064; Zhang, Jun/0000-0002-6601-9180 FU Ministry of Education [B06016]; National Natural Science Foundation [30500092, 30600106, 30870514]; Project 863 [2006AA020905, 2006AA02A209]; Key Program in Infectious Diseases [2008ZX10004-015]; People's Republic of China; Academic Research Fund [R154000254112]; National University of Singapore, Singapore FX The authors would like to acknowledge funding support from the Project 111 of the Ministry of Education (Grant no. B06016), the National Natural Science Foundation (Grant no. 30500092, 30600106, 30870514), the Project 863 (Grant no. 2006AA020905, 2006AA02A209), the Key Program in Infectious Diseases (Grant No. 2008ZX10004-015), People's Republic of China. JS and CLH acknowledge research support from Academic Research Fund (JS Grant no. R154000254112, ARF), National University of Singapore, Singapore. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 34 TC 58 Z9 69 U1 0 U2 11 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-7366 EI 1553-7374 J9 PLOS PATHOG JI PLoS Pathog. PD AUG PY 2009 VL 5 IS 8 AR e1000537 DI 10.1371/journal.ppat.1000537 PG 10 WC Microbiology; Parasitology; Virology SC Microbiology; Parasitology; Virology GA 506VK UT WOS:000270804500022 PM 19662165 ER PT J AU Cockerill, K Daniel, L Malczynski, L Tidwell, V AF Cockerill, Kristan Daniel, Lacy Malczynski, Leonard Tidwell, Vincent TI A fresh look at a policy sciences methodology: collaborative modeling for more effective policy SO POLICY SCIENCES LA English DT Article DE System dynamics; Complex systems; Collaborative modeling; Public participation; Interdisciplinary ID PROBLEM STRUCTURING METHODS; SYSTEM DYNAMICS; DECISION-MAKING; CONSENSUS; FUTURE; VIEW; PERCEPTIONS; COMMITMENT; MANAGEMENT AB Collaborative modeling offers a novel methodology that integrates core ideals in the policy sciences. The principles behind collaborative modeling enable policy researchers and decision makers to address interdisciplinarity, complex systems, and public input in the policy process. This approach ideally utilizes system dynamics to enable a multidisciplinary group to explore the relationships in a complex system. We propose that there is a spectrum of possibilities for applying collaborative modeling in the policy arena, ranging from the purely academic through full collaboration among subject matter experts, the general public, and decision makers. Likewise, there is a spectrum of options for invoking collaboration within the policy process. Results from our experiences suggest that participants in a collaborative modeling project develop a deeper level of understanding about the complexity in the policy issue being addressed; increase their agreement about root problems; and gain an appreciation for the uncertainty inherent in data and methods in studying complex systems. We conclude that these attributes of collaborative modeling make it an attractive option for improving the decision-making process as well as on-the-ground decisions. C1 [Cockerill, Kristan] Appalachian State Univ, Sustainable Dev Program, Boone, NC 28607 USA. [Daniel, Lacy] Daniel Consulting, Estancia, NM 87016 USA. [Malczynski, Leonard; Tidwell, Vincent] Sandia Natl Labs, Geohydrol Dept, Albuquerque, NM 87185 USA. RP Cockerill, K (reprint author), Appalachian State Univ, Sustainable Dev Program, Boone, NC 28607 USA. EM cockerillkm@appstate.edu; rlardaniel@earthlink.net; lamalcz@sandia.gov; vctidwe@sandia.gov RI Cockerill, Kristan/J-7179-2012 NR 85 TC 10 Z9 10 U1 0 U2 8 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0032-2687 J9 POLICY SCI JI Policy Sci. PD AUG PY 2009 VL 42 IS 3 BP 211 EP 225 DI 10.1007/s11077-009-9080-8 PG 15 WC Planning & Development; Public Administration; Social Sciences, Interdisciplinary SC Public Administration; Social Sciences - Other Topics GA 473FW UT WOS:000268192500002 ER PT J AU Bender, CM Cooper, F Khare, A Mihaila, B Saxena, A AF Bender, Carl M. Cooper, Fred Khare, Avinash Mihaila, Bogdan Saxena, Avadh TI Compactons in PT-symmetric generalized Korteweg-de Vries equations SO PRAMANA-JOURNAL OF PHYSICS LA English DT Article; Proceedings Paper CT 8th Conference on Non-Hermitian Hamiltonians in Quantum Physics CY JAN 13-16, 2009 CL Mumbai, INDIA SP Bhabba Atom Res Ctr, Tata Inst Fund Res DE Compactons; PT symmetry; generalized KdV equations ID SCHRODINGER-EQUATIONS; VARIATIONAL METHOD; SOLITON STABILITY; KDV-TYPE AB This paper considers the PE-symmetric extensions of the equations examined by Cooper, Shepard and Sodano. From the scaling properties of the PT-symmetric equations a general theorem relating the energy, momentum and velocity of any solitary-wave solution of the generalized KdV equation is derived. We also discuss the stability of the compacton solution as a function of the parameters affecting the nonlinearities. C1 [Khare, Avinash] Inst Phys, Bhubaneswar 751005, Orissa, India. [Bender, Carl M.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Cooper, Fred] Natl Sci Fdn, Div Phys, Arlington, VA 22230 USA. [Cooper, Fred] Santa Fe Inst, Santa Fe, NM 87501 USA. [Mihaila, Bogdan] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Cooper, Fred; Saxena, Avadh] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Cooper, Fred; Saxena, Avadh] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Khare, A (reprint author), Inst Phys, Sachivalaya Marg, Bhubaneswar 751005, Orissa, India. EM khare@iopb.res.in RI Mihaila, Bogdan/D-8795-2013 OI Mihaila, Bogdan/0000-0002-1489-8814 NR 16 TC 13 Z9 13 U1 0 U2 3 PU INDIAN ACAD SCIENCES PI BANGALORE PA C V RAMAN AVENUE, SADASHIVANAGAR, P B #8005, BANGALORE 560 080, INDIA SN 0304-4289 J9 PRAMANA-J PHYS JI Pramana-J. Phys. PD AUG PY 2009 VL 73 IS 2 BP 375 EP 385 PG 11 WC Physics, Multidisciplinary SC Physics GA 491AF UT WOS:000269548500017 ER PT J AU Welch, J Backer, D Blitz, L Bock, DCJ Bower, GC Cheng, C Croft, S Dexter, M Engargiola, G Fields, E Forster, J Gutierrez-Kraybill, C Heiles, C Helfer, T Jorgensen, S Keating, G Lugten, J MacMahon, D Milgrome, O Thornton, D Urry, L van Leeuwen, J Werthimer, D Williams, PH Wright, M Tarter, J Ackermann, R Atkinson, S Backus, P Barott, W Bradford, T Davis, M DeBoer, D Dreher, J Harp, G Jordan, J Kilsdonk, T Pierson, T Randall, K Ross, J Shostak, S Fleming, M Cork, C Vitouchkine, A Wadefalk, N Weinreb, S AF Welch, Jack Backer, Don Blitz, Leo Bock, Douglas C. -J. Bower, Geoffrey C. Cheng, Calvin Croft, Steve Dexter, Matt Engargiola, Greg Fields, Ed Forster, James Gutierrez-Kraybill, Colby Heiles, Carl Helfer, Tamara Jorgensen, Susanne Keating, Garrett Lugten, John MacMahon, Dave Milgrome, Oren Thornton, Douglas Urry, Lynn van Leeuwen, Joeri Werthimer, Dan Williams, Peter H. Wright, Melvin Tarter, Jill Ackermann, Robert Atkinson, Shannon Backus, Peter Barott, William Bradford, Tucker Davis, Michael DeBoer, Dave Dreher, John Harp, Gerry Jordan, Jane Kilsdonk, Tom Pierson, Tom Randall, Karen Ross, John Shostak, Seth Fleming, Matt Cork, Chris Vitouchkine, Artyom Wadefalk, Niklas Weinreb, Sander TI The Allen Telescope Array: The First Widefield, Panchromatic, Snapshot Radio Camera for Radio Astronomy and SETI SO PROCEEDINGS OF THE IEEE LA English DT Article DE Antenna arrays; antenna feeds; array signal processing; astronomy; receivers; search for extraterrestrial intelligence AB The first 42 elements of the Allen Telescope Array (ATA-42) are beginning to deliver data at the Hat Creek Radio Observatory in northern California. Scientists and engineers are actively exploiting all of the flexibility designed into this innovative instrument for simultaneously conducting surveys of the astrophysical sky and conducting searches for distant technological civilizations. This paper summarizes the design elements of the ATA, the cost savings made possible by the use of commercial off-the-shelf components, and the cost/performance tradeoffs that eventually enabled this first snapshot radio camera. The fundamental scientific program of this new telescope is varied and exciting; some of the first astronomical results will be discussed. C1 [Welch, Jack; Backer, Don; Blitz, Leo; Bock, Douglas C. -J.; Bower, Geoffrey C.; Cheng, Calvin; Croft, Steve; Dexter, Matt; Engargiola, Greg; Fields, Ed; Forster, James; Gutierrez-Kraybill, Colby; Heiles, Carl; Helfer, Tamara; Jorgensen, Susanne; Keating, Garrett; MacMahon, Dave; Milgrome, Oren; Thornton, Douglas; Urry, Lynn; Werthimer, Dan; Williams, Peter H.; Wright, Melvin] Univ Calif Berkeley, Radio Astron Lab, Berkeley, CA 94720 USA. [Lugten, John] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [van Leeuwen, Joeri] ASTRON, NL-7990 AA Dwingeloo, Netherlands. [Tarter, Jill; Ackermann, Robert; Atkinson, Shannon; Backus, Peter; Bradford, Tucker; Davis, Michael; Dreher, John; Harp, Gerry; Jordan, Jane; Kilsdonk, Tom; Pierson, Tom; Randall, Karen; Ross, John; Shostak, Seth] SETI Inst, Mountain View, CA 94043 USA. [Barott, William] Embry Riddle Aeronaut Univ, Dept Elect & Syst Engn, Daytona Beach, FL 32114 USA. [DeBoer, Dave] CSIRO, ATNF, Epping, NSW 1710, Australia. [Fleming, Matt; Cork, Chris; Vitouchkine, Artyom] Minex Engn, Antioch, CA 94509 USA. [Wadefalk, Niklas] Chalmers, Dept Microtechnol & Nanosci MC2, SE-41296 Gothenburg, Sweden. [Weinreb, Sander] CALTECH, Dept Elect Engn, Pasadena, CA 91125 USA. RP Welch, J (reprint author), Univ Calif Berkeley, Radio Astron Lab, Berkeley, CA 94720 USA. EM wwelch@astro.berkeley.edu OI Williams, Peter/0000-0003-3734-3587; Croft, Steve/0000-0003-4823-129X FU Paul G. Allen Family Foundation [5784]; National Science Foundation [0540599, 0540690] FX This work was supported in part by the Paul G. Allen Family Foundation under Grant 5784, the National Science Foundation under Grants 0540599, and 0540690, Nathan Myhrvold, Greg Papadopoulos, Xilinx Inc., the SETI Institute, the University of California, Berkeley, and other private and corporate donors. NR 18 TC 56 Z9 57 U1 0 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0018-9219 J9 P IEEE JI Proc. IEEE PD AUG PY 2009 VL 97 IS 8 BP 1438 EP 1447 DI 10.1109/JPROC.2009.2017103 PG 10 WC Engineering, Electrical & Electronic SC Engineering GA 472WW UT WOS:000268164600010 ER PT J AU Mascarenas, DL Park, G Farinholt, KM Todd, MD Farrar, CR AF Mascarenas, D. L. Park, G. Farinholt, K. M. Todd, M. D. Farrar, C. R. TI A low-power wireless sensing device for remote inspection of bolted joints SO PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING LA English DT Article DE structural health monitoring; impedance method; bolted joints; active sensing ID SENSOR; IDENTIFICATION; ACTUATOR AB A new bolted-joint monitoring system is presented. This system consists of structural joint members equipped with piezoelectric (PZT) sensing elements and a wireless impedance device for data acquisition and communication. PZT enhanced washers are used to continuously monitor the condition of the joint by monitoring its dynamic characteristics. The mechanical impedance matching between the PZT enhanced devices and the joint connections is used as a key feature to monitor the preload changes and to prevent further failure. The dynamic response is readily measured using the electromechanical coupling property of the PZT patch, in which its electrical impedance is directly coupled with the mechanical impedance of the structure. A new miniaturized and portable impedance measuring device is implemented for the practical implementation of the proposed method. The proposed system can be used for the remote and rapid inspection of bolt tension and connection damage. Both theoretical modelling and experimental verification are presented to demonstrate the effectiveness of the proposed concept. C1 [Park, G.; Farinholt, K. M.; Farrar, C. R.] Los Alamos Natl Lab, Engn Inst, Los Alamos, NM 87545 USA. [Mascarenas, D. L.; Todd, M. D.] Univ Calif San Diego, Dept Struct Engn, San Diego, CA 92103 USA. RP Park, G (reprint author), Los Alamos Natl Lab, Engn Inst, Mail Stop T001, Los Alamos, NM 87545 USA. EM gpark@lanl.gov RI Farrar, Charles/C-6954-2012; OI Farrar, Charles/0000-0001-6533-6996 FU LANL/UCSD FX This research was funded by part of the LANL/UCSD Education Collaboration Tasks. Thanks are extended to Mr Eric Flynn for creating a graphical user interface for WID2. NR 24 TC 20 Z9 21 U1 0 U2 10 PU PROFESSIONAL ENGINEERING PUBLISHING LTD PI WESTMINISTER PA 1 BIRDCAGE WALK, WESTMINISTER SW1H 9JJ, ENGLAND SN 0954-4100 J9 P I MECH ENG G-J AER JI Proc. Inst. Mech. Eng. Part G-J. Aerosp. Eng. PD AUG PY 2009 VL 223 IS G5 BP 565 EP 575 DI 10.1243/09544100JAERO378 PG 11 WC Engineering, Aerospace; Engineering, Mechanical SC Engineering GA 484GZ UT WOS:000269033500009 ER PT J AU Schwartz, AJ Cynn, H Blobaum, KJM Wall, MA Moore, KT Evans, WJ Farber, DL Jeffries, JR Massalski, TB AF Schwartz, A. J. Cynn, H. Blobaum, K. J. M. Wall, M. A. Moore, K. T. Evans, W. J. Farber, D. L. Jeffries, J. R. Massalski, T. B. TI Atomic structure and phase transformations in Pu alloys SO PROGRESS IN MATERIALS SCIENCE LA English DT Article; Proceedings Paper CT Symposium on Materials Structures - Nabarro Legacy held at the 2008 MRS Spring Meeting CY MAR 24-28, 2008 CL San Francisco, CA SP MRS ID RAY-ABSORPTION SPECTROSCOPY; ALPHA-PLUTONIUM METAL; DOUBLE-C CURVE; AT. PERCENT GA; DELTA-PHASE; MARTENSITIC-TRANSFORMATION; LOW-TEMPERATURE; CRYSTAL-STRUCTURE; ELECTRONIC-STRUCTURE; PLASTIC-DEFORMATION AB Plutonium and plutonium-based alloys containing Al or Ga exhibit numerous phases with crystal structures ranging from simple monoclinic to face-centered cubic. Only recently, however, has there been increased convergence in the actinides community on the details of the equilibrium form of the phase diagrams. Practically speaking, while the phase diagrams that represent the stability of the fcc delta-phase field at room temperature are generally applicable, it is also recognized that Pu and its alloys are never truly in thermodynamic equilibrium because of self-irradiation effects, primarily from the alpha decay of Pu isotopes. This article covers past and current research on several properties of Pu and Pu-(Al or Ga) alloys and their connections to the crystal structure and the microstructure. We review the consequences of radioactive decay, the recent advances in understanding the electronic structure, the current research on phase transformations and their relations to phase diagrams and phase stability, the nature of the isothermal martensitic delta -> alpha' transformation, and the pressure-induced transformations in the delta-phase alloys. New data are also presented on the structures and phase transformations observed in these materials following the application of pressure, including the formation of transition phases. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Schwartz, A. J.; Cynn, H.; Blobaum, K. J. M.; Wall, M. A.; Moore, K. T.; Evans, W. J.; Farber, D. L.; Jeffries, J. R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Massalski, T. B.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. RP Schwartz, AJ (reprint author), Lawrence Livermore Natl Lab, L-041,7000 E Ave, Livermore, CA 94550 USA. EM schwartz6@llnl.gov RI Farber, Daniel/F-9237-2011 NR 114 TC 29 Z9 30 U1 3 U2 36 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0079-6425 J9 PROG MATER SCI JI Prog. Mater. Sci. PD AUG PY 2009 VL 54 IS 6 BP 909 EP 943 DI 10.1016/j.pmatsci.2009.03.003 PG 35 WC Materials Science, Multidisciplinary SC Materials Science GA 468SM UT WOS:000267841100011 ER PT J AU Green, MA Emery, K Hishikawa, Y Warta, W AF Green, Martin A. Emery, Keith Hishikawa, Yoshihiro Warta, Wilhelm TI Solar Cell Efficiency Tables (Version 34) SO PROGRESS IN PHOTOVOLTAICS LA English DT Article DE solar cell efficiency; photovoltaic efficiency; energy conversion efficiency ID MULTICRYSTALLINE AB Consolidated tables showing all extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined and flew entries since January, 2009 are reviewed. Copyright (C) 2009 John Wiley & Sons, Ltd. C1 [Green, Martin A.] Univ New S Wales, ARC Photovolta Ctr Excellence, Sydney, NSW 2052, Australia. [Emery, Keith] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Hishikawa, Yoshihiro] Natl Inst Adv Ind Sci & Technol, Res Ctr Photovolta, Tsukuba, Ibaraki 3058568, Japan. [Warta, Wilhelm] Fraunhofer Inst Solar Energy Syst, Dept Solar Cells Mat & Technol, D-79110 Freiburg, Germany. RP Green, MA (reprint author), Univ New S Wales, ARC Photovolta Ctr Excellence, Sydney, NSW 2052, Australia. EM m.green@unsw.edu.au NR 50 TC 167 Z9 170 U1 3 U2 39 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1062-7995 J9 PROG PHOTOVOLTAICS JI Prog. Photovoltaics PD AUG PY 2009 VL 17 IS 5 BP 320 EP 326 DI 10.1002/pip.911 PG 7 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 476IU UT WOS:000268433900006 ER PT J AU Glover, BB Perry, WL AF Glover, Brian B. Perry, W. Lee TI Microwave Properties of TATB Particles from Measurements of the Effective Permittivity of TATB Powders SO PROPELLANTS EXPLOSIVES PYROTECHNICS LA English DT Article DE Energy; Explosive; Microwave; Mixtures; Permittivity; TATB ID MIXTURE AB Complex permittivity is the constitutive property required to fully define the absorption, reflection, and transmission of microwave frequency electromagnetic energy for a non-magnetic material. We report the complex permittivity of 1,3,5-triamino2,4,6-trinitrobenzene (TATB) powder from 1 to 18 GHz. The average complex permittivity of individual TATB particles was estimated from measurements of the complex permittivity of the powder at two different densities. TATB was found to have low permittivity, low dielectric loss with nearly constant valued permittivity between I and 18 GHz. These data are used to calculate the complex permittivity of a composite composed of TATB and Kel-F 800. C1 [Glover, Brian B.; Perry, W. Lee] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Glover, BB (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM gloverb@lanl.gov OI Perry, William/0000-0003-1993-122X FU Los Alamos National Laboratory; United States Department of Energy [DE-AC52-06NA25396] FX This work was supported by Los Alamos National Laboratory. Los Alamos National Laboratory is operated by Los Alamos National Security, L. L. C. under the auspices of the National Nuclear Security Administration of the United States Department of Energy under Contract No. DE-AC52-06NA25396. NR 16 TC 4 Z9 4 U1 1 U2 5 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0721-3115 J9 PROPELL EXPLOS PYROT JI Propellants Explos. Pyrotech. PD AUG PY 2009 VL 34 IS 4 BP 347 EP 350 DI 10.1002/prep.200800070 PG 4 WC Chemistry, Applied; Engineering, Chemical SC Chemistry; Engineering GA 486WZ UT WOS:000269232700009 ER PT J AU Teng, PK Eisenberg, D AF Teng, Poh K. Eisenberg, David TI Short protein segments can drive a non-fibrillizing protein into the amyloid state SO PROTEIN ENGINEERING DESIGN & SELECTION LA English DT Article DE amyloid; domain swapping; functional networks; prion structure; protein interactions ID PAIRED HELICAL FILAMENTS; ALPHA-SYNUCLEIN; PARKINSONS-DISEASE; RIBONUCLEASE-A; BETA-STRUCTURE; TAU-PROTEIN; FIBRILS; MUTATIONS; CONFORMATION; AGGREGATION AB Protein fibrils termed amyloid-like are associated with numerous degenerative diseases as well as some normal cellular functions. Specific short segments of amyloid-forming proteins have been shown to form fibrils themselves. However, it has not been shown in general that these segments are capable of driving a protein from its native structure into the amyloid state. We applied the 3D profile method to identify fibril-forming segments within the amyloid-forming human proteins tau, alpha-synuclein, PrP prion and amyloid-beta. Ten segments, six to eight residues in length, were chosen and inserted into the C-terminal hinge loop of the highly constrained enzyme RNase A, and tested for fibril growth and Congo red birefringence. We find that all 10 unique inserts cause RNase A to form amyloid-like fibrils which display characteristic yellow to apple-green Congo red birefringence when observed with cross polarizers. These six to eight residue inserts can fibrillize RNase A and are sufficient for amyloid fibril spine formation. C1 [Teng, Poh K.; Eisenberg, David] Univ Calif Los Angeles, Howard Hughes Med Inst, Inst Mol Biol, Dept Biol Chem,UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. [Teng, Poh K.; Eisenberg, David] Univ Calif Los Angeles, Howard Hughes Med Inst, Inst Mol Biol, Dept Chem & Biochem,UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. RP Eisenberg, D (reprint author), Univ Calif Los Angeles, Howard Hughes Med Inst, Inst Mol Biol, Dept Biol Chem,UCLA DOE Inst Genom & Prote, Box 951570, Los Angeles, CA 90095 USA. EM david@mbi.ucla.edu RI Eisenberg, David/E-2447-2011 FU National Science Foundation [MCB-0445429]; National Institute on Aging [1R01 AG029430]; United States Department of Energy Office of Biological and Environmental Research FX This work was supported by the National Science Foundation (MCB-0445429); the National Institute on Aging (1R01 AG029430) and the United States Department of Energy Office of Biological and Environmental Research. NR 35 TC 54 Z9 54 U1 1 U2 15 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1741-0126 J9 PROTEIN ENG DES SEL JI Protein Eng. Des. Sel. PD AUG PY 2009 VL 22 IS 8 BP 531 EP 536 DI 10.1093/protein/gzp037 PG 6 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 478KV UT WOS:000268588100011 PM 19602569 ER PT J AU Splettstoesser, T Noe, F Oda, T Smith, JC AF Splettstoesser, Thomas Noe, Frank Oda, Toshiro Smith, Jeremy C. TI Nucleotide-dependence of G-actin conformation from multiple molecular dynamics simulations and observation of a putatively polymerization-competent superclosed state SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article DE actin; molecular dynamics simulation; actin polymerization; conformational change; nucleotide ID CRYSTAL-STRUCTURE; MONOMERIC ACTIN; BETA-ACTIN; FILAMENT; PROTEINS; PROFILIN; HYDROLYSIS; COMPLEX; CELLS; MODEL AB The assembly of monomeric G-actin into filamentous F-actin is nucleotide dependent: ATP-G-actin is favored for filament growth at the "barbed end" of F-actin, whereas ADP-G-actin tends to dissociate from the "pointed end." Structural differences between ATP- and ADPG-actin are examined here using multiple molecular dynamics simulations. The "open" and "closed" conformational states of G-actin in aqueous solution are characterized, with either ATP or ADP in the nucleotide binding pocket. With both ATP and ADP bound, the open state closes in the absence of actin-bound profilin. The position of the nucleotide in the protein is found to be correlated with the degree of opening of the active site cleft. Further, the simulations reveal the existence of a structurally well-defined, compact, "superclosed" state of ATP-G-actin, as yet unseen crystallographically and absent in the ADPG-actin simulations. The superclosed state resembles structurally the actin monomer in filament models derived from fiber diffraction and is putatively the polymerization competent conformation of ATP-G-actin. C1 [Splettstoesser, Thomas; Noe, Frank; Smith, Jeremy C.] Univ Heidelberg, Interdisciplinary Ctr Sci Comp, D-69120 Heidelberg, Germany. [Noe, Frank] FU Berlin, DFG Res Ctr Matheon, D-14159 Berlin, Germany. [Oda, Toshiro] RIKEN Spring 8 Ctr, RIKEN Harima Inst, Mikazuki, Hyogo 6795148, Japan. [Smith, Jeremy C.] Univ Tennessee, Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN 37831 USA. RP Splettstoesser, T (reprint author), IWR Heidelberg, Neuenheimer Feld 368, D-69120 Heidelberg, Germany. EM thomas.splettstoesser@iwr.uni-heidelberg.de RI Oda, Toshiro/F-6151-2011; smith, jeremy/B-7287-2012 OI smith, jeremy/0000-0002-2978-3227 FU Ministry of Science, Research and the Arts of Baden-Wurttemberg (Biomimetische Modelle der Zellmechanik) [24-7532.22-19-12/1]; Deutsche Forschungsgemeinschaft [SM 63/8-1,2]; DOE Laboratory-Directed Research and Development FX Grant sponsor: Ministry of Science, Research and the Arts of Baden-Wurttemberg (Biomimetische Modelle der Zellmechanik); Grant number: 24-7532.22-19-12/1; Grant sponsor: the Deutsche Forschungsgemeinschaft; Grant number: SM 63/8-1,2; Grant sponsor: DOE Laboratory-Directed Research and Development grant. NR 43 TC 13 Z9 13 U1 1 U2 4 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0887-3585 J9 PROTEINS JI Proteins PD AUG 1 PY 2009 VL 76 IS 2 BP 353 EP 364 DI 10.1002/prot.22350 PG 12 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 457WQ UT WOS:000266966300008 PM 19156817 ER PT J AU Rusch, GM Bast, CB Cavender, FL AF Rusch, George M. Bast, Cheryl B. Cavender, Finis L. TI Establishing a point of departure for risk assessment using acute inhalation toxicology data SO REGULATORY TOXICOLOGY AND PHARMACOLOGY LA English DT Review DE Point of departure; Risk assessment; Median lethal; Acute inhalation toxicity; Estimating non-lethal exposure levels; LC(50) ID PETROLEUM HYDROCARBON TOXICITY; EXPOSURE GUIDELINE LEVELS; METHYL ISOCYANATE; HAZARDOUS SUBSTANCES; MAMMALIAN TOXICITY; HUMAN RESPONSE; RATS; MICE; VAPORS; CARCINOGENICITY AB A simple method is presented for estimating a non-lethal level for inhalation toxicity studies. By reviewing 209 LC(50) studies representing 96 chemicals that also reported a non-lethal level, it has been shown that taking 1/3 of the LC(50) is a conservative estimate for a non-lethal exposure level. This approach was also compared to studies with LC(01) and BMCL(05) calculations. In the 38 studies that reported either of these values, again taking 1/3 of the LC(50) provided a more conservation estimate for the non-lethal threshold. The studies included time intervals from 5 min out to 8 h and utilized multiple species such as the rat, mouse, hamster, guinea pig and dog. In all but 13 cases, taking 1/3 of the LC(50) provided a more conservative estimate for a non-lethal exposure level compared to the experimentally observed value. In all but one of the 13 cases, the higher values were consequences of the selection of the exposure levels. (C) 2009 Elsevier Inc. All rights reserved. C1 [Rusch, George M.] Honeywell Int, DABT, Fellow ATS, Morristown, NJ 08807 USA. [Bast, Cheryl B.] Oak Ridge Natl Lab, Toxicol & Hazard Assessment Grp, Div Environm Sci, Oak Ridge, TN 37830 USA. [Cavender, Finis L.] DABT, Hendersonville, NC 28739 USA. RP Rusch, GM (reprint author), Honeywell Int, DABT, Fellow ATS, 101 Columbia Rd, Morristown, NJ 08807 USA. EM george.rusch@honeywell.com RI Bast, Cheryl/B-9436-2012 NR 143 TC 7 Z9 7 U1 1 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0273-2300 J9 REGUL TOXICOL PHARM JI Regul. Toxicol. Pharmacol. PD AUG PY 2009 VL 54 IS 3 BP 247 EP 255 DI 10.1016/j.yrtph.2009.05.001 PG 9 WC Medicine, Legal; Pharmacology & Pharmacy; Toxicology SC Legal Medicine; Pharmacology & Pharmacy; Toxicology GA 476TX UT WOS:000268469900007 PM 19427887 ER PT J AU Fthenakis, V Kim, HC AF Fthenakis, Vasilis Kim, Hyung Chul TI Land use and electricity generation: A life-cycle analysis SO RENEWABLE & SUSTAINABLE ENERGY REVIEWS LA English DT Review DE Land occupation; Transformation; Renewable; Photovoltaics; Coal; Biomass; Wind; Nuclear ID CO2 EMISSIONS; FRAMEWORK AB Renewable-energy sources often are regarded as dispersed and difficult to collect, thus requiring substantial land resources in comparison to conventional energy sources. In this review, we present the normalized land requirements during the life cycles of conventional- and renewable-energy options, covering coal, natural gas, nuclear, hydroelectric, photovoltaics, wind, and biomass. We compared the land transformation and occupation matrices within a life-cycle framework across those fuel cycles. Although the estimates vary with regional and technological conditions, the photovoltaic (PV) cycle requires the least amount of land among renewable-energy options, while the biomass cycle requires the largest amount. Moreover, we determined that, in most cases, ground-mount PV systems in areas of high insolation transform less land than the coal-fuel cycle coupled with surface mining. In terms of land occupation, the biomass-fuel cycle requires the greatest amount, followed by the nuclear-fuel cycle. Although not detailed in this review, conventional electricity-generation technologies also pose secondary effects on land use, including contamination and disruptions of the ecosystems of adjacent lands, and land disruptions by fuel-cycl e-related accidents. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Fthenakis, Vasilis] Brookhaven Natl Lab, Natl PV Environm Res Ctr, Upton, NY 11973 USA. [Fthenakis, Vasilis; Kim, Hyung Chul] Columbia Univ, Ctr Life Cycle Anal, New York, NY 10027 USA. RP Fthenakis, V (reprint author), Brookhaven Natl Lab, Natl PV Environm Res Ctr, Bldg 475B, Upton, NY 11973 USA. EM vmf@bnl.gov OI Kim, Hyung Chul/0000-0002-0992-4547 NR 56 TC 110 Z9 111 U1 4 U2 55 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-0321 J9 RENEW SUST ENERG REV JI Renew. Sust. Energ. Rev. PD AUG-SEP PY 2009 VL 13 IS 6-7 BP 1465 EP 1474 DI 10.1016/j.rser.2008.09.017 PG 10 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA 444ZL UT WOS:000266019300024 ER PT J AU Arena, DA Ding, Y Vescovo, E Zohar, S Guan, Y Bailey, WE AF Arena, D. A. Ding, Y. Vescovo, E. Zohar, S. Guan, Y. Bailey, W. E. TI A compact apparatus for studies of element and phase-resolved ferromagnetic resonance SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID MAGNETIC CIRCULAR-DICHROISM; THIN-FILMS; RAY; NI81FE19; PRECESSION; DYNAMICS; DOPANTS; NICKEL AB We present a compact sample holder equipped with electromagnets and high frequency transmission lines; the sample holder is intended for combined x-ray magnetic circular dichroism (XMCD) and ferromagnetic resonance measurements (FMR). Time-resolved measurements of resonant x-ray detected FMR during forced precession are enabled by use of a rf excitation that is phase-locked to the storage ring bunch clock. Several applications of the combined XMCD+FMR technique are presented, demonstrating the flexibility of the experimental design. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3190402] C1 [Arena, D. A.; Ding, Y.; Vescovo, E.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Zohar, S.; Guan, Y.; Bailey, W. E.] Columbia Univ, Dept Appl Phys, Mat Sci Program, New York, NY 10027 USA. RP Arena, DA (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM darena@bnl.gov FU Army Research Office [ARO-43986-MS-YIP]; National Science Foundation [NSFDMR-02-39724]; U.S. Department of Energy [W-31-109-Eng-38, DE-AC02-98CH10886] FX hard is gratefully acknowledged, as is the beam line support provided by David Keavney and colleagues at the Advanced Photon Source. This work was partially supported by the Army Research Office with Grant No. ARO-43986-MS-YIP and the National Science Foundation with Grant No. NSFDMR-02-39724. The use of the Advanced Photon Source was supported by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38. The support of the NSLS under DOE Contract No. DE-AC02-98CH10886 is also gratefully acknowledged. NR 32 TC 20 Z9 20 U1 1 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2009 VL 80 IS 8 AR 083903 DI 10.1063/1.3190402 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 497SZ UT WOS:000270084000025 PM 19725663 ER PT J AU Denes, P Doering, D Padmore, HA Walder, JP Weizeorick, J AF Denes, P. Doering, D. Padmore, H. A. Walder, J. -P. Weizeorick, J. TI A fast, direct x-ray detection charge-coupled device SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID HIGH-RESISTIVITY SILICON; CCD AB A charge-coupled device (CCD) capable of 200 Mpixels/s readout has been designed and fabricated on thick, high-resistivity silicon. The CCDs, up to 600 mu m thick, are fully depleted, ensuring good infrared to x-ray detection efficiency, together with a small point spread function. High readout speed, with good analog performance, is obtained by the use of a large number of parallel output ports. A set of companion 16-channel custom readout integrated circuits, capable of 15 bits of dynamic range, is used to read out the CCD. A gate array-controlled back end data acquisition system frames and transfers images, as well as provides the CCD clocks. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3187222] C1 [Denes, P.; Doering, D.; Walder, J. -P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Engn, Berkeley, CA 94720 USA. [Padmore, H. A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source Div, Berkeley, CA 94720 USA. [Weizeorick, J.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. RP Denes, P (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Engn, 1 Cyclotron Rd, Berkeley, CA 94720 USA. NR 5 TC 33 Z9 33 U1 1 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2009 VL 80 IS 8 AR 083302 DI 10.1063/1.3187222 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 497SZ UT WOS:000270084000008 PM 19725646 ER PT J AU Gopalsami, N Chien, HT Heifetz, A Koehl, ER Raptis, AC AF Gopalsami, N. Chien, H. T. Heifetz, A. Koehl, E. R. Raptis, A. C. TI Millimeter wave detection of nuclear radiation: An alternative detection mechanism SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB We present a nuclear radiation detection mechanism using millimeter waves as an alternative to conventional detection. It is based on the concept that nuclear radiation causes ionization of air and that if we place a dielectric material near the radiation source, it acts as a charge accumulator of the air ions. We have found that millimeter waves can interrogate the charge cloud on the dielectric material remotely. This concept was tested with a standoff millimeter wave system by monitoring the charge levels on a cardboard tube placed in an x-ray beam. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3206114] C1 [Gopalsami, N.; Chien, H. T.; Heifetz, A.; Koehl, E. R.; Raptis, A. C.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Gopalsami, N (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. FU U.S. Department of Energy [W-31-109-ENG-38]; Victoria Franques of Office of Nonproliferation Research and Development under the National Nuclear Security Administration FX This work is supported by the U.S. Department of Energy under Contract No. W-31-109-ENG-38. The authors wish to thank Dr. Victoria Franques of Office of Nonproliferation Research and Development under the National Nuclear Security Administration for financial support. NR 10 TC 8 Z9 8 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2009 VL 80 IS 8 AR 084702 DI 10.1063/1.3206114 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 497SZ UT WOS:000270084000035 PM 19725673 ER PT J AU Jansen, P Chandler, DW Strecker, KE AF Jansen, Paul Chandler, David W. Strecker, Kevin E. TI A compact molecular beam machine SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID DIFFERENTIAL CROSS-SECTIONS; PRODUCTS; ATOMS AB We have developed a compact, low cost, modular, crossed molecular beam machine. The new apparatus utilizes several technological advancements in molecular beams valves, ion detection, and vacuum pumping to reduce the size, cost, and complexity of a molecular beam apparatus. We apply these simplifications to construct a linear molecular beam machine as well as a crossed-atomic and molecular beam machine. The new apparatus measures almost 50 cm in length, with a total laboratory footprint less than 0.25 m(2) for the crossed-atomic and molecular beam machine. We demonstrate the performance of the apparatus by measuring the rotational temperature of nitric oxide from three common molecular beam valves and by observing collisional energy transfer in nitric oxide from a collision with argon. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3206367] C1 [Jansen, Paul] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Chandler, David W.; Strecker, Kevin E.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Jansen, P (reprint author), Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. EM kstreck@sandia.gov FU U. S. Department of Energy FX Funding for this work was provided by the U. S. Department of Energy, Office of Basic Energy Science. Sandia National laboratory is a multidisciplinary laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy. NR 15 TC 7 Z9 7 U1 2 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2009 VL 80 IS 8 AR 083105 DI 10.1063/1.3206367 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 497SZ UT WOS:000270084000006 PM 19725644 ER PT J AU Li, RK Tang, CX Du, YC Huang, WH Du, Q Shi, JR Yan, LX Wang, XJ AF Li, Renkai Tang, Chuanxiang Du, Yingchao Huang, Wenhui Du, Qiang Shi, Jiaru Yan, Lixin Wang, Xijie TI Experimental demonstration of high quality MeV ultrafast electron diffraction SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID MICROSCOPY; RESOLUTION; GUN AB The simulation optimization and an experimental demonstration of improved performances of mega-electron-volt ultrafast electron diffraction (MeV UED) are reported in this paper. Using ultrashort high quality electron pulses from an S-band photocathode rf gun and a polycrystalline aluminum foil as the sample, we experimentally demonstrated an improved spatial resolution of MeV UED, in which the Debye-Scherrer rings of the (111) and (200) planes were clearly resolved. This result showed that MeV UED is capable to achieve an atomic level spatial resolution and a similar to 100 A temporal resolution simultaneously, and will be a unique tool for ultrafast structural dynamics studies. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3194047] C1 [Li, Renkai; Tang, Chuanxiang; Du, Yingchao; Huang, Wenhui; Du, Qiang; Shi, Jiaru; Yan, Lixin] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. [Wang, Xijie] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Li, RK (reprint author), Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. EM lrk@mails.thu.edu.cn OI Li, Renkai/0000-0002-3163-5506 FU National Natural Science Foundation of China (NSFC) [10735050, 10875070]; National Basic Research Program of China [2007CB815102] FX The authors acknowledge many helpful discussions with Dr. Jim Cao, Dr. Yutong Li, and Dr. Wenxi Liang. This work is supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 10735050 and 10875070 and by the National Basic Research Program of China (973 Program) under Grant No. 2007CB815102. NR 20 TC 30 Z9 30 U1 1 U2 21 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2009 VL 80 IS 8 AR 083303 DI 10.1063/1.3194047 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 497SZ UT WOS:000270084000009 PM 19725647 ER PT J AU Liu, Y Baktash, C Beene, JR Geppert, C Gottwald, T Havener, CC Kessler, T Krause, HF Schultz, DR Stracener, DW Vane, CR Wies, K Wendt, K AF Liu, Y. Baktash, C. Beene, J. R. Geppert, Ch. Gottwald, T. Havener, C. C. Kessler, T. Krause, H. F. Schultz, D. R. Stracener, D. W. Vane, C. R. Wies, K. Wendt, K. TI Emittance characterization of a hot-cavity laser ion source at Holifield Radioactive Ion Beam Facility SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID MASS SEPARATOR; SPACE CHARGE; IONIZATION; ISOLDE; ISOTOPES; TRIUMF; HRIBF; NI; GE AB The first investigation of the transverse emittance of a hot-cavity laser ion source based on all-solid-state Ti:sapphire lasers is presented. The emittances of (63)Cu ion beams generated by three-photon resonant ionization are measured and compared with that of the (69)Ga and (39)K ion beams resulting from surface ionization in the same ion source. A self-consistent unbiased elliptical exclusion method is adapted for noise reduction and emittance analysis. Typical values of the rms and 90% fractional emittances of the Cu ion beams at 20 keV energy are found to be about 2 and 8 pi mm mrad, respectively, for the ion currents of 2-40 nA investigated. The emittances of the laser-produced Cu ion beams are smaller than those of the surface-ionized Ga and K ion beams. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3184343] C1 [Liu, Y.; Baktash, C.; Beene, J. R.; Havener, C. C.; Krause, H. F.; Schultz, D. R.; Stracener, D. W.; Vane, C. R.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Geppert, Ch.; Gottwald, T.; Kessler, T.; Wies, K.; Wendt, K.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. RP Liu, Y (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. EM liuy@ornl.gov RI Wendt, Klaus/D-7306-2011 OI Wendt, Klaus/0000-0002-9033-9336 FU US Department of Energy [DE-AC05-00OR22725]; German Bundesminis-terium fur Bildung und Forschung [06MZ197, 06MZ215]; European Union [506065] FX This research has been sponsored by the US Department of Energy, under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC, as well as by the German Bundesminis-terium fur Bildung und Forschung under Contract Nos. 06MZ197 and 06MZ215, and by the European Union Sixth Framework through RII3-EURONS (Contract No. 506065). NR 26 TC 6 Z9 6 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2009 VL 80 IS 8 AR 083304 DI 10.1063/1.3184343 PG 10 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 497SZ UT WOS:000270084000010 PM 19725648 ER PT J AU Nazaretski, E Graham, KS Thompson, JD Wright, JA Pelekhov, DV Hammel, PC Movshovich, R AF Nazaretski, E. Graham, K. S. Thompson, J. D. Wright, J. A. Pelekhov, D. V. Hammel, P. C. Movshovich, R. TI Design of a variable temperature scanning force microscope SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID NUCLEAR-MAGNETIC-RESONANCE; FIBEROPTIC INTERFEROMETER; FERROMAGNETIC-RESONANCE; ULTRAHIGH-VACUUM; CANTILEVERS; SAMPLE; SENSITIVITY; MODULATION; FIELDS; RESOLUTION AB We have developed the variable temperature scanning force microscope capable of performing both magnetic resonance force microscopy (MRFM) and magnetic force microscopy (MFM) measurements in the temperature range between 5 and 300 K. Modular design, large scanning area, and interferometric detection of the cantilever deflection make it a sensitive, easy to operate, and reliable instrument suitable for, studies of the dynamic and static magnetization in various systems. We have verified the performance of the microscope by imaging vortices in a Nb thin film in the MFM mode of operation. MRFM spectra in a diphenyl-picryl-hydrazyl film were recorded to evaluate the MRFM mode of operation. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3212561] C1 [Nazaretski, E.; Graham, K. S.; Thompson, J. D.; Movshovich, R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Wright, J. A.] Univ Calif Los Angeles, Dept Phys, Los Angeles, CA 90095 USA. [Pelekhov, D. V.; Hammel, P. C.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. RP Nazaretski, E (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. RI Hammel, P Chris/O-4845-2014 OI Hammel, P Chris/0000-0002-4138-4798 FU U.S. Department of Energy [DEFG02-03ER46054]; NSF [0654431] FX This work was supported by the U.S. Department of Energy and was performed in part, at the Center for Integrated Nanotechnologies at Los Alamos and Sandia National Laboratories. Personnel at Ohio State University were supported by the U.S. Department of Energy through Grant No. DEFG02-03ER46054. One of the authors J.A.W. was supported through the MSTP Fellowship at UCLA funded by NSF Grant No. 0654431. Technical assistance of J. Kevin Baldwin with fabrication of Nb films for vortex studies is acknowledged. NR 59 TC 19 Z9 20 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2009 VL 80 IS 8 AR 083704 DI 10.1063/1.3212561 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 497SZ UT WOS:000270084000021 PM 19725659 ER PT J AU Qiao, S Ma, DW Feng, DL Marks, S Schlueter, R Prestemon, S Hussain, Z AF Qiao, S. Ma, Dewei Feng, Donglai Marks, S. Schlueter, R. Prestemon, S. Hussain, Z. TI Knot undulator to generate linearly polarized photons with low on-axis power density SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID FIGURE-8 UNDULATOR; LIGHT-SOURCE AB Heat load on beamline optics is a serious obstacle for devices designed to generate pure linearly polarized photons in third generation synchrotron radiation facilities. For permanent magnet undulators, this problem can be overcome by implementing a figure-eight design configuration. As yet there has been no good method to tackle this problem for electromagnetic elliptical undulators. Here, a novel design and operational mode is suggested, which can generate pure linearly polarized photons with very low on-axis heat load. Additionally, the minimum photon energy capability of linearly polarized photons can be significantly extended by this method. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3204452] C1 [Qiao, S.; Ma, Dewei; Feng, Donglai] Fudan Univ, Dept Phys, Adv Mat Lab, Shanghai 200433, Peoples R China. [Qiao, S.; Ma, Dewei; Feng, Donglai] Fudan Univ, Surface Phys Lab, Natl Key Lab, Shanghai 200433, Peoples R China. [Qiao, S.] Stanford Univ, Dept Phys, Dept Appl Phys, Stanford, CA 94305 USA. [Qiao, S.] Stanford Univ, Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA. [Qiao, S.; Marks, S.; Schlueter, R.; Prestemon, S.; Hussain, Z.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Qiao, S (reprint author), Fudan Univ, Dept Phys, Adv Mat Lab, Shanghai 200433, Peoples R China. FU Shanghai Pujiang program. FX This research was partly supported by Shanghai Pujiang program. NR 12 TC 4 Z9 5 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2009 VL 80 IS 8 AR 085108 DI 10.1063/1.3204452 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 497SZ UT WOS:000270084000044 PM 19725682 ER PT J AU Theobald, W Stoeckl, C Jaanimagi, PA Nilson, PM Storm, M Meyerhofer, DD Sangster, TC Hey, D MacKinnon, AJ Park, HS Patel, PK Shepherd, R Snavely, RA Key, MH King, JA Zhang, B Stephens, RB Akli, KU Highbarger, K Daskalova, RL Van Woerkom, L Freeman, RR Green, JS Gregori, G Lancaster, K Norreys, PA AF Theobald, W. Stoeckl, C. Jaanimagi, P. A. Nilson, P. M. Storm, M. Meyerhofer, D. D. Sangster, T. C. Hey, D. MacKinnon, A. J. Park, H. -S. Patel, P. K. Shepherd, R. Snavely, R. A. Key, M. H. King, J. A. Zhang, B. Stephens, R. B. Akli, K. U. Highbarger, K. Daskalova, R. L. Van Woerkom, L. Freeman, R. R. Green, J. S. Gregori, G. Lancaster, K. Norreys, P. A. TI A dual-channel, curved-crystal spectrograph for petawatt laser, x-ray backlighter source studies SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID POTASSIUM ACID PHTHALATE; OMEGA LASER; SUBPICOSECOND LASER; REFLECTION; SPECTROMETER; SPECTROSCOPY; IGNITION; FACILITY; PULSES; REGION AB A dual-channel, curved-crystal spectrograph was designed to measure time-integrated x-ray spectra in the similar to 1.5 to 2 keV range (6.2-8.2 angstrom wavelength) from small-mass, thin-foil targets irradiated by the VULCAN petawatt laser focused up to 4 x 10(20) W/cm(2). The spectrograph consists of two cylindrically curved potassium-acid-phthalate crystals bent in the meridional plane to increase the spectral range by a factor of similar to 10 compared to a flat crystal. The device acquires single-shot x-ray spectra with good signal-to-background ratios in the hard x-ray background environment of petawatt laser-plasma interactions. The peak spectral energies of the aluminum He(alpha) and Ly(alpha) resonance lines were similar to 1.8 and similar to 1.0 mJ/eV sr (similar to 0.4 and 0.25 J/angstrom sr), respectively, for 220 J, 10 ps laser irradiation. 0 2009 American Institute of Physics. [DOI: 10.1063/1.3193716] C1 [Theobald, W.; Stoeckl, C.; Jaanimagi, P. A.; Nilson, P. M.; Storm, M.; Meyerhofer, D. D.; Sangster, T. C.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Hey, D.; MacKinnon, A. J.; Park, H. -S.; Patel, P. K.; Shepherd, R.; Snavely, R. A.; Key, M. H.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [King, J. A.; Zhang, B.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [Stephens, R. B.; Akli, K. U.] Gen Atom Co, San Diego, CA 92186 USA. [Highbarger, K.; Daskalova, R. L.; Van Woerkom, L.; Freeman, R. R.] Ohio State Univ, Coll Math & Phys Sci, Columbus, OH 43210 USA. [Green, J. S.; Gregori, G.; Lancaster, K.; Norreys, P. A.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Gregori, G.] Univ Oxford, Dept Phys, Oxford OX1 3PU, England. [Storm, M.] Univ Rochester, Inst Opt, Rochester, NY 14623 USA. [Meyerhofer, D. D.] Univ Rochester, Dept Mech Engn, Rochester, NY 14623 USA. [Meyerhofer, D. D.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14623 USA. RP Theobald, W (reprint author), Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA. RI Patel, Pravesh/E-1400-2011; Nilson, Philip/A-2493-2011; MacKinnon, Andrew/P-7239-2014; OI MacKinnon, Andrew/0000-0002-4380-2906; Park, Hae-Sim/0000-0003-2614-0303; Stephens, Richard/0000-0002-7034-6141 FU U.S. Department of Energy [DE-FC52-08NA28302]; University of Rochester; New York State Energy Research and Development Authority; University of California Lawrence Livermore National Laboratory [W-7405Eng-48 UCRL - PRES213395]; EPSRC [EP/G007187/1]; Science and Technology Facilities Council of the United Kingdom FX This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302, the University of Rochester, the New York State Energy Research and Development Authority, and the University of California Lawrence Livermore National Laboratory under Contract No. W-7405Eng-48 UCRL - PRES213395. The work of GG was supported in part by EPSRC Grant No. EP/G007187/1 and by the Science and Technology Facilities Council of the United Kingdom. The support of the DOE does not constitute an endorsement by DOE of the views expressed in this article. NR 30 TC 3 Z9 4 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2009 VL 80 IS 8 AR 083501 DI 10.1063/1.3193716 PG 9 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 497SZ UT WOS:000270084000011 PM 19725649 ER PT J AU Weber, JKR Rey, CA Neuefeind, J Benmore, CJ AF Weber, J. K. R. Rey, C. A. Neuefeind, J. Benmore, C. J. TI Acoustic levitator for structure measurements on low temperature liquid droplets SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID SYNCHROTRON-RADIATION AB A single-axis acoustic levitator was constructed and used to levitate liquid and solid drops of 1-3 mm in diameter at temperatures in the range -40 to +40 degrees C. The levitator comprised (i) two acoustic transducers mounted on a rigid vertical support that was bolted to an optical breadboard, (ii) an acoustic power supply that controlled acoustic intensity, relative phase of the drive to the transducers, and could modulate the acoustic forces at frequencies up to 1 kHz, (iii) a video camera, and (iv) a system for providing a stream of controlled temperature gas flow over the sample. The acoustic transducers were operated at their resonant frequency of similar to 22 kHz and could produce sound pressure levels of up to 160 dB. The force applied by the acoustic field could be modulated to excite oscillations in the sample. Sample temperature was controlled using a modified Cryostream Plus and measured using thermocouples and an infrared thermal imager. The levitator was installed at x-ray beamline 11 ID-C at the Advanced Photon Source and used to investigate the structure of supercooled liquids. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3196177] C1 [Weber, J. K. R.] Mat Dev Inc, Arlington Hts, IL 60004 USA. [Weber, J. K. R.; Benmore, C. J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Rey, C. A.] Charles Rey Inc, Lake Zurich, IL 60047 USA. [Neuefeind, J.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37830 USA. RP Weber, JKR (reprint author), Mat Dev Inc, Arlington Hts, IL 60004 USA. EM info@matsdev.com RI Neuefeind, Joerg/D-9990-2015; OI Neuefeind, Joerg/0000-0002-0563-1544; Benmore, Chris/0000-0001-7007-7749 FU UT-Battelle, LLC [4000061892, 4000067087]; U.S. Department of Energy [DE-AC05-00OR22725]; APS; U.S. DOE; Argonne National Laboratory [DE-AC02-06CH11357] FX Work was supported under the following contracts: MDI, subcontract Nos. 4000061892 and 4000067087 from UT-Battelle, LLC. SNS Contract No. DE-AC05-00OR22725 for the U.S. Department of Energy and managed by UT-Battelle, LLC. APS, U.S. DOE, Argonne National Laboratory was supported under Contract No. DE-AC02-06CH11357. NR 22 TC 25 Z9 27 U1 2 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD AUG PY 2009 VL 80 IS 8 AR 083904 DI 10.1063/1.3196177 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 497SZ UT WOS:000270084000026 PM 19725664 ER PT J AU Carter, J Fu, EG Martin, M Xie, GQ Zhang, X Wang, YQ Wijesundera, D Wang, XM Chu, WK Shao, L AF Carter, Jesse Fu, E. G. Martin, Michael Xie, Guoqiang Zhang, X. Wang, Y. Q. Wijesundera, D. Wang, X. M. Chu, Wei-Kan Shao, Lin TI Effects of Cu ion irradiation in Cu50Zr45Ti5 metallic glass SO SCRIPTA MATERIALIA LA English DT Article DE Metallic glass; Ion irradiation; Crystallization ID ELECTRON-IRRADIATION; AMORPHOUS-ALLOYS; CRYSTALLIZATION; DIFFUSION; LIQUID; PHASE; NANOCRYSTALLIZATION; TRANSFORMATION; BINARY AB We studied the role of thermal spike in nanocrystallization of Cu50Zr45Ti5 metallic glasses after 1 MeV Cu ion irradiation at room temperature. Nanocrystals of Cu10Zr7 and CuZr2 phases are formed after the ion irradiation. The study suggests that thermal spike formation and subsequent quenching are too fast to allow direct structural transformation in the damage cascade regions. The overall irradiation effects are caused by enhanced atomic mobility due to increased excessive free volume. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Carter, Jesse; Martin, Michael; Shao, Lin] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. [Fu, E. G.; Zhang, X.] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. [Xie, Guoqiang] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan. [Wang, Y. Q.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Wijesundera, D.; Wang, X. M.; Chu, Wei-Kan] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Wijesundera, D.; Wang, X. M.; Chu, Wei-Kan] Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA. RP Shao, L (reprint author), Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. EM lshao@mailaps.org RI Xie, Guoqiang/A-8619-2011; Wijesundera, Dharshana/G-3363-2012; Zhang, Xinghang/H-6764-2013 OI Wijesundera, Dharshana/0000-0001-5482-8768; Zhang, Xinghang/0000-0002-8380-8667 FU Siemens Power Generation Emerging Technologies; NRC Early Career Development; DOE [DE-FC07-05ID14657, DE-FG02-05ER46208]; State of Texas through the Texas Center for Superconductivity at the University of Houston FX This work was financially supported by the University Embryonic Technologies Program from Siemens Power Generation Emerging Technologies. L.S. would like to acknowledge the support from the NRC Early Career Development Grant. X.Z. acknowledges the support by DOE under Grant No. DE-FC07-05ID14657. This work was performed, in part, at the Center for Integrated Nanotechnologies, a DOE-supported user facility. The University of Houston group is supported by the State of Texas through the Texas Center for Superconductivity at the University of Houston, and through the DOE under Grant No. DE-FG02-05ER46208 NR 34 TC 18 Z9 21 U1 2 U2 20 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD AUG PY 2009 VL 61 IS 3 BP 265 EP 268 DI 10.1016/j.scriptamat.2009.03.060 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 455TH UT WOS:000266788200010 ER PT J AU Wall, JJ Almer, JD Vogel, SC Liaw, PK Choo, H Liu, CT AF Wall, J. J. Almer, J. D. Vogel, S. C. Liaw, P. K. Choo, H. Liu, C. T. TI Synchrotron X-ray scattering investigations of oxygen-induced nucleation in a Zr-based glass-forming alloy SO SCRIPTA MATERIALIA LA English DT Article DE Heterogeneous nucleation; Glass forming ability; BMG; Nucleation ID METALLIC-GLASS; QUASI-CRYSTALS; CRYSTALLIZATION; NANOCRYSTALLIZATION; DEVITRIFICATION AB The metallic glass-forming alloy VIT-105 (Zr(52.5)Cu(17.9)Ni(14.6)Al(14.6)Ti(5)) was used to study the effect of oxygen on nucleation. Ex situ synchrotron X-ray scattering experiments performed on as-cast samples showed that oxygen leads to the formation of tetragonal and/or cubic phases, depending on oxygen content. The samples crystallized into either a primitive tetragonal phase or the so-called fee "big cube" phase in a glassy matrix. A subsequent discussion on the role of oxygen in heterogeneous nucleation in Zr-based bulk metallic glasses is presented. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Wall, J. J.; Vogel, S. C.] Los Alamos Natl Lab, LANSCE LC, Los Alamos, NM 87545 USA. [Almer, J. D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Liaw, P. K.; Choo, H.; Liu, C. T.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Choo, H.; Liu, C. T.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Wall, JJ (reprint author), Elect Power Res Inst, Charlotte, NC 28262 USA. EM jwall@epri.com RI Lujan Center, LANL/G-4896-2012; Choo, Hahn/A-5494-2009; OI Choo, Hahn/0000-0002-8006-8907; Vogel, Sven C./0000-0003-2049-0361 FU Department of Energy's Office of Basic Energy Sciences [DE-AC5206NA25396]; National Science Foundation [DMR-0231320] FX The authors J.J.W. and S.C.V. acknowledge the support of The Lujan Neutron Scattering Center at LANSCE, which is funded by the Department of Energy's Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC5206NA25396. The authors J.J.W., P.K.L. and H.C. greatly acknowledge the support of the National Science Foundation International Materials Institutes (IMI) Program, DMR-0231320, with Dr. C. Huber as the Program Director. NR 24 TC 2 Z9 2 U1 0 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD AUG PY 2009 VL 61 IS 3 BP 293 EP 295 DI 10.1016/j.scriptamat.2009.04.004 PG 3 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 455TH UT WOS:000266788200017 ER PT J AU Gerber, TP Ball, DY AF Gerber, Theodore P. Ball, Deborah Yarsike TI Scientists in a Changed Institutional Environment: Subjective Adaptation and Social Responsibility Norms in Russia SO SOCIAL STUDIES OF SCIENCE LA English DT Article; Proceedings Paper CT 101st Annual Meeting of the American-Sociological-Association CY AUG 11-14, 2006 CL Montreal, CANADA SP Amer Sociol Assoc DE institutional change; professional norms; scientists ID ANTI-PLAGUE SYSTEM; SOCIOECONOMIC PROBLEMS; SCIENCE; POLICY; WEST; PROLIFERATION; TECHNOLOGY; COMMUNITY; STRUGGLE; PHYSICS AB How do scientists react when the institutional setting in which they conduct their work changes radically? How do longa standing norms regarding the social responsibility of scientists fares What factors influence whether scientists embrace or reject the new institutions and norms? We examine these questions using data from a unique survey of 602 scientists in Russia, whose research institutions experienced a sustained crisis and sweeping changes following the collapse of the Soviet Union. We develop measures of how respondents view financing based on grants and other institutional changes in the Russian science system, as well as measures of two norms regarding scientists' social responsibility. We find that the majority of scientists have adapted, in the sense that they hold positive views of the new institutions, but a diversity of orientations remains. Social responsibility norms are common but far from universal among Russian scientists. The main correlates of adaptation are age and current success at negotiating the new institutions, though prospective success, work context, and ethnicity have some of the hypothesized associations. us for social responsibility norms, the main source of variation is age: younger scientists are more likely to embrace individualistic rather than socially oriented norms. C1 [Gerber, Theodore P.] Univ Wisconsin, Dept Sociol, Madison, WI 53706 USA. [Ball, Deborah Yarsike] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Gerber, TP (reprint author), Univ Wisconsin, Dept Sociol, 1180 Observ Dr, Madison, WI 53706 USA. EM tgerber@ssc.wisc.edu; dyball@llnl.gov RI Gerber, Theodore/A-5212-2014 OI Gerber, Theodore/0000-0001-8899-6815 NR 70 TC 4 Z9 4 U1 1 U2 8 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0306-3127 J9 SOC STUD SCI JI Soc. Stud. Sci. PD AUG PY 2009 VL 39 IS 4 BP 529 EP 567 DI 10.1177/0306312709103477 PG 39 WC History & Philosophy Of Science SC History & Philosophy of Science GA 463NQ UT WOS:000267439300002 ER PT J AU Huebner, WF Johnson, LN Boice, DC Bradley, P Chocron, S Ghosh, A Giguere, PT Goldstein, R Guzik, JA Keady, JJ Mukherjee, J Patrick, W Plesko, C Walker, JD Wohletz, K AF Huebner, W. F. Johnson, L. N. Boice, D. C. Bradley, P. Chocron, S. Ghosh, A. Giguere, P. T. Goldstein, R. Guzik, J. A. Keady, J. J. Mukherjee, J. Patrick, W. Plesko, C. Walker, J. D. Wohletz, K. TI A comprehensive program for countermeasures against potentially hazardous objects (PHOs) SO SOLAR SYSTEM RESEARCH LA English DT Article ID IMPACTOR AB At the hundredth anniversary of the Tunguska event in Siberia it is appropriate to discuss measures to avoid such occurrences in the future. Recent discussions about detecting, tracking, cataloguing, and characterizing near-Earth objects (NEOs) center on objects larger than about 140 m in size. However, objects smaller than 100 m are more frequent and can cause significant regional destruction of civil infrastructures and population centers. The cosmic object responsible for the Tunguska event provides a graphic example: although it is thought to have been only about 50 to 60 m in size, it devastated an area of about 2000 km(2). Ongoing surveys aimed at early detection of a potentially hazardous object (PHO: asteroid or comet nucleus that approaches the Earth's orbit within 0.05 AU) are only a first step toward applying countermeasures to prevent an impact on Earth. Because "early" may mean only a few weeks or days in the case of a Tunguska-sized object or a longperiod comet, deflecting the object by changing its orbit is beyond the means of current technology, and destruction and dispersal of its fragments may be the only reasonable solution. Highly capable countermeasures- always at the ready-are essential to defending against an object with such short warning time, and therefore short reaction time between discovery and impending impact. We present an outline for a comprehensive plan for countermeasures that includes smaller (Tunguska-sized) objects and long-period comets, focuses on short warning times, uses non-nuclear methods (e.g., hyper-velocity impactor devices and conventional explosives) whenever possible, uses nuclear munitions only when needed, and launches from the ground. The plan calls for international collaboration for action against a truly global threat. C1 [Huebner, W. F.; Boice, D. C.; Chocron, S.; Ghosh, A.; Goldstein, R.; Mukherjee, J.; Patrick, W.; Walker, J. D.] SW Res Inst, San Antonio, TX 78228 USA. [Johnson, L. N.] NASA Headquarters, SMD, Washington, DC 20546 USA. [Bradley, P.; Giguere, P. T.; Guzik, J. A.; Keady, J. J.; Plesko, C.; Wohletz, K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Huebner, WF (reprint author), SW Res Inst, PO Drawer 28510, San Antonio, TX 78228 USA. OI Bradley, Paul/0000-0001-6229-6677 NR 9 TC 7 Z9 7 U1 0 U2 3 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 0038-0946 J9 SOLAR SYST RES+ JI Solar Syst. Res. PD AUG PY 2009 VL 43 IS 4 BP 334 EP 342 DI 10.1134/S003809460904008X PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 482RE UT WOS:000268905600008 ER PT J AU McComas, DJ Allegrini, F Bochsler, P Bzowski, M Collier, M Fahr, H Fichtner, H Frisch, P Funsten, HO Fuselier, SA Gloeckler, G Gruntman, M Izmodenov, V Knappenberger, P Lee, M Livi, S Mitchell, D Mobius, E Moore, T Pope, S Reisenfeld, D Roelof, E Scherrer, J Schwadron, N Tyler, R Wieser, M Witte, M Wurz, P Zank, G AF McComas, D. J. Allegrini, F. Bochsler, P. Bzowski, M. Collier, M. Fahr, H. Fichtner, H. Frisch, P. Funsten, H. O. Fuselier, S. A. Gloeckler, G. Gruntman, M. Izmodenov, V. Knappenberger, P. Lee, M. Livi, S. Mitchell, D. Moebius, E. Moore, T. Pope, S. Reisenfeld, D. Roelof, E. Scherrer, J. Schwadron, N. Tyler, R. Wieser, M. Witte, M. Wurz, P. Zank, G. TI IBEX-Interstellar Boundary Explorer SO SPACE SCIENCE REVIEWS LA English DT Review DE Interstellar boundary; Termination shock; Heliopause; Energetic Neutral Atom; ENA; LISM ID ENERGETIC NEUTRAL ATOMS; WIND TERMINATION SHOCK; SOLAR-WIND; MAGNETIC-FIELD; ACCELERATION; HELIOSHEATH; HELIOSPHERE; IONS; INJECTION; HYDROGEN AB The Interstellar Boundary Explorer (IBEX) is a small explorer mission that launched on 19 October 2008 with the sole, focused science objective to discover the global interaction between the solar wind and the interstellar medium. IBEX is designed to achieve this objective by answering four fundamental science questions: (1) What is the global strength and structure of the termination shock, (2) How are energetic protons accelerated at the termination shock, (3) What are the global properties of the solar wind flow beyond the termination shock and in the heliotail, and (4) How does the interstellar flow interact with the heliosphere beyond the heliopause? The answers to these questions rely on energy-resolved images of energetic neutral atoms (ENAs), which originate beyond the termination shock, in the inner heliosheath. To make these exploratory ENA observations IBEX carries two ultra-high sensitivity ENA cameras on a simple spinning spacecraft. IBEX's very high apogee Earth orbit was achieved using a new and significantly enhanced method for launching small satellites; this orbit allows viewing of the outer heliosphere from beyond the Earth's relatively bright magnetospheric ENA emissions. The combination of full-sky imaging and energy spectral measurements of ENAs over the range from similar to 10 eV to 6 keV provides the critical information to allow us to achieve our science objective and understand this global interaction for the first time. The IBEX mission was developed to provide the first global views of the Sun's interstellar boundaries, unveiling the physics of the heliosphere's interstellar interaction, providing a deeper understanding of the heliosphere and thereby astrospheres throughout the galaxy, and creating the opportunity to make even greater unanticipated discoveries. C1 [McComas, D. J.; Allegrini, F.; Livi, S.; Pope, S.; Scherrer, J.] SW Res Inst, San Antonio, TX 78228 USA. [Bochsler, P.; Wieser, M.; Wurz, P.] Univ Bern, Inst Phys, Bern, Switzerland. [Bzowski, M.] Polish Acad Sci, Space Res Ctr, PL-01237 Warsaw, Poland. [Collier, M.; Moore, T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Fahr, H.] Univ Bonn, D-5300 Bonn, Germany. [Fichtner, H.] Ruhr Univ Bochum, Bochum, Germany. [Frisch, P.] Univ Chicago, Chicago, IL 60637 USA. [Funsten, H. O.; Reisenfeld, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Fuselier, S. A.] Lockheed Martin Adv Technol Ctr, Palo Alto, CA 94304 USA. [Gloeckler, G.] Univ Michigan, Ann Arbor, MI 48109 USA. [Gruntman, M.] Univ So Calif, Los Angeles, CA 90089 USA. [Izmodenov, V.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Knappenberger, P.] Adler Planetarium, Chicago, IL 60605 USA. [Lee, M.; Moebius, E.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Mitchell, D.; Roelof, E.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Schwadron, N.] Boston Univ, Boston, MA 02215 USA. [Tyler, R.] Orbital Sci Corp, Dulles, VA 20166 USA. [Witte, M.] Max Planck Inst Aeron, Katlenburg Lindau, Germany. [Zank, G.] Univ Alabama, Huntsville, AL 35899 USA. RP McComas, DJ (reprint author), SW Res Inst, 6220 Culebra Rd, San Antonio, TX 78228 USA. EM dmccomas@swri.edu RI Moore, Thomas/D-4675-2012; Izmodenov, Vladislav/K-6073-2012; Collier, Michael/I-4864-2013; Funsten, Herbert/A-5702-2015; Reisenfeld, Daniel/F-7614-2015; Gruntman, Mike/A-5426-2008; OI Moore, Thomas/0000-0002-3150-1137; Izmodenov, Vladislav/0000-0002-1748-0982; Collier, Michael/0000-0001-9658-6605; Funsten, Herbert/0000-0002-6817-1039; Gruntman, Mike/0000-0002-0830-010X; Moebius, Eberhard/0000-0002-2745-6978 NR 41 TC 159 Z9 159 U1 0 U2 10 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD AUG PY 2009 VL 146 IS 1-4 BP 11 EP 33 DI 10.1007/s11214-009-9499-4 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 495HL UT WOS:000269881300002 ER PT J AU Funsten, HO Allegrini, F Bochsler, P Dunn, G Ellis, S Everett, D Fagan, MJ Fuselier, SA Granoff, M Gruntman, M Guthrie, AA Hanley, J Harper, RW Heirtzler, D Janzen, P Kihara, KH King, B Kucharek, H Manzo, MP Maple, M Mashburn, K McComas, DJ Moebius, E Nolin, J Piazza, D Pope, S Reisenfeld, DB Rodriguez, B Roelof, EC Saul, L Turco, S Valek, P Weidner, S Wurz, P Zaffke, S AF Funsten, H. O. Allegrini, F. Bochsler, P. Dunn, G. Ellis, S. Everett, D. Fagan, M. J. Fuselier, S. A. Granoff, M. Gruntman, M. Guthrie, A. A. Hanley, J. Harper, R. W. Heirtzler, D. Janzen, P. Kihara, K. H. King, B. Kucharek, H. Manzo, M. P. Maple, M. Mashburn, K. McComas, D. J. Moebius, E. Nolin, J. Piazza, D. Pope, S. Reisenfeld, D. B. Rodriguez, B. Roelof, E. C. Saul, L. Turco, S. Valek, P. Weidner, S. Wurz, P. Zaffke, S. TI The Interstellar Boundary Explorer High Energy (IBEX-Hi) Neutral Atom Imager SO SPACE SCIENCE REVIEWS LA English DT Review DE Interstellar boundary; Termination shock; Heliopause; Energetic neutral atom; ENA; LISM ID THIN CARBON FOILS; KEV IONS; MISSION; EMISSION; REGION; POLAR AB The IBEX-Hi Neutral Atom Imager of the Interstellar Boundary Explorer (IBEX) mission is designed to measure energetic neutral atoms (ENAs) originating from the interaction region between the heliosphere and the local interstellar medium (LISM). These ENAs are plasma ions that have been heated in the interaction region and neutralized by charge exchange with the cold neutral atoms of the LISM that freely flow through the interaction region. IBEX-Hi is a single pixel ENA imager that covers the ENA spectral range from 0.38 to 6 keV and shares significant energy overlap and overall design philosophy with the IBEX-Lo sensor. Because of the anticipated low flux of these ENAs at 1 AU, the sensor has a large geometric factor and incorporates numerous techniques to minimize noise and backgrounds. The IBEX-Hi sensor has a field-of-view (FOV) of 6.5A degrees x6.5A degrees FWHM, and a 6.5A degrees x360A degrees swath of the sky is imaged over each spacecraft spin. IBEX-Hi utilizes an ultrathin carbon foil to ionize ENAs in order to measure their energy by subsequent electrostatic analysis. A multiple coincidence detection scheme using channel electron multiplier (CEM) detectors enables reliable detection of ENAs in the presence of substantial noise. During normal operation, the sensor steps through six energy steps every 12 spacecraft spins. Over a single IBEX orbit of about 8 days, a single 6.5A degrees x360A degrees swath of the sky is viewed, and re-pointing of the spin axis toward the Sun near perigee of each IBEX orbit moves the ecliptic longitude by about 8A degrees every orbit such that a full sky map is acquired every six months. These global maps, covering the spectral range of IBEX-Hi and coupled to the IBEX-Lo maps at lower and overlapping energies, will answer fundamental questions about the structure and dynamics of the interaction region between the heliosphere and the LISM. C1 [Funsten, H. O.; Fagan, M. J.; Guthrie, A. A.; Harper, R. W.; Kihara, K. H.; Manzo, M. P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Allegrini, F.; Dunn, G.; Everett, D.; Hanley, J.; Maple, M.; Mashburn, K.; McComas, D. J.; Pope, S.; Rodriguez, B.; Valek, P.; Weidner, S.] SW Res Inst, San Antonio, TX 78238 USA. [Bochsler, P.; Piazza, D.; Saul, L.; Wurz, P.] Univ Bern, Inst Phys, CH-3012 Bern, Switzerland. [Ellis, S.; Granoff, M.; Heirtzler, D.; King, B.; Kucharek, H.; Moebius, E.; Nolin, J.; Turco, S.; Zaffke, S.] Univ New Hampshire, Durham, NH 03824 USA. [Fuselier, S. A.] Lockheed Martin Adv Technol Ctr, Palo Alto, CA 94304 USA. [Gruntman, M.] Univ So Calif, Astronaut & Space Technol Div, Viterbi Sch Engn, Los Angeles, CA 90089 USA. [Janzen, P.; Reisenfeld, D. B.] Univ Montana, Dept Phys & Astron, Missoula, MT 59812 USA. [Roelof, E. C.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. RP Funsten, HO (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM hfunsten@lanl.gov RI Funsten, Herbert/A-5702-2015; Reisenfeld, Daniel/F-7614-2015; Gruntman, Mike/A-5426-2008; OI Funsten, Herbert/0000-0002-6817-1039; Gruntman, Mike/0000-0002-0830-010X; Valek, Philip/0000-0002-2318-8750; Moebius, Eberhard/0000-0002-2745-6978 NR 31 TC 100 Z9 101 U1 0 U2 6 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 J9 SPACE SCI REV JI Space Sci. Rev. PD AUG PY 2009 VL 146 IS 1-4 BP 75 EP 103 DI 10.1007/s11214-009-9504-y PG 29 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 495HL UT WOS:000269881300004 ER PT J AU Allegrini, F Crew, GB Demkee, D Funsten, HO McComas, DJ Randol, B Rodriguez, B Schwadron, NA Valek, P Weidner, S AF Allegrini, F. Crew, G. B. Demkee, D. Funsten, H. O. McComas, D. J. Randol, B. Rodriguez, B. Schwadron, N. A. Valek, P. Weidner, S. TI The IBEX Background Monitor SO SPACE SCIENCE REVIEWS LA English DT Review DE IBEX background; Channel electron multiplier; Carbon foil; Upstream event ID THIN CARBON FOILS; ULTRAVIOLET; MULTIPLIER; IONS AB The IBEX Background Monitor (IBaM) provides a small and lightweight method for independently measuring IBEX's high-energy proton background by integrating the flux of >similar to 14 keV protons over a similar to 7A degrees conical FOV. The IBaM is part of the IBEX-Hi sensor and has a co-aligned look direction. This paper describes the principle of the IBaM and details its design and responses. In particular, we show the response of major components to both ions and ultraviolet (UV) light background. We also provide the geometric factor and calculate expected count rates. C1 [Allegrini, F.; Demkee, D.; McComas, D. J.; Randol, B.; Rodriguez, B.; Valek, P.; Weidner, S.] SW Res Inst, San Antonio, TX 78238 USA. [Crew, G. B.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Funsten, H. O.] Los Alamos Natl Lab, Los Alamos, NM USA. [Schwadron, N. A.] Boston Univ, Boston, MA 02215 USA. RP Allegrini, F (reprint author), SW Res Inst, San Antonio, TX 78238 USA. EM fallegrini@swri.edu RI Funsten, Herbert/A-5702-2015; OI Funsten, Herbert/0000-0002-6817-1039; Valek, Philip/0000-0002-2318-8750 NR 9 TC 5 Z9 5 U1 0 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 J9 SPACE SCI REV JI Space Sci. Rev. PD AUG PY 2009 VL 146 IS 1-4 BP 105 EP 115 DI 10.1007/s11214-008-9439-8 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 495HL UT WOS:000269881300005 ER PT J AU Fuselier, SA Bochsler, P Chornay, D Clark, G Crew, GB Dunn, G Ellis, S Friedmann, T Funsten, HO Ghielmetti, AG Googins, J Granoff, MS Hamilton, JW Hanley, J Heirtzler, D Hertzberg, E Isaac, D King, B Knauss, U Kucharek, H Kudirka, F Livi, S Lobell, J Longworth, S Mashburn, K McComas, DJ Mobius, E Moore, AS Moore, TE Nemanich, RJ Nolin, J O'Neal, M Piazza, D Peterson, L Pope, SE Rosmarynowski, P Saul, LA Scherrer, JR Scheer, JA Schlemm, C Schwadron, NA Tillier, C Turco, S Tyler, J Vosbury, M Wieser, M Wurz, P Zaffke, S AF Fuselier, S. A. Bochsler, P. Chornay, D. Clark, G. Crew, G. B. Dunn, G. Ellis, S. Friedmann, T. Funsten, H. O. Ghielmetti, A. G. Googins, J. Granoff, M. S. Hamilton, J. W. Hanley, J. Heirtzler, D. Hertzberg, E. Isaac, D. King, B. Knauss, U. Kucharek, H. Kudirka, F. Livi, S. Lobell, J. Longworth, S. Mashburn, K. McComas, D. J. Moebius, E. Moore, A. S. Moore, T. E. Nemanich, R. J. Nolin, J. O'Neal, M. Piazza, D. Peterson, L. Pope, S. E. Rosmarynowski, P. Saul, L. A. Scherrer, J. R. Scheer, J. A. Schlemm, C. Schwadron, N. A. Tillier, C. Turco, S. Tyler, J. Vosbury, M. Wieser, M. Wurz, P. Zaffke, S. TI The IBEX-Lo Sensor SO SPACE SCIENCE REVIEWS LA English DT Review DE Neutral atom imaging; Heliosphere; Termination shock; Energetic neutral atoms; Magnetosphere; Surface ionization ID ENERGETIC NEUTRAL ATOMS; NEGATIVE-ION PRODUCTION; SURFACE-IONIZATION; SPECTROGRAPH; INSTRUMENTS; SPACECRAFT; HYDROGEN; SYSTEM; CHIP AB The IBEX-Lo sensor covers the low-energy heliospheric neutral atom spectrum from 0.01 to 2 keV. It shares significant energy overlap and an overall design philosophy with the IBEX-Hi sensor. Both sensors are large geometric factor, single pixel cameras that maximize the relatively weak heliospheric neutral signal while effectively eliminating ion, electron, and UV background sources. The IBEX-Lo sensor is divided into four major subsystems. The entrance subsystem includes an annular collimator that collimates neutrals to approximately 7A degrees x7A degrees in three 90A degrees sectors and approximately 3.5A degrees x3.5A degrees in the fourth 90A degrees sector (called the high angular resolution sector). A fraction of the interstellar neutrals and heliospheric neutrals that pass through the collimator are converted to negative ions in the ENA to ion conversion subsystem. The neutrals are converted on a high yield, inert, diamond-like carbon conversion surface. Negative ions from the conversion surface are accelerated into an electrostatic analyzer (ESA), which sets the energy passband for the sensor. Finally, negative ions exit the ESA, are post-accelerated to 16 kV, and then are analyzed in a time-of-flight (TOF) mass spectrometer. This triple-coincidence, TOF subsystem effectively rejects random background while maintaining high detection efficiency for negative ions. Mass analysis distinguishes heliospheric hydrogen from interstellar helium and oxygen. In normal sensor operations, eight energy steps are sampled on a 2-spin per energy step cadence so that the full energy range is covered in 16 spacecraft spins. Each year in the spring and fall, the sensor is operated in a special interstellar oxygen and helium mode during part of the spacecraft spin. In the spring, this mode includes electrostatic shutoff of the low resolution (7A degrees x7A degrees) quadrants of the collimator so that the interstellar neutrals are detected with 3.5A degrees x3.5A degrees angular resolution. These high angular resolution data are combined with star positions determined from a dedicated star sensor to measure the relative flow difference between filtered and unfiltered interstellar oxygen. At the end of 6 months of operation, full sky maps of heliospheric neutral hydrogen from 0.01 to 2 keV in 8 energy steps are accumulated. These data, similar sky maps from IBEX-Hi, and the first observations of interstellar neutral oxygen will answer the four key science questions of the IBEX mission. C1 [Fuselier, S. A.; Ghielmetti, A. G.; Hamilton, J. W.; Hertzberg, E.; Isaac, D.; Moore, A. S.; Tillier, C.] Lockheed Martin Adv Technol Ctr, Palo Alto, CA 94304 USA. [Clark, G.; Ellis, S.; Googins, J.; Granoff, M. S.; Heirtzler, D.; King, B.; Knauss, U.; Kucharek, H.; Kudirka, F.; Livi, S.; Longworth, S.; Moebius, E.; Nolin, J.; O'Neal, M.; Peterson, L.; Turco, S.; Tyler, J.; Vosbury, M.; Zaffke, S.] Univ New Hampshire, Durham, NH 03824 USA. [Bochsler, P.; Piazza, D.; Saul, L. A.; Scheer, J. A.; Wurz, P.] Univ Bern, Inst Phys, CH-3012 Bern, Switzerland. [Dunn, G.; Hanley, J.; McComas, D. J.; Pope, S. E.; Scherrer, J. R.] SW Res Inst, San Antonio, TX 78238 USA. [Chornay, D.; Lobell, J.; Moore, T. E.; Rosmarynowski, P.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Wieser, M.] Swedish Inst Space Phys, S-98128 Kiruna, Sweden. [Schlemm, C.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Mashburn, K.] Montana State Univ, Bozeman, MT 59717 USA. [Funsten, H. O.] Los Alamos Natl Lab, ISR Div MS B241, Los Alamos, NM 87535 USA. [Friedmann, T.] Sandia Lab, Albuquerque, NM 87185 USA. [Nemanich, R. J.] Univ Arizona, Tucson, AZ USA. [Schwadron, N. A.] Boston Univ, Boston, MA 02215 USA. [Crew, G. B.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. RP Fuselier, SA (reprint author), Lockheed Martin Adv Technol Ctr, 3251 Hanover St, Palo Alto, CA 94304 USA. EM stephen.a.fuselier@lmco.com; gbc@sapce.mit.edu; tafried@sandia.gov; gmetti@spasci.com; Jon.Hamilton@lmco.com; Eric.Hertzberg@lmco.com; Donald.Isaac@lmco.com; kmashburn@swri.edu; Eberhard.Moebius@unh.edu; Thomas.e.moore@nasa.gov; chuck.schlemm@jhuapl.edu; nathanas@bu.edu; Clemons.Tillier@lmco.com; wieser@irf.se; peter.wurz@phim.unibe.ch RI Moore, Thomas/D-4675-2012; Funsten, Herbert/A-5702-2015; Clark, George/L-6433-2015; OI Moore, Thomas/0000-0002-3150-1137; Funsten, Herbert/0000-0002-6817-1039; Moebius, Eberhard/0000-0002-2745-6978 NR 35 TC 92 Z9 93 U1 0 U2 12 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD AUG PY 2009 VL 146 IS 1-4 BP 117 EP 147 DI 10.1007/s11214-009-9495-8 PG 31 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 495HL UT WOS:000269881300006 ER PT J AU Wurz, P Fuselier, SA Mobius, E Funsten, HO Brandt, PC Allegrini, F Ghielmetti, AG Harper, R Hertzberg, E Janzen, P Kucharek, H McComas, DJ Roelof, EC Saul, L Scheer, J Wieser, M Zheng, Y AF Wurz, P. Fuselier, S. A. Moebius, E. Funsten, H. O. Brandt, P. C. Allegrini, F. Ghielmetti, A. G. Harper, R. Hertzberg, E. Janzen, P. Kucharek, H. McComas, D. J. Roelof, E. C. Saul, L. Scheer, J. Wieser, M. Zheng, Y. TI IBEX Backgrounds and Signal-to-Noise Ratio SO SPACE SCIENCE REVIEWS LA English DT Review DE Interstellar boundary; Energetic Neutral Atom; ENA; Instrumentation ID ENERGETIC NEUTRAL ATOM; SOLAR-WIND; RING CURRENT; ION DISTRIBUTIONS; CHARGE-EXCHANGE; PLASMA SHEET; HELIOSHEATH; SHOCK; INTERSTELLAR; PRESSURE AB The Interstellar Boundary Explorer (IBEX) mission will provide maps of energetic neutral atoms (ENAs) originating from the boundary region of our heliosphere. On IBEX there are two sensors, IBEX-Lo and IBEX-Hi, covering the energy ranges from 10 to 2000 eV and from 300 to 6000 eV, respectively. The expected ENA signals at 1 AU are low, therefore both sensors feature large geometric factors. In addition, special attention has to be paid to the various sources of background that may interfere with our measurement. Because IBEX orbits the Earth, ion, electron, and ENA populations of the Earth's magnetosphere are prime background sources. Another potential background source is the magnetosheath and the solar wind plasma when the spacecraft is outside the magnetosphere. UV light from the night sky and the geocorona have to be considered as background sources as well. Finally background sources within each of the sensors must be examined. C1 [Wurz, P.; Saul, L.; Scheer, J.] Univ Bern, Inst Phys, CH-3012 Bern, Switzerland. [Fuselier, S. A.; Ghielmetti, A. G.; Hertzberg, E.] Lockheed Martin Adv Technol Ctr, Space Phys Dept, Palo Alto, CA 94304 USA. [Moebius, E.; Kucharek, H.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Moebius, E.; Kucharek, H.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Funsten, H. O.; Harper, R.; Janzen, P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Wieser, M.] Swedish Inst Space Phys, S-98128 Kiruna, Sweden. [Brandt, P. C.; Roelof, E. C.; Zheng, Y.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Allegrini, F.; McComas, D. J.] SW Res Inst, Space Sci & Engn Div, San Antonio, TX 78228 USA. RP Wurz, P (reprint author), Univ Bern, Inst Phys, Sidlerstr 5, CH-3012 Bern, Switzerland. EM peter.wurz@space.unibe.ch RI Zheng, Yihua/D-7368-2012; Funsten, Herbert/A-5702-2015; Brandt, Pontus/N-1218-2016; OI Funsten, Herbert/0000-0002-6817-1039; Brandt, Pontus/0000-0002-4644-0306; Moebius, Eberhard/0000-0002-2745-6978 NR 46 TC 23 Z9 23 U1 0 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 J9 SPACE SCI REV JI Space Sci. Rev. PD AUG PY 2009 VL 146 IS 1-4 BP 173 EP 206 DI 10.1007/s11214-009-9515-8 PG 34 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 495HL UT WOS:000269881300008 ER PT J AU Schwadron, NA Crew, G Vanderspek, R Allegrini, F Bzowski, M DeMagistre, R Dunn, G Funsten, H Fuselier, SA Goodrich, K Gruntman, M Hanley, J Heerikuisen, J Heirtlzer, D Janzen, P Kucharek, H Loeffler, C Mashburn, K Maynard, K McComas, DJ Moebius, E Prested, C Randol, B Reisenfeld, D Reno, M Roelof, E Wu, P AF Schwadron, N. A. Crew, G. Vanderspek, R. Allegrini, F. Bzowski, M. DeMagistre, R. Dunn, G. Funsten, H. Fuselier, S. A. Goodrich, K. Gruntman, M. Hanley, J. Heerikuisen, J. Heirtlzer, D. Janzen, P. Kucharek, H. Loeffler, C. Mashburn, K. Maynard, K. McComas, D. J. Moebius, E. Prested, C. Randol, B. Reisenfeld, D. Reno, M. Roelof, E. Wu, P. TI The Interstellar Boundary Explorer Science Operations Center SO SPACE SCIENCE REVIEWS LA English DT Review DE Solar wind; Termination shock; Interstellar boundaries; Interstellar medium; Energetic neutral atoms ID TERMINATION SHOCK AB The Interstellar Boundary Explorer (IBEX) Science Operations Center is responsible for supporting analysis of IBEX data, generating special payload command procedures, delivering the IBEX data products, and building the global heliospheric maps of energetic neutral atoms (ENAs) in collaboration with the IBEX team. We describe here the data products and flow, the sensor responses to ENA fluxes, the heliospheric transmission of ENAs (from 100 AU to 1 AU), and the process of building global maps of the heliosphere. The vast majority of IBEX Science Operations Center (ISOC) tools are complete, and the ISOC is in a remarkable state of readiness due to extensive reviews, tests, rehearsals, long hours, and support from the payload teams. The software has been designed specifically to support considerable flexibility in the process of building global flux maps. Therefore, as we discover the fundamental properties of the interstellar interaction, the ISOC will iteratively improve its pipeline software, and, subsequently, the heliospheric flux maps that will provide a keystone for our global understanding of the solar wind's interaction with the interstellar medium. The ISOC looks forward to the next chapter of the IBEX mission, as the tools we have developed will be used in partnership with the IBEX team and the scientific community over the coming years to define our global understanding of the solar wind's interaction with the local interstellar medium. C1 [Schwadron, N. A.; Goodrich, K.; Maynard, K.; Prested, C.; Wu, P.] Boston Univ, Boston, MA 02215 USA. [Crew, G.; Vanderspek, R.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Mashburn, K.] Montana State Univ, Missoula, MT USA. [Allegrini, F.; Dunn, G.; Hanley, J.; Loeffler, C.; McComas, D. J.; Randol, B.] SW Res Inst, San Antonio, TX 78238 USA. [Bzowski, M.] Space Res Ctr PAS, PL-00716 Warsaw, Poland. [DeMagistre, R.; Roelof, E.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Gruntman, M.] Univ So Calif, Astronaut & Space Technol Div, Viterbi Sch Engn, Los Angeles, CA USA. [Heerikuisen, J.] Univ Calif Riverside, Inst Geophys & Planetary Phys, Riverside, CA 92521 USA. [Funsten, H.] Los Alamos Natl Lab, ISR Div, Los Alamos, NM 87545 USA. [Janzen, P.; Reisenfeld, D.] Univ Montana, Dept Phys & Astron, Missoula, MT 59812 USA. [Fuselier, S. A.] Lockheed Martin Adv Technol Ctr, Space Phys Dept, Dept ADCS, Palo Alto, CA 93404 USA. [Heirtlzer, D.; Kucharek, H.; Moebius, E.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Heirtlzer, D.; Kucharek, H.; Moebius, E.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. RP Schwadron, NA (reprint author), Boston Univ, 725 Commonwealth Ave, Boston, MA 02215 USA. EM nathanas@bu.edu; gbc@space.mit.edu; rvdspek@bu.edu; fallegrini@swri.edu; bzowski@cbk.waw.pl; bob.demajistre@jhuapl.edu; gdunn@swri.edu; hfunsten@lanl.gov; stephen.a.fusilier@lmco.com; kgoodri@bu.edu; mikeg@usc.edu; jhanley@swri.edu; jacobh@ucr.edu; dheirtzl@atlas.sr.unh.edu; pjanzen@lanl.gov; kucharek@atlas.sr.unh.edu; cloeffler@swri.edu; kmashburn@swri.edu; maynard@bu.edu; dmccomas@swri.edu; eberhard.meobius@unh.edu; cprested@bu.edu; brandol@swri.edu; dan.resienfeld@umontana.edu; mreno@swri.edu; ed.roelof@jhuapl.edu; pwu@bu.edu RI Funsten, Herbert/A-5702-2015; Reisenfeld, Daniel/F-7614-2015; Gruntman, Mike/A-5426-2008; OI Funsten, Herbert/0000-0002-6817-1039; Gruntman, Mike/0000-0002-0830-010X; Moebius, Eberhard/0000-0002-2745-6978 FU IBEX project FX This work was supported by the IBEX project. NR 13 TC 23 Z9 23 U1 0 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD AUG PY 2009 VL 146 IS 1-4 BP 207 EP 234 DI 10.1007/s11214-009-9513-x PG 28 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 495HL UT WOS:000269881300009 ER PT J AU Koike, M Ishino, M Imazono, T Sano, K Sasai, H Hatayama, M Takenaka, H Heimann, PA Gullikson, EM AF Koike, Masato Ishino, Masahiko Imazono, Takashi Sano, Kazuo Sasai, Hiroyuki Hatayama, Masatoshi Takenaka, Hisataka Heimann, Philip A. Gullikson, Eric M. TI Development of soft X-ray multilayer laminar-type plane gratings and varied-line-spacing spherical grating for flat-field spectrograph in the 1-8 keV region SO SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY LA English DT Article; Proceedings Paper CT 19th International Congress on X-Ray Optics and Microanalysis CY SEP 16-21, 2007 CL Univ Kyoto, Kyoto, JAPAN SP Japanese Discuss Grp X-Ray Anal, Japan Soc Anal Chem HO Univ Kyoto DE Diffraction grating; Holographic grating; Multilayer; Spectrometer; Soft X-ray ID SPECTROMETER; TRANSMISSION AB W/C and Co/SiO(2) multilayer laminar-type holographic plane gratings (groove density 1/sigma=1200 lines/mm) in the 1-8 keV region are developed. For the Co/SiO(2) grating the diffraction efficiencies of 0.41 and 0.47 at 4 and 6 keV, respectively, and for the W/C grating 0.38 at 8 keV are observed. Taking advantage of the outstanding high diffraction efficiencies into practical soft X-ray spectrographs a Mo/SiO(2) multilayer varied-line-spacing (VLS) laminar-type spherical grating (1/sigma=2400 lines/mm) is also developed for use with a flat field spectrograph in the region of 1.7 keV. For the Mo/SiO(2) multilayer grating the diffraction efficiencies of 0.05-0.20 at 0.9-1.8 keV are observed. The FWHMs of the measured line profiles of Hf-M alpha(1)(1644.6 eV), Si-K alpha(1)(1740.0 eV), and W-M alpha(1) (1775.4 eV) are 13.7 eV, 8.0 eV, and 8.7 eV, respectively. (C) 2009 Elsevier B.V. All rights reserved. C1 [Koike, Masato; Ishino, Masahiko; Imazono, Takashi] Japan Atom Energy Agcy, Tokyo, Japan. [Sasai, Hiroyuki] Shimadzu Co Ltd, Kyoto, Japan. [Heimann, Philip A.; Gullikson, Eric M.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. RP Koike, M (reprint author), Japan Atom Energy Agcy, Tokyo, Japan. EM koike.masato@jaea.go.jp NR 15 TC 8 Z9 9 U1 1 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0584-8547 J9 SPECTROCHIM ACTA B JI Spectroc. Acta Pt. B-Atom. Spectr. PD AUG PY 2009 VL 64 IS 8 BP 756 EP 760 DI 10.1016/j.sab.2009.05.013 PG 5 WC Spectroscopy SC Spectroscopy GA 496RY UT WOS:000269995300007 ER PT J AU Wang, X Trociewitz, UP Schwartz, J AF Wang, X. Trociewitz, U. P. Schwartz, J. TI Self-field quench behaviour of YBa2Cu3O7-delta coated conductors with different stabilizers SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID NORMAL-ZONE PROPAGATION; PROTECTION; MAGNETS; TEMPERATURE; VOLTAGE; SYSTEM; COPPER; COILS AB Self-field quench behaviours of YBa2Cu3O7-delta coated conductors with different stabilizers are studied. Samples include one with Cu on both sides (Cu-Cu), one with stainless steel on both sides (SS-SS), and one with Cu on one side and stainless steel on the other (Cu-SS). The measurements of the minimum quench energy (MQE) and normal zone propagation velocity (NZPV) are taken at various temperatures (30-75 K), and transport currents (30% I-c to 90% I-c) at a typical pressure of 10(-5) Pa. Of the three samples, the Cu-Cu sample has the highest MQE while the SS-SS one has the lowest MQE at the same temperature and percentage of I-c; the NZPV in the SS-SS sample is found to be the highest while those of the Cu-Cu and Cu-SS samples are similar. The normal zone voltage and the hot-spot temperature are also compared. Both the classic adiabatic quench propagation model and the interface resistance model are used to explain the NZPV and MQE differences between the samples. The implications for conductor design and quench detection and protection are discussed. C1 [Wang, X.; Trociewitz, U. P.; Schwartz, J.] Florida State Univ, Natl High Magnet Field Lab, Ctr Appl Superconduct, Tallahassee, FL 32310 USA. [Wang, X.; Schwartz, J.] Florida State Univ, Ctr Adv Power Syst, Tallahassee, FL 32310 USA. [Schwartz, J.] FAMU FSU Coll Engn, Dept Mech Engn, Tallahassee, FL 32310 USA. [Wang, X.] FAMU FSU Coll Engn, Dept Elect & Comp Engn, Tallahassee, FL 32310 USA. RP Wang, X (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM schwartz@magnet.fsu.edu RI Wang, Xiaorong/D-5311-2009; Schwartz, Justin/D-4124-2009; OI Schwartz, Justin/0000-0002-7590-240X; Wang, Xiaorong/0000-0001-7065-8615 NR 47 TC 21 Z9 21 U1 4 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD AUG PY 2009 VL 22 IS 8 AR 085005 DI 10.1088/0953-2048/22/8/085005 PG 13 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 474BT UT WOS:000268257900006 ER PT J AU Zhou, H Maiorov, B Baily, SA Dowden, PC Kennison, JA Stan, L Holesinger, TG Jia, QX Foltyn, SR Civale, L AF Zhou, H. Maiorov, B. Baily, S. A. Dowden, P. C. Kennison, J. A. Stan, L. Holesinger, T. G. Jia, Q. X. Foltyn, S. R. Civale, L. TI Thickness dependence of critical current density in YBa2Cu3O7-delta films with BaZrO3 and Y2O3 addition SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID COATED CONDUCTORS; SUPERCONDUCTING FILMS AB We report the thickness dependence of critical current density (J(c)) in YBa2Cu3O7-delta (YBCO) films with 5 mol% BaZrO3 (BZO) and 5 mol% Y2O3 additions grown on single crystal SrTiO3 substrates by pulsed laser deposition (PLD). The results show that adding BZO + Y2O3 has reduced the thickness dependence of the self-field critical current density (J(c)(sf)), compared to that observed in optimized YBCO films, with a significant enhancement of J(c)(sf) in the thick film region (> 2 mu m). The so-called 'dead layer' did not appear until the film thickness was greater than 6.4 mu m. We attribute this improvement to the additional pinning centers introduced in the bulk by the addition and a decrease in microstructure degradation with thickness. As a result, J(c)(sf) remains as high as 2.3 MA cm(-2) in a 6.4 mu m thick film. The combination of this high J(c)(sf) value and the enhancement of the in-field J(c) induced by the additions, which was observed in the whole thickness range, leads to a critical current per centimeter width (Ic-w) in excess of 400 A cm(-1) at 1 T and 75.5 K and 530 A cm(-1) at 3 T and 65 K under all field directions. C1 [Zhou, H.; Maiorov, B.; Baily, S. A.; Dowden, P. C.; Kennison, J. A.; Stan, L.; Holesinger, T. G.; Jia, Q. X.; Foltyn, S. R.; Civale, L.] Los Alamos Natl Lab, Superconduct Technol Ctr, Los Alamos, NM 87545 USA. RP Zhou, H (reprint author), N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. EM hzhou4@ncsu.edu; lcivale@lanl.gov RI Jia, Q. X./C-5194-2008; OI Maiorov, Boris/0000-0003-1885-0436; Civale, Leonardo/0000-0003-0806-3113 FU US Department of Energy-Office of Electricity Delivery and Energy Reliability; Superconductivity Program for Electric Power Systems. FX This work was sponsored by US Department of Energy-Office of Electricity Delivery and Energy Reliability, Superconductivity Program for Electric Power Systems. NR 20 TC 36 Z9 38 U1 3 U2 29 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD AUG PY 2009 VL 22 IS 8 AR 085013 DI 10.1088/0953-2048/22/8/085013 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 474BT UT WOS:000268257900014 ER PT J AU Shin, Y Kim, JY Wang, CM Bonnet, JF Weil, KS AF Shin, Yongsoon Kim, Jin Yong Wang, Chongmin Bonnet, Jeff F. Weil, K. Scott TI Controlled deposition of covalently bonded tantalum oxide on carbon supports by solvent evaporation sol-gel process SO SURFACE SCIENCE LA English DT Article DE Tantalum oxide; Sol-gel; Covalent bond; Nanocomposite: carbon ID NANOTUBES AB A simple strategy for covalently attaching Ta2O5 particles onto functionalized graphitic carbon supports has been developed to fabricate hybrid nanocomposites. in this process, tantalum ethoxide was directly reacted with functional groups on the carbon surface to form covalent bonding, which caused the carbonyl stretches of the carbon supports to be blue-shifted to 50-70 cm(-1) after Ta2O5 particle deposition. Homogeneously deposited Ta2O5 particles on the carbon supports have been studied by X-ray diffraction (XRD), FT-IR spectroscopy, scanning electron microscopy (SEM), and transmission electron microscope (TEM). (C) 2009 Elsevier B.V. All rights reserved. C1 [Shin, Yongsoon; Kim, Jin Yong; Wang, Chongmin; Bonnet, Jeff F.; Weil, K. Scott] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Shin, Y (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99354 USA. EM yongsoon.shin@pnl.gov; jin.kim@pnl.gov NR 16 TC 6 Z9 6 U1 1 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD AUG 1 PY 2009 VL 603 IS 15 BP 2290 EP 2293 DI 10.1016/j.susc.2009.05.006 PG 4 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 475PC UT WOS:000268371000007 ER PT J AU Bhattacharyya, MH AF Bhattacharyya, Maryka H. TI Cadmium osteotoxicity in experimental animals: Mechanisms and relationship to human exposures SO TOXICOLOGY AND APPLIED PHARMACOLOGY LA English DT Review DE Cadmium; Bone; Skeleton; Osteoporosis; Osteoblast; Osteoclast; Gene expression; Mouse; Rat; Organ culture; Cell culture; Environmental exposure; Postmenopausal women; Pregnancy; Lactation ID EMBRYONIC CHICK BONE; PROSTAGLANDIN E-2 PRODUCTION; RENAL TUBULAR DYSFUNCTION; MOUSE OSTEOBLASTIC CELLS; NUTRIENT-SUFFICIENT DIET; CALCIUM-DEFICIENT DIET; LOW-LEVEL EXPOSURE; TISSUE-CULTURE; ENVIRONMENTAL EXPOSURE; MICROARRAY ANALYSIS AB Extensive epidemiological studies have recently demonstrated increased cadmium exposure correlating significantly with decreased bone mineral density and increased fracture incidence in humans at lower exposure levels than ever before evaluated. Studies in experimental animals have addressed whether very low concentrations of dietary cadmium can negatively impact the skeleton. This overview evaluates results in experimental animals regarding mechanisms of action on bone and the application of these results to humans. Results demonstrate that long-term dietary exposures in rats, at levels corresponding to environmental exposures in humans, result in increased skeletal fragility and decreased mineral density. Cadmium-induced demineralization begins soon after exposure, within 24 h of an oral dose to mice. In bone culture systems, cadmium at low concentrations acts directly on bone cells to cause both decreases in bone formation and increases in bone resorption, independent of its effects on kidney, intestine, or circulating hormone concentrations. Results from gene expression microarray and gene knock-out mouse models provide insight into mechanisms by which cadmium may affect bone. Application of the results to humans is considered with respect to cigarette smoke exposure pathways and direct vs. indirect effects of cadmium. Clearly, understanding the mechanism(s) by which cadmium causes bone loss in experimental animals will provide insight into its diverse effects in humans. Preventing bone loss is critical to maintaining an active, independent lifestyle, particularly among elderly persons. Identifying environmental factors such as cadmium that contribute to increased fractures in humans is an important undertaking and a first step to prevention. (C) 2009 Elsevier Inc. All rights reserved. C1 [Bhattacharyya, Maryka H.] Argonne Natl Lab, Div Environm Sci, Lemont, IL 60439 USA. RP Bhattacharyya, MH (reprint author), Med Coll Georgia, Dept Med, Augusta, GA 30912 USA. EM mhbhatt@anl.gov FU US Department of Energy; US National Institutes of Health [RO1ES004816, RO1ES007398]; Philip Morris USA Inc; Philip Morris International FX This article represents many years of research in the laboratories of the author and many investigators worldwide, all of whom have achieved major milestones ill the common quest for meaningful answers to questions regarding cadmium's effect on bone. The author acknowledges the extensive contributions by many members of her group, most of whose names appear in the referenced publications. The author's research was supported by the US Department of Energy, the US National Institutes of Health (RO1ES004816, RO1ES007398), and Philip Morris USA Inc and Philip Morris International. NR 84 TC 66 Z9 71 U1 1 U2 17 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0041-008X J9 TOXICOL APPL PHARM JI Toxicol. Appl. Pharmacol. PD AUG 1 PY 2009 VL 238 IS 3 BP 258 EP 265 DI 10.1016/j.taap.2009.05.015 PG 8 WC Pharmacology & Pharmacy; Toxicology SC Pharmacology & Pharmacy; Toxicology GA 472QS UT WOS:000268147600009 PM 19463839 ER PT J AU Lu, C Lee, SY Han, WS McPherson, BJ Lichtner, PC AF Lu, Chuan Lee, Si-Yong Han, Weon Shik McPherson, Brain J. Lichtner, Peter C. TI Comments on "Abrupt-Interface Solution for Carbon dioxide Injection into Porous Media" by M. Dentz and D. Tartakovsky SO TRANSPORT IN POROUS MEDIA LA English DT Editorial Material DE Comment; Analytical solution; Carbon sequestration; Porous media ID HYDRAULIC CONDUCTIVITY AB Several numerical simulations were conducted to compare the results with analytical solutions given by "Abrupt-Interface Solution for Carbon Dioxide Injection into Porous Media" by M. Dentz and D. Tartakovsky, "Injection and Storage of CO2 in Deep Saline Aquifers: Analytical Solution for CO2 Plume Evolution During Injection" by J. M. Nordbotten et al. C1 [Lu, Chuan; Lee, Si-Yong; Han, Weon Shik; McPherson, Brain J.] Univ Utah, Energy & Geosci Inst, Salt Lake City, UT 84112 USA. [Lichtner, Peter C.] Los Alamos Natl Lab, Los Alamos, NM USA. RP McPherson, BJ (reprint author), Univ Utah, Energy & Geosci Inst, Salt Lake City, UT 84112 USA. EM mcpherson@co2.egi.utah.edu NR 9 TC 14 Z9 14 U1 1 U2 9 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0169-3913 EI 1573-1634 J9 TRANSPORT POROUS MED JI Transp. Porous Media PD AUG PY 2009 VL 79 IS 1 SI SI BP 29 EP 37 DI 10.1007/s11242-009-9362-9 PG 9 WC Engineering, Chemical SC Engineering GA 476MK UT WOS:000268446400003 ER PT J AU Greene, DL AF Greene, David L. TI Feebates, footprints and highway safety SO TRANSPORTATION RESEARCH PART D-TRANSPORT AND ENVIRONMENT LA English DT Article DE Feebates; Fuel economy; Traffic safety; Downsizing of vehicles ID FUEL-ECONOMY AB This paper presents an analysis of a market-based policy aimed at encouraging manufacturers to develop more fuel efficient vehicles without affecting the car buyer's choice of vehicle size. A vehicle's size is measured by its "footprint", the product of track width and wheelbase. Traditional market-based policies to promote higher fuel economy, such as higher gasoline taxes or gas guzzler taxes, also induce motorists to purchase smaller vehicles. Whether or not Such policies affect overall road safety remains controversial, however. Feebates, a continuous schedule of new vehicle taxes and rebates as a function of vehicle fuel consumption, can also be made a function of vehicle size. thus removing the incentive to buy a smaller vehicle. A feebate system based on a vehicle's footprint creates the same incentive to adopt technology to improve fuel economy as simple feebate systems while removing any incentive for manufacturers or consumers to downsize vehicles. (C) 2009 Elsevier Ltd. All rights reserved. C1 Natl Transportat Res Ctr, Oak Ridge Natl Lab, Knoxville, TN 37932 USA. RP Greene, DL (reprint author), Natl Transportat Res Ctr, Oak Ridge Natl Lab, 2360 Cherahala Blvd, Knoxville, TN 37932 USA. EM dlgreene@ornl.gov NR 20 TC 11 Z9 11 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1361-9209 J9 TRANSPORT RES D-TR E JI Transport. Res. Part D-Transport. Environ. PD AUG PY 2009 VL 14 IS 6 BP 375 EP 384 DI 10.1016/j.trd.2009.01.002 PG 10 WC Environmental Studies; Transportation; Transportation Science & Technology SC Environmental Sciences & Ecology; Transportation GA 475SW UT WOS:000268382300002 ER PT J AU Wharton, S Schroeder, M Bible, K Falk, M Paw, KT AF Wharton, Sonia Schroeder, Matt Bible, Ken Falk, Matthias Paw U, Kyaw Tha TI Stand-level gas-exchange responses to seasonal drought in very young versus old Douglas-fir forests of the Pacific Northwest, USA SO TREE PHYSIOLOGY LA English DT Article DE AmeriFlux; canopy conductance; eddy covariance; evapotranspiration; the Priestley-Taylor coefficient; Pseudotsuga menziesii; Wind River ID LEAF-AREA INDEX; PSEUDOTSUGA-TSUGA FOREST; CARBON-DIOXIDE EXCHANGE; CONIFEROUS FORESTS; EDDY-COVARIANCE; GROWTH FOREST; SOIL-WATER; HYDRAULIC REDISTRIBUTION; ECOSYSTEM RESPIRATION; STOMATAL CLOSURE AB This study examines how stand age affects ecosystem mass and energy exchange response to seasonal drought in three adjacent Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) forests. The sites include two early seral (ES) stands (0-15 years old) and an old-growth (OG) (similar to 450-500 years old) forest in the Wind River Experimental Forest, Washington, USA. We use eddy covariance flux measurements of carbon dioxide (F(NEE)), latent energy (lambda E) and sensible heat (H) to derive evapotranspiration rate (E(T)), Bowen ratio (beta), water use efficiency (WUE), canopy conductance (G(c)), the Priestley-Taylor coefficient (alpha) and a canopy decoupling factor (Omega). The canopy and bulk parameters are examined to find out how ecophysiological responses to water stress, including changes in relative soil water content (theta(r)) and vapour pressure deficit (delta e), differ among the two forest successional stages. Despite different rainfall patterns in 2006 and 2007, we observed site-specific diurnal patterns of E(T), alpha, G(c), delta e and theta(r) during both years. The largest stand differences were (1) at the OG forest high morning G(c) (> 10 mm s(-1)) coincided with high net CO(2) uptake (F(NEE) = -9 to -6 mu mol m(-2) s(-1)), but a strong negative response in OG G(c) to moderate delta e was observed later in the afternoons and subsequently reduced daily E(T) and (2) at the ES stands total E(T) was higher (+ 72 mm) because midday G(c) did not decrease until very low water availability levels (theta(r) < 30%) were reached at the end of the summer. Our results suggest that ES stands are more likely than mature forests to experience constraints on gas exchange if the dry season becomes longer or intensifies because water conserving ecophysiological responses were observed in the youngest stands only at the very end of the seasonal drought. C1 [Wharton, Sonia; Falk, Matthias; Paw U, Kyaw Tha] Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA. [Wharton, Sonia] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94551 USA. [Schroeder, Matt; Bible, Ken] Univ Washington, Coll Forest Resources, Seattle, WA 98195 USA. RP Wharton, S (reprint author), Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA. EM wharton4@llnl.gov FU Office of Science; National Institute for Global Environmental Change [DE-FC03-90ER61010]; Jastro Shields Research Scholarship (UC Davis); University of Washington; USDA Forest Service/PNW Station; National Nuclear Security Administration [DE-AC52-07NA27344] FX S. W. would like to especially thank Mark Creighton and Annie Hamilton at the Wind River Canopy Crane Research Facility for their hospitality and assistance with logistics throughout this project. The authors also thank Dr. Dennis Baldocchi and Youngryel Ryu (UC Berkeley) and Dr. Susan Ustin (UC Davis) for their technical advice and help in the preparation of this manuscript, and the Editor and the two anonymous reviewers for their beneficial critiques and suggestions. This research was supported by the Office of Science, US Department of Energy, through the Western Regional Center of the National Institute for Global Environmental Change (Cooperative Agreement No. DE-FC03-90ER61010) and the Jastro Shields Research Scholarship (UC Davis). Any opinions, findings and conclusions or recommendations expressed herein are those of the authors and do not necessarily reflect the view of the DOE. The Wind River Canopy Crane Research Facility is operated under joint sponsorship of the University of Washington and the USDA Forest Service/PNW Station and we acknowledge both for significant support. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the US Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. NR 67 TC 12 Z9 13 U1 3 U2 23 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0829-318X J9 TREE PHYSIOL JI Tree Physiol. PD AUG PY 2009 VL 29 IS 8 BP 959 EP 974 DI 10.1093/treephys/tpp039 PG 16 WC Forestry SC Forestry GA 472GC UT WOS:000268117200001 PM 19502614 ER PT J AU Munro, JB Sanbonmatsu, KY Spahn, CMT Blanchard, SC AF Munro, James B. Sanbonmatsu, Kevin Y. Spahn, Christian M. T. Blanchard, Scott C. TI Navigating the ribosome's metastable energy landscape SO TRENDS IN BIOCHEMICAL SCIENCES LA English DT Review ID TRANSFER-RNA-BINDING; ELONGATION-FACTOR-G; PEPTIDE-BOND FORMATION; ESCHERICHIA-COLI RIBOSOMES; SHINE-DALGARNO INTERACTION; MESSENGER-RNA; HYBRID-STATE; 70S RIBOSOME; PROTEIN-SYNTHESIS; SINGLE RIBOSOMES AB The molecular mechanisms by which tRNA molecules enter and transit the ribosome during mRNA translation remains elusive. However, recent genetic, biochemical and structural studies offer important new findings into the ordered sequence of events underpinning the translocation process that help place the molecular mechanism within reach. In particular, new structural and kinetic insights have been obtained regarding tRNA movements through 'hybrid state' configurations. These dynamic views reveal that the macromolecular ribosome particle, like many smaller proteins, has an intrinsic capacity to reversibly sample an ensemble of similarly stable native states. Such perspectives suggest that substrates, factors and environmental cues contribute to translation regulation by helping the dynamic system navigate through a highly complex and metastable energy landscape. C1 [Munro, James B.; Blanchard, Scott C.] Weill Cornell Med Coll, Dept Physiol & Biophys, New York, NY 10021 USA. [Sanbonmatsu, Kevin Y.] Los Alamos Natl Lab, Div Theoret, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. [Spahn, Christian M. T.] Charite, Inst Med Phys & Biophys, D-10117 Berlin, Germany. RP Blanchard, SC (reprint author), Weill Cornell Med Coll, Dept Physiol & Biophys, 1300 York Ave, New York, NY 10021 USA. EM scb2005@med.cornell.edu RI Blanchard, Scott/A-5804-2009 FU National Institutes of Health [GM 079238]; National Science Foundation [0644129]; Human Frontiers in Science Program FX reviews and critical comments during the preparation of this manuscript. The authors also thank Joachim Frank (Howard Hughes Medical Institute, Columbia University) for granting permission to present structural models of tRNA hybrid states determined by cryo-EM. This work was supported by the National Institutes of Health (GM 079238), the National Science Foundation (0644129) and the Human Frontiers in Science Program. NR 85 TC 78 Z9 82 U1 1 U2 6 PU ELSEVIER SCIENCE LONDON PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0968-0004 J9 TRENDS BIOCHEM SCI JI Trends Biochem.Sci. PD AUG PY 2009 VL 34 IS 8 BP 390 EP 400 DI 10.1016/j.tibs.2009.04.004 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 488WT UT WOS:000269381700003 PM 19647434 ER PT J AU Neethirajan, S Gordon, R Wang, LJ AF Neethirajan, Suresh Gordon, Richard Wang, Lijun TI Potential of silica bodies (phytoliths) for nanotechnology SO TRENDS IN BIOTECHNOLOGY LA English DT Review ID DIATOM NANOTECHNOLOGY; ELECTRON-MICROSCOPY; EQUISETUM-HYEMALE; CONFINED MEDIA; UPTAKE SYSTEM; PLANTS; RICE; GROWTH; GEL; POACEAE AB Many plant systems accumulate silica in solid form, creating intracellular or extracellular silica bodies (phytoliths) that are essential for growth, mechanical strength, rigidity, predator and fungal defence, stiffness and cooling. Silica is an inorganic amorphous oxide formed by polymerization processes within plants. There has been much research to gain new insights into its biochemistry and to mimic biosilicification. We review the background on plant silica bodies, silica uptake mechanisms and applications, and suggest possible ways of producing plant silica bodies with new functions. Silica bodies offer complementary properties to diatoms for nanotechnology, including large-scale availability from crop wastes, lack of organic impurities (in some), microencapsulation and microcrystalline quartz with possibly unique optical properties. C1 [Neethirajan, Suresh] Univ Manitoba, Dept Biosyst Engn, Canadian Wheat Board Ctr Grain Storage Res, Winnipeg, MB R3T 5V6, Canada. [Gordon, Richard] Univ Manitoba, Dept Radiol, HSC, Winnipeg, MB R3A 1R9, Canada. [Wang, Lijun] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Gordon, R (reprint author), Univ Manitoba, Dept Radiol, HSC, Room GA216,820 Sherbrook St, Winnipeg, MB R3A 1R9, Canada. EM GordonR@cc.umanitoba.ca RI Neethirajan, Suresh/B-6204-2010; Gordon, Richard/A-4994-2012 OI Neethirajan, Suresh/0000-0003-0990-0235; Gordon, Richard/0000-0003-4970-9953 NR 88 TC 48 Z9 54 U1 3 U2 34 PU ELSEVIER SCIENCE LONDON PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0167-7799 J9 TRENDS BIOTECHNOL JI Trends Biotechnol. PD AUG PY 2009 VL 27 IS 8 BP 461 EP 467 DI 10.1016/j.tibtech.2009.05.002 PG 7 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 482WP UT WOS:000268921400005 PM 19577814 ER PT J AU Demirkanli, DI Molz, FJ Kaplan, DI Fjeld, RA AF Demirkanli, Deniz I. Molz, Fred J. Kaplan, Daniel I. Fjeld, Robert A. TI Soil-Root Interactions Controlling Upward Plutonium Transport in Variably Saturated Soils SO VADOSE ZONE JOURNAL LA English DT Article ID SURFACE WATER-TABLE; SITE VADOSE ZONE; PLANT UPTAKE; RADIONUCLIDE TRANSPORT; CROP UPTAKE; MIGRATION; REDUCTION; ADSORPTION; GROWTH; XYLEM AB Due to its high toxicity and a long half-life, processes that may enhance Pu mobility in the environment and possible transport and exposure pathways need to be better understood and identified. The results of long-term Pu field lysimeter experiments at the Savannah River Site showed anomalous distributions below the source, with significant upward migration above the source. A previously developed reactive transport model with an initial application of a steady downward velocity successfully simulated the below-source distribution of the lysimeter data. Development and coupling of a transient flow model with root water uptake to the reactive transport model yielded a downward distribution fit almost identical to that from the steady-state flow application. The model predicted very little upward migration, however. Additional evaluations done by testing several soil hydraulic-and chemistry-related mechanisms that may enhance upward migration yielded no improvement. We developed an extension of the reactive transport model to include and test a new mechanism: root Pu uptake and xylem transport. The extended model produced simulations that capture the general behavior of the upward migration with no effect on the below-source fit. These results, with the support of the additional finding that elevated Pu concentrations in the lysimeter surface sediment originated from the source used in the experiments, indicated that Pu root uptake and transport is a valid explanation for the observed upward migration and may play an important role in near-surface Pu transport. Further research is needed to identify the uptake mechanisms and Pu behavior within plant systems, with special attention directed to the effect of Pu complexation with different chelating agents in soil and plants (siderophores, phytosiderophores, and others). C1 [Demirkanli, Deniz I.; Molz, Fred J.; Fjeld, Robert A.] Clemson Univ, Dep Environm Engn & Earth Sci, LG Rich Environm Res Lab, Anderson, SC 29625 USA. [Kaplan, Daniel I.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Molz, FJ (reprint author), Clemson Univ, Dep Environm Engn & Earth Sci, LG Rich Environm Res Lab, 342 Comp Ct, Anderson, SC 29625 USA. EM fredi@clemson.edu FU Biological and Environmental Research Division in the Office of Science, U.S. Department of Energy (DOE); DOE [DE-AC09-96SR18500]; [DE-FG0207ER64401] FX This research was supported by the Environmental Remediation Science Program within the Biological and Environmental Research Division in the Office of Science, U.S. Department of Energy (DOE). Work at Clemson University was conducted under grant no. DE-FG0207ER64401. Work at the Savannah River National Laboratory (SRNL) was conducted under DOE contract DE-AC09-96SR18500. NR 47 TC 7 Z9 7 U1 3 U2 10 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD AUG PY 2009 VL 8 IS 3 BP 574 EP 585 DI 10.2136/vzj2008.0159 PG 12 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 482GE UT WOS:000268871900004 ER PT J AU Oostrom, M Wietsma, TW Dane, JH Truex, MJ Ward, AL AF Oostrom, M. Wietsma, T. W. Dane, J. H. Truex, M. J. Ward, A. L. TI Desiccation of Unsaturated Porous Media: Intermediate-Scale Experiments and Numerical Simulation SO VADOSE ZONE JOURNAL LA English DT Article ID SANDS AB Soil desiccation (drying), involving water evaporation induced by air injection and extraction, is a potentially robust vadose zone remediation process to limit migration of inorganic or radionuclide contaminants through the vadose zone. Desiccation also has the potential to improve gas-phase-based treatments by reducing water saturation and therefore increasing sediment gas-phase permeability. Before this technology can be deployed in the field, concerns related to energy limitations, osmotic effects, and potential contaminant remobilization after rewetting must be addressed. A series of detailed, intermediate-scale laboratory experiments, using unsaturated homogeneous and heterogeneous systems, was conducted to improve our understanding of energy balance issues related to soil desiccation. The experiments were subsequently simulated with the multifluid flow simulator STOMP, using independently obtained hydraulic and thermal porous medium properties. In all experiments, the injection of dry air proved to be an effective means for removing essentially all moisture from the test media. Observed evaporative cooling generally decreased with increasing distance from the gas inlet chamber. The fine-grained sand embedded in the medium-grained sand of the heterogeneous system showed two local temperature minima associated with the cooling. The first one occurred because of evaporation in the adjacent medium-grained sand, whereas the second minimum was attributed to evaporative cooling in the fine-grained sand itself. Results of the laboratory tests were simulated accurately only if the thermal properties of the flow cell walls and insulation material were taken into account, indicating that the appropriate physics were incorporated into the simulator. C1 [Oostrom, M.; Truex, M. J.; Ward, A. L.] Pacific NW Natl Lab, Div Energy & Environm, Richland, WA 99354 USA. [Wietsma, T. W.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. [Dane, J. H.] Auburn Univ, Dep Agron & Soils, Auburn, AL 36849 USA. RP Oostrom, M (reprint author), Pacific NW Natl Lab, Div Energy & Environm, POB 999,MS K9-33, Richland, WA 99354 USA. EM mart.oostrom@pnl.gov FU [DE-AC06-76RLO 1830] FX Funding for this research was provided by Fluor Hanford, Inc. PNNL is operated by the Battelle Memorial Institute for the Department of Energy (DOE) under Contract DE-AC06-76RLO 1830. The intermediate-scale experiments were performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at PNNL. Scientists interested in conducting experimental work in the EMSL are encouraged to contact M. Oostrom (mart.oostrom@pnl.gov). NR 12 TC 13 Z9 14 U1 0 U2 14 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD AUG PY 2009 VL 8 IS 3 BP 643 EP 650 DI 10.2136/vzj2008.0182 PG 8 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 482GE UT WOS:000268871900011 ER PT J AU Pasyanos, ME Walter, WR AF Pasyanos, Michael E. Walter, William R. TI Improvements to regional explosion identification using attenuation models of the lithosphere SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SEISMIC DISCRIMINATION; NUCLEAR-TEST; EARTHQUAKES; WAVES; DEPTH AB Regional P/S amplitudes have been recognized as an effective discriminant between earthquakes and explosions. While closely spaced events generally discriminate easily, the application of this technique to broad regions has been hampered by large variations in the amplitude of phases due to the attenuation of the crust and upper mantle. Making use of a recent P-wave and S-wave attenuation model of the lithosphere, we have found that correcting the events using our amplitude methodology significantly reduces the scattering in the earthquake population. We demonstrate an application of this technique to station NIL using broad-area earthquakes and the 1998 Indian nuclear explosion using the Pn/Lg discriminant in the 1-2 Hz passband. We find that the explosion, which is lost in the scatter of the earthquakes in the uncorrected discriminant, clearly separates by correcting for attenuation structure. We see a similar reduction in scatter and separation for the Pn/Sn and Pg/Lg discriminants. Citation: Pasyanos, M. E., and W. R. Walter (2009), Improvements to regional explosion identification using attenuation models of the lithosphere, Geophys. Res. Lett., 36, L14304, doi: 10.1029/2009GL038505. C1 [Pasyanos, Michael E.; Walter, William R.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Pasyanos, ME (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM pasyanos1@llnl.gov RI Pasyanos, Michael/C-3125-2013; Walter, William/C-2351-2013 OI Walter, William/0000-0002-0331-0616 FU U. S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We would especially like to thank Eric Matzel for making many of the amplitude measurements used in the attenuation tomography. We thank Neil Selby and an anonymous reviewer for their comments. This work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. This is LLNL contribution LLNL-JRNL-411835. NR 19 TC 10 Z9 10 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 31 PY 2009 VL 36 AR L14304 DI 10.1029/2009GL038505 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 479AP UT WOS:000268631400001 ER PT J AU Guilderson, TP Fallon, S Moore, MD Schrag, DP Charles, CD AF Guilderson, T. P. Fallon, S. Moore, M. D. Schrag, D. P. Charles, C. D. TI Seasonally resolved surface water Delta C-14 variability in the Lombok Strait: A coralline perspective SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article ID INDONESIAN THROUGHFLOW; INDIAN-OCEAN; TROPICAL PACIFIC; RADIOCARBON; THERMOCLINE; MONSOON; FLOW; TEMPERATURE; RECORDS; MODEL AB We have explored surface water mixing in the Lombok Strait through a bimonthly resolved surface water Delta C-14 time series reconstructed from a coral in the Lombok Strait that spans 1937 through 1990. The prebomb surface water Delta C-14 average is -60.5 parts per thousand and individual samples range from -72 parts per thousand to 134 parts per thousand. The annual average postbomb maximum occurs in 1973 at 122 parts per thousand The timing of the postbomb maximum is consistent with a primary subtropical source for the surface waters in the Indonesian seas. During the postbomb period, the coral records regular seasonal cycles of 5 parts per thousand to 20 parts per thousand. Seasonal high Delta C-14 occur during March-May (warm, low salinity), and low Delta C-14 occur in September (cool, higher salinity). The Delta C-14 seasonality is coherent and in phase with the seasonal Delta C-14 cycle observed in Makassar Strait. We estimate the influence of high Delta C-14 Makassar Strait (North Pacific) water flowing through the Lombok Strait using a two end-member mixing model and the seasonal extremes observed at the two sites. The percentage of Makassar Strait water varies between 16 parts per thousand and 70 parts per thousand, and between 1955 and 1990, it averages at 40 parts per thousand. The rich Delta C-14 variability has a biennial component reflecting remote equatorial Indian Ocean forcing and a component in the ENSO band, which is interpreted to reflect Pacific forcing on the Delta C-14 signature in Lombok Strait. C1 [Guilderson, T. P.; Fallon, S.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94551 USA. [Guilderson, T. P.] Univ Calif Santa Cruz, Dept Ocean Sci, Santa Cruz, CA 95064 USA. [Guilderson, T. P.] Univ Calif Santa Cruz, Inst Marine Sci, Santa Cruz, CA 95064 USA. [Moore, M. D.; Charles, C. D.] Scripps Inst Oceanog, Div Geol Res, La Jolla, CA 92093 USA. [Schrag, D. P.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. RP Guilderson, TP (reprint author), Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, L 397 7000 East Ave, Livermore, CA 94551 USA. EM tguilderson@llnl.gov RI Fallon, Stewart/G-6645-2011 OI Fallon, Stewart/0000-0002-8064-5903 FU UC/LLNL LDRD [01-ERI-009]; NSF [OCE-9796253] FX We thank Jessica Westbrook for assistance with milling samples and preparing graphite targets and Ethan Goddard for performing the stable isotope measurements. Discussions with Susan Hautala have been especially helpful. The ARAND software package is maintained by Philip Howell (Brown University). This manuscript benefited from the comments and suggestions of two anonymous reviewers. This work was performed under the auspices of the U. S. Department of Energy by University of California, Lawrence Livermore National Laboratory under contract number W-7405-Eng-48. Funding for this project was supplied by UC/LLNL LDRD (01-ERI-009) and NSF's program in Physical and Chemical Oceanography (OCE-9796253). Data will be archived at NOAA's WDC-A, Boulder, Colorado. NR 47 TC 8 Z9 8 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD JUL 31 PY 2009 VL 114 AR C07029 DI 10.1029/2008JC004876 PG 9 WC Oceanography SC Oceanography GA 479BC UT WOS:000268632800001 ER PT J AU Rodak, LE Kuchibhatla, S Korakakis, D AF Rodak, L. E. Kuchibhatla, Sridhar Korakakis, D. TI Suspended aluminum nitride structures grown via metal organic vapor phase epitaxy SO MATERIALS LETTERS LA English DT Article DE Thin films; Piezoelectric materials; Epitaxial growth ID ALN; FABRICATION; MICROBRIDGES AB The development of III-Nitride suspended structures for Micro-Electro, Mechanical Systems (MEMS) and Nano-Electro Mechanical Systems (NEMS) is challenging due to lack of selective etching techniques. Recent efforts have focused on the removal of sacrificial layers based on material properties, such as crystalline quality, bandgap, polarity, doping, etc. These techniques require several processing steps in addition to precise control over the sacrificial and functional layer properties. In this work, conditions have been identified for the growth of etch-resistant polycrystalline AIN films via Metal Organic Vapor Phase Epitaxy (MOVPE) on silicon oxide surfaces, thus allowing silicon oxide to be used as a sacrificial layer in a surface micro-machining process. The MOVPE growth conditions reported result in a well oriented crystal with superior mechanical strength demonstrated by the fabrication of unsupported AIN structures with widths from 5 mu m to 110 mu m and air gaps ranging from 200 nm to 800 nm. This technique simplifies the fabrication process of AIN suspended structures and is well suited for achieving group III-Nitride heteroepitaxial MEMS/NEMS systems. (C) 2009 Elsevier B.V. All rights reserved. C1 [Rodak, L. E.; Kuchibhatla, Sridhar; Korakakis, D.] W Virginia Univ, Lane Dept Comp Sci & Elect Engn, Morgantown, WV 26506 USA. [Korakakis, D.] Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Rodak, LE (reprint author), W Virginia Univ, Lane Dept Comp Sci & Elect Engn, POB 6109, Morgantown, WV 26506 USA. EM lrodak@mix.wvu.edu; skuchibh@mix.wvu.edu; Dimitris.Korakakis@mail.wvu.edu FU AIXTRON; DOE/NETL RDS [DE-AC26-04NT41817]; EPS [0554328]; West Virginia Graduate Student Fellowship in Science, Technology, Engineering, and Math (STEM) FX This work was supported in part by AIXTRON, DOE/NETL RDS contract DE-AC26-04NT41817, and NSF RII contract EPS 0554328. L.E.R was supported by the West Virginia Graduate Student Fellowship in Science, Technology, Engineering, and Math (STEM). NR 22 TC 2 Z9 2 U1 2 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-577X J9 MATER LETT JI Mater. Lett. PD JUL 31 PY 2009 VL 63 IS 18-19 BP 1571 EP 1573 DI 10.1016/j.matlet.2009.03.047 PG 3 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 461NE UT WOS:000267273000002 ER PT J AU Thompson, LH Hinz, JM AF Thompson, Larry H. Hinz, John M. TI Cellular and molecular consequences of defective Fanconi anemia proteins in replication-coupled DNA repair: Mechanistic insights SO MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS LA English DT Review DE DNA crosslinking; Mutagenesis; Crosslink repair; DNA replication forks; Chromosomal instability; Translesion synthesis; Homologous recombination repair ID INTERSTRAND CROSS-LINKS; DOUBLE-STRAND BREAKS; S-PHASE CHECKPOINT; SISTER-CHROMATID EXCHANGES; NUCLEOTIDE EXCISION-REPAIR; EARLY EMBRYONIC LETHALITY; BLOOMS-SYNDROME HELICASE; DAMAGE-RESPONSE PATHWAY; NUCLEAR RAD51 FOCI; ALPHA-II-SPECTRIN AB The Fanconi anemia (FA) molecular network consists of 15 "FANC" proteins, of which 13 are associated with mutations in patients with this cancer-prone chromosome instability disorder. Whereas historically the common phenotype associated with FA mutations is marked sensitivity to DNA interstrand crosslinking agents, the literature supports a more global role for FANC proteins in coping with diverse stresses encountered by replicative polymerases. We have attempted to reconcile and integrate numerous observations into a model in which FANC proteins coordinate the following physiological events during DNA crosslink repair: (a) activating a FANCM-ATR-dependent S-phase checkpoint, (b) mediating enzymatic replication-fork breakage and crosslink unhooking, (c) filling the resulting gap by translesion synthesis (TLS) by error-prone polymerase(s), and (d) restoring the resulting one-ended double-strand break by homologous recombination repair (HRR). The FANC core subcomplex (FANCA, B, C, E, F, G, L, FAAP100) promotes TLS for both crosslink and non-crosslink damage such as spontaneous oxidative base damage, UV-C photoproducts, and alkylated bases. TLS likely helps prevent stalled replication forks from breaking, thereby maintaining chromosome continuity. Diverse DNA damages and replication inhibitors result in monoubiquitination of the FANCD2-FANCI complex by the FANCL ubiquitin ligase activity of the core subcomplex upon its recruitment to chromatin by the FANCM-FAAP24 heterodimeric translocase. We speculate that this translocase activity acts as the primary damage sensor and helps remodel blocked replication forks to facilitate checkpoint activation and repair. Monoubiquitination of FANCD2-FANCI is needed for promoting HRR, in which the FANCD1/BRCA2 and FANCN/PALB2 proteins act at an early step. We conclude that the core subcomplex is required for both TLS and HRR occurring separately for non-crosslink damages and for both events during crosslink repair. The FANCJ/BRIP1/BACH1 helicase functions in association with BRCA1 and may remove structural barriers to replication, such as guanine quadruplex structures, and/or assist in crosslink unhooking. (C) 2009 Elsevier B.V. All rights reserved. C1 [Thompson, Larry H.] Lawrence Livermore Natl Lab, Biol & Biotechnol Div, Livermore, CA 94551 USA. [Hinz, John M.] Washington State Univ, Sch Mol Biosci, Pullman, WA 99164 USA. RP Thompson, LH (reprint author), Lawrence Livermore Natl Lab, Biol & Biotechnol Div, L452, Livermore, CA 94550 USA. EM thompson14@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; NCI/NIH [CA712566] FX We thank Nigel Jones for discussion of the details in the models, and both Paul Wilson and Minoru Takata for extensive editorial comments on the manuscript. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The DOE Low Dose Radiation Research Program and NCI/NIH grant CA712566 funded this work. NR 283 TC 109 Z9 112 U1 3 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0027-5107 J9 MUTAT RES-FUND MOL M JI Mutat. Res.-Fundam. Mol. Mech. Mutagen. PD JUL 31 PY 2009 VL 668 IS 1-2 BP 54 EP 72 DI 10.1016/j.mrfmmm.2009.02.003 PG 19 WC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology SC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology GA 484LN UT WOS:000269046500007 PM 19622404 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Cahn, RN Jacobsen, RG Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Gary, JW Liu, F Long, O Shen, BC Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Wilson, MG Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Ulmer, KA Wagner, SR Ayad, R Soffer, A Toki, WH Wilson, RJ Altenburg, DD Feltresi, E Hauke, A Jasper, H Karbach, M Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Mader, WF Nogowski, R Schubert, KR Schwierz, R Volk, A Bernard, D Bonneaud, GR Latour, E Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Adametz, A Marks, J Schenk, S Uwer, U Klose, V Lacker, HM Bard, DJ Dauncey, PD Nash, JA Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Arnaud, N Bequilleux, J D'Orazio, A Davier, M da Costa, JF Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK George, KA Di Lodovico, F Sacco, R Sigamani, M Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Schott, G Alwyn, KE Bailey, D Barlow, RJ Chia, YM Edgar, CL Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Li, X Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L Hamon, O Leruste, P Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S Escalier, M Esteve, L Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Gabareen, AM Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Pan, Y Pierini, M Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Cahn, R. N. Jacobsen, R. G. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Wilson, M. G. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Ulmer, K. A. Wagner, S. R. Ayad, R. Soffer, A. Toki, W. H. Wilson, R. J. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Karbach, M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Mader, W. F. Nogowski, R. Schubert, K. R. Schwierz, R. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Klose, V. Lacker, H. M. Bard, D. J. Dauncey, P. D. Nash, J. A. Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. da Costa, J. Firmino Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. George, K. A. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Schott, G. Alwyn, K. E. Bailey, D. Barlow, R. J. Chia, Y. M. Edgar, C. L. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Li, X. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. Hamon, O. Leruste, Ph. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Escalier, M. Esteve, L. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Gabareen, A. M. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Pierini, M. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BaBar Collaboration TI Measurement of Semileptonic B Decays into Orbitally Excited Charmed Mesons SO PHYSICAL REVIEW LETTERS LA English DT Article AB We present a study of B decays into semileptonic final states containing charged and neutral D(1)(2420) and D(2)*(2460). The analysis is based on a data sample of 208 fb(-1) collected at the Y(4S) resonance with the BABAR detector at the PEP-II asymmetric-energy B factory at SLAC. With a simultaneous fit to four different decay chains, the semileptonic branching fractions are extracted from measurements of the mass difference Delta m = m(D**) - m(D) distribution. Product branching fractions are determined to be B(B(+) -> D(1)(0)l(+)nu(l)) x B(D(1)(0) -> D(*+)pi(-)) = (2.97 +/- 0.17 +/- 0.17) x 10(-3), B(B(+) -> D(2)*l(+)nu(e)) x B(D(2)*(0) -> D((*)+)pi(-)) = (2.29 +/- 0.23 +/- 0.21) x 10(-3), B(B(0) -> D(1)(-)l(+)nu(l)) x B(D(1)(-) -> D*(0)pi(-)) = (2.78 +/- 0.24 +/- 0.25) x 10(-3) and B(B(0) -> D(2)*(-)l(+)nu(l)) x B(D(2)(*-) -> D((*)0)pi(-)) = (1.77 +/- 0.26 +/- 0.11) x 10(-3). In addition we measure the branching ratio Gamma(D2* -> D pi(-))/Gamma(D(2)* -> D((*))pi(-)) = 0.62 +/- 0.03 +/- 0.02. C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, Dipartmento Fis, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Cahn, R. N.; Jacobsen, R. G.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Mader, W. F.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Volk, A.] Tech Univ Dresden, Inst Kernund Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Verderi, M.] Ecole Polytech, IN2P3, CNRS, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, Dipartimento Fis, I-16146 Genoa, Italy. [Contri, R.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Univ Heidelberg, Inst Phys, D-69120 Heidelberg, Germany. [Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Clarke, C. K.; George, K. A.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Schott, G.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Li, X.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, Dipartimento Fis, I-20133 Milan, Italy. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, Dipartimento Sci Fis, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico 2, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, Dipartimento Fis, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.] Univ Paris 07, Univ Paris 06, CNRS, IN2P3,Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, Dipartimento Fis, I-00185 Rome, Italy. [Baracchini, E.; del Re, D.; Di Marco, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Polci, F.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Escalier, M.; Esteve, L.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] Ctr Etud Saclay, SPP, Irfu, CEA, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gabareen, A. M.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Torino, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Dasu, S.; Flood, K. T.; Pan, Y.; Pierini, M.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Rizzo, Giuliana/A-8516-2015; dong, liaoyuan/A-5093-2015; Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Patrignani, Claudia/C-5223-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Della Ricca, Giuseppe/B-6826-2013 OI Chen, Chunhui /0000-0003-1589-9955; Raven, Gerhard/0000-0002-2897-5323; Pacetti, Simone/0000-0002-6385-3508; Covarelli, Roberto/0000-0003-1216-5235; Rizzo, Giuliana/0000-0003-1788-2866; Carpinelli, Massimo/0000-0002-8205-930X; Sciacca, Crisostomo/0000-0002-8412-4072; Adye, Tim/0000-0003-0627-5059; Lafferty, George/0000-0003-0658-4919; Faccini, Riccardo/0000-0003-2613-5141; Cavoto, Gianluca/0000-0003-2161-918X; Wilson, Robert/0000-0002-8184-4103; Strube, Jan/0000-0001-7470-9301; Paoloni, Eugenio/0000-0001-5969-8712; Corwin, Luke/0000-0001-7143-3821; Bettarini, Stefano/0000-0001-7742-2998; Lanceri, Livio/0000-0001-8220-3095; Ebert, Marcus/0000-0002-3014-1512; dong, liaoyuan/0000-0002-4773-5050; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Cibinetto, Gianluigi/0000-0002-3491-6231; Hamel de Monchenault, Gautier/0000-0002-3872-3592; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Patrignani, Claudia/0000-0002-5882-1747; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Della Ricca, Giuseppe/0000-0003-2831-6982 FU DOE; NSF (USA); NSERC (Canada); CEA; CNRS-IN2P3 (France); BMBF; DFG (Germany); INFN ( Italy); FOM (The Netherlands); NFR (Norway); MES (Russia); MEC (Spain); STFC (United Kingdom); Marie Curie EIF (European Union); A. P. Sloan Foundation FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN ( Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation. NR 20 TC 18 Z9 18 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 31 PY 2009 VL 103 IS 5 AR 051803 DI 10.1103/PhysRevLett.103.051803 PG 7 WC Physics, Multidisciplinary SC Physics GA 478WC UT WOS:000268618300021 ER PT J AU Bai, Y Han, ZY AF Bai, Yang Han, Zhenyu TI Measuring a Long-Range Dark Matter Force at the Large Hadron Collider SO PHYSICAL REVIEW LETTERS LA English DT Article ID MEASURING MASSES AB A long-range "dark force'' has recently been proposed to mediate the dark matter (DM) annihilation. If DM particles are copiously produced at the Large Hadron Collider, the light dark force mediator will also be produced through radiation. We demonstrate how and how precise we can utilize this fact to measure the coupling constant of the dark force. The light mediator's mass is measured for the "lepton jet'' to which it decays. In addition, the mass of the DM particle is determined using the m(T2) technique. Knowing these quantities is critical for calculating the DM relic density. C1 [Bai, Yang] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. [Han, Zhenyu] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. RP Bai, Y (reprint author), Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. EM bai@fnal.gov; zhenyuhan@physics.ucdavis.edu FU United States Department of Energy [DE-FG03-91ER40674] FX We thank P. Fox, K. C. Kong, and J. Lykken for interesting discussions. Z. H. is supported in part by the United States Department of Energy Grant No. DE-FG03-91ER40674. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. NR 23 TC 21 Z9 21 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 31 PY 2009 VL 103 IS 5 AR 051801 DI 10.1103/PhysRevLett.103.051801 PG 4 WC Physics, Multidisciplinary SC Physics GA 478WC UT WOS:000268618300019 PM 19792485 ER PT J AU Bostwick, A McChesney, JL Emtsev, KV Seyller, T Horn, K Kevan, SD Rotenberg, E AF Bostwick, Aaron McChesney, Jessica L. Emtsev, Konstantin V. Seyller, Thomas Horn, Karsten Kevan, Stephen D. Rotenberg, Eli TI Quasiparticle Transformation during a Metal-Insulator Transition in Graphene SO PHYSICAL REVIEW LETTERS LA English DT Article ID EPITAXIAL GRAPHENE; BANDGAP AB Here we show, with simultaneous transport and photoemission measurements, that the graphene-terminated SiC(0001) surface undergoes a metal-insulator transition upon dosing with small amounts of atomic hydrogen. We find the room temperature resistance increases by about 4 orders of magnitude, a transition accompanied by anomalies in the momentum-resolved spectral function including a non-Fermi-liquid behavior and a breakdown of the quasiparticle picture. These effects are discussed in terms of a possible transition to a strongly (Anderson) localized ground state. C1 [Bostwick, Aaron; McChesney, Jessica L.; Rotenberg, Eli] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Emtsev, Konstantin V.; Seyller, Thomas] Univ Erlangen Nurnberg, Lehrstuhl Tech Phys, D-91058 Erlangen, Germany. [Horn, Karsten] Max Planck Gesell, Fritz Haber Inst, Dept Mol Phys, D-14195 Berlin, Germany. [Kevan, Stephen D.] Univ Oregon, Dept Phys, Eugene, OR 97403 USA. RP Bostwick, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RI Rotenberg, Eli/B-3700-2009; Seyller, Thomas/F-8410-2011; Kevan, Stephen/F-6415-2010; Bostwick, Aaron/E-8549-2010; McChesney, Jessica/K-8911-2013 OI Rotenberg, Eli/0000-0002-3979-8844; Seyller, Thomas/0000-0002-4953-2142; Kevan, Stephen/0000-0002-4621-9142; McChesney, Jessica/0000-0003-0470-2088 FU Office of Science, Basic Energy Sciences, of the U. S. Department of Energy [DE-AC0205CH11231] FX The Advanced Light Source is supported by the Director, Office of Science, Basic Energy Sciences, of the U. S. Department of Energy under Contract DE-AC0205CH11231. NR 31 TC 127 Z9 127 U1 5 U2 35 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 31 PY 2009 VL 103 IS 5 AR 056404 DI 10.1103/PhysRevLett.103.056404 PG 4 WC Physics, Multidisciplinary SC Physics GA 478WC UT WOS:000268618300054 PM 19792520 ER PT J AU Chiow, SW Herrmann, S Chu, S Muller, H AF Chiow, Sheng-wey Herrmann, Sven Chu, Steven Mueller, Holger TI Noise-Immune Conjugate Large-Area Atom Interferometers SO PHYSICAL REVIEW LETTERS LA English DT Article ID FINE-STRUCTURE CONSTANT; GRAVITY-GRADIOMETER; BRAGG SCATTERING; LASER; WAVE AB We present a pair of simultaneous conjugate Ramsey-Borde atom interferometers using large (20hk)-momentum transfer beam splitters, where hk is the photon momentum. Simultaneous operation allows for common-mode rejection of vibrational noise. This allows us to surpass the enclosed space-time area of previous interferometers with a splitting of 20hk by a factor of 2500. Using a splitting of 10hk, we demonstrate a 3.4 ppb resolution in the measurement of the fine structure constant. Examples for applications in tests of fundamental laws of physics are given. C1 [Chiow, Sheng-wey; Herrmann, Sven; Chu, Steven; Mueller, Holger] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Chu, Steven; Mueller, Holger] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Chu, Steven; Mueller, Holger] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Chiow, SW (reprint author), Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA. EM hm@berkeley.edu RI Mueller, Holger/E-3194-2015 FU National Science Foundation [0400866]; Air Force Office of Scientific Research [FA9550-04-1-0040] FX S. H. and H. M. thank the Alexander von Humboldt foundation. This material is based upon work supported by the National Science Foundation under Grant No. 0400866 and by the Air Force Office of Scientific Research under Grant Number FA9550-04-1-0040. NR 37 TC 32 Z9 32 U1 3 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 31 PY 2009 VL 103 IS 5 AR 050402 DI 10.1103/PhysRevLett.103.050402 PG 4 WC Physics, Multidisciplinary SC Physics GA 478WC UT WOS:000268618300002 PM 19792468 ER PT J AU Gorham, PW Allison, P Barwick, SW Beatty, JJ Besson, DZ Binns, WR Chen, C Chen, P Clem, JM Connolly, A Dowkontt, PF DuVernois, MA Field, RC Goldstein, D Goodhue, A Hast, C Hebert, CL Hoover, S Israel, MH Kowalski, J Learned, JG Liewer, KM Link, JT Lusczek, E Matsuno, S Mercurio, BC Miki, C Miocinovic, P Nam, J Naudet, CJ Ng, J Nichol, RJ Palladino, K Reil, K Romero-Wolf, A Rosen, M Ruckman, L Saltzberg, D Seckel, D Varner, GS Walz, D Wang, Y Wu, F AF Gorham, P. W. Allison, P. Barwick, S. W. Beatty, J. J. Besson, D. Z. Binns, W. R. Chen, C. Chen, P. Clem, J. M. Connolly, A. Dowkontt, P. F. DuVernois, M. A. Field, R. C. Goldstein, D. Goodhue, A. Hast, C. Hebert, C. L. Hoover, S. Israel, M. H. Kowalski, J. Learned, J. G. Liewer, K. M. Link, J. T. Lusczek, E. Matsuno, S. Mercurio, B. C. Miki, C. Miocinovic, P. Nam, J. Naudet, C. J. Ng, J. Nichol, R. J. Palladino, K. Reil, K. Romero-Wolf, A. Rosen, M. Ruckman, L. Saltzberg, D. Seckel, D. Varner, G. S. Walz, D. Wang, Y. Wu, F. CA ANITA Collaboration TI New Limits on the Ultrahigh Energy Cosmic Neutrino Flux from the ANITA Experiment SO PHYSICAL REVIEW LETTERS LA English DT Article ID RAY AIR-SHOWERS; COHERENT RADIO EMISSION; SPECTRUM; DETECTOR; CHARGE AB We report initial results of the first flight of the Antarctic Impulsive Transient Antenna (ANITA-1) 2006-2007 Long Duration Balloon flight, which searched for evidence of a diffuse flux of cosmic neutrinos above energies of E(nu) similar or equal to 3 x 10(18) eV. ANITA-1 flew for 35 days looking for radio impulses due to the Askaryan effect in neutrino-induced electromagnetic showers within the Antarctic ice sheets. We report here on our initial analysis, which was performed as a blind search of the data. No neutrino candidates are seen, with no detected physics background. We set model-independent limits based on this result. Upper limits derived from our analysis rule out the highest cosmogenic neutrino models. In a background horizontal-polarization channel, we also detect six events consistent with radio impulses from ultrahigh energy extensive air showers. C1 [Gorham, P. W.; Allison, P.; Hebert, C. L.; Kowalski, J.; Learned, J. G.; Link, J. T.; Matsuno, S.; Miki, C.; Miocinovic, P.; Romero-Wolf, A.; Rosen, M.; Ruckman, L.; Varner, G. S.] Univ Hawaii Manoa, Dept Phys & Astron, Honolulu, HI 96822 USA. [Barwick, S. W.; Goldstein, D.; Nam, J.] Univ Calif Irvine, Dept Phys, Irvine, CA 92697 USA. [Beatty, J. J.; Mercurio, B. C.; Palladino, K.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Besson, D. Z.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Binns, W. R.; Dowkontt, P. F.; Israel, M. H.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Chen, P.; Field, R. C.; Hast, C.; Ng, J.; Reil, K.; Walz, D.] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. [Clem, J. M.; Seckel, D.] Univ Delaware, Dept Phys, Newark, DE 19716 USA. [Goodhue, A.; Hoover, S.; Saltzberg, D.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [DuVernois, M. A.; Lusczek, E.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Liewer, K. M.; Naudet, C. J.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Connolly, A.; Nichol, R. J.] UCL, Dept Phys, London, England. [Chen, C.; Nam, J.; Wang, Y.; Wu, F.] Natl Taiwan Univ, Grad Inst Astrophys, Dept Phys, Taipei, Taiwan. [Chen, C.; Nam, J.; Wang, Y.; Wu, F.] Natl Taiwan Univ, Leung Ctr Cosmol & Particle Astrophys, Taipei, Taiwan. RP Gorham, PW (reprint author), Univ Hawaii Manoa, Dept Phys & Astron, Honolulu, HI 96822 USA. RI Nichol, Ryan/C-1645-2008; Vieregg, Abigail/D-2287-2012; Connolly, Amy/J-3958-2013; Beatty, James/D-9310-2011; OI Beatty, James/0000-0003-0481-4952; Lusczek, Elizabeth/0000-0003-4680-965X NR 31 TC 85 Z9 85 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 31 PY 2009 VL 103 IS 5 AR 051103 DI 10.1103/PhysRevLett.103.051103 PG 5 WC Physics, Multidisciplinary SC Physics GA 478WC UT WOS:000268618300013 PM 19792479 ER PT J AU McQueen, TM Williams, AJ Stephens, PW Tao, J Zhu, Y Ksenofontov, V Casper, F Felser, C Cava, RJ AF McQueen, T. M. Williams, A. J. Stephens, P. W. Tao, J. Zhu, Y. Ksenofontov, V. Casper, F. Felser, C. Cava, R. J. TI Tetragonal-to-Orthorhombic Structural Phase Transition at 90 K in the Superconductor Fe1.01Se SO PHYSICAL REVIEW LETTERS LA English DT Article ID IRON; SMFEASO1-XFX; DIAGRAM; ORDER; FESE AB In this Letter we show that superconducting Fe1.01Se undergoes a structural transition at 90 K from a tetragonal to an orthorhombic phase but that nonsuperconducting Fe1.03Se does not. High resolution electron microscopy at low temperatures further reveals an unexpected additional modulation of the crystal structure of the superconducting phase that involves displacements of the Fe atoms, and that the nonsuperconducting composition shows a different, complex nanometer-scale structural modulation. Finally, we show that magnetism is not the driving force for the phase transition in the superconducting phase. C1 [McQueen, T. M.; Williams, A. J.; Cava, R. J.] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. [Stephens, P. W.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Tao, J.; Zhu, Y.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Ksenofontov, V.; Casper, F.; Felser, C.] Johannes Gutenberg Univ Mainz, Inst Anorgan Chem & Analyt Chem, D-55099 Mainz, Germany. RP McQueen, TM (reprint author), Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. RI Casper, Frederick/A-5782-2009; Felser, Claudia/A-5779-2009; OI Felser, Claudia/0000-0002-8200-2063; Ksenofontov, Vadim/0000-0002-1420-1124 FU Department of Energy, Division of Basic Energy Sciences [DE-FG02-98ER45706]; National Synchrotron Light Source, BNL; Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX T. M. M. gratefully acknowledges support from the NSF. The work at Princeton was supported by the Department of Energy, Division of Basic Energy Sciences, grant DE-FG02-98ER45706. The work at Brookhaven National Lab (BNL) as well as use of the National Synchrotron Light Source, BNL, was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 22 TC 191 Z9 193 U1 17 U2 98 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 31 PY 2009 VL 103 IS 5 AR 057002 DI 10.1103/PhysRevLett.103.057002 PG 4 WC Physics, Multidisciplinary SC Physics GA 478WC UT WOS:000268618300060 PM 19792526 ER PT J AU Orlandi, R de Angelis, G Bizzeti, PG Lunardi, S Gadea, A Bizzeti-Sona, AM Bracco, A Brandolini, F Carpenter, MP Chiara, CJ Della Vedova, F Farnea, E Greene, JP Lenzi, SM Leoni, S Lister, CJ Marginean, N Mengoni, D Napoli, DR Singh, BSN Pechenaya, OL Recchia, F Reviol, W Sahin, E Sarantites, DG Seweryniak, D Tonev, D Ur, CA Valiente-Dobon, JJ Wadsworth, R Wiedemann, KT Zhu, S AF Orlandi, R. de Angelis, G. Bizzeti, P. G. Lunardi, S. Gadea, A. Bizzeti-Sona, A. M. Bracco, A. Brandolini, F. Carpenter, M. P. Chiara, C. J. Della Vedova, F. Farnea, E. Greene, J. P. Lenzi, S. M. Leoni, S. Lister, C. J. Marginean, N. Mengoni, D. Napoli, D. R. Singh, B. S. Nara Pechenaya, O. L. Recchia, F. Reviol, W. Sahin, E. Sarantites, D. G. Seweryniak, D. Tonev, D. Ur, C. A. Valiente-Dobon, J. J. Wadsworth, R. Wiedemann, K. T. Zhu, S. TI Coherent Contributions to Isospin Mixing in the Mirror Pair As-67 and Se-67 SO PHYSICAL REVIEW LETTERS LA English DT Article ID GAMMASPHERE; STATES; SHELL; DETECTORS AB Isospin symmetry breaking has been investigated in mass A = 67 mirror nuclei through the experimental determination of the E1 strengths of analog electromagnetic transitions. Lifetimes of excited states have been measured in Se-67 and As-67 with the centroid shift method. Through the comparison of the B(E1) strengths of the mirror 9/2(+) -> 7/2(-) transitions, the isovector and the isoscalar components of the electromagnetic transition amplitude were extracted. The presence of a large isoscalar component provides evidence for coherent contributions to isospin mixing, probably involving the isovector giant monopole resonance. C1 [Orlandi, R.; de Angelis, G.; Gadea, A.; Della Vedova, F.; Napoli, D. R.; Recchia, F.; Sahin, E.; Valiente-Dobon, J. J.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Padua, Italy. [Bizzeti, P. G.; Bizzeti-Sona, A. M.] Univ Florence, Dipartimento Fis, I-50019 Florence, Italy. [Bizzeti, P. G.; Bizzeti-Sona, A. M.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Florence, Italy. [Lunardi, S.; Brandolini, F.; Farnea, E.; Lenzi, S. M.; Marginean, N.; Mengoni, D.; Ur, C. A.] Univ Padua, Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Lunardi, S.; Brandolini, F.; Farnea, E.; Lenzi, S. M.; Marginean, N.; Mengoni, D.; Ur, C. A.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Bracco, A.; Leoni, S.] Univ Milan, Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Bracco, A.; Leoni, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Carpenter, M. P.; Greene, J. P.; Lister, C. J.; Seweryniak, D.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Chiara, C. J.; Pechenaya, O. L.; Reviol, W.; Sarantites, D. G.] Washington Univ, St Louis, MO 63130 USA. [Singh, B. S. Nara; Wadsworth, R.] Univ York, York YO10 5DD, N Yorkshire, England. [Tonev, D.] BAS, Inst Nucl Res & Nucl Energy, Sofia 1784, Bulgaria. [Wiedemann, K. T.] Univ Sao Paulo, Sao Paulo, Brazil. RP Orlandi, R (reprint author), Univ W Scotland, Paisley PA1 2BE, Renfrew, Scotland. EM Riccardo.Orlandi@uws.ac.uk RI Lenzi, Silvia/I-6750-2012; Gadea, Andres/L-8529-2014; Carpenter, Michael/E-4287-2015; Marginean, Nicolae Marius/C-4732-2011; Napoli, Daniel R./D-9863-2012 OI Gadea, Andres/0000-0002-4233-1970; Carpenter, Michael/0000-0002-3237-5734; Napoli, Daniel R./0000-0002-8154-6958 FU U. S. Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357, DE-FG02-88ER-40406] FX This work was partly supported by the U. S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357 and Grant No. DE-FG02-88ER-40406. We thank the accelerator crew of ANL for excellent support. NR 20 TC 15 Z9 15 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 31 PY 2009 VL 103 IS 5 AR 052501 DI 10.1103/PhysRevLett.103.052501 PG 4 WC Physics, Multidisciplinary SC Physics GA 478WC UT WOS:000268618300026 PM 19792492 ER PT J AU Schmidt, F Rozo, E Dodelson, S Hui, L Sheldon, E AF Schmidt, Fabian Rozo, Eduardo Dodelson, Scott Hui, Lam Sheldon, Erin TI Size Bias in Galaxy Surveys SO PHYSICAL REVIEW LETTERS LA English DT Article ID WEAK-LENSING SURVEYS; QUASARS; DISTRIBUTIONS; SHEAR AB Only certain galaxies are included in surveys: those bright and large enough to be detectable as extended sources. Because gravitational lensing can make galaxies appear both brighter and larger, the presence of foreground inhomogeneities can scatter galaxies across not only magnitude cuts but also size cuts, changing the statistical properties of the resulting catalog. Here we explore this size bias and how it combines with magnification bias to affect galaxy statistics. We demonstrate that photometric galaxy samples from current and upcoming surveys can be even more affected by size bias than by magnification bias. C1 [Schmidt, Fabian; Dodelson, Scott] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Schmidt, Fabian; Dodelson, Scott] Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Rozo, Eduardo] Ohio State Univ, CCAPP, Columbus, OH 43210 USA. [Dodelson, Scott] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Hui, Lam] Columbia Univ, Dept Phys, ISCAP, New York, NY 10027 USA. [Sheldon, Erin] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Schmidt, F (reprint author), Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. OI Schmidt, Fabian/0000-0002-6807-7464 FU Kavli Institute for Cosmological Physics [NSF PHY-0114422, NSF PHY-0551142]; Center for Cosmology and Astro-Particle Physics (CCAPP); NSF [AST 0707985]; U. S. Department of Energy [DE-FG02-95ER40896]; DOE [DE-FG02-92-ER40699] FX This work was supported in part by the Kavli Institute for Cosmological Physics at the University of Chicago through grants NSF PHY-0114422 and NSF PHY-0551142. E. R. was funded by the Center for Cosmology and Astro-Particle Physics (CCAPP) at The Ohio State University and by NSF grant AST 0707985. S. D. is supported by the U. S. Department of Energy including Grant No. DE-FG02-95ER40896. L. H. is supported by DOE Grant No. DE-FG02-92-ER40699. NR 18 TC 24 Z9 24 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 31 PY 2009 VL 103 IS 5 AR 051301 DI 10.1103/PhysRevLett.103.051301 PG 4 WC Physics, Multidisciplinary SC Physics GA 478WC UT WOS:000268618300016 PM 19792482 ER PT J AU Seal, K Jesse, S Nikiforov, MP Kalinin, SV Fujii, I Bintachitt, P Trolier-McKinstry, S AF Seal, K. Jesse, S. Nikiforov, M. P. Kalinin, S. V. Fujii, I. Bintachitt, P. Trolier-McKinstry, S. TI Spatially Resolved Spectroscopic Mapping of Polarization Reversal in Polycrystalline Ferroelectric Films: Crossing the Resolution Barrier SO PHYSICAL REVIEW LETTERS LA English DT Article ID HYSTERESIS; DEPENDENCE; CERAMICS; DYNAMICS; WALL AB The mesoscopic reversible and irreversible polarization dynamics in polycrystalline PZT thin film capacitors are studied using local spectroscopic mapping and macroscopic first-order reversal curve measurements. The transition from a regime of short range domain wall motion to the formation of mesoscopic clusters to complete switching is observed. The fractal dimension of the clusters is consistent with the random-bond disorder model. The combination of macroscopic and local measurements allows the characteristics length scales corresponding to the transition from Rayleigh to Preisach behaviors and onset of macroscopic averaging to be determined. C1 [Seal, K.; Jesse, S.; Nikiforov, M. P.; Kalinin, S. V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Fujii, I.; Bintachitt, P.; Trolier-McKinstry, S.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. RP Kalinin, SV (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM sergei2@ornl.gov RI Nikiforov, Maxim/C-1965-2012; Kalinin, Sergei/I-9096-2012; Jesse, Stephen/D-3975-2016; Fujii, Ichiro/O-6257-2015; OI Kalinin, Sergei/0000-0001-5354-6152; Jesse, Stephen/0000-0002-1168-8483; Trolier-McKinstry, Susan/0000-0002-7267-9281 FU Center for Nanophase Materials Sciences; CNMS FX The research is supported by the Center for Nanophase Materials Sciences (K. S., A. P. B., and S. V. K.) and in part by CNMS user proposal CNMS2006- 020 (P. B. and S. T. M.). Funding for work at Penn State was supplied by the Center for Dielectric Studies, the National Security Science and Engineering Faculty program and the Royal Thai Government (P. B.). The authors gratefully acknowledge Dr. Roger Proksch and Asylum Research Corporation for the beta version of the high-field PFM module and valuable discussions. NR 28 TC 13 Z9 13 U1 0 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 31 PY 2009 VL 103 IS 5 AR 057601 DI 10.1103/PhysRevLett.103.057601 PG 4 WC Physics, Multidisciplinary SC Physics GA 478WC UT WOS:000268618300069 PM 19792535 ER PT J AU Yuan, F Zhou, J AF Yuan, Feng Zhou, Jian TI Collins Function and the Single Transverse Spin Asymmetry SO PHYSICAL REVIEW LETTERS LA English DT Article ID DEEP-INELASTIC SCATTERING; FINAL-STATE INTERACTIONS; DRELL-YAN PROCESSES; ODD PARTON DISTRIBUTIONS; CHIRAL-ODD; HARD-SCATTERING; ORDER 1/Q; QCD; FRAGMENTATION; LEPTOPRODUCTION AB We study the Collins mechanism for the single transverse spin asymmetry in the collinear factorization approach. The corresponding twist-three fragmentation function is identified. We show that the Collins function calculated in this approach is universal. We further examine its contribution to the single transverse spin asymmetry of semi-inclusive hadron production in deep inelastic scattering and demonstrate that the transverse momentum dependent and twist-three collinear approaches are consistent in the intermediate transverse momentum region where both apply. C1 [Yuan, Feng; Zhou, Jian] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Yuan, Feng] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. [Zhou, Jian] Shandong Univ, Sch Phys, Jinan 250100, Shandong, Peoples R China. RP Yuan, F (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RI Yuan, Feng/N-4175-2013 FU U. S. Department of Energy [DE-AC02-05CH11231, DE-AC02-98CH10886]; RIKEN, Brookhaven National Laboratory FX We thank Bowen Xiao for collaboration at the early stage of this work. We are also grateful to Yuji Koike, Andreas Metz, and Werner Vogelsang for discussions and comments. This work was supported in part by the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. We are grateful to RIKEN, Brookhaven National Laboratory, and the U. S. Department of Energy (Contract No. DE-AC02-98CH10886) for providing the facilities essential for the completion of this work. NR 49 TC 58 Z9 58 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 31 PY 2009 VL 103 IS 5 AR 052001 DI 10.1103/PhysRevLett.103.052001 PG 4 WC Physics, Multidisciplinary SC Physics GA 478WC UT WOS:000268618300022 PM 19792488 ER PT J AU Wang, M Vail, SA Keirstead, AE Marquez, M Gust, D Garcia, AA AF Wang, Mao Vail, Sean A. Keirstead, Amy E. Marquez, Manuel Gust, Devens Garcia, Antonio A. TI Preparation of photochromic poly(vinylidene fluoride-co-hexafluoropropylene) fibers by electrospinning SO POLYMER LA English DT Article DE Electrospinning; Photochromic fibers ID BLOCK-COPOLYMER FIBERS; POLYMER NANOFIBERS; ALCOHOL) NANOFIBERS; CONTROLLED-RELEASE; SPIROPYRAN; MEMBRANES; SURFACE; FLUORESCENCE; TRANSPORT; SYSTEM AB Photochromic poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP) fibers were prepared by electrospinning from a solution of copolymer and ester-functionalized nitrospiropyran (SPEST) molecules. The surface and internal features of the electrospun (ES) fibers were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and wide-angle X-ray diffraction (WAXD). The strong segregation of fluorine-rich groups on the fiber surface, which occurs during and/or after the electrospinning process, is driven by the lower surface tension for fluorine-rich groups and leads to encapsulation of SPEST predominantly near the core of the fibers, as confirmed by both X-ray photoelectron spectroscopy (XPS) and dynamic water contact angle (CA) measurements. The photochromic behavior of the spiropyran is preserved in the polymeric fibers, as confirmed by steady-state absorption and emission spectroscopy. Both isomeric forms of the photochrome in SP-PVDF-co-HFP were emissive, an effect that is thought to be due to the steric and/or electrostatic restrictions on the ring-opening reaction imposed by the fiber. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Marquez, Manuel; Garcia, Antonio A.] Arizona State Univ, Harrington Dept Bioengn, Tempe, AZ 85287 USA. [Wang, Mao] Philip Morris Inc, Ctr Res & Technol, Richmond, VA 23219 USA. [Vail, Sean A.; Keirstead, Amy E.; Gust, Devens] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. [Keirstead, Amy E.] Univ New England, Dept Chem & Phys, Biddeford, ME 04005 USA. [Marquez, Manuel] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Marquez, Manuel] YNANO LLC, Midlothian, VA 23113 USA. RP Garcia, AA (reprint author), Arizona State Univ, Harrington Dept Bioengn, Tempe, AZ 85287 USA. EM tony.garcia@asu.edu FU U.S. Department of Energy [DEFG0291ER45439] FX S.A.V. gratefully acknowledges the INEST Postdoctoral Program (Philip Morris USA) for financial support. We thank Timothy Karcher of the LeRoy Eyring Center for Solid State Science (Arizona State University) for XPS surface analysis, and Vicki L. Baliga and Jeffrey Molnar (PMUSA) for SEM analysis. WAXD data for this publication was carried in the Center for Microanalysis of Materials, University of Illinois at Urbana-Champaign, which is partially supported by the U.S. Department of Energy under grant DEFG0291ER45439. We thank Jacinta Conrad for providing the WAXD data. NR 73 TC 15 Z9 18 U1 3 U2 39 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 EI 1873-2291 J9 POLYMER JI Polymer PD JUL 31 PY 2009 VL 50 IS 16 BP 3974 EP 3980 DI 10.1016/j.polymer.2009.06.044 PG 7 WC Polymer Science SC Polymer Science GA 480KE UT WOS:000268732500014 ER PT J AU Lince, JR Kim, HI Adams, PM Dickrell, DJ Dugger, MT AF Lince, Jeffrey R. Kim, Hyun I. Adams, Paul M. Dickrell, Daniel J. Dugger, Michael T. TI Nanostructural, electrical, and tribological properties of composite Au-MoS2 coatings SO THIN SOLID FILMS LA English DT Article DE Nanocomposite films; Solid lubricant; Molybdenum disulfide; Sliding friction; Electrical contacts; Sputter deposition; X-ray diffraction; Auger electron spectroscopy ID SOLID LUBRICANT FILMS; MOS2; WEAR; PERFORMANCE; CONTACT AB Considerable research has been done on the tribological properties of cosputtered metal/MoS2 solid lubricant films with low metal content (<20 at.%) because of their usefulness in applications at high Hertzian contact stress (around 1 GPa). However, cosputtered Au-MoS2 coatings with a much higher range of metal contents up to (95 at.%) have shown surprisingly good performance at low contact stresses (as low as 0.1 MPa). In the present study, transmission electron microscopy, X-ray diffraction and electrical resistance measurements of cosputtered Au-MoS2 coatings reveal them to be composites of nanocrystalline Au particles within an amorphous MoS2 matrix. Electrical conductivity images of the coatings displayed metallic (Au) and semi-conducting (MoS2) domains of nanometer dimensions. Auger Nanoprobe analyses confirmed that sliding on the coatings causes the formation of a pure MoS2 layer about a nanometer thick on top of the bulk of the coatings. Lattice resolution atomic force microscopy revealed that this nanometer-thick MoS2 layer is crystalline, and oriented with the basal plane (0001) parallel to the coating surface. Electrical resistance obtained during sliding and pull-off force measurements was consistent with the structure of the coatings. Sliding friction data on the coatings support previous results showing that performance at different Hertzian contact stresses correlated strongly with Au content (C) 2009 Elsevier B.V. All rights reserved. C1 [Lince, Jeffrey R.; Kim, Hyun I.; Adams, Paul M.] Aerosp Corp, Space Mat Lab, El Segundo, CA 90245 USA. [Dickrell, Daniel J.] Univ Florida, Dept Mech Engn, Gainesville, FL 32611 USA. [Dugger, Michael T.] Sandia Natl Labs, Ctr Mat Sci & Engn, Albuquerque, NM 87185 USA. RP Lince, JR (reprint author), Aerosp Corp, Space Mat Lab, El Segundo, CA 90245 USA. EM jeffrey.r.lince@aero.org RI Lince, Jeffrey/N-1437-2013 OI Lince, Jeffrey/0000-0002-6545-6346 FU U.S. Air Force Space and Missile Systems Center [FA8802-04-C-0001]; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by The Aerospace Corporation's Mission Oriented Investigation and Experimentation program, funded by the U.S. Air Force Space and Missile Systems Center under Contract No. FA8802-04-C-0001. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors gratefully acknowledge the assistance of Jim Kirsch in the maintenance and operation of the sputter-deposition system. NR 22 TC 17 Z9 17 U1 9 U2 40 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD JUL 31 PY 2009 VL 517 IS 18 BP 5516 EP 5522 DI 10.1016/j.tsf.2009.03.210 PG 7 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 460IZ UT WOS:000267182700023 ER PT J AU Harilal, SS Allain, JP Hassanein, A Hendricks, MR Nieto-Perez, M AF Harilal, S. S. Allain, J. P. Hassanein, A. Hendricks, M. R. Nieto-Perez, M. TI Reactivity of lithium exposed graphite surface SO APPLIED SURFACE SCIENCE LA English DT Article DE Plasma-facing components; X-ray photoelectron spectroscopy; Low-energy ion scattering spectroscopy; Lithium; Lithium-graphite intercalation ID RAY PHOTOELECTRON-SPECTROSCOPY; LIQUID LITHIUM; SPHERICAL TORUS; XPS ANALYSIS; TOKAMAK; PLASMA; OXIDES; NSTX; INTERCALATION; ELECTROLYTES AB Lithium as a plasma-facing component has many attractive features in fusion devices. We investigated chemical properties of the lithiated graphite surfaces during deposition using X-ray photoelectron spectroscopy and low-energy ion scattering spectroscopy. In this study we try to address some of the known issues during lithium deposition, viz., the chemical state of lithium on graphite substrate, oxide layer formation mechanisms, Li passivation effects over time, and chemical change during exposure of the sample to ambient air. X-ray photoelectron studies indicate changes in the chemical composition with various thickness of lithium on graphite during deposition. An oxide layer formation is noticed during lithium deposition even though all the experiments were performed in ultrahigh vacuum. The metal oxide is immediately transformed into carbonate when the deposited sample is exposed to air. (C) 2009 Elsevier B. V. All rights reserved. C1 [Harilal, S. S.; Allain, J. P.; Hassanein, A.] Purdue Univ, Sch Nucl Engn, W Lafayette, IN 47907 USA. [Hendricks, M. R.] Argonne Natl Lab, Argonne, IL 60439 USA. [Nieto-Perez, M.] CICATA IPN, Queretaro 76090, Mexico. RP Harilal, SS (reprint author), Purdue Univ, Sch Nucl Engn, 400 Cent Dr, W Lafayette, IN 47907 USA. EM sharilal@purdue.edu RI Harilal, Sivanandan/B-5438-2014; OI Harilal, Sivanandan/0000-0003-2266-7976; Nieto-Perez, Martin/0000-0001-6600-9786; Allain, Jean Paul/0000-0003-1348-262X NR 39 TC 22 Z9 22 U1 1 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD JUL 30 PY 2009 VL 255 IS 20 BP 8539 EP 8543 DI 10.1016/j.apsusc.2009.06.009 PG 5 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 472IM UT WOS:000268123800038 ER PT J AU Rodriguez, JA Hanson, JC Wen, W Wang, XQ Brito, JL Martinez-Arias, A Fernandez-Garcia, M AF Rodriguez, Jose A. Hanson, Jonathan C. Wen, Wen Wang, Xianqin Brito, Joaquin L. Martinez-Arias, Arturo Fernandez-Garcia, Marcos TI In-situ characterization of water-gas shift catalysts using time-resolved X-ray diffraction SO CATALYSIS TODAY LA English DT Article; Proceedings Paper CT Workshop of the European-Synchrotron-Radiation-Facility CY FEB, 2008 CL Grenoble, FRANCE SP European Synchrotron Radiat Fac DE X-ray diffraction; In-situ characterization; Water-gas shift reaction; Hydrogen production ID MIXED-METAL OXIDES; CHEMICAL-PROPERTIES; POWDER DIFFRACTION; NANOPARTICLES; MECHANISM; NIMOO4; CU; REDUCTION; VACANCIES; ZEOLITES AB Time-resolved X-ray diffraction (XRD) has emerged as a powerful technique for studying the behavior of heterogeneous catalysts (metal oxides, sulfides, carbides, phosphides, zeolites, etc.) in-situ during reaction conditions. The technique can identify the active phase of a heterogeneous catalyst and how its structure changes after interacting with the reactants and products (80 K < T < 1200 K; P < 50 atm). In this article, we review a series of recent works that use in-situ time-resolved XRD for studying the water-gas shift reaction (WGS, CO + H(2)O -> H(2) + CO(2)) over several mixed-metal oxides: CuMoO(4), NiMoO(4), Ce(1-x)Cu(x)O(2-delta) and CuFe(2)O(4). Under reaction conditions the oxides undergo partial reduction. Neutral Cu(0) (i.e. no Cu(1+) or Cu(2+) cations) and Ni(0) are the active species in the catalysts, but interactions with the oxide support are necessary in order to obtain high catalytic activity. These studies illustrate the important role played by O vacancies in the mechanism for the WGS. In the case of Ce(1-x)Cu(x)O(2-delta) Rietveld refinement shows expansions/contractions in the oxide lattice which track steps within the WGS process: CO(gas) + O(oxi) -> CO(2)(gas) + O(vac); H(2)O(gas) + O(vac) -> O(oxi) + H(2)(gas). (C) 2008 Elsevier B.V. All rights reserved. C1 [Rodriguez, Jose A.; Hanson, Jonathan C.; Wen, Wen; Wang, Xianqin] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Brito, Joaquin L.] Inst Venezolano Invest Cient, Caracas 1020A, Venezuela. [Martinez-Arias, Arturo; Fernandez-Garcia, Marcos] Ctr Super Invest Cient, Inst Catalisis & Petroleoquim, Madrid 28049, Spain. RP Rodriguez, JA (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM rodrigez@bnl.gov RI Brito, Joaquin/F-4974-2010; Fernandez-Garcia, Marcos/A-8122-2014; Hanson, jonathan/E-3517-2010 NR 33 TC 27 Z9 27 U1 1 U2 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 J9 CATAL TODAY JI Catal. Today PD JUL 30 PY 2009 VL 145 IS 3-4 BP 188 EP 194 DI 10.1016/j.cattod.2008.11.018 PG 7 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 483XP UT WOS:000269006900002 ER PT J AU Chupas, PJ Chapman, KW Chen, HL Grey, CP AF Chupas, Peter J. Chapman, Karena W. Chen, Hailong Grey, Clare P. TI Application of high-energy X-rays and Pair-Distribution-Function analysis to nano-scale structural studies in catalysis SO CATALYSIS TODAY LA English DT Article; Proceedings Paper CT Workshop of the European-Synchrotron-Radiation-Facility CY FEB, 2008 CL Grenoble, FRANCE SP European Synchrotron Radiat Fac DE Pair-Distribution-Function; High-energy X-rays; Supported catalyst; In situ studies ID IN-SITU; NEUTRON-DIFFRACTION; HIGH-RESOLUTION; NANOPARTICLES; GAMMA-AL2O3; CLUSTERS; DETECTOR; POWDER; STATE; NMR AB We investigate the structure of supported Pt catalysts using high-energy X-ray scattering coupled with Pair-Distribution-Function (PDF) analysis. Recently, experimental approaches that enable the collection of PDF data in situ have been developed with time-resolution sufficient to study the structure of Pt nanoparticles as they form. The differential PDF approach is utilized which allows the atom-atom correlations involving only Pt to be selectively recovered, enabling structural investigation of the supported particles and the mechanism of their formation. in parallel to the in situ analysis, we have examined samples prepared ex situ. Data collected on the ex situ samples show that the initial deposition of Pt(4+) occurs as the PtCl(6)(2-) species which are retained even when annealed in an oxygen atmosphere. The Pt differential PDFs of the samples reduced in hydrogen at 200 and 500 degrees C indicated nano-crystalline face-centered-cubic (fcc) metallic Pt particles. The ex situ reduced samples also contain a weak correlations at 21 A, which we assign to Pt-O interactions between the particles and the support surface. The in Situ experiments, following the reduction of Pt(4+) from 0 to 227 degrees C, indicate that the initial Pt nano-particles formed are ca. 1 nm in size, and become larger and more crystalline by 200 degrees C. The data suggest a particle growth mechanism where the initial particles that form are small (< 1 nm), then agglomerate into ensembles of many small particles and lastly anneal to form larger well-ordered particles. Lastly, we discus potential future developments in operando PDF studies, and identify opportunities for synchronous application of complementary methods. (C) 2009 Elsevier B.V. All rights reserved. C1 [Chupas, Peter J.; Chapman, Karena W.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Chen, Hailong; Grey, Clare P.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. RP Chupas, PJ (reprint author), Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave,Bldg 433, Argonne, IL 60439 USA. EM chupas@aps.anl.gov RI Chen, Hailong/B-3998-2011; Chen, Hailong/F-7954-2011; Chapman, Karena/G-5424-2012 OI Chen, Hailong/0000-0001-8283-2860; NR 29 TC 33 Z9 33 U1 4 U2 47 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 J9 CATAL TODAY JI Catal. Today PD JUL 30 PY 2009 VL 145 IS 3-4 BP 213 EP 219 DI 10.1016/j.cattod.2009.03.026 PG 7 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 483XP UT WOS:000269006900005 ER PT J AU Berman, GP Borgonovi, F Dalvit, DAR AF Berman, G. P. Borgonovi, F. Dalvit, D. A. R. TI Quantum dynamical effects as a singular perturbation for observables in open quasi-classical nonlinear mesoscopic systems SO CHAOS SOLITONS & FRACTALS LA English DT Article ID BOSE-EINSTEIN CONDENSATE; PHASE DIFFUSION; ANHARMONIC-OSCILLATOR; DECOHERENCE; MECHANICS; CHAOS AB We review our results on a mathematical dynamical theory for observables for open many-body quantum nonlinear bosonic systems for a very general class of Hamiltonians. We show that non-quadratic (nonlinear) terms in a Hamiltonian provide a singular "quantum" perturbation for observables in some "mesoscopic" region of parameters. In particular, quantum effects result in secular terms in the dynamical evolution, that grow in time. We argue that even for open quantum nonlinear systems in the deep quasi-classical region, these quantum effects can survive after decoherence and relaxation processes take place. We demonstrate that these quantum effects in open quantum systems can be observed, for example, in the frequency Fourier spectrum of the dynamical observables, or in the corresponding spectral density of noise. Estimates are presented for Bose-Einstein condensates, low temperature mechanical resonators, and nonlinear optical systems prepared in large amplitude coherent states. In particular. we show that for Bose-Einstein condensate systems the characteristic time of deviation of quantum dynamics for observables from the corresponding classical dynamics coincides with the characteristic time-scale of the well-known quantum nonlinear effect of phase diffusion. (c) 2008 Elsevier Ltd. All rights reserved. C1 [Borgonovi, F.] Univ Cattolica, Dipartimento Matemat & Fis, I-25121 Brescia, Italy. [Berman, G. P.; Dalvit, D. A. R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Borgonovi, F.] Sez Pavia, Ist Nazl Fis Nucl, Pavia, Italy. RP Borgonovi, F (reprint author), Univ Cattolica, Dipartimento Matemat & Fis, Via Musei 41, I-25121 Brescia, Italy. EM f.borgonovi@dmf.unicatt.it OI borgonovi, fausto/0000-0002-9730-1189 FU U.S. Department of Energy at Los Alamos National Laboratory [DEAC52-06NA25396] FX We are thankful to M.G. Boshier, B.M. Chernobrod, L. Pezze, G.V. Shlypanikovi and E.M. Timmermans for useful discussions. Part of this work was done during the stay of G.P.B. and D.A.R.D. at the Institut Henri Poincare-Centre Emile Borel. The authors thank this institution for hospitality and support. This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DEAC52-06NA25396. NR 36 TC 2 Z9 2 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0960-0779 J9 CHAOS SOLITON FRACT JI Chaos Solitons Fractals PD JUL 30 PY 2009 VL 41 IS 2 BP 919 EP 929 DI 10.1016/j.chaos.2008.04.022 PG 11 WC Mathematics, Interdisciplinary Applications; Physics, Multidisciplinary; Physics, Mathematical SC Mathematics; Physics GA 462TO UT WOS:000267379700041 ER PT J AU Sanchez-Roman, M McKenzie, JA Wagener, ADR Rivadeneyra, MA Vasconcelos, C AF Sanchez-Roman, Monica McKenzie, Judith A. Rebello Wagener, Angela de Luca Rivadeneyra, Maria A. Vasconcelos, Crisogono TI Presence of sulfate does not inhibit low-temperature dolomite precipitation SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE dolomite; sulfate inhibition model; moderately halophilic aerobic bacteria; dumbbell and spheroid crystal morphology ID MODERATELY HALOPHILIC BACTERIA; ALKALI-METAL CHLORIDES; SOUTH-AUSTRALIA; REDUCING BACTERIA; CALCIUM-CARBONATE; COORONG REGION; LIQUID-MEDIA; DIFFERENT SALINITIES; ANAEROBIC OXIDATION; LAGOA-VERMELHA AB The hypothesis that sulfate inhibits dolomite formation evolved from geochemical studies of porewaters from deep-sea sedimentary sequences and has been tested with hydrothermal experiments. We examined the sulfate inhibition factor using aerobic culture experiments with Virgibacillus marismortui and Halomonas meridiana, two moderately halophilic aerobic bacteria, which metabolize independent of sulfate concentration. The culture experiments were conducted at 25 and 35 degrees C using variable SO(4)(2-) concentrations (0, 14, 28 and 56 mM) and demonstrate that halophilic aerobic bacteria mediate direct precipitation of dolomite with or without SO(4)(2-) in the culture media which simulate dolomite occurrences commonly found under the Earth's surface conditions. Hence, we report that the presence of sulfate does not inhibit dolomite precipitation. Further, we hypothesize that, if sedimentary dolomite is a direct precipitate, as in our low-temperature culture experiments, the kinetic factors involved are likely to be quite different from those governing a dolomite replacement reaction, such as in hydrothermal experiments. Consequently, the occurrence and, presumably, growth of dolomite in SO(4)(2-)-rich aerobic cultures may shed new light on the long-standing Dolomite Problem. (C) 2009 Elsevier B.V. All rights reserved. C1 [Sanchez-Roman, Monica; Rivadeneyra, Maria A.] Univ Granada, Dept Microbiol, Fac Pharm, E-18071 Granada, Spain. [Sanchez-Roman, Monica; McKenzie, Judith A.; Vasconcelos, Crisogono] ETH, Inst Geol, CH-8092 Zurich, Switzerland. [Sanchez-Roman, Monica] Univ Georgia, NASA, Astrobiol Inst, Aiken, SC 29808 USA. [Sanchez-Roman, Monica] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29808 USA. [Rebello Wagener, Angela de Luca] PUC, Dept Chem, BR-22453900 Rio De Janeiro, Brazil. RP Sanchez-Roman, M (reprint author), Univ Granada, Dept Microbiol, Fac Pharm, E-18071 Granada, Spain. EM msanchezroman@ugr.es RI Wagener, Angela/H-3128-2011 OI Wagener, Angela/0000-0003-4495-6074 FU The Swiss Science National Foundation (SNF) [20-067620, 20-105149] FX The Swiss Science National Foundation (SNF) is gratefully acknowledged for financial support through Grant No. 20-067620 and 20-105149. We acknowledge the assistance of Thomas Pettke, Eric Reusser, Luca Caricchi and Anne Greet Bittermann with Laser Ablation ICP-MS, Electron Microprobe and SEM analyses. Peggy Delaney, David T Wright, Max Coleman and three anonymous reviewers provided comments that greatly improved the earlier versions of this manuscript. NR 74 TC 54 Z9 69 U1 3 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD JUL 30 PY 2009 VL 285 IS 1-2 BP 131 EP 139 DI 10.1016/j.epsl.2009.06.003 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 536RY UT WOS:000273062700013 ER PT J AU Thomas, JH AF Thomas, J. H. TI STRONGLY INTERACTING MATTER AT RHIC SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article; Proceedings Paper CT High Energy Physics Conference on Particle Physics, Astrophysics and Quantum Field Theory - 75 Years since Solvay CY NOV 27, 2008 CL Singapore, SINGAPORE ID PARITY VIOLATION; HOT QCD; COLLISIONS AB Experiments at the Relativistic Heavy Ion Collider (RHIC) have yielded an abundance of data which suggest that a new state of matter has been produced in ultra-relativistic heavy ion collisions. This new state of matter is a strongly interacting Quark Gluon Plasma that behaves like a nearly perfect fluid with very low viscosity. I will review the experimental observations that point to the existence of the sQGP, and in particular I will emphasize the particle spectra and the flow data. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Thomas, JH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, MS 70R0319,1 Cyclotron Rd, Berkeley, CA 94720 USA. OI Thomas, James/0000-0002-6256-4536 NR 14 TC 0 Z9 0 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD JUL 30 PY 2009 VL 24 IS 18-19 BP 3266 EP 3275 DI 10.1142/S0217751X09046862 PG 10 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 481WE UT WOS:000268842300004 ER PT J AU Lance, S Nenes, A Mazzoleni, C Dubey, MK Gates, H Varutbangkul, V Rissman, TA Murphy, SM Sorooshian, A Flagan, RC Seinfeld, JH Feingold, G Jonsson, HH AF Lance, Sara Nenes, Athanasios Mazzoleni, Claudio Dubey, Manvendra K. Gates, Harmony Varutbangkul, Varuntida Rissman, Tracey A. Murphy, Shane M. Sorooshian, Armin Flagan, Richard C. Seinfeld, John H. Feingold, Graham Jonsson, Haflidi H. TI Cloud condensation nuclei activity, closure, and droplet growth kinetics of Houston aerosol during the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SECONDARY ORGANIC AEROSOL; HYGROSCOPIC GROWTH; CCN ACTIVITY; INSTRUMENT DESCRIPTION; CHEMICAL-COMPOSITION; LIGHT-ABSORPTION; SURFACE-TENSION; PARTICLES; SIZE; WATER AB In situ cloud condensation nuclei (CCN) measurements were obtained in the boundary layer over Houston, Texas, during the 2006 Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) campaign onboard the CIRPAS Twin Otter. Polluted air masses in and out of cloudy regions were sampled for a total of 22 flights, with CCN measurements obtained for 17 of these flights. In this paper, we focus on CCN closure during two flights, within and downwind of the Houston regional plume and over the Houston Ship Channel. During both flights, air was sampled with particle concentrations exceeding 25,000 cm(-3) and CCN concentrations exceeding 10,000 cm(-3). CCN closure is evaluated by comparing measured concentrations with those predicted on the basis of measured aerosol size distributions and aerosol mass spectrometer particle composition. Different assumptions concerning the internally mixed chemical composition result in average CCN overprediction ranging from 3% to 36% (based on a linear fit). It is hypothesized that the externally mixed fraction of the aerosol contributes much of the CCN closure scatter, while the internally mixed fraction largely controls the overprediction bias. On the basis of the droplet sizes of activated CCN, organics do not seem to impact, on average, the CCN activation kinetics. C1 [Lance, Sara; Nenes, Athanasios] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Dubey, Manvendra K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Lance, Sara; Feingold, Graham] Natl Ocean & Atmospher Adm, Div Chem Sci, Boulder, CO 80305 USA. [Gates, Harmony; Varutbangkul, Varuntida; Rissman, Tracey A.; Murphy, Shane M.; Sorooshian, Armin; Flagan, Richard C.; Seinfeld, John H.] CALTECH, Dept Chem Engn, Pasadena, CA 91125 USA. [Jonsson, Haflidi H.] USN, Postgrad Sch, Ctr Interdisciplinary Remotely Piloted Aircraft S, Marina, CA 93933 USA. [Mazzoleni, Claudio] Michigan Technol Univ, Dept Phys, Houghton, MI 49931 USA. [Lance, Sara; Nenes, Athanasios] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. RP Lance, S (reprint author), Georgia Inst Technol, Sch Earth & Atmospher Sci, 311 Ferst Dr, Atlanta, GA 30332 USA. EM athanasios.nenes@gatech.edu RI Dubey, Manvendra/E-3949-2010; Lance, Sara/A-4834-2011; Mazzoleni, Claudio/E-5615-2011; Feingold, Graham/B-6152-2009; Manager, CSD Publications/B-2789-2015 OI Dubey, Manvendra/0000-0002-3492-790X; FU National Oceanic and Atmospheric Administration (NOAA) [NA05OAR4310101, NA06OAR4310082]; NSF; Office of Naval Research; Georgia Institute of Technology; National Center for Atmospheric Research (NCAR) Advanced Study Program (ASP) Graduate Fellowship; National Research Council Research Associateships Program Fellowship FX We acknowledge support from the National Oceanic and Atmospheric Administration (NOAA) under contracts NA05OAR4310101 and NA06OAR4310082, the support of an NSF CAREER grant, and the Office of Naval Research. S. L. would like to acknowledge the support of a Georgia Institute of Technology (Georgia Tech) Presidential Fellowship, a National Center for Atmospheric Research (NCAR) Advanced Study Program (ASP) Graduate Fellowship, and a National Research Council Research Associateships Program Fellowship (awarded January 2008). We also thank C. Brock and three anonymous reviewers for helpful comments, as well as A. Stohl and S. Ekhardt for providing the Flexpart back trajectory results. M. K. D. and C. M. thank LANL-LDRD and DOE-Office of Science-OBER-ASP for support of the photoacoustic deployment. NR 51 TC 52 Z9 52 U1 3 U2 26 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 30 PY 2009 VL 114 AR D00F15 DI 10.1029/2008JD011699 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 479AT UT WOS:000268631800002 ER PT J AU Vasiliou, A Nimlos, MR Daily, JW Ellison, GB AF Vasiliou, AnGayle Nimlos, Mark R. Daily, John W. Ellison, G. Barney TI Thermal Decomposition of Furan Generates Propargyl Radicals SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID CELLULOSE PYROLYSIS KINETICS; INFRARED-ABSORPTION SPECTRA; BOND-DISSOCIATION ENERGIES; PHOTOELECTRON-SPECTROSCOPY; SELF-REACTION; MOLECULAR CHARACTERIZATION; FLOW REACTOR; BIOMASS; RECOMBINATION; DEGRADATION AB The thermal decomposition of furan has been studied by a 1 mm x 2 cm tubular silicon carbide reactor, C(4)H(4)O + Delta -> products. Unlike previous studies, these experiments are able to identify the initial furan decomposition products. Furan is entrained in either He or Ar carrier gas and is passed through a heated (1600 K) SiC tubular reactor. Furan decomposes during transit through the tubular reactor (approximately 65 mu s) and exits to a vacuum chamber. Within one nozzle diameter of leaving the nozzle, the gases cool to less than 50 K, and all reactions cease. The resultant molecular beam is interrogated by photoionization mass spectroscopy as well as infrared spectroscopy. Earlier G2(MP2) electronic structure calculations predicted that furan will thermally decompose to acetylene, ketene, carbon monoxide, and propyne at lower temperatures. At higher temperatures, these calculations forecast that propargyl radical could result. We observe all of these species (see Scheme 1). As the pressure in the tubular reactor is raised, the photoionization mass spectra show clear evidence for the formation of aromatic hydrocarbons. C1 [Nimlos, Mark R.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Vasiliou, AnGayle; Ellison, G. Barney] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Daily, John W.] Univ Colorado, Dept Mech Engn, Ctr Combust & Environm Res, Boulder, CO 80309 USA. RP Nimlos, MR (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM niark_nimlos@nrel.gov; john.daily@colorado.edu; barney@jila.colorado.edu FU DOE's National Renewal Energy Laboratory [1544759]; Chemical Physics Program, United States Department of Energy [DE-FG02-93ER14364]; National Science Foundation [CHE-0848606] FX This research was supported by the DOE's National Renewal Energy Laboratory (Contract No. 1544759) and by grants from the Chemical Physics Program, United States Department of Energy (DE-FG02-93ER14364) and the National Science Foundation (CHE-0848606). We are grateful to Dr. Hans-Heinrich Carstensen, Dr. David Robichaud, and Dr. Krzysztof M. Piech for stimulating discussions. NR 59 TC 36 Z9 37 U1 2 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUL 30 PY 2009 VL 113 IS 30 BP 8540 EP 8547 DI 10.1021/jp903401h PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 473SR UT WOS:000268230200013 PM 19719311 ER PT J AU Dong, HT Nimlos, MR Himmel, ME Johnson, DK Qian, XH AF Dong, Haitao Nimlos, Mark R. Himmel, Michael E. Johnson, David K. Qian, Xianghong TI The Effects of Water on beta-D-Xylose Condensation Reactions SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; CONTINUUM SOLVATION METHODS; CELLULOSE-I-BETA; HYDRONIUM ION; CHEMICAL-REACTIONS; PEPTIDE-SYNTHESIS; PROTON-TRANSFER; EXCESS PROTON; ENERGY; HYDROLYSIS AB Car-Parrinello-based ab initio molecular dynamics Simulations (CPMD) combined with metadynamics (MTD) simulations were used to determine the reaction energetics for the beta-D-xylose condensation reaction to form beta-1,4-linked xylobiose in a dilute acid solution. Protonation of the hydroxyl group on the xylose molecule and the subsequent breaking of the C-O bond were found to be the rate-limiting step during the xylose condensation reaction. Water and water structure was found to play a critical role in these reactions due to the proton's high affinity for water molecules. The reaction free energy and reaction barrier were determined using CPMD-MTD. We found that solvent reorganization due to proton partial desolvation must be taken into account in order to obtain the correct reaction activation energy. Our calculated reaction free energy and reaction activation energy compare well with available experimental results. C1 [Dong, Haitao; Qian, Xianghong] Colorado State Univ, Dept Mech Engn, Ft Collins, CO 80523 USA. [Nimlos, Mark R.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. [Himmel, Michael E.; Johnson, David K.] Natl Renewable Energy Lab, Chem & Biosci Ctr, Golden, CO 80401 USA. RP Qian, XH (reprint author), Colorado State Univ, Dept Mech Engn, Ft Collins, CO 80523 USA. EM xhqian@engr.colostate.edu RI Johnson, David/G-4959-2011; Qian, Xianghong/C-4821-2014 OI Johnson, David/0000-0003-4815-8782; FU National Renewable Energy Laboratory [ZCO-7-77386-01] FX This work is supported by the Department of Energy Office of the Biomass Program via a Subcontract from the National Renewable Energy Laboratory (ZCO-7-77386-01). The authors thank Robert N. Goldberg, Bernd Ensing, and Nisanth Nair for helpful discussions. Calculations were carried out using the computing facilities at Colorado State University, National Renewable Energy Laboratory, and Teragrid. NR 64 TC 32 Z9 32 U1 1 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUL 30 PY 2009 VL 113 IS 30 BP 8577 EP 8585 DI 10.1021/jp9025442 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 473SR UT WOS:000268230200017 PM 19572686 ER PT J AU Harder, E Walters, DE Bodnar, YD Faibish, RS Roux, B AF Harder, Edward Walters, D. Eric Bodnar, Yaroslav D. Faibish, Ron S. Roux, Benoit TI Molecular Dynamics Study of a Polymeric Reverse Osmosis Membrane SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID POLYAMIDE THIN-FILMS; WATER; SIMULATION; SILICALITE; SEPARATION; DIFFUSION; MIXTURE; MODEL AB Molecular dynamics (MD) simulations are used to investigate the properties of an atomic model of an aromatic polyamide reverse osmosis membrane. The monomers forming the polymeric membrane are cross-linked progressively on the basis of a heuristic distance criterion during MD simulations until the system interconnectivity reaches completion. Equilibrium MD simulations of the hydrated membrane are then used to determine the density and diffusivity of water within the membrane. Given a 3 MPa pressure differential and a 0.125 mu m width membrane, the simulated water flux is calculated to be 1.4 x 10(-6) m/s, which is in fair agreement with an experimental flux measurement of 7.7 x 10(-6) m/s. C1 [Bodnar, Yaroslav D.; Faibish, Ron S.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Walters, D. Eric] Rosalind Franklin Univ Med & Sci, Chicago Med Sch, N Chicago, IL 60064 USA. [Harder, Edward; Roux, Benoit] Univ Chicago, Dept Biochem & Mol Biol, Ctr Integrat Sci, Chicago, IL 60637 USA. RP Faibish, RS (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM roux@uchicago.edu; rfaibish@anl.gov FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357 at Argonne National Laboratory. We would like to thank Yun Luo for helpful discussions. NR 32 TC 46 Z9 46 U1 8 U2 52 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUL 30 PY 2009 VL 113 IS 30 BP 10177 EP 10182 DI 10.1021/jp902715f PG 6 WC Chemistry, Physical SC Chemistry GA 473SY UT WOS:000268231000021 PM 19586002 ER PT J AU Sporleder, D Wilson, DP White, MG AF Sporleder, David Wilson, Daniel P. White, Michael G. TI Final State Distributions of O-2 Photodesorbed from TiO2(110) SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID TIO2 110 SURFACE; MOLECULAR-OXYGEN; TITANIUM-DIOXIDE; INDUCED DESORPTION; REDUCED TIO2(110); METAL-OXIDES; RUTILE TIO2; ADSORPTION; PHOTOCATALYSIS; DISSOCIATION AB The UV photodesorption of molecular oxygen from a reduced TiO2(110) single-crystal surface was investigated as a function of photon excitation energy, substrate temperature, and preannealing conditions. A pump-delayed-probe method using pulsed lasers for UV excitation (pump) and VUV ionization (probe) were used in conjunction with time-of-flight mass spectrometry to measure velocity distributions of the desorbing O-2 molecules. The measured velocity distributions exhibit three distinct features, two of which are attributed to prompt desorption resulting in "fast" velocity distributions and one "slow" channel whose average kinetic energy tracks the surface temperature. The latter is assigned to trapping-desorption of photoexcited O-2* which are trapped in the physisorption well prior to thermal desorption. The velocity distributions show no dependence on photon energy over the range studied (3.45-4.16 eV), consistent with a substrate-mediated, hole-capture desorption mechanism. The observed prompt desorption channels have mean translational energies of similar to 0.14 and similar to 0.50 eV and are attributed to the photodesorption of two distinct initial states of chemisorbed oxygen. The identities of the chemisorbed initial states associated with oxygen vacancy or interstitial defect sites are discussed in light of previous experimental and theoretical studies of oxygen on reduced TiO2(110) surfaces. C1 [Sporleder, David; Wilson, Daniel P.; White, Michael G.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [White, Michael G.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP White, MG (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM mgwhite@bnl.gov FU Brookhaven National Laboratory [DE-AC02-98CH10086] FX The authors acknowledge Dr. Robert J. Beuhler (BNL) for his help with construction and design of many parts of the apparatus and Dr. Michael A. Henderson (PNNL) for helpful discussions. This research was carried out at Brookhaven National Laboratory under Contract No. DE-AC02-98CH10086 with the US Department of Energy (Division of Chemical Sciences). NR 70 TC 43 Z9 43 U1 3 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 30 PY 2009 VL 113 IS 30 BP 13180 EP 13191 DI 10.1021/jp901065j PG 12 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 473TZ UT WOS:000268233800042 ER PT J AU Weiss, BM Iglesia, E AF Weiss, Brian M. Iglesia, Enrique TI NO Oxidation Catalysis on Pt Clusters: Elementary Steps, Structural Requirements, and Synergistic Effects of NO2 Adsorption Sites SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID CO OXIDATION; CARBON-MONOXIDE; PARTICLE-SIZE; OXYGEN; PLATINUM; PT(111); STORAGE; SURFACE; OXIDES; O-2 AB Kinetic and isotopic methods show that NO oxidation on supported Pt clusters involves kinetically relevant reaction of O-2 with vacancy sites on surfaces nearly saturated with oxygen adatoms (O*). The oxygen chemical potential at Pt surfaces that determines the O* coverage is rigorously described by an O-2 virtual pressure and determined by the thermodynamics of NO2-NO interconversion reactions. NO oxidation and oxygen isotopic exchange processes are described by the same rate constant, consistent with similar kinetically relevant O-2 dissociation steps for both reactions. NO oxidation, NO2 decomposition, and O-16(2)-O-18(2), exchange rates increased markedly with increasing Pt cluster size (1-8 nm); these clusters remain metallic at all O-2 virtual pressures prevalent during NO oxidation, These effects of cluster size reflect the higher vacancy concentrations and more facile oxygen desorption on larger Pt clusters, which bind oxygen adatoms weaker than more coordinatively unsaturated surface Pt atoms on smaller clusters. These trends are similar to those found for methane and dimethyl ether combustion on Pt and Pd catalysts, which also require vacancy sites on O*-saturated cluster surfaces in their respective kinetically relevant steps. Inhibition of NO oxidation by NO2 persists to undetectable NO2 concentrations; thus, NO oxidation turnover rates increase significantly when NO2 adsorption sites present on BaCO3/Al2O3 are placed within diffusion distances of Pt clusters. NO oxidation rates on intrapellet catalyst-adsorbent mixtures are described accurately by a simple reaction-adsorption model in which NO2 adsorbs via displacement of CO2 on BaCO3 surfaces. C1 [Iglesia, Enrique] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EO Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Iglesia, E (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM iglesia@berkeley.edu RI Iglesia, Enrique/D-9551-2017 OI Iglesia, Enrique/0000-0003-4109-1001 FU Ford Motor Company FX We thank the Ford Motor Company for financial support and Drs. Robert McCabe and George W. Graham for technical advice. B.W. acknowledges the support from Chevron in the form of the Berkeley-Chevron Graduate Fellowship. We also thank Dr. Jon G. McCarty (Eaton Corp.) for technical advice about the Pt-PtOx phase behavior, and Prof. Matthew Neurock (University of Virginia) for discussions about electronic effects in catalysis. NR 45 TC 52 Z9 53 U1 3 U2 57 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 30 PY 2009 VL 113 IS 30 BP 13331 EP 13340 DI 10.1021/jp902209f PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 473TZ UT WOS:000268233800061 ER PT J AU Kulkarni, A Mehraeen, S Reed, BW Okamoto, NL Browning, ND Gates, BC AF Kulkarni, Apoorva Mehraeen, Shareghe Reed, Bryan W. Okamoto, Norihiko L. Browning, Nigel D. Gates, Bruce C. TI Nearly Uniform Decaosmium Clusters Supported on MgO: Characterization by X-ray Absorption Spectroscopy and Scanning Transmission Electron Microscopy SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SPECTRA AB Samples containing small, nearly uniform clusters of a heavy metal, Os, were prepared on a high-area porous support consisting of light atoms, MgO, to provide an opportunity for a critical assessment of estimates of cluster size determined by extended X-ray absorption fine structure (EXAFS) spectroscopy and high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM). Supported carbonyl clusters approximated as decaosmium were prepared by reductive carbonylation of adsorbed Os(3)(CO)(12) at 548 K and 1 bar. Infrared (IR) spectra of the clusters resemble those attributed in earlier work to supported clusters similar to [Os(10)C(CO)(24)](2-), consistent with the EXAFS data. The spectra indicate a molar yield of decaosmium carbonyl clusters of about 65-70%. As these clusters were treated in flowing H(2), they were partially decarbonylated, as shown by IR and EXAFS spectra. The rms (root-mean-square) radii of the undecarbonylated and partially decarbonylated clusters were found by HAADF-STEM to be 3.11 +/- 0.09 and 3.06 +/- 0.05 angstrom, respectively, and the close agreement between these values is consistent with the inference that the cluster frame was essentially the same in each. The average rms radius of the undecarbonylated clusters, estimated oil the basis of EXAFS data, was 2.94 +/- 0.07 angstrom, calculated on the basis of the assumption that the osmium frame matched that of [Os(10)C(CO)(24)](2-). EXAFS analysis of the data characterizing the partially decarbonylated sample, aided by the STEM results, showed, consistent with the STEM results, that the partial decarbonylation did not lead to a significant change in the rills radius of the metal frame. C1 [Kulkarni, Apoorva; Mehraeen, Shareghe; Okamoto, Norihiko L.; Browning, Nigel D.; Gates, Bruce C.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Reed, Bryan W.; Browning, Nigel D.] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94550 USA. RP Gates, BC (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, 1 Shields Ave, Davis, CA 95616 USA. EM bcgates@ucdavis.edu RI Okamoto, Norihiko/A-7345-2010; Reed, Bryan/C-6442-2013; OI Okamoto, Norihiko/0000-0003-0199-7271; Browning, Nigel/0000-0003-0491-251X FU National Science Foundation [CTS-05-00511]; ExxonMobil; National Synchrotron Light Source (NSLS) FX We thank P. A. Stevens and M. Sansone of ExxonMobil Research and Engineering Co. and Larry Fareria of Brookhaven National Laboratory for helpful discussions and assistance in the acquisition of EXAFS data. This work was supported by the National Science Foundation, GOALI Grant CTS-05-00511, and ExxonMobil. We acknowledge the National Synchrotron Light Source (NSLS), a national user facility operated by Brookhaven National laboratory on behalf of the U.S. Department of Energy, Office of Science, Basic Energy Sciences, for access to beam time at beamline X-18B. We thank ExxonMobil for providing access to beam time at beamline X-10C. NR 19 TC 6 Z9 6 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 30 PY 2009 VL 113 IS 30 BP 13377 EP 13385 DI 10.1021/jp903309d PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 473TZ UT WOS:000268233800066 ER PT J AU Raymond, KN AF Raymond, Kenneth N. TI SUPRAMOLECULAR CHEMISTRY Phosphorus caged SO NATURE LA English DT Editorial Material C1 [Raymond, Kenneth N.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Raymond, Kenneth N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Raymond, KN (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM raymond@socrates.berkeley.edu NR 5 TC 17 Z9 17 U1 4 U2 18 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD JUL 30 PY 2009 VL 460 IS 7255 BP 585 EP 586 DI 10.1038/460585a PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 476PK UT WOS:000268454300040 ER PT J AU Miles, LG Isberg, SR Glenn, TC Lance, SL Dalzell, P Thomson, PC Moran, C AF Miles, Lee G. Isberg, Sally R. Glenn, Travis C. Lance, Stacey L. Dalzell, Pauline Thomson, Peter C. Moran, Chris TI A genetic linkage map for the saltwater crocodile (Crocodylus porosus) SO BMC GENOMICS LA English DT Article ID QUANTITATIVE-ANALYSIS; PRODUCTION TRAITS; SYNAPTONEMAL COMPLEX; VERTEBRATE EVOLUTION; NONAVIAN REPTILES; CHICKEN GENOME; DNA MARKERS; SEX; RECOMBINATION; MICROSATELLITES AB Background: Genome elucidation is now in high gear for many organisms, and whilst genetic maps have been developed for a broad array of species, surprisingly, no such maps exist for a crocodilian, or indeed any other non-avian member of the Class Reptilia. Genetic linkage maps are essential tools for the mapping and dissection of complex quantitative trait loci (QTL), and in order to permit systematic genome scans for the identification of genes affecting economically important traits in farmed crocodilians, a comprehensive genetic linage map will be necessary. Results: A first-generation genetic linkage map for the saltwater crocodile (Crocodylus porosus) was constructed using 203 microsatellite markers amplified across a two-generation pedigree comprising ten full-sib families from a commercial population at Darwin Crocodile Farm, Northern Territory, Australia. Linkage analyses identified fourteen linkage groups comprising a total of 180 loci, with 23 loci remaining unlinked. Markers were ordered within linkage groups employing a heuristic approach using CRIMAP v3.0 software. The estimated female and male recombination map lengths were 1824.1 and 319.0 centimorgans (cM) respectively, revealing an uncommonly large disparity in recombination map lengths between sexes (ratio of 5.7:1). Conclusion: We have generated the first genetic linkage map for a crocodilian, or indeed any other non-avian reptile. The uncommonly large disparity in recombination map lengths confirms previous preliminary evidence of major differences in sex-specific recombination rates in a species that exhibits temperature-dependent sex determination (TSD). However, at this point the reason for this disparity in saltwater crocodiles remains unclear. This map will be a valuable resource for crocodilian researchers, facilitating the systematic genome scans necessary for identifying genes affecting complex traits of economic importance in the crocodile industry. In addition, since many of the markers placed on this genetic map have been evaluated in up to 18 other extant species of crocodilian, this map will be of intrinsic value to comparative mapping efforts aimed at understanding genome content and organization among crocodilians, as well as the molecular evolution of reptilian and other amniote genomes. As researchers continue to work towards elucidation of the crocodilian genome, this first generation map lays the groundwork for more detailed mapping investigations, as well as providing a valuable scaffold for future genome sequence assembly. C1 [Miles, Lee G.; Isberg, Sally R.; Thomson, Peter C.; Moran, Chris] Univ Sydney, Fac Vet Sci, Sydney, NSW 2006, Australia. [Isberg, Sally R.] Porosus Pty Ltd, Palmerston, NT 0831, Australia. [Glenn, Travis C.; Lance, Stacey L.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Glenn, Travis C.] Univ Georgia, Dept Environm Hlth Sci, Athens, GA 30602 USA. [Dalzell, Pauline] S Eastern Area Lab Serv, Randwick, NSW 2031, Australia. RP Moran, C (reprint author), Univ Sydney, Fac Vet Sci, Sydney, NSW 2006, Australia. EM leemiles@vetsci.usyd.edu.au; sally@crocfarmsnt.com; travisg@uga.edu; lance@Srel.edu; pauline.dalzell@sesiahs.health.nsw.gov.au; petert@camden.usyd.edu.au; chrism@vetsci.usyd.edu.au RI Glenn, Travis/A-2390-2008; Lance, Stacey/K-9203-2013 OI Lance, Stacey/0000-0003-2686-1733 FU Rural Industries Research and Development Corporation [US-139A] FX We would especially like to acknowledge the management and staff at Darwin Crocodile Farm (Porosus Pty Ltd) for allowing access to the animals, and for their assistance with sample and data collection. We would also like to acknowledge Dr Dan Peterson at Mississippi Genome Exploration Laboratory (MGEL), Mississippi State University, USA, for providing the BAC library resources, and to thank both him and Dr Xueyan Shan for their contribution to the project. We would also like to acknowledge and thank Dr Ken Jones and Mr Brad Temple at SREL for their contributions to the data generation, and Ms Camilla Whittington of the University of Sydney for copyediting the manuscript. NR 62 TC 16 Z9 17 U1 1 U2 40 PU BIOMED CENTRAL LTD PI LONDON PA CURRENT SCIENCE GROUP, MIDDLESEX HOUSE, 34-42 CLEVELAND ST, LONDON W1T 4LB, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD JUL 29 PY 2009 VL 10 AR 339 DI 10.1186/1471-2164-10-339 PG 11 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 490NZ UT WOS:000269509100001 PM 19640266 ER PT J AU Juarez-Arellano, EA Winkler, B Friedrich, A Bayarjargal, L Milman, V Yan, JY Clark, SM AF Juarez-Arellano, Erick A. Winkler, Bjoern Friedrich, Alexandra Bayarjargal, Lkhamsuren Milman, Victor Yan, Jinyuan Clark, Simon M. TI Stability field of the high-(P, T) Re2C phase and properties of an analogous osmium carbide phase SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Rhenium carbide; Osmium carbide; Synchrotron radiation; Compressibility; Diamond anvil cell; High pressures and temperatures ID DIAMOND-ANVIL CELL; 1ST PRINCIPLES; RHENIUM; PRESSURE; DIFFRACTION; OSC; TRANSITION; CARBON; MBAR; RUC AB The formation of a hexagonal rhenium carbide phase, Re2C, from the elements has been studied in a laser heated diamond anvil cell in a P, V range of 20-40 GPa and 1000-2000 K. No indication for the existence of cubic rhenium carbide, as suggested in the literature, or any other phase was found and Re2C is the only phase formed in the Re-C system up to around 70 GPa and 4000 K. A fit of a 3rd-order Birch-Murnaghan equation of state to the Re2C P, V-data results in a bulk modulus of B-0 = 405(30)GPa (B' = 4.6). The linear compressibility of Re2C along [0 0 1] (similar to 500 GPa) is significantly larger than the compressibility in the (0 0 1) plane (similar to 360 GPa parallel to [1 0 0]). Based on the observations for Re2C, we predict the structure and elastic properties of an analogous Os2C phase, which is, at least in the athermal limit, more stable than any other osmium carbide studied previously by density functional theory based calculations. (C) 2009 Elsevier B.V. All rights reserved. C1 [Juarez-Arellano, Erick A.] Autonomous Univ State Morelos, CIICAp, Cuernavaca, Morelos, Mexico. [Juarez-Arellano, Erick A.; Winkler, Bjoern; Friedrich, Alexandra; Bayarjargal, Lkhamsuren] Goethe Univ Frankfurt, Inst Geowissensch, D-60438 Frankfurt, Germany. [Milman, Victor] Accelrys, Cambridge CB4 0WN, England. [Yan, Jinyuan; Clark, Simon M.] Univ Calif Berkeley, Lawrence Berkeley Lab, ALS, Berkeley, CA 94720 USA. RP Juarez-Arellano, EA (reprint author), Autonomous Univ State Morelos, CIICAp, Av Univ 1001, Cuernavaca, Morelos, Mexico. EM ejuarez@uaem.mx RI Milman, Victor/M-6117-2015; Clark, Simon/B-2041-2013 OI Milman, Victor/0000-0003-2258-1347; Juarez-Arellano, Erick/0000-0003-4844-8317; Clark, Simon/0000-0002-7488-3438 FU Deutsche Forschungsgemeinschaft [Wi-1232]; CONACyT; CNV-Foundation; Office of Science, Office of Basic Energy Science, of the U.S. Department of Energy [DE-AC02-05CH11231]; COMPRES, the Consortium for Materials Properties Research in Earth Science [EAR 06-49658]; ESRF FX This research was supported by Deutsche Forschungsgemeinschaft (Project Wi-1232), in the framework of the DFG-SPP 1236. EAJA thanks the CONACyT and AF thanks the CNV-Foundation for financial support. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Science, of the U.S. Department of Energy under contract DE-AC02-05CH11231. This research was partially supported by COMPRES, the Consortium for Materials Properties Research in Earth Science under NSF Cooperative Agreement EAR 06-49658. Also, we are grateful to the ESRF for beam time and financial support. NR 29 TC 30 Z9 31 U1 2 U2 20 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD JUL 29 PY 2009 VL 481 IS 1-2 BP 577 EP 581 DI 10.1016/j.jallcom.2009.03.029 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 468EV UT WOS:000267798700117 ER PT J AU Zhang, Q Chung, I Jang, JI Ketterson, JB Kanatzidis, MG AF Zhang, Qichun Chung, In Jang, Joon I. Ketterson, John B. Kanatzidis, Mercouri G. TI Chalcogenide Chemistry in Ionic Liquids: Nonlinear Optical Wave-Mixing Properties of the Double-Cubane Compound [Sb7S8Br2](AlCl4)(3) SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID OPEN-FRAMEWORK CHALCOGENIDES; GENERATION; CS; NANORODS; FIGURE; LAYERS; LIGHT; MERIT; RB AB The new cation [Sb7S8Br2](3+) has a double-cubane structure and forms as the [AlCl4](-) salt from the ionic liquid EMIMBr-AlCl3 (EMIM = 1-ethyl-3-methylimidazolium) at 165 degrees C. The compound is noncentrosymmetric with space group P2(1)2(1)2(1) and exhibits second-harmonic and difference-frequency nonlinear optical response across a wide range of the visible and near-infrared regions. C1 [Zhang, Qichun; Chung, In; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Jang, Joon I.; Ketterson, John B.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, Chicago, IL 60439 USA. RP Kanatzidis, MG (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM m-kanatzidis@northwestern.edu RI zhang, qichun/A-2253-2011; Ketterson, John/B-7234-2009; Chung, In/K-5036-2012 FU National Science Foundation [DMR-0801855] FX Financial support from the National Science Foundation (DMR-0801855) is gratefully acknowledged. NR 31 TC 139 Z9 139 U1 0 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 29 PY 2009 VL 131 IS 29 BP 9896 EP + DI 10.1021/ja903881m PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 475WM UT WOS:000268395000019 PM 19580274 ER PT J AU Liu, G Zhao, DC Tomsia, AP Minor, AM Song, XY Saiz, E AF Liu, Gao Zhao, Dacheng Tomsia, Antoni P. Minor, Andrew M. Song, Xiangyun Saiz, Eduardo TI Three-Dimensional Biomimetic Mineralization of Dense Hydrogel Templates SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID HYDROXYAPATITE FORMATION; CALCIUM PHOSPHATES; SOAKING PROCESS; COMPOSITES; BIOMINERALIZATION; SCAFFOLDS; SYSTEMS; GROWTH AB An electric-current-assisted method was used to mineralize dense hydrogels and create hydroxyapatite/hydrogel. composites with unique hierarchical structures. The microstructure of the final material can be controlled by the mineralization technique and the chemistry of the organic matrix. A hydroxyapatite/hydrogel composite was obtained with a large inorganic content (similar to 60% of the weight of the organics). After being heated to 1050 degrees C, the sintered inorganic phase has a very uniformly distributed porosity and its Brunauer-Emmett-Teller (BET) surface area is 0.68 m(2)/g. C1 [Liu, Gao; Zhao, Dacheng; Song, Xiangyun] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Tomsia, Antoni P.; Minor, Andrew M.; Saiz, Eduardo] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Minor, Andrew M.] Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Minor, Andrew M.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Liu, G (reprint author), Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM gliu@lbl.gov FU National Institutes of Health (NIH) [5R01 DE015633]; U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the National Institutes of Health (NIH) under Grant No. 5R01 DE015633. The FIB and TEM work was performed at the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, and was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 23 TC 31 Z9 31 U1 6 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 29 PY 2009 VL 131 IS 29 BP 9937 EP + DI 10.1021/ja903817z PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA 475WM UT WOS:000268395000038 PM 19621954 ER PT J AU Kliewer, CJ Bieri, M Somorjai, GA AF Kliewer, Christopher J. Bieri, Marco Somorjai, Gabor A. TI Hydrogenation of the alpha,beta-Unsaturated Aldehydes Acrolein, Crotonaldehyde, and Prenal over Pt Single Crystals: A Kinetic and Sum-Frequency Generation Vibrational Spectroscopy Study SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SELECTIVE HYDROGENATION; UNSATURATED ALDEHYDES; THEORETICAL APPROACH; PT(111); SURFACE; ADSORPTION; CATALYSTS; PRESSURE; C=O; 3-METHYL-CROTONALDEHYDE AB Sum-frequency generation vibrational spectroscopy (SFG-VS) and kinetic measurements using gas chromatography have been used to study the surface reaction intermediates during the hydrogenation of three alpha,beta-unsaturated aldehydes, acrolein, crotonaldehyde, and prenal, over Pt(111) at Torr pressures (1 Torr of aldehyde, 100 Torr of hydrogen) in the temperature range of 295-415 K. SFG-VS data showed that acrolein has mixed adsorption species of eta(2)-di-sigma(CC)-trans, eta(2)-di-sigma(CC)-cis as well as highly coordinated eta(3) or eta(4) species. Crotonaldehyde adsorbed to Pt(111) as eta(2) surface intermediates. SFG-VS during prenal hydrogenation also suggested the presence of the eta(2) adsorption species and became more highly coordinated as the temperature was raised to 415 K, in agreement with its enhanced C=O hydrogenation. The effect of catalyst surface structure was clarified by carrying out the hydrogenation of crotonaldehyde over both Pt(111) and Pt(100) single crystals while acquiring the SFG-VS spectra in situ. Both the kinetics and SFG-VS showed little structure sensitivity. Pt(100) generated more decarbonylation "cracking" product while Pt(111) had a higher selectivity for the formation of the desired unsaturated alcohol, crotyl alcohol. C1 [Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@socrates.berkeley.edu RI Kliewer, Christopher/E-4070-2010 OI Kliewer, Christopher/0000-0002-2661-1753 FU U.S. Department of Energy [DE-AC02-05CH11231]; Swiss National Science Foundation (SNF) FX This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, and Materials Sciences Division of the U.S. Department of Energy under Contract DE-AC02-05CH11231. M. B. thanks the Swiss National Science Foundation (SNF) for financial support. NR 34 TC 59 Z9 59 U1 6 U2 67 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 29 PY 2009 VL 131 IS 29 BP 9958 EP 9966 DI 10.1021/ja8092532 PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA 475WM UT WOS:000268395000041 PM 19580314 ER PT J AU Krishnan, M Smith, JC AF Krishnan, Marimuthu Smith, Jeremy C. TI Response of Small-Scale, Methyl Rotors to Protein-Ligand Association: A Simulation Analysis of Calmodulin-Peptide Binding SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID MAGNETIC-RESONANCE RELAXATION; DIFFRACTION STRUCTURE DETERMINATION; NUCLEIC-ACID COMPONENTS; MODEL-FREE APPROACH; MOLECULAR-DYNAMICS; NMR RELAXATION; ORDER PARAMETERS; AMINO-ACIDS; FREE-ENERGY; CONFORMATIONAL ENTROPY AB Changes in the free energy barrier (Delta E), entropy, and motional parameters associated with the rotation of methyl groups in a protein (calmodulin (CaM)) on binding a ligand (the calmodulin-binding domain of smooth-muscle myosin (smMLCKp)) are investigated using molecular dynamics simulation. In both the bound and uncomplexed forms of CaM, the methyl rotational free energy barriers follow skewed-Gaussian distributions that are not altered significantly upon ligand binding. However, site-specific perturbations are found. Around 11% of the methyl groups in CaM exhibit changes in Delta E greater than 0.7 kcal/mol on binding. The rotational entropies of the methyl groups exhibit a nonlinear dependence on Delta E The relations are examined between motional parameters (the methyl rotational NMR order parameter and the relaxation time) and Delta E Low-barrier methyl group rotational order parameters deviate from ideal tetrahedrality by up to similar to 20%. There is a correlation between rotational barrier changes and proximity to the protein-peptide binding interface. Methyl groups that exhibit large changes in Delta E are found to report on elements in the protein undergoing structural change on binding. C1 [Krishnan, Marimuthu; Smith, Jeremy C.] Oak Ridge Natl Lab, Ctr Biophys Mol, UT, Oak Ridge, TN 37831 USA. [Smith, Jeremy C.] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. RP Krishnan, M (reprint author), Oak Ridge Natl Lab, Ctr Biophys Mol, UT, Oak Ridge, TN 37831 USA. EM krishnanm@ornl.gov RI smith, jeremy/B-7287-2012; Krishnan, Marimuthu/A-6443-2012 OI smith, jeremy/0000-0002-2978-3227; FU U.S. Department of Energy FX This work was funded by an Oak Ridge National Laboratory Neutron Sciences Laboratory-Directed Research and Development grant from the U.S. Department of Energy. NR 62 TC 13 Z9 13 U1 1 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 29 PY 2009 VL 131 IS 29 BP 10083 EP 10091 DI 10.1021/ja901276n PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA 475WM UT WOS:000268395000056 PM 19621963 ER PT J AU Godula, K Umbel, ML Rabuka, D Botyanszki, Z Bertozzi, CR Parthasarathy, R AF Godula, Kamil Umbel, Marissa L. Rabuka, David Botyanszki, Zsofia Bertozzi, Carolyn R. Parthasarathy, Raghuveer TI Control of the Molecular Orientation of Membrane-Anchored Biomimetic Glycopolymers SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID FRAGMENTATION CHAIN TRANSFER; SUPPORTED LIPID-MEMBRANES; MICROSCOPY; BILAYERS; POLYMERIZATION; JUNCTIONS; POLYMERS; SURFACES AB Quantifying and controlling the orientation of surface-bound macromolecules is crucial to a wide range of processes in areas as diverse as biology, materials science, and nanotechnology. Methods capable of directing orientation, as well as an understanding of the underlying physical mechanisms are, however, lacking. In this paper, we describe experiments in which the conformations of structurally well-defined polymers anchored to fluid lipid membranes were probed using Fluorescence Interference Contrast Microscopy (FLIC), an optical technique that provides topographic information with few-nanometer precision. The novel rodlike polymers mimic the architecture of mucin glycoproteins and feature a phospholipid tail for membrane incorporation and a fluorescent optical probe for FLIC imaging situated at the opposite termini of the densely glycosylated polymeric backbones. We find that the orientation of the rigid, approximately 30 nm long glycopolymers depends profoundly on the properties of the optical reporter. Molecules terminated with Alexa Fluor 488 projected away from the lipid bilayer by 11 +/- 1 nm, consistent with entropy-dominated sampling of the membrane-proximal space. Molecules terminated with Texas Red lie flat at the membrane (height, 0 +/- 2 nm), implying that interactions between Texas Red and the bilayer dominate the polymers' free energy. These results demonstrate the design of macromolecules with specific orientational preferences, as well as nanometer-scale measurement of their orientation. Importantly, they reveal that seemingly minute changes in molecular structure, in this case fluorophores that comprise only 2% of the total molecular weight, can significantly alter the molecule's presentation to the surrounding environment. C1 [Umbel, Marissa L.; Parthasarathy, Raghuveer] Univ Oregon, Dept Phys, Eugene, OR 97403 USA. [Umbel, Marissa L.; Parthasarathy, Raghuveer] Univ Oregon, Inst Mat Sci, Eugene, OR 97403 USA. [Godula, Kamil; Rabuka, David; Botyanszki, Zsofia; Bertozzi, Carolyn R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Godula, Kamil; Bertozzi, Carolyn R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Parthasarathy, R (reprint author), Univ Oregon, Dept Phys, Eugene, OR 97403 USA. EM raghu@uoregon.edu RI Parthasarathy, Raghuveer/A-5958-2008 OI Parthasarathy, Raghuveer/0000-0002-6006-4749 FU U.S. Department of Energy [AC03-76SF00098]; NIH [K99M080585-01]; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; National Science Foundation [CHE-0755544] FX This work was partly supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Division of Materials Sciences, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098, within the Interfacing Nanostructures Initiative and NIH (K99M080585-01). Portions of this work were performed at the Molecular Foundry, Lawrence Berkeley National Laboratory, which is supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 MLU was supported by the National Science Foundation Research Experience for Undergraduates (REU) program (Award CHE-0755544). R.P. ackowledges support from the Alfred P. Sloan Foundation. We thank Dr. Ki Tae Nam for his help with acquiring TEM images, and Christopher Harland and Jordan Crist for experimental assistance with supported membranes. NR 27 TC 21 Z9 21 U1 3 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 29 PY 2009 VL 131 IS 29 BP 10263 EP 10268 DI 10.1021/ja903114g PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA 475WM UT WOS:000268395000075 PM 19580278 ER PT J AU Pickering, IJ Sneeden, EY Prince, RC Block, E Harris, HH Hirsch, G George, GN AF Pickering, Ingrid J. Sneeden, Eileen Yu Prince, Roger C. Block, Eric Harris, Hugh H. Hirsch, Gregory George, Graham N. TI Localizing the Chemical Forms of Sulfur in Vivo Using X-ray Fluorescence Spectroscopic Imaging: Application to Onion (Allium cepa) Tissues SO BIOCHEMISTRY LA English DT Article ID ABSORPTION-SPECTROSCOPY; XANES SPECTROSCOPY; SITU OBSERVATION; HOMOCYSTEINE; BIOCHEMISTRY; SPECIATION; CHEMISTRY; ALLIINASE; SELENIUM; CYSTEINE AB Sulfur has a particularly rich biochemistry and fills a number of important roles in biology. In situ information on sulfur biochemistry is generally difficult to obtain because of a lack of biophysical techniques that have sufficient sensitivity to molecular form. We have recently reported that sulfur K-edge X-ray absorption spectroscopy can be used as a direct probe of the sulfur biochemistry of living mammalian cells [Gnida, M., et al. (2007) Biochemistry 46 14735-14741]. Here we report an extension of this work and develop sulfur K-edge X-ray fluorescence spectroscopic imaging as an in vivo probe of sulfur metabolism in living cells. For this work, we have chosen onion (Allium cepa) as a tractable model system with well-developed sulfur biochemistry and present evidence of the localization of a number of different chemical forms. X-ray absorption spectroscopy of onion sections showed increased levels of lachrymatory factor (LF) and thiosulfinate and decreased levels of sulfoxide (LF precursor) following cell breakage. In Intact cells, X-ray fluorescence spectroscopic imaging showed elevated levels of sulfoxides in the cytosol and elevated levels of reduced Sulfur in the central transport vessels and bundle sheath cells. C1 [Pickering, Ingrid J.; George, Graham N.] Univ Saskatchewan, Dept Geol Sci, Saskatoon, SK S7N 5E2, Canada. [Sneeden, Eileen Yu; Harris, Hugh H.] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. [Prince, Roger C.] ExxonMobil Biomed Sci Inc, Annandale, NJ 08801 USA. [Block, Eric] SUNY Albany, Dept Chem, Albany, NY 12222 USA. [Harris, Hugh H.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia. [Hirsch, Gregory] Hirsch Sci, Pacifica, CA 94044 USA. RP Pickering, IJ (reprint author), Univ Saskatchewan, Dept Geol Sci, 114 Sci Pl, Saskatoon, SK S7N 5E2, Canada. EM ingrid.pickering@usask.ca; g.george@usask.ca RI Harris, Hugh/A-4983-2008; George, Graham/E-3290-2013; Pickering, Ingrid/A-4547-2013; Block, Eric/D-3989-2014; OI Prince, Roger/0000-0002-5174-4216; Pickering, Ingrid/0000-0002-0936-2994; Harris, Hugh/0000-0002-3472-8628 FU National Institutes of Health [GM-57375]; U.S. Department of Energy, Offices of Basic Energy Sciences and Biological and Environmental Research; National Institutes off Health; Canadian Institutes of Health Research and the Natural Sciences and Enigineering Research Council of Canada; Canada Research Chair awards; National Science Foundation [CHE-0744578] FX This work was supported by Grant GM-57375 from the National Institutes of Health. The Stanford Synchrotron Radiation Lightsource is funded by the U.S. Department of Energy, Offices of Basic Energy Sciences and Biological and Environmental Research, with additional support from the National Institutes off Health. Work at the University of Saskatchewan was supported by the Canadian Institutes of Health Research and the Natural Sciences and Enigineering Research Council of Canada and by Canada Research Chair awards (G.N.G. and I.J.P.). Work at the University at Albany was Supported by Grant CHE-0744578 from the National Science Foundation. NR 38 TC 27 Z9 27 U1 1 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD JUL 28 PY 2009 VL 48 IS 29 BP 6846 EP 6853 DI 10.1021/bi900368x PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 473AN UT WOS:000268175600015 PM 19463015 ER PT J AU Mehboob, S Guo, L Fu, WT Mittal, A Yau, T Truong, K Johlfs, M Long, F Fung, LWM Johnson, ME AF Mehboob, Shahila Guo, Liang Fu, Wentao Mittal, Anuradha Yau, Tiffany Truong, Kent Johlfs, Mary Long, Fei Fung, Leslie W. -M. Johnson, Michael E. TI Glutamate Racemase Dimerization Inhibits Dynamic Conformational Flexibility and Reduces Catalytic Rates SO BIOCHEMISTRY LA English DT Article ID MOLECULAR-DYNAMICS; SOLUTION SCATTERING; PROTEINS; STABILITY; COMPLEX; DOMAIN AB Glutamate racemase (RacE) is a bacterial enzyme that converts L-glutamate to D-glutamate, ail essential precursor for peptidoglycan synthesis. In prior work, we have shown that both isoforms cocrystallize With D-glutamate as dimers, and the enzyme is in a closed conformation with limited access to the active site [May, M., et al. (2007) J. Mol. Biol. 371, 1219-1237]. The active site of RacE2 is especially restricted. We utilize several computational and experimental approaches to understand the overall conformational dynamics involved during catalysis when the ligand enters and the product exits the active site. Our steered molecular dynamics simulations and normal-mode analysis results indicate that the monomeric form of the enzyme is more flexible than the native dimeric form. These results Suggest that the monomeric enzyme might be more active than the dimeric form. We thus generated site-specific mutations that disrupt dimerization and find that the mutants exhibit significantly higher catalytic rates in the D-Glu to L-Glu reaction direction than the native enzyme. Low-resolution models restored from solution X-ray scattering studies correlate well with the first six normal modes of the dimeric form or the enzyme, obtained from NMA. Thus, along with the local active site residues, global domain motions appear to be implicated in the catalytically relevant structural dynamics of this enzyme and suggest that increased flexibility may accelerate catalysis. This is a novel observation that residues distant from the catalytic site restrain catalytic activity through formation of the dimer structure. C1 [Mehboob, Shahila; Fu, Wentao; Mittal, Anuradha; Yau, Tiffany; Truong, Kent; Johlfs, Mary; Johnson, Michael E.] Univ Illinois, Ctr Pharmaceut Biotechnol, Chicago, IL 60607 USA. [Guo, Liang] Argonne Natl Lab, Adv Photon Source, BioCAT, Argonne, IL 60439 USA. [Long, Fei; Fung, Leslie W. -M.] Univ Illinois, Dept Chem, Chicago, IL 60607 USA. RP Mehboob, S (reprint author), Univ Illinois, Ctr Pharmaceut Biotechnol, Chicago, IL 60607 USA. EM shahila@uic.edu; mjohnson@uic.edu RI Johnson, Michael/F-5141-2013; ID, BioCAT/D-2459-2012 FU National Institutes of Health [A1056575] FX This work was supported by National Institutes of Health Grant A1056575. NR 31 TC 9 Z9 9 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD JUL 28 PY 2009 VL 48 IS 29 BP 7045 EP 7055 DI 10.1021/bi9005072 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 473AN UT WOS:000268175600033 PM 19552402 ER PT J AU Wang, XB Jagoda-Cwiklik, B Chi, CX Xing, XP Zhou, MF Jungwirth, P Wang, LS AF Wang, Xue-Bin Jagoda-Cwiklik, Barbara Chi, Chaoxian Xing, Xiao-Peng Zhou, Mingfei Jungwirth, Pavel Wang, Lai-Sheng TI Microsolvation of the acetate anion [CH3CO2-(H2O)(n), n=1-3]: A photoelectron spectroscopy and ab initio computational study SO CHEMICAL PHYSICS LETTERS LA English DT Article ID DOUBLY-CHARGED ANION; WATER CLUSTERS; GAS-PHASE; DYNAMICS; SOLVATION; PHOTODETACHMENT; CHEMISTRY; DIANIONS; DISSOCIATION; DISSOLUTION AB A combined photoelectron spectroscopy and ab initio theoretical study was carried out to study the microsolvation of the acetate anion. Photoelectron spectra of cold solvated clusters CH3CO2-(H2O)(n) (n = 1-3) at 12 K were obtained and compared with theoretical calculations. The first water is shown to bind to the -CO2- group in a bidentate fashion, whereas both water-water and water-CO2- interactions are shown for n = 2 and 3. Significant rearrangement of the solvation structures is observed upon electron detachment, and water-CH3 interactions are present for all the neutral clusters, CH3CO2( H2O)(n) (n = 1-3). (c) 2009 Elsevier B. V. All rights reserved. C1 [Wang, Xue-Bin; Xing, Xiao-Peng; Wang, Lai-Sheng] Washington State Univ, Dept Phys, Richland, WA 99354 USA. [Wang, Xue-Bin; Xing, Xiao-Peng; Wang, Lai-Sheng] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. [Jagoda-Cwiklik, Barbara] Hebrew Univ Jerusalem, Fritz Haber Inst Mol Dynam, IL-91904 Jerusalem, Israel. [Chi, Chaoxian; Zhou, Mingfei] Fudan Univ, Dept Chem, Shanghai Key Lab Mol Catalysts & Innovat Mat, Adv Mat Lab, Shanghai 200433, Peoples R China. [Jungwirth, Pavel] Acad Sci Czech Republic, Inst Organ Chem & Biochem, Ctr Complex Mol Syst & Biomol, CR-16610 Prague 6, Czech Republic. RP Wang, XB (reprint author), Washington State Univ, Dept Phys, 2710 Univ Dr, Richland, WA 99354 USA. EM xuebin.wang@pnl.gov; pavel.jungwirth@uochb.cas.cz; ls.wang@pnl.gov RI Jungwirth, Pavel/D-9290-2011 OI Jungwirth, Pavel/0000-0002-6892-3288 FU US Department of Energy (DOE); National Natural Science Foundation of China [20528303]; Czech Ministry of Education [LC512]; Czech Science Foundation [203/08/0114] FX The experimental work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences, Chemical Sciences Division and was performed at the EMSL, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, which is operated for DOE by Battelle. M. F. Z. wishes to thank the National Natural Science Foundation of China ( Grant No. 20528303) for partial support of the work. Support from the Czech Ministry of Education ( Grant LC512) and the Czech Science Foundation ( Grant 203/08/0114) for the computational work is gratefully acknowledged. Part of the work in Prague was supported via Project Z40550506. NR 38 TC 10 Z9 10 U1 2 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD JUL 28 PY 2009 VL 477 IS 1-3 BP 41 EP 44 DI 10.1016/j.cplett.2009.06.074 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 475BF UT WOS:000268329800008 ER PT J AU Jiang, DE AF Jiang, De-en TI Au adatom-linked CH3S-Au-SCH3 complexes on Au(111) SO CHEMICAL PHYSICS LETTERS LA English DT Article ID SELF-ASSEMBLED MONOLAYERS; TOTAL-ENERGY CALCULATIONS; THIOLATE-PROTECTED AU-38; AUGMENTED-WAVE METHOD; C(4 X-2) STRUCTURE; CRYSTAL-STRUCTURES; SOLID-STATE; BASIS-SET; GOLD; CLUSTER AB A novel chain structure made of gold adatoms and gold-thiolate complexes on Au(111) is predicted here by first principles density functional theory. In this structure, the CH3S-Au-SCH3 complexes are parallel to each other and linked together by interactions between Au adatoms and Au atoms in the complexes as well as by bonding between the Au adatoms and the CH3S-groups in the CH3S-Au-SCH3 complexes. This new structure is compared with previously proposed gold-thiolate polymers on Au(111) and found to be energetically competitive with previous models at both low and high coverages. (c) 2009 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Jiang, DE (reprint author), Oak Ridge Natl Lab, Div Chem Sci, POB 2008, Oak Ridge, TN 37831 USA. EM jiangd@ornl.gov RI Jiang, De-en/D-9529-2011 OI Jiang, De-en/0000-0001-5167-0731 FU U.S. Department of Energy [DE-AC05-00OR22725, DE-AC02-05CH11231] FX This work was supported by the Office of Basic Energy Sciences, U.S. Department of Energy under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 40 TC 9 Z9 9 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD JUL 28 PY 2009 VL 477 IS 1-3 BP 90 EP 94 DI 10.1016/j.cplett.2009.06.073 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 475BF UT WOS:000268329800019 ER PT J AU Lucchese, RR Bozek, JD Das, A Poliakoff, ED AF Lucchese, Robert R. Bozek, John D. Das, Aloke Poliakoff, E. D. TI Vibrational branching ratios in the (b(2u))(-1) photoionization of C6F6 SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE bond lengths; molecule-photon collisions; organic compounds; oscillator strengths; photoionisation; positive ions; resonant states; vibrational states ID CROSS-SECTIONS; MOLECULAR PHOTOIONIZATION; HIGH-RESOLUTION; BASIS-SETS; SCATTERING; SPECTROSCOPY AB The vibrational branching ratios in the photoionization of C6F6 leading to the C B-2(2u) state of C6F6+ are considered. Computational and experimental data are compared for the excitation of two totally symmetric modes. Resonant features at photon energies near 19 and 21 eV are found. A detailed analysis of the computed results shows that the two resonance states have different responses to changes in the C-C and C-F bond lengths. We find that the energies of both of the resonant states decrease with increasing bond lengths. In contrast to the energy positions, however, the resonant widths and the integrated oscillator strength of the resonances can either increase or decrease with increasing bond length depending on the nature and location of the resonant state and the location of the bond under consideration. With increasing C-F bond length, we find that the energy of the antibonding sigma resonance localized on the ring has a decreasing resonance energy and also a decreasing lifetime. This behavior is in contrast to the usual behavior of shape resonance energies where increasing a bond length leads to decreasing resonance energies and increasing resonance lifetimes. Finally, for the first time, we examine the effect of simultaneously occurring multiple vibrations on the resonance profile for valence photoionization, and we find that the inclusion of more than a single vibrational mode substantially attenuates the strength of resonance. C1 [Lucchese, Robert R.] Texas A&M Univ, Dept Chem, College Stn, TX 77843 USA. [Bozek, John D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Das, Aloke; Poliakoff, E. D.] Louisiana State Univ, Dept Chem, Baton Rouge, LA 70803 USA. RP Lucchese, RR (reprint author), Texas A&M Univ, Dept Chem, College Stn, TX 77843 USA. EM lucchese@mail.chem.tamu.edu RI Bozek, John/E-4689-2010; Bozek, John/E-9260-2010; OI Bozek, John/0000-0001-7486-7238; Lucchese, Robert/0000-0002-7200-3775 FU U.S. Department of Energy [DE-FG02-01ER15178]; Texas A&M University Supercomputing Facility FX D. P. and R. R. L. acknowledge that this work was supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U. S. Department of Energy (Grant No. DE-FG02-01ER15178). This work was also supported by the Texas A&M University Supercomputing Facility. NR 19 TC 6 Z9 6 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 28 PY 2009 VL 131 IS 4 AR 044311 DI 10.1063/1.3180817 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 478UL UT WOS:000268613700042 PM 19655871 ER PT J AU Streets, DG Yan, F Chin, M Diehl, T Mahowald, N Schultz, M Wild, M Wu, Y Yu, C AF Streets, David G. Yan, Fang Chin, Mian Diehl, Thomas Mahowald, Natalie Schultz, Martin Wild, Martin Wu, Ye Yu, Carolyne TI Anthropogenic and natural contributions to regional trends in aerosol optical depth, 1980-2006 SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SULFUR-DIOXIDE EMISSIONS; SURFACE SOLAR-RADIATION; INTERANNUAL VARIABILITY; HYDROLOGICAL CYCLE; GOCART MODEL; SATELLITE; CLIMATE; ASIA; DIMETHYLSULFIDE; INVENTORY AB Understanding the roles of human and natural sources in contributing to aerosol concentrations around the world is an important step toward developing efficient and effective mitigation measures for local and regional air quality degradation and climate change. In this study we test the hypothesis that changes in aerosol optical depth (AOD) over time are caused by the changing patterns of anthropogenic emissions of aerosols and aerosol precursors. We present estimated trends of contributions to AOD for eight world regions from 1980 to 2006, built upon a full run of the Goddard Chemistry Aerosol Radiation and Transport model for the year 2001, extended in time using trends in emissions of man-made and natural sources. Estimated AOD trends agree well (R > 0.5) with observed trends in surface solar radiation in Russia, the United States, south Asia, southern Africa, and East Asia (before 1992) but less well for Organization for Economic Co-operative Development (OECD) Europe (R < 0.5). The trends do not agree well for southeast Asia and for East Asia (after 1992) where large-scale inter- and intraannual variations in emissions from forest fires, volcanic eruptions, and dust storms confound our approach. Natural contributions to AOD, including forest and grassland fires, show no significant long-term trends (< 1%/a), except for a small increasing trend in OECD Europe and a small decreasing trend in South America. Trends in man-made contributions to AOD follow the changing patterns of industrial and economic activity. We quantify the average contributions of key source types to regional AOD over the entire time period. C1 [Streets, David G.; Yan, Fang; Yu, Carolyne] Argonne Natl Lab, Argonne, IL 60439 USA. [Yan, Fang] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA. [Chin, Mian; Diehl, Thomas] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Mahowald, Natalie] Cornell Univ, Dept Earth & Atmospher Sci, Ithaca, NY 14853 USA. [Schultz, Martin] Forschungszentrum Julich, D-52425 Julich, Germany. [Wild, Martin] ETH, Inst Atmospher & Climate Sci, CH-8092 Zurich, Switzerland. [Wu, Ye] Tsinghua Univ, Dept Environm Sci & Engn, Beijing 100084, Peoples R China. RP Streets, DG (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM dstreets@anl.gov RI Yan, Fang/F-2625-2010; Wild, Martin/J-8977-2012; Chin, Mian/J-8354-2012; Mahowald, Natalie/D-8388-2013; Yan, Fang/F-4527-2014; Wu, Ye/O-9779-2015; Schultz, Martin/I-9512-2012 OI Yan, Fang/0000-0002-1960-0511; Streets, David/0000-0002-0223-1350; Mahowald, Natalie/0000-0002-2873-997X; Schultz, Martin/0000-0003-3455-774X FU Argonne National Laboratory; University of Chicago Argonne, LLC [DE-AC02-06CH11357]; Swiss National Centre for Competence in Climate Research (NCCR Climate) FX The work performed at Argonne National Laboratory was funded by the U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research. The authors gratefully acknowledge the support of Ashley Williamson and Bob Vallario in that office. Argonne National Laboratory is operated by the University of Chicago Argonne, LLC, under contract DE-AC02-06CH11357 with the U. S. Department of Energy. The radiation data archives at ETH Zurich are supported by funding from the Swiss National Centre for Competence in Climate Research (NCCR Climate). NR 77 TC 90 Z9 91 U1 4 U2 34 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 28 PY 2009 VL 114 AR D00D18 DI 10.1029/2008JD011624 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 479AS UT WOS:000268631700002 ER PT J AU Colgan, J Foster, M Pindzola, MS Bray, I Stelbovics, AT Fursa, DV AF Colgan, J. Foster, M. Pindzola, M. S. Bray, I. Stelbovics, A. T. Fursa, D. V. TI Triple differential cross sections for the electron-impact ionization of helium at 102 eV incident energy SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID SHARING KINEMATICS; APPROXIMATIONS; SCATTERING; COLLISIONS AB We examine the time-dependent close-coupling (TDCC) approach to electron-impact single ionization of helium and study the convergence properties of our method. As an example, we compare our calculations to recent measurements of the triple differential cross sections from He after 102 eV electron impact, made for asymmetric electron energies and a variety of electron geometries. We find that our calculations compare well to the measurements and to convergent close-coupling calculations. C1 [Colgan, J.; Foster, M.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Pindzola, M. S.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. [Colgan, J.; Bray, I.; Stelbovics, A. T.; Fursa, D. V.] Curtin Univ Technol, ARC Ctr Antimatter Matter Studies, Perth, WA 6845, Australia. RP Colgan, J (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI Fursa, Dmitry/C-2301-2009; Bray, Igor/B-8586-2009; OI Fursa, Dmitry/0000-0002-3951-9016; Bray, Igor/0000-0001-7554-8044; Colgan, James/0000-0003-1045-3858 FU US Department of Energy [DE-AC5206NA25396]; DOE; NSF; LANL Institutional Computing Resources award FX The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the US Department of Energy under contract no DE-AC5206NA25396. One of us (JC) would like to thank the ARC Centre for Antimatter-Matter Studies for their generous hospitality during a recent visit. The support of the Australian Partnership for Advanced Computing and its Western Australian node iVEC are gratefully acknowledged. A portion of this work was performed through DOE and NSF grants to Auburn University. Computational work was carried out at NERSC, in Oakland, CA, and through a LANL Institutional Computing Resources award. NR 17 TC 28 Z9 28 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD JUL 28 PY 2009 VL 42 IS 14 AR 145002 DI 10.1088/0953-4075/42/14/145002 PG 6 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 470AI UT WOS:000267943500006 ER PT J AU Margolin, LG AF Margolin, L. G. TI Finite-scale equations for compressible fluid flow SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Article DE compressible flow; finite-scale equations; implicit large eddy simulation ID IMPLICIT LES; HYDRODYNAMICS; SIMULATIONS; TRANSPORT; MODELS AB Finite-scale equations (FSE) describe the evolution of finite volumes of fluid over time. We discuss the FSE for a one-dimensional compressible fluid, whose every point is governed by the Navier-Stokes equations. The FSE contain new momentum and internal energy transport terms. These are similar to terms added in numerical simulation for high-speed flows (e.g. artificial viscosity) and for turbulent flows (e.g. subgrid scale models). These similarities suggest that the FSE may provide new insight as a basis for computational fluid dynamics. Our analysis of the FS continuity equation leads to a physical interpretation of the new transport terms, and indicates the need to carefully distinguish between volume-averaged and mass-averaged velocities in numerical simulation. We make preliminary connections to the other recent work reformulating Navier-Stokes equations. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Margolin, LG (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM len@lanl.gov NR 18 TC 14 Z9 14 U1 1 U2 4 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-503X J9 PHILOS T R SOC A JI Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. PD JUL 28 PY 2009 VL 367 IS 1899 BP 2861 EP 2871 DI 10.1098/rsta.2008.0290 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 461PX UT WOS:000267281900006 PM 19531508 ER PT J AU Grinstein, FF AF Grinstein, Fernando F. TI On integrating large eddy simulation and laboratory turbulent flow experiments SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Article DE turbulent flow experiments; large eddy simulation; subgrid scales; initial conditions; boundary conditions ID RICHTMYER-MESHKOV INSTABILITY; BOUNDARY-VALUE PROBLEMS; GAS-TURBINE COMBUSTOR; INFLOW CONDITIONS; FLUID-DYNAMICS; SHEAR-LAYER; GENERATION; SYSTEMS; SCALE AB Critical issues involved in large eddy simulation (LES) experiments relate to the treatment of unresolved subgrid scale flow features and required initial and boundary condition supergrid scale modelling. The inherently intrusive nature of both LES and laboratory experiments is noted in this context. Flow characterization issues becomes very challenging ones in validation and computational laboratory studies, where potential sources of discrepancies between predictions and measurements need to be clearly evaluated and controlled. A special focus of the discussion is devoted to turbulent initial condition issues. C1 Los Alamos Natl Lab, Div Appl Phys, Los Alamos, NM 87545 USA. RP Grinstein, FF (reprint author), Los Alamos Natl Lab, Div Appl Phys, POB 1663, Los Alamos, NM 87545 USA. EM fgrinstein@lanl.gov NR 37 TC 12 Z9 12 U1 0 U2 5 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-503X EI 1471-2962 J9 PHILOS T R SOC A JI Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. PD JUL 28 PY 2009 VL 367 IS 1899 BP 2931 EP 2945 DI 10.1098/rsta.2009.0059 PG 15 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 461PX UT WOS:000267281900011 PM 19531513 ER PT J AU Jansson, J Willing, B Lucio, M Fekete, A Dicksved, J Halfvarson, J Tysk, C Schmitt-Kopplin, P AF Jansson, Janet Willing, Ben Lucio, Marianna Fekete, Ages Dicksved, Johan Halfvarson, Jonas Tysk, Curt Schmitt-Kopplin, Philippe TI Metabolomics Reveals Metabolic Biomarkers of Crohn's Disease SO PLOS ONE LA English DT Article AB The causes and etiology of Crohn's disease (CD) are currently unknown although both host genetics and environmental factors play a role. Here we used non-targeted metabolic profiling to determine the contribution of metabolites produced by the gut microbiota towards disease status of the host. Ion Cyclotron Resonance Fourier Transform Mass Spectrometry (ICR-FT/MS) was used to discern the masses of thousands of metabolites in fecal samples collected from 17 identical twin pairs, including healthy individuals and those with CD. Pathways with differentiating metabolites included those involved in the metabolism and or synthesis of amino acids, fatty acids, bile acids and arachidonic acid. Several metabolites were positively or negatively correlated to the disease phenotype and to specific microbes previously characterized in the same samples. Our data reveal novel differentiating metabolites for CD that may provide diagnostic biomarkers and/or monitoring tools as well as insight into potential targets for disease therapy and prevention. RP Jansson, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Dept Ecol, Berkeley, CA 94720 USA. EM schmitt-kopplin@helmholtz-muenchen.de RI Schmitt-Kopplin, Philippe/H-6271-2011; Jansson, Janet/F-9951-2012; OI Schmitt-Kopplin, Philippe/0000-0003-0824-2664; Dicksved, Johan/0000-0002-7515-4480; Halfvarson, Jonas/0000-0003-0122-7234 NR 32 TC 194 Z9 199 U1 6 U2 73 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUL 28 PY 2009 VL 4 IS 7 AR e6386 DI 10.1371/journal.pone.0006386 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 475YW UT WOS:000268404900012 PM 19636438 ER PT J AU Hlavacek, WS Faeder, JR AF Hlavacek, William S. Faeder, James R. TI The Complexity of Cell Signaling and the Need for a New Mechanics SO SCIENCE SIGNALING LA English DT Article ID NETWORKS; TRANSDUCTION; RESPONSES; PATHWAY; CAMP AB Cell signaling systems respond to multiple inputs, such as ligands of cellsurface receptors; and produce multiple outputs, such as changes in gene expression and cellular activities, including motility, proliferation, and death. This "macroscopic" input-output behavior is generated by a web of molecular interactions that can be viewed as taking place at a lower, "microscopic" level. These interactions prominently involve posttranslational modification of proteins and the nucleation of protein complexes. Behaviors at both the micro- and macroscopic levels are complex and must be probed systematically and characterized quantitatively as a prelude to the development of a predictive understanding of a cell signaling system. We must also have a theoretical framework or a mechanics within which we can determine how macroscopic behaviors emerge from known microscopic behaviors or change with manipulations of microscopic behaviors. To connect behaviors at both levels, we suggest that a new mechanics is now required. Newly available data support the idea that this mechanics should enable one to track the site-specific details of molecular interactions in a model, such as the phosphorylation status of individual amino acid residues within a protein. C1 [Faeder, James R.] Univ Pittsburgh, Sch Med, Dept Computat Biol, Pittsburgh, PA 15260 USA. [Hlavacek, William S.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. [Hlavacek, William S.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Hlavacek, William S.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Faeder, JR (reprint author), Univ Pittsburgh, Sch Med, Dept Computat Biol, Pittsburgh, PA 15260 USA. EM faeder@pitt.edu OI Hlavacek, William/0000-0003-4383-8711 NR 22 TC 15 Z9 15 U1 0 U2 7 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 1937-9145 J9 SCI SIGNAL JI Sci. Signal. PD JUL 28 PY 2009 VL 2 IS 81 AR pe46 DI 10.1126/scisignal.281pe46 PG 3 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 569MM UT WOS:000275601200005 PM 19638613 ER PT J AU Babin, S Bugrov, A Cabrini, S Dhuey, S Goltsov, A Ivonin, I Kley, EB Peroz, C Schmidt, H Yankov, V AF Babin, S. Bugrov, A. Cabrini, S. Dhuey, S. Goltsov, A. Ivonin, I. Kley, E. -B. Peroz, C. Schmidt, H. Yankov, V. TI Digital optical spectrometer-on-chip SO APPLIED PHYSICS LETTERS LA English DT Article DE computer-generated holography; electron beam lithography; etching; hafnium compounds; integrated optoelectronics; optical planar waveguides; silicon compounds; spectrometers ID GRATINGS AB A concept of digital optical spectrometer-on-chip is proposed and results of their fabrication and characterization are reported. The devices are based on computer-designed digital planar holograms which involves millions of lines specifically located and oriented in order to direct output light into designed focal points according to the wavelength. Spectrometers were fabricated on silicon dioxide and hafnium dioxide planar waveguides using electron beam lithography and dry etching. Optical performances of devices with up to 1000 channels for a central wavelength of 660 nm are reported. C1 [Babin, S.; Peroz, C.] aBeam Technol, Castro Valley, CA 94546 USA. [Kley, E. -B.; Schmidt, H.] Friedrich Schiller Univ, Inst Appl Phys, D-07745 Jena, Germany. [Bugrov, A.; Goltsov, A.; Ivonin, I.; Yankov, V.] Nanoopt Devices, Washington Township, NJ 07676 USA. [Cabrini, S.; Dhuey, S.] Lawrence Berkeley Natl Lab, Berkeley, CA 94702 USA. RP Peroz, C (reprint author), aBeam Technol, 5286 Dunnigan Ct, Castro Valley, CA 94546 USA. EM cp@abeamtech.com FU Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy [DE-AC02-05CH11231] FX Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 6 TC 17 Z9 17 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 27 PY 2009 VL 95 IS 4 AR 041105 DI 10.1063/1.3190199 PG 3 WC Physics, Applied SC Physics GA 478TT UT WOS:000268611900005 ER PT J AU Cubukcu, E Zhang, S Park, YS Bartal, G Zhang, X AF Cubukcu, Ertugrul Zhang, Shuang Park, Yong-Shik Bartal, Guy Zhang, Xiang TI Split ring resonator sensors for infrared detection of single molecular monolayers SO APPLIED PHYSICS LETTERS LA English DT Article DE infrared detectors; monolayers; plasmonics; self-assembly ID ENHANCED RAMAN-SCATTERING; SPECTROSCOPY; ANTENNAS; NANOPARTICLES; ABSORPTION AB We report a surface enhanced molecular detection technique with zeptomole sensitivity that relies on resonant coupling of plasmonic modes of split ring resonators and infrared vibrational modes of a self-assembled monolayer of octadecanthiol molecules. Large near-field enhancements at the gap of split ring resonators allow for this resonant coupling when the molecular absorption peaks overlap spectrally with the plasmonic resonance. Electromagnetic simulations support experimental findings. C1 [Zhang, Xiang] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Cubukcu, Ertugrul; Zhang, Shuang; Park, Yong-Shik; Bartal, Guy; Zhang, Xiang] Univ Calif Berkeley, Nanoscale Sci & Engn Ctr, Berkeley, CA 94720 USA. RP Zhang, X (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM cubukcu@berkeley.edu; xzhang@me.berkeley.edu RI Cubukcu, Ertugrul/F-4807-2010; Zhang, Xiang/F-6905-2011; zhang, shuang/G-5224-2011; Cubukcu, Ertugrul/D-5007-2012 FU National Institutes of Health through the NIH Roadmap for Medical Research [PN2 EY018228]; NSF Nanoscale Science and Engineering Center (NSEC) [CMMI-0751621] FX We acknowledge financial support from the National Institutes of Health through the NIH Roadmap for Medical Research (PN2 EY018228) and the NSF Nanoscale Science and Engineering Center (NSEC) under Grant No. CMMI-0751621. NR 24 TC 118 Z9 121 U1 5 U2 62 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 27 PY 2009 VL 95 IS 4 AR 043113 DI 10.1063/1.3194154 PG 3 WC Physics, Applied SC Physics GA 478TT UT WOS:000268611900057 ER PT J AU Huang, L Schofield, MA Zhu, Y AF Huang, L. Schofield, M. A. Zhu, Y. TI Direct observation of the controlled magnetization reversal processes in Py/Al/Py asymmetric ring stacks SO APPLIED PHYSICS LETTERS LA English DT Article DE aluminium; magnetic domain walls; magnetic multilayers; magnetic thin films; magnetisation reversal; metallic thin films; micromagnetics; Permalloy; spin valves ID ELECTRON HOLOGRAPHY; MICROSCOPY AB Electron holographic experiments were performed to study the magnetization reversal process of patterned Py/Al/Py (20nm/20nm/10nm) asymmetric ring stacks. By changing the in-plane field applied perpendicular to the ring's symmetric axis, we directly observed the vortex-based magnetization reversal process through controlled domain wall motion and annihilation. The two magnetic layers were found to switch at different critical fields, leading to the existence of various distinct domain state combinations. Quantitative agreement was obtained between measured phase shifts and those derived from micromagnetic calculations, which allows us to resolve the layer-by-layer magnetic behavior as a function of applied external field. C1 [Huang, L.; Schofield, M. A.; Zhu, Y.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Huang, L (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM lhuang@bnl.gov FU U. S. Department of Energy, Office of Basic Energy Science [DE-AC02-98CH10886] FX The authors gratefully acknowledge M. Beleggia and V. V. Volkov for stimulating discussions. Sample preparation was carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory. This work is supported by U. S. Department of Energy, Office of Basic Energy Science, under Contract No. DE-AC02-98CH10886. NR 17 TC 7 Z9 7 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 27 PY 2009 VL 95 IS 4 AR 042501 DI 10.1063/1.3187545 PG 3 WC Physics, Applied SC Physics GA 478TT UT WOS:000268611900034 ER PT J AU Zorba, V Mao, XL Russo, RE AF Zorba, Vassilia Mao, Xianglei Russo, Richard E. TI Laser wavelength effects in ultrafast near-field laser nanostructuring of Si SO APPLIED PHYSICS LETTERS LA English DT Article DE elemental semiconductors; high-speed optical techniques; laser materials processing; machining; nanofabrication; nanostructured materials; semiconductor growth; silicon ID FEMTOSECOND LASER; OPTICAL MICROSCOPY; NANOSCALE; SILICON; SPECTROSCOPY; IRRADIATION; ABLATION; SURFACE; PULSES; SCALE AB We study the effect of laser wavelength (400 and 800 nm) on the near-field processing of crystalline silicon (Si) in the femtosecond pulse duration regime through subwavelength apertures. Distinct differences in the obtained nanostructures are found in each case both in terms of their physical sizes as well as their structure, which can be tuned between craters and protrusions. A single or a few femtosecond pulses can deliver enough energy on the substrate to induce subdiffraction limited surface modification, which is among the smallest ever reported in subwavelength apertured near-field scanning optical microscope schemes. C1 [Zorba, Vassilia; Mao, Xianglei; Russo, Richard E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Zorba, V (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM rerusso@lbl.gov RI Zorba, Vassilia/C-4589-2015 FU Chemical Science Division, Office of Basic Energy Sciences, U. S. Department of Energy [DE-AC02-05CH11231] FX This research has been supported by the Chemical Science Division, Office of Basic Energy Sciences, U. S. Department of Energy, under Contract No. DE-AC02-05CH11231. NR 25 TC 19 Z9 19 U1 0 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 27 PY 2009 VL 95 IS 4 AR 041110 DI 10.1063/1.3193537 PG 3 WC Physics, Applied SC Physics GA 478TT UT WOS:000268611900010 ER PT J AU Ramalho, G Pena, MT Gross, F AF Ramalho, G. Pena, M. T. Gross, Franz TI Electric quadrupole and magnetic octupole moments of the Delta SO PHYSICS LETTERS B LA English DT Article ID LATTICE QCD; FORM-FACTORS; MODEL; DECUPLET; NUCLEON; BARYONS AB Using a covariant spectator constituent quark model we predict an electric quadrupole moment Q(Delta+) = -0.043 e fm(2) and a magnetic octupole moment O Delta+ = -0.0035 e fm(3) for the Delta(+) excited state of the nucleon. (C) 2009 Elsevier B.V. All rights reserved. C1 [Ramalho, G.; Pena, M. T.] Ctr Fis Teor Particulas, P-1049001 Lisbon, Portugal. [Ramalho, G.; Gross, Franz] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Pena, M. T.] Univ Tecn Lisboa, Dept Phys, Inst Super Tecn, P-1049001 Lisbon, Portugal. [Gross, Franz] Coll William & Mary, Williamsburg, VA 23185 USA. RP Ramalho, G (reprint author), Ctr Fis Teor Particulas, Av Rovisco Pais, P-1049001 Lisbon, Portugal. EM gilberto@cftp.ist.utl.pt RI Pena, Teresa/M-4683-2013; OI Pena, Teresa/0000-0002-3529-2408; Ramalho, Gilberto/0000-0002-9930-659X FU Jefferson Science Associates, LLC [DE-AC05-060R23177]; Portuguese Fundacao para a Cinciae Tecnologia (FCT) [SFRH/BPD/26886/2006] FX This work was partially support by Jefferson Science Associates, LLC under US DOE Contract No. DE-AC05-060R23177. G.R. was supported by the Portuguese Fundacao para a Cinciae Tecnologia (FCT) under the grant SFRH/BPD/26886/2006. This work has been supported in part by the European Union (HadronPhysics2 project "Study of strongly interacting matter"). NR 44 TC 24 Z9 24 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD JUL 27 PY 2009 VL 678 IS 4 BP 355 EP 358 DI 10.1016/j.physletb.2009.06.052 PG 4 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 477QO UT WOS:000268533800005 ER PT J AU Kuhn, JN Tsung, CK Huang, W Somorjai, GA AF Kuhn, John N. Tsung, Chia-Kuang Huang, Wenyu Somorjai, Gabor A. TI Effect of organic capping layers over monodisperse platinum nanoparticles upon activity for ethylene hydrogenation and carbon monoxide oxidation SO JOURNAL OF CATALYSIS LA English DT Article DE Nanoparticle; Capping agent; Ethylene hydrogenation; CO oxidation; Platinum ID ELECTRON-BEAM LITHOGRAPHY; SUM-FREQUENCY GENERATION; MESOPOROUS SBA-15 SILICA; PYRROLE HYDROGENATION; CATALYTIC-ACTIVITY; PARTICLE-SIZE; SHAPE CONTROL; SURFACE-AREA; CO OXIDATION; NANOCRYSTALS AB The influence of oleylamine (OA), trimethyl tetradecyl ammonium bromide (TTAB), and polyvinlypyrrolidone (PVP) capping agents upon the catalytic properties of Pt/silica catalysts was evaluated. Pt nanoparticles that were 1.5 nm in size were synthesized by the same procedure (ethylene glycol reduction under basic conditions) with the various capping agents added afterward for stabilization. Before examining catalytic properties for ethylene hydrogenation and CO oxidation, the Pt NPs were deposited onto mesoporous silica (SBA-15) supports and characterized by transmission electron microscopy (TEM), H-2 chemisorption, and elemental analysis (ICP-MS). PVP- and TTAB-capped Pt yielded mass-normalized reaction rates that decreased with increasing pretreatment temperature, and this trend was attributed to the partial coverage of the Pt surface with decomposition products from the organic capping agent. Once normalized to the Pt surface area, similar intrinsic activities were obtained regardless of the pretreatment temperature, which indicated no influence on the nature of the active sites. Consequently, a chemical probe technique using intrinsic activity for ethylene hydrogenation was demonstrated as an acceptable method for estimating the metallic surface areas of Pt. Amine (OA) capping exhibited a detrimental influence on the catalytic properties as severe deactivation and low activity were observed for ethylene hydrogenation and CO oxidation, respectively. These results were consistent with amine groups being strong poisons for Pt surfaces, and revealed the need to consider the effects of capping agents on the catalytic properties. Published by Elsevier Inc. C1 [Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu RI Huang, Wenyu/L-3784-2014 OI Huang, Wenyu/0000-0003-2327-7259 FU Director, Office of Science; Office of Basic Energy Sciences; Division of Chemical Sciences; Geological and Biosciences and Division of Materials Sciences and Engineering; US Department of Energy [DE-AC02-05CH11231]; Chevron's Richmond Technological Center FX We gratefully acknowledge support from the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geological and Biosciences and Division of Materials Sciences and Engineering of the US Department of Energy under contract No. DE-AC02-05CH11231. Additional financial support from and collaboration with Chevron's Richmond Technological Center are also appreciated. Finally, we thank the Molecular Foundry of the Lawrence Berkeley National Laboratory and Professor A. Paul Alivisatos for use of their facilities. NR 33 TC 97 Z9 98 U1 10 U2 100 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 EI 1090-2694 J9 J CATAL JI J. Catal. PD JUL 25 PY 2009 VL 265 IS 2 BP 209 EP 215 DI 10.1016/j.jcat.2009.05.001 PG 7 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 474PS UT WOS:000268297000010 ER PT J AU Kim, BJ Miyamoto, Y Ma, BW Frechet, JMJ AF Kim, Bumjoon J. Miyamoto, Yoshikazu Ma, Biwu Frechet, Jean M. J. TI Photocrosslinkable Polythiophenes for Efficient, Thermally Stable, Organic Photovoltaics SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID POLYMER SOLAR-CELLS; BULK HETEROJUNCTION MATERIALS; CHARGE-TRANSPORT; MOLECULAR-WEIGHT; IMAGING TECHNIQUE; FILM MORPHOLOGY; END GROUP; PERFORMANCE; POLY(3-HEXYLTHIOPHENE); DEVICES AB Photocrosslinkable bromine-functionalized poly(3-hexylthiophene) (P3HT-Br) copolymers designed for application in solution-processed organic photovoltaics are prepared by copolymerization of 2-bromo-3-(6-bromohexyl) thiophene and 2-bromo-3-hexylthiophene. The monomer ratio is carefully controlled to achieve a UV photocrosslinkable layer while retaining the pi-pi stacking feature of the conjugated polymers. The new materials are used as electron donors in both bulk heterojunction (BHJ) and bilayer type photovoltaic devices. Unlike devices prepared from either P3HT:PCBM blend or P3HT-Br:PCBM blend without UV treatment, photocrosslinked P3HT-Br:PCBM devices are stable even when annealed for two days at the elevated temperature of 150 degrees C as the nanophase separated morphology of the bulk heterojunction is stabilized as confirmed by optical microscopy and grazing incidence wide angle X-ray scattering (GIWAXS). When applied to solution-processed bilayer devices, the photocrosslinkable materials show high power conversion efficiencies (similar to 2%) and excellent thermal stability (3 days at 150 degrees C). Such performance, one of the highest obtained for a bilayer device fabricated by solution processing, is achieved as crosslinking does not disturb the pi-pi stacking of the polymer as confirmed by GIWAXS measurements, These novel photocrosslinkable materials provide ready access to efficient bilayer devices thus enabling the fundamental study of photophysical characteristics, charge generation, and transport across a well-defined interface. C1 [Kim, Bumjoon J.; Miyamoto, Yoshikazu; Ma, Biwu; Frechet, Jean M. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Kim, Bumjoon J.; Miyamoto, Yoshikazu; Ma, Biwu; Frechet, Jean M. J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Kim, Bumjoon J.] Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn, Taejon 305701, South Korea. RP Kim, BJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM frechet@berkeley.edu RI Ma, Biwu/B-6943-2012; Kim, Bumjoon J./C-1714-2011; OI Frechet, Jean /0000-0001-6419-0163 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC0205CH11231]; US Department of Energy FX B. J. K and Y. M. contributed equally to this work. Financial support of this work by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC0205CH11231. A portion of the work was performed at the Molecular Foundry and the Stanford Synchrotron Radiation Laboratory also supported by the US Department of Energy. Y.M. thanks JSR Corporation for support. The authors acknowledge Dr. M. F. Toney at SSRL for assistance in GIWAXS measurements NR 49 TC 167 Z9 171 U1 7 U2 89 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1616-301X J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD JUL 24 PY 2009 VL 19 IS 14 BP 2273 EP 2281 DI 10.1002/adfm.200900043 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 478RR UT WOS:000268606500012 ER PT J AU Mahan, AH Su, TN Williamson, DL Gedvilas, LM Ahrenkiel, SP Parilla, PA Xu, YQ Ginley, DA AF Mahan, A. Harv Su, Tining Williamson, Don L. Gedvilas, Lynn M. Ahrenkiel, S. Phil Parilla, Phillip A. Xu, Yueqin Ginley, David A. TI Identification of Nucleation Center Sites in Thermally Annealed Hydrogenated Amorphous Silicon SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID A-SI-H; GRAIN POLYCRYSTALLINE SILICON; SOLID-PHASE CRYSTALLIZATION; CHEMICAL-VAPOR-DEPOSITION; STRUCTURAL INFORMATION; DEVICE-QUALITY; FILMS; MICROSTRUCTURE; TEMPERATURE; ALLOYS AB Utilizing the concepts of a critical crystallite size and local film inhomogeneity, it is shown that nucleation in thermally annealed hydrogenated amorphous silicon occurs in the more well ordered spatial regions in the network, which are defined by the initial inhomogeneous H distributions in the as-grown films. Although the film H evolves very early during annealing, the local film order is largely retained in the still amorphous films even after the vast majority of the H is evolved, and the more well ordered regions which are the nucleation center sites for crystallization are those spatial regions which do not initially contain clustered H, as probed by H NMR spectroscopy. The sizes of these better ordered regions relative to a critical crystallite size determine the film incubation times (the time before the onset of crystallization). Changes in film short range order upon H evolution, and the presence of microvoid type structures in the as grown films play no role in the crystallization process. While the creation of dangling bonds upon H evolution may play a role in the actual phase transformation itself, the film defect densities measured just prior to the onset of crystallization exhibit no trends which can be correlated with the film incubation times. C1 [Mahan, A. Harv; Gedvilas, Lynn M.; Parilla, Phillip A.; Xu, Yueqin; Ginley, David A.] Natl Renewable Energy Lab, Natl Ctr Photovolta, Golden, CO 80401 USA. [Su, Tining; Williamson, Don L.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. [Ahrenkiel, S. Phil] S Dakota Sch Mines & Technol, Rapid City, SD 57701 USA. RP Mahan, AH (reprint author), Natl Renewable Energy Lab, Natl Ctr Photovolta, Golden, CO 80401 USA. EM harv.mahan@nrel.gov FU US Department of Energy [DE-AC36-99GO10337] FX This work was supported by the US Department of Energy under subcontract DE-AC36-99GO10337. NR 48 TC 21 Z9 21 U1 0 U2 5 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1616-301X J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD JUL 24 PY 2009 VL 19 IS 14 BP 2338 EP 2344 DI 10.1002/adfm.200801709 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 478RR UT WOS:000268606500021 ER PT J AU Soule, T Palmer, K Gao, QJ Potrafka, RM Stout, V Garcia-Pichel, F AF Soule, Tanya Palmer, Kendra Gao, Qunjie Potrafka, Ruth M. Stout, Valerie Garcia-Pichel, Ferran TI A comparative genomics approach to understanding the biosynthesis of the sunscreen scytonemin in cyanobacteria SO BMC GENOMICS LA English DT Article ID LEUCINE DEHYDROGENASE; SIGNAL-TRANSDUCTION; NOSTOC-COMMUNE; DIVERSITY; 2-COMPONENT; PIGMENT; GENE; TRYPTOPHAN; ACIDS AB Background: The extracellular sunscreen scytonemin is the most common and widespread indole-alkaloid among cyanobacteria. Previous research using the cyanobacterium Nostoc punctiforme ATCC 29133 revealed a unique 18-gene cluster (NpR1276 to NpR1259 in the N. punctiforme genome) involved in the biosynthesis of scytonemin. We provide further genomic characterization of these genes in N. punctiforme and extend it to homologous regions in other cyanobacteria. Results: Six putative genes in the scytonemin gene cluster (NpR1276 to NpR1271 in the N. punctiforme genome), with no previously known protein function and annotated in this study as scyA to scyF, are likely involved in the assembly of scytonemin from central metabolites, based on genetic, biochemical, and sequence similarity evidence. Also in this cluster are redundant copies of genes encoding for aromatic amino acid biosynthetic enzymes. These can theoretically lead to tryptophan and the tyrosine precursor, p-hydroxyphenylpyruvate, (expected biosynthetic precursors of scytonemin) from end products of the shikimic acid pathway. Redundant copies of the genes coding for the key regulatory and rate-limiting enzymes of the shikimic acid pathway are found there as well. We identified four other cyanobacterial strains containing orthologues of all of these genes, three of them by database searches (Lyngbya PCC 8106, Anabaena PCC 7120, and Nodularia CCY 9414) and one by targeted sequencing (Chlorogloeopsis sp. strain Cgs-089; CCMEE 5094). Genomic comparisons revealed that most scytonemin-related genes were highly conserved among strains and that two additional conserved clusters, NpF5232 to NpF5236 and a putative two-component regulatory system (NpF1278 and NpF1277), are likely involved in scytonemin biosynthesis and regulation, respectively, on the basis of conservation and location. Since many of the protein product sequences for the newly described genes, including ScyD, ScyE, and ScyF, have export signal domains, while others have putative transmembrane domains, it can be inferred that scytonemin biosynthesis is compartmentalized within the cell. Basic structural monomer synthesis and initial condensation are most likely cytoplasmic, while later reactions are predicted to be periplasmic. Conclusion: We show that scytonemin biosynthetic genes are highly conserved among evolutionarily diverse strains, likely include more genes than previously determined, and are predicted to involve compartmentalization of the biosynthetic pathway in the cell, an unusual trait for prokaryotes. C1 [Soule, Tanya; Palmer, Kendra; Gao, Qunjie; Potrafka, Ruth M.; Stout, Valerie; Garcia-Pichel, Ferran] Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA. [Soule, Tanya] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Garcia-Pichel, F (reprint author), Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA. EM tanya.soule@srnl.doe.gov; kendra.harris@asu.edu; gao.qunjie@asu.edu; ruth.potrafka@asu.edu; vstout@asu.edu; ferran@asu.edu NR 41 TC 32 Z9 33 U1 1 U2 17 PU BIOMED CENTRAL LTD PI LONDON PA CURRENT SCIENCE GROUP, MIDDLESEX HOUSE, 34-42 CLEVELAND ST, LONDON W1T 4LB, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD JUL 24 PY 2009 VL 10 AR 336 DI 10.1186/1471-2164-10-336 PG 10 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 490NU UT WOS:000269508600003 PM 19630972 ER PT J AU Perrine, CL Ganguli, A Wu, P Bertozzi, CR Fritz, TA Raman, J Tabak, LA Gerken, TA AF Perrine, Cynthia L. Ganguli, Anjali Wu, Peng Bertozzi, Carolyn R. Fritz, Timothy A. Raman, Jayalakshmi Tabak, Lawrence A. Gerken, Thomas A. TI Glycopeptide-preferring Polypeptide GalNAc Transferase 10 (ppGalNAc T10), Involved in Mucin-type O-Glycosylation, Has a Unique GalNAc-O-Ser/Thr-binding Site in Its Catalytic Domain Not Found in ppGalNAc T1 or T2 SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID ACETYL-D-GALACTOSAMINE; N-ACETYLGALACTOSAMINYLTRANSFERASE FAMILY; NEIGHBORING RESIDUE GLYCOSYLATION; PEPTIDE ACCEPTOR PREFERENCES; UDP-GALNAC; TANDEM REPEAT; FUNCTIONAL-CHARACTERIZATION; DROSOPHILA-MELANOGASTER; LINKED GLYCOSYLATION; STAUDINGER LIGATION AB Mucin-type O-glycosylation is initiated by a large family of UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltransferases (ppGalNAc Ts) that transfer GalNAc from UDP-GalNAc to the Ser and Thr residues of polypeptide acceptors. Some members of the family prefer previously glycosylated peptides (ppGalNAc T7 and T10), whereas others are inhibited by neighboring glycosylation (ppGalNAc T1 and T2). Characterizing their peptide and glycopeptide substrate specificity is critical for understanding the biological role and significance of each isoform. Utilizing a series of random peptide and glycopeptide substrates, we have obtained the peptide and glycopeptide specificities of ppGalNAc T10 for comparison with ppGalNAc T1 and T2. For the glycopeptide substrates, ppGalNAc T10 exhibited a single large preference for Ser/Thr-O-GalNAc at the +1 (C-terminal) position relative to the Ser or Thr acceptor site. ppGalNAc T1 and T2 revealed no significant enhancements suggesting Ser/Thr-O-GalNAc was inhibitory at most positions for these isoforms. Against random peptide substrates, ppGalNAc T10 revealed no significant hydrophobic or hydrophilic residue enhancements, in contrast to what has been reported previously for ppGalNAc T1 and T2. Our results reveal that these transferases have unique peptide and glycopeptide preferences demonstrating their substrate diversity and their likely roles ranging from initiating transferases to filling-in transferases. C1 [Gerken, Thomas A.] Case Western Reserve Univ, Sch Med, Dept Pediat, Cleveland, OH 44106 USA. [Perrine, Cynthia L.; Gerken, Thomas A.] Case Western Reserve Univ, Dept Chem, Cleveland, OH 44106 USA. [Gerken, Thomas A.] Case Western Reserve Univ, Dept Biochem, Cleveland, OH 44106 USA. [Gerken, Thomas A.] Case Western Reserve Univ, WA Bernbaum Ctr Cyst Fibrosis Res, Cleveland, OH 44106 USA. [Ganguli, Anjali; Wu, Peng; Bertozzi, Carolyn R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Fritz, Timothy A.; Raman, Jayalakshmi; Tabak, Lawrence A.] NIDDK, Sect Biol Chem, NIH, Dept Hlth & Human Serv, Bethesda, MD 20892 USA. RP Gerken, TA (reprint author), Case Western Reserve Univ, Sch Med, Dept Pediat, BRB 823,2109 Adelbert Rd, Cleveland, OH 44106 USA. EM txg2@cwru.edu FU National Institutes of Health [CA-78834]; NCI [GM66047]; NIDDK FX This work was supported, in whole or in part, by National Institutes of Health Grants CA-78834 from NCI (to T. A. G.) and GM66047 (to C. R. B.) and an NIDDK intramural program grant (to L. A. T.). NR 51 TC 31 Z9 36 U1 0 U2 5 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD JUL 24 PY 2009 VL 284 IS 30 BP 20387 EP 20397 DI 10.1074/jbc.M109.017236 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 471ZO UT WOS:000268097400064 PM 19460755 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartos, P Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burke, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cordelli, M Cortiana, G Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF Di Canto, A di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Garosi, P Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hays, C Heck, M Heijboer, A Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Hussein, M Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR