FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Cohen, AG Glashow, SL Ligeti, Z AF Cohen, Andrew G. Glashow, Sheldon L. Ligeti, Zoltan TI Disentangling neutrino oscillations SO PHYSICS LETTERS B LA English DT Article ID PM-142 AB The theory underlying neutrino oscillations has been described at length in the literature. The neutrino state produced by a weak decay is usually portrayed as a linear superposition of mass eigenstates with, variously, equal energies or equal momenta. We point out that such a description is incorrect, that in fact, the neutrino is entangled with the other particle or particles emerging from the decay. We offer an analysis of oscillation phenomena involving neutrinos (applying equally well to neutral mesons) that takes entanglement into account. Thereby we present a theoretically sound proof of the universal validity of the oscillation formulae ordinarily used. In so doing, we show that the departures from exponential decay reported by the GSI experiment cannot be attributed to neutrino mixing. Furthermore, we demonstrate that the 'Mossbauer' neutrino oscillation experiment proposed by Raghavan, while technically challenging, is correctly and unambiguously describable by means of the usual oscillation formalae. (C) 2009 Elsevier B.V. All rights reserved. C1 [Ligeti, Zoltan] Univ Calif Berkeley, Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Cohen, Andrew G.; Glashow, Sheldon L.] Boston Univ, Dept Phys, Boston, MA 02215 USA. RP Ligeti, Z (reprint author), Univ Calif Berkeley, Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM cohen@bu.edu; slg@bu.edu; ligeti@lbl.gov FU US Department of Energy [DE-FG02-01ER-40676, DE-AC02-05CH11231] FX We thank Stuart Freedman, Yuval Grossman, Witek Skiba and Jesse Thaler for helpful discussions, and Howard Haber and Bob Cahn for bringing the work of Nauenberg to our attention. We thank the Aspen Center for Physics where this work was begun. This work was supported in part by the US Department of Energy under grants DE-FG02-01ER-40676 and DE-AC02-05CH11231. NR 24 TC 40 Z9 40 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD JUL 13 PY 2009 VL 678 IS 2 BP 191 EP 196 DI 10.1016/j.physletb.2009.06.020 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 473MI UT WOS:000268210600007 ER PT J AU Caprioli, D Blasi, P Amato, E AF Caprioli, D. Blasi, P. Amato, E. TI On the escape of particles from cosmic ray modified shocks SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE acceleration of particles; shock waves ID SUPERNOVA-REMNANTS; MAGNETIC-FIELD; STREAMING INSTABILITY; HIGH-ENERGY; ACCELERATION; AMPLIFICATION; WAVES; TURBULENCE; FRONTS; MODEL AB Stationary solutions to the problem of particle acceleration at shock waves in the non-linear regime, when the dynamical reaction of the accelerated particles on the shock cannot be neglected, are known to show a prominent energy flux escaping from the shock towards upstream infinity. On physical grounds, the escape of particles from the upstream region of a shock has to be expected in all those situations in which the maximum momentum of accelerated particles, p(max), decreases with time, as is the case for the Sedov-Taylor phase of expansion of a shell supernova remnant, when both the shock velocity and the cosmic ray induced magnetization decrease. In this situation, at each time t, particles with momenta larger than p(max)(t) leave the system from upstream, carrying away a large fraction of the energy if the shock is strongly modified by the presence of cosmic rays. This phenomenon is of crucial importance for explaining the cosmic ray spectrum detected at the Earth. In this paper, we discuss how this escape flux appears in the different approaches to non-linear diffusive shock acceleration, and especially in the quasi-stationary semi-analytical kinetic ones. We apply our calculations to the Sedov-Taylor phase of a typical supernova remnant, including in a self-consistent way particle acceleration, magnetic field amplification and the dynamical reaction on the shock structure of both particles and fields. Within this framework, we calculate the temporal evolution of the maximum energy reached by the accelerated particles and of the escape flux towards upstream infinity. The latter quantity is directly related to the cosmic ray spectrum detected at the Earth. C1 [Caprioli, D.] SNS, I-50125 Pisa, Italy. [Blasi, P.; Amato, E.] INAF, Osservatorio Astrofis Arcetri, I-50125 Florence, Italy. [Blasi, P.; Amato, E.] Ctr Particle Astrophys, Fermilab, Batavia, IL 60510 USA. RP Caprioli, D (reprint author), SNS, I-50125 Pisa, Italy. EM d.caprioli@sns.it; blasi@arcetri.astro.it; amato@arcetri.astro.it RI Blasi, Pasquale/O-9345-2015; Amato, Elena/P-2938-2015; Caprioli, Damiano/I-6582-2012 OI Blasi, Pasquale/0000-0003-2480-599X; Amato, Elena/0000-0002-9881-8112; Caprioli, Damiano/0000-0003-0939-8775 FU ASI [ASI-INAF I/088/06/0]; US DOE; NASA [NAG5-10842] FX We are grateful to G. Cassam-Chenai and S. Gabici for reading an intermediate version of the present manuscript. We are also grateful to the anonymous referee for his/her precious comments. This work was partially supported by PRIN-2006, by ASI through contract ASI-INAF I/088/06/0 and (for PB) by the US DOE and by NASA grant NAG5-10842. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States DOE. NR 28 TC 52 Z9 52 U1 0 U2 0 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL 11 PY 2009 VL 396 IS 4 BP 2065 EP 2073 DI 10.1111/j.1365-2966.2008.14298.x PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 467BG UT WOS:000267710400018 ER PT J AU Cunha, CE Lima, M Oyaizu, H Frieman, J Lin, H AF Cunha, Carlos E. Lima, Marcos Oyaizu, Hiroaki Frieman, Joshua Lin, Huan TI Estimating the redshift distribution of photometric galaxy samples - II. Applications and tests of a new method SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: distances and redshifts; galaxies: statistics; distance scale; large-scale structure of Universe ID DIGITAL SKY SURVEY; DATA RELEASE; CALIBRATION; FIELD; CATALOG; REQUIREMENTS; MAGNITUDES; TELESCOPE; EVOLUTION; MONITOR AB In Lima et al. we presented a new method for estimating the redshift distribution, N(z), of a photometric galaxy sample, using photometric observables and weighted sampling from a spectroscopic subsample of the data. In this paper, we extend this method and explore various applications of it, using both simulations and real data from the Sloan Digital Sky Survey (SDSS). In addition to estimating the redshift distribution for an entire sample, the weighting method enables accurate estimates of the redshift probability distribution, p(z), for each galaxy in a photometric sample. Use of p(z) in cosmological analyses can substantially reduce biases associated with traditional photometric redshifts, in which a single redshift estimate is associated with each galaxy. The weighting procedure also naturally indicates which galaxies in the photometric sample are expected to have accurate redshift estimates, namely those that lie in regions of photometric-observable space that are well sampled by the spectroscopic subsample. In addition to providing a method that has some advantages over standard photo-z estimates, the weights method can also be used in conjunction with photo-z estimates e.g. by providing improved estimation of N(z) via deconvolution of N(z(phot)) and improved estimates of photo-z scatter and bias. We present a publicly available p(z) catalogue for similar to 78 million SDSS DR7 galaxies. C1 [Cunha, Carlos E.; Oyaizu, Hiroaki; Frieman, Joshua] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Cunha, Carlos E.; Lima, Marcos; Oyaizu, Hiroaki; Frieman, Joshua] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Cunha, Carlos E.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Lima, Marcos] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Lima, Marcos] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Frieman, Joshua; Lin, Huan] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. RP Cunha, CE (reprint author), Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM cunha@uchicago.edu RI Lima, Marcos/E-8378-2010 FU NSF [PHY-0114422, PHY-0551142, AST-0239759, AST-0507666, AST-0708154]; NSF; DOE [DE-AC02-07CH11359]; Alfred P. Sloan Foundation FX The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory and the University of Washington. NR 39 TC 60 Z9 60 U1 0 U2 0 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL 11 PY 2009 VL 396 IS 4 BP 2379 EP 2398 DI 10.1111/j.1365-2966.2009.14908.x PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 467BG UT WOS:000267710400044 ER PT J AU Friedman, A Barnard, JJ Briggs, RJ Davidson, RC Dorf, M Grote, DP Henestroza, E Lee, EP Leitner, MA Logan, BG Sefkow, AB Sharp, WM Waldron, WL Welch, DR Yu, SS AF Friedman, A. Barnard, J. J. Briggs, R. J. Davidson, R. C. Dorf, M. Grote, D. P. Henestroza, E. Lee, E. P. Leitner, M. A. Logan, B. G. Sefkow, A. B. Sharp, W. M. Waldron, W. L. Welch, D. R. Yu, S. S. TI Toward a physics design for NDCX-II, an ion accelerator for warm dense matter and HIF target physics studies SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 17th International Symposium on Heavy Ion Inertial Fusion CY AUG 04-08, 2008 CL Tokyo, JAPAN SP Tokyo Inst Technol, Res Lab Nucl Reactors, Japan Soc Plasma Sci & Nucl Fus Res, Particle Accelerator Soc Japan DE Accelerator; Fusion; Heavy-ion; Induction; Simulation; Particle-in-cell; Plasma; Beam AB The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL), a collaboration of LBNL, LLNL, and PPPL, has achieved 60-fold pulse compression of ion beams on the Neutralized Drift Compression eXperiment (NDCX) at LBNL In NDCX, a ramped voltage pulse from an induction cell imparts a velocity "tilt" to the beam; the beam's tail then catches up with its head in a plasma environment that provides neutralization. The HIFS-VNL's mission is to carry out studies of warm dense matter (WDM) physics using ion beams as the energy source; an emerging thrust is basic target physics for heavy ion-driven inertial fusion energy (IFE). These goals require an improved platform, labeled NDCX-II. Development of NDCX-II at modest cost was recently enabled by the availability of induction cells and associated hardware from the decommissioned advanced test accelerator (ATA) facility at LLNL Our initial physics design concept accelerates a similar to 30 nC pulse of Li(+) ions to similar to 3 MeV, then compresses it to similar to 1 ns while focusing it onto a mm-scale spot. It uses the ATA cells themselves (with waveforms shaped by passive circuits) to impart the final velocity tilt; smart pulsers provide small corrections. The ATA accelerated electrons; acceleration of non-relativistic ions involves more complex beam dynamics both transversely and longitudinally. We are using an interactive one-dimensional kinetic simulation model and multidimensional Warp-code simulations to develop the NDCX-II accelerator section. Both LSP and Warp codes are being applied to the beam dynamics in the neutralized drift and final focus regions, and the plasma injection process. The status of this effort is described. (C) 2009 Elsevier B.V. All rights reserved. C1 [Friedman, A.; Barnard, J. J.; Grote, D. P.; Sharp, W. M.] Lawrence Livermore Natl Lab, Livermore, CA 94720 USA. [Briggs, R. J.; Henestroza, E.; Lee, E. P.; Leitner, M. A.; Logan, B. G.; Waldron, W. L.; Yu, S. S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Davidson, R. C.; Dorf, M.; Sefkow, A. B.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Welch, D. R.] Voss Sci, Albuquerque, NM USA. RP Friedman, A (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94720 USA. EM af@llnl.gov NR 12 TC 25 Z9 25 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 11 PY 2009 VL 606 IS 1-2 BP 6 EP 10 DI 10.1016/j.nima.2009.03.189 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 478AC UT WOS:000268559100003 ER PT J AU Davidson, RC Dorf, MA Kaganovich, ID Qin, H Sefkow, A Startsev, EA Welch, DR Rose, DV Lund, SM AF Davidson, Ronald C. Dorf, Mikhail A. Kaganovich, Igor D. Qin, Hong Sefkow, Adam Startsev, Edward A. Welch, Dale R. Rose, David V. Lund, Steven M. TI Survey of collective instabilities and beam-plasma interactions in intense heavy ion beams SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 17th International Symposium on Heavy Ion Inertial Fusion CY AUG 04-08, 2008 CL Tokyo, JAPAN SP Tokyo Inst Technol, Res Lab Nucl Reactors, Japan Soc Plasma Sci & Nucl Fus Res, Particle Accelerator Soc Japan DE Intense ion beams; Beam-plasma instabilities; Collective processes ID CHARGED-PARTICLE BEAMS; DELTA-F SIMULATION; RELATIVISTIC ELECTRON-BEAMS; PERIODIC FOCUSING FIELD; LARGE TEMPERATURE ANISOTROPY; RESISTIVE HOSE INSTABILITY; SOLENOIDAL MAGNETIC-FIELD; VLASOV-MAXWELL EQUATIONS; ENERGY DENSITY PHYSICS; 2-STREAM INSTABILITY AB This paper presents a survey of the present theoretical understanding based on advanced analytical and numerical studies of collective processes and beam-plasma interactions in intense heavy ion beams for applications to ion-beam-driven high energy density physics and heavy ion fusion. The topics include: discussion of the conditions for quiescent beam propagation over long distances; and the electrostatic Harris instability and the transverse electromagnetic Weibel instability in highly anisotropic, intense one-component ion beams. In the longitudinal drift compression and transverse compression regions, collective processes associated with the interaction of the intense ion beam with a charge-neutralizing background plasma are described, including the electrostatic electron-ion two-stream instability, the multispecies electromagnetic Weibel instability, and collective excitations in the presence of a solenoidal magnetic field. The effects of a velocity tilt on reducing two-stream instability growth rates are also discussed. Operating regimes are identified where the possible deleterious effects of collective processes on beam quality are minimized. (C) 2009 Elsevier B.V. All rights reserved. C1 [Davidson, Ronald C.; Dorf, Mikhail A.; Kaganovich, Igor D.; Qin, Hong; Sefkow, Adam; Startsev, Edward A.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Welch, Dale R.; Rose, David V.] Voss Sci, Albuquerque, NM USA. [Lund, Steven M.] Lawrence Livermore Natl Lab, Berkeley, CA USA. RP Davidson, RC (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM rdavidson@pppl.gov NR 83 TC 13 Z9 13 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 11 PY 2009 VL 606 IS 1-2 BP 11 EP 21 DI 10.1016/j.nima.2009.03.077 PG 11 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 478AC UT WOS:000268559100004 ER PT J AU Roy, PK Seidl, PA Anders, A Bieniosek, FM Coleman, JE Gilson, EP Greenway, W Grote, DP Jung, JY Leitner, M Lidia, SM Logan, BG Sefkow, AB Waldron, WL Welch, DR AF Roy, P. K. Seidl, P. A. Anders, A. Bieniosek, F. M. Coleman, J. E. Gilson, E. P. Greenway, W. Grote, D. P. Jung, J. Y. Leitner, M. Lidia, S. M. Logan, B. G. Sefkow, A. B. Waldron, W. L. Welch, D. R. TI A space-charge-neutralizing plasma for beam drift compression SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 17th International Symposium on Heavy Ion Inertial Fusion CY AUG 04-08, 2008 CL Tokyo, JAPAN SP Tokyo Inst Technol, Res Lab Nucl Reactors, Japan Soc Plasma Sci & Nucl Fus Res, Particle Accelerator Soc Japan DE Beam; Ion; Neutralization; Compression; Plasma; Plasma probe; Plasma density ID HEAVY-ION FUSION; SIMULATION; TRANSPORT; TRANSVERSE AB Simultaneous radial focusing and longitudinal compression of intense ion beams are being studied to heat matter to the warm dense matter, or strongly coupled plasma regime. Higher compression ratios can be achieved if the beam compression takes place in a plasma-filled drift region in which the space-charge forces of the ion beam are neutralized. Recently, a system of four cathodic arc plasma sources has been fabricated and the axial plasma density has been measured. A movable plasma probe array has been developed to measure the radial and axial plasma distribution inside and outside of a similar to 10-cm-long final focus solenoid (FFS). Measured data show that the plasma forms a thin column of diameter similar to 5 mm along the solenoid axis when the FFS is powered with an 8 T field. Measured plasma density of >= 1 x 10(13) cm(-3) meets the challenge of n(p)/Zn-b > 1, where n(p) and n(b) are the plasma and ion beam density, respectively, and Z is the mean ion charge state of the beam ions. (C) 2009 Elsevier B.V. All rights reserved. C1 [Roy, P. K.; Seidl, P. A.; Anders, A.; Bieniosek, F. M.; Coleman, J. E.; Greenway, W.; Jung, J. Y.; Leitner, M.; Lidia, S. M.; Logan, B. G.; Waldron, W. L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Coleman, J. E.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Gilson, E. P.; Sefkow, A. B.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Grote, D. P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Sefkow, A. B.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Welch, D. R.] Voss Sci, Albuquerque, NM 87108 USA. RP Roy, PK (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM pkroy@lbl.gov RI Anders, Andre/B-8580-2009 OI Anders, Andre/0000-0002-5313-6505 NR 19 TC 15 Z9 16 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 11 PY 2009 VL 606 IS 1-2 BP 22 EP 30 DI 10.1016/j.nima.2009.03.228 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 478AC UT WOS:000268559100005 ER PT J AU Qin, H Davidson, RC Startsev, EA AF Qin, Hong Davidson, Ronald C. Startsev, Edward A. TI Advanced numerical simulations of temperature anisotropy instabilities and collective interaction processes in high-intensity bunched ion beams SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 17th International Symposium on Heavy Ion Inertial Fusion CY AUG 04-08, 2008 CL Tokyo, JAPAN SP Tokyo Inst Technol, Res Lab Nucl Reactors, Japan Soc Plasma Sci & Nucl Fus Res, Particle Accelerator Soc Japan DE High intensity beam; Bunched beam; Perturbative particle simulation ID CHARGED-PARTICLE BEAMS; 2-STREAM INSTABILITY; FUSION AB The delta f particle-in-cell simulation method has been extended to allow the perturbation to be defined relative to any reference state, and a switching algorithm that can smoothly switch between the delta f and total-f methods has been developed. The improved delta f method has been successfully applied to simulate the collective dynamics of high-intensity bunched beams. Systematic studies of the influence of finite bunch length on the spectra of collective excitations in high-intensity ion beams. and the linear and nonlinear evolution of the temperature anisotropy instability has been carried out. (C) 2009 Elsevier B.V. All rights reserved. C1 [Qin, Hong; Davidson, Ronald C.; Startsev, Edward A.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Qin, H (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM hongqin@princeton.edu NR 22 TC 3 Z9 3 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 11 PY 2009 VL 606 IS 1-2 BP 37 EP 41 DI 10.1016/j.nima.2009.03.080 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 478AC UT WOS:000268559100007 ER PT J AU Startsev, EA Davidson, RC AF Startsev, Edward A. Davidson, Ronald C. TI Dynamics of electromagnetic two-stream interaction processes during longitudinal and transverse compression of an intense ion beam pulse propagating through background plasma SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 17th International Symposium on Heavy Ion Inertial Fusion CY AUG 04-08, 2008 CL Tokyo, JAPAN SP Tokyo Inst Technol, Res Lab Nucl Reactors, Japan Soc Plasma Sci & Nucl Fus Res, Particle Accelerator Soc Japan DE Two-stream instability; Dynamic stabilization; Charged-particle beams ID CHARGED-PARTICLE BEAM AB To achieve maximum energy density, an intense ion beam must be compressed radially and longitudinally while its space-charge is neutralized by background plasma. An ion beam propagating through background plasma may be subject to the electrostatic two-stream instability and the electromagnetic Weibel instability. The electrostatic two-stream instability may lead to longitudinal bunching of the beam pulse, and eventual longitudinal beam heating. Consequently, this could degrade the longitudinal compression of the beam pulse. Similarly, the electromagnetic Weibel instability may cause transverse filamentation of the beam, which may degrade transverse compression. in this paper, we use an eikonal (Wentzel-Kramer-Brillouin, WKB) approach to analyze the space-time development of the two-stream and Weibel instabilities during transverse and longitudinal compression of an intense heavy ion beam pulse propagating through neutralizing background plasma. (C) 2009 Elsevier B.V. All rights reserved. C1 [Startsev, Edward A.; Davidson, Ronald C.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Startsev, EA (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM estarts@pppl.gov NR 18 TC 6 Z9 6 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 11 PY 2009 VL 606 IS 1-2 BP 42 EP 47 DI 10.1016/j.nima.2009.03.079 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 478AC UT WOS:000268559100008 ER PT J AU Gilson, EP Chung, M Davidson, RC Dorf, M Efthimion, PC Godbehere, AB Majeski, R AF Gilson, E. P. Chung, M. Davidson, R. C. Dorf, M. Efthimion, P. C. Godbehere, A. B. Majeski, R. TI Recent advances in the physics of collective excitations in the Paul trap simulator experiment SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 17th International Symposium on Heavy Ion Inertial Fusion CY AUG 04-08, 2008 CL Tokyo, JAPAN SP Tokyo Inst Technol, Res Lab Nucl Reactors, Japan Soc Plasma Sci & Nucl Fus Res, Particle Accelerator Soc Japan DE Ion beam; Accelerator; Plasma; Paul trap ID PERIODIC FOCUSING FIELD; CHARGED-PARTICLE BEAMS; EXPERIMENT PTSX; PROPAGATION AB The Paul trap simulator experiment (PTSX) is a compact laboratory linear Paul trap that simulates the transverse dynamics of a long charged-particle bunch propagating through a magnetic alternating-gradient (AG) transport system. The transverse dynamics of particles in the AG system in the beam's frame-of-reference and those of particles in PTSX are described by the same sets of ecluations, including all nonlinear space-charge effects. Initial experimental results are presented in which the collective transverse symmetric mode (m = 0) and quadrupole mode (m = 2) have been observed in pure-barium-ion plasmas in PTSX, with a depressed-tune v/v(o)similar to 0.9, with the intent of identifying collective modes whose signature will serve as a robust diagnostic for key properties of the beam, such as line density and transverse emittance. The results of particle-in-cell simulations performed with the WARP code are compared to the experimental data. (C) 2009 Elsevier B.V. All rights reserved. C1 [Gilson, E. P.; Chung, M.; Davidson, R. C.; Dorf, M.; Efthimion, P. C.; Majeski, R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Godbehere, A. B.] Cornell Univ, Ithaca, NY USA. RP Gilson, EP (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM egilson@pppl.gov NR 30 TC 2 Z9 2 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 11 PY 2009 VL 606 IS 1-2 BP 48 EP 52 DI 10.1016/j.nima.2009.03.078 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 478AC UT WOS:000268559100009 ER PT J AU Cohen, RH Friedman, A Grote, DP Vay, JL AF Cohen, R. H. Friedman, A. Grote, D. P. Vay, J. -L. TI An implicit "drift-Lorentz" mover for plasma and beam simulations SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 17th International Symposium on Heavy Ion Inertial Fusion CY AUG 04-08, 2008 CL Tokyo, JAPAN SP Tokyo Inst Technol, Res Lab Nucl Reactors, Japan Soc Plasma Sci & Nucl Fus Res, Particle Accelerator Soc Japan DE Accelerator; Fusion; Heavy-ion; Induction; Simulation; Particle-in-cell; Plasma; Beam AB In order to efficiently perform particle simulations in systems with widely varying magnetization, we developed a drift-Lorentz mover, which interpolates between full particle dynamics and drift kinetics in such a way as to preserve a physically correct gyroradius and particle drifts for both large and small ratios of the timestep to the cyclotron period. in order to extend applicability of the mover to systems with plasma frequency exceeding the cyclotron frequency such as one may have with fully neutralized drift compression of a heavy-ion beam we have developed an implicit version of the mover. A first step in this direction, in which the polarization charge was added to the field solver, was described previously. Here we describe a fully implicit algorithm (which is analogous to the direct-implicit method for conventional particle-in-cell simulation), summarize a stability analysis of it, and describe several tests of the resultant code. (C) 2009 Elsevier B.V. All rights reserved. C1 [Cohen, R. H.; Friedman, A.; Grote, D. P.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Vay, J. -L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Cohen, RH (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM rcohen@llnl.gov NR 4 TC 2 Z9 2 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 11 PY 2009 VL 606 IS 1-2 BP 53 EP 55 DI 10.1016/j.nima.2009.03.083 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 478AC UT WOS:000268559100010 ER PT J AU Lund, SM Wootton, CJ Lee, EP AF Lund, Steven M. Wootton, Christopher J. Lee, Edward P. TI Transverse centroid oscillations in solenoidially focused beam transport lattices SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 17th International Symposium on Heavy Ion Inertial Fusion CY AUG 04-08, 2008 CL Tokyo, JAPAN SP Tokyo Inst Technol, Res Lab Nucl Reactors, Japan Soc Plasma Sci & Nucl Fus Res, Particle Accelerator Soc Japan DE Solenoid; Transport; Centroid; Steering; Alignment ID LINEAR ACCELERATORS AB Transverse centroid oscillations are analyzed for a beam in a solenoid transport lattice. Linear equations of motion are derived that describe small-amplitude centroid oscillations induced by displacement and rotational misalignments of the focusing solenoids in the transport lattice, dipole steering elements, and initial centroid offset errors. These equations are analyzed in a local rotating Larmor frame to derive complex-variable "alignment functions" and "bending functions" that efficiently describe the characteristics of the centroid oscillations induced by both mechanical misalignments of the solenoids and dipole steering elements. The alignment and bending functions depend only on the properties of the ideal lattice in the absence of errors and steering, and have associated expansion amplitudes set by the misalignments and steering fields, respectively. Applications of this formulation are presented for statistical analysis of centroid oscillations, calculation of actual lattice misalignments from centroid measurements, and optimal beam steering. (C) 2009 Elsevier B.V. All rights reserved. C1 [Lund, Steven M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Wootton, Christopher J.; Lee, Edward P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Lund, SM (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM SMLund@llnl.gov NR 14 TC 6 Z9 6 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 11 PY 2009 VL 606 IS 1-2 BP 56 EP 63 DI 10.1016/j.nima.2009.03.242 PG 8 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 478AC UT WOS:000268559100011 ER PT J AU Seidl, PA Anders, A Bieniosek, FM Barnard, JJ Calanog, J Chen, AX Cohen, RH Coleman, JE Dorf, M Gilson, EP Grote, DP Jung, JY Leitner, M Lidia, SM Logan, BG Ni, P Roy, PK Van den Bogert, K Waldron, WL Welch, DR AF Seidl, P. A. Anders, A. Bieniosek, F. M. Barnard, J. J. Calanog, J. Chen, A. X. Cohen, R. H. Coleman, J. E. Dorf, M. Gilson, E. P. Grote, D. P. Jung, J. Y. Leitner, M. Lidia, S. M. Logan, B. G. Ni, P. Roy, P. K. Van den Bogert, K. Waldron, W. L. Welch, D. R. TI Progress in beam focusing and compression for warm-dense matter experiments SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 17th International Symposium on Heavy Ion Inertial Fusion CY AUG 04-08, 2008 CL Tokyo, JAPAN SP Tokyo Inst Technol, Res Lab Nucl Reactors, Japan Soc Plasma Sci & Nucl Fus Res, Particle Accelerator Soc Japan DE High-energy density physics; High-current accelerator; Energy analyzer; Diagnostics; Heavy-ion beam ID SIMULATION AB The Heavy-Ion Fusion Sciences Virtual National Laboratory is pursuing an approach to target heating experiments in the warm-dense matter regime, using space-charge-dominated ion beams that are simultaneously longitudinally bunched and transversely focused. Longitudinal beam compression by large factors has been demonstrated in the Neutralized Drift Compression Experiment (NDCX) with controlled ramps and forced neutralization. Using an injected 30-mA K+ ion beam with initial kinetic energy 0.3 MeV, axial compression leading to similar to 50-fold current amplification and simultaneous radial focusing to beam radii of a few mm have led to encouraging energy deposition approaching the intensities required for eV-range target heating experiments. We discuss the status of several improvements to our Neutralized Drift Compression Experiment and associated beam diagnostics that are under development to reach the necessary higher beam intensities, including (1) greater axial compression via a longer velocity ramp using a new bunching module with approximately twice the available volt seconds (Vs): (2) improved centroid control via beam steering dipoles to mitigate aberrations in the bunching module; (3) time-dependent focusing elements to correct considerable chromatic aberrations; and (4) plasma injection improvements to establish a plasma density always greater than the beam density, expected to be > 10(13) cm(-3). (C) 2009 Published by Elsevier B.V. C1 [Seidl, P. A.; Anders, A.; Bieniosek, F. M.; Calanog, J.; Chen, A. X.; Coleman, J. E.; Jung, J. Y.; Leitner, M.; Lidia, S. M.; Logan, B. G.; Ni, P.; Roy, P. K.; Van den Bogert, K.; Waldron, W. L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Barnard, J. J.; Cohen, R. H.; Grote, D. P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Dorf, M.; Gilson, E. P.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Welch, D. R.] Voss Sci, Albuquerque, NM 87108 USA. RP Seidl, PA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM PASeidl@lbl.gov RI Anders, Andre/B-8580-2009 OI Anders, Andre/0000-0002-5313-6505 NR 18 TC 25 Z9 25 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 11 PY 2009 VL 606 IS 1-2 BP 75 EP 82 DI 10.1016/j.nima.2009.03.254 PG 8 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 478AC UT WOS:000268559100014 ER PT J AU Grisham, LR Kwan, JW AF Grisham, L. R. Kwan, J. W. TI Perspective on the role of negative ions and ion-ion plasmas in heavy ion fusion science, magnetic fusion energy, and related fields SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 17th International Symposium on Heavy Ion Inertial Fusion CY AUG 04-08, 2008 CL Tokyo, JAPAN SP Tokyo Inst Technol, Res Lab Nucl Reactors, Japan Soc Plasma Sci & Nucl Fus Res, Particle Accelerator Soc Japan DE Negative ions; Negative ion extraction; Negative ion beam; Ion-ion plasma ID ELECTRON-DETACHMENT; DRIVER; BEAMS AB Some years ago it was suggested that halogen negative ions [L.R. Grisham, Nuclear Instruments and Methods in Physics Research A 464 (2001) 315] could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam, which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. in demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion-ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitousiy, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons - can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept that might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion-ion plasmas with thin targets of halogens or, perhaps, salt is briefly addressed. (C) 2009 Elsevier B.V. All rights reserved. C1 [Grisham, L. R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Kwan, J. W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Grisham, LR (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM lgrisham@pppl.gov NR 12 TC 4 Z9 4 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 11 PY 2009 VL 606 IS 1-2 BP 83 EP 88 DI 10.1016/j.nima.2009.03.199 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 478AC UT WOS:000268559100015 ER PT J AU Okamura, M Pikin, A Zajic, V Kanesue, T Tamura, J AF Okamura, Masahiro Pikin, Alexander Zajic, Vladimir Kanesue, Takeshi Tamura, Jun TI Laser ion source for low-charge heavy ion beams SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 17th International Symposium on Heavy Ion Inertial Fusion CY AUG 04-08, 2008 CL Tokyo, JAPAN SP Tokyo Inst Technol, Res Lab Nucl Reactors, Japan Soc Plasma Sci & Nucl Fus Res, Particle Accelerator Soc Japan DE Fusion; Radio frequency quadrupole; Laser; Laser ion source; Direct plasma injection scheme AB For heavy ion inertial fusion application, a combination of a laser ion source and direct plasma injection scheme into a radio frequency quadrupole (RFQ) is proposed. The combination might provide more than 100 mA of singly charged heavy ion beam from a single laser shot. A planned feasibility test with moderate current is also discussed. Published by Elsevier B.V. C1 [Okamura, Masahiro; Pikin, Alexander; Zajic, Vladimir] Brookhaven Natl Lab, Upton, NY 11973 USA. [Okamura, Masahiro; Kanesue, Takeshi; Tamura, Jun] RIKEN, Wako, Saitama 3510198, Japan. [Kanesue, Takeshi] Kyushu Univ, Dept Appl Quantum Phys & Nucl Engn, Nishi Ku, Fukuoka 8190395, Japan. [Tamura, Jun] Tokyo Inst Technol, Dept Energy Sci, Midori Ku, Yokohama, Kanagawa 2268502, Japan. RP Okamura, M (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM okamura@bnl.gov NR 3 TC 6 Z9 7 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 11 PY 2009 VL 606 IS 1-2 BP 94 EP 96 DI 10.1016/j.nima.2009.03.232 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 478AC UT WOS:000268559100017 ER PT J AU Sharp, WM Friedman, A Grote, DP Henestroza, E Leitner, MA Waldron, WL AF Sharp, W. M. Friedman, A. Grote, D. P. Henestroza, E. Leitner, M. A. Waldron, W. L. TI Developing acceleration schedules for NDCX-II SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 17th International Symposium on Heavy Ion Inertial Fusion CY AUG 04-08, 2008 CL Tokyo, JAPAN SP Tokyo Inst Technol, Res Lab Nucl Reactors, Japan Soc Plasma Sci & Nucl Fus Res, Particle Accelerator Soc Japan DE NDCX-II; Compression; Acceleration; Induction; Simulation AB The Virtual National Laboratory for Heavy-Ion Fusion Science is developing a physics design for NDCX-II, an experiment to study warm dense matter heated by ions near the Bragg-peak energy. Present plans call for using about thirty induction cells to accelerate 30 nC of Li(+) ions to more than 3 MeV, followed by neutralized drift-compress ion. To heat targets to useful temperatures. the beam must be compressed to a millimeter-scale radius and a duration of about 1 ns. An interactive 1-D particle-in-cell simulation with an electrostatic field solver, acceleration-gap fringe fields, and a library of realizable analytic waveforms has been used for developing NDCX-II acceleration schedules. Axisymmetric simulations with WARP have validated this 1-D model and have been used both to design transverse focusing and to compensate for injection non-uniformities and radial variation of the fields. Highlights of this work are presented here. (C) 2009 Elsevier B.V. All rights reserved. C1 [Sharp, W. M.; Friedman, A.; Grote, D. P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Henestroza, E.; Leitner, M. A.; Waldron, W. L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Sharp, WM (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM wmsharp@lbl.gov NR 3 TC 8 Z9 8 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 11 PY 2009 VL 606 IS 1-2 BP 97 EP 101 DI 10.1016/j.nima.2009.03.229 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 478AC UT WOS:000268559100018 ER PT J AU Ling, CY Yu, SS Henestroza, E AF Ling, C. Y. Yu, S. S. Henestroza, E. TI Simulation of high-frequency modes and their effect on insulator breakdown in the pulse line ion accelerator SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 17th International Symposium on Heavy Ion Inertial Fusion CY AUG 04-08, 2008 CL Tokyo, JAPAN SP Tokyo Inst Technol, Res Lab Nucl Reactors, Japan Soc Plasma Sci & Nucl Fus Res, Particle Accelerator Soc Japan DE Pulse line ion accelerator; MAFIA simulation; Electrical flashover AB The pulse line ion accelerator (PLIA) produces a traveling electromagnetic (EM) wave by applying a voltage pulse to one end of a helix that accelerates and axially confines a heavy-ion beam pulse. An anomalous flashover phenomenon has been observed on the vacuum-insulator surface that limits the amplitude of the accelerating field. It has been suspected that a small component of high-frequency modes in the input pulse may be the cause of the breakdown. Simulation using MAFIA (MAxwell's equations by Finite Integration Algorithm) was conducted to investigate the fields on the insulator surface. A scaling law was proposed to reduce substantially the computational time in simulation. It is based on the hypothesis that the pattern of EM field for a given wavelength is independent of the wire spacing as long as the wavelength is much longer than the inter-wire spacing and the termination resistors are adjusted to maintain impedance matching. On the basis of these numerical simulations, we conclude that high-frequency modes, even at very low amplitudes, may indeed lead to the observed insulator flashover. (C) 2009 Elsevier B.V. All rights reserved. C1 [Ling, C. Y.; Yu, S. S.] Chinese Univ Hong Kong, Shatin, Hong Kong, Peoples R China. [Yu, S. S.; Henestroza, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Ling, CY (reprint author), Chinese Univ Hong Kong, Shatin, Hong Kong, Peoples R China. EM antelopeling@gmail.com NR 2 TC 2 Z9 2 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 11 PY 2009 VL 606 IS 1-2 BP 102 EP 106 DI 10.1016/j.nima.2009.03.230 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 478AC UT WOS:000268559100019 ER PT J AU Efthimion, PC Gilson, EP Grisham, L Davidson, RC Logan, LBG Seidl, PA Waldron, W AF Efthimion, Philip C. Gilson, Erik P. Grisham, Larry Davidson, Ronald C. Logan, Larry B. Grant Seidl, Peter A. Waldron, William TI Long plasma source for heavy ion beam charge neutralization SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 17th International Symposium on Heavy Ion Inertial Fusion CY AUG 04-08, 2008 CL Tokyo, JAPAN SP Tokyo Inst Technol, Res Lab Nucl Reactors, Japan Soc Plasma Sci & Nucl Fus Res, Particle Accelerator Soc Japan DE Plasma source; Neutralized transport; Beam neutralization ID FERROELECTRIC PLASMA AB Plasmas are a source of unbound electrons for charge neutralizing intense heavy ion beams to focus them to a small spot size and compress their axial length. The plasma source should operate at low neutral pressures and without strong externally applied fields. To produce long plasma columns, sources based upon ferroelectric ceramics with large dielectric coefficients have been developed. The source utilizes the ferroelectric ceramic BaTiO3 to form metal plasma. The drift tube inner surface of the Neutralized Drift Compression Experiment (NDCX) is covered with ceramic material. High voltage (similar to 8kV) is applied between the drift tube and the front surface of the ceramics. A BaTiO3 source comprised of five 20-cm-long sources has been tested and characterized, producing relatively uniform plasma in the 5 x 10(10) cm(-3) density range. The source was integrated into the NDCX device for charge neutralization and beam compression experiments, and yielded current compression ratios similar to 120. Present research is developing multi-meter-long and higher density sources to support beam compression experiments for high-energy-density physics applications. (C) 2009 Elsevier B.V. All rights reserved. C1 [Efthimion, Philip C.; Gilson, Erik P.; Grisham, Larry; Davidson, Ronald C.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. [Logan, Larry B. Grant; Seidl, Peter A.; Waldron, William] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Efthimion, PC (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM pefthimion@pppl.gov NR 8 TC 9 Z9 9 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 11 PY 2009 VL 606 IS 1-2 BP 124 EP 127 DI 10.1016/j.nima.2009.03.096 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 478AC UT WOS:000268559100024 ER PT J AU Tahir, NA Lomonosov, IV Shutov, A Fortov, VE Geissel, M Piriz, AR Deutsch, C Hoffmann, DHH AF Tahir, N. A. Lomonosov, I. V. Shutov, A. Fortov, V. E. Geissel, M. Piriz, A. R. Deutsch, C. Hoffmann, D. H. H. TI Review of high energy density physics: The HEDgeHOB Collaboration SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 17th International Symposium on Heavy Ion Inertial Fusion CY AUG 04-08, 2008 CL Tokyo, JAPAN SP Tokyo Inst Technol, Res Lab Nucl Reactors, Japan Soc Plasma Sci & Nucl Fus Res, Particle Accelerator Soc Japan DE High Energy Density Physics; Warm Dense Matter; Strongly Coupled Plasmas; Equation of State; Planetary Science ID EQUATION-OF-STATE; HEAVY-ION BEAMS; FUTURE FAIR FACILITY; SHOCK-WAVES; MATTER; DRIVEN; SOLIDS AB High Energy Density Physics (HEDP) is one of the most important and interesting areas of science that spans over numerous branches of basic and applied physics. In this paper, we present an overview of different experimental techniques that have been used to study this field over the past decades. We also introduce a recently proposed novel technique to study HEDP that involves isochoric and uniform heating of extended targets using intense particle beams. The Gesellschaft fur Schwerionenforschung (GSI), Darmstadt, is a leading laboratory worldwide that is well known for its unique accelerator facilities. The construction of a new accelerator complex named FAIR (Facility for Antiprotons and Ion Research) will substantially increase the accelerator capabilities of GSI, which will make it possible to employ this new technique to study HEDP. In this paper we highlight some of the salient features of this proposed new method. We also note that in order to organize the construction of experimental facilities at FAIR and later to carry out experiments on HEDP, an international collaboration, named, HEDgeHOB (High Energy Density Matter generated by Heavy IOn Beams), has been organized. The work presented in this paper has been done within the framework of the HEDgeHOB Collaboration. (C) 2009 Elsevier B.V. All rights reserved. C1 [Tahir, N. A.] Gesell Schwerionenforsch mbH, D-64291 Darmstadt, Germany. [Lomonosov, I. V.; Shutov, A.; Fortov, V. E.] Inst Problems Chem Phys, Chernogolovka 142432, Russia. [Geissel, M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Piriz, A. R.] Univ Castilla La Mancha, ETSI Ind, E-13071 Ciudad Real, Spain. [Piriz, A. R.] Univ Castilla La Mancha, Inst Invest Energet, E-13071 Ciudad Real, Spain. [Deutsch, C.] Univ Paris 11, LPGP, F-91405 Orsay, France. [Hoffmann, D. H. H.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. RP Tahir, NA (reprint author), Gesell Schwerionenforsch mbH, Planckstr 1, D-64291 Darmstadt, Germany. EM n.tahir@gsi.de RI Hoffmann, Dieter H.H./A-5265-2008; Piriz, Antonio /C-8665-2009; Lomonosov, Igor/F-1217-2011 OI Piriz, Antonio /0000-0003-4626-2148; Lomonosov, Igor/0000-0003-0083-7727 NR 36 TC 3 Z9 3 U1 2 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 11 PY 2009 VL 606 IS 1-2 BP 128 EP 133 DI 10.1016/j.nima.2009.03.095 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 478AC UT WOS:000268559100025 ER PT J AU Barnard, JJ Armijo, J Bailey, DS Friedman, A Bieniosek, FM Henestroza, E Kaganovich, I Leung, PT Logan, BG Marinak, MM More, RM Ng, SF Penn, GE Perkins, LJ Veitzer, S Wurtele, JS Yu, SS Zylstra, AB AF Barnard, J. J. Armijo, J. Bailey, D. S. Friedman, A. Bieniosek, F. M. Henestroza, E. Kaganovich, I. Leung, P. T. Logan, B. G. Marinak, M. M. More, R. M. Ng, S. F. Penn, G. E. Perkins, L. J. Veitzer, S. Wurtele, J. S. Yu, S. S. Zylstra, A. B. TI Ion beam heated target simulations for warm dense matter physics and inertial fusion energy SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 17th International Symposium on Heavy Ion Inertial Fusion CY AUG 04-08, 2008 CL Tokyo, JAPAN SP Tokyo Inst Technol, Res Lab Nucl Reactors, Japan Soc Plasma Sci & Nucl Fus Res, Particle Accelerator Soc Japan DE Ion beam heating; Warm dense matter; Inertial fusion energy targets; Hydrodynamic simulation ID IGNITION; FACILITY; DRIVEN AB Hydrodynamic simulations have been carried out using the multi-physics radiation hydrodynamics code HYDRA and the simplified one-dimensional hydrodynamics code DISH. We simulate possible targets for a near-term experiment at LBNL (the Neutralized Drift Compression Experiment, NDCX) and possible later experiments on a proposed facility (NDCX-II) for studies of warm dense matter and inertial fusion energy-related beam-target coupling. Simulations of various target materials (including solids and foams) are presented. Experimental configurations include single-pulse planar metallic solid and foam foils. Concepts for double-pulsed and ramped-energy pulses on cryogenic targets and foams have been simulated for exploring direct drive beam-target coupling, and concepts and simulations for collapsing cylindrical and spherical bubbles to enhance temperature and pressure for warm dense matter studies. (C) 2009 Elsevier B.V. All rights reserved. C1 [Barnard, J. J.; Bailey, D. S.; Friedman, A.; Marinak, M. M.; Perkins, L. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Armijo, J.; Bieniosek, F. M.; Henestroza, E.; Logan, B. G.; More, R. M.; Ng, S. F.; Penn, G. E.; Wurtele, J. S.; Yu, S. S.; Zylstra, A. B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Kaganovich, I.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Veitzer, S.] Tech X Corp, Boulder, CO 80303 USA. [Leung, P. T.; Ng, S. F.; Yu, S. S.] Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China. RP Barnard, JJ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM jjbarnard@llnl.gov RI Armijo, Julien/I-5413-2013; wurtele, Jonathan/J-6278-2016 OI wurtele, Jonathan/0000-0001-8401-0297 NR 20 TC 17 Z9 18 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 11 PY 2009 VL 606 IS 1-2 BP 134 EP 138 DI 10.1016/j.nima.2009.03.221 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 478AC UT WOS:000268559100026 ER PT J AU Bieniosek, FM Henestroza, E Leitner, M Logan, BG More, RM Roy, PK Ni, P Seidl, PA Waldron, WL Barnard, JJ AF Bieniosek, F. M. Henestroza, E. Leitner, M. Logan, B. G. More, R. M. Roy, P. K. Ni, P. Seidl, P. A. Waldron, W. L. Barnard, J. J. TI High-energy density physics experiments with intense heavy ion beams SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 17th International Symposium on Heavy Ion Inertial Fusion CY AUG 04-08, 2008 CL Tokyo, JAPAN SP Tokyo Inst Technol, Res Lab Nucl Reactors, Japan Soc Plasma Sci & Nucl Fus Res, Particle Accelerator Soc Japan DE Inertial fusion energy; Ion beam; Diagnostics; Warm dense matter; High energy density physics ID MATTER AB The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high-energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K(+) beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 mu m, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-I. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state. (C) 2009 Elsevier B.V. All rights reserved. C1 [Bieniosek, F. M.; Henestroza, E.; Leitner, M.; Logan, B. G.; More, R. M.; Roy, P. K.; Ni, P.; Seidl, P. A.; Waldron, W. L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Barnard, J. J.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Bieniosek, FM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM fmbieniosek@lbl.gov NR 10 TC 16 Z9 16 U1 1 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 11 PY 2009 VL 606 IS 1-2 BP 146 EP 151 DI 10.1016/j.nima.2009.03.123 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 478AC UT WOS:000268559100029 ER PT J AU Ni, PA Bieniosek, FM Leitner, M Weber, C Waldron, WL AF Ni, P. A. Bieniosek, F. M. Leitner, M. Weber, C. Waldron, W. L. TI Testing of optical diagnostics for ion-beam-driven WDM experiments at NDCX-1 SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 17th International Symposium on Heavy Ion Inertial Fusion CY AUG 04-08, 2008 CL Tokyo, JAPAN SP Tokyo Inst Technol, Res Lab Nucl Reactors, Japan Soc Plasma Sci & Nucl Fus Res, Particle Accelerator Soc Japan DE Warm-dense-matter; Temperature measurement; Pyrometer; Heavy ion fusion AB We report on the testing of optical diagnostics developed for warm-dense-matter (WDM) experiments on the neutralized drift compression experiments (NDCX-1) at Lawrence Berkeley National Laboratory (LBNL). The diagnostics consists of a fast optical pyrometer, a streak camera spectrometer, and a Doppler-shift laser interferometer (VISAR). While the NDCX is in the last stage of commissioning for the target experiments, the diagnostics were tested elsewhere in an experiment where an intense laser pulse was used to generate the WDM state in metallic and carbon samples. Published by Elsevier B.V. C1 [Ni, P. A.; Bieniosek, F. M.; Leitner, M.; Weber, C.; Waldron, W. L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Ni, PA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM pani@lbl.gov NR 6 TC 8 Z9 8 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 11 PY 2009 VL 606 IS 1-2 BP 169 EP 171 DI 10.1016/j.nima.2009.03.089 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 478AC UT WOS:000268559100034 ER PT J AU Ng, SF Barnard, JJ Leung, PT Yu, SS AF Ng, Siu-Fai Barnard, J. J. Leung, P. T. Yu, S. S. TI Sonoluminescence test for equation of state in warm dense matter SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 17th International Symposium on Heavy Ion Inertial Fusion CY AUG 04-08, 2008 CL Tokyo, JAPAN SP Tokyo Inst Technol, Res Lab Nucl Reactors, Japan Soc Plasma Sci & Nucl Fus Res, Particle Accelerator Soc Japan DE Equation of state; Sonoluminescence; Warm dense matter ID SINGLE-BUBBLE SONOLUMINESCENCE; LIGHT-EMISSION AB In experiments of Single-bubble Sonoluminescence (SBSL), the bubble is heated to temperatures of a few eV in the collapse phase of the oscillation. Our hydrodynamic simulations show that the density inside the bubble can go up to the order of 1 g/cm(3), and the electron density due to ionization is 10(21)/cm(3). So the plasma coupling constant is found to be around 1 and the gas inside the bubble is in the Warm Dense Matter (WDM) regime. We simulate the light emission of SL with an optical model for thermal radiation which takes the finite opacity of the bubble into consideration. The numerical results obtained are compared with the experimental data and found to be very sensitive to the equation of state (EOS) used. As theories for the equation of state, as well as the opacity data, in the WDM regime are still very uncertain. we propose that SL may be a good low-cost experimental check for the EOS and the opacity data for matter in the WDM regime. (C) 2009 Elsevie B.V. All rights reserved. C1 [Ng, Siu-Fai; Leung, P. T.; Yu, S. S.] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China. [Ng, Siu-Fai; Yu, S. S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Barnard, J. J.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Ng, SF (reprint author), Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China. EM siufai_hk2002@yahoo.com.hk NR 19 TC 2 Z9 2 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 11 PY 2009 VL 606 IS 1-2 BP 172 EP 176 DI 10.1016/j.nima.2009.03.088 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 478AC UT WOS:000268559100035 ER PT J AU Kaganovich, ID Shnidman, A Mebane, H Davidson, RC AF Kaganovich, I. D. Shnidman, Ariel Mebane, Harrison Davidson, R. C. TI Calculation of charge-changing cross-sections of ions or atoms colliding with fast ions using the classical trajectory method SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 17th International Symposium on Heavy Ion Inertial Fusion CY AUG 04-08, 2008 CL Tokyo, JAPAN SP Tokyo Inst Technol, Res Lab Nucl Reactors, Japan Soc Plasma Sci & Nucl Fus Res, Particle Accelerator Soc Japan DE Charge-changing cross-sections; Classical trajectory method ID ELECTRON-CAPTURE; HYDROGEN-ATOMS; IONIZATION; COLLISIONS; HELIUM; PROJECTILE; BEAMS; N-2 AB Evaluation of ion-atom charge-changing cross-sections is needed for many accelerator applications. A Classical Trajectory Monte Carlo (CTMC) simulation has been used to calculate ionization and charge-exchange cross-sections. For benchmarking purposes, an extensive study has been performed for the simple case of hydrogen and helium targets in collisions with various ions. Despite the fact that the simulation only accounts for classical mechanics, the calculations are comparable to experimental results for projectile velocities in the region corresponding to the vicinity of the maximum cross-section. The shortcomings of the CTMC method for multielectron target atoms are discussed. (C) 2009 Elsevier B.V. All rights reserved. C1 [Kaganovich, I. D.; Shnidman, Ariel; Mebane, Harrison; Davidson, R. C.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Kaganovich, ID (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM ikaganov@pppl.gov NR 34 TC 2 Z9 2 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 11 PY 2009 VL 606 IS 1-2 BP 196 EP 204 DI 10.1016/j.nima.2009.03.084 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 478AC UT WOS:000268559100039 ER PT J AU Rodriguez, BJ Choudhury, S Chu, YH Bhattacharyya, A Jesse, S Seal, K Baddorf, AP Ramesh, R Chen, LQ Kalinin, SV AF Rodriguez, Brian J. Choudhury, Samrat Chu, Y. H. Bhattacharyya, Abhishek Jesse, Stephen Seal, Katyayani Baddorf, Arthur P. Ramesh, R. Chen, Long-Qing Kalinin, Sergei V. TI Unraveling Deterministic Mesoscopic Polarization Switching Mechanisms: Spatially Resolved Studies of a Tilt Grain Boundary in Bismuth Ferrite SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID FERROELECTRIC MATERIALS; THIN-FILMS; DISLOCATIONS; SRTIO3; EVOLUTION AB The deterministic mesoscopic mechanism of ferroelectric domain nucleation is probed at a single atomically-defined model defect: an artificially fabricated bicrystal grain boundary (GB) in an epitaxial bismuth ferrite film. Switching spectroscopy piezoresponse force microscopy (SS-PFM) is used to map the variation of local hysteresis loops at the GB and in its immediate vicinity. It is found that the the influence of the GB on nucleation results in a slight shift of the negative nucleation bias to larger voltages. The mesoscopic mechanisms of domain nucleation in the bulk and at the GB are studied in detail using phase-field modeling, elucidating the complex mechanisms governed by the interplay between ferroelectric and ferroelastic wall energies, depolarization fields, and interface charge. The combination of phase-field modeling and SS-PFM allows quantitative analysis of the mesoscopic mechanisms for polarization switching, and hence suggests a route for unraveling the mechanisms of polarization switching at a single defect level and ultimately optimizing materials properties through microstructure engineering. C1 [Rodriguez, Brian J.] Univ Coll Dublin, Conway Inst Biomol & Biomed Res, Dublin 4, Ireland. [Jesse, Stephen; Seal, Katyayani; Baddorf, Arthur P.; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Choudhury, Samrat; Chen, Long-Qing] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Chu, Y. H.] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30013, Taiwan. [Bhattacharyya, Abhishek] Lehigh Univ, Dept Mat Sci & Engn, Bethlehem, PA 18015 USA. [Ramesh, R.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Rodriguez, BJ (reprint author), Univ Coll Dublin, Conway Inst Biomol & Biomed Res, Dublin 4, Ireland. EM brian.rodriguez@ucd.ie; sergei2@ornl.gov RI Choudhury, Samrat/B-4115-2009; Ying-Hao, Chu/A-4204-2008; Kim, Yu Jin/A-2433-2012; Kalinin, Sergei/I-9096-2012; Rodriguez, Brian/A-6253-2009; Chen, LongQing/I-7536-2012; Jesse, Stephen/D-3975-2016; Baddorf, Arthur/I-1308-2016 OI Ying-Hao, Chu/0000-0002-3435-9084; Kalinin, Sergei/0000-0001-5354-6152; Rodriguez, Brian/0000-0001-9419-2717; Chen, LongQing/0000-0003-3359-3781; Jesse, Stephen/0000-0002-1168-8483; Baddorf, Arthur/0000-0001-7023-2382 FU U.S. Department of Energy [DE-AC02-05CH11231, DE-FG0207ER46417]; National Science Council, R.O.C. [NSC 97-3114-M-009-001]; Alexander von Humboldt Foundation; Wiley InterScience FX The research (B. J. R., K. S., A. P. B.) performed at Oak Ridge National Laboratory's Center for Nanophase Materials Sciences was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. The research was supported in part (S. J., S. V. K.) by the ORNIL LDRD program, and in part by the U.S. Department of Energy under contracts DE-AC02-05CH11231(Y.H.C.R.R.) and DE-FG0207ER46417(L-Q.C.). Y. H. C. also acknowledges the support of the National Science Council, R.O.C. under Contract NSC 97-3114-M-009-001 and B. J. R. acknowledges the financial support of the Alexander von Humboldt Foundation. Supporting Information is available online from Wiley InterScience or from the corresponding author. NR 31 TC 33 Z9 33 U1 0 U2 31 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1616-301X J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD JUL 10 PY 2009 VL 19 IS 13 BP 2053 EP 2063 DI 10.1002/adfm.200900100 PG 11 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 474QA UT WOS:000268297800004 ER PT J AU Newsom, RK Turner, DD Mielke, B Clayton, M Ferrare, R Sivaraman, C AF Newsom, Rob K. Turner, David D. Mielke, Bernd Clayton, Marian Ferrare, Richard Sivaraman, Chitra TI Simultaneous analog and photon counting detection for Raman lidar SO APPLIED OPTICS LA English DT Article ID INTENSIVE OBSERVATION PERIODS; WATER-VAPOR; ATMOSPHERIC RADIATION; AEROSOLS AB The Atmospheric Radiation Measurement program Raman lidar was upgraded in 2004 with a new data system that provides simultaneous measurements of both the photomultiplier analog output voltage and photon counts. We describe recent improvements to the algorithm used to merge these two signals into a single signal with improved dynamic range. The effect of modifications to the algorithm are evaluated by comparing profiles of water vapor mixing ratio from the lidar with radiosonde measurements over a six month period. The modifications that were implemented resulted in a reduction of the mean bias in the daytime water vapor mixing ratio from a 3% dry bias to well within 1%. This improvement was obtained by ignoring the temporal variation of the glue coefficients and using only the nighttime average glue coefficients throughout the entire diurnal cycle. (C) 2009 Optical Society of America C1 [Newsom, Rob K.; Sivaraman, Chitra] Pacific NW Natl Lab, Richland, WA 99352 USA. [Turner, David D.] Univ Wisconsin, Madison, WI 53706 USA. [Mielke, Bernd] Licel GmbH, D-13355 Berlin, Germany. [Clayton, Marian] NASA, Langley Res Ctr, SSAI, Hampton, VA 23681 USA. RP Newsom, RK (reprint author), Pacific NW Natl Lab, POB 999,MSIN K9-30, Richland, WA 99352 USA. EM rob.newsom@pnl.gov FU U.S. Department of Energy; Office of Energy Research; Office of Health and Environmental Research; Environmental Science Division FX We thank John Goldsmith, Sandia National Laboratories, for his invaluable expertise and continuing assistance with the lidar hardware, and Diana Petty for helping to lay the groundwork for the MERGE algorithm. We also thank Chris Martin, SGP Site Operations, for the day-to-day maintenance of the ARM Raman lidar. The ARM Raman lidar is sponsored by the U.S. Department of Energy, Office of Energy Research, Office of Health and Environmental Research, Environmental Science Division. NR 18 TC 49 Z9 52 U1 0 U2 12 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD JUL 10 PY 2009 VL 48 IS 20 BP 3903 EP 3914 DI 10.1364/AO.48.003903 PG 12 WC Optics SC Optics GA 480JX UT WOS:000268731800003 PM 19593341 ER PT J AU Young, PA Ellinger, CI Arnett, D Fryer, CL Rockefeller, G AF Young, Patrick A. Ellinger, Carola I. Arnett, David Fryer, Chris L. Rockefeller, Gabriel TI FINDING TRACERS FOR SUPERNOVA PRODUCED Al-26 SO ASTROPHYSICAL JOURNAL LA English DT Article DE nuclear reactions, nucleosynthesis, abundances; stars: evolution; supernovae: general; supernova remnants ID GAMMA-RAY BURST; CASSIOPEIA-A; TURBULENT CONVECTION; MODEL CALCULATIONS; STELLAR EVOLUTION; LAUNCHING REGION; SOLAR-SYSTEM; WHITE-DWARFS; COLLAPSE; EXPLOSIONS AB We consider the cospatial production of elements in supernova explosions to find observationally detectable proxies for enhancement of Al-26 in supernova ejecta and stellar systems. Using four progenitors, we explore a range of one-dimensional explosions at different energies and an asymmetric three-dimensional explosion. We find that the most reliable indicator of the presence of 26Al in unmixed ejecta is a very low S/Si ratio (similar to 0.05). Production of N in O/S/Si-rich regions is also indicative. The biologically important element P is produced at its highest abundance in the same regions. Proxies should be detectable in supernova ejecta with high spatial resolution multiwavelength observations, but the small absolute abundance of material injected into a proto-planetary disk makes detection unlikely in existing or forming stellar/planetary systems. C1 [Young, Patrick A.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Ellinger, Carola I.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. [Arnett, David] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Fryer, Chris L.; Rockefeller, Gabriel] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Fryer, Chris L.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. RP Young, PA (reprint author), Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. RI Rockefeller, Gabriel/G-2920-2010 OI Rockefeller, Gabriel/0000-0002-9029-5097 FU U. S. Department of Energy [W-7405-ENG-36] FX This project was funded in part under the auspices of the U. S. Department of Energy, and supported by its contract W-7405-ENG-36 to Los Alamos National Laboratory. Thanks to Steve Desch and Meenakshi Wadhwa for helpful conversations. Thanks also to the anonymous referee for very helpful and constructive comments. NR 56 TC 8 Z9 8 U1 2 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2009 VL 699 IS 2 BP 938 EP 947 DI 10.1088/0004-637X/699/2/938 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 463AU UT WOS:000267401500003 ER PT J AU Lin, H Buckley-Geer, E Allam, SS Tucker, DL Diehl, HT Kubik, D Kubo, JM Annis, J Frieman, JA Oguri, M Inada, N AF Lin, Huan Buckley-Geer, Elizabeth Allam, Sahar S. Tucker, Douglas L. Diehl, H. Thomas Kubik, Donna Kubo, Jeffrey M. Annis, James Frieman, Joshua A. Oguri, Masamune Inada, Naohisa TI DISCOVERY OF A VERY BRIGHT, STRONGLY LENSED z=2 GALAXY IN THE SDSS DR5 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: high-redshift; gravitational lensing ID DIGITAL SKY SURVEY; LYMAN BREAK GALAXY; STAR-FORMING GALAXIES; HIGH-REDSHIFT GALAXIES; MS 1512-CB58; ACS SURVEY; LUMINOSITY FUNCTION; STELLAR POPULATION; DATA RELEASE; Z-SIMILAR-TO-2 AB We report on the discovery of a very bright z = 2.00 star-forming galaxy that is strongly lensed by a foreground z = 0.422 luminous red galaxy (LRG), SDSS J120602.09+514229.5. This system, nicknamed the "Clone," was found in a systematic search for bright arcs lensed by LRGs and brightest cluster galaxies in the Sloan Digital Sky Survey Data Release 5 sample. Follow-up observations on the Subaru 8.2 m telescope on Mauna Kea and the Astrophysical Research Consortium 3.5 m telescope at Apache Point Observatory confirmed the lensing nature of this system. A simple lens model for the system, assuming a singular isothermal ellipsoid mass distribution, yields an Einstein radius of theta(Ein) = 3.82 +/- 0.03 or 14.8 +/- 0.1 h(-1) kpc at the lens redshift. The total projected mass enclosed within the Einstein radius is 2.10 +/- 0.03 x 10(12) h(-1) M(circle dot), and the magnification factor for the source galaxy is 27 +/- 1. Combining the lens model with our gVriz photometry, we find a (unlensed) star formation rate (SFR) for the source galaxy of 32 h(-1) M(circle dot) yr(-1), adopting a fiducial constant SFR model with an age of 100 Myr and E(B - V) = 0.25. With an apparent magnitude of r = 19.8, this system is among the very brightest lensed z >= 2 galaxies, and provides an excellent opportunity to pursue detailed studies of the physical properties of an individual high-redshift star-forming galaxy. C1 [Lin, Huan; Buckley-Geer, Elizabeth; Allam, Sahar S.; Tucker, Douglas L.; Diehl, H. Thomas; Kubik, Donna; Kubo, Jeffrey M.; Annis, James; Frieman, Joshua A.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Allam, Sahar S.] Univ Wyoming, Dept Phys & Astron, Laramie, WY 82071 USA. [Frieman, Joshua A.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Frieman, Joshua A.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Oguri, Masamune] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Inada, Naohisa] RIKEN, Cosm Radiat Lab, Wako, Saitama 3510198, Japan. RP Lin, H (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. RI Oguri, Masamune/C-6230-2011; OI Tucker, Douglas/0000-0001-7211-5729 FU NASA [11167]; Department of Energy [DE-AC02-76SF00515]; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council, England FX Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington. NR 48 TC 40 Z9 40 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2009 VL 699 IS 2 BP 1242 EP 1251 DI 10.1088/0004-637X/699/2/1242 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 463AU UT WOS:000267401500032 ER PT J AU Hansen, SM Sheldon, ES Wechsler, RH Koester, BP AF Hansen, Sarah M. Sheldon, Erin S. Wechsler, Risa H. Koester, Benjamin P. TI THE GALAXY CONTENT OF SDSS CLUSTERS AND GROUPS SO ASTROPHYSICAL JOURNAL LA English DT Review DE cosmology: observations; galaxies: clusters: general; galaxies: evolution; galaxies: halos ID DIGITAL-SKY-SURVEY; HALO OCCUPATION DISTRIBUTION; MORPHOLOGY-DENSITY RELATION; HUBBLE-SPACE-TELESCOPE; OPTICAL RICHNESS RELATION; SYNOPTIC SURVEY TELESCOPE; COLOR-MAGNITUDE RELATION; SURVEY IMAGING DATA; K-BAND PROPERTIES; TO-LIGHT RATIO AB Imaging data from the Sloan Digital Sky Survey are used to characterize the population of galaxies in groups and clusters detected with the MaxBCG algorithm. We investigate the dependence of brightest cluster galaxy (BCG) luminosity, and the distributions of satellite galaxy luminosity and satellite color, on cluster properties over the redshift range 0.1 <= z <= 0.3. The size of the data set allows us to make measurements in many bins of cluster richness, radius and redshift. We find that, within r(200) of clusters with mass above 3 x 10(13) h(-1) M(circle dot), the luminosity function (LF) of both red and blue satellites is only weakly dependent on richness. We further find that the shape of the satellite LF does not depend on cluster-centric distance for magnitudes brighter than (0.25)M(i) - 5log(10)h = - 19. However, the mix of faint red and blue galaxies changes dramatically. The satellite red fraction is dependent on cluster-centric distance, galaxy luminosity, and cluster mass, and also increases by similar to 5% between redshifts 0.28 and 0.2, independent of richness. We find that BCG luminosity is tightly correlated with cluster richness, scaling as L(BCG) similar to M(200)(0.3), and has a Gaussian distribution at fixed richness, with sigma(logL) similar to 0.17 for massive clusters. The ratios of BCG luminosity to total cluster luminosity and characteristic satellite luminosity scale strongly with cluster richness: in richer systems, BCGs contribute a smaller fraction of the total light, but are brighter compared to typical satellites. This study demonstrates the power of cross-correlation techniques for measuring galaxy populations in purely photometric data. C1 [Hansen, Sarah M.] Univ Calif Santa Cruz, UCO Lick Observ, Santa Cruz, CA 95064 USA. [Sheldon, Erin S.] NYU, Dept Phys, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Sheldon, Erin S.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Wechsler, Risa H.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Wechsler, Risa H.] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94305 USA. [Koester, Benjamin P.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. RP Hansen, SM (reprint author), Univ Calif Santa Cruz, UCO Lick Observ, Santa Cruz, CA 95064 USA. EM shansen@ucolick.org FU Kavli Institute for Cosmological Physics (KICP); U.S. Department of Energy [DE-AC02-76SF00515]; Stanford University; Alfred P. Sloan Foundation; Participating Institutions; National Science Foundation; U.S. Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England FX Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-PlanckInstitute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington. This work made extensive use of the NASA Astrophysics Data System and the arXiv.org preprint server. NR 155 TC 126 Z9 126 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2009 VL 699 IS 2 BP 1333 EP 1353 DI 10.1088/0004-637X/699/2/1333 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 463AU UT WOS:000267401500042 ER PT J AU Linden, T Sepinsky, JF Kalogera, V Belczynski, K AF Linden, T. Sepinsky, J. F. Kalogera, V. Belczynski, K. TI PROBING ELECTRON-CAPTURE SUPERNOVAE: X-RAY BINARIES IN STARBURSTS SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: starburst; stars: emission-line, Be; stars: neutron; supernovae: general; X-rays: binaries ID SMALL-MAGELLANIC-CLOUD; NEUTRON-STARS; CORE COLLAPSE; WHITE-DWARFS; AGB STARS; EVOLUTION; MASS; METALLICITY; DYNAMICS; CLUSTERS AB We develop population models of high-mass X-ray binaries (HMXBs) formed after bursts of star formation and we investigate the effect of electron-capture supernovae (ECS) of massive ONeMg white dwarfs and the hypothesis that ECS events are associated with typically low supernova kicks imparted to the nascent neutron stars. We identify an interesting ECS bump in the time evolution of HMXB numbers; this bump is caused by significantly increased production of wind-fed HMXBs 20-60 Myr post-starburst. The amplitude and age extent of the ECS bump depend on the strength of ECS kicks and the mass range of ECS progenitors. We also find that ECS-HMXBs form through a specific evolutionary channel that is expected to lead to binaries with Be donors in wide orbits. These characteristics, along with their sensitivity to ECS properties, provide us with an intriguing opportunity to probe ECS physics and progenitors through studies of starbursts of different ages. Specifically, the case of the Small Magellanic Cloud, with a significant observed population of Be-HMXBs and starburst activity 30-60 Myr ago, arises as a promising laboratory for understanding the role of ECS in neutron star formation. C1 [Linden, T.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Linden, T.; Sepinsky, J. F.; Kalogera, V.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Sepinsky, J. F.] Univ Scranton, Dept Phys & Elect Engn, Scranton, PA 18510 USA. [Belczynski, K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Linden, T (reprint author), Univ Calif Santa Cruz, Dept Phys, 1156 High St, Santa Cruz, CA 95064 USA. OI Sepinsky, Jeremy/0000-0001-8085-3836 FU NSF [AST-0449558, PHY-0619274]; Packard Fellowship in Science Engineering FX We thank Valia Antoniou, Jay Gallagher, and Andreas Zezas for useful discussions regarding recent observations of starbursts and high-mass X-ray binaries. This work was supported by the NSF CAREER grant AST-0449558 and a Packard Fellowship in Science & Engineering to V. K. Numerical simulations were performed on the HPC cluster fugu available to the Theoretical Astrophysics Group at Northwestern University through the NSF MRI grant PHY-0619274 to V. K. NR 27 TC 19 Z9 19 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2009 VL 699 IS 2 BP 1573 EP 1577 DI 10.1088/0004-637X/699/2/1573 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 463AU UT WOS:000267401500063 ER PT J AU Ushio, M Tanaka, T Madejski, G Takahashi, T Hayashida, M Kataoka, J Mazin, D Rugamer, S Sato, R Teshima, M Wagner, S Yaji, Y AF Ushio, Masayoshi Tanaka, Takaaki Madejski, Grzegorz Takahashi, Tadayuki Hayashida, Masaaki Kataoka, Jun Mazin, Daniel Ruegamer, Stefan Sato, Rie Teshima, Masahiro Wagner, Stefan Yaji, Yuichi TI SUZAKU WIDE BAND ANALYSIS OF THE X-RAY VARIABILITY OF TeV BLAZAR Mrk 421 IN 2006 SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; BL Lacertae objects: individual (Mrk 421); galaxies: jets; X-rays: galaxies ID ACTIVE GALACTIC NUCLEI; MULTIWAVELENGTH OBSERVATIONS; PARTICLE-ACCELERATION; CORRELATED VARIABILITY; BOARD SUZAKU; MARKARIAN-421; TELESCOPE; EMISSION; SHOCKS; PKS-2155-304 AB We present the results of X-ray observations of the well studied TeV blazar Mrk 421 with the Suzaku satellite in 2006 April 28. During the observation, Mrk 421 was undergoing a large flare and the X-ray flux was variable, decreasing by similar to 50%, from 7.8 x 10(-10) to 3.7 x 10(-10) erg s(-1) cm(-2) in about 6 hr, followed by an increase by similar to 35%. Thanks to the broad bandpass coupled with high sensitivity of Suzaku, we measured the evolution of the spectrum over the 0.4-60 keV band in data segments as short as similar to 1 ks. The data show deviations from a simple power-law model, but also a clear spectral variability. The time-resolved spectra are fitted by a synchrotron model, where the observed spectrum is due to a exponentially cutoff power-law distribution of electrons radiating in uniform magnetic field; this model is preferred over a broken power law. As another scenario, we separate the spectrum into "steady" and "variable" components by subtracting the spectrum in the lowest-flux period from those of other data segments. In this context, the difference ("variable") spectra are all well described by a broken power-law model with photon index Gamma similar to 1.6, breaking at energy epsilon(brk) similar or equal to 3 keV to another photon index Gamma similar to 2.1 above the break energy, differing from each other only by normalization, while the spectrum of the "steady" component is best described by the synchrotron model. We suggest that the rapidly variable component is due to relatively localized shock (Fermi I) acceleration, while the slowly variable ("steady") component is due to the superposition of shocks located at larger distance along the jet, or due to other acceleration process, such as the stochastic acceleration on magnetic turbulence (Fermi II) in the more extended region. C1 [Ushio, Masayoshi; Takahashi, Tadayuki; Sato, Rie] Japan Aerosp Explorat Agcy JAXA, ISAS, Dept High Energy Astrophys, Sagamihara, Kanagawa 2298510, Japan. [Ushio, Masayoshi; Takahashi, Tadayuki] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Tanaka, Takaaki; Madejski, Grzegorz; Hayashida, Masaaki] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. [Kataoka, Jun] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 528551, Japan. [Mazin, Daniel] Inst Fis Altes Energies, Bellaterra 08193, Spain. [Ruegamer, Stefan] Univ Wurzburg, D-97074 Wurzburg, Germany. [Teshima, Masahiro] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Wagner, Stefan] Heidelberg Univ, Heidelberg, Germany. [Yaji, Yuichi] Saitama Univ, Sakura Ku, Saitama 3388570, Japan. RP Ushio, M (reprint author), Japan Aerosp Explorat Agcy JAXA, ISAS, Dept High Energy Astrophys, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2298510, Japan. EM ushio@astro.isas.jaxa.jp RI XRAY, SUZAKU/A-1808-2009; OI Mazin, Daniel/0000-0002-2010-4005 FU NASA [NNX08AZ89G]; Department of Energy [DE-AE3-76SF00515] FX We acknowledge financial support from NASA grant NNX08AZ89G, and by the Department of Energy contract to SLAC No. DE-AE3-76SF00515. We thank the H. E. S. S. and MAGIC collaboration for the coordination of the multifrequency campaign. Finally, M. U. expresses special thanks to Y. Ishikawa for his continuing personal support and encouragement. NR 44 TC 20 Z9 21 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2009 VL 699 IS 2 BP 1964 EP 1972 DI 10.1088/0004-637X/699/2/1964 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 463AU UT WOS:000267401500092 ER PT J AU Ruiter, AJ Belczynski, K Fryer, C AF Ruiter, Ashley J. Belczynski, Krzysztof Fryer, Chris TI RATES AND DELAY TIMES OF TYPE Ia SUPERNOVAE SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: close; supernovae: general ID MASS ACCUMULATION EFFICIENCY; GRAVITATIONAL-WAVE SOURCES; SINGLE-DEGENERATE MODEL; HELIUM SHELL FLASHES; DOUBLE WHITE-DWARFS; AM CVN SYSTEMS; POPULATION SYNTHESIS; COMMON-ENVELOPE; STAR-FORMATION; SPECTROSCOPIC BINARIES AB We analyze the evolution of binary stars to calculate synthetic rates and delay times of the most promising Type Ia Supernovae (SNe Ia) progenitors. We present and discuss evolutionary scenarios in which a white dwarf (WD) reaches the Chandrasekhar mass and potentially explodes in a SNe Ia. We consider Double Degenerate (DDS; merger of two WDs), Single Degenerate (SDS; WD accreting from H-rich companion), and AM Canum Venaticorum (AM CVn; WD accreting from He-rich companion) scenarios. The results are presented for two different star formation histories: burst (elliptical-like galaxies) and continuous (spiral-like galaxies). It is found that delay times for the DDS in our standard model (with common envelope efficiency alpha(CE) = 1) follow a power-law distribution. For the SDS we note a wide range of delay times, while AM CVn progenitors produce a short burst of SNe Ia at early times. The DDS median delay time falls between similar to 0.5 and 1 Gyr; the SDS between similar to 2 and 3 Gyr; and the AM CVn between similar to 0.8 and 0.6 Gyr depending on the assumed alpha(CE). For a Milky-Way-like (MW-like) galaxy, we estimate the rates of SNe Ia arising from different progenitors as: similar to 10(-4) yr(-1) for the SDS and AM CVn, and similar to 10(-3) yr(-1) for the DDS. We point out that only the rates for two merging carbon-oxygen WDs, the only systems found in the DDS, are consistent with the observed rates for typical MW-like spirals. We also note that DDS progenitors are the dominant population in elliptical galaxies. The fact that the delay time distribution for the DDS follows a power law implies more SNe Ia (per unit mass) in young rather than in aged populations. Our results do not exclude other scenarios, but strongly indicate that the DDS is the dominant channel generating SNe Ia in spiral galaxies, at least in the framework of our adopted evolutionary models. Since it is believed that WD mergers cannot produce a thermonuclear explosion given the current understanding of accreting WDs, either the evolutionary calculations along with accretion physics are incorrect, or the explosion calculations are inaccurate and need to be revisited. C1 [Ruiter, Ashley J.] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Ruiter, Ashley J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Belczynski, Krzysztof; Fryer, Chris] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Ruiter, AJ (reprint author), New Mexico State Univ, Dept Astron, 1320 Frenger Mall, Las Cruces, NM 88003 USA. EM aruiter@nmsu.edu; kbelczyn@nmsu.edu; clfreyer@lanl.gov NR 92 TC 154 Z9 154 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2009 VL 699 IS 2 BP 2026 EP 2036 DI 10.1088/0004-637X/699/2/2026 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 463AU UT WOS:000267401500098 ER PT J AU Chao, TI Xiang, SH Chen, CS Chin, WC Nelson, AJ Wang, CC Lu, J AF Chao, Tzu-I Xiang, Shuhuai Chen, Chi-Shuo Chin, Wei-Chun Nelson, A. J. Wang, Changchun Lu, Jennifer TI Carbon nanotubes promote neuron differentiation from human embryonic stem cells SO BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS LA English DT Article DE Human embryonic stem cell; Differentiation; Carbon nanotube; Scaffold; Polymer; Poly(acrylic) acid ID SPINAL-CORD; NEURITE OUTGROWTH; POLYMERIZATION; SURFACES; LAMININ; MATRIX; FUNCTIONALIZATION; SPECIFICATION; PRECURSORS; ADHESION AB Human embryonic stem cells (hESCs) hold great promise for regenerative medicine and transplantation therapy due to their self-renewal and pluripotent properties. We report that 2D thin film scaffolds composed of biocompatible polymer grafted carbon nanotubes (CNTs), can selectively differentiate human embryonic stem cells into neuron cells while maintaining excellent cell viability. According to fluorescence image analysis, neuron differentiation efficiency of poly(acrylic acid) grafted CNT thin films is significant greater than that on poly(acrylic acid) thin films. When compared with the conventional Poly-L-ornithine surfaces, a standard substratum commonly used for neuron culture, this new type thin film scaffold shows enhanced neuron differentiation. No noticeable cytotoxic effect difference has been detected between these two surfaces. The surface analysis and cell adhesion study have suggested that CNT-based surfaces can enhance protein adsorption and cell attachment. This finding indicates that CNT-based materials are excellent candidates for hESCs' neuron differentiation. Published by Elsevier Inc C1 [Chao, Tzu-I; Xiang, Shuhuai; Chen, Chi-Shuo; Chin, Wei-Chun; Lu, Jennifer] Univ Calif, UC Merced, Sch Engn, Merced, CA 95343 USA. [Nelson, A. J.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Wang, Changchun] Fudan Univ, Key Lab Mol Engn Polymers, Minist Educ, Dept Macromol Sci, Shanghai 200433, Peoples R China. [Wang, Changchun] Fudan Univ, Adv Mat Lab, Shanghai 200433, Peoples R China. RP Lu, J (reprint author), Univ Calif, UC Merced, Sch Engn, 5200 N Lake Rd, Merced, CA 95343 USA. EM jlu5@ucmerced.edu RI Chin, Wei-Chun/A-6068-2008 OI Chin, Wei-Chun/0000-0003-4881-9085 NR 40 TC 87 Z9 90 U1 1 U2 34 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0006-291X J9 BIOCHEM BIOPH RES CO JI Biochem. Biophys. Res. Commun. PD JUL 10 PY 2009 VL 384 IS 4 BP 426 EP 430 DI 10.1016/j.bbrc.2009.04.157 PG 5 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 454NN UT WOS:000266689300006 PM 19426708 ER PT J AU Serrano, G Serquis, A Civale, L Maiorov, B Holesinger, TG Balakirev, F Jaime, M AF Serrano, German Serquis, Adriana Civale, Leonardo Maiorov, Boris Holesinger, Terry G. Balakirev, Fedor Jaime, Marcelo TI SINGLE-WALL CARBON NANOTUBES ADDITION EFFECTS ON THE SUPERCONDUCTING PROPERTIES OF MgB2 SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B LA English DT Article; Proceedings Paper CT Symposium on Superconductors, Electronic and Magnetic Materials CY JUL 28-AUG 01, 2007 CL Sydney, AUSTRALIA SP Australian Mat Res Soc, Int Union Mat Res Soc, Australian Res Council Nanotechnol Network DE MgB2; swCNT; doping; critical currents; critical fields ID CRITICAL-CURRENT DENSITY; DOPED MGB2; ENHANCEMENT AB In this work we describe the effects of adding different amount of single-wall (sw) carbon nanotubes (CNT) on the superconducting properties of MgB2. We observed that the amount of swCNT that partially dilute into the MgB2 matrix is lower than for double-wall (dw) CNT samples for the same nominal content. This C incorporation leads to an increase of the upper critical field (H-c2), with a maximum H-c2(0) extrapolated value of 33.5 T, expected for a two-gap superconductor in the dirty limit. At the same time, the fraction of swCNT that has not been incorporated into MgB2 lattice may retain their structural integrity acting as strong vortex pinning centers. In this case the optimum nominal swCNT content for increasing critical current density (J(c)) is in the range 7.5-10%at. C1 [Serrano, German; Serquis, Adriana] Consejo Nacl Invest Cient & Tecn, Ctr Atom Bariloche, Inst Balseiro, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina. [Civale, Leonardo; Maiorov, Boris; Holesinger, Terry G.] Los Alamos Natl Lab, Superconduct Technol Ctr, Los Alamos, NM 87545 USA. [Balakirev, Fedor; Jaime, Marcelo] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. RP Serrano, G (reprint author), Consejo Nacl Invest Cient & Tecn, Ctr Atom Bariloche, Inst Balseiro, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina. EM aserquis@cab.cnea.gov.ar RI Jaime, Marcelo/F-3791-2015; Serquis, Adriana/L-6554-2015; OI Jaime, Marcelo/0000-0001-5360-5220; Serquis, Adriana/0000-0003-1499-4782; Maiorov, Boris/0000-0003-1885-0436; Civale, Leonardo/0000-0003-0806-3113 NR 16 TC 3 Z9 3 U1 2 U2 5 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-9792 EI 1793-6578 J9 INT J MOD PHYS B JI Int. J. Mod. Phys. B PD JUL 10 PY 2009 VL 23 IS 17 BP 3465 EP 3469 PG 5 WC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical SC Physics GA 472DM UT WOS:000268109400003 ER PT J AU Shanklin, J Guy, JE Mishra, G Lindqvist, Y AF Shanklin, John Guy, Jodie E. Mishra, Girish Lindqvist, Ylva TI Desaturases: Emerging Models for Understanding Functional Diversification of Diiron-containing Enzymes SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Review ID ACYL-CARRIER-PROTEIN; STEAROYL-COA DESATURASE; FATTY-ACID DESATURASES; ALKANE OMEGA-HYDROXYLASE; CRYSTAL-STRUCTURE; RICINUS-COMMUNIS; OLEATE 12-HYDROXYLASE; ACP DESATURASE; IDENTIFICATION; SPECIFICITY AB Desaturases and related enzymes perform O(2)-dependent dehydrogenations initiated at unactivated C-H groups with the use of a diiron active site. Determination of the long-sought oxidized desaturase crystal structure facilitated structural comparison of the active sites of disparate diiron enzymes. Experiments on the castor desaturase are discussed that provide experimental support for a hypothesized ancestral oxidase enzyme in the context of the evolution of the diiron enzyme diverse functionality. We also summarize recent analysis of a castor mutant desaturase that provides valuable insights into the relationship of proposed substrate-binding modes with respect to a range of catalytic outcomes. C1 [Shanklin, John; Mishra, Girish] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Guy, Jodie E.; Lindqvist, Ylva] Karolinska Inst, Dept Med Biochem & Biophys, S-17177 Stockholm, Sweden. RP Shanklin, J (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. EM shanklin@bnl.gov RI Lindqvist, Ylva/F-9009-2010 NR 51 TC 75 Z9 76 U1 2 U2 33 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD JUL 10 PY 2009 VL 284 IS 28 BP 18559 EP 18563 DI 10.1074/jbc.R900009200 PG 5 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 467BP UT WOS:000267711500002 PM 19363032 ER PT J AU Ekoto, IW Bowersox, RDW Beutner, T Goss, L AF Ekoto, Isaac W. Bowersox, Rodney D. W. Beutner, Thomas Goss, Larry TI Response of supersonic turbulent boundary layers to local and global mechanical distortions SO JOURNAL OF FLUID MECHANICS LA English DT Article ID SHOCK-WAVE; SKIN-FRICTION; SURFACE-ROUGHNESS; FLOW; WALL; SMOOTH; UNSTEADINESS; DILATATION; CURVATURE AB The response of the mean and turbulent flow structure of a supersonic high-Reynolds-number turbulent boundary layer flow subjected to local and global mechanical distortions was experimentally examined. Local disturbances were introduced via small-scale wall patterns, and global distortions were induced through streamline curvature-driven pressure gradients. Local surface topologies included k-type diamond and d-type square elements; a smooth wall was examined for comparison purposes. Three global distortions were studied with each of the three surface topologies. Measurements included planar contours of the mean and fluctuating velocity via particle image velocimetry, Pitot pressure profiles, pressure sensitive paint and Schlieren photography. The velocity data were acquired with sufficient resolution to characterize the mean and turbulent flow structure and to examine interactions between the local surface roughness distortions and the imposed pressure gradients on the turbulence production. A strong response to both the local and global distortions was observed with the diamond elements, where the effect of the elements extended into the outer regions of the boundary layer. It was shown that the primary cause for the observed response was the result of local shock and expansion waves modifying the turbulence structure and production. By contrast, the square elements showed a less pronounced response to local flow distortions as the waves were significantly weaker. However, the frictional losses were higher for the blunter square roughness elements. Detailed quantitative characterizations of the turbulence flow structure and the associated production mechanisms are described herein. These experiments demonstrate fundamental differences between supersonic and subsonic rough-wall flows, and the new understanding of the underlying mechanisms provides a scientific basis to systematically modify the mean and turbulence flow structure all the way across supersonic boundary layers. C1 [Bowersox, Rodney D. W.] Texas A&M Univ, College Stn, TX 77843 USA. [Ekoto, Isaac W.] Sandia Natl Labs, Livermore, CA 94511 USA. [Beutner, Thomas] DARPA, Arlington, VA 22203 USA. [Goss, Larry] Innovat Sci Solut Inc, Dayton, OH 45440 USA. RP Bowersox, RDW (reprint author), Texas A&M Univ, College Stn, TX 77843 USA. EM bowersox@aeromail.tamu.edu FU USAF [F49620-02-1-0365] FX This work was sponsored (in part) by the Air Force Office of Scientific Research, USAF, under grant/contract number F49620-02-1-0365. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Air Force Office of Scientific Research or the U.S. government. NR 51 TC 7 Z9 7 U1 0 U2 10 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 EI 1469-7645 J9 J FLUID MECH JI J. Fluid Mech. PD JUL 10 PY 2009 VL 630 BP 225 EP 265 DI 10.1017/S0022112009006752 PG 41 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 477VK UT WOS:000268546800011 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burke, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cordelli, M Cortiana, G Cox, CA Cox, DJ Crescioli, F Cuenca Almenar, C Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF Di Canto, P di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Garosi, P Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hays, C Heck, M Heijboer, A Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Hussein, M Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lucchesi, D Luci, C Lueck, J Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Bellarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Moon, CS Moore, R Morello, MJ Morlock, J Movilla Fernandez, P Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Pagan Griso, S Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Rutherford, B Saarikko, H Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spalding, J Spreitzer, T Squillacioti, P Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Stuart, D Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wurthwein, F Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Gonzalez, B. Alvarez Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burke, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cordelli, M. Cortiana, G. Cox, C. A. Cox, D. J. Crescioli, F. Cuenca Almenar, C. Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. Di Canto, P. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Garosi, P. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heijboer, A. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Hussein, M. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. -S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lucchesi, D. Luci, C. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Bellarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Movilla Fernandez, P. Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Pagan Griso, S. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Rutherford, B. Saarikko, H. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spreitzer, T. Squillacioti, P. Stanitzki, M. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Stuart, D. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wuerthwein, F. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Search for Long-Lived Massive Charged Particles in 1.96 TeV p(p)over-bar Collisions SO PHYSICAL REVIEW LETTERS LA English DT Article ID DYNAMICAL SUPERSYMMETRY BREAKING; HADRON COLLIDERS; DETECTOR AB We performed a signature-based search for long-lived charged massive particles produced in 1.0 fb(-1) of p (p) over bar collisions at root s 1.96 TeV, collected with the CDF II detector using a high transverse-momentum (p(T)) muon trigger. The search used time of flight to isolate slowly moving, high-p(T) particles. One event passed our selection cuts with an expected background of 1.9 +/- 0.2 events. We set an upper bound on the production cross section and, interpreting this result within the context of a stable scalar top-quark model, set a lower limit on the particle mass of 249 GeV/c(2) at 95% C. L. C1 [Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, Athens 15771, Greece. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Martinez, M.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Frank, M. J.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Cuenca Almenar, C.; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Gonzalez, B. Alvarez; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, Inst Fis Cantabria, CSIC, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Canelli, F.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burke, S.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Movilla Fernandez, P.; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Rutherford, B.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Ciobanu, C. I.; di Giovanni, G. P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, A.; Robson, A.; St Denis, R.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.; Yamaoka, J.] Univ Helsinki, Div High Energy Phys, Dept Phys, FIN-00014 Helsinki, Finland. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Bellarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Goncharov, M.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] ITEP, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Pagan Griso, S.] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; Giordani, M.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, LPNHE, IN2P3, CNRS,UMR7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, P.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Di Canto, P.; Donati, S.; Punzi, G.; Sforza, F.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Trovato, M.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Dionisi, C.; Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Dionisi, C.; Giagu, S.; Iori, M.; Luci, C.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl, I-34100 Trieste, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste, I-33100 Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. [Amerio, S.; Bisello, D.; Brigliadori, L.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Pagan Griso, S.] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.; Yamaoka, J.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. RP Aaltonen, T (reprint author), Acad Sinica, Inst Phys, Taipei 11529, Taiwan. RI Xie, Si/O-6830-2016; Canelli, Florencia/O-9693-2016; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Punzi, Giovanni/J-4947-2012; Ivanov, Andrew/A-7982-2013; Ruiz, Alberto/E-4473-2011; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Annovi, Alberto/G-6028-2012; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014 OI Xie, Si/0000-0003-2509-5731; Canelli, Florencia/0000-0001-6361-2117; Gallinaro, Michele/0000-0003-1261-2277; Turini, Nicola/0000-0002-9395-5230; Osterberg, Kenneth/0000-0003-4807-0414; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Punzi, Giovanni/0000-0002-8346-9052; Ivanov, Andrew/0000-0002-9270-5643; Ruiz, Alberto/0000-0002-3639-0368; Annovi, Alberto/0000-0002-4649-4398; Warburton, Andreas/0000-0002-2298-7315; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330 NR 29 TC 51 Z9 51 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 10 PY 2009 VL 103 IS 2 AR 021802 DI 10.1103/PhysRevLett.103.021802 PG 7 WC Physics, Multidisciplinary SC Physics GA 469HT UT WOS:000267887800012 ER PT J AU Aubert, B Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Martinelli, M Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Battaglia, M Brown, DN Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Asgeirsson, DJ Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Randle-Conde, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Soffer, A Toki, WH Wilson, RJ Feltresi, E Hauke, A Jasper, H Karbach, TM Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Nogowski, R Schubert, KR Schwierz, R Volk, A Bernard, D Bonneaud, GR Latour, E Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Fioravanti, E Franchini, P Luppi, E Munerato, M Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Tosi, S Chaisanguanthum, KS Morii, M Adametz, A Marks, J Schenk, S Uwer, U Bernlochner, FU Klose, V Lacker, HM Bard, DJ Dauncey, PD Tibbetts, M Behera, PK Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Arnaud, N Bequilleux, J D'Orazio, A Davier, M Derkach, D da Costa, JF Grosdidier, G Le Diberder, F Lepeltier, V Lutz, AM Malaescu, B Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK Di Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Hafner, A Alwyn, KE Bailey, D Barlow, J Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Henderson, SW Sciolla, G Spitznagel, M Yamamoto, RK Zhao, M Patel, PM Robertson, SH Schram, M Lazzaro, A Lombardo, V Palombo, F Stracka, S Bauer, JM Cremaldi, L Godang, R Kroeger, R Summers, DJ Zhao, HW Simard, M Taras, P Nicholson, H De Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Briand, H Chauveau, J Hamon, O Leruste, P Marchiori, G Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Manoni, E Angelini, C Batignani, G Bettarini, S Calderini, G Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S Esteve, L de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Allen, MT Aston, D Bartoldus, R Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Burchat, PR Edwards, AJ Miyashita, TS Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Wray, BC Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K King, GJ Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Puccio, EMT Band, HR Chen, X Dasu, S Flood, KT Pan, Y Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Tico, J. Garra Grauges, E. Martinelli, M. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Battaglia, M. Brown, D. N. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Asgeirsson, D. J. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Randle-Conde, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Soffer, A. Toki, W. H. Wilson, R. J. Feltresi, E. Hauke, A. Jasper, H. Karbach, T. M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Nogowski, R. Schubert, K. R. Schwierz, R. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Fioravanti, E. Franchini, P. Luppi, E. Munerato, M. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Tosi, S. Chaisanguanthum, K. S. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Bernlochner, F. U. Klose, V. Lacker, H. M. Bard, D. J. Dauncey, P. D. Tibbetts, M. Behera, P. K. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. Derkach, D. da Costa, J. Firmino Grosdidier, G. Le Diberder, F. Lepeltier, V. Lutz, A. M. Malaescu, B. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Hafner, A. Alwyn, K. E. Bailey, D. Barlow, J. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Henderson, S. W. Sciolla, G. Spitznagel, M. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Schram, M. Lazzaro, A. Lombardo, V. Palombo, F. Stracka, S. Bauer, J. M. Cremaldi, L. Godang, R. Kroeger, R. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Briand, H. Chauveau, J. Hamon, O. Leruste, Ph. Marchiori, G. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Calderini, G. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Esteve, L. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Allen, M. T. Aston, D. Bartoldus, R. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Burchat, P. R. Edwards, A. J. Miyashita, T. S. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Wray, B. C. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. King, G. J. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Puccio, E. M. T. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BABAR Collaboration TI Improved Limits on Lepton-Flavor-Violating tau Decays to l phi, l rho, lK*, and l(K)over-bar* SO PHYSICAL REVIEW LETTERS LA English DT Article ID MONTE-CARLO AB We search for the neutrinoless, lepton-flavor-violating tau decays tau(-)-> l(-) V(0), where l is an electron or muon and V(0) is a vector meson reconstructed as phi -> K(+) K(-), rho -> pi(+) pi(-), K* -> K(+) pi(-), (K) over bar*-> K(-) pi(+). The analysis has been performed using 451 fb(-1) of data collected at an e(+) e(-) center-of-mass energy near 10.58 GeV with the BABAR detector at the PEP-II storage rings. The number of events found in the data is compatible with the background expectation, and upper limits on the branching fractions are set in the range (2.6-19) x 10(-8) at the 90% confidence level. C1 [Aubert, B.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, CNRS, IN2P3, LAPP, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Martinelli, M.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Martinelli, M.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Eigen, G.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Battaglia, M.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Randle-Conde, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Univ Heidelberg, Inst Phys, D-69120 Heidelberg, Germany. [Bernlochner, F. U.; Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Bard, D. J.; Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Clarke, C. K.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, J.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Sciolla, G.; Spitznagel, M.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.; Stracka, S.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico 2, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Briand, H.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.; Calderini, G.] Univ Denis Diderot Paris 7, Lab Phys Nucl & Hautes Energies, Univ Paris 06, IN2P3 CNRS, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Manoni, E.; Bianchi, F.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Esteve, L.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Kovalskyi, D.; Allen, M. T.; Aston, D.; Bartoldus, R.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.; Eckmann, R.; Ritchie, J. L.] Univ Tennessee, Knoxville, TN 37996 USA. [Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Peruzzi, I. M.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Sordini, V.] Univ Roma La Sapienza, I-00185 Rome, Italy. RP Aubert, B (reprint author), Univ Savoie, CNRS, IN2P3, LAPP, F-74941 Annecy Le Vieux, France. RI Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Stracka, Simone/M-3931-2015; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Patrignani, Claudia/C-5223-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Della Ricca, Giuseppe/B-6826-2013; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015 OI Raven, Gerhard/0000-0002-2897-5323; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Stracka, Simone/0000-0003-0013-4714; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Patrignani, Claudia/0000-0002-5882-1747; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Della Ricca, Giuseppe/0000-0003-2831-6982; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900 NR 19 TC 8 Z9 8 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 10 PY 2009 VL 103 IS 2 AR 021801 DI 10.1103/PhysRevLett.103.021801 PG 7 WC Physics, Multidisciplinary SC Physics GA 469HT UT WOS:000267887800011 ER PT J AU Coldea, AI Andrew, CMJ Analytis, JG McDonald, RD Bangura, AF Chu, JH Fisher, IR Carrington, A AF Coldea, Amalia I. Andrew, C. M. J. Analytis, J. G. McDonald, R. D. Bangura, A. F. Chu, J. -H. Fisher, I. R. Carrington, A. TI Topological Change of the Fermi Surface in Ternary Iron Pnictides with Reduced c/a Ratio: A de Haas-van Alphen Study of CaFe2P2 SO PHYSICAL REVIEW LETTERS LA English DT Article AB We report a de Haas-van Alphen effect study of the Fermi surface of CaFe2P2 using low-temperature torque magnetometry up to 45 T. This system is a close structural analog of the collapsed tetragonal nonmagnetic phase of CaFe2As2. We find the Fermi surface of CaFe2P2 to differ from other related ternary phosphides in that its topology is highly dispersive in the c axis, being three dimensional in character and with identical mass enhancement on both electron and hole pockets (similar to 1.5). This suggests that when the bonding between pnictogen layers becomes important nesting conditions are not fulfilled. C1 [Coldea, Amalia I.; Andrew, C. M. J.; Bangura, A. F.; Carrington, A.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Analytis, J. G.; Chu, J. -H.; Fisher, I. R.] Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Analytis, J. G.; Chu, J. -H.; Fisher, I. R.] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Analytis, J. G.; Chu, J. -H.; Fisher, I. R.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [McDonald, R. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Coldea, AI (reprint author), Univ Bristol, HH Wills Phys Lab, Tyndall Ave, Bristol BS8 1TL, Avon, England. RI McDonald, Ross/H-3783-2013; Coldea, Amalia/C-1106-2013; OI McDonald, Ross/0000-0002-0188-1087; Mcdonald, Ross/0000-0002-5819-4739 FU Royal Society; EPSRC; U.S. DOE, Office of Basic Energy Sciences [DE-AC02-76SF00515]; NSF [DMR-0654118]; DOE; State of Florida FX We thank M. Haddow and E. Yelland for technical support. We acknowledge financial support from the Royal Society and EPSRC. Work at Stanford was supported by the U.S. DOE, Office of Basic Energy Sciences, DE-AC02-76SF00515. Work performed at the NHMFL in Tallahassee, was supported by NSF Cooperative Agreement No. DMR-0654118, by the State of Florida, and by the DOE. NR 19 TC 48 Z9 48 U1 3 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 10 PY 2009 VL 103 IS 2 AR 026404 DI 10.1103/PhysRevLett.103.026404 PG 4 WC Physics, Multidisciplinary SC Physics GA 469HT UT WOS:000267887800041 PM 19659226 ER PT J AU Deng, CB Brower, DL Breizman, BN Spong, DA Almagri, AF Anderson, DT Anderson, FSB Ding, WX Guttenfelder, W Likin, KM Talmadge, JN AF Deng, C. B. Brower, D. L. Breizman, B. N. Spong, D. A. Almagri, A. F. Anderson, D. T. Anderson, F. S. B. Ding, W. X. Guttenfelder, W. Likin, K. M. Talmadge, J. N. TI Energetic-Electron-Driven Instability in the Helically Symmetric Experiment SO PHYSICAL REVIEW LETTERS LA English DT Article ID ALFVEN EIGENMODE OBSERVATIONS; STELLARATORS; PLASMAS; HSX AB Energetic electrons generated by electron cyclotron resonance heating are observed to drive instabilities in the quasihelically symmetric stellarator device. The coherent, global fluctuations peak in the plasma core and are measured in the frequency range of 20-120 kHz. Mode propagation is in the diamagnetic drift direction of the driving species. When quasihelical symmetry is broken, the mode is no longer observed. Experimental observations indicate that the unstable mode is acoustic rather than Alfveacutenic. C1 [Deng, C. B.; Brower, D. L.; Ding, W. X.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Breizman, B. N.] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA. [Spong, D. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Almagri, A. F.; Anderson, D. T.; Anderson, F. S. B.; Guttenfelder, W.; Likin, K. M.; Talmadge, J. N.] Univ Wisconsin, Dept Elect & Comp Engn, Madison, WI 53706 USA. RP Deng, CB (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. RI Spong, Donald/C-6887-2012 OI Spong, Donald/0000-0003-2370-1873 FU U.S. Department of Energy FX The authors gratefully acknowledge contributions from Dr. D. Eremin and Dr. A. Konies for code benchmarking, useful discussions with Professor H. Berk, and the assistance of the entire HSX group. This work was supported by the U.S. Department of Energy. NR 18 TC 19 Z9 20 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 10 PY 2009 VL 103 IS 2 AR 025003 DI 10.1103/PhysRevLett.103.025003 PG 4 WC Physics, Multidisciplinary SC Physics GA 469HT UT WOS:000267887800031 PM 19659216 ER PT J AU Gao, F Xiao, HY Zu, XT Posselt, M Weber, WJ AF Gao, Fei Xiao, Haiyan Zu, Xiaotao Posselt, Matthias Weber, William J. TI Defect-Enhanced Charge Transfer by Ion-Solid Interactions in SiC using Large-Scale Ab Initio Molecular Dynamics Simulations SO PHYSICAL REVIEW LETTERS LA English DT Article ID DISPLACEMENT THRESHOLD ENERGIES; RADIATION; CERAMICS; SILICON; DENSITY; DAMAGE AB Large-scale ab initio molecular dynamics simulations of ion-solid interactions in SiC reveal that significant charge transfer occurs between atoms, and defects can enhance charge transfer to surrounding atoms. The results demonstrate that charge transfer to and from recoiling atoms can alter the energy barriers and dynamics for stable defect formation. The present simulations illustrate in detail the dynamic processes for charged defect formation. The averaged values of displacement threshold energies along four main crystallographic directions are smaller than those determined by empirical potentials due to charge-transfer effects on recoil atoms. C1 [Gao, Fei; Weber, William J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Xiao, Haiyan; Zu, Xiaotao] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. [Posselt, Matthias] Forschungszentrum Dresden Rossendorf, Inst Ion Beam Phys & Mat Res, D-01314 Dresden, Germany. RP Gao, F (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. RI Weber, William/A-4177-2008; Xiao, Haiyan/A-1450-2012; Gao, Fei/H-3045-2012 OI Weber, William/0000-0002-9017-7365; FU Division of Materials Sciences and Engineering; Office of Basic Energy Sciences; U.S. Department of Energy [DE-AC05-76RL01830] FX This research is supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy under Contract No. DE-AC05-76RL01830. We thank Professor Marshall Stoneham for helpful suggestions regarding the manuscript. NR 28 TC 39 Z9 39 U1 7 U2 49 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 10 PY 2009 VL 103 IS 2 AR 027405 DI 10.1103/PhysRevLett.103.027405 PG 4 WC Physics, Multidisciplinary SC Physics GA 469HT UT WOS:000267887800059 PM 19659244 ER PT J AU Ghim, CM Almaas, E AF Ghim, C. -M. Almaas, E. TI Two-Component Genetic Switch as a Synthetic Module with Tunable Stability SO PHYSICAL REVIEW LETTERS LA English DT Article ID ESCHERICHIA-COLI; BACTERIOPHAGE-LAMBDA; PROTEIN-DEGRADATION; BIOLOGY; ROBUSTNESS; SYSTEMS; NETWORK; CELLS AB Despite stochastic fluctuations, some genetic switches are able to retain their expression states through multiple cell divisions, providing epigenetic memory. We propose a novel rationale for tuning the functional stability of a simple synthetic gene switch through protein dimerization. Introducing an approximation scheme to access long-time stochastic dynamics of multiple-component gene circuits, we find that the spontaneous switching rate may exhibit greater than 8 orders of magnitude variation. The manipulation of the circuit's biochemical properties offers a practical strategy for designing robust epigenetic memory with synthetic circuits. C1 [Ghim, C. -M.; Almaas, E.] Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Livermore, CA 94550 USA. [Almaas, E.] Norwegian Univ Sci & Technol, Dept Biotechnol, N-7034 Trondheim, Norway. RP Ghim, CM (reprint author), Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Livermore, CA 94550 USA. EM eivind.almaas@ntnu.no RI Ghim, Cheol-Min/E-9072-2010; OI Almaas, Eivind/0000-0002-9125-326X FU U.S. DOE [DE-AC52-07NA27344]; LDRD program [06-ERD-061] FX This work was performed under the auspices of the U.S. DOE by LLNL under Contract No. DE-AC52-07NA27344 and funded by LDRD program Grant No. 06-ERD-061. NR 24 TC 13 Z9 14 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 10 PY 2009 VL 103 IS 2 AR 028101 DI 10.1103/PhysRevLett.103.028101 PG 4 WC Physics, Multidisciplinary SC Physics GA 469HT UT WOS:000267887800062 PM 19659247 ER PT J AU Jia, JY Esumi, S Wei, R AF Jia, Jiangyong Esumi, ShinIchi Wei, Rui TI Away-Side Asymmetry of Jet Correlation Relative to the Reaction Plane: A Sensitive Probe for Jet In-Medium Modifications SO PHYSICAL REVIEW LETTERS LA English DT Article ID QUARK-GLUON PLASMA AB We propose a new observable based on two-particle azimuth correlation to study the away-side medium response in midcentral Au+Au collisions. We argue that a left-right asymmetry may appear at the away side by selecting triggers separately in the left and right sides of the reaction plane. A simple model estimation suggests that the magnitude of such asymmetry could reach 30% with details depending on the medium response mechanisms. This asymmetry, if observed, can help to distinguish competing theoretical models. C1 [Jia, Jiangyong; Wei, Rui] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Jia, Jiangyong] Brookhaven Natl Lab, Dept Phys, Upton, NY 11796 USA. [Esumi, ShinIchi] Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 3058571, Japan. RP Jia, JY (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. FU NSF [PHY-0701487]; MEXT; JSPS of Japan FX This work is supported by the NSF under Grant No. PHY-0701487 (J. J. and R. W.) and MEXT and JSPS of Japan ( S. E.). NR 22 TC 4 Z9 4 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 10 PY 2009 VL 103 IS 2 AR 022301 DI 10.1103/PhysRevLett.103.022301 PG 4 WC Physics, Multidisciplinary SC Physics GA 469HT UT WOS:000267887800014 PM 19659199 ER PT J AU Kienle, D Leonard, F AF Kienle, Diego Leonard, Francois TI Terahertz Response of Carbon Nanotube Transistors SO PHYSICAL REVIEW LETTERS LA English DT Article ID TIME-DEPENDENT TRANSPORT; DOMAIN; FREQUENCY; OPERATION; GHZ AB We present an approach for time-dependent quantum transport based on a self-consistent nonequilibrium Green function formalism. The technique is applied to a ballistic carbon nanotube transistor in the presence of a time-harmonic signal at the gate. In the on state, the dynamic conductance exhibits plasmonic resonant peaks at terahertz frequencies. These vanish in the off state, and the dynamic conductance displays smooth oscillations, a signature of single-particle quantum effects. We show that the nanotube kinetic inductance plays an essential role in the high-frequency behavior. C1 [Kienle, Diego; Leonard, Francois] Sandia Natl Labs, Livermore, CA 94550 USA. RP Kienle, D (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM dkienle@sandia.gov FU United States Department of Energy [DEAC01-94-AL85000] FX We are indebted to M. Vaidyanathan and H. Guo for fruitful discussions. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the United States Department of Energy under Contract No. DEAC01-94-AL85000. NR 22 TC 32 Z9 34 U1 4 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 10 PY 2009 VL 103 IS 2 AR 026601 DI 10.1103/PhysRevLett.103.026601 PG 4 WC Physics, Multidisciplinary SC Physics GA 469HT UT WOS:000267887800042 PM 19659227 ER PT J AU Muller, M Schmalian, J Fritz, L AF Mueller, Markus Schmalian, Joumlrg Fritz, Lars TI Graphene: A Nearly Perfect Fluid SO PHYSICAL REVIEW LETTERS LA English DT Article ID FERMI-LIQUID BEHAVIOR; CRITICAL-POINTS; SYSTEMS; GAS AB Hydrodynamics and collision-dominated transport are crucial to understand the slow dynamics of many correlated quantum liquids. The ratio eta/s of the shear viscosity eta to the entropy density s is uniquely suited to determine how strongly the excitations in a quantum fluid interact. We determine eta/s in clean undoped graphene using a quantum kinetic theory. As a result of the quantum criticality of this system the ratio is smaller than in many other correlated quantum liquids and, interestingly, comes close to a lower bound conjectured in the context of the quark gluon plasma. We discuss possible consequences of the low viscosity, including preturbulent current flow. C1 [Mueller, Markus] Abdus Salam Int Ctr Theoret Phys, I-34014 Trieste, Italy. [Schmalian, Joumlrg] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Schmalian, Joumlrg] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Fritz, Lars] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. RP Muller, M (reprint author), Abdus Salam Int Ctr Theoret Phys, Str Costiera 11, I-34014 Trieste, Italy. RI Schmalian, Joerg/H-2313-2011; Fritz, Lars/F-2934-2010; Fritz, Lars/K-8722-2013; Muller, Markus/L-5058-2013 OI Muller, Markus/0000-0002-0299-952X FU SNF [PA002-113151, PP002-118932]; Iowa State University [DEAC02-07CH11358]; DFG [Fr 2627/1-1]; NSF [DMR-0757145] FX We thank S. Hartnoll, D. Nelson and S. Sachdev for useful discussions. M. M. and J. S. acknowledge the hospitality of the Aspen Center for Physics. The authors were supported by the SNF under grants PA002-113151 and PP002-118932 (M. M.), the Ames Laboratory, operated for the U.S. DOE by Iowa State University under Contract No. DEAC02-07CH11358 (J. S.), and DFG grant Fr 2627/1-1 and NSF grant DMR-0757145 (L. F.). NR 36 TC 110 Z9 110 U1 1 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 10 PY 2009 VL 103 IS 2 AR 025301 DI 10.1103/PhysRevLett.103.025301 PG 4 WC Physics, Multidisciplinary SC Physics GA 469HT UT WOS:000267887800032 PM 19659217 ER PT J AU Ratajczak, MK Chi, EY Frey, SL Cao, KD Luther, LM Lee, KYC Majewski, J Kjaer, K AF Ratajczak, Maria K. Chi, Eva Y. Frey, Shelli L. Cao, Kathleen D. Luther, Laura M. Lee, Ka Yee C. Majewski, Jaroslaw Kjaer, Kristian TI Ordered Nanoclusters in Lipid-Cholesterol Membranes SO PHYSICAL REVIEW LETTERS LA English DT Article DE biomembranes; biotransport; phase diagrams; X-ray diffraction ID CONDENSED COMPLEXES; CHEMICAL ACTIVITY; PHOSPHOLIPIDS; RAFTS; MONOLAYERS; DOMAIN; MODEL; DISPLACEMENT; MIXTURES; VESICLES AB X-ray diffraction of sphingomyelin-dihydrocholesterol (SM-DChol) monolayers revealed short-ranged (similar to 25 A degrees) 2D ordering. These nanoclusters show two distinct regions: below the cusp point of the phase diagram (35 mol% DChol), a constant d spacing was observed; above the cusp, the d spacing increases linearly with DChol in accordance to Vegard's law for binary alloys. The components in this lipidic alloy are thus a 65:35 SM-DChol entity and excess DChol. Reflectivity data further support the emergence above the cusp of an uncomplexed DChol population with greater vertical mobility. C1 [Chi, Eva Y.; Frey, Shelli L.; Cao, Kathleen D.; Luther, Laura M.; Lee, Ka Yee C.] Univ Chicago, Dept Chem, Inst Biophys Dynam, Chicago, IL 60637 USA. [Ratajczak, Maria K.; Chi, Eva Y.; Frey, Shelli L.; Cao, Kathleen D.; Luther, Laura M.; Lee, Ka Yee C.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Ratajczak, Maria K.] Univ Chicago, Dept Phys, Inst Biophys Dynam, Chicago, IL 60637 USA. [Majewski, Jaroslaw] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. [Kjaer, Kristian] Max Planck Inst Colloids & Interfaces, Am Muhlenberg, Germany. [Kjaer, Kristian] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. RP Lee, KYC (reprint author), Univ Chicago, Dept Chem, Inst Biophys Dynam, 929 E 57th St, Chicago, IL 60637 USA. EM kayeelee@uchicago.edu RI Lujan Center, LANL/G-4896-2012 FU NSF [MCB0616249]; International Institute [0645461]; Burroughs Wellcome Fund [1001774]; NIH [AG025649]; March of Dimes [6-FY07-357]; NSF; Los Alamos National Laboratory [W7405-ENG-36]; DOE Office of Basic Energy Science FX This work was supported by the NSF (No. MCB0616249). We acknowledge beamtime on BW1 in HASYLAB, DESY and support from the International Institute for Complex Adaptive Matter (NSF Grant No. DMR 0645461) for the x- ray experiments. M. K. R. is grateful for the support from the Burroughs Wellcome Fund (No. 1001774), E. Y. C. from the NIH (No. AG025649) and the March of Dimes (No. 6-FY07-357), and S. L. F. from the NSF. J. M. was supported by Los Alamos National Laboratory under DOE Contract No. W7405-ENG-36 and the DOE Office of Basic Energy Science. NR 28 TC 27 Z9 27 U1 4 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 10 PY 2009 VL 103 IS 2 AR 028103 DI 10.1103/PhysRevLett.103.028103 PG 4 WC Physics, Multidisciplinary SC Physics GA 469HT UT WOS:000267887800064 PM 19659249 ER PT J AU Ravasio, A Gauthier, D Maia, FRNC Billon, M Caumes, JP Garzella, D Geleoc, M Gobert, O Hergott, JF Pena, AM Perez, H Carre, B Bourhis, E Gierak, J Madouri, A Mailly, D Schiedt, B Fajardo, M Gautier, J Zeitoun, P Bucksbaum, PH Hajdu, J Merdji, H AF Ravasio, A. Gauthier, D. Maia, F. R. N. C. Billon, M. Caumes, J-P. Garzella, D. Geleoc, M. Gobert, O. Hergott, J-F. Pena, A-M. Perez, H. Carre, B. Bourhis, E. Gierak, J. Madouri, A. Mailly, D. Schiedt, B. Fajardo, M. Gautier, J. Zeitoun, P. Bucksbaum, P. H. Hajdu, J. Merdji, H. TI Single-Shot Diffractive Imaging with a Table-Top Femtosecond Soft X-Ray Laser-Harmonics Source SO PHYSICAL REVIEW LETTERS LA English DT Article ID HIGH-ORDER HARMONICS; FREE-ELECTRON LASER; EXTREME-ULTRAVIOLET; GENERATION; MICROSCOPY; DYNAMICS; LIGHT AB Coherent x-ray diffractive imaging is a powerful method for studies on nonperiodic structures on the nanoscale. Access to femtosecond dynamics in major physical, chemical, and biological processes requires single-shot diffraction data. Up to now, this has been limited to intense coherent pulses from a free electron laser. Here we show that laser-driven ultrashort x-ray sources offer a comparatively inexpensive alternative. We present measurements of single-shot diffraction patterns from isolated nano-objects with a single 20 fs pulse from a table-top high-harmonic x-ray laser. Images were reconstructed with a resolution of 119 nm from the single shot and 62 nm from multiple shots. C1 [Ravasio, A.; Gauthier, D.; Billon, M.; Caumes, J-P.; Garzella, D.; Geleoc, M.; Gobert, O.; Hergott, J-F.; Pena, A-M.; Perez, H.; Carre, B.; Merdji, H.] CEA, Serv Photons Atomes & Mol, Ctr Etud Saclay, F-91191 Gif Sur Yvette, France. [Maia, F. R. N. C.; Hajdu, J.] Uppsala Univ, Dept Cell & Mol Biol, Lab Mol Biophys, SE-75124 Uppsala, Sweden. [Bourhis, E.; Gierak, J.; Madouri, A.; Mailly, D.; Schiedt, B.] Alcatel Alsthom Rech, Route Nozay, CNRS, Lab Photon & Nanostruct,UPR20, F-91460 Marcoussis, France. [Fajardo, M.] Inst Super Tecn, Inst Plasmas & Fusao Nucl, P-1049001 Lisbon, Portugal. [Gautier, J.; Zeitoun, P.] Ecole Polytech, CNRS, UMR7639, Ecole Natl Super Tech Avancees,Lab Opt Appl, F-91761 Palaiseau, France. [Bucksbaum, P. H.; Hajdu, J.; Merdji, H.] Stanford Univ, PULSE Inst, Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. RP Ravasio, A (reprint author), CEA, Serv Photons Atomes & Mol, Ctr Etud Saclay, Batiment 522, F-91191 Gif Sur Yvette, France. EM hamed.merdji@cea.fr RI Rocha Neves Couto Maia, Filipe/C-3146-2014; Fajardo, Marta/A-4608-2012; Zielbauer, Birgitta/K-4707-2015 OI Rocha Neves Couto Maia, Filipe/0000-0002-2141-438X; Fajardo, Marta/0000-0003-2133-2365; Zielbauer, Birgitta/0000-0002-9188-5662 FU European Union [NEST-012843]; EU-FP6 XTRA [MRTN-CT-2003-505138]; LASERLAB [RII3-CT2003-506350)]; U.S. Department of Energy; Triangle de la Physique; NanoSciences Ile-de-France; DFG Cluster of Excellence at the Munich Centre; Helmholtz Society; Swedish Research Council FX We acknowledge financial support from the European Union (TUIXS, NEST-012843), the EU-FP6 XTRA (MRTN-CT-2003-505138), and LASERLAB (RII3-CT2003-506350) programs. We also acknowledge support from the U.S. Department of Energy through the Stanford PULSE Center. Additional support comes from the Triangle de la Physique, NanoSciences Ile-de-France, DFG Cluster of Excellence at the Munich Centre for Advanced Photonics, from the Virtual Institute Program of the Helmholtz Society, and from the Swedish Research Council. We are grateful to Elsa Abreu, Thierry Auguste, Stefan Haessler, Jacek Krzywinski, and Pascal Salie` res for help and discussions. NR 24 TC 94 Z9 97 U1 0 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 10 PY 2009 VL 103 IS 2 AR 028104 DI 10.1103/PhysRevLett.103.028104 PG 5 WC Physics, Multidisciplinary SC Physics GA 469HT UT WOS:000267887800065 PM 19659250 ER PT J AU Bitra, VSR Womac, AR Chevanan, N Miu, PI Igathinathane, C Sokhansanj, S Smith, DR AF Bitra, Venkata S. R. Womac, Alvin R. Chevanan, Nehru Miu, Petre I. Igathinathane, C. Sokhansanj, Shahab Smith, David R. TI Direct mechanical energy measures of hammer mill comminution of switchgrass, wheat straw, and corn stover and analysis of their particle size distributions SO POWDER TECHNOLOGY LA English DT Article DE Biomass size reduction; Hammer mill speed; Specific energy; Particle size distribution; Rosin-Rammler equation ID REQUIREMENTS; PERFORMANCE; REDUCTION; BIOMASS; GRIND AB Biomass particle size impacts handling, storage, conversion, and dust control systems. Size reduction mechanical energy was directly measured for switchgrass (Panicum virgatum L), wheat straw (Triticum aestivum L), and corn stover (Zea mays L.) in an instrumented hammer mill. Direct energy inputs were determined for hammer mill operating speeds from 2000 to 3600 rpm for 3.2 mm integral classifying screen and mass input rate of 2.5 kg/min with 90 degrees- and 30 degrees-hammers. Overall accuracy of specific energy measurement was calculated as +/- 0.072 MJ/Mg. Particle size distributions created by hammer mill were determined for mill operating factors using ISO sieve sizes from 4.75 to 0.02 mm in conjunction with Ro-Tap (R) sieve analyzer. A wide range of analytical descriptors were examined to mathematically represent the range of particle sizes in the distributions. Total specific energy (MJ/Mg) was defined as size reduction energy to operate the hammer mill plus that imparted to biomass. Effective specific energy was defined as energy imparted to biomass. Total specific energy for switchgrass, wheat straw, and corn stover grinding increased by 37, 30, and 45% from 114.4, 125.1, and 103.7 MJ/Mg, respectively, with an increase in hammer mill speed from 2000 to 3600 rpm for 90 degrees-hammers. Corresponding total specific energy per unit size reduction was 14.9, 19.7, and 13.5 MJ/Mg mm, respectively. Effective specific energy of 90 degrees-hammers decreased marginally for switchgrass and considerably for wheat straw and it increased for corn stover with an increase in speed from 2000 to 3600 rpm. However, effective specific energy increased with speed to a certain extent and then decreased for 30 degrees-hammers. Rosin-Rammler equation fitted the size distribution data with R(2)>0.995. Mass relative span was greater than 1, which indicated a wide distribution of particle sizes. Hammer milling of switchgrass, wheat straw, and corn stover with 3.2 mm screen resulted in 'well-graded fine-skewed mesokurtic' particles. Uniformity coefficient was <4.0 for wheat straw, which indicated uniform mix of particles, and it was about 4.0 for switchgrass and corn stover, which indicated a moderate assortment of particles. Size-related parameters, namely, geometric mean diameter, Rosin-Rammler size parameter, median diameter, and effective size had strong correlation among themselves and good negative correlation with speed. Distribution-related parameters, namely, Rosin-Rammler distribution parameter, mass relative span, inclusive graphic skewness, graphic kurtosis, uniformity index. uniformity coefficient, coefficient of gradation and distribution geometric standard deviation had strong correlation among themselves and a weak correlation with mill speed. Results of this extensive analysis of specific energy and particle sizes can be applied to selection of hammer mill operating factors to produce a particular size of switchgrass, wheat straw, and corn stover grind, and will serve as a guide for relations among the energy and various analytic descriptors of biomass particle distributions. (C) 2009 Elsevier B.V. All rights reserved. C1 [Bitra, Venkata S. R.; Womac, Alvin R.; Chevanan, Nehru; Miu, Petre I.; Smith, David R.] Univ Tennessee, Dept Biosyst Engn & Soil Sci, Knoxville, TN 37996 USA. [Igathinathane, C.] Mississippi State Univ, Dept Agr & Biol Engn, Mississippi State, MS 39762 USA. [Sokhansanj, Shahab] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Womac, AR (reprint author), Univ Tennessee, Dept Biosyst Engn & Soil Sci, 2506 EJ Chapman Dr, Knoxville, TN 37996 USA. EM awomac@utk.edu OI Cannayen, Igathinathane/0000-0001-8884-7959 FU USDA-DOE [DE-PA36-04GO94002] FX This research was supported in part by USDA-DOE Biomass Research and Development Initiative DE-PA36-04GO94002 and DOE funding through the Southeastern Regional Sun Grant Center. NR 46 TC 69 Z9 71 U1 1 U2 26 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0032-5910 J9 POWDER TECHNOL JI Powder Technol. PD JUL 10 PY 2009 VL 193 IS 1 BP 32 EP 45 DI 10.1016/j.powtec.2009.02.010 PG 14 WC Engineering, Chemical SC Engineering GA 447YF UT WOS:000266227300006 ER PT J AU Chevanan, N Womac, AR Bitra, VSR Yoder, DC Sokhansanj, S AF Chevanan, Nehru Womac, Alvin R. Bitra, Venkata S. R. Yoder, Daniel C. Sokhansanj, Shahab TI Flowability parameters for chopped switchgrass, wheat straw and corn stover SO POWDER TECHNOLOGY LA English DT Article DE Chopped biomass; Direct shear; Angle of internal friction; Cohesion; Flowability ID FLOW PROPERTIES; FOOD POWDERS; SHEAR; BEHAVIOR AB A direct shear cell to measure the shear strength and flow properties of chopped switchgrass, wheat straw, and corn stover was designed, fabricated, and tested. Yield loci (r(2) = 0.99) determined at preconsolidation pressures of 3.80 kPa and 5.02 kPa indicated that chopped biomass followed Mohr-Coulomb failure. Normal stress significantly affected the displacement required for shear failure, as well as the friction coefficient values for all three chopped biomass types. Displacement at shear failure ranged from 30 to 80 mm, and depended on preconsolidation pressure, normal stress, and particle size. Friction coefficient was inversely related to normal stress, and was highest for chopped corn stover. Also, chopped corn stover exhibited the highest angle of internal friction, unconfined yield strength, major consolidation strength, and cohesive strength, all of which indicated increased challenges in handling chopped corn stover. The measured angle of internal friction and cohesive strength indicated that chopped biomass cannot be handled by gravity alone. The measured angle of internal friction and cohesive strength were 43 degrees and 0.75 kPa for chopped switchgrass; 44 degrees and 0.49 kPa for chopped wheat straw; and 48 degrees and 0.82 kPa for chopped corn stover. Unconfined yield strength and major consolidation strength used for characterization of bulk flow materials and design of hopper dimensions were 3.4 and 10.4 kPa for chopped switchgrass: 2.3 and 9.6 kPa for chopped wheat straw and 4.2 and 11.8 kPa for chopped corn stover. These results are useful for the development of efficient handling, storage, and transportation systems for biomass in biorefineries. (C) 2009 Elsevier B.V. All rights reserved. C1 [Chevanan, Nehru; Womac, Alvin R.; Bitra, Venkata S. R.; Yoder, Daniel C.] Univ Tennessee, Knoxville, TN 37996 USA. [Sokhansanj, Shahab] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Womac, AR (reprint author), Univ Tennessee, 2506 EJ Chapman Dr, Knoxville, TN 37996 USA. EM awomac@utk.edu FU USDA-NRCS [68-3A75-4-136]; USDA-DOE [DE-PA36-04GO94002] FX We thankfully acknowledge the funding support provided through the USDA-NRCS Grant Agreement 68-3A75-4-136 and USDA-DOE Biomass Research and Development Initiative DE-PA36-04GO94002 for carrying out this project work. NR 30 TC 27 Z9 28 U1 4 U2 20 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0032-5910 J9 POWDER TECHNOL JI Powder Technol. PD JUL 10 PY 2009 VL 193 IS 1 BP 79 EP 86 DI 10.1016/j.powtec.2009.02.009 PG 8 WC Engineering, Chemical SC Engineering GA 447YF UT WOS:000266227300012 ER PT J AU Chen, YL Analytis, JG Chu, JH Liu, ZK Mo, SK Qi, XL Zhang, HJ Lu, DH Dai, X Fang, Z Zhang, SC Fisher, IR Hussain, Z Shen, ZX AF Chen, Y. L. Analytis, J. G. Chu, J. -H. Liu, Z. K. Mo, S. -K. Qi, X. L. Zhang, H. J. Lu, D. H. Dai, X. Fang, Z. Zhang, S. C. Fisher, I. R. Hussain, Z. Shen, Z. -X. TI Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3 SO SCIENCE LA English DT Article ID HGTE QUANTUM-WELLS; SINGLE DIRAC CONE; SURFACE; PHASE; TRANSITION; STATE AB Three-dimensional topological insulators are a new state of quantum matter with a bulk gap and odd number of relativistic Dirac fermions on the surface. By investigating the surface state of Bi2Te3 with angle-resolved photoemission spectroscopy, we demonstrate that the surface state consists of a single nondegenerate Dirac cone. Furthermore, with appropriate hole doping, the Fermi level can be tuned to intersect only the surface states, indicating a full energy gap for the bulk states. Our results establish that Bi2Te3 is a simple model system for the three-dimensional topological insulator with a single Dirac cone on the surface. The large bulk gap of Bi2Te3 also points to promising potential for high-temperature spintronics applications. C1 [Chen, Y. L.; Analytis, J. G.; Chu, J. -H.; Liu, Z. K.; Mo, S. -K.; Qi, X. L.; Lu, D. H.; Zhang, S. C.; Fisher, I. R.; Shen, Z. -X.] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [Chen, Y. L.; Analytis, J. G.; Chu, J. -H.; Liu, Z. K.; Mo, S. -K.; Qi, X. L.; Zhang, S. C.; Fisher, I. R.; Shen, Z. -X.] Stanford Univ, Dept Phys, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Chen, Y. L.; Analytis, J. G.; Chu, J. -H.; Liu, Z. K.; Mo, S. -K.; Qi, X. L.; Zhang, S. C.; Fisher, I. R.; Shen, Z. -X.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Chen, Y. L.; Mo, S. -K.; Hussain, Z.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Zhang, H. J.; Dai, X.; Fang, Z.] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Zhang, H. J.; Dai, X.; Fang, Z.] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. RP Shen, ZX (reprint author), SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM zxshen@stanford.edu RI Dai, Xi/C-4236-2008; Zhang, Shou-Cheng/B-2794-2010; Chen, Yulin/C-1918-2012; Qi, Xiaoliang/F-9245-2010; Krausnick, Jennifer/D-6291-2013; Zhang, Haijun/E-5098-2013; Mo, Sung-Kwan/F-3489-2013; Fang, Zhong/D-4132-2009; Zhang, Shengbai/D-4885-2013 OI Dai, Xi/0000-0003-0538-1829; Qi, Xiaoliang/0000-0003-0388-5003; Mo, Sung-Kwan/0000-0003-0711-8514; Zhang, Shengbai/0000-0003-0833-5860 FU Department of Energy, Office of Basic Energy Sciences [DE-AC02-76SF00515]; NSF of China; National Basic Research Program of China; International Science and Technology Cooperation Program of China FX This work was supported by the Department of Energy, Office of Basic Energy Sciences, under contract DE-AC02-76SF00515; H.J.Z., Z.F., and X.D. acknowledge the support by the NSF of China, the National Basic Research Program of China, and the International Science and Technology Cooperation Program of China. NR 25 TC 1550 Z9 1565 U1 78 U2 601 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JUL 10 PY 2009 VL 325 IS 5937 BP 178 EP 181 DI 10.1126/science.1173034 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 468FK UT WOS:000267802000040 PM 19520912 ER PT J AU Goertz, MP Stottrup, BL Houston, JE Zhu, XY AF Goertz, M. P. Stottrup, B. L. Houston, J. E. Zhu, X. -Y. TI Nanomechanical Contrasts of Gel and Fluid Phase Supported Lipid Bilayers SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID ATOMIC-FORCE MICROSCOPE; BIOLOGICAL-MEMBRANES; WATER; ADHESION; VESICLES; FRICTION; MODEL; AFM AB Lipid bilayers exhibit Structural diversity that contributes to the complex properties of the cell membrane. We use interfacial force microscopy to correlate mechanical properties with the two-dimensional phase behavior of supported lipid bilayers (SLBs). Upon indentation by a 500 lint tungsten tip, a contrast ill the mechanical response is observed for gel vs fluid phase SLBs. We Measure the yield force and time scale for recovery for these films. Consistent with a gel phase, it DSPC SLB has a relatively high yield force and slow recovery. In the higher mobility fluid phase, a DLPC SLB has it lower yield force and completely recovers within the experimental time scale. Friction measurements offer further contrast between the two SLBs. C1 [Houston, J. E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Goertz, M. P.; Zhu, X. -Y.] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA. [Stottrup, B. L.] Augsburg Coll, Dept Phys, Minneapolis, MN 55454 USA. RP Houston, JE (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM jehoust@sandia.gov; zhu@umn.edu FU Sandia National Laboratories.; Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Portions of this work were performed under the support of Sandia National Laboratories. Sandia is a Multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. B.L.S. acknowledges Support from the Research Corporation. NR 22 TC 9 Z9 10 U1 4 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUL 9 PY 2009 VL 113 IS 27 BP 9335 EP 9339 DI 10.1021/jp900866h PG 5 WC Chemistry, Physical SC Chemistry GA 466HG UT WOS:000267651600040 PM 19534482 ER PT J AU Antelman, J Ebenstein, Y Dertinger, T Michalet, X Weiss, S AF Antelman, Josh Ebenstein, Yuval Dertinger, Thomas Michalet, Xavier Weiss, Shimon TI Suppression of Quantum Dot Blinking in DTT-Doped Polymer Films SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID CADMIUM SELENIDE NANOCRYSTALS; LIGHT-EMITTING-DIODES; SEMICONDUCTOR NANOCRYSTALS; FLUORESCENCE INTERMITTENCY; SINGLE PHOTONS; LIVE CELLS; COLOCALIZATION; PROBES AB In this report we evaluate the emission properties of single quantum dots embedded in a thin, thiol-containing polymer film. We report the suppression of quantum dot blinking leading to a continuous photon flux from both organic and water soluble quantum dots and demonstrate their application as robust fluorescent point sources for ultrahigh resolution localization. In addition, we apply the polymer coating to cell samples immunostained with antibody conjugated QDs and show that fluorescence intensity from the polymer embedded cells shows no sign of degradation after 67 h of continuous excitation. The reported thin polymer film coating may prove advantageous for immuno-cyto/histo-chemistry as well as for the fabrication of quantum dot containing devices requiring a reliable and stable photon source (including a single photon source) or stable charge characteristics while maintaining intimate contact between the quantum dot and the surrounding matrix. C1 [Antelman, Josh; Ebenstein, Yuval; Dertinger, Thomas; Michalet, Xavier; Weiss, Shimon] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Weiss, Shimon] Univ Calif Los Angeles, Dept Physiol, Los Angeles, CA 90095 USA. [Weiss, Shimon] Univ Calif Los Angeles, DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. RP Ebenstein, Y (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, 607 Charles E Young Dr E, Los Angeles, CA 90095 USA. EM uv@chem.ucla.edu; sweiss@chem.ucla.edu RI Ebenstein, Yuval/B-4420-2009; Dertinger, Thomas/A-4102-2011; weiss, shimon/B-4164-2009; Michalet, Xavier/A-9704-2009 OI Ebenstein, Yuval/0000-0002-7107-7529; weiss, shimon/0000-0002-0720-5426; Michalet, Xavier/0000-0001-6602-7693 FU UCLA-DOE Institute for Genomics and Proteomics [DE-FC02-02ER63421]; NIH [R01-EB000312]; German Science Foundation (DFG) [DE 1591/1-1] FX We thank Invitrogen for the generous gift of Qdots and Zeon Corp for the generous gift of Zeonex. This work was supported by the UCLA-DOE Institute for Genomics and Proteomics (Grant DE-FC02-02ER63421) and NIH Grant R01-EB000312. Y.E. thanks the Human Frontier Science Program for their support. T.D. thanks the German Science Foundation (DFG) for financial support (DE 1591/1-1). NR 39 TC 21 Z9 21 U1 0 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 9 PY 2009 VL 113 IS 27 BP 11541 EP 11545 DI 10.1021/jp811078e PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 466WO UT WOS:000267694900014 PM 20161096 ER PT J AU Morrish, F Isern, N Sadilek, M Jeffrey, M Hockenbery, DM AF Morrish, F. Isern, N. Sadilek, M. Jeffrey, M. Hockenbery, D. M. TI c-Myc activates multiple metabolic networks to generate substrates for cell-cycle entry SO ONCOGENE LA English DT Review DE NMR; isotopomer; stable isotope labeling; O-linked N-acetylglucosamine; glucose ID BETA-N-ACETYLGLUCOSAMINE; PROGRESSION; PROLIFERATION; TRANSCRIPTION; GENES AB Cell proliferation requires the coordinated activity of cytosolic and mitochondrial metabolic pathways to provide ATP and building blocks for DNA, RNA and protein synthesis. Many metabolic pathway genes are targets of the c-myc oncogene and cell-cycle regulator. However, the contribution of c-Myc to the activation of cytosolic and mitochondrial metabolic networks during cell-cycle entry is unknown. Here, we report the metabolic fates of [U-(13)C] glucose in serum-stimulated myc(-/-) and myc(+/+) fibroblasts by (13)C isotopomer NMR analysis. We demonstrate that endogenous c-myc increased (13)C labeling of ribose sugars, purines and amino acids, indicating partitioning of glucose carbons into C1/folate and pentose phosphate pathways, and increased tricarboxylic acid cycle turnover at the expense of anaplerotic flux. Myc expression also increased global O-linked N-acetylglucosamine protein modi. cation, and inhibition of hexosamine biosynthesis selectively reduced growth of Myc-expressing cells, suggesting its importance in Myc-induced proliferation. These data reveal a central organizing function for the Myc oncogene in the metabolism of cycling cells. The pervasive deregulation of this oncogene in human cancers may be explained by its function in directing metabolic networks required for cell proliferation. Oncogene ( 2009) 28, 2485-2491; doi: 10.1038/onc.2009.112; published online 18 May 2009 C1 [Morrish, F.; Hockenbery, D. M.] Fred Hutchinson Canc Res Ctr, Div Clin Res, Seattle, WA 98109 USA. [Isern, N.] Pacific NW Natl Lab, High Field NMR Facil, WR Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. [Sadilek, M.] Univ Washington, Dept Chem, Seattle, WA 98195 USA. [Sadilek, M.] Univ Texas SW, Adv Imaging Res Ctr, Dallas, TX USA. RP Hockenbery, DM (reprint author), Fred Hutchinson Canc Res Ctr, Div Clin Res, 1100 Fairview Ave N,D2-190, Seattle, WA 98109 USA. EM dhockenb@fhcrc.org OI Isern, Nancy/0000-0001-9571-8864 FU NIH [R21 DK070297, P41 RR02301]; Human Metabolome database; MDL database; Department of Energy's Office of Biological and Environmental Research at Pacific Northwest National Laboratory; Development of the program tca-CALC [RO1CA106650-02]; University of Texas Southwestern Medical Center [H47669-16]; Department of Veterans Affairs Merit Review Award to CR Malloy [RR02584] FX We thank John Sedivy for cell lines. This work utilized the MMC database supported by NIH grants R21 DK070297 and P41 RR02301, the MDL database (www.mdl.imb.liu.se) and the Human Metabolome database (www.hmbd.ca). A portion of this research was performed at EMSL, a national scienti. c user facility sponsored by the Department of Energy's Office of Biological and Environmental Research at Pacific Northwest National Laboratory. This work was funded by RO1CA106650-02 (DH). Development of the program tca-CALC (University of Texas Southwestern Medical Center) was supported by H47669-16, a Department of Veterans Affairs Merit Review Award to CR Malloy, and RR02584. NR 21 TC 85 Z9 89 U1 0 U2 15 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0950-9232 J9 ONCOGENE JI Oncogene PD JUL 9 PY 2009 VL 28 IS 27 BP 2485 EP 2491 DI 10.1038/onc.2009.112 PG 7 WC Biochemistry & Molecular Biology; Oncology; Cell Biology; Genetics & Heredity SC Biochemistry & Molecular Biology; Oncology; Cell Biology; Genetics & Heredity GA 468HD UT WOS:000267806800001 PM 19448666 ER PT J AU Chen, DA Viswanatha, R Ong, GL Xie, RG Balasubramaninan, M Peng, XG AF Chen, Dingan Viswanatha, Ranjani Ong, Grace L. Xie, Renguo Balasubramaninan, Mahalingam Peng, Xiaogang TI Temperature Dependence of "Elementary Processes" in Doping Semiconductor Nanocrystals SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CDS/ZNS CORE/SHELL NANOCRYSTALS; CDSE NANOCRYSTALS; QUANTUM DOTS; DOPED NANOCRYSTALS; OPTICAL-PROPERTIES; ZNSE NANOCRYSTALS; MN; EMITTERS; NANOWIRES; EFFICIENT AB Controlled doping is a critical step toward various unique nanostructures. This report shall demonstrate that doping chemistry of colloidal nanocrystals is much more complex than what has been proposed in the existing experimental and theoretical reports. Four individual processes, namely "surface adsorption", "lattice incorporation", "lattice diffusion", and "lattice ejection", will be identified, each of which possesses its own critical temperature. A given type of host nanocrystals can be switched from being impossible to dope to becoming successfully doped. The key is to program the reaction temperature to accommodate all elementary processes. C1 [Chen, Dingan; Viswanatha, Ranjani; Ong, Grace L.; Xie, Renguo; Peng, Xiaogang] Univ Arkansas, Dept Chem & Biochem, Fayetteville, AR 72701 USA. [Chen, Dingan] Southeast Univ, Sch Elect Sci & Engn, Adv Photon Ctr, Nanjing 210096, Peoples R China. [Balasubramaninan, Mahalingam] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Viswanatha, R (reprint author), Univ Arkansas, Dept Chem & Biochem, Fayetteville, AR 72701 USA. EM ranjani62@gmail.com; xpeng@uark.edu RI peng, xiaogang/R-6184-2016 OI peng, xiaogang/0000-0002-5606-8472 FU National Science Foundation; National Institute of Health; U.S. DOE [DE-ACO2-O6CH 11357]; NSERC; China Scholarship Council [200713020] FX This work was supported by the National Science Foundation and the National Institute of Health. PNC/XOR is supported by the U.S. DOE, NSERC and its member institutions. The Advanced Photon Source is supported by the U.S. DOE, under contract DE-ACO2-O6CH 11357. D.C. is grateful for the State Scholarship (No. [200713020) provided by China Scholarship Council. NR 41 TC 105 Z9 106 U1 7 U2 93 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 8 PY 2009 VL 131 IS 26 BP 9333 EP 9339 DI 10.1021/ja9018644 PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 466AT UT WOS:000267633300048 PM 19566099 ER PT J AU Ito, Y Virkar, AA Mannsfeld, S Oh, JH Toney, M Locklin, J Bao, ZA AF Ito, Yutaka Virkar, Ajay A. Mannsfeld, Stefan Oh, Joon Hak Toney, Michael Locklin, Jason Bao, Zhenan TI Crystalline Ultrasmooth Self-Assembled Monolayers of Alkylsilanes for Organic Field-Effect Transistors SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID THIN-FILM TRANSISTORS; HIGH-PERFORMANCE; SEMICONDUCTORS; GROWTH; MORPHOLOGY; TRANSPORT; MOBILITY; ACIDS AB Crystalline self-assembled monolayers (SAMs) of organosilane compounds such as octadecyltrimethoxysilane (OTMS) and octadecyltrichlorosilane (OTCS) were deposited by a simple, spin-casting technique onto Si/SiO(2) substrates. Fabrication of the OTMS SAMs and characterization using ellipsometry, contact angle, atomic force microscopy (AFM), grazing angle attenuated total reflectance Fourier transform infrared (GATR-FTIR) spectroscopy and grazing incidence X-ray diffraction (GIXD) are described. The characterization confirms that these monolayers exhibit a well-packed crystalline phase and a remarkably high degree of smoothness. Semiconductors deposited by vapor deposition onto the crystalline OTS SAM grow in a favorable two-dimensional layered growth manner which is generally preferred morphologically for high charge carrier transport. On the OTMS SAM treated dielectric, pentacene OFETs showed hole mobilities as high as 3.0 cm(2/)V.s, while electron mobilities as high as 5.3 cm(2/)V.s were demonstrated for C(60). C1 [Ito, Yutaka; Virkar, Ajay A.; Oh, Joon Hak; Bao, Zhenan] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. [Mannsfeld, Stefan; Toney, Michael] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. [Locklin, Jason] Univ Georgia, Dept Chem, Athens, GA 30602 USA. [Locklin, Jason] Univ Georgia, Fac Engn, Athens, GA 30602 USA. RP Bao, ZA (reprint author), Stanford Univ, Dept Chem Engn, 381 North South Mall, Stanford, CA 94305 USA. EM yutaka_1.ito@toppan.co.jp; zbao@stanford.edu RI Oh, Joon Hak/F-1454-2010 OI Oh, Joon Hak/0000-0003-0481-6069 NR 38 TC 300 Z9 300 U1 16 U2 210 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 8 PY 2009 VL 131 IS 26 BP 9396 EP 9404 DI 10.1021/ja9029957 PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA 466AT UT WOS:000267633300056 PM 19518097 ER PT J AU Cael, G Ng, HD Bates, KR Nikiforakis, N Short, M AF Cael, Giuki Ng, Hoi Dick Bates, Kevin R. Nikiforakis, Nikos Short, Mark TI Numerical simulation of detonation structures using a thermodynamically consistent and fully conservative reactive flow model for multi-component computations SO PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Article DE detonation; simulation; multi-components; reactive flow; slope limiter centred scheme; thermodynamically consistent and fully conservative model ID CHAIN-BRANCHING REACTION; IDEALIZED DETONATIONS; CELLULAR DETONATIONS; STABILITY; INSTABILITY; DYNAMICS; WAVES; EQUATIONS; KINETICS; SCHEME AB This paper presents a simplified reactive multi-gas model for the numerical simulation of detonation waves. The mathematical model is formulated based on a thermodynamically consistent and fully conservative formulation, and is extended to model reactive flow by considering the reactant and product gases as two constituents of the system and modelling the conversion between these by a simple one-step reaction mechanism. This simplified model allows simulations using more appropriate chemico-thermodynamic properties of the combustible mixture and yields close Chapman-Jouguet detonation parameters from detailed chemistry. The governing equations are approximated using a high-resolution finite volume centred scheme in an adaptive mesh refinement code, permitting high-resolution simulations to be performed at flow regions of interest. The algorithm is tested and validated by comparing results to predictions of the one-dimensional linear stability analysis of the steady detonation and through the study of the evolution of two-dimensional cellular detonation waves in gaseous hydrogen-based mixtures. C1 [Cael, Giuki; Ng, Hoi Dick] Concordia Univ, Dept Mech & Ind Engn, Montreal, PQ H3G 1M8, Canada. [Bates, Kevin R.] Univ Cambridge, Cavendish Lab, Cambridge CB2 1TN, England. [Nikiforakis, Nikos] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB2 1TN, England. [Short, Mark] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Ng, HD (reprint author), Concordia Univ, Dept Mech & Ind Engn, Montreal, PQ H3G 1M8, Canada. EM hoing@encs.concordia.ca FU EPSRC; Natural Sciences and Engineering Research Council of Canada; CESAer FX K. R. B. was funded by an EPSRC Doctoral Training Award. H.D.N. would like to acknowledge the support by the Natural Sciences and Engineering Research Council of Canada. G. C. was supported by the CESAer internship programme. NR 48 TC 6 Z9 6 U1 0 U2 7 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-5021 EI 1471-2946 J9 P ROY SOC A-MATH PHY JI Proc. R. Soc. A-Math. Phys. Eng. Sci. PD JUL 8 PY 2009 VL 465 IS 2107 BP 2135 EP 2153 DI 10.1098/rspa.2008.0371 PG 19 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 461PQ UT WOS:000267281000009 ER PT J AU Yeganeh, S Ratner, MA Medina, E Mujica, V AF Yeganeh, Sina Ratner, Mark A. Medina, Ernesto Mujica, Vladimiro TI Chiral electron transport: Scattering through helical potentials SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE electrical conductivity; magnetic thin films; molecular electronics; organic compounds; spin polarised transport; spin-orbit interactions ID OPTICALLY-ACTIVE MOLECULES; ORGANIZED ORGANIC LAYERS; CARBON NANOTUBES; MAGNETIC PROPERTIES; SYMMETRY-BREAKING; SPIN; DICHROISM; CHARGE; FIELD; SPINTRONICS AB We present a model for the transmission of spin-polarized electrons through oriented chiral molecules, where the chiral structure is represented by a helix. The scattering potential contains a confining term and a spin-orbit contribution that is responsible for the spin-dependent scattering of electrons by the molecular target. The differential scattering cross section is calculated for right- and left-handed helices and for arbitrary electron spin polarizations. We apply our model to explain chiral effects in the intensity of photoemitted polarized electrons transmitted through thin organic layers. These are molecular interfaces that exhibit spin-selective scattering with surprisingly large asymmetry factors as well as a number of remarkable magnetic properties. In our model, differences in intensity are generated by the preferential transmission of electron beams whose polarization is oriented in the same direction as the sense of advance of the helix. This model can be easily extended to the Landauer regime of conductance where conductance is due to elastic scattering, so that we can consider the conductance of chiral molecular junctions. C1 [Yeganeh, Sina; Ratner, Mark A.; Mujica, Vladimiro] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Mujica, Vladimiro] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Yeganeh, Sina; Ratner, Mark A.; Mujica, Vladimiro] Northwestern Univ, Ctr Nanofabricat & Mol Self Assembly, Evanston, IL 60208 USA. [Medina, Ernesto] Inst Venezolano Invest Cient, Ctr Fis, Lab Fis Estadist Sistemas Desordenados, Caracas 1020A, Venezuela. RP Yeganeh, S (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM ratner@northwestern.edu; vmujica@northwestern.edu OI Medina, Ernesto/0000-0002-1566-0170 FU Office of Naval Research; NSF FX We thank G. Solomon, T. Hansen, and A. Nitzan for helpful discussions. S.Y. is grateful for support from the Office of Naval Research through a NDSEG fellowship. We thank the NSF for support from the Division of Chemistry as well as the Division of Materials Research through the Northwestern MRSEC. NR 58 TC 51 Z9 51 U1 0 U2 23 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 7 PY 2009 VL 131 IS 1 AR 014707 DI 10.1063/1.3167404 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 468EY UT WOS:000267799100029 PM 19586117 ER PT J AU Yang, ZY Anheier, NC Qiao, HA Lucas, P AF Yang, Zhiyong Anheier, Norman C., Jr. Qiao, Hong A. Lucas, Pierre TI Simultaneous microscopic measurements of photodarkening and photoexpansion in chalcogenide films SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID AS2S3 GLASS; STRUCTURAL RELAXATION; WAVE-GUIDES; TEMPERATURE; GRATINGS; LASERS AB A near-field scanning optical microscopic analysis is performed on As(2)S(3) film gratings in order to simultaneously collect index and topography images with sub-micrometre resolution. This technique makes it possible to unambiguously study the correlation between photodarkening and photoexpansion at the local scale. The development of a positive index change concomitantly with expansion or contraction in films of different thermal histories suggests that homopolar bonds are not a major contributor to the darkening effect. Photodarkening is instead associated with structurally stable defects that appear to be largely decoupled from the volume change mechanism. While photoexpansion and photodarkening follow the same growth kinetic during irradiation of annealed films with band-gap light, it is clearly shown that their structural origin is different. These results have relevance for grating fabrication since both the relief and the index patterns contribute to the grating efficiency, yet they appear to have distinct behaviour during processing or long-term stability. C1 [Yang, Zhiyong; Lucas, Pierre] Univ Arizona, Dept Mat Sci & Engn, Tucson, AZ 85721 USA. [Anheier, Norman C., Jr.; Qiao, Hong A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Lucas, P (reprint author), Univ Arizona, Dept Mat Sci & Engn, Tucson, AZ 85721 USA. EM Pierre@u.arizona.edu RI Yang, Zhiyong/H-1309-2013 FU DOE [DE-FG52-06NA27501] FX This work was supported by DOE grant DE-FG52-06NA27501. NR 32 TC 8 Z9 8 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD JUL 7 PY 2009 VL 42 IS 13 AR 135412 DI 10.1088/0022-3727/42/13/135412 PG 5 WC Physics, Applied SC Physics GA 460VK UT WOS:000267219000048 ER PT J AU Kwon, KY Wang, E Chang, N Lee, SW AF Kwon, Ki-Young Wang, Eddie Chang, Neil Lee, Seung-Wuk TI Characterization of the Dominant Molecular Step Orientations on Hydroxyapatite (100) Surfaces SO LANGMUIR LA English DT Article ID ATOMIC-FORCE MICROSCOPY; CALCIUM HYDROXYAPATITE; CRYSTAL-GROWTH; DISSOLUTION; BONE; ADSORPTION; KINETICS; NUCLEATION; AMELOGENIN; INTERFACE AB Hydroxyapatite (HAP) is the major inorganic component of bones and teeth. The characterization of HAP surfaces on the molecular level is important for achieving a fundamenatal understanding of bone remodeling and dental caries processes. On the microscopic level, hydroxyapatite growth and dissolution reactions mainly occur at steps. Therefore, this study focuses on individual molecular steps on HAP (100) facets under both static conditions and dynamic dissolution conditions using atomic force microscopy (AFM). We found that molecular steps parallel to the elongated axes of HAP crystals and those angled approximately 54 degrees against the elongated axis are not only energetically favorable but also kinetically dominant under dissolution conditions. C1 [Kwon, Ki-Young; Wang, Eddie; Chang, Neil; Lee, Seung-Wuk] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley Nanosci & Nanoengn Inst, Dept Bioengn,Phys Biosci Div, Berkeley, CA 94720 USA. RP Lee, SW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley Nanosci & Nanoengn Inst, Dept Bioengn,Phys Biosci Div, Berkeley, CA 94720 USA. EM leesw@berkeley.edu OI Wang, Eddie/0000-0002-9814-0102 FU National Science Foundation Early Career Development Award [DMR-0747713]; Nanoscience and Nanotechnology Institute; Lawrence Berkeley National Laboratory FX This work was supported by a National Science Foundation Early Career Development Award (DMR-0747713), start-up funds from the Nanoscience and Nanotechnology Institute at the University of California, Berkeley, and the Laboratory Directed Research and Development Fund from the Lawrence Berkeley National Laboratory, NR 37 TC 10 Z9 11 U1 1 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD JUL 7 PY 2009 VL 25 IS 13 BP 7205 EP 7208 DI 10.1021/la900824n PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 464UR UT WOS:000267533800008 PM 19496551 ER PT J AU Zhou, SH Ma, Z Baker, GA Rondinone, AJ Zhu, Q Luo, HM Wu, ZL Dai, S AF Zhou, Shenghu Ma, Zhen Baker, Gary A. Rondinone, Adam J. Zhu, Qing Luo, Huimin Wu, Zili Dai, Sheng TI Self-Assembly of Metal Oxide Nanoparticles into Hierarchically Patterned Porous Architectures Using Ionic Liquid/Oil Emulsions SO LANGMUIR LA English DT Article ID IONOTHERMAL SYNTHESIS; NANOSTRUCTURES; NANORODS; SILICA; NANOCRYSTALS; IMIDAZOLIUM; TEMPLATE; SOLVENTS; ALUMINOPHOSPHATE; NANOMATERIALS AB Hierarchically patterned macroporous TiO2 Structures can be fabricated via the spontaneous self-assembly of TiO2 nanoparticles prepared using a mixture of I-octadecene (ODE) and an ODE-immiscible 1-alkyl-3-methylimidazolium-based ionic liquid as the reaction medium. A study of the influence of side chain lengths of ionic liquids (n = 4, 8, or 16) reveals that this parameter can be further used to fine-tune the morphologies of the products. This synthetic methodology can also be extended to the formation of patterned macroporous ZrO2 and Fe3O4 structures. Finally, the potential reasons for the formation of hierarchical structures are discussed and the implications to further research are proposed. C1 [Zhou, Shenghu; Ma, Zhen; Baker, Gary A.; Rondinone, Adam J.; Zhu, Qing; Luo, Huimin; Wu, Zili; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Zhou, Shenghu; Ma, Zhen; Baker, Gary A.; Rondinone, Adam J.; Zhu, Qing; Luo, Huimin; Wu, Zili; Dai, Sheng] Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. [Zhou, Shenghu] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Div Fuel Cell & Energy Technol, Ningbo 315201, Zhejiang, Peoples R China. RP Dai, S (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM dais@ornl.gov RI Ma, Zhen/F-1348-2010; Wu, Zili/F-5905-2012; Rondinone, Adam/F-6489-2013; Baker, Gary/H-9444-2016; Dai, Sheng/K-8411-2015 OI Ma, Zhen/0000-0002-2391-4943; Wu, Zili/0000-0002-4468-3240; Rondinone, Adam/0000-0003-0020-4612; Baker, Gary/0000-0002-3052-7730; Dai, Sheng/0000-0002-8046-3931 FU Office of Basic Energy Sciences, U.S. Department of Energy; U.S. DOE [DE-AC05-00OR22725] FX This work was supported by the Office of Basic Energy Sciences, U.S. Department of Energy. The Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the U.S. DOE under Contract DE-AC05-00OR22725. This research was supported by the appointment for S.Z., Z.M., and QZ to the ORNL Research Associates Program, administered by Oak Ridge Associated Universities. We thank the reviewers for helpful suggestions. NR 50 TC 15 Z9 16 U1 3 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD JUL 7 PY 2009 VL 25 IS 13 BP 7229 EP 7233 DI 10.1021/la901149m PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 464UR UT WOS:000267533800014 PM 19563219 ER PT J AU Dong, CL Chen, CL Asokan, K Chang, CL Chen, YY Lee, JF Guo, JH AF Dong, Chung-Li Chen, Chi-Liang Asokan, Kandasami Chang, Ching-Lin Chen, Yang-Yuan Lee, Jyh-Fu Guo, Jinghua TI Thickness-Dependent Electronic Structure of Intermetallic CeCo2 Nanothin Films Studied by X-ray Absorption Spectroscopy SO LANGMUIR LA English DT Article ID MAGNETIC-PROPERTIES; CE; NANOPARTICLES; CEAL2; ALLOYS; STATES AB We report the electronic structure study of intermetallic CeCo2 nanothin Films of various thicknesses by X-ray absorption near-edge structure (XANES) spectroscopy at Ce L-3-, Co K-, and L-2,L-3-edges, The Ce L-3-edge absorption spectra reveal that the contribution of tetravalent Cc component increases with the film thickness, and all investigated nanothin Films exhibit intermediate valence nature. Variation of the spectral intensities observed at the Cc K-edge threshold implies modification in the Co 3d states and the enhancement of 3d-4f-5d hybridization. The Co 3d and Ce 4f occupation numbers were estimated from these spectroscopic results, The present study brings out how the surface-to-bulk ratio and the charge transfer between Cc and Co ions affect the electronic structure of nanothin films. C1 [Asokan, Kandasami] Interuniv Accelerator Ctr, New Delhi 110067, India. [Dong, Chung-Li; Chen, Chi-Liang; Chen, Yang-Yuan] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Chang, Ching-Lin] Tamkang Univ, Dept Phys, Tamsui 251, Taiwan. [Lee, Jyh-Fu] Natl Synchrotron Radiat Res Ctr, Hsinchu, Taiwan. [Guo, Jinghua] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Asokan, K (reprint author), Interuniv Accelerator Ctr, Aruna Asaf Ali Marg, New Delhi 110067, India. EM asokan@iuac.res.in RI Chen, Chi Liang/F-4649-2012; Kandasami, Asokan/A-6035-2009; OI Kandasami, Asokan/0000-0002-0613-219X; Chang, Ching-Lin/0000-0001-8547-371X; Kandasami, Asokan/0000-0002-1602-765X FU National Science Council of the Republic of China [NSC 95-2112-M-032-008]; U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the National Science Council of the Republic of China through Grant Number NSC 95-2112-M-032-008, and the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. NR 28 TC 1 Z9 1 U1 0 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD JUL 7 PY 2009 VL 25 IS 13 BP 7568 EP 7572 DI 10.1021/la803872w PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 464UR UT WOS:000267533800061 PM 19505124 ER PT J AU Huang, Q Xu, JY Tsui, BMW Gullberg, GT AF Huang, Qiu Xu, Jingyan Tsui, Benjamin M. W. Gullberg, Grant T. TI Reconstructing uniformly attenuated rotating slant-hole SPECT projection data using the DBH method SO PHYSICS IN MEDICINE AND BIOLOGY LA English DT Article ID IMAGE-RECONSTRUCTION; HILBERT TRANSFORM; ECTOMOGRAPHY; COLLIMATOR; INVERSION AB This work applies a previously developed analytical algorithm to the reconstruction problem in a rotating multi-segment slant-hole (RMSSH) SPECT system. The RMSSH collimator has greater detection efficiency than the parallel-hole collimator with comparable spatial resolution at the expense of limited common volume-of-view (CVOV) and is therefore suitable for detecting low-contrast lesions in breast, cardiac and brain imaging. The absorption of gamma photons in both the human breast and brain can be assumed to follow an exponential rule with a constant attenuation coefficient. In this work, the RMSSH SPECT data of a digital NCAT phantom with breast attachment are modeled as the uniformly attenuated Radon transform of the activity distribution. These data are reconstructed using an analytical algorithm called the DBH method, which is an acronym for the procedure of differentiation backprojection followed by a finite weighted inverse Hilbert transform. The projection data are first differentiated along a specific direction in the projection space and then backprojected to the image space. The result from this first step is equal to a one-dimensional finite weighted Hilbert transform of the object; this transform is then numerically inverted to obtain the reconstructed image. With the limited CVOV of the RMSSH collimator, the detector captures gamma photon emissions from the breast and from parts of the torso. The simulation results show that the DBH method is capable of exactly reconstructing the activity within a well-defined region-of-interest (ROI) within the breast if the activity is confined to the breast or if the activity outside the CVOV is uniformly attenuated for each measured projection, while a conventional filtered backprojection algorithm only reconstructs the high frequency components of the activity function in the same geometry. C1 [Huang, Qiu; Gullberg, Grant T.] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Xu, Jingyan; Tsui, Benjamin M. W.] Johns Hopkins Univ, Div Med Imaging Phys, Dept Radiol, Baltimore, MD 21287 USA. RP Huang, Q (reprint author), EO Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,Mail Stop 55R0121, Berkeley, CA 94720 USA. EM qhuang@lbl.gov; jxu18@jhmi.edu; btsui1@jhmi.edu; gtgullberg@lbl.gov FU National Institutes of Health [R01 EB01983, R21 EB00121]; UC Discovery Grant Program [bio02-10300]; US Department of Energy [DE-AC02-05CH11231] FX This work was supported by grants R01 EB01983 and R21 EB00121 from the National Institutes of Health, by grant bio02-10300 from the UC Discovery Grant Program with sponsorship from Philips Medical Systems, and in part by the Director, Office of Science, Office of Biological and Environmental Research, Medical Science Division of the US Department of Energy under contract no. DE-AC02-05CH11231. NR 20 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0031-9155 J9 PHYS MED BIOL JI Phys. Med. Biol. PD JUL 7 PY 2009 VL 54 IS 13 BP 4325 EP 4339 DI 10.1088/0031-9155/54/13/024 PG 15 WC Engineering, Biomedical; Radiology, Nuclear Medicine & Medical Imaging SC Engineering; Radiology, Nuclear Medicine & Medical Imaging GA 459UW UT WOS:000267137200024 PM 19531850 ER PT J AU Wu, SW Han, G Milliron, DJ Aloni, S Altoe, V Talapin, DV Cohen, BE Schuck, PJ AF Wu, Shiwei Han, Gang Milliron, Delia J. Aloni, Shaul Altoe, Virginia Talapin, Dmitri V. Cohen, Bruce E. Schuck, P. James TI Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE bio-imaging; fluorescence; nanoparticle; single molecule; phosphorescence ID WALLED CARBON NANOTUBES; QUANTUM DOTS; UPCONVERTING NANOPHOSPHORS; CONVERSION FLUORESCENCE; LIVE CELLS; IN-VIVO; NANOPARTICLES; IONS; MOLECULES; PHOSPHORS AB The development of probes for single-molecule imaging has dramatically facilitated the study of individual molecules in cells and other complex environments. Single-molecule probes ideally exhibit good brightness, uninterrupted emission, resistance to photobleaching, and minimal spectral overlap with cellular autofluorescence. However, most single-molecule probes are imperfect in several of these aspects, and none have been shown to possess all of these characteristics. Here we show that individual lanthanide-doped upconverting nanoparticles (UCNPs)-specifically, hexagonal phase NaYF(4) (beta-NaYF(4)) nanocrystals with multiple Yb(3+) and Er(3+) dopants-emit bright anti-Stokes visible upconverted luminescence with exceptional photostability when excited by a 980-nm continuous wave laser. Individual UCNPs exhibit no on/off emission behavior, or "blinking," down to the millisecond time-scale, and no loss of intensity following an hour of continuous excitation. Amphiphilic polymer coatings permit the transfer of hydrophobic UCNPs into water, resulting in individual water-soluble nanoparticles with undiminished photophysical characteristics. These UCNPs are endocytosed by cells and show strong upconverted luminescence, with no measurable anti-Stokes background autofluorescence, suggesting that UCNPs are ideally suited for single-molecule imaging experiments. C1 [Wu, Shiwei; Han, Gang; Milliron, Delia J.; Aloni, Shaul; Altoe, Virginia; Cohen, Bruce E.; Schuck, P. James] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Talapin, Dmitri V.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. RP Cohen, BE (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM becohen@lbl.gov; pjschuck@lbl.gov RI Wu, Shiwei/F-4542-2010; Milliron, Delia/D-6002-2012; han, gang/B-7274-2013 OI Wu, Shiwei/0000-0001-9838-9066; han, gang/0000-0002-2300-5862 FU U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Miquel Salmeron for support and for constructive comments on the manuscript. Work at the Molecular Foundry was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 35 TC 318 Z9 324 U1 20 U2 189 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 7 PY 2009 VL 106 IS 27 BP 10917 EP 10921 DI 10.1073/pnas.0904792106 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 468DX UT WOS:000267796100011 PM 19541601 ER PT J AU Azad, AK Chen, HT Kasarla, SR Taylor, AJ Tian, Z Lu, XC Zhang, W Lu, H Gossard, AC O'Hara, JF AF Azad, Abul K. Chen, Hou-Tong Kasarla, Satish R. Taylor, Antoinette J. Tian, Zhen Lu, Xinchao Zhang, Weili Lu, Hong Gossard, Arthur C. O'Hara, John F. TI Ultrafast optical control of terahertz surface plasmons in subwavelength hole arrays at room temperature SO APPLIED PHYSICS LETTERS LA English DT Article ID ENHANCED TRANSMISSION; LIGHT AB We demonstrate optical control of surface plasmon enhanced resonant terahertz transmission in two-dimensional subwavelength metallic hole arrays fabricated on gallium arsenide based substrates. Optically pumping the arrays creates a conductive layer in the substrate, reducing the terahertz transmission amplitude of both the resonant mode and the direct transmission. Under low optical fluence, the terahertz transmission is more greatly affected by resonance damping than by propagation loss in the substrate. An ErAs:GaAs nanoisland superlattice substrate is shown to allow ultrafast control with a switching recovery time of similar to 10 ps. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3168510] C1 [Azad, Abul K.; Chen, Hou-Tong; Kasarla, Satish R.; Taylor, Antoinette J.; O'Hara, John F.] Los Alamos Natl Lab, MPA CINT, Los Alamos, NM 87545 USA. [Tian, Zhen; Lu, Xinchao; Zhang, Weili] Oklahoma State Univ, Sch Elect & Comp Engn, Stillwater, OK 74078 USA. [Lu, Hong; Gossard, Arthur C.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. RP Azad, AK (reprint author), Los Alamos Natl Lab, MPA CINT, POB 1663, Los Alamos, NM 87545 USA. EM aazad@lanl.gov RI Chen, Hou-Tong/C-6860-2009; Azad, Abul/B-1163-2011; Zhang, Weili/C-5416-2011; LU, Hong/D-3658-2013; Tian, Zhen/D-8707-2015; OI Chen, Hou-Tong/0000-0003-2014-7571; Zhang, Weili/0000-0002-8591-0200; LU, Hong/0000-0002-8340-2739; Tian, Zhen/0000-0002-2861-4325; Azad, Abul/0000-0002-7784-7432 FU U.S. DOE LANL/LDRD; National Science Foundation FX This work was performed in part at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences Nanoscale Science Research Center jointly operated by Los Alamos and Sandia National Laboratories. LANL contributors gratefully acknowledge support from the U.S. DOE LANL/LDRD program. The Oklahoma State team acknowledges financial support from the National Science Foundation. NR 23 TC 26 Z9 30 U1 4 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 6 PY 2009 VL 95 IS 1 AR 011105 DI 10.1063/1.3168510 PG 3 WC Physics, Applied SC Physics GA 470NV UT WOS:000267983200005 ER PT J AU Gao, L Jiang, X Nicholson, DMC Topuria, T Parkin, SSP AF Gao, Li Jiang, Xin Nicholson, D. M. C. Topuria, Teya Parkin, Stuart S. P. TI Role of the electronic structure on the relationship between the crystallinity of CoFe and its tunneling magnetoresistance SO APPLIED PHYSICS LETTERS LA English DT Article ID AUGMENTED-WAVE METHOD; ROOM-TEMPERATURE AB The influence of the crystallinity of CoFe on tunneling magnetoresistance is investigated in magnetic tunnel junctions with an amorphous Al(2)O(3) tunnel barrier. An enhancement in the tunneling magnetoresistance is found when the CoFe is made amorphous compared to when it is crystalline. Ab initio electronic structure calculations show substantial differences in the band structures of crystalline and amorphous forms of bulk CoFe alloys but a decreased spin polarization at the Fermi energy in the amorphous phase. We speculate that the increased tunneling magnetoresistance is rather due to changes in bonding at the interface between Al(2)O(3) and CoFe. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3132084] C1 [Gao, Li; Jiang, Xin; Topuria, Teya; Parkin, Stuart S. P.] IBM Res Div, Almaden Res Ctr, San Jose, CA 95120 USA. [Gao, Li] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Nicholson, D. M. C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Gao, L (reprint author), IBM Res Div, Almaden Res Ctr, San Jose, CA 95120 USA. EM parkin@almaden.ibm.com RI Gao, Li/F-1554-2011; Parkin, Stuart/D-2521-2012 NR 16 TC 1 Z9 1 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 6 PY 2009 VL 95 IS 1 AR 012508 DI 10.1063/1.3132084 PG 3 WC Physics, Applied SC Physics GA 470NV UT WOS:000267983200053 ER PT J AU Johnson, JN Hwang, DQ Horton, RD Evans, RW Owen, JM AF Johnson, J. N. Hwang, D. Q. Horton, R. D. Evans, R. W. Owen, J. M. TI Simulated and experimental compression of a compact toroid SO APPLIED PHYSICS LETTERS LA English DT Article ID INJECTION; TOKAMAK AB We present simulation results and experimental data for the compression of a compact toroid by a conducting nozzle without a center electrode. In both simulation and experiment, the plasma flow is obstructed by even modest magnetic fields. A simple mechanism for this obstruction is suggested by our simulations. The configuration of the plasmoid's magnetic field plays a significant role in its compression. We analyze two types of plasma configurations under compression and demonstrate that the results from the simulations match those from the experiments, and that the mechanism predicts the different behaviors observed in the two cases. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3176967] C1 [Johnson, J. N.; Hwang, D. Q.; Horton, R. D.; Evans, R. W.] Univ Calif Davis, Dept Appl Sci, Livermore, CA 95616 USA. [Owen, J. M.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Johnson, JN (reprint author), Univ Calif Davis, Dept Appl Sci, Livermore, CA 95616 USA. EM jnjohnso@ucdavis.edu RI Johnson, Jeffrey/J-5127-2014 OI Johnson, Jeffrey/0000-0002-0265-5241 FU Lawrence Scholar Program at Lawrence Livermore National Laboratory FX J.J. is supported by the Lawrence Scholar Program at Lawrence Livermore National Laboratory. NR 12 TC 1 Z9 1 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 6 PY 2009 VL 95 IS 1 AR 011501 DI 10.1063/1.3176967 PG 3 WC Physics, Applied SC Physics GA 470NV UT WOS:000267983200021 ER PT J AU Yuan, GL Martin, LW Ramesh, R Uedono, A AF Yuan, G. L. Martin, L. W. Ramesh, R. Uedono, A. TI The dependence of oxygen vacancy distributions in BiFeO3 films on oxygen pressure and substrate SO APPLIED PHYSICS LETTERS LA English DT Article ID POSITRON-ANNIHILATION; DEFECTS; SRTIO3 AB The epitaxial (001)-oriented 250 nm BiFeO3/50 nm SrRuO3 films were deposited on DyScO3 and SrTiO3 substrates, respectively. Following the growth, the cooling in lower oxygen pressure results in the creation of oxygen vacancies at the surface of the BiFeO3 film and the epitaxial strain drives these vacancies to diffuse from the film surface to the film interface. The SrTiO3 substrate strongly absorbs oxygen vacancies from the BiFeO3 film while the DyScO3 substrate does not. Therefore, the depth distribution of oxygen vacancies depends on the oxygen pressure during cooling, the epitaxial strain, and the substrate absorbing oxygen vacancies. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3171939] C1 [Yuan, G. L.; Uedono, A.] Univ Tsukuba, Grad Sch Pure & Appl Sci, Inst Appl Phys, Tsukuba, Ibaraki 3058573, Japan. [Martin, L. W.; Ramesh, R.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Ramesh, R.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Ramesh, R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Uedono, A (reprint author), Univ Tsukuba, Grad Sch Pure & Appl Sci, Inst Appl Phys, Tsukuba, Ibaraki 3058573, Japan. EM uedono@sakura.cc.tsukuba.ac.jp RI Martin, Lane/H-2409-2011 OI Martin, Lane/0000-0003-1889-2513 FU Japan Society for the Promotion of Science (JSPS) in Tsukuba University; U.S. Department of Energy [DE-AC0205CH11231] FX We thank S. Q. Chen and K. Akimoto for XRD measurement, and Yuan was supported by Japan Society for the Promotion of Science (JSPS) in Tsukuba University. The work at LBNL and Berkeley was supported by the U.S. Department of Energy under Contract No. DE-AC0205CH11231. NR 18 TC 29 Z9 29 U1 5 U2 44 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 6 PY 2009 VL 95 IS 1 AR 012904 DI 10.1063/1.3171939 PG 3 WC Physics, Applied SC Physics GA 470NV UT WOS:000267983200059 ER PT J AU Evans, MJ Kranak, VF Garcia-Garcia, FJ Holland, GP Daemen, LL Proffen, T Lee, MH Sankey, OF Haussermann, U AF Evans, Michael J. Kranak, Verina F. Garcia-Garcia, Francisco J. Holland, Gregory P. Daemen, Luke L. Proffen, Thomas Lee, Myeong H. Sankey, Otto F. Haussermann, Ulrich TI Structural and Dynamic Properties of BalnGeH: A Rare Solid-State Indium Hydride SO INORGANIC CHEMISTRY LA English DT Article ID AUGMENTED-WAVE METHOD; TRIHYDRIDE COMPLEX; REACTIVITY; METALS AB BalnGeH was synthesized by hydrogenating the intermetallic compound BalnGe. The crystal structure determination from the powder neutron diffraction data of BalnGeD [P3m1, Z = 1, a = 4.5354(3) angstrom, c = 5.2795(6) angstrom] reveals the presence of hydrogen in tetrahedral voids defined by three Ba atoms and one In atom. C1 [Evans, Michael J.; Kranak, Verina F.; Holland, Gregory P.; Haussermann, Ulrich] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. [Garcia-Garcia, Francisco J.] Univ Augsburg, Inst Phys, Lehrstuhl Festkorperchem, D-86159 Augsburg, Germany. [Daemen, Luke L.; Proffen, Thomas] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. [Lee, Myeong H.; Sankey, Otto F.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. RP Haussermann, U (reprint author), Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. EM ulrich.haussermann@asu.edu RI Lee, Myeong/F-7932-2010; Lujan Center, LANL/G-4896-2012; Proffen, Thomas/B-3585-2009 OI Proffen, Thomas/0000-0002-1408-6031 FU National Science Foundation [DMR-0638826]; Department of Energy's Office of Basic Energy Sciences; DOE [DE-AC52-06NA25396, DE-FG02-05ER46235] FX This research has been supported by National Science Foundation Grant DMR-0638826 and has made use of the ASU Magnetic Resonance Research Center and Manuel Lujan, Jr., Neutron Scattering Center at Los Alamos National Laboratory, which is funded by the Department of Energy's Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, under DOE Contract DE-AC52-06NA25396. G.P.H. acknowledges Support from the DOE through Grant DE-FG02-05ER46235. NR 24 TC 7 Z9 7 U1 0 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD JUL 6 PY 2009 VL 48 IS 13 BP 5602 EP 5604 DI 10.1021/ic9005423 PG 3 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 464LW UT WOS:000267507400006 PM 19480429 ER PT J AU Silva, GWC Yeamans, CB Cerefice, GS Sattelberger, AP Czerwinski, KR AF Silva, G. W. Chinthaka Yeamans, Charles B. Cerefice, Gary S. Sattelberger, Alfred P. Czerwinski, Kenneth R. TI Synthesis and Nanoscale Characterization of (NH4)(4)ThF8 and ThNF SO INORGANIC CHEMISTRY LA English DT Article ID THORIUM NITRIDES; OXIDATIVE AMMONOLYSIS; TETRAFLUORIDE; TRANSMUTATION; PRESSURE; URANIUM; SYSTEM AB Synthesis of (NH4)(4)ThF8 by a solid state reaction of ThO2 and NH4HF2 and the formation of ThNF by ammonolysis of (NH4)(4)ThF8 and ThF4 under different experimental conditions were investigated. The solid state reaction of ThO2 with NH4HF2 led to the terminal product (NH4)(4)ThF8 through a known intermediate (NH4)(3)ThF7 and most likely two other unknown chemical phases as determined by X-ray powder diffraction. Conversion of (NH4)(4)ThF8 into ThNF occurs through a ThF4 intermediate phase. Studies on the ammonolysis of ThF4 revealed it converted into ThNF through a continuous formation of low-stoichiometric thorium-nitride-fluorides such as ThN0.79F1.63 and ThN0.9F1.3. Thermal behavior of ThNF was also examined under different atmospheres and temperatures, with evaluation of formation kinetics. The ThNF decomposed to low-stoichiometric thorium nitride fluorides (ThNx/3F4-x) under different environments up to 1100 degrees C. Significant morphological changes in the products compared to that of the precursors confirmed the reaction steps involved. Microstructural characterization of (NH4)(4)ThF8 and ThNF were performed by HRTEM and are presented in this work for the first time. The (NH4)(4)ThF8 product was shown to contain polycrystalline characteristics in the majority of its nanostructure. On the other hand, ThNF has a high order of nanostructure, which explains the high thermal stability of the compound up to 1100 degrees C and the difficulty of making ThNx, in initial target product, from the described experimental conditions. C1 [Silva, G. W. Chinthaka; Cerefice, Gary S.; Czerwinski, Kenneth R.] Univ Nevada, Harry Reid Ctr Environm Studies, Las Vegas, NV 89154 USA. [Yeamans, Charles B.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Sattelberger, Alfred P.] Argonne Natl Lab, Argonne, IL 60517 USA. RP Czerwinski, KR (reprint author), Univ Nevada, Harry Reid Ctr Environm Studies, Box 454009,4505 Maryland Pkwy, Las Vegas, NV 89154 USA. EM czerwin2@unlv.nevada.edu RI Silva, Chinthaka/E-1416-2017 OI Silva, Chinthaka/0000-0003-4637-6030 FU U.S. Department of Energy [DE-FG07-01AL67358] FX The authors thank Dr. Anthony Hechanova for administrating the UNLV Transmutation Research Program under the financial support of the U.S. Department of Energy (Grant DE-FG07-01AL67358). We also thank Dr. Clay Crow from the Department of Geoscience and Dr. Longzhou Ma at UNLV, for helpful discussions and support. The authors are indebted to Tom O'Dou and Trevor Low for laboratory management and radiation safety. NR 27 TC 5 Z9 5 U1 3 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD JUL 6 PY 2009 VL 48 IS 13 BP 5736 EP 5746 DI 10.1021/ic900632g PG 11 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 464LW UT WOS:000267507400024 PM 19518092 ER PT J AU Banerjee, P Sproules, S Weyhermuller, T George, SD Wieghardt, K AF Banerjee, Priyabrata Sproules, Stephen Weyhermueller, Thomas George, Serena DeBeer Wieghardt, Karl TI Electronic Structure of the [Tris(dithiolene)chromium](z)(z=0, 1-, 2-, 3-) Electron Transfer Series and Their Manganese(IV) Analogues. An X-ray Absorption Spectroscopic and Density Functional Theoretical Study SO INORGANIC CHEMISTRY LA English DT Article ID TRANSITION-METAL-COMPLEXES; IRON-SULFUR CLUSTERS; TRIGONAL-PRISMATIC COORDINATION; GAUSSIAN-BASIS SETS; CONVERGENCE ACCELERATION; DITHIOLENE COMPLEXES; CATECHOLATE LIGANDS; MOLECULAR STRUCTURE; TRANSPORT COMPOUNDS; CORRELATION-ENERGY AB Three members of the electron transfer series [Cr-III(dithiolene)(3)](z) (z = 1-, 2-, 3-) along with [Mn-IV(dithiolene)(3)](2-) analogues are shown to possess Cr(III) and Mn(IV) ions, respectively, by X-ray absorption spectroscopy (Cr and Mn K-edges). S K-edge spectra show the Cr series to be linked by ligand-based redox processes. All complexes are octahedral with DFT calculations reproducing the molecular structures and spectroscopic parameters such that [Cr(dithiolene)(3)](0) is predicted to be and octahedral with three S,S'-coordinated radical ligands. C1 [Banerjee, Priyabrata; Sproules, Stephen; Weyhermueller, Thomas; Wieghardt, Karl] Max Planck Inst Bioanorgan Chem, D-45470 Mulheim, Germany. [George, Serena DeBeer] Stanford Univ, SLAC, Stanford Synchrotron Radiat Lightsource, Stanford, CA 94309 USA. RP Sproules, S (reprint author), Max Planck Inst Bioanorgan Chem, Stiftstr 34-36, D-45470 Mulheim, Germany. EM sproules@mpi-muelheim.mpg.de; debeer@stanford.edu; weighardt@mpi-muelheim.mpg.de RI DeBeer, Serena/G-6718-2012; Weyhermuller, Thomas/G-6730-2012; Wieghardt, Karl/B-4179-2014 OI Weyhermuller, Thomas/0000-0002-0399-7999; FU NCRR NIH HHS [5 P41 RR001209] NR 79 TC 54 Z9 54 U1 4 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD JUL 6 PY 2009 VL 48 IS 13 BP 5829 EP 5847 DI 10.1021/ic900154v PG 19 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 464LW UT WOS:000267507400034 PM 20507101 ER PT J AU Runde, W Brodnax, LF Goff, G Bean, AC Scott, BL AF Runde, Wolfgang Brodnax, Lia F. Goff, George Bean, Amanda C. Scott, Brian L. TI Directed Synthesis of Crystalline Plutonium(III) and (IV) Oxalates: Accessing Redox-Controlled Separations in Acidic Solutions SO INORGANIC CHEMISTRY LA English DT Article ID POWDER CRYSTALLOGRAPHIC DATA; THERMAL DECOMPOSITION; SINGLE-CRYSTAL; MIXED SITE; COMPLEXES; CARBONATE; COORDINATION; DECAHYDRATE; FRAMEWORK; HYDRATE AB Single crystals of hydrated oxalates of Pu(III), Pu(2)(C(2)O(4))(3)(H(2)O)6 center dot 3H(2)O and Pu(IV), KPu(C(2)O(4))(2)-(OH)center dot 2.5H(2)O, were synthesized under moderate hydrothermal conditions and characterized by single crystal X-ray diffraction studies. These compounds are the first plutonium (III) or (IV) oxalate compounds to be structurally characterized via single crystal X-ray diffraction studies. C1 [Runde, Wolfgang; Goff, George] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Brodnax, Lia F.; Bean, Amanda C.] Los Alamos Natl Lab, Plutonium Mfg & Technol Div, Los Alamos, NM 87545 USA. [Scott, Brian L.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. RP Runde, W (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM runde@lanl.gov RI Scott, Brian/D-8995-2017 OI Scott, Brian/0000-0003-0468-5396 NR 53 TC 15 Z9 15 U1 1 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD JUL 6 PY 2009 VL 48 IS 13 BP 5967 EP 5972 DI 10.1021/ic900344u PG 6 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 464LW UT WOS:000267507400048 PM 19485387 ER PT J AU Paquit, VC Tobin, KW Price, JR Meriaudeau, F AF Paquit, Vincent C. Tobin, Kenneth W. Price, Jeffery R. Meriaudeau, Fabrice TI 3D and Multispectral Imaging for Subcutaneous Veins Detection SO OPTICS EXPRESS LA English DT Article ID VESSEL SEGMENTATION; IMAGES AB The first and perhaps most important phase of a surgical procedure is the insertion of an intravenous (IV) catheter. Currently, this is performed manually by trained personnel. In some visions of future operating rooms, however, this process is to be replaced by an automated system. Experiments to determine the best NIR wavelengths to optimize vein contrast for physiological differences such as skin tone and/or the presence of hair on the arm or wrist surface are presented. For illumination our system is composed of a mercury arc lamp coupled to a 10nm band-pass spectrometer. A structured lighting system is also coupled to our multispectral system in order to provide 3D information of the patient arm orientation. Images of each patient arm are captured under every possible combinations of illuminants and the optimal combination of wavelengths for a given subject to maximize vein contrast using linear discriminant analysis is determined. (C) 2009 Optical Society of America C1 [Paquit, Vincent C.; Tobin, Kenneth W.; Price, Jeffery R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Paquit, Vincent C.; Meriaudeau, Fabrice] Univ Bourgogne, F-71200 Le Ceusot, France. RP Paquit, VC (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM fmeriau@u-bourgogne.fr RI Paquit, Vincent/K-9541-2013 OI Paquit, Vincent/0000-0003-0331-2598 FU U. S. Department of Energy [DE-AC05-00OR22725]; Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL) FX This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U. S. Department of Energy. Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC for the U. S. Department of Energy. NR 20 TC 28 Z9 29 U1 1 U2 7 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUL 6 PY 2009 VL 17 IS 14 BP 11360 EP 11365 DI 10.1364/OE.17.011360 PG 6 WC Optics SC Optics GA 467RX UT WOS:000267761200015 PM 19582050 ER PT J AU Evans, JW Macintosh, B Norton, A Dillon, D Gavel, D AF Evans, Julia W. Macintosh, Bruce Norton, Andrew Dillon, Daren Gavel, Donald TI The effect of a small heat source on PSF stability for high-contrast imaging SO OPTICS EXPRESS LA English DT Article ID WAVE-FRONT CONTROL; LABORATORY DEMONSTRATION; EXTRASOLAR PLANET; ADAPTIVE OPTICS; CORONAGRAPHY; APERTURES AB High-contrast adaptive optics systems, such as those needed to image extrasolar planets, are known to require excellent wavefront control and diffraction suppression. The Laboratory for Adaptive Optics at UC Santa Cruz is investigating limits to high-contrast imaging in support of the Gemini Planet Imager (GPI). In this paper we examine the effect of heat sources in the testbed on point-spread-function (PSF) stability. Introducing a heat source primarily introduces image motion. The GPI error budget requires image motion to be less than 0.1 lambda/D. Systematic motion of the PSF core is typically 0.01 lambda/D rms and with a 20 watt heat source introduced near the pupil plane image motion is increased to 0.02 lambda/D rms. Therefore, even a heat source as large as 20 watts near the pupil plane causes errors below the GPI requirement, but the combination of the heat source and additional air turbulence on the system introduced by changes to the enclosure or the fan of other components can produce significantly more motion. Heat also can affect the speckle pattern in the high-contrast region, but in the final instrument other sources of error should be more significant. (c) 2009 Optical Society of America C1 [Evans, Julia W.; Macintosh, Bruce] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Norton, Andrew; Dillon, Daren; Gavel, Donald] Univ Calif Santa Cruz, Lab Adapt Opt, UCO Lick Observ, Santa Cruz, CA 95064 USA. RP Evans, JW (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94550 USA. EM evans74@llnl.gov FU Gordon and BettyMoore Foundation; National Science Foundation Science and Technology Center for Adaptive Optics [AST-9876783]; U. S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344, LLNL-JRNL-411446] FX Contact Julia Evans at evans74@llnl.gov. We are grateful to R. Belikov and Princeton Universitys Terrestrial Planet Finder group for providing us with the shaped pupil mask. This work has been supported in part by the Gordon and Betty Moore Foundation through its grant to the UCO/Lick Laboratory for Adaptive Optics and in part by the National Science Foundation Science and Technology Center for Adaptive Optics, managed by the University of California at Santa Cruz under cooperative agreement No. AST-9876783. This work performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-JRNL-411446. NR 15 TC 2 Z9 2 U1 1 U2 2 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUL 6 PY 2009 VL 17 IS 14 BP 11652 EP 11664 DI 10.1364/OE.17.011652 PG 13 WC Optics SC Optics GA 467RX UT WOS:000267761200044 PM 19582080 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Ancu, LS Andeen, T Anzelc, MS Aoki, M Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Atramentov, O Avila, C BackusMayes, J Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, R Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Calfayan, P Calpas, B Calvet, S Cammin, J Carrasco-Lizarraga, MA Carrera, E Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Cheu, E Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cuplov, V Cutts, D Cwiok, M Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E DeVaughan, K Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dorland, T Dubey, A Dudko, LV Duflot, L Duggan, D Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Escalier, M Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gomez, B Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, R Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Hossain, S Houben, P Hu, Y Hubacek, Z Huske, N Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jamin, D Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Johnston, D Jonckheere, A Jonsson, P Juste, A Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Kozelov, AV Kraus, J Kuhl, T Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lellouch, J Li, J Li, L Li, QZ Lietti, SM Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Mattig, P Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Maravin, Y Martin, B McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Mitrevski, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T O'Neil, DC Obrant, G Ochando, C Onoprienko, D Orduna, J Oshima, N Osman, N Osta, J Otec, R Garzon, GJOY Owen, M Padilla, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Popov, AV Potter, C da Silva, WLP Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Takahashi, M Tanasijczuk, A Taylor, W Tiller, B Tissandier, F Titov, M Tokmenin, VV Torchiani, I Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vilanova, D Vint, P Vokac, P Voutilainen, M Wagner, R Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Welty-Rieger, L Wenger, A Wetstein, M White, A Wicke, D Williams, MAJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Ye, Z Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zeitnitz, C Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Ancu, L. S. Andeen, T. Anzelc, M. S. Aoki, M. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Atramentov, O. Avila, C. BackusMayes, J. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, R. Banerjee, S. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Calfayan, P. Calpas, B. Calvet, S. Cammin, J. Carrasco-Lizarraga, M. A. Carrera, E. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Cheu, E. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cuplov, V. Cutts, D. Cwiok, M. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. DeVaughan, K. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duflot, L. Duggan, D. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Escalier, M. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gomez, B. Goussiou, A. Grannis, P. D. Greder, S. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, R. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Huske, N. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jamin, D. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Kozelov, A. V. Kraus, J. Kuhl, T. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lellouch, J. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Mattig, P. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Maravin, Y. Martin, B. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Mitrevski, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Orduna, J. Oshima, N. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padilla, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E Polozov, P. Popov, A. V. Potter, C. da Silva, W. L. Prado Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Takahashi, M. Tanasijczuk, A. Taylor, W. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Torchiani, I. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vilanova, D. Vint, P. Vokac, P. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Welty-Rieger, L. Wenger, A. Wetstein, M. White, A. Wicke, D. Williams, M. A. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Ye, Z. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zeitnitz, C. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. Zutshi, V. Zverev, E. G. CA D0 Collaboration TI Measurements of differential cross sections of Z/gamma* plus jets plus X events in p(p)over-bar collisions at root s=1.96 TeV SO PHYSICS LETTERS B LA English DT Article ID ALGORITHMS AB We present cross section measurements for Z/gamma* + jets + X production, differential in the transverse momenta of the three leading jets. The data sample was collected with the DO detector at the Fermilab Tevatron p (p) over bar collider at a center-of-mass energy of 1.96 TeV and corresponds to an integrated luminosity of 1 fb(-1). Leading and next-to-leading order perturbative QCD predictions are compared with the measurements. and agreement is found within the theoretical and experimental uncertainties. We also make comparisons with the predictions of four event generators. Two parton-shower-based generators show significant shape and normalization differences with respect to the data. In contrast, two generators combining tree-level matrix elements with a parton shower give a reasonable description of the shapes observed in data. but the predicted normalizations show significant differences with respect to the data, reflecting large scale Uncertainties. For specific choices of scales, the normalizations for either generator can be made to agree with the measurements. (C) 2009 Elsevier B.V. All rights reserved. C1 [Abazov, V. M.; Alexeev, G. D.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Alves, G. A.; Barreto, J.; Maciel, A. K. A.; Pol, M. -E] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.; Carvalho, W.; Malbouisson, H. B.; Mundim, L.; Nogima, H.; da Silva, W. L. Prado; Rodrigues, R. F.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Hynek, V.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont, France. [Arnoud, Y.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, Inst Natl Polytech Grenoble,LPSC, Grenoble, France. [Barfuss, A. -F.; Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Escalier, M.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.; Rangel, M. S.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Bernardi, G.; Huske, N.; Lellouch, J.; Sanders, M. P.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. [Bernardi, G.; Huske, N.; Lellouch, J.; Sanders, M. P.] Univ Paris 07, Paris, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Couderc, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, SPP, Saclay, France. [Brown, D.; Deliot, F.; Geist, W.; Greder, S.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Hebbeker, T.; Kirsch, M.; Meyer, A.; Sonnenschein, L.] Univ Aachen, Rhein Westfal TH Aachen, Phys Inst A3, D-5100 Aachen, Germany. [Buescher, V.; Hensel, C.; Hohlfeld, M.; Meyer, J.; Mundal, O.; Park, S. -J.; Pleier, M. -A.; Quadt, A.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Fiedler, F.; Kuhl, T.; Weber, G.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Mattig, P.; Schliephake, T.; Wicke, D.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, R.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Kim, T. J.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Luna-Garcia, R.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] FOM Inst NIKHEF, Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.; Williams, M. A. J.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Robinson, S.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester, Lancs, England. [Cheu, E.; Das, A.; Johns, K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Buchanan, N. J.; Carrera, E.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Hoang, T.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Merritt, K. W.; Naimuddin, M.; Oshima, N.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Wang, M. H. L. S.; Weber, M.; Yamada, R.; Yasuda, T.; Ye, Z.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Shabalina, E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Clutter, J.; McGivern, C. L.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Cuplov, V.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Hadley, N. J.; Jarvis, C.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Cho, D. K.; Ferbel, T.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Herner, K.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Alton, A.; Benitez, J. A.; Brock, R.; Edmunds, D.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.; Voutilainen, M.] Univ Nebraska, Lincoln, NE 68588 USA. [Haley, J.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Jarvis, C.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Khatidze, D.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Slattery, P.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Chakrabarti, S.; Guo, F.; Guo, J.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Grannis, P. D.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, R.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Bose, T.; Christofek, L.; Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Buehler, M.; Hirosky, R.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Mal, P. K.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. [Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Li, Liang/O-1107-2015; Ancu, Lucian Stefan/F-1812-2010; Shivpuri, R K/A-5848-2010; Leflat, Alexander/D-7284-2012; Perfilov, Maxim/E-1064-2012; bu, xuebing/D-1121-2012; Boos, Eduard/D-9748-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013; Dudko, Lev/D-7127-2012 OI De, Kaushik/0000-0002-5647-4489; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Li, Liang/0000-0001-6411-6107; Ancu, Lucian Stefan/0000-0001-5068-6723; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; Dudko, Lev/0000-0002-4462-3192 FU DOE; NSF; CEA; CNRS/IN2P3; FASI, Rosatom; RFBR (Russia); CNPq; FAPERJ; FAPESP; FUNDUNESP (Brazil); DAE; DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF; KOSEF (Korea); CONICET; UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT; GACR (Czech Republic); CRC Program, CA; NSERC; WestGrid Project (Canada); BMBF; DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS; CNSF (China); Alexander von Humboldt Foundation (Germany) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France): FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India): Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea): CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT and GACR (Czech Republic): CRC Program, CA, NSERC and WestGrid Project (Canada): BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); and the Alexander von Humboldt Foundation (Germany). NR 31 TC 28 Z9 28 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD JUL 6 PY 2009 VL 678 IS 1 BP 45 EP 54 DI 10.1016/j.physletb.2009.05.058 PG 10 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 468KG UT WOS:000267816100008 ER PT J AU Liu, YP Qu, Z Xu, N Zhuang, PF AF Liu, Yunpeng Qu, Zhen Xu, Nu Zhuang, Pengfei TI J/psi transverse momentum distribution in high energy nuclear collisions SO PHYSICS LETTERS B LA English DT Article ID HEAVY-ION COLLISIONS; QUARK-GLUON PLASMA; J-PSI PRODUCTION; CHARMONIUM PRODUCTION; SUPPRESSION; DEPENDENCE; SPS; COALESCENCE; HADRON; PHENIX AB The transverse momentum (p(t)) dependence of J/psi production in heavy ion collisions is investigated in a transport model with both initial production and continuous regeneration of charmonia. The competition between the two production mechanisms results in a pt suppression in central collisions, the gluon multi-scattering in the initial stage leads to a high p, enhancement, and the regeneration populates J/psi s at low p, region and induces a minimum in R-AA(p(t)). These three phenomena are indeed observed in both 200 GeV Cu + Cu and Au + Au collisions at RHIC energy. (C) 2009 Elsevier B.V. All rights reserved. C1 [Liu, Yunpeng; Qu, Zhen; Zhuang, Pengfei] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Xu, Nu] Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Liu, YP (reprint author), Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. EM liuyp06@mails.tsinghua.edu.cn FU NSFC [10735040]; 973-project [2007CB815000]; US Department of Energy [DE-AC03-76SF00098] FX We are grateful to Xianglei Zhu and Li Yan for their help in numerical calculations. The work is supported by the NSFC grant No. 10735040, the 973-project No. 2007CB815000, and the US Department of Energy under Contract No. DE-AC03-76SF00098. NR 47 TC 94 Z9 96 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD JUL 6 PY 2009 VL 678 IS 1 BP 72 EP 76 DI 10.1016/j.physletb.2009.06.006 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 468KG UT WOS:000267816100012 ER PT J AU Friedland, A Giannotti, M Graesser, M AF Friedland, Alexander Giannotti, Maurizio Graesser, Michael TI On the RS2 realization of unparticles SO PHYSICS LETTERS B LA English DT Article ID CONTINUOUSLY DISTRIBUTED MASS; GAUGED EXTENDED SUPERGRAVITY; FIELD-THEORIES; EXTRA DIMENSIONS; POSITIVE ENERGY; STRING THEORY; STABILITY; GRAVITY; PHYSICS AB We consider the Randall-Sundrum 2 setup with the Standard Model fields on the brane and a massive vector field in the warped bulk. We show that in this model the known properties of vector unparticles - the nontrivial phase of the CFT propagator, the necessity and dominance of contact interactions, the Unitarity constraint on the conformal dimension of the operator, and the tensor structure dictated by conformal symmetry - follow by simple inspection of the brane-to-brane propagator. The phase has a physical interpretation as controlling the rate of escape Of Unparticles into the extra dimension. Requiring the correct sign for the imaginary part of the longitudinal polarization of the propagator, we obtain the unitarity condition m(5)(2) >= 0, which, unlike in the scalar case, is unchanged from flat space. This condition results in the unitarity bound d(v) >= 3, or, more generally, d(v) >= D - 1 for a vector unparticle in D-dimensional space. It is instructive to consider the RS2 propagator in (Euclidean) position space: at large distances it behaves as a pure CFT propagator, while at short distances it turns into the softer 5d flat space propagator. In contrast, in momentum space, at low momenta the CFT piece is subdominant to the "contact" interactions. (C) 2009 Elsevier B.V. All rights reserved. C1 [Friedland, Alexander; Giannotti, Maurizio; Graesser, Michael] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. RP Friedland, A (reprint author), Los Alamos Natl Lab, Div Theoret, MS B0285, Los Alamos, NM 87544 USA. EM friedland@lanl.gov NR 39 TC 8 Z9 8 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD JUL 6 PY 2009 VL 678 IS 1 BP 149 EP 155 DI 10.1016/j.physletb.2009.06.012 PG 7 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 468KG UT WOS:000267816100027 ER PT J AU Wang, XP Hammons, C Richmond, MG AF Wang, Xiaoping Hammons, Casey Richmond, Michael G. TI Preparation and reactivity of the heterobimetallic ReIr face-shared bioctahedral compounds Cp*Ir(mu-Cl)(3)Re(CO)(3) and Cp*Ir(mu-SC6H4Me-4)(3)Re(CO)(3): X-ray diffraction structures and redox behavior SO POLYHEDRON LA English DT Article DE Rhenium-iridium compounds; Halide-bridged compounds; Sulfido-bridged compounds; Heterobimetallic compounds; X-ray crystallography ID LIGAND 4,5-BIS(DIPHENYLPHOSPHINO)-4-CYCLOPENTEN-1,3-DIONE BPCD; RHENIUM(I) CARBONYL-COMPLEXES; MOLECULAR-STRUCTURE; CP-ASTERISK; SUBSTITUTION-REACTIONS; BRIDGED COMPLEXES; CRYSTAL-STRUCTURE; METAL COMPOUNDS; BOND-CLEAVAGE; CLUSTER AB Thermolysis of the dinuclear compound [Cp*IrCl2](2) (1) with ClRe(CO)(5) (2) leads to the formation of the confacial bioctahedral compound Cp*Ir(mu-Cl)(3)Re(CO)(3) (3) in high yield. Whereas the substitution of the chloride ligands in 3 is observed on treatment with excess p-methylbenzenethiol to furnish the sulfido-bridged compound Cp*Ir(mu-SC6H4Me-4)(3)Re(CO)(3) (4), 3 undergoes fragmentation upon reaction with tertiary phosphines [PPh3 and P(OMe)(3)] to furnish the mononuclear compounds CP*IrCl2P and fac-ClRe-(CO3)P-2. Both 3 and 4 have been isolated and fully characterized in solution by IR and H-1 NMR spectroscopies, and their solid-state structures have been established by X-ray crystallography. The redox properties of 3 and 4 have been explored by cyclic voltammetry, and the results are discussed relative to extended Huckel MO calculations. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Wang, Xiaoping] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Hammons, Casey; Richmond, Michael G.] Univ N Texas, Dept Chem, Denton, TX 76203 USA. RP Wang, XP (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. EM wangx@ornl.gov; cobalt@unt.edu RI Wang, Xiaoping/E-8050-2012 OI Wang, Xiaoping/0000-0001-7143-8112 FU Robert A. Welch Foundation [B-1093-MGR] FX Generous and Continued financial support from the Robert A. Welch Foundation (Grant B-1093-MGR) is much appreciated. NR 66 TC 2 Z9 2 U1 2 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0277-5387 J9 POLYHEDRON JI Polyhedron PD JUL 6 PY 2009 VL 28 IS 11 BP 2294 EP 2300 DI 10.1016/j.poly.2009.04.023 PG 7 WC Chemistry, Inorganic & Nuclear; Crystallography SC Chemistry; Crystallography GA 471IX UT WOS:000268051700029 ER PT J AU Hong, E Doucleff, M Wemmer, DE AF Hong, Eunmi Doucleff, Michaeleen Wemmer, David E. TI Structure of the RNA Polymerase Core-Binding Domain of sigma(54) Reveals a Likely Conformational Fracture Point SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE sigma(54); bacterial transcription; RNA polymerase; NMR structure; gene regulation ID CRYSTAL-STRUCTURE; TRANSCRIPTION; SIGMA-54; DNA; HOLOENZYME; COMPLEX; PROTEIN; SEQUENCES; REGION; ACTIVATION AB Transcription initiation by bacterial sigma(54)-RNA polymerase requires a conformational change of the holopolymerase-DNA complex, driven by an enhancer-binding protein. Although structures of the core polymerase and the more common sigma(70) factor have been determined, little is known about the structure of the sigma(54) variant. We report here the structure of an Aquifex aeolicus sigma(54) domain (residues 69-198), which binds core RNA polymerase. The structure is composed of two distinct subdomains held together by a small, conserved hydrophobic interface that appears to act as a fracture point in the structure. The N-terminal, four-helical subdomain has a negative surface and conserved residues that likely contact the core polymerase, while the C-terminal, three-helical bundle has a strongly positive patch that could contact DNA. Sequence conservation indicates that these structural features are conserved and are important for the role of sigma(54) in the polymerase complex. (C) 2009 Published by Elsevier Ltd. C1 [Hong, Eunmi; Doucleff, Michaeleen; Wemmer, David E.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Hong, Eunmi; Doucleff, Michaeleen; Wemmer, David E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Wemmer, DE (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM dewemmer@lbl.gov FU National Institutes of Health (NIH) [GM 62163]; Korea Research Foundation (MOEHRD) [KRF-2006-214-C00056]; National Science Foundation [BBS 01-19304, NIH RR15756, NIH-GM68933] FX This work was supported by National Institutes of Health (NIH) grant GM 62163 to D.E.W. and partially by a fellowship from the Korea Research Foundation (MOEHRD), KRF-2006-214-C00056, to E.H. The authors thank J. Pelton for help with NMR spectroscopy and S. Kustu and B. T. Nixon for helpful discussions. NMR spectrometers used in this work were supported by the National Science Foundation and NIH (grants NSF BBS 01-19304, NIH RR15756, and NIH-GM68933). NR 42 TC 16 Z9 16 U1 2 U2 4 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD JUL 3 PY 2009 VL 390 IS 1 BP 70 EP 82 DI 10.1016/j.jmb.2009.04.070 PG 13 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 465FI UT WOS:000267567400007 PM 19426742 ER PT J AU Sanchez, R Zakova, M Andjelkovic, Z Bushaw, BA Dasgupta, K Ewald, G Geppert, C Kluge, HJ Kramer, J Nothhelfer, M Tiedemann, D Winters, DFA Nortershauser, W AF Sanchez, Rodolfo Zakova, Monika Andjelkovic, Zoran Bushaw, Bruce A. Dasgupta, Kamalesh Ewald, Guido Geppert, Christopher Kluge, H-Juergen Kraemer, Joerg Nothhelfer, Matthias Tiedemann, Dirk Winters, Danyal F. A. Noertershaeuser, Wilfried TI Absolute frequency measurements on the 2S -> 3S transition of lithium-6,7 SO NEW JOURNAL OF PHYSICS LA English DT Article ID BETHE LOGARITHMS; LI-I; ENERGIES; ISOTOPES; HYDROGEN; HELIUM; STATES; ATOMS; PHASE AB The frequencies of the 2S-3S two-photon transition for the stable lithium isotopes were measured by cavity-enhanced Doppler-free laser excitation that was controlled by a femtosecond frequency comb. The resulting values of 815 618 181.57(18) and 815 606 727.59( 18) MHz, respectively, for (7)Li and (6)Li are in agreement with previous measurements but are more accurate by an order of magnitude. There is still a discrepancy of about 11.6 and 10.6 MHz from the latest theoretical values. This is comparable to the uncertainty in the theoretical calculations, while uncertainty in our experimental values is more than a hundred-fold smaller. More accurate theoretical calculation of the transition frequencies would allow extraction of the absolute charge radii for these stable isotopes, which in turn could improve nuclear charge radii values for the unstable lithium isotopes. C1 [Sanchez, Rodolfo; Ewald, Guido; Geppert, Christopher; Kluge, H-Juergen; Winters, Danyal F. A.; Noertershaeuser, Wilfried] GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany. [Zakova, Monika; Bushaw, Bruce A.; Geppert, Christopher; Kraemer, Joerg; Nothhelfer, Matthias; Tiedemann, Dirk; Noertershaeuser, Wilfried] Johannes Gutenberg Univ Mainz, Inst Kernchem, D-55128 Mainz, Germany. [Bushaw, Bruce A.] Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. [Dasgupta, Kamalesh] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. RP Sanchez, R (reprint author), GSI Helmholtzzentrum Schwerionenforsch GmbH, Planckstr 1, D-64291 Darmstadt, Germany. EM R.Sanchez@gsi.de RI Winters, Danyal/A-2933-2013; Nortershauser, Wilfried/A-6671-2013 OI Nortershauser, Wilfried/0000-0001-7432-3687 FU Helmhotz Association [VH-NG-148]; German Ministry for Education and Research (BMBF) [06TU203, 06MZ215/TP6]; EURONS [506065.] FX This work is supported by the Helmhotz Association under contract VH-NG-148, the German Ministry for Education and Research (BMBF) under contracts 06TU203 and 06MZ215/TP6 and by EURONS under contract 506065. We thank R Holzwarth and M Fischer from Menlo Systems for technical support and K Pachucki, G W F Drake and C Zimmermann for discussions. NR 34 TC 14 Z9 14 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD JUL 3 PY 2009 VL 11 AR 073016 DI 10.1088/1367-2630/11/7/073016 PG 19 WC Physics, Multidisciplinary SC Physics GA 470CD UT WOS:000267949600014 ER PT J AU Adare, A Afanasiev, S Aidala, C Ajitanand, NN Akiba, Y Al-Bataineh, H Alexander, J Aoki, K Aphecetche, L Asai, J Atomssa, ET Averbeck, R Awes, TC Azmoun, B Babintsev, V Bai, M Baksay, G Baksay, L Baldisseri, A Barish, KN Barnes, PD Bassalleck, B Basye, AT Bathe, S Batsouli, S Baublis, V Baumann, C Bazilevsky, A Belikov, S Bennett, R Berdnikov, A Berdnikov, Y Bickley, AA Boissevain, JG Borel, H Boyle, K Brooks, ML Buesching, H Bumazhnov, V Bunce, G Butsyk, S Camacho, CM Campbell, S Chand, P Chang, BS Chang, WC Charvet, JL Chernichenko, S Chi, CY Chiu, M Choi, IJ Choudhury, RK Chujo, T Chung, P Churyn, A Cianciolo, V Citron, Z Cole, BA Constantin, P Csanad, M Csorgo, T Dahms, T Dairaku, S Das, K David, G Denisov, A d'Enterria, D Deshpande, A Desmond, EJ Dietzsch, O Dion, A Donadelli, M Drapier, O Drees, A Drees, KA Dubey, AK Durum, A Dutta, D Dzhordzhadze, V Efremenko, YV Egdemir, J Ellinghaus, F Engelmore, T Enokizono, A En'yo, H Esumi, S Eyser, KO Fadem, B Fields, DE Finger, M Finger, M Fleuret, F Fokin, SL Fraenkel, Z Frantz, JE Franz, A Frawley, AD Fujiwara, K Fukao, Y Fusayasu, T Garishvili, I Glenn, A Gong, H Gonin, M Gosset, J Goto, Y de Cassagnac, RG Grau, N Greene, SV Perdekamp, MG Gunji, T Gustafsson, HA Henni, AH Haggerty, JS Hamagaki, H Han, R Hartouni, EP Haruna, K Haslum, E Hayano, R Heffner, M Hemmick, TK Hester, T He, X Hill, JC Hohlmann, M Holzmann, W Homma, K Hong, B Horaguchi, T Hornback, D Huang, S Ichihara, T Ichimiya, R Ikeda, Y Imai, K Imrek, J Inaba, M Isenhower, D Ishihara, M Isobe, T Issah, M Isupov, A Ivanischev, D Jacak, BV Jia, J Jin, J Johnson, BM Joo, KS Jouan, D Kajihara, F Kametani, S Kamihara, N Kamin, J Kang, JH Kapustinsky, J Kawall, D Kazantsev, AV Kempel, T Khanzadeev, A Kijima, KM Kikuchi, J Kim, BI Kim, DH Kim, DJ Kim, E Kim, SH Kinney, E Kiriluk, K Kiss, A Kistenev, E Klay, J Klein-Boesing, C Kochenda, L Kochetkov, V Komkov, B Konno, M Koster, J Kozlov, A Kral, A Kravitz, A Kunde, GJ Kurita, K Kurosawa, M Kweon, MJ Kwon, Y Kyle, GS Lacey, R Lai, YS Lajoie, JG Layton, D Lebedev, A Lee, DM Lee, KB Lee, T Leitch, MJ Leite, MAL Lenzi, B Liebing, P Liska, T Litvinenko, A Liu, H Liu, MX Li, X Love, B Lynch, D Maguire, CF Makdisi, YI Malakhov, A Malik, MD Manko, VI Mannel, E Mao, Y Masek, L Masui, H Matathias, F McCumber, M McGaughey, PL Means, N Meredith, B Miake, Y Mikes, P Miki, K Milov, A Mishra, M Mitchell, JT Mohanty, AK Morino, Y Morreale, A Morrison, DP Moukhanova, TV Mukhopadhyay, D Murata, J Nagamiya, S Nagle, JL Naglis, M Nagy, MI Nakagawa, I Nakamiya, Y Nakamura, T Nakano, K Newby, J Nguyen, M Niita, T Nouicer, R Nyanin, AS O'Brien, E Oda, SX Ogilvie, CA Okada, H Okada, K Oka, M Onuki, Y Oskarsson, A Ouchida, M Ozawa, K Pak, R Palounek, APT Pantuev, V Papavassiliou, V Park, J Park, WJ Pate, SF Pei, H Peng, JC Pereira, H Peresedov, V Peressounko, DY Pinkenburg, C Purschke, ML Purwar, AK Qu, H Rak, J Rakotozafindrabe, A Ravinovich, I Read, KF Rembeczki, S Reuter, M Reygers, K Riabov, V Riabov, Y Roach, D Roche, G Rolnick, SD Rosati, M Rosendahl, SSE Rosnet, P Rukoyatkin, P Ruzicka, P Rykov, VL Sahlmueller, B Saito, N Sakaguchi, T Sakai, S Sakashita, K Samsonov, V Sato, T Sawada, S Sedgwick, K Seele, J Seidl, R Semenov, AY Semenov, V Seto, R Sharma, D Shein, I Shibata, TA Shigaki, K Shimomura, M Shoji, K Shukla, P Sickles, A Silva, CL Silvermyr, D Silvestre, C Sim, KS Singh, BK Singh, CP Singh, V Slunecka, M Soldatov, A Soltz, RA Sondheim, WE Sorensen, SP Sourikova, IV Staley, F Stankus, PW Stenlund, E Stepanov, M Ster, A Stoll, SP Sugitate, T Suire, C Sukhanov, A Sziklai, J Takagui, EM Taketani, A Tanabe, R Tanaka, Y Taneja, S Tanida, K Tannenbaum, MJ Taranenko, A Tarjan, P Themann, H Thomas, TL Togawa, M Toia, A Tomasek, L Tomita, Y Torii, H Towell, RS Tram, VN Tserruya, I Tsuchimoto, Y Vale, C Valle, H van Hecke, HW Veicht, A Velkovska, J Vertesi, R Vinogradov, AA Virius, M Vrba, V Vznuzdaev, E Walker, D Wang, XR Watanabe, Y Wei, F Wessels, J White, SN Williamson, S Winter, D Woody, CL Wysocki, M Xie, W Yamaguchi, YL Yamaura, K Yang, R Yanovich, A Ying, J Yokkaichi, S Young, GR Younus, I Yushmanov, IE Zajc, WA Zaudtke, O Zhang, C Zhou, S Zolin, L AF Adare, A. Afanasiev, S. Aidala, C. Ajitanand, N. N. Akiba, Y. Al-Bataineh, H. Alexander, J. Aoki, K. Aphecetche, L. Asai, J. Atomssa, E. T. Averbeck, R. Awes, T. C. Azmoun, B. Babintsev, V. Bai, M. Baksay, G. Baksay, L. Baldisseri, A. Barish, K. N. Barnes, P. D. Bassalleck, B. Basye, A. T. Bathe, S. Batsouli, S. Baublis, V. Baumann, C. Bazilevsky, A. Belikov, S. Bennett, R. Berdnikov, A. Berdnikov, Y. Bickley, A. A. Boissevain, J. G. Borel, H. Boyle, K. Brooks, M. L. Buesching, H. Bumazhnov, V. Bunce, G. Butsyk, S. Camacho, C. M. Campbell, S. Chand, P. Chang, B. S. Chang, W. C. Charvet, J. -L. Chernichenko, S. Chi, C. Y. Chiu, M. Choi, I. J. Choudhury, R. K. Chujo, T. Chung, P. Churyn, A. Cianciolo, V. Citron, Z. Cole, B. A. Constantin, P. Csanad, M. Csoergo, T. Dahms, T. Dairaku, S. Das, K. David, G. Denisov, A. d'Enterria, D. Deshpande, A. Desmond, E. J. Dietzsch, O. Dion, A. Donadelli, M. Drapier, O. Drees, A. Drees, K. A. Dubey, A. K. Durum, A. Dutta, D. Dzhordzhadze, V. Efremenko, Y. V. Egdemir, J. Ellinghaus, F. Engelmore, T. Enokizono, A. En'yo, H. Esumi, S. Eyser, K. O. Fadem, B. Fields, D. E. Finger, M. Finger, M., Jr. Fleuret, F. Fokin, S. L. Fraenkel, Z. Frantz, J. E. Franz, A. Frawley, A. D. Fujiwara, K. Fukao, Y. Fusayasu, T. Garishvili, I. Glenn, A. Gong, H. Gonin, M. Gosset, J. Goto, Y. de Cassagnac, R. Granier Grau, N. Greene, S. V. Perdekamp, M. Grosse Gunji, T. Gustafsson, H. -A. Henni, A. Hadj Haggerty, J. S. Hamagaki, H. Han, R. Hartouni, E. P. Haruna, K. Haslum, E. Hayano, R. Heffner, M. Hemmick, T. K. Hester, T. He, X. Hill, J. C. Hohlmann, M. Holzmann, W. Homma, K. Hong, B. Horaguchi, T. Hornback, D. Huang, S. Ichihara, T. Ichimiya, R. Ikeda, Y. Imai, K. Imrek, J. Inaba, M. Isenhower, D. Ishihara, M. Isobe, T. Issah, M. Isupov, A. Ivanischev, D. Jacak, B. V. Jia, J. Jin, J. Johnson, B. M. Joo, K. S. Jouan, D. Kajihara, F. Kametani, S. Kamihara, N. Kamin, J. Kang, J. H. Kapustinsky, J. Kawall, D. Kazantsev, A. V. Kempel, T. Khanzadeev, A. Kijima, K. M. Kikuchi, J. Kim, B. I. Kim, D. H. Kim, D. J. Kim, E. Kim, S. H. Kinney, E. Kiriluk, K. Kiss, A. Kistenev, E. Klay, J. Klein-Boesing, C. Kochenda, L. Kochetkov, V. Komkov, B. Konno, M. Koster, J. Kozlov, A. Kral, A. Kravitz, A. Kunde, G. J. Kurita, K. Kurosawa, M. Kweon, M. J. Kwon, Y. Kyle, G. S. Lacey, R. Lai, Y. S. Lajoie, J. G. Layton, D. Lebedev, A. Lee, D. M. Lee, K. B. Lee, T. Leitch, M. J. Leite, M. A. L. Lenzi, B. Liebing, P. Liska, T. Litvinenko, A. Liu, H. Liu, M. X. Li, X. Love, B. Lynch, D. Maguire, C. F. Makdisi, Y. I. Malakhov, A. Malik, M. D. Manko, V. I. Mannel, E. Mao, Y. Masek, L. Masui, H. Matathias, F. McCumber, M. McGaughey, P. L. Means, N. Meredith, B. Miake, Y. Mikes, P. Miki, K. Milov, A. Mishra, M. Mitchell, J. T. Mohanty, A. K. Morino, Y. Morreale, A. Morrison, D. P. Moukhanova, T. V. Mukhopadhyay, D. Murata, J. Nagamiya, S. Nagle, J. L. Naglis, M. Nagy, M. I. Nakagawa, I. Nakamiya, Y. Nakamura, T. Nakano, K. Newby, J. Nguyen, M. Niita, T. Nouicer, R. Nyanin, A. S. O'Brien, E. Oda, S. X. Ogilvie, C. A. Okada, H. Okada, K. Oka, M. Onuki, Y. Oskarsson, A. Ouchida, M. Ozawa, K. Pak, R. Palounek, A. P. T. Pantuev, V. Papavassiliou, V. Park, J. Park, W. J. Pate, S. F. Pei, H. Peng, J. -C. Pereira, H. Peresedov, V. Peressounko, D. Yu. Pinkenburg, C. Purschke, M. L. Purwar, A. K. Qu, H. Rak, J. Rakotozafindrabe, A. Ravinovich, I. Read, K. F. Rembeczki, S. Reuter, M. Reygers, K. Riabov, V. Riabov, Y. Roach, D. Roche, G. Rolnick, S. D. Rosati, M. Rosendahl, S. S. E. Rosnet, P. Rukoyatkin, P. Ruzicka, P. Rykov, V. L. Sahlmueller, B. Saito, N. Sakaguchi, T. Sakai, S. Sakashita, K. Samsonov, V. Sato, T. Sawada, S. Sedgwick, K. Seele, J. Seidl, R. Semenov, A. Yu. Semenov, V. Seto, R. Sharma, D. Shein, I. Shibata, T. -A. Shigaki, K. Shimomura, M. Shoji, K. Shukla, P. Sickles, A. Silva, C. L. Silvermyr, D. Silvestre, C. Sim, K. S. Singh, B. K. Singh, C. P. Singh, V. Slunecka, M. Soldatov, A. Soltz, R. A. Sondheim, W. E. Sorensen, S. P. Sourikova, I. V. Staley, F. Stankus, P. W. Stenlund, E. Stepanov, M. Ster, A. Stoll, S. P. Sugitate, T. Suire, C. Sukhanov, A. Sziklai, J. Takagui, E. M. Taketani, A. Tanabe, R. Tanaka, Y. Taneja, S. Tanida, K. Tannenbaum, M. J. Taranenko, A. Tarjan, P. Themann, H. Thomas, T. L. Togawa, M. Toia, A. Tomasek, L. Tomita, Y. Torii, H. Towell, R. S. Tram, V-N. Tserruya, I. Tsuchimoto, Y. Vale, C. Valle, H. van Hecke, H. W. Veicht, A. Velkovska, J. Vertesi, R. Vinogradov, A. A. Virius, M. Vrba, V. Vznuzdaev, E. Walker, D. Wang, X. R. Watanabe, Y. Wei, F. Wessels, J. White, S. N. Williamson, S. Winter, D. Woody, C. L. Wysocki, M. Xie, W. Yamaguchi, Y. L. Yamaura, K. Yang, R. Yanovich, A. Ying, J. Yokkaichi, S. Young, G. R. Younus, I. Yushmanov, I. E. Zajc, W. A. Zaudtke, O. Zhang, C. Zhou, S. Zolin, L. CA PHENIX Collaboration TI Gluon-Spin Contribution to the Proton Spin from the Double-Helicity Asymmetry in Inclusive pi(0) Production in Polarized p plus p Collisions at root s=200 GeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID PARTON DISTRIBUTIONS AB The double helicity asymmetry in neutral pion production for p(T) = 1 to 12 GeV/c was measured with the PHENIX experiment to access the gluon-spin contribution, Delta G, to the proton spin. Measured asymmetries are consistent with zero, and at a theory scale of mu 2 = 4 GeV2 a next to leading order QCD analysis gives Delta G([0.02,0.3]) = 0.2, with a constraint of -0.7 < Delta G([0.02,0.3]) < 0.5 at Delta chi(2) = 9 (similar to 3 sigma) for the sampled gluon momentum fraction (x) range, 0.02 to 0.3. The results are obtained using predictions for the measured asymmetries generated from four representative fits to polarized deep inelastic scattering data. We also consider the dependence of the Delta G constraint on the choice of the theoretical scale, a dominant uncertainty in these predictions. C1 [Adare, A.; Bickley, A. A.; Ellinghaus, F.; Glenn, A.; Kinney, E.; Kiriluk, K.; Nagle, J. L.; Seele, J.; Wysocki, M.] Univ Colorado, Boulder, CO 80309 USA. [Chang, W. C.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Mishra, M.; Singh, B. K.; Singh, C. P.; Singh, V.; Winter, D.] Banaras Hindu Univ, Dept Phys, Varanasi 221005, Uttar Pradesh, India. [Chand, P.; Choudhury, R. K.; Dutta, D.; Mohanty, A. K.; Shukla, P.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Nouicer, R.; Pak, R.; Sukhanov, A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Bai, M.; Drees, K. A.; Makdisi, Y. I.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. [Azmoun, B.; Bazilevsky, A.; Belikov, S.; Buesching, H.; Bunce, G.; David, G.; Desmond, E. J.; Franz, A.; Haggerty, J. S.; Johnson, B. M.; Kistenev, E.; Lynch, D.; Milov, A.; Mitchell, J. T.; Morrison, D. P.; O'Brien, E.; Pinkenburg, C.; Purschke, M. L.; Sakaguchi, T.; Sickles, A.; Sourikova, I. V.; Stoll, S. P.; Tannenbaum, M. J.; White, S. N.; Woody, C. L.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Barish, K. N.; Bathe, S.; Dzhordzhadze, V.; Eyser, K. O.; Hester, T.; Morreale, A.; Rolnick, S. D.; Sedgwick, K.; Seto, R.] Univ Calif Riverside, Riverside, CA 92521 USA. [Finger, M.; Finger, M., Jr.; Masek, L.; Slunecka, M.] Charles Univ Prague, CR-11636 Prague, Czech Republic. [Li, X.; Zhou, S.] CIAE, Beijing, Peoples R China. [Gunji, T.; Hamagaki, H.; Hayano, R.; Horaguchi, T.; Isobe, T.; Kajihara, F.; Morino, Y.; Oda, S. X.; Ozawa, K.] Univ Tokyo, Grad Sch Sci, Ctr Nucl Study, Tokyo 1130033, Japan. [Basye, A. T.; Isenhower, D.; Towell, R. S.] Abilene Christian Univ, Abilene, TX 79699 USA. [Chi, C. Y.; Cole, B. A.; Engelmore, T.; Grau, N.; Jia, J.; Jin, J.; Kravitz, A.; Lai, Y. S.; Mannel, E.; Matathias, F.; Zajc, W. A.] Columbia Univ, New York, NY 10027 USA. [Kral, A.; Liska, T.; Virius, M.] Czech Tech Univ, Prague 16636 6, Czech Republic. [Baldisseri, A.; Borel, H.; Charvet, J. -L.; Gosset, J.; Pereira, H.; Silvestre, C.; Staley, F.] CEA Saclay, Dapnia, F-91191 Gif Sur Yvette, France. [Imrek, J.; Tarjan, P.; Vertesi, R.] Debrecen Univ, H-4010 Debrecen, Hungary. [Csanad, M.; Kiss, A.; Nagy, M. I.] Eotvos Lorand Univ, ELTE, H-1117 Budapest, Hungary. [Baksay, G.; Baksay, L.; Hohlmann, M.; Rembeczki, S.] Florida Inst Technol, Melbourne, FL 32901 USA. [Das, K.; Frawley, A. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Qu, H.; Ying, J.] Georgia State Univ, Atlanta, GA 30303 USA. [Haruna, K.; He, X.; Homma, K.; Kijima, K. M.; Nakamiya, Y.; Nakamura, T.; Ouchida, M.; Shigaki, K.; Sugitate, T.; Torii, H.; Tsuchimoto, Y.; Yamaura, K.] Hiroshima Univ, Higashihiroshima 7398526, Japan. [Babintsev, V.; Bumazhnov, V.; Chernichenko, S.; Churyn, A.; Denisov, A.; Durum, A.; Kochetkov, V.; Semenov, V.; Shein, I.; Soldatov, A.; Yanovich, A.] Inst High Energy Phys, State Res Ctr Russian Federat, Protvino 142281, Russia. [Chiu, M.; Perdekamp, M. Grosse; Koster, J.; Layton, D.; Meredith, B.; Peng, J. -C.; Seidl, R.; Veicht, A.; Williamson, S.; Yang, R.] Univ Illinois, Urbana, IL 61801 USA. [Masek, L.; Mikes, P.; Ruzicka, P.; Tomasek, L.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague 18221 8, Czech Republic. [Hill, J. C.; Kempel, T.; Lajoie, J. G.; Lebedev, A.; Ogilvie, C. A.; Pei, H.; Rosati, M.; Semenov, A. Yu.; Vale, C.; Wei, F.] Iowa State Univ, Ames, IA 50011 USA. [Afanasiev, S.; Isupov, A.; Litvinenko, A.; Malakhov, A.; Peresedov, V.; Rukoyatkin, P.; Zolin, L.] Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia. [Nagamiya, S.; Sawada, S.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 3050801, Japan. [Csoergo, T.; Ster, A.; Sziklai, J.] Hungarian Acad Sci MTA KFKI RMKI, KFKI Res Inst Particle & Nucl Phys, H-1525 Budapest, Hungary. [Hong, B.; Kim, B. I.; Kweon, M. J.; Lee, K. B.; Park, W. J.; Sim, K. S.] Korea Univ, Seoul 136701, South Korea. [Fokin, S. L.; Kazantsev, A. V.; Manko, V. I.; Moukhanova, T. V.; Nyanin, A. S.; Peressounko, D. Yu.; Vinogradov, A. A.; Yushmanov, I. E.] Russian Res Ctr, Kurchatov Inst, Moscow, Russia. [Aoki, K.; Dairaku, S.; Fukao, Y.; Imai, K.; Okada, H.; Saito, N.; Shoji, K.; Togawa, M.] Kyoto Univ, Kyoto 6068502, Japan. [Atomssa, E. T.; d'Enterria, D.; Drapier, O.; Fleuret, F.; Gonin, M.; de Cassagnac, R. Granier; Rakotozafindrabe, A.; Tram, V-N.] Ecole Polytech, CNRS, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Enokizono, A.; Hartouni, E. P.; Heffner, M.; Klay, J.; Newby, J.; Soltz, R. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Barnes, P. D.; Boissevain, J. G.; Brooks, M. L.; Butsyk, S.; Camacho, C. M.; Constantin, P.; Kapustinsky, J.; Kunde, G. J.; Lee, D. M.; Leitch, M. J.; Liu, M. X.; McGaughey, P. L.; Palounek, A. P. T.; Purwar, A. K.; Sondheim, W. E.; van Hecke, H. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Roche, G.; Rosnet, P.] Univ Clermont Ferrand, CNRS, LPC, IN2P3, F-63177 Aubiere, France. [Gustafsson, H. -A.; Haslum, E.; Oskarsson, A.; Rosendahl, S. S. E.; Stenlund, E.] Lund Univ, Dept Phys, SE-22100 Lund, Sweden. [Aidala, C.; Kawall, D.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Baumann, C.; Klein-Boesing, C.; Reygers, K.; Sahlmueller, B.; Wessels, J.; Zaudtke, O.] Univ Munster, Inst Kernphys, D-48149 Munster, Germany. [Fadem, B.] Muhlenberg Coll, Allentown, PA 18104 USA. [Joo, K. S.; Kim, D. H.] Myongji Univ, Yongin 449728, Kyonggido, South Korea. [Fusayasu, T.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan. [Bassalleck, B.; Fields, D. E.; Malik, M. D.; Rak, J.; Thomas, T. L.; Younus, I.] Univ New Mexico, Albuquerque, NM 87131 USA. [Al-Bataineh, H.; Kyle, G. S.; Liu, H.; Papavassiliou, V.; Pate, S. F.; Stepanov, M.; Wang, X. R.] New Mexico State Univ, Las Cruces, NM 88003 USA. [Awes, T. C.; Batsouli, S.; Cianciolo, V.; Efremenko, Y. V.; Read, K. F.; Silvermyr, D.; Stankus, P. W.; Young, G. R.; Zhang, C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Jouan, D.; Suire, C.] Univ Paris 11, IPN, CNRS, IN2P3, F-91406 Orsay, France. [Han, R.; Mao, Y.] Peking Univ, Beijing 100871, Peoples R China. [Baublis, V.; Ivanischev, D.; Khanzadeev, A.; Kochenda, L.; Komkov, B.; Riabov, V.; Riabov, Y.; Samsonov, V.; Vznuzdaev, E.] PNPI, Gatchina 188300, Leningrad Reg, Russia. [Akiba, Y.; Aoki, K.; Asai, J.; Dairaku, S.; En'yo, H.; Fujiwara, K.; Fukao, Y.; Goto, Y.; Horaguchi, T.; Ichihara, T.; Ichimiya, R.; Imai, K.; Ishihara, M.; Kametani, S.; Kurita, K.; Kurosawa, M.; Mao, Y.; Murata, J.; Nakagawa, I.; Nakano, K.; Okada, H.; Onuki, Y.; Rykov, V. L.; Saito, N.; Sakashita, K.; Shibata, T. -A.; Shoji, K.; Taketani, A.; Tanida, K.; Togawa, M.; Torii, H.; Watanabe, Y.; Yokkaichi, S.] RIKEN, Nishina Ctr Accelerator Based Sci, Wako, Saitama 3510198, Japan. [Akiba, Y.; Bunce, G.; Deshpande, A.; En'yo, H.; Fields, D. E.; Goto, Y.; Perdekamp, M. Grosse; Ichihara, T.; Kamihara, N.; Kawall, D.; Nakagawa, I.; Okada, K.; Saito, N.; Taketani, A.; Tanida, K.; Watanabe, Y.; Xie, W.; Yokkaichi, S.] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. [Kurita, K.; Liebing, P.; Murata, J.] Rikkyo Univ, Dept Phys, Toshima Ku, Tokyo 1718501, Japan. [Berdnikov, A.; Berdnikov, Y.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Dietzsch, O.; Donadelli, M.; Leite, M. A. L.; Lenzi, B.; Silva, C. L.; Takagui, E. M.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. [Kim, E.; Lee, T.; Park, J.] Seoul Natl Univ, Syst Elect Lab, Seoul, South Korea. [Ajitanand, N. N.; Alexander, J.; Chung, P.; Holzmann, W.; Issah, M.; Lacey, R.; Taranenko, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Averbeck, R.; Bennett, R.; Boyle, K.; Campbell, S.; Citron, Z.; Dahms, T.; Deshpande, A.; Dion, A.; Drees, A.; Egdemir, J.; Frantz, J. E.; Gong, H.; Hemmick, T. K.; Jacak, B. V.; Kamin, J.; McCumber, M.; Means, N.; Nguyen, M.; Pantuev, V.; Reuter, M.; Taneja, S.; Themann, H.; Toia, A.; Walker, D.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Aphecetche, L.; Henni, A. Hadj] Univ Nantes, CNRS, Ecole Mines, SUBATECH,IN2P3, F-44307 Nantes, France. [Garishvili, I.; Hornback, D.; Kwon, Y.; Read, K. F.; Sorensen, S. P.] Univ Tennessee, Knoxville, TN 37996 USA. [Horaguchi, T.; Nakano, K.; Sakashita, K.; Shibata, T. -A.] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. [Adare, A.; Chujo, T.; Esumi, S.; Ikeda, Y.; Inaba, M.; Konno, M.; Masui, H.; Miake, Y.; Miki, K.; Niita, T.; Oka, M.; Sakai, S.; Sato, T.; Shimomura, M.; Tanabe, R.; Tomita, Y.] Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 305, Japan. [Greene, S. V.; Huang, S.; Love, B.; Maguire, C. F.; Mukhopadhyay, D.; Roach, D.; Valle, H.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Kikuchi, J.; Yamaguchi, Y. L.] Waseda Univ, Adv Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1620044, Japan. [Dubey, A. K.; Fraenkel, Z.; Kozlov, A.; Naglis, M.; Ravinovich, I.; Sharma, D.; Tserruya, I.] Weizmann Inst Sci, IL-76100 Rehovot, Israel. [Chang, B. S.; Choi, I. J.; Kang, J. H.; Kim, D. J.; Kim, S. H.] Yonsei Univ, IPAP, Seoul 120749, South Korea. [Chi, C. Y.; Cole, B. A.; Engelmore, T.; Grau, N.; Jia, J.; Jin, J.; Kravitz, A.; Lai, Y. S.; Mannel, E.; Matathias, F.; Winter, D.; Zajc, W. A.] Nevis Labs, Irvington, NY 10533 USA. RP Adare, A (reprint author), Univ Colorado, Boulder, CO 80309 USA. EM jacak@skipper.physics.sunysb.edu RI Hayano, Ryugo/F-7889-2012; HAMAGAKI, HIDEKI/G-4899-2014; Durum, Artur/C-3027-2014; Sorensen, Soren /K-1195-2016; Yokkaichi, Satoshi/C-6215-2017; Taketani, Atsushi/E-1803-2017; seto, richard/G-8467-2011; Csanad, Mate/D-5960-2012; Wei, Feng/F-6808-2012; Csorgo, Tamas/I-4183-2012; Tomasek, Lukas/G-6370-2014; Dahms, Torsten/A-8453-2015; En'yo, Hideto/B-2440-2015; Semenov, Vitaliy/E-9584-2017 OI Hayano, Ryugo/0000-0002-1214-7806; Sorensen, Soren /0000-0002-5595-5643; Taketani, Atsushi/0000-0002-4776-2315; Tomasek, Lukas/0000-0002-5224-1936; Dahms, Torsten/0000-0003-4274-5476; FU Office of Nuclear Physics; NSF; Renaissance Technologies (U.S.); MEXT and JSPS (Japan); CNPq and FAPESP (Brazil); NSFC (China); MSMT (Czech Republic); IN2P3/CNRS and CEA (France); BMBF, DAAD, and AvH (Germany); OTKA (Hungary); DAE (India); ISF (Israel); KRF and KOSEF (Korea); MES, RAS, and FAAE (Russia); U. S. CRDF for the FSU; U.S.-Hungary Fulbright; U.S.-Israel BSF FX We thank the staff of the Collider-Accelerator and Physics departments at BNL for their vital contributions, and Marco Stratmann and Werner Vogelsang for communications. We acknowledge support from the Office of Nuclear Physics in the DOE Office of Science; NSF; and a sponsored research grant from Renaissance Technologies (U.S.); MEXT and JSPS (Japan); CNPq and FAPESP (Brazil); NSFC (China); MSMT (Czech Republic); IN2P3/CNRS and CEA (France); BMBF, DAAD, and AvH (Germany); OTKA (Hungary); DAE (India); ISF (Israel); KRF and KOSEF (Korea); MES, RAS, and FAAE (Russia); V. R. and KAW (Sweden); U. S. CRDF for the FSU; U.S.-Hungary Fulbright; U.S.-Israel BSF. NR 26 TC 72 Z9 72 U1 6 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 3 PY 2009 VL 103 IS 1 AR 012003 DI 10.1103/PhysRevLett.103.012003 PG 6 WC Physics, Multidisciplinary SC Physics GA 466XH UT WOS:000267697900014 PM 19659137 ER PT J AU Chan, JA Lany, S Zunger, A AF Chan, J. A. Lany, Stephan Zunger, Alex TI Electronic Correlation in Anion p Orbitals Impedes Ferromagnetism due to Cation Vacancies in Zn Chalcogenides SO PHYSICAL REVIEW LETTERS LA English DT Article ID ENERGY AB Electronic correlation effects, usually associated with open d or f shells, have so far been considered in p orbitals only sporadically for the localized 2p states of first-row elements. We demonstrate that the partial band occupation and the metallic band-structure character as predicted by local density calculations for II-VI materials containing cation vacancies is removed when the correct energy splitting between occupied and unoccupied p orbitals is recovered. This transition into a Mott-insulating phase dramatically changes the structural, electronic and magnetic properties along the entire series (ZnO, ZnS, ZnSe, and ZnTe), and impedes ferromagnetism. Thus, important correlation effects due to open p shells exist not only for first-row (2p) elements, but also for much heavier anions like Te (5p). C1 [Chan, J. A.; Lany, Stephan; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Chan, JA (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. RI Zunger, Alex/A-6733-2013; OI Lany, Stephan/0000-0002-8127-8885 FU DARPA PROM program [DE-AC36-08GO28308] FX This work was funded by the DARPA PROM program under Contract No. DE-AC36-08GO28308 to NREL. NR 21 TC 73 Z9 73 U1 0 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 3 PY 2009 VL 103 IS 1 AR 016404 DI 10.1103/PhysRevLett.103.016404 PG 4 WC Physics, Multidisciplinary SC Physics GA 466XH UT WOS:000267697900040 PM 19659163 ER PT J AU Chen, W Mibe, T Dutta, D Gao, H Laget, JM Mirazita, M Rossi, P Stepanyan, S Strakovsky, II Amaryan, MJ Anghinolfi, M Bagdasaryan, H Battaglieri, M Bellis, M Berman, BL Biselli, AS Bookwalter, C Branford, D Briscoe, WJ Brooks, WK Burkert, VD Careccia, SL Carman, DS Casey, L Cole, PL Collins, P Crede, V Daniel, A Dashyan, N De Vita, R De Sanctis, E Deur, A Dhamija, S Dickson, R Djalali, C Dodge, GE Doughty, D Egiyan, H Eugenio, P Fedotov, G Fradi, A Garcon, M Gilfoyle, GP Giovanetti, KL Girod, FX Gohn, W Gothe, RW Griffioen, KA Guidal, M Hakobyan, H Hanretty, C Hassall, N Heddle, D Hicks, K Holtrop, M Hyde, CE Ilieva, Y Ireland, DG Ishkhanov, BS Isupov, EL Jo, HS Johnstone, JR Joo, K Keller, D Khandaker, M Khetarpal, P Kim, W Klein, A Klein, FJ Kramer, LH Kubarovsky, V Kuhn, SE Kuleshov, SV Kuznetsov, V Livingston, K Lu, HY Markov, N McCracken, ME McKinnon, B Meyer, CA Mineeva, T Mokeev, V Moreno, B Moriya, K Nadel-Turonski, P Nasseripour, R Niccolai, S Niculescu, I Niroula, MR Osipenko, M Ostrovidov, AI Park, K Park, S Pereira, SA Pogorelko, O Pozdniakov, S Price, JW Procureur, S Protopopescu, D Raue, BA Ricco, G Ripani, M Ritchie, BG Rosner, G Sabatie, F Saini, MS Salamanca, J Salgado, C Schumacher, RA Sharabian, YG Sober, DI Sokhan, D Stepanyan, SS Strauch, S Taiuti, M Tedeschi, DJ Tkachenko, S Ungaro, M Vineyard, MF Watts, DP Weinstein, LB Weygand, DP Wood, MH Yegneswaran, A Zhang, J Zhao, B AF Chen, W. Mibe, T. Dutta, D. Gao, H. Laget, J. M. Mirazita, M. Rossi, P. Stepanyan, S. Strakovsky, I. I. Amaryan, M. J. Anghinolfi, M. Bagdasaryan, H. Battaglieri, M. Bellis, M. Berman, B. L. Biselli, A. S. Bookwalter, C. Branford, D. Briscoe, W. J. Brooks, W. K. Burkert, V. D. Careccia, S. L. Carman, D. S. Casey, L. Cole, P. L. Collins, P. Crede, V. Daniel, A. Dashyan, N. De Vita, R. De Sanctis, E. Deur, A. Dhamija, S. Dickson, R. Djalali, C. Dodge, G. E. Doughty, D. Egiyan, H. Eugenio, P. Fedotov, G. Fradi, A. Garcon, M. Gilfoyle, G. P. Giovanetti, K. L. Girod, F. X. Gohn, W. Gothe, R. W. Griffioen, K. A. Guidal, M. Hakobyan, H. Hanretty, C. Hassall, N. Heddle, D. Hicks, K. Holtrop, M. Hyde, C. E. Ilieva, Y. Ireland, D. G. Ishkhanov, B. S. Isupov, E. L. Jo, H. S. Johnstone, J. R. Joo, K. Keller, D. Khandaker, M. Khetarpal, P. Kim, W. Klein, A. Klein, F. J. Kramer, L. H. Kubarovsky, V. Kuhn, S. E. Kuleshov, S. V. Kuznetsov, V. Livingston, K. Lu, H. Y. Markov, N. McCracken, M. E. McKinnon, B. Meyer, C. A. Mineeva, T. Mokeev, V. Moreno, B. Moriya, K. Nadel-Turonski, P. Nasseripour, R. Niccolai, S. Niculescu, I. Niroula, M. R. Osipenko, M. Ostrovidov, A. I. Park, K. Park, S. Pereira, S. Anefalos Pogorelko, O. Pozdniakov, S. Price, J. W. Procureur, S. Protopopescu, D. Raue, B. A. Ricco, G. Ripani, M. Ritchie, B. G. Rosner, G. Sabatie, F. Saini, M. S. Salamanca, J. Salgado, C. Schumacher, R. A. Sharabian, Y. G. Sober, D. I. Sokhan, D. Stepanyan, S. S. Strauch, S. Taiuti, M. Tedeschi, D. J. Tkachenko, S. Ungaro, M. Vineyard, M. F. Watts, D. P. Weinstein, L. B. Weygand, D. P. Wood, M. H. Yegneswaran, A. Zhang, J. Zhao, B. CA CLAS Collaboration TI Measurement of the Differential Cross Section for the Reaction gamma n -> pi(-)p from Deuterium SO PHYSICAL REVIEW LETTERS LA English DT Article ID CHARGED PION-PHOTOPRODUCTION; SCALING LAWS; ENERGIES; PHOTODISINTEGRATION; MOMENTUM; MODEL; CLAS AB We report a measurement of the differential cross section for the gamma n -> pi(-)p process from the CLAS detector at Jefferson Laboratory in Hall B for photon energies between 1.0 and 3.5 GeV and pion center-of-mass (c.m.) angles (theta(c.m.)) between 50 degrees and 115 degrees. We confirm a previous indication of a broad enhancement around a c.m. energy (root s) of 2.1 GeV at theta(c.m.) = 90 degrees in the scaled differential cross section s7 d sigma/dt and a rapid falloff in a center-of-mass energy region of about 400 MeV following the enhancement. Our data show an angular dependence of this enhancement as the suggested scaling region is approached for theta(c.m.) from 70 degrees to 105 degrees. C1 [Chen, W.; Gao, H.] Duke Univ, Durham, NC 27708 USA. [Mibe, T.; Daniel, A.; Hicks, K.; Keller, D.] Ohio Univ, Athens, OH 45701 USA. [Dutta, D.] Mississippi State Univ, Mississippi State, MS 39762 USA. [Laget, J. M.; Stepanyan, S.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Cole, P. L.; Deur, A.; Doughty, D.; Heddle, D.; Klein, F. J.; Kramer, L. H.; Kubarovsky, V.; Mokeev, V.; Raue, B. A.; Sharabian, Y. G.; Weygand, D. P.; Yegneswaran, A.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Mirazita, M.; Rossi, P.; De Sanctis, E.; Pereira, S. Anefalos] Ist Nazl Fis Nucl, Nazl Frascati Lab, I-00044 Frascati, Italy. [Strakovsky, I. I.; Berman, B. L.; Briscoe, W. J.; Niculescu, I.] George Washington Univ, Washington, DC 20052 USA. [Laget, J. M.; Garcon, M.; Girod, F. X.; Procureur, S.; Sabatie, F.] CEA Saclay, Serv Phys Nucl, F-91191 Gif Sur Yvette, France. [Collins, P.; Ritchie, B. G.] Arizona State Univ, Tempe, AZ 85287 USA. [Price, J. W.] Calif State Univ Dominguez Hills, Carson, CA 90747 USA. [Bellis, M.; Dickson, R.; McCracken, M. E.; Meyer, C. A.; Moriya, K.; Schumacher, R. A.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Casey, L.; Klein, F. J.; Nadel-Turonski, P.; Sober, D. I.] Catholic Univ Amer, Washington, DC 20064 USA. [Doughty, D.; Heddle, D.] Christopher Newport Univ, Newport News, VA 23606 USA. [Gohn, W.; Joo, K.; Markov, N.; Mineeva, T.; Ungaro, M.; Zhao, B.] Univ Connecticut, Storrs, CT 06269 USA. [Branford, D.; Sokhan, D.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Biselli, A. S.] Fairfield Univ, Fairfield, CT 06824 USA. [Dhamija, S.; Kramer, L. H.; Raue, B. A.] Florida Int Univ, Miami, FL 33199 USA. [Bookwalter, C.; Crede, V.; Eugenio, P.; Hanretty, C.; Ostrovidov, A. I.; Park, S.; Saini, M. S.] Florida State Univ, Tallahassee, FL 32306 USA. [Hassall, N.; Ireland, D. G.; Johnstone, J. R.; Livingston, K.; McKinnon, B.; Protopopescu, D.; Rosner, G.; Watts, D. P.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Cole, P. L.; Salamanca, J.] Idaho State Univ, Pocatello, ID 83209 USA. [Anghinolfi, M.; Battaglieri, M.; De Vita, R.; Osipenko, M.; Ricco, G.; Ripani, M.; Taiuti, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Fradi, A.; Guidal, M.; Jo, H. S.; Moreno, B.; Niccolai, S.] Inst Phys Nucl, F-91406 Orsay, France. [Kuleshov, S. V.; Pogorelko, O.; Pozdniakov, S.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Giovanetti, K. L.; Niculescu, I.] James Madison Univ, Harrisonburg, VA 22807 USA. [Kim, W.; Kuznetsov, V.; Park, K.; Stepanyan, S. S.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Egiyan, H.; Holtrop, M.] Univ New Hampshire, Durham, NH 03824 USA. [Khandaker, M.; Salgado, C.] Norfolk State Univ, Norfolk, VA 23504 USA. [Amaryan, M. J.; Bagdasaryan, H.; Careccia, S. L.; Dodge, G. E.; Hyde, C. E.; Klein, A.; Kuhn, S. E.; Niroula, M. R.; Sabatie, F.; Tkachenko, S.; Weinstein, L. B.; Zhang, J.] Old Dominion Univ, Norfolk, VA 23529 USA. [Hyde, C. E.] Univ Clermont Ferrand, CNRS, Phys Corpusculaire Lab, IN2P3, F-63177 Aubiere, France. [Biselli, A. S.; Khetarpal, P.] Rensselaer Polytech Inst, Troy, NY 12180 USA. [Gilfoyle, G. P.; Vineyard, M. F.] Univ Richmond, Richmond, VA 23173 USA. [Fedotov, G.; Ishkhanov, B. S.; Isupov, E. L.; Mokeev, V.; Osipenko, M.] Skobeltsyn Nucl Phys Inst, Moscow 119899, Russia. [Djalali, C.; Gothe, R. W.; Ilieva, Y.; Lu, H. Y.; Nasseripour, R.; Park, K.; Strauch, S.; Tedeschi, D. J.; Wood, M. H.] Univ S Carolina, Columbia, SC 29208 USA. [Vineyard, M. F.] Union Coll, Schenectady, NY 12308 USA. [Brooks, W. K.; Hakobyan, H.] Univ Tecn Federico Santa Maria, Valparaiso, Chile. [Joo, K.] Univ Virginia, Charlottesville, VA 22901 USA. [Egiyan, H.; Griffioen, K. A.] Coll William & Mary, Williamsburg, VA 23187 USA. [Dashyan, N.; Hakobyan, H.; Sharabian, Y. G.] Yerevan Phys Inst, Yerevan 375036, Armenia. RP Chen, W (reprint author), Duke Univ, Durham, NC 27708 USA. RI Meyer, Curtis/L-3488-2014; Sabatie, Franck/K-9066-2015; Osipenko, Mikhail/N-8292-2015; Zhang, Jixie/A-1461-2016; Ireland, David/E-8618-2010; Ishkhanov, Boris/E-1431-2012; Kuleshov, Sergey/D-9940-2013; Schumacher, Reinhard/K-6455-2013; Gao, Haiyan/G-2589-2011; Lu, Haiyun/B-4083-2012; Protopopescu, Dan/D-5645-2012; Isupov, Evgeny/J-2976-2012; Zhao, Bo/J-6819-2012; Brooks, William/C-8636-2013 OI Meyer, Curtis/0000-0001-7599-3973; Sabatie, Franck/0000-0001-7031-3975; Osipenko, Mikhail/0000-0001-9618-3013; Ireland, David/0000-0001-7713-7011; Kuleshov, Sergey/0000-0002-3065-326X; Schumacher, Reinhard/0000-0002-3860-1827; Zhao, Bo/0000-0003-3171-5335; Brooks, William/0000-0001-6161-3570 FU U.S. Department of Energy [DE-AC05-060R23177]; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; French Centre National de la Recherche Scientifique and Commissariat a l'Energie Atomique; Korea Science and Engineering Foundation FX We acknowledge the outstanding efforts of the staff of the Accelerator and Physics Divisions at Jefferson Laboratory who made this experiment possible. This work was supported in part by the U.S. Department of Energy, the National Science Foundation, the Italian Istituto Nazionale di Fisica Nucleare, the French Centre National de la Recherche Scientifique and Commissariat a l'Energie Atomique, and the Korea Science and Engineering Foundation. Jefferson Science Associates (JSA) operates the Thomas Jefferson National Accelerator Facility for the U.S. Department of Energy under Contract No. DE-AC05-060R23177. NR 31 TC 25 Z9 26 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 3 PY 2009 VL 103 IS 1 AR 012301 DI 10.1103/PhysRevLett.103.012301 PG 6 WC Physics, Multidisciplinary SC Physics GA 466XH UT WOS:000267697900015 PM 19659138 ER PT J AU Diem, SJ Taylor, G Caughman, JB Efthimion, PC Kugel, H LeBlanc, BP Phillips, CK Preinhaelter, J Sabbagh, SA Urban, J AF Diem, S. J. Taylor, G. Caughman, J. B. Efthimion, P. C. Kugel, H. LeBlanc, B. P. Phillips, C. K. Preinhaelter, J. Sabbagh, S. A. Urban, J. TI Collisional Damping of Electron Bernstein Waves and its Mitigation by Evaporated Lithium Conditioning in Spherical-Tokamak Plasmas SO PHYSICAL REVIEW LETTERS LA English DT Article ID STIMULATED ELECTROMAGNETIC EMISSION; MAGNETIZED PLASMA; PARAMETRIC DECAY; MODE CONVERSION; SCATTERING; IONOSPHERE; ABSORPTION; SYSTEM AB The first experimental verification of electron Bernstein wave (EBW) collisional damping, and its mitigation by evaporated Li conditioning, in an overdense spherical-tokamak plasma has been observed in the National Spherical Torus Experiment (NSTX). Initial measurements of EBW emission, coupled from NSTX plasmas via double-mode conversion to O-mode waves, exhibited < 10% transmission efficiencies. Simulations show 80% of the EBW energy is dissipated by collisions in the edge plasma. Li conditioning reduced the edge collision frequency by a factor of 3 and increased the fundamental EBW transmission to 60%. C1 [Diem, S. J.; Caughman, J. B.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Taylor, G.; Efthimion, P. C.; Kugel, H.; LeBlanc, B. P.; Phillips, C. K.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Preinhaelter, J.; Urban, J.] IPP CR Assoc, EURATOM, Inst Plasma Phys, Prague 18200 8, Czech Republic. [Sabbagh, S. A.] Columbia Univ, New York, NY 10027 USA. RP Diem, SJ (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RI Sabbagh, Steven/C-7142-2011; Preinhaelter, Josef/H-1394-2014; Urban, Jakub/B-5541-2008; Caughman, John/R-4889-2016 OI Urban, Jakub/0000-0002-1796-3597; Caughman, John/0000-0002-0609-1164 FU U.S. Department of Energy [DE-AC02-76CH03073, DE-FG0291ER-54109, DE-FG03-02ER54684, DE-FG0299ER-54521]; The Czech Science Foundation [202/08/0419] FX This research is supported by U.S. Department of Energy Grant No. DE-AC02-76CH03073, No. DE-FG0291ER-54109, No. DE-FG03-02ER54684, No. DE-FG0299ER-54521 and a grant to encourage innovations in fusion diagnostic systems and Grant No. 202/08/0419 of The Czech Science Foundation. NR 31 TC 13 Z9 13 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 3 PY 2009 VL 103 IS 1 AR 015002 DI 10.1103/PhysRevLett.103.015002 PG 4 WC Physics, Multidisciplinary SC Physics GA 466XH UT WOS:000267697900031 PM 19659154 ER PT J AU Santra, R Kryzhevoi, NV Cederbaum, LS AF Santra, Robin Kryzhevoi, Nikolai V. Cederbaum, Lorenz S. TI X-Ray Two-Photon Photoelectron Spectroscopy: A Theoretical Study of Inner-Shell Spectra of the Organic Para-Aminophenol Molecule SO PHYSICAL REVIEW LETTERS LA English DT Article ID DOUBLE VACANCIES; GREENS-FUNCTION; K-SHELL; CORE AB The inner-shell single and double ionization spectra of the organic molecule para-aminophenol are calculated using many-body Green's function methods. The inner-shell double ionization spectrum displays more pronounced sensitivity to the chemical environment and to electronic many-body effects than does the inner-shell single ionization spectrum. A kinetic model is employed to determine the probability of inner-shell double hole formation in para-aminophenol exposed to an intense, 1 fs x-ray pulse. The resulting photoelectron spectrum at a photon energy of 1 keV is calculated. This work suggests that x-ray two-photon photoelectron spectroscopy using x-ray free-electron lasers will provide access to electronic-structure information not currently available. C1 [Santra, Robin] Argonne Natl Lab, Argonne, IL 60439 USA. [Santra, Robin] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Kryzhevoi, Nikolai V.; Cederbaum, Lorenz S.] Univ Heidelberg, Inst Phys Chem, D-69120 Heidelberg, Germany. RP Santra, R (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Kryzhevoi, Nikolai/K-6873-2013; Santra, Robin/E-8332-2014 OI Santra, Robin/0000-0002-1442-9815 FU Office of Basic Energy Sciences; Office of Science; U. S. Department of Energy [DE-AC02-06CH11357]; DFG FX R. S. thanks Nora Berrah, Ryan Coffee, John Galayda, Elliot Kanter, and Linda Young for inspiring discussions. R. S. was supported by the Office of Basic Energy Sciences, Office of Science, U. S. Department of Energy, under Contract No. DE-AC02-06CH11357. N. K. and L. C. gratefully acknowledge financial support by the DFG. NR 32 TC 69 Z9 69 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 3 PY 2009 VL 103 IS 1 AR 013002 DI 10.1103/PhysRevLett.103.013002 PG 4 WC Physics, Multidisciplinary SC Physics GA 466XH UT WOS:000267697900020 PM 19659143 ER PT J AU Satula, W Dobaczewski, J Nazarewicz, W Rafalski, M AF Satula, W. Dobaczewski, J. Nazarewicz, W. Rafalski, M. TI Isospin Mixing in Nuclei within the Nuclear Density Functional Theory SO PHYSICAL REVIEW LETTERS LA English DT Article ID PROJECTED HARTREE-FOCK; SYMMETRY; PROTON; STATES AB We present the self-consistent, nonperturbative analysis of isospin mixing using the nuclear density functional approach and the rediagonalization of the Coulomb interaction in the good-isospin basis. The unphysical isospin violation on the mean-field level, caused by the neutron excess, is eliminated by the proposed method. We find a significant dependence of the magnitude of isospin breaking on the parametrization of the nuclear interaction. A rough correlation has been found between the isospin-mixing parameter and the difference of proton and neutron rms radii. C1 [Satula, W.; Dobaczewski, J.; Nazarewicz, W.; Rafalski, M.] Univ Warsaw, Inst Theoret Phys, PL-00681 Warsaw, Poland. [Dobaczewski, J.] Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland. [Nazarewicz, W.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Nazarewicz, W.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Satula, W (reprint author), Univ Warsaw, Inst Theoret Phys, Ul Hoza 69, PL-00681 Warsaw, Poland. FU Polish Ministry of Science [N202 328234]; Academy of Finland and University of Jyva "skyla"; U. S. Department of Energy [DE-FG02-96ER40963, DE-AC05-00OR22725] FX Discussions with Erich Ormand are gratefully acknowledged. This work was supported in part by the Polish Ministry of Science under Contract No. N N202 328234, Academy of Finland and University of Jyva "skyla" within the FIDIPRO programme, and U. S. Department of Energy under Contract Nos. DE-FG02-96ER40963 (University of Tennessee) and DE-AC05-00OR22725 with UT-Battelle, LLC (Oak Ridge National Laboratory). NR 30 TC 43 Z9 43 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 3 PY 2009 VL 103 IS 1 AR 012502 DI 10.1103/PhysRevLett.103.012502 PG 4 WC Physics, Multidisciplinary SC Physics GA 466XH UT WOS:000267697900017 PM 19659140 ER PT J AU James, CW Cornelius, C Marand, E AF James, Charles W., Jr. Cornelius, Chris Marand, Eva TI The effect of temperature and humidity on the oxygen sorption in Diels-Alder polyphenylenes SO POLYMER LA English DT Article DE Proton exchange membranes; Polyphenylenes; Oxygen sorption ID POLY(ARYLENE ETHER SULFONE); PROTON-EXCHANGE MEMBRANES; FUEL-CELL APPLICATIONS; WATER; SEPARATION; STATE; PERMEABILITY; COPOLYMERS; NAFION; POLYMERIZATION AB The gas transport properties of post-sulfonated Diels-Alder polyphenylene (SDAPP) membranes were measured and compared to poly(perfluoro sulfonic acid) (Nafion 112). The SDAPP materials had ion exchange capacities of 1.6 and 2.2 mequiv/g. The O(2) gas permeability in the SDAPP 2.2 was about half that observed in Nafion@ 112. The O(2) sorption in each membrane was measured in both the non-humidified and humidified state. In the non-humidified state, the O(2) sorption followed Henry's Law behavior. The enthalpy of sorption for the SDAPP materials in the dry state was about double that measured for Nafion@ 112. In the presence of moisture, the O(2) sorption followed Type IV behavior typically exhibited by hydrophilic polymers. The SDAPP samples had a higher percent wet-O(2) mass uptake compared to Nafion@ 112, because of a higher ion exchange capacity. (C) 2009 Elsevier Ltd. All rights reserved. C1 [James, Charles W., Jr.; Marand, Eva] Virginia Polytech Inst & State Univ, Dept Chem Engn, Blacksburg, VA 24061 USA. [Cornelius, Chris] Sandia Natl Labs, Albuquerque, NM 87285 USA. RP Marand, E (reprint author), Virginia Polytech Inst & State Univ, Dept Chem Engn, 138 Randolph Hall, Blacksburg, VA 24061 USA. EM emarand@vt.edu NR 33 TC 2 Z9 2 U1 1 U2 9 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 J9 POLYMER JI Polymer PD JUL 3 PY 2009 VL 50 IS 14 BP 3220 EP 3224 DI 10.1016/j.polymer.2009.05.004 PG 5 WC Polymer Science SC Polymer Science GA 468YD UT WOS:000267859700022 ER PT J AU Fernandez-Alberti, S Kleiman, VD Tretiak, S Roitberg, AE AF Fernandez-Alberti, Sebastian Kleiman, Valeria D. Tretiak, Sergei Roitberg, Adrian E. TI Nonadiabatic Molecular Dynamics Simulations of the Energy Transfer between Building Blocks in a Phenylene Ethynylene Dendrimer SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID CORRELATED EXCIMER FORMATION; PHENYLACETYLENE DENDRIMERS; ELECTRONIC EXCITATIONS; CONJUGATED MOLECULES; OPTICAL-EXCITATIONS; LANGEVIN DYNAMICS; ANTENNA SUPERMOLECULES; GAUSSIAN WAVEPACKETS; CONICAL INTERSECTION; QUANTUM DECOHERENCE AB The ultrafast dynamics of electronic and vibrational energy transfer between two- and three-ring linear poly (phenylene ethynylene) units linked by meta-substitution is Studied by nonadiabatic molecular dynamics simulations. The molecular dynamics with quantum transitions(1,2) method is used including an "on the fly" calculation of the potential energy surfaces and electronic couplings. The results show that during the first 40 fs after a vertical photoexcitation to the S-2 state, the nonadiabatic coupling between S-2 and S-1 states causes a fast transfer of the electronic populations. A rapid decrease of the S-1-S-2 energy gap is observed, reaching a first conical intersection at approximate to 5 fs. Therefore, the first hopping events take place, and the S-2 state starts to depopulate. The analysis of the Structural and energetic properties of the molecule during the jumpsreveals the main role that the ethynylene triple bond plays in the unidirectional energy transfer process. C1 [Roitberg, Adrian E.] Univ Florida, Dept Chem, Quantum Theory Project, Gainesville, FL 32611 USA. [Fernandez-Alberti, Sebastian] Univ Nacl Quilmes, Bernal, Argentina. [Tretiak, Sergei] Los Alamos Natl Lab, Div Theoret, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Tretiak, Sergei] Los Alamos Natl Lab, CINT, Los Alamos, NM 87545 USA. RP Roitberg, AE (reprint author), Univ Florida, Dept Chem, Quantum Theory Project, Gainesville, FL 32611 USA. RI Roitberg, Adrian/A-2378-2009; Tretiak, Sergei/B-5556-2009; Kleiman, Valeria/H-7818-2013 OI Tretiak, Sergei/0000-0001-5547-3647; Kleiman, Valeria/0000-0002-9975-6558 FU CONICET; UNQ; National Science Foundation [CHE-0239120, CHE-0822935]; U.S. Department of Energy and Los Alamos LDRD; Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396]; Center for Integrated Nanotechnology (CINT); Center for Nonlinear Studies (CNLS); Teragrid [TG-MCA05S010] FX This work was partially Supported by CONICET, UNQ, the National Science Foundation grant no. CHE-0239120, and the U.S. Department of Energy and Los Alamos LDRD funds. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. We acknowledge support of Center for Integrated Nanotechnology (CINT) and Center for Nonlinear Studies (CNLS). The authors acknowledge the University of Florida High-Performance Computing Center for providing computational resources. Computational resources were also provided by Teragrid Grant No. TG-MCA05S010. Work at University of Florida was funded by the National Science Foundation grant number CHE-0822935. AER and VDK are specially thankful to Benny for many years of incredible science and continuous support. NR 77 TC 48 Z9 48 U1 0 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUL 2 PY 2009 VL 113 IS 26 BP 7535 EP 7542 DI 10.1021/jp900904q PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 462VG UT WOS:000267384500043 PM 19378966 ER PT J AU Goebbert, DJ Garand, E Wende, T Bergmann, R Meijer, G Asmis, KR Neumark, DM AF Goebbert, Daniel J. Garand, Etienne Wende, Torsten Bergmann, Risshu Meijer, Gerard Asmis, Knut R. Neumark, Daniel M. TI Infrared Spectroscopy of the Microhydrated Nitrate Ions NO3-(H2O)(1-6) SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID WATER CLUSTERS; BASIS-SETS; GAS-PHASE; ELECTRON; ANION; NO3; SIMULATIONS; INTERFACE; COMPLEXES; CHEMISTRY AB We present infrared photodissociation spectra of the microhydrated nitrate ions NO3-(H2O)(1-6), measured from 600 to 1800 cm(-1). The assignment of the spectra is aided by comparison with calculated B3LYP/aug-cc-pVDZ harmonic frequencies, as well as with higher-level calculations. The IR spectra are dominated by the antisymmetric stretching mode of NO3-, Which is doubly degenerate in the bare ion but splits into its two components for most microhydrated ions studied here due to asymmetric solvation of the nitrate core. However, for NO3-(H2O)(3), the spectrum reveals no lifting of this degeneracy, indicating an ion with a highly symmetric solvation shell. The first three water molecules bind in a bidentate fashion to the terminal oxygen atoms of the nitrate ion, keeping the planar symmetry. The onset of extensive water-water hydrogen bonding is observed starting with four water molecules and persists in the larger clusters. C1 [Goebbert, Daniel J.; Wende, Torsten; Bergmann, Risshu; Meijer, Gerard; Asmis, Knut R.] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany. [Garand, Etienne; Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Neumark, Daniel M.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Asmis, KR (reprint author), Max Planck Gesell, Fritz Haber Inst, Faradayweg 4-6, D-14195 Berlin, Germany. EM asmis@fhi-berlin.mpg.de; DNeumark@berkeley.edu RI Neumark, Daniel/B-9551-2009; Meijer, Gerard/D-2141-2009; Asmis, Knut/N-5408-2014 OI Neumark, Daniel/0000-0002-3762-9473; Asmis, Knut/0000-0001-6297-5856 FU Stichting voor Fundamenteel Onderzoek der Materie (FOM); Air Force Office of Scientific Research [F49620-03-1-0085]; National Science and Engineering Research Council of Canada (NSERC) for a post graduate scholarship FX We gratefully acknowledge the support of the Stichting voor Fundamenteel Onderzoek der Materie (FOM) in providing the required beam time on FELIX and highly appreciate the skillful assistance of the FELIX staff, as well as the staff members of the Precision Mechanical Engineering Workshop (Department of Physics, Free University, Berlin) for their assistance in transporting the instrument. K.R.A. thanks M. Beyer for helpful discussions. D.M.N. and E.G. thank the Air Force Office of Scientific Research for support under Grant No. F49620-03-1-0085. E.G. thanks the National Science and Engineering Research Council of Canada (NSERC) for a post graduate scholarship. NR 45 TC 83 Z9 83 U1 1 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUL 2 PY 2009 VL 113 IS 26 BP 7584 EP 7592 DI 10.1021/jp9017103 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 462VG UT WOS:000267384500050 PM 19445493 ER PT J AU Her, JH Zhou, W Stavila, V Brown, CM Udovic, TJ AF Her, Jae-Hyuk Zhou, Wei Stavila, Vitalie Brown, Craig M. Udovic, Terrence J. TI Role of Cation Size on the Structural Behavior of the Alkali-Metal Dodecahydro-closo-Dodecaborates SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID NEUTRON-SCATTERING; 1ST-PRINCIPLES; DECOMPOSITION; SYSTEM; LIBH4 AB The last unknown crystal structure among the alkali-metal dodecahydro-closo-dodecaborates (A(2)B(12)H(12)) that of Na(2)B(12)H(12), was determined by powder X-ray diffraction. Compared to the structural symmetries of its neighboring, cubic, alkali-metal analogs, i.e., the lighter Li(2)B(12)H(12) (Pa (3) over bar) and the heavier K(2)B(12)H(12) (Fm (3) over bar), Na(2)B(12)H(12) displays an intermediate monoclinic (P2(1)/n) structural arrangement. This result allows us to understand more thoroughly the effect of cation size on the observed structural behavior of this technologically relevant series of compounds. C1 [Her, Jae-Hyuk; Zhou, Wei; Brown, Craig M.; Udovic, Terrence J.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Her, Jae-Hyuk; Zhou, Wei] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Stavila, Vitalie] Sandia Natl Labs, Livermore, CA 94551 USA. RP Her, JH (reprint author), NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. EM jhher@nist.gov RI Zhou, Wei/C-6504-2008; Stavila, Vitalie/F-4188-2010; Stavila, Vitalie/B-6464-2008; Brown, Craig/B-5430-2009 OI Zhou, Wei/0000-0002-5461-3617; Stavila, Vitalie/0000-0003-0981-0432; Brown, Craig/0000-0002-9637-9355 FU DOE [DE-AI-01-05EE11104, DE-AC-04-94AL85000] FX The authors thank Drs. John J. Rush and Nina Verdal for useful discussions. This work was supported by the DOE through Award Nos. DE-AI-01-05EE11104 and DE-AC-04-94AL85000. NR 18 TC 34 Z9 34 U1 2 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 2 PY 2009 VL 113 IS 26 BP 11187 EP 11189 DI 10.1021/jp904980m PG 3 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 462CW UT WOS:000267324600003 ER PT J AU Bahns, JT Guo, QT Montgomery, JM Gray, SK Jaeger, HM Chen, LH AF Bahns, John T. Guo, Qiti Montgomery, Jason M. Gray, Stephen K. Jaeger, Heinrich M. Chen, Liaohai TI High-Fidelity Nano-Hole-Enhanced Raman Spectroscopy SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SINGLE-MOLECULE SENSITIVITY; AMINO-ACIDS; LIGHT TRANSMISSION; L-PHENYLALANINE; GOLD FILM; SURFACE; SCATTERING; ARRAYS; NANOHOLES; SERS AB Surface enhanced Raman spectroscopy (SERS) is a sensitive technique that can even detect single molecules. However, in many SERS applications, the strongly inhomogeneous distribution of intense local fields makes it very difficult for a quantitive assessment of the fidelity, or reproducibility of the signal, which limits the application of SERS. Herein, we report the development of exceptionally high-fidelity hole-enhanced Raman spectroscopy (HERS) from ordered, 2D hexagonal nanohole arrays. We take the fidelity f to be a measure of the percent deviation of the Raman peaks from measurement to measurement. Overall, area averaged fidelities for 12 gold array samples ranged from f similar to 2-15% for HERS using aqueous R6G molecules. Furthermore, intensity modulations of the enhanced Raman spectra were measured for the first time as a function of polarization angle. The best of these measurements, which focus on static laser spots on the sample, could be consistent with even higher fidelities than the area-averaged results. Nanohole arrays in silver provided supporting polarization measurements and a more complete enhanced Raman fingerprint for phenylalanine molecules. We also carried out finite-difference time-domain calculations to assist in the interpretation of the experiments, identifying the polarization dependence as possibly arising from hole-hole interactions. Our results represent a step toward making quantitative and reproducible enhanced Raman measurements possible and also open new avenues for a large-scale Source of highly uniform hot spots. C1 [Bahns, John T.; Chen, Liaohai] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Guo, Qiti; Jaeger, Heinrich M.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Montgomery, Jason M.; Gray, Stephen K.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Bahns, JT (reprint author), Argonne Natl Lab, Biosci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jbahns@anl.gov; lhchen@anl.gov RI Das, Siddhartha/E-5604-2011 FU NIH [ROI NS047719]; U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy, Office of Basic Energy Sciences [DEAC02-06CH 11357] FX This work was supported by NIH grant ROI NS047719. We are very grateful to Jeffrey M. McMahon for helpful discussions and providing us with his parallel FDTD program. This research used resources of the National Energy Research Sciendfic Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The work at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under contract DEAC02-06CH 11357. NR 40 TC 23 Z9 24 U1 1 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 2 PY 2009 VL 113 IS 26 BP 11190 EP 11197 DI 10.1021/jp900764a PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 462CW UT WOS:000267324600004 PM 20161411 ER PT J AU Carr, RD Konjevod, G Little, G Natarajan, V Parekh, O AF Carr, Robert D. Konjevod, Goran Little, Greg Natarajan, Venkatesh Parekh, Ojas TI Compacting Cuts: A New Linear Formulation for Minimum Cut SO ACM TRANSACTIONS ON ALGORITHMS LA English DT Article; Proceedings Paper CT 18th ACM-SIAM Symposium on Discrete Algorithms CY JAN 07-09, 2007 CL New Orleans, LA SP ACM SIGACT, SIAM DE Linear programming formulation complexity; minimum cut problem ID TRAVELING SALESMAN PROBLEM; ALGORITHMS; PROGRAMS AB For a graph (V, E), existing compact linear formulations for the minimum cut problem require Theta (vertical bar V vertical bar vertical bar E vertical bar) variables and constraints and can be interpreted as a composition of vertical bar V vertical bar - 1 polyhedra for minimum s-t cuts in much the same way as early approaches to finding globally minimum cuts relied on vertical bar V vertical bar - 1 calls to a minimum s-t cut algorithm. We present the first formulation to beat this bound, one that uses O(vertical bar V vertical bar(2)) variables and O(vertical bar V vertical bar(3)) constraints. An immediate consequence of our result is a compact linear relaxation with O(vertical bar V vertical bar(2)) constraints and O(vertical bar V vertical bar(3)) variables for enforcing global connectivity constraints. This relaxation is as strong as standard cut-based relaxations and has applications in solving traveling salesman problems by integer programming as well as finding approximate solutions for survivable network design problems using Jain's iterative rounding method. Another application is a polynomial-time verifiable certificate of size n for for the NP-complete problem of l(1)-embeddability of a rational metric on an n-set (as opposed to a certificate of size n(2) known previously). C1 [Carr, Robert D.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Konjevod, Goran] Arizona State Univ, Sch Comp & Informat, Tempe, AZ 85287 USA. [Little, Greg] MIT, CSAIL, Cambridge, MA 02139 USA. [Natarajan, Venkatesh] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA. [Parekh, Ojas] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA. RP Carr, RD (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM rdcarr@sandia.gov; goran@asu.edu; glittle@gmail.com; vn@andrew.cmu; ojas@mathcs.emory.edu NR 38 TC 2 Z9 2 U1 0 U2 1 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 1549-6325 EI 1549-6333 J9 ACM T ALGORITHMS JI ACM Trans. Algorithms PD JUL PY 2009 VL 5 IS 3 AR 27 DI 10.1145/1541885.1541888 PG 16 WC Computer Science, Theory & Methods; Mathematics, Applied SC Computer Science; Mathematics GA 476UP UT WOS:000268471900003 ER PT J AU Baker, CG Hetmaniuk, UL Lehoucq, RB Thornquist, HK AF Baker, C. G. Hetmaniuk, U. L. Lehoucq, R. B. Thornquist, H. K. TI Anasazi Software for the Numerical Solution of Large-Scale Eigenvalue Problems SO ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE LA English DT Article DE Algorithms; Design; Performance; Reliability; Theory; Eigenvalue problems; numerical algorithms; generic programming; object-oriented programming; large-scale scientific computing ID ALGORITHMS AB Anasazi is a package within the Trilinos software project that provides a framework for the iterative, numerical solution of large-scale eigenvalue problems. Anasazi is written in ANSI C++ and exploits modern software paradigms to enable the research and development of eigensolver algorithms. Furthermore, Anasazi provides implementations for some of the most recent eigensolver methods. The purpose of our article is to describe the design and development of the Anasazi framework. A performance comparison of Anasazi and the popular FORTRAN 77 code ARPACK is given. C1 [Baker, C. G.; Hetmaniuk, U. L.; Lehoucq, R. B.; Thornquist, H. K.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Baker, CG (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. NR 34 TC 20 Z9 20 U1 0 U2 2 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0098-3500 J9 ACM T MATH SOFTWARE JI ACM Trans. Math. Softw. PD JUL PY 2009 VL 36 IS 3 AR 13 DI 10.1145/1527286.1527287 PG 23 WC Computer Science, Software Engineering; Mathematics, Applied SC Computer Science; Mathematics GA 476VK UT WOS:000268474100001 ER PT J AU He, J Watson, LT Sosonkina, M AF He, Jian Watson, Layne T. Sosonkina, Masha TI Algorithm 897: VTDIRECT95: Serial and Parallel Codes for the Global Optimization Algorithm DIRECT SO ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE LA English DT Article DE Algorithms; Design; Documentation; DIRECT; global optimization; data structures; parallel schemes; checkpointing ID FAULT-TOLERANT MPI; SEARCH ALGORITHM; MODEL AB VTDIRECT95 is a Fortran 95 implementation of D. R. Jones' deterministic global optimization algorithm called DIRECT, which is widely used in multidisciplinary engineering design, biological science, and physical science applications. The package includes both a serial code and a data-distributed massively parallel code for different problem scales and optimization (exploration vs. exploitation) goals. Dynamic data structures are used to organize local data, handle unpredictable memory requirements, reduce the memory usage, and share the data across multiple processors. The parallel code employs a multilevel functional and data parallelism to boost concurrency and mitigate the data dependency, thus improving the load balancing and scalability. In addition, checkpointing features are integrated into both versions to provide fault tolerance and hot restarts. Important algorithm modifications and design considerations are discussed regarding data structures, parallel schemes, error handling, and portability. Using several benchmark functions and real-world applications, the software is evaluated on different systems in terms of optimization effectiveness, data structure efficiency, parallel performance, and checkpointing overhead. The package organization and usage are also described in detail. C1 [He, Jian; Watson, Layne T.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. [Sosonkina, Masha] Ames Lab, Ames, IA USA. RP He, J (reprint author), Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. FU Air Force Research Laboratory [F30602-01-2-0572]; NSF [DMI-0422719, DMI-0355391]; Department of Energy [DE-FG02-06ER25720]; NIGMS/NIH [5 R01 GM078989] FX This work was supported in part by Air Force Research Laboratory Grant F30602-01-2-0572, NSF Grants DMI-0422719 and DMI-0355391, Department of Energy Grant DE-FG02-06ER25720, and NIGMS/NIH Grant 5 R01 GM078989. NR 28 TC 9 Z9 10 U1 1 U2 1 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0098-3500 J9 ACM T MATH SOFTWARE JI ACM Trans. Math. Softw. PD JUL PY 2009 VL 36 IS 3 AR 17 DI 10.1145/1527286.1527291 PG 24 WC Computer Science, Software Engineering; Mathematics, Applied SC Computer Science; Mathematics GA 476VK UT WOS:000268474100005 ER PT J AU Boday, DJ Stover, RJ Muriithi, B Keller, MW Wertz, JT Obrey, KAD Loy, DA AF Boday, Dylan J. Stover, Robert J. Muriithi, Beatrice Keller, Michael W. Wertz, Jason T. Obrey, Kimberly A. DeFriend Loy, Douglas A. TI Strong, Low-Density Nanocomposites by Chemical Vapor Deposition and Polymerization of Cyanoacrylates on Aminated Silica Aerogels SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE aerogel; strong aerogels; nanocomposites; vapor deposition; hybrid materials ID AMINE-MODIFIED SILICA; POLYSTYRENE AB Strong polymer-silica aerogel composites were prepared by chemical vapor deposition of cyanoacrylate monomers onto amine-modified aerogels. Amine-modified silica aerogels were prepared by copolymerizing small amounts of (aminopropyl)triethoxysilane with tetraethoxysilane. After silation of the aminated gels with hexamethyidisilazane, they were dried as aerogels using supercritical carbon dioxide processing. The resulting aerogels had only the amine groups as initiators For the cyanoacrylate polymerizations, resulting in cyanoacrylate macromolecules that were higher In molecular weight than those observed with unmodified silica and that were covalently attached to the silica surface, Starting with aminated silica aerogels that were 0.075 g/cm(3) density, composite aerogels were made with densities up to 0.220 g/cm(3) and up to 31 times stronger (flexural strength) than the precursor aerogel and about 2.3 times stronger than an unmodified silica aerogel of the same density. C1 [Boday, Dylan J.; Muriithi, Beatrice; Wertz, Jason T.; Loy, Douglas A.] Univ Arizona, Tucson, AZ 85721 USA. [Obrey, Kimberly A. DeFriend] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Keller, Michael W.] Univ Tulsa, Dept Mech Engn, Tulsa, OK 74104 USA. RP Loy, DA (reprint author), Univ Arizona, Tucson, AZ 85721 USA. EM daloy@mse.arizona.edu RI Keller, Michael/B-6853-2008; Loy, Douglas/D-4847-2009; Wertz, Jason/P-5127-2014 OI Keller, Michael/0000-0002-6069-0280; Loy, Douglas/0000-0001-7635-9958; FU Energy Materials Corp.; Department of Energy [LA-UR-07-6675] FX We thank the Energy Materials Corp. and the Department of Energy (for work at Los Alamos National Laboratory under Contract LA-UR-07-6675) for supporting this work. We also thank the University of Arizona, Marcus Perry and Mike Read From the Chemistry Instrumentation and Electronics Facility,'University Spectroscopy and Imaging Facility, Mass Spectroscopy Facility, and Brian Cherry from the Department of Chemistry at Arizona State University for solids NMR work. NR 21 TC 48 Z9 49 U1 2 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD JUL PY 2009 VL 1 IS 7 BP 1364 EP 1369 DI 10.1021/am900240h PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 474UX UT WOS:000268310800002 PM 20355935 ER PT J AU Harper, JC Brozik, SM Flemming, JH McClain, JL Polsky, R Raj, D Ten Eyck, GA Wheeler, DR Achyuthan, KE AF Harper, Jason C. Brozik, Susan M. Flemming, Jeb H. McClain, Jaime L. Polsky, Ronen Raj, Dominic Ten Eyck, Gregory A. Wheeler, David R. Achyuthan, Komandoor E. TI Fabrication and Testing of a Microneedles Sensor Array for p-Cresol Detection with Potential Biofuel Applications SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE ElectroNeedles; fabrication; diazonium; p-cresol; laccase; electrochemistry; fluorescence ID PHOTOETCHABLE GLASS; ELECTRODE ARRAYS; LIGNIN; OXIDATION; ENZYMES AB We present a miniaturized high-throughput sensor array that will augment biofuel technology by facilitating in situ biochemical measurements upon micrometer-scale surfaces of leaves, stems, or petals. We used semiconductor processing to photopattern Foturan glass wafers and fabricated gold-placed microscopic electrode needles (ElectroNeedles) that pierced 125-mu m-thick surfaces without deformation. The 5 x 5 or 10 x 10 arrays of ElectroNeedles can analyze 25 or 100 samples simultaneously, increasing throughput. Each microneedle in the array can also be individually addressed and selectively functionalized using diazonium electrodeposition, conferring multiplexing capability. Our microfabrication is a simple, inexpensive, and rapid alternative to the time-. cost-, and protocol-intense, deep-reactive-ion-etching Bosch process. We validated the system performance by electrochemically detecting p-cresol, a phenolic substrate for laccase, an enzyme that is implicated in lignin degradation and therefore important to biofuels. Our limits of detection (LOD) and quantization (LOQ) for p-cresol were 1,8 and 16 mu M, respectively, rivaling fluorescence detection (LOD and LOQ = 0.4 and 3 mu M, respectively). EleccroNeedles are multiplexed, high-through put, chip-based sensor arrays designed for minimally invasive penetration of plant surfaces, enabling in situ and point-of-test analyses of biofuel-related biochemicals. C1 [Achyuthan, Komandoor E.] Sandia Natl Labs, Biosensors & Nanomat Dept, Albuquerque, NM 87185 USA. [Flemming, Jeb H.] Life Biosci, Albuquerque, NM 87185 USA. [Raj, Dominic] George Washington Univ, Washington, DC 20052 USA. [Achyuthan, Komandoor E.] Joint BioEnergy Inst, Emeryville, CA 94608 USA. RP Achyuthan, KE (reprint author), Sandia Natl Labs, Biosensors & Nanomat Dept, POB 5800,MS 1425, Albuquerque, NM 87185 USA. EM kachyut@sandia.gov FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231, DE-AC04-94AL85000]; Lawrence Berkeley National Laboratory; Sandia's Laboratory Directed Research and Development (LDRD) [125859]; Defense Threat Reduction Agency, joint Science and Technology Office (DTRA-JSTO) [MIPR9FO89XR052-0] FX The DOE's JBEI (http://www.jbei.org) is supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through Contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy. Sandia is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000. These investigations were partially funded by Sandia's Laboratory Directed Research and Development (LDRD) Project 125859 and by the Defense Threat Reduction Agency, joint Science and Technology Office (DTRA-JSTO), Project MIPR9FO89XR052-0, both awarded to K.A. We thank Drs. Christopher Apblett, Edwin Heller, Stanley Kravitz, David Ingersoll, Stephen Casalnuovo, and Kent Schubert for microfabrication project support. Carrie Schmidt and Michael Thomas provided technical assistance. NR 33 TC 10 Z9 10 U1 2 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD JUL PY 2009 VL 1 IS 7 BP 1591 EP 1598 DI 10.1021/am900259u PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 474UX UT WOS:000268310800034 PM 20355966 ER PT J AU Bosworth, JK Black, CT Obert, CK AF Bosworth, Joan K. Black, Charles T. Obert, Christopher K. TI Selective Area Control of Self-Assembled Pattern Architecture Using a Lithographically Patternable Block Copolymer SO ACS NANO LA English DT Article DE self-assembly; block copolymer; photoresist; solvent annealing; P alpha MS-b-PHOST ID CHEMICAL-PATTERNS; ELECTRIC-FIELD; THIN-FILMS; BOTTOM-UP; TOP-DOWN; ORIENTATION; SURFACES; ALIGNMENT; CYLINDER; BRUSHES AB We leverage distinctive chemical properties of the diblock copolymer poly(alpha-methylstyrene)block-poly(4-hydroxystyrene) to create for the first time high-resolution selective-area regions of two different block copolymer phase morphologies. Exposure of thin films of poly(a-methylstyrene)-block-poly(4-hydroxystyrene) to nonselective or block-selective solvent vapors results in polymer phase separation and self-assembly of patterns of cylindrical-phase or kinetically trapped spherical-phases, respectively. Poly(4-hydroxystyrene) acts as a high-resolution negative-tone photoresist in the presence of small amounts of a photoacid generator and cross-linker, undergoing radiation-induced cross-linking upon exposure to ultraviolet light or an electron beam. We use lithographic exposure to lock one self-assembled phase morphology in specific. sample areas as small as 100 nm in width prior to film exposure to a subsequent solvent vapor to form a second self-assembled morphology in unexposed wafer areas. C1 [Bosworth, Joan K.; Obert, Christopher K.] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA. [Bosworth, Joan K.] Cornell Univ, Dept Chem & Biol Chem, Ithaca, NY 14853 USA. [Black, Charles T.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Obert, CK (reprint author), Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA. EM cko3@cornell.edu FU National Science Foundation Materials World Network [DMR 0602821]; NSF NIRT [CTS 0304159]; Semiconductor Research Consortium; Center for Functional Nanomaterials (CFN); Brookhaven National Laboratory; U.S. Department of Energy, Division of Materials Sciences and Division of Chemical Sciences [DE-AC02-98CH10886]; Cornell NanoScale Facility, (CNF); Cornell Center for Materials Research (CCMR); Cornell Nanoblotechnology Center (NBTC); NNIN; NSF Award [ECS-0335765, DMR 0520404]; NSF MRSEC program; NBTC; STC Program of the NSF [ECS-9876771] FX This work was supported by the National Science Foundation Materials World Network (Award DMR 0602821), the NSF NIRT (Award CTS 0304159), and the Semiconductor Research Consortium, and J.K.B. was supported by fellowships from Motorola and IBM. Research was carried out in part at the Center for Functional Nanomaterials (CFN) at Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Division of Materials Sciences and Division of Chemical Sciences, under Contract No. DE-AC02-98CH10886. This work was also performed using facilities at the Cornell NanoScale Facility, (CNF), the Cornell Center for Materials Research (CCMR), and the Cornell Nanoblotechnology Center (NBTC). CNF is a member of the NNIN, supported by NSF Award ECS-0335765, CCMR is supported by NSF Award DMR 0520404, part of the NSF MRSEC program, and the NBTC is supported by the STC Program of the NSF, Award ECS-9876771. The authors thank A. Stein of the CFN as well as D. Forman and J. Sha of Cornell for assistance with e-beam patterning. NR 32 TC 40 Z9 40 U1 4 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD JUL PY 2009 VL 3 IS 7 BP 1761 EP 1766 DI 10.1021/nn900343u PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 474UZ UT WOS:000268311000021 PM 19534477 ER PT J AU Cruz-Silva, E Lopez-Urias, F Munoz-Sandoval, E Sumpter, BG Terrones, H Charlier, JC Meunier, V Terrones, M AF Cruz-Silva, Eduardo Lopez-Urias, Florentino Munoz-Sandoval, Emilio Sumpter, Bobby G. Terrones, Humberto Charlier, Jean-Christophe Meunier, Vincent Terrones, Mauricio TI Electronic Transport and Mechanical Properties of Phosphorus- and Phosphorus-Nitrogen-Doped Carbon Nanotubes SO ACS NANO LA English DT Article DE carbon nanotubes; doping; density functional theory; electronic transport; elastic properties ID ELASTIC PROPERTIES; MICROTUBULES; METALLICITY; REDUCTION; COMPOSITE; DEFECTS; SYSTEMS; GROWTH; ARRAYS; GAS AB We present a density functional theory study of the electronic structure, quantum transport and mechanical properties of recently synthesized phosphorus (P) and phosphorus-nitrogen (PN) doped single-walled carbon nanotubes. The results demonstrate that substitutional P and PN doping creates localized electronic states that modify the electron transport properties by acting as scattering centers. Nonetheless, for low doping concentrations (1 doping site per similar to 200 atoms), the quantum conductance for metallic nanotubes is found to be only slightly reduced. The substitutional doping also alters the mechanical strength, leading to a 50% reduction in the elongation upon fracture, while Young's modulus remains approximately unchanged. Overall, the PN- and P-doped nanotubes display promising properties for components in composite materials and, in particular, for fast response and ultra sensitive sensors operating at the molecular level. C1 [Cruz-Silva, Eduardo; Lopez-Urias, Florentino; Munoz-Sandoval, Emilio; Terrones, Humberto; Terrones, Mauricio] IPICyT, Lab Nanosci & Nanotechnol Res LINAN, San Luis Potosi 78216, Mexico. [Cruz-Silva, Eduardo; Lopez-Urias, Florentino; Munoz-Sandoval, Emilio; Terrones, Humberto; Terrones, Mauricio] IPICyT, Adv Mat Dept, San Luis Potosi 78216, Mexico. [Cruz-Silva, Eduardo; Sumpter, Bobby G.; Meunier, Vincent] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Charlier, Jean-Christophe] Catholic Univ Louvain, PCPM & ETSF, B-1348 Louvain, Belgium. RP Cruz-Silva, E (reprint author), IPICyT, Lab Nanosci & Nanotechnol Res LINAN, Camino la Presa Sn Jose 2055, San Luis Potosi 78216, Mexico. EM cruzsilvae@ornl.gov RI Cruz-Silva, Eduardo/B-7003-2009; Meunier, Vincent/F-9391-2010; Sumpter, Bobby/C-9459-2013; Terrones, Mauricio/B-3829-2014; Munoz-Sandoval, Emilio/N-1059-2014 OI Cruz-Silva, Eduardo/0000-0003-2877-1598; Meunier, Vincent/0000-0002-7013-179X; Sumpter, Bobby/0000-0001-6341-0355; Munoz-Sandoval, Emilio/0000-0002-6095-4119 FU CONACYT-Mexico [56787, 45772, 58899, 45762]; Inter American Collaboration [2004-01-013/SALUD]; Fondo Mixto de San Luis Potosi [63001 S-3908, 63072 S-3909, 60218-F1, 48300]; FNRS; Belgian Program on Interuniversity Attraction Poles [PA16]; Communaute Francaise de Belgique; Division of Materials Science and Engineering; U.S. Department of Energy; Center for Nanophase Materials Sciences (CNMS); Division of Scientific User Facilities FX Authors are grateful to D. Ramirez, G. Ramirez, and G. Perez-Assaf for technical assistance. E.C.-S., F.L.-U., E.M.-S., M.T., and H.T. acknowledge financial support from CONACYT-Mexico Grants: 56787 (Laboratory for Nanoscience and Nanotechnology Research-LINAN), 45772 (MT), 58899-Inter American Collaboration (MT), 2004-01-013/SALUD-CONACYT (MT), 45762 (HT), Fondo Mixto de San Luis Potosi 63001 S-3908 (MT), Fondo Mixto de San Luis Potosi 63072 S-3909 (HT), 60218-F1 (FLU), 48300 (EMS), as well as for Ph.D. Scolarship (E.C.-S.). J.-C.C. acknowledges financial supports from the FNRS of Belgium, the Belgian Program on Interuniversity Attraction Poles (PA16) on "Quantum Effects in Clusters and Nanowires", and the ARC sponsored by the Communaute Francaise de Belgique. E.C.S., B.G.S. and V.M. acknowledge support by the Division of Materials Science and Engineering, U.S. Department of Energy; and by the Center for Nanophase Materials Sciences (CNMS), sponsored by the Division of Scientific User Facilities, U.S. Department of Energy, Computations were performed using the resources of the ORNL institutional cluster and also from the National Energy Research Scientific Computing Center at LBNL. NR 39 TC 103 Z9 103 U1 6 U2 80 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD JUL PY 2009 VL 3 IS 7 BP 1913 EP 1921 DI 10.1021/nn900286h PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 474UZ UT WOS:000268311000038 PM 19572616 ER PT J AU Coker, VS Telling, ND van der Laan, G Pattrick, RAD Pearce, CI Arenholz, E Tuna, F Winpenny, REP Lloyd, JR AF Coker, Victoria S. Telling, Neil D. van der Laan, Gerrit Pattrick, Richard A. D. Pearce, Carolyn I. Arenholz, Elke Tuna, Floriana Winpenny, Richard E. P. Lloyd, Jonathan R. TI Harnessing the Extracellular Bacterial Production of Nanoscale Cobalt Ferrite with Exploitable Magnetic Properties SO ACS NANO LA English DT Article DE cobalt ferrite; Geobacter sulfurreducens; Fe(III)-reducing bacteria; nanoparticles; magnetism ID CATION SITE OCCUPANCY; 2P ABSORPTION-SPECTRA; GEOBACTER-SULFURREDUCENS; COFE2O4 NANOPARTICLES; FE(III)-REDUCING BACTERIUM; MAGNETOTACTIC BACTERIA; CIRCULAR-DICHROISM; TRANSITION; IRON; PARTICLES AB Nanoscale ferrimagnetic particles have a diverse range of uses from directed cancer therapy and drug delivery systems to magnetic recording media and transducers. Such applications require the production of monodisperse nanoparticles with well-controlled size, composition, and magnetic properties. To fabricate these materials purely using synthetic methods is costly in both environmental and economical terms. However, metal-reducing microorganisms offer an untapped resource to produce these materials. Here, the Fe(III)-reducing bacterium Geobacter sulfurreducens is used to synthesize magnetic iron oxide nanoparticles. A combination of electron microscopy, soft X-ray spectroscopy, and magnetometry techniques was employed to show that this method of biosynthesis results in high yields of crystalline nanoparticles with a narrow size distribution and magnetic properties equal to the best chemically synthesized materials. In particular, it is demonstrated here that cobalt ferrite (CoFe(2)O(4)) nanoparticles with low temperature coercivity approaching 8 kOe and an effective anisotropy constant of similar to 10(6) erg cm(-3) can be manufactured through this biotechnological route. The dramatic enhancement in the magnetic properties of the nanoparticles by the introduction of high quantities of Co into the spinel structure represents a significant advance over previous biomineralization studies in this area using magnetotactic bacteria. The successful production of nanoparticulate ferrites achieved in this study at high yields could open up the way for the scaled-up industrial manufacture of nanoparticles using environmentally benign methodologies. C1 [Coker, Victoria S.; Telling, Neil D.; van der Laan, Gerrit; Pattrick, Richard A. D.; Pearce, Carolyn I.; Lloyd, Jonathan R.] Univ Manchester, Sch Earth Atmospher & Environm Sci, Manchester M13 9PL, Lancs, England. [Coker, Victoria S.; Telling, Neil D.; van der Laan, Gerrit; Pattrick, Richard A. D.; Pearce, Carolyn I.; Lloyd, Jonathan R.] Univ Manchester, Williamson Res Ctr Mol Environm Sci, Manchester M13 9PL, Lancs, England. [van der Laan, Gerrit] Diamond Light Source, Didcot 0X11 0DE, Oxon, England. [Arenholz, Elke] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Tuna, Floriana; Winpenny, Richard E. P.] Univ Manchester, Sch Chem, Manchester M13 9PL, Lancs, England. RP Coker, VS (reprint author), Univ Manchester, Sch Earth Atmospher & Environm Sci, Manchester M13 9PL, Lancs, England. EM vicky.coker@manchester.ac.uk RI Coker, Victoria/B-4181-2012; van der Laan, Gerrit/Q-1662-2015 OI van der Laan, Gerrit/0000-0001-6852-2495 FU EPSRC [EP/D057310/1, EP/D058767/1]; BBSRC [BB/E003788/1]; U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the EPSRC grants EPSRC EP/D057310/1 and EP/D058767/1 and BBSRC grant BB/E003788/1. We would like to thank E. McInnes for assistance with SQUID measurements, G. Cliff for TEM support, and J. Waters for XRD support. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 40 TC 59 Z9 59 U1 4 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD JUL PY 2009 VL 3 IS 7 BP 1922 EP 1928 DI 10.1021/nn900293d PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 474UZ UT WOS:000268311000039 PM 19507866 ER PT J AU Conlan, AR Paddock, ML Axelrod, HL Cohen, AE Abresch, EC Wiley, S Roy, M Nechushtai, R Jennings, PA AF Conlan, Andrea R. Paddock, Mark L. Axelrod, Herbert L. Cohen, Aina E. Abresch, Edward C. Wiley, Sandra Roy, Melinda Nechushtai, Rachel Jennings, Patricia A. TI The novel 2Fe-2S outer mitochondrial protein mitoNEET displays conformational flexibility in its N-terminal cytoplasmic tethering domain SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article ID MEMBRANE PROTEIN; PIOGLITAZONE; DIFFRACTION AB A primary role for mitochondrial dysfunction is indicated in the pathogenesis of insulin resistance. A widely used drug for the treatment of type 2 diabetes is pioglitazone, a member of the thiazolidinedione class of molecules. MitoNEET, a 2Fe-2S outer mitochondrial membrane protein, binds pioglitazone [Colca et al. (2004), Am. J. Physiol. Endocrinol. Metab. 286, E252-E260]. The soluble domain of the human mitoNEET protein has been expressed C-terminal to the superfolder green fluorescent protein and the mitoNEET protein has been isolated. Comparison of the crystal structure of mitoNEET isolated from cleavage of the fusion protein (1.4 A resolution, R factor = 20.2%) with other solved structures shows that the CDGSH domains are superimposable, indicating proper assembly of mitoNEET. Furthermore, there is considerable flexibility in the position of the cytoplasmic tethering arms, resulting in two different conformations in the crystal structure. This flexibility affords multiple orientations on the outer mitochondrial membrane. C1 [Conlan, Andrea R.; Roy, Melinda; Jennings, Patricia A.] Univ Calif San Diego, Dept Chem, La Jolla, CA 92093 USA. [Conlan, Andrea R.; Roy, Melinda; Jennings, Patricia A.] Univ Calif San Diego, Dept Biochem, La Jolla, CA 92093 USA. [Paddock, Mark L.; Abresch, Edward C.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Axelrod, Herbert L.; Cohen, Aina E.] Univ Calif San Diego, Dept Pharmacol, La Jolla, CA 92093 USA. [Wiley, Sandra] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. [Nechushtai, Rachel] Hebrew Univ Jerusalem, Wolfson Ctr Appl Struct Biol, Dept Plant & Environm Sci, IL-91904 Jerusalem, Israel. RP Jennings, PA (reprint author), Univ Calif San Diego, Dept Chem, La Jolla, CA 92093 USA. EM pajennin@ucsd.edu FU NIH [GM41637, GM54038, DK54441]; DOE [DE-AC02-05CH11231]; National Cancer Institute [CA92584] FX This work was supported by NIH grants GM41637 (to MO and MLP), GM54038 and DK54441 (to PAJ). RN thanks the Zevi Hermann Shapira Foundation for supporting the collaborative USA-Israeli efforts and George Feher, Mel Okamura and Don Blumenthal for many helpful discussions and enthusiastic support. Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences. The SSRL Structural Molecular Biology Program is supported by the Department of Energy, the Office of Biological and Environmental Research, the National Institutes of Health, National Center for Research Resources, the Biomedical Technology Program and the National Institute of General Medical Sciences. The X-ray data collection was performed in Berkeley. The X-ray scattering and diffraction technologies and their applications to the determination of macromolecular shapes and conformations at the SIBYLS beamline at the Advanced Light Source, Lawrence Berkeley National Laboratory were supported in part by the DOE program Integrated Diffraction Analysis Technologies (IDAT) and the DOE program Molecular Assemblies Genes and Genomics Integrated Efficiently (MAGGIE) under Contract No. DE-AC02-05CH11231 with the US Department of Energy. Efforts to apply SAXS and crystallography to characterize eukaryotic pathways relevant to human cancers were supported in part by National Cancer Institute grant CA92584. NR 19 TC 10 Z9 11 U1 0 U2 4 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD JUL PY 2009 VL 65 BP 654 EP 659 DI 10.1107/S1744309109019605 PG 6 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 464TM UT WOS:000267530000001 PM 19574633 ER PT J AU Zhao, HY Heroux, A Sequeira, RD Tang, L AF Zhao, Haiyan Heroux, Annie Sequeira, Reuben D. Tang, Liang TI Preliminary crystallographic studies of the regulatory domain of response regulator YycF from an essential two-component signal transduction system SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article ID BACILLUS-SUBTILIS; STREPTOCOCCUS-PNEUMONIAE; STAPHYLOCOCCUS-AUREUS; MODULATES EXPRESSION; CRYSTAL-STRUCTURE; HISTIDINE KINASE; RECEIVER DOMAIN; GENES; SPECIFICITY; INHIBITORS AB YycGF is a crucial signal transduction system for the regulation of cell-wall metabolism in low-G+C Gram-positive bacteria, which include many important human pathogens. The response regulator YycF receives signals from its cognate histidine kinase YycG through a phosphotransfer reaction and elicits responses through regulation of gene expression. The N-terminal regulatory domain of YycF from Bacillus subtilis was overproduced and purified. The protein was crystallized and X-ray data were collected to 1.95 angstrom resolution with a completeness of 97.7% and an overall R(merge) of 7.7%. The crystals belonged to space group P3(1)21, with unit-cell parameters a = b = 59.50, c = 79.06 angstrom. C1 [Zhao, Haiyan; Sequeira, Reuben D.; Tang, Liang] Univ Kansas, Dept Mol Biosci, Lawrence, KS 66045 USA. [Heroux, Annie] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Tang, L (reprint author), Univ Kansas, Dept Mol Biosci, 1200 Sunnyside Ave, Lawrence, KS 66045 USA. EM tangl@ku.edu FU NIH/NCRR [P20RR17708] FX The X-ray data for this study were measured on beamline X29 of the National Synchrotron Light Source. Financial support came principally from the Offices of Biological and Environmental Research and of Basic Energy Sciences of the US Department of Energy and from the National Center for Research Resources of the National Institutes of Health. We thank Dr Nadezhda Gelava at the University of Kansas Analytical Proteomics Laboratory for assistance in mass spectrometry. This work was supported by the NIH/NCRR COBRE program P20RR17708. NR 28 TC 5 Z9 6 U1 3 U2 3 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD JUL PY 2009 VL 65 BP 719 EP 722 DI 10.1107/S1744309109022696 PG 4 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 464TM UT WOS:000267530000017 PM 19574649 ER PT J AU Kucheyev, SO Hamza, AV Satcher, JH Worsley, MA AF Kucheyev, S. O. Hamza, A. V. Satcher, J. H., Jr. Worsley, M. A. TI Depth-sensing indentation of low-density brittle nanoporous solids SO ACTA MATERIALIA LA English DT Article DE Porous materials; Nanoindentation; Fracture ID SILICA AEROGELS; MECHANICAL-PROPERTIES AB Many applications of low-density nanoporous dielectrics are limited by their poor mechanical properties. Although nanoindentation is often used to evaluate the mechanical behavior of such materials, the physical meaning of the inelastic parameters measured by various indentation methods is not clear. Here, We Study low-density nanoporous Silica monoliths (aerogels) by nanoindentation using the most common indenter geometries (spherical, pyramidal and flat punches) and discuss the parameters measured. Results suggest that the deformation of the nanoporous Silica monoliths studied in this work is controlled by elastic bending and fracture of nanoligaments with no signs of plasticity. The contact pressure (Meyer hardness) increases with increasing strain and does not represent the foam "crushing pressure". The critical load for Hertzian fracture obeys the Auerbach law, and the formation of radial cracks and brittleness are strongly Suppressed by the presence of nanopores. We also discuss the choice of indenter geometry and provide recommendations that can be used to overcome some typical challenges of indentation Studies of low-density nanoporous solids, including very low contact stiffness for indenters with small contact areas, large Surface roughness inherent to this class of materials, spatial non-uniformity (skin layers on monoliths), viscoelasticity and elastic nonlinearity. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Kucheyev, S. O.; Hamza, A. V.; Satcher, J. H., Jr.; Worsley, M. A.] Lawrence Livermore Natl Lab, CMMD, Livermore, CA 94551 USA. RP Kucheyev, SO (reprint author), Lawrence Livermore Natl Lab, CMMD, 7000 East Ave, Livermore, CA 94551 USA. EM kucheyev@llnl.gov RI Worsley, Marcus/G-2382-2014 OI Worsley, Marcus/0000-0002-8012-7727 FU US DOE [DE-AC52-07NA27344] FX This work was performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344. NR 25 TC 27 Z9 27 U1 2 U2 35 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD JUL PY 2009 VL 57 IS 12 BP 3472 EP 3480 DI 10.1016/j.actamat.2009.04.003 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 464SM UT WOS:000267527000005 ER PT J AU Teng, J Liu, S Trivedi, R AF Teng, J. Liu, S. Trivedi, R. TI Onset of sidewise instability and cell-dendrite transition in directional solidification SO ACTA MATERIALIA LA English DT Article DE Directional solidification; Solidification microstructure; Cellular growth; Dendritic growth; Interface dynamics ID BINARY-ALLOYS; ARRAY GROWTH; STABILITY AB The transition from cellular to dendritic microstructure in directional solidification is investigated in succinonitrile (SCN)-camphor alloys. This transition is found not to be sharp, but Occurs locally over a range of velocities or thermal gradients, and the diffuseness of the transition is related to the existence of a range of primary spacing. Within the transition zone, critical cell spacing lambda(cd) is present where a cell just develops sidewise perturbations. An expression for the critical spacing for the onset of sidewise perturbation is obtained, and it is used to establish the conditions for the start and end of the transition. The results of the present study are then synthesized with those in the SCN-acetone system to incorporate the effect of system parameters on the onset of sidewise instability. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Teng, J.; Liu, S.; Trivedi, R.] Iowa State Univ, USDO, Ames Lab, Ames, IA 50011 USA. [Teng, J.; Liu, S.; Trivedi, R.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Teng, J.] SSCI Aptuit Co, W Lafayette, IN 47906 USA. [Liu, S.] GE Co, Greenville, SC 29615 USA. RP Trivedi, R (reprint author), Iowa State Univ, USDO, Ames Lab, Ames, IA 50011 USA. EM trivedi@ameslab.gov RI Teng, Jing/D-2970-2009 FU Department of Energy Basic Energy Sciences [DE-AC02-07CH 11358] FX This work was supported by NASA through Marshall Flight Center and by DOE-BES. The work was carried out at the Ames Laboratory, which is supported by the Department of Energy Basic Energy Sciences under Contract No DE-AC02-07CH 11358. NR 38 TC 11 Z9 12 U1 0 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD JUL PY 2009 VL 57 IS 12 BP 3497 EP 3508 DI 10.1016/j.actamat.2009.04.005 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 464SM UT WOS:000267527000007 ER PT J AU Kim, H Xuan, Y Ye, PD Narayanan, R King, AH AF Kim, Hakkwan Xuan, Yi Ye, Peide D. Narayanan, Raghavan King, Alexander H. TI Anomalous triple junction surface pits in nanocrystalline zirconia thin films and their relationship to triple junction energy SO ACTA MATERIALIA LA English DT Article DE Transmission electron microscopy (TEM); Crystalline oxides; Thin films; Surface structure; Interface defects AB Triple junctions (TJs) are the lines where three grains or grain boundaries meet and become increasingly important in nanocrystalline materials where they have a high areal number density and occupy a significant fraction of the total volume of the material. Surface pits are associated with TJs, just as surface grooves are associated with grain boundaries, and these pits may have particularly deleterious effects on the behaviors of thin films. We evaluate the surface topography associated with TJs in nanocrystalline ZrO(2) thin films using thickness mapping images produced by energy-filtered transmission electron microscopy (EFTEM), and compare our results with theoretical predictions. While many of the pits conform to the standard theoretical treatment, some of them exhibit considerably increased depth, possibly indicating that the junctions have line energy. No pits were observed with less than the theoretically predicted depth. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Kim, Hakkwan; Narayanan, Raghavan; King, Alexander H.] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA. [Xuan, Yi; Ye, Peide D.] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA. [Xuan, Yi; Ye, Peide D.] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA. RP King, AH (reprint author), Ames Lab, Ames, IA 50011 USA. EM alexking@ameslab.gov RI Xuan, Yi/C-2421-2011; King, Alexander/B-3148-2012; King, Alexander/P-6497-2015 OI King, Alexander/0000-0001-9677-3769; King, Alexander/0000-0001-7101-6585 FU National Science Foundation, Division of Materials Research [0504813] FX This work was supported by the National Science Foundation, Division of Materials Research, under Grant number 0504813. Our work has benefited considerably from many enlightening and animated discussions about the topic with Prof. L. Shvindlerman. NR 20 TC 9 Z9 9 U1 1 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD JUL PY 2009 VL 57 IS 12 BP 3662 EP 3670 DI 10.1016/j.actamat.2009.04.032 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 464SM UT WOS:000267527000023 ER PT J AU Guryn, W AF Guryn, Wlodek TI PHYSICS WITH TAGGED FORWARD PROTONS AT RHIC SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT Cracow Epiphany Conference on Hadron Interactions at the Dawn of the LHC CY JAN 05-07, 2009 CL Cracow, POLAND SP PAS, Inst Nucl Phys, Jagillonian Univ, Inst Phys, Polish Acad Arts & Sci, Univ Sci & Technol, Polish Acad Sci, Minist Sci & Higher Educ ID DOUBLE-POMERON-EXCHANGE; PP ELASTIC-SCATTERING; 1ST MEASUREMENT; ROOT-S=200 GEV; REGION; COLLISIONS; BEAM; A(N) AB We describe past, current and future physics program based on triggering (tagging) on forward protons at the Relativistic Heavy Ion Collider (RHIC). This program includes measuring spin dependence in proton-proton elastic scattering, diffractive processes and central production processes. The very forward protons, which remain intact after the scattering of polarized proton-proton collisions at RHIC are detected by detectors placed in the Roman Pots, thus selecting processes, for which the exchange is dominated by one with the quantum numbers of the vacuum., thus enhancing the probability of measuring reactions where colorless gluonic matter dominates the exchange. We present the results obtained by the pp2pp experiment in polarized proton-proton scattering [S. Bultmann et al., Phys. Lett. B579, 245 (2004), Nucl. Instrum. Methods A535, 415 (2004), W. Guryn et al., RHIC Proposal R7 (1994)] and future physics plans, which are based on using Roman Pots of the pp2pp experiment and the STAR detector K.H. Ackermann et al., Nucl. Instrum. Methods A499, 624 (2003) at RHIC. The capabilities of the setup to detect Glueballs and Exotics in central production mechanism are described. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. RP Guryn, W (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM guryn@bnl.gov NR 34 TC 2 Z9 2 U1 0 U2 0 PU POLISH ACAD SCIENCES INST PHYSICS PI WARSAW PA AL LOTNIKOW 32-46, PL-02-668 WARSAW, POLAND SN 0587-4254 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD JUL PY 2009 VL 40 IS 7 BP 1897 EP 1907 PG 11 WC Physics, Multidisciplinary SC Physics GA 474UI UT WOS:000268309300008 ER PT J AU Stasto, A AF Stasto, Anna TI EXACT KINEMATICS IN GLUON CASCADE ON THE LIGHT-FRONT SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT Cracow Epiphany Conference on Hadron Interactions at the Dawn of the LHC CY JAN 05-07, 2009 CL Cracow, POLAND SP PAS, Inst Nucl Phys, Jagillonian Univ, Inst Phys, Polish Acad Arts & Sci, Univ Sci & Technol, Polish Acad Sci, Minist Sci & Higher Educ ID INFINITE-MOMENTUM; QUANTUM ELECTRODYNAMICS; REGGE BEHAVIOR; BFKL POMERON; SCATTERING AB In this talk we discuss the problem of kinematic effects in the development of the gluon cascade at high energies. The modification to the original dipole kernel for the dipole evolution at small x is proposed which accommodates important kinematical corrections. The techniques presented in this talk utilize the perturbation theory on the light-front. Using these techniques we construct recurrence relations for the wave-functions of gluons with arbitrary number of gluon components and with exact kinematics. In some special cases the recurrence relations can be solved exactly. By combining similar techniques for the fragmentation amplitudes one can derive the Parke-Taylor scattering amplitudes. C1 [Stasto, Anna] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Stasto, Anna] Brookhaven Natl Lab, RIKEN Ctr, Upton, NY 11973 USA. [Stasto, Anna] Polish Acad Sci, Inst Phys Nucl, PL-31342 Krakow, Poland. RP Stasto, A (reprint author), Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA. EM astasto@phys.psu.edu NR 23 TC 0 Z9 0 U1 0 U2 0 PU POLISH ACAD SCIENCES INST PHYSICS PI WARSAW PA AL LOTNIKOW 32-46, PL-02-668 WARSAW, POLAND SN 0587-4254 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD JUL PY 2009 VL 40 IS 7 BP 2043 EP 2061 PG 19 WC Physics, Multidisciplinary SC Physics GA 474UI UT WOS:000268309300020 ER PT J AU Beresh, SJ Henfling, JF Spillers, RW AF Beresh, Steven J. Henfling, John F. Spillers, Russell W. TI Planar Velocimetry of a Fin Trailing Vortex in Subsonic Compressible Flow SO AIAA JOURNAL LA English DT Article ID WING-TIP VORTEX; PARTICLE IMAGE VELOCIMETRY; NEAR-FIELD; REYNOLDS-NUMBERS; LINE VORTICES; ROLL-UP; WAKE; TURBULENCE; WATER; VELOCITY AB A subscale experiment has studied the trailing vortex shed from a tapered fin installed on a wind-tunnel wall to represent missile configurations. Stereoscopic particle image velocimetry data have been acquired for several locations downstream of the fin and at different fin angles of attack. The vortex's tangential velocity decays with downstream distance while its radius increases, but the vortex core circulation remains constant. Circulation and tangential velocity rise greatly for increased fin angle of attack, whereas the radius remains approximately constant or slightly decreasing. The vortex axial velocity is always a deficit, whose magnitude diminishes with downstream distance and smaller angle of attack. No variation with Mach number can be discerned in the normalized velocity data. Vortex roll up is largely complete by about four root chord lengths downstream of the fin trailing edge; before this point, the vortex is asymmetric in the tangential velocity but the core radius stays nearly uniform. Vortical rotation draws low-speed turbulent fluid from the wind-tunnel wall boundary layer and the fin wake toward the vortex core, which appears to hasten vortex decay and produce a larger axial velocity deficit than expected. Self-similarity of the vortex is established even while it is still rolling up. C1 [Beresh, Steven J.] Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87185 USA. RP Beresh, SJ (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800,Mailstop 0825, Albuquerque, NM 87185 USA. EM sjberes@sandia.gov NR 52 TC 4 Z9 5 U1 1 U2 2 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 J9 AIAA J JI AIAA J. PD JUL PY 2009 VL 47 IS 7 BP 1730 EP 1740 DI 10.2514/1.42097 PG 11 WC Engineering, Aerospace SC Engineering GA 466QB UT WOS:000267676100015 ER PT J AU Heifetz, A Shen, JT Shahriar, MS AF Heifetz, Alexander Shen, John T. Shahriar, M. S. TI A simple method for Bragg diffraction in volume holographic gratings SO AMERICAN JOURNAL OF PHYSICS LA English DT Article DE holographic gratings; light diffraction; light interference ID OPTICAL-ELEMENTS; WAVE; CORRELATOR; COHERENT; DESIGN AB We discuss a simple beam interference approximation method for deriving the angular selectivity of diffraction in weakly modulated volume holographic gratings. The results obtained using the multiple beam interference model agree qualitatively with the results obtained from a physical optics treatment of the coupled-wave theory for volume holographic gratings. C1 [Heifetz, Alexander; Shen, John T.; Shahriar, M. S.] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA. RP Heifetz, A (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Shahriar, Selim/B-7270-2009 NR 21 TC 1 Z9 1 U1 1 U2 6 PU AMER ASSOC PHYSICS TEACHERS AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0002-9505 J9 AM J PHYS JI Am. J. Phys. PD JUL PY 2009 VL 77 IS 7 BP 623 EP 628 DI 10.1119/1.3133089 PG 6 WC Education, Scientific Disciplines; Physics, Multidisciplinary SC Education & Educational Research; Physics GA 457ZA UT WOS:000266976000008 ER PT J AU Zhang, GX Dong, HL Jiang, HC Kukkadapu, RK Kim, J Eberl, D Xu, ZQ AF Zhang, Gengxin Dong, Hailiang Jiang, Hongchen Kukkadapu, Ravi K. Kim, Jinwook Eberl, Dennis Xu, Zhiqin TI Biomineralization associated with microbial reduction of Fe3+ and oxidation of Fe2+ in solid minerals SO AMERICAN MINERALOGIST LA English DT Article DE CCSD; iron redox cycling; nontronite; subsurface; Thermoanaerobacter ethanolicus ID NITRATE-REDUCING BACTERIA; TRANSMISSION ELECTRON-MICROSCOPY; IRON-OXIDIZING BACTERIA; FERROUS IRON; DEEP SUBSURFACE; ILLITE REACTION; ORGANIC-MATTER; NEUTRAL PH; SP-NOV; OXIDE AB Iron-reducing and oxidizing microorganisms gain energy through reduction or oxidation of iron, and by doing so play an important role in the geochemical cycling of iron. This study was undertaken to investigate mineral transformations associated with microbial reduction of Fe3+ and oxidation of Fe2+ in solid minerals. A fluid sample from the 2450 in depth of the Chinese Continental Scientific Drilling project was collected, and Fe3+-reducing and Fe2+-oxidizing microorganisms were enriched. The enrichment Cultures displayed reduction of Fe3+ in nontronite and ferric citrate, and oxidation of Fe2+ in vivianite, siderite, and monosulfide (FeS). Additional experiments verified that the iron reduction and oxidation was biological. Oxidation of FeS resulted in the formation of goethite, lepidocrocite, and ferrihydrite as products. Although Our molecular microbiological analyses detected Thermoanaerobacter ethanolicus as a predominant organism in the enrichment Culture, Fe3+ reduction and Fe2+ oxidation may be accomplished by a consortia of organisms. Our results have important environmental and ecological implications for iron redox cycling in solid minerals in natural environments, where iron mineral transformations may be related to the mobility and solubility of inorganic and organic contaminants. C1 [Zhang, Gengxin; Dong, Hailiang] Miami Univ, Dept Geol, Oxford, OH 45056 USA. [Jiang, Hongchen] China Univ Geosci, Geomicrobiol Lab, State Key Lab Geol Proc & Mineral Resources, Beijing 100083, Peoples R China. [Kukkadapu, Ravi K.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Kim, Jinwook] Yonsei Univ, Dept Earth Syst Sci, Seoul 120749, South Korea. [Eberl, Dennis] US Geol Survey, Boulder, CO 80303 USA. [Xu, Zhiqin] Chinese Acad Geol Sci, Inst Geol, Beijing 10037, Peoples R China. RP Zhang, GX (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM dongh@muohio.edu RI Jiang, Hongchen/I-5838-2016 FU CCSD project [2003CB716508]; National Science Foundation [EAR-0201609, EAR-0345307]; Ohio Board of Regents; Miami University (Hampton fund); National Science Foundation of China [40472064, 40672079]; Geological Society of America FX The CCSD project provided partial support for the field operations (973 project: 2003CB716508). we are grateful to Chris wood at The Center for Bioinformatics and Functional Genomics at Miami University for his technical support. we thank John Morton for his help in geochemical analyses. This work was supported by grants EAR-0201609 and EAR-0345307 from the National Science Foundation and a Research Challenge grant from the Ohio Board of Regents to H.D. An internal grant from Miami University (Hampton fund) and grants from National Science Foundation of China (40472064, 40672079) provided further support. A student grant from the Geological Society of America to G.Z. provided partial support for materials and supplies. J.W.K. publishes with NRL contribution number NRL/JA/7430-07-03. A portion of the research was performed using EMSL. a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory. we are grateful to two anonymous reviewers whose constructive comments improved the quality of the manuscript. NR 80 TC 14 Z9 14 U1 1 U2 23 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X EI 1945-3027 J9 AM MINERAL JI Am. Miner. PD JUL PY 2009 VL 94 IS 7 BP 1049 EP 1058 DI 10.2138/am.2009.3136 PG 10 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA 472RJ UT WOS:000268149400023 ER PT J AU Kunz, M Chen, K Tamura, N Wenk, HR AF Kunz, Martin Chen, Kai Tamura, Nobumichi Wenk, Hans-Rudolf TI Evidence for residual elastic strain in deformed natural quartz SO AMERICAN MINERALOGIST LA English DT Article DE Quartz; lattice strain; residual stress; Laue microdiffraction ID NEUTRON-DIFFRACTION; INTERNAL-STRESSES; THIN-FILMS; DEFORMATION; ORIENTATION; CALIFORNIA AB Residual elastic strain in naturally deformed, quartz-containing rocks can be measured quantitatively in a petrographic thin section with high spatial resolution using Laue microdiffraction with white synchrotron X-rays. The measurements with a resolution of 1 mu m allow the quantitative determination of the deviatoric strain tensor as a function of position within the crystal investigated. The observed equivalent strain values of 800-1200 microstrains represent a lower bound of the actual preserved residual strain in the rock, since the stress component perpendicular to the cut sample surface plane is released. The measured equivalent strain translates into an equivalent stress ill the order of similar to 50 MPa. C1 [Kunz, Martin; Chen, Kai; Tamura, Nobumichi] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Wenk, Hans-Rudolf] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. RP Kunz, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM wenk@berkeley.edu RI Kunz, Martin/K-4491-2012; Chen, Kai/O-5662-2014 OI Kunz, Martin/0000-0001-9769-9900; Chen, Kai/0000-0002-4917-4445 FU U.S. Department of Energy [DE-AC02-05CH11231]; DOE [DE-FG02-05ER15637]; NSF [EAR 0836402] FX We are appreciative for access to beamline 12.3.2 of the Advanced Light Source (ALS). ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division, of the U.S. Department of Energy under Contract DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory and the University of California, Berkeley. The research was supported by grants from DOE (DE-FG02-05ER15637) and NSF (EAR 0836402). Comments from reviewers helped improve the manuscript. NR 18 TC 15 Z9 15 U1 3 U2 18 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X EI 1945-3027 J9 AM MINERAL JI Am. Miner. PD JUL PY 2009 VL 94 IS 7 BP 1059 EP 1062 DI 10.2138/am.2009.3216 PG 4 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA 472RJ UT WOS:000268149400024 ER PT J AU Chen, J Zhou, JH Sanders, CK Nolan, JP Cai, H AF Chen, Jun Zhou, Jianhong Sanders, Claire K. Nolan, John P. Cai, Hong TI A surface display yeast two-hybrid screening system for high-throughput protein interactome mapping SO ANALYTICAL BIOCHEMISTRY LA English DT Article DE Surface display; Y2H; yEGFP; High throughput; cDNA library screening ID CELL-SURFACE; SACCHAROMYCES-CEREVISIAE; POLYPEPTIDE LIBRARIES; FLOW-CYTOMETRY; TARGET-CELLS; EXPRESSION; REPORTER; INHIBITOR; DISCOVERY; AFFINITY AB Despite the wide acceptance of yeast two-hybrid (Y2H) system for protein-protein interaction analysis and discovery, conventional Y2H assays are not well suited for high-throughput screening of the protein interaction network ("interactome") on a genomic scale due to several limitations, including labor-intensive agar plating and colony selection methods associated with the use of nutrient selection markers, complicated reporter analysis methods associated with the use of LacZ enzyme reporters, and incompatibility of the liquid handling robots. We recently reported a robust liquid culture Y2H system based on quantitative analysis of yeast-enhanced green fluorescent protein (yEGFP) reporters that greatly increased the analysis throughput and compatibility with liquid handling robots. To further advance its utility in high-throughput complementary DNA (cDNA) library screening, we report the development of a novel surface display Y2H (sdY2H) library screening system with uniquely integrated surface display hemagglutination (sdHA) antigen and yEGFP reporters. By introduction of a surface reporter sdHA into the yEGFP-based Y2H system, positive Y2H targets are quickly isolated from library cells by a simple magnetic separation Without a large plating effort. Moreover, the simultaneous scoring of multiple reporters, including sdHA, yEGFP, and conventional nutrient markers, greatly increased the specificity of the Y2H assay. The feasibility of the sdY2H assay on large cDNA library screening was demonstrated by the successful recovery of positive P53/T interaction pairs at a target-to-background ratio of 1:1,000,000. Together with the massive parallel DNA sequencing technology, it may provide a powerful proteomic tool for high-throughput interactome mapping on a genomic scale. (C) 2009 Elsevier Inc. All rights reserved. C1 [Chen, Jun; Zhou, Jianhong; Sanders, Claire K.; Cai, Hong] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Nolan, John P.] La Jolla Bioengn Inst, La Jolla, CA 92037 USA. RP Cai, H (reprint author), Los Alamos Natl Lab, Biosci Div, POB 1663, Los Alamos, NM 87545 USA. EM cai_hong@lanl.gov FU National Institutes of Health (NIH) [RR01315, EB003824] FX We thank Tianyi Wang for very helpful technical discussions and Jim Freyer for critical reading of the manuscript. The work was supported by National Institutes of Health (NIH) grants RR01315 and EB003824. NR 32 TC 12 Z9 15 U1 1 U2 16 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0003-2697 J9 ANAL BIOCHEM JI Anal. Biochem. PD JUL 1 PY 2009 VL 390 IS 1 BP 29 EP 37 DI 10.1016/j.ab.2009.03.013 PG 9 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 452XD UT WOS:000266573600004 PM 19298787 ER PT J AU Schilling, GD Ray, SJ Rubinshtein, AA Felton, JA Sperline, RP Denton, MB Barinaga, CJ Koppenaal, DW Hieftje, GM AF Schilling, Gregory D. Ray, Steven J. Rubinshtein, Arnon A. Felton, Jeremy A. Sperline, Roger P. Denton, M. Bonner Barinaga, Charles J. Koppenaal, David W. Hieftje, Gary M. TI Evaluation of a 512-Channel Faraday-Strip Array Detector Coupled to an Inductively Coupled Plasma Mattauch-Herzog Mass Spectrograph SO ANALYTICAL CHEMISTRY LA English DT Article ID SPECTROCHEMICAL MEASUREMENTS; ICP-OES; SPECTROMETRY; PERFORMANCE; MS AB A 512-channel Faraday-strip array detector has been developed and fitted to a Mattauch-Herzog geometry mass spectrograph for the simultaneous acquisition of multiple mass-to-charge values. Several advantages are realized by using simultaneous detection methods, including higher duty cycles, removal of correlated noise, and multianalyte transient analyses independent of spectral skew. The new 512-channel version offers narrower, more closely spaced pixels, providing improved spectral peak sampling and resolution. In addition, the electronics in the amplification stage of the new detector array incorporate a sample-and-hold feature that enables truly simultaneous interrogation of all 512 channels. While sensitivity and linear dynamic range remain impressive for this Faraday-based detector system, limits of detection and isotope ratio data have suffered slightly from leaky p-n junctions produced during the manufacture of the semiconductor-based amplification and readout stages. This paper describes the new 512-channel detector array, the current dominant noise sources, and the figures of merit for the device as pertaining to inductively coupled plasma ionization. C1 [Schilling, Gregory D.; Ray, Steven J.; Rubinshtein, Arnon A.; Felton, Jeremy A.; Hieftje, Gary M.] Indiana Univ, Dept Chem, Bloomington, IN 47405 USA. [Sperline, Roger P.; Denton, M. Bonner] Univ Arizona, Dept Chem, Tucson, AZ 85721 USA. [Barinaga, Charles J.; Koppenaal, David W.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Hieftje, GM (reprint author), Indiana Univ, Dept Chem, Bloomington, IN 47405 USA. OI Ray, Steven/0000-0001-5675-1258 FU U.S. Department of Energy; Office of Nonproliferation Research and Engineering FX Support for this work was provided by the U.S. Department of Energy, Office of Nonproliferation Research and Engineering. Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the Department of Energy under Contract DE-AC06-76RLO-1830. The authors thank SPEX Certiprep for providing multielement standards for this work. NR 27 TC 27 Z9 28 U1 1 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD JUL 1 PY 2009 VL 81 IS 13 BP 5467 EP 5473 DI 10.1021/ac900640m PG 7 WC Chemistry, Analytical SC Chemistry GA 465TD UT WOS:000267609500049 PM 19462968 ER PT J AU Chowdhury, SM Du, XX Tolic, N Wu, S Moore, RJ Mayer, MU Smith, RD Adkins, JN AF Chowdhury, Saiful M. Du, Xiuxia Tolic, Nikola Wu, Si Moore, Ronald J. Mayer, M. Uljana Smith, Richard D. Adkins, Joshua N. TI Identification of Cross-Linked Peptides after Click-Based Enrichment Using Sequential Collision-Induced Dissociation and Electron Transfer Dissociation Tandem Mass Spectrometry SO ANALYTICAL CHEMISTRY LA English DT Article ID PROTEIN-PROTEIN INTERACTIONS; LINKING REAGENTS; CHEMISTRY; THROUGHPUT; QUATERNARY; COMPLEXES; SPECTRA AB Chemical cross-linking combined with mass spectrometry can be a powerful approach for the identification of protein-protein interactions and for providing constraints on protein structures. However, enrichment of cross-linked peptides is crucial to reduce sample complexity before mass spectrometric analysis. In addition compact cross-linkers are often preferred to provide short spacer lengths, surface accessibility to the protein complexes, and must have reasonable solubility under conditions where the native complex structure is stable. In this study, we present a novel compact cross-linker that contains two distinct features: (1) an alkyne tag and (2) a small molecule detection tag (NO(2)) to maintain reasonable solubility in water. The alkyne tag enables enrichment of the cross-linked peptides after proteolytic cleavage and coupling of an affinity tag using alkyne-azido click chemistry. Neutral loss of the small NO(2) moiety provides a secondary means of detecting cross-linked peptides in MS/MS analyses, providing additional confidence in peptide identifications. We show the labeling efficiency of this cross-linker, which we termed CLIP (click-enabled linker for interacting proteins) using ubiquitin, The enrichment capability of CUP is demonstrated for cross-linked ubiquitin in highly complex E. coli cell lysates. Sequential collision-induced dissociation tandem mass spectrometry (CID-MS/MS) and electron transfer dissociation (EFD)-MS/MS of intercross-linked peptides (two peptides connected with a cross-linker) are also demonstrated for improved automated identification of cross-linked peptides. C1 [Adkins, Joshua N.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. Pacific NW Natl Lab, Environm & Mol Sci Lab, Richland, WA 99352 USA. RP Adkins, JN (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999,K8-98, Richland, WA 99352 USA. EM Joshua.Adkins@pnl.gov RI Smith, Richard/J-3664-2012; Adkins, Joshua/B-9881-2013 OI Smith, Richard/0000-0002-2381-2349; Adkins, Joshua/0000-0003-0399-0700 FU Pacific Northwest National Laboratory (PNNL); NIH National Center for Research Resources [RR18522]; DOE [DE-AC05-76RL001830] FX We thank Thomas C. Squier, Erin Baker, Therese Clauss, and Penny Colton for advice and suggestions. This work was supported by the Laboratory Directed Research and Development program at Pacific Northwest National Laboratory (PNNL) and the NIH National Center for Research Resources (Grant RR18522). Significant portions of this work were performed in the Environmental Molecular Science Laboratory, a U.S. Department of Energy (DOE) national scientific user facility located at PNNL (Richland, WA). Battelle Memorial Institute operates PNNL for the DOE under Contract DE-AC05-76RL001830. NR 31 TC 44 Z9 45 U1 3 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD JUL 1 PY 2009 VL 81 IS 13 BP 5524 EP 5532 DI 10.1021/ac900853k PG 9 WC Chemistry, Analytical SC Chemistry GA 465TD UT WOS:000267609500057 PM 19496583 ER PT J AU Bledsoe, KC Favorite, JA Aldemir, T AF Bledsoe, Keith C. Favorite, Jeffrey A. Aldemir, Tunc TI Using the Schwinger inverse method for solutions of inverse transport problems in two-dimensional cylindrical geometries SO ANNALS OF NUCLEAR ENERGY LA English DT Article AB The Schwinger method for solving inverse transport problems is applied to the problems of interface location identification, shield material identification, source isotope weight fraction identification, and material mass density identification (separately) in multilayered two-dimensional cylindrical gamma radiation source/shield systems. The method is iterative and estimates unknown interface locations, source isotope weight fractions, and material densities directly. while the unknown shield material is identified by estimating its total macroscopic gamma-ray cross sections. The energies of discrete gamma-ray lines emitted by the source are assumed to be known, while the unscattered flux of the lines is assumed to be measured at points external to the system. In numerical test cases, the Schwinger method correctly identifies the unknowns when the same deterministic ray-tracing code is used for both the parameter estimation process and simulation of the measured data. With realistic simulation of the measured data using a Monte Carlo code, the method produces more ambiguous results for interface location, shield material identification, and material density identification. The method works well for source weight fraction identification with measured data simulated by Monte Carlo. In addition to the application to more realistic (two-dimensional) problems, this paper extends previous work on the Schwinger inverse method by using surface formulas for unknown interface locations, automatic correction attempts for violated constraints, and ray-tracing instead of discrete-ordinates for transport calculations. Published by Elsevier Ltd. C1 [Bledsoe, Keith C.; Favorite, Jeffrey A.] Los Alamos Natl Lab, Div Appl Phys, Los Alamos, NM 87545 USA. [Bledsoe, Keith C.; Aldemir, Tunc] Ohio State Univ, Nucl Engn Program, Columbus, OH 43210 USA. RP Bledsoe, KC (reprint author), Los Alamos Natl Lab, Div Appl Phys, X-1-TA,MS P365, Los Alamos, NM 87545 USA. EM kbledsoe@lanl.gov OI Bledsoe, Keith/0000-0002-6627-5344 NR 12 TC 3 Z9 3 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4549 J9 ANN NUCL ENERGY JI Ann. Nucl. Energy PD JUL PY 2009 VL 36 IS 7 BP 966 EP 973 DI 10.1016/j.anucene.2009.02.014 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 463CM UT WOS:000267406200015 ER PT J AU Creutz, M AF Creutz, Michael TI Anomalies and chiral symmetry in QCD SO ANNALS OF PHYSICS LA English DT Article DE Chiral symmetry; Quark masses; Anomalies ID QUANTUM CHROMODYNAMICS; SIGMA-MODEL; CONSERVATION; LATTICE; VERTEX AB I review some aspects of the interplay between anomalies and chiral symmetry. The quantum anomaly that breaks the U(1) axial symmetry of massless QCD leaves behind a flavor-singlet discrete chiral invariance. When the mass is turned on this residual symmetry has a close connection with the strong CP violating parameter theta. One result is that a first order transition is usually expected when the strong CP violating angle passes through pi. This symmetry can be understood either in terms of effective chiral Lagrangians or in terms of the underlying quark fields. (C) 2009 Elsevier Inc. All rights reserved. C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Creutz, M (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM creutz@bnl.gov FU US Department of Energy [DE-AC02-98CH10886] FX This manuscript has been authored under Contract No. DE-AC02-98CH10886 with the US Department of Energy. Accordingly, the US Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. NR 25 TC 4 Z9 4 U1 1 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0003-4916 J9 ANN PHYS-NEW YORK JI Ann. Phys. PD JUL PY 2009 VL 324 IS 7 BP 1573 EP 1584 DI 10.1016/j.aop.2009.01.005 PG 12 WC Physics, Multidisciplinary SC Physics GA 462XH UT WOS:000267391200007 ER PT J AU Goltsman, DSA Denef, VJ Singer, SW VerBerkmoes, NC Lefsrud, M Mueller, RS Dick, GJ Sun, CL Wheeler, KE Zemla, A Baker, BJ Hauser, L Land, M Shah, MB Thelen, MP Hettich, RL Banfield, JF AF Goltsman, Daniela S. Aliaga Denef, Vincent J. Singer, Steven W. VerBerkmoes, Nathan C. Lefsrud, Mark Mueller, Ryan S. Dick, Gregory J. Sun, Christine L. Wheeler, Korin E. Zemla, Adam Baker, Brett J. Hauser, Loren Land, Miriam Shah, Manesh B. Thelen, Michael P. Hettich, Robert L. Banfield, Jillian F. TI Community Genomic and Proteomic Analyses of Chemoautotrophic Iron-Oxidizing "Leptospirillum rubarum" (Group II) and "Leptospirillum ferrodiazotrophum" (Group III) Bacteria in Acid Mine Drainage Biofilms SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID HYDROGENOBACTER-THERMOPHILUS TK-6; ACIDOPHILIC MICROBIAL COMMUNITY; BIOLOGICAL PHOSPHORUS REMOVAL; CITRATE CLEAVAGE REACTION; ESCHERICHIA-COLI; IGNICOCCUS-HOSPITALIS; METAGENOMIC ANALYSIS; SHOTGUN PROTEOMICS; ACCURATE MASS; SP-NOV AB We analyzed near-complete population (composite) genomic sequences for coexisting acidophilic iron-oxidizing Leptospirillum group II and III bacteria (phylum Nitrospirae) and an extrachromosomal plasmid from a Richmond Mine, Iron Mountain, CA, acid mine drainage biofilm. Community proteomic analysis of the genomically characterized sample and two other biofilms identified 64.6% and 44.9% of the predicted proteins of Leptospirillum groups II and III, respectively, and 20% of the predicted plasmid proteins. The bacteria share 92% 16S rRNA gene sequence identity and > 60% of their genes, including integrated plasmid-like regions. The extrachromosomal plasmid carries conjugation genes with detectable sequence similarity to genes in the integrated conjugative plasmid, but only those on the extrachromosomal element were identified by proteomics. Both bacterial groups have genes for community-essential functions, including carbon fixation and biosynthesis of vitamins, fatty acids, and biopolymers (including cellulose); proteomic analyses reveal these activities. Both Leptospirillum types have multiple pathways for osmotic protection. Although both are motile, signal transduction and methyl-accepting chemotaxis proteins are more abundant in Leptospirillum group III, consistent with its distribution in gradients within biofilms. Interestingly, Leptospirillum group II uses a methyl-dependent and Leptospirillum group III a methyl-independent response pathway. Although only Leptospirillum group III can fix nitrogen, these proteins were not identified by proteomics. The abundances of core proteins are similar in all communities, but the abundance levels of unique and shared proteins of unknown function vary. Some proteins unique to one organism were highly expressed and may be key to the functional and ecological differentiation of Leptospirillum groups II and III. C1 [Goltsman, Daniela S. Aliaga; Denef, Vincent J.; Mueller, Ryan S.; Dick, Gregory J.; Sun, Christine L.; Baker, Brett J.; Banfield, Jillian F.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Singer, Steven W.; Wheeler, Korin E.; Zemla, Adam; Thelen, Michael P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [VerBerkmoes, Nathan C.; Lefsrud, Mark; Hauser, Loren; Land, Miriam; Shah, Manesh B.; Hettich, Robert L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Banfield, JF (reprint author), Univ Calif Berkeley, 336 Hilgard Hall, Berkeley, CA 94720 USA. EM jbanfield@berkeley.edu RI Thelen, Michael/C-6834-2008; Land, Miriam/A-6200-2011; Dick, Gregory/D-8901-2012; Hauser, Loren/H-3881-2012; Baker, Brett/P-1783-2014; Thelen, Michael/G-2032-2014; Hettich, Robert/N-1458-2016 OI Thelen, Michael/0000-0002-2479-5480; Land, Miriam/0000-0001-7102-0031; Dick, Gregory/0000-0001-7666-6288; Baker, Brett/0000-0002-5971-1021; Thelen, Michael/0000-0002-2479-5480; Hettich, Robert/0000-0001-7708-786X FU The U. S. Department of Energy, Office of Biological and Environmental Research, Genomics (Genomes to Life Program); NSF; University of Tennessee-Battelle, LLC [DOE-AC05-00OR22725] FX D. S. A. G. acknowledges support from an NSF Graduate Research Fellowship. Oak Ridge National Laboratory is managed by University of Tennessee-Battelle, LLC, for the Department of Energy under contract DOE-AC05-00OR22725. This research was supported by The U. S. Department of Energy, Office of Biological and Environmental Research, Genomics (Genomes to Life Program). NR 89 TC 105 Z9 106 U1 4 U2 27 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD JUL 1 PY 2009 VL 75 IS 13 BP 4599 EP 4615 DI 10.1128/AEM.02943-08 PG 17 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 462RI UT WOS:000267373000043 PM 19429552 ER PT J AU Hinman, NW Kotler, JM Yan, BZ Tenesch, A Morris, RV Tveter, A Stoner, DL Scott, JR AF Hinman, Nancy W. Kotler, J. Michelle Yan, Beizhan Tenesch, Aaron Morris, Richard V. Tveter, Andrew Stoner, Daphne L. Scott, Jill R. TI Controls on chemistry and diagenesis of naturally occurring iron-oxide phases SO APPLIED GEOCHEMISTRY LA English DT Article ID ACID-MINE DRAINAGE; IBERIAN PYRITE BELT; SYNTHETIC SCHWERTMANNITE; SULFATE WATERS; TRACE-ELEMENTS; ALPHA-FEOOH; TRANSFORMATION; MINERALOGY; GOETHITE; OXIDATION AB The purposes of this study were to (i) document chemical and mineralogical compositions in two naturally acidic drainages over a 1 m soil profile, (ii) document organic and inorganic signatures representative of past chemical or biological processes in the soils, and (iii) determine whether mineralogical and chemical differences are a consequence of differences in original composition, depositional conditions, or diagenesis. Two sites were studied: Paymaster Creek in the Heddleston Mining District near Lincoln, Montana and the New World Mining District near Cooke City, Montana. The oldest deposits at both naturally acidic sites pre-date human mining activity by several thousand years, although there is recent human activity at both sites. Both sites have streams with high dissolved Fe and moderately low pH and actively accumulate schwertmannite on streambeds. Soil deposits away from the streambed at Paymaster Creek contained goethite with adsorbed sulfate. but no schwertmannite, suggesting either that the original conditions precluded schwertmannite precipitation or that diagenesis occurred rapidly converting the schwertmannite to goethite. The New World Mining District site showed the expected profile, which is a gradual transition from schwertmannite- and goethite-bearing soils to goethite-only soils. Concentrations of Cr, As and other trace elements shown to retard diagenesis were higher at the New World site than at the Paymaster site. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Hinman, Nancy W.; Kotler, J. Michelle; Tenesch, Aaron; Tveter, Andrew] Univ Montana, Dept Geosci, Missoula, MT 59812 USA. [Yan, Beizhan; Stoner, Daphne L.] Univ Idaho, Dept Chem, Idaho Falls, ID 83402 USA. [Morris, Richard V.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Scott, Jill R.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Hinman, NW (reprint author), Univ Montana, Dept Geosci, Missoula, MT 59812 USA. EM nancy.hinman@umontana.edu RI Scott, Jill/G-7275-2012 FU NASA - Astrobiology Program [NNX08AP59G, NNG04GJ53G]; Inland Northwest Research Alliance; Montana Water Resources Center [C-04]; Montana NSF EPSCoR [EPS-7010906] FX Several people should be acknowledged for their contributions to this manuscript. G. Furniss collected samples for this project. J. Essig, T. Kendall, and C. Kim assisted with analyses. G. Hinman, K. McCarthy, and D. Janey provided technical and editorial reviews. This project was supported by the NASA - Astrobiology Program (NNX08AP59G, NNG04GJ53G), the Inland Northwest Research Alliance, and the Montana Water Resources Center (USGS 104b award # C-04). Work at the INL was performed DOE/NE Idaho Operations Office Contract DE-AC07-05ID14517. A portion of this work was supported by the Montana NSF EPSCoR grant (EPS-7010906). NR 66 TC 1 Z9 1 U1 3 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0883-2927 J9 APPL GEOCHEM JI Appl. Geochem. PD JUL PY 2009 VL 24 IS 7 BP 1185 EP 1197 DI 10.1016/j.apgeochem.2009.02.029 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 476BP UT WOS:000268412100004 ER PT J AU Liu, X Heifetz, A Tseng, SC Shahriar, MS AF Liu, Xue Heifetz, Alexander Tseng, Shih C. Shahriar, M. S. TI High-speed inline holographic Stokesmeter imaging SO APPLIED OPTICS LA English DT Article ID LIQUID-CRYSTALS; OPTIMUM ANGLES; POLARIZATION; POLARIMETER; CALIBRATION; SYSTEM AB We demonstrate a high-speed inline holographic Stokesmeter that consists of two liquid crystal retarders and a spectrally selective holographic grating. Explicit choices of angles of orientation for the components in the inline architecture are identified to yield higher measurement accuracy than the classical architecture. We show polarimetric images of an artificial scene produced by such a Stokesmeter, demonstrating the ability to identify an object not recognized by intensity-only imaging systems. (C) 2009 Optical Society of America C1 [Liu, Xue; Heifetz, Alexander; Shahriar, M. S.] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA. [Heifetz, Alexander] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Shahriar, M. S.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Tseng, Shih C.] Digital Opt Technol Inc, Rolling Meadows, IL 60008 USA. RP Shahriar, MS (reprint author), Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA. EM shahriar@northwestern.edu RI Shahriar, Selim/B-7270-2009 FU United States Air Force Office of Scientific Research (USAFOSR) [FA9550-06-1-04]; Office of Naval Research (ONR) [N00014-07-M-0173]; Department of Energy (DOE) [DE-AC0206CH11357] FX This research is supported in part by United States Air Force Office of Scientific Research (USAFOSR) grant FA9550-06-1-04, Office of Naval Research (ONR) contract N00014-07-M-0173, and Department of Energy (DOE) grant DE-AC0206CH11357. NR 18 TC 4 Z9 4 U1 0 U2 0 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD JUL 1 PY 2009 VL 48 IS 19 BP 3803 EP 3808 DI 10.1364/AO.48.003803 PG 6 WC Optics SC Optics GA 477LI UT WOS:000268520200034 PM 19571939 ER PT J AU van Benthem, K Pennycook, SJ AF van Benthem, Klaus Pennycook, Stephen J. TI Imaging and spectroscopy of defects in semiconductors using aberration-corrected STEM SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING LA English DT Article ID TRANSMISSION ELECTRON-MICROSCOPE; SILICON; DEGRADATION; INTERFACE; LIMITS; ATOMS AB The distribution of single dopant or impurity atoms can dramatically alter the properties of semiconductor materials. The sensitivity to detect and localize such single atoms has been greatly improved by the development of aberration correctors for scanning transmission electron microscopes. Today, electron probes with diameters well below 1 A... are available thanks to the improved electron optics. Simultaneous acquisition of image signals and electron energy-loss spectroscopy data provides means of characterization of defect structures in semiconductors with unprecedented detail. In addition to an improvement of the lateral spatial resolution, depth sensitivity is greatly enhanced because of the availability of larger probe forming angles. We report the characterization of an alternate gate dielectric interface structure. Isolated Hf atoms are directly imaged within a SiO(2) thin film formed between an HfO(2) layer and the silicon substrate. Electron energy-loss spectroscopy shows significant changes of the silicon valence state across the interface structure. C1 [van Benthem, Klaus] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Pennycook, Stephen J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP van Benthem, K (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, 1 Shields Ave, Davis, CA 95616 USA. EM benthem@ucdavis.edu FU Alexander-von-Humboldt Foundation; Division of Materials Sciences and Engineering; US Department of Energy at Oak Ridge National Laboratory FX The authors acknowledge fruitful discussions and collaborations with S. T. Pantelides, R. Buczko, G. Bersuker, and B. Foran, and excellent TEM specimen preparation by J. T. Luck. K. v. B. appreciates partial funding through a Feodor- Lynen scholarship from the Alexander-von-Humboldt Foundation. This research was funded by the Division of Materials Sciences and Engineering ( S. J. P.) and the Division of Scientific User Facilities ( K. v. B.) of the US Department of Energy at Oak Ridge National Laboratory, which is operated by UTBattelle, LLC. NR 32 TC 7 Z9 7 U1 0 U2 14 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0947-8396 J9 APPL PHYS A-MATER JI Appl. Phys. A-Mater. Sci. Process. PD JUL PY 2009 VL 96 IS 1 BP 161 EP 169 DI 10.1007/s00339-008-4979-z PG 9 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 450AB UT WOS:000266372100019 ER PT J AU Ponsard, B Srivastava, SC Mausner, LF Knappc, FF Garland, MA Mirzadeh, S AF Ponsard, B. Srivastava, S. C. Mausner, L. F. Knappc, F. F. (Russ) Garland, M. A. Mirzadeh, S. TI Production of Sn-117m in the BR2 high-flux reactor SO APPLIED RADIATION AND ISOTOPES LA English DT Article; Proceedings Paper CT 6th International Conference on Isotopes CY MAY 12-16, 2008 CL Seoul, SOUTH KOREA DE BR2 high-flux reactor; Medical isotopes; (117m)Sn; Bone pain palliation; Radiosynovectomy AB The BR2 reactor is a 100 MW(th) high-flux 'materials testing reactor', which produces a wide range of radioisotopes for various applications in nuclear medicine and industry. Tin-117m ((117m)Sn), a promising radionuclide for therapeutic applications, and its production have been validated in the BR2 reactor. In contrast to therapeutic beta emitters, (117m)Sn decays via isomeric transition with the emission of monoenergetic conversion electrons which are effective for metastatic bone pain palliation and radiosynovectomy with lesser damage to the bone marrow and the healthy tissues. Furthermore, the emitted gamma photons are ideal for imaging and dosimetry. (c) 2009 Elsevier Ltd. All rights reserved. C1 [Ponsard, B.] CEN SCK, Belgian Nucl Res Ctr, B-2400 Mol, Belgium. [Srivastava, S. C.; Mausner, L. F.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Knappc, F. F. (Russ); Garland, M. A.; Mirzadeh, S.] Oak Ridge Natl Lab, Nucl Med Grp, Oak Ridge, TN 37831 USA. RP Ponsard, B (reprint author), CEN SCK, Belgian Nucl Res Ctr, BR2 Reactor,Boeretang 200, B-2400 Mol, Belgium. EM bponsard@sckcen.be NR 8 TC 9 Z9 10 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-8043 J9 APPL RADIAT ISOTOPES JI Appl. Radiat. Isot. PD JUL-AUG PY 2009 VL 67 IS 7-8 BP 1158 EP 1161 DI 10.1016/j.apradiso.2009.02.023 PG 4 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Chemistry; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 466QJ UT WOS:000267677000002 PM 19303313 ER PT J AU Brockman, J Nigg, DW Hawthorne, MF McKibben, C AF Brockman, J. Nigg, D. W. Hawthorne, M. F. McKibben, C. TI Spectral performance of a composite single-crystal filtered thermal neutron beam for BNCT research at the University of Missouri SO APPLIED RADIATION AND ISOTOPES LA English DT Article; Proceedings Paper CT 13th International Congress on Neutron Capture Therapy CY NOV 02-08, 2008 CL Florence, ITALY DE BNCT; Neutron source; Thermal; Activation ID FACILITY; THERAPY AB Parameter studies, design calculations and initial neutronic performance measurements have been completed for a new thermal neutron beamline to be used for neutron capture therapy cell and small-animal radiobiology studies at the University of Missouri Research Reactor. The beamline features the use of single-crystal silicon and bismuth sections for neutron filtering and for reduction of incident gamma radiation. The calculated and measured thermal neutron fluxes produced at the irradiation location are 9.6 x 10(8) and 8.8 x 10(8) neutrons/cm(2) s, respectively. Calculated and measured cadmium ratios (Au foils) are 217 and 132. These results indicate a well-thermalized neutron spectrum with sufficient thermal neutron flux for a variety of small animal BNCT studies. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Nigg, D. W.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Brockman, J.; Hawthorne, M. F.; McKibben, C.] Univ Missouri, Columbia, MO USA. RP Nigg, DW (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM dwn@inel.gov OI Brockman, John/0000-0001-7419-5558 NR 9 TC 4 Z9 4 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-8043 J9 APPL RADIAT ISOTOPES JI Appl. Radiat. Isot. PD JUL PY 2009 VL 67 IS 7-8 BP S222 EP S225 DI 10.1016/j.apradiso.2009.03.108 PG 4 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Chemistry; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 475UZ UT WOS:000268388800059 PM 19410474 ER PT J AU Hughes, AM Heber, EM Pozzi, E Nigg, DW Calzetta, O Blaumann, H Longhino, J Nievas, SI Aromando, RF Itoiz, ME Trivillin, VA Schwint, AE AF Hughes, A. Monti Heber, E. M. Pozzi, E. Nigg, D. W. Calzetta, O. Blaumann, H. Longhino, J. Nievas, S. I. Aromando, R. F. Itoiz, M. E. Trivillin, V. A. Schwint, A. E. TI Boron neutron capture therapy (BNCT) inhibits tumor development from precancerous tissue: An experimental study that supports a potential new application of BNCT SO APPLIED RADIATION AND ISOTOPES LA English DT Article; Proceedings Paper CT 13th International Congress on Neutron Capture Therapy CY NOV 02-08, 2008 CL Florence, ITALY DE BNCT; Oral cancer; Precancerous tissue; Hamster check pouch; Locoregional recurrences ID HAMSTER-CHEEK POUCH; SQUAMOUS-CELL CARCINOMA; ORAL-CANCER; EXPERIMENTAL-MODEL; CARCINOGENESIS; RADIOBIOLOGY; GB-10 AB We previously demonstrated the efficacy of boron neutron capture therapy (BNC7) mediated by boronophenylalanine (BPA), GB-10 (Na(2)(10)B(10)H(10)) and (GB-10+BPA) to control tumors, with no normal tissue radiotoxicity, in the hamster cheek pouch oral cancer model. Herein we developed a novel experimental model of field-cancerization and precancerous lesions (globally termed herein precancerous tissue) in the hamster cheek pouch to explore the long-term potential inhibitory effect of the same BNCT protocols on the development of second primary tumors from precancerous tissue. Clinically, second primary tumor recurrences occur in field-cancerized tissue, causing therapeutic failure. We performed boron biodistribution studies followed by in vivo BNCT studies, with 8 months follow-up. All 3 BNCT protocols induced a statistically significant reduction in tumor development from precancerous tissue, reaching a maximum inhibition of 77-100%. The inhibitory effect of BPA-BNCT and (GB-10+BPA)-BNCT persisted at 51% at the end of follow-up (8 months), whereas for GB-10-BNCT it faded after 2 months. Likewise, beam-only elicited a significant but transient reduction in tumor development. No normal tissue radiotoxicity was observed. At 8 months post-treatment with BPA-BNCT or (GB-10+BPA)-BNCT, the precancerous pouches that did not develop tumors had regained the macroscopic and histological appearance of normal (non-cancerized) pouches. A potential new clinical application of BNCT would lie in its capacity to inhibit local regional recurrences. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Hughes, A. Monti; Heber, E. M.; Pozzi, E.; Itoiz, M. E.; Trivillin, V. A.; Schwint, A. E.] Natl Atom Energy Commiss CNEA, Dept Radiobiol, Buenos Aires, DF, Argentina. [Pozzi, E.] CNEA, Ezeiza Atom Ctr, Dept Res & Prod Reactors, Buenos Aires, DF, Argentina. [Nigg, D. W.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Calzetta, O.; Blaumann, H.; Longhino, J.] CNEA, Boriloche Atom Ctr, Dept Nucl Engn, San Carlos De Bariloche, Rio Negro, Argentina. [Nievas, S. I.] CNEA, Dept Chem, Buenos Aires, DF, Argentina. [Aromando, R. F.; Itoiz, M. E.] Univ Buenos Aires, Fac Dent, Dept Oral Pathol, Buenos Aires, DF, Argentina. RP Schwint, AE (reprint author), Natl Atom Energy Commiss CNEA, Dept Radiobiol, Buenos Aires, DF, Argentina. EM schwint@cnea.gov.ar NR 10 TC 11 Z9 11 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-8043 J9 APPL RADIAT ISOTOPES JI Appl. Radiat. Isot. PD JUL PY 2009 VL 67 IS 7-8 BP S313 EP S317 DI 10.1016/j.apradiso.2009.03.070 PG 5 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Chemistry; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 475UZ UT WOS:000268388800083 ER PT J AU Pozzi, E Nigg, DW Miller, M Thorp, SI Heber, EM Zarza, L Estryk, G Hughes, AM Molinari, AJ Garabalino, M Itoiz, ME Aromando, RF Quintana, J Trivillin, VA Schwint, AE AF Pozzi, E. Nigg, D. W. Miller, M. Thorp, S. I. Heber, E. M. Zarza, L. Estryk, G. Hughes, A. Monti Molinari, A. J. Garabalino, M. Itoiz, M. E. Aromando, R. F. Quintana, J. Trivillin, V. A. Schwint, A. E. TI Dosimetry and radiobiology at the new RA-3 reactor boron neutron capture therapy (BNCT) facility: Application to the treatment of experimental oral cancer SO APPLIED RADIATION AND ISOTOPES LA English DT Article; Proceedings Paper CT 13th International Congress on Neutron Capture Therapy CY NOV 02-08, 2008 CL Florence, ITALY DE Oral cancer; BNCT; Hamster cheek pouch; RA-3 reactor; Lithium-6 shielding ID HAMSTER-CHEEK POUCH; EXPERIMENTAL-MODEL; GB-10 AB The National Atomic Energy Commission of Argentina (CNEA) constructed a novel thermal neutron source for use in boron neutron capture therapy (BNCT) applications at the RA-3 research reactor facility located in Buenos Aires. The aim of the present study was to perform a dosimetric characterization of the facility and undertake radiobiological studies of BNCT in an experimental model of oral cancer in the hamster cheek pouch. The free-field thermal flux was 7.1 x 10(9) n cm(-2) s(-1) and the fast neutron flux was 2.5 X 10(6) n cm(-2) s(-1), indicating a very well-thermalized neutron field with negligible fast neutron dose. For radiobiological studies it was necessary to shield the body of the hamster from the neutron flux while exposing the everted cheek pouch bearing the tumors. To that end we developed a lithium (enriched to 95% in (6)Li) carbonate enclosure. Groups of tumor-bearing hamsters were submitted to BPA-BNCT, GB-10-BNCT, (GB-10+BPA)-BNCT or beam only treatments. Normal (non-cancerized) hamsters were treated similarly to evaluate normal tissue radiotoxicity. The total physical dose delivered to tumor with the BNCT treatments ranged from 6 to 8.5 Gy. Tumor control at 30 days ranged from 73% to 85%, with no normal tissue radiotoxicity. Significant but reversible mucositis in precancerous tissue surrounding tumors was associated to BPA-BNCT. The therapeutic success of different BNCT protocols in treating experimental oral cancer at this novel facility was unequivocally demonstrated. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Nigg, D. W.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Itoiz, M. E.; Aromando, R. F.] Univ Buenos Aires, Fac Dent, Dept Oral Pathol, RA-1053 Buenos Aires, DF, Argentina. EM epozzi@cnea.gov.ar NR 9 TC 16 Z9 16 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-8043 J9 APPL RADIAT ISOTOPES JI Appl. Radiat. Isot. PD JUL PY 2009 VL 67 IS 7-8 BP S309 EP S312 DI 10.1016/j.apradiso.2009.03.069 PG 4 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Chemistry; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 475UZ UT WOS:000268388800082 PM 19380233 ER PT J AU Krasavin, M Karapetian, R Konstantinov, I Gezentsvey, Y Bukhryakov, K Godovykh, E Soldatkina, O Lavrovsky, Y Sosnov, AV Gakh, AA AF Krasavin, Mikhail Karapetian, Ruben Konstantinov, Igor Gezentsvey, Yuri Bukhryakov, Konstantin Godovykh, Elena Soldatkina, Olga Lavrovsky, Yan Sosnov, Andrei V. Gakh, Andrei A. TI Discovery and Potency Optimization of 2-Amino-5-arylmethyl-1,3-thiazole Derivatives as Potential Therapeutic Agents for Prostate Cancer SO ARCHIV DER PHARMAZIE LA English DT Article DE Antiproliferative activity; Cytotoxicity; Drug-likeness; Prostate cancer; Small molecules AB A new chemical series was identified via high-throughput screening as having antiproliferative activity on DU-145 human prostate carcinoma cell line (hit compound potency - 2.9 mu M). Medicinal chemistry optimization of two peripheral diversity vectors of the hit molecule, independently, led to SAR generalizations and identification of the 'best' moieties. The latter were merged in a single compound that exhibited an over 100-fold better potency than the hit compound. For the most potent compounds it was confirmed that the observed antiproliferative potency was not associated with the compounds' non-specific cytotoxicity. C1 [Krasavin, Mikhail; Konstantinov, Igor; Gezentsvey, Yuri; Bukhryakov, Konstantin; Sosnov, Andrei V.] Chem Divers Res Inst, Dept Med Chem, Chimki 141400, Moscow Reg, Russia. [Gakh, Andrei A.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Karapetian, Ruben; Godovykh, Elena; Soldatkina, Olga; Lavrovsky, Yan] Chem Divers Res Inst, Dept Lead Discovery, Chimki 141400, Moscow Reg, Russia. RP Krasavin, M (reprint author), Chem Divers Res Inst, Dept Med Chem, Rabochaya St 2A, Chimki 141400, Moscow Reg, Russia. EM myk@chemdiv.com RI Krasavin, Mikhail/F-2343-2011; OI Krasavin, Mikhail/0000-0002-0200-4772 FU International Science and Technology Center (ISTC); Oak Ridge National Laboratory is managed and operated by UT-Battelle, LLC, under U.S. Department of Energy [DE-AC05-00OR22725] FX This research was supported by the Global IPP program through the International Science and Technology Center (ISTC). Oak Ridge National Laboratory is managed and operated by UT-Battelle, LLC, under U.S. Department of Energy contract DE-AC05-00OR22725. This paper is a contribution from the Discovery Chemistry Project. NR 9 TC 13 Z9 13 U1 0 U2 0 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0365-6233 J9 ARCH PHARM JI Arch. Pharm. PD JUL PY 2009 VL 342 IS 7 BP 420 EP 427 DI 10.1002/ardp.200800201 PG 8 WC Chemistry, Medicinal; Chemistry, Multidisciplinary; Pharmacology & Pharmacy SC Pharmacology & Pharmacy; Chemistry GA 477LH UT WOS:000268520100006 PM 19544302 ER PT J AU Zheng, Y Zhang, HY Azhar, R Johansson, J Azhar, S Bielicki, JK AF Zheng, Ying Zhang, Haiyan Azhar, Rakia Johansson, Jan Azhar, Salman Bielicki, John K. TI Creation of Oxidation-Sensitive HDL Mimetic Peptides for Studies of Cholesterol Efflux and Atherosclerosis Reversal SO ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY LA English DT Meeting Abstract CT 10th Annual Conference on Arteriosclerosis, Thrombosis and Vascular Biology CY APR 29-MAY 01, 2009 CL Washington, DC SP Amer Heart Assoc Council Arteriosclerosis, Thrombosis & Vasc Biol C1 [Zheng, Ying; Bielicki, John K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Zhang, Haiyan; Azhar, Rakia; Azhar, Salman] Stanford Univ, Sch Med, GRECC VA Palo Alto Healthcare Syst, Palo Alto, CA 94304 USA. [Johansson, Jan] Artery Therapeut Inc, Danville, PA USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 1079-5642 J9 ARTERIOSCL THROM VAS JI Arterioscler. Thromb. Vasc. Biol. PD JUL PY 2009 VL 29 IS 7 BP E37 EP E37 PG 1 WC Hematology; Peripheral Vascular Disease SC Hematology; Cardiovascular System & Cardiology GA 459LA UT WOS:000267102500166 ER PT J AU Rudolph, SE Dieckmann, J Brodrick, J AF Rudolph, Stephen E. Dieckmann, John Brodrick, James TI Technologies for Smart Windows SO ASHRAE JOURNAL LA English DT Editorial Material C1 [Rudolph, Stephen E.] Appl Chem Grp, Cambridge, MA USA. [Dieckmann, John] TIAX LLC, Mech Syst Grp, Cambridge, MA USA. [Brodrick, James] Bldg Technol Program, US Dept Energy, Washington, DC USA. RP Rudolph, SE (reprint author), Appl Chem Grp, Cambridge, MA USA. NR 5 TC 1 Z9 1 U1 0 U2 2 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 J9 ASHRAE J JI ASHRAE J. PD JUL PY 2009 VL 51 IS 7 BP 104 EP 106 PG 3 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 468UZ UT WOS:000267850600017 ER PT J AU Kaczmarczik, MC Richards, GT Mehta, SS Schlegel, DJ AF Kaczmarczik, Michael C. Richards, Gordon T. Mehta, Sajjan S. Schlegel, David J. TI ASTROMETRIC REDSHIFTS FOR QUASARS SO ASTRONOMICAL JOURNAL LA English DT Article DE astrometry; atmospheric effects; galaxies: distances and redshifts; quasars: emission lines; quasars: general ID DIGITAL-SKY-SURVEY; SURVEY PHOTOMETRIC SYSTEM; DATA RELEASE; TELESCOPE; SELECTION; CATALOG; ALGORITHM; MONITOR; SAMPLE; SDSS AB The wavelength dependence of atmospheric refraction causes differential chromatic refraction (DCR), whereby objects imaged at different optical/ultraviolet wavelengths are observed at slightly different positions in the plane of the detector. Strong spectral features induce changes in the effective wavelengths of broad-band filters that are capable of producing significant positional offsets with respect to standard DCR corrections. We examine such offsets for broad-emission-line (type 1) quasars from the Sloan Digital Sky Survey (SDSS) spanning 0 < z < 5 and an airmass range of 1.0-1.8. These offsets are in good agreement with those predicted by convolving a composite quasar spectrum with the SDSS bandpasses as a function of redshift and airmass. This astrometric information can be used to break degeneracies in photometric redshifts of quasars (or other emission-line sources) and, for extreme cases, may be suitable for determining "astrometric redshifts." On the SDSS's southern equatorial stripe, where it is possible to average many multi-epoch measurements, more than 60% of the quasars have emission-line-induced astrometric offsets larger than the SDSS's relative astrometric errors of 25-35 mas. Folding these astrometric offsets into photometric redshift estimates yields an improvement of 9% within Delta z +/- 0.1. Future multi-epoch synoptic surveys such as LSST and Pan-STARRS could benefit from intentionally making similar to 10 observations at relatively high airmass (AM similar to 1.4) in order to improve their photometric redshifts for quasars. C1 [Kaczmarczik, Michael C.; Richards, Gordon T.; Mehta, Sajjan S.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Schlegel, David J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Kaczmarczik, MC (reprint author), Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. OI Mehta, Sajjan/0000-0002-7764-3886 FU Alfred P. Sloan Research Fellowship; Alfred P. Sloan Foundation; Participating Institutions; National Science Foundation; U.S. Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England FX G. T. R. acknowledges support from an Alfred P. Sloan Research Fellowship. We thank. Zeljko Ivezic, Jeff Munn, and Don Schneider for comments on the manuscript and Bob Hindsley for early work on DCR in the SDSS astrometric system. Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, Cambridge University, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington. NR 42 TC 12 Z9 12 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD JUL PY 2009 VL 138 IS 1 BP 19 EP 27 DI 10.1088/0004-6256/138/1/19 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 457GK UT WOS:000266916300003 ER PT J AU Marengo, M Sanchez, MC AF Marengo, Massimo Sanchez, Mayly C. TI A k-NN METHOD TO CLASSIFY RARE ASTRONOMICAL SOURCES: PHOTOMETRIC SEARCH OF BROWN DWARFS WITH SPITZER/IRAC SO ASTRONOMICAL JOURNAL LA English DT Article DE infrared: stars; methods: statistical; stars: low-mass, brown dwarfs ID DIGITAL SKY SURVEY; T-DWARFS; SPACE-TELESCOPE; SPECTRAL CLASSIFICATION; INFRARED PHOTOMETRY; ULTRACOOL DWARFS; COOL NEIGHBORS; FIELD; 2MASS; SPECTROSCOPY AB We present a statistical method for the photometric search of rare astronomical sources based on the weighted k-Nearest Neighbors method. A metric is defined in a multidimensional color-magnitude space based only on the photometric properties of template sources and the photometric uncertainties of both templates and data, without the need to define ad hoc color and magnitude cuts which could bias the search. The metric is defined as a function of two parameters, the number of neighbors k and a threshold distance D(th) that can be optimized for maximum selection efficiency and completeness. We apply the method to the search of L and T dwarfs in the Spitzer Extragalactic First Look Survey and the Bootes field of the Spitzer Shallow Survey, as well as to the search of substellar mass companions around nearby stars. With high level of completeness, we confirm the absence of late-T dwarfs detected in at least two bands in the First Look Survey, and only one in the Shallow Survey (previously discovered by Stern et al.). This result is in agreement with the expected statistics for late-T dwarfs. One L/early-T candidate is found in the First Look Survey, and three in the Shallow Surveys, currently undergoing follow-up spectroscopic verification. Finally, we discuss the potential for brown dwarf searches with this method in the Spitzer warm mission Exploration Science programs. C1 [Marengo, Massimo] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Sanchez, Mayly C.] Argonne Natl Lab, Argonne, IL 60439 USA. [Sanchez, Mayly C.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. RP Marengo, M (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM mmarengo@cfa.harvard.edu; mayly.sanchez@anl.gov FU NASA; National Aeronautics and Space Administration; National Science Foundation FX This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. It also used data from the Sloan Digital Sky Survey (see full acknowledgment at http://www.sdss.org/collaboration/credits.html), and software provided by the U. S. National Virtual Observatory, which is sponsored by the National Science Foundation. We thank the Spitzer Shallow Survey and FLAMINGO Extragalactic Survey (FLAMEX) teams for permission to use data from their surveys. We also thank the National Optical Astronomy Observatory (NOAO) Deep Wide-Field Survey Team for providing the optical and near-IR imaging data used in the Bootes field. NOAO is operated by the Association of Universities for research in Astronomy (AURA), Inc., under a cooperative agreement with the National Science Foundation. The authors finally thank Peter Eisenhardt, Daniel Stern, Mark Brodwin, and Buell Jannuzi for useful discussions and suggestions, and the anonymous referee for insightful comments that helped improving this manuscript. NR 46 TC 8 Z9 8 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD JUL PY 2009 VL 138 IS 1 BP 63 EP 75 DI 10.1088/0004-6256/138/1/63 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 457GK UT WOS:000266916300008 ER PT J AU Jiang, LH Fan, XH Bian, FY Annis, J Chiu, KL Jester, S Lin, H Lupton, RH Richards, GT Strauss, MA Malanushenko, V Malanushenko, E Schneider, DP AF Jiang, Linhua Fan, Xiaohui Bian, Fuyan Annis, James Chiu, Kuenley Jester, Sebastian Lin, Huan Lupton, Robert H. Richards, Gordon T. Strauss, Michael A. Malanushenko, Viktor Malanushenko, Elena Schneider, Donald P. TI A SURVEY OF z similar to 6 QUASARS IN THE SLOAN DIGITAL SKY SURVEY DEEP STRIPE. II. DISCOVERY OF SIX QUASARS AT z(AB) > 21 SO ASTRONOMICAL JOURNAL LA English DT Article DE cosmology: observations; quasars: emission lines; quasars: general ID BLACK-HOLE MASSES; Z-SIMILAR-TO-6 QUASARS; LUMINOSITY FUNCTION; DATA RELEASE; TELESCOPE; EVOLUTION; SYSTEM; CAMERA; REIONIZATION; PIPELINE AB We present the discovery of six new quasars at z similar to 6 selected from the Sloan Digital Sky Survey (SDSS) southern survey, a deep imaging survey obtained by repeatedly scanning a stripe along the celestial equator. The six quasars are about 2 mag fainter than the luminous z similar to 6 quasars found in the SDSS main survey and 1 mag fainter than the quasars reported in Paper I. Four of them comprise a complete flux-limited sample at 21 < z(AB) < 21.8 over an effective area of 195 deg(2). The other two quasars are fainter than z(AB) = 22 and are not part of the complete sample. The quasar luminosity function at z similar to 6 is well described as a single power law Phi(L-1450) proportional to L-1450(beta) over the luminosity range -28 < M-1450 < -25. The best-fitting slope beta varies from -2.6 to -3.1, depending on the quasar samples used, with a statistical error of 0.3-0.4. About 40% of the quasars discovered in the SDSS southern survey have very narrow Ly alpha emission lines, which may indicate small black hole masses and high Eddington luminosity ratios, and therefore short black hole growth timescales for these faint quasars at early epochs. C1 [Jiang, Linhua; Fan, Xiaohui; Bian, Fuyan] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Fan, Xiaohui; Jester, Sebastian] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Annis, James; Lin, Huan] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Chiu, Kuenley] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Lupton, Robert H.; Strauss, Michael A.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Richards, Gordon T.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Malanushenko, Viktor; Malanushenko, Elena] Apache Point Observ, Sunspot, NM 88359 USA. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. RP Jiang, LH (reprint author), Univ Arizona, Steward Observ, 933 N Cherry Ave, Tucson, AZ 85721 USA. RI Jiang, Linhua/H-5485-2016 OI Jiang, Linhua/0000-0003-4176-6486 NR 44 TC 90 Z9 91 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD JUL PY 2009 VL 138 IS 1 BP 305 EP 311 DI 10.1088/0004-6256/138/1/305 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 457GK UT WOS:000266916300029 ER PT J AU Santos, JS Rosati, P Gobat, R Lidman, C Dawson, K Perlmutter, S Bohringer, H Balestra, I Mullis, CR Fassbender, R Kohnert, J Lamer, G Rettura, A Rite, C Schwope, A AF Santos, J. S. Rosati, P. Gobat, R. Lidman, C. Dawson, K. Perlmutter, S. Boehringer, H. Balestra, I. Mullis, C. R. Fassbender, R. Kohnert, J. Lamer, G. Rettura, A. Rite, C. Schwope, A. TI Multiwavelength observations of a rich galaxy cluster at z similar to 1 The HST/ACS colour-magnitude diagram SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: clusters: individual: XMMU J1229+0151; galaxies: high-redshift; galaxies: evolution ID ACTIVE GALACTIC NUCLEI; HIGH-REDSHIFT CLUSTERS; ELLIPTIC GALAXIES; INTERMEDIATE REDSHIFT; POPULATION SYNTHESIS; CHEMICAL ENRICHMENT; LUMINOSITY FUNCTION; ADVANCED CAMERA; S0 GALAXIES; BLACK-HOLES AB Context. XMMU J1229+0151 is a rich galaxy cluster with redshift z = 0.975 that was serendipitously detected in X-rays within the scope of the XMM-Newton Distant Cluster Project. Both HST/ACS observations in the i(775) and z(850) passbands and VLT/FORS2 spectroscopy were obtained, in addition to follow-up Near-Infrared (NIR) imaging in the J- and Ks-bands with NTT/SOFI. Aims. We investigate the photometric, structural, and spectral properties of the early-type galaxies in the high-redshift cluster XMMU J1229+0151. Methods. Source detection and aperture photometry are performed in the optical and NIR imaging. Galaxy morphology is inspected visually and by means of Sersic profile fitting to the 21 spectroscopically confirmed cluster members in the ACS field of view. The i(775) - z(850) colour-magnitude relation (CMR) is derived with a method based on galaxy magnitudes obtained by fitting the surface brightness of the galaxies with Sersic models. Stellar masses and formation ages of the cluster galaxies are derived by fitting the observed spectral energy distributions (SED) with models developed by Bruzual & Charlot. Star-formation histories of the early-type galaxies are constrained by analysing the stacked spectrophotometric data. Results. The structural Sersic index n obtained by model fitting agrees with the visual morphological classification of the confirmed members, indicating a clear predominance of elliptical galaxies (15/21). The i(775)-z(850) colour-magnitude relation of the spectroscopic members shows a very tight red-sequence with a zero point of 0.86 +/- 0.04 mag, and intrinsic scatter equal to 0.039 mag. The CMR obtained with the galaxy models has similar parameters. By fitting both the spectra and SED of the early-type population, we obtain a star-formation-weighted age of 4.3 Gyr for a median galaxy stellar-mass of 7.4 x 10(10) M(circle dot). Instead of identifying a brightest cluster galaxy (BCG) unambiguously, we find three bright galaxies with a similar z850 magnitude, which are, in addition, the most massive cluster members, with similar to 2 x 10(11) M(circle dot). Our results strengthen the current evidence of a lack of significant evolution in both the scatter and slope of the red-sequence out to z similar to 1. C1 [Santos, J. S.] Osserv Astron Trieste, INAF, I-34131 Trieste, Italy. [Santos, J. S.; Boehringer, H.; Balestra, I.; Fassbender, R.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Rosati, P.; Gobat, R.; Rite, C.] European So Observ, D-85748 Garching, Germany. [Lidman, C.] European So Observ, Santiago 19, Chile. [Dawson, K.; Perlmutter, S.] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Mullis, C. R.] Wachovia Corp, Winston Salem, NC 27101 USA. [Kohnert, J.; Lamer, G.; Schwope, A.] Astrophys Inst Potsdam, D-14482 Potsdam, Germany. [Rettura, A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. RP Santos, JS (reprint author), Osserv Astron Trieste, INAF, Via Tiepolo 11, I-34131 Trieste, Italy. EM jsantos@oats.inaf.it RI Perlmutter, Saul/I-3505-2015; OI Perlmutter, Saul/0000-0002-4436-4661; Balestra, Italo/0000-0001-9660-894X FU Deutsche Forschungsgemeinschaft [BO702/16-2] FX We acknowledge the excellent support provided by the staff at the Paranal observatory. In particular, we wish to acknowledge their assistance in setting up the observations with the MXU mode of FORS2 when technical problems prevented us from using the MOS mode. We thank M. Postman for providing us with his templates for the galaxy morphological classification. J.S.S. would like to thank D. Pierini, M. Nonino, S. Borgani and M. Girardi for useful discussions. J. S. S. acknowledges support by the Deutsche Forschungsgemeinschaft under contract BO702/16-2. R.G. acknowledges support by the DFG cluster of excellence Origin and Structure of the Universe (www.universe-cluster.de). This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 77 TC 31 Z9 31 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL PY 2009 VL 501 IS 1 BP 49 EP 60 DI 10.1051/0004-6361/200811546 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 470HF UT WOS:000267965100007 ER PT J AU Knop, S Hauschildt, PH Baron, E AF Knop, S. Hauschildt, P. H. Baron, E. TI Comoving-frame radiative transfer in arbitrary velocity fields II. Large scale applications SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE radiative transfer ID OPERATOR PERTURBATION; EQUATION AB Aims. A solution of the radiative-transfer problem in arbitrary velocity fields introduced in a previous paper, has limitations in its applicability. For large-scale applications, the methods described also require large memory sets that are commonly not available to state-of-the-art computing hardware. In this work, we modify the algorithm to allow the computation of large-scale problems. Methods. We reduce the memory footprint via a domain decomposition. By introducing iterative Gauss-Seidel type solvers, we improve the speed of the overall computation. Because of the domain decomposition, the new algorithm requires the use of parallel-computing systems. Results. The algorithm that we present permits large-scale solutions of radiative-transfer problems that include arbitrary wavelength couplings. In addition, we discover a quasi-analytic formal solution of the radiative transfer that significantly improves the overall computation speed. More importantly, this method ensures that our algorithm can be applied to multi-dimensional Lagrangian radiative-transfer calculations. In multi-dimensional atmospheres, velocity fields are in general chaotic ensuring that the inclusion of arbitrary wavelength couplings are mandatory. C1 [Knop, S.; Hauschildt, P. H.; Baron, E.] Hamburger Sternwarte, D-21029 Hamburg, Germany. [Baron, E.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Baron, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Knop, S (reprint author), Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg, Germany. EM sknop@hs.uni-hamburg.de; yeti@hs.uni-hamburg.de; baron@ou.edu RI Baron, Edward/A-9041-2009 OI Baron, Edward/0000-0001-5393-1608 FU DFG [SFB 676]; NASA [NAG5-12127]; NSF [AST-0707704]; US DOE [DE-FG02-07ER41517]; National Energy Research Scientific Computing Center (NERSC); Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Hochstleistungs Rechenzentrum Nord (HLRN) FX This work was supported in part by SFB 676 from the DFG, NASA grant NAG5-12127, NSF grant AST-0707704, and US DOE Grant DE-FG02-07ER41517. This research used resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231; and the Hochstleistungs Rechenzentrum Nord (HLRN). We thank all these institutions for a generous allocation of computer time. NR 13 TC 3 Z9 3 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL PY 2009 VL 501 IS 2 BP 813 EP 820 DI 10.1051/0004-6361/200911793 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 472JA UT WOS:000268125300040 ER PT J AU Tramacere, A Giommi, P Perri, M Verrecchia, F Tosti, G AF Tramacere, A. Giommi, P. Perri, M. Verrecchia, F. Tosti, G. TI Swift observations of the very intense flaring activity of Mrk 421 during 2006. I. Phenomenological picture of electron acceleration and predictions for MeV/GeV emission SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: active; galaxies: BL Lacertae objects: individual: Mrk 421; X-rays: individuals: Mrk 421; radiation mechanisms: non-thermal; acceleration of particles ID STOCHASTIC PARTICLE-ACCELERATION; TEVBL LACERTAE OBJECTS; LOG-PARABOLIC SPECTRA; RAY-BURST AFTERGLOW; GAMMA-RAYS; PHYSICAL CONSTRAINTS; SYNCHROTRON EMISSION; RELATIVISTIC SHOCKS; TELESCOPE; BLAZARS AB Aims. We present the results of a deep spectral analysis of all Swift observations of Mrk 421 between April 2006 and July 2006, when it reached its highest X-ray flux recorded until the end of 2006. The peak flux was about 85 milli-Crab in the 2.0-10.0 keV band, and the peak energy (E(p)) of the spectral energy distribution ( SED) was often at energies higher than 10 keV. We study trends between the spectral parameters, and the physical insights the parameters provide into the underlying acceleration and emission mechanisms. Methods. We performed a spectral analysis of Swift observations to investigate trends between the spectral parameters. We searched for acceleration and energetic features phenomenologically linked to the SSC model parameters, by predicting their effects in the gamma-ray band, and in particular, the spectral shape expected in the Fermi Gamma-ray Space Telescope-LAT band. Results. We confirm that the X-ray spectrum is described well by a log-parabolic distribution close to E(p), that the peak flux of the SED (S(p)) is correlated with E(p), and that E(p) is anti-correlated with the curvature parameter (b). The spectral evolution in the Hardness-ratio-flux plane shows both clockwise and counter-clockwise patterns. During the most energetic flares, the UV-to-soft-X-ray spectral shape requires an electron distribution spectral index of s similar or equal to 2.3. Conclusions. We demonstrate that the UV-to-X-ray emission from Mrk 421 is probably generated by a population of electrons that is actually curved, and has a low energy power-law tail. The observed spectral curvature is consistent with both stochastic acceleration or energy-dependent acceleration probability mechanisms, whereas the power-law slope of XRT-UVOT data is close to that inferred from the GRBs X-ray afterglow and in agreement with the universal first-order relativistic shock acceleration models. This scenario implies that magnetic turbulence may play a twofold role: spatial diffusion relevant to the first order process and momentum diffusion relevant to the second order process. C1 [Tramacere, A.] CIFS Torino, I-10133 Turin, Italy. [Tosti, G.] INFN Perugia, I-06100 Perugia, Italy. [Tosti, G.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Giommi, P.; Perri, M.; Verrecchia, F.] ESRIN, ASI Sci Data Ctr, I-00044 Frascati, Italy. [Tramacere, A.] SLAC, Menlo Pk, CA 94025 USA. RP Tramacere, A (reprint author), CIFS Torino, Viale Settimio Severo 3, I-10133 Turin, Italy. EM tramacer@slac.stanford.edu RI Tosti, Gino/E-9976-2013; OI giommi, paolo/0000-0002-2265-5003; Verrecchia, Francesco/0000-0003-3455-5082; Perri, Matteo/0000-0003-3613-4409; Tramacere, Andrea/0000-0002-8186-3793 FU Italian Space Agency (ASI) and Istituto Nazionale di Astrofisica (NAF) [ASI/INAF I/010/06/0] FX A. Tramacere acknowledges support by a fellowship of the Italian Space Agency (ASI) and Istituto Nazionale di Astrofisica (NAF) related to the GLAST Space Mission, through the ASI/INAF I/010/06/0 contract. Gino Tosti acknowledges support by the ASI/INAF I/010/06/0 contract. We thank Dr. D. Paneque and Dr. S. Digel for useful comments. NR 52 TC 64 Z9 64 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL PY 2009 VL 501 IS 3 BP 879 EP 898 DI 10.1051/0004-6361/200810865 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 474NW UT WOS:000268292200005 ER PT J AU Abraham, J Abreu, P Aglietta, M Aguirre, C Ahn, EJ Allard, D Allekotte, I Allen, J Allison, P Alvarez-Muniz, J Ambrosio, M Anchordoqui, L Andringa, S Anzalone, A Aramo, C Argiro, S Arisaka, K Arneodo, F Arqueros, F Asch, T Asorey, H Assis, P Aublin, J Ave, M Avila, G Backer, T Badagnani, D Barber, KB Barbosa, AF Barroso, SLC Baughman, B Bauleo, P Beatty, JJ Beau, T Becker, BR Becker, KH Belletoile, A Bellido, JA BenZvi, S Berat, C Bernardini, P Bertou, X Biermann, PL Billoir, P Blanch-Bigas, O Blanco, F Bleve, C Blumer, H Bohacova, M Bonifazi, C Bonino, R Brack, J Brogueira, P Brown, WC Bruijn, R Buchholz, P Bueno, A Burton, RE Busca, NG Caballero-Mora, KS Caramete, L Caruso, R Carvalho, W Castellina, A Catalano, O Cazon, L Cester, R Chauvin, J Chiavassa, A Chinellato, JA Chou, A Chudoba, J Chye, J Clay, RW Colombo, E Conceicao, R Connolly, B Contreras, F Coppens, J Cordier, A Cotti, U Coutu, S Covault, CE Creusot, A Criss, A Cronin, J Curutiu, A Dagoret-Campagne, S Daumiller, K Dawson, BR de Almeida, RM De Domenico, M De Donato, C de Jong, SJ De La Vega, G de Mello, WJM Neto, JRTD De Mitri, I de Souza, V Decerprit, G del Peral, L Deligny, O Della Selva, A Delle Fratte, C Dembinski, H Di Giulio, C Diaz, JC Diep, PN Dobrigkeit, C D'Olivo, JC Dong, PN Dornic, D Dorofeev, A dos Anjos, JC Dova, MT D'Urso, D Dutan, I DuVernois, MA Engel, R Erdmann, M Escobar, CO Etchegoyen, A Luis, PFS Falcke, H Farrar, G Fauth, AC Fazzini, N Ferrer, F Ferrero, A Fick, B Filevich, A Filipcic, A Fleck, I Fliescher, S Fracchiolla, CE Fraenkel, ED Fulgione, W Gamarra, RF Gambetta, S Garcia, B Gamez, DG Garcia-Pinto, D Garrido, X Gelmini, G Gemmeke, H Ghia, PL Giaccari, U Giller, M Glass, H Goggin, LM Gold, MS Golup, G Albarracin, FG Berisso, MG Goncalves, P do Amaral, MG Gonzalez, D Gonzalez, JG Gora, D Gorgi, A Gouffon, P Grebe, S Grigat, M Grillo, AF Guardincerri, Y Guarino, F Guedes, GP Gutierrez, J Hague, JD Halenka, V Hansen, P Harari, D Harmsma, S Harton, JL Haungs, A Healy, MD Hebbeker, T Hebrero, G Heck, D Hojvat, C Holmes, VC Homola, P Horandel, JR Horneffer, A Hrabovsky, M Huege, T Hussain, M Iarlori, M Insolia, A Ionita, F Italiano, A Jiraskova, S Kaducak, M Kampert, KH Karova, T Kasper, P Kegl, B Keilhauer, B Kemp, E Kieckhafer, RM Klages, HO Kleifges, M Kleinfeller, J Knapik, R Knapp, J Koang, DH Krieger, A Kromer, O Kruppke, D Kuempel, D Kunka, N Kusenko, A La Rosa, G Lachaud, C Lago, BL Leao, MSAB Lebrun, D Lebrun, P Lee, J de Oliveira, MAL Lemiere, A Letessier-Selvon, A Leuthold, M Lhenry-Yvon, I Lopez, R Agueera, AL Bahilo, JL Lucero, A Garcia, RL Maccarone, MC Macolino, C Maldera, S Mandat, D Mantsch, P Mariazzi, AG Maris, IC Falcon, HRM Martello, D Martinez, J Bravo, OM Mathes, HJ Matthews, J Matthews, JAJ Matthiae, G Maurizio, D Mazur, PO McEwen, M McNeil, RR Medina-Tanco, G Melissas, M Melo, D Menichetti, E Menshikov, A Meyhandan, R Micheletti, MI Miele, G Miller, W Miramonti, L Mollerach, S Monasor, M Ragaigne, DM Montanet, F Morales, B Morello, C Moreno, JC Morris, C Mostafa, M Mueller, S Mueller, MA Mussa, R Navarra, G Navarro, JL Navas, S Necesal, P Nellen, L Newman-Holmes, C Newton, D Nhung, PT Nierstenhoefer, N Nitz, D Nosek, D Nozka, L Oehlschlager, J Olinto, A Olmos-Gilbaja, VM Ortiz, M Ortolani, F Pacheco, N Selmi-Dei, DP Palatka, M Pallotta, J Parente, G Parizot, E Parlati, S Pastor, S Patel, M Paul, T Pavlidou, V Payet, K Pech, M Pekala, J Pelayo, R Pepe, IM Perrone, L Pesce, R Petermann, E Petrera, S Petrinca, P Petrolini, A Petrov, Y Petrovic, J Pfendner, C Pichel, A Piegaia, R Pierog, T Pimenta, M Pinto, T Pirronello, V Pisanti, O Platino, M Pochon, J Ponce, VH Pontz, M Privitera, P Prouza, M Quel, EJ Rautenberg, J Ravignani, D Redondo, A Reucroft, S Revenu, B Rezende, FAS Ridky, J Riggi, S Risse, M Riviere, C Rizi, V Robledo, C Rodriguez, G Martino, JR Rojo, JR Rodriguez-Cabo, I Rodriguez-Frias, MD Ros, G Rosado, J Roth, M Rouille-d'Orfeuil, B Roulet, E Rovero, AC Salamida, F Salazar, H Salina, G Sanchez, F Santander, M Santo, CE Santos, EM Sarazin, F Sarkar, S Sato, R Scharf, N Scherini, V Schieler, H Schiffer, P Schmidt, A Schmidt, F Schmidt, T Scholten, O Schoorlemmer, H Schovancova, J Schovanek, P Schroeder, F Schulte, S Schussler, F Schuster, D Sciutto, SJ Scuderi, M Segreto, A Semikoz, D Settimo, M Shellard, RC Sidelnik, I Siffert, BB De Grande, N Smialkowski, A Smida, R Smith, BE Snow, GR Sommers, P Sorokin, J Spinka, H Squartini, R Strazzeri, E Stutz, A Suarez, F Suomijarvi, T Supanitsky, AD Sutherland, MS Swain, J Szadkowski, Z Tamashiro, A Tamburro, A Tarutina, T Tascau, O Tcaciuc, R Tcherniakhovski, D Thao, NT Thomas, D Ticona, R Tiffenberg, J Timmermans, C Tkaczyk, W Peixoto, CJT Tome, B Tonachini, A Torres, I Travnicek, P Tridapalli, DB Tristram, G Trovato, E Tuci, V Tueros, M Ulrich, R Unger, M Urban, M Galicia, JFV Valino, I Valore, L van den Berg, AM Vazquez, RA Veberic, D Velarde, A Venters, T Verzi, V Videla, M Villasenor, L Vorobiov, S Voyvodic, L Wahlberg, H Wahrlich, P Wainberg, O Warner, D Watson, AA Westerhoff, S Whelan, BJ Wieczorek, G Wiencke, L Wilczynska, B Wilczynski, H Wileman, C Winnick, MG Wu, H Wundheiler, B Younk, P Yuan, G Zas, E Zavrtanik, D Zavrtanik, M Zaw, I Zepeda, A Ziolkowski, M AF Abraham, J. Abreu, P. Aglietta, M. Aguirre, C. Ahn, E. J. Allard, D. Allekotte, I. Allen, J. Allison, P. Alvarez-Muniz, J. Ambrosio, M. Anchordoqui, L. Andringa, S. Anzalone, A. Aramo, C. Argiro, S. Arisaka, K. Arneodo, F. Arqueros, F. Asch, T. Asorey, H. Assis, P. Aublin, J. Ave, M. Avila, G. Baecker, T. Badagnani, D. Barber, K. B. Barbosa, A. F. Barroso, S. L. C. Baughman, B. Bauleo, P. Beatty, J. J. Beau, T. Becker, B. R. Becker, K. H. Belletoile, A. Bellido, J. A. BenZvi, S. Berat, C. Bernardini, P. Bertou, X. Biermann, P. L. Billoir, P. Blanch-Bigas, O. Blanco, F. Bleve, C. Bluemer, H. Bohacova, M. Bonifazi, C. Bonino, R. Brack, J. Brogueira, P. Brown, W. C. Bruijn, R. Buchholz, P. Bueno, A. Burton, R. E. Busca, N. G. Caballero-Mora, K. S. Caramete, L. Caruso, R. Carvalho, W. Castellina, A. Catalano, O. Cazon, L. Cester, R. Chauvin, J. Chiavassa, A. Chinellato, J. A. Chou, A. Chudoba, J. Chye, J. Clay, R. W. Colombo, E. Conceicao, R. Connolly, B. Contreras, F. Coppens, J. Cordier, A. Cotti, U. Coutu, S. Covault, C. E. Creusot, A. Criss, A. Cronin, J. Curutiu, A. Dagoret-Campagne, S. Daumiller, K. Dawson, B. R. de Almeida, R. M. De Domenico, M. De Donato, C. de Jong, S. J. De La Vega, G. de Mello Junior, W. J. M. de Mello Neto, J. R. T. De Mitri, I. de Souza, V. Decerprit, G. del Peral, L. Deligny, O. Della Selva, A. Delle Fratte, C. Dembinski, H. Di Giulio, C. Diaz, J. C. Diep, P. N. Dobrigkeit, C. D'Olivo, J. C. Dong, P. N. Dornic, D. Dorofeev, A. dos Anjos, J. C. Dova, M. T. D'Urso, D. Dutan, I. DuVernois, M. A. Engel, R. Erdmann, M. Escobar, C. O. Etchegoyen, A. Luis, P. Facal San Falcke, H. Farrar, G. Fauth, A. C. Fazzini, N. Ferrer, F. Ferrero, A. Fick, B. Filevich, A. Filipcic, A. Fleck, I. Fliescher, S. Fracchiolla, C. E. Fraenkel, E. D. Fulgione, W. Gamarra, R. F. Gambetta, S. Garcia, B. Garcia Gamez, D. Garcia-Pinto, D. Garrido, X. Gelmini, G. Gemmeke, H. Ghia, P. L. Giaccari, U. Giller, M. Glass, H. Goggin, L. M. Gold, M. S. Golup, G. Gomez Albarracin, F. Gomez Berisso, M. Goncalves, P. Goncalves do Amaral, M. Gonzalez, D. Gonzalez, J. G. Gora, D. Gorgi, A. Gouffon, P. Grebe, S. Grigat, M. Grillo, A. F. Guardincerri, Y. Guarino, F. Guedes, G. P. Gutierrez, J. Hague, J. D. Halenka, V. Hansen, P. Harari, D. Harmsma, S. Harton, J. L. Haungs, A. Healy, M. D. Hebbeker, T. Hebrero, G. Heck, D. Hojvat, C. Holmes, V. C. Homola, P. Horandel, J. R. Horneffer, A. Hrabovsky, M. Huege, T. Hussain, M. Iarlori, M. Insolia, A. Ionita, F. Italiano, A. Jiraskova, S. Kaducak, M. Kampert, K. H. Karova, T. Kasper, P. Kegl, B. Keilhauer, B. Kemp, E. Kieckhafer, R. M. Klages, H. O. Kleifges, M. Kleinfeller, J. Knapik, R. Knapp, J. Koang, D. -H. Krieger, A. Kroemer, O. Kruppke, D. Kuempel, D. Kunka, N. Kusenko, A. La Rosa, G. Lachaud, C. Lago, B. L. Leao, M. S. A. B. Lebrun, D. Lebrun, P. Lee, J. Leigui de Oliveira, M. A. Lemiere, A. Letessier-Selvon, A. Leuthold, M. Lhenry-Yvon, I. Lopez, R. Lopez Agueera, A. Lozano Bahilo, J. Lucero, A. Luna Garcia, R. Maccarone, M. C. Macolino, C. Maldera, S. Mandat, D. Mantsch, P. Mariazzi, A. G. Maris, I. C. Marquez Falcon, H. R. Martello, D. Martinez, J. Martinez Bravo, O. Mathes, H. J. Matthews, J. Matthews, J. A. J. Matthiae, G. Maurizio, D. Mazur, P. O. McEwen, M. McNeil, R. R. Medina-Tanco, G. Melissas, M. Melo, D. Menichetti, E. Menshikov, A. Meyhandan, R. Micheletti, M. I. Miele, G. Miller, W. Miramonti, L. Mollerach, S. Monasor, M. Ragaigne, D. Monnier Montanet, F. Morales, B. Morello, C. Moreno, J. C. Morris, C. Mostafa, M. Mueller, S. Mueller, M. A. Mussa, R. Navarra, G. Navarro, J. L. Navas, S. Necesal, P. Nellen, L. Newman-Holmes, C. Newton, D. Nhung, P. T. Nierstenhoefer, N. Nitz, D. Nosek, D. Nozka, L. Oehlschlaeger, J. Olinto, A. Olmos-Gilbaja, V. M. Ortiz, M. Ortolani, F. Pacheco, N. Selmi-Dei, D. Pakk Palatka, M. Pallotta, J. Parente, G. Parizot, E. Parlati, S. Pastor, S. Patel, M. Paul, T. Pavlidou, V. Payet, K. Pech, M. Pekala, J. Pelayo, R. Pepe, I. M. Perrone, L. Pesce, R. Petermann, E. Petrera, S. Petrinca, P. Petrolini, A. Petrov, Y. Petrovic, J. Pfendner, C. Pichel, A. Piegaia, R. Pierog, T. Pimenta, M. Pinto, T. Pirronello, V. Pisanti, O. Platino, M. Pochon, J. Ponce, V. H. Pontz, M. Privitera, P. Prouza, M. Quel, E. J. Rautenberg, J. Ravignani, D. Redondo, A. Reucroft, S. Revenu, B. Rezende, F. A. S. Ridky, J. Riggi, S. Risse, M. Riviere, C. Rizi, V. Robledo, C. Rodriguez, G. Martino, J. Rodriguez Rodriguez Rojo, J. Rodriguez-Cabo, I. Rodriguez-Frias, M. D. Ros, G. Rosado, J. Roth, M. Rouille-d'Orfeuil, B. Roulet, E. Rovero, A. C. Salamida, F. Salazar, H. Salina, G. Sanchez, F. Santander, M. Santo, C. E. Santos, E. M. Sarazin, F. Sarkar, S. Sato, R. Scharf, N. Scherini, V. Schieler, H. Schiffer, P. Schmidt, A. Schmidt, F. Schmidt, T. Scholten, O. Schoorlemmer, H. Schovancova, J. Schovanek, P. Schroeder, F. Schulte, S. Schuessler, F. Schuster, D. Sciutto, S. J. Scuderi, M. Segreto, A. Semikoz, D. Settimo, M. Shellard, R. C. Sidelnik, I. Siffert, B. B. Smetniansky De Grande, N. Smialkowski, A. Smida, R. Smith, B. E. Snow, G. R. Sommers, P. Sorokin, J. Spinka, H. Squartini, R. Strazzeri, E. Stutz, A. Suarez, F. Suomijaervi, T. Supanitsky, A. D. Sutherland, M. S. Swain, J. Szadkowski, Z. Tamashiro, A. Tamburro, A. Tarutina, T. Tascau, O. Tcaciuc, R. Tcherniakhovski, D. Thao, N. T. Thomas, D. Ticona, R. Tiffenberg, J. Timmermans, C. Tkaczyk, W. Peixoto, C. J. Todero Tome, B. Tonachini, A. Torres, I. Travnicek, P. Tridapalli, D. B. Tristram, G. Trovato, E. Tuci, V. Tueros, M. Ulrich, R. Unger, M. Urban, M. Valdes Galicia, J. F. Valino, I. Valore, L. van den Berg, A. M. Vazquez, R. A. Veberic, D. Velarde, A. Venters, T. Verzi, V. Videla, M. Villasenor, L. Vorobiov, S. Voyvodic, L. Wahlberg, H. Wahrlich, P. Wainberg, O. Warner, D. Watson, A. A. Westerhoff, S. Whelan, B. J. Wieczorek, G. Wiencke, L. Wilczynska, B. Wilczynski, H. Wileman, C. Winnick, M. G. Wu, H. Wundheiler, B. Younk, P. Yuan, G. Zas, E. Zavrtanik, D. Zavrtanik, M. Zaw, I. Zepeda, A. Ziolkowski, M. CA Pierre Auger Collaboration TI Upper limit on the cosmic-ray photon fraction at EeV energies from the Pierre Auger Observatory SO ASTROPARTICLE PHYSICS LA English DT Article ID EXTENSIVE AIR-SHOWERS; FLUORESCENCE; PROFILES; DETECTOR AB From direct observations of the longitudinal development of ultra-high energy air showers performed with the Pierre Auger Observatory, upper limits of 3.8%, 2.4%, 3.5% and 11.7% (at 95% c.l.) are obtained on the fraction of cosmic-ray photons above 2, 3, 5 and 10 EeV (1 EeV equivalent to 10(18) eV), respectively. These are the first experimental limits on ultra-high energy photons at energies below 10 EeV. The results complement previous constraints on top-down models from array data and they reduce systematic uncertainties in the interpretation of shower data in terms of primary flux, nuclear composition and proton-air cross-section. (C) 2009 Elsevier B.V. All rights reserved. C1 [Abraham, J.; De La Vega, G.; Garcia, B.] CNEA, CONICET, UTN FRM, Observ Meteorol Parque Gral San Martin, Mendoza, Argentina. [Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Pochon, J.; Ponce, V. H.; Roulet, E.] Consejo Nacl Invest Cient & Tecn, UNCuyo, CNEA, Ctr Atom Bariloche, San Carlos De Bariloche, Rio Negro, Argentina. [Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Pochon, J.; Ponce, V. H.; Roulet, E.] Consejo Nacl Invest Cient & Tecn, UNCuyo, CNEA, Inst Balseiro, San Carlos De Bariloche, Rio Negro, Argentina. [Colombo, E.; Etchegoyen, A.; Ferrero, A.; Filevich, A.; Gamarra, R. F.; Krieger, A.; Micheletti, M. I.; Platino, M.; Ravignani, D.; Sidelnik, I.; Smetniansky De Grande, N.; Suarez, F.; Wainberg, O.; Wundheiler, B.] UTN FRBA, CONICET, Comis Nacl Energia Atom, Ctr Atom Constituyentes, Buenos Aires, DF, Argentina. [Guardincerri, Y.; Piegaia, R.; Tiffenberg, J.] Univ Buenos Aires, FCEyN, Dept Fis, RA-1053 Buenos Aires, DF, Argentina. [Badagnani, D.; Dova, M. T.; Gomez Albarracin, F.; Hansen, P.; Mariazzi, A. G.; Moreno, J. C.; Sciutto, S. J.; Tarutina, T.; Tueros, M.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Badagnani, D.; Dova, M. T.; Gomez Albarracin, F.; Hansen, P.; Mariazzi, A. G.; Moreno, J. C.; Sciutto, S. J.; Tarutina, T.; Tueros, M.; Wahlberg, H.] Univ Nacl La Plata, IFLP, La Plata, Buenos Aires, Argentina. [Pichel, A.; Rovero, A. C.; Tamashiro, A.] Consejo Nacl Invest Cient & Tecn, Inst Astron & Fis Espacio, RA-1033 Buenos Aires, DF, Argentina. [Contreras, F.; Rodriguez Rojo, J.; Santander, M.; Sato, R.; Squartini, R.] Pierre Auger So Observ, Malargue, Argentina. [Avila, G.] Comis Nacl Energia Atom, Malargue, Argentina. [Barber, K. B.; Bellido, J. A.; Clay, R. W.; Dawson, B. R.; Holmes, V. C.; Sorokin, J.; Wahrlich, P.; Whelan, B. J.; Winnick, M. G.] Univ Adelaide, Adelaide, SA, Australia. [Aguirre, C.] Univ Catolica Bolivia, La Paz, Bolivia. [Ticona, R.; Velarde, A.] Univ Mayor de San Andres, La Paz, Bolivia. [Barbosa, A. F.; dos Anjos, J. C.; Rezende, F. A. S.; Shellard, R. C.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Fracchiolla, C. E.; Shellard, R. C.] Pontificia Univ Catolica Rio de Janeiro, Rio De Janeiro, Brazil. [Carvalho, W.; de Souza, V.; Gouffon, P.; Tridapalli, D. B.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Chinellato, J. A.; de Almeida, R. M.; de Mello Junior, W. J. M.; Dobrigkeit, C.; Escobar, C. O.; Fauth, A. C.; Kemp, E.; Mueller, M. A.; Selmi-Dei, D. Pakk; Peixoto, C. J. Todero] Univ Estadual Campinas, IFGW, Campinas, SP, Brazil. [Guedes, G. P.] Univ Estadual Feira de Santana, Feira De Santana, BA, Brazil. [Barroso, S. L. C.] Univ Estadual Sudoeste da Bahia, Vitoria Da Conquista, BA, Brazil. [Pepe, I. M.] Univ Fed Bahia, Salvador, BA, Brazil. [Leao, M. S. A. B.; Leigui de Oliveira, M. A.] Univ Fed ABC, Santo Andre, SP, Brazil. [de Mello Neto, J. R. T.; Lago, B. L.; Santos, E. M.; Siffert, B. B.] Univ Fed Rio de Janeiro, Inst Fis, Rio De Janeiro, Brazil. [Goncalves do Amaral, M.] Univ Fed Fluminense, Inst Fis, BR-24020 Niteroi, RJ, Brazil. [Nosek, D.] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, Prague, Czech Republic. [Bohacova, M.; Chudoba, J.; Hrabovsky, M.; Karova, T.; Mandat, D.; Necesal, P.; Nozka, L.; Palatka, M.; Pech, M.; Prouza, M.; Ridky, J.; Schovancova, J.; Schovanek, P.; Smida, R.; Travnicek, P.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Halenka, V.; Hrabovsky, M.] Palacky Univ, CR-77147 Olomouc, Czech Republic. [Deligny, O.; Dornic, D.; Ghia, P. L.; Lemiere, A.; Lhenry-Yvon, I.; Suomijaervi, T.] Univ Paris 11, CNRS, IN2P3, IPNO, F-91405 Orsay, France. [Allard, D.; Beau, T.; Busca, N. G.; Decerprit, G.; Lachaud, C.; Parizot, E.; Semikoz, D.; Tristram, G.] Univ Paris 07, CNRS, IN2P3, Lab AstroParticule & Cosmol APC, Paris, France. [Cordier, A.; Dagoret-Campagne, S.; Garrido, X.; Kegl, B.; Ragaigne, D. Monnier; Strazzeri, E.; Urban, M.; Wu, H.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Billoir, P.; Blanch-Bigas, O.; Bonifazi, C.] Univ Paris 06, LPNHE, Paris 05, France. [Belletoile, A.; Berat, C.; Chauvin, J.; Koang, D. -H.; Lebrun, D.; Montanet, F.; Payet, K.; Riviere, C.; Stutz, A.] Univ Grenoble 1, CNRS, IN2P3, INPG,Lab Phys Subatom & Cosmol, Grenoble, France. [Revenu, B.] SUBATECH, Nantes, France. [Becker, K. H.; Kampert, K. H.; Kruppke, D.; Kuempel, D.; Nierstenhoefer, N.; Rautenberg, J.; Risse, M.; Scherini, V.; Tascau, O.] Berg Univ Wuppertal, D-42119 Wuppertal, Germany. [Bluemer, H.; Daumiller, K.; Engel, R.; Garrido, X.; Haungs, A.; Hebbeker, T.; Heck, D.; Huege, T.; Keilhauer, B.; Klages, H. O.; Kleinfeller, J.; Mathes, H. J.; Mueller, S.; Oehlschlaeger, J.; Pierog, T.; Roth, M.; Schieler, H.; Schroeder, F.; Schuessler, F.; Ulrich, R.; Unger, M.] Forschungszentrum Karlsruhe, Inst Kernphys, D-76021 Karlsruhe, Germany. [Asch, T.; Gemmeke, H.; Kleifges, M.; Kroemer, O.; Kunka, N.; Menshikov, A.; Schmidt, A.; Tcherniakhovski, D.] Forschungszentrum Karlsruhe, Inst Prozessdatenverarbeitung & Elekt, Karlsruhe, Germany. [Biermann, P. L.; Caramete, L.; Curutiu, A.; Dutan, I.; Thomas, D.] Max Planck Inst Radioastron, D-5300 Bonn, Germany. [Dembinski, H.; Erdmann, M.; Fliescher, S.; Grigat, M.; Hebbeker, T.; Leuthold, M.; Scharf, N.; Schiffer, P.; Schulte, S.] Univ Aachen, Rhein Westfal TH Aachen, Inst Phys A3, D-5100 Aachen, Germany. [Bluemer, H.; Caballero-Mora, K. S.; Gonzalez, D.; Gora, D.; Maris, I. C.; Melissas, M.; Schmidt, T.; Tamburro, A.] Univ Karlsruhe TH, Inst Expt Kernphys, Karlsruhe, Germany. [Aublin, J.; Baecker, T.; Buchholz, P.; Fleck, I.; Grebe, S.; Letessier-Selvon, A.; Pontz, M.; Risse, M.; Tcaciuc, R.; Ziolkowski, M.] Univ Siegen, Siegen, Germany. [Gambetta, S.; Pesce, R.; Petrolini, A.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Pesce, R.; Petrolini, A.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Iarlori, M.; Macolino, C.; Petrera, S.; Rizi, V.; Salamida, F.] Ist Nazl Fis Nucl, Laquila, Italy. [Iarlori, M.; Macolino, C.; Petrera, S.; Rizi, V.; Salamida, F.] Univ Aquila, I-67100 Laquila, Italy. [De Donato, C.; Miramonti, L.; Mueller, S.] Sezione Ist Nazl Fis Nucl, Milan, Italy. [De Donato, C.; Miramonti, L.] Univ Milan, Milan, Italy. [Bernardini, P.; Bleve, C.; De Mitri, I.; Giaccari, U.; Martello, D.; Perrone, L.; Settimo, M.] Sezione Ist Nazl Fis Nucl, Lecce, Italy. [Bleve, C.; De Mitri, I.; Giaccari, U.; Martello, D.; Perrone, L.; Settimo, M.] Univ Salento, Dipartimento Fis, Lecce, Italy. [Ambrosio, M.; Aramo, C.; Della Selva, A.; D'Urso, D.; Guarino, F.; Miele, G.; Pisanti, O.; Valore, L.] Sezione Ist Nazl Fis Nucl, Naples, Italy. [Ambrosio, M.; Aramo, C.; Della Selva, A.; D'Urso, D.; Guarino, F.; Miele, G.; Pisanti, O.; Valore, L.] Univ Naples Federico 2, Naples, Italy. [Delle Fratte, C.; Di Giulio, C.; Matthiae, G.; Ortolani, F.; Petrinca, P.; Rodriguez, G.; Salina, G.; Tuci, V.; Verzi, V.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Delle Fratte, C.; Di Giulio, C.; Matthiae, G.; Ortolani, F.; Petrinca, P.; Rodriguez, G.; Salina, G.; Tuci, V.; Verzi, V.] Univ Roma Tor Vergata, I-00173 Rome, Italy. [Caruso, R.; De Domenico, M.; Insolia, A.; Italiano, A.; Pirronello, V.; Riggi, S.; Martino, J. Rodriguez; Scuderi, M.; Trovato, E.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Caruso, R.; Insolia, A.; Italiano, A.; Pirronello, V.; Riggi, S.; Martino, J. Rodriguez; Scuderi, M.; Trovato, E.] Univ Catania, Catania, Italy. [Argiro, S.; Cester, R.; Maurizio, D.; Melo, D.; Menichetti, E.; Mussa, R.; Tonachini, A.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Anzalone, A.; Catalano, O.; La Rosa, G.; Maccarone, M. C.; Segreto, A.] Ist Astrofis Spaziale & Fis Cosm Palermo INAF, Palermo, Italy. [Aglietta, M.; Bonino, R.; Castellina, A.; Chiavassa, A.; Fulgione, W.; Ghia, P. L.; Gorgi, A.; Lucero, A.; Maldera, S.; Morello, C.; Navarra, G.] Univ Turin, Ist Fis Spazio Interplanetario INAF, Turin, Italy. [Arneodo, F.; Grillo, A. F.; Parlati, S.] Ist Nazl Fis Nucl, Lab Nazl Gran Sasso, Laquila, Italy. [Lopez, R.; Martinez Bravo, O.; Robledo, C.; Rouille-d'Orfeuil, B.; Salazar, H.; Torres, I.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Luna Garcia, R.; Martinez, J.] IPN, Ctr Invest Comp, Mexico City 07738, DF, Mexico. [Zepeda, A.] CINVESTAV, IPN, Ctr Invest & Estudios Avanzados, Mexico City 14000, DF, Mexico. [Zepeda, A.] Inst Nacl Astrofis Opt & Electr, Puebla, Mexico. [Pelayo, R.] IPN, Unidad Profes Interdisciplinaria Ingn & Tecnol Av, Mexico City 07738, DF, Mexico. [Cotti, U.; Marquez Falcon, H. R.; Villasenor, L.] Univ Michoacana, Morelia, Michoacan, Mexico. [D'Olivo, J. C.; Medina-Tanco, G.; Morales, B.; Nellen, L.; Sanchez, F.; Supanitsky, A. D.; Valdes Galicia, J. F.] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. [Coppens, J.; de Jong, S. J.; Falcke, H.; Grebe, S.; Horandel, J. R.; Horneffer, A.; Jiraskova, S.; Schoorlemmer, H.; Timmermans, C.] Radboud Univ Nijmegen, IMAPP, NL-6525 ED Nijmegen, Netherlands. [Fraenkel, E. D.; Harmsma, S.; Meyhandan, R.; Scholten, O.; van den Berg, A. M.] Univ Groningen, Kernfys Versneller Inst, Groningen, Netherlands. [Coppens, J.; Harmsma, S.; Petrovic, J.; Schoorlemmer, H.; Timmermans, C.] NIKHEF, Amsterdam, Netherlands. ASTRON, Dwingeloo, Netherlands. [Gora, D.; Homola, P.; Pekala, J.; Wilczynska, B.; Wilczynski, H.] Inst Nucl Phys PAN, Krakow, Poland. [Giller, M.; Smialkowski, A.; Szadkowski, Z.; Tkaczyk, W.; Wieczorek, G.] Univ Lodz, PL-90131 Lodz, Poland. [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Conceicao, R.; Goncalves, P.; Pimenta, M.; Santo, C. E.; Tome, B.] LIP, P-1000 Lisbon, Portugal. [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Conceicao, R.; Goncalves, P.; Pimenta, M.; Santo, C. E.; Tome, B.] Inst Super Tecn, Lisbon, Portugal. [Filipcic, A.; Veberic, D.; Zavrtanik, D.; Zavrtanik, M.] Jozef Stefan Inst, Ljubljana, Slovenia. [Creusot, A.; Filipcic, A.; Hussain, M.; Veberic, D.; Vorobiov, S.; Zavrtanik, D.; Zavrtanik, M.] Univ Nova Gorica, Lab Astroparticle Phys, Nova Gorica, Slovenia. [Pastor, S.; Pinto, T.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain. [Arqueros, F.; Blanco, F.; Garcia-Pinto, D.; Monasor, M.; Ortiz, M.; Ros, G.] Univ Complutense Madrid, Madrid, Spain. [del Peral, L.; Gutierrez, J.; Hebrero, G.; McEwen, M.; Pacheco, N.; Redondo, A.; Rodriguez-Frias, M. D.; Ros, G.; Rosado, J.] Univ Alcala De Henares, Madrid, Spain. [Bueno, A.; Garcia Gamez, D.; Lozano Bahilo, J.; Navarro, J. L.; Navas, S.] CAFPE, Granada, Spain. [Bueno, A.; Garcia Gamez, D.; Lozano Bahilo, J.; Navarro, J. L.; Navas, S.] Univ Granada, Granada, Spain. [Alvarez-Muniz, J.; Gonzalez, J. G.; Olmos-Gilbaja, V. M.; Parente, G.; Rodriguez-Cabo, I.; Valino, I.; Vazquez, R. A.; Zas, E.] Univ Santiago de Compostela, Santiago De Compostela, Spain. [Sarkar, S.] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford, England. [Bruijn, R.; Knapp, J.; Newton, D.; Patel, M.; Smith, B. E.; Watson, A. A.; Wileman, C.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Spinka, H.] Argonne Natl Lab, Argonne, IL 60439 USA. [Burton, R. E.; Covault, C. E.; Ferrer, F.] Case Western Reserve Univ, Cleveland, OH 44106 USA. [Sarazin, F.; Schuster, D.; Wiencke, L.] Colorado Sch Mines, Golden, CO 80401 USA. [Bauleo, P.; Brack, J.; Harton, J. L.; Knapik, R.; Mostafa, M.; Petrov, Y.; Warner, D.; Younk, P.] Colorado State Univ, Ft Collins, CO 80523 USA. [Brown, W. C.] Colorado State Univ, Pueblo, CO USA. [Ahn, E. J.; Chou, A.; Fazzini, N.; Glass, H.; Hojvat, C.; Kaducak, M.; Kasper, P.; Lebrun, P.; Mantsch, P.; Mazur, P. O.; Newman-Holmes, C.; Spinka, H.; Voyvodic, L.] Fermilab Natl Accelerator Lab, Batavia, IL USA. [Dorofeev, A.; Gonzalez, J. G.; Matthews, J.; McNeil, R. R.; Videla, M.; Yuan, G.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Chye, J.; Diaz, J. C.; Fick, B.; Kieckhafer, R. M.; Nitz, D.] Michigan Technol Univ, Houghton, MI 49931 USA. [Allen, J.; Zaw, I.] NYU, New York, NY USA. [Paul, T.; Reucroft, S.; Swain, J.] Northeastern Univ, Boston, MA 02115 USA. [Allison, P.; Baughman, B.; Beatty, J. J.; Morris, C.; Sutherland, M. S.] Ohio State Univ, Columbus, OH 43210 USA. [Bellido, J. A.; Coutu, S.; Criss, A.; Sommers, P.] Penn State Univ, University Pk, PA 16802 USA. [Matthews, J.] Southern Univ, Baton Rouge, LA USA. [Arisaka, K.; Gelmini, G.; Healy, M. D.; Kunka, N.; Lee, J.; Pfendner, C.] Univ Calif Los Angeles, Los Angeles, CA USA. [Ave, M.; Bohacova, M.; Cazon, L.; Cronin, J.; Luis, P. Facal San; Ionita, F.; Olinto, A.; Pavlidou, V.; Privitera, P.; Schmidt, F.; Venters, T.; Wundheiler, B.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [DuVernois, M. A.] Univ Hawaii, Honolulu, HI 96822 USA. [Petermann, E.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Becker, B. R.; Chou, A.; Farrar, G.; Gold, M. S.; Hague, J. D.; Matthews, J. A. J.; Miller, W.] Univ New Mexico, Albuquerque, NM 87131 USA. [Connolly, B.] Univ Penn, Philadelphia, PA 19104 USA. [BenZvi, S.; Westerhoff, S.] Univ Wisconsin, Madison, WI USA. [Anchordoqui, L.; Goggin, L. M.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Diep, P. N.; Dong, P. N.; Nhung, P. T.; Thao, N. T.] Inst Nucl Sci & Technol, Hanoi, Vietnam. [Billoir, P.; Blanch-Bigas, O.; Bonifazi, C.] Univ Paris 07, LPNHE, Paris 05, France. RP Abraham, J (reprint author), CNEA, CONICET, UTN FRM, Observ Meteorol Parque Gral San Martin, Mendoza, Argentina. RI Pavlidou, Vasiliki/C-2944-2011; Arneodo, Francesco/E-5061-2015; Bueno, Antonio/F-3875-2015; Parente, Gonzalo/G-8264-2015; Alvarez-Muniz, Jaime/H-1857-2015; Rosado, Jaime/K-9109-2014; Valino, Ines/J-8324-2012; Navas, Sergio/N-4649-2014; Carvalho Jr., Washington/H-9855-2015; De Donato, Cinzia/J-9132-2015; Martello, Daniele/J-3131-2012; Insolia, Antonio/M-3447-2015; Smida, Radomir/G-6314-2014; Ridky, Jan/H-6184-2014; Chudoba, Jiri/G-7737-2014; Pech, Miroslav/G-5760-2014; Todero Peixoto, Carlos Jose/G-3873-2012; Pastor, Sergio/J-6902-2014; Tome, Bernardo/J-4410-2013; Espirito Santo, Maria Catarina/L-2341-2014; Pimenta, Mario/M-1741-2013; Garcia Pinto, Diego/J-6724-2014; Di Giulio, Claudio/B-3319-2015; Anjos, Joao/C-8335-2013; Schussler, Fabian/G-5313-2013; Nierstenhofer, Nils/H-3699-2013; Goncalves, Patricia /D-8229-2013; Assis, Pedro/D-9062-2013; Prouza, Michael/F-8514-2014; Mandat, Dusan/G-5580-2014; Bohacova, Martina/G-5898-2014; Nozka, Libor/G-5550-2014; Cazon, Lorenzo/G-6921-2014; Schovanek, Petr/G-7117-2014; Travnicek, Petr/G-8814-2014; de souza, Vitor/D-1381-2012; Shellard, Ronald/G-4825-2012; Petrolini, Alessandro/H-3782-2011; Miele, Gennaro/F-3628-2010; fulgione, walter/I-5232-2012; D'Urso, Domenico/I-5325-2012; Bleve, Carla/J-2521-2012; Brogueira, Pedro/K-3868-2012; Chinellato, Jose Augusto/I-7972-2012; Tamburro, Alessio/A-5703-2013; Falcke, Heino/H-5262-2012; Arneodo, Francesco/B-8076-2013; Venters, Tonia/D-2936-2012; Fauth, Anderson/F-9570-2012; De Domenico, Manlio/D-1966-2009; Dias, Sandra/F-8134-2010; Dutan, Ioana/C-2337-2011; Caramete, Laurentiu/C-2328-2011; Aramo, Carla/D-4317-2011; Pesce, Roberto/G-5791-2011; Kemp, Ernesto/H-1502-2011; Chiavassa, Andrea/A-7597-2012; Verzi, Valerio/B-1149-2012; Chinellato, Carola Dobrigkeit /F-2540-2011; Ros, German/L-4764-2014; de Mello Neto, Joao/C-5822-2013; Fulgione, Walter/C-8255-2016; Lozano-Bahilo, Julio/F-4881-2016; ORTOLANI, FABRIZIO/F-7271-2016; scuderi, mario/O-7019-2014; zas, enrique/I-5556-2015; Sarkar, Subir/G-5978-2011; Moura Santos, Edivaldo/K-5313-2016; Gouffon, Philippe/I-4549-2012; de Almeida, Rogerio/L-4584-2016; De Domenico, Manlio/B-5826-2014; Nosek, Dalibor/F-1129-2017; Abreu, Pedro/L-2220-2014; Arqueros, Fernando/K-9460-2014; Blanco, Francisco/F-1131-2015; Conceicao, Ruben/L-2971-2014; Beatty, James/D-9310-2011; Guarino, Fausto/I-3166-2012; Bonino, Raffaella/S-2367-2016; Rodriguez Frias, Maria /A-7608-2015; Inst. of Physics, Gleb Wataghin/A-9780-2017; De Mitri, Ivan/C-1728-2017; Rodriguez Fernandez, Gonzalo/C-1432-2014 OI Pavlidou, Vasiliki/0000-0002-0870-1368; Arneodo, Francesco/0000-0002-1061-0510; Bueno, Antonio/0000-0002-7439-4247; Parente, Gonzalo/0000-0003-2847-0461; Alvarez-Muniz, Jaime/0000-0002-2367-0803; Rosado, Jaime/0000-0001-8208-9480; Valino, Ines/0000-0001-7823-0154; Navas, Sergio/0000-0003-1688-5758; Carvalho Jr., Washington/0000-0002-2328-7628; De Donato, Cinzia/0000-0002-9725-1281; Martello, Daniele/0000-0003-2046-3910; Insolia, Antonio/0000-0002-9040-1566; Ridky, Jan/0000-0001-6697-1393; Todero Peixoto, Carlos Jose/0000-0003-3669-8212; Tome, Bernardo/0000-0002-7564-8392; Espirito Santo, Maria Catarina/0000-0003-1286-7288; Pimenta, Mario/0000-0002-2590-0908; Garcia Pinto, Diego/0000-0003-1348-6735; Di Giulio, Claudio/0000-0002-0597-4547; Schussler, Fabian/0000-0003-1500-6571; Goncalves, Patricia /0000-0003-2042-3759; Assis, Pedro/0000-0001-7765-3606; Prouza, Michael/0000-0002-3238-9597; Cazon, Lorenzo/0000-0001-6748-8395; Shellard, Ronald/0000-0002-2983-1815; Petrolini, Alessandro/0000-0003-0222-7594; Miele, Gennaro/0000-0002-2028-0578; D'Urso, Domenico/0000-0002-8215-4542; Brogueira, Pedro/0000-0001-6069-4073; Chinellato, Jose Augusto/0000-0002-3240-6270; Falcke, Heino/0000-0002-2526-6724; Arneodo, Francesco/0000-0002-1061-0510; Fauth, Anderson/0000-0001-7239-0288; Chinellato, Carola Dobrigkeit /0000-0002-1236-0789; Ros, German/0000-0001-6623-1483; de Mello Neto, Joao/0000-0002-3234-6634; Fulgione, Walter/0000-0002-2388-3809; Lozano-Bahilo, Julio/0000-0003-0613-140X; ORTOLANI, FABRIZIO/0000-0003-4527-1843; scuderi, mario/0000-0001-9026-5317; zas, enrique/0000-0002-4430-8117; Sarkar, Subir/0000-0002-3542-858X; Moura Santos, Edivaldo/0000-0002-2818-8813; Gouffon, Philippe/0000-0001-7511-4115; de Almeida, Rogerio/0000-0003-3104-2724; De Domenico, Manlio/0000-0001-5158-8594; Del Peral, Luis/0000-0003-2580-5668; Coutu, Stephane/0000-0003-2923-2246; Ulrich, Ralf/0000-0002-2535-402X; Garcia, Beatriz/0000-0003-0919-2734; Dembinski, Hans/0000-0003-3337-3850; Bonino, Raffaella/0000-0002-4264-1215; Rizi, Vincenzo/0000-0002-5277-6527; Horandel, Jorg/0000-0001-6604-547X; Mussa, Roberto/0000-0002-0294-9071; Segreto, Alberto/0000-0001-7341-6603; Knapp, Johannes/0000-0003-1519-1383; Petrera, Sergio/0000-0002-6029-1255; Aramo, Carla/0000-0002-8412-3846; Anzalone, Anna/0000-0003-1849-198X; de Jong, Sijbrand/0000-0002-3120-3367; La Rosa, Giovanni/0000-0002-3931-2269; Asorey, Hernan/0000-0002-4559-8785; Andringa, Sofia/0000-0002-6397-9207; Mantsch, Paul/0000-0002-8382-7745; Aglietta, Marco/0000-0001-8354-5388; Maccarone, Maria Concetta/0000-0001-8722-0361; Kothandan, Divay/0000-0001-9048-7518; Castellina, Antonella/0000-0002-0045-2467; maldera, simone/0000-0002-0698-4421; Matthews, James/0000-0002-1832-4420; Yuan, Guofeng/0000-0002-1907-8815; Nosek, Dalibor/0000-0001-6219-200X; Gomez Berisso, Mariano/0000-0001-5530-0180; Salamida, Francesco/0000-0002-9306-8447; Catalano, Osvaldo/0000-0002-9554-4128; Ravignani, Diego/0000-0001-7410-8522; Navarro Quirante, Jose Luis/0000-0002-9915-1735; Abreu, Pedro/0000-0002-9973-7314; Arqueros, Fernando/0000-0002-4930-9282; Blanco, Francisco/0000-0003-4332-434X; Conceicao, Ruben/0000-0003-4945-5340; Beatty, James/0000-0003-0481-4952; Guarino, Fausto/0000-0003-1427-9885; Rodriguez Frias, Maria /0000-0002-2550-4462; De Mitri, Ivan/0000-0002-8665-1730; Rodriguez Fernandez, Gonzalo/0000-0002-4683-230X FU Comision Nacional de Energia Atomica; Fundacion Antorchas; Gobierno De La Provincia de Mendoza; Municipalidad de Malargue; NDM Holdings and Valle Las Lenas; Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Financiadora de Estudos e Projetos (FINEP); Fundacao de Amparo A Pesquisa do Estado de Rio de Janeiro (FAPERJ); Fundacao de Amparo A Pesquisa do Estado de Sao Paulo (FAPESP); Ministerio de Ciecia e Tecnologia (MCT), Brazil; AVCR [AV0Z10100502, AV0Z10100522]; GAAV [KJB300100801, KJB100100904]; MSMT-CR [LA08016, LC527, 1M06002, MSM0021620859]; Centre de Calcul [IN2P3/CNRS]; Centre National de la Recherche Scientifique (CNRS); Conseil Regional Ile-de-France, Departement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS), Departement Sciences de l'Univers (SDU-INSU/CNRS), France; Bundesministerium fur Bildung und Forschung (BMBF); Deutsche Forschungsgemeinschaft (DFG); Finanzministerium Baden-Wurttemberg; Helmholtz-Gerneinschaft Deutscher Forschungszentren (HGF); Ministerium fur Wissenschaft und Forschung; Nordrhein-Westfalen; Ministerium fur Wissenschaft; Forschung und Kunst, Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN); Ministero dell'Istruzione; dell'Universita e della Ricerca (MIUR), Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO); Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; Ministry of Science and Higher Education [1 P03 D 014 30, N202 090 31/0623, PAP/218/2006]; Fundacao para a Ciecia e a Tecnologia, Portugal; Ministry for Higher Education, Science, and Technology; Slovenian Research Agency, Slovenia; Comunidad de Madrid; Consejeria de Educacion de la Comunidad de Castilla La Mancha; FEDER funds; Ministerio de Ciencia e Innovacion; Xunta de Galicia, Spain; Science and Technology Facilities Council,United Kingdom; Department of Energy [DE-AC02-07CH11359]; National Science Foundation [0450696]; Grainger Foundation USA; ALFA-EC/HELEN; European Union [MEIF-Cr-2005-025057] FX We are very grateful to the following agencies and organizations for financial support: Comision Nacional de Energia Atomica, Fundacion Antorchas, Gobierno De La Provincia de Mendoza, Municipalidad de Malargue, NDM Holdings and Valle Las Lenas, in gratitude for their continuing cooperation over land access, Argentina: the Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo A Pesquisa do Estado de Rio de Janeiro (FAPERJ), Fundacao de Amparo A Pesquisa do Estado de Sao Paulo (FAPESP), Ministerio de Ciecia e Tecnologia (MCT), Brazil; AVCR AV0Z10100502 and AV0Z10100522, GAAV KJB300100801 and KJB100100904, MSMT-CR LA08016, LC527, 1M06002, and MSM0021620859, Czech Republic: Centre de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS), Conseil Regional Ile-de-France, Departement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS), Departement Sciences de l'Univers (SDU-INSU/CNRS), France; Bundesministerium fur Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden-Wurttemberg, Helmholtz-Gerneinschaft Deutscher Forschungszentren (HGF), Ministerium fur Wissenschaft und Forschung, Nordrhein-Westfalen, Ministerium fur Wissenschaft, Forschung und Kunst, Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; Ministry of Science and Higher Education, Grant Nos. 1 P03 D 014 30, N202 090 31/0623, and PAP/218/2006, Poland; Fundacao para a Ciecia e a Tecnologia, Portugal; Ministry for Higher Education, Science, and Technology, Slovenian Research Agency, Slovenia; Comunidad de Madrid, Consejeria de Educacion de la Comunidad de Castilla La Mancha, FEDER funds, Ministerio de Ciencia e Innovacion, Xunta de Galicia, Spain; Science and Technology Facilities Council, United Kingdom: Department of Energy, Contract No. DE-AC02-07CH11359, National Science Foundation, Grant No. 0450696, The Grainger Foundation USA; ALFA-EC/HELEN, European Union 6th Framework Program, Grant No. MEIF-Cr-2005-025057, and UNESCO. NR 34 TC 91 Z9 91 U1 2 U2 44 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 J9 ASTROPART PHYS JI Astropart Phys. PD JUL PY 2009 VL 31 IS 6 BP 399 EP 406 DI 10.1016/j.astropartphys.2009.04.003 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 477TH UT WOS:000268541300001 ER PT J AU Mei, DM Yin, ZB Elliott, SR AF Mei, D. -M. Yin, Z. -B. Elliott, S. R. TI Cosmogenic production as a background in searching for rare physics processes SO ASTROPARTICLE PHYSICS LA English DT Article DE Cosmogenic activation; Dark matter detection; Double-beta decay ID DARK-MATTER; LIQUID ARGON; GERMANIUM; NEUTRONS; REDUCTION; ENERGY AB We revisit calculations of the cosmogenic production rates for several long-lived isotopes that are potential sources of background in searching for rare physics processes such as the detection of dark matter and neutrinoless double-beta decay. Using updated cosmic-ray neutron flux measurements, we use TALYS 1.0 to investigate the cosmogenic activation of stable isotopes of several detector targets and find that the cosmogenic isotopes produced inside the target materials and cryostat can result in large backgrounds for dark matter searches and neutrinoless double-beta decay. We use previously published low-background HPGe data to constrain the production of H-3 on the surface and the upper limit is consistent with our calculation. We note that cosmogenic production of several isotopes in various targets can generate potential backgrounds for dark matter detection and neutrinoless double-beta decay with a massive detector, thus great care should be taken to limit and/or deal with the cosmogenic activation of the targets. Published by Elsevier B.V. C1 [Mei, D. -M.; Yin, Z. -B.] Univ S Dakota, Dept Phys, Vermillion, SD 57069 USA. [Yin, Z. -B.] Huazhong Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. [Yin, Z. -B.] Huazhong Normal Univ, Minist Educ, Key Lab Quark & Lepton Phys, Wuhan, Peoples R China. [Elliott, S. R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Mei, DM (reprint author), Univ S Dakota, Dept Phys, Vermillion, SD 57069 USA. EM Dongming.Mei@usd.edu FU NSF [PHY-0758120]; Office of Research at The University of South Dakota; Laboratory Directed Research and Development at Los Alamos National Laboratory; MOE of China [IRT0624]; NFSC [10635020] FX We thank Y.D. Chan, J.A. Detwiler, John Wilkerson, R. Henning and other MAJORANA collaborators for discussion. We thank F.T. Avignone for a careful reading of this manuscript. This work was supported in part by NSF Grant PHY-0758120 and by the Office of Research at The University of South Dakota and by Laboratory Directed Research and Development at Los Alamos National Laboratory. Z.B. Yin was also partly supported by MOE of China under Project No. IRT0624 and the NFSC under Grant No. 10635020. NR 33 TC 22 Z9 22 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 EI 1873-2852 J9 ASTROPART PHYS JI Astropart Phys. PD JUL PY 2009 VL 31 IS 6 BP 417 EP 420 DI 10.1016/j.astropartphys.2009.04.004 PG 4 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 477TH UT WOS:000268541300004 ER PT J AU Fryer, CL AF Fryer, Chris L. TI NEUTRINOS FROM FALLBACK ONTO NEWLY FORMED NEUTRON STARS SO ASTROPHYSICAL JOURNAL LA English DT Article DE elementary particles; stars: neutron; supernovae: general ID ROTATING MASSIVE STARS; LARGE MAGELLANIC CLOUD; CORE-COLLAPSE; PRESUPERNOVA EVOLUTION; STELLAR COLLAPSE; BLACK-HOLE; SN 1987A; SUPERNOVA; EXPLOSIONS; BURST AB In the standard supernova picture, Type Ib/c and Type II supernovae are powered by the potential energy released in the collapse of the core of a massive star. In studying supernovae, we primarily focus on the ejecta that makes it beyond the potential well of the collapsed core. But, as we shall show in this paper, inmost supernova explosions a tenth of a solar mass or more of the ejecta is decelerated enough that it does not escape the potential well of that compact object. This material falls back onto the proto-neutron star within the first 10-15 s after the launch of the explosion, releasing more than 10(52) erg of additional potential energy. Most of this energy is emitted in the form of neutrinos and we must understand this fallback neutrino emission if we are to use neutrino observations to study the behavior of matter at high densities. Here we present both a one-dimensional study of fallback using energy-injected, supernova explosions and a first study of neutrino emission from fallback using a suite of two-dimensional simulations. C1 [Fryer, Chris L.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Fryer, Chris L.] Los Alamos Natl Lab, CCS Div, Los Alamos, NM 87545 USA. RP Fryer, CL (reprint author), Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. FU U.S. Dept. of Energy; Los Alamos National Laboratory [W-7405-ENG-36]; NASA [SWIF03-0047] FX It is a pleasure to thank Patrick Young, Frank Timmes, and Aimee Hungerford for useful conversations on this project. This project was funded in part under the auspices of the U.S. Dept. of Energy, and supported by its contract W-7405-ENG-36 to Los Alamos National Laboratory, and by a NASA grant SWIF03-0047. NR 33 TC 28 Z9 28 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUL 1 PY 2009 VL 699 IS 1 BP 409 EP 420 DI 10.1088/0004-637X/699/1/409 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 458WC UT WOS:000267056300033 ER PT J AU Rozo, E Rykoff, ES Evrard, A Becker, M McKay, T Wechsler, RH Koester, BP Hao, JG Hansen, S Sheldon, E Johnston, D Annis, J Frieman, J AF Rozo, Eduardo Rykoff, Eli S. Evrard, August Becker, Matthew McKay, Timothy Wechsler, Risa H. Koester, Benjamin P. Hao, Jiangang Hansen, Sarah Sheldon, Erin Johnston, David Annis, James Frieman, Joshua TI CONSTRAINING THE SCATTER IN THE MASS-RICHNESS RELATION OF maxBCG CLUSTERS WITH WEAK LENSING AND X-RAY DATA SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; X-rays: galaxies: clusters ID DIGITAL SKY SURVEY; LUMINOUS GALAXY CLUSTERS; SCALING RELATIONS; COSMOLOGY; CATALOG; CALIBRATION; SAMPLE; NORMALIZATION; SIMULATIONS; PARAMETERS AB We measure the logarithmic scatter in mass at fixed richness for clusters in the maxBCG cluster catalog, an optically selected cluster sample drawn from Sloan Digital Sky Survey imaging data. Our measurement is achieved by demanding consistency between available weak-lensing and X-ray measurements of the maxBCG clusters, and the X-ray luminosity-mass relation inferred from the 400 days X-ray cluster survey, a flux-limited X-ray cluster survey. We find sigma(vertical bar nM vertical bar N200) = 0.45(-0.18)(+0.20) (95% CL) at N(200) approximate to 40, where N(200) is the number of red sequence galaxies in a cluster. As a byproduct of our analysis, we also obtain a constraint on the correlation coefficient between ln L(X) and ln M at fixed richness, which is best expressed as a lower limit, r(L, M|N) >= 0.85 (95% CL). This is the first observational constraint placed on a correlation coefficient involving two different cluster mass tracers. We use our results to produce a state-of-the-art estimate of the halo mass function at z = 0.23-the median redshift of the maxBCG cluster sample-and find that it is consistent with the WMAP5 cosmology. Both the mass function data and its covariance matrix are presented. C1 [Rozo, Eduardo] Ohio State Univ, CCAPP, Columbus, OH 43210 USA. [Rozo, Eduardo] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Evrard, August; McKay, Timothy; Hao, Jiangang] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Evrard, August; McKay, Timothy] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Evrard, August; McKay, Timothy] Michigan Ctr Theoret Phys, Ann Arbor, MI 48109 USA. [Becker, Matthew] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Wechsler, Risa H.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Wechsler, Risa H.] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94305 USA. [Koester, Benjamin P.; Hansen, Sarah; Frieman, Joshua] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Koester, Benjamin P.; Hansen, Sarah; Frieman, Joshua] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Sheldon, Erin] NYU, Dept Phys, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Sheldon, Erin] Brookhaven Natl Lab, Upton, NY 11973 USA. [Johnston, David] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Annis, James; Frieman, Joshua] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Rozo, E (reprint author), Ohio State Univ, CCAPP, Columbus, OH 43210 USA. RI Hao, Jiangang/G-3954-2011; McKay, Timothy/C-1501-2009; OI McKay, Timothy/0000-0001-9036-6150; Becker, Matthew/0000-0001-7774-2246; Evrard, August/0000-0002-4876-956X; Hao, Jiangang/0000-0003-0502-7571 NR 53 TC 103 Z9 103 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 1 PY 2009 VL 699 IS 1 BP 768 EP 781 DI 10.1088/0004-637X/699/1/768 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 458WC UT WOS:000267056300058 ER PT J AU Titarenko, YE Batyaev, VF Titarenko, AY Zhivun, VM Pavlov, KV Butko, MA Florya, SN Tikhonov, RS Mashnik, SG AF Titarenko, Yu. E. Batyaev, V. F. Titarenko, A. Yu. Zhivun, V. M. Pavlov, K. V. Butko, M. A. Florya, S. N. Tikhonov, R. S. Mashnik, S. G. TI EXPERIMENTAL DETERMINATION AND COMPUTATIONAL MODELING OF THRESHOLD REACTION RATES IN 0.8 GeV PROTON-IRRADIATED LEAD TARGET SO ATOMIC ENERGY LA English DT Article AB The results of an experimental determination and computational modeling of the rates of threshold reactions on (209)Bi, Pb, (197)Au, (181)Ta, (169)Tm, In, (93)Nb, (65)Cu, (63)Cu, (64)Zn, (59)Co, (27)Al, (19)F, and C on the external surface of and inside a thick lead target irradiated by 0.8 GeV protons are presented. The reaction rates were measured by gamma spectrometry using Ge and (Ge-Li) detectors with resolution 1.8 and 2.9 keV, respectively, on the 1332 keV gamma-line. Measurements of 2467 independent and cumulative threshold reaction rates were performed with 244 samples. The LAHET program was used for computational modeling of the results. The MENDL and MENDL2p libraries, the EXFOR databases, and the LAHET program were used to construct the excitation functions of the nuclides formed. The experimentally measured reaction rates are compared with the computed rates. The neutron and proton fluxes along the target, both on its external surface and in the interior volume, were calculated using the experimental threshold reaction rates and the computed cross sections of the reactions averaged over the spectrum of the neutrons and protons. The reaction rates measured inside and on the surface of a natural-lead target were used to determine the accuracy with which the target's activity is measured. C1 [Titarenko, Yu. E.; Batyaev, V. F.; Titarenko, A. Yu.; Zhivun, V. M.; Pavlov, K. V.; Butko, M. A.; Florya, S. N.; Tikhonov, R. S.] Alikhanov Inst Theoret & Expt Phys GNTs RF ITEF, State Sci Ctr Russian Federat, Moscow, Russia. [Mashnik, S. G.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Titarenko, YE (reprint author), Alikhanov Inst Theoret & Expt Phys GNTs RF ITEF, State Sci Ctr Russian Federat, Moscow, Russia. FU International Scientific and Technical Center [2405]; US Department of Energy [DE-AC52-06NA25396]; Los Alamos National Laboratory FX The work was performed as part of project No. 2405 of the International Scientific and Technical Center with financial support provided by one of the participating countries (USA) and the Rosatom State Corporation and, in part, by contract DE-AC52-06NA25396 between the US Department of Energy and the Los Alamos National Laboratory. NR 16 TC 1 Z9 1 U1 0 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1063-4258 J9 ATOM ENERGY+ JI Atom. Energy PD JUL PY 2009 VL 107 IS 1 BP 48 EP 59 PG 12 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 515OE UT WOS:000271480900008 ER PT J AU Darzins, A Garofalo, R AF Darzins, Al Garofalo, Raffaello TI Algal biofuels: What is the real potential? SO BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR LA English DT Editorial Material C1 [Darzins, Al] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Darzins, A (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM al.darzins@nrel.gov; ebb@ebb-eu.org NR 0 TC 2 Z9 2 U1 0 U2 3 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1932-104X J9 BIOFUEL BIOPROD BIOR JI Biofuels Bioprod. Biorefining PD JUL-AUG PY 2009 VL 3 IS 4 BP 426 EP 426 DI 10.1002/BBB.167 PG 1 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA 478IM UT WOS:000268581000009 ER PT J AU Pienkos, PT Darzins, A AF Pienkos, Philip T. Darzins, Al TI The promise and challenges of microalgal-derived biofuels SO BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR LA English DT Article DE microalgae; Aquatic Species Program; triacylglcerols, lipids, biofuels; high energy density ID DIATOM CYCLOTELLA-CRYPTICA; BIODIESEL; TERRESTRIAL; CARBOXYLASE AB Microalgae offer great promise to contribute a significant portion of the renewable fuels that will be required by the Renewable Fuels Standard described in the 2007 Energy Independence and Security Act of the United States. Algal biofuels would be based mainly on the high lipid content of the algal cell and thus would be an ideal feedstock for high energy density transportation fuels, such as biodiesel as well as green diesel, green jet fuel and green gasoline. A comprehensive research and development program for the development of algal biofuels was initiated by the US Department of Energy (DoE) more than 30 years ago, and although great progress was made, the program was discontinued in 1996, because of decreasing federal budgets and low petroleum costs. Interest in algal biofuels has been growing recently due to increased concern over peak oil, energy security, greenhouse gas emissions, and the potential for other biofuel feedstocks to compete for limited agricultural resources. The high productivity of algae suggests that much of the US transportation fuel needs can be met by algal biofuels at a production cost competitive with the cost of petroleum seen during the early part of 2008. Development of algal biomass production technology, however, remains in its infancy. This perspective provides a brief overview of past algal research sponsored by the DoE, the potential of microalgal biofuels and a discussion of the technical and economic barriers that need to be overcome before production of microalgal-derived diesel-fuel substitutes can become a large-scale commercial reality. Published in 2009 by John Wiley & Sons, Ltd C1 [Pienkos, Philip T.; Darzins, Al] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Appl Biol Grp, Golden, CO 80401 USA. RP Darzins, A (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, Appl Biol Grp, Cole Blvd, Golden, CO 80401 USA. EM al_darzins@nrel.gov NR 24 TC 254 Z9 272 U1 18 U2 151 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1932-104X J9 BIOFUEL BIOPROD BIOR JI Biofuels Bioprod. Biorefining PD JUL-AUG PY 2009 VL 3 IS 4 BP 431 EP 440 DI 10.1002/bbb.159 PG 10 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA 478IM UT WOS:000268581000011 ER PT J AU Gass, P Henn, FA AF Gass, Peter Henn, Fritz A. TI Is There a Role for Neurogenesis in Depression? SO BIOLOGICAL PSYCHIATRY LA English DT Editorial Material ID ADULT HIPPOCAMPAL NEUROGENESIS; FLUOXETINE; MICE C1 [Henn, Fritz A.] Brookhaven Natl Lab, Upton, NY 11793 USA. [Gass, Peter] Heidelberg Univ, Cent Inst Mental Hlth Mannheim, Dept Psychiat, D-6900 Heidelberg, Germany. RP Henn, FA (reprint author), Brookhaven Natl Lab, 490 Bell Ave, Upton, NY 11793 USA. EM fhenn@bnl.gov NR 12 TC 12 Z9 12 U1 0 U2 1 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0006-3223 J9 BIOL PSYCHIAT JI Biol. Psychiatry PD JUL 1 PY 2009 VL 66 IS 1 BP 3 EP 4 DI 10.1016/j.biopsych.2009.04.020 PG 2 WC Neurosciences; Psychiatry SC Neurosciences & Neurology; Psychiatry GA 463YK UT WOS:000267469900001 PM 19524084 ER PT J AU Leung, BO Hitchcock, AP Cornelius, R Brash, JL Scholl, A Doran, A AF Leung, Bonnie O. Hitchcock, Adam P. Cornelius, Rena Brash, John L. Scholl, Andreas Doran, Andrew TI X-ray Spectromicroscopy Study of Protein Adsorption to a Polystyrene-Polylactide Blend SO BIOMACROMOLECULES LA English DT Article ID ADVANCED LIGHT-SOURCE; DRUG-RELEASE; ALBUMIN ADSORPTION; SURFACE; MICROSCOPY; COPOLYMERS; MICROSPHERES; TOPOGRAPHY; SYSTEMS AB Synchrotron-based X-ray photoemission electron microscopy (X-PEEM) was used to study the adsorption of human serum albumin (HSA) to polystyrene-polylactide (40:60 PS-PLA, 0.7 wt %) thin films, annealed under various conditions. The rugosity of the substrate varied from 35 to 90 nm, depending on the annealing conditions. However, the characteristics of the protein adsorption (amounts and phase preference) were not affected by the changes in topography. The adsorption was also not changed by the phase inversion which occured when the PS-PLA substrate was annealed above T(g) of the PLA. The amount of protein adsorbed depended on whether adsorption took place from distilled water or phosphate buffered saline solution. These differences are interpreted as a result of ionic strength induced changes in the protein conformation in solution. C1 [Leung, Bonnie O.; Hitchcock, Adam P.] McMaster Univ, BIMR, Hamilton, ON L8S 4M1, Canada. [Cornelius, Rena; Brash, John L.] McMaster Univ, Sch Biomed Engn, Hamilton, ON L8S 4M1, Canada. [Scholl, Andreas; Doran, Andrew] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Leung, BO (reprint author), McMaster Univ, BIMR, Hamilton, ON L8S 4M1, Canada. EM leungbo@mcmaster.ca RI Scholl, Andreas/K-4876-2012; OI Doran, Andrew/0000-0001-5158-4569 FU Natural Sciences and Engineering Research Council of Canada (NSERC); AFMNet; Canada Research Chair programs; U.S. Department of Energy [DE-AC03-76SF00098] FX This research is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), AFMNet, and the Canada Research Chair programs. X-ray microscopy was carried out using PEEM2 and STXM532 at the ALS. The ALS is supported by the U.S. Department of Energy under Contract DE-AC03-76SF00098. NR 37 TC 23 Z9 24 U1 1 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1525-7797 J9 BIOMACROMOLECULES JI Biomacromolecules PD JUL PY 2009 VL 10 IS 7 BP 1838 EP 1845 DI 10.1021/bm900264w PG 8 WC Biochemistry & Molecular Biology; Chemistry, Organic; Polymer Science SC Biochemistry & Molecular Biology; Chemistry; Polymer Science GA 472NR UT WOS:000268139300022 PM 19496614 ER PT J AU Mielenz, JR Bardsley, JS Wyman, CE AF Mielenz, Jonathan R. Bardsley, John S. Wyman, Charles E. TI Fermentation of soybean hulls to ethanol while preserving protein value SO BIORESOURCE TECHNOLOGY LA English DT Article DE Ethanol; SSF; Biomass; Agricultural residue; Animal feed ID LACTATING DAIRY-COWS; ENZYMATIC-HYDROLYSIS; ZYMOMONAS-MOBILIS; FUEL ETHANOL; DILUTE-ACID; BIOMASS; PRETREATMENT; SACCHARIFICATION; CELLULOSE; XYLOSE AB Soybean hulls were evaluated as a resource for production of ethanol by the simultaneous saccharification and fermentation (SSF) process, and no pretreatment of the hulls was found to be needed to realize high ethanol yields with Saccharomyces cerevisiae D(5)A. The impact of cellulase, beta-glucosidase and pectinase dosages were determined at a 15% biomass loading, and ethanol concentrations of 25-30 g/L were routinely obtained, while under these conditions corn stover, wheat straw, and switchgrass produced 3-4 times lower ethanol yields. Removal of carbohydrates also concentrated the hull protein to over 25% w/w from the original roughly 10%. Analysis of the soybean hulls before and after fermentation showed similar amino acid profiles including an increase in the essential amino acids lysine and threonine in the residues. Thus, eliminating pretreatment should assure that the protein in the hulls is preserved, and conversion of the carbohydrates to ethanol with high yields produces a more concentrated and valuable co-product in addition to ethanol. The resulting upgraded feed product from soybean hulls would likely to be acceptable to monogastric as well as bovine livestock. (C) 2009 Published by Elsevier Ltd. C1 [Mielenz, Jonathan R.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. [Mielenz, Jonathan R.; Bardsley, John S.; Wyman, Charles E.] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA. [Bardsley, John S.] Mascoma Corp, Lebanon, NH 03766 USA. [Wyman, Charles E.] Univ Calif Riverside, Dept Environm Chem & Engn, Riverside, CA 92507 USA. RP Mielenz, JR (reprint author), Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. EM mielenzjr@ornl.gov FU National Institute of Standards and Technology (NIST) [60NANB1D0064]; US Department of Energy Office of Science FX The authors thank Sara All and Kara Podkaminer (Dartmouth), and Miguel Rodriguez (ORNL) for technical assistance, and Genencor/Danisco for providing samples of SpezymeCP (R) and Accellerase 1000 (R) cellulases. This work was funded in part by the National Institute of Standards and Technology (NIST) through Grant Number #60NANB1D0064 awarded to Dartmouth College, where much of the early work was performed. Additional support was obtained from the Oak Ridge National Laboratory BioEnergy Science Center, a US Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the US Department of Energy Office of Science. NR 36 TC 38 Z9 41 U1 2 U2 16 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD JUL PY 2009 VL 100 IS 14 BP 3532 EP 3539 DI 10.1016/j.biortech.2009.02.044 PG 8 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 446XA UT WOS:000266153700014 PM 19328681 ER PT J AU Zhu, ZG Sathitsuksanoh, N Vinzant, T Schell, DJ McMillan, JD Zhang, YHP AF Zhu, Zhiguang Sathitsuksanoh, Noppadon Vinzant, Todd Schell, Daniel J. McMillan, James D. Zhang, Y. -H. Percival TI Comparative Study of Corn Stover Pretreated by Dilute Acid and Cellulose Solvent-Based Lignocellulose Fractionation: Enzymatic Hydrolysis, Supramolecular Structure, and Substrate Accessibility SO BIOTECHNOLOGY AND BIOENGINEERING LA English DT Article DE biofuels; biomass; cellulose accessibility to cellulase; cellulose solvent- and organic solvent-based lignocellulose fractionation (COSLIF); dilute acid pretreatment; substrate accessibility ID COMPRESSED-HOT-WATER; CLOSTRIDIUM-THERMOCELLUM; TRICHODERMA-REESEI; SULFURIC-ACID; AFFINITY ADSORPTION; SURFACE-AREA; LIGNIN; DIGESTIBILITY; BIOMASS; CELLULASES AB Liberation of fermentable sugars from recalcitrant biomass is among the most costly steps for emerging cellulosic ethanol production. Here we compared two pre-treatment methods (dilute acid, DA, and cellulose solvent and organic solvent lignocellulose fractionation, COSLIF) for corn stover. At a high cellulase loading [15 filter paper units (FPUs) or 12.3 mg cellulase per. gram of glucan], glucan digestibilities of the corn stover pretreated by DA and COSLIF were 84% at hour 72 and 97% at hour 24, respectively. At a low cellulase loading (5 FPUs per gram of glucan), digestibility remained as high as 93% at hour 24 for the COSLIF-pretreated corn stover but reached only similar to 60% for the DA-pretreated biomass. Quantitative determinations of total substrate accessibility to cellulase (TSAC), cellulose accessibility to cellulase (CAC), and non-cellulose accessibility to cellulase (NCAC) based on adsorption of a non-hydrolytic recombinant protein TGC were measured for the first time. The COSLIF-pretreated corn stover had a CAC of 11.57 m(2)/g, nearly twice that of the DA-pretreated biomass (5.89 m(2)/g). These results, along with scanning electron microscopy images showing dramatic structural differences :between the DA- and COSLIF-pretreated samples, suggest that COSLIF treatment disrupts microfibrillar structures within biomass while DA treatment mainly removes hemicellulose. Under the tested conditions COSLIF treatment breaks down lignocellulose structure more extensively than DA treatment, producing a more enzymatically reactive material with a higher CAC accompanied by faster hydrolysis bates and higher enzymatic digestibility. Biotechnol. Bioeng. 2009;103: 715-724. (c) 2009 Wiley Periodicals, Inc. C1 [Zhu, Zhiguang; Sathitsuksanoh, Noppadon; Zhang, Y. -H. Percival] Virginia Polytech Inst & State Univ, Virginia Tech, Dept Biol Syst Engn, Blacksburg, VA 24061 USA. [Sathitsuksanoh, Noppadon; Zhang, Y. -H. Percival] Virginia Polytech Inst & State Univ, ICTAS, Blacksburg, VA 24061 USA. [Vinzant, Todd; Schell, Daniel J.; McMillan, James D.] Natl Bioenergy Ctr, Natl Renewable Energy Lab, Golden, CO USA. [Zhang, Y. -H. Percival] DOE BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. RP Zhang, YHP (reprint author), Virginia Polytech Inst & State Univ, Virginia Tech, Dept Biol Syst Engn, 210-A Seitz Hall, Blacksburg, VA 24061 USA. EM ypzhang@vt.edu RI sathitsuksanoh, noppadon/O-6305-2014; Zhu, Zhiguang/I-3936-2016 OI sathitsuksanoh, noppadon/0000-0003-1521-9155; FU ICTAS; USDA; ACS PRF, TV, DIS; U.S. Department of Energy FX Support for this work was provided to YHPZ from the USDA-sponsored Bioprocessing and Biodesign Center, DOE BioEnergy Science Center, DuPont Young Professor Award, ICTAS, and ACS PRF, TV, DIS, and JDM gratefully acknowledge funding from the U.S. Department of Energy's Office of the Biomass Program. NR 56 TC 107 Z9 110 U1 12 U2 68 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0006-3592 J9 BIOTECHNOL BIOENG JI Biotechnol. Bioeng. PD JUL 1 PY 2009 VL 103 IS 4 BP 715 EP 724 DI 10.1002/bit.22307 PG 10 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 474MZ UT WOS:000268289500009 PM 19337984 ER PT J AU Blakely, EA Chang, PY AF Blakely, Eleanor A. Chang, Polly Y. TI Biology of Charged Particles SO CANCER JOURNAL LA English DT Review DE charged particles; protons; carbon ions; heavy-ion radiobiology; high linear energy transfer effects; mechanisms underlying particle effects; particle radiotherapy; particle treatment planning; translational biology ID HEAVY-ION BEAMS; LOCAL EFFECT MODEL; SQUAMOUS-CELL CARCINOMA; MAMMALIAN-CELLS; ACCELERATED CARBON; NORMAL TISSUE; BRAGG PEAK; X-RAYS; IONIZING-RADIATION; TELESCOPE DETECTOR AB Charged particles have moved from the physics laboratory to the clinic because of their advantageous dose profile and biologic effects. This brief review will summarize the basic phenomenological laboratory data that led to the successful clinical use of these modalities in selected tumor sites, and the emerging new genomic and proteomic research that have provided translational evidence for potential molecular mechanisms underlying some impressive clinical results. C1 [Blakely, Eleanor A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Chang, Polly Y.] SRI Int, BioSci Div, Mol & Genet Toxicol Dept, Menlo Pk, CA 94025 USA. RP Blakely, EA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, 1 Cyclotron Rd,MS70A-1118, Berkeley, CA 94720 USA. EM EABlakely@lbl.gov NR 140 TC 14 Z9 14 U1 3 U2 9 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA SN 1528-9117 EI 1540-336X J9 CANCER J JI Cancer J. PD JUL-AUG PY 2009 VL 15 IS 4 BP 271 EP 284 PG 14 WC Oncology SC Oncology GA 482WN UT WOS:000268921000003 PM 19672143 ER PT J AU Pathak, S Cambaz, ZG Kalidindi, SR Swadener, JG Gogotsi, Y AF Pathak, Siddhartha Cambaz, Z. Goknur Kalidindi, Surya R. Swadener, J. Gregory Gogotsi, Yury TI Viscoelasticity and high buckling stress of dense carbon nanotube brushes SO CARBON LA English DT Article ID CONTINUOUS STIFFNESS MEASUREMENT; EFFECTIVE ZERO-POINT; MECHANICAL-PROPERTIES; ELASTIC-MODULUS; STRAIN CURVES; NANOINDENTATION; INDENTATION; INSTABILITIES; COMPOSITES; COMPRESSION AB We report on the mechanical behavior of a dense brush of small-diameter (1-3 nm) noncatalytic multiwall (2-4 walls) carbon nanotubes (CNTs), with similar to 10 times higher density than CNT brushes produced by other methods. Under compression with spherical indenters of different radii, these highly dense CNT brushes exhibit a higher modulus (similar to 17-20 GPa) and orders of magnitude higher resistance to buckling than vapor phase deposited CNT brushes or carbon walls. We also demonstrate the viscoelastic behavior, caused by the increased influence of the van der Waals' forces in these highly dense CNT brushes, showing their promise for energy-absorbing coatings. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Pathak, Siddhartha; Cambaz, Z. Goknur; Kalidindi, Surya R.; Gogotsi, Yury] Drexel Univ, AJ Drexel Nanotechnol Inst, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Pathak, Siddhartha] Swiss Fed Labs Mat Testing & Res, EMPA, CH-3602 Thun, Switzerland. [Swadener, J. Gregory] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Gogotsi, Y (reprint author), Drexel Univ, AJ Drexel Nanotechnol Inst, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. EM gogotsi@drexel.edu RI Kalidindi, Surya/A-1024-2007; Gogotsi, Yury/B-2167-2008; Cambaz Buke, Goknur/H-2574-2013; OI Gogotsi, Yury/0000-0001-9423-4032; Cambaz Buke, Goknur/0000-0001-9587-519X; Swadener, John G/0000-0001-5493-3461; Kalidindi, Surya/0000-0001-6909-7507 FU US Department of Energy, office of Basic Energy Sciences [DE-FG01-05ER05-01]; Sigma Xi Grants-in-Aid of Research (GIAR) program; 2007 Center for Integrated Nanotechnologies (CINT) FX We thank Instrinsic for SiC wafers and Dr. V Mochalin (Drexel University) and Dr. G. Yushin (currently with Georgia Tech.) for experimental help. Centralized Research Facility of the College of Engineering at Drexel University provided access to the microscopes and the MTS XPO System for nanoindentation used in this study. This work was supported by a grant from the US Department of Energy, office of Basic Energy Sciences (DE-FG01-05ER05-01) S. P. also wishes to acknowledge the support from the Sigma Xi Grants-in-Aid of Research (GIAR) program and the 2007 Center for Integrated Nanotechnologies (CINT) user proposal grant at Los Alamos National Lab, Los Alamos, NM which provided access to the Hysitron TriboScope used for the viscoelastic testing. NR 47 TC 70 Z9 71 U1 0 U2 41 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 EI 1873-3891 J9 CARBON JI Carbon PD JUL PY 2009 VL 47 IS 8 BP 1969 EP 1976 DI 10.1016/j.carbon.2009.03.042 PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 456OG UT WOS:000266855800011 ER PT J AU Guo-Bao, S Ikegami, M AF Guo-Bao, Shen Ikegami, Masanori TI Tuning of RF amplitude and phase for the drift tube linac in J-PARC SO CHINESE PHYSICS C LA English DT Article DE high-intensity beam; drift tube linac; signature matching; J-PARC AB The J-PARC linac has three DTL tanks to accelerate the negative hydrogen ions front 3 to 50 MeV. The phase and amplitude are adjusted for each cavity with a phase scan method within the accuracy of 1 degrees in phase and 1% in amplitude. The experimental results show, a remarkable agreement with the numerical model within a sufficient margin in the tuning of the last two DTL tanks. However, a notable discrepancy between the experiment and the numerical model is seen in the tuning of the first DTL tank. After studying with a three-dimensional multi-particle simulation, the generation of the low energy component and the pronounced filamentation are identified as the main causes of the discrepancy. The optimization of the tuning scheme is also discussed to attain the tuning goal accuracy for the first DTL tank. C1 [Guo-Bao, Shen] Japan Atom Energy Agcy, Tokai, Ibaraki 3191195, Japan. [Ikegami, Masanori] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. RP Guo-Bao, S (reprint author), Brookhaven Natl Lab, POB 5000, Upton, NY 11973 USA. EM shengb@bnl.gov RI shen, guobao/B-1811-2010 NR 10 TC 3 Z9 3 U1 0 U2 0 PU CHINESE PHYSICAL SOC PI BEIJING PA P O BOX 603, BEIJING 100080, PEOPLES R CHINA SN 1674-1137 J9 CHINESE PHYS C JI Chin. Phys. C PD JUL PY 2009 VL 33 IS 7 BP 577 EP 582 PG 6 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 465VA UT WOS:000267615400014 ER PT J AU Liu, W Dong, GH Jin, YH Sasaki, K Saito, N Sato, I Tsuda, S Nakayama, SF AF Liu Wei Dong GuangHui Jin YiHe Sasaki, Kazuaki Saito, Norimitsu Sato, Itaru Tsuda, Shuji Nakayama, Shoji F. TI Occurrence of perfluoroalkyl acids in precipitation from Shenyang, China SO CHINESE SCIENCE BULLETIN LA English DT Article DE perfluorosulfonates; perfluorocarboxylates; snow; wet deposition ID PERFLUOROOCTANE SULFONATE; ATMOSPHERIC DEPOSITION; FLUORINATED ORGANICS; PERFLUORINATED ACIDS; MASS-SPECTROMETRY; SURFACE WATERS; SNOW; CHEMICALS; ALCOHOLS; SAMPLES AB Perfluorosulfonates (PFSAs) and perfluorocarboxylates (PFCAs) in precipitation collected from Shenyang, China were determined. Snow samples were collected in the snow event on March 4, 2007 from 34 sites involving both the urban and suburban areas in Shenyang. The snowmelt was preconcentrated by solid phase extraction and analyzed using LC-MS method. Measurable amounts of perfluoroalkyl acids (PFAS) were found in precipitation samples from Shenyang, demonstrating that wet deposition is one possible pathway for the removing of the selected PFAS chemicals from atmosphere. Major PFAS detected were PFOS (<0.38-51 ng/L), PFOA (0.82-13 ng/L) and PFHpA (0.76-11 ng/L), with their mean concentration of 5.4, 3.3 and 2.9 ng/L, respectively. Other PFSAs and PFCAs were detected at much lower frequency or below the limit of detection in all the samples. The work presented here offers some basis for the investigation on the environmental behavior and the evaluation of human exposure to PFAS. C1 [Liu Wei; Jin YiHe] Dalian Univ Technol, Key Lab Ind Ecol & Environm Engn, Minist Educ, Sch Environm & Biol Sci & Technol, Dalian 116024, Peoples R China. [Dong GuangHui] China Med Univ, Sch Publ Hlth, Shenyang 110001, Peoples R China. [Sasaki, Kazuaki; Saito, Norimitsu] Res Inst Environm Sci & Publ Hlth Iwate Prefectur, Morioka, Iwate 0200852, Japan. [Sato, Itaru; Tsuda, Shuji] Iwate Univ, Lab Vet Publ Hlth, Dept Vet Med, Fac Agr, Morioka, Iwate 0208550, Japan. [Nakayama, Shoji F.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA. RP Jin, YH (reprint author), Dalian Univ Technol, Key Lab Ind Ecol & Environm Engn, Minist Educ, Sch Environm & Biol Sci & Technol, Dalian 116024, Peoples R China. EM jinyihe@dlut.edu.cn RI Nakayama, Shoji/B-9027-2008; Liu, Wei/P-5804-2014 OI Liu, Wei/0000-0001-8920-1172 NR 31 TC 13 Z9 15 U1 3 U2 32 PU SCIENCE PRESS PI BEIJING PA 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA SN 1001-6538 J9 CHINESE SCI BULL JI Chin. Sci. Bull. PD JUL PY 2009 VL 54 IS 14 BP 2440 EP 2445 DI 10.1007/s11434-009-0187-2 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 478FD UT WOS:000268572300014 ER PT J AU Fata, SN Gray, LJ AF Fata, Sylvain Nintcheu Gray, Leonard J. TI A fast spectral Galerkin method for hypersingular boundary integral equations in potential theory SO COMPUTATIONAL MECHANICS LA English DT Article DE Boundary integral method; Regular grid method; Fast Fourier transform; Fast algorithm; Potential theory ID IMPLEMENTATION; BEM AB This research is focused on the development of a fast spectral method to accelerate the solution of three-dimensional hypersingular boundary integral equations of potential theory. Based on a Galerkin approximation, the fast Fourier transform and local interpolation operators, the proposed method is a generalization of the precorrected-FFT technique to deal with double-layer potential kernels, hypersingular kernels and higher-order basis functions. Numerical examples utilizing piecewise linear shape functions are included to illustrate the performance of the method. C1 [Fata, Sylvain Nintcheu; Gray, Leonard J.] Oak Ridge Natl Lab, Comp Sci & Math Div, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Fata, SN (reprint author), Oak Ridge Natl Lab, Comp Sci & Math Div, Div Math & Comp Sci, POB 2008,MS 6367, Oak Ridge, TN 37831 USA. EM nintcheufats@ornl.gov FU US Government [DE-AC05-00OR22725] FX The submitted manuscript has been authored by a contractor of the US Government under Contract No. DE-AC05-00OR22725. Accordingly, the US Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. NR 16 TC 8 Z9 8 U1 0 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0178-7675 J9 COMPUT MECH JI Comput. Mech. PD JUL PY 2009 VL 44 IS 2 BP 263 EP 271 DI 10.1007/s00466-009-0373-8 PG 9 WC Mathematics, Interdisciplinary Applications; Mechanics SC Mathematics; Mechanics GA 439SQ UT WOS:000265647700009 ER PT J AU Babar, MA Gorton, I AF Babar, Muhammad Ali Gorton, Ian TI Software Architecture Review: The State of Practice SO COMPUTER LA English DT Article ID DESIGN C1 [Gorton, Ian] Pacific NW Natl Lab, Data Intens Comp Initiat, Richland, WA USA. EM malibaba@lero.ie; ian.gorton@pnl.gov RI Gorton, Ian/A-8247-2009 FU Science Foundation Ireland [03/CE2/I303_1] FX We thank the participants in this study for their interest and time. Lero is supported by Science Foundation Ireland under grant 03/CE2/I303_1. NR 15 TC 8 Z9 8 U1 0 U2 0 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0018-9162 J9 COMPUTER JI Computer PD JUL PY 2009 VL 42 IS 7 BP 26 EP 32 PG 7 WC Computer Science, Hardware & Architecture; Computer Science, Software Engineering SC Computer Science GA 466AQ UT WOS:000267633000007 ER PT J AU Younes, W AF Younes, W. TI Gaussian matrix elements in a cylindrical harmonic oscillator basis SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Deformed harmonic oscillator; Gaussian interaction; Matrix elements; Gogny force ID HARTREE-FOCK CALCULATIONS AB We derive a formalism, the separation method, for the efficient and accurate calculation of two-body matrix elements for a Gaussian potential in the cylindrical harmonic-oscillator basis. This formalism is of critical importance for Hartree-Fock and Hartree-Fock-Bogoliubov calculations in deformed nuclei using realistic, finite-range effective interactions between nucleons. The results given here are also relevant for microscopic many-body calculations in atomic and molecular physics, as the formalism can be applied to other types of interactions beyond the Gaussian form. The derivation is presented in great detail to emphasize the methodology, which relies on generating functions. The resulting analytical expressions for the Gaussian matrix elements are checked for speed and accuracy as a function of the number of oscillator shells and against direct numerical integration. (C) 2009 Elsevier B.V. All rights reserved. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Younes, W (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM younes1@llnl.gov NR 12 TC 3 Z9 3 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD JUL PY 2009 VL 180 IS 7 BP 1013 EP 1040 DI 10.1016/j.cpc.2008.12.021 PG 28 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 467GS UT WOS:000267727100001 ER PT J AU Moritsugu, K Smith, JC AF Moritsugu, Kei Smith, Jeremy C. TI REACH: A program for coarse-grained biomolecular simulation SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE REACH; Coarse-grained force field; Molecular Dynamics (MD) simulation; Elastic network model (ENM) ID SINGLE-PARAMETER; NUCLEIC-ACIDS; PROTEINS; MOTIONS AB REACH (Eealistic Extension Algorithm via Covariance Hessian) is a program package for residue-scale coarse-grained biomolecular simulation. The program calculates the force constants of a residue-scale elastic network model in single-domain proteins using the variance-covariance matrix obtained from atomistic molecular dynamics simulation. Secondary-structure dependence of the force constants is integrated. The method involves self-consistent, direct mapping of atomistic simulation results onto a coarse-grained force field in an efficient automated procedure without requiring iterative fits and avoiding system dependence. Program summary Program title: REACH Catalogue identifier: AEDA_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEDA_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 42 244 No. of bytes in distributed program, including test data, etc.: 3682118 Distribution format: tar.gz Programming language: FORTRAN 77 Computer: x86 PC Operating system: GNU/Linux, SUSE and Red Hat RAM: Depends on the system size to be calculated Word size: 32 or 64 bits Classification: 3 External routines: LAPACK, BLAS Nature of problem: A direct calculation of force field for residue-scale coarse-grained biomolecular simulation derived from atomistic molecular dynamics trajectory. Solution method: A variance-covariance matrix and the associated Hessian (second-derivative) matrix are calculated from an atomistic molecular dynamics trajectory of single-domain protein internal motion and the off-diagonal Hessian matrix is fitted to that of a residue-scale elastic network model. The resulting force constants for the residue pair interactions are expressed as model functions as a function of pairwise distance. Running time: Depends on the system size and the number of MD trajectory frames used. The test run provided with the distribution takes only a few seconds to execute. (C) 2009 Elsevier B.V. All rights reserved. C1 [Moritsugu, Kei] RIKEN, Computat Sci Res Program, Wako, Saitama 3510198, Japan. [Moritsugu, Kei; Smith, Jeremy C.] Univ Tennessee, Ctr Biophys Mol, Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Moritsugu, K (reprint author), RIKEN, Computat Sci Res Program, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. EM moritsuguk@riken.jp RI smith, jeremy/B-7287-2012 OI smith, jeremy/0000-0002-2978-3227 NR 14 TC 4 Z9 4 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD JUL PY 2009 VL 180 IS 7 BP 1188 EP 1195 DI 10.1016/j.cpc.2009.01.007 PG 8 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 467GS UT WOS:000267727100018 ER PT J AU Sterling, T Stark, D AF Sterling, Thomas Stark, Dylan TI A High-Performance Computing Forecast: Partly Cloudy SO COMPUTING IN SCIENCE & ENGINEERING LA English DT Article AB Cloud computing is emerging as an important computational resource allocation trend in commercial, academic, and industrial sectors. Yet, because the business model doesn't currently meet all the needs of high-performance computing (HPC)-the demands of capability computing, for example-the relationship between clouds and HPC suggests a partly cloudy forecast. C1 [Stark, Dylan] Louisiana State Univ, Dept Comp Sci, Baton Rouge, LA 70803 USA. [Stark, Dylan] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA. RP Sterling, T (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM tron@cct.lsu.edu; dstark@cct.lsu.edu RI zong, fico/H-4677-2011 NR 8 TC 13 Z9 14 U1 0 U2 6 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1521-9615 J9 COMPUT SCI ENG JI Comput. Sci. Eng. PD JUL-AUG PY 2009 VL 11 IS 4 BP 42 EP 49 PG 8 WC Computer Science, Interdisciplinary Applications SC Computer Science GA 457FI UT WOS:000266913500008 ER PT J AU Henning, P White, AB AF Henning, Paul White, Andrew B., Jr. TI TRAILBLAZING WITH ROADRUNNER SO COMPUTING IN SCIENCE & ENGINEERING LA English DT Editorial Material C1 [Henning, Paul; White, Andrew B., Jr.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Henning, P (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM phenning@lanl.gov; abw@lanl.gov NR 8 TC 3 Z9 3 U1 0 U2 1 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1521-9615 J9 COMPUT SCI ENG JI Comput. Sci. Eng. PD JUL-AUG PY 2009 VL 11 IS 4 BP 91 EP 95 PG 5 WC Computer Science, Interdisciplinary Applications SC Computer Science GA 457FI UT WOS:000266913500014 ER PT J AU Sommer, R Paxson, V Weaver, N AF Sommer, Robin Paxson, Vern Weaver, Nicholas TI An architecture for exploiting multi-core processors to parallelize network intrusion prevention SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Article CT International Workshop on Network and System Security (NSS 2008) CY OCT, 2008 CL Shanghai, PEOPLES R CHINA DE network intrusion detection; event-based system; concurrent processing; evaluation ID SYSTEM AB It is becoming increasingly difficult to implement effective systems for preventing network attacks, due to the combination of the rising sophistication of attacks requiring more complex analyses to detect; the relentless growth in the volume of network traffic that we must analyze; and, critically, the failure in recent years for uniprocessor performance to sustain the exponential gains that for so many years CPUs have enjoyed. For commodity hardware, tomorrow's performance gains will instead come from multi-core architectures in which a whole set of CPUs executes concurrently. Taking advantage of the full power of multi-core processors for network intrusion prevention requires an in-depth approach. In this work we frame an architecture customized for parallel execution of network attack analysis. At the lowest layer of the architecture is an 'Active Network Interface', a custom device based on an inexpensive FPGA platform. The analysis itself is structured as an event-based system, which allows us to find many opportunities for concurrent execution, since events introduce a natural asynchrony into the analysis while still maintaining good cache locality. A preliminary evaluation demonstrates the potential of this architecture. Copyright (c) 2009 John Wiley & Sons, Ltd. C1 [Sommer, Robin; Paxson, Vern; Weaver, Nicholas] Int Comp Sci Inst, Berkeley, CA 94704 USA. [Sommer, Robin] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Sommer, R (reprint author), Int Comp Sci Inst, Berkeley, CA 94704 USA. EM robin@icsi.berkeley.edu NR 53 TC 13 Z9 17 U1 1 U2 4 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1532-0626 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD JUL PY 2009 VL 21 IS 10 BP 1255 EP 1279 DI 10.1002/cpe.1422 PG 25 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA 474SJ UT WOS:000268304000002 ER PT J AU Graves, GR Romanek, CS AF Graves, Gary R. Romanek, Christopher S. TI Mesoscale patterns of altitudinal tenancy in migratory wood warblers inferred from stable carbon isotopes SO ECOLOGICAL APPLICATIONS LA English DT Article DE altitudinal tenancy; Appalachian Mountains, North Carolina, USA; Black-throated Blue Warbler; Dendroica caerulescens; isotope turnover rates; migratory birds; stable carbon isotopes ID THROATED BLUE WARBLERS; LONG-DISTANCE DISPERSAL; DENDROICA-CAERULESCENS; NEOTROPICAL MIGRANT; SATELLITE TRACKING; BREEDING ORIGINS; WINTER HABITAT; BARN SWALLOWS; HYDROGEN; RATIOS AB We analyzed carbon isotope ratios (delta C-13) of liver and pectoral muscle of Black-throated Blue Warblers (Dendroica caerulescens) to provide a mesoscale perspective on altitudinal tenancy in the Appalachian Mountains, North Carolina, USA. Movements of males are poorly understood, particularly the degree to which yearlings (first breeding season) and older males (second or later breeding season) wander altitudinally during the breeding season. Liver and muscle delta C-13 values of warblers exhibited significant year and altitude effects, but yearling and older males were isotopically indistinguishable. Liver delta C-13 values increased with altitude at the rate of similar to 0.5 parts per thousand per 1000 m. The altitudinal lapse rate of muscle delta C-13 (similar to 1.1 parts per thousand per 1000 m) was nearly identical to the average rate of increase reported in several groups of C-3 plants (similar to 1.1 parts per thousand per 1000 m). This suggests that the majority of males foraged within relatively narrow altitudinal zones during the breeding season. We caution, however, that the discrimination of altitudinal trends in carbon isotope ratios depends on relatively large multiyear samples. Given the scatter in data, it is unlikely that individuals can be accurately assigned to a particular altitude from carbon isotope values. Rapid adjustment of liver and muscle delta C-13 values to local altitudinal environments is consistent with the results of experimental dietary studies that show carbon turnover rates are relatively rapid in small migratory passerines. In a broader context, carbon isotope data have been increasingly used as proxies for wintering habitat use of Nearctic-Neotropical migratory passerines. However, tissues with high metabolic rates are unlikely to retain much isotopic signal of wintering habitat use by the time migrants reach their breeding territories. C1 [Graves, Gary R.] Smithsonian Inst, Natl Museum Nat Hist, Dept Vertebrate Zool, Washington, DC 20013 USA. [Romanek, Christopher S.] Univ Georgia, Athens, GA 30602 USA. [Romanek, Christopher S.] Savannah River Ecol Lab, Aiken, SC 29802 USA. [Romanek, Christopher S.] Dept Geol, Aiken, SC 29802 USA. RP Graves, GR (reprint author), Smithsonian Inst, Natl Museum Nat Hist, Dept Vertebrate Zool, MRC 116,POB 37012, Washington, DC 20013 USA. EM gravesg@si.edu FU Alexander Wetmore Fund; Biodiversity Surveys and Inventory Program of the National Museum of Natural History, Smithsonian Institution; Department of Energy [DE-FC09-07SR22506] FX We thank Lindy Paddock and Kenneth Cole for laboratory assistance. Seth Newsome, Mike Wunder, and an anonymous reviewer provided cogent reviews. Brian Schmidt, Chris Milensky, Phil Angle, Jim Dean, and Carla Dove prepared specimens, and Joe Bonnette, John Gerwin, Chuck Hunter, Glen McConnell, and Mark Robison helped with permits. Gary R. Graves was supported by the Alexander Wetmore Fund and the Biodiversity Surveys and Inventory Program of the National Museum of Natural History, Smithsonian Institution. Christopher S. Romanek was supported by the Department of Energy under Award Number DE-FC09-07SR22506 to the University of Georgia Research Foundation. Specimens were collected under the auspices of the Animal Care and Use Committee, National Museum of Natural History. Research permits were issued by the U. S. Fish and Wildlife Service, U. S. Forest Service ( Department of Agriculture), and North Carolina Wildlife Resources Commission. NR 85 TC 3 Z9 4 U1 1 U2 15 PU ECOLOGICAL SOC AMER PI WASHINGTON PA 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA SN 1051-0761 EI 1939-5582 J9 ECOL APPL JI Ecol. Appl. PD JUL PY 2009 VL 19 IS 5 BP 1264 EP 1273 DI 10.1890/08-0934.1 PG 10 WC Ecology; Environmental Sciences SC Environmental Sciences & Ecology GA 458KW UT WOS:000267020200017 PM 19688933 ER PT J AU Peltier, GL Wright, MS Hopkins, WA Meyer, JL AF Peltier, Gretchen Loeffler Wright, Meredith S. Hopkins, William A. Meyer, Judy L. TI Accumulation of trace elements and growth responses in Corbicula fluminea downstream of a coal-fired power plant SO ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY LA English DT Article DE Corbicula fluminea; Coal-fired power plant; Selenium; Mercury; Glutathione; Condition index; Bioaccumulation ID FRESH-WATER BIVALVE; SELENIUM TOXICITY; MERCURY ASSIMILATION; COPPER ACCUMULATION; MATERNAL TRANSFER; OXIDATIVE STRESS; CONTAMINATION; POPULATIONS; METALS; RIVER AB Lentic organisms exposed to coal-fired power plant (CFPP) discharges can have elevated trace element concentrations in their tissues, but this relationship and its potential consequences are unclear for lotic organisms. To explore these patterns in a lotic environment, we transplanted Corbicula fluminea from a reference stream to a stream receiving CFPP discharge. We assessed trace element accumulation and glutathione concentration in clam tissue, shell growth, and condition index at five sites along a contamination gradient. Clams at the most upstream and contaminated site had the highest growth rate, condition index, glutathione concentrations, and concentrations of arsenic (7.85 +/- 0.25 mu g/g [dry mass]), selenium (17.75 +/- 0.80 mu g/g), and cadmium (7.28 +/- 0.34 mu g/g). Mercury concentrations declined from 4.33 +/- 0.83 to 0.81 +/- 0.11 mu g/g [dry mass] in clams transplanted into the selenium-rich environment nearest the power plant, but this effect was not as evident at less impacted, downstream sites. Even though dilution of trace elements within modest distances from the power plant reduced bioaccumulation potential in clams, long-term loading of trace elements to downstream depositional regions (e.g., slow moving, silty areas) is likely significant. (C) 2009 Elsevier Inc. All rights reserved. C1 [Peltier, Gretchen Loeffler; Meyer, Judy L.] Univ Georgia, Odum Sch Ecol, Athens, GA 30602 USA. [Wright, Meredith S.; Hopkins, William A.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. RP Peltier, GL (reprint author), Columbia Univ, Earth Inst, New York, NY 10025 USA. EM gl232@columbia.edu RI Schneider, Larissa/C-9863-2012 FU Graduate Research Fellowship under Financial Assistance Award [DE-FC0996SR78-546]; University of Georgia and the US Department of Energy FX We thank Heather Brant, Chuck Jagoe, Brian Jackson, and the Advanced Analytical Center for Environmental Sciences at the Savannah River Ecology Laboratory for assistance in ICP-MS analysis. Field assistance was provided by Sarah DuRant, Davis Harrelson, and John Peterson. We extend special thanks to Marsha Black and Deanna Conners for the use of field equipment and guidance in cage design. G.L.P was partially funded by a Graduate Research Fellowship under Financial Assistance Award DE-FC0996SR78-546 from the University of Georgia and the US Department of Energy. NR 47 TC 22 Z9 22 U1 0 U2 24 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0147-6513 J9 ECOTOX ENVIRON SAFE JI Ecotox. Environ. Safe. PD JUL PY 2009 VL 72 IS 5 BP 1384 EP 1391 DI 10.1016/j.ecoenv.2009.01.011 PG 8 WC Environmental Sciences; Toxicology SC Environmental Sciences & Ecology; Toxicology GA 455KU UT WOS:000266759200010 PM 19272648 ER PT J AU Himanen, JP Goldgur, Y Hui, MA Myshkin, E Guo, H Buck, M Nguyen, M Rajashankar, KR Wang, BC Nikolov, DB AF Himanen, Juha P. Goldgur, Yehuda Hui Miao Myshkin, Eugene Guo, Hong Buck, Matthias Nguyen, My Rajashankar, Kanagalaghatta R. Wang, Bingcheng Nikolov, Dimitar B. TI Ligand recognition by A-class Eph receptors: crystal structures of the EphA2 ligand-binding domain and the EphA2/ephrin-A1 complex SO EMBO REPORTS LA English DT Article DE Eph; ephrin; receptor tyrosine kinase; crystallography ID SPECIFICITY; ATTACHMENT; PEPTIDE AB Ephrin (Eph) receptor tyrosine kinases fall into two subclasses (A and B) according to preferences for their ephrin ligands. All published structural studies of Eph receptor/ephrin complexes involve B-class receptors. Here, we present the crystal structures of an A-class complex between EphA2 and ephrin-A1 and of unbound EphA2. Although these structures are similar overall to their B-class counterparts, they reveal important differences that define subclass specificity. The structures suggest that the A-class Eph receptor/ephrin interactions involve smaller rearrangements in the interacting partners, better described by a 'lock-and-key'-type binding mechanism, in contrast to the 'induced fit' mechanism defining the B-class molecules. This model is supported by structure-based mutagenesis and by differential requirements for ligand oligomerization by the two subclasses in cell-based Eph receptor activation assays. Finally, the structure of the unligated receptor reveals a homodimer assembly that might represent EphA2-specific homotypic cell adhesion interactions. C1 [Hui Miao; Myshkin, Eugene; Guo, Hong; Wang, Bingcheng] Rammelkamp Ctr Res, Dept Med, Cleveland, OH 44109 USA. [Hui Miao; Myshkin, Eugene; Guo, Hong; Wang, Bingcheng] Ctr Comprehens Canc, Cleveland, OH 44109 USA. [Hui Miao; Myshkin, Eugene; Guo, Hong; Wang, Bingcheng] Dept Pharmacol, Cleveland, OH 44109 USA. [Himanen, Juha P.; Goldgur, Yehuda; Nguyen, My; Nikolov, Dimitar B.] Mem Sloan Kettering Canc Ctr, Struct Biol Program, New York, NY 10021 USA. [Buck, Matthias] Case Western Reserve Univ, Sch Med, Dept Physiol & Biophys, Cleveland, OH 44106 USA. [Rajashankar, Kanagalaghatta R.] Argonne Natl Lab, APS, NE CAT, Argonne, IL 60439 USA. RP Wang, BC (reprint author), Rammelkamp Ctr Res, Dept Med, Metro Hlth Campus,2500 Metro Hlth Dr, Cleveland, OH 44109 USA. EM bxw14@case.edu; nikolovd@mskcc.org RI Buck, Matthias/B-2106-2017 OI Buck, Matthias/0000-0002-2958-0403 FU National Institutes of Health (NIH) [NS38486, GM75886, CA96533, CA92259, DK077876]; National Center for Research Resources [RR- 15301]; U. S. Department of Energy [DE- AC02- 06CH11357] FX We thank Ms Chen Li for expert technical assistance. This work was supported by National Institutes of Health (NIH) grants NS38486 to D. B. N., GM75886 to J. P. H., and CA96533, CA92259, DK077876 to B. W. The NECAT beamlines are supported by award RR- 15301 from the National Center for Research Resources at the NIH. APS use is supported by the U. S. Department of Energy under contract no. DE- AC02- 06CH11357. NR 18 TC 60 Z9 64 U1 0 U2 4 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1469-221X J9 EMBO REP JI EMBO Rep. PD JUL PY 2009 VL 10 IS 7 BP 722 EP 728 DI 10.1038/embor.2009.91 PG 7 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 465PQ UT WOS:000267599700014 PM 19525919 ER PT J AU Haas, TJ Nimlos, MR Donohoe, BS AF Haas, Thomas J. Nimlos, Mark R. Donohoe, Bryon S. TI Real-Time and Post-reaction Microscopic Structural Analysis of Biomass Undergoing Pyrolysis SO ENERGY & FUELS LA English DT Article; Proceedings Paper CT 18th Conference on Impacts of Fuel Quality on Power Generation and Environment CY SEP 29-OCT 03, 2008 CL Banff, CANADA ID STEAM GASIFICATION; PARTICLE-SIZE; FLUIDIZED-BED; CHARS; KINETICS; DEVOLATILIZATION; RESIDUES; CHARCOAL; LIGNIN AB The structural complexity of unprocessed plant tissues used for thermochemical conversion of biomass to fuels and energy impedes heat and mass transfer and may increase the occurrence of tar-forming secondary chemical reactions. At industrial scales, gas and liquid products trapped within large biomass particles may reduce net fuel yields and increase tars, impacting industrial operations and increasing overall costs. Real-time microscopic analysis of poplar (Populus sp.) wood samples undergoing anoxic, pyrolytic heat treatment has revealed a pattern of tissue and macropore expansion and collapse. Post-reaction Structural analyses of biomass char (biochar) by light and transmission electron microscopy have provided direct structural evidence of pyrolysis product mass-transfer issues, including trapped pyrolysis products and cell wall compression, and have demonstrated the impact of heat-transfer problems on biomass particles. Finally, microscopic imaging has revealed that pyrolyzed/gasified biochars recovered from a fluidized bed reactor retain a similar pre-reaction basic plant tissue structure as the samples used in this study, suggesting that the phenomena observed here are representative of those that occur in larger scale reactors. C1 [Haas, Thomas J.; Donohoe, Bryon S.] Natl Renewable Energy Lab, Chem & Biosci Ctr, Golden, CO 80401 USA. [Nimlos, Mark R.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. RP Donohoe, BS (reprint author), Natl Renewable Energy Lab, Chem & Biosci Ctr, 1617 Cole Blvd, Golden, CO 80401 USA. EM bryon.donohoe@nrel.gov NR 27 TC 46 Z9 46 U1 0 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD JUL PY 2009 VL 23 IS 7 BP 3810 EP 3817 DI 10.1021/ef900201b PG 8 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 484YU UT WOS:000269087900059 ER PT J AU Emery, JM Hochhalter, JD Wawrzynek, PA Heber, G Ingraffea, AR AF Emery, J. M. Hochhalter, J. D. Wawrzynek, P. A. Heber, G. Ingraffea, A. R. TI DDSim: A hierarchical, probabilistic, multiscale damage and durability simulation system - Part I: Methodology and Level I SO ENGINEERING FRACTURE MECHANICS LA English DT Article; Proceedings Paper CT Workshop on MatModels CY JUN 11-12, 2007 CL Hamburg, GERMANY DE Damage tolerance; Durability; Fatigue; Multiscale; Microstructural; Probabilistic; Monte Carlo ID FATIGUE-CRACK-GROWTH; ALUMINUM-ALLOYS; 7075-T6; STATE AB Current tools for fatigue life prediction of metallic structural components are limited in some or all of the following capabilities: geometry of, and boundary conditions on, the affected structural component, automation of the simulation process, randomness of the primary variables, and physics of the damage evolution processes. DDSim, a next-generation damage and durability simulator, addresses each of these limitations with a hierarchical, multiscale, "search and simulate" strategy. This hierarchical strategy consists of three levels. Level I, described in this paper, performs an initial, reduced order, conservative screening, based on a linear finite element analysis of the uncracked component, to determine the most life-limiting locations for intrinsic material flaws. Initial flaw size can be specified deterministically, or generated randomly from statistical descriptions of the microstructure and used in Monte Carlo simulation. The result is a scalar field of predicted life over the entire domain of the structure. The benefits of the Level I analysis include a high degree of automation, solution speed, and easy implementation of high performance parallel computing resources. A validation case study of Level I is described. Levels II and III are outlined herein, but will be described in further detail in subsequent papers. The Level II analysis uses FRANC3D to accurately predict the number of cycles consumed by microstructurally large crack growth processes. Level III performs multiscale analyses to accurately predict the cycles consumed in microstructurally small crack growth processes. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Emery, J. M.] Sandia Natl Labs, Dept Solid Mech, Albuquerque, NM 87185 USA. [Hochhalter, J. D.; Heber, G.; Ingraffea, A. R.] Cornell Univ, Cornell Fracture Grp, Ithaca, NY USA. [Wawrzynek, P. A.] Fracture Anal Consultants, Ithaca, NY USA. RP Emery, JM (reprint author), Sandia Natl Labs, Dept Solid Mech, POB 5800,MS0346, Albuquerque, NM 87185 USA. EM jmemery@sandia.gov; jdh66@cornell.edu; wash@fac.cfg.cornell.edu; Gerd.Heber@oxford-man.ox.ac.uk; ari1@cornell.edu OI Emery, John /0000-0001-6671-4952 NR 45 TC 8 Z9 10 U1 0 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-7944 J9 ENG FRACT MECH JI Eng. Fract. Mech. PD JUL PY 2009 VL 76 IS 10 BP 1500 EP 1530 DI 10.1016/j.engfracmech.2009.02.018 PG 31 WC Mechanics SC Mechanics GA 476JH UT WOS:000268435700010 ER PT J AU Settgast, RR Rashid, MM AF Settgast, Randolph R. Rashid, Mark M. TI Continuum coupled cohesive zone elements for analysis of fracture in solid bodies SO ENGINEERING FRACTURE MECHANICS LA English DT Article DE Cohesive continuum; Cohesive fracture; Ductile fracture; Finite elements ID STRONG DISCONTINUITY APPROACH; SOFTENING CONSTITUTIVE-EQUATIONS; MODELING STRONG DISCONTINUITIES; NUMERICAL-SIMULATION; CRACK-GROWTH; FINITE-ELEMENTS; VOID NUCLEATION; DEFORMATION; MECHANICS; LOCALIZATION AB Embedding cohesive surfaces into finite element models is a widely used technique for the numerical simulation of material separation (i.e. crack propagation). Typically, a traction-separation law is specified that relates the magnitude of the cohesive traction to the distance between the separating surfaces. Thus the characterization of fracture in such models is not directly coupled to the bulk constitutive response, in the sense that the cohesive traction does not explicitly depend on material stretching in the plane of the fracture surface. In this work, an initially-rigid cohesive-traction formulation that is coupled to the surrounding continuum is introduced as a further development of the cohesive zone idea. In this model, the traction-separation law - and therefore the fracture phenomenology derives directly from the bulk constitutive law. The immediate goal is an improved cohesive zone framework that naturally and logically initiates cohesive separation behavior, and couples its evolution to the material state in the region of the crack tip. A cohesive element based on this model is implemented in an explicit three-dimensional finite element code. Proof-of-concept analyses using both linear elastic and Gurson void growth constitutive relations are presented. A three-point bend simulation is found to give good agreement with experimental results. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Rashid, Mark M.] Univ Calif Davis, Dept Civil & Environm Engn, Davis, CA 95616 USA. [Settgast, Randolph R.] Lawrence Livermore Natl Lab, Computat Geosci Grp, Livermore, CA 94550 USA. RP Rashid, MM (reprint author), Univ Calif Davis, Dept Civil & Environm Engn, 1 Shields Ave, Davis, CA 95616 USA. EM mmrashid@ucdavis.edu NR 47 TC 5 Z9 5 U1 0 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-7944 EI 1873-7315 J9 ENG FRACT MECH JI Eng. Fract. Mech. PD JUL PY 2009 VL 76 IS 11 BP 1614 EP 1635 DI 10.1016/j.engfracmech.2009.02.024 PG 22 WC Mechanics SC Mechanics GA 476JJ UT WOS:000268436000005 ER PT J AU Drury, E Denholm, P Margolis, RM AF Drury, Easan Denholm, Paul Margolis, Robert M. TI The solar photovoltaics wedge: pathways for growth and potential carbon mitigation in the US SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE photovoltaics; solar; carbon reduction; carbon wedge; PV LCA emissions ID ELECTRIC-POWER SYSTEMS; ENERGY-STORAGE; UNITED-STATES; EMISSIONS; REQUIREMENTS; TECHNOLOGIES; GENERATION; LIMITS; PV AB The challenge of stabilizing global carbon emissions over the next 50 years has been framed in the context of finding seven 1.0 Gton C/year carbon reduction wedges. Solar photovoltaics (PV) could provide at least one carbon wedge, but will require significant growth in PV manufacturing capacity. The actual amount of installed PV capacity required to reach wedge-level carbon reductions will vary greatly depending on the mix of avoided fuels and the additional emissions from manufacturing PV capacity. In this work, we find that the US could reduce its carbon emissions by 0.25 Gton C/year, equal to the fraction of a global carbon wedge proportional to its current domestic electricity use, by installing 792-811 GW of PV capacity. We evaluate a series of PV growth scenarios and find that wedge-level reductions could be met by increasing PV manufacturing capacity and annual installations by 0.95 GW/year/year each year from 2009 to 2050 or by increasing up to 4 GW/year/year for a period of 4-17 years for early and late growth scenarios. This challenge of increasing PV manufacturing capacity and market demand is significant but not out of line with the recent rapid growth in both the global and US PV industry. We find that the rapid growth in PV manufacturing capacity leads to a short term increase in carbon emissions from the US electric sector. However, this increase is small, contributing less than an additional 0.3% to electric sector emissions for less than 4.5 years, alleviating recent concern regarding carbon emissions from rapid PV growth scenarios. C1 [Drury, Easan; Denholm, Paul] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Margolis, Robert M.] Natl Renewable Energy Lab, Washington, DC 20024 USA. RP Drury, E (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM easan.drury@nrel.gov NR 33 TC 7 Z9 7 U1 1 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD JUL-SEP PY 2009 VL 4 IS 3 AR 034010 DI 10.1088/1748-9326/4/3/034010 PG 11 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 505AH UT WOS:000270659300014 ER PT J AU Williams, PRD Inman, D Aden, A Heath, GA AF Williams, Pamela R. D. Inman, Daniel Aden, Andy Heath, Garvin A. TI Environmental and Sustainability Factors Associated With Next-Generation Biofuels in the US: What Do We Really Know? SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Review ID SWITCHGRASS PANICUM-VIRGATUM; LIFE-CYCLE ASSESSMENT; SOIL ORGANIC-CARBON; LAND-USE CHANGE; CROP RESIDUES; ENERGY CROPS; CORN-STOVER; RENEWABLE ENERGY; UNITED-STATES; ETHANOL AB In this paper, we assess what is known or anticipated about environmental and sustainability factors associated with next-generation biofuels relative to the primary conventional biofuels (i.e., corn grain-based ethanol and soybean-based diesel) in the United State during feedstock production and conversion processes. Factor considered include greenhouse (GHG) emissions air pollutant emissions, soil health and quality, water use and water quality, wastewater and solid waste streams, and biodiversity add land-use changes. Based on our review of the available literature, we find that the. production of next-generation feedstocks in the U.S. (e.g., municipal solid waste, forest residues, dedicated energy crops, microalgae) are expected to fare better than corn-grain or soybean production on most of these factors, although the magnitude of these differences may vary significantly among feedstocks. Ethanol produced using a biochemical or thermochemical conversion platform is expected to result in fewer GHG and air pollutant emissions, but to have similar or potentially greater water demands and solid waste streams than conventional ethanol biorefineries in the U.S. However, these conversion-related differences are likely to be small, particularly relative to those associated with feedstock production. Modeling performed for illustrative purposes and to allow for standardized quantitative comparisons across feedstocks and conversion technologies generally confirms the findings from the literature.. Despite current expectations, significant uncertainty remains regarding how well next-generation biofuels will fare on different environmental and sustainability factors when produced on a commercial scale in the U.S. Additional research is needed in several broad areas including quantifying impacts, designing standardized metrics and approaches, and developing decision-support to identify and quantify environmental trade-offs and ensure sustainable biofuels production. C1 [Williams, Pamela R. D.] E Risk Sci LLP, Boulder, CO 80301 USA. [Inman, Daniel; Aden, Andy] Natl BioEnergy Ctr, Natl Renewable Energy Lab, Golden, CO USA. [Heath, Garvin A.] Strateg Energy Anal Ctr, Natl Renewable Energy Lab, Golden, CO USA. RP Williams, PRD (reprint author), E Risk Sci LLP, 4647 Carter Trail, Boulder, CO 80301 USA. EM pwilliams@erisksciences.com FU U.S. Department of Energy (DOE) [DE-AC36-08GO28308] FX This work was performed while P.R.W. was an employee at the U.S. Environmental Protection Agency (EPA), Office of Research and Development, on detail to the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy. All other authors affiliated with DOE's National Renewable Energy Laboratory (NREL) received financial support under DOE con tract DE-AC36-08GO28308. Any views or opinions expressed herein are those of the authors only and do not necessarily reflect those of the EPA, DOF, or NREL We thank Zia Haq, Alison Goss Eng, John Ferrell, and Jacques Beaudry-Losique with DOE's Office of Biomass Program for their review of file scope and content of this manuscript. We also thank Alan Hecht and George Gray (EPA), Dale Gardner (NREL), and Virginia Dale and Keith Kline (ORNL.) for their helpful comments on this manuscript and insight regarding sustainable biofuels production. Additionally, we acknowledge Kelly Tiller (University of Tennessee), William Davis and John Cuzens (BlueFire Ethanol), and Mitch Mandich and Bud Klepper (RangeFuels) for providing site tours and information on biofuels produced from switchgrass, MSW, and forest residues, respectively. NR 115 TC 112 Z9 112 U1 14 U2 85 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUL 1 PY 2009 VL 43 IS 13 BP 4763 EP 4775 DI 10.1021/es900250d PG 13 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 463ME UT WOS:000267435500025 PM 19673263 ER PT J AU Moriarty, MM Koch, I Gordon, RA Reimer, KJ AF Moriarty, Maeve M. Koch, Iris Gordon, Robert A. Reimer, Kenneth J. TI Arsenic Speciation of Terrestrial Invertebrates SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID RAY-ABSORPTION SPECTROSCOPY; HEAVY-METAL POLLUTION; MASS-SPECTROMETRY; ICP-MS; ACCUMULATION; TOXICITY; XAS; BIOTRANSFORMATION; TRANSFORMATION; ARSENOBETAINE AB The distribution and chemical form (speciation) of arsenic in terrestrial food chains determines both the amount of arsenic available to higher organisms, and the toxicity of this metalloid in affected ecosystems. Invertebrates are part of complex terrestrial food webs. This paper provides arsenic concentrations and arsenic speciation profiles for eight orders of terrestrial invertebrates collected at three historical gold mine sites and one background site in Nova Scotia, Canada. Total arsenic concentrations, determined by inductively coupled plasma mass spectrometry (ICP-MS); were dependent upon the classification of invertebrate. Arsenic species were determined by high-performance liquid chromatography (HPLC) ICP-MS and X-ray absorption spectroscopy (XAS). Invertebrates were found by HPLC ICP-MS to contain predominantly arsenite and arsenate in methanol/water extracts, while XAS revealed that most arsenic is bound to sulfur in vivo. Examination of the spatial distribution of arsenic within an ant tissue highlighted the differences between exogenous and endogenous arsenic, as well as the extent to which arsenic is transformed upon ingestion. Similar arsenic speciation patterns for invertebrate groups were observed across sites, Trace amounts of arsenobetaine and arsenocholine were identified in slugs, ants, and spiders. C1 [Moriarty, Maeve M.; Koch, Iris; Reimer, Kenneth J.] Royal Mil Coll Canada, Environm Sci Grp, Kingston, ON K7K 7B4, Canada. [Gordon, Robert A.] Argonne Natl Lab, Adv Photon Source, PNC XOR, Argonne, IL 60439 USA. [Gordon, Robert A.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. RP Reimer, KJ (reprint author), Royal Mil Coll Canada, Environm Sci Grp, POB 17000 Stn Forces, Kingston, ON K7K 7B4, Canada. EM reimer-k@rmc.ca OI Moriarty, Maeve/0000-0001-8955-4541 FU US Department of EnergyTBasic Energy Sciences; Natural Sciences and Engineering Research Council of Canada (NSERC); tIS, Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-ACO2-O6CH1 1357]; NSERC FX PNC/XOR facilities at the Advanced Photon Source, and research at these facilities, are supported by the US Department of EnergyTBasic Energy Sciences, a major facilities access grant from Natural Sciences and Engineering Research Council of Canada (NSERC), the University of Washington, Simon Fraser University, and the Advanced Photon Source. Use of the Advanced Photon Source is also supported by the tIS, Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-ACO2-O6CH1 1357. This work was supported by NSERC awards to KIR. Including a Discovery Grant and funds from the Metals in the Human Environment Strategic Network (MITHE-SN) Invertebrate identifications were confirmed through DNA barcoding at the Canadian Centre for DNA barcoding at the Biodiversity Institute of Ontario. We thank Michael B. Parsons of the Geological Survey of Canada and Jared Saunders, Megan Lord-Hoyle, Paula Smith, and Catriona Jackson of the Environmental Sciences Group for their assistance in the field. NR 32 TC 36 Z9 37 U1 3 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUL 1 PY 2009 VL 43 IS 13 BP 4818 EP 4823 DI 10.1021/es900086r PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 463ME UT WOS:000267435500032 PM 19673270 ER PT J AU Stewart, BD Nico, PS Fendorf, S AF Stewart, Brandy D. Nico, Peter S. Fendorf, Scott TI Stability of Uranium Incorporated into Fe (Hydr)oxides under Fluctuating Redox Conditions SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID CONTAMINATED AQUIFER; BACTERIAL REDUCTION; COMPLEX-FORMATION; DISSOLVED-OXYGEN; U(VI) REDUCTION; IRON; GROUNDWATER; REOXIDATION; CALCIUM; BIOREMEDIATION AB Reaction pathways resulting in uranium-bearing solids that are stable (i.e., having limited solubility) under aerobic and anaerobic conditions will limit dissolved concentrations and migration of this toxin. Here, we examine the sorption mechanism and propensity for release of uranium reacted with Fe (hydr)oxides under cyclic oxidizing and reducing conditions. Upon reaction of terrihydrite with Fe(II) under conditions where aqueous Ca-UO(2)-CO(3) species predominate (3 mM Ca and 3.8 mM total CO(3)), dissolved uranium concentrations decrease from 0.16 mM to below detection limit (BDL) after 5-15 d, depending on the Fe(II) concentration. In systems undergoing 3 successive redox cycles (14 d of reduction, followed by 5 d of oxidation) and a pulsed decrease to 0.15 mM total CO(3), dissolved uranium concentrations varied depending on the Fe(II) concentration during the initial and subsequent reduction phases. U concentrations resulting during the oxic "rebound" varied inversely with the Fe(II) concentration during the reduction cycle. Uranium removed from solution remains in the oxidized form and is found adsorbed onto and incorporated into the structure of newly formed goethite and magnetite. Our results reveal that the fate of uranium is dependent on anaerobic/aerobic conditions, aqueous uranium speciation, and the fate of iron. C1 [Stewart, Brandy D.; Fendorf, Scott] Stanford Univ, Stanford, CA 94305 USA. [Nico, Peter S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Fendorf, S (reprint author), Stanford Univ, Stanford, CA 94305 USA. EM Fendorf@stanford.edu RI Nico, Peter/F-6997-2010 OI Nico, Peter/0000-0002-4180-9397 NR 37 TC 32 Z9 32 U1 3 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUL 1 PY 2009 VL 43 IS 13 BP 4922 EP 4927 DI 10.1021/es803317w PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 463ME UT WOS:000267435500048 PM 19673286 ER PT J AU Liu, CX Zachara, JM Zhong, LR Heald, SM Wang, ZM Jeon, BH Fredrickson, JK AF Liu, Chongxuan Zachara, John M. Zhong, Lirong Heald, Steve M. Wang, Zheming Jeon, Byong-Hun Fredrickson, James K. TI Microbial Reduction of Intragrain U(VI) in Contaminated Sediment SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID EXTRACELLULAR ELECTRON-TRANSFER; VADOSE ZONE SEDIMENTS; SOLID-PHASE U(VI); SUBSURFACE SEDIMENTS; HANFORD-SITE; REDUCING BACTERIA; URANIUM; DISSOLUTION; KINETICS; BIOREMEDIATION AB The accessibility of precipitated, intragrain U(VI) in a contaminated sediment to microbial reduction was investigated to ascertain geochemical and microscopic transport phenomena controlling U(VI) bio availability. The sediment was collected from the U.S. Department of Energy Hanford site, and contained uranyl precipitates within the mm-sized granitic lithic fragments in the sediment. Bioreduction was investigated in a culture of a dissimilatory metal-reducing bacterium, Shewanella oneidensis strain MR-1. Measurements of uranium, concentration, speciation, and valence in aqueous and solid phases indicated that microbial reduction of intragrain U(VI) proceeded by two mechanisms: (1) sequentially coupled dissolution of intragrain uranyl precipitates, diffusion of dissolved U(VI) from intragrain regions, and microbial reduction of dissolved U(VI); and (2) U(VI) reduction in the intragrain regions by soluble, diffusible biogenic reductants. The bioreduction rate in the first pathway was over 3 orders of magnitude slower than that in comparable aqueous solutions containing aqueous U(VI) only. The slower bioreduction rate was attributed to (1) the, release of calcium from the desorption/dissolution of calcium-containing minerals in the sediment, which subsequently altered U(VI) aqueous speciation and slowed U(VI) bioreduction and (2) alternative electron transfer pathways that reduced U(VI) in the intragrain regions and changed its dissolution and solubility behavior. The results implied that the overall rate of bioreduction of intragrain U(VI) will be influenced by the reactive mass transfer of U(VI) and biogenic reductants within intragrain regions, and geochemical reactions controlling major ion concentrations. C1 [Liu, Chongxuan; Zachara, John M.; Zhong, Lirong; Wang, Zheming; Fredrickson, James K.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Heald, Steve M.] Argonne Natl Lab, Argonne, IL 60439 USA. [Jeon, Byong-Hun] Yonsei Univ, Wonju Kangwon Do 220710, South Korea. RP Liu, CX (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM Chongxuan.liu@pnl.gov RI Liu, Chongxuan/C-5580-2009; Wang, Zheming/E-8244-2010; OI Wang, Zheming/0000-0002-1986-4357; Jeon, Byong-Hun/0000-0002-5478-765X NR 36 TC 16 Z9 17 U1 2 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUL 1 PY 2009 VL 43 IS 13 BP 4928 EP 4933 DI 10.1021/es8029208 PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 463ME UT WOS:000267435500049 PM 19673287 ER PT J AU Hartman, JS Weisberg, PJ Pillai, R Ericksen, JA Kuiken, T Lindberg, SE Zhang, H Rytuba, JJ Gustin, MS AF Hartman, Jelena S. Weisberg, Peter J. Pillai, Rekha Ericksen, Jody A. Kuiken, Todd Lindberg, Steve E. Zhang, Hong Rytuba, James J. Gustin, Mae S. TI Application of a Rule-Based Model to Estimate Mercury Exchange for Three Background Biomes in the Continental United States SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID ATMOSPHERIC MERCURY; ELEMENTAL MERCURY; AIR/SURFACE EXCHANGE; GASEOUS MERCURY; NATURAL SOURCES; NORTH-AMERICA; GAS-EXCHANGE; SOILS; EMISSION; FLUXES AB Ecosystems that have low mercury (Hg) concentrations (i.e., not enriched or impacted by geologic or anthropogenic processes) cover most of the terrestrial surface area of the earth yet their role as a net source or sink for atmospheric Hg is uncertain Here we use empirical data to develop a rule-based model implemented within a geographic information system framework to estimate the spatial and temporal patterns of Hg flux for semiarid deserts, grasslands, and deciduous forests representing 45% of the continental United States. This exercise provides an indication of whether these ecosystems are a net source or sink for atmospheric Hg as well as a basis for recommendation of data to collect in future field sampling campaigns. Results indicated that soil alone was a small net source of atmospheric Hg and that emitted Hg could be accounted for based on Hg input by wet deposition. When foliar assimilation and wet deposition are added to the area estimate of soil Hg flux these biomes are a sink for atmospheric Hg. C1 [Hartman, Jelena S.; Weisberg, Peter J.; Pillai, Rekha; Ericksen, Jody A.; Gustin, Mae S.] Univ Nevada, Dept Nat Resources & Environm Sci, Reno, NV 89557 USA. [Kuiken, Todd; Zhang, Hong] Tennessee Technol Univ, Cookeville, TN 38505 USA. [Lindberg, Steve E.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Rytuba, James J.] US Geol Survey, Menlo Pk, CA 94025 USA. RP Gustin, MS (reprint author), Univ Nevada, Dept Nat Resources & Environm Sci, 1664 N Virginia St,MS 370, Reno, NV 89557 USA. EM mgustin@cabnr.unr.edu RI Kuiken, Todd/A-3784-2016 OI Kuiken, Todd/0000-0001-7851-6232 FU National Science Foundation, Atmospheric Sciences Division [0214765]; Environmental Protection Agency [R_82980001_0]; United States Geological Survey; Electric Power Research Institute; Environmental Sciences Graduate Program at University of Nevada, Reno FX This study was made possible by grants from the National Science Foundation, Atmospheric Sciences Division (0214765), the Environmental Protection Agency (STAR grant R_82980001_0), and funding from United States Geological Survey, the Electric Power Research Institute, and the Environmental Sciences Graduate Program at University of Nevada, Reno. Opinions presented herein do not represent views of these agencies. We thank three anonymous reviewers for their thoughtful and constructive comments. NR 54 TC 22 Z9 24 U1 2 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUL 1 PY 2009 VL 43 IS 13 BP 4989 EP 4994 DI 10.1021/es900075q PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 463ME UT WOS:000267435500058 PM 19673296 ER PT J AU He, C El-Khatib, S Wu, J Lynn, JW Zheng, H Mitchell, JF Leighton, C AF He, C. El-Khatib, S. Wu, J. Lynn, J. W. Zheng, H. Mitchell, J. F. Leighton, C. TI Doping fluctuation-driven magneto-electronic phase separation in La1-xSrxCoO3 single crystals SO EPL LA English DT Article ID MANGANITES; LA1-XCAXMNO3; TRANSITION AB In recent years it has become clear that complex oxides provide an exceptional platform for the discovery of new physics as well as a considerable challenge to our understanding of correlated electrons. The tendency of these materials to display nanoscale electronic and magnetic inhomogeneity is a good example. Here, we have applied a variety of experimental techniques to investigate this magneto-electronic phase separation in a model system-the doped cobaltite La1-xSrxCoO3. Comparing experimental data over a wide range of doping with statistical simulations, we conclude that the magneto-electronic inhomogeneity is driven solely by inevitable local compositional fluctuations at nanoscopic length scales. The phase separation is thus doping fluctuation-driven rather than electronically driven, meaning that more complex electronic phase separation models are not required to understand the observed phenomena in this material. Copyright c (C) EPLA, 2009 C1 [He, C.; El-Khatib, S.; Wu, J.; Leighton, C.] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA. [El-Khatib, S.; Lynn, J. W.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Zheng, H.; Mitchell, J. F.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP He, C (reprint author), Univ Minnesota, Dept Chem Engn & Mat Sci, 421 Washington Ave SE, Minneapolis, MN 55455 USA. EM leighton@umn.edu FU DoE [DE-FG0206ER46275]; NSF [DMR-0804432, DMR-0454672]; Dept. of Commerce [6D6146] FX Neutron scattering supported by DoE (DE-FG0206ER46275). Additional UMN funding from NSF (DMR-0804432) and the Dept. of Commerce (6D6146). Neutron experiments utilized facilities supported in part by NSF (DMR-0454672). CL thanks M. Hoch, W. Moulton, and I. Terry for useful discussions. NR 33 TC 34 Z9 34 U1 1 U2 8 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD JUL PY 2009 VL 87 IS 2 AR 27006 DI 10.1209/0295-5075/87/27006 PG 6 WC Physics, Multidisciplinary SC Physics GA 492NM UT WOS:000269665400026 ER PT J AU Iadecola, A Agrestini, S Filippi, M Simonelli, L Fratini, M Joseph, B Mahajan, D Saini, NL AF Iadecola, A. Agrestini, S. Filippi, M. Simonelli, L. Fratini, M. Joseph, B. Mahajan, D. Saini, N. L. TI Local structure of ReFeAsO (Re = La, Pr, Nd, Sm) oxypnictides studied by Fe K-edge EXAFS SO EPL LA English DT Article ID STRONG-COUPLED SUPERCONDUCTORS; TRANSITION-TEMPERATURE; PHASE-DIAGRAM; SYSTEMS AB Local structure of ReOFeAs (Re = La, Pr, Nd, Sm) system has been studied as a function of chemical pressure varied due to different rare-earth size. Fe K-edge extended X-ray absorption. ne structure (EXAFS) measurements in the fluorescence mode has permitted to compare systematically the inter-atomic distances and their mean square relative displacements (MSRD). We find that the Fe-As bond length and the corresponding MSRD hardly show any change, suggesting the strongly covalent nature of this bond, while the Fe-Fe and Fe-Re bond lengths decrease with decreasing rare-earth size. The results provide important information on the atomic correlations that could have direct implication on the superconductivity and magnetism of ReOFeAs system, with the chemical pressure being a key ingredient. Copyright (C) EPLA, 2009 C1 [Iadecola, A.; Fratini, M.; Joseph, B.; Saini, N. L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Agrestini, S.] ENSICAEN, Lab CRISMAT, CNRS, UMR 6508, F-14050 Caen, France. [Filippi, M.] Vrije Univ Amsterdam, Dept Phys & Astron, NL-1081 HV Amsterdam, Netherlands. [Simonelli, L.] European Synchrotron Radiat Facil, F-38043 Grenoble 9, France. [Mahajan, D.] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. [Mahajan, D.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Iadecola, A (reprint author), Univ Roma La Sapienza, Dipartimento Fis, P Aldo Moro 2, I-00185 Rome, Italy. EM naurang.saini@roma1.infn.it RI Joseph, Boby/A-4797-2009; Saini, Naurang/J-7918-2013; Simonelli, Laura/I-1963-2015 OI Joseph, Boby/0000-0002-3334-7540; Saini, Naurang/0000-0003-3684-1517; FU COMEPHS FX The authors thank the ESRF sta. for the help and cooperation during the experimental run. We also acknowledge Z.-X. Zhao (Beijing) for providing high quality samples for the present study, and A. Bianconi for stimulating discussions and encouragement. One of us (DM) would like to acknowledge " La Sapienza" University of Rome for the financial assistance and hospitality. This research has been supported by COMEPHS (under the FP6 STREP Controlling mesoscopic phase separation). NR 26 TC 24 Z9 24 U1 2 U2 12 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD JUL PY 2009 VL 87 IS 2 AR 26005 DI 10.1209/0295-5075/87/26005 PG 5 WC Physics, Multidisciplinary SC Physics GA 492NM UT WOS:000269665400018 ER PT J AU Sibirtsev, A Haidenbauer, J Krewald, S Meissner, UG Thomas, AW AF Sibirtsev, A. Haidenbauer, J. Krewald, S. Meissner, U. -G. Thomas, A. W. TI Neutral pion photoproduction at high energies SO EUROPEAN PHYSICAL JOURNAL A LA English DT Article ID PROTON COMPTON-SCATTERING; PARTIAL-WAVE ANALYSIS; REGGEON CUT DISCONTINUITIES; ANOMALOUS WARD IDENTITIES; MESON PHOTOPRODUCTION; SINGLE PHOTOPRODUCTION; PI-0 PHOTOPRODUCTION; ETA-PHOTOPRODUCTION; TARGET ASYMMETRY; LARGE ANGLES AB A Regge model with absorptive corrections is employed in a global analysis of the world data on the reactions gamma p -> pi(0)p and gamma n -> pi(0)n for photon energies from 3 to 18 GeV. In this region resonance contributions are expected to be negligible so that the available experimental information on differential cross-sections and single and double polarization observables at -t <= 2GeV(2) allows us to determine the reaction amplitude reliably. The model amplitude is then used to predict observables for photon energies below 3 GeV. A detailed comparison with recent data from the CLAS and CB-ELSA Collaborations in that energy region is presented. Furthermore, the prospects for determining the pi(0) radiative decay width via the Primakoff effect from the reaction gamma p -> pi(0)p are explored. C1 [Sibirtsev, A.; Meissner, U. -G.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys Theorie, D-53115 Bonn, Germany. [Sibirtsev, A.; Meissner, U. -G.] Univ Bonn, Bethe Ctr Theoret Phys, D-53115 Bonn, Germany. [Sibirtsev, A.] Thomas Jefferson Natl Accelerator Facil, EBAC, Newport News, VA 23606 USA. [Haidenbauer, J.; Krewald, S.; Meissner, U. -G.] Forschungszentrum Julich, Inst Kernphys, D-52425 Julich, Germany. [Haidenbauer, J.; Krewald, S.; Meissner, U. -G.] Forschungszentrum Julich, Julich Ctr Hadron Phys, D-52425 Julich, Germany. [Haidenbauer, J.; Krewald, S.; Meissner, U. -G.] Forschungszentrum Julich, Inst Adv Simulat, D-52425 Julich, Germany. [Thomas, A. W.] Thomas Jefferson Natl Accelerator Facil, Ctr Theory, Newport News, VA 23606 USA. [Thomas, A. W.] Coll William & Mary, Williamsburg, VA 23187 USA. RP Sibirtsev, A (reprint author), Univ Bonn, Helmholtz Inst Strahlen & Kernphys Theorie, D-53115 Bonn, Germany. EM j.haidenbauer@fz-juelich.de RI Thomas, Anthony/G-4194-2012; OI Thomas, Anthony/0000-0003-0026-499X; Krewald, Siegfried/0000-0002-8596-8429 NR 95 TC 14 Z9 14 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6001 J9 EUR PHYS J A JI Eur. Phys. J. A PD JUL PY 2009 VL 41 IS 1 BP 71 EP 84 DI 10.1140/epja/i2009-10771-0 PG 14 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 461VF UT WOS:000267299600008 ER PT J AU Butsyk, SA AF Butsyk, Sergey A. CA Collaboration, P TI The Forward Vertex upgrade detector for PHENIX SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article; Proceedings Paper CT Hot Quarks Conference 2008 CY 2008 CL Aspen, CO SP EPJC, Lawrence Berkeley Natl Lab, Univ Colorado, IOP, CERN, Vanderbilt Univ, Natl Sci Fdn, Brookhaven Natl Lab, CNRS-IN2P3 AB The PHENIX detector at RHIC has been built with a strong heavy quark particles identification capability. These unique probes of matter are essential to adequately understand in-medium energy loss and to test the basic properties of QCD. The current PHENIX heavy flavor physics program will be significantly enhanced by the addition of the Forward Silicon Vertex upgrade detector (FVTX) in the acceptance of the existing muon arm detectors (1.2 < |y| < 2.4). The proposed tracker is planned to be put into operation in FY2011. Each arm of the FVTX detector consists of 4 disks of silicon strip sensors combined with FPHX readout chips and provides a precision measurement of the radial coordinate of the track. The current status of the detector design and construction and expectations for the physics signal extraction will be presented. C1 [Butsyk, Sergey A.; Collaboration, P] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Butsyk, SA (reprint author), Los Alamos Natl Lab, MS H846 P-25 LANL, Los Alamos, NM 87545 USA. EM butsyk@rcf.rhic.bnl.gov NR 4 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 J9 EUR PHYS J C JI Eur. Phys. J. C PD JUL PY 2009 VL 62 IS 1 BP 21 EP 24 DI 10.1140/epjc/s10052-009-1038-7 PG 4 WC Physics, Particles & Fields SC Physics GA 462ZD UT WOS:000267396700005 ER PT J AU Petreczky, P AF Petreczky, Peter TI On the temperature dependence of quarkonium correlators SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article; Proceedings Paper CT Hot Quarks Conference 2008 CY 2008 CL Aspen, CO SP EPJC, Lawrence Berkeley Natl Lab, Univ Colorado, IOP, CERN, Vanderbilt Univ, Natl Sci Fdn, Brookhaven Natl Lab, CNRS-IN2P3 ID GLUON PLASMA; SPECTRAL FUNCTIONS; PSI-SUPPRESSION; HEAVY QUARKONIA; LATTICE QCD; DISSOCIATION; MOMENTUM; RATES; TIME AB I discuss the temperature dependence of quarkonium correlators calculated in lattice QCD. I show that the dominant source of the temperature dependence comes from the zero-mode contribution, while the temperature dependence associated with the melting of bound states is quite small. I study the zero-mode contribution quantitatively for various quark masses and show that it is well described by a quasi-particle model with temperature-dependent heavy quark mass. As a byproduct, an estimate of the medium dependence of the heavy-quark mass is obtained. C1 [Petreczky, Peter] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Petreczky, Peter] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. RP Petreczky, P (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM petreczk@bnl.gov NR 50 TC 24 Z9 24 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 J9 EUR PHYS J C JI Eur. Phys. J. C PD JUL PY 2009 VL 62 IS 1 BP 85 EP 93 DI 10.1140/epjc/s10052-009-0942-1 PG 9 WC Physics, Particles & Fields SC Physics GA 462ZD UT WOS:000267396700014 ER PT J AU Salur, S AF Salur, Sevil CA STAR Collaboration TI A short review on jet identification SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article; Proceedings Paper CT Hot Quarks Conference 2008 CY 2008 CL Aspen, CO SP EPJC, Lawrence Berkeley Natl Lab, Univ Colorado, IOP, CERN, Vanderbilt Univ, Natl Sci Fdn, Brookhaven Natl Lab, CNRS, IN2P3 ID HADRON-COLLISIONS; CROSS-SECTIONS; ALGORITHM; ANNIHILATION; ENERGIES; GLUONS; LHC AB Jets can be used to probe the physical properties of the high energy density matter created in collisions at the Relativistic Heavy Ion Collider (RHIC). Measurements of strong suppression of inclusive hadron distributions and dihadron correlations at high p(T) have already provided evidence for partonic energy loss. However, these measurements suffer from well-known geometric biases due to the competition of energy loss and fragmentation. These biases can be avoided if the jets are reconstructed independently of their fragmentation details-quenched or unquenched. In this paper, we discuss modern jet reconstruction algorithms (cone and sequential recombination) and their corresponding background subtraction techniques required by the high multiplicities of heavy ion collisions. We review recent results from the STAR experiment at RHIC on direct jet reconstruction in central Au + Au collisions at root s(NN) = 200 GeV. C1 [Salur, Sevil; STAR Collaboration] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Salur, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd,MS 70R0319, Berkeley, CA 94720 USA. EM ssalur@lbl.gov NR 39 TC 2 Z9 3 U1 1 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 J9 EUR PHYS J C JI Eur. Phys. J. C PD JUL PY 2009 VL 62 IS 1 BP 119 EP 125 DI 10.1140/epjc/s10052-009-0893-6 PG 7 WC Physics, Particles & Fields SC Physics GA 462ZD UT WOS:000267396700019 ER PT J AU Vitev, I Zhang, BW Wicks, S AF Vitev, Ivan Zhang, Ben-Wei Wicks, Simon TI The theory and phenomenology of jets in nuclear collisions SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article; Proceedings Paper CT Hot Quarks Conference 2008 CY 2008 CL Aspen, CO SP EPJC, Lawrence Berkeley Natl Lab, Univ Colorado, IOP, CERN, Vanderbilt Univ, Natl Sci Fdn, Brookhaven Natl Lab, CNRS, IN2P3 ID HADRON-COLLISIONS; ENERGY-LOSS AB We report selected results from a recent in-depth study of jet shapes and jet cross sections in ultra-relativistic reactions with heavy nuclei at the LHC. We demonstrate that at the highest collider energies these observables become feasible as a new, differential and accurate test of the underlying QCD theory. Our approach allows for detailed simulations of the experimental acceptance/cuts that help isolate jets emerging from a dense QGP. We show for the first time that the pattern of stimulated gluon emission can be correlated with a variable quenching of the jet rates and provide an approximately model-independent approach to determining the characteristics of the medium-induced bremsstrahlung spectrum. The connection between such cross section attenuation and the in-medium jet shapes is elucidated. C1 [Vitev, Ivan; Zhang, Ben-Wei] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Zhang, Ben-Wei] Hua Zhong Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. [Wicks, Simon] Columbia Univ, Dept Phys, New York, NY 10027 USA. RP Vitev, I (reprint author), Los Alamos Natl Lab, Div Theoret, MS B238, Los Alamos, NM 87545 USA. EM ivitev@lanl.gov NR 17 TC 10 Z9 10 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD JUL PY 2009 VL 62 IS 1 BP 139 EP 144 DI 10.1140/epjc/s10052-009-1025-z PG 6 WC Physics, Particles & Fields SC Physics GA 462ZD UT WOS:000267396700022 ER PT J AU Masui, H AF Masui, Hiroshi CA PHENIX Collaboration TI Centrality dependence of nu(2) in Au + Au at root s(NN)=200 GeV Unidentified charged hadron nu(2) with respect to the first harmonic ZDC-SMD event plane SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article; Proceedings Paper CT Hot Quarks Conference 2008 CY 2008 CL Aspen, CO SP EPJC, Lawrence Berkeley Natl Lab, Univ Colorado, IOP, CERN, Vanderbilt Univ, Natl Sci Fdn, Brookhaven Natl Lab, CNRS, IN2P3 ID FLOW AB One of the most striking results is the large elliptic flow )(nu(2)) at RHIC. Detailed mass and transverse momentum dependence of elliptic flow are well described by ideal hydrodynamic calculations for p(T) < 1 GeV/c, and by parton coalescence/recombination picture for p(T) = 2-6 GeV/c. The systematic error on nu(2) is dominated by so-called "non-flow effects", which are correlations other than flow, such as resonance decays and jets. It is crucial to understand and reduce the systematic error from non-flow effects in order to understand the underlying collision dynamics. In this paper, we present the centrality dependence of nu(2) with respect to the first harmonic event plane at ZDC-SMD )(nu(2){ZDC-SMD}) in Au + Au collisions at root s(NN) = 200 GeV. A large rapidity gap (vertical bar Delta eta vertical bar > 6) between midrapidity and the ZDC-SMD could enable us to minimize possible non-flow contributions. We compare the results of nu(2){ZDC-SMD} with nu(2){BBC}, which is measured by event plane determined at vertical bar eta vertical bar = 3.1-3.9. Possible non-flow contributions in those results will be discussed. C1 [Masui, Hiroshi; PHENIX Collaboration] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Masui, H (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM HMasui@lbl.gov NR 12 TC 3 Z9 3 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 J9 EUR PHYS J C JI Eur. Phys. J. C PD JUL PY 2009 VL 62 IS 1 BP 169 EP 173 DI 10.1140/epjc/s10052-009-1019-x PG 5 WC Physics, Particles & Fields SC Physics GA 462ZD UT WOS:000267396700027 ER PT J AU Xu, YC AF Xu, Yichun CA STAR Collaboration TI Identified hadron production at high transverse momenta in p plus p collisions at root s(NN)=200 GeV in STAR SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article; Proceedings Paper CT Hot Quarks Conference 2008 CY 2008 CL Aspen, CO SP EPJC, Lawrence Berkeley Natl Lab, Univ Colorado, IOP, CERN, Vanderbilt Univ, Natl Sci Fdn, Brookhaven Natl Lab, CNRS, IN2P3 ID D+AU COLLISIONS; SPECTRA; P+P AB We report the transverse momentum (p(T)) distributions for identified charged pions, protons and anti-protons using events triggered by high deposit energy in the Barrel Electro-Magnetic Calorimeter (BEMC) from p + p collisions at root s(NN) = 200 GeV. The spectra are measured around mid-rapidity (vertical bar y vertical bar < 0.5) over the range of 3 < p(T) < 15 GeV/c with particle identification (PID) by the relativistic ionization energy loss (rdE/dx) in the Time Projection Chamber (TPC) of the Solenoidal Tracker at RHIC (STAR). The charged pion, proton and anti-proton spectra at high p(T) are compared with published results from minimum bias triggered events and the Next-Leading-Order perturbative quantum chromodynamic (NLO pQCD) calculations (DSS, KKP and AKK 2008). In addition, we present the particle ratios of pi(-)/pi(+), <(p)over bar>/p, p/pi(+) and (p) over bar/pi(-) in p+ p collisions. C1 [Xu, Yichun] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Xu, YC (reprint author), Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. EM xuyichun@rcf.rhic.bnl.gov NR 13 TC 4 Z9 5 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 J9 EUR PHYS J C JI Eur. Phys. J. C PD JUL PY 2009 VL 62 IS 1 BP 187 EP 190 DI 10.1140/epjc/s10052-009-0901-x PG 4 WC Physics, Particles & Fields SC Physics GA 462ZD UT WOS:000267396700030 ER PT J AU Lamont, MAC AF Lamont, Matthew A. C. CA EIC Collaboration TI Hot quarks and gluons at an electron-ion collider SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article; Proceedings Paper CT Hot Quarks Conference 2008 CY 2008 CL Aspen, CO SP EPJC, Lawrence Berkeley Natl Lab, Univ Colorado, IOP, CERN, Vanderbilt Univ, Natl Sci Fdn, Brookhaven Natl Lab, CNRS, IN2P3 ID SCATTERING AB The nuclear wave-function is dominated at low- and medium-x by gluons. As the rapid growth of the gluon distribution towards low x, as derived from current theoretical estimates, would violate unitarity, there must be a mechanism that tames this explosive growth. This is most efficiently studied in colliders running in e + A mode, as the nucleus is an efficient amplifier of saturation effects occurring with high gluon densities. In fact, large A can lead to these effects manifesting themselves at energies a few orders of magnitude lower than in e + p collisions. In order to study these effects, there are proposals to build an e + A machine in the USA, operating over a large range of masses and energies. These studies will allow for an in-depth comparison to A + A collisions where results have given tantalising hints of a new state of matter with partonic degrees of freedom. In order to explain these results quantitatively, the gluons and their interactions must be understood fully as they are the dominant source of hard probes at both RHIC and LHC energies. C1 [Lamont, Matthew A. C.; EIC Collaboration] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Lamont, MAC (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM macl@bnl.gov NR 23 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 J9 EUR PHYS J C JI Eur. Phys. J. C PD JUL PY 2009 VL 62 IS 1 BP 203 EP 210 DI 10.1140/epjc/s10052-009-0898-1 PG 8 WC Physics, Particles & Fields SC Physics GA 462ZD UT WOS:000267396700033 ER PT J AU Jia, JY AF Jia, Jiangyong TI How to make sense of the jet correlations results at RHIC? SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article; Proceedings Paper CT Hot Quarks Conference 2008 CY 2008 CL Aspen, CO SP EPJC, Lawrence Berkeley Natl Lab, Univ Colorado, IOP, CERN, Vanderbilt Univ, Natl Sci Fdn, Brookhaven Natl Lab, CNRS, IN2P3 AB We review the di-hadron correlation results from RHIC. A consistent physical picture was constructed based on the correlation landscape in p(T), Delta phi, Delta eta and particle species. We show that the data are consistent with competition between fragmentation of survived jets and response of the medium to quenched jets. At intermediate p(T) where the medium response are important, a large fraction of trigger hadrons do not come from jet fragmentation. We argue that these hadrons can strongly influence the interpretation of the low p(T) correlation data. We demonstrate this point through a simple geometrical jet absorption model simulation. The model shows that the correlation between medium response hadrons dominates the pair yield and mimics the double hump structure of the away-side Delta phi distribution at low p(T). This correlation was also shown to lead to complications in interpreting the results on reaction plane dependence and three particle correlations. Finally, we briefly discuss several related experimental issues which are important for proper interpretations of the experimental data. C1 [Jia, Jiangyong] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Jia, Jiangyong] Brookhaven Natl Lab, Dept Phys, Upton, NY 11796 USA. RP Jia, JY (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM jjia@bnl.gov NR 34 TC 4 Z9 4 U1 0 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD JUL PY 2009 VL 62 IS 1 BP 255 EP 264 DI 10.1140/epjc/s10052-009-0914-5 PG 10 WC Physics, Particles & Fields SC Physics GA 462ZD UT WOS:000267396700041 ER PT J AU Moschelli, G Gavin, S McLerran, L AF Moschelli, George Gavin, Sean McLerran, Larry TI Long range untriggered two particle correlations SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article; Proceedings Paper CT Hot Quarks Conference 2008 CY 2008 CL Aspen, CO SP EPJC, Lawrence Berkeley Natl Lab, Univ Colorado, IOP, CERN, Vanderbilt Univ, Natl Sci Fdn, Brookhaven Natl Lab, CNRS, IN2P3 ID GLUON DISTRIBUTION-FUNCTIONS; ANGULAR-CORRELATIONS; TRANSVERSE-MOMENTUM; NUCLEAR COLLISIONS; JET FRAGMENTATION; MODEL; QUARK; 2-PARTICLE; RHIC/LHC; HADRONS AB Relativistic Heavy Ion Collider experiments exhibit correlations peaked in relative azimuthal angle and extended in rapidity. Called the ridge, this peak occurs both with and without a jet trigger. We argue that the untriggered ridge arises when particles formed by flux tubes in an early glasma stage later manifest transverse flow. Combining a blast wave model of flow fixed by single-particle spectra with a simple description of the glasma, we find excellent agreement with current data. C1 [Moschelli, George; Gavin, Sean] Wayne State Univ, Dept Phys & Astron, Detroit, MI 48201 USA. [McLerran, Larry] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [McLerran, Larry] Brookhaven Natl Lab, RIKEN Brookhaven Res Ctr, Upton, NY 11973 USA. RP Moschelli, G (reprint author), Wayne State Univ, Dept Phys & Astron, 666 W Hancock, Detroit, MI 48201 USA. EM gmoschelli@gmail.com NR 41 TC 4 Z9 4 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 J9 EUR PHYS J C JI Eur. Phys. J. C PD JUL PY 2009 VL 62 IS 1 BP 277 EP 280 DI 10.1140/epjc/s10052-009-0902-9 PG 4 WC Physics, Particles & Fields SC Physics GA 462ZD UT WOS:000267396700044 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burke, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cordelli, M Cortiana, G Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF Di Canto, A di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Garosi, P Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hays, C Heck, M Heijboer, A Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Hussein, M Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lucchesi, D Luci, C Lueck, J Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, S Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, TA Phillips, J Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Rutherford, B Saarikko, H Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spreitzer, T Squillacioti, P Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wuerthwein, F Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burke, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cordelli, M. Cortiana, G. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. Di Canto, A. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Garosi, P. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heijboer, A. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Hussein, M. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. -S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lucchesi, D. Luci, C. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Pagan Griso, S. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, T. A. Phillips, J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Rutherford, B. Saarikko, H. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spreitzer, T. Squillacioti, P. Stanitzki, M. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wuerthwein, F. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Search for narrow resonances lighter than (sic) mesons SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID LUMINOSITY MONITOR; E&E ANNIHILATION; DETECTOR; COLLISIONS; SYSTEM; QUARKS; STATES AB We report a search for narrow resonances, produced in p (p) over bar collisions at root s = 1.96 TeV, that decay into muon pairs with invariant mass between 6.3 and 9.0 GeV/c(2). The data, collected with the CDF II detector at the Fermilab Tevatron collider, correspond to an integrated luminosity of 630 pb(-1). We use the dimuon invariant mass distribution to set 90% upper credible limits of about 1% to the ratio of the production cross section times muonic branching fraction of possible narrow resonances to that of the (sic)(1S) meson. C1 [Chen, Y. C.; Hou, S.; McNulty, R.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Martinez, M.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Frank, M. J.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Mussini, M.; Rimondi, F.] Univ Bologna, Ist Nazl Fis Nucl Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Canelli, F.; Fedorko, W. T.; Grosso-Pilcher, C.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Phys Expt, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, Dubna 141980, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, J.; Yamaoka, J.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burke, S.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Rutherford, B.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yi, K.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St Denis, R.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, Helsinki 00014, Finland. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, Madrid 28040, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Goncharov, M.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 558, Japan. [Amerio, S.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Pagan Griso, S.] Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, CNRS, UMR7585, LPNHE,IN2P3, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Punzi, G.; Sforza, F.; Volpi, G.] Univ Pisa, Ist Nazl Fis Nucl Pisa, I-56127 Pisa, Italy. [Barria, P.; Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Garosi, P.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, Ist Nazl Fis Nucl Pisa, I-56127 Pisa, Italy. [Ferrazza, C.; Trovato, M.; Vataga, E.] Scuola Normale Super Pisa, Ist Nazl Fis Nucl Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [Dionisi, C.; Giagu, S.; Iori, M.; Luci, C.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, T. A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl, I-34100 Trieste, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, I-33100 Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, Helsinki 00014, Finland. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. RP Aaltonen, T (reprint author), Acad Sinica, Inst Phys, Taipei 11529, Taiwan. EM ptohos@fnal.gov RI Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Xie, Si/O-6830-2016; Canelli, Florencia/O-9693-2016; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; Zanetti, Anna/I-3893-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Hill, Christopher/B-5371-2012; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014 OI Torre, Stefano/0000-0002-7565-0118; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Xie, Si/0000-0003-2509-5731; Canelli, Florencia/0000-0001-6361-2117; Hays, Chris/0000-0003-2371-9723; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Hill, Christopher/0000-0003-0059-0779; Warburton, Andreas/0000-0002-2298-7315; FU U. S. Department of Energy and National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A. P. Sloan Foundation; Bundesministerium for Bildung und Forschung, Germany; Korean Science and Engineering Foundation and the Korean Research Foundation; Science and Technology Facilities Council; Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; Slovak RD Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U. S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium for Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland. NR 29 TC 6 Z9 6 U1 1 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 J9 EUR PHYS J C JI Eur. Phys. J. C PD JUL PY 2009 VL 62 IS 2 BP 319 EP 326 DI 10.1140/epjc/s10052-009-1057-4 PG 8 WC Physics, Particles & Fields SC Physics GA 466UF UT WOS:000267687700003 ER PT J AU Ahrens, V Becher, T Neubert, M Yang, LL AF Ahrens, Valentin Becher, Thomas Neubert, Matthias Yang, Li Lin TI Renormalization-group improved prediction for Higgs production at hadron colliders SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID EFFECTIVE-FIELD THEORY; BOSON PRODUCTION; QUANTUM CHROMODYNAMICS; MASS SINGULARITIES; PROTON COLLIDERS; PERTURBATIVE QCD; CROSS-SECTION; TAU-DECAYS; NNLO QCD; ORDER AB We use renormalization-group methods in effective field theory to improve the theoretical prediction for the cross section for Higgs-boson production at hadron colliders. In addition to soft-gluon resummation at (NLL)-L-3, we also resum enhanced contributions of the form (C (A) pi alpha (s) ) (n) , which arise in the analytic continuation of the gluon form factor to time-like momentum transfer. This resummation is achieved by evaluating the matching corrections arising at the Higgs-boson mass scale at a time-like renormalization point mu (2)< 0, followed by renormalization-group evolution to mu (2)> 0. We match our resummed result to NNLO fixed-order perturbation theory and give numerical predictions for the total production cross section as a function of the Higgs-boson mass. Resummation effects are significant even at NNLO, where our improved predictions for the cross sections at the Tevatron and the LHC exceed the fixed-order predictions by about 13% and 8%, respectively, for m (H) =120 GeV. We also discuss the application of our technique to other time-like processes such as Drell-Yan production, e (+) e (-)-> hadrons, and hadronic decays of the Higgs boson. C1 [Ahrens, Valentin; Neubert, Matthias; Yang, Li Lin] Johannes Gutenberg Univ Mainz, Inst Phys THEP, D-55099 Mainz, Germany. [Becher, Thomas] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Ahrens, V (reprint author), Johannes Gutenberg Univ Mainz, Inst Phys THEP, D-55099 Mainz, Germany. EM becher@fnal.gov FU U. S. Department of Energy [DE-AC02-76CH03000]; Department of Energy FX We are grateful to Babis Anastasiou, Martin Beneke, Kirill Melnikov, Frank Petriello, Giulia Zanderighi, and Jos Zurita for useful discussions. M. N. thanks the Fermilab Theory Group and T. B. thanks the ITP at the University of Zurich for hospitality and support during the final stages of this work. The research of T. B. was supported by the U. S. Department of Energy under Grant DE-AC02-76CH03000. Fermilab is operated by the Fermi Research Alliance under contract with the Department of Energy. NR 71 TC 114 Z9 114 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD JUL PY 2009 VL 62 IS 2 BP 333 EP 353 DI 10.1140/epjc/s10052-009-1030-2 PG 21 WC Physics, Particles & Fields SC Physics GA 466UF UT WOS:000267687700005 ER PT J AU Wagshul, ME McAllister, JR Rashid, S Li, J Egnor, MR Walker, ML Yu, M Smith, SD Zhang, G Chen, JJ Benveniste, H AF Wagshul, M. E. McAllister, J. R. Rashid, S. Li, J. Egnor, M. R. Walker, M. L. Yu, M. Smith, S. D. Zhang, G. Chen, J. J. Benveniste, H. TI Ventricular dilation and elevated aqueductal pulsations in a new experimental model of communicating hydrocephalus SO EXPERIMENTAL NEUROLOGY LA English DT Article ID NORMAL-PRESSURE HYDROCEPHALUS; CEREBROSPINAL-FLUID; SHUNT TREATMENT; CSF PRESSURE; PHASE; FLOW; RATS; MR; CIRCULATION; ABSORPTION AB In communicating hydrocephalus (CH), explanations for the symptoms and clear-cut effective treatments remain elusive. Pulsatile flow through the cerebral aqueduct is often significantly elevated, but a clear link between abnormal pulsations and ventriculomegaly has yet to be identified. We Sought to demonstrate measurement of pulsatile aqueductal flow of CSF in the rat, and to characterize the temporal changes in CSF pulsations in a new model of CH. Hydrocephalus was induced by injection of kaolin into the basal cisterns of adult rats (n = 18). Ventricular Volume and aqueductal Pulsations were measured on a 9.4 T MRI over a one month period. Half of the animals developed ventricular dilation, with increased ventricular volume and pulsations as early as one day post-induction, and marked chronic elevations compared to intact controls (volume: 130.15 +/- 83.21 mu l vs. 15.52 +/- 100 mu l; pulsations: 114.51 nl +/- 106.29 vs. 0.72 +/- 0.13 nl). Similar to the clinical presentation, the relationship between ventricular size and pulsations was quite variable. However, the pulsation time-course revealed two distinct sub-types of hydrocephalic animals: those with markedly elevated pulsations which persisted over time, and those with mildly elevated Pulsations which returned to near normal levels after one week. These groups were associated with severe and mild ventriculomegaly respectively. Thus, aqueductal flow can be measured in the rat using high-held MRI and basal cistern-induced CH is associated with an immediate change in CSF pulsatility. At the same time, our results highlight the complex nature of aqueductal pulsation and its relationship to ventricular dilation. (C) 2009 Elsevier Inc. All rights reserved. C1 [Wagshul, M. E.] SUNY Stony Brook, Hlth Sci Ctr, Dept Radiol, Stony Brook, NY 11794 USA. [Wagshul, M. E.; Egnor, M. R.] SUNY Stony Brook, Dept Neurosurg, Stony Brook, NY 11794 USA. [Wagshul, M. E.; Rashid, S.] SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11794 USA. [McAllister, J. R.; Walker, M. L.] Univ Utah, Primary Childrens Hosp, Div Pediat Neurosurg, Salt Lake City, UT USA. [Li, J.] Childrens Hosp Michigan, Dept Pediat Neurosurg, Detroit, MI 48201 USA. [Yu, M.; Smith, S. D.; Benveniste, H.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Zhang, G.; Chen, J. J.] SUNY Stony Brook, Dept Prevent Med, Stony Brook, NY 11794 USA. [Benveniste, H.] SUNY Stony Brook, Dept Anesthesiol, Stony Brook, NY 11794 USA. RP Wagshul, ME (reprint author), SUNY Stony Brook, Hlth Sci Ctr, Dept Radiol, L4-109, Stony Brook, NY 11794 USA. EM mark.wagshul@stonybrook.edu RI Zhang, Guangxiang/A-7676-2011 OI Zhang, Guangxiang/0000-0002-4788-5542 FU Brain Child Foundation; Brookhaven National Laboratory microMRI FX The authors thank Miles Johnston, PhD for critiquing the manuscript. The project was funded by the Brain Child Foundation, and the Brookhaven National Laboratory microMRI facility. NR 35 TC 15 Z9 16 U1 0 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0014-4886 J9 EXP NEUROL JI Exp. Neurol. PD JUL PY 2009 VL 218 IS 1 BP 33 EP 40 DI 10.1016/j.expneurol.2009.03.034 PG 8 WC Neurosciences SC Neurosciences & Neurology GA 459ZG UT WOS:000267152100006 PM 19348801 ER PT J AU Kraft, WN Banerjee, A Andrews, MJ AF Kraft, Wayne N. Banerjee, Arindam Andrews, Malcolm J. TI On hot-wire diagnostics in Rayleigh-Taylor mixing layers SO EXPERIMENTS IN FLUIDS LA English DT Article ID SMALL-ATWOOD-NUMBER; TURBULENCE; INSTABILITY; ANEMOMETRY; HELIUM; TEMPERATURE; MIXTURES; PROBE; AIR AB Two hot-wire flow diagnostics have been developed to measure a variety of turbulence statistics in the buoyancy driven, air-helium Rayleigh-Taylor mixing layer. The first diagnostic uses a multi-position, multi-overheat (MPMO) single wire technique that is based on evaluating the wire response function to variations in density, velocity and orientation, and gives time-averaged statistics inside the mixing layer. The second diagnostic utilizes the concept of temperature as a fluid marker, and employs a simultaneous three-wire/cold-wire anemometry technique (S3WCA) to measure instantaneous statistics. Both of these diagnostics have been validated in a low Atwood number (A (t) a parts per thousand currency sign 0.04), small density difference regime, that allowed validation of the diagnostics with similar experiments done in a hot-water/cold-water water channel facility. Good agreement is found for the measured growth parameters for the mixing layer, velocity fluctuation anisotropy, velocity fluctuation p.d.f behavior, and measurements of molecular mixing. We describe in detail the MPMO and S3WCA diagnostics, and the validation measurements in the low Atwood number regime (A (t) a parts per thousand currency sign 0.04). We also outline the advantages of each technique for measurement of turbulence statistics in fluid mixtures with large density differences. C1 [Andrews, Malcolm J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Kraft, Wayne N.; Andrews, Malcolm J.] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77840 USA. [Banerjee, Arindam] Missouri Univ Sci & Technol, Dept Mech & Aerosp Engn, Rolla, MO 65409 USA. RP Andrews, MJ (reprint author), Los Alamos Natl Lab, POB 1663,Mail Stop D413, Los Alamos, NM 87545 USA. EM mandrews@lanl.gov OI Banerjee, Arindam/0000-0002-1212-9704 NR 42 TC 8 Z9 8 U1 0 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0723-4864 EI 1432-1114 J9 EXP FLUIDS JI Exp. Fluids PD JUL PY 2009 VL 47 IS 1 BP 49 EP 68 DI 10.1007/s00348-009-0636-3 PG 20 WC Engineering, Mechanical; Mechanics SC Engineering; Mechanics GA 462OT UT WOS:000267366200005 ER PT J AU Ramirez, AI Som, S Aggarwal, SK Kastengren, AL El-Hannouny, EM Longman, DE Powell, CF AF Ramirez, A. I. Som, S. Aggarwal, Suresh K. Kastengren, A. L. El-Hannouny, E. M. Longman, D. E. Powell, C. F. TI Quantitative X-ray measurements of high-pressure fuel sprays from a production heavy duty diesel injector SO EXPERIMENTS IN FLUIDS LA English DT Article ID NEAR-NOZZLE REGION AB A quantitative and time-resolved X-ray radiography technique has been used for detailed measurements of high-pressure fuel sprays in the near-nozzle region of a diesel engine injector. The technique provides high spatial and temporal resolution, especially in the relatively dense core region. A single spray plume from a hydraulically actuated electronically controlled unit injector model 315B injector with a 6-hole nozzle was isolated and studied at engine-like densities for two different injection pressures. Optical spray imaging was also employed to evaluate the effectiveness of the shield used to isolate a single spray plume. The steady state fuel distributions for both injection pressures are similar and show a dense spray region along the axis of the spray, with the on-axis spray density decreasing as the spray progresses downstream. The higher injection pressure case exhibits a larger cone angle and spray broadening at the exit of the nozzle. For some time periods, the near-nozzle penetration speed is lower for the high injection pressure case than the low injection pressure case, which is unexpected, but can be attributed to the needle and flow dynamics inside the injector causing slower pressure build-up for the former case. Rate of injection testing was performed to further understand near-nozzle behavior. Mass distribution data were obtained and used to find mass-averaged velocity of the spray. Comparisons of the radiography data with that from a common rail single-hole light duty injectors under similar injection conditions show several significant differences. The current data show a larger cone angle and lower penetration speed than that from the light-duty injector. Moreover, these data display a Gaussian mass distribution across the spray near the injector, whereas in previous light-duty injector measurements, the mass distribution had steeper sides and a flatter peak. Measurements are also used to examine the spray models in the STAR-CD software. C1 [Ramirez, A. I.; Som, S.; Aggarwal, Suresh K.] Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA. [Ramirez, A. I.; El-Hannouny, E. M.; Longman, D. E.; Powell, C. F.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Aggarwal, SK (reprint author), Univ Illinois, Dept Mech & Ind Engn, 842 W Taylor,MC 251, Chicago, IL 60607 USA. EM ska@uic.edu FU US Department of Energy Office of Vehicle Technology; US Department of Energy [DE-AC02-06CH11357] FX This work is supported by the US Department of Energy Office of Vehicle Technology under the management of Gurpreet Singh. The experiments were performed at the 1-BM beam-line of the APS. Use of the APS is supported by the US Department of Energy under contract DE-AC02-06CH11357. The authors would like to thank Rick Zadoks and Robert McDavid from Caterpillar Inc. and Anthony Dennis from Test Development Innovators L. L. C. for their help. NR 42 TC 23 Z9 23 U1 1 U2 13 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0723-4864 J9 EXP FLUIDS JI Exp. Fluids PD JUL PY 2009 VL 47 IS 1 BP 119 EP 134 DI 10.1007/s00348-009-0643-4 PG 16 WC Engineering, Mechanical; Mechanics SC Engineering; Mechanics GA 462OT UT WOS:000267366200010 ER PT J AU Drainas, C Kallimanis, A Kavakiotis, K Mavromatis, K Kyrpides, NC Koukkou, AI AF Drainas, C. Kallimanis, A. Kavakiotis, K. Mavromatis, K. Kyrpides, N. C. Koukkou, A. I. TI Characterization and whole genome sequencing of Arthrobacter phenanthrenivorans, a new phenanthrene degrading bacterium SO FEBS JOURNAL LA English DT Meeting Abstract CT 34th Congress of the Federation-of-European-Biochemical-Societies CY JUL 04-09, 2009 CL Prague, CZECH REPUBLIC SP Federat European Biochem Soc C1 [Drainas, C.; Kallimanis, A.; Kavakiotis, K.; Koukkou, A. I.] Univ Ioannina, GR-45110 Ioannina, Greece. [Mavromatis, K.; Kyrpides, N. C.] DOE Joint Genome Inst, Genome Biol Program, Walnut Creek, CA USA. RI Kyrpides, Nikos/A-6305-2014 OI Kyrpides, Nikos/0000-0002-6131-0462 NR 0 TC 0 Z9 0 U1 1 U2 1 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1742-464X J9 FEBS J JI FEBS J. PD JUL PY 2009 VL 276 BP 101 EP 101 PG 1 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 458ZS UT WOS:000267069900268 ER PT J AU Meier, W Latkowski, J AF Meier, Wayne Latkowski, Jeff TI EIGHTEENTH TOPICAL MEETING ON THE TECHNOLOGY OF FUSION ENERGY PREFACE SO FUSION SCIENCE AND TECHNOLOGY LA English DT Editorial Material C1 [Meier, Wayne; Latkowski, Jeff] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Meier, W (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JUL PY 2009 VL 56 IS 1 BP VII EP VII PG 1 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 464ZF UT WOS:000267549000001 ER PT J AU Sauthoff, N AF Sauthoff, Ned TI OVERVIEW OF ACTIVITIES BY THE US DOMESTIC AGENCY SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 18th American-Nuclear-Society Topical Meeting on the Technology of Fusion Energy CY SEP 28-OCT 02, 2008 CL San Francisco, CA SP Amer Nucl Soc, NO California Sect, Amer Nucl Soc, Fusion Energy Div, Atom Energy Soc Japan, Lawrence Livermore Natl Lab ID ITER AB The U.S. Domestic Agency is now fully staffed and configured to provide the U.S. hardware, personnel, and cash contributions to the ITER Project. It has applied its resources to resolution of remaining technical design issues and to implementing systems that enable effective design and manufacture, with emphasis on risk management. Progress in the technical and project management areas is described. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Sauthoff, N (reprint author), Oak Ridge Natl Lab, POB 2008,1055CM,MS-6483, Oak Ridge, TN 37831 USA. EM sauthoffnr@ornl.gov NR 7 TC 0 Z9 0 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JUL PY 2009 VL 56 IS 1 BP 13 EP 19 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 464ZF UT WOS:000267549000003 ER PT J AU Hunt, RM Narula, M Ulrickson, MA Martin, TT Ying, A AF Hunt, R. M. Narula, M. Ulrickson, M. A. Martin, T. T. Ying, A. TI ASSESSMENT OF THE QUALIFICATION TEST OF THE FIRST WALL QUALIFICATION MOCKUP SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 18th American-Nuclear-Society Topical Meeting on the Technology of Fusion Energy CY SEP 28-OCT 02, 2008 CL San Francisco, CA SP Amer Nucl Soc, NO California Sect, Amer Nucl Soc, Fusion Energy Div, Atom Energy Soc Japan, Lawrence Livermore Natl Lab AB Understanding the manner in which the First Wall Qualification Mockup (FWQM) responds structurally to simulated ITER conditions is important to the establishment of a reliable first wall. This paper provides a thermal and structural response analysis for the first round of qualification tests performed at Sandia National Laboratories. The results display the stresses and strains created in the FWQM as a result of the thermal expansion that occurred when subjected to cyclic heat flux under simulated ITER normal and MARFE conditions. From this structural response, further insight may be gained into the likelihood of fatigue failure of the Beryllium/CuCrZr interface once the first wall is in operation in ITER. While fully determining the reliability of this joint is beyond the scope of this study, some suggestions are made as to how this topic might be addressed with further research. Also investigated are the thermal patterns seen during testing that indicated slight variation from the intended test parameters. It is shown that these disparities from the ideal test parameters do not significantly affect the qualification of the FWQM. C1 [Hunt, R. M.; Narula, M.; Ying, A.] Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA 90025 USA. [Ulrickson, M. A.; Martin, T. T.] Sandia Natl Labs, Fus Technol Dept, Albuquerque, NM 87185 USA. RP Hunt, RM (reprint author), Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA 90025 USA. EM rhunt@ucla.edu NR 2 TC 0 Z9 0 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JUL PY 2009 VL 56 IS 1 BP 38 EP 42 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 464ZF UT WOS:000267549000006 ER PT J AU Meitner, SJ Baylor, LR Carbajo, JJ Combs, SK Fehling, DT Foust, CR Mcfee, MT McGill, JM Rasmussen, DA Sitterson, RG Sparks, DW Qualls, AL AF Meitner, S. J. Baylor, L. R. Carbajo, J. J. Combs, S. K. Fehling, D. T. Foust, C. R. McFee, M. T. McGill, J. M. Rasmussen, D. A. Sitterson, R. G. Sparks, D. W. Qualls, A. L. TI DEVELOPMENT OF A TWIN-SCREW D-2 EXTRUDER FOR THE ITER PELLET INJECTION SYSTEM SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 18th American-Nuclear-Society Topical Meeting on the Technology of Fusion Energy CY SEP 28-OCT 02, 2008 CL San Francisco, CA SP Amer Nucl Soc, No California Sect, Amer Nucl Soc, Fusion Energy Div, Atom Energy Soc Japan, Lawrence Livermore Natl Lab AB A twin-screw extruder for the ITER pellet injection system is under development at the Oak Ridge National Laboratory. The extruder will provide a stream of solid hydrogen isotopes to a secondary section, where pellets are cut and accelerated with single-stage gas gun into the plasma. A one-fifth ITER scale prototype extruder has been built to produce a continuous solid deuterium extrusion. Deuterium gas is precooled and liquefied before being introduced into the extruder. The precooler consists of a copper vessel containing liquid nitrogen surrounded by a deuterium gas filled copper coil. The liquefier is comprised of a copper cylinder connected to a Cryomech AL330 cryocooler, which is surrounded by a copper coil that the precooled deuterium flows through. The lower extruder barrel is connected to a Cryomech GB-37 cryocooler to solidify the deuterium (at approximate to 15 K) before it is forced through the extruder nozzle. A viewport located below the extruder nozzle provides a direct view of the extrusion. A camera is used to document the extrusion quality and duration. A data acquisition system records the extruder temperatures, torque, and speed, upstream, and downstream pressures. This paper will describe the prototype twin-screw extruder and initial extrusion results. C1 [Meitner, S. J.; Baylor, L. R.; Carbajo, J. J.; Combs, S. K.; Fehling, D. T.; Foust, C. R.; McFee, M. T.; McGill, J. M.; Rasmussen, D. A.; Sitterson, R. G.; Sparks, D. W.; Qualls, A. L.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Meitner, SJ (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN USA. EM meitnersj@ornl.gov NR 10 TC 9 Z9 9 U1 0 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JUL PY 2009 VL 56 IS 1 BP 52 EP 56 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 464ZF UT WOS:000267549000009 ER PT J AU Pak, S Cheon, MS Lee, HG Kalish, MR Pitcher, CS Walker, CI AF Pak, Sunil Cheon, Mun-Seong Lee, Hyeon Gon Kalish, Michael R. Pitcher, C. S. Walker, Christopher I. TI PRELIMINARY THERMAL AND HYDRAULIC ANALYSIS ON THE ITER UPPER DIAGNOSTIC PORT PLUG DURING NORMAL OPERATION AND BAKING SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 18th American-Nuclear-Society Topical Meeting on the Technology of Fusion Energy CY SEP 28-OCT 02, 2008 CL San Francisco, CA SP Amer Nucl Soc, NO California Sect, Amer Nucl Soc, Fusion Energy Div, Atom Energy Soc Japan, Lawrence Livermore Natl Lab ID DESIGN AB A preliminary thermo-hydraulic analysis was performed on the ITER diagnostic upper port plug. Relevant thermal and hydraulic parameters, such as coolant pressure drop, maximum structure temperature and bake-out time, were calculated for normal operation and baking. The tipper port plug considered is based on the preliminary generic structure design of Princeton Plasma Physics Laboratory and the Blanket Shield Module (BSM) developed in Europe. The diagnostic shield modules are modeled so that the Korean diagnostic procurement package, which includes Vacuum Ultra-Violet (VUV) spectrometer and neutron activation system, can be integrated. The analysis provides design inputs to optimize flow in the cooling channels of the plug. The conjugated heat transfer analysis for the port plug confirms that it is important to secure accurate nuclear heat and accurate electro-magnetic (EM) force for the design of the joining flange between the BSM and the main body. Thermal analysis shows that it will take ten hours for the port plug to reach the bake-out temperature (240 degrees C), if the window plate is heated additionally from the rear side. C1 [Pak, Sunil; Cheon, Mun-Seong; Lee, Hyeon Gon] Natl Fus Res Inst, Taejon 305806, South Korea. [Kalish, Michael R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Pitcher, C. S.; Walker, Christopher I.] Cadarache Ctr, ITER Org, F-13108 St Paul Les Durance, France. RP Pak, S (reprint author), Natl Fus Res Inst, Gwahangno 113, Taejon 305806, South Korea. EM paksunil@nfri.re.kr NR 5 TC 1 Z9 1 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JUL PY 2009 VL 56 IS 1 BP 129 EP 133 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 464ZF UT WOS:000267549000023 ER PT J AU Cadwallader, LC Denny, BJ AF Cadwallader, L. C. Denny, B. J. TI TRITIUM ROOM AIR MONITOR OPERATING EXPERIENCE REVIEW SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 18th American-Nuclear-Society Topical Meeting on the Technology of Fusion Energy CY SEP 28-OCT 02, 2008 CL San Francisco, CA SP Amer Nucl Soc, NO California Sect, Amer Nucl Soc, Fusion Energy Div, Atom Energy Soc Japan, Lawrence Livermore Natl Lab ID ENERGY-RESEARCH-INSTITUTE; SAFETY SYSTEMS; BEHAVIOR; CAISSON AB Monitoring the breathing air in tritium facility rooms for airborne tritium is a radiological safety requirement and a best practice for personnel safety. Besides audible alarms for room evacuation, these monitors often send signals for process shutdown, ventilation isolation, and cleanup system actuation to mitigate releases and prevent tritium spread to the environment. Therefore, these monitors are important not only to personnel safety but also to public safety and environmental protection. This paper presents an operating experience review of tritium monitor performance on demand during small (1 mCi to 1 Ci) operational releases, and intentional airborne in-room tritium release tests. The tritium tests provide monitor operation data to allow calculation of a statistical estimate for the reliability of monitors annunciating in actual tritium gas airborne release situations. The data show a failure to operate rate of 3.5E-06/monitor-hr with an upper bound of 4.7E-06, a failure to alarm on demand rate of 1.4E-02/demand with an upper bound of 4.4E-02, and a spurious alarm rate of 0.1 to 0.2/monitor-yr. C1 [Cadwallader, L. C.; Denny, B. J.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Cadwallader, LC (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM Lee.Cadwallader@inl.gov RI Cadwallader, Lee/F-6933-2014 NR 20 TC 2 Z9 2 U1 0 U2 4 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JUL PY 2009 VL 56 IS 1 BP 239 EP 244 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 464ZF UT WOS:000267549000043 ER PT J AU Cadwallader, LC Bruyere, SA AF Cadwallader, L. C. Bruyere, S. A. TI CONTINUOUS AIR MONITOR OPERATING EXPERIENCE REVIEW SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 18th American-Nuclear-Society Topical Meeting on the Technology of Fusion Energy CY SEP 28-OCT 02, 2008 CL San Francisco, CA SP Amer Nucl Soc, NO California Sect, Amer Nucl Soc, Fusion Energy Div, Atom Energy Soc Japan, Lawrence Livermore Natl Lab AB Continuous air monitors (CAMs) are used to sense radioactive particulates in room air of nuclear facilities. CAMs alert personnel of potential inhalation exposures to radionuclides and can also actuate room ventilation isolation for public and environmental protection. This paper presents the results of a CAM operating experience review of the DOE Occurrence Reporting and Processing System (ORPS) database from the past 18 years. Regulations regarding these monitors are briefly reviewed CAM location selection and operation are briefly discussed. Operating experiences reported by the U.S. Department of Energy and in other literature sources were reviewed to determine the strengths and weaknesses of these monitors. Power losses, human errors, and mechanical issues cause the majority of failures. The average "all modes" failure rate is 2.65E-05/hr. Repair time estimates vary from an average repair time of 9 hours (with spare parts on hand) to 252 hours (without spare parts on hand). These data should support the use of CAMs in any nuclear facility, including the National Ignition Facility and the international ITER experiment. C1 [Cadwallader, L. C.; Bruyere, S. A.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Cadwallader, LC (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM Lee.Cadwallader@inl.gov RI Cadwallader, Lee/F-6933-2014 NR 11 TC 1 Z9 1 U1 0 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JUL PY 2009 VL 56 IS 1 BP 245 EP 251 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 464ZF UT WOS:000267549000044 ER PT J AU Merrill, BJ Cadwallader, LC Dagher, M AF Merrill, Brad J. Cadwallader, Lee C. Dagher, Mohamad TI A PRELIMINARY ASSESSMENT OF THE OCCUPATIONAL RADIATION EXPOSURE FROM MAINTAINING THE US ITER DCLL TBM SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 18th American-Nuclear-Society Topical Meeting on the Technology of Fusion Energy CY SEP 28-OCT 02, 2008 CL San Francisco, CA SP Amer Nucl Soc, NO California Sect, Amer Nucl Soc, Fusion Energy Div, Atom Energy Soc Japan, Lawrence Livermore Natl Lab AB This paper details an Occupational Radiation Exposure (ORE) analysis performed for the US International Thermonuclear Experimental Reactor (ITER) Dual Coolant Lead Lithium (DCLL) Test Blanket Module (TBM). This ORE analysis was performed with the QADMOD dose code for maintenance activities anticipated for the US DCLL TBM concept and its ancillary systems. Identification of the maintenance tasks that will have to be performed and estimates of the time required to perform these tasks were developed based on either expert opinion or on industrial maintenance experience for similar technologies. This paper details the modeling activity and the calculated doses for the maintenance activities envisioned for the US DCLL TBM C1 [Merrill, Brad J.; Cadwallader, Lee C.] INL Fus Safety Program, Idaho Falls, ID 83415 USA. [Dagher, Mohamad] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. RP Merrill, BJ (reprint author), INL Fus Safety Program, POB 1625, Idaho Falls, ID 83415 USA. EM Brad.Merrill@inl.gov RI Cadwallader, Lee/F-6933-2014 NR 9 TC 1 Z9 1 U1 0 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JUL PY 2009 VL 56 IS 1 BP 252 EP 256 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 464ZF UT WOS:000267549000045 ER PT J AU Bayramian, AJ Armstrong, JP Beer, G Campbell, R Cross, R Erlandson, A Freitas, B Menapace, J Molander, W Perkins, LJ Schaffers, K Siders, C Sutton, S Tassano, J Telford, S Ebbers, CA Caird, J Barty, CPJ AF Bayramian, A. J. Armstrong, J. P. Beer, G. Campbell, R. Cross, R. Erlandson, A. Freitas, B. Menapace, J. Molander, W. Perkins, L. J. Schaffers, K. Siders, C. Sutton, S. Tassano, J. Telford, S. Ebbers, C. A. Caird, J. Barty, C. P. J. TI HIGH AVERAGE POWER PETAWATT LASER PUMPED BY THE MERCURY LASER FOR FUSION MATERIALS ENGINEERING SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 18th American-Nuclear-Society Topical Meeting on the Technology of Fusion Energy CY SEP 28-OCT 02, 2008 CL San Francisco, CA SP Amer Nucl Soc, NO California Sect, Amer Nucl Soc, Fusion Energy Div, Atom Energy Soc Japan, Lawrence Livermore Natl Lab ID TI-SAPPHIRE LASER; REPETITION-RATE; DEUTERIUM CLUSTERS; NUCLEAR-FUSION; ENERGY; SYSTEM; PULSES; AMPLIFICATION; EXPLOSIONS; GENERATION AB A high average power diode pumped solid state laser is used to pump large aperture Ti:sapphire enabling high average power chirped pulse amplification. After compression, over a petawatt of peak power will be used to generate fusion ions and neutrons for materials testing of first wall and final optics candidates. C1 [Bayramian, A. J.; Armstrong, J. P.; Beer, G.; Campbell, R.; Cross, R.; Erlandson, A.; Freitas, B.; Menapace, J.; Molander, W.; Perkins, L. J.; Schaffers, K.; Siders, C.; Sutton, S.; Tassano, J.; Telford, S.; Ebbers, C. A.; Caird, J.; Barty, C. P. J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Bayramian, AJ (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94551 USA. EM bayramian1@llnl.gov NR 24 TC 9 Z9 9 U1 0 U2 4 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JUL PY 2009 VL 56 IS 1 BP 295 EP 300 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 464ZF UT WOS:000267549000051 ER PT J AU Watanabe, Y Morishita, K Kohyama, A Heinisch, HL Gao, F AF Watanabe, Yoshiyuki Morishita, Kazunori Kohyama, Akira Heinisch, Howard L. Gao, Fei TI DEFECT PROPERTIES IN beta-SiC UNDER IRRADIATION-FORMATION ENERGY OF INTERSTITIAL CLUSTERS SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 18th American-Nuclear-Society Topical Meeting on the Technology of Fusion Energy CY SEP 28-OCT 02, 2008 CL San Francisco, CA SP Amer Nucl Soc, NO California Sect, Amer Nucl Soc, Fusion Energy Div, Atom Energy Soc Japan, Lawrence Livermore Natl Lab ID SILICON-CARBIDE AB Molecular dynamics and molecular statics calculations have been performed to evaluate the formation energy of self-interstitial atom (SIA) clusters in beta-SiC. For SIA-clusters with stoichiometric composition, an attempt has been made to fit the calculated data points to a polynomial function of cluster size n. The resultant equation E(F)=1.01n(1)+2.04n(1/2) may indicate the applicability to a wide range of cluster sizes. This formalization will be useful for the development of accurate model on nucleation and growth of SIA-clusters, which is required for the modeling on irradiation-induced microstructural evolutions of materials in nuclear fusion reactors. C1 [Watanabe, Yoshiyuki; Morishita, Kazunori; Kohyama, Akira] Kyoto Univ, Inst Adv Energy, Kyoto 6110011, Japan. [Heinisch, Howard L.; Gao, Fei] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Watanabe, Y (reprint author), Kyoto Univ, Inst Adv Energy, Kyoto 6110011, Japan. EM y-watanabe@iae.kyoto-u.ac.jp; morishita@iae.kyoto-u.ac.jp; kohyama@iae.kyoto-u.ac.jp; hl_heinisch@pnl.gov; Fei.Gao@pnl.gov RI Gao, Fei/H-3045-2012 NR 7 TC 3 Z9 3 U1 0 U2 4 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JUL PY 2009 VL 56 IS 1 BP 328 EP 330 PG 3 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 464ZF UT WOS:000267549000057 ER PT J AU Raffray, AR Robson, AE Sethian, J Gentile, C Marriott, E Rose, D Sawan, M AF Raffray, A. R. Robson, A. E. Sethian, J. Gentile, C. Marriott, E. Rose, D. Sawan, M. CA HAPL Team TI LASER IFE DIRECT DRIVE CHAMBER CONCEPTS WITH MAGNETIC INTERVENTION SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 18th American-Nuclear-Society Topical Meeting on the Technology of Fusion Energy CY SEP 28-OCT 02, 2008 CL San Francisco, CA SP Amer Nucl Soc, NO California Sect, Amer Nucl Soc, Fusion Energy Div, Atom Energy Soc Japan, Lawrence Livermore Natl Lab ID WALL; PLANT AB The High Average Power Laser (HAPL) program is focusing on the development of laser IFE power plants based on lasers, direct-drive targets and dry wall chambers. One key issue is the survival of the chamber wall under the ion threat spectra (representing similar to 25% of the yield energy). The possibility of steering the ions away from the chamber to specially-designed dump chambers using magnetic intervention is being investigated. This brings up the intriguing possibility of utilizing a liquid wall to accommodate the ion fluxes in the dump chamber provided the right measures are taken to prevent the liquid from contaminating the main chamber. This paper covers the initial assessment of different magnetic configurations for a laser IFE chamber. Their key characteristics are described; results of the supporting design analyses are summarized; and the major findings and issues are highlighted. C1 [Raffray, A. R.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Robson, A. E.; Sethian, J.] USN, Res Lab, Washington, DC 20375 USA. [Gentile, C.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Marriott, E.; Sawan, M.] Univ Wisconsin, Madison, WI 53706 USA. [Rose, D.] Voss Sci LLC, Albuquerque, NM 87108 USA. RP Raffray, AR (reprint author), Univ Calif San Diego, La Jolla, CA 92093 USA. EM rraffray@ucsd.edu; aerobson@earthlink.net; john.sethian@nrl.navy.mil; cgentile@pppl.gov; david.rose@vosssci.com; sawan@engr.wisc.edu NR 9 TC 4 Z9 4 U1 1 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JUL PY 2009 VL 56 IS 1 BP 333 EP 340 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 464ZF UT WOS:000267549000058 ER PT J AU Waldron, WL Barnard, JJ Bieniosek, FM Friedman, A Henestroza, E Leitner, MA Logan, BG Ni, PA Roy, PK Seidl, PA Sharp, WM AF Waldron, W. L. Barnard, J. J. Bieniosek, F. M. Friedman, A. Henestroza, E. Leitner, M. A. Logan, B. G. Ni, P. A. Roy, P. K. Seidl, P. A. Sharp, W. M. TI PLANS FOR WARM DENSE MATTER AND IFE TARGET EXPERIMENTS ON NDCX-II SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 18th American-Nuclear-Society Topical Meeting on the Technology of Fusion Energy CY SEP 28-OCT 02, 2008 CL San Francisco, CA SP Amer Nucl Soc, No California Sect, Amer Nucl Soc, Fusion Energy Div, Atom Energy Soc Japan, Lawrence Livermore Natl Lab AB The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) is currently developing design concepts for NDCX-II, the second phase of the Neutralized Drift Compression Experiment, which will use ion beams to explore Warm Dense Matter (WDM) and Inertial Fusion Energy (IFE) target hydrodynamics. The ion induction accelerator will consist of a new short pulse injector and induction cells from the decommissioned Advanced Test Accelerator (ATA) at Lawrence Livermore National Laboratory (LLNL). To fit within an existing building and to meet the energy and temporal requirements of various target experiments, an aggressive beam compression and acceleration schedule is planned. WDM physics and ion-driven direct drive hydrodynamics will initially be explored with 30 nC of lithium ions in experiments involving ion deposition, ablation, acceleration and stability of planar targets. Other ion sources which may deliver higher charge per bunch will be explored. A test stand has been built at Lawrence Berkeley National Laboratory (LBNL) to test refurbished ATA induction cells and pulsed power hardware for voltage holding and ability to produce various compression and acceleration waveforms. Another test stand is being used to develop and characterize lithium-doped aluminosilicate ion sources. The first experiments will include heating metallic targets to 10,000 K and hydrodynamics studies with cryogenic hydrogen targets. C1 [Waldron, W. L.; Bieniosek, F. M.; Henestroza, E.; Leitner, M. A.; Logan, B. G.; Ni, P. A.; Roy, P. K.; Seidl, P. A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Barnard, J. J.; Friedman, A.; Sharp, W. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Waldron, WL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. NR 11 TC 0 Z9 0 U1 0 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JUL PY 2009 VL 56 IS 1 BP 452 EP 455 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 464ZF UT WOS:000267549000077 ER PT J AU Durbin, SG Morrow, CW Kipp, ME Smith, DL AF Durbin, S. G. Morrow, C. W. Kipp, M. E. Smith, D. L. TI SHRAPNEL GENERATION FROM RECYCLABLE TRANSMISSION LINES SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 18th American-Nuclear-Society Topical Meeting on the Technology of Fusion Energy CY SEP 28-OCT 02, 2008 CL San Francisco, CA SP Amer Nucl Soc, NO California Sect, Amer Nucl Soc, Fusion Energy Div, Atom Energy Soc Japan, Lawrence Livermore Natl Lab AB The ultimate goal of this research is to understand how the recyclable transmission lines (RTL) fail and break apart following each power generating pulse under inertial-fusion-energy-type loading. Containing and collecting the resulting dust, debris, and shrapnel so that it may be repetitively reprocessed and recycled is an especially important step, among many others, to successfully operating a power plant. In this paper the current and the dynamic pressure pulse along the RTL are simulated with the Micro-Cap network circuit code. These results are used as inputs to the CTH shock physics code that characterizes the debris formation and containment wall impacts. These models were applied to represent different sections of the RTL at two resolutions. The following discussion addresses the full size nested cone RTL for a Z-pinch IFE power plant. C1 [Durbin, S. G.; Morrow, C. W.; Kipp, M. E.; Smith, D. L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Durbin, SG (reprint author), Sandia Natl Labs, POB 5800 MS 0748, Albuquerque, NM 87185 USA. EM sdurbin@sandia.gov NR 6 TC 0 Z9 0 U1 1 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JUL PY 2009 VL 56 IS 1 BP 465 EP 469 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 464ZF UT WOS:000267549000080 ER PT J AU Aristova, M Gentile, CA AF Aristova, M. Gentile, C. A. TI COMPARATIVE STUDY TO EVALUATE CANDIDATE MATERIALS FOR TRITIUM PRODUCTION IN A DIRECT DRIVE IFE REACTOR SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 18th American-Nuclear-Society Topical Meeting on the Technology of Fusion Energy CY SEP 28-OCT 02, 2008 CL San Francisco, CA SP Amer Nucl Soc, NO California Sect, Amer Nucl Soc, Fusion Energy Div, Atom Energy Soc Japan, Lawrence Livermore Natl Lab AB An important technical and economic consideration in designing the prospective direct drive inertial fusion energy (IFE) reactor is the determination of a suitable mechanism for tritium breeding from neutrons produced in the initial reaction. A comprehensive review has been undertaken to determine the optimal breeding material, examining several candidate compounds. These include ceramic breeding pebbles as well as liquid 83Pb-17Li (Pb-Li) and (LiF)(2)BeF(2) (FLiBe). In this study, the compounds are evaluated based on chemical and physical properties, structural requirements, feasibility, hazards, and costs of application. Preliminary results seem to indicate that, of the liquid breeding materials, FLiBe may be the more practical option, due to its mechanical feasibility and the relative projected efficiency of blanket design. Likewise, lithium metatitanate (Li(2)TiO(3)) appears to be a viable ceramic material. However, much remains to be investigated, particularly the properties of breeder and structural materials in the specific conditions of a reactor. Furtherwork in this area will require theoretical modeling as well as practical trials, currently planned in other progenitor reactor designs. This paper will present the results of the analysis of these candidate breeder materials. C1 [Aristova, M.; Gentile, C. A.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Aristova, M (reprint author), Princeton Plasma Phys Lab, James Forrestal Campus,POB 451, Princeton, NJ 08543 USA. EM maristova@pppl.gov NR 17 TC 0 Z9 0 U1 0 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JUL PY 2009 VL 56 IS 1 BP 475 EP 477 PG 3 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 464ZF UT WOS:000267549000082 ER PT J AU Neilson, GH Heitzenroeder, PJ Nelson, BE Reiersen, WT Brooks, A Brown, TG Chrzanowski, JH Cole, MJ Dahlgren, F Dodson, T Dudek, LE Ellis, RA Fan, HM Fogarty, PJ Freudenberg, KD Goranson, PL Harris, JH Kalish, MR Labik, G Lyon, JF Pomphrey, N Priniski, CD Raftopoulos, S Rej, DJ Sands, WR Simmons, RT Stratton, BE Strykowsky, RL Viola, ME Williamson, DE Zarnstorff, MC AF Neilson, G. H. Heitzenroeder, P. J. Nelson, B. E. Reiersen, W. T. Brooks, A. Brown, T. G. Chrzanowski, J. H. Cole, M. J. Dahlgren, F. Dodson, T. Dudek, L. E. Ellis, R. A. Fan, H. M. Fogarty, P. J. Freudenberg, K. D. Goranson, P. L. Harris, J. H. Kalish, M. R. Labik, G. Lyon, J. F. Pomphrey, N. Priniski, C. D. Raftopoulos, S. Rej, D. J. Sands, W. R. Simmons, R. T. Stratton, B. E. Strykowsky, R. L. Viola, M. E. Williamson, D. E. Zarnstorff, M. C. TI ENGINEERING ACCOMPLISHMENTS IN THE CONSTRUCTION OF NCSX SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 18th American-Nuclear-Society Topical Meeting on the Technology of Fusion Energy CY SEP 28-OCT 02, 2008 CL San Francisco, CA SP Amer Nucl Soc, NO California Sect, Amer Nucl Soc, Fusion Energy Div, Atom Energy Soc Japan, Lawrence Livermore Natl Lab ID MAGNETIC-FIELD; DESIGN; PHYSICS AB The National Compact Stellarator Experiment (NCSX) was designed to test a compact, quasi-axisymmetric stellarator configuration. Flexibility and accurate realization of its complex 3D geometry were key requirements affecting the design and construction. While the project was terminated before completing construction, there were significant engineering accomplishments in design, fabrication, and assembly. The design of the stellarator core device was completed. All of the modular coils, toroidal field coils, and vacuum vessel sectors were fabricated. Critical assembly steps were demonstrated. Engineering advances were made in the application of CAD modeling, structural analysis, and accurate fabrication of complex-shaped components and sub-assemblies. The engineering accomplishments of the project are summarized. C1 [Neilson, G. H.; Heitzenroeder, P. J.; Reiersen, W. T.; Brooks, A.; Brown, T. G.; Chrzanowski, J. H.; Dahlgren, F.; Dodson, T.; Dudek, L. E.; Ellis, R. A.; Fan, H. M.; Kalish, M. R.; Labik, G.; Pomphrey, N.; Priniski, C. D.; Raftopoulos, S.; Rej, D. J.; Sands, W. R.; Simmons, R. T.; Stratton, B. E.; Strykowsky, R. L.; Viola, M. E.; Zarnstorff, M. C.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Nelson, B. E.; Cole, M. J.; Freudenberg, K. D.; Goranson, P. L.; Harris, J. H.; Lyon, J. F.; Williamson, D. E.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Neilson, GH (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RI pomphrey, neil/G-4405-2010 NR 10 TC 3 Z9 3 U1 1 U2 4 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JUL PY 2009 VL 56 IS 1 BP 485 EP 492 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 464ZF UT WOS:000267549000084 ER PT J AU Raman, R Nelson, BA Mueller, D Jarboe, TR Bell, MG Menard, J Ono, M Be, R Gates, D LeBlanc, B Maingi, R Maqueda, R Nagata, M Roquemore, L Sabbagh, S Soukhanovskii, V AF Raman, R. Nelson, B. A. Mueller, D. Jarboe, T. R. Bell, M. G. Menard, J. Ono, M. Be, R. Gates, D. LeBlanc, B. Maingi, R. Maqueda, R. Nagata, M. Roquemore, L. Sabbagh, S. Soukhanovskii, V. TI SOLENOID-LESS PLASMA START-UP IN NSTX USING TRANSIENT CHI SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 18th American-Nuclear-Society Topical Meeting on the Technology of Fusion Energy CY SEP 28-OCT 02, 2008 CL San Francisco, CA SP Amer Nucl Soc, No California Sect, Amer Nucl Soc, Fusion Energy Div, Atom Energy Soc Japan, Lawrence Livermore Natl Lab ID COAXIAL HELICITY INJECTION; SPHERICAL TORUS EXPERIMENT; TOKAMAK AB Experiments in NSTX have now unambiguously demonstrated the coupling of toroidal plasmas produced by the method of transient Coaxial Helicity Injection (CHI) to inductive sustainment and ramp-up of the toroidal current. The coupled discharges have ramped up to 700 kA and transitioned into H-mode with low inductance typical of the type of discharges needed for long-pulse operation, demonstrating the compatibility of the CHI startup method to conventional inductive operation used since the start of tokamak research. The method was first demonstrated on the smaller concept exploration device HIT-H at the University of Washington. These new results that were obtained on a machine built with mainly conventional components and on a size scale closer to a Component Test Facility, demonstrate that CHI is a viable solenoid-free plasma startup method for future STs and Tokamaks. C1 [Raman, R.; Nelson, B. A.; Jarboe, T. R.] Univ Washington, Seattle, WA 98195 USA. [Mueller, D.; Bell, M. G.; Menard, J.; Ono, M.; Be, R.; Gates, D.; LeBlanc, B.; Roquemore, L.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Maingi, R.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Maqueda, R.] Nova Photon, Princeton, NJ USA. [Nagata, M.] Univ Hyogo, Himeji, Hyogo, Japan. [Sabbagh, S.] Columbia Univ, New York, NY USA. [Soukhanovskii, V.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Raman, R (reprint author), Univ Washington, AERB 352250, Seattle, WA 98195 USA. EM raman@aa.washington.edu RI Sabbagh, Steven/C-7142-2011; OI Menard, Jonathan/0000-0003-1292-3286 NR 12 TC 1 Z9 1 U1 0 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JUL PY 2009 VL 56 IS 1 BP 512 EP 517 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 464ZF UT WOS:000267549000088 ER PT J AU Sorebo, JH Kulcinski, GL Radel, RF Santarius, JF AF Sorebo, J. H. Kulcinski, G. L. Radel, R. F. Santarius, J. F. TI Special Nuclear Materials Detection Using IEC Fusion Pulsed Neutron Source SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 18th American-Nuclear-Society Topical Meeting on the Technology of Fusion Energy CY SEP 28-OCT 02, 2008 CL San Francisco, CA SP Amer Nucl Soc, NO California Sect, Amer Nucl Soc, Fusion Energy Div, Atom Energy Soc Japan, Lawrence Livermore Natl Lab AB Special Nuclear Materials (SNM) detection efforts have largely been divided into two main groups: active and passive. Passive techniques are highly desirable in that a radiation source need not be employed in order to detect fissile materials which broadcast a clear radiative signature. However, disadvantages can be seen in HEU (Highly Enriched Uranium) detection, for example, where the system's efficacy is limited by its ability to detect a weak self-radiative signature from U. Active interrogation provides a catalyst for amplifying HEU's presence vis-a-vis fission event inducement, which in turn yields a starker signature which can be discerned through an understanding of fissile materials and neutron transport in various media. Ongoing work in the Fusion Technology Institute's Inertial Electrostatic Confinement (IEC) Experiment has focused on using the pulsed D-D neutrons from an IEC to interrogate the presence of HEU in an enclosed space. The paper begins with a brief description of the neutron-based detection schemes of Delayed Neutron Analysis (DNA) and Differential Die-Away (DDA). Experimental delayed neutron counts of ninety above the background at an interrogating neutron flux of 5.5x10(4) n/cm(2)-s are seen to confirm MCNP modeling results. MCNP is also utilized to probe future concepts in neutron-based active interrogating SNM detection systems using DDA analysis. C1 [Sorebo, J. H.] Plexus Corp, Neenah, WI USA. [Kulcinski, G. L.; Santarius, J. F.] UW Madison, Fus Technol Inst, Madison, WI 53706 USA. [Radel, R. F.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Sorebo, JH (reprint author), Plexus Corp, Neenah, WI USA. EM john.sorebo@plexus.com; rfradel@sandia.gov NR 9 TC 3 Z9 3 U1 0 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JUL PY 2009 VL 56 IS 1 BP 540 EP 544 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 464ZF UT WOS:000267549000093 ER PT J AU Liu, WL Coleman, RA Ma, E Grob, P Yang, JL Zhang, YX Dailey, G Nogales, E Tjian, R AF Liu, Wei-Li Coleman, Robert A. Ma, Elizabeth Grob, Patricia Yang, Joyce L. Zhang, Yixi Dailey, Gina Nogales, Eva Tjian, Robert TI Structures of three distinct activator-TFIID complexes SO GENES & DEVELOPMENT LA English DT Article DE TAF; TFIID; transcription; activator; structure ID LEUCINE-ZIPPER DOMAIN; C-JUN; TRANSCRIPTIONAL ACTIVATION; PROTEIN; P53; COACTIVATOR; RECRUITMENT; PROMOTER; GENES; FOS AB Sequence-specific DNA-binding activators, key regulators of gene expression, stimulate transcription in part by targeting the core promoter recognition TFIID complex and aiding in its recruitment to promoter DNA. Although it has been established that activators can interact with multiple components of TFIID, it is unknown whether common or distinct surfaces within TFIID are targeted by activators and what changes if any in the structure of TFIID may occur upon binding activators. As a first step toward structurally dissecting activator/TFIID interactions, we determined the three-dimensional structures of TFIID bound to three distinct activators (i.e., the tumor suppressor p53 protein, glutamine-rich Sp1 and the oncoprotein c-Jun) and compared their structures as determined by electron microscopy and single-particle reconstruction. By a combination of EM and biochemical mapping analysis, our results uncover distinct contact regions within TFIID bound by each activator. Unlike the coactivator CRSP/Mediator complex that undergoes drastic and global structural changes upon activator binding, instead, a rather confined set of local conserved structural changes were observed when each activator binds holo-TFIID. These results suggest that activator contact may induce unique structural features of TFIID, thus providing nanoscale information on activator-dependent TFIID assembly and transcription initiation. C1 [Liu, Wei-Li; Coleman, Robert A.; Ma, Elizabeth; Grob, Patricia; Yang, Joyce L.; Zhang, Yixi; Dailey, Gina; Nogales, Eva; Tjian, Robert] Univ Calif Berkeley, Howard Hughes Med Inst, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Grob, Patricia; Nogales, Eva] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Tjian, R (reprint author), Univ Calif Berkeley, Howard Hughes Med Inst, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. EM jmlim@berkeley.edu FU NIH National Cancer Institute [PO1 CA112181]; NIH General Medical Sciences [RO1 GM63072]; Howard Hughes Medical Institute Investigators FX We thank S. Zheng for providing TAF4 mAb supernatant, D. King for peptides, the Tjian laboratory tissue culture facility technicians, M. Haggart for assistance, U. Schulze- Gahmen for insect cells, and the Tjian laboratory members. We also thank S. Lipscomb, V. Ramey, and H. Wang for helpful advice and technical support. We are grateful to J. Yao, Z. Zhang, and U. Schulze- Gahmen for critical comments of the manuscript. This work was supported by NIH National Cancer Institute PO1 CA112181 (R. T. and E. N.), and NIH General Medical Sciences RO1 GM63072 (E. N.). R. T. and E. N. are Howard Hughes Medical Institute Investigators. R. T. is the President of the Howard Hughes Medical Institute. NR 39 TC 35 Z9 35 U1 0 U2 4 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI WOODBURY PA 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2924 USA SN 0890-9369 J9 GENE DEV JI Genes Dev. PD JUL 1 PY 2009 VL 23 IS 13 BP 1510 EP 1521 DI 10.1101/gad.1790709 PG 12 WC Cell Biology; Developmental Biology; Genetics & Heredity SC Cell Biology; Developmental Biology; Genetics & Heredity GA 470DN UT WOS:000267954800006 PM 19571180 ER PT J AU Myrick, KV Huet, F Mohr, SE Alvarez-Garcia, I Lu, JT Smith, MA Crosby, MA Gelbart, WM AF Myrick, Kyl V. Huet, Francois Mohr, Stephanie E. Alvarez-Garcia, Ines Lu, Jeffrey T. Smith, Mark A. Crosby, Madeline A. Gelbart, William M. TI Large-Scale Functional Annotation and Expanded Implementations of the P{wHy} Hybrid Transposon in the Drosophila melanogaster Genome SO GENETICS LA English DT Article ID SINGLE P-ELEMENTS; INSERTIONAL MUTAGENESIS; GENE-EXPRESSION; HETEROCHROMATIN; SEQUENCE; COLLECTION; PROJECT; PROTEIN; REGION AB Whole genome sequencing of the model organisms has created increased demand for efficient tools to facilitate the genome annotation efforts. Accordingly we report the further implementations and analyses stemming from our publicly available P{wHy} library for Drosphila melanogaster. A two-step regime-large scale transposon mutagenesis followed by hobo-induced nested deletions-allows mutation saturation and provides significant enhancements to existing genomic coverage. We previously showed that, for a given starting insert, deletion saturation is readily obtained over a 60-kb interval; here, we perform a breakdown analysis of efficiency to identify rate-limiting steps ill file process. Transrecombination, the hobo-induced recombination between two P{wHy} half molecules, was shown to further expand the P{wHy) mutational range, pointing to a potent, Iterative process of transrecombination-reconstitution-transrecombination for alternating between very large and very fine-grained deletions in a self-contained manner. A number of strains also showed partial or complete repression of P{wHy} markers, depending on chromosome location, whereby asymmetric marker silencing allowed continuous phenotypic detection, indication that (P{wHy}-based saturational mutagenesis should be useful for the study of heterochromatin/positional effects. C1 [Myrick, Kyl V.; Huet, Francois; Lu, Jeffrey T.; Crosby, Madeline A.; Gelbart, William M.] Harvard Univ, Dept Mol & Cellular Biol, Cambridge, MA 02138 USA. [Mohr, Stephanie E.] Harvard Univ, Sch Med, Dept Genet, Boston, MA 02115 USA. [Alvarez-Garcia, Ines] Univ Cambridge, Dept Zool, Cambridge CB2 3EJ, England. [Smith, Mark A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Myrick, KV (reprint author), Harvard Univ, Dept Mol & Cellular Biol, 16 Divin AVe,BL4057, Cambridge, MA 02138 USA. EM kvmyrick@mcb.harvard.edu OI Mohr, Stephanie/0000-0001-9639-7708 FU National Institute of General Medical Sciences [GM28669]; National Human Genome Research Institute [HG000739] FX We are indebted to Rot) Kulathinal, Haiyan Zhang, and FlyBase for database support. We thank Kathleen Matthews, Robert Levis, Joseph Carlson, Roger Hoskins, and the Gent! Disruption Project for curation and data submission. We are grateful to Todd Martin and Yevgenya Kraytsberg for technical assistance and to Beverley Matthews for critical reading of the manuscript. We thank Gerald Rubin for encouragement and guidance. This work was funded by grants front the National Institute of General Medical Sciences (GM28669) and the National Human Genome Research Institute (HG000739) (to W.M.G.). NR 28 TC 4 Z9 4 U1 1 U2 5 PU GENETICS SOC AM PI BETHESDA PA 9650 ROCKVILLE AVE, BETHESDA, MD 20814 USA SN 0016-6731 J9 GENETICS JI Genetics PD JUL PY 2009 VL 182 IS 3 BP 653 EP 660 DI 10.1534/genetics.109.103762 PG 8 WC Genetics & Heredity SC Genetics & Heredity GA 522BI UT WOS:000271972300003 PM 19398769 ER PT J AU Mills, E AF Mills, Evan TI A Global Review of Insurance Industry Responses to Climate Change SO GENEVA PAPERS ON RISK AND INSURANCE-ISSUES AND PRACTICE LA English DT Article DE climate change; insurance; energy systems; innovation ID LIABILITY; RISK AB A vanguard of insurers is adapting its business model to the realities of climate change. In many ways, insurers are still catching up both to mainstream science and to their customers, which, in response to climate change and energy volatility, are increasingly changing the way they construct buildings, transport people and goods, design products and produce energy. Customers, as well as regulators and shareholders, are eager to see insurers provide more products and services that respond to the "greening'' of the global economy, expand their efforts to improve disaster resilience and otherwise be proactive about the climate change threat. Insurers are increasingly recognising the issue as one of "enterprise risk management'' (ERM), one cutting across the domains of underwriting, asset management and corporate governance. Their responses are becoming correspondingly sophisticated. Based on a review of more than 300 source documents, plus a direct survey of insurance companies, we have identified 643 specific activities from 244 insurance entities from 29 countries, representing a 50 per cent year-over-year increase in activity. These entities collectively represent $1.2 trillion in annual premiums and $13 trillion in assets, while employing 2.2 million people. In addition to activities on the part of 189 insurers, eight reinsurers, 20 intermediaries and 27 insurance organisations, we identified 34 non-insurance entities that have collaborated in these efforts. Challenges and opportunities include bringing promising products and services to scale, continuing to identify and fill market and coverage gaps and identifying and confirming the veracity of green improvements. There is also need for convergence between sustainability and disaster resilience, greater engagement by insurers in adaptation to unavoidable climate changes and to clarify the role that regulators will play in moving the market. It has not yet been demonstrated how some insurance lines might respond to climate change and a number of market segments have not yet been served with a single green insurance product or service. As insurer activities obtain more prominence, they also will be subject to more scrutiny and expectations that they are not simply greenwashing. The Geneva Papers (2009) 34, 323-359. doi: 10.1057/gpp.2009.14 C1 Lawrence Berkeley Natl Lab, EETD, Berkeley, CA 94720 USA. RP Mills, E (reprint author), Lawrence Berkeley Natl Lab, EETD, 1 Cyclotron Rd,MS 90-4000, Berkeley, CA 94720 USA. EM emills@lbl.gov NR 77 TC 40 Z9 40 U1 6 U2 46 PU PALGRAVE MACMILLAN LTD PI BASINGSTOKE PA BRUNEL RD BLDG, HOUNDMILLS, BASINGSTOKE RG21 6XS, HANTS, ENGLAND SN 1018-5895 J9 GENEVA PAP R I-ISS P JI Geneva Pap. Risk Insur.-Issues Pract. PD JUL PY 2009 VL 34 IS 3 BP 323 EP 359 DI 10.1057/gpp.2009.14 PG 37 WC Business, Finance SC Business & Economics GA 477WP UT WOS:000268549900002 ER PT J AU Rozalen, M Huertas, FJ Brady, PV AF Rozalen, Marisa Javier Huertas, F. Brady, Patrick V. TI Experimental study of the effect of pH and temperature on the kinetics of montmorillonite dissolution SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID KAOLINITE DISSOLUTION; PRECIPITATION KINETICS; CHLORITE DISSOLUTION; ACIDIC CONDITIONS; 80-DEGREES-C; WATER; 25-DEGREES-C; DEPENDENCE; RATES; STATE AB The effect of pH on the kinetics of smectite (K-montmorillonite) dissolution was investigated at 50 and 70 degrees C in stirred flow-through reactors over the pH range of 1-13.5. Experiments done at very acidic and very basic pH were far from equilibrium. Near neutral pH experiments were closer to equilibrium. The Al/Si release ratio, while initially being incongruent, ultimately approached the stoichiometric value in most of the experiments. Temperature, extreme pH, and time favor congruency. Rates can be described by: R (mol g(-1) s(-1)) = 10(-9.00)a(H+)(0.58) + 10(-9.7)a(OH-)(0.38) + 10(-12.15) at 50 degrees C R (mol g(-1) s(-1)) = 10(-8.25)a(H+)(0.75) + 10(-8.70)a(OH-)(0.42) + 10(-11.95) at 70 degrees C. Dissolution rates decrease with increasing pH under acid conditions, minimize at near neutral pH and increase with increasing pH under basic conditions. Apparent activation energies are pH-dependent and have a maximum of 19.3 kcal mol-1 at pH 1, a minimum of 5.3 kcal mol(-1) between pH 4-7 and another maximum of 20.3 kcal mol(-1) at pH 11. Protons, water, and hydroxyls promote dissolution. Their relative contribution to the overall dissolution rate depends on pH. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Rozalen, Marisa; Javier Huertas, F.] CSIC, Dept Environm Geochem, Estac Expt Zaidin, E-18008 Granada, Spain. [Rozalen, Marisa; Brady, Patrick V.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Rozalen, M (reprint author), CSIC, Dept Environm Geochem, Estac Expt Zaidin, Prof Albareda 1, E-18008 Granada, Spain. EM mrozalen@eez.csic.es RI Huertas, F. Javier/B-8332-2008; Rozalen, Maria Luisa/L-9757-2015 OI Huertas, F. Javier/0000-0002-1833-6018; Rozalen, Maria Luisa/0000-0003-3254-1218 FU Spanish National Research Program [CGL2001-0255, CGL2005-00618]; EC [Febex II FIKW-CT-2000-00016, Ecoclay II FIKW-CT-2000-00028, ENRESA (EN 0770043)]; Ministerio de Educacion y Ciencia FX This investigation obtained financial support from Spanish National Research Program (CGL2001-0255, CGL2005-00618). EC (Febex II FIKW-CT-2000-00016 and Ecoclay II FIKW-CT-2000-00028), and ENRESA (EN 0770043). M.R. was granted by Ministerio de Educacion y Ciencia. Technical assistance of M.J. Civantos is recognized. The authors thank Carlos Jove-Colon for the helpful discussions. We greatly appreciate the useful comments and helpful suggestions of S. Kohler, Y. Kuwahara, an anonymous reviewer. and the associate editor M. Machesky. NR 37 TC 35 Z9 35 U1 3 U2 29 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUL 1 PY 2009 VL 73 IS 13 BP 3752 EP 3766 DI 10.1016/j.gca.2009.03.026 PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 460YR UT WOS:000267229800003 ER PT J AU Anovitz, LM Cole, DR Riciputi, LR AF Anovitz, Lawrence M. Cole, David R. Riciputi, Lee R. TI Low-temperature isotopic exchange in obsidian: Implications for diffusive mechanisms SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID NEUTRON REFLECTION; RELATIVE-HUMIDITY; RHYOLITIC GLASSES; SILICA GLASS; FLOAT GLASS; WATER; HYDRATION; PACHUCA; MEXICO; MELTS AB While a great deal is known about the interaction between water and rhyolitic glasses and melts at temperatures above the glass transition, the nature of this interaction at lower temperatures is much more poorly understood. This paper presents the results of a series of isotopic exchange experiments aimed at further elucidating this process and determining the extent to which a point-by-point analysis of the D/H or (18)O/(18)O isotopic composition across the hydrated rim on a geological or archaeological obsidian sample can be used as a paleoclimatic monitor. Experiments were performed by first hydrating the glass for 5 days in water of one isotopic composition, followed by 5 days in water of a second composition. Because waters of near end-member compositions were used (nearly pure (1)H(2)(16)O, (1)H(2)(18)O, and D(2)(16)O), the relative migration of each species could be ascertained easily by depth-profiling using secondary ion mass spectrometry (SIMS). Results suggest that, during hydration, both the isotopic composition of the waters of hydration, as well as that of intrinsic water remaining from the initial formation of the glass vary dramatically, and a point-by-point analysis leading to paleoclimatic reconstruction is not feasible. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Anovitz, Lawrence M.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. [Anovitz, Lawrence M.; Cole, David R.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Riciputi, Lee R.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Anovitz, LM (reprint author), Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. EM anovitzlm@ornl.gov RI Anovitz, Lawrence/P-3144-2016 OI Anovitz, Lawrence/0000-0002-2609-8750 NR 45 TC 12 Z9 12 U1 1 U2 16 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUL 1 PY 2009 VL 73 IS 13 BP 3795 EP 3806 DI 10.1016/j.gca.2009.02.035 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 460YR UT WOS:000267229800006 ER PT J AU Chan, CS Fakra, SC Edwards, DC Emerson, D Banfield, JF AF Chan, Clara S. Fakra, Sirine C. Edwards, David C. Emerson, David Banfield, Jillian F. TI Iron oxyhydroxide mineralization on microbial extracellular polysaccharides SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID TRANSMISSION X-RAY; ELECTRON-MICROSCOPY; ORGANIC-MATTER; GALLIONELLA-FERRUGINEA; FERROUS-IONS; BACTERIA; OXIDATION; MINERALS; SURFACES; SORPTION AB Iron biominerals can form in neutral pH microaerophilic environments where microbes both catalyze iron oxidation and create polymers that localize mineral precipitation. In order to classify the microbial polymers that influence FeOOH mineralogy, we studied the organic and mineral components of biominerals using scanning transmission X-ray microscopy (STXM), micro X-ray fluorescence (mu XRF) microscopy, and high-resolution transmission electron microscopy (HRTEM). We focused on iron microbial mat samples from a creek and abandoned mine; these samples are dominated by iron oxyhydroxide-coated structures with sheath, stalk, and filament morphologies. In addition, we characterized the mineralized products of an iron-oxidizing, stalk-forming bacterial culture isolated from the mine. In both natural and cultured samples, microbial polymers were found to be acidic polysaccharides with carboxyl functional groups, strongly spatially correlated with iron oxyhydroxide distribution patterns. Organic fibrils collect FeOOH and control its recrystallization, in some cases resulting in oriented crystals with high aspect ratios. The impact of polymers is particularly pronounced as the materials age. Synthesis experiments designed to mimic the biomineralization processes show that the polysaccharide carboxyl groups bind dissolved iron strongly but release it as mineralization proceeds. Our results suggest that carboxyl groups of acidic polysaccharides are produced by different microorganisms to create a wide range of iron oxyhydroxide biomineral structures. The intimate and potentially long-term association controls the crystal growth, phase, and reactivity of iron oxyhydroxide nano-particles in natural systems. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Chan, Clara S.; Banfield, Jillian F.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Fakra, Sirine C.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Edwards, David C.] Wesleyan Coll, Dept Chem & Phys, Macon, GA 31210 USA. [Emerson, David] Bigelow Lab Ocean Sci, W Boothbay Harbor, ME 04575 USA. RP Chan, CS (reprint author), Univ Delaware, Dept Geol Sci, Newark, DE 19716 USA. EM cschan@udel.edu RI Chan, Clara/B-6420-2011 OI Chan, Clara/0000-0003-1810-4994 NR 47 TC 144 Z9 148 U1 8 U2 115 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUL 1 PY 2009 VL 73 IS 13 BP 3807 EP 3818 DI 10.1016/j.gca.2009.02.036 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 460YR UT WOS:000267229800007 ER PT J AU Kelsey, KE Stebbins, JF Singer, DM Brown, GE Mosenfelder, JL Asimow, PD AF Kelsey, Kimberly E. Stebbins, Jonathan F. Singer, David M. Brown, Gordon E., Jr. Mosenfelder, Jed L. Asimow, Paul D. TI Cation field strength effects on high pressure aluminosilicate glass structure: Multinuclear NMR and La XAFS results SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID SOLID-STATE NMR; NUCLEAR-MAGNETIC-RESONANCE; NATURAL SILICATE LIQUIDS; RARE-EARTH-ELEMENTS; MAS NMR; AL COORDINATION; RAMAN-SPECTROSCOPY; AQUEOUS-SOLUTIONS; LOCAL-STRUCTURE; AL-27 NMR AB We examined aluminosilicate glasses containing a variety of network modifying to intermediate cations (Li, La, Sc, and Fe), quenched from melts at 1 atm to 8 GPa, to further investigate the role of cation field strength in Al coordination changes and densification. (27)Al Nuclear Magnetic Resonance Spectroscopy (NMR) reveals that the mean Al coordination increases with increasing pressure in the Li-containing glasses, which can be explained by a linear dependence of fractional change in Al coordination number on cation field strengths in similar K-, Na-, and Ca-containing aluminosilicate glasses (K < Na < Li < Ca). Measured recovered densities follow a similar linear trend. In contrast, the La-containing glasses have significantly lower mean Al coordination numbers at given pressures than the cation field strength of La and glass density would predict. La L(3) X-ray absorption fine structure (XAFS) spectroscopy results indicate a significant increase with pressure in average La-O bond distances, suggesting that La and Al may be "competing" for higher coordinated sites and hence that both play a significant role in the densification of these glasses, especially in the lower pressure range. However, in Na aluminosilicate glasses with small amounts of SC, (45)Sc NMR reveals only modest Sc coordination changes, which do not seem to significantly affect the mean Al coordination values. For a Li aluminosilicate glass, (17)O MAS and multiple quantum magic angle spinning (3QMAS) NMR data are consistent with generation of more highly coordinated Al at the expense of non-bridging oxygen (NBO), whereas La aluminosilicate glasses have roughly constant O environments, even up to 8 GPa. Finally, we demonstrate that useful (23)Na and (27)Al MAS NMR spectra can be collected for Ca-Na aluminosilicate glasses containing up to 5 wt.% Fe oxide. We discuss the types of structural changes that may accompany density increases with pressure and how these structural changes are affected by the presence of different cations. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Kelsey, Kimberly E.; Stebbins, Jonathan F.; Singer, David M.; Brown, Gordon E., Jr.] Stanford Univ, Dept Geol & Environm Sci, Stanford, CA 94305 USA. [Brown, Gordon E., Jr.] SLAC, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Mosenfelder, Jed L.; Asimow, Paul D.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. RP Kelsey, KE (reprint author), Stanford Univ, Dept Geol & Environm Sci, Stanford, CA 94305 USA. EM kkelsey@stanford.edu RI Asimow, Paul/E-7451-2010 OI Asimow, Paul/0000-0001-6025-8925 NR 75 TC 44 Z9 44 U1 1 U2 25 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUL 1 PY 2009 VL 73 IS 13 BP 3914 EP 3933 DI 10.1016/j.gca.2009.03.040 PG 20 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 460YR UT WOS:000267229800014 ER PT J AU Borg, LE Gaffney, AM Shearer, CK DePaolo, DJ Hutcheon, ID Owens, TL Ramon, E Brennecka, G AF Borg, Lars E. Gaffney, Amy M. Shearer, Charles K. DePaolo, Donald J. Hutcheon, Ian D. Owens, Thomas L. Ramon, Erick Brennecka, Greg TI Mechanisms for incompatible-element enrichment on the Moon deduced from the lunar basaltic meteorite Northwest Africa 032 SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID RB-SR AGES; TI MARE BASALTS; U-TH-PB; SM-ND; ISOTOPIC SYSTEMATICS; MANTLE SOURCES; KREEP BASALT; LOW U/PB; NEODYMIUM; STRONTIUM AB The lunar meteorite Northwest Africa (NWA) 032 is a low-Ti basalt that has incompatible-element abundances and Th/Sm ratios characteristic of the involvement of late stage magma ocean crystallization products (urKREEP) in its petrogenesis. This sample is very fine-grained and contains terrestrial weather products. A progressive leaching procedure was therefore developed and applied to magnetic separates and whole rock fractions to obtain Rb-Sr and Sm-Nd ages. Although many of the leachates, as well as the unleached mineral and whole rock fractions contain terrestrial alteration products, selected residue fractions yield concordant Rb-Sr and Sm-Nd ages. Rubidium-Sr isotopic analyses yield in age of 2947 +/- 16 Ma with an initial (87)Sr/(86)Sr of 0.700057 +/- 17. These characteristics indicate NWA 032 is derived from a source region with an (87)Rb/(86)Sr ratio of 0.044 +/- 0.001. This value is higher than all but those determined for KREEP basalts, and suggests that NWA 032 is derived from a source region that has higher incompatible-element abundances than other low-Ti basalts. Samarium-neodymium isotopic analysis yield a concordant age of 2931 +/- 92 Ma and an initial epsilon(Nd) of +9.71 +/- 0.74 corresponding to a source region with (147)Sm/(144)Nd ratio of 0.246 +/- 0.004. The initial Nd isotopic composition stands in contrast to the initial Sr isotopic composition by requiring NWA 032 to be derived from a source with lower incompatible-element abundances than most low-Ti basalts. The source of NWA 032 is therefore unlike those of other lunar basalts. Modeling of magma ocean cumulate formation demonstrates that unlike other low-Ti basalt Source regions the NWA 032 source is a mixture of olivine, pigeonite, and clinopyroxene bearing cumulates and only a small amount Of urKREEP. Furthermore, unlike other mare basalt sources, the NWA 032 source does not contain appreciable quantities of plagioclase. Partial melting models demonstrate that the incompatible-clement characteristics of the NWA 032 result from formation by smaller degrees of partial melting than other mare basalts. Thus, the incompatible-element geochemical signature that is observed in NWA 032 appears to reflect the combined effects of generation from ail unusual plagioclase-free incompatible-element-depleted source region by very small degrees of partial melting. This study demonstrates that both the presence of urKREEP in the source region and small degrees of partial melting generate magmas with similar, but not identical, incompatible-element characteristics. In addition, it underscores the fact that there is significantly more geochemical diversity on the Moon than is represented by samples collected by the American and Soviet lunar missions. Published by Elsevier Ltd. C1 [Borg, Lars E.; Gaffney, Amy M.; Hutcheon, Ian D.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Borg, Lars E.; Gaffney, Amy M.; Hutcheon, Ian D.; Ramon, Erick; Brennecka, Greg] Lawrence Livermore Natl Lab, Div Chem Sci, Livermore, CA 94550 USA. [Shearer, Charles K.] Univ New Mexico, Inst Meteorit, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. [DePaolo, Donald J.; Owens, Thomas L.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Brennecka, Greg] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. RP Borg, LE (reprint author), Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, 7000 E Ave L-231, Livermore, CA 94550 USA. EM borg5@llnl.gov RI Gaffney, Amy/F-8423-2014 OI Gaffney, Amy/0000-0001-5714-0029 FU NASA [NNG05GF83G]; US Department of Energy [DE-AC52-07NA27344] FX This work was supported by NASA Grant NNG05GF83G to Lars Borg. This work performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. We are grateful to Ted Bunch and Anthony Irving for giving us the sample of NWA 032 for analysis. Detailed reviews by Larry Nyquist and Tim Fagan were of great help and much appreciated. NR 74 TC 24 Z9 24 U1 2 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUL 1 PY 2009 VL 73 IS 13 BP 3963 EP 3980 DI 10.1016/j.gca.2009.03.039 PG 18 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 460YR UT WOS:000267229800017 ER PT J AU De Gregorio, BT Sharp, TG Flynn, GJ Wirick, S Hervig, RL AF De Gregorio, Bradley T. Sharp, Thomas G. Flynn, George J. Wirick, Sue Hervig, Richard L. TI Biogenic origin for Earth's oldest putative microfossils SO GEOLOGY LA English DT Article ID HYDROTHERMAL CONDITIONS; ORGANIC-MOLECULES; WESTERN-AUSTRALIA; ABIOTIC SYNTHESIS; PILBARA CRATON; APEX CHERT; CARBON; LIFE; HYDROCARBONS; SPECTROSCOPY AB Carbonaceous microbe-like features preserved within a local chert unit of the 3.5 Ga old Apex Basalt in Western Australia may represent some of the oldest evidence of life on Earth. However, the biogenicity of these putative microfossils has been called into question, primarily because the sample collection locality is a black, carbon-rich, brecciated chert dike representing an Archean submarine hydrothermal spring, suggesting a formation via an abiotic organic synthesis mechanism. Here we describe the macromolecular hydrocarbon structure, carbon bonding, functional group chemistry, and biotic element abundance of carbonaceous matter associated with these filamentous features. These characteristics are similar to those of biogenic kerogen from the ca. 1.9 Ga old Gunflint Formation. Although an abiotic origin cannot be entirely ruled out, it is unlikely that known abiotic synthesis mechanisms could recreate both the structural and compositional complexity of this ancient carbonaceous matter. Thus, we find that a biogenic origin for this material is more likely, implying that the Apex microbe-like features represent authentic biogenic organic matter. C1 [De Gregorio, Bradley T.; Sharp, Thomas G.; Hervig, Richard L.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Flynn, George J.] SUNY Coll Plattsburgh, Dept Phys, Plattsburgh, NY 12901 USA. [Wirick, Sue] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP De Gregorio, BT (reprint author), USN, Res Lab, Code 6366, Washington, DC 20375 USA. EM brad.degregorio@gmail.com RI De Gregorio, Bradley/B-8465-2008 OI De Gregorio, Bradley/0000-0001-9096-3545 FU National Aeronautics and Space Administration (NASA) [NCC21051, NNG04GN51H] FX We thank L. P. Knauth for Apex and Gunfl int chert samples and P. R. Buseck for use of the ultramicrotome. All electron microscopy was conducted at the LeRoy Eyring Center for Solid State Science at Arizona State University, and synchrotron analyses were performed at the National Synchrotron Light Source at Brookhaven National Laboratory (U.S. Department of Energy). This work was funded by the National Aeronautics and Space Administration (NASA) Astrobiology Institute (NCC21051) and the NASA Graduate Student Researchers Program (NNG04GN51H). NR 34 TC 32 Z9 32 U1 3 U2 23 PU GEOLOGICAL SOC AMER, INC PI BOULDER PA PO BOX 9140, BOULDER, CO 80301-9140 USA SN 0091-7613 J9 GEOLOGY JI Geology PD JUL PY 2009 VL 37 IS 7 BP 631 EP 634 DI 10.1130/G25683A.1 PG 4 WC Geology SC Geology GA 462WY UT WOS:000267390100013 ER PT J AU Ajo-Franklin, JB AF Ajo-Franklin, Jonathan B. TI Optimal experiment design for time-lapse traveltime tomography SO GEOPHYSICS LA English DT Article DE design of experiments; geophysical prospecting; geophysical signal processing; image reconstruction; optimisation; seismic waves; tomography ID PARTIAL GAS SATURATION; OPTIMIZATION; ALGORITHM; ATTENUATION; ROCKS AB Geophysical monitoring techniques offer the only noninvasive approach capable of assessing the spatial and temporal dynamics of subsurface fluid processes. Increasingly, permanent sensor arrays in boreholes and on the ocean floor are being deployed to improve the repeatability and increase the temporal sampling of monitoring surveys. Because permanent arrays require a large up-front capital investment and are difficult (or impossible) to reconfigure once installed, a premium is placed on selecting a geometry capable of imaging the desired target at minimum cost. We have taken a simple approach to optimizing downhole sensor configurations for monitoring experiments making use of differential seismic traveltimes. We used a design quality metric based on the accuracy of tomographic reconstructions for a suite of imaging targets. By not requiring an explicit singular value decomposition of the forward operator, evaluation of this objective function scaled to problems with a large numberof unknowns. We restricted the design problem by recasting the array geometry into a low-dimensional form more suitable for optimization at a reasonable computational cost. We tested two search algorithms on the design problem: the Nelder-Mead downhill simplex method and the multilevel coordinate search algorithm. The algorithm was tested for four crosswell acquisition scenarios relevant to continuous seismic monitoring, a two-parameter array optimization, several scenarios involving four-parameter length/offset optimizations, and a comparison of optimal multisource designs. In the last case, we also examined trade-offs between source sparsity and the quality of tomographic reconstructions. Asymmetrical array lengths improved localized image quality in crosswell experiments with a small number of sources and a large number of receivers. Preliminary results also suggested that high-quality differential images could be generated using only a small number of optimally positioned sources in tandem with a more extensive receiver array. C1 [Ajo-Franklin, Jonathan B.] MIT, Dept Earth Atmospher & Planetary Sci, Earth Resources Lab, Cambridge, MA 02139 USA. RP Ajo-Franklin, JB (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM jbajo-franklin@lbl.gov RI Ajo-Franklin, Jonathan/G-7169-2015; OI Ajo-Franklin, Jonathan/0000-0002-6666-4702 FU U. S. Department of Energy [DE-AC02-05CH11231] FX The author thanks the Founding Members Consortium of the Earth Resources Laboratory for support during the early stages of this research. Secondary support was provided by the GEOSEQ project, National Energy Technology Laboratory, U. S. Department of Energy, under contract no. DE-AC02-05CH11231. The author benefited from a broad range of discussions with Professor M. Nafi Toksoz, Professor Jerry Harris, Darrel Coles, Burke Minsley, Susan Hubbard, and Tom Daley. Chris Doughty (Lawrence Berkeley National Laboratory) provided the TOUGH2 multiphase flow-modeling results used in example three. We also thank Professor Colin Zelt for making the source code for the FAST eikonal solver publicly available. NR 47 TC 16 Z9 16 U1 0 U2 2 PU SOC EXPLORATION GEOPHYSICISTS PI TULSA PA 8801 S YALE ST, TULSA, OK 74137 USA SN 0016-8033 EI 1942-2156 J9 GEOPHYSICS JI Geophysics PD JUL-AUG PY 2009 VL 74 IS 4 BP Q27 EP Q40 DI 10.1190/1.3141738 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 465PO UT WOS:000267599500022 ER PT J AU Mulholland, PJ Roberts, BJ Hill, WR Smith, JG AF Mulholland, Patrick J. Roberts, Brian J. Hill, Walter R. Smith, John G. TI Stream ecosystem responses to the 2007 spring freeze in the southeastern United States: unexpected effects of climate change SO GLOBAL CHANGE BIOLOGY LA English DT Article DE climate change; ecosystem respiration; freeze damage; light; nutrient uptake; plant phenology; primary production; riparian vegetation disturbance; snail growth; stream ID RIVER CONTINUUM CONCEPT; FRESH-WATER ECOSYSTEMS; WOODLAND STREAM; FOREST STREAM; HEADWATER STREAM; NITROGEN EXPORT; PERIPHYTON; DISTURBANCE; METABOLISM; LIMITATION AB Some expected changes in climate resulting from human greenhouse gas emissions are clear and well documented, but others may be harder to predict because they involve extreme weather events or heretofore unusual combinations of weather patterns. One recent example of unusual weather that may become more frequent with climate change occurred in early spring 2007 when a large Arctic air mass moved into the eastern United States following a very warm late winter. In this paper, we document effects of this freeze event on Walker Branch, a well-studied stream ecosystem in eastern Tennessee. The 2007 spring freeze killed newly grown leaf tissues in the forest canopy, dramatically increasing the amount of light reaching the stream. Light levels at the stream surface were sustained at levels considerably above those normal for the late spring and summer months due to the incomplete recovery of canopy leaf area. Increased light levels caused a cascade of ecological effects in the stream beginning with considerably higher (two-three times) rates of gross primary production (GPP) during the late spring and summer months when normally low light levels severely limit stream GPP. Higher rates of stream GPP in turn resulted in higher rates of nitrate (NO(3)(-)) uptake by the autotrophic community and lower NO(3)(-) concentrations in stream water. Higher rates of stream GPP in summer also resulted in higher growth rates of a dominant herbivore, the snail Elimia clavaeformis. Typically, during summer months net NO(3)(-) uptake and snail growth rates are zero to negative; however, in 2007 uptake and growth were maintained at moderate levels. These results show how changes in forest vegetation phenology can have dramatic effects on stream productivity at multiple trophic levels and on nutrient cycling as a result of tight coupling of forest and stream ecosystems. Thus, climate change-induced changes in canopy structure and phenology may lead to large effects on stream ecosystems in the future. C1 [Mulholland, Patrick J.; Roberts, Brian J.; Smith, John G.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Roberts, Brian J.] Louisiana Univ Marine Consortium, Chauvin, LA 70344 USA. [Hill, Walter R.] Univ Illinois, Inst Nat Resource Sustainabil, Champaign, IL 61820 USA. RP Mulholland, PJ (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM mulhollandpj@ornl.gov RI Mulholland, Patrick/C-3142-2012 FU US Department of Energy's Program for Ecosystem Research [DE-AC05-00OR22725]; Office of Science; Office of Biological and Environmental Research; Oak Ridge Associated Universities FX We thank Deanne Brice and Kitty McCracken for field and laboratory analysis of stream water chemistry. We also thank Tilden Meyers and Lynne Satterfield for providing long-term climate data for Oak Ridge. Dale Kaiser and Garrett Marino provided helpful insights for historical climate analysis. Comments from Lianhong Gu, Paul Hanson, and three anonymous reviewers greatly improved earlier versions of the manuscript. This research was part of the Long-term Walker Branch Watershed project and supported by the US Department of Energy's Program for Ecosystem Research, in the Office of Science, Office of Biological and Environmental Research. Oak Ridge National Laboratory is managed by University of Tennessee-Battelle LLC for the US Department of Energy under contract DE-AC05-00OR22725. Brian Roberts was supported by a postdoctoral fellowship through the ORNL Postdoctoral Research Associates Program administered by Oak Ridge Associated Universities. NR 51 TC 20 Z9 20 U1 2 U2 51 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1354-1013 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD JUL PY 2009 VL 15 IS 7 BP 1767 EP 1776 DI 10.1111/j.1365-2486.2009.01864.x PG 10 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 454RK UT WOS:000266700000015 ER PT J AU Clemo, T Barrash, W Reboulet, EC Johnson, TC Leven, C AF Clemo, Tom Barrash, Warren Reboulet, Edward C. Johnson, Timothy C. Leven, Carsten TI The Influence of Wellbore Inflow on Electromagnetic Borehole Flowmeter Measurements SO GROUND WATER LA English DT Article ID HYDROGEOPHYSICAL RESEARCH SITE; FLOW; HYDRAULICS; WELLS AB This paper describes a combined field, laboratory, and numerical study of electromagnetic borehole flowmeter measurements acquired without the use of a packer or skirt to block bypass flow around the flowmeter. The most significant finding is that inflow through the wellbore screen changes the ratio of flow through the flowmeter to wellbore flow. Experiments reveal up to a factor of two differences in this ratio for conditions with and without inflow through the wellbore screen. Standard practice is to assume the ratio is constant. A numerical model has been developed to simulate the effect of inflow on the flowmeter. The model is formulated using momentum conservation within the borehole and around the flowmeter. The model is embedded in the MODFLOW-2000 ground water flow code. C1 [Clemo, Tom; Barrash, Warren] Boise State Univ, Ctr Invest Shallow Surface, Boise, ID 83725 USA. [Reboulet, Edward C.] Kansas Geol Survey, Lawrence, KS 66047 USA. [Johnson, Timothy C.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Leven, Carsten] UFZ Helmholtz Ctr Environm Res, D-04318 Leipzig, Germany. RP Clemo, T (reprint author), 141 Tipsue Rd, Livingston, MT 59047 USA. EM tomc@cgiss.boisestate.edu FU U.S. Army Research Office [DAAH04-96-1-0318, DAAD19-00-1-0454]; U.S. Environmental Protection Agency [X-970085-01-0] FX This work was supported by U.S. Army Research Office Grants DAAH04-96-1-0318 and DAAD19-00-1-0454 and U.S. Environmental Protection Agency Grant X-970085-01-0. Use of the Harry W. Morrison Civil Engineering Building at Boise State University for laboratory space is gratefully acknowledged. The presentation of this work benefited greatly from the careful reviews of Cynthia Dinwiddie and two anonymous reviewers. NR 25 TC 1 Z9 1 U1 2 U2 8 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0017-467X J9 GROUND WATER JI Ground Water PD JUL-AUG PY 2009 VL 47 IS 4 BP 515 EP 525 DI 10.1111/j.1745-6584.2008.00559.x PG 11 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA 466YA UT WOS:000267700200014 PM 19341370 ER PT J AU Keating, E Zyvoloski, G AF Keating, Elizabeth Zyvoloski, George TI A Stable and Efficient Numerical Algorithm for Unconfined Aquifer Analysis SO GROUND WATER LA English DT Article ID SATURATED-UNSATURATED FLOW; MODEL; SCALE; BASIN; MEDIA AB The nonlinearity of equations governing flow in unconfined aquifers poses challenges for numerical models, particularly in field-scale applications. Existing methods are often unstable, do not converge, or require extremely fine grids and small time steps. Standard modeling procedures such as automated model calibration and Monte Carlo uncertainty analysis typically require thousands of model runs. Stable and efficient model performance is essential to these analyses. We propose a new method that offers improvements in stability and efficiency and is relatively tolerant of coarse grids. It applies a strategy similar to that in the MODFLOW code to the solution of Richard's equation with a grid-dependent pressure/saturation relationship. The method imposes a contrast between horizontal and vertical permeability in gridblocks containing the water table, does not require "dry" cells to convert to inactive cells, and allows recharge to flow through relatively dry cells to the water table. We establish the accuracy of the method by comparison to an analytical solution for radial flow to a well in an unconfined aquifer with delayed yield. Using a suite of test problems, we demonstrate the efficiencies gained in speed and accuracy over two-phase simulations, and improved stability when compared to MODFLOW. The advantages for applications to transient unconfined aquifer analysis are clearly demonstrated by our examples. We also demonstrate applicability to mixed vadose zone/saturated zone applications, including transport, and find that the method shows great promise for these types of problem as well. C1 [Keating, Elizabeth; Zyvoloski, George] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87544 USA. RP Keating, E (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, MS T003, Los Alamos, NM 87544 USA. EM ekeating@lanl.gov; gaz@lanl.gov FU Los Alamos National Laboratory LDRD program; LANL Groundwater Protection Programs FX We thank John Doherty for assisting with MODFLOW-2000 runs and for many helpful discussions. We appreciate funding from Los Alamos National Laboratory LDRD program and from the LANL Groundwater Protection Programs. We also thank Zhiming Lu for providing analytical solutions from Neuman (1972). The manuscript was greatly improved by thoughtful reviews by Greg Pohll, Henk Haitjema, and an anonymous reviewer. NR 24 TC 10 Z9 10 U1 0 U2 8 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0017-467X J9 GROUND WATER JI Ground Water PD JUL-AUG PY 2009 VL 47 IS 4 BP 569 EP 579 DI 10.1111/j.1745-6584.2009.00555.x PG 11 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA 466YA UT WOS:000267700200019 PM 19341374 ER PT J AU Terashima, N Akiyama, T Ralph, S Evtuguin, D Neto, CP Parkas, J Paulsson, M Westermark, U Ralph, J AF Terashima, Noritsugu Akiyama, Takuya Ralph, Sally Evtuguin, Dmitry Pascoal Neto, Carlos Parkas, Jim Paulsson, Magnus Westermark, Ulla Ralph, John TI 2D-NMR (HSQC) difference spectra between specifically C-13-enriched and unenriched protolignin of Ginkgo biloba obtained in the solution state of whole cell wall material SO HOLZFORSCHUNG LA English DT Article DE carbon-13 enrichment; carbon-13-NMR spectroscopy; dehydrogenation polymer (DHP); 2D-difference NMR spectroscopy; ginkgo; protolignin ID NUCLEAR-MAGNETIC-RESONANCE; SIDE-CHAIN CARBONS; LIGNIN BIOSYNTHESIS; NMR-SPECTROSCOPY; PART 1; LIGNIFICATION; GLUCOSIDES; ENRICHMENT; CONIFERIN; SPRUCE AB In the structural analysis of lignins by C-13-NMR, signal overlap limits definitive assignment and accurate intensity measurement. Selective labeling by C-13-enrichment of a specific carbon in lignin enhances its signal intensity in the spectrum. Further enhancement of the specifically labeled carbons can be realized via difference spectra created from the enriched and unenriched samples. Difference 2D C-13-H-1 correlation (HSQC) NMR spectra, derived from the spectra of specifically C-13-enriched lignin model polymers (so-called dehydrogenation polymers) and their unenriched counterparts, take advantage of the enhanced dispersion afforded by both C-13 and H-1 chemical shifts, diminishing the difficulties arising from the signal-overlap problem and aiding in definitive signal assignments. In this research, protolignin in xylem cell walls was specifically C-13-enriched at all of the individual phenylpropanoid side-chain carbons by feeding C-13-enriched coniferins to growing stems of Ginkgo biloba. The whole xylem fractions containing C-13-enriched and unenriched protolignins were dissolved in a mixture of N-methylimidazole and DMSO, and then acetylated. Solution state 2D-NMR (HSQC) spectra of the acetylated whole cell wall were acquired. Difference spectra between the walls containing C-13-enriched and unenriched lignins afforded simplified 2D spectra in which well-separated signals were assigned exclusively to the specifically enriched carbons. This novel NMR technique provides a useful tool for elucidation of entire protolignin in the cell wall of ginkgo xylem. C1 [Akiyama, Takuya; Ralph, John] USDA ARS, US Dairy Forage Res Ctr, Madison, WI 53706 USA. [Ralph, Sally] Forest Prod Lab, Madison, WI USA. [Evtuguin, Dmitry; Pascoal Neto, Carlos] Univ Aveiro, Dept Chem, CICECO, P-3800 Aveiro, Portugal. [Parkas, Jim; Paulsson, Magnus] Chalmers, Dept Forest Prod & Chem Engn, S-41296 Gothenburg, Sweden. [Parkas, Jim] Sodra Cell AB, R&D, Varobacka, Sweden. [Paulsson, Magnus] EKA Chem AB, Bohus, Sweden. [Westermark, Ulla] Lulea Univ Technol, Skelleftea, Sweden. [Ralph, John] Univ Wisconsin, Dept Biochem, Madison, WI 53705 USA. [Ralph, John] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Madison, WI USA. RP Terashima, N (reprint author), 2-610 Uedayama,Tenpaku, Nagoya, Aichi 4680001, Japan. EM norteras@quartz.ocn.ne.jp RI NETO, CARLOS/C-8625-2011; OI NETO, CARLOS/0000-0002-8562-9275; Evtuguin, Dmitry/0000-0002-6304-5105 FU FCT, Portugal; Stiftelsen Nils och Dorthi Troedssons Forsknings-fond, Sweden; DOE [DE-AI02-00ER15067] FX The authors wish to acknowledge financial support from FCT, Portugal and Stiftelsen Nils och Dorthi Troedssons Forsknings-fond, Sweden, and through the DOE Energy Biosciences program (# DE-AI02-00ER15067 to J. R.). NMR experiments on the Bruker DMX-500 cryoprobe system availed of the use of the National Magnetic Resonance Facility at the University of Wisconsin-Madison (www.nmrfam.wisc.edu). NR 39 TC 24 Z9 24 U1 3 U2 25 PU WALTER DE GRUYTER & CO PI BERLIN PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY SN 0018-3830 J9 HOLZFORSCHUNG JI Holzforschung PD JUL PY 2009 VL 63 IS 4 BP 379 EP 384 DI 10.1515/HF.2009.074 PG 6 WC Forestry; Materials Science, Paper & Wood SC Forestry; Materials Science GA 465HK UT WOS:000267573200001 ER PT J AU Kosola, K Allred, A Workmaster, BA Coyle, D Elias, AA Ma, C Etherington, E Davis, M Morrell, J Freitag, C Busov, V Strauss, SH AF Kosola, Kevin Allred, Angela Workmaster, Beth Ann Coyle, David Elias, Ani A. Ma, Cathleen Etherington, Elizabeth Davis, Mark Morrell, Jeff Freitag, Camille Busov, Victor Strauss, Steven H. TI Root Traits in Hybrid Aspen with Transgenically Altered Gibberellic Acid Metabolism SO HORTSCIENCE LA English DT Meeting Abstract CT 106th Annual Conference of the American-Society-for-Horticultural-Science CY JUL 25-28, 2009 CL St Louis, MO SP Amer Soc Hort Sci C1 [Kosola, Kevin; Allred, Angela; Workmaster, Beth Ann; Coyle, David] Univ Wisconsin, Madison, WI USA. [Elias, Ani A.; Ma, Cathleen; Etherington, Elizabeth; Morrell, Jeff; Freitag, Camille; Strauss, Steven H.] Oregon State Univ, Corvallis, OR 97331 USA. [Davis, Mark] Natl Renewable Energy Lab, Golden, CO USA. [Busov, Victor] Michigan Technol Univ, Houghton, MI 49931 USA. EM krkoso@monsanto.com; aallred@horticulture.wisc.edu; bworkmas@wisc.edu; dcoyle@entomology.wisc.edu; eliasa@onid.orst.edu; caiping.ma@oregonstate.edu; Elizabeth.Etherington@oregonstate.edu; mark.davis@nrel.gov; jeff.morrell@oregonstate.edu; camille.freitag@oregonstate.edu; vbusov@mtu.edu; steve.strauss@oregonstate.edu NR 0 TC 0 Z9 0 U1 1 U2 4 PU AMER SOC HORTICULTURAL SCIENCE PI ALEXANDRIA PA 113 S WEST ST, STE 200, ALEXANDRIA, VA 22314-2851 USA SN 0018-5345 J9 HORTSCIENCE JI Hortscience PD JUL PY 2009 VL 44 IS 4 BP 987 EP 987 PG 1 WC Horticulture SC Agriculture GA 466VO UT WOS:000267691700068 ER PT J AU Crawford, MH AF Crawford, Mary H. TI LEDs for Solid-State Lighting: Performance Challenges and Recent Advances SO IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS LA English DT Review DE Energy conservation; LEDs; lighting; semiconductor devices ID A-PLANE GAN; EXTERNAL QUANTUM EFFICIENCY; HIGH-EXTRACTION-EFFICIENCY; EMITTING-DIODES; HIGH-POWER; SPONTANEOUS EMISSION; DISLOCATION-DENSITY; CRYSTALLINE-QUALITY; SAPPHIRE SUBSTRATE; PHOTONIC CRYSTALS AB Over the past decade, advances in LEDs have enabled the potential forwide-scale replacement of traditional lighting with solid-state light sources. If LED performance targets are realized, solid-state lighting will provide significant energy savings, important environmental benefits, and dramatically new ways to utilize and control light. In this paper, we review LED performance targets that are needed to achieve these benefits and highlight some of the remaining technical challenges. We describe recent advances in LED materials and novel device concepts that show promise for realizing the full potential of LED-based white lighting. C1 Sandia Natl Labs, Dept Semicond Mat & Device Sci, Albuquerque, NM 87185 USA. RP Crawford, MH (reprint author), Sandia Natl Labs, Dept Semicond Mat & Device Sci, Albuquerque, NM 87185 USA. EM mhcrawf@sandia.gov FU Department of Energy Office of Basic Energy Sciences; Sandia's Laboratory Directed Research and Development Program; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported in part by the Department of Energy Office of Basic Energy Sciences and in part by Sandia's Laboratory Directed Research and Development Program. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration, under Contract DE-AC04-94AL85000. NR 95 TC 369 Z9 379 U1 28 U2 236 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1077-260X J9 IEEE J SEL TOP QUANT JI IEEE J. Sel. Top. Quantum Electron. PD JUL-AUG PY 2009 VL 15 IS 4 BP 1028 EP 1040 DI 10.1109/JSTQE.2009.2013476 PG 13 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 480SK UT WOS:000268756900002 ER PT J AU Bergman, K Brightwell, R Petrini, F AF Bergman, Keren Brightwell, Ron Petrini, Fabrizio TI HOT INTERCONNECTS Introduction SO IEEE MICRO LA English DT Editorial Material C1 [Petrini, Fabrizio] IBM Corp, Thomas J Watson Res Ctr, Multicore Comp Dept, TJ Watson Res Lab, Yorktown Hts, NY 10598 USA. [Brightwell, Ron] Sandia Natl Labs, Scalable Syst Software Dept, Albuquerque, NM 87185 USA. [Bergman, Keren] Columbia Univ, Lightwave Res Lab, New York, NY 10027 USA. RP Petrini, F (reprint author), IBM Corp, Thomas J Watson Res Ctr, Multicore Comp Dept, TJ Watson Res Lab, Yorktown Hts, NY 10598 USA. EM fpetrin@tis.ibm.com NR 0 TC 0 Z9 0 U1 0 U2 1 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0272-1732 J9 IEEE MICRO JI IEEE Micro PD JUL-AUG PY 2009 VL 29 IS 4 BP 5 EP 7 PG 3 WC Computer Science, Hardware & Architecture; Computer Science, Software Engineering SC Computer Science GA 483XZ UT WOS:000269008000002 ER PT J AU Chow, WW Yang, ZS Vawter, GA Skogen, EJ AF Chow, W. W. Yang, Z. S. Vawter, G. A. Skogen, E. J. TI Modulation Response Improvement With Isolator-Free Injection-Locking SO IEEE PHOTONICS TECHNOLOGY LETTERS LA English DT Article DE High-speed lasers; injection-locking; resonators; semiconductor lasers ID BANDWIDTH ENHANCEMENT; SEMICONDUCTOR-LASERS AB Modulation response in injection-locked lasers is investigated with optical isolation between master and slave lasers removed. A strong-coupling theory shows that recently demonstrated modulation response enhancement can be maintained in a significantly more compact monolithic device. C1 [Chow, W. W.; Vawter, G. A.; Skogen, E. J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Chow, W. W.; Yang, Z. S.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. RP Chow, WW (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM wwchow@sandia.gov; zsyang@physics.tamu.edu; gavawte@sandia.gov; ejskoge@sandia.gov NR 13 TC 9 Z9 10 U1 0 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 1041-1135 J9 IEEE PHOTONIC TECH L JI IEEE Photonics Technol. Lett. PD JUL 1 PY 2009 VL 21 IS 13 BP 839 EP 841 DI 10.1109/LPT.2009.2019768 PG 3 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 470AM UT WOS:000267943900005 ER PT J AU Price, DE AF Price, David E. TI Untitled SO IEEE SECURITY & PRIVACY LA English DT Letter C1 Lawrence Livermore Natl Lab, Global Secur Directorate, Z Program, CBRNE Nucl Chem Biol & Explos Accident Safety Ana, Livermore, CA 94550 USA. RP Price, DE (reprint author), Lawrence Livermore Natl Lab, Global Secur Directorate, Z Program, CBRNE Nucl Chem Biol & Explos Accident Safety Ana, Livermore, CA 94550 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1540-7993 J9 IEEE SECUR PRIV JI IEEE Secur. Priv. PD JUL-AUG PY 2009 VL 7 IS 4 BP 6 EP 6 PG 1 WC Computer Science, Information Systems; Computer Science, Software Engineering SC Computer Science GA 479DE UT WOS:000268639100002 ER PT J AU Farinholt, KM Park, G Farrar, CR AF Farinholt, Kevin M. Park, Gyuhae Farrar, Charles R. TI RF Energy Transmission for a Low-Power Wireless Impedance Sensor Node SO IEEE SENSORS JOURNAL LA English DT Article DE Active sensing; wireless energy transmission; wireless impedance device; wireless sensor networks ID MICROWAVE-POWER; RECTENNA; ACTUATOR; ANTENNA AB The proper management of energy resources is essential for any wireless sensing system. With applications that span industrial, civil, and aerospace infrastructure, it is necessary for sensors and sensor nodes to be physically robust and power efficient. In many applications, a sensor network must operate in locations that are difficult to access, and often these systems have a desired operational lifespan which exceeds that of conventional battery technologies. In the present study, the use of microwave energy is examined as an alternate method for powering compact, deployable wireless sensor nodes. A prototype microstrip patch antenna has been designed to operate in the 2.4 GHz ISM band and is used to collect directed radio frequency (RF) energy to power a wireless impedance device that provides active sensing capabilities for structural health monitoring applications. The system has been demonstrated in the laboratory, and was deployed in field experiments on the Alamosa Canyon Bridge in New Mexico in August 2007. The transmitted power was limited to 1 W in field tests, and was able to charge the sensor node to 3.6 V in 27 s. This power level was sufficient to measure two piezoelectric sensors and transmit data back to a base station on the bridge. C1 [Farinholt, Kevin M.; Park, Gyuhae; Farrar, Charles R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Farinholt, KM (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM farinholt@lanl.gov; gpark@lanl.gov; farrar@lanl.gov RI Farrar, Charles/C-6954-2012; OI Farrar, Charles/0000-0001-6533-6996 NR 32 TC 35 Z9 35 U1 2 U2 13 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 1530-437X J9 IEEE SENS J JI IEEE Sens. J. PD JUL PY 2009 VL 9 IS 7 BP 793 EP 800 DI 10.1109/JSEN.2009.2022536 PG 8 WC Engineering, Electrical & Electronic; Instruments & Instrumentation; Physics, Applied SC Engineering; Instruments & Instrumentation; Physics GA 468ZN UT WOS:000267864100005 ER PT J AU Zhang, QH Smith, JR Saraf, LV Hua, F AF Zhang, Qiaohui Smith, James R. Saraf, Lax V. Hua, Feng TI Transparent Humidity Sensor Using Cross-Linked Polyelectrolyte Membrane SO IEEE SENSORS JOURNAL LA English DT Article DE Electrostatic self-assembly; humidity sensor; porous polymeric film; transparent sensor ID PHOSPHONIUM SALT; MULTILAYER FILMS; LAYER; COPOLYMERS AB This paper describes the fabrication of a porous cross-linked polyelectrolyte membrane and the characterization of its humidity sensitivity performance. Electrostatic self-assembly, combined with acid treatment, and post-deposition annealing produced the membrane. The fabrication process offers the ability to control the thickness of the membrane, as well as enabling the engineering of the humidity sensitivity properties. A transparent humidity sensor was fabricated by integrating the membrane between two parallel electrodes. In order to improve the moisture absorption and diffusion, both the polyelectrolyte layer and the electrode were made porous. The membrane was cross-linked to enhance the durability in high humid environments. Such a polyelectrolyte membrane showed high sensitivity to relative humidity variation over a range of 25%-99%. The see-through property of the structure adds extra features and benefits to the sensor. C1 [Zhang, Qiaohui; Smith, James R.; Hua, Feng] Clarkson Univ, Dept Elect & Comp Engn, Potsdam, NY 13699 USA. [Saraf, Lax V.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Zhang, QH (reprint author), Clarkson Univ, Dept Elect & Comp Engn, Potsdam, NY 13699 USA. EM fhua@clarkson.edu FU Department of Energy's Office of Biological and Environmental Research FX A portion of this research described in this paper is performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The associate editor coordinating the review of this paper and approving it for publication was Prof. E. H. Yang. NR 23 TC 5 Z9 5 U1 2 U2 12 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1530-437X EI 1558-1748 J9 IEEE SENS J JI IEEE Sens. J. PD JUL PY 2009 VL 9 IS 7 BP 854 EP 857 DI 10.1109/JSEN.2009.2024055 PG 4 WC Engineering, Electrical & Electronic; Instruments & Instrumentation; Physics, Applied SC Engineering; Instruments & Instrumentation; Physics GA 470ZE UT WOS:000268020300004 ER PT J AU Santarelli, KR Dahleh, MA AF Santarelli, Keith R. Dahleh, Munther A. TI L2 Gain Stability of Switched Output Feedback Controllers for a Class of LTI Systems SO IEEE TRANSACTIONS ON AUTOMATIC CONTROL LA English DT Article DE Controller design; hybrid systems; L2 gain; output feedback; switching systems ID LINEAR-SYSTEMS; STABILIZATION AB Our previous work has been devoted to designing asymptotically stabilizing switching controllers for a class of second order LTI plants. Here, we extend the results of our previous work by proving that, when a plant can be asymptotically stabilized using a particular switching architecture, the overall closed-loop interconnection is also finite L2 gain stable. We shall first prove this result for a simplified problem in which a portion of the switching architecture has full access to the state of the plant and shall then extend to the case where the architecture only has access to the plant output by designing an appropriate observer. C1 [Santarelli, Keith R.] Sandia Natl Labs, Elect & Microsyst Modeling Dept, Albuquerque, NM 87185 USA. [Dahleh, Munther A.] MIT, Informat & Decis Syst Lab, Cambridge, MA 02139 USA. RP Santarelli, KR (reprint author), Sandia Natl Labs, Elect & Microsyst Modeling Dept, POB 5800, Albuquerque, NM 87185 USA. EM kr-santa@sandia.gov; dahleh@mit.edu NR 25 TC 7 Z9 7 U1 0 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0018-9286 J9 IEEE T AUTOMAT CONTR JI IEEE Trans. Autom. Control PD JUL PY 2009 VL 54 IS 7 BP 1504 EP 1514 DI 10.1109/TAC.2009.2022096 PG 11 WC Automation & Control Systems; Engineering, Electrical & Electronic SC Automation & Control Systems; Engineering GA 471EK UT WOS:000268038100006 ER PT J AU Ergen, SC Sangiovanni-Vincentelli, A Sun, XN Tebano, R Alalusi, S Audisio, G Sabatini, M AF Ergen, Sinem Coleri Sangiovanni-Vincentelli, Alberto Sun, Xuening Tebano, Riccardo Alalusi, Sayf Audisio, Giorgio Sabatini, Marco TI The Tire as an Intelligent Sensor SO IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS LA English DT Article DE Automotive safety; energy efficiency; energy scavenging; heterogeneous systems; intelligent systems; platform-based design; tires; ultrawideband; wireless sensors AB Active safety systems are based upon the accurate and fast estimation of the value of important dynamical variables such as forces, load transfer, actual tire-road friction (kinetic friction) mu(k), and maximum tire-road friction available (potential friction) mu(p). Measuring these parameters directly from tires offers the potential for improving significantly the performance of active safety systems. We present a distributed architecture for a data-acquisition system that is based on a number of complex intelligent sensors inside the tire that form a wireless sensor network with coordination nodes placed on the body of the car. The design of this system has been extremely challenging due to the very limited available energy combined with strict application requirements for data rate, delay, size, weight, and reliability in a highly dynamical environment. Moreover, it required expertise in multiple engineering disciplines, including control-system design, signal processing, integrated-circuit design, communications, real-time software design, antenna design, energy scavenging, and system assembly. C1 [Ergen, Sinem Coleri; Alalusi, Sayf] Univ Calif Berkeley, Lawrence Berkeley Lab, Wireless Sensor Networks, Berkeley, CA 94704 USA. [Sangiovanni-Vincentelli, Alberto; Sun, Xuening] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Tebano, Riccardo; Audisio, Giorgio; Sabatini, Marco] Pirelli Tyres SpA, I-20126 Milan, Italy. RP Ergen, SC (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Wireless Sensor Networks, Berkeley, CA 94704 USA. EM alberto@eecs.berkeley.edu; riccardo.tebano@pirelli.com RI Coleri Ergen, Sinem/O-9829-2014; OI Coleri Ergen, Sinem/0000-0002-7502-3122; Sangiovanni-Vincentelli, Alberto/0000-0003-1298-8389 FU MICRO program FX This work was supported in part by the Gigascale System Research Center, by the MICRO program of the State of California, and by the Artist Design Network of Excellence. This paper was recommended by Associate Editor M. Di Natale. NR 27 TC 44 Z9 46 U1 2 U2 11 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0278-0070 EI 1937-4151 J9 IEEE T COMPUT AID D JI IEEE Trans. Comput-Aided Des. Integr. Circuits Syst. PD JUL PY 2009 VL 28 IS 7 BP 941 EP 955 DI 10.1109/TCAD.2009.2022879 PG 15 WC Computer Science, Hardware & Architecture; Computer Science, Interdisciplinary Applications; Engineering, Electrical & Electronic SC Computer Science; Engineering GA 463MJ UT WOS:000267436000002 ER PT J AU Cadeddu, MP Turner, DD Liljegren, JC AF Cadeddu, Maria P. Turner, David D. Liljegren, James C. TI A Neural Network for Real-Time Retrievals of PWV and LWP From Arctic Millimeter-Wave Ground-Based Observations SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Ground-based microwave radiometry; inverse problems; millimeter-wave measurements; neural network (NN) applications ID PRECIPITABLE WATER-VAPOR; LIQUID WATER; MICROWAVE RADIOMETERS; RADIATIVE-TRANSFER; CLOUD PROPERTIES; TEMPERATURE; ALGORITHM; PROFILES; SURFACE; PATH AB This paper presents a new neural network (NN) algorithm for real-time retrievals of low amounts of precipitable water vapor (PWV) and integrated liquid water from millimeter-wave ground-based observations. Measurements are collected by the 183.3-GHz G-band vapor radiometer (GVR) operating at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility, Barrow, AK. The NN provides the means to explore the nonlinear regime of the measurements and investigate the physical boundaries of the operability of the instrument. A methodology to compute individual error bars associated with the NN output is developed, and a detailed error analysis of the network output is provided. Through the error analysis, it is possible to isolate several components contributing to the overall retrieval errors and to analyze the dependence of the errors on the inputs. The network outputs and associated errors are then compared with results from a physical retrieval and with the ARM two-channel microwave radiometer (MWR) statistical retrieval. When the NN is trained with a seasonal training data set, the retrievals of water vapor yield results that arc: comparable to those obtained from a traditional physical retrieval, with a retrieval error percentage of similar to 5% when the PWV is between 2 and 10 mm, but with the advantages that the NN algorithm does not require vertical profiles of temperature and humidity as input and is significantly faster computationally. Liquid water path (LWP) retrievals from the NN have a significantly improved clear-sky bias (mean of similar to 2.4 g/m(2)) and a retrieval error varying from 1 to about 10 g/m(2) when the PWV amount is between 1 and 10 mm. As an independent validation of the LWP retrieval, the longwave downwelling surface flux was computed and compared with observations. The comparison shows a significant improvement with respect to the MWR statistical retrievals, particularly for LWP amounts of less than 60 g/m(2). This paper shows that the GVR alone can provide overall improved PWV and LWP retrievals when the PWV amount is less than 10 mm, and, when combined with the MWR, can provide improved retrievals over the whole water-vapor range. C1 [Cadeddu, Maria P.; Liljegren, James C.] Argonne Natl Lab, Argonne, IL 60439 USA. [Turner, David D.] Univ Wisconsin, Madison, WI 53706 USA. RP Cadeddu, MP (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM mcadeddu@anl.gov; dturner@ssec.wisc.edu; jcliljegren@anl.gov FU Climate Change Research Division, U.S. Department of Energy; Office of Science; Office of Biological and Environmental Research [DE-FG02-06ER64167, DE-AC02-06CH11357]; ARM Program FX This work was Supported by the Climate Change Research Division, U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, under Contracts DE-FG02-06ER64167 and DE-AC02-06CH11357, as part of the ARM Program. UChicago Argonne, LLC, Operator of Argonne National Laboratory. The U.S. Government retains for itself, and others acting on its behalf, a paid-tip nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 33 TC 8 Z9 8 U1 0 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD JUL PY 2009 VL 47 IS 7 BP 1887 EP 1900 DI 10.1109/TGRS.2009.2013205 PN 1 PG 14 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 463MV UT WOS:000267437200001 ER PT J AU Xu, DD Subramanian, A Dong, LX Nelson, BJ AF Xu, Didi Subramanian, Arunkumar Dong, Lixin Nelson, Bradley J. TI Shaping Nanoelectrodes for High-Precision Dielectrophoretic Assembly of Carbon Nanotubes SO IEEE TRANSACTIONS ON NANOTECHNOLOGY LA English DT Article DE Assembly; carbon nanotube; dielectrophoresis; electric field; geometry ID FABRICATION; SEPARATION; MICROELECTRODES; NANOSTRUCTURES; TRANSISTORS; PARTICLES; TIP AB To achieve high-precision dielectrophoretic (DEP) assembly of carbon nanotubes (CNTs) for nanoelectronic circuits and nanoelectromechanical systems (NEMS), a technique is investigated both theoretically and experimentally for shaping the local geometries of nanoelectrodes to control the electrohydrodynamic behavior of CNTs. Motion trajectories and positions of CNTs assembled on electrodes are predicted based on calculated DEP forces and torques. Both simulation and experimental results show that the geometries of two opposing electrodes significantly affect the precision and robustness with which CNTs can be deposited. Experimental investigation of an electrode array demonstrates that the spacing between neighboring electrode pairs should be larger than twice the width of electrodes to avoid overlapping electric fields and unstable DEP forces; otherwise, unequally distributed electric fields and DEP forces induce a significant number of assembly failures in the array. C1 [Xu, Didi; Nelson, Bradley J.] ETH, IRIS, CH-8092 Zurich, Switzerland. [Subramanian, Arunkumar] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Dong, Lixin] Michigan State Univ, E Lansing, MI 48824 USA. RP Xu, DD (reprint author), ETH, IRIS, CH-8092 Zurich, Switzerland. EM dixu@ethz.ch; arun@ethz.ch; ldong@egr.msu.edu; bnelson@ethz.ch RI Dong, Lixin/B-3115-2008; Nelson, Bradley/B-7761-2013 OI Dong, Lixin/0000-0002-8816-4944; Nelson, Bradley/0000-0001-9070-6987 FU European Commission; Swiss National Science Foundation FX This work is conducted with financial support from the project "Hybrid Ultra Precision Manufacturing Process Based on Positional and Self-assembly for Complex Micro-Products (HYDROMEL)" funded by the European Commission under the 6th Framework Program (FP6) and the Swiss National Science Foundation project " Rolled up electromechanical logic using bowing/sliding nanotubes." The review of this paper was arranged by Associate Editor J.Li. NR 34 TC 29 Z9 29 U1 1 U2 27 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1536-125X J9 IEEE T NANOTECHNOL JI IEEE Trans. Nanotechnol. PD JUL PY 2009 VL 8 IS 4 BP 449 EP 456 DI 10.1109/TNANO.2009.2015295 PG 8 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Science & Technology - Other Topics; Materials Science; Physics GA 472ZA UT WOS:000268170900005 ER PT J AU Sathitsuksanoh, N Zhu, ZG Templeton, N Rollin, JA Harvey, SP Zhang, YHP AF Sathitsuksanoh, Noppadon Zhu, Zhiguang Templeton, Neil Rollin, Joseph A. Harvey, Steven P. Zhang, Y-H. Percival TI Saccharification of a Potential Bioenergy Crop, Phragmites australis (Common Reed), by Lignocellulose Fractionation Followed by Enzymatic Hydrolysis at Decreased Cellulase Loadings SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID DILUTE-SULFURIC-ACID; CORN STOVER; CONSTRUCTED WETLAND; ADSORPTION; PRETREATMENT; ETHANOL; REMOVAL; SOLIDS; YIELDS; PILOT AB Cost-effective biological saccharification of nonfood lignocellulosic biomass is vital to the establishment of a carbohydrate economy. Phragmites australis (common reed) is regarded as an invasive perennial weed with a productivity of up to 18-28 tons of dry weight per acre per year. We applied the cellulose solvent- and organic solvent-based lignocellulose fractionation (COSLIF) to the stems and leaves of Phragmites and optimized the pretreatment conditions (e.g., temperature, reaction time, and biomass moisture content) through response surface methodology (RSM). The optimal pretreatment conditions were 85% (w/v) H(3)PO(4), 50 degrees C, and 60 min, regardless of the biomass moisture contents from 5-15% (w/w). Glucan digestibility of the COSLIF-pretreated common reed was 90% at hour 24 at a low cellulase loading (5 filter paper units and 10 beta-glucosidase units per gram of glucan). Under these conditions, the overall sugar yields were 88% for glucose and 71% for xylose, respectively. Cellulose accessibility to cellulase (CAC) was increased 93.6-fold from 0.14 +/- 0.035 to 13.1 +/- 1.1 m(2) per gram of biomass with the COSLIF pretreatment. Results showed that cellulase concentrations could be reduced by 3-fold with only a slight reduction in sugar yield. This study suggested that Phragmites could be used as a carbon-neutral bioenergy feedstock, while its harvesting could help control its invasive growth and decrease nutrient pollution in adjacent waterways. C1 [Sathitsuksanoh, Noppadon; Zhu, Zhiguang; Templeton, Neil; Rollin, Joseph A.; Zhang, Y-H. Percival] Virginia Polytech Inst & State Univ, Dept Biol Syst Engn, Blacksburg, VA 24061 USA. [Sathitsuksanoh, Noppadon; Zhang, Y-H. Percival] Virginia Polytech Inst & State Univ, ICTAS, Blacksburg, VA 24061 USA. [Harvey, Steven P.] USA, ECBC, Res & Technol Directorate, Aberdeen Proving Ground, MD 21010 USA. [Zhang, Y-H. Percival] DOE BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. RP Zhang, YHP (reprint author), Virginia Polytech Inst & State Univ, Dept Biol Syst Engn, 210-A Seitz Hall, Blacksburg, VA 24061 USA. EM ypzhang@vt.edu RI sathitsuksanoh, noppadon/O-6305-2014; Zhu, Zhiguang/I-3936-2016 OI sathitsuksanoh, noppadon/0000-0003-1521-9155; FU DOD [W911SR-08-P-0021]; USDA-sponsored Bioprocessing and Biodesign Center,; DOE BioEnergy Science Center (BESC); ICTAS; NSF REU program; Novozymes North American FX This work was supported mainly by a DOD grant (W911SR-08-P-0021), and partially by the USDA-sponsored Bioprocessing and Biodesign Center, and the DOE BioEnergy Science Center (BESC). INS was partially supported by the ICTAS scholar program. NT was supported by the NSF REU program. The authors are grateful for the free cellulase samples provided from Novozymes North American. NR 30 TC 59 Z9 60 U1 1 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD JUL 1 PY 2009 VL 48 IS 13 BP 6441 EP 6447 DI 10.1021/ie900291s PG 7 WC Engineering, Chemical SC Engineering GA 462TK UT WOS:000267379300058 ER PT J AU Taboada-Serrano, P Ulrich, S Szymcek, P McCallum, SD Phelps, TJ Palumbo, A Tsouris, C AF Taboada-Serrano, Patricia Ulrich, Shannon Szymcek, Phillip McCallum, Scott D. Phelps, Tommy J. Palumbo, Anthony Tsouris, Costas TI Multiphase, Microdispersion Reactor for the Continuous Production of Methane Gas Hydrate SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID OCEAN CARBON SEQUESTRATION; CLATHRATE HYDRATE; CO2 HYDRATE; CO2-HYDRATE COMPOSITE; STATIC MIXER; LIQUID CO2; PRESERVATION; PRESSURES; PARTICLES; INJECTION AB A continuous-jet hydrate reactor originally developed to generate a CO(2) hydrate stream has been modified to continuously produce CH(4) hydrate. The reactor has been tested in the Seafloor Process Simulator (SPS), a 72-L pressure vessel available at Oak Ridge National Laboratory. During experiments, the reactor was submerged in water inside the SPS and received water from the surrounding through a submersible pump and CH(4) externally through a gas booster pump. Thermodynamic conditions in the hydrate stability regime were employed in the experiments. The reactor produced a continuous stream of CH(4) hydrate, and based on pressure values and amount of gas injected, the conversion of gas to hydrate was estimated. A conversion of up to 70% was achieved using this reactor. C1 [Taboada-Serrano, Patricia; Tsouris, Costas] Georgia Inst Technol, Atlanta, GA 30332 USA. [Taboada-Serrano, Patricia; Ulrich, Shannon; Szymcek, Phillip; McCallum, Scott D.; Phelps, Tommy J.; Palumbo, Anthony; Tsouris, Costas] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. RP Tsouris, C (reprint author), Georgia Inst Technol, Atlanta, GA 30332 USA. EM tsourisc@ornl.gov RI Palumbo, Anthony/A-4764-2011; phelps, tommy/A-5244-2011; Taboada-Serrano, Patrica/F-4745-2012; Tsouris, Costas/C-2544-2016 OI Palumbo, Anthony/0000-0002-1102-3975; Tsouris, Costas/0000-0002-0522-1027 FU Department of Energy, National Energy and Technology Laboratory; Oak Ridge National Laboratory [DE-AC05-00OR22725]; Georgia Institute of Technology [DE-FC26-06NT42963] FX Funding for this work was provided by the Department of Energy, National Energy and Technology Laboratory, to Oak Ridge National Laboratory under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC, and to Georgia Institute of Technology under Contract No. DE-FC26-06NT42963. NR 25 TC 4 Z9 4 U1 1 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD JUL 1 PY 2009 VL 48 IS 13 BP 6448 EP 6452 DI 10.1021/ie8019517 PG 5 WC Engineering, Chemical SC Engineering GA 462TK UT WOS:000267379300059 ER PT J AU Dilmore, R Griffith, C Liu, Z Soong, Y Hedges, SW Koepsel, R Ataai, M AF Dilmore, Robert Griffith, Craig Liu, Zhu Soong, Yee Hedges, Sheila W. Koepsel, Richard Ataai, Mohammad TI Carbonic anhydrase-facilitated CO2 absorption with polyacrylamide buffering bead capture SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Carbonic anhydrase; Polyacrylamide; Immobiline; Tertiary amine; CO2 capture ID MACRORETICULATE BUFFERS; NEISSERIA-GONORRHOEAE; SEQUESTRATION; PURIFICATION; SEPARATION; FLUE AB A novel CO2 separation concept is described wherein the enzyme carbonic anhydrase (CA) is used to increase the overall rate Of CO2 absorption after which hydrated CO2 reacts with regenerable amine-bearing polyacrylamide buffering beads (PABB). Following saturation of the material's immobilized tertiary amines, CA-bearing carrier water is separated and recycled to the absorption stage while CO2-loaded material is thermally regenerated. Process application of this concept would involve operation of two or more columns in parallel with thermal regeneration with low-pressure steam taking place after the capacity of a column of amine-bearing polymeric material was exceeded. PABB CO2-bearing capacity was evaluated by thermogravimetric analysis (TGA) for beads of three acrylamido buffering monomer ingredient concentrations: 0 mol/kg bead, 0.857 mol/kg bead, and 2 mol/kg bead. TGA results demonstrate that CO2-bearing capacity increases with increasing PABB buffering concentration and that up to 78% of the theoretical CO2-bearing capacity was realized in prepared PABB samples (0.857 mol/kg recipe). The highest observed CO2-bearing capacity of PABB was 1.37 mol of CO2 per kg dry bead. TGA was also used to assess the regenerability Of CO2-loaded PABB. Preliminary results suggest that CO2 is partially driven from PABB samples at temperatures as low as 55 degrees C, with complete regeneration occurring at 100 degrees C. Other physical characteristics of PABB are discussed. In addition, the effectiveness of bovine carbonic anhydrase for the catalysis Of CO2 dissolution is evaluated. Potential benefits and drawbacks of the proposed process are discussed. Published by Elsevier Ltd. C1 [Dilmore, Robert; Griffith, Craig; Soong, Yee; Hedges, Sheila W.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Liu, Zhu; Koepsel, Richard; Ataai, Mohammad] Univ Pittsburgh, Ctr Biotechnol, Pittsburgh, PA 15219 USA. RP Dilmore, R (reprint author), US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. EM dilmore@NETLDOE.GOV; Yee.Soong@netl.doe.gov; ataai@engr.pitt.edu OI Koepsel, Richard/0000-0002-6780-4914 NR 29 TC 19 Z9 19 U1 0 U2 17 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD JUL PY 2009 VL 3 IS 4 BP 401 EP 410 DI 10.1016/j.ijggc.2009.01.004 PG 10 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 465FV UT WOS:000267568800006 ER PT J AU Schwarz, KT Patzek, TW Silin, DB AF Schwarz, Katherine T. Patzek, Tad W. Silin, Dmitriy B. TI Dispersion by wind of CO2 leaking from underground storage: Comparison of analytical solution with simulation SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE CO2 storage; CO2 leakage; Numerical simulation; Atmospheric surface layer; Advection-diffusion equation; Analytical solution ID TRANSPORT; SURFACE; LAYER; FLOW AB The concentration of CO2 in air near the ground needs to be predicted to assess environmental and health risks from leaking underground storage. There is an exact solution to the advection-diffusion equation describing trace gases carried by wind when the wind profile is modeled with a power-law dependence on height. The analytical solution is compared with a numerical simulation of the coupled air-ground system with a source of CO2 underground at the water table. The two methods produce similar results far from the boundaries, but the boundary conditions have a strong effect; the simulation imposes boundary conditions at the edge of a finite domain while the analytic solution imposes them at infinity. The reverse seepage from air to ground is shown in the simulation to be very small, and the large difference between time scales suggests that air and ground can be modeled separately, with gas emissions from the ground model used as inputs to the air model. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Schwarz, Katherine T.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Patzek, Tad W.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Silin, Dmitriy B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Schwarz, KT (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM kts@cal.berkeley.edu FU U.S. Department of Energy [DE-AC02-05CH11231]; Center for Pure and Applied Mathematics at UC Berkeley FX We are grateful to Dr. C.M. Oldenburg of Lawrence Berkeley National Laboratory, Earth Sciences Division, for sharing his data, helping us interpret it, and carefully reviewing this paper. Dr. N.L. Miller of LBNL also reviewed the paper. The authors would also like to thank Professor G.I. Barenblatt, who read an early version of the paper and provided very useful discussions.; This work has been performed at University of California, Berkeley, and Lawrence Berkeley National Laboratory of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Support for the first author was provided by a Sunset Fellowship from the Center for Pure and Applied Mathematics at UC Berkeley. NR 24 TC 3 Z9 3 U1 2 U2 8 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD JUL PY 2009 VL 3 IS 4 BP 422 EP 430 DI 10.1016/j.ijggc.2009.02.005 PG 9 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 465FV UT WOS:000267568800008 ER PT J AU Oldenburg, CM Bryant, SL Nicot, JP AF Oldenburg, Curtis M. Bryant, Steven L. Nicot, Jean-Philippe TI Certification framework based on effective trapping for geologic carbon sequestration SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Geologic carbon sequestration; Leakage risk; Risk assessment ID CO2 STORAGE; DIOXIDE; WATER; SEEPAGE; SITES AB We have developed a certification framework (CF) for certifying the safety and effectiveness of geologic carbon sequestration (GCS) sites. Safety and effectiveness are achieved if CO(2) and displaced brine have no significant impact on humans, other living things, resources, or the environment. In the CF, we relate effective trapping to CO(2) leakage risk which takes into account both the impact and probability of leakage. We achieve simplicity in the CF by using (1) wells and faults as the potential leakage pathways, (2) compartments to represent environmental resources that may be impacted by leakage, (3) CO(2) fluxes and concentrations in the compartments as proxies for impact to vulnerable entities, (4) broad ranges of storage formation properties to generate a catalog of simulated plume movements, and (5) probabilities of intersection of the CO(2) plume with the conduits and compartments. We demonstrate the approach on a hypothetical GCS site in a Texas Gulf Coast saline formation. Through its generality and flexibility, the CF can contribute to the assessment of risk Of CO(2) and brine leakage as part of the certification process for licensing and permitting of GCS sites around the world regardless of the specific regulations in place in any given country. Published by Elsevier Ltd. C1 [Oldenburg, Curtis M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Bryant, Steven L.] Univ Texas Austin, Ctr Petr & Geosyst Engn, Austin, TX 78712 USA. [Nicot, Jean-Philippe] Univ Texas Austin, Bur Econ Geol, Jackson Sch Geosci, Austin, TX 78713 USA. RP Oldenburg, CM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 90-1116,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM cmoldenburg@lbl.gov RI Nicot, Jean-Philippe/A-3954-2009; Oldenburg, Curtis/L-6219-2013 OI Oldenburg, Curtis/0000-0002-0132-6016 FU U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Navanit Kumar (UT) for generating the catalog of simulation results, Yingqi Zhang (LBNL) for modeling well-flow, and Sue Minkoff (Univ. of Maryland, Baltimore County) for developing the initial leak-off well-flow model. We thank Scott Imbus (Chevron) and Cal Cooper (Conoco-Phillips) for support and encouragement. This work was supported in part by the CO2 Capture Project (CCP) of the joint Industry Program (JIP), and by Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract No. DE-AC02-05CH11231. NR 49 TC 56 Z9 58 U1 0 U2 10 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD JUL PY 2009 VL 3 IS 4 BP 444 EP 457 DI 10.1016/j.ijggc.2009.02.009 PG 14 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 465FV UT WOS:000267568800010 ER PT J AU Jankowski, TA AF Jankowski, Todd A. TI Minimizing entropy generation in internal flows by adjusting the shape of the cross-section SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER LA English DT Article DE Entropy generation minimization; Internal flow; Thermal optimization ID CONSTANT WALL TEMPERATURE; HEAT-FLUX; LAMINAR-FLOW; DUCT AB Entropy generation in fully-developed flow through a duct with heat transfer is discussed. Methods are presented to minimize entropy generation by adjusting the shape of the duct's cross-section. Choosing a different cross-sectional shape allows for control of the competing fluid flow and heat transfer irreversibilities. By controlling the competing irreversibilities, the total entropy generation rate can be minimized. Given the flow rate, heat transfer rate, available cross-sectional area, and the fluid properties, a general design correlation is presented that allows for a determination of the optimal shape of a duct. (C) 2009 Elsevier Ltd. All rights reserved. C1 Los Alamos Natl Lab, Mech & Thermal Engn Grp AET1, Los Alamos, NM 87545 USA. RP Jankowski, TA (reprint author), Los Alamos Natl Lab, Mech & Thermal Engn Grp AET1, MS J580, Los Alamos, NM 87545 USA. EM jankowski@lanl.gov RI Jankowski, Todd/A-8793-2014 FU Cooperative Research and Development Agreement (CRADA) FX Funding for this work was provided by a Cooperative Research and Development Agreement (CRADA) between the Chevron Corporation and the Los Alamos National Laboratory. Los Alamos National Laboratory is operated by Los Alamos National Security LLC for the Department of Energy. The author thanks Mr. M. Rodarte for taking the time to study and discuss this subject. The author also thanks Drs. A. Razani and F.C. Prenger for their critical reviews of the original manuscript. NR 14 TC 27 Z9 27 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0017-9310 J9 INT J HEAT MASS TRAN JI Int. J. Heat Mass Transf. PD JUL PY 2009 VL 52 IS 15-16 BP 3439 EP 3445 DI 10.1016/j.ijheatmasstransfer.2009.03.016 PG 7 WC Thermodynamics; Engineering, Mechanical; Mechanics SC Thermodynamics; Engineering; Mechanics GA 460FM UT WOS:000267173600003 ER PT J AU Yu, WH France, DM Smith, DS Singh, D Timofeeva, EV Routbort, JL AF Yu, Wenhua France, David M. Smith, David S. Singh, Dileep Timofeeva, Elena V. Routbort, Jules L. TI Heat transfer to a silicon carbide/water nanofluid SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER LA English DT Article DE Nanofluids; Heat transfer; Turbulent flow; Silicon carbide ID THERMAL TRANSPORT AB Heat transfer experiments were performed with a water-based nanofluid containing 170-nm silicon carbide particles at a 3.7% volume concentration and having potential commercial viability. Heat transfer coefficients for the nanofluid are presented for Reynolds numbers ranging from 3300 to 13,000 and are compared to the base fluid water on the bases of constant Reynolds number, constant velocity, and constant pumping power. Results were also compared to predictions from standard liquid correlations and a recently altered nanofluid correlation. The slip mechanisms of Brownian diffusion and thermophoresis postulated in the altered correlation were investigated in a series of heating and cooling experiments. Published by Elsevier Ltd. C1 [Yu, Wenhua; Smith, David S.; Timofeeva, Elena V.; Routbort, Jules L.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [France, David M.] Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA. [Singh, Dileep] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Yu, WH (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM wyu@anl.gov RI Timofeeva, Elena/E-6391-2010 FU Michelin American Research and Development Corporation; U.S. Department of Energy [E-AC02-06CH11357] FX This work was sponsored by Michelin American Research and Development Corporation and by the U.S. Department of Energy, under Contract No. E-AC02-06CH11357 at Argonne National Laboratory, managed by the University of Chicago Argonne LLC (USA). Authors are grateful to Saint Gobain for providing the SiC/water nanofluid for this study. NR 17 TC 75 Z9 75 U1 1 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0017-9310 EI 1879-2189 J9 INT J HEAT MASS TRAN JI Int. J. Heat Mass Transf. PD JUL PY 2009 VL 52 IS 15-16 BP 3606 EP 3612 DI 10.1016/j.ijheatmasstransfer.2009.02.036 PG 7 WC Thermodynamics; Engineering, Mechanical; Mechanics SC Thermodynamics; Engineering; Mechanics GA 460FM UT WOS:000267173600021 ER PT J AU Ahluwalia, RK Peng, JK AF Ahluwalia, R. K. Peng, J. K. TI Automotive hydrogen storage system using cryo-adsorption on activated carbon SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Hydrogen storage; Cryo-adsorption; Activated carbon ID INSULATED PRESSURE-VESSELS AB An integrated model of a sorbent-based cryogenic compressed hydrogen system is used to assess the prospect of meeting the near-term targets of 36 kg-H(2)/m(3) volumetric and 4.5 wt% gravimetric capacity for hydrogen-fueled vehicles. The model includes the thermodynamics of H(2) sorption, heat transfer during adsorption and desorption, sorption dynamics, energetics of cryogenic tank cooling, and containment of H(2) in geodesically wound carbon fiber tanks. The results from the model show that recoverable hydrogen, rather than excess or absolute adsorption, is a determining measure of whether a sorbent is a good candidate material for on-board storage of H(2). A temperature swing is needed to recover >80% of the sorption capacity of the superactivated carbon sorbent at 100 K and 100 bar as the tank is depressurized to 3-8 bar. The storage pressure at which the system needs to operate in order to approach the system capacity targets has been deter-mined and compared with the breakeven pressure above which the storage tank is more compact if H(2) is stored only as a cryo-compressed gas. The amount of liquid N(2) needed to cool the hydrogen dispensed to the vehicle to 100 K and to remove the heat of adsorption during refueling has been estimated. The electrical energy needed to produce the requisite liquid N(2) by air liquefaction is compared with the electrical energy needed to liquefy the same amount of H(2) at a central plant. The alternate option of adiabatically refueling the sorbent tank with liquid H(2) has been evaluated to determine the relationship between the storage temperature and the sustainable temperature swing. Finally, simulations have been run to estimate the increase in specific surface area and bulk density of medium needed to satisfy the system capacity targets with H(2) storage at 100 bar. (C) 2009 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved. C1 [Ahluwalia, R. K.; Peng, J. K.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Ahluwalia, RK (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM walia@anl.gov FU UChicago Argonne, LLC [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. Dr. Sunita Satyapal of the Office of Hydrogen, Fuel Cells, and Infrastructure Technologies was the Technology Development Manager for this study. The authors thank Dr. Romesh Kumar of Argonne National Laboratory for many useful discussions and helpful suggestions. Argonne National Laboratory, a U.S. Department of Energy Office of Science laboratory, is operated by UChicago Argonne, LLC, under Contract No. DE-AC02-06CH11357. NR 19 TC 45 Z9 46 U1 2 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD JUL PY 2009 VL 34 IS 13 BP 5476 EP 5487 DI 10.1016/j.ijhydene.2009.05.023 PG 12 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 475XZ UT WOS:000268402000024 ER PT J AU Robinson, DB Fares, SJ Ong, MD Arslan, I Langham, ME Tran, KL Clift, WM AF Robinson, David B. Fares, Stephen J. Ong, Markus D. Arslan, Ilke Langham, Mary E. Tran, Kim L. Clift, W. Miles TI Scalable synthesis of nanoporous palladium powders SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Nanoporous; Mesoporous; Palladium; Platinum; Hydrogen ID MESOPOROUS PLATINUM FILMS; LIQUID-CRYSTALLINE PHASES; L-ASCORBIC-ACID; ELECTROLESS DEPOSITION; ELECTROCHEMICAL DEPOSITION; SURFACTANT; TEMPLATES; ALLOYS; PD; MESOSTRUCTURE AB Nanoporous palladium powders are synthesized on milligram to gram scales by chemical reduction of tetrachloro complexes by ascorbate in a concentrated aqueous surfactant at temperatures between - 20 and 30 degrees C. Particle diameters are approximately 50 nm, and each particle is perforated by 3 nm pores, as determined by electron tomography. These materials are of potential value for storage of hydrogen isotopes and electrical charge; producing them at large scales in a safe and efficient manner will help realize this. A slightly modified procedure also results in nanoporous platinum. (C) 2009 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved. C1 [Robinson, David B.; Fares, Stephen J.; Ong, Markus D.; Arslan, Ilke; Langham, Mary E.; Tran, Kim L.; Clift, W. Miles] Sandia Natl Labs, Livermore, CA 94551 USA. RP Robinson, DB (reprint author), Sandia Natl Labs, POB 969, Livermore, CA 94551 USA. EM drobins@sandia.gov FU Sandia National Laboratories; Sandia Corporation; Lockheed Martin Company [DE-AC04-94AL85000]; Truman fellowship FX This work was performed under the Laboratory-Directed Research and Development Program at Sandia National Laboratories, a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. I. A. was supported by a Truman fellowship under this program. NR 33 TC 21 Z9 22 U1 5 U2 19 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD JUL PY 2009 VL 34 IS 13 BP 5585 EP 5591 DI 10.1016/j.ijhydene.2009.05.026 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 475XZ UT WOS:000268402000035 ER PT J AU Barley, CD Gawlik, K AF Barley, C. D. Gawlik, K. TI Buoyancy-driven ventilation of hydrogen from buildings: Laboratory test and model validation SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Hydrogen; Safety; Garage; Ventilation; Experiment; CFD ID IGNITION; SYSTEMS AB Hydrogen gas leaking from a hydrogen-powered vehicle in a residential garage may form a flammable mixture with air. Passive, buoyancy-driven ventilation is one approach to limiting the concentration to a safe level. We explored the relationship between leak rate, ventilation design, and hydrogen concentration through laboratory testing, an algebraic analysis, and CFD modeling. We used helium to test slow, steady, low-velocity leaks in a full-scale test room under nearly isothermal, steady conditions, and we report the results in sufficient detail that other modelers can use them. The results show the importance and variability of stratification. Our algebraic and CFD models agree very well with the experimental results. We describe our CFD approach in sufficient detail for use by others. We tested under nearly isothermal conditions, but also discuss indoor-outdoor temperature difference as an important risk factor. Information about realistic leakage scenarios is needed to apply these results as safety recommendations. (C) 2009 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved. C1 [Barley, C. D.; Gawlik, K.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Barley, CD (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM dennis.barley@nrel.gov RI Post, Matthew/J-7528-2013 OI Post, Matthew/0000-0002-2855-8394 FU U.S. Department of Energy [DE-AC36-08-GO28308] FX This work was funded by the Hydrogen Safety, Codes and Standards program of the U.S. Department of Energy's (DOE) office of Hydrogen, Fuels Cells and infrastructure Technologies at NREL's Hydrogen Technologies and Systems Center, in collaboration with NREL's Buildings and Thermal Systems (BTS) Center. DOE program director Antonio Ruiz and NREL project managers Jim Chi, Chad Blake, and Carl Rivkin provided valuable guidance and support. The support of BTS managers Ron Judkoff and Ren Anderson was also essential. NREL technician Matthew Post and test engineer Ed Hancock, with Mountain Energy Partnership, were helpful in crafting and installing the laboratory apparatus. NR 26 TC 24 Z9 24 U1 0 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD JUL PY 2009 VL 34 IS 13 BP 5592 EP 5603 DI 10.1016/j.ijhydene.2009.04.078 PG 12 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 475XZ UT WOS:000268402000036 ER PT J AU Park, IS Kim, JK Kim, KJ Zhang, JX Park, C Gawlik, K AF Park, Il-Seok Kim, Jin-Kyeong Kim, Kwang J. Zhang, Jixi Park, Chanwoo Gawlik, Keith TI Investigation of coupled AB(5) type high-power metal hydride reactors SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Coupled high-power reactors; Porous metal hydride (PMH); Reaction kinetics; Thermal storage ID HEAT-PUMP; THERMAL-CONDUCTIVITY; MASS-TRANSFER; ALLOYS; COMPRESSOR; BATTERIES; COMPACTS; SYSTEM; BEDS AB The objective of this study is to investigate the coupled AB(5) type high-power metal hydride reactors in thermal energy applications. A system to test the reactors was set up coupling two reactors containing either LaNi(x)Al(5-x) or Ca(y)Mm(1-y)Ni(5) alloys, used as low and high pressure metal hydrides, respectively. In order to develop the high-power reactor, the metal hydrides were thinly coated (about 1-2 mu m thickness) with copper and compressed to form the Porous Metal Hydrides (PMH) compacts. During the experiments, the dynamic behaviors of the reactive kinetics of the system were monitored. Among the tested systems, the coupling of Ca(0.6)Mm(0.4)Ni(5) and LaNi(4.75)Al(0.25) was the most effective for thermal energy applications. It took the least time to reach the equilibrium state in both hydriding and dehydriding processes (approximately 250 s) and had the highest amount of heat generation/absorption. The smaller the value of y in Ca(1-y)Mm(y)Ni(5) alloys, causing the alloy to contain more calcium, the faster the reaction kinetics. In the case of the LaNi(x)Al(5-x) reactor, the addition of aluminum enhanced the reaction kinetics. Moreover, the reactor with the low pressure metal hydride, LaNi(x)Al(5-x), took a longer period of time to reach the equilibrium state than when the high pressure metal hydride, Ca(1-y)Mm(y)Ni(5), was employed. (C) 2009 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved. C1 [Park, Il-Seok; Kim, Jin-Kyeong; Kim, Kwang J.; Zhang, Jixi; Park, Chanwoo] Univ Nevada, Dept Mech Engn MS 312, Reno, NV 89557 USA. [Gawlik, Keith] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Park, Chanwoo] Adv Cooling Technol Inc, Lancaster, PA USA. RP Kim, KJ (reprint author), Univ Nevada, Dept Mech Engn MS 312, Reno, NV 89557 USA. EM kwangkim@unr.edu OI Kim, Kwang/0000-0003-2134-4964 NR 18 TC 8 Z9 9 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD JUL PY 2009 VL 34 IS 14 SI SI BP 5770 EP 5777 DI 10.1016/j.ijhydene.2009.05.012 PG 8 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 489BG UT WOS:000269393900018 ER PT J AU LaChance, J AF LaChance, Jeffrey TI Risk-informed separation distances for hydrogen refueling stations SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article; Proceedings Paper CT 2nd International Conference on Hydrogen Safety CY SEP, 2007 CL San Sebastian, SPAIN DE Quantitative risk assessment; Refueling stations; Separation distances; Risk-informed codes and standards AB As part of the US Department of Energy Hydrogen, Fuel Cells & Infrastructure Technologies Program, Sandia National Laboratories is developing the technical basis for assessing the safety of hydrogen-based systems for use in the development/modification of relevant codes and standards. This work includes quantitative risk assessments (QRA) of hydrogen facilities. The QRAs are used to identify and quantify scenarios for the unintended release of hydrogen and thus help identify the code requirements that would reduce the risk at hydrogen facilities to acceptable levels. This paper describes an application of QRA methods to help establish one key code requirement: the minimum separation distances between a hydrogen refueling station and other facilities and the public at large. An example application of the risk-informed approach has been performed to illustrate its utility and to identify key parameters that can influence the resulting selection of separation distances. (C) 2009 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved. C1 Sandia Natl Labs, Albuquerque, NM 87104 USA. RP LaChance, J (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87104 USA. EM jllacha@sandia.gov NR 17 TC 13 Z9 13 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD JUL PY 2009 VL 34 IS 14 BP 5838 EP 5845 DI 10.1016/j.ijhydene.2009.02.070 PG 8 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 489BG UT WOS:000269393900029 ER PT J AU LaChance, J Tchouvelev, A Ohi, J AF LaChance, Jeffrey Tchouvelev, Andrei Ohi, Jim TI Risk-informed process and tools for permitting hydrogen fueling stations SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article; Proceedings Paper CT 2nd International Conference on Hydrogen Safety CY SEP, 2007 CL San Sebastian, SPAIN DE Risk-informed; Permitting process; Refueling stations; Quantitative Risk Assessment AB The permitting process for hydrogen fueling stations requires demonstration that the proposed facility meets certain safety requirements. Currently, many permitting authorities rely on compliance with well-known codes and standards as evidence of a safe design. To ensure that a hydrogen facility is indeed safe, the code and standard requirements should be identified using a risk-informed process that utilizes an acceptable level of risk. This paper describes an approach for risk-informing the permitting process for hydrogen fueling stations that relies primarily on the establishment of risk-informed codes and standards. Using accepted Quantitative Risk Assessment (QRA) techniques and the established risk criteria, the minimum code and standard requirements necessary to ensure the safe operation of hydrogen facilities can be identified. To facilitate consistent risk-informed approaches, the participants in the International Energy Agency (IEA) Task 19 on hydrogen safety are working to identify acceptable risk criteria, QRA models, and supporting data. (C) 2009 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved. C1 [LaChance, Jeffrey] Sandia Natl Labs, Albuquerque, NM 87104 USA. [Tchouvelev, Andrei] AVT & Associates, Mississauga, ON L5W 1R2, Canada. [Ohi, Jim] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP LaChance, J (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87104 USA. EM jllacha@sandia.gov; atchouvelev@tchouvelev.org; jim_ohi@nrel.gov NR 16 TC 13 Z9 13 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD JUL PY 2009 VL 34 IS 14 BP 5855 EP 5861 DI 10.1016/j.ijhydene.2009.01.057 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 489BG UT WOS:000269393900031 ER PT J AU Houf, WG Evans, GH Schefer, RW AF Houf, W. G. Evans, G. H. Schefer, R. W. TI Analysis of jet flames and unignited jets from unintended releases of hydrogen SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article; Proceedings Paper CT 2nd International Conference on Hydrogen Safety CY SEP, 2007 CL San Sebastian, SPAIN DE Hydrogen jet flames; Hydrogen unignited jets; Unintended releases of hydrogen; Hydrogen jet flame barrier; Interaction ID HIGH-PRESSURE JETS; TURBULENT; DECAY AB A combined experimental and modeling program is being carried out at Sandia National Laboratories to characterize and predict the behavior of unintended hydrogen releases. In the case where the hydrogen leak remains unignited, knowledge of the concentration field and flammability envelope is an issue of importance in determining consequence distances for the safe use of hydrogen. in the case where a high-pressure leak of hydrogen is ignited, a classic turbulent jet flame forms. Knowledge of the flame length and thermal radiation heat flux distribution is important to safety. Depending on the effective diameter of the leak and the tank source pressure, free jet flames can be extensive in length and pose significant radiation and impingement hazard, resulting in consequence distances that are unacceptably large. One possible mitigation strategy to potentially reduce the exposure to jet flames is to incorporate barriers around hydrogen storage equipment. The reasoning is that walls will reduce the extent of unacceptable consequences due to jet releases resulting from accidents involving high-pressure equipment. While reducing the jet extent, the walls may introduce other hazards if not configured properly. The goal of this work is to provide guidance on configuration and placement of these walls to minimize overall hazards using a quantitative risk assessment approach. The program includes detailed CFD calculations of jet flames and unignited jets to predict how hydrogen leaks and jet flames interact with barriers, complemented by an experimental validation program that considers the interaction of jet flames and unignited jets with barriers. As a first step in this work on barrier release interaction the Sandia CFD model has been validated by computing the concentration decay of unignited turbulent free jets and comparing the results with the classic concentration decay laws for turbulent free jets taken from experimental data. Computations for turbulent hydrogen free jet flames are also presented and compared with experimental data for the temperature profile in lab-scale turbulent free hydrogen jet flames. Finally, preliminary results of calculations of hydrogen jet flame impingement on barriers are presented and compared with images of large-scale hydrogen jet flame deflection from barrier wall experimental tests. (C) 2009 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved. C1 [Houf, W. G.; Evans, G. H.; Schefer, R. W.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Houf, WG (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM will@sandia.gov; evans@sandia.gov; rwsche@sandia.gov RI Schefer, Jurg/G-3960-2012 NR 22 TC 15 Z9 15 U1 0 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD JUL PY 2009 VL 34 IS 14 BP 5961 EP 5969 DI 10.1016/j.ijhydene.2009.01.054 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 489BG UT WOS:000269393900044 ER PT J AU Chalivendra, VB Hong, S Arias, I Knap, J Rosakis, A Ortiz, M AF Chalivendra, Vijaya B. Hong, Soonsung Arias, Irene Knap, Jaroslaw Rosakis, Ares Ortiz, Michael TI Experimental validation of large-scale simulations of dynamic fracture along weak planes SO INTERNATIONAL JOURNAL OF IMPACT ENGINEERING LA English DT Article DE Validation; Large-scale simulations; Dynamic fracture; Weak planes; Cohesive zone laws ID CRACK-PROPAGATION; BRITTLE SOLIDS; COHESIVE MODEL; WAVE SPEED; GROWTH; HOMALITE-100 AB A well-controlled and minimal experimental scheme for dynamic fracture along weak planes is specifically designed for the validation of large-scale Simulations using cohesive finite elements. The role of the experiments in the integrated approach is two-fold. On the one hand. careful measurements provide accurate boundary conditions and material parameters for a complete setup of the simulations without free parameters. On the other hand, quantitative performance metrics are Provided by the experiments, which are compared a posteriori with the results of the simulations. A modified Hopkinson bar setup in association with notch-face loading is used to obtain controlled loading of the fracture specimens. An inverse problem of cohesive zone modeling is performed to obtain accurate mode-I cohesive zone laws from experimentally measured deformation fields. The speckle interferometry technique is employed to obtain the experimentally measured deformation field. Dynamic photoelasticity in conjunction with high-speed photography is used to Capture experimental records of crack propagation. The comparison shows that both the experiments and the numerical simulations result in very similar Crack initiation times and produce crack tip velocities which differ by less than 6%. The results also confirm that the detailed shape of the non-linear cohesive zone law has no significant influence on the numerical results. (c) 2008 Elsevier Ltd. All rights reserved, C1 [Chalivendra, Vijaya B.] Univ Massachusetts, Dept Mech Engn, N Dartmouth, MA 02427 USA. [Hong, Soonsung] Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA. [Arias, Irene] Univ Politecn Cataluna, Dep Matemat Aplicada 3, ES-08034 Barcelona, Spain. [Knap, Jaroslaw] Lawrence Livermore Natl Lab, Livermore, CA 94450 USA. [Rosakis, Ares; Ortiz, Michael] CALTECH, Grad Aeronaut Labs, Pasadena, CA 91125 USA. RP Chalivendra, VB (reprint author), Univ Massachusetts, Dept Mech Engn, N Dartmouth, MA 02427 USA. EM vchalivendra@umassd.edu RI Hong, Soonsung/A-4278-2009; Arias, Irene/B-1528-2014 OI Arias, Irene/0000-0002-6761-3499 FU ASCI-ASAP [DIM.ASC 1.1.7S LLNL.ASCP]; European Commission [MIRG-CT-2005-029158]; Ministerio de Ciencia e Innovacion [DPI2007-62395] FX The authors would like to acknowledge the support of the Department of Energy through the ASCI-ASAP program, grant number DIM.ASC 1.1.7S LLNL.ASCP Helpful discussions With Prof. G. Ravichandran from Caltech are also acknowledged. Irene Arias acknowledges the support of the European Commission (MIRG-CT-2005-029158) and the Ministerio de Ciencia e Innovacion (DPI2007-62395). NR 36 TC 5 Z9 5 U1 2 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0734-743X J9 INT J IMPACT ENG JI Int. J. Impact Eng. PD JUL PY 2009 VL 36 IS 7 BP 888 EP 898 DI 10.1016/j.ijimpeng.2008.11.009 PG 11 WC Engineering, Mechanical; Mechanics SC Engineering; Mechanics GA 430FD UT WOS:000264973300002 ER PT J AU Booker, PM Cargile, JD Kistler, BL La Saponara, V AF Booker, Paul M. Cargile, James D. Kistler, Bruce L. La Saponara, Valeria TI Investigation on the response of segmented concrete targets to projectile impacts SO INTERNATIONAL JOURNAL OF IMPACT ENGINEERING LA English DT Article DE Penetration; Projectile; Monolithic; Segmented; Target; Deceleration-time ID REINFORCED-CONCRETE; PENETRATION; PERFORATION; SLABS; DECELERATION; PLATES AB The study of penetrator performance without free-surface effects can require prohibitively large monolithic targets. One alternative to monolithic targets is to use segmented targets made by stacking multiple concrete slabs in series. This paper presents an experimental investigation on the performance of segmented concrete targets. Six experiments were Carried Out on available small scale segmented and monolithic targets using instrumented projectiles. In all but One experiment using stacked slabs, the gap between slabs remained open. In the final experiment design, grout was inserted between the slabs, and this modification produced a target response that more closely represents that of the monolithic target. The results from this Study Suggest that further research on segmented targets is justified, to explore in more detail the response of segmented targets and the results of large scale tests when using segmented targets versus monolithic targets. Published by Elsevier Ltd. C1 [La Saponara, Valeria] Univ Calif Davis, Dept Mech & Aeronaut Engn, Davis, CA 95616 USA. [Cargile, James D.] USA, Erdc, Vicksburg, MS 39180 USA. [Booker, Paul M.; Kistler, Bruce L.] Sandia Natl Labs, Livermore, CA 94551 USA. [Booker, Paul M.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP La Saponara, V (reprint author), Univ Calif Davis, Dept Mech & Aeronaut Engn, Davis, CA 95616 USA. EM vlasaponara@ucdavis.edu FU National Nuclear Security Administration; DoD/DOE; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL8500] FX The research reported herein was conducted for the Defense Threat Reduction Agency and leveraged previous work funded by the National Nuclear Security Administration and Sandia National Laboratories joint DoD/DOE Conventional Munitions Memorandum of Understanding. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL8500. The first author would like to thank numerous people who helped shape the content of this work by patiently sharing insights they had gained through decades of experience. NR 24 TC 6 Z9 17 U1 1 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0734-743X J9 INT J IMPACT ENG JI Int. J. Impact Eng. PD JUL PY 2009 VL 36 IS 7 BP 926 EP 939 DI 10.1016/j.ijimpeng.2008.10.006 PG 14 WC Engineering, Mechanical; Mechanics SC Engineering; Mechanics GA 430FD UT WOS:000264973300005 ER PT J AU Blanchette, CD Segelke, BW Fischer, N Corzett, MH Kuhn, EA Cappuccio, JA Benner, WH Coleman, MA Chromy, BA Bench, G Hoeprich, PD Sulchek, TA AF Blanchette, Craig D. Segelke, Brent W. Fischer, Nicholas Corzett, Michele H. Kuhn, Edward A. Cappuccio, Jenny A. Benner, William Henry Coleman, Matthew A. Chromy, Brett A. Bench, Graham Hoeprich, Paul D. Sulchek, Todd A. TI Characterization and Purification of Polydisperse Reconstituted Lipoproteins and Nanolipoprotein Particles SO INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES LA English DT Article DE apolipoproteins; nanolipoprotein particles; bilayer mimetic; nanobiotechnology; atomic force microscopy; size-exclusion chromatography; lipoprotein crystallization ID HIGH-DENSITY-LIPOPROTEINS; APOLIPOPROTEIN-A-I; FIELD-FLOW FRACTIONATION; CHOLESTEROL ACYLTRANSFERASE; CONFORMATIONAL-CHANGE; DISCOIDAL COMPLEXES; STRUCTURAL-ANALYSIS; APOLIPOPHORIN-III; MEMBRANE-PROTEINS; BILAYER NANODISCS AB Heterogeneity is a fact that plagues the characterization and application of many self-assembled biological constructs. The importance of obtaining particle homogeneity in biological assemblies is a critical goal, as bulk analysis tools often require identical species for reliable interpretation of the results-indeed, important tools of analysis such as x-ray diffraction typically require over 90% purity for effectiveness. This issue bears particular importance in the case of lipoproteins. Lipid-binding proteins known as apolipoproteins can self assemble with liposomes to form reconstituted high density lipoproteins (rHDLs) or nanolipoprotein particles (NLPs) when used for biotechnology applications such as the solubilization of membrane proteins. Typically, the apolipoprotein and phospholipids reactants are self assembled and even with careful assembly protocols the product often contains heterogeneous particles. In fact, size polydispersity in rHDLs and NLPs published in the literature are frequently observed, which may confound the accurate use of analytical methods. In this article, we demonstrate a procedure for producing a pure, monodisperse NLP subpopulation from a polydisperse self-assembly using size exclusion chromatography (SEC) coupled with high resolution particle imaging by atomic force microscopy (AFM). In addition, NLPs have been shown to self assemble both in the presence and absence of detergents such as cholate, yet the effects of cholate on NLP polydispersity and separation has not been systematically examined. Therefore, we examined the separation properties of NLPs assembled in both the absence and presence of cholate using SEC and native gel electrophoresis. From this analysis, NLPs prepared with and without cholate showed particles with well defined diameters spanning a similar size range. However, cholate was shown to have a dramatic affect on NLP separation by SEC and native gel electrophoresis. Furthermore, under conditions where different sized NLPs were not sufficiently separated or purified by SEC, AFM was used to deconvolute the elution pattern of different sized NLPs. From this analysis we were able to purify an NLP subpopulation to 90% size homogeneity by taking extremely fine elutions from the SEC. With this purity, we generate high quality NLP crystals that were over 100 mu m in size with little precipitate, which could not be obtained utilizing the traditional size exclusion techniques. This purification procedure and the methods for validation are broadly applicable to other lipoprotein particles. C1 [Blanchette, Craig D.; Segelke, Brent W.; Fischer, Nicholas; Corzett, Michele H.; Kuhn, Edward A.; Cappuccio, Jenny A.; Benner, William Henry; Coleman, Matthew A.; Chromy, Brett A.; Bench, Graham; Hoeprich, Paul D.; Sulchek, Todd A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Sulchek, Todd A.] Georgia Inst Technol, GWW Sch Mech Engn, Atlanta, GA 30332 USA. RP Hoeprich, PD (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM blanchette2@llnl.gov; segelke1@llnl.gov; fischer29@llnl.gov; corzett1@llnl.gov; kuhn7@llnl.gov; cappuccio2@llnl.gov; benner2@llnl.gov; coleman16@llnl.gov; chromy1@llnl.gov; bench1@llnl.gov; hoeprich2@llnl.gov; todd.sulchek@me.gatech.edu OI Coleman, Matthew/0000-0003-1389-4018 FU Lawrence Livermore National Laboratory [DE-AC52-07NA27344, LDRD 06-SI-003]; [UCRL-JRNL--235806] FX The authors are grateful to Dr. Karl Weisgraber for helpful discussions and providing reagents and the anonymous reviewers who provided insightful comments. This work performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 with support from Lawrence Livermore National Laboratory (LDRD 06-SI-003 awarded to PDH). UCRL-JRNL--235806. NR 33 TC 11 Z9 11 U1 0 U2 19 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1422-0067 J9 INT J MOL SCI JI Int. J. Mol. Sci. PD JUL PY 2009 VL 10 IS 7 BP 2958 EP 2971 DI 10.3390/ijms10072958 PG 14 WC Biochemistry & Molecular Biology; Chemistry, Multidisciplinary SC Biochemistry & Molecular Biology; Chemistry GA 474XE UT WOS:000268317300006 PM 19742178 ER PT J AU Yang, DL Currier, RP Zhang, DZ AF Yang, Dali Currier, Robert P. Zhang, Duan Z. TI Ensemble phase averaged equations for multiphase flows in porous media. Part 1: The bundle-of-tubes model SO INTERNATIONAL JOURNAL OF MULTIPHASE FLOW LA English DT Article DE Porous media; Multiphase flow; Ensemble phase average ID CAPILLARY-PRESSURE; 2-PHASE FLOW; SATURATION RELATIONSHIP; NEUTRON-RADIOGRAPHY; BUILDING-MATERIALS; WATER-ABSORPTION; UNSATURATED FLOW; DISPERSE; IMBIBITION; MOVEMENT AB A bundle-of-tubes construct is used as a model system to study ensemble averaged equations for multiphase flow in a porous material. Momentum equations for the fluid phases obtained from the method are similar to Darcy's law, but with additional terms. We study properties of the additional terms, and the conditions under which the averaged equations can be approximated by the diffusion model or the extended Darcy's law as often used in models for multiphase flows in porous media. Although the bundle-of-tubes model is perhaps the simplest model for a porous material, the ensemble averaged equation technique developed in this paper assumes the very same form in more general treatments described in Part 2 of the present work (Zhang, D.Z., 2009. Ensemble Phase Averaged Equations for Multiphase Flows in Porous Media, Part 2: A General Theory. Int. J. Multiphase Flow 35, 640-649). Any model equation system intended for the more general cases must be understood and tested first using simple models. The concept of ensemble phase averaging is dissected here in physical terms, without involved mathematics through its application to the idealized bundle-of-tubes model for multiphase flow in porous media. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Zhang, Duan Z.] Los Alamos Natl Lab, Div Theoret, Fluid Dynam & Solid Mech Grp, Los Alamos, NM 87545 USA. [Yang, Dali] Los Alamos Natl Lab, Div Mat Sci & Technol, Polymers & Coatings Grp, Los Alamos, NM 87545 USA. [Currier, Robert P.] Los Alamos Natl Lab, Div Chem, Phys Chem & Appl Spect Grp, Los Alamos, NM 87545 USA. RP Zhang, DZ (reprint author), Los Alamos Natl Lab, Div Theoret, Fluid Dynam & Solid Mech Grp, T-3,MS B216, Los Alamos, NM 87545 USA. EM dzhang@lanl.gov FU United States Department of Homeland Security FX This work is funded by the United States Department of Homeland Security as part of a project to better understand the interaction between toxic chemicals and porous environmental substrates. We also wish to thank Dr. David Janecky at Los Alamos National Laboratory for his support in executing this work. NR 41 TC 13 Z9 13 U1 1 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0301-9322 EI 1879-3533 J9 INT J MULTIPHAS FLOW JI Int. J. Multiph. Flow PD JUL PY 2009 VL 35 IS 7 BP 628 EP 639 DI 10.1016/j.ijmultiphaseflow.2009.03.002 PG 12 WC Mechanics SC Mechanics GA 459FG UT WOS:000267085700003 ER PT J AU Zhang, DZ AF Zhang, Duan Z. TI Ensemble phase averaged equations for multiphase flows in porous media. Part 2: A general theory SO INTERNATIONAL JOURNAL OF MULTIPHASE FLOW LA English DT Article DE Porous media; Multiphase flow; Ensemble phase average ID DISPERSE 2-PHASE FLOW; ANOMALOUS DIFFUSION; CAPILLARY-PRESSURE; SUSPENSIONS; STRESS; MOMENTUM; CLOSURE; FORCES AB Most models for multiphase flows in a porous medium are based on a straightforward extension of Darcy's law, in which each fluid phase is driven by its own pressure gradient. The pressure difference between the phases is thought to be an effect of surface tension and is called capillary pressure. Independent of Darcy's law, for liquid imbibition processes in a porous material, diffusion models are sometime used. In this paper, an ensemble phase averaging technique for continuous multiphase flows is applied to derive averaged equations and to examine the validity of the commonly used models. Closure for the averaged equations is quite complicated for general multiphase flows in a porous material. For flows with a small ratio of the characteristic length of the phase interfaces to the macroscopic length, the closure relations can be simplified significantly by an approximation with a second order error in this length ratio. This approximation reveals the information of the length scale separation obscured during an averaging process and leads to an equation system similar to Darcy's law, but with additional terms. Based on interactions on phase interfaces, relations among closure quantities are studied. (C) 2009 Elsevier Ltd. All rights reserved. C1 Los Alamos Natl Lab, Div Theoret, Fluid Dynam & Solid Mech Group, Los Alamos, NM 87545 USA. RP Zhang, DZ (reprint author), Los Alamos Natl Lab, Div Theoret, Fluid Dynam & Solid Mech Group, T-3,B216, Los Alamos, NM 87545 USA. EM dzhang@lanl.gov NR 32 TC 4 Z9 4 U1 1 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0301-9322 J9 INT J MULTIPHAS FLOW JI Int. J. Multiph. Flow PD JUL PY 2009 VL 35 IS 7 BP 640 EP 649 DI 10.1016/j.ijmultiphaseflow.2009.03.004 PG 10 WC Mechanics SC Mechanics GA 459FG UT WOS:000267085700004 ER PT J AU Small, SL Wilde, M Kenny, S Andric, M Hasson, U AF Small, Steven L. Wilde, Michael Kenny, Sarah Andric, Michael Hasson, Uri TI Database-managed Grid-enabled analysis of neuroimaging data: The CNARI framework SO INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY LA English DT Article DE fMRI; Imaging; Brain; Image analysis; Data analysis; Functional MRI; High-performance computing; Grid computing; Grid; Cluster computing; Database; Relational database; Data storage; Cortex; Language; Functional imaging; Infrastructure; Cognition; Cognitive neuroscience; Neuroscience; Neurology ID SUPERIOR TEMPORAL SULCUS; SURFACE-BASED ANALYSIS; RHESUS-MONKEY; FUNCTIONAL CONNECTIVITY; ELECTRICAL-STIMULATION; PREFRONTAL CORTEX; CEREBRAL-CORTEX; FRONTAL-CORTEX; SYSTEM; BRAIN AB Functional magnetic resonance imaging (fMRI) has led to an enormous growth in the study of cognitive neuroanatomy, and combined with advances in high-field electrophysiology (and other methods), has led to a fast-growing field of human neuroscience. Technological advances in both hardware and software will lead to an ever more promising future for fMRI. We have developed a new computational framework that facilitates fMRI experimentation and analysis, and which has led to some rethinking of the nature of experimental design and analysis. The Computational Neuroscience Applications Research Infrastructure (CNARI) incorporates novel methods for maintaining, serving, and analyzing massive amounts of fMRI data. By using CNARI, it is possible to perform naturalistic, network-based, statistically valid experiments in systems neuroscience on a very large scale, with ease of data manipulation and analysis, within reasonable computational time scales. In this article, we describe this infrastructure and then illustrate its use on a number of actual examples in both cognitive neuroscience and neurological research. We believe that these advanced computational approaches will fundamentally change the future shape of cognitive brain imaging with fMRI. (c) 2009 Elsevier B.V. All rights reserved. C1 [Small, Steven L.] Univ Chicago, Dept Neurol, Chicago, IL 60637 USA. [Small, Steven L.; Andric, Michael] Univ Chicago, Dept Psychol, Chicago, IL 60637 USA. [Small, Steven L.; Wilde, Michael; Kenny, Sarah] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [Wilde, Michael] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Hasson, Uri] Univ Trent, Ctr Mind Brain Sci, I-38100 Trento, Italy. [Hasson, Uri] Univ Trent, Fac Cognit Sci, I-38100 Trento, Italy. RP Small, SL (reprint author), Univ Chicago, Dept Neurol, 5841 S Maryland Ave,MC-2030, Chicago, IL 60637 USA. EM small@uchicago.edu RI Hasson, Uri/C-1701-2012 OI Hasson, Uri/0000-0002-8530-5051 FU NIDCD NIH HHS [R01 DC007488-04, R01 DC007488, R01 DC07488, R21 DC008638, R21/R33 DC008638, R33 DC008638, R33 DC008638-03] NR 81 TC 3 Z9 3 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8760 J9 INT J PSYCHOPHYSIOL JI Int. J. Psychophysiol. PD JUL PY 2009 VL 73 IS 1 SI SI BP 62 EP 72 DI 10.1016/j.ijpsycho.2009.01.010 PG 11 WC Psychology, Biological; Neurosciences; Physiology; Psychology; Psychology, Experimental SC Psychology; Neurosciences & Neurology; Physiology GA 463TY UT WOS:000267456200010 PM 19233234 ER PT J AU Phuoc, TX Massoudi, M AF Phuoc, Tran X. Massoudi, Mehrdad TI Experimental observations of the effects of shear rates and particle concentration on the viscosity of Fe2O3-deionized water nanofluids SO INTERNATIONAL JOURNAL OF THERMAL SCIENCES LA English DT Article DE Nanofluids; Viscosity; Shear stress; Yield stress ID THERMAL-CONDUCTIVITY; OXIDE NANOPARTICLES; ETHYLENE-GLYCOL; HEAT-TRANSFER; SUSPENSIONS; FLUIDS; FLOW; ENHANCEMENT; MIXTURE; STRESS AB We report here some experimental observations on the effects of the shear rates and particle volume fractions on the shear stress and the viscosity of Fe2O3-DW nanofluids with Polyvinylpyrrolidone (PVP) or Poly(ethylene oxide), PEO, as a dispersant. The measurements were performed using a Brookfield DV-II Pro Viscometer with a small sample adapter (SSA18/13RPY). The results reported here clearly demonstrate that these fluids had a yield stress and behaved as shear-thinning non-Newtonian fluids. The yield stress decreased to the Newtonian limit, as the particle volume fraction decreased and still existed even at very low particle volume fractions. It was observed that the prepared Fe2O3-DW-0.2% PVP nanofluids with particle volume fraction phi less than 0.02 still behaved as a Newtonian fluid. As the volume fraction was increased beyond 0.02, the fluid became non-Newtonian with shear-thinning behavior. Similar results were also observed when DW-0.2% PEO was used. The suspension, however, exhibited its non-Newtonian, shear-thinning behavior at phi as low as 0.02. Published by Elsevier Masson SAS. C1 [Phuoc, Tran X.; Massoudi, Mehrdad] US DOE, NETL, Pittsburgh, PA 15236 USA. RP Phuoc, TX (reprint author), US DOE, NETL, POB 10940, Pittsburgh, PA 15236 USA. EM tran@netl.doe.gov; massoudi@netl.doe.gov NR 45 TC 61 Z9 62 U1 0 U2 14 PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER PI PARIS PA 23 RUE LINOIS, 75724 PARIS, FRANCE SN 1290-0729 J9 INT J THERM SCI JI Int. J. Therm. Sci. PD JUL PY 2009 VL 48 IS 7 BP 1294 EP 1301 DI 10.1016/j.ijthermalsci.2008.11.015 PG 8 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA 449CA UT WOS:000266307200005 ER PT J AU Isserman, AM Feser, E Warren, DE AF Isserman, Andrew M. Feser, Edward Warren, Drake E. TI Why Some Rural Places Prosper and Others Do Not SO INTERNATIONAL REGIONAL SCIENCE REVIEW LA English DT Article; Proceedings Paper CT 54th North American Meeting of the Regional-Science-Association-International CY NOV 07-11, 2007 CL Savannah, GA SP Reg Sci Assoc Int DE regional development; rural development; place prosperity; economic development; creative class; social capital ID REGIONAL INDUSTRIAL DIVERSIFICATION; ECONOMIC-GROWTH; UNITED-STATES; DIVERSITY; US; COUNTIES; CITIES; AREAS; METROPOLITAN; INEQUALITY AB More than 300 rural counties are more prosperous than the nation. Each has lower unemployment rates, lower poverty rates, lower school dropout rates, and better housing conditions than the nation. Prosperous counties tend to have more educated populations, more diverse economies, more private non-farm jobs, more farmers and government farm payments, more creative class occupations, and more equal income distributions. They have fewer African-American, American Indian, or Hispanic residents and fewer recent immigrants. Some findings support what many rural people believe to be true: civically engaged religious groups and other identities that bind people together can really matter. Other results contradict conventional wisdom. For instance, climate and distances to cities and major airports, are relatively unimportant. Focusing on prosperity, instead of growth or competitiveness, provides new insights into rural conditions and prospects. C1 [Isserman, Andrew M.; Feser, Edward] Univ Illinois, Dept Agr, Urbana, IL 61801 USA. [Isserman, Andrew M.; Feser, Edward] Univ Illinois, Dept Consumer Econ, Urbana, IL 61801 USA. [Isserman, Andrew M.; Feser, Edward] Univ Illinois, Dept Urban & Reg Planning, Urbana, IL 61801 USA. [Warren, Drake E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Isserman, AM (reprint author), Univ Illinois, Dept Agr, Urbana, IL 61801 USA. EM isserman@illinois.edu; feser@illinois.edu; dewarre@sandia.gov NR 90 TC 31 Z9 32 U1 5 U2 28 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 0160-0176 J9 INT REGIONAL SCI REV JI Int. Reg. Sci. Rev. PD JUL PY 2009 VL 32 IS 3 BP 300 EP 342 DI 10.1177/0160017609336090 PG 43 WC Environmental Studies; Planning & Development; Urban Studies SC Environmental Sciences & Ecology; Public Administration; Urban Studies GA 460LC UT WOS:000267188200003 ER PT J AU Odette, GR Nanstad, RK AF Odette, G. R. Nanstad, R. K. TI Predictive reactor pressure vessel steel irradiation embrittlement models: Issues and opportunities SO JOM LA English DT Article ID RPV STEELS; EVOLUTION AB Nuclear plant life extension to 80 years will require accurate predictions of neutron irradiation-induced increases in the ductile-brittle transition temperature (Delta T) of reactor pressure vessel steels at high fluence conditions that are far outside the existing database. Remarkable progress in mechanistic understanding of irradiation embrittlement has led to physically motivated Delta T correlation models that provide excellent statistical fits to the existing surveillance database. However, an important challenge is developing advanced embrittlement models for low flux-high fluence conditions pertinent to extended life. These new models must also provide better treatment of key variables and variable combinations and account for possible delayed formation of "late blooming phases" in low copper steels. Other issues include uncertainties in the compositions of actual vessel steels, methods to predict Delta T attenuation away from the reactor core, verification of the master curve method to directly measure the fracture toughness with small specimens and predicting Delta T for vessel annealing remediation and re-irradiation cycles. C1 [Odette, G. R.] Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA. [Nanstad, R. K.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Odette, GR (reprint author), Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA. EM odette@engineering.ucsb.edu NR 31 TC 40 Z9 41 U1 5 U2 26 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD JUL PY 2009 VL 61 IS 7 BP 17 EP 23 DI 10.1007/s11837-009-0097-4 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 468NR UT WOS:000267826800003 ER PT J AU Allen, TR Busby, JT AF Allen, T. R. Busby, J. T. TI Radiation damage concerns for extended light water reactor service SO JOM LA English DT Article ID MICROSTRUCTURAL EVOLUTION; NEUTRON-IRRADIATION; INDUCED SEGREGATION; STAINLESS-STEELS; FERRITIC STEELS AB The objective of this paper is to examine the possible forms of irradiation damage that may impact materials performance over an extended service period in light water nuclear reactors. This paper will explore the different forms of irradiation damage that may be of concern under extended operation. Radiation-induced segregation, precipitation, hardening, embrittlement, and dimensional changes all will be discussed. C1 [Allen, T. R.] Univ Wisconsin, Madison, WI 53706 USA. [Busby, J. T.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN USA. EM busbyjt@ornl.gov OI Allen, Todd/0000-0002-2372-7259 NR 22 TC 11 Z9 11 U1 0 U2 11 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD JUL PY 2009 VL 61 IS 7 BP 29 EP 34 DI 10.1007/s11837-009-0099-2 PG 6 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 468NR UT WOS:000267826800005 ER PT J AU Pint, BA AF Pint, B. A. TI High-temperature oxidation-resistant alloys: Recent developments in science and applications SO JOM LA English DT Editorial Material ID WATER-VAPOR C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Corros Sci & Technol Grp, Oak Ridge, TN 37831 USA. RP Pint, BA (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Corros Sci & Technol Grp, Oak Ridge, TN 37831 USA. RI Pint, Bruce/A-8435-2008 OI Pint, Bruce/0000-0002-9165-3335 NR 9 TC 2 Z9 2 U1 0 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD JUL PY 2009 VL 61 IS 7 BP 42 EP 43 DI 10.1007/s11837-009-0101-z PG 2 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 468NR UT WOS:000267826800007 ER PT J AU Hou, PY Paulikas, AP Veal, BW AF Hou, P. Y. Paulikas, A. P. Veal, B. W. TI Growth strains in thermally grown Al2O3 scales studied using synchrotron radiation SO JOM LA English DT Article ID ALUMINA SCALES; IN-SITU; FE-AL; OXIDATION; CREEP; STRESS; ALLOYS; OXIDE; MICROSTRUCTURE; DEFORMATION AB The strains in alumina thin films growing on high-temperature alloys at 1,000-1,100A degrees C and during cooling have been successfully measured in-situ using a novel x-ray technique, exploiting synchrotron radiation at the Advanced Photon Source at Argonne National Laboratory. This paper summarizes results obtained from model alloys, with or without the presence of a reactive element, such as Zr, Hf, and Y, to show the importance of the dynamic nature of the stress evolution process and the effects of alloy composition on the generation and relaxation of these stresses. C1 [Hou, P. Y.] Lawrence Berkeley Natl Lab, Berkeley, CA 94530 USA. [Paulikas, A. P.; Veal, B. W.] Argonne Natl Lab, Chicago, IL USA. RP Hou, PY (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS 62-203, Berkeley, CA 94530 USA. EM pyhou@lbl.gov FU U Chicago Argonne, LLC; Operator of Argonne National Laboratory. Argonne,; U. S. Department of Energy [DE-AC02-06CH11357, DE-AC03-76SF00098] FX The submitted manuscript was created by U Chicago Argonne, LLC, Operator of Argonne National Laboratory. Argonne, a U. S. Department of Energy, Office of Science Laboratory, is operated under contract No. DE-AC02-06CH11357. Work at LBNL was sponsored by the U. S. Department of Energy, BES, Materials Science, under contract No. DE-AC03-76SF00098. NR 35 TC 13 Z9 14 U1 1 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD JUL PY 2009 VL 61 IS 7 BP 51 EP 55 DI 10.1007/s11837-009-0103-x PG 5 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 468NR UT WOS:000267826800009 ER PT J AU Ma, L Kranendonk, L Cai, WW Zhao, Y Baba, J AF Ma, Lin Kranendonk, Laura Cai, Weiwei Zhao, Yan Baba, Justin TI Application of simulated annealing for simultaneous retrieval of particle size distribution and refractive index SO JOURNAL OF AEROSOL SCIENCE LA English DT Article DE Scattering; Simulated annealing; Particle characterization ID LIGHT-SCATTERING; INVERSE PROBLEMS; MIE SCATTERING; VALIDITY; RAYLEIGH; RANGE AB This paper describes the application of the simulated annealing technique for the simultaneous retrieval of particle size distribution and refractive index based on polarization modulated scattering (PMS) measurements. The PMS technique is a well-established method to measure multiple elements of the Mueller scattering matrix. However, the inference of the scatterers' properties (e.g., the size distribution function and refractive index) from such measurements involves solving an ill-conditioned inverse problem. In this paper, a new inversion technique was demonstrated to infer particle properties from PMS measurements. The new technique formulated the inverse problem into a minimization problem, which is then solved by the simulated annealing technique. Both numerical and experimental investigation on the new inversion technique was presented in the paper. The results obtained demonstrated the robustness and reliability of the new algorithm, and supported its expanded applications in scientific and technological areas involving particulates/aerosols. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Ma, Lin; Cai, Weiwei; Zhao, Yan] Clemson Univ, Dept Mech Engn, Clemson, SC 29634 USA. [Kranendonk, Laura; Baba, Justin] Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, Knoxville, TN 37932 USA. RP Ma, L (reprint author), Clemson Univ, Dept Mech Engn, Room 233,Fluor Daniel Bldg, Clemson, SC 29634 USA. EM LinMa@clemson.edu RI Ma, Lin/A-9441-2012; cai, weiwei/Q-5932-2016; Zhao, Yan/A-8969-2014; OI cai, weiwei/0000-0003-3589-7500; Zhao, Yan/0000-0003-1255-146X; De Cicco, Laura/0000-0002-3915-9487 FU Energy Office of Vehicle Technologies FX Laura Kranendonk and Justin Baba gratefully acknowledge of Energy Office of Vehicle Technologies for his support of the Ian Shepherd, and Gary Hubbard at Lawrence Berkley National recent helpful discussions. NR 23 TC 10 Z9 10 U1 0 U2 5 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0021-8502 J9 J AEROSOL SCI JI J. Aerosol. Sci. PD JUL PY 2009 VL 40 IS 7 BP 588 EP 596 DI 10.1016/j.jaerosci.2009.02.004 PG 9 WC Engineering, Chemical; Engineering, Mechanical; Environmental Sciences; Meteorology & Atmospheric Sciences SC Engineering; Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 465CP UT WOS:000267559300003 ER PT J AU Ivanshin, VA Sukhanov, AA Sokolov, DA Aronson, MC Jia, S Bud'ko, SL Canfield, PC AF Ivanshin, V. A. Sukhanov, A. A. Sokolov, D. A. Aronson, M. C. Jia, S. Bud'ko, S. L. Canfield, P. C. TI Electron spin resonance of dense Yb-based heavy-fermion compounds: New experimental data SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article; Proceedings Paper CT 16th International Conference on Solid Compounds of Transition Elements CY JUL 26-31, 2008 CL Dresden, GERMANY SP Max Planck Inst Chem Phys Fester Stoffe DE Electron spin resonance; Heavy fermions; Yb-compounds ID YBRH2SI2 AB We report the more recent advances in electron spin resonance (ESR) of few undoped Yb-based intermetallic compounds with heavy fermions (HF). The X-band ESR spectra of the Kondo lattices YbBiPt, YbRh2Pb, and YbT2Zn20 (T = Fe, Co) are presented. A comparison with earlier ESR studies in YbRh2Si2 and YbIr2Si2 shows that the exchange interactions between the Yb 4f electrons and relevant conduction electron (cl, s-, or p-like) bands as well as the hybridization crystalline electric field (CEF) effects should be taken into account in order to develop a reliable model of spin dynamics in the Yb-based HF systems. (C) 2008 Elsevier B.V. All rights reserved. C1 [Ivanshin, V. A.] Kazan VI Lenin State Univ, MRS Lab, Kazan 420008, Russia. [Sukhanov, A. A.] EK Zavoisky Phys Tech Inst, Kazan 420008, Russia. [Sokolov, D. A.] Univ Edinburgh, Sch Phys, Edinburgh EH9 3JZ, Midlothian, Scotland. [Sokolov, D. A.] Univ Edinburgh, CSEC, Edinburgh EH9 3JZ, Midlothian, Scotland. [Sokolov, D. A.; Aronson, M. C.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Aronson, M. C.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Aronson, M. C.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Jia, S.; Bud'ko, S. L.; Canfield, P. C.] Iowa State Univ, US Dept Energy, Ames Lab, Ames, IA 50011 USA. [Jia, S.; Bud'ko, S. L.; Canfield, P. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Ivanshin, VA (reprint author), Kazan VI Lenin State Univ, MRS Lab, Kremlevskaya Str 18, Kazan 420008, Russia. EM Vladimir.Ivanshin@ksu.ru RI Sokolov, D/G-7755-2011; Canfield, Paul/H-2698-2014; Sukhanov, Andrey/M-7814-2016 OI Sukhanov, Andrey/0000-0001-8927-3715 NR 12 TC 9 Z9 10 U1 1 U2 7 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 EI 1873-4669 J9 J ALLOY COMPD JI J. Alloy. Compd. PD JUL 1 PY 2009 VL 480 IS 1 BP 126 EP 127 DI 10.1016/j.jallcom.2008.09.172 PG 2 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 467EX UT WOS:000267721800039 ER PT J AU Altman, SJ McGrath, LK Souza, CA Murton, JK Camper, AK AF Altman, S. J. McGrath, L. K. Souza, C. A. Murton, J. K. Camper, A. K. TI Integration and decontamination of Bacillus cereus in Pseudomonas fluorescens biofilms SO JOURNAL OF APPLIED MICROBIOLOGY LA English DT Article DE annular reactor; Bacillus cereus; biofilm; chlorination; drinking water; Pseudomonas fluorescens ID WATER DISTRIBUTION-SYSTEM; DRINKING-WATER; SHEAR-STRESS; AERUGINOSA BIOFILM; FLUID SHEAR; GROWTH; PERSISTENCE; DETACHMENT; DISINFECTION; CHLORINE AB The hypothesis that surrogate planktonic pathogens (Bacillus cereus and polystyrene microspheres) could be integrated in biofilms and protected from decontamination was tested. Pseudomonas fluorescens biofilms were grown on polyvinyl chloride coupons in annular reactors under low nutrient conditions. After biofilm growth, B. cereus spores and polystyrene microspheres (an abiotic control) were introduced separately. Shear stress at the biofilm surface was varied between 0.15 and 1.5 N m(-2). The amount of surrogate pathogens introduced ranged from approximately 10(5) CFU ml(-1) to 10(10) spheres ml(-1). The quantity of surrogate pathogens integrated in the biofilm was proportional to the amount introduced. In 14 of the 16 cases, 0.4-3.0% of the spores or spheres introduced were measured in the biofilms. The other two cases had 10% and 21% of the spores detected. Data suggested that the spores germinated in the system. The amount of surrogate pathogens detected in the biofilms was higher in the mid-shear range. Chlorine treatment reduced the quantity of both surrogate pathogens and biofilm organisms. In one experiment, the biofilms and B. cereus recovered when the chlorine treatment was terminated. Planktonic surrogate pathogens can be integrated in biofilms and protected from chlorination decontamination. This knowledge assists in understanding the impact of biofilms on harbouring potential pathogens in drinking-water systems and protecting the pathogens from decontamination. C1 [Altman, S. J.] Sandia Natl Labs, Dept Geochem, Albuquerque, NM 87185 USA. [McGrath, L. K.] LMATA, Albuquerque, NM USA. [Camper, A. K.] Montana State Univ, Ctr Biofilm Engn, Bozeman, MT 59717 USA. RP Altman, SJ (reprint author), Sandia Natl Labs, Dept Geochem, POB 5800,MS0754, Albuquerque, NM 87185 USA. EM sjaltma@sandia.gov FU Sandia National Laboratories Laboratory Directed Research and Development (LDRD) program FX This research was funded under the Sandia National Laboratories Laboratory Directed Research and Development (LDRD) program. Bart van Bloemen Waanders, principal investigator for one of the projects under which this work was funded, is thanked for his support. This paper was greatly improved through careful review of several anonymous reviewers. Sandia is a multi-programme laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 44 TC 9 Z9 9 U1 0 U2 14 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1364-5072 J9 J APPL MICROBIOL JI J. Appl. Microbiol. PD JUL PY 2009 VL 107 IS 1 BP 287 EP 299 DI 10.1111/j.1365-2672.2009.04206.x PG 13 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 454UH UT WOS:000266707700028 PM 19486433 ER PT J AU Farshchi, R Hwang, DJ Misra, N Julaton, CC Yu, KM Grigoropoulos, CP Dubon, OD AF Farshchi, R. Hwang, D. J. Misra, N. Julaton, C. C., III Yu, K. M. Grigoropoulos, C. P. Dubon, O. D. TI Structural, magnetic, and transport properties of laser-annealed GaAs:Mn-H SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE coercive force; Curie temperature; electrical resistivity; ferromagnetic materials; gallium arsenide; hydrogen; III-V semiconductors; interstitials; laser beam annealing; magnetic thin films; manganese; numerical analysis; semiconductor thin films; semimagnetic semiconductors ID ION-IMPLANTATION; SEMICONDUCTORS; HYDROGEN; SILICON; PASSIVATION; GA1-XMNXAS; GAMNAS AB We have investigated the effect of laser annealing on the structural, magnetic, and transport properties of hydrogenated Ga(0.96)Mn(0.04)As films. Irradiation with nanosecond laser pulses leads to significant recovery of hole-mediated ferromagnetism in these films. By tuning processing parameters such as laser fluence and number of pulses, one can control the electrical and magnetic properties-namely, resistivity, magnetic coercivity, and remnant magnetization-in the laser-activated region. Ion-beam analysis indicates that the structural integrity of the film is maintained upon hydrogenation and laser annealing with evidence for displacement of substitutional Mn ions toward interstitial sites due to hydrogen-complex formation. Laser annealing results in the relaxation of up to 50% of Mn atoms back to substitutional sites while the Curie temperature recovers to similar to 60% of the T(C) prior to hydrogenation. Subsequent thermal annealing results in full relocation of Mn atoms to substitutional sites, yet the T(C) remains pinned at similar to 60% of its original value, suggesting the formation of a defect complex involving substitutional Mn. Our numerical simulations elucidate the strong interplay between laser processing parameters and Mn-H dissociation. C1 [Farshchi, R.; Dubon, O. D.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Farshchi, R.; Julaton, C. C., III; Yu, K. M.; Dubon, O. D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Hwang, D. J.; Misra, N.; Grigoropoulos, C. P.] Univ Calif Berkeley, Dept Mech Engn, Laser Thermal Lab, Berkeley, CA 94720 USA. [Grigoropoulos, C. P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Farshchi, R (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM rfarshchi@berkeley.edu; oddubon@berkeley.edu RI Han, Kyuhee/B-6201-2009; Schaff, William/B-5839-2009; Yu, Kin Man/J-1399-2012 OI Yu, Kin Man/0000-0003-1350-9642 FU National Science Foundation [DMR-0526330]; Intel Fellowship FX The authors acknowledge P. R. Stone, J. W. Beeman, and E. E. Haller for ion implantation. This work was supported in part by the National Science Foundation under Contract No. DMR-0526330. Film synthesis and characterization were supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. R. F. acknowledges support from an Intel Fellowship. NR 25 TC 2 Z9 2 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 1 PY 2009 VL 106 IS 1 AR 013904 DI 10.1063/1.3153943 PG 7 WC Physics, Applied SC Physics GA 471NK UT WOS:000268065000080 ER PT J AU Hopkins, PE AF Hopkins, Patrick E. TI Multiple phonon processes contributing to inelastic scattering during thermal boundary conductance at solid interfaces SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE interface phonons; scattering; thermal conductivity; transport processes ID SUPERLATTICE NANOWIRES; KAPITZA CONDUCTANCE; MOLECULAR-DYNAMICS; OPTICAL PHONONS; CONDUCTIVITY; RESISTANCE; PREDICTION; TRANSPORT; SILICON; HEAT AB A new model is developed that accounts for multiple phonon processes on interface transmission between two solids. By considering conservation of energy and phonon population, the decay of a high energy phonon in one material into several lower energy phonons in another material is modeled assuming diffuse scattering. The individual contributions of each of the higher order inelastic phonon processes to thermal boundary conductance are calculated and compared to the elastic contribution. The overall thermal boundary conductance from elastic and inelastic (three or more phonon processes) scattering is calculated and compared to experimental data on five different interfaces. Improvement in value and trend is observed by taking into account multiple phonon inelastic scattering. Three phonon interfacial processes are predicted to dominate the inelastic contribution to thermal boundary conductance. C1 Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87185 USA. RP Hopkins, PE (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. EM pehopki@sandia.gov FU U. S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The author is greatly appreciative for funding by the Harry S. Truman Fellowship Program at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Co., for the U. S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 41 TC 44 Z9 46 U1 6 U2 21 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 1 PY 2009 VL 106 IS 1 AR 013528 DI 10.1063/1.3169515 PG 9 WC Physics, Applied SC Physics GA 471NK UT WOS:000268065000055 ER PT J AU Koubaa, T Dammak, M Kammoun, M Jadwisienczak, WM Lozykowski, HJ Anders, A AF Koubaa, T. Dammak, M. Kammoun, M. Jadwisienczak, W. M. Lozykowski, H. J. Anders, A. TI Spectra and energy levels of Yb3+ in AlN SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE aluminium compounds; cathodoluminescence; crystal field interactions; doping profiles; III-V semiconductors; ion implantation; molecular beam epitaxial growth; perturbation theory; semiconductor doping; semiconductor epitaxial layers; vacancies (crystal); wide band gap semiconductors; Zeeman effect ID ELECTRON-SPIN-RESONANCE; EARTH IMPLANTED GAN; EU-DOPED GAN; OPTICAL-PROPERTIES; IONS; ER; PHOTOLUMINESCENCE; INP; EMISSION; DEFECTS AB We report on the crystal-field energy levels calculation of Yb3+ ions in an AlN host using crystal-field theory. Cathodoluminescence spectra of AlN grown by molecular beam epitaxy on Si (0001) substrate and doped by implantation with ytterbium (Yb) ions were critically examined assuming that Yb3+ ions are involved in different sites. The comparison between the emission spectra of Yb3+ ions in the GaN and AlN indicates the presence of some similarities between the lattice locations of Yb3+ ions in these hosts. We demonstrate that assuming the existence of a substitutional Yb-Al(Ga) site and a V-N-Yb complex defect in AlN (GaN) lattice, a good agreement between the measured and calculated energy values of Yb3+ ion transition lines can be obtained. Furthermore, we have investigated the Zeeman g and g(perpendicular to) parameters for the Yb3+ ion in an Al substitutional site as well as in the V-N-Yb complex using the perturbation theory. C1 [Koubaa, T.; Dammak, M.; Kammoun, M.] Fac Sci Sfax, Dept Phys, Grp Phys Theor, Appl Phys Lab, Sfax 3018, Tunisia. [Jadwisienczak, W. M.; Lozykowski, H. J.] Ohio Univ, Sch Elect Engn & Comp Sci, Athens, OH 45701 USA. [Anders, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Plasma Applicat Grp, Berkeley, CA 94720 USA. RP Dammak, M (reprint author), Fac Sci Sfax, Dept Phys, Grp Phys Theor, Appl Phys Lab, Sfax 3018, Tunisia. EM madidammak@yahoo.fr RI Anders, Andre/B-8580-2009 OI Anders, Andre/0000-0002-5313-6505 FU Ohio University Stocker Fund; Ohio University [1804] FX W.J. and H.J. would like to thank Dr. A. Bensaoula of the University of Houston for providing AlN samples. This work was partially supported by the Ohio University Stocker Fund and the Ohio University 1804 Fund Grant. NR 45 TC 13 Z9 13 U1 0 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 1 PY 2009 VL 106 IS 1 AR 013106 DI 10.1063/1.3159890 PG 6 WC Physics, Applied SC Physics GA 471NK UT WOS:000268065000007 ER PT J AU Luo, SN An, Q Germann, TC Han, LB AF Luo, Sheng-Nian An, Qi Germann, Timothy C. Han, Li-Bo TI Shock-induced spall in solid and liquid Cu at extreme strain rates SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE copper; liquid metals; melting; molecular dynamics method; shock waves; voids (solid) ID SINGLE-CRYSTAL; MOLECULAR-DYNAMICS; TENSILE-STRENGTH; SIMULATIONS; FAILURE; METALS; COPPER; TEMPERATURES; ALUMINUM; MODEL AB We investigate spallation in solid and liquid Cu at high strain rates induced by planar shock loading with classical molecular dynamics. Shock simulations are performed at different initial temperatures and shock stresses but similar strain rates (epsilon center dot similar to 10(10)-10(11) s(-1)). The anisotropy in spall strength (sigma(sp)) is explored for five crystallographic orientations, << 100 >>, << 110 >>, << 111 >>, << 114 >>, and << 123 >>. For liquid, we examine shock- and release-induced melts as well as premelted Cu. The acoustic method for deducing sigma(sp) and epsilon center dot is a reasonable first-order approximation. The anisotropy in sigma(sp) is pronounced for weak shocks and decreases for stronger shocks. Voids are nucleated at defective sites in a solid. For weak solid shocks, spallation occurs without tensile melting; for stronger shocks or if the temperature right before spallation (T(sp)) is sufficiently high, spallation may be accompanied or preceded by partial melting. T(sp) appears to have a dominant effect on spallation for the narrow range of epsilon center dot studied here. sigma(sp) decreases with increasing T(sp) for both solids and liquids, and sigma(sp)(T(sp)) follows an inverse power law for liquids. The simulated sigma(sp) for solid Cu at low T(sp) is consistent with the prediction of the power-law relation sigma(sp)(epsilon center dot) based on low strain rate experiments. C1 [Luo, Sheng-Nian; An, Qi; Germann, Timothy C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Han, Li-Bo] Univ Sci & Technol China, Sch Earth & Space Sci, Hefei 230026, Anhui, Peoples R China. RP Luo, SN (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM sluo@lanl.gov RI An, Qi/G-4517-2011; Luo, Sheng-Nian /D-2257-2010; An, Qi/I-6985-2012; OI Luo, Sheng-Nian /0000-0002-7538-0541; Germann, Timothy/0000-0002-6813-238X FU U. S. Department of Energy [DE-AC52-06NA25396]; NSFC [40574043, 40537033] FX We have benefited from valuable discussions with many colleagues, in particular, Dr. D. Tonks, Dr. A. Koskelo, and Dr. L. Zheng. This work has been supported by the Laboratory Directed Research Development programs at LANL. LANL is under the auspices of U. S. Department of Energy under Contract No. DE-AC52-06NA25396. L. B. H. acknowledges the support from NSFC Grant Nos. 40574043 and 40537033. NR 33 TC 67 Z9 68 U1 2 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 1 PY 2009 VL 106 IS 1 AR 013502 DI 10.1063/1.3158062 PG 8 WC Physics, Applied SC Physics GA 471NK UT WOS:000268065000029 ER PT J AU Timofeeva, EV Routbort, JL Singh, D AF Timofeeva, Elena V. Routbort, Jules L. Singh, Dileep TI Particle shape effects on thermophysical properties of alumina nanofluids SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE alumina; laminar flow; nanofluidics; nanoparticles; surface charging; suspensions; thermal conductivity; turbulence; viscosity ID EFFECTIVE THERMAL-CONDUCTIVITY; NANOPARTICLE-FLUID MIXTURE; HEAT-TRANSFER; ETHYLENE-GLYCOL; VISCOSITY; LIQUID; MODEL; RESISTANCE; INTERFACE AB The thermal conductivity and viscosity of various shapes of alumina nanoparticles in a fluid consisting of equal volumes of ethylene glycol and water were investigated. Experimental data were analyzed and accompanied by theoretical modeling. Enhancements in the effective thermal conductivities due to particle shape effects expected from Hamilton-Crosser equation are strongly diminished by interfacial effects proportional to the total surface area of nanoparticles. On the other hand, the presence of nanoparticles and small volume fractions of agglomerates with high aspect ratios strongly increases viscosity of suspensions due to structural constrains. Nanoparticle surface charge also plays an important role in viscosity. It is demonstrated that by adjusting pH of nanofluid, it is possible to reduce viscosity of alumina nanofluid without significantly affecting thermal conductivity. Efficiency of nanofluids (ratio of thermal conductivity and viscosity increase) for real-life cooling applications is evaluated in both the laminar and turbulent flow regimes using the experimental values of thermal conductivity and viscosity. C1 [Timofeeva, Elena V.; Routbort, Jules L.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Singh, Dileep] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Timofeeva, EV (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM etimofeeva@anl.gov RI Timofeeva, Elena/E-6391-2010; OI Timofeeva, Elena V./0000-0001-7839-2727 FU U.S. Department of Energy's Office of Vehicle Technologies [DE-AC02-06CH11357]; University of Chicago Argonne LLC (USA); U.S. Army [P-08071] FX We are grateful to Sasol North America Inc. for providing the nanoparticle samples of boehmite alumina used in this study. This work was sponsored by the U.S. Department of Energy's Office of Vehicle Technologies, under Contract No. DE-AC02-06CH11357 at Argonne National Laboratory, managed by the University of Chicago Argonne LLC (USA). This work was also supported by U.S. Army REECOMTARDEC under a "Work for Others" Contract No. P-08071. NR 39 TC 147 Z9 148 U1 4 U2 31 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 1 PY 2009 VL 106 IS 1 AR 014304 DI 10.1063/1.3155999 PG 10 WC Physics, Applied SC Physics GA 471NK UT WOS:000268065000105 ER PT J AU Wu, JQ AF Wu, Junqiao TI When group-III nitrides go infrared: New properties and perspectives SO JOURNAL OF APPLIED PHYSICS LA English DT Review DE energy gap; gallium compounds; III-V semiconductors; indium compounds; infrared spectra; nanostructured materials; phonons; semiconductor doping; wide band gap semiconductors ID MOLECULAR-BEAM EPITAXY; CHEMICAL-VAPOR-DEPOSITION; LIGHT-EMITTING-DIODES; 2-DIMENSIONAL ELECTRON-GAS; FUNDAMENTAL-BAND GAP; N-TYPE CONDUCTIVITY; ALN BUFFER LAYER; R-PLANE SAPPHIRE; IN-RICH INGAN; MG-DOPED INN AB Wide-band-gap GaN and Ga-rich InGaN alloys, with energy gaps covering the blue and near-ultraviolet parts of the electromagnetic spectrum, are one group of the dominant materials for solid state lighting and lasing technologies and consequently, have been studied very well. Much less effort has been devoted to InN and In-rich InGaN alloys. A major breakthrough in 2002, stemming from much improved quality of InN films grown using molecular beam epitaxy, resulted in the bandgap of InN being revised from 1.9 eV to a much narrower value of 0.64 eV. This finding triggered a worldwide research thrust into the area of narrow-band-gap group-III nitrides. The low value of the InN bandgap provides a basis for a consistent description of the electronic structure of InGaN and InAlN alloys with all compositions. It extends the fundamental bandgap of the group III-nitride alloy system over a wider spectral region, ranging from the near infrared at similar to 1.9 mu m (0.64 eV for InN) to the ultraviolet at similar to 0.36 mu m (3.4 eV for GaN) or 0.2 mu m (6.2 eV for AlN). The continuous range of bandgap energies now spans the near infrared, raising the possibility of new applications for group-III nitrides. In this article we present a detailed review of the physical properties of InN and related group III-nitride semiconductors. The electronic structure, carrier dynamics, optical transitions, defect physics, doping disparity, surface effects, and phonon structure will be discussed in the context of the InN bandgap re-evaluation. We will then describe the progress, perspectives, and challenges in the developments of new electronic and optoelectronic devices based on InGaN alloys. Advances in characterization and understanding of InN and InGaN nanostructures will also be reviewed in comparison to their thin film counterparts. C1 [Wu, Junqiao] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Wu, Junqiao] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Wu, JQ (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM wuj@berkeley.edu RI Wu, Junqiao/G-7840-2011 OI Wu, Junqiao/0000-0002-1498-0148 FU National Science Foundation [EEC-0425914]; Department of Energy [DE-AC02-05CH11231] FX This review would not have been written without the invitation of Professor J. M. Poate and Professor E. E. Haller. I am grateful to have the opportunity to present recent developments in the research field of InN and In-rich group-III nitrides. I wish to acknowledge collaborations and discussions with Dr. W. Walukiewicz, Dr. H. Lu, Dr. W. J. Schaff, Professor E. E. Haller, Professor Y. Nanishi, Dr. K. M. Yu, Dr. J. W. Ager III, and Dr. S. X. Li. This work was supported, in part, by the National Science Foundation under Grant No. EEC-0425914, and in part by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under the Department of Energy Contract No. DE-AC02-05CH11231. NR 296 TC 460 Z9 473 U1 31 U2 314 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 1 PY 2009 VL 106 IS 1 AR 011101 DI 10.1063/1.3155798 PG 28 WC Physics, Applied SC Physics GA 471NK UT WOS:000268065000001 ER PT J AU Denton, MH Borovsky, JE Horne, RB McPherron, RL Morley, SK Tsurutani, BT AF Denton, M. H. Borovsky, J. E. Horne, R. B. McPherron, R. L. Morley, S. K. Tsurutani, B. T. TI Introduction to Special Issue on high speed solar wind streams and geospace interactions (HSS-GI) SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS LA English DT Editorial Material C1 [Denton, M. H.] Univ Lancaster, Dept Commun Syst, Lancaster, England. [Borovsky, J. E.] Los Alamos Natl Lab, Los Alamos, NM USA. [Horne, R. B.] British Antarctic Survey, Cambridge CB3 0ET, England. [McPherron, R. L.] Univ Calif Los Angeles, IGPP, Los Angeles, CA USA. [Morley, S. K.] Univ Newcastle, Newcastle, NSW 2308, Australia. [Tsurutani, B. T.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Denton, MH (reprint author), Univ Lancaster, Dept Commun Syst, Lancaster, England. EM m.denton@lancaster.ac.uk RI Morley, Steven/A-8321-2008; OI Morley, Steven/0000-0001-8520-0199; Horne, Richard/0000-0002-0412-6407; Denton, Michael/0000-0002-1748-3710 NR 19 TC 7 Z9 7 U1 2 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-6826 J9 J ATMOS SOL-TERR PHY JI J. Atmos. Sol.-Terr. Phys. PD JUL PY 2009 VL 71 IS 10-11 SI SI BP 1011 EP 1013 DI 10.1016/j.jastp.2008.09.019 PG 3 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 478QE UT WOS:000268602100001 ER PT J AU Denton, MH Borovsky, JE AF Denton, Michael H. Borovsky, Joseph E. TI The superdense plasma sheet in the magnetosphere during high-speed-stream-driven storms: Plasma transport timescales SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS LA English DT Article; Proceedings Paper CT Workshop on High Speed Solar Wind Streams and Geospace Interactions CY SEP 02-07, 2007 CL St Martins Coll, Ambleside, ENGLAND HO St Martins Coll DE Plasma sheet; Solar wind/magnetosphere interactions; Corotating streams; Magnetosphere: Inner ID SOLAR-WIND STREAMS; GEOSYNCHRONOUS ORBIT; RING CURRENT; WAVES; COLD; TAIL; SCATTERING; IONS AB The superdense plasma sheet in the Earth's magnetosphere is studied via a superposition of multispacecraft data collected during 124 high-speed-stream-driven storms. The storm onsets tend to occur after the passage of the IMF sector reversal and before the passage of the stream interface, and the storms continue on for days during the passage of the highspeed stream. The superdense phase of the plasma sheet is found to be a common feature of higli-speed-stream-driven storms, commencing before the onset of the storm and persisting for about I day into the storm. A separate phenomenon, the extra-hot phase of the plasma sheet, commences at storm onset and persists for several days during the storm. The superdense plasma sheet originates from the high-density compressed slow and fast solar wind of the corotating interaction region on the leading edge of the highspeed stream. Tracking the motion of this dense plasma into and through the magnetosphere, plasma transport times are estimated. Transport from the nightside of the dipole to the dayside requires about 10 h. The occurrences of both the superdense plasma sheet and the extra-hot plasma sheet have broad implications for the physics of geomagnetic storms. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Denton, Michael H.] Univ Lancaster, Dept Commun Syst, Lancaster, England. [Borovsky, Joseph E.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Denton, MH (reprint author), Univ Lancaster, Dept Commun Syst, Lancaster, England. EM m.denton@lancaster.ac.uk OI Denton, Michael/0000-0002-1748-3710 NR 36 TC 26 Z9 26 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-6826 EI 1879-1824 J9 J ATMOS SOL-TERR PHY JI J. Atmos. Sol.-Terr. Phys. PD JUL PY 2009 VL 71 IS 10-11 SI SI BP 1045 EP 1058 DI 10.1016/j.jastp.2008.04.023 PG 14 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 478QE UT WOS:000268602100005 ER PT J AU Jordanova, VK Matsui, H Puhl-Quinn, PA Thomsen, MF Mursula, K Holappa, L AF Jordanova, V. K. Matsui, H. Puhl-Quinn, P. A. Thomsen, M. F. Mursula, K. Holappa, L. TI Ring current development during high speed streams SO JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS LA English DT Article; Proceedings Paper CT Workshop on High Speed Solar Wind Streams and Geospace Interactions CY SEP 02-07, 2007 CL St Martins Coll, Ambleside, ENGLAND HO St Martins Coll DE Inner magnetosphere; Magnetic storms; Electric fields and ring current; Plasma motion; Plasma convection ID ELECTRIC-FIELD MODEL; GEOMAGNETIC STORMS; MAGNETOSPHERE; SIMULATIONS; ASYMMETRY; PARTICLES; REGIONS; DRIVEN; EARTH; SHOCK AB Episodes of southward (B-z<0) interplanetary magnetic field (IMF) which lead to disturbed geomagnetic conditions are associated either with coronal mass ejections (CMEs) and possess long and continuous negative IMF B-z excursions, or with high speed solar wind streams (HSS) whose geoeffectiveness is due to IMF B-z profiles fluctuating about zero with various amplitudes and duration. We Simulate ring current evolution during a HISS-driven storm that occurred during 24-26 October 2002 and compare its dynamics with a CME-driven storm of similar strength during 22-23 April 2001. We use our kinetic ring current-atmosphere interactions model (RAM), and investigate the mechanisms responsible for trapping particles and for causing their loss. Ring current evolution depends on the interplay of time-dependent inflow of plasma from the magnetotail, particle acceleration and loss (mainly due to charge exchange) along adiabatic drift paths, and outflow of plasma from the dayside magnetopause; all of these processes are incorporated in our model. We compare results from simulations using a newly developed, Cluster data based, University of New Hampshire inner magnetospheric electric field (UNH-IMEF) convection model with simulations using a Volland-Stern (V-S) type convection model. We find that, first, periods of increased magnetospheric convection coinciding with enhancements of plasma sheet density are needed for strong ring current buildup. Second, during the HSS-driven storm the convection potential from UNH-IMEF model is highly variable and Causes sporadic shallow injections resulting in a weak ring Current. The long period of enhanced convection during the CME-driven storm causes a continuous ion injection penetrating to lower L shells and stronger ring current buildup. V-S model predicts larger ring current injection during both storms. Third, the RAM driven by either convection model underestimates the total ring current energy during the recovery phase of the HSS storm, thus indicating that additional injections from substorm-induced electric fields and/or radial diffusion are needed to better reproduce its several-clay long geomagnetic activity. Published by Elsevier Ltd. C1 [Jordanova, V. K.; Thomsen, M. F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Matsui, H.; Puhl-Quinn, P. A.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Mursula, K.; Holappa, L.] Univ Oulu, Dept Phys Sci, Oulu, Finland. RP Jordanova, VK (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM vania@lanl.gov RI Holappa, Lauri/A-3137-2013; Mursula, Kalevi/L-8952-2014; OI Mursula, Kalevi/0000-0003-4892-5056; Holappa, Lauri/0000-0002-7394-6003; Jordanova, Vania/0000-0003-0475-8743 NR 34 TC 21 Z9 21 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1364-6826 J9 J ATMOS SOL-TERR PHY JI J. Atmos. Sol.-Terr. Phys. PD JUL PY 2009 VL 71 IS 10-11 SI SI BP 1093 EP 1102 DI 10.1016/j.jastp.2008.09.043 PG 10 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 478QE UT WOS:000268602100009 ER PT J AU Young, PG Walanj, R Lakshmi, V Byrnes, LJ Metcalf, P Baker, EN Vakulenko, SB Smith, CA AF Young, Paul G. Walanj, Rupa Lakshmi, Vendula Byrnes, Laura J. Metcalf, Peter Baker, Edward N. Vakulenko, Sergei B. Smith, Clyde A. TI The Crystal Structures of Substrate and Nucleotide Complexes of Enterococcus faecium Aminoglycoside-2 ''-Phosphotransferase-IIa [APH(2 '')-IIa] Provide Insights into Substrate Selectivity in the APH(2 '') Subfamily SO JOURNAL OF BACTERIOLOGY LA English DT Article ID AMINOGLYCOSIDE-MODIFYING ENZYMES; LEVEL GENTAMICIN RESISTANCE; ANTIBIOTIC-RESISTANCE; PROTEIN-KINASE; PHOSPHORYL TRANSFER; A-SITE; GENE; PHOSPHOTRANSFERASE; INHIBITORS; ACETYLTRANSFERASE AB Aminoglycoside-2 ''-phosphotransferase-IIa [APH(2 '')-IIa] is one of a number of homologous bacterial enzymes responsible for the deactivation of the aminoglycoside family of antibiotics and is thus a major component in bacterial resistance to these compounds. APH(2 '')-IIa produces resistance to several clinically important aminoglycosides (including kanamycin and gentamicin) in both gram-positive and gram-negative bacteria, most notably in Enterococcus species. We have determined the structures of two complexes of APH(2 '')-IIa, the binary gentamicin complex and a ternary complex containing adenosine-5'-(beta,gamma-methylene) triphosphate (AMPPCP) and streptomycin. This is the first crystal structure of a member of the APH(2 '') family of aminoglycoside phosphotransferases. The structure of the gentamicin-APH(2 '')-IIa complex was solved by multiwavelength anomalous diffraction methods from a single selenomethionine-substituted crystal and was refined to a crystallographic R factor of 0.210 (R(free), 0.271) at a resolution of 2.5 angstrom. The structure of the AMPPCP-streptomycin complex was solved by molecular replacement using the gentamicin-APH(2 '')-IIa complex as the starting model. The enzyme has a two-domain structure with the substrate binding site located in a cleft in the C-terminal domain. Gentamicin binding is facilitated by a number of conserved acidic residues lining the binding cleft, with the A and B rings of the substrate forming the majority of the interactions. The inhibitor streptomycin, although binding in the same pocket as gentamicin, is orientated such that no potential phosphorylation sites are adjacent to the catalytic aspartate residue. The binding of gentamicin and streptomycin provides structural insights into the substrate selectivity of the APH(2 '') subfamily of aminoglycoside phosphotransferases, specifically, the selectivity between the 4,6-disubstituted and the 4,5-disubstituted aminoglycosides. C1 [Byrnes, Laura J.; Smith, Clyde A.] Stanford Univ, Stanford Synchrotron Radiat Lab, Menlo Pk, CA USA. [Young, Paul G.; Walanj, Rupa; Lakshmi, Vendula; Metcalf, Peter; Baker, Edward N.] Univ Auckland, Sch Biol Sci, Auckland 1, New Zealand. [Vakulenko, Sergei B.] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA. RP Smith, CA (reprint author), Stanford Univ, Stanford Synchrotron Radiat Lab, Menlo Pk, CA USA. EM csmith@slac.stanford.edu RI Metcalf, Peter/B-4598-2011 FU Health Research Council of New Zealand; National Institutes of Health [AI057393]; Department of Energy (Office of Basic Energy Sciences, Biological and Environmental Research); National Institutes of Health (National Center for Research Resources, Biotechnology Training Program, National Institute of General Medical Sciences); National Center for Research Resources [5 P41 RR001209]; Summer Undergraduate Laboratory Internship FX This work was supported by a program grant from the Health Research Council of New Zealand (E.N.B., P. M., and C. A. S.) and by National Institutes of Health grant AI057393 (S. B. V.). The SSRL Structural Molecular Biology Program is supported by the Department of Energy (Office of Basic Energy Sciences, Biological and Environmental Research) and by the National Institutes of Health (National Center for Research Resources, Biotechnology Training Program, National Institute of General Medical Sciences). SSRL is a national user facility operated by Stanford University on behalf of the U. S. Department of Energy, Office of Basic Energy Sciences. Project support was provided by grant 5 P41 RR001209 from the National Center for Research Resources. L.J.B. was supported by a Summer Undergraduate Laboratory Internship. NR 54 TC 37 Z9 37 U1 0 U2 3 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD JUL 1 PY 2009 VL 191 IS 13 BP 4133 EP 4143 DI 10.1128/JB.00149-09 PG 11 WC Microbiology SC Microbiology GA 458JT UT WOS:000267015000009 PM 19429619 ER PT J AU Joshi, GS Romagnoli, S VerBerkmoes, NC Hettich, RL Pelletier, D Tabita, FR AF Joshi, Gauri S. Romagnoli, Simona VerBerkmoes, Nathan C. Hettich, Robert L. Pelletier, Dale Tabita, F. Robert TI Differential Accumulation of Form I RubisCO in Rhodopseudomonas palustris CGA010 under Photoheterotrophic Growth Conditions with Reduced Carbon Sources SO JOURNAL OF BACTERIOLOGY LA English DT Article ID RIBULOSE 1,5-BISPHOSPHATE CARBOXYLASE; CO2 FIXATION OPERON; 3-PROTEIN 2-COMPONENT SYSTEM; RHODOBACTER-SPHAEROIDES; NUCLEOTIDE-SEQUENCE; DIOXIDE FIXATION; EXPRESSION; OXYGENASE; CAPSULATUS; METABOLISM AB Rhodopseudomonas palustris is unique among characterized nonsulfur purple bacteria because of its capacity for anaerobic photoheterotrophic growth using aromatic acids. Like growth with other reduced electron donors, this growth typically requires the presence of bicarbonate/CO2 or some other added electron acceptor in the growth medium. Proteomic studies indicated that there was specific accumulation of form I ribulose 1, 5-bisphosphate carboxylase/oxygenase (RubisCO) subunit proteins (CbbL and CbbS), as well as the CbbX protein, in cells grown on benzoate without added bicarbonate; such cells used the small amounts of dissolved CO2 in the medium to support growth. These proteins were not observed in extracts from cells grown in the presence of high levels (10 mM) of added bicarbonate. To confirm the results of the proteomics studies, it was shown that the total RubisCO activity levels were significantly higher (five-to sevenfold higher) in wild-type (CGA010) cells grown on benzoate with a low level (0.5 mM) of added bicarbonate. Immunoblots indicated that the increase in RubisCO activity levels was due to a specific increase in the amount of form I RubisCO (CbbLS) and not in the amount of form II RubisCO (CbbM), which was constitutively expressed. Deletion of the main transcriptional regulator gene, cbbR, resulted in impaired growth on benzoate-containing low-bicarbonate media, and it was established that form I RubisCO synthesis was absolutely and specifically dependent on CbbR. To understand the regulatory role of the CbbRRS two-component system, strains with nonpolar deletions of the cbbRRS genes were grown on benzoate. Distinct from the results obtained with photoautotrophic growth conditions, the results of studies with various CbbRRS mutant strains indicated that this two-component system did not affect the observed enhanced synthesis of form I RubisCO under benzoate growth conditions. These studies indicate that diverse growth conditions differentially affect the ability of the CbbRRS two-component system to influence cbb transcription. C1 [Joshi, Gauri S.; Romagnoli, Simona; Tabita, F. Robert] Ohio State Univ, Dept Microbiol, Columbus, OH 43210 USA. [Tabita, F. Robert] Ohio State Univ, Plant Mol Biol Biotechnol Program, Columbus, OH 43210 USA. [VerBerkmoes, Nathan C.; Hettich, Robert L.; Pelletier, Dale] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [VerBerkmoes, Nathan C.; Hettich, Robert L.; Pelletier, Dale] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Tabita, FR (reprint author), Ohio State Univ, Dept Microbiol, 484 W 12Th Ave, Columbus, OH 43210 USA. EM Tabita.1@osu.edu RI Hettich, Robert/N-1458-2016 OI Hettich, Robert/0000-0001-7708-786X FU DOE [DE-FG02-01ER63241, DE-FG02-08ER15976]; Office of Biological and Environmental Research, U. S. Department of Energy [DE-AC05-00OR22725] FX This work was supported by DOE grants DE-FG02-01ER63241 and DE-FG02-08ER15976 to F. R. T. D. P., N.C.V., and R. L. H. acknowledge the Genomics: GTL Program, Office of Biological and Environmental Research, U. S. Department of Energy, for support under contract DE-AC05-00OR22725 with Oak Ridge National Laboratory managed and operated by UT-Battelle, LLC. NR 33 TC 15 Z9 15 U1 0 U2 8 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 EI 1098-5530 J9 J BACTERIOL JI J. Bacteriol. PD JUL 1 PY 2009 VL 191 IS 13 BP 4243 EP 4250 DI 10.1128/JB.01795-08 PG 8 WC Microbiology SC Microbiology GA 458JT UT WOS:000267015000020 PM 19376869 ER PT J AU Charania, MA Brockman, KL Zhang, Y Banerjee, A Pinchuk, GE Fredrickson, JK Beliaev, AS Saffarini, DA AF Charania, M. A. Brockman, K. L. Zhang, Y. Banerjee, A. Pinchuk, G. E. Fredrickson, J. K. Beliaev, A. S. Saffarini, D. A. TI Involvement of a Membrane-Bound Class III Adenylate Cyclase in Regulation of Anaerobic Respiration in Shewanella oneidensis MR-1 SO JOURNAL OF BACTERIOLOGY LA English DT Article ID CAMP RECEPTOR PROTEIN; PUTREFACIENS MR-1; ESCHERICHIA-COLI; MYCOBACTERIUM-TUBERCULOSIS; NUCLEOTIDE CYCLASES; STRAIN ANA-3; EXPRESSION; REDUCTION; SEQUENCE; SULFUR AB Unlike other bacteria that use FNR to regulate anaerobic respiration, Shewanella oneidensis MR-1 uses the cyclic AMP receptor protein (CRP) for this purpose. Three putative genes, cyaA, cyaB, and cyaC, predicted to encode class I, class IV, and class III adenylate cyclases, respectively, have been identified in the genome sequence of this bacterium. Functional validation through complementation of an Escherichia coli cya mutant confirmed that these genes encode proteins with adenylate cyclase activities. Chromosomal deletion of either cyaA or cyaB did not affect anaerobic respiration with fumarate, dimethyl sulfoxide (DMSO), or Fe(III), whereas deletion of cyaC caused deficiencies in respiration with DMSO and Fe(III) and, to a lesser extent, with fumarate. A phenotype similar to that of a crp mutant, which lacks the ability to grow anaerobically with DMSO, fumarate, and Fe(III), was obtained when both cyaA and cyaC were deleted. Microarray analysis of gene expression in the crp and cyaC mutants revealed the involvement of both genes in the regulation of key respiratory pathways, such as DMSO, fumarate, and Fe(III) reduction. Additionally, several genes associated with plasmid replication, flagellum biosynthesis, and electron transport were differentially expressed in the cyaC mutant but not in the crp mutant. Our results indicated that CyaC plays a major role in regulating anaerobic respiration and may contribute to additional signaling pathways independent of CRP. C1 [Charania, M. A.; Brockman, K. L.; Banerjee, A.; Saffarini, D. A.] Univ Wisconsin, Dept Biol Sci, Milwaukee, WI 53211 USA. [Zhang, Y.; Pinchuk, G. E.; Fredrickson, J. K.; Beliaev, A. S.] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Saffarini, DA (reprint author), Univ Wisconsin, Dept Biol Sci, Milwaukee, WI 53211 USA. EM daads@uwm.edu RI Beliaev, Alexander/E-8798-2016; OI Beliaev, Alexander/0000-0002-6766-4632; Banerjee, Areen/0000-0002-3363-1082 FU National Science Foundation [MCB 0543501]; Office of Science (BER); U. S. Department of Energy (DOE) [DE-FG02-07ER643820]; DOE Genomics: GTL Program via the Shewanella Federation consortium; Battelle Memorial Institute [DE-AC05-76RLO 1830] FX This work was supported by a grant from the National Science Foundation (grant MCB 0543501), by the Office of Science (BER), U. S. Department of Energy (DOE) grant DE-FG02-07ER643820, and by the DOE Genomics: GTL Program via the Shewanella Federation consortium. Pacific Northwest National Laboratory is operated for the DOE by Battelle Memorial Institute under contract DE-AC05-76RLO 1830. NR 39 TC 34 Z9 34 U1 2 U2 9 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD JUL 1 PY 2009 VL 191 IS 13 BP 4298 EP 4306 DI 10.1128/JB.01829-08 PG 9 WC Microbiology SC Microbiology GA 458JT UT WOS:000267015000026 PM 19395492 ER PT J AU Chhabra, M Prausnitz, JM Radke, CJ AF Chhabra, Mahendra Prausnitz, John M. Radke, C. J. TI Diffusion and Monod Kinetics to Determine In Vivo Human Corneal Oxygen-Consumption Rate During Soft Contact-Lens Wear SO JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS LA English DT Article DE soft contact lens; oxygen consumption; oxygen tension; cornea; oxygen permeability; Monod kinetics ID STEADY-STATE DISTRIBUTION; NONINVASIVE MEASUREMENT; ANTERIOR-CHAMBER; CARBON DIOXIDE; OPEN EYE; TENSION; RESPIRATION; RABBIT; HYDROGEL; PHOSPHORYLATION AB The rate of oxygen consumption is an important parameter to assess the physiology of the human cornea. Metabolism of oxygen in the cornea is influenced by contact-lens-induced hypoxia, diseases such as diabetes, surgery, and drug treatment. Therefore, estimation of in vivo corneal oxygen-consumption rate is essential for gauging adequate oxygen supply to the cornea. Phosphorescence quenching of a dye coated on the posterior of a soft contact lens provides a powerful technique to measure tear-film oxygen tension (Harvitt and Bonanno, Invest Ophthalmol Vis Sci 1996;37:1026-1036; Bonanno et al., Invest Ophthalmol Vis Sci 2002;43:371-376). Unfortunately, previous work in establishing oxygen-consumption kinetics from transient postlens tear-film oxygen tensions relies on the simplistic assumption of a constant corneal-consumption rate. A more realistic model of corneal metabolism is needed to obtain reliable oxygen-consumption kinetics. Here, physiologically relevant nonlinear Monod kinetics is adopted for describing the local oxygen-consumption rate, thus avoiding aphysical negative oxygen tensions in the cornea. We incorporate Monod kinetics in an unsteady-state reactive-diffusion model for the cornea contact-lens system to determine tear-film oxygen tension as a function of time when changing from closed-eye to open-eye condition. The model was fit to available experimental data of in vivo human postlens tear-film oxygen tension to determine the corneal oxygen-consumption rate. Reliance on corneal oxygen diffusivity and solubility data obtained from rabbits is no longer requisite. Excellent agreement is obtained between the proposed model and experiment. We calculate the spatial-averaged in vivo human maximum corneal oxygen-consumption rate as Q(c)(max) = 1.05 x 10(-4) mL/(cm(3) s). The calculated Monod constant is K(m) = 2.2 mmHg. (C) 2008 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 90B: 202-209, 2009 C1 [Chhabra, Mahendra; Prausnitz, John M.; Radke, C. J.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Prausnitz, John M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Radke, C. J.] Univ Calif Berkeley, Vis Sci Grp, Berkeley, CA 94720 USA. RP Radke, CJ (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM radke@berkeley.edu NR 52 TC 8 Z9 8 U1 1 U2 6 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 1552-4973 J9 J BIOMED MATER RES B JI J. Biomed. Mater. Res. Part B PD JUL PY 2009 VL 90B IS 1 BP 202 EP 209 DI 10.1002/jbm.b.31274 PG 8 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA 461UU UT WOS:000267298500024 PM 19086056 ER PT J AU Baer, GM Wilson, TS Small, W Hartman, J Benett, WJ Matthews, DL Maitland, DJ AF Baer, Geraldine M. Wilson, Thomas S. Small, Ward Hartman, Jonathan Benett, William J. Matthews, Dennis L. Maitland, Duncan J. TI Thermomechanical Properties, Collapse Pressure, and Expansion of Shape Memory Polymer Neurovascular Stent Prototypes SO JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS LA English DT Article DE vascular stents; polyurethane(s); in vitro; mechanical properties ID BIOMEDICAL APPLICATIONS; CEREBRAL VASOSPASM; CORONARY STENTS; ISCHEMIC-STROKE; POLYURETHANE; ANGIOPLASTY; CYTOTOXICITY; NETWORKS; ARTERY; FLOW AB Shape memory polymer stent prototypes were fabricated from thermoplastic polyurethane. Commercial stents are generally made of stainless steel or other alloys. These alloys are too stiff and prevent most stent designs from being able to navigate small and tortuous vessels to reach intracranial lesions. A solid tubular model and a high flexibility laser etched model are presented. The stents were tested for collapse in a pressure chamber. At 37 degrees C, the full collapse pressure was comparable to that of commercially available stents, and higher than the estimated maximum pressure exerted by intracranial arteries. However,there is a potential for onset of collapse, which needs further study. The stents were crimped and expanded, the laser-etched stent showed full recovery with an expansion ratio of 2.7 and a 1% axial shortening. (C) 2008 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 90B: 421-429, 2009 C1 [Baer, Geraldine M.; Wilson, Thomas S.; Small, Ward; Benett, William J.; Maitland, Duncan J.] Lawrence Livermore Natl Lab, Div Appl Phys, Livermore, CA 94551 USA. [Hartman, Jonathan] Kaiser Permanente Med Ctr, Sacramento, CA 95825 USA. [Baer, Geraldine M.] Univ Calif Davis, Dept Biomed Engn, Davis, CA 95616 USA. [Matthews, Dennis L.] Univ Calif Davis, Ctr Biophoton, Dept Neurol Surg, Sacramento, CA 95817 USA. [Matthews, Dennis L.] Univ Calif Davis, Ctr Biophoton, Dept Appl Sci, Sacramento, CA 95817 USA. [Maitland, Duncan J.] Texas A&M Univ, Dept Biomed Engn, College Stn, TX 77843 USA. RP Maitland, DJ (reprint author), Lawrence Livermore Natl Lab, Div Appl Phys, Livermore, CA 94551 USA. EM djmaitland@tamu.edu FU U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) [W-7405-ENG-48]; National Institutes of Health/National Institute of Biomedical Imaging and Bioengineering [R01EB000462]; LLNL (Directed Research and Development) [04-ERD-093]; National Science Foundation Center for Biopholonics, Science and Technology Center [PHY 0120999] FX Contract grant sponsor: U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL); contract grant number: W-7405-ENG-48 Contract grant sponsor: National Institutes of Health/National Institute of Biomedical Imaging and Bioengineering; contract grant number R01EB000462 Contract grant sponsor: LLNL (Directed Research and Development grant): contract grant number: 04-ERD-093 Contract grant sponsor: National Science Foundation Center for Biopholonics, Science and Technology Center: contract grant number: PHY 0120999 NR 50 TC 16 Z9 16 U1 3 U2 23 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 1552-4973 J9 J BIOMED MATER RES B JI J. Biomed. Mater. Res. Part B PD JUL PY 2009 VL 90B IS 1 BP 421 EP 429 DI 10.1002/jbm.b.31301 PG 9 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA 461UU UT WOS:000267298500049 PM 19107804 ER PT J AU Evans, JW Zawadzki, RJ Liu, R Chan, JW Lane, SM Werner, JS AF Evans, Julia W. Zawadzki, Robert J. Liu, Rui Chan, James W. Lane, Stephen M. Werner, John S. TI Optical coherence tomography and Raman spectroscopy of the ex-vivo retina SO JOURNAL OF BIOPHOTONICS LA English DT Article DE optical coherence tomography; Raman spectroscopy; retinal imaging AB Imaging the structure and correlating it with the biochemical content of the retina holds promise for fundamental research and for clinical applications. Optical coherence tomography (OCT) is commonly used to image the 3D structure of the retina and while the added functionality of biochemical analysis afforded by Raman scattering could provide critical molecular signatures for clinicians and researchers, there are many technical challenges to combine these imaging modalities. We describe an OCT microscope for ex-vivo imaging combined with Raman spectroscopy capable of collecting morphological and molecular information about a sample simultaneously. We present our first results and discuss the challenges to further development of this dual-mode instrument and limitations for future in-vivo retinal imaging. [GRAPHICS] Layout of the combined OCT microscope and Raman spectrometer (C) 2009 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Evans, Julia W.; Chan, James W.; Lane, Stephen M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Evans, Julia W.; Zawadzki, Robert J.; Werner, John S.] Univ Calif Davis, Vis Sci & Adv Retinal Imaging Lab, Dept Ophthalmol & Vis Sci, Sacramento, CA 95817 USA. [Evans, Julia W.; Liu, Rui; Lane, Stephen M.] Univ Calif Davis, NSF Ctr Biophoton Sci & Technol, Sacramento, CA 95817 USA. RP Evans, JW (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM evans74@llnl.gov RI Zawadzki, Robert/E-7534-2011; Liu, Rui/E-1078-2013; Chan, James/J-3829-2014 OI Zawadzki, Robert/0000-0002-9574-156X; FU National Eye Institute [EY 014743]; National Institute on Aging [AG04058]; National Science Foundation; The Center for Biophotonics; NSF Science and Technology Center, is managed by the University of California, Davis [PHY 0120999]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors would like to thank Susan Garcia, Mark Greiner and Suman Pilli for their help in sample preparation. This research was supported by the National Eye Institute (grant EY 014743) and the National Institute on Aging (grant AG04058). This work was supported by funding from the National Science Foundation. The Center for Biophotonics, an NSF Science and Technology Center, is managed by the University of California, Davis, under Cooperative Agreement No. PHY 0120999. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 18 TC 18 Z9 18 U1 0 U2 7 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1864-063X J9 J BIOPHOTONICS JI J. Biophotonics PD JUL PY 2009 VL 2 IS 6-7 BP 398 EP 406 DI 10.1002/jbio.200910022 PG 9 WC Biochemical Research Methods; Biophysics; Optics SC Biochemistry & Molecular Biology; Biophysics; Optics GA 479VQ UT WOS:000268690000015 PM 19569116 ER PT J AU Tkac, P Paulenova, A Vandegrift, GF Krebs, JF AF Tkac, Peter Paulenova, Alena Vandegrift, George F. Krebs, John F. TI Modeling of Pu(IV) Extraction from Acidic Nitrate Media by Tri-n-butyl Phosphate SO JOURNAL OF CHEMICAL AND ENGINEERING DATA LA English DT Article ID ABSORPTION-SPECTRA; AQUEOUS-SOLUTIONS; COMPLEX-FORMATION; PLUTONIUM(IV); HYDROLYSIS; SOLUBILITY; HYDROXIDE; SPECTROSCOPY AB A thermodynamic model of the distribution of Pu(IV) between aqueous solutions of nitric acid and lithium nitrate and 30 % (by volume) TBP in n-dodecane was developed. The mean activity coefficients of the hydrogen ion, nitrate ion, and water were calculated using Bromley's method of activity coefficients. The computation of the distribution ratios is based on a critical evaluation of the speciation of Pu(IV) under the solution conditions used. Five Pu(IV) species, Pu(4+), Pu(OH)(3+), Pu(OH)(2)(2+), Pu(NO(3))(3+), and Pu(NO(3))(2)(2+,) were considered to be present in (0.1 to 4) mol.L(-1) aqueous solutions of HNO(3). Because of the various extraction capabilities of the different oxidation states of Pu, disproportionation of Pu(IV) is the main factor controlling the distribution of Pu at low acidity. Two different Pu(IV) solvate adducts Pu(NO(3))(4)center dot TBP(2) and Pu(NO(3))(4)center dot TBP(2)center dot HNO(3) were considered as extracted species over a wide range of experimental conditions, and their extractions constants were determined. The correlation between experimental and calculated data produced a reasonable fit. To determine the extraction constant of hydrolyzed Pu(IV) species for low acid concentrations, additional experimental data on the kinetics of disproportionation of tetravalent plutonium in two phase systems would be necessary. C1 [Paulenova, Alena] Oregon State Univ, Dept Nucl Engn & Radiat Hlth Phys, Corvallis, OR 97331 USA. [Tkac, Peter] Oregon State Univ, Ctr Radiat, Corvallis, OR 97331 USA. [Vandegrift, George F.; Krebs, John F.] Argonne Natl Lab, Div Chem Technol, Argonne, IL 60439 USA. RP Paulenova, A (reprint author), Oregon State Univ, Dept Nucl Engn & Radiat Hlth Phys, Corvallis, OR 97331 USA. EM alena.paulenova@oregonstate.edu RI Tkac, Peter/A-5680-2012 FU U.S. DOE [U-NERI 05-14652] FX This work was funded by the U.S. DOE University Program U-NERI 05-14652. NR 35 TC 12 Z9 12 U1 0 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0021-9568 J9 J CHEM ENG DATA JI J. Chem. Eng. Data PD JUL PY 2009 VL 54 IS 7 BP 1967 EP 1974 DI 10.1021/je800904t PG 8 WC Thermodynamics; Chemistry, Multidisciplinary; Engineering, Chemical SC Thermodynamics; Chemistry; Engineering GA 472NY UT WOS:000268140000002 ER PT J AU Lebassi, B Gonzalez, J Fabris, D Maurer, E Miller, N Milesi, C Switzer, P Bornstein, R AF Lebassi, Bereket Gonzalez, Jorge Fabris, Drazen Maurer, Edwin Miller, Norman Milesi, Cristina Switzer, Paul Bornstein, Robert TI Observed 1970-2005 Cooling of Summer Daytime Temperatures in Coastal California SO JOURNAL OF CLIMATE LA English DT Article ID INDUCED CLIMATE-CHANGE; MONTANE CLOUD FORESTS; SURFACE-TEMPERATURE; LOWLAND DEFORESTATION; MINIMUM TEMPERATURE; GLOBAL CLIMATE; LAND-USE; TRENDS; IMPACTS; METHODOLOGY AB This study evaluated 1950-2005 summer [June-August (JJA)] mean monthly air temperatures for two California air basins: the South Coast Air Basin (SoCAB) and the San Francisco Bay Area (SFBA). The study focuses on the more rapid post-1970 warming period, and its daily minima temperature T-min and maxima temperature T-max values were used to produce average monthly values and spatial distributions of trends for each air basin. Additional analyses included concurrent SSTs, 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) sea level coastal pressure gradients, and GCM-downscaled average temperature T-ave values. Results for all 253 California National Weather Service (NWS) Cooperative Observer Program (COOP) sites together showed increased T-ave values (0.238 degrees C decade(-1)); asymmetric warming, as T-min values increase faster than T-max values (0.27 degrees versus 0.04 degrees C decade(-1)) and thus decreased daily temperature range (DTR) values (0.15 degrees C decade(-1)). The spatial distribution of observed SoCAB and SFBA T-max values exhibited a complex pattern, with cooling (-0.30 degrees C decade(-1)) in low-elevation coastal areas open to marine air penetration and warming (0.32 degrees C decade(-1)) in inland areas. Results also showed that decreased DTR values in the basins arose from small increases at inland sites (0.16 degrees C decade(-1)) combined with large decreases (20.58 degrees C decade(-1)) at coastal sites. It is also possible that some of the current observed temperature trends could be associated with low-frequency decadal variability, expected even with a constant radiative forcing. Previous studies suggest that cooling JJA T-max values in coastal California were a result of increased irrigation, coastal upwelling, or cloud cover. The current hypothesis is that they arise (as a possible "reverse reaction'') from the global warming of inland areas, which results in increased sea-breeze flow activity. GCM model T-ave warming decreased from 0.13 degrees C decade(-1) at inland sites to 0.08 degrees C decade(-1) in coastal areas. Sea level pressure increased in the Pacific high and decreased in the thermal low. The corresponding gradient thus showed a trend of 0.04 hPa 100 km(-1) decade(-1), supportive of the hypothesis of increased sea-breeze activity. C1 [Lebassi, Bereket; Gonzalez, Jorge; Fabris, Drazen] Santa Clara Univ, Dept Mech Engn, Santa Clara, CA 95053 USA. [Maurer, Edwin] Santa Clara Univ, Dept Civil Engn, Santa Clara, CA 95053 USA. [Miller, Norman] Lawrence Berkeley Natl Lab, Climate Sci Dept, Berkeley, CA USA. [Milesi, Cristina] NASA, Ames Res Ctr, Mountain View, CA USA. [Milesi, Cristina] Univ Corp Monterey Bay, Seaside, CA USA. [Switzer, Paul] Stanford Univ, Dept Stat, Stanford, CA 94305 USA. [Switzer, Paul] Stanford Univ, Dept Environm & Earth Syst Sci, Stanford, CA 94305 USA. [Bornstein, Robert] San Jose State Univ, Dept Meteorol, San Jose, CA 95192 USA. RP Gonzalez, J (reprint author), CUNY, NOAA, CREST, Steinman Hall T-238, New York, NY 10031 USA. EM gonzalez@me.ccny.cuny.edu RI Maurer, Edwin/C-7190-2009; Miller, Norman/E-6897-2010 OI Maurer, Edwin/0000-0001-7134-487X; FU Program for Climate Model Diagnosis and Intercomparison (PCMDI); WCRP Working Group on Coupled Modelling (WGCM); Office of Science, U.S. Department of Energy FX The authors thank Prof. Alan Robock of Rutgers University for his insightful comments. We also thank the School of Engineering, Santa Clara University for funding the lead author. We also acknowledge the Program for Climate Model Diagnosis and Intercomparison (PCMDI) for collecting and archiving CMIP3 model output and the WCRP Working Group on Coupled Modelling (WGCM) for organizing the model data analysis. The WCRP CMIP3 multimodel dataset is supported by the Office of Science, U.S. Department of Energy. NR 55 TC 36 Z9 36 U1 4 U2 16 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD JUL PY 2009 VL 22 IS 13 BP 3558 EP 3573 DI 10.1175/2008JCLI2111.1 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 472JQ UT WOS:000268127300003 ER PT J AU Hidalgo, HG Das, T Dettinger, MD Cayan, DR Pierce, DW Barnett, TP Bala, G Mirin, A Wood, AW Bonfils, C Santer, BD Nozawa, T AF Hidalgo, H. G. Das, T. Dettinger, M. D. Cayan, D. R. Pierce, D. W. Barnett, T. P. Bala, G. Mirin, A. Wood, A. W. Bonfils, C. Santer, B. D. Nozawa, T. TI Detection and Attribution of Streamflow Timing Changes to Climate Change in the Western United States SO JOURNAL OF CLIMATE LA English DT Article ID COLUMBIA RIVER-BASIN; WATER-RESOURCES; TEMPERATURE TRENDS; SNOWMELT RUNOFF; GREENHOUSE-GAS; NORTH-AMERICA; MODEL; HYDROLOGY; SURFACE; PRECIPITATION AB This article applies formal detection and attribution techniques to investigate the nature of observed shifts in the timing of streamflow in the western United States. Previous studies have shown that the snow hydrology of the western United States has changed in the second half of the twentieth century. Such changes manifest themselves in the form of more rain and less snow, in reductions in the snow water contents, and in earlier snowmelt and associated advances in streamflow "center'' timing (the day in the "water-year'' on average when half the water-year flow at a point has passed). However, with one exception over a more limited domain, no other study has attempted to formally attribute these changes to anthropogenic increases of greenhouse gases in the atmosphere. Using the observations together with a set of global climate model simulations and a hydrologic model (applied to three major hydrological regions of the western United States-the California region, the upper Colorado River basin, and the Columbia River basin), it is found that the observed trends toward earlier "center'' timing of snowmelt-driven streamflows in the western United States since 1950 are detectably different from natural variability (significant at the p < 0.05 level). Furthermore, the nonnatural parts of these changes can be attributed confidently to climate changes induced by anthropogenic greenhouse gases, aerosols, ozone, and land use. The signal from the Columbia dominates the analysis, and it is the only basin that showed a detectable signal when the analysis was performed on individual basins. It should be noted that although climate change is an important signal, other climatic processes have also contributed to the hydrologic variability of large basins in the western United States. C1 [Hidalgo, H. G.] Univ Calif San Diego, Scripps Inst Oceanog, CASPO Div, La Jolla, CA 92093 USA. [Dettinger, M. D.; Cayan, D. R.] US Geol Survey, La Jolla, CA USA. [Bala, G.; Mirin, A.; Bonfils, C.; Santer, B. D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Wood, A. W.] Univ Washington, Washington, DC USA. [Nozawa, T.] Natl Inst Environm Studies, Tsukuba, Ibaraki, Japan. RP Hidalgo, HG (reprint author), Univ Calif San Diego, Scripps Inst Oceanog, CASPO Div, 9500 Gilman Dr, La Jolla, CA 92093 USA. EM hugo.hidalgo@ucr.ac.cr RI Santer, Benjamin/F-9781-2011; Bonfils, Celine/H-2356-2012; Wood, Andrew/L-5133-2013; OI Bonfils, Celine/0000-0002-4674-5708; Wood, Andrew/0000-0002-6231-0085; Hidalgo, Hugo/0000-0003-4638-0742 NR 67 TC 115 Z9 116 U1 7 U2 41 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD JUL PY 2009 VL 22 IS 13 BP 3838 EP 3855 DI 10.1175/2009JCLI2470.1 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 472JQ UT WOS:000268127300019 ER PT J AU Song, B Chen, W Montgomery, ST Forrestal, MJ AF Song, B. Chen, W. Montgomery, S. T. Forrestal, M. J. TI Mechanical Response of an Alumina-filled Epoxy at Various Strain Rates SO JOURNAL OF COMPOSITE MATERIALS LA English DT Article DE Kolsky bar; alumina-filled epoxy; stress-strain response; strain rate; material model ID HOPKINSON PRESSURE BAR; STRESS; PROPAGATION; COMPRESSION; SPECIMENS; INERTIA; FOAM AB The compressive response of an alumina-filled epoxy composite material was characterized at various strain rates using a Kolsky bar and universal testing frame (MTS). In the Kolsky-bar experiments, dynamic stress equilibrium and constant strain-rate deformation in specimens were achieved using pulse-shaping techniques. The effects of specimen aspect ratio and interfacial friction on the dynamic response of the material were examined. Compressive stress-strain curves for the composite were obtained at strain rates ranging from 9.4 x 10(-4) to 1.35 x 10(3) s(-1) which exhibited strong strain-rate sensitivity. A material response model, which agrees well with the experimental measurements for the strain rates examined in this study, is also described. C1 [Song, B.] Sandia Natl Labs, Livermore, CA 94551 USA. [Chen, W.] Purdue Univ, Sch AAE, W Lafayette, IN 47907 USA. [Chen, W.] Purdue Univ, Sch MSE, W Lafayette, IN 47907 USA. [Montgomery, S. T.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Song, B (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM bsong@sandia.gov RI Song, Bo/D-3945-2011 FU Sandia National Laboratories; United States Department of Energy [DE-AC04-94 AL8500] FX The experimental work conducted at Purdue University was supported by Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94 AL8500. NR 19 TC 5 Z9 6 U1 0 U2 12 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0021-9983 J9 J COMPOS MATER JI J. Compos Mater. PD JUL PY 2009 VL 43 IS 14 BP 1519 EP 1536 DI 10.1177/0021998308337741 PG 18 WC Materials Science, Composites SC Materials Science GA 460JW UT WOS:000267185000003 ER PT J AU Graf, PA Jones, WB Kim, K AF Graf, Peter A. Jones, Wesley B. Kim, Kwiseon TI A note on the virtual crystal approach to alloy optimization SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Electronic structure optimization; Virtual crystal approximation; Simulation optimization ID MOLECULES C1 [Graf, Peter A.; Jones, Wesley B.; Kim, Kwiseon] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Graf, PA (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM peter_graf@nrel.gov FU US DOE-SC-ASCR-Mathematical, Information and Computational Sciences program [DE-AC36-99GO10337] FX We thank A. Zunger for suggesting the VC formulation, and gratefully acknowledge discussions with G. Trimarchi, A. Franceschetti, and M. d'Avezac. This work used computing resources at the NREL Materials and Computational Sciences Center and is supported by the US DOE-SC-ASCR-Mathematical, Information and Computational Sciences program under Lab03-17 Theory Modeling in Nanoscience initiative under Contract No. DE-AC36-99GO10337. NR 8 TC 0 Z9 0 U1 2 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD JUL 1 PY 2009 VL 228 IS 12 BP 4309 EP 4311 DI 10.1016/j.jcp.2009.03.020 PG 3 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 451YI UT WOS:000266506400002 ER PT J AU Gallis, MA Torczynski, JR Rader, DJ Bird, GA AF Gallis, M. A. Torczynski, J. R. Rader, D. J. Bird, G. A. TI Convergence behavior of a new DSMC algorithm SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE DSMC; Sophisticated DSMC; Algorithm; Convergence; Rarefied gas dynamics ID SIMULATION MONTE-CARLO; PARTICLE SIMULATIONS; ERROR AB The convergence rate of a new direct simulation Monte Carlo (DSMC) method, termed "sophisticated DSMC", is investigated for one-dimensional Fourier flow. An argon-like hard-sphere gas at 273.15 K and 266.644 Pa is confined between two parallel, fully accommodating walls I mm apart that have unequal temperatures. The simulations are performed using a one-dimensional implementation of the sophisticated DSMC algorithm. In harmony with previous work, the primary convergence metric studied is the ratio of the DSMC-calculated thermal conductivity to its corresponding infinite-approximation Chapman-Enskog theoretical value. As discretization errors are reduced, the sophisticated DSMC algorithm is shown to approach the theoretical values to high precision. The convergence behavior of sophisticated DSMC is compared to that of original DSMC. The convergence of the new algorithm in a three-dimensional implementation is also characterized. Implementations using transient adaptive sub-cells and virtual sub-cells are compared. The new algorithm is shown to significantly reduce the computational resources required for a DSMC simulation to achieve a particular level of accuracy, thus improving the efficiency of the method by a factor of 2. (C) 2009 Elsevier Inc. All rights reserved. C1 [Gallis, M. A.; Torczynski, J. R.; Rader, D. J.] Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87185 USA. [Bird, G. A.] GAB Consulting Pty Ltd, Sydney, NSW 2000, Australia. RP Gallis, MA (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800-0346, Albuquerque, NM 87185 USA. EM magalli@sandia.gov FU United States Department of Energy [DE-AC04-94AL85000] FX This work was performed at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors would like to thank Dr. M.F. Barone and Dr. E.S. Piekos of Sandia National Laboratories for their critical reviews of the manuscript. NR 16 TC 49 Z9 51 U1 0 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD JUL 1 PY 2009 VL 228 IS 12 BP 4532 EP 4548 DI 10.1016/j.jcp.2009.03.021 PG 17 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 451YI UT WOS:000266506400015 ER PT J AU Babalola, OS Bolotnikov, AE Groza, M Hossain, A Egarievwe, S James, RB Burger, A AF Babalola, O. S. Bolotnikov, A. E. Groza, M. Hossain, A. Egarievwe, S. James, R. B. Burger, A. TI Study of Te inclusions in CdMnTe crystals for nuclear detector applications SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE Defects; Doping; Stresses; Bridgman technique; Cadmium compounds; Semiconducting II-VI materials ID GAMMA-RAY DETECTORS; CD1-XMNXTE; TELLURIDE; DEFECTS; GROWTH; CDTE AB The concentration, size and spatial distribution of Te inclusions in the bulk of CdMnTe crystals mined from two batches of ingots were studied. An isolated planar layer decorated with Te inclusions was identified in CdMnTe crystals from the second ingot. The internal electric field of a CMT crystal was probed by infrared (IR) imaging employing Pockels electro-optic effect. The effect of an isolated plane of Te inclusions on the internal electric-field distribution within the CdMnTe crystal was studied. Space charge accumulation around the plane of Te inclusions was observed, which was found to be higher when the detector was reverse-biased. The effects of the plane of Te inclusions on the electric-field distribution within the CdMnTe crystal, and the quality of CdMnTe crystals for nuclear detector applications are discussed. (C) 2009 Elsevier B.V. All rights reserved. C1 [Babalola, O. S.; Groza, M.; Burger, A.] Fisk Univ, Dept Phys, Nashville, TN 37208 USA. [Babalola, O. S.; Bolotnikov, A. E.; Hossain, A.; Egarievwe, S.; James, R. B.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Babalola, O. S.] Vanderbilt Univ, Nashville, TN USA. RP Babalola, OS (reprint author), Fisk Univ, Dept Phys, Room 305,1000 17th Ave N, Nashville, TN 37208 USA. EM oluseyi.s.babalola@vanderbilt.edu FU NSF/HRD [0420516]; DOE Office of Nonproliferation Research and Development [NA22] FX This work was supported by NSF/HRD Grant no. 0420516 (CREST Center at Fisk University, Nashville, TN), the DOE Office of Nonproliferation Research and Development (NA22). The authors also acknowledge the contributions of Prof. Leonard C. Feldman for helpful discussions. NR 20 TC 25 Z9 29 U1 1 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 J9 J CRYST GROWTH JI J. Cryst. Growth PD JUL 1 PY 2009 VL 311 IS 14 BP 3702 EP 3707 DI 10.1016/j.jcrysgro.2009.04.037 PG 6 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 479IH UT WOS:000268652400029 ER PT J AU Shi, X Salvador, JR Yang, J Wang, H AF Shi, X. Salvador, J. R. Yang, J. Wang, H. TI Thermoelectric Properties of n-Type Multiple-Filled Skutterudites SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article; Proceedings Paper CT 27th International Conference on Thermoelectrics CY AUG 03-07, 2008 CL Univ Oregon, Corvallis, OR SP Int Thermoelect Soc HO Univ Oregon DE Thermoelectric; skutterudite; thermal conductivity; multiple-filling ID TEMPERATURE TRANSPORT-PROPERTIES AB Filled skutterudites are prospective intermediate temperature materials fora thermoelectric pound power generation. CoSb(3)-based n-type filled skutterudites have good electrical transport properties with power factor values over 40 mu W/cm K(2) at elevated temperatures. Filling multiple fillers into the crystallographic voids of skutterudites would help scatter a broad range of lattice phonons, thus resulting in lower lattice thermal conductivity values. We report the thermoelectric properties of n-type multiple-filled skutterudites between 5 K and 800 K. The combination of different fillers inside the voids of the skutterudite structure shows enhanced phonon scattering, and consequently a strong suppression of the lattice thermal conductivity. Very good power factor values are achieved in multiple-filled skutterudite compared with single-element-filled materials. The dimensionless thermoelectric figure of merit for n-type filled skutterudites is improved through multiple-filling in a wide temperature range. C1 [Shi, X.; Salvador, J. R.; Yang, J.] Gen Motors R&D Ctr, Mat & Proc Lab, Warren, MI 48090 USA. [Wang, H.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Shi, X (reprint author), Gen Motors R&D Ctr, Mat & Proc Lab, Warren, MI 48090 USA. EM xun.shi@gm.com RI Yang, Jihui/A-3109-2009; shi, xun/B-4499-2009; Wang, Hsin/A-1942-2013 OI shi, xun/0000-0002-3806-0303; Wang, Hsin/0000-0003-2426-9867 NR 20 TC 38 Z9 39 U1 2 U2 16 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 J9 J ELECTRON MATER JI J. Electron. Mater. PD JUL PY 2009 VL 38 IS 7 BP 930 EP 933 DI 10.1007/s11664-008-0650-x PG 4 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA 466LA UT WOS:000267662500005 ER PT J AU Cui, YJ Salvador, JR Yang, JH Wang, H Amow, G Kleinke, H AF Cui, Yanjie Salvador, James R. Yang, Jihui Wang, Hsin Amow, Gisele Kleinke, Holger TI Thermoelectric Properties of Heavily Doped n-Type SrTiO3 Bulk Materials SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article; Proceedings Paper CT 27th International Conference on Thermoelectrics CY AUG 03-07, 2008 CL Univ Oregon, Corvallis, OR SP Int Thermoelect Soc HO Univ Oregon DE Thermoelectric materials; oxides; electron probe micro analysis; transport properties ID TRANSPORT-PROPERTIES; OXIDE AB Three Ta-doped strontium titanates were prepared as potential candidates for n-type thermoelectric oxides. The purity of the polycrystalline samples of SrTi1-x Ta (x) O-3 (x = 0.05 to 0.14) were characterized by means of powder x-ray diffraction and electron probe micro analysis (EPMA). We present the results of Seebeck coefficient, electrical conductivity, and thermal conductivity measurements performed at high temperatures. C1 [Cui, Yanjie; Kleinke, Holger] Univ Waterloo, Dept Chem, Waterloo, ON N2L 3G1, Canada. [Salvador, James R.; Yang, Jihui] Gen Motors Res & Dev Ctr, Warren, MI USA. [Wang, Hsin] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Amow, Gisele] Def Res & Dev Canada, Air Vehicle Res Sect, Ottawa, ON, Canada. RP Cui, YJ (reprint author), Univ Waterloo, Dept Chem, Waterloo, ON N2L 3G1, Canada. EM kleinke@uwaterloo.ca RI Yang, Jihui/A-3109-2009; Cui, Yanjie/G-9826-2011; Wang, Hsin/A-1942-2013 OI Cui, Yanjie/0000-0001-8114-4089; Wang, Hsin/0000-0003-2426-9867 NR 19 TC 17 Z9 17 U1 2 U2 27 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 J9 J ELECTRON MATER JI J. Electron. Mater. PD JUL PY 2009 VL 38 IS 7 BP 1002 EP 1007 DI 10.1007/s11664-008-0651-9 PG 6 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA 466LA UT WOS:000267662500019 ER PT J AU Nolas, GS Lin, X Martin, J Beekman, M Wang, H AF Nolas, G. S. Lin, X. Martin, J. Beekman, M. Wang, H. TI Open-Structured Materials: Skutterudites and Clathrates SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article; Proceedings Paper CT 27th International Conference on Thermoelectrics CY AUG 03-07, 2008 CL Univ Oregon, Corvallis, OR SP Int Thermoelect Soc HO Univ Oregon DE Thermoelectric; thermal conductivity; electrical properties ID LATTICE THERMAL-CONDUCTIVITY; SI; FIGURE; MERIT; GE AB There are a large number of inorganic compounds with open-framework structures that entrap atoms or molecules within the lattice. Of these, the skutterudites and type I clathrates have gained the greatest attention from the perspective of thermoelectric applications. The crystal structure of these materials can be considered as being open in the sense that they possess voids whereby interstitially placed atoms are bounded loosely, thereby creating localized disorder in an otherwise well-ordered, covalently bonded lattice. The optimum situation occurs if the intrinsic mobility is relatively high due to the well-ordered, periodic structure of the crystal framework while the phonons are scattered by localized disorder. Substantial experimental and theoretical research has been devoted to these two material systems over the past decade. This effort has shown that the physical properties are directly related to their unique crystal structures, as well as the different compositions that can be synthesized in order to modify these physical properties. C1 [Nolas, G. S.; Lin, X.; Martin, J.; Beekman, M.] Univ S Florida, Dept Phys, Tampa, FL 33620 USA. [Wang, H.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Nolas, GS (reprint author), Univ S Florida, Dept Phys, 4202 E Fowler Ave, Tampa, FL 33620 USA. EM gnolas@cas.usf.edu RI Beekman, Matt/I-4470-2014; Wang, Hsin/A-1942-2013 OI Beekman, Matt/0000-0001-9694-2286; Wang, Hsin/0000-0003-2426-9867 NR 26 TC 6 Z9 6 U1 0 U2 9 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 J9 J ELECTRON MATER JI J. Electron. Mater. PD JUL PY 2009 VL 38 IS 7 BP 1052 EP 1055 DI 10.1007/s11664-008-0629-7 PG 4 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA 466LA UT WOS:000267662500028 ER PT J AU Miller, EW Hendricks, TJ Peterson, RB AF Miller, Erik W. Hendricks, Terry J. Peterson, Richard B. TI Modeling Energy Recovery Using Thermoelectric Conversion Integrated with an Organic Rankine Bottoming Cycle SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article; Proceedings Paper CT 27th International Conference on Thermoelectrics CY AUG 03-07, 2008 CL Univ Oregon, Corvallis, OR SP Int Thermoelect Soc HO Univ Oregon DE Waste heat recovery; thermoelectric generator; Rankine cycle AB Engine and industrial waste heat are sources of high-grade thermal energy that can potentially be utilized. This paper describes a model system that employs thermoelectric conversion as a topping cycle integrated with an organic Rankine bottoming cycle. The model has many parameters that define combined system quantities such as overall output power and conversion efficiency. The model can identify the optimal performance points for both the thermoelectric and organic Rankine bottoming cycle. Key analysis results are presented showing the impact of critical design parameters on power output and system performance. C1 [Miller, Erik W.; Peterson, Richard B.] Oregon State Univ, Sch Mech Ind & Mfg Engn, Corvallis, OR 97331 USA. [Hendricks, Terry J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Miller, EW (reprint author), Oregon State Univ, Sch Mech Ind & Mfg Engn, Corvallis, OR 97331 USA. EM erikwmiller@gmail.com NR 14 TC 21 Z9 22 U1 1 U2 16 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 J9 J ELECTRON MATER JI J. Electron. Mater. PD JUL PY 2009 VL 38 IS 7 BP 1206 EP 1213 DI 10.1007/s11664-009-0743-1 PG 8 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA 466LA UT WOS:000267662500057 ER PT J AU Hendricks, TJ Karri, NK AF Hendricks, Terry J. Karri, Naveen K. TI Micro- and Nano-Technology: A Critical Design Key in Advanced Thermoelectric Cooling Systems SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article; Proceedings Paper CT 27th International Conference on Thermoelectrics CY AUG 03-07, 2008 CL Univ Oregon, Corvallis, OR SP Int Thermoelect Soc HO Univ Oregon DE Micro-technology; nano-technology; thermoelectric cooling; design miniaturization; high heat flux; thermoelectric systems; thermoelectric optimization AB Advanced thermoelectric (TE) cooling technologies are now receiving more research attention, to provide cooling in advanced vehicles and residential systems to assist in increasing overall system energy efficiency and reduce the impact of greenhouse gases from leakage by current R-134a systems. This work explores the systems-related impacts, barriers, and challenges of using micro-technology solutions integrated with advances in nano-scale thermoelectric materials in advanced TE cooling systems. Integrated system-level analyses that simultaneously account for thermal energy transport into and dissipation out of the TE device, environmental effects, temperature- dependent TE and thermo-physical properties, thermal losses, and thermal and electrical contact resistances are presented, to establish accurate optimum system designs using both p-type nanocrystalline-powder-based (NPB) Bi (x) Sb(2-x) Te(3)/n-type Bi(2)Te(3)-Bi(2)Se(3) TE systems and conventional p-type Bi(2)Te(3)-Sb(2)Te(3)/n-type Bi(2)Te(3)-Bi(2)Se(3) TE systems. This work established the design trends and identified optimum design regimes and metrics for these types of systems that will minimize system mass, volume, and cost to maximize their commercialization potential in vehicular and residential applications. The relationships between important design metrics, such as coefficient of performance, specific cooling capacity, and cooling heat flux requirements, upper limits, and critical differences in these metrics in p-type NPB Bi (x) Sb(2-x) Te(3)/ n-type Bi(2)Te(3)-Bi(2)Se(3) TE systems and p-type Bi(2)Te(3)-Sb(2)Te(3)/n-type Bi(2)Te(3)-Bi(2)Se(3) TE systems, are explored and quantified. Finally, the work discusses the critical role that micro-technologies and nano-technologies can play in enabling miniature TE cooling systems in advanced vehicle and residential applications and gives some key relevant examples. C1 [Hendricks, Terry J.] Pacific NW Natl Lab, Hydrocarbon Proc Grp, Energy & Environm Directorate, Richland, WA 99352 USA. [Karri, Naveen K.] Pacific NW Natl Lab, Radiol & Nucl Sci & Technol Directorate, Richland, WA 99352 USA. RP Hendricks, TJ (reprint author), Pacific NW Natl Lab, Hydrocarbon Proc Grp, Energy & Environm Directorate, 902 Battelle Blvd, Richland, WA 99352 USA. EM terry.hendricks@pnl.gov NR 12 TC 6 Z9 7 U1 1 U2 14 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 J9 J ELECTRON MATER JI J. Electron. Mater. PD JUL PY 2009 VL 38 IS 7 BP 1257 EP 1267 DI 10.1007/s11664-009-0709-3 PG 11 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA 466LA UT WOS:000267662500066 ER PT J AU Li, Q Lin, ZW Zhou, J AF Li, Qiang Lin, Zhiwei Zhou, Juan TI Thermoelectric Materials with Potential High Power Factors for Electricity Generation SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article; Proceedings Paper CT 27th International Conference on Thermoelectrics CY AUG 03-07, 2008 CL Univ Oregon, Corvallis, OR SP Int Thermoelect Soc HO Univ Oregon DE Thermoelectrics; filled skutterudite; cobaltate; melt spinning ID CRYSTALS; DEVICES; MERIT AB The thermoelectric figure of merit ZT of materials limits the performance of a thermoelectric power generator. To date, the main gains from the worldwide effort in either engineered bulk materials or low-dimensional systems have been mostly based on the strategies of reducing the thermal conductivity. We explore several bulk thermoelectric materials that have respectable mecha- nical strength and chemical stability at elevated temperatures for potential power generation. Our strategy is to first explore the avenue of significantly increasing the power factor (PF), then the avenue of lowering thermal conductivity, perhaps by nanocompositing. We examine the layered cobaltates with sharp resonant peaks in the electronic density of states near the Fermi energy level due to strong electron correlation. We suggest that electron correlation may be used as a new tuning parameter to significantly increase the PF. We also report that a substantial increase (over 30%) in PF can be achieved in filled skutterudites (such as p-type CeFe4Sb12) through nonequilibrium synthesis by rapid conversion of the amorphous materials made by the melt spinning to single-phase crystalline materials under pressure. This process, in conjunction with the rattling to lower the lattice thermal conductivity, could further enhance the ZT values of the filled skutterudites. C1 [Li, Qiang; Lin, Zhiwei; Zhou, Juan] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Li, Q (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM qiangli@bnl.gov NR 20 TC 17 Z9 18 U1 2 U2 14 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 EI 1543-186X J9 J ELECTRON MATER JI J. Electron. Mater. PD JUL PY 2009 VL 38 IS 7 BP 1268 EP 1272 DI 10.1007/s11664-008-0628-8 PG 5 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA 466LA UT WOS:000267662500067 ER PT J AU Wang, X Ezzahri, Y Bian, Z Zebarjadi, M Shakouri, A Klem, J Patrizi, G Young, EW Mukherjee, SD AF Wang, X. Ezzahri, Y. Bian, Z. Zebarjadi, M. Shakouri, A. Klem, J. Patrizi, G. Young, E. W. Mukherjee, S. D. TI Characterization of Single Barrier Microrefrigerators at Cryogenic Temperatures SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article; Proceedings Paper CT 27th International Conference on Thermoelectrics CY AUG 03-07, 2008 CL Univ Oregon, Corvallis, OR SP Int Thermoelect Soc HO Univ Oregon DE Thermoelectric; thermionic; InAlGaAs barrier; cooling; thermoreflectance imaging ID HETEROSTRUCTURES; COOLERS AB The experimental characterization of single barrier heterostructure thermionic cooling devices at cryogenic temperatures is reported. The device studied was a cylindrical InGaAs microrefrigerator, in which the active layer was a 1 mu m thick In(0.527)Al(0.218)Ga(0.255)As heterostructure barrier with n-type doping concentration of 6.68 x 10(16) cm(-3) and an In(0.53)Ga(0.47)As emitter/collector of 5 x 10(18) cm(-3) n-doping. A full field thermoreflectance imaging technique was used to measure the distribution of temperature change on the device's top surface when different current excitation values were applied. By reversing the current direction, we studied the device's behavior in both cooling and heating regimes. At an ambient temperature of 100 K, a maximum cooling of 0.6 K was measured. This value was approximately one-third of the measured maximum cooling value at room temperature (1.8 K). The paper describes the device's structure and the first reported thermal imaging at cryogenic temperatures using the thermoreflectance technique. C1 [Wang, X.; Ezzahri, Y.; Bian, Z.; Zebarjadi, M.; Shakouri, A.] Univ Calif Santa Cruz, Dept Elect Engn, Santa Cruz, CA 95064 USA. [Klem, J.; Patrizi, G.; Young, E. W.; Mukherjee, S. D.] Microsyst Sci Technol & Components Ctr, Sandia Natl Labs, Albuquerque, NM USA. RP Wang, X (reprint author), Univ Calif Santa Cruz, Dept Elect Engn, Santa Cruz, CA 95064 USA. EM wangxi@soe.ucsc.edu OI EZZAHRI, YOUNES/0000-0001-7036-4377 NR 10 TC 1 Z9 1 U1 0 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 J9 J ELECTRON MATER JI J. Electron. Mater. PD JUL PY 2009 VL 38 IS 7 BP 1309 EP 1314 DI 10.1007/s11664-009-0702-x PG 6 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA 466LA UT WOS:000267662500074 ER PT J AU Zschack, P Heideman, C Mortensen, C Nguyen, N Smeller, M Lin, QY Johnson, DC AF Zschack, Paul Heideman, Colby Mortensen, Clay Nguyen, Ngoc Smeller, Mary Lin, Qiyin Johnson, David C. TI X-Ray Characterization of Low-Thermal-Conductivity Thin-Film Materials SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article; Proceedings Paper CT 27th International Conference on Thermoelectrics CY AUG 03-07, 2008 CL Univ Oregon, Corvallis, OR SP Int Thermoelect Soc HO Univ Oregon DE Thin films; thermoelectric; x-ray diffraction; x-ray imaging ID THERMOELECTRIC-MATERIALS; DIFFRACTION; PERFORMANCE; MICROSCOPY; REACTANTS; BEAMLINE; DEVICES; DESIGN; MERIT; FIELD AB X-ray diffraction and imaging techniques at the Advanced Photon Source (APS) have been used to characterize PbSe/MoSe(2) and PbSe/WSe(2) thin films and multilayers. Diffraction measurements with area detectors were made to demonstrate the nanoscale coherence size of the layers both in-plane and perpendicular to the surface. Higher-resolution diffraction measurements that exploit the tunability of synchrotron radiation for anomalous scattering contrast have been used to accurately determine layer spacings in these multilayers. We also discuss opportunities in other new and emerging x-ray techniques, such as time-resolved studies during growth or processing, and present x-ray imaging capabilities that can be used to investigate thermoelectric thin-film materials. C1 [Zschack, Paul] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Heideman, Colby; Mortensen, Clay; Nguyen, Ngoc; Smeller, Mary; Johnson, David C.] Univ Oregon, Dept Chem, Eugene, OR 97403 USA. [Lin, Qiyin] Univ Oregon, Dept Phys, Eugene, OR 97403 USA. RP Zschack, P (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM zschack@anl.gov NR 17 TC 4 Z9 4 U1 2 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 J9 J ELECTRON MATER JI J. Electron. Mater. PD JUL PY 2009 VL 38 IS 7 BP 1402 EP 1406 DI 10.1007/s11664-009-0679-5 PG 5 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA 466LA UT WOS:000267662500091 ER PT J AU Thompson, AJ Sharp, JW Rawn, CJ AF Thompson, A. J. Sharp, J. W. Rawn, C. J. TI Microstructure and Crystal Structure in TAGS Compositions SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article; Proceedings Paper CT 27th International Conference on Thermoelectrics CY AUG 03-07, 2008 CL Univ Oregon, Corvallis, OR SP Int Thermoelect Soc HO Univ Oregon DE TAGS; thermoelectric; phase transition; silver antimony telluride; germanium telluride AB GeTe, a small bandgap semiconductor that has native p-type defects due to Ge vacancies, is an important constituent in the thermoelectric material known as TAGS. TAGS is an acronym for alloys of GeTe with AgSbTe(2), and compositions are normally designated as TAGS-x, where x is the fraction of GeTe. TAGS-85 is the most important with regard to applications, and there is also commercial interest in TAGS-80. The crystal structure of GeTe(1+delta) has a composition-dependent phase transformation at a temperature ranging from 430A degrees C (delta = 0) to similar to 400A degrees C (delta = 0.02). The high-temperature form is cubic. The low-temperature form is rhombohedral for delta < 0.01, as is the case for good thermoelectric performance. Addition of AgSbTe(2) shifts the phase transformation to lower temperatures, and one of the goals of this work is a systematic study of the dependence of transformation temperature on the parameter x. We present results on phase transformations and associated instabilities in TAGS compositions in the range of 70 at.% to 85 at.% GeTe. C1 [Thompson, A. J.; Sharp, J. W.] Marlow Ind Inc, Dallas, TX 75238 USA. [Rawn, C. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Thompson, AJ (reprint author), Marlow Ind Inc, 10451 Vista Pk Rd, Dallas, TX 75238 USA. EM athompson@marlow.com NR 5 TC 7 Z9 7 U1 1 U2 42 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 J9 J ELECTRON MATER JI J. Electron. Mater. PD JUL PY 2009 VL 38 IS 7 BP 1407 EP 1411 DI 10.1007/s11664-009-0817-0 PG 5 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA 466LA UT WOS:000267662500092 ER PT J AU Lema, SC Dickey, JT Schultz, IR Swanson, P AF Lema, Sean C. Dickey, Jon T. Schultz, Irvin R. Swanson, Penny TI Thyroid hormone regulation of mRNAs encoding thyrotropin beta-subunit, glycoprotein alpha-subunit, and thyroid hormone receptors alpha and beta in brain, pituitary gland, liver, and gonads of an adult teleost, Pimephales promelas SO JOURNAL OF ENDOCRINOLOGY LA English DT Article ID ELEMENT-BINDING PROTEIN; AIR-BREATHING CATFISH; FATHEAD MINNOW; MOLECULAR-CLONING; XENOPUS-LAEVIS; NEONATAL-HYPOTHYROIDISM; CLARIAS-GARIEPINUS; FISH DEVELOPMENT; GENE-EXPRESSION; IODOTHYRONINE DEIODINASES AB Thyroid hormones (THs) regulate growth, morphological development, and migratory behaviors in teleost fish, yet little is known about the transcriptional dynamics of gene targets for THs in these taxa. Here, we characterized TH regulation of mRNAs encoding thyrotropin subunits and thyroid hormone receptors (TRs) in an adult teleost fish model, the fathead minnow (Pimephales promelas). Breeding pairs of adult minnows were fed diets containing 3,5, 3'-triiodo-L-thyronine (T-3) or the goitrogen methimazole for 10 days. In males and females, dietary intake of exogenous T-3 elevated circulating total T-3, while methimazole depressed plasma levels of total thyroxine (T-4). In both sexes, this methimazole-induced reduction in T-4 led to elevated mRNA abundance for thyrotropin beta-subunit (tsh beta) in the pituitary gland. Fish treated with T-3 had elevated transcript levels for TR isoforms alpha and beta (tr alpha and tr beta) in the liver and brain, but reduced levels of brain mRNA for the immediate-early gene basic transcription factor-binding protein (bteb). In the ovary and testis, exogenous T-3 elevated gene transcripts for tsh beta, glycoprotein hormone alpha-subunit (gph alpha), and tr beta, while not affecting tr alpha levels. Taken together, these results demonstrate negative feedback of T-4 on pituitary tsh beta, identify tr alpha and tr beta as T-3-autoinduced genes in the brain and liver, and provide new evidence that tsh beta, gph alpha, and tr beta are THs regulated in the gonad of teleosts. Adult teleost models are increasingly used to evaluate the endocrine-disrupting effects of chemical contaminants, and our results provide a systemic assessment of TH-responsive genes during that life stage. Journal of Endocrinology (2009) 202, 43-54 C1 [Lema, Sean C.; Swanson, Penny] NOAA Fisheries, Physiol Program, NW Fisheries Sci Ctr, Seattle, WA 98112 USA. [Dickey, Jon T.] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA. [Schultz, Irvin R.] Marine Sci Lab, Pacific NW Div, Sequim, WA 98382 USA. RP Lema, SC (reprint author), Univ N Carolina, Dept Biol & Marine Biol, Ctr Marine Sci, 601 S Coll Rd, Wilmington, NC 28403 USA. EM lemas@uncw.edu FU West Coast Center for Oceans and Human Health (WCCOHH); NOAA Oceans and Human Health Initiative FX This publication was supported by the West Coast Center for Oceans and Human Health (WCCOHH) as part of the NOAA Oceans and Human Health Initiative. The WCCOHH is part of the National Marine Fisheries Service's Northwest Fisheries Science Center, Seattle, USA, NR 73 TC 37 Z9 38 U1 1 U2 28 PU BIOSCIENTIFICA LTD PI BRISTOL PA EURO HOUSE, 22 APEX COURT WOODLANDS, BRADLEY STOKE, BRISTOL BS32 4JT, ENGLAND SN 0022-0795 EI 1479-6805 J9 J ENDOCRINOL JI J. Endocrinol. PD JUL PY 2009 VL 202 IS 1 BP 43 EP 54 DI 10.1677/JOE-08-0472 PG 12 WC Endocrinology & Metabolism SC Endocrinology & Metabolism GA 530YS UT WOS:000272629500006 PM 19380459 ER PT J AU Harvego, EA McKellar, MG O'Brien, JE AF Harvego, E. A. McKellar, M. G. O'Brien, J. E. TI System Analysis of Nuclear-Assisted Syngas Production From Coal SO JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME LA English DT Article; Proceedings Paper CT 4th International Topical Meeting on High Temperature Reactor Technology CY SEP 28-OCT 01, 2008 CL Washington, DC DE coal; fission reactors; hydrogen economy AB A system analysis has been performed to assess the efficiency and carbon utilization of a nuclear-assisted coal gasification process. The nuclear reactor is a high-temperature helium-cooled reactor that is used primarily to provide power for hydrogen production via high-temperature electrolysis. The supplemental hydrogen is mixed with the outlet stream from an oxygen-blown coal gasifier to produce a hydrogen-rich gas mixture, allowing most of the carbon dioxide to be converted into carbon monoxide, with enough excess hydrogen to produce a syngas product stream with a hydrogen/carbon monoxide molar ratio of about 2:1. Oxygen for the gasifier is also provided by the high-temperature electrolysis process. The results of the analysis predict 90.5% carbon utilization with a syngas production efficiency (defined as the ratio of the heating value of the produced syngas to the sum of the heating value of the coal plus the high-temperature reactor heat input) of 64.4% at a gasifier temperature of 1866 K for the high-moisture-content lignite coal considered. Usage of lower moisture coals such as bituminous can yield carbon utilization approaching 100% and 70% syngas production efficiency. C1 [Harvego, E. A.; McKellar, M. G.; O'Brien, J. E.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Harvego, EA (reprint author), Idaho Natl Lab, 2525 N Fremont Ave,MS 3885, Idaho Falls, ID 83415 USA. NR 10 TC 0 Z9 0 U1 0 U2 2 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0742-4795 J9 J ENG GAS TURB POWER JI J. Eng. Gas. Turbines Power-Trans. ASME PD JUL PY 2009 VL 131 IS 4 AR 042901 DI 10.1115/1.3095805 PG 5 WC Engineering, Mechanical SC Engineering GA 434OZ UT WOS:000265285300013 ER PT J AU Sabau, AS Wright, IG AF Sabau, Adrian S. Wright, Ian G. TI The Effects of Changing Fuels on Hot Gas Path Conditions in Syngas Turbines SO JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME LA English DT Article; Proceedings Paper CT 52nd ASME Turbo Expo 2007 CY MAY 14-17, 2007 CL Montreal, CANADA SP Amer Soc Mech Engineers, Int Gas Turbine Inst DE blades; combined cycle power stations; combustion; compressors; coolants; cooling; gas turbines; thermodynamics ID BLADE AB Gas turbines in integrated gasification combined cycle power plants burn a fuel gas (syngas (SG)) in which the proportions of hydrocarbons, H(2), CO, water vapor, and minor impurity levels may differ significantly from those in natural gas (NG). Such differences can yield changes in the temperature, pressure, and corrosive species that are experienced by critical components in the hot gas path, with important implications for the design, operation, and reliability of the turbine. A new data structure and computational methodology is presented for the numerical simulation of a turbine thermodynamic cycle, with emphasis on the hot gas path components. The approach used allows efficient handling of turbine components and variable constraints due to fuel changes. Examples are presented for a turbine with four stages, in which the vanes and blades are cooled in an open circuit using air from the appropriate compressor stages. For an imposed maximum metal temperature, values were calculated for the fuel, air, and coolant flow rates and through-wall temperature gradients for cases where the turbine was fired with NG or SG. A NG case conducted to assess the effect of coolant pressure matching between the compressor extraction points and corresponding turbine injection points indicated that this is a feature that must be considered for high combustion temperatures. The first series of SG simulations was conducted using the same inlet mass flow and pressure ratios as those for the NG case. The results showed that higher coolant flow rates and a larger number of cooled turbine rows were needed for the SG case to comply with the imposed temperature constraints. Thus, for that case, the turbine size would be different for SG than for NG. A second series of simulations examined scenarios for maintaining the original turbine configuration (i.e., geometry, diameters, blade heights, angles, and cooling circuit characteristics) used for the SG simulations. In these, the inlet mass flow was varied while keeping constant the pressure ratios and the amount of hot gas passing the first vane of the turbine. The effects of turbine matching between the NG and SG cases were increases-for the SG case of approximately 7% and 13% for total cooling flows and cooling flows for the first-stage vane, respectively. In particular, for the SG case, the vanes in the last stage of the turbine experienced inner wall temperatures that approached the maximum allowable limit. C1 [Sabau, Adrian S.; Wright, Ian G.] Oak Ridge Natl Lab, Mat & Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Sabau, AS (reprint author), Oak Ridge Natl Lab, Mat & Sci & Technol Div, Oak Ridge, TN 37831 USA. RI Sabau, Adrian/B-9571-2008 OI Sabau, Adrian/0000-0003-3088-6474 NR 28 TC 2 Z9 2 U1 0 U2 2 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0742-4795 J9 J ENG GAS TURB POWER JI J. Eng. Gas. Turbines Power-Trans. ASME PD JUL PY 2009 VL 131 IS 4 AR 044501 DI 10.1115/1.3028566 PG 7 WC Engineering, Mechanical SC Engineering GA 434OZ UT WOS:000265285300019 ER PT J AU Pagliaro, P Prime, MB Clausen, B Lovato, ML Zuccarello, B AF Pagliaro, Pierluigi Prime, Michael B. Clausen, Bjorn Lovato, Manuel L. Zuccarello, Bernardo TI Known Residual Stress Specimens Using Opposed Indentation SO JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME LA English DT Article DE residual stress; contour method; neutron diffraction ID ALLOY; DIFFRACTION; ALUMINUM; TEXTURE; CONTOUR AB In order to test new theories for residual stress measurement or to test the effects of residual stress on fatigue, fracture, and stress corrosion cracking, a known stress test specimen was designed and then fabricated, modeled, and experimentally validated. To provide a unique biaxial stress state, a 60 mm diameter 10 mm thick disk of 316L stainless steel was plastically compressed through the thickness with an opposing 15 mm diameter hard steel indenters in the center of the disk. For validation, the stresses in the specimen were first mapped using time-of-flight neutron diffraction and Rietveld full pattern analysis. Next, the hoop stresses were mapped on a cross section of two disks using the contour method. The contour results were very repeatable and agreed well with the neutron results. The indentation process was modeled using the finite element method. Because of a significant Bauschinger effect, accurate modeling required testing the cyclic behavior of the steel and then modeling it using a Chaboche-type combined hardening law. The model results agreed very well with the measurements. The duplicate contour measurements demonstrated stress repeatability better than 0.01% of the elastic modulus and allowed discussion of implications of measurements of parts with complicated geometries. [DOI: 10.1115/1.3120386] C1 [Pagliaro, Pierluigi; Zuccarello, Bernardo] Univ Palermo, Dipartimento Meccan, I-90128 Palermo, Italy. [Prime, Michael B.; Clausen, Bjorn; Lovato, Manuel L.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Pagliaro, P (reprint author), Univ Palermo, Dipartimento Meccan, I-90128 Palermo, Italy. EM pagliaro@dima.unipa.it; prime@lanl.gov RI Pagliaro, Pierluigi/H-1644-2011; Clausen, Bjorn/B-3618-2015; OI Clausen, Bjorn/0000-0003-3906-846X; Prime, Michael/0000-0002-4098-5620 FU U.S. Department of Energy [DE-AC52-06NA25396] FX Much of this work was performed at the Los Alamos National Laboratory, operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. This work has benefited from the use of the Lujan Neutron Scattering Center at Los Alamos Neutron Science Center, which is funded by the Department of Energy's Office of Basic Energy Sciences. Mr. Pagliaro's work was sponsored by a fellowship from the Universit degli Studi di Palermo. The authors would like to thank Professor Michael Hill at U. C. Davis for the scanning of the surface contours. NR 25 TC 10 Z9 10 U1 0 U2 6 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0094-4289 EI 1528-8889 J9 J ENG MATER-T ASME JI J. Eng. Mater. Technol.-Trans. ASME PD JUL PY 2009 VL 131 IS 3 AR 031002 DI 10.1115/1.3120386 PG 10 WC Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 454FG UT WOS:000266667200002 ER PT J AU Leakey, ADB Ainsworth, EA Bernacchi, CJ Rogers, A Long, SP Ort, DR AF Leakey, Andrew D. B. Ainsworth, Elizabeth A. Bernacchi, Carl J. Rogers, Alistair Long, Stephen P. Ort, Donald R. TI Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE SO JOURNAL OF EXPERIMENTAL BOTANY LA English DT Article; Proceedings Paper CT Conference on the Effects of Climate Change on Plants CY NOV 12-13, 2008 CL Rothamsted Res, Harpenden, ENGLAND SP Assoc Appl Biologists HO Rothamsted Res DE Climate change; elevated CO2; Free-Air Carbon dioxide Enrichment (FACE); Rubisco ID SOURCE-SINK RELATIONS; DIOXIDE ENRICHMENT FACILITY; AMARANTHUS-RETROFLEXUS L; AFFECT LEAF RESPIRATION; RISING ATMOSPHERIC CO2; CHENOPODIUM-ALBUM L; LONG-TERM EXPOSURE; OPEN-AIR ELEVATION; STOMATAL CONDUCTANCE; USE EFFICIENCY AB Plant responses to the projected future levels of CO2 were first characterized in short-term experiments lasting days to weeks. However, longer term acclimation responses to elevated CO2 were subsequently discovered to be very important in determining plant and ecosystem function. Free-Air CO2 Enrichment (FACE) experiments are the culmination of efforts to assess the impact of elevated CO2 on plants over multiple seasons and, in the case of crops, over their entire lifetime. FACE has been used to expose vegetation to elevated concentrations of atmospheric CO2 under completely open-air conditions for nearly two decades. This review describes some of the lessons learned from the long-term investment in these experiments. First, elevated CO2 stimulates photosynthetic carbon gain and net primary production over the long term despite down-regulation of Rubisco activity. Second, elevated CO2 improves nitrogen use efficiency and, third, decreases water use at both the leaf and canopy scale. Fourth, elevated CO2 stimulates dark respiration via a transcriptional reprogramming of metabolism. Fifth, elevated CO2 does not directly stimulate C-4 photosynthesis, but can indirectly stimulate carbon gain in times and places of drought. Finally, the stimulation of yield by elevated CO2 in crop species is much smaller than expected. While many of these lessons have been most clearly demonstrated in crop systems, all of the lessons have important implications for natural systems. C1 [Ainsworth, Elizabeth A.; Bernacchi, Carl J.; Ort, Donald R.] USDA ARS, Urbana, IL 61801 USA. [Leakey, Andrew D. B.; Ainsworth, Elizabeth A.; Bernacchi, Carl J.; Long, Stephen P.; Ort, Donald R.] Univ Illinois, Inst Genom Biol 1406, Urbana, IL 61801 USA. [Leakey, Andrew D. B.; Ainsworth, Elizabeth A.; Bernacchi, Carl J.; Long, Stephen P.; Ort, Donald R.] Univ Illinois, Dept Plant Biol, Urbana, IL 61801 USA. [Rogers, Alistair] Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. [Rogers, Alistair; Long, Stephen P.; Ort, Donald R.] Univ Illinois, Dept Crop Sci, Urbana, IL 61801 USA. RP Ort, DR (reprint author), USDA ARS, Urbana, IL 61801 USA. EM d-ort@uiuc.edu RI Rogers, Alistair/E-1177-2011; Long, Stephen/A-2488-2008; Leakey, Andrew/Q-9889-2016; OI Rogers, Alistair/0000-0001-9262-7430; Long, Stephen/0000-0002-8501-7164; Leakey, Andrew/0000-0001-6251-024X; Bernacchi, Carl/0000-0002-2397-425X NR 165 TC 466 Z9 497 U1 46 U2 379 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0022-0957 EI 1460-2431 J9 J EXP BOT JI J. Exp. Bot. PD JUL PY 2009 VL 60 IS 10 BP 2859 EP 2876 DI 10.1093/jxb/erp096 PG 18 WC Plant Sciences SC Plant Sciences GA 469HZ UT WOS:000267888400009 PM 19401412 ER PT J AU Chatre, L Wattelet-Boyer, V Melser, S Maneta-Peyret, L Brandizzi, F Moreau, P AF Chatre, Laurent Wattelet-Boyer, Valerie Melser, Su Maneta-Peyret, Lilly Brandizzi, Federica Moreau, Patrick TI A novel di-acidic motif facilitates ER export of the syntaxin SYP31 SO JOURNAL OF EXPERIMENTAL BOTANY LA English DT Article DE Di-acidic motif; ER export; ER-Golgi interface; SNARE; syntaxin ID PLANT ENDOPLASMIC-RETICULUM; SECRETORY PATHWAY; GOLGI-APPARATUS; MEMBRANE-PROTEINS; TRANSPORT VESICLES; SNARE PROTEINS; COPII COAT; DOMAIN; CELLS; SIGNAL AB It is generally accepted that ER protein export is largely influenced by the transmembrane domain (TMD). The situation is unclear for membrane-anchored proteins such as SNAREs, which are anchored to the membrane by their TMD at the C-terminus. For example, in plants, Sec22 and SYP31 (a yeast Sed5 homologue) have a 17 aa TMD but different locations (ER/Golgi and Golgi), indicating that TMD length alone is not sufficient to explain their targeting. To establish the identity of factors that influence SNARE targeting, mutagenesis and live cell imaging experiments were performed on SYP31. It was found that deletion of the entire N-terminus domain of SYP31 blocked the protein in the ER. Several deletion mutants of different parts of this N-terminus domain indicated that a region between the SNARE helices Hb and Hc is required for Golgi targeting. In this region, replacement of the aa sequence MELAD by GAGAG or MALAG retained the protein in the ER, suggesting that MELAD may function as a di-acidic ER export motif EXXD. This suggestion was further verified by replacing the established di-acidic ER export motif DLE of a type II Golgi protein AtCASP and a membrane-anchored type I chimaera, TMcCCASP, by MELAD or GAGAG. The MELAD motif allowed the proteins to reach the Golgi, whereas the motif GAGAG was found to be insufficient to facilitate ER protein export. Our analyses indicate that we have identified a novel and transplantable di-acidic motif that facilitates ER export of SYP31 and may function for type I and type II proteins in plants. C1 [Chatre, Laurent; Wattelet-Boyer, Valerie; Melser, Su; Maneta-Peyret, Lilly; Moreau, Patrick] Univ Bordeaux 2, Membrane Biogenesis Lab, CNRS, UMR 5200, F-33076 Bordeaux, France. [Chatre, Laurent; Brandizzi, Federica] Univ Saskatchewan, Dept Biol, Saskatoon, SK S7N 0W0, Canada. [Brandizzi, Federica] Michigan State Univ, DOE Plant Res Lab, E Lansing, MI 48824 USA. [Moreau, Patrick] INRA, Imaging Platform IFR 103, Bordeaux, France. RP Moreau, P (reprint author), Univ Bordeaux 2, Membrane Biogenesis Lab, CNRS, UMR 5200, 146 Rue Leo Saignat, F-33076 Bordeaux, France. EM Patrick.Moreau@biomemb.u-bordeaux2.fr RI Melser, Su /I-3411-2012 FU CNRS; Victor Segalen University of Bordeaux 2; 'Conseil Regional d'Aquitaine'; NSERC Discovery and the Chemical Sciences; US Department of Energy [DE-FG0291ER20021]; 'Agence Nationale de la Recherche' [ANR BLAN071_182875] FX This work was supported by the CNRS, the Victor Segalen University of Bordeaux 2, and the 'Conseil Regional d'Aquitaine' (PM), and by an NSERC Discovery and the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy (award number DE-FG0291ER20021) (FB). We thank people of the imaging platform of the IFR 103, INRA-Bordeaux, for confocal microscope facilities. L Chatre was the recipient of a Government of Canada award CIEC-ICCS in FB's laboratory. S Melser was the recipient of a PhD fellowship from the 'Agence Nationale de la Recherche' ANR BLAN071_182875) in PM's laboratory. NR 45 TC 10 Z9 11 U1 1 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0022-0957 J9 J EXP BOT JI J. Exp. Bot. PD JUL PY 2009 VL 60 IS 11 BP 3157 EP 3165 DI 10.1093/jxb/erp155 PG 9 WC Plant Sciences SC Plant Sciences GA 478KX UT WOS:000268588300019 PM 19516076 ER PT J AU Huxley, HE Reconditi, M Irving, T AF Huxley, Hugh E. Reconditi, Massimo Irving, Thomas TI Configuration of Myosin-binding Protein C in Skeletal Muscle. SO JOURNAL OF GENERAL PHYSIOLOGY LA English DT Meeting Abstract CT 63rd Annual Meeting of the Society-of-General-Physiologists CY SEP 09-13, 2009 CL Marine Biol Lab, Woods Hole, MA SP Soc Gen Physiol HO Marine Biol Lab C1 [Huxley, Hugh E.] Brandeis Univ, Rosenstiel Ctr, Waltham, MA 02453 USA. [Reconditi, Massimo] Univ Florence, Dept Physiol, I-50019 Sesto Fiorentino, Italy. [Irving, Thomas] Argonne Natl Lab, APS, IIT Chicago, Argonne, IL 60439 USA. [Irving, Thomas] Argonne Natl Lab, APS, BioCAT, Argonne, IL 60439 USA. NR 0 TC 0 Z9 0 U1 0 U2 2 PU ROCKEFELLER UNIV PRESS PI NEW YORK PA 1114 FIRST AVE, 4TH FL, NEW YORK, NY 10021 USA SN 0022-1295 J9 J GEN PHYSIOL JI J. Gen. Physiol. PD JUL PY 2009 VL 134 IS 1 MA 10 BP 4A EP 4A PG 1 WC Physiology SC Physiology GA 463OS UT WOS:000267442100018 ER PT J AU Gimon, EG Larsen, F Simon, J AF Gimon, Eric G. Larsen, Finn Simon, Joan TI Constituent model of extremal non-BPS black holes SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Black Holes in String Theory; D-branes ID N=2 SUPERGRAVITY; ATTRACTORS; BRANES; ANGLES; SUPERSYMMETRY; TRIALITY; MODULI AB We interpret extremal non-BPS black holes in four dimensions as threshold bound states of four 1/2-BPS constituents. We verify the no-force condition for each of the primitive constituents in the probe approximation. Our computations are for a seed solution with (D0) over bar - D4 charges and equal B-fields, but symmetries extend the result to any U-dual frame. We make the constituent model for the D0 - D6 system explicit, and also discuss a duality frame where the constituents are D3 branes at angles. We demonstrate stability of the constituent model in the weak coupling description of the constituent D-branes. We discuss the relation between the BPS and non-BPS branches of configuration space. C1 [Gimon, Eric G.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Gimon, Eric G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. [Larsen, Finn] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Larsen, Finn] CERN, Div Theory, CH-1211 Geneva 23, Switzerland. [Simon, Joan] Sch Math, Edinburgh EH9 3JZ, Midlothian, Scotland. [Simon, Joan] Maxwell Inst Math Sci, Edinburgh EH9 3JZ, Midlothian, Scotland. RP Gimon, EG (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM eggimon@lbl.gov; larsenf@umich.edu; J.Simon@ed.ac.uk FU US DOE [DE-AC03-76SF00098, DE-FG02-95ER40899]; Berkeley Center for Theoretical Physics; Engineering and Physical Sciences Research Council [EP/G007985/1] FX We thank S. Ferrara, R. Myers, and M. Shigemori for discussions. JS would like to thank the University of California at Berkeley for hospitality during part of this work. The work of EG is supported in part by the US DOE under contract No. DE-AC03-76SF00098 and the Berkeley Center for Theoretical Physics. The work of FL is supported by DoE under grant DE-FG02-95ER40899. The work of JS was partially supported by the Engineering and Physical Sciences Research Council [grant number EP/G007985/1]. NR 38 TC 20 Z9 20 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD JUL PY 2009 IS 7 AR 052 DI 10.1088/1126-6708/2009/07/052 PG 28 WC Physics, Particles & Fields SC Physics GA 499KV UT WOS:000270219900052 ER PT J AU Horowitz, G Lawrence, A Silverstein, E AF Horowitz, Gary Lawrence, Albion Silverstein, Eva TI Insightful D-branes SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Black Holes in String Theory; AdS-CFT Correspondence; Black Holes; Spacetime Singularities AB We study a simple model of a black hole in AdS and obtain a holographic description of the region inside the horizon. A key role is played by the dynamics of the scalar fields in the dual gauge theory. This leads to a proposal for a dual description of D-branes falling through the horizon of any AdS black hole. The proposal uses a field-dependent time reparameterization in the field theory. We relate this reparametrization to various gauge invariances of the theory. Finally, we speculate on information loss and the black hole singularity in this context. C1 [Horowitz, Gary] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Lawrence, Albion] Brandeis Univ, Brandeis Theory Grp, Waltham, MA 02454 USA. [Silverstein, Eva] Stanford Univ, SLAC, Stanford, CA 94305 USA. [Silverstein, Eva] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Lawrence, Albion; Silverstein, Eva] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. RP Horowitz, G (reprint author), Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. EM gary@physics.ucsb.edu; albion@brandeis.edu; evas@stanford.edu OI Lawrence, Albion/0000-0003-4116-045X FU DOE [DE-FG02-92ER40706, DE-AC03-76SF00515]; NSF [PHY-0244728, PHY05-51164, PHY-0555669] FX We are grateful to B. Freivogel, M. Headrick, M. Kleban, J. Maldacena, R. Myers, H. Schnitzer, A. Sever, S. Shenker and S. Trivedi for helpful discussions. Part of this work was done while A. L. and E. S. were attending the workshop "Supersymmetry breaking and its mediation in field theory and string theory" at the Aspen Center for Physics. This work was completed while A. L. and E. S. were attending the "Fundamental Aspects of Superstring Theory" workshop at the Kavli Institute for Theoretical Physics at UC Santa Barbara. E. S. is very grateful to the KITP and the Department of Physics at UCSB for hospitality during several phases of this project. G. H. thanks the Department of Physics at Stanford University for hospitality. A. L. is supported in part by DOE Grant No. DE-FG02-92ER40706, and by a DOE Outstanding Junior Investigator award. E. S. is supported by NSF grant PHY-0244728 and by the DOE under contract DE-AC03-76SF00515. A. L. and E. S. are also supported by NSF grant NSF PHY05-51164. G. H. is supported by the NSF grant PHY-0555669. NR 41 TC 26 Z9 26 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD JUL PY 2009 IS 7 AR 057 DI 10.1088/1126-6708/2009/07/057 PG 25 WC Physics, Particles & Fields SC Physics GA 499KV UT WOS:000270219900057 ER PT J AU Morrissey, DE Poland, D Zurek, KM AF Morrissey, David E. Poland, David Zurek, Kathryn M. TI Abelian hidden sectors at a GeV SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Review DE Beyond Standard Model; Cosmology of Theories beyond the SM; Supersymmetric gauge theory; Supersymmetry Breaking ID MEDIATED SUPERSYMMETRY BREAKING; DARK-MATTER; LOCAL SUPERSYMMETRY; PARTICLE PHYSICS; 2-PHOTON DECAYS; HIGGS BOSONS; MU-PROBLEM; RENORMALIZATION; SUPERGRAVITY; MODEL AB We discuss mechanisms for naturally generating GeV-scale hidden sectors in the context of weak-scale supersymmetry. Such low mass scales can arise when hidden sectors are more weakly coupled to supersymmetry breaking than the visible sector, as happens when supersymmetry breaking is communicated to the visible sector by gauge interactions under which the hidden sector is uncharged, or if the hidden sector is sequestered from gravity-mediated supersymmetry breaking. We study these mechanisms in detail in the context of gauge and gaugino mediation, and present specific models of Abelian GeV-scale hidden sectors. In particular, we discuss kinetic mixing of a U(1)(x) gauge force with hypercharge, singlets or bi-fundamentals which couple to both sectors, and additional loop effects. Finally, we investigate the possible relevance of such sectors for dark matter phenomenology, as well as for low- and high-energy collider searches. C1 [Morrissey, David E.; Poland, David] Harvard Univ, Jefferson Phys Lab, Cambridge, MA 02138 USA. [Zurek, Kathryn M.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Zurek, Kathryn M.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. RP Morrissey, DE (reprint author), Harvard Univ, Jefferson Phys Lab, Cambridge, MA 02138 USA. EM dmorriss@physics.harvard.edu; dpoland@physics.harvard.edu; kzurek@fnal.gov RI Poland, David/A-8689-2015 OI Poland, David/0000-0003-3854-2430 NR 127 TC 76 Z9 76 U1 0 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD JUL PY 2009 IS 7 AR 050 DI 10.1088/1126-6708/2009/07/050 PG 43 WC Physics, Particles & Fields SC Physics GA 499KV UT WOS:000270219900050 ER PT J AU Poppitz, E Unsal, M AF Poppitz, Erich Unsal, Mithat TI Chiral gauge dynamics and dynamical supersymmetry breaking SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Gauge Symmetry; Supersymmetric Effective Theories; Supersymmetry and Duality; Supersymmetry Breaking ID SYMMETRY-BREAKING; SIGMA-MODEL; DIMENSIONS; ANTIFERROMAGNETS; INSTANTONS; DUALITY; PHASES; SPIN; QCD AB We study the dynamics of a chiral SU(2) gauge theory with a Weyl fermion in the I = 3/2 representation and of its supersymmetric generalization. In the former, we find a new and exotic mechanism of confinement, induced by topological excitations that we refer to as magnetic quintets. The supersymmetric version was examined earlier in the context of dynamical supersymmetry breaking by Intriligator, Seiberg, and Shenker, who showed that if this gauge theory confines at the origin of moduli space, one may break supersymmetry by adding a tree level superpotential. We examine the dynamics by deforming the theory on S-1 x R-3, and show that the infrared behavior of this theory is an interacting CFT at small S-1. We argue that this continues to hold at large S-1, and if so, that supersymmetry must remain unbroken. Our methods also provide the microscopic origin of various superpotentials in SQCD on S-1 x R-3 - which were previously obtained by using symmetry and holomorphy - and resolve a long standing interpretational puzzle concerning a flux operator discovered by Affleck, Harvey, and Witten. It is generated by a topological excitation, a "magnetic bion", whose stability is due to fermion pair exchange between its constituents. We also briefly comment on composite monopole operators as leading effects in two dimensional anti-ferromagnets. C1 [Poppitz, Erich] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Unsal, Mithat] Stanford Univ, Dept Phys, Stanford, CA 94025 USA. [Unsal, Mithat] Stanford Univ, SLAC, Stanford, CA 94025 USA. RP Poppitz, E (reprint author), Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada. EM poppitz@physics.utoronto.ca; unsal@slac.stanford.edu FU U.S. Department of Energy [DE-AC02-76SF00515]; National Science and Engineering Council of Canada (NSERC) FX We thank M. Shifman, J. Harvey, K. Intriligator, N. Seiberg, S. Shenker, P. Gao, and Y. Shang for useful discussions. This work was supported by the U.S. Department of Energy Grants DE-AC02-76SF00515 and by the National Science and Engineering Council of Canada (NSERC). NR 31 TC 13 Z9 13 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD JUL PY 2009 IS 7 AR 060 DI 10.1088/1126-6708/2009/07/060 PG 24 WC Physics, Particles & Fields SC Physics GA 499KV UT WOS:000270219900060 ER PT J AU Bettencourt, LMA Kaiser, DI Kaur, J AF Bettencourt, Luis M. A. Kaiser, David I. Kaur, Jasleen TI Scientific discovery and topological transitions in collaboration networks SO JOURNAL OF INFORMETRICS LA English DT Article DE Scientific discovery; Collaboration networks; Phase transitions; Models of science evolution ID WORD ANALYSIS; SCIENCE; SPREAD; GROWTH; IDEAS AB We analyze the advent and development of eight scientific fields from their inception to maturity and map the evolution of their networks of collaboration over time, measured in terms of co-authorship of scientific papers. We show that as a field develops it undergoes a topological transition in its collaboration structure between a small disconnected graph to a much larger network where a giant connected component of collaboration appears. As a result, the number of edges and nodes in the largest component undergoes a transition between a small fraction of the total to a majority of all occurrences. These results relate to many qualitative observations of the evolution of technology and discussions of the "structure of scientific revolutions". We analyze this qualitative change in network topology in terms of several quantitative graph theoretical measures, such as density, diameter, and relative size of the network's largest component. To analyze examples of scientific discovery we built databases of scientific publications based on keyword and citation searches, for eight fields, spanning experimental and theoretical science, across areas as diverse as physics, biomedical sciences, and materials science. Each of the databases was vetted by field experts and is the result of a bibliometric search constructed to maximize coverage, while minimizing the occurrence of spurious records. In this way we built databases of publications and authors for superstring theory, cosmic strings and other topological defects, cosmological inflation, carbon nanotubes, quantum computing and computation, prions and scrapie, and H5N1 influenza. We also built a database for a classical example of "pathological" science, namely cold fusion. All these fields also vary in size and in their temporal patterns of development, with some showing explosive growth from an original identifiable discovery (e.g. carbon nanotubes) while others are characterized by a slow process of development (e.g. quantum computers and computation). We show that regardless of the detailed nature of their developmental paths, the process of scientific discovery and the rearrangement of the collaboration structure of emergent fields is characterized by a number of universal features, suggesting that the process of discovery and initial formation of a scientific field, characterized by the moments of discovery, invention and subsequent transition into "normal science" may be understood in general terms, as a process of cognitive and social unification out of many initially separate efforts. Pathological fields, seemingly, never undergo this transition, despite hundreds of publications and the involvement of many authors. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Bettencourt, Luis M. A.; Kaur, Jasleen] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Bettencourt, Luis M. A.] Santa Fe Inst, Santa Fe, NM 87501 USA. [Kaiser, David I.] MIT, Program Sci Technol & Soc, Cambridge, MA 02139 USA. [Kaiser, David I.] MIT, Dept Phys, Cambridge, MA 02139 USA. RP Bettencourt, LMA (reprint author), Los Alamos Natl Lab, Div Theoret, T-5 MS B284, Los Alamos, NM 87545 USA. EM lmbett@lanl.gov OI Kaur, Jasleen/0000-0002-1243-1452; Kaiser, David/0000-0002-5054-6744 NR 43 TC 41 Z9 41 U1 9 U2 47 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1751-1577 J9 J INFORMETR JI J. Informetr. PD JUL PY 2009 VL 3 IS 3 BP 210 EP 221 DI 10.1016/j.joi.2009.03.001 PG 12 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science SC Computer Science; Information Science & Library Science GA 459WT UT WOS:000267144200005 ER PT J AU Adam, W Bergauer, T Dragicevic, M Friedl, M Fruhwirth, R Hansel, S Hrubec, J Krammer, M Oberegger, M Pernicka, M Schmid, S Stark, R Steininger, H Uhl, D Waltenberger, W Widl, E Van Mechelen, P Cardaci, M Beaumont, W de Langhe, E de Wolf, EA Delmeire, E Hashemi, M Bouhali, O Charaf, O Clerbaux, B Dewulf, JP Elgammal, S Hammad, G de Lentdecker, G Marage, P Velde, CV Vanlaer, P Wickens, J Adler, V Devroede, O De Weirdt, S D'Hondt, J Goorens, R Heyninck, J Maes, J Mozer, M Tavernier, S Van Lancker, L Van Mulders, P Villella, I Wastiels, C Bonnet, JL Bruno, G De Callatay, B Florins, B Giammanco, A Gregoire, G Keutgen, T Kcira, D Lemaitre, V Michotte, D Militaru, O Piotrzkowski, K Quertermont, L Roberfroid, V Rouby, X Teyssier, D Daubie, E Anttila, E Czellar, S Engstrom, P Harkonen, J Karimaki, V Kostesmaa, J Kuronen, A Lampen, T Linden, T Luukka, PR Maenaa, T Michal, S Tuominen, E Tuominiemi, J Ageron, M Baulieu, G Bonnevaux, A Boudoul, G Chabanat, E Chabert, E Chierici, R Contardo, D Della Negra, R Dupasquier, T Gelin, G Giraud, N Guillot, G Estre, N Haroutunian, R Lumb, N Perries, S Schirra, F Trocme, B Vanzetto, S Agram, JL Blaes, R Drouhin, F Ernenwein, JP Fontaine, JC Berst, JD Brom, JM Didierjean, F Goerlach, U Graehling, P Gross, L Hosselet, J Juillot, P Lounis, A Maazouzi, C Olivetto, C Strub, R Van Hove, P Anagnostou, G Brauer, R Esser, H Feld, L Karpinski, W Klein, K Kukulies, C Olzem, J Ostapchuk, A Pandoulas, D Pierschel, G Raupach, F Schael, S Schwering, G Sprenger, D Thomas, M Weber, M Wittmer, B Wlochal, M Beissel, F Bock, E Flugge, G Gillissen, C Hermanns, T Heydhausen, D Jahn, D Kaussen, G Linn, A Perchalla, L Poettgens, M Pooth, O Stahl, A Zoeller, MH Buhmann, P Butz, E Flucke, G Hamdorf, R Hauk, J Klanner, R Pein, U Schleper, P Steinbruck, G Blum, P De Boer, W Dierlamm, A Dirkes, G Fahrer, M Frey, M Furgeri, A Hartmann, F Heier, S Hoffmann, KH Kaminski, J Ledermann, B Liamsuwan, T Muller, S Muller, T Schilling, FP Simonis, HJ Steck, P Zhukov, V Cariola, P De Robertis, G Ferorelli, R Fiore, L Preda, M Sala, G Silvestris, L Tempesta, P Zito, G Creanza, D De Filippis, N De Palma, M Giordano, D Maggi, G Manna, N My, S Selvaggi, G Albergo, S Chiorboli, M Costa, S Galanti, M Giudice, N Guardone, N Noto, F Potenza, R Saizu, MA Sparti, V Sutera, C Tricomi, A Tuve, C Brianzi, M Civinini, C Maletta, F Manolescu, F Meschini, M Paoletti, S Sguazzoni, G Broccolo, B Ciulli, V Focardi, RDE Frosali, S Genta, C Landi, G Lenzi, P Macchiolo, A Magini, N Parrini, G Scarlini, E Cerati, G Azzi, P Bacchetta, N Candelori, A Dorigo, T Kaminsky, A Karaevski, S Khomenkov, V Reznikov, S Tessaro, M Bisello, D De Mattia, M Giubilato, P Loreti, M Mattiazzo, S Nigro, M Paccagnella, A Pantano, D Pozzobon, N Tosi, M Bilei, GM Checcucci, B Fano, L Servoli, L Ambroglini, F Babucci, E Benedetti, D Biasini, M Caponeri, B Covarelli, R Giorgi, M Lariccia, P Mantovani, G Marcantonini, M Postolache, V Santocchia, A Spiga, D Bagliesi, G Balestri, G Berretta, L Bianucci, S Boccali, T Bosi, F Bracci, F Castaldi, R Ceccanti, M Cecchi, R Cerri, C Cucoanes, AS Dell'Orso, R Dobur, D Dutta, S Giassi, A Giusti, S Kartashov, D Kraan, A Lomtadze, T Lungu, GA Magazzu, G Mammini, P Mariani, F Martinelli, G Moggi, A Palla, F Palmonari, F Petragnani, G Profeti, A Raffaelli, F Rizzi, D Sanguinetti, G Sarkar, S Sentenac, D Serban, AT Slav, A Soldani, A Spagnolo, P Tenchini, R Tolaini, S Venturi, A Verdini, PG Vos, M Zaccarelli, L Avanzini, C Basti, A Benucci, L Bocci, A Cazzola, U Fiori, F Linari, S Massa, M Messineo, A Segneri, G Tonelli, G Azzurri, P Bernardini, J Borrello, L Calzolari, F Foa, L Gennai, S Ligabue, F Petrucciani, G Rizzi, A Yang, Z Benotto, F Demaria, N Dumitrache, F Farano, R Borgia, MA Castello, R Costa, M Migliore, E Romero, A Abbaneo, D Abbas, M Ahmed, I Akhtar, I Albert, E Bloch, C Breuker, H Butt, S Buchmuller, O Cattai, A Delaere, C Delattre, M Edera, LM Engstrom, P Eppard, M Gateau, M Gill, K Giolo-Nicollerat, AS Grabit, R Honma, A Huhtinen, M Kloukinas, K Kortesmaa, J Kottelat, LJ Kuronen, A Leonardo, N Ljuslin, C Mannelli, M Masetti, L Marchioro, A Mersi, S Michal, S Mirabito, L Muffat-Joly, J Onnela, A Paillard, C Pal, I Pernot, JF Petagna, P Petit, P Piccut, C Pioppi, M Postema, H Ranieri, R Ricci, D Rolandi, G Ronga, F Sigaud, C Syed, A Siegrist, P Tropea, P Troska, J Tsirou, A Donckt, MV Vasey, F Alagoz, E Amsler, C Chiochia, V Regenfus, C Robmann, P Rochet, J Rommerskirchen, T Schmidt, A Steiner, S Wilke, L Church, I Cole, J Coughlan, J Gay, A Taghavi, S Tomalin, I Bainbridge, R Cripps, N Fulcher, J Hall, G Noy, M Pesaresi, M Radicci, V Raymond, DM Sharp, P Stoye, M Wingham, M Zorba, O Goitom, I Hobson, PR Reid, I Teodorescu, L Hanson, G Jeng, GY Liu, H Pasztor, G Satpathy, A Stringer, R Mangano, B Affolder, K Affolder, T Allen, A Barge, D Burke, S Callahan, D Campagnari, C Crook, A D'Alfonso, M Dietch, J Garberson, J Hale, D Incandela, H Incandela, J Jaditz, S Kalavase, P Kreyer, S Kyre, S Lamb, J Mc Guinness, C Mills, C Nguyen, H Nikolic, M Lowette, S Rebassoo, F Ribnik, J Richman, J Rubinstein, N Sanhueza, S Shah, Y Simms, L Staszak, D Stoner, J Stuart, D Swain, S Vlimant, JR White, D Ulmer, KA Wagner, SR Bagby, L Bhat, PC Burkett, K Cihangir, S Gutsche, O Jensen, H Johnson, M Luzhetskiy, N Mason, D Miao, T Moccia, S Noeding, C Ronzhin, A Skup, E Spalding, WJ Spiegel, L Tkaczyk, S Yumiceva, F Zatserklyaniy, A Zerev, E Anghel, I Bazterra, VE Gerber, CE Khalatian, S Shabalina, E Baringer, P Bean, A Chen, J Hinchey, C Martin, C Moulik, T Robinson, R Gritsan, AV Lae, CK Tran, NV Everaerts, P Hahn, KA Harris, P Nahn, S Rudolph, M Sung, K Betchart, B Demina, R Gotra, Y Korjenevski, S Miner, D Orbaker, D Christofek, L Hooper, R Landsberg, G Nguyen, D Narain, M Speer, T Tsang, KV AF Adam, W. Bergauer, T. Dragicevic, M. Friedl, M. Fruehwirth, R. Haensel, S. Hrubec, J. Krammer, M. Oberegger, M. Pernicka, M. Schmid, S. Stark, R. Steininger, H. Uhl, D. Waltenberger, W. Widl, E. Van Mechelen, P. Cardaci, M. Beaumont, W. de Langhe, E. de Wolf, E. A. Delmeire, E. Hashemi, M. Bouhali, O. Charaf, O. Clerbaux, B. Dewulf, J. -P. Elgammal, S. Hammad, G. de Lentdecker, G. Marage, P. Velde, C. Vander Vanlaer, P. Wickens, J. Adler, V. Devroede, O. De Weirdt, S. D'Hondt, J. Goorens, R. Heyninck, J. Maes, J. Mozer, M. Tavernier, S. Van Lancker, L. Van Mulders, P. Villella, I. Wastiels, C. Bonnet, J. -L. Bruno, G. De Callatay, B. Florins, B. Giammanco, A. Gregoire, G. Keutgen, Th. Kcira, D. Lemaitre, V. Michotte, D. Militaru, O. Piotrzkowski, K. Quertermont, L. Roberfroid, V. Rouby, X. Teyssier, D. Daubie, E. Anttila, E. Czellar, S. Engstrom, P. Harkonen, J. Karimaki, V. Kostesmaa, J. Kuronen, A. Lampen, T. Linden, T. Luukka, P. -R. Maenaa, T. Michal, S. Tuominen, E. Tuominiemi, J. Ageron, M. Baulieu, G. Bonnevaux, A. Boudoul, G. Chabanat, E. Chabert, E. Chierici, R. Contardo, D. Della Negra, R. Dupasquier, T. Gelin, G. Giraud, N. Guillot, G. Estre, N. Haroutunian, R. Lumb, N. Perries, S. Schirra, F. Trocme, B. Vanzetto, S. Agram, J. -L. Blaes, R. Drouhin, F. Ernenwein, J. -P. Fontaine, J. -C. Berst, J. -D. Brom, J. -M. Didierjean, F. Goerlach, U. Graehling, P. Gross, L. Hosselet, J. Juillot, P. Lounis, A. Maazouzi, C. Olivetto, C. Strub, R. Van Hove, P. Anagnostou, G. Brauer, R. Esser, H. Feld, L. Karpinski, W. Klein, K. Kukulies, C. Olzem, J. Ostapchuk, A. Pandoulas, D. Pierschel, G. Raupach, F. Schael, S. Schwering, G. Sprenger, D. Thomas, M. Weber, M. Wittmer, B. Wlochal, M. Beissel, F. Bock, E. Flugge, G. Gillissen, C. Hermanns, T. Heydhausen, D. Jahn, D. Kaussen, G. Linn, A. Perchalla, L. Poettgens, M. Pooth, O. Stahl, A. Zoeller, M. H. Buhmann, P. Butz, E. Flucke, G. Hamdorf, R. Hauk, J. Klanner, R. Pein, U. Schleper, P. Steinbrueck, G. Bluem, P. De Boer, W. Dierlamm, A. Dirkes, G. Fahrer, M. Frey, M. Furgeri, A. Hartmann, F. Heier, S. Hoffmann, K. -H. Kaminski, J. Ledermann, B. Liamsuwan, T. Mueller, S. Mueller, Th. Schilling, F. -P. Simonis, H. -J. Steck, P. Zhukov, V. Cariola, P. De Robertis, G. Ferorelli, R. Fiore, L. Preda, M. Sala, G. Silvestris, L. Tempesta, P. Zito, G. Creanza, D. De Filippis, N. De Palma, M. Giordano, D. Maggi, G. Manna, N. My, S. Selvaggi, G. Albergo, S. Chiorboli, M. Costa, S. Galanti, M. Giudice, N. Guardone, N. Noto, F. Potenza, R. Saizu, M. A. Sparti, V. Sutera, C. Tricomi, A. Tuve, C. Brianzi, M. Civinini, C. Maletta, F. Manolescu, F. Meschini, M. Paoletti, S. Sguazzoni, G. Broccolo, B. Ciulli, V. Focardi, R. D'Alessandro. E. Frosali, S. Genta, C. Landi, G. Lenzi, P. Macchiolo, A. Magini, N. Parrini, G. Scarlini, E. Cerati, G. Azzi, P. Bacchetta, N. Candelori, A. Dorigo, T. Kaminsky, A. Karaevski, S. Khomenkov, V. Reznikov, S. Tessaro, M. Bisello, D. De Mattia, M. Giubilato, P. Loreti, M. Mattiazzo, S. Nigro, M. Paccagnella, A. Pantano, D. Pozzobon, N. Tosi, M. Bilei, G. M. Checcucci, B. Fano, L. Servoli, L. Ambroglini, F. Babucci, E. Benedetti, D. Biasini, M. Caponeri, B. Covarelli, R. Giorgi, M. Lariccia, P. Mantovani, G. Marcantonini, M. Postolache, V. Santocchia, A. Spiga, D. Bagliesi, G. Balestri, G. Berretta, L. Bianucci, S. Boccali, T. Bosi, F. Bracci, F. Castaldi, R. Ceccanti, M. Cecchi, R. Cerri, C. Cucoanes, A. S. Dell'Orso, R. Dobur, D. Dutta, S. Giassi, A. Giusti, S. Kartashov, D. Kraan, A. Lomtadze, T. Lungu, G. A. Magazzu, G. Mammini, P. Mariani, F. Martinelli, G. Moggi, A. Palla, F. Palmonari, F. Petragnani, G. Profeti, A. Raffaelli, F. Rizzi, D. Sanguinetti, G. Sarkar, S. Sentenac, D. Serban, A. T. Slav, A. Soldani, A. Spagnolo, P. Tenchini, R. Tolaini, S. Venturi, A. Verdini, P. G. Vos, M. Zaccarelli, L. Avanzini, C. Basti, A. Benucci, L. Bocci, A. Cazzola, U. Fiori, F. Linari, S. Massa, M. Messineo, A. Segneri, G. Tonelli, G. Azzurri, P. Bernardini, J. Borrello, L. Calzolari, F. Foa, L. Gennai, S. Ligabue, F. Petrucciani, G. Rizzi, A. Yang, Z. Benotto, F. Demaria, N. Dumitrache, F. Farano, R. Borgia, M. A. Castello, R. Costa, M. Migliore, E. Romero, A. Abbaneo, D. Abbas, M. Ahmed, I. Akhtar, I. Albert, E. Bloch, C. Breuker, H. Butt, S. Buchmuller, O. Cattai, A. Delaere, C. Delattre, M. Edera, L. M. Engstrom, P. Eppard, M. Gateau, M. Gill, K. Giolo-Nicollerat, A. -S. Grabit, R. Honma, A. Huhtinen, M. Kloukinas, K. Kortesmaa, J. Kottelat, L. J. Kuronen, A. Leonardo, N. Ljuslin, C. Mannelli, M. Masetti, L. Marchioro, A. Mersi, S. Michal, S. Mirabito, L. Muffat-Joly, J. Onnela, A. Paillard, C. Pal, I. Pernot, J. F. Petagna, P. Petit, P. Piccut, C. Pioppi, M. Postema, H. Ranieri, R. Ricci, D. Rolandi, G. Ronga, F. Sigaud, C. Syed, A. Siegrist, P. Tropea, P. Troska, J. Tsirou, A. Donckt, M. Vander Vasey, F. Alagoz, E. Amsler, C. Chiochia, V. Regenfus, C. Robmann, P. Rochet, J. Rommerskirchen, T. Schmidt, A. Steiner, S. Wilke, L. Church, I. Cole, J. Coughlan, J. Gay, A. Taghavi, S. Tomalin, I. Bainbridge, R. Cripps, N. Fulcher, J. Hall, G. Noy, M. Pesaresi, M. Radicci, V. Raymond, D. M. Sharp, P. Stoye, M. Wingham, M. Zorba, O. Goitom, I. Hobson, P. R. Reid, I. Teodorescu, L. Hanson, G. Jeng, G. -Y. Liu, H. Pasztor, G. Satpathy, A. Stringer, R. Mangano, B. Affolder, K. Affolder, T. Allen, A. Barge, D. Burke, S. Callahan, D. Campagnari, C. Crook, A. D'Alfonso, M. Dietch, J. Garberson, J. Hale, D. Incandela, H. Incandela, J. Jaditz, S. Kalavase, P. Kreyer, S. Kyre, S. Lamb, J. Mc Guinness, C. Mills, C. Nguyen, H. Nikolic, M. Lowette, S. Rebassoo, F. Ribnik, J. Richman, J. Rubinstein, N. Sanhueza, S. Shah, Y. Simms, L. Staszak, D. Stoner, J. Stuart, D. Swain, S. Vlimant, J. -R. White, D. Ulmer, K. A. Wagner, S. R. Bagby, L. Bhat, P. C. Burkett, K. Cihangir, S. Gutsche, O. Jensen, H. Johnson, M. Luzhetskiy, N. Mason, D. Miao, T. Moccia, S. Noeding, C. Ronzhin, A. Skup, E. Spalding, W. J. Spiegel, L. Tkaczyk, S. Yumiceva, F. Zatserklyaniy, A. Zerev, E. Anghel, I. Bazterra, V. E. Gerber, C. E. Khalatian, S. Shabalina, E. Baringer, P. Bean, A. Chen, J. Hinchey, C. Martin, C. Moulik, T. Robinson, R. Gritsan, A. V. Lae, C. K. Tran, N. V. Everaerts, P. Hahn, K. A. Harris, P. Nahn, S. Rudolph, M. Sung, K. Betchart, B. Demina, R. Gotra, Y. Korjenevski, S. Miner, D. Orbaker, D. Christofek, L. Hooper, R. Landsberg, G. Nguyen, D. Narain, M. Speer, T. Tsang, K. V. TI Alignment of the CMS silicon strip tracker during stand-alone commissioning SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Particle tracking detectors (Solid-state detectors); Particle tracking detectors; Pattern recognition, cluster finding, calibration and fitting methods; Analysis and statistical methods AB The results of the CMS tracker alignment analysis are presented using the data from cosmic tracks, optical survey information, and the laser alignment system at the Tracker Integration Facility at CERN. During several months of operation in the spring and summer of 2007, about five million cosmic track events were collected with a partially active CMS Tracker. This allowed us to perform first alignment of the active silicon modules with the cosmic tracks using three different statistical approaches; validate the survey and laser alignment system performance; and test the stability of Tracker structures under various stresses and temperatures ranging from +15 degrees C to -15 degrees C. Comparison with simulation shows that the achieved alignment precision in the barrel part of the tracker leads to residual distributions similar to those obtained with a random misalignment of 50 (80) mu m RMS in the outer (inner) part of the barrel. C1 [Buhmann, P.; Butz, E.; Flucke, G.; Hamdorf, R.; Hauk, J.; Klanner, R.; Pein, U.; Schleper, P.; Steinbrueck, G.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Adam, W.; Bergauer, T.; Dragicevic, M.; Friedl, M.; Fruehwirth, R.; Haensel, S.; Hrubec, J.; Krammer, M.; Oberegger, M.; Pernicka, M.; Schmid, S.; Stark, R.; Steininger, H.; Uhl, D.; Waltenberger, W.; Widl, E.] Osterrich Akad Wissensch HEPHY, Inst Hochenergiephys, Vienna, Austria. [Van Mechelen, P.; Cardaci, M.; Beaumont, W.; de Langhe, E.; de Wolf, E. A.; Delmeire, E.; Hashemi, M.] Univ Antwerp, Antwerp, Belgium. [Bouhali, O.; Charaf, O.; Clerbaux, B.; Dewulf, J. -P.; Elgammal, S.; Hammad, G.; de Lentdecker, G.; Marage, P.; Velde, C. Vander; Vanlaer, P.; Wickens, J.] Univ Libre Brussels, ULB, Brussels, Belgium. [Adler, V.; Devroede, O.; De Weirdt, S.; D'Hondt, J.; Goorens, R.; Heyninck, J.; Maes, J.; Mozer, M.; Tavernier, S.; Van Lancker, L.; Van Mulders, P.; Villella, I.; Wastiels, C.] Vrije Univ Brussel, VUB, Brussels, Belgium. [Bonnet, J. -L.; Bruno, G.; De Callatay, B.; Florins, B.; Giammanco, A.; Gregoire, G.; Keutgen, Th.; Kcira, D.; Lemaitre, V.; Michotte, D.; Militaru, O.; Piotrzkowski, K.; Quertermont, L.; Roberfroid, V.; Rouby, X.; Teyssier, D.] Catholic Univ Louvain, UCL, B-1348 Louvaine La Neuve, Belgium. [Daubie, E.] Univ Mons, B-7000 Mons, Belgium. [Anttila, E.; Czellar, S.; Engstrom, P.; Harkonen, J.; Karimaki, V.; Kostesmaa, J.; Kuronen, A.; Lampen, T.; Linden, T.; Luukka, P. -R.; Maenaa, T.; Michal, S.; Tuominen, E.; Tuominiemi, J.] Helsinki Inst Phys, Helsinki, Finland. [Ageron, M.; Baulieu, G.; Bonnevaux, A.; Boudoul, G.; Chabanat, E.; Chabert, E.; Chierici, R.; Contardo, D.; Della Negra, R.; Dupasquier, T.; Gelin, G.; Giraud, N.; Guillot, G.; Estre, N.; Haroutunian, R.; Lumb, N.; Perries, S.; Schirra, F.; Trocme, B.; Vanzetto, S.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl, F-69365 Lyon, France. [Agram, J. -L.; Blaes, R.; Drouhin, F.; Ernenwein, J. -P.; Fontaine, J. -C.] Univ Haute Alsace, Grp Rech Phys Hautes Energies, Mulhouse, France. [Berst, J. -D.; Brom, J. -M.; Didierjean, F.; Goerlach, U.; Graehling, P.; Gross, L.; Hosselet, J.; Juillot, P.; Lounis, A.; Maazouzi, C.; Olivetto, C.; Strub, R.; Van Hove, P.] Univ Louis Pasteur Strasbourg, Inst Pluridisciplinaire Hubert Curien, IN2P3, CNRS, Strasbourg, France. [Anagnostou, G.; Brauer, R.; Esser, H.; Feld, L.; Karpinski, W.; Klein, K.; Kukulies, C.; Olzem, J.; Ostapchuk, A.; Pandoulas, D.; Pierschel, G.; Raupach, F.; Schael, S.; Schwering, G.; Sprenger, D.; Thomas, M.; Weber, M.; Wittmer, B.; Wlochal, M.] Univ Aachen, Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Beissel, F.; Bock, E.; Flugge, G.; Gillissen, C.; Hermanns, T.; Heydhausen, D.; Jahn, D.; Kaussen, G.; Linn, A.; Perchalla, L.; Poettgens, M.; Pooth, O.; Stahl, A.; Zoeller, M. H.] Univ Aachen, Rhein Westfal TH Aachen, Inst Phys 3, Aachen, Germany. [Bluem, P.; De Boer, W.; Dierlamm, A.; Dirkes, G.; Fahrer, M.; Frey, M.; Furgeri, A.; Hartmann, F.; Heier, S.; Hoffmann, K. -H.; Kaminski, J.; Ledermann, B.; Liamsuwan, T.; Mueller, S.; Mueller, Th.; Schilling, F. -P.; Simonis, H. -J.; Steck, P.; Zhukov, V.] Karlsruhe IEKP, Karlsruhe, Germany. [Cariola, P.; De Robertis, G.; Ferorelli, R.; Fiore, L.; Preda, M.; Sala, G.; Silvestris, L.; Tempesta, P.; Zito, G.] INFN Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; De Palma, M.; Giordano, D.; Maggi, G.; Manna, N.; My, S.; Selvaggi, G.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Creanza, D.; De Filippis, N.; De Palma, M.; Giordano, D.; Maggi, G.; Manna, N.; My, S.; Selvaggi, G.] Dipartimento Interateneo Fis, Bari, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Galanti, M.; Giudice, N.; Guardone, N.; Noto, F.; Potenza, R.; Saizu, M. A.; Sparti, V.; Sutera, C.; Tricomi, A.; Tuve, C.; Broccolo, B.; Ciulli, V.; Focardi, R. D'Alessandro. E.; Genta, C.; Landi, G.; Lenzi, P.; Macchiolo, A.; Magini, N.; Parrini, G.; Scarlini, E.; Cerati, G.; Azzi, P.; De M